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Abstract

Joint registration and segmentation of varying contrast images is a
fundamental task in the field of image analysis, despite yet open.
In this thesis, novel techniques for the tasks of segmentation and
registration are discussed separately and jointly. Cardiac Phase-
resolved Blood Oxygen-Level-Dependent (CP-BOLD) MRI is a new
contrast agent- and stress-free imaging technique for the assessment
of myocardial ischemia at rest. However, it introduces varying con-
trast in medical image analysis applications. Therefore, establishing
voxel to voxel correspondences throughout the cardiac sequence,
an inevitable component of statistical analysis of these images re-
mains challenging. Furthermore, medical background and specific
segmentation difficulties associated to these images are present.
Alongside with the inconsistency in myocardial intensity patterns,
the changes in myocardial shape due to the heart’s motion lead to
low registration performance for state-of-the-art methods.

The problem of low accuracy can be explained by the lack of
distinguishable features in CP-BOLD and inappropriate metric def-
initions in current intensity-based registration and segmentation
frameworks. In this thesis, sparse representations, which are de-
fined by a discriminative dictionary learning approach, are used
to improve myocardial segmentation and registration. Initially ap-
pearance information is combined with Gabor and HOG features
in a dictionary learning framework to sparsely represent features in
a low dimensional space. Moreover, the motion is incorporated as
additional feature to establish an unsupervised segmentation frame-
work. For registering the cardiac sequence a new similarity metric is
proposed utilizing the sparse representations. Also a joint optimiza-
tion scheme for dictionary learning based feature representations
is proposed using the sparse coefficients and dictionary residuals.
The superior performance of the dictionary-based descriptors are
showcased with several experimental results.

xvi
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1
Introduction

Coronary Artery Disease (CAD) is number one cause of death in
the world [16]. The most common form of CAD leads to coronary
artery stenosis, which results in reduced blood oxygen supply to the
myocardium (myocardial ischemia). Early detection of ischemiawill
help clinicians to intervene and re-establish the blood flow in the
necessary regions of coronary arteries. Unfortunately, most meth-
ods for detecting ischemia are invasive, require ionizing radiation
and contrast agent [48].

Cardiac Phase resolved Blood Oxygen Level Dependent Mag-
netic Resonance Imaging (CP-BOLDMRI) is a reliable, non-invasive,
and repeatable imaging method for ischemia detection [27]. How-
ever, it relies heavily on post-processing for accurate analysis of
the data and disease diagnosis. Appropriate techniques should
be developed for the analysis of this modality [145]. Our major
motivation is to fill this gap and open the path for statistical analysis
of this data. The possible algorithms that could be used to solve the
challenge of segmentation and registration jointly, are promising to
overcome the major difficulties of CP-BOLDMRI. The development
of such algorithmswill not only be a breakthrough in CP-BOLD, but
can also be used in varying contrast images such as natural images
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with illumination issues and varying contrast images.

1.1 Objective and Challenge

Our primary goal is to come up with a rapid and robust algorithm
to segment and register the myocardium in a cardiac sequence to
achieve voxel to voxel correspondences. These correspondences
will give birth to accurate time-series. The acquired time series can
enable feature extraction and better statistical analysis of the data.
This contribution has the potential to be a breakthrough in cardiac
ischemia detection. Design of a rapid and accurate image analysis
algorithm for this modality will enable this imaging technique enter
clinical practice.

The theoretical evaluation of the current state of the art in cardiac
MRI registration, segmentation and joint registration segmentation
techniques is compulsory for developing an approach on this chal-
lenge. Firstly, with a theoretical study of the algorithms, we aim
to understand possible developments in different contexts. The
fundamental research focus is evaluating and studying the meth-
ods in details, so that we can apply the necessary changes in some
parameters and regularization terms. It could be possible to de-
velop methods suitable and applicable in the specific challenge of
registering and segmenting the myocardium region. In this the-
sis, we summarize the methods that have been developed for both
challenges using dictionary learning.

The main idea is to analyze images in order to detect and ex-
tract the features in cardiac studies. We begin with the methods
we developed for segmentation. Then, we report algorithms for
registration with a certain emphasis on similarity metrics. At the
end of the thesis, multiple possible approaches that can add the
registration to the segmentation task will be discussed. The main
area of the application will be the cardiac sequences of BOLD MRI;
which is a imaging technique to measure the the difference in mag-
netic properties between oxyhemoglobin and deoxyhemoglobin
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in capillaries and venous vessels. The developed methods in this
thesis will add as a benchmark for the varying contrast imaging.

1.2 Research Questions and Objectives

Based on the motivation of myocardial registration and segmenta-
tion of the myocardium, we specify the main research questions
addressed by the thesis. In the following we enumerate these ques-
tions and describe organization of the material. We illustrate also
the scientific and engineering contributions and publications 1 of-
fered by the thesis by answering the research question as follows:

Research Question 1
Does BOLD effect challenge segmentation and registration?

There is a vast amount of literature for the tasks of registra-
tion and segmentation of standard cine MR. We test a selection
of methods on CP-BOLDMRI, which are specifically powerful to
address varying contrast issues and compare the results. This ques-
tion is addressed in chapters 4, 5 and 6. The results are published
in [76], [77], [81] and [82] .

Research Question 2
How to obtain features to successfully align and extract the myocardium region?

We rely on sparse models more specifically dictionary learning
to detect features. We add texture information to appearance for
learning meaningful features to represent the myocardium at multi-
ple scales. This question is addressed in chapter 4 and the results
are published in [76].

Research Question 3
How to segment the myocardium using the data-driven features?
Automatic myocardial segmentation is one of the essential tasks

to automatize cardiac ischemia detection. We used the features
defined on training subjects with myocardium and background
dictionaries to segment the myocardium. This research question is

1To disseminate research work, parts of this thesis have been published by the
author or are currently under consideration for publication.
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investigated in chapter 4 and the corresponding results are reported
also in [76].

Research Question 4
How to incorporate motion information for myocardial segmentation?
The motion of myocardium could be used as a powerful tool for

automatic segmentation. CP-BOLD MRI has no automatic segmen-
tation method in the current state of the art. We hypothesize that
this is due to the lack of exploiting the unsupervised techniques
in a sparse representation setting, which can be an effective tool
for developing features that are invariant to temporal and inter-
subject variabilities, yet unique and descriptive. In addition, we
also argue that the temporal consistency assumption for myocardial
segmentation of standard CINE MR is a special case of the more
generalized spatio-temporal variability observed in CP-BOLD MR.
We investigate this issue in chapter 5 and report the results in [77]
and [82].

Research Question 5
How to produce a robust measure of similarity for registering cardiac phases?

Nonrigid image registration is an essential step in medical imag-
ing, including automatic segmentation, motion tracking and mor-
phometric analysis [111]. However, since most of the proposed
algorithms rely on a (dis)similarity metric build based on the as-
sumptions of consistent intensity and local shape, images with
pathologies and locally varying intensity may not be accurately
aligned. We hypothesize that it is due to the lack of appropriate
features, which are invariant to particular type of appearance and
shape deformation observed in CP-BOLD images. This question is
addressed in chapters 4 and 7. We publised the results regarding
this question in [81].

Research Question 6
How to optimize registration and segmentation cost functions jointly?

Registration and segmentation of anatomical structures are two
well studied problems in medical imaging. Optimizing segmen-
tation and registration jointly has been proven to improve results
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for both challenges. Joint registration and segmentation aims to
solve an optimization function, which enables better performance
for both of the tasks. Sequential registration and segmentation uses
the result of one process to guide the second task. Simultaneous reg-
istration and segmentation aims to solve two problems at the same
time usingMarkov Random Fields (MRF) approach. In chapter 7 we
investigate these methods based on dictionary learning residuals
and sparse representations defined on pre-trained dictionaries. We
have demonstrated the results regarding this publication in [83].

1.3 Scientific Contributions

There are multiple contributions of this work in the area of medical
image analysis:

1. The experiments demonstrate that BOLD contrast significantly
affects the accuracy of segmentation algorithms.

2. We experimentally validate the fact that BOLD contrast sig-
nificantly affects the accuracy of registration algorithms.

3. A set of compact features are designed using Multi-Scale Dis-
criminative Dictionary Learning (MSDDL), which can effec-
tively represent the myocardium in CP-BOLD MR.

4. A dictionary learning-based image descriptor (DLID) in a
registration framework is proposed.

5. We have employed a joint motion and sparse representation
based technique, where the motion not only generates a rough
estimate of the myocardium, but also guides the sparse repre-
sentation stage to a smooth solution.

6. We developed a MRF based joint registration and segmenta-
tion scheme on dictionary residuals and sparse coefficients to
extract segmentation masks and accurate deformations of the
cine typr cardiac data.
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Figure 1.1: Thesis structure and dependencies among chapters.

1.4 Structure of the Thesis

This thesis is divided into eight chapters as illustrated in figure
1.1. The core registration and segmentation of the myocardium, i.e.
chapters 4, 5, 6, and 7 as represented in the figure by a dotted circle.
The arrows among chapters represent their dependencies. However,
these dependencies do not indicate a compulsory reading and are
only a guide to illustrate the relations among them. The details of
the chapters as follows:

Chapter 2 briefly examines the background of coronary heart
disease, CP-BOLD MRI and machine learning methods that are
utilized in this thesis. The major focus is on available algorithms for
the tasks of registration and segmentation CP-BOLD MRI. We give
a detailed explanation of sparse learning techniques in this chapter
and investigate K-SVD and OMP algorithms in particular.

In Chapter 3, we investigate the current state of the art of cardiac
MR segmentation and registration. First, we scan the available
methods that have been utilized for the last 20 years for the tasks
of registration and segmentation separately. Then, we move to
the methods that propose a joint segmentation and registration
scheme. Finally, we summarize the current available techniques for
CP-BOLD MRI and highlight possible paths the thesis will be built
on.

Chapter 4 summarizes the data-driven feature learning tech-
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nique (MSDDL) in particular, for the challenge of myocardial seg-
mentation. A multi-scale discriminative dictionary learning ap-
proach is proposed for supervised learning and sparse representa-
tion of the myocardium, to improve the myocardial feature selection.
This method combines appearance with Gabor and HOG features
in a dictionary learning framework to sparsely represent features in
a low dimensional space.

Chapter 5 investigates two methods for unsupervised segmen-
tation thanks to incorporation of motion patterns as an additional
information into the framework. The first technique (UMSS) is a
fully unsupervised technique for segmenting myocardium from the
background in both standard CINE MR and CP-BOLD MR. The
appearance is combined with motion information in a dictionary
learning framework to sparsely represent important features in a
low dimensional space and separate myocardium from background
accordingly. Our fully automated method learns background-only
models and a one class classifier provides myocardial segmentation.
The second method is a fully automated unsupervised 2D+time
myocardial segmentation framework. We build a joint motion and
appearance method that relies on dictionary learning to find a suit-
able representation subspace. The method is based on variational
pre-processing and spatial regularization using Markov Random
Field (MRF), to further accurately extract segmentations and time-
series. Furthermore, a novel segmental analysis method attuned for
BOLD time-series is utilized to demonstrate the effectiveness of the
proposed method in preserving key BOLD patterns.

Chapter 6presents the incorporation of data-driven features into
a myocardial registration framework. The sparse representations,
which are defined by a discriminative dictionary learning approach
for source and target images, are used to improve myocardial regis-
tration. The differences of these distinctive sparse representations
are used to define a similarity term in the registration framework.

Chapter 7 includes the methodologies and experiments of our
joint registration and segmentation framework. Initially, we create a
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database of dictionaries for myocardium and background, to come
up with an initial segmentation, which relies on classification when
projecting on discriminatory dictionaries of an input CP-BOLD sub-
ject stack. Then, the stack is registered in the cardiac cycle using the
sparse coefficients of the projections to establish a new similarity
metric. The obtained segmentation is refined till convergence via
updated dictionaries. Finally, extensions to the framework of joint
registration and segmentation are investigated. The main focus is
to generate intensity and rotation invariant features and acceler-
ate the calculation of sparse representations. A joint optimization
scheme for both registration and segmentation is proven to aid the
solutions of both challenges. A MRF-based joint optimization and
segmentation scheme is proposed to accurately extract and register
the myocardium region.

Finally, in Chapter 8 we summarize the findings presented
throughout thesis, and offer concluding remarks alongside with
limitations and possible directions for future work.
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2
Background

In this chapter we investigate the medical and technical background
linked with the topics covered in this thesis.

Medical background starts with the fundamentals of cardiac
anatomy and medical image acquisition techniques. Then, cardio-
vascular disease and its significance is pointed out. Afterwards,
an overview about currently available MR acquisition techniques,
alongside with MR basics, is investigated. Finally, the advantages
and recent advancements of cardiac BOLD MRI are listed.

Technical background gives an overview of machine learning
techniques utilized in this thesis. First machine learning classifica-
tion methods that are used i n this thesis are introduced. Second,
the available sparse coding techniques and dictionary learning tech-
niques in literature are investigated. Finally, major algorithms of
interest for this thesis, Orthogonal Matching Pursuit (OMP) and
K-SVD are explained.
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2.1 Medical Background

2.1.1 Cardiac Ischemia

Coronary Heart Disease (CHD), also known as coronary artery dis-
ease or ischemic heart disease, is the most common form of heart
diseases [16]. CHD is a result of progressive build-ups of fat de-
posits within the walls of coronary arteries. These deposits form
plaques, including fatty acids, cholesterol, calcium mineral,and fi-
brous connective tissues [109]. Such deposition are often present for
decades prior to the demonstration of symptoms. During the time,
the accumulated plaques causes narrowing of the lumen, leading to
the limited or blocked supply of oxygen-rich blood to the myocar-
dium, the heart muscle. This causes blood starvation to the cells of
the myocardium and induces myocardium ischemia [126]. Figure
2.1 demonstrates the development of cardiovascular disease and
ischemia in myocardium.

The muscle and cavity of the left ventricle can be divided into a
variable number of segments. Based on autopsy data the American
Health Association (AHA) recommends a division into 17 segments
for the regional analysis of left ventricular function or myocardial
perfusion [17]. In Figure 2.2, the seventeen AHA segments are
illustrated, which are the state of the art guidelines to detect the
location of the cardiac disease.

2.1.2 Basic MR Physics

TheMRphysics is heavily dependent on the spin of hydrogen nuclei,
protons (H+), which creates magnetic moments due to the electric
charge of protons. The water contained in human body allows to
use hydrogen atoms for imaging. When these spinning magnetic
moments, are placed in a strong external magnetic field B0 they
are not aligned any more. After this excitement the protons aim
to come back to alignment to the magnetic field B0 . Meanwhile
they generate a net magnetic field M parallel to B0. At Larmor
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Figure 2.1: Coronary Heart Disease and Ischemia (adopted from
[79]).

frequency ω0, the nuclei precess around the direction of B0. The
precess is proportional to the strength of B0 i.e. Bω0 = γ0 , where γ
is a constant value for hydrogen. M is adjusted when applying a
radio frequency (RF) pulse that is perpendicular to the main mag-
netic field γ. The aim is to generate resonance frequency [148]. To
achieve this goal RF should be the same as that of the spins (Lar-
mor frequency ω0). When this RF is removed the relaxation starts,
the spins start realigning to B0, causing M to return parallel to B0

again. During the relaxation, the spins release energy, emitting an
RF signal. The conductive coil receives this signal and sends to a
computer for image reconstruction [74].
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Figure 2.2: Seventeen AHA prescribed segments for the heart (a)
basal SAX view, (b) mid-LV SAX view, (c) apical SAX view. (antero-
septal (AS), anterior (A), lateral (L), posterior (P), inferior (I), and
infero-septal (IS) (adopted from [17]).

K-Space

Recording and reconstruction of the MR signal is normally ex-
plained with k-space. The spatial position of protons are defined
with the differences of Magnetic field gradients. A gradient (G) is
applied to the main magnetic field,B0, such thatB0 = B0 +G. This
gradient will cause the Larmor frequency of spins to vary according
to the magnetic field strength B0. The changed Larmor frequencies
defines spatial positions of the spin encoded by gradient G [74].
The K-space is the fundamental space, where MR data is acquired.
After establishing the K-space the real MR Image is reconstructed
as visualized in Figure 2.3 .

2.1.3 Cardiac Perfusion MRI

The concept of injecting a tracer into blood and detecting its transit
and distribution in the heart muscle for the assessment of myocar-
dial perfusion is well established in Computer Tomography (CT)
and Positron Emition Tomography (PET). Currently in the clinical
practice injected contrast agents have been used to assess perfusion
with cardiovascular magnetic resonance (CMR) [74]. The use of a
gadolinium-based contrast agent for the assessment of myocardial
perfusion with CMR has been extensively validated and success-
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Figure 2.3: MRI acquisition and K-space construction adopted from
[74].
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fully applied in patient studies. The need for quantitative analysis
of perfusion studies is also receiving increasing acceptance.

Under normal conditions, the blood flow resistance of the coro-
nary circulation is determined vessels that are smaller than 300 mm
in diameter. The adequate supply of oxygen and metabolites to the
myocardium is tightly coupled to myocardial blood flow. Adequate
and approximately constant blood flow is maintained through auto-
regulation and can compensate under resting conditions for up to
80% diameter coronary artery stenosis [74].

With more severe narrowing in a vessel the distal perfusion
way is fully vasodilated, even under resting conditions, and no
further augmentation of blood flow is feasible. In healthy subjects,
myocardial blood flow can increase three to four timeswithmaximal
vasodilation. This means that differences in myocardial blood flow
between a diseased region coronary artery and the territory of a
normal coronary artery are amplified with maximal vasodilation.
The techniques havematured to a point where they are applicable in
clinical studies, despite the additional time required for quantitative
analysis. There is already compelling evidence that CMR is superior
to nuclear imaging for the assessment of myocardial perfusion [74].

First Pass Perfusion Imaging (FPP)

Myocardial perfusion imaging is based on measuring the deliv-
ery of a contrast agent to the myocardium during the first pass
following a bolus injection. The signal intensity is enhanced by the
contrast agent, which shortens the T1 relaxation time and results in
a brighter signal using a T1-weighted imaging sequence. Regions
with lower regional blood flow will appear hypointense and may
be detected given adequate image quality. Quantitative measure-
ment of blood flow may be made through analysis of the dynamics
of the myocardial signal intensity measurement as a function of
time. Myocardial flow reserve may be estimated by comparing the
flow measurements acquired at rest and at stress. Stress perfusion
is most commonly studied using vasodilation such as adenosine
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or dipyridamole. Vasodilators increase the blood flow in normal
vessels while stenotic vessels have a reduced vasodilator response.
Regions with prior myocardial infarction may app ear hypointense
despite normal blood flow, following revascularization, due to the
low flow into scar tissue. Therefore, the interpretation of perfusion
images usually also incorporates viability assessment by delayed
enhancement imaging [29].

2.1.4 Cardiac BOLDMRI

Recently, there is a growing interest in endogenous contrast mecha-
nisms for cardiovascular magnetic resonance. Blood is a magneti-
cally inhomogeneous medium in which the magnetic susceptibility
of red blood cells is strongly dependent on the blood oxygen satu-
ration, defined as the percentage of hemoglobin that is oxygenated.
Since the susceptibility of blood plasma is generally invariant, the
cooperative binding of oxygen to the heme molecules in the red
blood cells results in a detectable susceptibility difference between
plasma and the red blood cells. This susceptibility variation gives
rise to local magnetic field inhomogeneities, resulting in local fre-
quency variations that lead to changes in T2∗ and apparent T2 of
whole blood. The BOLD effect originates from the difference inmag-
netic properties between oxyhemoglobin and deoxyhemoglobin in
capillaries and venous vessels. Despite its major application in brain
imaging, the effect was also noted in the heart already more than
fifteen years ago [50].

It has since been considered of great potential in detecting is-
chemic territories in the heart [27]. In contrast to first-pass bolus
perfusion, BOLD imaging can be performed in the steady-state and
hence the strict spatiotemporal limitations in resolution are signifi-
cantly relaxed. To this end, BOLD imaging potentially allows for
higher spatial resolution to better resolve transmural ischemic pat-
terns during extended measurement times [145]. The disadvantage
relative to contrast perfusion imaging is the limited dynamic range
of the BOLD effect which is on the order of a few percent signal
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change between oxygenated and deoxygenated areas. To quanti-
tatively assess the BOLD effect in the heart and the gain in BOLD
contrast-to-noise ratio at 3T relative to 1.5T careful considerations
are necessary. There is still the need for advanced image processing
of BOLD images for them to be used in clinical practice. A compar-
ison of BOLD images of a patient alongside with the related FPP
images under rest and stres conditions is illustrated in Figure 2.4.
The arrows are showing ischemic region of the myocardium with
serious Left Anterior Descending narrowing (LAD) [133].

2.2 Technical Background

In this section, an overview of the technical background and funda-
mentals of the utilized machine learning techniques are introduced.
First part gives a general overview of machine learning techniques
of significance for the remainder of the thesis. Second part investi-
gates sparse coding problem in detail, which is an essential part of
the thesis. Finally, we introduce dictionary learning techniques and
discriminative dictionary learning. We will primarily focus on the
utility of machine learning techniques on cardiac image segmenta-
tion and registration tasks.

2.2.1 Machine Learning

Machine learning approaches rely heavily on the data according to
a defined model. Medical image analysis challenges can be mod-
elled with successful models to automate the and processing. The
algorithms in machine learning can be designated for multiple tasks
such as clustering, classifications, regression, dimensionality reduc-
tion and density estimation. In this thesis, we will mainly focus
on using machine learning for classification and clustering in the
context of medical image analysis.

Machine learning algorithms can be classified into supervised,
semi-supervised and unsupervised learning algorithms according
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to the type of the input data. Throughout the thesis there are ex-
amples of supervised and unsupervised learning algorithms. Su-
pervised learning refers to using labelled data for training of an
algorithm. In Chapter 4 we use an algorithm that relies on manual
annotations of the myocardium from training subjects to classify
the myocardial region of the testing subject. Some examples of su-
pervised learning algorithms are support vector machines (SVM),
naive bayes classifier, random forests etc. Unsupervised learning
are trained on unlabelled data and the goal is to discover the hidden
structure of the unlabelled data with the proposed model. Some
examples for unsupervised learning are k-means, principal com-
ponent analysis (PCA), manifold learning, dictionary learning etc.
In Chapter 5 we utilize an unsupervised learning of myocardium
pixels with the aid of dictionary learning to classify themyocardium.
Semi-supervised learning on the other hand works on the labelled
and unlabelled data jointly in the cases of a scarcity of the labelled
data.

More precisely in this work we utilize variations of dictionary
learning and Support Vector Machines (SVMs). Dictionary learning
is a strong way to learn sparse representations of the data in an
unsupervised setting. These well established representations are
well-suited input for a supervised classifier, which enables strong
classifier definitions. We utilize this data-driven approaches both
for image registration and image segmentation throughout the the-
sis. In the remainder of this chapter we will introduce Support
Vector machines (SVMs), sparse coding techniques, and dictionary
learning with a certain emphasis on the utilized techniques in the
later chapters of the thesis.

SVM

In machine learning, support vector machines (SVMs, also support
vector networks) are supervised learning models with associated
learning algorithms that analyze data used for classification and
regression analysis [24]. Given a set of training examples, each
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Figure 2.5: Support Vector Machines

marked for belonging to one of two categories, an SVM training al-
gorithm builds amodel that assigns new examples into one category
or the other, making it a non-probabilistic binary linear classifier.
An SVM model is a representation of the examples as points in
space, mapped so that the examples of the separate categories are
divided by a clear gap that margin is as wide as possible as shown
in Figure 2.5. New examples are then mapped into that same space
and predicted to belong to a category based on which side of the
gap they fall on.

Let us first take a look at the traditional two-class support vector
machine. Ω = {(x1, y1), (x2, y2), . . . , (xn, yn)} defines a dataset with
points xi ∈ Rd in a space, where xi is the i-th input data point
and yi ∈ {−1, 1}d is the i-th output pattern, indicating the class
membership [125].

SVMs can create a non-linear decision boundary by projecting
the data through a non-linear function φ to a space with a higher
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dimension. This means that data points which can not be separated
by a straight line in their original space I are moved to a feature
space F a hyperplane separates the data points of one class from an
other. When that hyperplane would be projected back to the input
space I , it would have the form of a non-linear curve [125].

The hyperplane is represented with the equation wTx+ b = 0,
with w ∈ F and b ∈ R. The hyperplane that is constructed deter-
mines the margin between the classes; all the data points for the
class 1 are on one side, and all the data points for class 1 on the other.
The distance from the closest point from each class to the hyperplane
is equal; thus the constructed hyperplane searches for the maximal
margin (”separating power“) between the classes. To prevent the
SVM classifier from over-fitting with non linearly separable data,
slack variables ξi are introduced to allow some data points to lie
within the margin, and the constant C > 0 determines the trade-off
between maximizing the margin and the number of training data
points within that margin (and thus training errors). The objec-
tive function of the SVM classifier is the following minimization
formulation:

min
w,b,ξi

‖w‖2

2
+ C

n∑
i=1

ξi

subject to
yi(w

Tφ(xi) + b) ≥ 1− ξi for all i = 1, . . . , n

ξi > 0 for all i = 1, . . . , n

(2.1)

When thisminimization problem (with quadratic programming)
is solved using Lagrange multipliers, it gets really interesting. The
decision function (classification) rule for a data point x then be-
comes:

f(x) = sgn(
n∑
i=1

αiyiK(x, xi) + b) (2.2)

where αi are the Lagrange multipliers; every αi > 0 is weighted
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in the decision function and thus ”supports“ the machine; hence
the name Support Vector Machine. Since SVMs are considered to
be sparse, there will be relatively few Lagrange multipliers with a
non-zero value.

One-class SVM

Traditionally, many classification problems try to solve the two or
multi-class tasks. The goal of the machine learning application is to
distinguish test data between a number of classes, using training
data. One interesting application is a problemwith only one defined
class of data. An example of such problem is anomaly detection
cases, where you have information about normal cases and try to
classify the anomalies. A method for this task, which gained much
popularity the last fifteen years, is the One-Class Support Vector
Machine [107]. To cope with this problem, one-class classification
problems (and solutions) are introduced. By just providing the nor-
mal training data, an algorithm creates a (representational) model
of this data. If newly encountered data is too different, according to
some measurement, from this model, it is labelled as out-of-class.

The Support Vector Method for novelty detection by Schölkopf
et al. [107] basically separates all the data points from the origin and
maximizes the distance from this hyperplane to the origin. This
results in a binary function which captures regions in the input
space where the probability density of the data lives. Thus the
function returns +1 in a small region (capturing the training data
points) and −1 elsewhere.

The quadratic programming minimization function is slightly
different from the original stated above, but the similarity is still
clear:
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min
w,ξi

‖w‖2

2
+

1

υn

n∑
i=1

ξi − ρ

subject to
yi(w · φ(xi) + b) ≥ ρ− ξi for all i = 1, . . . , n

ξi > 0 for all i = 1, . . . , n

(2.3)

In the previous formulation the parameterC decided the smooth-
ness. In this formula it is the parameter υ that characterizes the
solution. This way it sets an upper bound on the fraction of outliers
(training examples regarded out-of-class) and, it is a lower bound
on the number of training examples used as Support Vector. Due to
the importance of this parameter, this approach is often referred to
as υ-SVM.

Again by using Lagrange techniques and using a kernel function
for the dot-product calculations, the decision function becomes:

f(x) = sgn((w · φ(xi))− ρ) = sgn(
n∑
i=1

αiK(x, xi)− ρ) (2.4)

This method thus creates a hyperplane characterized by w and ρ
which has maximal distance from the origin in feature space F and
separates all the data points from the origin.

2.2.2 Sparse Coding

In its most general definition, the principle of sparsity, or parsimony,
consists of representing some phenomenon with as few variables as
possible [54]. In recent years, a large amount of multi-disciplinary
research has been conducted on sparse models and their applica-
tions. In statistics and machine learning, the sparsity principle is
used to perform model selection, which is automatically selecting a
simple model among a large collection of them.

In signal processing, sparse coding interest in representing data
with limited linear combinations of dictionary elements [72]. Subse-
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Figure 2.6: Sparse Coding Process. The signals in Y are represented
by a linear combination of a given dictionary D with coding coeffi-
cient matrix X (adopted from [72]).

quently, the corresponding tools have been widely adopted by sev-
eral scientific communities such as computer vision, neuroscience
and bioinformatics. More specifically, we focus on applications
where the dictionary is learned and adapted to data, yielding a
compact representation that has been successful in various con-
texts. Sparse coding is a technique that is originally developed
to explain the early visual processing in brain [85]. In a pioneer
exploratory experiment, Olshausen et al. [85] demonstrated that
dictionary learning could easily discover underlying structures in
natural image patches.

Figure 2.6 illustrates an example of the sparse coding process.
Given a set of basis vectors (atoms)D ∈ <m×K , a signal (a column of
Y defined as yi) can be represented as linear combination of atoms
in D. D can be predefined or learnt from the data itself. Sparse
representation of the signal can be represented as:

Y = DX (2.5)

Here each column of xi ∈ <K×1 is the coding coefficient vector.
There is no unique solution for X in sparse setting, since K >
m creates an under-determined system. This means the number
of unknown parameters is larger than the number of equations.
There are multiple optimization schemes to approach this under-
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determined system imposing prior information over coefficients.

l2 norm

One example regularization scheme adds the l2 norm constraint on
the coefficients:

x̂ = min
x
‖x‖2 subject to y = Dx (2.6)

The equation 2.6 can be solved via the pseudoinverse of D, but this
leads to a dense solution.

l0 norm

In the applications of sparse coding a small number of significant
coefficients are desired and a signal representation of linear combi-
nation of minimum number of atoms is sought. For this purpose,
l0 norm constraint is more suitable. The new formulation with l0
norm is defined as:

x̂ = min
x
‖x‖0 subject to y = Dx (2.7)

where the number of non-zero entries are bounded by l0 norm.

OMP

There are multiple ways to solve the NP-hard problem of equation
2.7. One greedy approach that we refer to in this thesis is the Or-
thogonal Matching Pursuit (OMP) algorithm [120]. OMP, detailed
in algorithm 1 constructs a sparse solution to a given signal by iter-
atively building up an approximation; the vector y is approximated
as a linear combination of a few atoms of D, where the active set of
atoms to be used is built atom by atom in a greedy fashion. At each
iteration, a new atom that best correlates with the current residual
is added to the active set. Each iteration stops until a pre-defined
number of atoms in the active set is reached by the sparsity level.
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Algorithm 1 OMP Algorithm
Require:Decomposition of Signals yi
Input: Signals yi i = 1, . . . , N , Dictionary D ∈ Rm×K , ŷ = ∅
Output: Decomposed signal Ŷ after pth iteration, Residual Rp

1: Initialization R0 = y
2: while i ≤ p do
3: l = argmax

l=1,...,l
|〈gl, R(i)〉| Finding the atom in dictionaryDwith

maximum correlation residual
4: R(i+1) = R(i)− xldil
5: ŷ = ŷ + 〈R(i), d

(i)
l 〉d

(i)
l

6: i = i+ 1
7: end while

Due to the simplicity of the implementation and enabling working
with a number of pre-defined atoms makes OMP superior to other
algorithms.

l1 norm

One other approach is to replace the l0 normwith the l1 norm, when
the equation is sparse enough.

x̂ = min
x
‖x‖1 subject to y = Dx (2.8)

or
x̂ = min

x
‖x‖1 subject to ‖y −Dx‖2 < ε (2.9)

equation 2.9 is a relaxed version of equation 2.8with small difference
between y and Dx. The constrained problems above need some
relaxation method to be solved. One way to convert them into an
unconstrained problem is using Lagrangian multipliers:

x̂ = min
x
‖y −Dx‖22 + λ‖x‖1 (2.10)
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where λ is a Lagrangian multiplier and controls the sparsity level.
The first term is a reconstruction error term, which favors the low
representation error and the second term adds a sparsity penalty to
enforce sparseness. Least absolute shrinkage and selection operator
(LASSO) is a common approach to solve this optimization problem
[115].

2.2.3 Dictionary Learning

In the setting of sparse coding we assumed to know the (over-
complete dictionary) D before hand. However, the dictionary can
also be learnt directly from the data [101]. One classical way to
do this is to choose a set of training signals or a basis of an over-
complete wavelets, curvelets, Fourier transforms and etc. A more
recent approach is to learn dictionaries based on training signals
instead of predefined dictionaries. Given a set of training signals
Y = [y1, y2, . . . , yi, . . . , yn] ∈ Rm×N , a dictionary D can be defined
to represent each signal in Y sparsely:

〈D̂, X̂〉 = argmin
D,X

‖Y −DX‖22 subject to ‖X‖0 ≤ L (2.11)

where L is the sparsity parameter and columns xi of X ∈ RK×N
represents sparse coding coefficients. Since the optimization of
equation 2.11 is defined over D and X ; this problem can be solved
by fixing one parameter and applying the optimization on the other
parameter. This optimization strategy starts with initializing the
dictionary by using randomly selected training signals. Then, the
sparse solutions X of the training signals Y are computed by keeping
the dictionaryD fixed. After that, the objective function in equation
(2.9) can be optimized over D by keeping the sparse solutions X
fixed. This alternating optimization process is repeated until some
convergence criterion is reached, such as a number of iterations or
a desired approximation error. It should be mentioned that finding
the global optimal solution cannot be guaranteed by using this
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iterative optimization strategy. The method of optimal directions
(MOD) [30] and the K-SVD [2] are two efficient algorithms to learn
dictionaries which utilize variants of this iterative optimization
strategy. In practice, it has been observed that K-SVD converges
with fewer iterations than MOD. In the next section, we will give a
detailed introduction of the K-SVD algorithm.

K-SVD

The K-SVD algorithm is inspired from the k-means clustering algo-
rithm, which is also an NP-hard problem [2]. The aim of k-means
clustering is to partition all the signals into K clusters, in which
each training signal belongs to the cluster with the nearest mean.
It employs an iterative approach to find the solution ofK clusters
and there are two steps at each iteration: In the first step, each train-
ing signal is assigned to its nearest cluster; in the second step, the
K clusters are updated as the centroids of their assigned training
signals. The K-SVD follows a similar iterative two-step process to
learn the dictionary and find the sparse solutions. After initializing
the dictionary D, the solution of the sparse coefficients is found by
keeping D fixed, followed by a second stage searching for a better
dictionary. TheK atoms in the dictionary are updated separately
in the dictionary update stage. This is a direct generalization of the
k-means algorithm, in whichK clusters are also updated separately.
The iterative process of the K-SVD is illustrated in Algorithm 2. The
iterative process is repeated to update theK atoms of the dictionary
D using the singular value decomposition (SVD) decomposition,
thus the name K-SVD. In Algorithm 2, OMP is used for sparse cod-
ing. It should be mentioned that the K-SVD algorithm is flexible
and can work with other sparse coding methods [2].

The major difference between the K-SVD algorithm and other
dictionary learning (DL) methods is that the sparse coding coeffi-
cients X are not fixed in the dictionary update step. In the K-SVD
algorithm, an atom in D and its corresponding row in X are up-
dated simultaneously as shown in Algorithm 2. This accelerates
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Algorithm 2 K-SVD Algorithm
Input:Training Signals yi i = 1, . . . , N
Output: An overcomplete dictionary D ∈ <m×Kand sparse coding
coefficients X ∈ RK×N

1: Initialize dictionary D withK randomly selected training sig-
nals

2: while converged do
3: Sparse Coding:
4: for each training signal yi, use OMP to compute the corre-

sponding coding coefficients xi do
5: min

xi
‖xi‖0 subjectto yi = Dxi, i = 1, . . . , N

6: end for
7: Dictionary Update:
8: for j = 1, . . . ,K, update the jth atom dj and the jth row xjT

of the coding coefficients X do
9: Find the groups that use dj :wj = {i ∈ {1, . . . , N} :

xjT (i) 6= 0} and xjR is obtained by eliminating the zero entries
in xjT .

10: Compute representation error matrix: Ej = Y −∑
i 6=j dix

j
T .

11: ObtainERj by selecting the columns ofEj corresponding
to wj .

12: Apply SVD decomposition ERj = UΣV T , update the
atom dj with the first column of U , and update xjR with the first
column of V multiplied by Σ(1, 1).

13: end for
14: end while
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the convergence of the learning process, making the K-SVD algo-
rithm more appealing. Despite the fact that the K-SVD algorithm
converges fast, it is still computationally expensive at each iteration
as a SVD decomposition must be calculatedK times and all the N
training signals are used for sparse coding at each iteration.

2.2.4 Discriminative Dictionary Learning

Dictionary learning aims to learn a (over-complete) dictionary in
which only a few atoms can be linearly combined to well approxi-
mate a given signal. DL methods are originally designed to learn
a dictionary which can faithfully represent signals, therefore they
may not work well for classification tasks. The original goal of
these works was not inference or classification per se, but rather
representation and compression of signals, potentially using lower
sampling rates than the Shannon-Nyquist bound [49]. Algorithm
performance was therefore measured in terms of sparsity of the
representation and fidelity to the original signals. Nevertheless,
the sparsest representation is naturally discriminative: among all
subsets of base vectors, it selects the subset which most compactly
expresses the input signal and rejects all other possible but less
compact representations. Researchers recently developed several
approaches to learn a classification-oriented dictionary [134]. The
central idea in sparse representation classifier (SRC) is to represent
a test sample as a linear combination of samples from the avail-
able training set. Sparsity manifests because most of non-zeros
correspond to bases whose memberships are the same as the test
sample. Therefore, in the ideal case, each object is expected to lie in
its own class subspace and all class sub-spaces are non-overlapping
(as illustrated in Figure 2.7).

By exploring the label information, most DL-based classification
methods learn such an adaptive dictionary mainly in two ways:
either directly forcing the dictionary discriminative , or making the
sparse coefficients discriminative (usually through simultaneously
learning a classifier) to promote the discrimination power of the
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Figure 2.7: Ideal structure of coefficient matrix for sparse represen-
tation classifiers. YC represents signals from different classes, DC

class specific dictionaries and XC stands for class-specific sparse
representation (adopted from [128]).

dictionary. For the first case, [99] advocate learning class-specific
sub-dictionaries for each class with a novel penalty term tomake the
sub-dictionaries incoherent. For the latter Zhuolin et al. [150] added
a label consistence term on K-SVD to make the sparse coefficients
more discriminative, thus the discrimination power of the dictionary
is further improved. Yang et al. [141] propose Fisher discrimination
DL method to simultaneously learn class-specific sub-dictionaries
and to make the coefficients more discriminative through Fisher
criterion. [128] proposed an extension of FDDL with capability
to capturing shared features. Another method underlining the
significance of shared features is COPAR algorithm [49] , which
learns class-specific features and common pattern tools explicitly.
Most of these algorithms are tested on face and scene recognition
problems.

Recently, in the context of medical image analysis the utility of
such techniques has been recognized from the community. Tong et
al. [117] applied the principles of SRC on the problem of hippocap-
mus segmentation using image patches. A similar approach [118]
with inclusion of graph cuts is implemented for the purpose of pan-
creas, kidney, spleen and liver. segmentation challenges. Benkarim
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et al. [10] applied the idea of label-consistent K-SVD for the challenge
Caudate and Accumbens segmentation on Brain MRI. Another area
of interest is the histo-pathological image classification between
healthy and diseased cases. In their work Vu et al. [127], [129] pro-
posed a class-specific DL, which not only specifies the dictionary
corresponding to the class identity of the sample, but also learns
poorly representing samples from other classes.
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3
Prior Work

Two of the most fundamental problems in analysis of cardiac
MRI sequences are segmentation and registration. The registration
and segmentation of cardiac MRI images are studied in the past
20 years. There is an immense amount of literature on this topic.
The majority of the methods in the literature, performs registration
and segmentation consecutively for image analysis. For establishing
voxel correspondences of a varying contrast image cardiac sequence,
registration algorithms are not sufficient; due to the inconsistent
movement of different structures in the image. This deficit of reg-
istration algorithms can be neglected using the segmentation as
a guidance of registration. In recent years there has been many
algorithms proposed for solving the issues as a joint problem. This
way, the propagation of errors from one to the other is avoided. In
this chapter, a literature review of the proposed solutions to these

This chapter is partly based on:
• Oksuz, I., Mukhopadhyay, A., Bevilacqua, M., Yang H.J., Dharmakumar,

R., Tsaftaris S.A.,“ Effect of BOLD Contrast on Myocardial Registration”,
International Society ofMagnetic Resonance inMedicineMeeting (ISMRM),
2015.
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challenges are presented separately and jointly. Besides, the possi-
ble implementations on cardiac BOLD MR images are investigated,
with certain emphasise on specific attributes of this imaging modal-
ity. We have also added some additional related works paragraph
for each chapter to set the table for the proposed methods during
the thesis.

This chapter is structured as follows: in section 3.1 theoretical
background of segmentation algorithms is illustrated; in section
3.2 registration algorithms are reviewed; in section 3.3 the joint
registration and segmentation methods are discussed. In section
3.4 the current available techniques in BOLD MRI are investigated
with a certain focus on the influence of BOLD contrast on the algo-
rithms. Finally, in section 3.5 we summarize all the background and
introduction to set the table for the main part of the thesis.

3.1 Segmentation of theMyocardium inCardiac
MRI

Segmentation attempts to reduce the variation in image appear-
ance to a set of discrete labels. In cardiac MRI, these labels can
correspond to multiple anatomical structures like myocardium, left
ventricle (LV), right ventricle (RV), aorta etc. In this section, we
will investigate the algorithms, which deals with this problem as
an explicit issue. There are various reviews in literature for this
task in [94, 95, 114] for cardiac MR segmentation. To the best of our
knowledge, there is only one review [37], which investigates image
processing techniques in cardiac MR perfusion.

Cardiac image segmentation presents a vast of challenges in the
short axis view. Segmentation of the myocardium on these images
consists in delineating the outer wall, also called epicardium and
the inner wall, called endocardium (Figure 3.1). Each contour to be
delineated presents specific segmentation difficulties.

The epicardial wall is at the frontier between the myocardium
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and surrounding tissues, which have different intensity profiles and
show poor contrast with the myocardium. Still segmentation diffi-
culties exist, that mostly originate from gray level inhomogeneities
in the blood flow, and particularly because of thepresence of papil-
larymuscles andwall irregularities inside the heart chambers,which
have the same intensity profile as themyocardium (Figure 3.2). They
can thus prevent from clearly delineating this wall. According to
clinical standards, they should not be taken into account for en-
docardial wall segmentation.Because the endocardial wall is less
difficult to segment that the epicardial one, and since it is the only
contour required to compute the ventricular volume, some works
only focus on the endocardium segmentation [95].

In accordance with the motivation of the thesis, we are diving
the segmentation algorithms for the myocardium proposed in the
literature into three:

• Deformable models and level sets

• Atlas based models

• Neural Networks

However, the boundaries of the algorithms are not strict and there
are many hybrid methods for the segmentation task. The hybrid
methods are going to be investigated in each chapter in the thesis
according to the relevance to the proposed algorithm.

The segmentation task is handled alongside other tasks in liter-
ature [95]. One of the main issues is the localization of the heart in
MRI to ease the segmentation procedure. Lin [58] et al. proposed
an algorithm to localize the heart and propagate an atlas based
approach on top of it. Also Kurkure et al. [51] focused on the lo-
calization of the heart, with the help fuzzy affinity. However, their
algorithm needs seed points for the initialization step. Furthermore,
their approach is a 2D solution and has shortcomings in 3D ap-
proaches, due to the lack of assumptions of shape and appearance.
Moreover, the blood signal intensity varies from base to apex with
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Figure 3.1: A full size short-axis cardiac MR image and a ROI iden-
tifying the heart (adopted from [95]).

no predictable pattern due to the variable coil intensity rendering,
which creates additional problems for the 3-D segmentation with
this method.

3.1.1 Deformable Methods

One popular algorithm in cardiac MRI segmentation has always
been the active contour approaches. We investigate the active con-
tours in two separate groups, namely: parametric active contours
and geometric active contours. Deformable models, or active con-
tours (also known as snakes) technique is a popular model-driven
technique based on parametric curves, surfaces or volumes, that
deform under internal and external forces. The external energy
forces the contour to move toward the image data. The internal en-
ergy controls the contour based on a regularizing smoothness con-
straint [95]. Additional energy terms can constrain the deformable
model to achieve better results. The general deformable model
energy function can be written as:
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Figure 3.2: Cropped short-axis cardiac MR image of End-Diastole
(ED) on left and End-Systole (ES) on right (adopted from [95]).

E = Eext + Eint (3.1)

External energy term is usually defined as:

Eext = −‖∇|Gσ(x, y) ∗ I(x, y)|‖2 (3.2)

where Gσ(x, y) is a two dimensional gaussian function with
standard deviation σ and I(x, y) is the intensity value. Internal
energy is defined as:

Eint =
1

2
(α(s)‖Ivs(s)‖l2 + β(s)‖vss(s)‖2) (3.3)

where α and β are weights, the first order term defines the
stretching and the second order term defined the curvature.

Since the edge map of the image can be misleading due to the
noise andmissing data, Gradient Vector Flow (GVF) was proposes a
new external energy function to handle the edge function smoothly
[140]. GVF is derived based on the minimization of the energy
function proposed in equation 3.4 where v is the Gradient Vector
Flow. µ is the smoothing weight, ∇I is the image gradient, and
‖∇I2‖ penalizes the edge information.
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EGVF =

∫ ∫
µ(‖v‖2) + ‖∇I2‖ · ‖v −∇I‖2 (3.4)

There has been many publications relying on this equation for
segmentation of LV. [56] proposed a GVF method with merging
the global shape information with line shape information. Their
approach is an early example of the technique and suffers from
high user interaction. [136] proposes an approach based on selective
smoothing direction gradient vector flow (SSDGVF) snake model.
Their method incorporates shape prior to SSDGVF algorithm. Auto-
matic localization of the cardiac endocardium contour, and elliptic
shape constraint are presented to the equation. One of the recent
works on GVF [25] combines GVF with morphological operations
to segment LV.

Level sets represent an implicit functionwhich deforms based on
regional intensity or edge-based feature and is able to develop topo-
logical changes. The initial contour at time zero (C0) corresponds
to the zero level set of the function φ.

C0 = (x, y)|φ(x, y, 0) = 0 (3.5)

Level set equation can be parametrized as:

φt + F |∇ϕ| (3.6)

where F represents speed function and depends on geometry and
image gradient. Given an initial contour (or contours), an implicit
function is defined and deformed at each pixel where the zero-
level set determines the actual position of the curve(s) as a function
of time. Level set approaches are stable, but are computationally
costly. [1] uses a level set approach, where they minimize an energy
function that contains area, length, and intensity variations inside
and outside a contour such that:
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E = αL(contour) + βV (inside of contour)

+γ

∫
Ω
|I − c0|2H(φ)dΩ + ρ

∫
Ω
|I − c1|2(1−H(φ))dΩ

where α,β,γ,ρ are the weighting parameters, I is the intensity, c0

and c1 represent the average intensity inside and outside the curve.
H(φ) is the so called Heaviside function defined as follows:

H(φ) =

{
0, u ≥ 0

1, u < 0

Lecellier et al. [52] presents an inclusive overview of region-
based active contours for segmentation with a focus on cardiac MRI.
Deformable models provides certain advantages such as parameter-
ization independence, ease of implementation, ease of initialization
from a simple 2D curve and automatic handling of topological
changes. However, it suffers from existence of noise, low contrast
and objects complexity in medical images. The solution to these
weaknesses is to incorporate a prior knowledge for more plausible
results. Chen et al. [21] in their work displacement coded MRI, op-
timized an algorithm with level set. They use elliptic constraints to
limit the evolution of the curve to myocardium region. In [47] shape
based LV segmentation in first pass perfusion images used level sets
with probabilistic shape constraints to estimate myocardium region.
This method is a computational costly approach for multiple slices.

Deformable models have the ability to match particular shapes
by changing the parameters of energy functions. These methods are
able generate smoothed curves without the need for training data.
Additionally, it is possible to integrate shape prior constraints in
developed techniques. However, these techniques suffer in occluded
objects and noisy images. Moreover, they are heavily dependent on
parameters and initialization.
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Incompressibility Constraint

The myocardium is believed to be nearly incompressible during
systole and diastole due to the high water content [143]. Myocardial
volume changes have been quantified during systole and diastole. It
is believed that the myocardial volume is relatively constant during
a cardiac cycle, varying about 3.5−5%. The conservation of volume
of the myocardium has been utilized as an additional term in [146].
The small compressibility of the heart is usually attributed to the
compressible blood vessel lumens and the difference in the total
volume of blood in the myocardium depending on the phase of
the cardiac cycle. This constraint on 3D images incorporates the
speckle statistics and myocardial volume incompressibility using
probability models. The compressibility ρ is statistically modelled
as a Gaussian (G(V0, r)) such that:

ρ(φin, φout) =
1√
2φσ

exp(
(V − V 2

0

2σ2
) (3.8)

here the volume of space between the endocardium(φin) and epi-
cardium (φout) is the myocardial volume and σ0 = 1

120V0. This
simulation allowed about 5% variation in the myocardial volume.
In their work [146], they combine the speckle statistical model and
the incompressibility model in a level set framework in order to
segment the cardiac endocardium and epicardium from ultrasound
images.

3.1.2 Atlas Based Segmentation

An atlas describes the different structures present in a given type
of image. It can be generated by manually segmenting an image or
by integrating information from multiple segmented images from
different individuals. Given an atlas, an image can be segmented by
mapping its coordinate space to that of the atlas, using a registration
process. Widely applied to brain segmentation, this technique has
also been used for cardiac segmentation. As shown in Figure 3.3,
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the principle is to register the labelled atlas onto the image to be
segmented, and then apply the obtained transformation to the atlas
to obtain the final segmentation. Segmentation can thus easily be
propagated throughout the cardiac cycle using the same principle.
In the literature, the construction of an anatomical heart atlas is
based either on a single segmented image [64], an average segmen-
tation result obtained over a population of healthy volunteers [65]
or a cadaver atlas [147]. The atlas can be matched on a new indi-
vidual using non-rigid registration (NRR), a transformation that
accounts for elastic deformations, which will be further discussed
in the following chapters. NRR consists in maximizing a similarity
measure between a source image S (the atlas) and a target or ref-
erence image X (the unsegmented image). Since the atlas and the
MR image can have non corresponding gray levels, the similarity
criterion must only account for statistical dependencies between
them. The most widely used criterion for NRR is the normalized
mutual information (NMI) measure. Based on individual and joint
gray level distributions, NMI is defined as:

E −NMI(S,X) =
H(S) +H(R)

H(S,R)
(3.9)

Atlas-based segmentation techniques require a wide range of
training data and a good registration method tailored for the im-
ages. Recently; patch-based multi-atlas approaches paired with
label fusion [8] have become state of the art for cardiac segmenta-
tion. Atlas-based models offer a powerful approach; a collection of
atlases is used to represent the population. These approaches have
been used successfully for segmentation, e.g. multi-atlas segmen-
tation of the brain [40] and heart [8], but are limited by the small
number of atlases used. This means that these approaches only
perform well if the images are similar to those in the atlas database.
While approaches for atlas selection have been proposed, these re-
quire very large databases of labelled images, which is infeasible in
practice and non-generalisable.
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Figure 3.3: Anatomical atlas based segmentation principle: (i) com-
putation of the transformation T between the atlas and the image
and (ii) deformation of the atlas by T (adopted from [63])

3.1.3 Neural Networks

Given a large labelled data for training, multi-layer neural networks
have been shown are effective automatic feature extractors for high-
dimensional datasets [53]. Convolutional neural networks (CNN)
are a neural network variant modelled to take advantage of data
with regular structure, such as the spatial grid matrix of images [43].

Neural Networks have been utilized extensively in recent years
for the task of medical image analysis as detailed in a review [61].
Ronneberger et al. [100] has pioneered an increasing interest for
utilizing neural networks in the context of medical image analysis
with their approach of U-nets. In the context of cardiac MR segmen-
tation, Avendi et al. [7] combined CNNs and a deformable model
to perform LV segmentation, though only for the endocardial wall
and only in the ED and ES phases. Three separate networks were
trained; consisting of a two-layer CNN for the initial localization of
heart region of interest, and two separate three-layer fully-connected
networks for LV segmentation at basal and mid-ventricular slices,
and for apical slices, respectively. Tran [119] used a 15-layer CNN
to perform complete left and right ventricular segmentation. Most
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recently, Tan et al. [113] proposed to use radial distances of the
LV walls from the center of the blood pool rather than per-pixel
binary image masks, and that the radial distances to be computed
via neural network regression as opposed to per-pixel classification
using two sets on neural networks. Most of this work relied on
adjacency and boundary conditions and neglected the underlying
semantic information. A more recent work [84] addresses this issue
by incorporating global shape information into neural networks.
In general we can identify, that supervised methods require lots
of data for training and a robust feature generation and matching
framework. While deep learning can help incorporate the latter, it
does need significant training data.

3.1.4 Evaluation Metrics for Segmentation

To evaluate performance of segmentation we used two metrics in
this thesis, which are classically usedwhen evaluating segmentation
[98]. We used the Dice overlap measure, which is defined between
two regions A and B as:

D(A,B) =
2‖A ∩B‖
‖A‖ ∪ ‖B‖

.

To evaluate the match of the ground truth annotation to an algo-
rithm’s result in terms of distance, we relied on the Hausdorff dis-
tance between two contours CA and CB :

HD(CA, CB) = max{max
a∈CA,

min
b∈CB ,

d(a, b), min
b∈CB

max
a∈CA

d(a, b)}

where d presents the distance of points a ∈ CA and b ∈ CB .

3.2 Registration of Cardiac MRI

Image registration is the problem of finding a coordinate transfor-
mation that spatially aligns two or more images. It is a common
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necessity in applications of medical imaging. One of the images,
called the moving image, is deformed to the other image, the fixed
image. The quality of alignment is defined by a cost function C,
which measures the similarity of the fixed image and the deformed
moving image. A high similarity leads to a low cost function and
vice versa [111]. An example of a cost function is the mean squared
difference of voxel intensities. The coordinate transformation that
relates the fixed and moving image is estimated by iteratively mini-
mizing the cost function. Registration definition in cardiac MRI can
lead to different application fields:

• Dynamic sequence image registration: Images of the same subject,
which involves dynamic stacking static images. These images
are acquired at different time steps from images sequence,
which are used to quantify and capture the anatomy of the
heart.

• Multi-temporal image analysis: Images of the same subject are
acquired at different times and under different physical con-
ditions. Registration of these images will enable us to monitor
the changes in cardiac anatomy.

• Multi-subject image analysis: Images of different subjects are
registered for deformation-basedmorphology (e.g. inter-subject
registration).

• Construction and use of atlases: Images acquired from differ-
ent sites and different times are aligned for the purpose of
segmentation and statistical analysis of anatomical shapes.

There are a vast review papers investigating the multiple aspects
of registration algorithms. Sotiras et al. [111] is a great resource for
the definitions and concepts in medical image registration. More
specifically in cardiac context, [73] gives a generic survey about im-
age registration in cardiac MRI. On the other hand, [131] is focusing
on the field of cardiac motion recovery for the survey. [60] compares
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the validation techniques for the image registration algorithms,
which is still an open topic in research.

Strongly bounded with purpose of the specific approach, algo-
rithms depending on different information in images can be pro-
posed for registration. Current registration methods can be divided
into two types, namely pixel intensity-based and feature-based. In
cardiac MRI literature both methods have been utilized in different
settings. The general intensity based registration algorithms can
be summarized as an energy minimization shown in the following
equation:

φ̂ = argmin
φ

[ED(IS ◦ φ, IT )︸ ︷︷ ︸
1

+ Rφ︸︷︷︸
2

] (3.10)

where φ̂ is the sought transformation in between two images. φ is a
transformation, which can be assumed element of Hilbert space or
manifold. This transformation has to be parametrized for discrete
representation (e.g. B-Spline Free Form Deformations). Term 1 in
the equation is a difference measure between the target image IT
and the warped source image IS ◦ φ (e.g. Sum of squared differ-
ences(SSD), Mutual Information(MI)). The term 2 is the regulariza-
tion term, which models the behaviour of the model, incorporates
prior knowledge and constrains the problem (e.g. bending energy).

3.2.1 Non-rigid Registration Using Basis Functions

This class of techniques attempts to extract the non-rigid motion of
anatomical objects using a set of basis function such as splines that
have inherent smoothness properties. The smooth nature of the
B-spline basis functions lead to more congruent results. Rueckert
et al. [103] used a two-step registration technique: 1. Global regis-
tration using affine registration, 2. Local registration using a spline
based similarity matching. The similarity function can be different
measures such as NMI and SSD. The advantage of B-spline based
Free Form Deformation is that it offers the capability to be used as a
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multi-modal algorithm to provide dense and pixel-wise results.The
basic idea of B-spline FFD is to transform an object by manipulating
an underlying spline-based mesh of control points Φ. The resulting
transformation defines the shape of the 3D object. The energy term
that leads the motion of the control points usually consists of the
similarity function and a spatial velocity smoothness constraint but
can be extended to any functional.

T (x, y, z) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(v)φi+l,j+m,k+n (3.11)

where T is a transformation and nx; nyand nz define the number of
control points in x, y and z directions. Bl is the lth basis function
for the uniform non-rational case is defined below for order up to
cubic.

The advantages of the basis function based techniques (such as
spline) are their inherent smoothness and their ability to reduction
of the computation to control points. Additionally no training is
needed and the same framework can be extended for other applica-
tions. The disadvantages of such a framework are the dependence
of the results on the nature of the basis functions, number of control
points, as well as their position. The optimization technique may
not lead to the best results if the control points do not properly
cover the complex portions of the shape, e.g., with intrusions and
protrusions.

One interesting method proposed to estimate motion and strain
from 3D echocardiography is [26]. The method enforces time consis-
tency by representing the 4D velocity field as the sum of continuous
spatiotemporal B-Spline kernels. They used SSD as image similarity
metric and the regularization term is based on the incompressibil-
ity of myocardial tissue. Alessandrini [5] et al. proposed to use
monogenic signal theory in the context of of pyramidal B-spline reg-
istration. Their algorithm relies on the conversation of monogenic
phase over time and proven to adapt well to intensity distortions.
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3.2.2 Feature-based Registration

Appearance information may lead to a local minima in the objective
function and ambiguous matching when pixels of same anatomical
structure take different values of intensity [111]. Oneway to address
this issue is to increase the dimensionality of the feature space. A
way to augment the feature space is by introducing local information
through the use of attributes that represent the geometric structure
of the underlying anatomy. These approaches are referred to as
feature-based registration algorithms. Recently, Heinrich et al. [39]
borrowed an idea from image denoising literature to propose a
new descriptor for image registration. The features are defined as
similarities between neighboring patches. The similarity metric
is constructed as a vector-difference between the set of patches
in two images. Local information may also be incorporated by
exploiting the local frequency representations obtained as response
to Gabor filters [87]. Gabor features have proven successful for
cardiac image registration as they are able to capture information
across different scales and orientations [88]. Ou et al. [88] used the
idea of mutual saliency to detect landmarks from the consistent
points for registration. This technique relies on a set of optimized
Gabor features. In chapters 6 and 7 we apply feature-based for the
task of CP-BOLDMR registration and define a new feature-based
similarity criteria in chapter 6.

3.2.3 Registration Evaluation

Image registration is important formany applications, including lon-
gitudinal evaluations in individuals, comparison between individu-
als, creation of population atlases, use of atlas-linked information in
individual cases, delivery of precision therapies, and many others.
Non-rigid image registration is a more general approach than the
widely used affine and rigid methods, but requires more complex
methodology and computational effort to implement. Evaluating
the performance of non-rigid image registration algorithms is a

47



difficult task since point-wise correspondence from one image to an-
other is not unique. There is rarely a ground truth correspondence
map to judge the performance of a registration algorithm.

Intensity variance metric is a common method used to mea-
sure image registration performance is to register a population of
images with a target image and average the intensities of the regis-
tered images. The idea is that the better the registration algorithm
is, the closer each registered image looks to the target image and
the sharper the intensity average image. One way to measure the
sharpness of the intensity average image is to compute the variance
of the registered intensity images. The voxel-wise intensity variance
(IV) of a population of M images registered to image j is computed
as:

The inverse consistency metric measures the inverse consis-
tency error between a forward and reverse transformation between
two images. Ideally the forward transformation equals the inverse
of the reverse transformation implying a consistent definition of
correspondence between two images, i.e., correspondence defined
by the forward transformation should be the same as that defined
by the reverse transformations. Thus, composing the forward and
reverse transformations together produces the identity map when
there is no inverse consistency error. The inverse consistency error
is defined as the squared difference between the composition of the
forward and reverse transformations and the identity mapping.

The transitivity metric evaluates how well all the pairwise reg-
istrations of the image population satisfy the transitivity property.
The transitivity property is important to minimize correspondence
errors when two transformations are composed together. Ideally,
transformations that define correspondence between three images
should project a point from image A to B to C to A back to the
original position. The transitivity error for a set of transformations
is defined as the squared error difference between the composition
of the transformations between three images and the identity map.

Many NIR methods have been developed, but are especially dif-
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ficult to evaluate, since pint-wise image correspondence is usually
unknown. There is no "Gold Standard" to evaluate the performance.
In an effort to ganerate a benchmark myocardial tracking and de-
formation algorithms Tobon-Gomez et al. [116] utilized landmark
points for cardiac MR and ultrasound images. This paper was a
result of aMICCAI conference challenge on a publicly available data
and showcased the performance of different deformation models.
Even though there are many metrics to evaluate the registration
performance, the choice of the metric usually challenge specific.

3.3 Joint Registration and Segmentation of Car-
diac MRI

The challenge in merging the registration and segmentation is to
guarantee convergence for preventing the inaccurate estimates of
either registration or segmentationwithout affecting each other. The
total available information in image data sets could be exploited
in an efficient fashion, since estimates of labels are manipulated
with registration criteria and partially registered algorithms will be
governed by combined class model.

Markov Random Fields (MRF) is one of the most popular ap-
proaches to merge image registration and segmentation. Due to its
weak dependency on manual annotations, some recent studies [33]
have focused on registration-based segmentation, where an atlas
image is registered to a target image. The resulting transformation
is then applied to the labeled atlas, which yields a segmentation of
the target image. Whereas various registration algorithms are appli-
cable for this task, state-of-the-art performance has been achieved
using MRFs on a control grid hierarchy. While being widely used
in medical imaging, image registration alone cannot solve the seg-
mentation task by itself, as it is considered to be an ill-posed prob-
lem. This is because anatomical correspondences, which are not
guaranteed to exist, are computed using surrogate criteria such as
intensity similarity [33]. In alternating registration and segmen-
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tation (ARS), the estimated solution for one sub-problem is used
as prior knowledge in the other sub-problem, whereas simultane-
ous registration and segmentation (SRS) aims at optimizing both
goals at the same time. Most of the existing literature in the field
have followed the ARS approach. The method proposed in [137]
alternates between estimating a rigid transformation using Powells’
method and updating the segmentation using iterative conditional
modes (ICM) in an MRF. [138] proposed an ARS approach based
on MRFs. Their method alternates between solving one MRF that
optimizes registration parameters and updates segmentation prob-
abilities, and a second MRF solving the segmentation. There have
been also studies on alternating registration and segmentation in
variational formulations, which also rely on iteratively updating
the registration and segmentation solutions, for example, by using
gradient descent. For example, a method which alternates between
updating the deformation field using a quasi-Newton optimization
method and evolving a contour in the target image while constrain
the distance between deformed atlas and said target contour was
proposed in [28]. It is also possible to combine registration with
model-based segmentation as shown in [66], where point-based
registration and active-shape segmentation trained from manually
annotated images are employed for mutual benefit.

There have been successful applications of joint registration
and segmentation on brain MRI Literature especially on tumor seg-
mentation and growth modelling. . Gooya et al. [35] proposes
registration of an atlas, deformed using a complex tumor growth
model, to the patient’s space. The parameters are learned using the
Expectation Maximization algorithm in a sucesfull way to pose a
joint optimization problem. Parisot [91] et al. proposed to combine
the modeling of both problems where the unknown variables corre-
spond to a two layer graphical model, one that represents the 3D
deformation field and another that refers to the 3D binary segmen-
tation map. This graphical model is superimposed to the volume
domain. The two layers are interconnected with a combined cost
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that relaxes the registration in the presence of tumors, while at the
same time performs a segmentation-by-registration using the seg-
mentation costs as criterion. Linear programming and duality are
used to determine the optimal solution of the combined problem.

3.4 Cardiac BOLDMRI

Cardiac BOLD MRI is a current state-of-the-art approach, capable
of simultaneously capturing BOLD changes and wall motion in a
single sequence. This technique relies on endogenous contrast to
relate the 1D time series to myocardial oxygenation. The most sig-
nificant advantage of this modality is the ability to identify ischemic
territories at rest, without the need of a stress agent [123]. In order
to analyse the CP-BOLD data deeper the myocardium region in the
sequence should be accurately segmented and registered in between
the time series.

CP-BOLD identifies the ischemic myocardium by examining
changes in myocardial signal intensity patterns as a function of
cardiac phase [123]. However, visualizing and quantifying such
changes requires significant post-processing, including myocardial
segmentation to isolate themyocardium from the rest of the anatomy.
In particular, although CP-BOLD is a cine type acquisition, auto-
mated myocardial segmentation and registration algorithms devel-
oped for standard CINE under-perform, due to the spatio-temporal
intensity variations of the myocardial BOLD effect [106], an example
of which is shown in Figure 3.4. Thus, in addition to violating shape
invariance (as with standard CINE MR), the principal assumption
of appearance invariance (consistent intensity [95]) is violated in
CP-BOLD MR as well.

3.4.1 Segmentation

Fully supervised myocardial segmentation (i.e., separating myocar-
dium from the rest of the anatomy) developed for standard CINE
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Figure 3.4: CP-BOLD MRI sequence has more intensity variation
compared to standard Cine MRI. Exemplary cardiac phases of CP-
BOLDMR (top row) and standard CINEMR (bottom row) obtained
from the same subject under baseline conditions (absence of ische-
mia). The myocardium is color coded and overlaid on the grey-level
image. We highlight the challenge of appearance variation in CP-
BOLD MR which is minimal in the case of standard CINE MR.
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MR, however, under-perform in the case of CP-BOLD MR due to
the spatio-temporal intensity variations of the myocardial BOLD ef-
fect [106,123]. In [121], a dynamical programming basedmyocardial
contour tracking algorithm is proposed. This algorithm relies on fit-
ting and propagating a mask conforming to the six segment model
of the LV utilizing the elastic matching information. However, this
method is only limited to epicardial segmentation and does not offer
the necessary voxel correspondences for the cardiac sequence. In
chapter 4, we hypothesize that this is due to the lack of exploiting the
unsupervised techniques in a sparse representation setting, which
can be an effective tool for developing features that are invariant to
temporal and inter-subject variabilities, yet unique and descriptive.
In addition, we also argue that the temporal consistency assump-
tion for myocardial segmentation of standard CINE MR is a special
case of the more generalized spatio-temporal variability observed
in CP-BOLD MR. Consequently, developing generalized features
for CP-BOLD MR should also address the problems of myocardial
segmentation of standard CINEMR; which is illustrated in chapters
4 and 5.

CP-BOLD provides both BOLD contrast and information of myo-
cardial function [123]in a single acquisition that can be seen together
as amovie (i.e., similar to Standard CINEMRI acquisition). Either at
stress [122] or at rest (i.e., without any contraindicated provocative
stress) [12, 123], it is the spatio-temporal signal intensity patterns
due to the BOLD effect which are modulated by the disease that
enable the diagnosis. Currently, CP-BOLD myocardial segmenta-
tion requires tedious manual annotation. Despite advancements
in myocardial segmentation in Standard CINE MRI (which is sim-
ilar to CP-BOLD but with little or no BOLD contrast), discussed
at length in chapter 5, most methods when used on CP-BOLD MR
images for the same task, produce unsatisfactory results. Figure
3.5A illustrates this by overlaying ground truth and algorithmic
results for several state-of-the-art methods showing significant seg-
mentation errors. These errors have deleterious effects on BOLD
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signals, as Figure 3.5B shows. Instead of the expected behaviour
across the cardiac cycle [123] which is seen when ground truth man-
ual segmentations are used, significant deviations due to over- and
under-segmentation are observed.

3.4.2 Registration

As Figure 3.6 illustrates, time series of intensity vary as a function
of cardiac phase when BOLD effect is present –it appears maxi-
mal in systole and minimal in diastole. In disease this effect is not
present. Such spatio-temporal intensity variations of the myocardial
BOLD effect cause the methods developed for standard CINE MR
registration to under-perform.

To showcase the influence of BOLD contrast on the registration
we considered an experimental set-up with a state-of-the-art reg-
istration algorithm [5]. Our set-up tests the registration algorithm
in a minimal motion to higlight the performance. We have consid-
ered the registration of the first frame (fixed) and the last frame
(moving) in the acquisition, which typically reflect minimal mo-
tion (diastole), and can thus evaluate more accurately the effects
of BOLD contrast and the presence of disease. To provide a visual
example of how BOLD contrast and ischemia affect the registration
of a single algorithm [5], in registering frames in this set-up, the
displacement vectors of those registrations are shown color-coded
in Figure 3.7. Under baseline conditions, where cardiac motion
should be minimal between diastole, the algorithm finds small and
consistent displacements throughout the myocardium; however,
when BOLD contrast is present (as in CP-BOLD) greater variability
is observed. Under ischemia greater regional variability is observed
both in standard Cine and CP-BOLD, consistent with the expected
changes in cardiac contractility in the presence of ischemia (from
LAD stenosis).
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Figure 3.5: BOLD contrast challenges myocardial segmentation al-
gorithms. A: Results of various algorithms (shown in red) for myo-
cardial segmentation of the anterior region overlaid to ground truth
(green) manual delineations. Algorithms used: atlas-based [124],
Random Forests on Appearance and Texture features (a baseline)
and a state-of-the-art DL method (DDLS) [117]. B: Corresponding
time series of the Anterior region from different methods compared
to the one obtained based on ground truth segmentation. Overall er-
rors in segmentation lead to deviations in the estimated time series,
which will ultimately lead to low accuracy in ischemia detection.
Our proposed method in chapter 5 achieves high segmentation
accuracy (last image in A); which leads to a better estimate of the
time series (bottom part of B). [In typical CP-BOLD acquisition set-
tings, with ECG-triggering, first and last points in the R-R interval
correspond to diastole and systole tends to appear around 30%.]55



Figure 3.6: Exemplary plots of time series extracted from the same
corresponding regions in the same subject under baseline (absence
of disease) conditions using CP-BOLD MR and standard Cine. Ob-
serve how in CP-BOLD, intensity varies with cardiac phase, but in
standard CINE MR this variation is minimal.

CP-BOLDSTANDARD CINE
mm

STANDARD CINECP-BOLD

BASELINE ISCHEMIA

Figure 3.7: Color-coded pixel-wise magnitudes of displacement
vectors [5] in mm overlaid on the original images within the myo-
cardium.
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3.4.3 Ischemia Detection

There is still a great need of image analysis and feature extraction
algorithms for computer aided diagnosis of ischmeic pixels in CP-
BOLD. Most importantly, it has been shown that CP-BOLD can
identify ischemic territories at rest, without the need for provoca-
tive stress [123], contraindicated for some of the population. Thus,
one scan captures physiological and functional details of the heart
in a non-invasive and repeatable manner with great image quality.
In [106], a dictionary learning method for generating synthetic data
is proposed. The method utilizes the circulant nature of cardiac
BOLD time-series. This work adds additional significance for the
accurate registration and segmentation cardiac BOLDMRI. More-
over, a more recent work by Bevilacqua et al. [12] has showed that
varying intensity patterns can guide the process of ischemia de-
tection, thanks to an anomaly detection algorithm. The proposed
algorithm suffers from low quality of image segmentation and reg-
istration; which causes a drop of accuracy in estimated timeseries
and consequently ischemia detection.

3.5 Summary

In this chapter, we have investigated the vast literature of cardiac
image registration and segmentation algorithms. We also have
underlined the need for accurate segmentation and registration
algorithms in the context of myocardial registration and segmenta-
tion. An accurate segmentation and registration scheme will output
accurate timeseries, which will enable pixel-level determination
ischemia likelihood in CP-BOLD MRI. This is a crucial task for suc-
cessful clinical translation of CP-BOLD MRI. In the next part of
the thesis, we will investigate the performance of the state of the
art cardiac image analysis tools on our challenge and present our
novel solutions for the tasks of segmentation and registration. In
Chapter 4, we will highlight the drawbacks of the literature for
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the myocardial segmentation and investigate a novel sparse feature
learning techniques for myocardial segmentation. In Chapter 5 the
possibility of using motion as distinctive feature for myocardium is
considered. In Chapter 6, the utility of data-driven features are ex-
plored in a novel registration setting. In Chapter 7 theways tomerge
two optimization problems are studied. In each chapter we added
a related work section to highlight the corresponding literature to
each method we developed.
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Part II

Data-Driven Feature
Learning for Segmentation

and Registration

59



4
Supervised Segmentation with Feature

Learning

There is a need for definition of appropriate features for the
task of CP-BOLDMR myocardial segmentation. There is no auto-
mated CP-BOLD MR segmentation algorithm currently, and semi-
automated methods based on tracking are currently employed [121].
We hypothesize that it is due to the lack of appropriate features,
which are invariant yet unique and descriptive under the particular
type of appearance and shape deformation observed in CP-BOLD
images. Rather than relying on low-level features used often for
myocardial segmentation of standard CINE MR which are inconsis-
tent for CP-BOLD MR, a more generalized feature learning method
should be developed to accommodate the myocardial BOLD effect
while still being reliable in the CINE MR case.

This chapter is based on:
• I. Oksuz, A. Mukhopadhyay, M. Bevilacqua, R. Dharmakumar S. A. Tsaf-

taris, “Data-driven feature learning for myocardial segmentation of CP-
BOLD MRI”, Functional Imaging and Modeling of the Heart (FIMH), pp. 189–
197, 2015.
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A patch-based discriminative dictionary learning technique
(which has been used also in echocardiography [42]) is adapted to
learn features from previously segmented data in a fully supervised
manner. The motivation behind the choice of a sparse dictionary is
to employ a compact and high-fidelity low-dimensional subspace
representation which is able to extract semantic information of the
myocardium as well [135]. The key observation behind this strategy
is that, though the patch intensity level varies significantly across the
cardiac cycle, sparse representations based on learnt dictionaries are
invariant across the cardiac cycle, as well as unique and robust. The
discriminative dictionary learning strategy is designed to facilitate
this key observation regarding CP-BOLD. Briefly described, during
training two separate dictionaries are learnt atmultiple scales for the
myocardium and background. In this regard, also a discriminative
initialization step (discarding patches with high values in intra-class
Gram matrix) is introduced to promote diversity in initialization,
and a discriminative pruning step (discarding training patches with
high values in inter-class Grammatrix) to further boost the discrimi-
native abilities of the dictionaries. During testing, multiscale sparse
features are used.

The main contributions of this chapter are twofold. First, the
experiments demonstrate that BOLD contrast significantly affects
the accuracy of segmentation algorithms (including segmentation
via registration of an atlas, level sets, supervised classifier-based
and other dictionary-based methods) which instead perform well
in standard CINE MR. Second, to address the hypothesis a set of
compact features are designed using Multi-Scale Discriminative
Dictionary Learning, which can effectively represent the myocar-
dium in CP-BOLD MR. The method has been evaluated on canine
subjects, which makes the problem even more challenging (lower
accuracy is expected) due to the smaller size of myocardium.
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4.1 Background

Recently, Atlas-based segmentation techniques have received sig-
nificant attention. The myocardial segmentation masks available
from other subject(s) are generally propagated to unseen data in
Atlas-based techniques [8] using non-rigid registration algorithms,
e.g., diffeomorphic demons (dDemons) [124], FFD-MI [34] or prob-
abilistic label fusion [8]. Level set class of techniques uses a non-
parametric way for segmentingmyocardiumwithweak prior knowl-
edge [18, 55].

Segmentation-only class of techniquesmainly focuses on feature-
based representation of the myocardium. Texture information is
generally considered as an effective feature representation of the
myocardium for standard CINE MR images [144]. The patch-based
static discriminative dictionary learning technique (DDLS) [117]
and Multi-scale Appearance Dictionary Learning technique [42]
have achieved high accuracy and are considered as state-of-the-
art mechanisms for supervised learning of discernible myocardial
features from previously segmented data.

In this chapter, the segmentation-only approach with the major
feature of considering multi-scale appearance and texture informa-
tion is followed as the input of a discriminative dictionary learning
procedure. Our experimental results suggest a significant improve-
ment over the existing segmentation only and segmentation with
registration techniques in the case of CP-BOLDMR images, whereas
state-of-the art performance in the case of standard CINE MR.

4.2 Multi-ScaleDiscriminativeDictionaryLearn-
ing (MSDDL)

General image segmentation strategies are developed on the as-
sumption that both appearance and shape do not vary considerably
across the images of a given sequence. Cardiac motion affects the
shape invariance assumption, and varying CP-BOLD signal inten-
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sities violate the appearance invariance assumption as well. To
overcome this issue, dictionary learning techniques can be lever-
aged to learn better representative features. To this end, we propose
aMulti-Scale Discriminative Dictionary Learning (MSDDL)method
(detailed in Algorithm 3). The features learnt via dictionary learn-
ing are tested in a rudimentary classification scheme solely for the
purpose of comparing to other methods.

4.2.1 Feature Generation with MSDDL

Given some sequences of training images and corresponding ground
truth labels (i.e. masks), we can obtain two sets ofmatrices, {Y B

k }Kk=1

and {YM
k }Kk=1, where the matrix Y B

k contains the background in-
formation at a particular scale k (each scale is characterized by a
different patch size), and YM

k is the corresponding matrix referring
to the myocardium. Information is collected from image patches:
squared patches are sampled around each pixel of the training im-
ages. More precisely, the i-th column of thematrix Y B

k (and similarly
for the matrix YM

k ) is obtained by concatenating the normalized
patch vector of pixel intensities at scale k, taken around the i-th
pixel in the background, along with the Gabor and HOG features of
the same patch. Our MSDDL method takes as input these two sets
of training matrices, to learn, at each scale k, two dictionaries, DB

k

and DM
k , and two sparse feature matrices, XB

k and XM
k . E.g. , the

i-th column of the matrix XB
k , xBk,i, is considered as the discrimina-

tive feature vector for the particular pixel corresponding to the i-th
column in Y B

j . Dictionaries and sparse features are trained via the
well known K-SVD algorithm [2]. One main modification to K-SVD
is the use of the “intra-class Gram matrix” to promote diversity in
the initialization step. The Gram matrix is used the literature [150]
to ensure atoms of the dictionaries to be incoherent. Our idea here
is to have a subset of patches as much diverse as possible to train
dictionaries and sparse features. For a given class considered (let us
say background) and a given scale k, we can define the intra-class
Grammatrix asGBk = (Y B

k )TY B
k . To ensure a proper discriminative
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initialization, patches that correspond to high values in the Gram
matrix are discarded from the training before performing K-SVD.
Notably, we sort the training patches w.r.t. the sum of their related
coefficients in the Gram Matrix, and we prune them by choosing a
certain percentage.

A second proposedmodification relates to a pruning step, which
is performed after K-SVD to remove undesired elements from each
dictionary trained. In this case, at each scale k, an “inter-class Gram
matrix” is computed (GBMk = (DB

k )TDM
k ): the atoms of each dictio-

nary are sorted according to their cumulative coefficients in GBM ,
and a chosen percentage of them is discarded to ensure mutual
exclusiveness between the dictionaries of the two different classes.
The philosophy behind this operation is similar to the one of the dis-
criminative dictionary learning algorithm proposed in [99], where
the norm of the inter-class Grammatrix appears in the optimization
formulation as a constraint to be minimized. By pruning the unde-
sired dictionary atoms all at one time, we actually adopt a greedier
and low-complexity approach to the same problem. Moreover, we
believe that, instead of globally minimizing the Gram matrix norm,
directly removing the most “problematic” patches, which create
ambiguity between background and myocardium, is more effective
in our case.

4.2.2 Building a Rudimentary Classifier for Segmentation

When considering the same patch-based approach in a segmenta-
tion problem, we have a set of test matrices {Ŷk}Kk=1, obtained by
sampling patches at multiple scales from the test image, and con-
catenating intensity values of these patches, along with Gabor and
HOG features. The goal is to assign to each pixel of the test image a
label, i.e. establish if the pixel is included in the background or the
myocardial region. To perform this classification, we use the multi-
scale dictionaries, {DB

k }Kk=1 and {DM
k }Kk=1, previously learnt with

MSDDL. The Orthogonal Matching Pursuit (OMP) algorithm [120]
is used to compute, at each scale k, the two sparse feature matri-
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Algorithm 3 Multi-Scale Discriminative Dictionary Learning (MS-
DDL)
Require:Multi-scale training patches for background and the myo-
cardium:
{Y B

k }Kk=1 and {YM
k }Kk=1

Ensure:Multi-scale dictionaries for background and the myocar-
dium:
{DB

k }Kk=1 and {DM
k }Kk=1

1: for k = 1...K do
2: for C={B,M} do
3: Evaluate Y C

k

4: Compute the intra-class Gram matrix GCk
5: Discard atoms with high values in GCk
6: Learn dictionary and sparse feature matrix with the K-

SVD algorithm
7:

minimize
DC

k ,X
C
k

‖Y C
k −DC

k X
C
k ‖22 s. t. ‖xCk,i‖0 ≤ L

8: end for
9: Compute the inter-class Gram matrix GBMk
10: Discard from DB

k and DM
k atoms with high values in GBMk

11: end for

ces X̂B
k and X̂M

k . A certain patch at scale k, ŷk,i will be assigned
to the class that gives the smallest dictionary approximation error.
More precisely, if ‖ŷk,i −DB

k ŷ
B
k,i‖2 is larger than ‖ŷk,i −DM

k ŷ
M
k,i‖2,

at scale k the patch is assigned to the background; otherwise, it is
considered belonging to the myocardial region. In this study, we
employed a simple majority voting across all scales to obtain the
final classification for each pixel of the test image.

65



4.3 Results

This section offers a qualitative and quantitative assessment of our
proposed method w.r.t. state-of-the-art methods, to demonstrate its
effectiveness for myocardial segmentation. It is particularly impor-
tant to note that our method significantly outperforms all methods
from current literature in both baseline and ischemia cases of CP-
BOLD MR, whereas yields state-of-the-art results for both baseline
and ischemia cases of standard CINE MR.

4.3.1 Data Preparation and Parameter Settings

2D short-axis images of the whole cardiac cycle were acquired at
baseline and severe ischemia (inflicted as stenosis of the left-anterior
descending coronary artery (LAD)) on a 1.5T Espree (Siemens
Healthcare) in the same 10 canines along mid ventricle using both
standard CINE and a flow and motion compensated CP-BOLD
acquisition within few minutes of each other. All quantitative
experiments are performed in a strict leave-one-subject-out cross-
validation setting.

As for the parameters of MSDDL, in this framework we have
empirically chosen a dictionary of 1000 atoms for foreground and
background respectively, a sparsity of 4, a number of scalesK = 3,
and 9×9, 11×11 and 13×13 as patch sizes. We tested the parameter
sensitivity within a reasonable range.

4.3.2 Visual Comparison of the Discriminativeness of the
Learnt Dictionaries and Features

The feature patches learnt by MSDDL are discriminative enough
for representing the myocardium separately from the background.
In particular a set of feature patches of size 11× 11 (without HOG
and Gabor) learnt for the myocardium and background are shown
in Figure 4.1 to illustrate the discriminativeness of the learnt feature
patches.
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Figure 4.1: Exemplary set of dictionary atoms (without HOG and
Gabor) for Background (left) and Myocardium (right) learnt from
patches of size 11× 11 on CP-BOLD MR.

The motivations behind choosing each step of the proposed MS-
DDL strategy and the effectiveness of the features learnt by this
technique are highlighted in Figure 4.1, where the Cosine Simi-
larity metric [20] is used to determine the most similar patches
to a given patch in the MSDDL feature space. When selecting a
patch inside the myocardium, without texture and Gram filtering,
similar patches are found outside the myocardium too. Adding
texture improves somewhat localization, but when considering also
Gram filtering, the discriminative strengths of the approach are
more evident, since few similar patches are found only within the
myocardium. We can observe the gradually improved similarity
obtained by incorporating texture features (HOG and Gabor) and
Gram filtering over the original patch-based multi-scale dictionary
learning technique for a myocardial patch of CP-BOLD MR. Similar
behavior is noticed in case of standard CINE MR as well.

4.3.3 Quantitative Comparison

As segmentation quality metric, the Dice coefficient, which mea-
sures the overlap between ground truth segmentation masks and
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Figure 4.2: Cosine Similarity (CS) between the learnt features show-
ing the advantage of adding texture and Gram filtering. Test patch
denoted by a green square in the raw image (first column), MSDDL
only on appearance (second column), with texture (third column),
and with proposed Gram filtering (final column).

those obtained by the algorithm(s), is employed as described in
Chapter 3. For our implementation of Atlas-based segmentation
methods, the registration algorithmsdDemons [124] and FFD-MI [34]
were used to propagate the segmentation mask of the end-diastole
image from all other subjects to the end-diastole image of the test
subject, followed by a majority voting to obtain the final myocardial
segmentation. For level-set class of methods, a hybrid approach
of [18] for endocardium and [55] for epicardium is used.

For supervised classifier-based methods, namely Appearance
Classification usingRandomForest (ACRF) andTexture-Appearance
Classification usingRandomForest (TACRF)weused random forests
as classifiers to get segmentation labels from different features. To
provide more context we compare our approach with dictionary-
based methods, DDLS and RDDL. DDLS is an implementation of
the method in [117], whereas for RDDL we used the discriminative
dictionary learning of [99] within the same classification framework
that we described in Section 7.2.2. Finally to showcase the strengths
of our design choices we considered two additional variants of MS-
DDL, one without Gram filtering (MSDDL No GF) and one without
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texture information as well (MSDDL No GF No Texture). Note that
the former is similar to [42] without level-set refinement.

As Table 5.2 shows, overall, when standard CINE acquisition
is used, most algorithms perform adequately and the presence of
ischemia slightly reduces performance. However, when BOLD con-
trast is present, other approaches fail to accommodate changes in
appearance due to contrast, but MSDDL obtains consistent perfor-
mance. Specifically, Atlas-based methods are shown to perform
well in standard CINE cases but poorly in CP-BOLD. ACRF and
TACRF, instead, show very low performance in both standard CINE
MR and CP-BOLD MR.

Among dictionary-based techniques, DDLS performs well in
standard CINE MR, but underperforms in CP-BOLD MR. Our MS-
DDL method outperforms all approaches. When comparing it with
its variants, it shows that both texture and appearance are impor-
tant and that the pruning steps based on the Gram matrix are ex-
tremely beneficial. Even when we replaced our dictionary learning
algorithm with RDDL, an algorithm that forces discrimination by
explicitly penalizing the inter-class Gram matrix norm, the results
are unimpressive.

These findings are also statistically significant using a paired t-
test between the results of MSDDL and the second-best performing
one, i.e. DDLS [117]. For both baseline and ischemia cases of CP-
BOLD MR, MSDDL shows improved performance compared to
DDLS (?, p < 0.001). In the case of standard CINE MR although
differences appear small they are still statistically significant, i.e.
(†, p < 0.05) and (‡, p < 0.01) for baseline and ischemia respectively.

4.4 Discussion

Rethinking the assumptions underlying the design of analysis al-
gorithms for standard CINE MR is critical for successfully devel-
oping the appropriate analytical tools necessary to meet the new
challenges posed by myocardial CP-BOLDMR. In particular, this
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Table 4.1: Dice coefficient (mean(std)) for segmentation accuracy in
%.

Baseline Ischemia
Methods CINE BOLD CINE BOLD
Atlas-based methods
dDemons [124] 60(8) 55(8) 56(6) 49(7)
FFD-MI [34] 60(3) 54(8) 54(8) 45(6)
Level set-based methods
CVL [18] [55] 50(8) 43(11) 45(9) 37(10)
Supervised classifier-based methods
ACRF 57(3) 25(2) 52(3) 21(2)
TACRF 65(2) 29(3) 59(1) 24(2)
Dictionary-based methods
DDLS [117] 71(2) 32(3) 66(3) 23(4)
RDDL [99] 42(15) 50(20) 48(13) 61(12)
MSDDL No GF No Texture 52(8) 51(7) 45(4) 51(6)
MSDDL No GF 62(5) 52(4) 53(5) 57(7)
MSDDL 75(3)† 75(2)? 72(2)‡ 71(2)?

chapter pin-pointed the challenges the BOLD effect poses on these
assumptions made when segmenting the myocardium and quanti-
tatively analysed the adverse effect on algorithmic performance. In
addition, in this chapter we showed that by learning appropriate
features to best represent texture and appearance in CP-BOLD, it
is possible to improve the performance of automated algorithms
for myocardial segmentation. This chapter also showed overall low
performance of state-of-the-algorithms even for standard CINE MR
in canine subjects, which can be attributed to the small size of the
myocardium.

The MSDDL algorithm does not exploit the temporal informa-
tion across cardiac phases and doing so should increase perfor-
mance in future extensions. Figure 4.3 shows segmentation results
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Figure 4.3: The segmentation results showcase the performance
of MSDDL for different phases. The contours (red) show good
alignment with the ground truth contours (red). However, there are
some inconsistencies in segmentations, which should be addressed
with spatio-temporal information.

of a BOLD acquisition under baseline conditions. Most of the seg-
mentations show good alignment with the ground truth. However,
some phases the segmentations are inaccurate due to lack of smooth-
ness terms in our cost function. In the light of the learnt features
in this chapter, we will introduce an unsupervised motion incor-
porated segmentation algorithm in Chapter 5. Moreover, we will
investigate the effectiveness of the feature definitions from this chap-
ter for the task of registration in Chapter 6. The data-driven learning
mechanisms proposed in this chapter will also be instrumental in
part III of the thesis for joint segmentation and registration.
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5
Unsupervised Segmentation with

Constraints

In this chapter we investigate two methods we developed for
solving the problem ofmyocardial segmentation in an unsupervised
way opposed to the previous chapter, which used a fully supervised
mechanism. The first method models background using motion
patterns to segment the myocardium region. The later one extracts
a region of interest, smooths the data and concatenates motion
information with appearance in a dictionary learning setting. Both
techniques are unsupervised and rely heavily on different motion
patterns of the myocardium region compared its surroundings.

This chapter is based on:
• A. Mukhopadhyay, I. Oksuz, M. Bevilacqua, R. Dharmakumar S. A. Tsaf-

taris, “Unsupervised Myocardial Segmentation for Cardiac MRI”, Medical
Image Computing and Computer-Assisted Intervention—MICCAI 2015, pp. 12–
20, 2015.

• I. Oksuz,A. Mukhopadhyay R. Dharmakumar S. A. Tsaftaris, “Unsuper-
vised Myocardial Segmentation for Cardiac BOLD”, IEEE TMI.
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5.1 UnsupervisedMotion andSparsity basedSeg-
mentation (UMSS) method

In this section, rather than relying on low-level features often used
for representing the myocardium when developing segmentation
methods for standard CINE MR, which are inconsistent for CP-
BOLD MR, a fully unsupervised motion and sparse representation-
based feature selection technique has been developed to accommo-
date the myocardial BOLD effect. The only assumption is that the
myocardium moves differently than its surrounding background
anatomy. This strategy is also motivated by the findings of Chap-
ter 4 where sparse representation using dictionaries are shown
to be invariant under intensity changes. In addition, the sparse
representation is capable of retaining semantic information of the
myocardium [135]. This essentially enables myocardial segmenta-
tion in cardiac MR image sequences (i.e. CINE stack) without any
form of manual intervention e.g., landmark selection, ROI selection,
spatio-temporal alignment to name a few.

The unsupervised motion and sparse-representation strategy is
designed to facilitate this key observation. Each frame is coarsely
segmented (over-segmented) based on the optical flow vectors, in-
spired by [89]. The appearance andmotion of the coarsely-segmented
background is sparsely represented in a patch-based discriminative
dictionary learning technique. A one-class Support Vector Machine
(SVM) [107] is employed on the learnt sparse representation of all
the pixels in the image sequence to classify myocardium from the
background.

The main contributions of this section are twofold. First of all,
we revisit fully unsupervised myocardial segmentation technique
employing nomanual intervention andminimal myocardial motion-
pattern assumption for solving general myocardium segmentation
problem in standard and emerging cardiac MR imaging modali-
ties. Secondly, we have employed a joint motion and sparse rep-
resentation based technique, where the motion not only generates
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a rough estimate of the myocardium, but also guides the sparse
representation stage to a smooth solution based on themotion of the
myocardium. Among the very few unsupervised techniques which
are fully automated, most similar ones to MSDDLmethod are those
that consider motion as a way to propagate an initial segmentation
result to the whole cardiac cycle [45,57,93]. Grande et al. [23] inte-
grates smoothness, image intensity and gradient related features
in an optimal way under a MRF framework by Maximum Likeli-
hood parameter estimation. Their deformable model estimates the
walls based on the MRF along the short axis radial direction. A re-
cent work [15] uses synchronized spectral networks for group-wise
segmentation of cardiac images from multiple modalities.

Another idea is to exploit motion and temporal information
within the acquired data. In [62] a graph cut algorithm is utilized
by simultaneously exploiting motion and region cues. The method
uses terminal nodes as moving objects and static background with
the intention to extract a moving object surrounded by a static back-
ground. Spottiswoode et al. [110] used the encodedmotion to project
a manually-defined region of interest in the context of DENSE MRI.
Both of these methods are semi-automated and need interaction
to achieve high accuracy. Earlier, we proposed a supervised multi-
scale discriminative dictionary learning (MSDDL) procedure [76]
in Chapter 4. However, unlike the proposed method, only appear-
ance and texture features are considered for sparse representation
in MSDDL. In general we can identify, that supervised methods
require lots of data for training and a robust feature generation and
matching framework. While deep learning can help incorporate
the latter (e.g. [7], [80], [119]), it does need significant training data,
which can be augmented with in different scenarios [22]. In this
section, we instead propose a fully unsupervised method that incor-
porates motion information in a discriminative dictionary learning
framework.

Our proposed Unsupervised Motion and Sparsity based Seg-
mentation (UMSS) method (as shown in Figure 5.1) for segment-
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Figure 5.1: Description of the proposed method.)

ing 2D Cardiac MR (both standard CINE and CP-BOLD) image
sequences is described here in details.

5.1.1 Optical Flow Based Coarse Segmentation

Our first step is to compute optical flows between two subsequent
frames (It, It+d) of the given image sequence using [59]. The motion
boundary of the optical flow can be measured simply by calculating
the gradient. We have computed the coarse segmentation by apply-
ing a threshold Tc on the gradient vectors as shown in Algorithm 4.

5.1.2 Dictionary Learning of Background

Given a sequence of images {It}Tt=1 and corresponding coarse seg-
mentation labels obtained from Optical Flow motion boundary as
described earlier, we can obtain a matrix, {Y = [Y cBY cF ]}, where
the matrix Y cB and Y cF contains the coarse background and Fore-
ground information respectively. Information is collected from
image and motion patches: squared patches centered around each
pixel of the image and its corresponding motion matrix. More
precisely, the p-th column of the matrix Y cB is obtained by concate-
nating the normalized patch vector of pixel intensities and motion
vectors taken around the p-th pixel in the coarse background. The
Dictionary Learning part of our method takes as input this matrix
Y cB , to learn a dictionaryDcB and a sparse feature matrixXcB . Dic-
tionaries and sparse features are trained via the K-SVD algorithm [2].
We use the “Grammatrix” (GcB = (Y cB)TY cB) to promote diversity
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Algorithm 4 Unsupervised Motion and Sparsity based Segmenta-
tion (UMSS)
Require: Image sequence from single subject
Ensure: Predicted Myocardium masks across the sequence
1: Calculate Optical Flow fp at each pixel p between pairs of frames

(It, It+d)
2: Measure motion boundary from gradient of Optical Flow Bp =

1− exp(−λ∇fp)
where λ is the parameter controlling steepness, Bp ∈ [0, 1].

3: Compute Coarse segmentation Cp ∈ cB,ifBp<Tc
cF,ifBp≥Tc

4: Collect all Cp ∈ cB and Calculate Y cB
p = [Ip±∆; fp ±∆]

5: Discard atoms with high values in intra-class Gram matrix GcB
6: Learn dictionary and sparse feature matrix with the K-SVD

algorithm

minimize
DcB ,XcB

‖Y cB −DcBXcB‖22 s. t. ‖xp∈cB‖0 ≤ L

7: Train one-class SVM on XcB using Equation 5.1
8: Test on all sparse featuresX ∈ xp∈(cF∪cB) for final classification

in the initialization step. The idea is to have a subset of patches as
much diverse as possible to train dictionaries and sparse features.
To ensure a proper discriminative initialization, patches that cor-
respond to high values in the Gram matrix are discarded from the
training before performing K-SVD. We sort the training patches
w.r.t. the sum of their related coefficients in the Gram Matrix, and
we prune them by choosing a certain percentage.

5.1.3 One-class SVM for Segmentation

The goal of the segmentation problem is to assign to each pixel of
the image sequence a label, i.e. establish if the pixel is included in
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the background or the myocardium. To perform this classification,
we use the coarse Background dictionary {DcB} previously learnt
with Discriminative Dictionary Learning technique for sparse rep-
resentation of the appearance and motion features. We compute
the sparse feature matrix X = [XcBXcF ] for all the pixels of the
image sequence with OMP [120]. The classification is performed by
constructing the classifier from only the sparse-features of coarse
Background class XcB (the p-th column of the matrix XcB , xcBp , is
considered as the discriminative feature vector for the particular
pixel p) using a one-class SVM framework [107]. Supposing for
each pixel p of coarse Background class, there is a high dimensional
feature space F , then each sample is represented in F by Φ(xp∈cB)
and the objective function is formulated as follows:

minimize
W∈F,η∈Rl,b∈R

1

2
W TW+

1

νl

∑
p∈cB

η−b s. t. W ·Φ(xp∈cB) ≥ b−η, η ≥ 0

(5.1)
Here, W is the normal vector that represents the support, b

is the threshold of function f , ηp∈cB is the slack variable and ν is
the parameter that represents the fraction of sample that should
be accepted as the other class. During testing, sparse features for
all the pixels of the image sequence, stored in matrix X̂ are fed
to the classifier learnt on the coarse Background features, to clas-
sify the myocardial region as the other class. In addition, a Hough
transformation-based post processing step is employed by fitting
parametric circles to enforce the shape constraint of the myocar-
dium. The Hough transform is applied to the final output of the
segmentation algorithm by fitting circles to the segmentation and
fill the circular gaps of the generated by the algorithm. The incon-
sistency of the segmentation due to is adressed in Chapter 7 with
joint registration to enforce local smoothness.Note that the Hough
transform step is a rudimentary way of ensuring shape-based con-
straints. Treating it in a more sophisticated way, using probabilistic
models (e.g. Graph-cut with coarse Background as a sink as in 7),
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improves the performance.

5.2 Results of UMSS

This section offers a qualitative analysis and quantitative compari-
son of our proposed UMSS method w.r.t. state-of-the-art methods,
to demonstrate its effectiveness for myocardial segmentation. Note
that our method outperforms all supervised methods from cur-
rent literature in both baseline and ischemia cases of CP-BOLD
MR, whereas yields state-of-the-art results for both baseline and
ischemia cases of standard CINE MR.

5.2.1 Parameter Settings

Parameters of UMSS in this chapter we have empirically chosen
a d of 5 and a threshold Tc of 0.4 for coarse segmentation based
on Optical Flow, 9 × 9 as the patch size,and a pruning of 10% for
Gram Filtering. Each sparse feature has been represented by 5
non-zero elements whereas a dictionary of 10 atoms is chosen for
coarse Background representation. We computed the myocardium
segmentation across the whole stack of image sequences for each
subject and tested the parameter sensitivity within a reasonable
range. In Figure 5.2 we showcase the sensitivity of our algorithm to
the parameters ν and λ. We selected the optimum λ of 0.5 and ν of
0.2

5.2.2 Quantitative Comparison

As segmentation quality metric, the Dice coefficient, which mea-
sures the overlap between ground truth segmentation masks and
those obtained by the algorithm(s), is employed. For our implemen-
tation ofAtlas-based segmentation methods, the registration algorithms
dDemons [124] and FFD-MI [34] are used to propagate the segmen-
tation mask of end-diastole image from all other subjects to the
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Figure 5.2: The sensitivity of the algorithmperformance (Dice Score)
to λ and ν parameters.
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end-diastole image of the test subject, followed by a majority voting
to obtain the final myocardial segmentation. For supervised classifier-
based methods, namely Appearance Classification using Random For-
est (ACRF) and Texture-Appearance Classification using Random
Forest (TACRF) random forests are used as classifiers to get seg-
mentation labels from different features. To provide more context,
we compare our approach with dictionary-based methods, DDLS and
RDDL. DDLS is an implementation of the method in [117], whereas
the discriminative dictionary learning of [99] is used for RDDL.
Finally to showcase the strengths of our design choice of sparse
representation using discriminative dictionary learning, we have
considered two additional variants of UMSS, without Dictionary
Learning (UMSS No DL) and without concatenating optical flow
features with intensity for Dictionary Learning (UMSS No Motion).
All quantitative analysis for supervised methods are performed
using strict leave-one-subject-out cross validation.

As Table 5.2 shows, overall, for standard CINE, most algorithms
perform adequately and the presence of ischemia slightly reduces
performance. However, when BOLD contrast is present, other ap-
proaches fail to accommodate changes in appearance due to contrast,
but UMSS obtains consistent performance. Specifically, Atlas-based
methods are shown to perform well in standard CINE but poorly in
CP-BOLD. ACRF and TACRF, instead, show very low performance
in both cases. Among dictionary-based methods, DDLS performs
well in standard CINE MR, but under-performs in CP-BOLDMR.
When comparing with its variants, UMSS shows that both Dictio-
nary Learning and motion information are extremely beneficial.

5.2.3 Qualitative Analysis of UMSS

The quality of myocardial segmentation by UMSS for both base-
line and ischemia cases across standard CINE and CP-BOLDMR
is shown in Figure 5.3. Note that UMSS results in very smooth
endo- and epicardium contours which closely follow ground truth
contours generated by the experts and can be attributed to the suc-
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Table 5.1: Dice coefficient (mean (std)) for segmentation accuracy
in %.

Baseline Ischemia
Methods CINE CP-BOLD CINE CP-BOLD
Atlas-based methods
dDemons [124] 60(8) 55(8) 56(6) 49(7)
FFD-MI [34] 60(3) 54(8) 54(8) 45(6)
Supervised classifier-based methods
ACRF 57(3) 25(2) 52(3) 21(2)
TACRF 65(2) 29(3) 59(1) 24(2)
Dictionary-based methods
DDLS [117] 71(2) 32(3) 66(3) 23(4)
RDDL [99] 42(15) 50(20) 48(13) 61(12)

Proposed Unsupervised method
UMSS No DL 25(9) 26(12) 19(5) 18(7)
UMSS No Motion 49(15) 42(19) 51(14) 53(12)
UMSS 62(20) 71(10) 65(14) 66(11)

cessful representation of myocardial motion.

5.3 Motion incorporation forMyocardial Segmen-
tation with Local Smoothness

This section presents a fully automated and unsupervised method
for CP-BOLD MRI with the goal of faithfully preserving the key
patterns necessary for diagnosis. The bottom of Figure 3.5C il-
lustrates the results of our method, which does not require any
form of manual intervention e.g., landmark selection, ROI selection,
spatio-temporal alignment. It builds upon a dictionary approach
introduced in Chapter 4 using a joint appearance and motion model
introduced. To increase robustness to the BOLD effect, we introduce
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Figure 5.3: Segmentation result (green) of UMSS for both CP-BOLD
MR and standard CINE MR at baseline and ischemic condition
superimposed with corresponding Manual Segmentation (red) con-
tours delineated by experts.

a pre-processing step that aims to ”smooth out” temporal intensity
variations. Subsequently, subject-specific dictionaries of patches
of appearance and motion are built from a rudimentary definition
of foreground (myocardium) and background (everything else).
Projections on these discriminative dictionaries and spatial regular-
ization with a Markov Random Field (MRF) obtains the final result.
Extensive experiments show that, not only we obtain higher seg-
mentation accuracy globally and locally around the myocardium,
but also that this accuracy translates to better local preservation of
BOLD patterns.

There are three main contributions of this section. First, we
revisit fully unsupervised myocardial segmentation using discrimi-
native dictionary learning that jointly represents appearance and
motion. Second, we utilize a variational inhomogeneity refinement
scheme for spatio-temporal smoothing of BOLD signal in a cardiac
image sequence. Finally, an extensive segmentation performance
analysis both in local and global fashion is proposed.

In the following we detail the proposed method for segmenting
2D(+time) Cardiac MRI data. The method does not rely on manual
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intervention and its only assumption is that motion patterns of the
myocardium differ from those of surrounding tissue and organs.
Our proposed method consists of three main blocks which are illus-
trated in Figure 5.4 and described briefly below and in detail in the
next sections.

The pre-processing block aims to overcome BOLD effects by
temporal smoothing using a Total Variation based method and to
localize the myocardium to initialize the next step. The extraction
of the LV blood pool is solely based on apperance and completely
differs with the approach in [77], which relies on optical flow based
thresholding.

The second block uses Dictionary Learning to obtain a segmen-
tation. Subject-specific foreground and background dictionaries
are trained from the two extracted regions from the entire cardiac
sequence. These dictionaries are used to calculate the residuals of
the cardiac image to be segmented.

The final block introduces spatial regularization using Markov
Random Field (MRF) approach, that is applied on the residuals of
the two dictionaries to achieve the final segmentation of the myo-
cardium. This block ensures the local smoothness of the extracted
region.

5.3.1 Pre-processing

The overriding goal is to reduce the BOLD effect and obtain regions
that patches can be drawn from for learning the dictionaries. This
happens in few steps that we detail below and visually in Figure
5.4A. First a Total Variation based filtering technique is used to
smooth images to reduce the BOLD effect. Then, a process based
on multi-level histogram thresholding is used to find the center of
the Left Ventricle (LV) (on the mid-ventricular images we use here).
We then segment the LV blood pool with region growing. Finally,
aided by the distance transform we identify candidate foreground
and background regions to sample from.
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Figure 5.4: Description of the unsupervised segmentation method.
Block A aims to find a rough segmentation of the myocardium.
Otsu-thresholding to generate four classes color-coded (second col-
umn), top two classes are extracted to capture LV blood pool (third
column), LV is extracted using a region-growing (fourth column)
Rough background and foreground regions are detected (fifth col-
umn). In Block B two subject-specific dictionaries are trained on
foreground and background on appearance and motion. In Block
C an MRF-based post-processing algorithm on the residuals of the
two dictionaries is utilized to have smooth boundaries.
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Total Variation based smoothing: The BOLD effect poses a
significant problem to all state-of-the-art segmentation algorithms
as demonstrated in [76] and discussed in the introduction. One
way to create robustness is to learn intensity invariant features.
However, [76] also demonstrated superior performance when us-
ing standard CINE MR. Inspired by this observation, we aim to
identify a process that essentially converts the difficult CP BOLD
MRI’s appearance into a more manageable standard CINE MR like
appearance. Variational methods are used extensively in image de-
noising problems, most famous being the pioneering Rudin-Osher-
Fatemi model [102]. Most of the video denoising methods derived
from [102] actually work on a frame-by-frame basis. This approach
is not suitable in our case since the BOLD effect is spatio-temporal
across the cardiac cycle. In this work, we adopted the augmented
Lagrangian method [78] developed in [19] to solve the BOLD inho-
mogeneity refinement problem in a space-time volume. We have
employed the `1-norm Total Variation (`1-TV) using the augmented
Lagrangianmethod introduced in [19] for solving both the problems
together. The energy functional we have used for this particular
minimization problem is:

minimize
f

µ

2
‖u− v‖1 + ‖ 5 u‖2,

where v is the input 2D+t image series and u is the processed image
series. The main reason behind choosing `1-norm over `2-norm
is the fact that appearances of different anatomies are piece-wise
constant functions [38]. They also demonstrate quantized levels
(i.e., a function can only take a given energy level without any other
level existing between two anatomies), within a certain anatomy
and sharp edges across anatomical boundaries. These boundaries
and anatomies can be better preserved when using the `1-norm as
shown in Figure 5.6.

LV center point detection andbloodpool extraction: To extract
the blood pool, first multiple thresholds are found using Otsu’s his-
togram thresholding [86] for each image in the cycle to obtain a
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Figure 5.5: Extracting candidate background and myocardium re-
gions. LV blood pool (left); Distance transform from the LV blood
pool boundary (middle); Rudimentary background and foreground
classes (right). Only pixels within the blue and red rings (right
panel) are used to sample patches for dictionary learning. The
green ring acts as boundary in between these two regions to reduce
the chance of false positives.

four-class segmentation: loosely capturing blood pool (brightest in
both standard CINE and BOLD weighted imaging), partial volume
between myocardium and blood pool (second brightest), myocar-
dium (third brightest) and other (most dark) –adapting broadly
ideas from [97]. The brightest two classes are used to extract the
blood pool region. Then, the region that fits most closely a cir-
cle (of a roughly known diameter) is found, which eventually is
used to determine the middle point of LV blood pool. Finally, a
region-growing approach is employed to delineate the LV blood
pool.

Finding foreground and background regions to sample from:
The distance transform from the LV blood pool is used to define
two ring-like areas identifying foreground and background regions
to sample from as visualized in Figure 5.5. In this paper we use a
ring thickness of R = 6mm at end systole for all rings involved. We
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vary the thickness value of the myocardium in experimental results
to test the robustness. The thicknesses are normalized according
to the cardiac phase to ensure that these regions do not include

false positives with the following function: R f

f + |ft − fES |
; where

f represents the total number of cardiac phases, ft represents the
frame number of the current phase and fES is the end systolic frame.
End systolic frame is defined around 30% of the cardiac cycle in
accordance with ECG triggering. The regions for foregroundMF

(blue ring in figure. 5.5) and backgroundMB (red ring in Figure
5.5) will be utilized to draw patch samples to learn the dictionaries.

The goal of the last two steps is to obtain a soft definition of
where to sample patches from for myocardium and background.
Any similar methodology will suffice. Experiments in Figure 5.13
show the precision of the last two pre-processing steps does not
have a major influence on the performance of the overall algorithm.

5.3.2 Dictionary Learning

Joint learning of discriminative dictionaries for segmentation prob-
lems is a recent idea also developed in our earlier study [76]. The
different motion patterns of the myocardium and background is uti-
lized here to guide myocardial segmentation. Sparse representation
of motion guides the sparse representation stage to a smooth solu-
tion based on the motion of the myocardium. The discriminative
dictionary learning idea has been proposed earlier in atlas-based
segmentation of brain MRI [10, 117] and abdominal CT [118] but
without the context of motion. In this chapter we have developed a
method to jointly model the appearance and motion within a dis-
criminative dictionary learning framework by incorporating both
appearance and motion within the observations.

Our method builds observations from the concatenation (after
raster-scanning) of square patches of appearance (pixel intensities)
and corresponding motion (found via optical flow). Specifically,
given (1) a series of pre-processed images It, {t = 1; . . . , T}, (2) the
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Figure 5.6: Influence of Total Variation based smoothing on different
cardiac phases of a healthy subject. Four temporal phases of the
same acquisition of a subject before (top) and after pre-processing
(bottom), where myocardial intensities have been color-coded to aid
visualization. Observe, howmyocardial intensities appear smoother
and within the same (and shorter) range across the cardiac cycle
after TV-based smoothing (bottom row). The smoothing happens
on the entire image and visualized only on the myocardium region.

estimated optical flow between subsequent images It and It+d and
(3) the corresponding coarse segmentation labelsMF

t andMB
t ob-

tained as previously described, two matrices were obtained, Y B

and Y F , where these matrices contain the data from the coarse
background and foreground information from the entire cine stack
respectively. The j-th column of the matrix Y F is obtained by con-
catenating the normalized patch vector of pixel intensities and mo-
tion vectors calculated by the method in [14] taken around the j-th
pixel in the coarse foreground as shown in figure. 5.7. Both horizon-
tal and vertical components are used for each pixel. The Dictionary
Learning part of our method takes as input these two matrices Y B

and Y F , to learn dictionaries DB , DM and a sparse feature matrix
XB , XF .

In order to achieve discriminative initialization, highly corre-
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lated data are disregarded prior to learning. We calculate for a given
class C (foreground or background), the intra-class Gram matrix as:

GC = (Y C)TY C . (5.2)

We sort the training patches w.r.t. the sum of their related coeffi-
cients in the Gram Matrix, and we prune the top %10 of the atoms
to promote discriminative power.

Subsequently, dictionaries consisting of K atoms and sparse
features with L non-zero elements are trained via the K-SVD algo-
rithm [2]:

arg min
DF ,XF

‖Y F −DFXF ‖ s. t. ∀i ∈MF , ‖xFi ‖0 ≤ L,

arg min
DB ,XB

‖Y B −DBXB‖ s. t. ∀i ∈MB, ‖xBi ‖0 ≤ L

Considering this patch-based approach in the context of a seg-
mentation problem, given a new image It we have an unseen data
matrix Y , from the extracted regions obtained from all pixels in-
side the third ring from the test image. Y contains vectors yi; {i =
1, . . . , Q} obtained from image and motion patches for all Q pixels.
The goal is to assign to each pixel of the image a label, i.e. establish
if the pixel is included in the background or the foreground region.

To perform this classification, we use the dictionaries, DB and
DF , previously learnt. The Orthogonal Matching Pursuit (OMP)
algorithm [120] is used to compute, the two sparse feature matrices
X̂B and X̂F for a given sparsity level.

5.3.3 MRF Based Smoothing

In this study, we employ a frame-by-frame MRF strategy [11] across
all image pixels to enforce spatial regularization on the final segmen-
tation for each image It. The process ensures local smoothness of
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Figure 5.7: The feature vector generation as concatenation of inten-
sities of square patches and corresponding motion vectors inside
that patch.
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Algorithm 5 Proposed Method
Require: Image sequence from single subject
Ensure:Predicted Myocardium masks across the sequence
1: Calculate Optical Flow fp at each pixel p between pairs of frames

(It, It+d)
2: Generate Y B and Y F concatenating image intensities and mo-

tion information for each patch
3: for C={B,F} do
4: Discard atoms with high values in intra-class Gram matrix
GF and GB

5: Learn dictionary and sparse feature matrix with the K-SVD
algorithm

minimize
DC ,XC

‖Y C −DCXC‖22 s. t. ‖xCi ‖0 ≤ L

6: Compute the inter-class Gram matrix GIC
7: Discard from DB and DF atoms with high values in GIC
8: end for
9: Learn residuals RB and RF given Y , DB and DF with OMP

algorithm
10: Test on all residuals RB and RF for first classification
11: UseMRF-based segmentation on the residualsRB andRF using

Equation 5.3
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the classification, which is refined according to the labels. Given the
residuals for background RB and foreground RF the final segmen-
tation is obtained by minimizing the MRF-based energy functional:

EMRF(It) =
∑
p∈It

(Vp(Ip) + λVpq(Ip, Iq)) (5.3)

where Vp(·) corresponds to the unary potentials representing the
data term for node p and Vpq(·) corresponds to the pairwise poten-
tials representing the smoothness term for pixels at nodes p and
q in a neighborhood N in the image It. The data term measures
the disagreement between the prior and the observed data, which
is based on the residuals of dictionaries. For a pixel p with initial
label C: Label(p) = C , data term is: Vp(Ip) = RC . The smoothness
term is defined as; Vpq(Ip, Iq) =

∑
q∈N

RC′ on the nodes that have

different class Label(q) = C ′ in the neighborhood N . The param-
eter λ controls the trade off between smoothness and data term
that govern the final segmentation. The smoothness term penal-
izes discontinuities in a neighborhood N . In our implementation,
the total energy is calculated using the residuals for the possible
labels of foreground RF and background RB . More precisely, if
RF = ‖yBFi −DF X̂F

i ‖2 is larger than RB = ‖yBFi −DBX̂B
i ‖2, the

patch is assigned to the background; otherwise, it is considered be-
longing to the foreground region for the initial segmentation. The
update occurs if the total energy calculated adding the unary and
pairwise terms for both labels possibilities and picking the smaller
one for the next iteration as detailed in Algorithm 5. The method
converges either when there is no change of labels or the maximum
number of iterations are reached.

5.4 Experimental Results

This section offers a qualitative and quantitative analysis of the
proposed method, as well as quantitative comparison of our pro-
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Table 5.2: Dice coefficient (mean(std)) for myocardial segmentation
accuracy in % for standard CINE (CINE) and cardiac BOLD images
(BOLD)

Baseline Ischemia
Methods CINE BOLD CINE BOLD

Atlas-based methods
dDemons [124] 60 (8) 55 (8) 56 (6) 49 (7)
FFD-MI [34] 60 (3) 54 (8) 54 (8) 45 (6)
Supervised classifier-based methods
ACRF 57 (3) 25 (2) 52 (3) 21 (2)
TACRF 65 (2) 29 (3) 59 (1) 24 (2)
Dictionary-based methods
DDLS [117] 71 (2) 32 (3) 66 (3) 23 (4)
RDDL [99] 42 (15) 50 (20) 48 (13) 61 (12)
MSDDL [76] 75 (3) 75 (2) 75 (2) 71 (2)
UMSS [77] 62 (20) 71 (10) 65 (14) 66 (11)
Proposed Unsupervised method
Proposed No TV 65 (6) 59 (7) 63 (8) 57 (9)
Proposed No Gram Filtering 62 (5) 52 (4) 53 (5) 57 (7)
Proposed No Motion 71 (6) 69 (8) 67 (9) 68 (8)
Proposed No MRF 74 (5) 75 (6) 73 (7) 72 (6)
Proposed 77 (10) 77 (9) 74 (7) 74 (6)

posed method w.r.t. state-of-the-art methods, to demonstrate its
effectiveness for myocardial segmentation.

Our quantitative analysis consists of comparing our method
with others but also looking into regional effects and performance.
Unless otherwise noted we use 13× 13 patch size, a dictionary of
K = 400 atoms, a sparsity level of L = 4, as parameters. Their
influence (and computational performance of the our method) and
are discussed in subsection 5.4.6.

Since part of our analysis is to evaluate how errors in segmen-
tation affect the BOLD response (and its patterns) we use cosine
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similarity to evaluate the match between two intensity signals (e.g.
timeseries), which is defined for two signals SA, and SB as:

CS =
SA · SB

|SA||SB|

where | · | corresponds to `2 norm of the vector. (We multiply with
100 to report in % in some cases.)

Methods of Comparison and Variants

Our data set consists of the same 10 canines imaged under four dif-
ferent settings as described in Chapter 4. All quantitative analysis
for supervised methods were performed using a strict leave-one-
subject-out cross validation. For our implementation of atlas-based
segmentation methods, the registration algorithms dDemons [124]
and FFD-MI [34] are used to propagate the segmentationmask of all
other subjects to the image of the test subject, followed by a majority
voting to obtain the final myocardial segmentation. For supervised
classifier-based methods, namely Appearance Classification using Ran-
dom Forest (ACRF) and Texture-Appearance Classification using
Random Forest (TACRF) random forests are used as classifiers to
get segmentation labels from different features. To provide more
context, we compared our approach with dictionary-based methods,
DDLS, RDDL, MSDDL and UMSS. DDLS is an implementation of
the method in [117], whereas the discriminative dictionary learn-
ing of [99] was used for RDDL. MSDDL [76] uses a multi-scale
supervised dictionary learning approach with majority voting clas-
sification. UMSS [77] is a unsupervised method relying only on a
motion-based coarse segmentation of background. This method
learns background class only with a dictionary and performs clas-
sification with one-class SVM. Finally, to showcase the strengths
of our design choices, we considered three additional variants of
our method, without Total variation pre-processing (Proposed No
TV), without Gram filtering (Proposed No Gram Filtering), without
concatenating optical flow features with intensity for Dictionary
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Figure 5.8: Segmentation result (red) of Proposed method for both
CP-BOLD MR and standard CINE MR at baseline and ischemic
condition for End-diastole (ED) and End-systole (ES) superimposed
with corresponding Manual Segmentation (green) contours delin-
eated by experts.

Learning (Proposed No Motion) and without spatial regularization
using MRF (Proposed No MRF).

5.4.1 Comparison with State-of-the-art Methods

The visual quality of myocardial segmentation by the proposed
method for both baseline and ischemia cases across standard CINE
and CP-BOLD MR is shown in Figure 5.8. The End-diastole (ED)
and End-systole (ES) phases are picked as exemplary images from
the entire cardiac cycle. Note that ourmethod results in very smooth
endo- and epi-cardium contours, which closely follow ground truth
contours generated by the experts and can be attributed to the
successful representation of myocardial motion.
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These observations also hold quantitatively when relying on the
Dice metric for evaluation. As Table 5.2 shows, overall, for standard
CINE, most algorithms perform adequately well and the presence
of ischemia slightly reduces performance. However, when BOLD
contrast is present, other approaches fail to accommodate changes
in appearance due to contrast, but proposed method obtains con-
sistent performance. Specifically, Atlas-based methods, ACRF and
TACRF all shown to perform better in standard CINE compared
to CP-BOLD. Among dictionary-based methods, DDLS performs
well in standard CINE MR, but under-performs in CP-BOLDMR.
Observe that the proposed method outperforms MSDDL algorithm,
which, unlike the proposed, does not rely on a subject-specific dic-
tionary but on one trained on other subjects. Unsupervised UMSS
is also outperformed by the proposed method due to use of two
discriminative dictionaries instead of relying on only background
dictionary. When comparing with its variants, the proposed shows
that all processes including, pre-processing, Gram Filtering, motion
information and MRF-based spatial regularization, are extremely
beneficial. One issue of interest is the superior performance com-
pared to the supervised methods. This is due to the lack of limited
training data and superior performance of achieved with motion
incorporation.

5.4.2 Segmental Analysis

In this Section, we perform a detailed regional analysis of the seg-
mentation results by taking into account the spatial distribution
of the errors. For each myocardium segmented both manual and
automatically, we divide it in 6 radially concentric regions, follow-
ing the six-segment AHA model for the mid-ventricular slice [17].
Specifically, we take the manually segmented masks and divide
them to six radially concentric regions 0◦, 60◦, 120◦, 180◦, 240◦ and
300◦. As a reference, a diagram of this process, known as bull’s eye
view, is shown in Figure 5.9 along with anatomical nomenclature
for each six segments.
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Figure 5.9: Six segments of mid-ventricular myocardial slice

Figure 5.10: Segmental accuracy for CP-BOLD and standard cine
MR for epicardium.

5.4.3 Quantitative Analysis

In Figure 5.10 boxplots of the Hausdorff distance metric for the
epicardium for CP-BOLD and standard Cine MR are presented. En-
docardium results show sub-pixel accuracy on average. The boxes
represent the lower quartile, median and upper quartile values; the
whiskers represent the whole extension of the error distribution
whereas the crosses correspond to outliers. The global error distri-
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Table 5.3: Regional segmentation accuracy measured via Dice
(mean ± std) in % for Standard CINE and CP-BOLD.

Baseline Ischemia
Regions Std. CINE CP-BOLD Std. CINE CP-BOLD
Anterior 81±13 83±10 78±10 79±8
Anteroseptal 79±10 82±9 75±10 75±9
Inferoseptal 75±12 72±16 75±12 75±9
Inferior 72±11 70±12 69±11 71±8
Inferolateral 73±8 72±12 71±13 71±11
Anterolateral 82±7 81±9 76±11 74±9

bution shows the presence of two outliers, whereas the remaining
segmentations have mean errors lower than approximately 4 mm
for images with 1.25 mm spatial resolution. Our reported results of
Hausdorff distance are at par with [97]. In the case of Hausdorff dis-
tance errors, largest values are located at the inferior region mainly
due to the presence of liver.

A comparison is shown in Table 5.3 to indicate the stability of
the method when ischemia is present. The Dice overlap measure
is calculated for the 6 regions of the myocardium. In general our
algorithm is robust to regional complexities of the myocardium.
Ischemia appears to slightly influence the performance especially in
the regions that are under influence of LAD stenosis (Anteroseptal,
Anterior and Anterolateral).

5.4.4 Time Series Analysis for Ischemia Detection

It is important to evaluate quantitatively the influence of segmen-
tation errors on preserving the BOLD effect to reduce errors of
ischemia detection methods [12,122,123]. As a benchmark, we used
the BOLD signal intensity as obtained via averaging (and normaliz-
ing) pixel values in various regions with and without disease ob-
tained from myocardial definitions from ground truth or algorithm
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Table 5.4: Cosine Similarity comparison of Timeseries for 6-
segmental regions (mean ± std, in %) acquired from the ground
truth comparedwith the proposedmethod andAtlas-basedmethod
[124] for CP-BOLD sequences.

Proposed Atlas-based [124]
Regions Baseline Ischemia Baseline Ischemia
Anterior 93±2 89±3 89±4 86±5
Anteroseptal 92±5 83±6 89±5 81±8
Inferoseptal 82±5 83±9 80±8 80±11
Inferior 79±4 80±8 75±8 77±11
Inferolateral 81±3 80±9 81±3 80±9
Anterolateral 91±3 83±5 88±5 81±7

results. Figure 3.5C already alludes that our proposed approach
outperforms other segmentation methods, and this performance
also holds when disease is present (see Figure 5.11). This also holds
quantitatively when comparing with an Atlas-based method [124]
as an illustrative example, using the cosine similarity metric (see
Table 5.4). Evidently, small errors (even 5-10 pixels) in segmenta-
tion towards hyperintense (blood pool) or hypointense (lung/liver
interface) areas when a myocardial region is as small as 100 pixels
in systole have severe effects in preserving the BOLD signal.

5.4.5 Temporal Evaluation of Results:

Since we use motion patterns as a feature, one important evaluation
of the algorithm is the temporal performance change. As the heart
moves with different velocities between frames at different stages
of the cardiac cycle (for example, during diastole there is much less
motion than during systole). We illustrated the performance on
how well the algorithm performs over different temporal phases of
the cardiac cycle in Figure 5.12.
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Figure 5.11: Normalized time series obtained by averaging pixel
intensities in the anterior region, as defined using ground truth
(blue) and automatic segmentation (red dotted line) in a subject at
baseline (left) and after LAD stenosis and during ischemia (right).
Observe that the time series obtained via the proposed segmentation
is consistent with that of ground truth, which eventually result in
more accurate ischemia detection.

Figure 5.12: Dice accuracy on different temporal frames. The re-
sults are the average values for CP-BOLD and standard cine under
baseline and ischemia conditions.
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Figure 5.13: Effect of Pre-processing on segmentation accuracy.
Rudimentary class thickness is varied from the original size (6mm)
for background (a) and myocardium (b). The influence of changing
the thickness from 3mm to 9mm of both classes on segmentation
accuracy is minimal.

5.4.6 ParameterAnalysis andComputational Performance

The purpose of this section is to analyze effects of different parame-
ters of the algorithm as well as discuss computational performance.
Overall we evaluate patch size, number of atoms K, and sparsity
level L independently. We vary one of the 3 but keep the other two
fixed using the following values: patch size of 13× 13,K = 400 and
L = 4.

Influence of Pre-processing

Pre-processing consists of identifying both background and myo-
cardium regions to sample from, which depend on the thickness
of the rings that define them. Here we vary this ring size (from the
initial size of 6mm) keeping all other parameters fixed. Figure 5.13
illustrates that the results remain consistent whether modifying
more the background (more false negatives) or the myocardium
(more false positives) class. This result demonstrates that we can
tolerate imprecision in defining the regions to sample from.
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Influence of Patch Size

The patch size is related to the local geometry whilst the neighbor-
hood size reflects the anatomical variability. The Dice coefficient
distributions over varying patch are presented in Figure 5.14 a for a
dictionary size ofK = 400 atoms, and sparsity ofL = 4 . As one can
observe, the best median Dice coefficient was obtained with a patch
size of 13× 13 albeit it performed similar to 15× 15. This is to be
expected as this comes close to the average size of the myocardium
given the image size of our dataset.

Influence of Dictionary Size and Sparsity Level

First, experiments were carried out to study the influence of dictio-
nary sizeK (the number of atoms in each dictionary) on segmenta-
tion accuracy with fixed values 13×13 patch size and L = 4 sparsity
threshold. As illustrated by Figure 5.14 b, 400 atoms provide a good
balance of accuracy w.r.t. dictionary size. Note that a larger dic-
tionary does imply higher computational complexity, albeit it also
depends on sparsity level.

Thus, experiments were also carried out to study the influence of
the sparsity level L (the number of non-zero components in sparse
coefficients) on segmentation accuracy. This governs the selection
of atoms to be combined for the purpose of representing classes
with the dictionaries. Figure 5.14 c shows that sparsity 4 is the
most suited level of sparsity for our experiments and indicates the
importance of this parameter. It appears that lower sparsity has
higher discriminative ability as adding additional atoms it appears
to add noisy information.

Computational Complexity

Execution time on a 2.4 GHz processor with an average data set
(192× 114× 30) is approximately seven minutes. Most of this time
is spent on the dictionary learning stage (approx. 4 minutes).

102



Figure 5.14: Effect of patch size (a), dictionary size (b) and sparsity
threshold (c) on segmentation accuracy. The optimal results were
obtained using a patch size of 13 × 13, a dictionary of 400 atoms
and a sparsity threshold of 4.
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Figure 5.15: Change of motion magnitudes between consecutive
phases with TV-smoothing. The expectation of minimal motion is
achieved with TV-smoothing.

5.5 Discussion

This chapter motivates us to rethink the standard assumptions
regarding the segmentation of the myocardium in MR image se-
quences, especially to accommodate emerging cardiac MR imaging
modalities. In particular, deviating from fully supervised tech-
niques (the performance of which heavily depends on the amount
of training data) towards unsupervised ones can benefit inmultitude
of ways: from operating on no training data, better handling of vari-
ability in image contrast to nomanual intervention. In addition, this
work has shown that unsupervised methods can still deliver state-
of-the-art performance even for standard CINE MR. The proposed
algorithm does not exploit the spatio-temporal information across
cardiac phases and doing so by introducing graph-based formula-
tion should increase performance in future extensions. UMSS can
be an effective tool in challenging datasets where inter-acquisition
variability prohibits the effectiveness of supervised segmentation
strategies.

The results show that the unsupervised automatic segmentation
resulting from the proposed method results in an acceptable level
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of agreement with the manual segmentations. The main challenge
of CP-BOLD data set stems from the inconsistent appearance of
patterns. To this end, we have introduced two methodological
innovations: discriminative dictionary learning for appearance and
motion pattern as well as variational appearance inhomogeneity
refinement. The inhomogeneity refinement scheme helps to reduce
the intensity inhomogeneity which boosts the performance. The
subject-specific dictionary learning approach enables learning of
discriminative patterns (represented as atoms). Moreover, MRF-
based smoothing improves segmentation outcomes due to influence
of spatial smoothing in local neighbourhoods.

An important observation is the significance of subject-specific
dictionary learning rather than relying on a training dataset. As
experiments showed in Table 5.2, training from other subjects in-
troduces less discriminative atoms inside the dictionaries, which
results in poor performance of classification.

As experiments on time series comparisons showed, accurate
segmentation translates directly to the fidelity of the signal that
we aim to preserve, namely: BOLD contrast. This will have direct
effects on fully automating ischemia detection [12].

One interesting interpretation of the results is the the impact of
TV-smoothing on the overall method. TV-smoothing contributes
the most by reducing the BOLD effect (and standardizing the inten-
sities) as we highlight in experimental results. This mostly improves
the accuracy of the motion patterns calculated with optical flow.
As for the standard Cine the inherent noise in data is smoothed
with this process and the performance is boosted by learning more
accurate motion vectors with optical flow. The Figure 5.15 illus-
trates optical flow for two consecutive phases, where the motion
is ideally minimum. The magnitude of the motion calculated on
original images is larger than expected motion, which is reduced
using TV-smoothing for both standard Cine and CP-BOLD. These
aforementioned points regarding the influence of TV-preprocessing
on the performance and especially on the motion vectors are added
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to discussion.
In conclusion, this chapter underlines the necessity to re-evaluate

the standard assumptions and verificationmetrics regarding the seg-
mentation of the myocardium in cardiac MRI. Development of MR
technologies bring new challenges and departing from fully super-
vised techniques (the performance of which heavily depends on the
amount of training data) towards unsupervised ones can provide
multiple benefits. Finally, this chapter has shown that global DICE
score on its own is not a sufficient performance metric and more
analysis can bring about the suitability of segmentation methods
for particular MR techniques.
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6
Registration

Nonrigid image registration is an essential step in medical imag-
ing for automatic segmentation, motion tracking and morphome-
tric analysis [111]. However, since most of the proposed registra-
tion algorithms rely on a (dis)similarity metric build based on the
assumptions of consistent intensity and local shape, images with
pathologies and locally varying intensity may not be accurately
aligned.

There is no CP-BOLD MR myocardial registration algorithm for
establishing correspondences in a cardiac sequence. Due to this
absence either segmental information [105] or synthetic data sets are
used [106], to obtain pixel-wise time series. The main assumption
of the this chapter, that it is due to lack of proper similarity criteria.
Rather than relying on low-level features used often for myocardial

This chapter is based on:
• I. Oksuz, A. Mukhopadhyay, M. Bevilacqua, R. Dharmakumar S. A. Tsaf-

taris, “Dictionary Learning Based Image Descriptor for Myocardial Regis-
tration of CP-BOLDMR”,Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015, pp. 205–213, 2015.
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registration of standard CINEMR, a more distinguishing descriptor
should be developed to accommodate the BOLD effect.

In this chapter, a feature-based descriptor as a similarity mea-
sure is proposed for the alignment to register themyocardium in the
entire cardiac sequence of CP-BOLD. A patch-based discriminative
dictionary learning technique [42] is adopted as in chapter 2 to learn
features from data. Our motivation is to employ a compact and
high-fidelity low-dimensional subspace representation, which is
able to extract semantic information of the myocardium pixels [76].
We observe that although the patch intensity level varies signif-
icantly across the cardiac cycle, sparse representations based on
learnt dictionaries are invariant, as well as unique and robust. The
discriminative dictionary learning strategy is designed to facilitate
this key observation regarding CP-BOLD.

During training, two dictionaries of patches formyocardium and
background are learnt offline. To register two imageswith unknown
myocardium masks, the sparse representations that are obtained
on the basis of previously trained dictionaries for background and
myocardium, are concatenated and considered as the feature for
that particular pixel. The similarity term evaluates the match of
the sparse features at every iteration on a pixel level. The sum of
squared differences of the sparse representations between the target
image and warped source image are utilized as similarity criteria.

There are three major contributions of this chapter. First of all,
we propose a sparse representation-based image descriptor in a reg-
istration framework, for the first time to the best of our knowledge.
Second, we experimentally validate the fact that BOLD contrast sig-
nificantly affects the accuracy of registration algorithms (including
intensity-based and feature-basedmethods), which instead perform
well in standard CINE MR. Finally, we address the fundamental
problem in handling BOLD contrast by designing a set of compact
features using discriminative dictionary learning, which can effec-
tively represent the myocardium in CP-BOLD MR.
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6.1 Background

Automated myocardial registration for standard CINE MR is a well
studied problem [114]. Most of these algorithms can be classified
into two groups according to similarity criteria used: intensity-
based or feature-based. General intensity-based registration algo-
rithms can be summarized as an energy minimization procedure,
where the energy functional is [111]:

E =
∑
p∈Ω

DS(Is(p), It(p+ u)) + λER, (6.1)

where Ω represents the entire image domain, and p denotes a pixel
in the domain. Non-rigid registration consists of minimizing a dis-
similarity measureDS between a source image Is and a target image
It, u denotes the displacements and ER denotes the regularization
term. In this chapter, we are particularly interested in the definition
of the similarity measure. Sum of squared differences (SSD) and
cross correlation (CC), are the earlier metrics utilized in registration.
Recently, information theory-based approaches gained attention,
e.g., derivatives of Mutual Information (MI), which is based on
individual and joint gray level distributions [96].

When registration under inhomogeneity conditions is required,
some have proposed modifications on regional intensity distortions
(for brain MRI) [112] or spatially intensity variations [149]. Alter-
natively, feature-based approaches can be used. A recent example
is DRAMMS [87], where the similarity is based on optimal Gabor
attributes. Another approach, MIND [39], relies on regional infor-
mation following the footsteps of self-similarity (a method utilized
for image denoising) for multi-modality registration.

In this chapter, we concentrate on developing a feature-based
metric but also learning features instead of using fixed ones. We use
sparse representation coefficients of patches, generated by a dictio-
nary trained offline, to define a similarity measure of alignment. In
this chapter, we compare our method with SSD and MI based Free

109



Figure 6.1: Similarity of patches in two consecutive images. First
image shows the test patch (green circle) and the remainder shows
responses of each similarity metric inside the myocardium. All
metrics are normalized and dissimilarity metrics are inverted.

Form Deformations (FFD) [103], optical flow based diffeomorphic
demons (ddemons) [124] and symmetric diffeomorphic transfor-
mation with CC metric implemented in Advanced Normalization
Toolkit (ANTs) [6]. To demonstrate that our proposed approach
provides better localized matches, Figure 6.1 shows the values of
matches using several criteria when taking a patch from one image
and matching it to myocardial locations in another image.

6.2 DictionaryLearning-based ImageDescriptor
(DLID)

We leverage dictionary learning techniques to learn better represen-
tative features. Accordingly, we integrate a Dictionary Learning-
based Image Descriptor (DLID) derived from training patches into
a similarity term of our proposed registration framework. Features
learnt via dictionary learning are used in an image registration
framework to evaluate the performance of the proposed descriptor.

6.2.1 Using learnt Features in a Registration Framework

When registering a cardiac sequence I1, . . . , It, we aim to find a
deformation that can register each image in the sequence to the first
one. Here following the formulation of equation 6.1, we adopt a
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regularization in the form of

argmin
u

∑
p∈Ω

S(I1(p), It(p+ u))2 + λ tr(∇u(p)T∇u(p))2, (6.2)

where ∇u denotes the gradient of the displacement field. This
function is minimized over uwith Gauss-Newton optimization as
described in [39].

We propose an appropriate similarity termS based on the sparse
feature representation of image patches. Assuming two input im-
ages, considering I1 as fixed and It as moving, we extract for each
pixel location in both, patches, which we represent with appearance
and texture features (HoG, Gabor). We create a sparse representa-
tion X̂p for each pixel location for the two images to be registered.
The Orthogonal Matching Pursuit (OMP) algorithm [120] is used
to compute, two sparse feature matrices X̂B and X̂M , both with n
dimensions, based on previously computed dictionaries DB and
DM (detailed below). At a certain pixel p of the image, a concate-
nation of these sparse representation vectors X̂p = [X̂B; X̂M ] are
used to represent the image instead of the pixel level definitions.
The proposed similarity term S at pixel p is defined as the `1 norm
of the difference vector between the sparse representations of the
warped source image and the target image as shown in equation
6.3.

S(I1(p), It(p+ u)) =‖ X̂1
p − X̂t

p+u ‖1 (6.3)

The proposed metric can take different measures of similarity
such as l2 norm. l1 norm is utilized due to its efficiency in spacing
for sparse but significant inconsistencies between two frames. In
the case of CP-BOLD images these inconsistencies are significant
and can be better expressed with l1 norm compared tol2 norm .
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Algorithm 6 Dictionary Learning
Require: Training patches for background and myocardium: Y B

and YM

Ensure: Dictionaries for background and myocardium: DB and
DM

1: for C={B,M} do
2: Find intra-class Gram matrix GC and discard atoms with

high values
3: Learn dictionary and sparse feature matrix with the K-SVD

algorithm

minimize
DC ,XC

‖Y C −DCXC‖22, subject to ‖xCi ‖0 ≤ s

4: end for
5: Compute inter-class Gram matrix GBM
6: Discard from DB and DM atoms with high values in GBM

6.2.2 Feature Generation with Discriminative Dictionary
Learning

Given some training images (e.g., sequences in the context of cine
(BOLD) MRI) and corresponding ground truth labels (i.e., myocar-
dial masks), we obtain two sets of matrices, Y B and YM , where
the matrix Y B contains background information, and YM contains
information of patches within the myocardium. Information is col-
lected from image patches: K ×K squared patches are sampled
around each pixel in the training images. More precisely, the i-th col-
umn of the matrix Y B (and similarly for the matrix YM ) is obtained
by concatenating the normalized patch vector of pixel intensities,
taken around the i-th pixel in the background (or myocardium),
along with Gabor and HOG features of the same patch. The dic-
tionary learning method takes as input these two sets of training
matrices, to learn, two dictionaries, DB and DM , with n number of
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atoms, and two sparse feature matrices, XB and XM , with sparsity
s. The i-th column of the matrix XB , xBi , is considered as the dis-
criminative feature vector for the particular pixel corresponding to
the i-th column in Y B

j .
Dictionaries and sparse features are trained via the well-known

K-SVD algorithm [2], in an optimization problem shown in Algo-
rithm 1. During initialization we first find the “intra-class Gram
matrix” to promote diversity. The idea is to have a subset of patches
as much diverse as possible to train dictionaries and sparse features.
For a given class considered (let us say background) we can de-
fine the intra-class Gram matrix as GB = (Y B)TY B . To ensure a
proper discriminative initialization, patches that correspond to high
values in the Gram matrix are discarded from the training before
performing K-SVD, and K-SVD is initialized obtaining a random set
of patches as initial atoms.

We also use pruning, inspired as a greedy approach of [99],
which is performed after K-SVD to remove undesired (similar to
other) atoms from each dictionary trained. In this case, an “inter-
class Gram matrix” between dictionaries is computed (GBM =
(DB)TDM ), the atoms of each dictionary are sorted according to
their cumulative coefficients in GBM , and a chosen percentage of
them is discarded to ensure mutual exclusiveness (and better dis-
crimination) between the different dictionaries. Thesemodifications
ensure that patches of different origin will have different support
and that similar atoms are excluded.

6.3 DLID Results

This section describes qualitatively and compares quantitatively our
proposed dictionary learning-based descriptor with state-of-the-art
approaches.

113



6.3.1 Parameter Settings

All quantitative experiments are performed in a strict leave-one-
subject-out cross-validation. Parameters and settings were opti-
mized for each method used in comparison. For DLID, in this
chapter we have empirically chosen a dictionary of n = 1000 atoms
for foreground and background respectively, a sparsity of s = 4,
and as patch sizeK=9. The regularization weight (λ) is set to 0.8 to
ensure smooth deformations.

6.3.2 Visual Evaluation

In an example sequence, we register each image in the sequence
throughout the cardiac cycle to the first image using our approach.
We take two orthogonal short axis profiles that intersect approx-
imately at the center of the Left Ventricle, and in Figure 6.2 we
show the temporal evolution of the profiles with and without reg-
istration (left-most and right-most horizontal and vertical profile,
respectively). The proposed shows clearly defined structure and
the ability to correct for cardiac motion. Notice that BOLD intensity
variation is subtle and not perceptible in these images (ie., is not a
global change).

6.3.3 Quantitative Comparison

Using again the same process, in a strict-leave-one-out fashion we
want to investigate the effect of different similarity metrics in re-
covering cardiac motion. To evaluate performance, we use again
manual delineations of the myocardium provided by experts, and
train dictionaries on a set of images and test on one subject. For
validation, via segmentation, the myocardial mask from the source
image was propagated to the target using the deformation field
found with the algorithms, and its overlap with the ground truth
mask of the fixed is measured using the Dice overlap metric [88].
Note that these masks are unknown to the algorithms and are used
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Figure 6.2: Temporal evolution of two orthogonal short axis profiles
(red and green line) intersecting approximately at the center of the
left ventricle, without registration (original) and with registering
every image in the sequence with the first image (proposed).

only for comparison.
Our findings in Table ??, show that using discriminative features

and our similarity term significantly improve the performance for
CP-BOLD cardiac sequence registration either under baseline or is-
chemia conditions w.r.t. other approaches. To highlight the unique
challenge of BOLD, we also include results based on standard CINE.
Our proposed method, although not its main focus, performs as
good as other algorithms even in this case. To emphasize the im-
portance of sparsity and learning we also use directly the `2 norm
between input patches, instead of spare representations. Lower
performance in ischemia for all algorithms could be attributed to
changes in myocardial contractility.

6.4 Discussion

Wepropose a newdictionary learning-based image descriptor (DLID)
for myocardial registration. The experiments clearly underline the
need for a new representation in image registration. Their integra-
tion into analytical tools are necessary tomeet new challenges posed
by myocardial CP-BOLDMR. In particular, this chapter pin-pointed
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Table 6.1: Dice overlap comparison (mean ± std) for registration
accuracy in %

Baseline Ischemia
Methods CINE BOLD CINE BOLD
ANTs (CC metric) [6] 60± 11 55± 10 55± 15 51± 12
dDemons [124] 59± 11 51± 16 58± 13 45± 13
DRAMMS [87] 67± 9 61± 7 59± 10 54± 6
FFD-SSD [103] 49± 7 45± 16 48± 14 39± 13
FFD-MI [103] 54± 12 48± 8 53± 6 38± 7
MIND [39] 62± 7 62± 12 61± 15 53± 9
Proposed w.o. sparsity 55± 8 52± 11 45± 9 42± 12

Proposed 63± 7 66± 9 58± 7 60± 13

the challenges the BOLD effect poses on common assumptionsmade
when registering the myocardium and quantitatively analysed the
performance of the descriptor both under baseline and ischemia
conditions. Moreover, in this chapter we showed that by learning
appropriate features to best represent texture and appearance in
CP-BOLD, it is possible to obtain better correspondences for the
entire cardiac sequence. The proposed method can be utilized for
other challenges, where spatio-temporal intensity as a biomarker
of disease, especially in the presence of motion. One limitation is
computational time, since calculating sparse representations is the
bottleneck of the problem. The successful application of this post-
processing tools are foreseen to be critical in the clinical translation
of cardiac CP-BOLD MR.

6.5 Summary

In this part of the thesis, we have proposed novel solutions to the
challenges of myocardial segmentation and registration for CP-
BOLD MRI. We also have underlined the need for accurate seg-
mentation and registration algorithms in the context of CP-BOLD
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MRI with extensive analysis of the data. An accurate segmentation
and registration scheme will output accurate timeseries, which will
enable pixel-level determination ischemia likelihood in CP-BOLD
MRI. In Chapter 4, we highlighted the drawbacks of the literature
for the myocardial segmentation and investigated a novel sparse fea-
ture learning techniques for myocardial segmentation. In Chapter 5
the motion of the myocardium is used as a distinctive feature in two
different contexts. First, the background is modelled with one-class
SVM to segment the myocardium. Then motion and appearance is
learnt jointly with dictionary learning to extract the myocardium
region. In Chapter 6, the utility of similar features in a novel regis-
tration setting are explored. In the next part of the thesis, we will
investigate techniques to merge two optimization problems.
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Part III

Joint Registration and
Segmentation
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7
Joint Registration and Segmentation

This chapter focuses on using registration and segmentation
techniques introduced in Chapters 4 and 5 jointly. Registration and
segmentation of anatomical structures are two well studied prob-
lems inmedical imaging. Optimizing segmentation and registration
jointly has been proven to improve results for both challenges. First,
we use the external database of training subjects to segment the
myocardium and after finishing the segmentation we register the
entire sequence to add temporal information to our segmentations.
Then we propose a multi-scale scheme to tackle the issues regarding
the precision of registration. Finally, we propose to write a cost func-
tion with terms for both segmentation and registration to optimize
jointly. The experimental results highlight the performance increase

This chapter is partly based on:
• I. Oksuz, R. Dharmakumar S. A. Tsaftaris, “Towards joint segmentation

and registration of the myocardium in CP-BOLDMRI at rest”, Society for
Cardiovascular Magnetic Resonance Annual Meeting (SCMR), 2016.

• I. Oksuz, R. Dharmakumar S. A. Tsaftaris, “Joint Myocardial Registration
and Segmentation of Cardiac BOLD MRI”, STACOM, 2017.
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achieved by joint optimization of two tasks.

7.1 Naive Joint Segmentation and Registration

Automated analysis approaches, which can obtain pixel-level deter-
mination of ischemia, are desirable since they may lead to improved
accuracy in detection of disease. To achieve this, precise segmen-
tation and non-linear registration of the myocardium among the
frames (the cardiac phases) in the cine stack would be required.
Unfortunately, at present due to BOLD contrast variations, classical
approaches to segmentation and registration fail to reach desirable
accuracy. In this chapter, we investigate algorithms that jointly finds
suitable myocardial segmentation and elastically registers the heart.

7.1.1 SequentialDictionaryLearningbasedSegmentation
and Registration

The main principle of the approach is to use an external initial
database of pre-segmented images (and dictionaries for myocar-
dium and background), to first come upwith an initial segmentation
(relying on classification when projecting on discriminatory dictio-
naries) of an input CP-BOLD patient stack, then register images
in the cardiac cycle (cine acquisition) using the sparse coefficients
of the projections to establish a new similarity metric, refining the
obtained segmentation, refining the dictionaries (adapting them to
the dataset under consideration), till convergence (Figure 7.2). First;
9x9 patches from each image frame is extracted and concatenated
for background andmyocardium pixels separately. Then Gabor and
HOG features are added to generate the vectors Y. Given enriched
vectors Y, K-SVD algorithm is utilized to find dictionaries D and
a sparse representation X for Y ≈ DX . Afterwards; orthogonal
matching pursuit algorithm is used for dictionaries to calculate
the sparse representations. The low representation error among
two dictionaries is used for classifying each pixel at the initial seg-
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Figure 7.1: Flowchart of sequential registration and segmentation

mentation. The pixels labeled as myocardium and background in
this initial segmentation are used for the dictionary learning based
image registration algorithm. The registration algorithm relies on
supports as X the similarity metric for the registration process. For
each image frame It the supports for background XB and myocar-
diumXM are calculated from subject specific dictionaries generated
from the initial segmentation and supports are concatenated for
background and myocardium for each pixel p; Xp = [XB;XM ]. In
data term of the objective function of registration E; the similarity
metric in between two consecutive frames is defined as L1 norm
of the concatenated supports: S(I1(p), It(p+ u)) =‖ X̂1

p − X̂t
p+u ‖1

as detailed in Chapter 6. The approach iterates first a refinement
step of the segmentation using the registration for the agreement
of classification and then finding the D, then X , and the agree-
ment in between different frames is used for classification of the
myocardium region.

In an example from a canine the proposed approach identifies
the myocardium region accurately (Figure 7.2). As seen in Table
7.1, experiments with different groups of data sets show that the
proposed approach obtains superior accuracy when compared to
state of the art methods for registration and training the dictionaries
on different subjects from the data set.
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Table 7.1: Dice Overlap measures of CP-BOLD data for the pro-
posed method compared with training from other subjects and two
state of the art methods for image registration

BASELINE ISCHEMIA
Proposed Approach 0.68± 0.08 0.63± 0.06
Proposed without Refinement 0.66± 0.09 0.60± 0.13
DRAMMS [87] 0.61± 0.07 0.54± 0.06
MIND [39] 0.62± 0.07 0.53± 0.09

Figure 7.2: Quantitative Results of sequential registration and seg-
mentation

The experiments clearly underline the need for a new represen-
tation of the data in image registration and segmentation. Using the
information from the same subject to train the dictionaries improves
the accuracy of registration. Although further experiments are nec-
essary to validate this approach, CP-BOLD can open the road to
repeatable, truly non-invasive diagnosis of ischemic heart disease.

7.1.2 Multi-Resolution Scheme

The registration schemes are defined on coarse to finemulti-resolution
schemes to capture the motion the at different scales. We propose
a sequential registration and segmentation scheme to update the
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Figure 7.3: Flowchart of the proposed algorithm with a Multi-
Resolution Registration Scheme. The images at different cardiac
phases are down-sampled and registered at different resolutions
(Figure 7.4). The transformations from the coarser scale are used as
guidance to update the dictionaries for the finer scale registration
process in dictionary learning based registration (Figure 7.5).

dictionaries
Themain principle of the approach (Figure 7.3) is to use an exter-

nal initial database of pre-segmented images (and dictionaries for
myocardium and background) to first come up with an initial seg-
mentation (relying on classification when projecting on discrimina-
tory dictionaries) for an unseen CP-BOLD dataset (cine acquisition).
Then it registers images in a multi-resolution fashion across the
cardiac cycle using a registration algorithm that relies on the sparse
coefficients. This step refines the obtained segmentation, which is
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Figure 7.4: Dictionary learning based registration. At every resolu-
tion patches are extracted fromfixed andmoving images to calculate
the sparse representations. Dictionary learning based similarity
metric is used in an optimization framework to find displacements.
These displacements are used to update the dictionaries for the next
resolution.

used to update the dictionaries (adapting them to the dataset under
consideration), and thus personalize the process. This process is
repeated till convergence. To obtain an initial dictionary on prior
available segmented data sets, at the coarsest resolution, first 9× 9
patches are extracted for each pixel and concatenated with HOG
and Gabor features for each patch and dictionaries DB and DB are
learned similar to the approach in Chapter 4.

Multi-Resolution Registration Refinement is achieved by the
proposed method as illustrated in Figure 7.3. For each pixel p when
projected on the background or myocardium dictionaries sparse co-
efficients XB and myocardium XM are obtained and concatenated;
Xp = [XB;XM ]. They are used to define a similarity metric between
two images as S(It(p), It+1(p+ u)) =‖ Xt(p)− It−1(p+ u) ‖1. Start-
ing at the coarsest resolution, after all images in the cardiac cycle
have been registered, individual per-image segmentations of the
myocardium are obtained and propagated to the first image. Then
labels are fused (via majority voting) to refine the segmentation of
that image. The segmentation is then upscaled and using the cor-
responding intensity image, new dictionaries D′

B and D′
M specific

to this resolution and image are obtained (Figure 7.5). The process
iterates using these new dictionaries and sparse representations. At
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Figure 7.5: Upscaling and dictionary update. At every resolution
the calculated displacements are used to generate label fusion from
multiple cardiac phases on the fixed image. Then, these label maps
are upscaled and used to obtain new dictionaries specific to this
unseen image in the new resolution.

the finest resolution all images It+j , j 6= 0 are registered to It, seg-
mentations obtained via the dictionaries for It+jare propagated to
It and fused with majority voting to obtain the final segmentation.

To evaluate segmentation accuracy, delineations (ground truth)
provided by experts are used. For a given unseen dataset, over-
lap of the segmentation of It with corresponding ground truth is
measured using the Dice overlap metric, and averaged across all
t. Multiple paired t-tests were applied to evaluate performance
when compared to state-of-the-art registration methods, namely
Diffeomorphic Demons [124], Free Form Deformations (FFD) [103],
DRAMMS [87] and MIND [39]. Dice accuracies are presented in
Table 7.2, across our study population. Utilizing the proposed
scheme increases myocardial segmentation accuracy under base-
line (, p<0.001) and ischemia ($, p<0.001) significantly. The scheme
herein improves myocardial segmentation accuracy in a statistically
significant manner by refining and adapting the dictionary to the
data using multiple resolutions. When only an external dictionary
is used the resulting performance is not different to other methods.
However, taking advantage of registration to refine the segmenta-
tion results leads to an improvement by %8. Operating at multiple
resolutions (capturing more context and spatial information and
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Table 7.2: Multi-resolution sequential registration and segmenta-
tion results. Dice overlap comparison (mean∓std) of the CP-BOLD
myocardial segmentation accuracy.

METHODS BASELINE ISCHEMIA
Refined Segmentation 0.68∓ 0.08 0.63± 0.06
Initial Segmentation 0.66± 0.09 0.60± 0.13
Diffeomorphic Demons 0.63± 0.08 0.53± 0.08
FFD-MI 0.62± 0.07 0.51± 0.09
DRAMMS 0.61± 0.07 0.54± 0.06
MIND 0.62± 0.07 0.53± 0.09

Proposed Approach 0.72± 0.07# 0.68± 0.08$

avoiding local minima) leads to even better improvement (%15).

7.2 SimultaneousSegmentation andRegistration

In this section, we propose a joint optimization scheme for registra-
tion and segmentation using dictionary learning based descriptors.
Our joint registration and segmentation aims to solve an optimiza-
tion function, which enables better performance for both of these
ill-posed processes. We build two dictionaries for background and
myocardium for square patches extracted from training images.
Based on dictionary learning residuals and sparse representations
defined on pre-trained dictionaries, a Markov Random Field (MRF)
based joint optimization scheme is built. We propose to update
the dictionaries based on the segmentation label changes of the
joint optimization. The accuracy of the proposed method is illus-
trated on challenging Cardiac Phase-resolved Blood Oxygen-Level-
Dependent MRI dataset. Precise segmentation and non-linear reg-
istration of the myocardium among the frames (the cardiac phases)
in the cine stack would be required to achieve accurate timeseries.

Our proposed joint registration and segmentation scheme to
generate accurate timeseries information for cardiac sequence. We

126



adopt a joint optimization scheme [69] to optimize the registra-
tion term on sparse representations and segmentation terms for
dictionary learning residuals. The motivation behind this choice
is the mutual benefit of the both functions, which can be directly
translated to accurate registration and segmentation.

There are two contributions of this two sections. First, we define
a joint optimization scheme based on dictionary learning residuals
and sparse representations for the first time. Moreover, we intro-
duce an iterative dictionary update stage, which takes the spatial
smoothness into account to boost discriminative power of the dictio-
nary learning structure. With this, the dictionaries are ensured to
be subject-specific and more robust for classifying the myocardium.

7.2.1 Background

Registration and segmentation of organs in medical imaging are
two major tasks, which are processed with two independent opti-
mization schemes in most applications. One approach of solving
both problems is using a sequential strategy to address both chal-
lenges, which results in concatenation of errors of both processes.
Instead of a sequential segmentation and registration scheme, which
uses the estimated solution one sub-problem as a prior knowledge
to the other, joint optimization of two problems can be defined
[137], where both problems are solved simultaneously. Early works
merged the two processes with partial differential equations [130]
and and in particular within level-set formulations [142]. More
recent literature relies on joint optimization with single function si-
multaneously using Markov Random Fields (MRF)s [33]. MRFs are
suitable for discrete labeling problems and the labels are defined
as segmentation classes and discrete displacement vectors. The
concept of utilizing mutual benefits between the registration and
segmentation has been studied for the the problem of atlas-based
tumor segmentation for brain MRI [92]. [4] proposes to couple seg-
mentation and registration scheme for classifying multiple regions
in brain MRI. Mahapatra et al. [68] used a joint optimization scheme
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to detect the left ventricle (LV) in standard cine and perfusion MR
images.

In joint registration and segmentation, the estimate of one set
of parameters of registration should not adversely affect parame-
ters of segmentation. An appropriate optimization scheme aims to
balance these influences. Graph cuts is based on maximum-flow
approach and is very effective in finding the global minimum or a
strong local minimum of discrete MRF energy formulations [13].
However, a number of issues have to be addressed in using segmen-
tation information for MRF-based registration. Registration and
segmentation energies have to be combined such that there is no
bias for a particular term. The mutual dependence of registration
and segmentation has to be factored in the objective function.

In this section, we propose a joint optimization scheme for myo-
cardial registration and segmentation to generate accurate deforma-
tions and segmentation masks for the entire cine stack. Our method
builds upon the externally trained dictionaries of myocardium and
background and uses priors on each problem jointly to extract and
register the myocardial region. We introduce a dictionary update
scheme to fuse subject-specific local information. Our algorithm
generates deformations and segmentations for the entire cardiac se-
quence of Cardiac Phase-resolved Blood Oxygen-Level-Dependent
(CP-BOLD) MRI.

7.2.2 Methods

The details of our method is visualized in Figure 7.6. We extract re-
gion of interest around LV blood pool using a similar preprocessing
strategy to [97]. We rely on externally trained dictionaries of myo-
cardium and background to define registration and segmentation
terms for joint optimization. Then, these terms are optimized using
a graphical model. Finally, we update our dictionaries to enrich
subject-specific information in the dictionaries.
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Figure 7.6: Algorithm design for joint segmentation and registra-
tion. Region of interest extraction (Panel A). Dictionary learning
from training images and calculation of residuals (R) and sparse
coefficients(X) (Panel B). Multi-resolution deformation grids and
exemplary connections with segmentation grid (Panel C)

Dictionary Learning based Image Segmentation

Dictionary learning based approaches have been used for segmen-
tation of medical images [42]. In our specific algorithmic design,
given some sequences of training images and corresponding ground
truth labels, we can obtain two sets of matrices, Y B and YM , where
the matrix Y B contains the background information and YM is
the corresponding matrix referring to the myocardium. Squared
patches are sampled around each pixel of the training images from
both regions. The i-th column of the matrix Y B (and similarly for
the matrix YM ) is obtained by concatenating the normalized patch
vector of pixel intensities, taken around the i-th pixel in the back-
ground, along with the Gabor and HOG features of the same patch.
The method detailed in [76] trains two dictionaries, DB

k and DM
k ,

and two sparse feature matrices, XB
k and XM

k using the K-SVD
algorithm [2] for each class C = {B,M} :

minimize
DC ,XC

‖Y C −DCXC‖22, subject to ‖xCi ‖0 ≤ sparsity

After the training given a new subject, a certain patch will be as-
signed to the class that gives the smallest dictionary approximation
error using Orthogonal Matching Pursuit [120]. If RB = ‖ŷi −
DBx̂Bi ‖2 is less than RM = ‖ŷi − DM x̂Mi ‖2, the patch is assigned
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to the background; otherwise, it is considered belonging to the
myocardial region.

Graph-based Joint Optimization

In this section, we introduce our dictionary learning based joint
optimization scheme for registration and segmentation of the myo-
cardium. The general term for energy of a second-order MRF is
defined as:

E(L) =
∑
p∈Ω

Dp(lp) + λ
∑
p,q∈N

Vpq(lp, lq)

where p and q denote the pixels, lp and lq denotes the registration and
segmentation labels of the pixels p and q. λ controls the interaction
between data term and smoothness term. The function is optimized
over the labels L = {C, u}, which consists of the segmentation label
C and discrete deformation u. We define the general data term
Dp(lp) similar to [68]:

Dp(lp) = D1
lp + γD2

lp

which consists of two terms, namely segmentation and registration
data terms. Segmentation of the myocardium is defined over the
dictionary learning residualsRB andRM . The penalty of the pixel p
to be classified as myocardium is : κM (p) = RM (p)

RM (p)+RB(p) . Similarly,
the penalty for the same pixel to be classified as background is
κB(p) = RB(p)

RM (p)+RB(p) . Using these penalty definitionsD1
p is defined

as:

D1
lp =


√
κrM (p) ∗ κfM (p+ u), if Cr(p) = Cf (p+ u) = M√
κrB(p) ∗ κfB(p+ u), if Cr(p) = Cf (p+ u) = B√
κrB(p) ∗ κfB(p+ u) +

√
κtM (r) ∗ κfM (p+ u), otherwise

130



where κfM (p+ u) corresponds to the penalty associated with myo-
cardium class for the deformed floating image with displacement
u. Similarly, κrB(p) corresponds to penalty of the reference image
for the background class. This term ensures a low penalty for same
labels of the displaced image and the reference image. If the float-
ing image and the reference image do favor different segmentation
classes the penalty will be high.

The registration penalty termD2
lp
of the data termDlp is defined

as:

D2
lp =


‖ Xr

M (p)−Xf
M (p+ u) ‖1, if Cr(p) = Cf (p+ u) = M

‖ Xr
B(p)−Xf

B(p+ u) ‖1, if Cr(p) = Cf (p+ u) = B

‖ Xr
M (p)−Xf

M (p+ u) ‖1 + ‖ Xr
B(p)−Xf

B(p+ u) ‖1, otherwise

where Xr
M (p) corresponds to the sparse representation defined for

DM for the reference image andXf
M (p+u) defines sparse represen-

tation defined for the floating image at location p+ u. This penalty
is increased for dissimilar representation and also for the points
with different segmentation labels.

Regularization term ensures the smoothness of segmentation
labels and deformation field. The term favors the same segmenta-
tion labels in local neighborhoods and smooth deformations. The
regularization term is defined as:

Vpq(lp, lq) =


1, if (Cp = Cq and ‖ up − uq ‖≤ ε)
1, if (Cp 6= Cq and ‖ up − uq ‖≤ τ)

100, otherwise

where ε and τ restrict high displacements for local neighborhoods
when segmentation labels agree or disagree respectively. To opti-
mize the energy functional E(L), we use graph cuts [13] on discrete
labels of registration and segmentation.

131



Dictionary Update

We propose a dictionary update, which refines the dictionaries to
inject subject-specific information. After every run of the MRF-
based optimization scheme the estimated segmentation labels C are
subject to change. We only extract patches that are corresponding
to the points of label changes to update our dictionaries. We add
square patches Yu concatanated with Gabor and HOG features and
train our dictionaries with Online Dictionary Learning (ODL) algo-
rithm [71], which uses mini-batches to update the dictionaries. We
add the new patches with changed labels for updating dictionar-
ies we trained before. During the update the dictionary learning
is initialized with the pre-trained dictionaries and this approach
improves the discriminative power of the dictionaries in the next
iteration.

7.2.3 Experimental Results

This section offers a qualitative analysis and quantitative compar-
ison of our proposed method w.r.t. state-of-the-art methods, to
demonstrate its effectiveness for myocardial segmentation and reg-
istration. Note that ourmethod outperforms all supervisedmethods
from current literature in both baseline and ischemia cases.

Implementation Details

2D short-axis images of the whole cardiac cycle were acquired at
baseline and severe ischemia (inflicted as stenosis of the left-anterior
descending coronary artery (LAD)) on a 1.5T Espree (Siemens
Healthcare) in the same 10 canines along mid ventricle using both
standard CINE and a flow and motion compensated CP-BOLD ac-
quisition within few minutes of each other. The image resolution
is 192 × 114 and each cardiac cycle has 25 frames approximately.
We have utilized a strict leave one out cross validation experiment,
where the patch size is defined as 11 × 11, dictionary size as 100
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Figure 7.7: Generated Segmentation masks with proposed ap-
proach for an exemplary CP-BOLD subject under baseline and is-
chemia conditions.

and sparsity threshold as 8. The parameters of deformation ε =
√

2
and τ = 3 are optimized to ensure smooth labels for deformations.
γ = 0.7 gave the optimal contribution of the data terms and λ = 0.9
ensures the balance of regularization and data terms. We have
utilized three scales from coarse to fine for registration. The influ-
ence of the control points on each pixel is calculated using cubic
B-Splines [34]. The displacement ranges from 2 to 6 pixels.

Visual Evaluation

We demonstrate a set of contours in Figure 7.7 and a deformation
grid in Figure 7.8 to highlight the performance of our joint optimiza-
tion and registration framework. We visualize the deformation grid
in between the end systole and end diastole for an exemplary subject
under baseline condition. We also illustrate the segmentation and
deformation results of CRS [69] compared with our algorithm. Our
method generates smooth deformation fields and smooth contours
compared to CRS [69].
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Figure 7.8: Segmentation masks (red contours) and registration
grid of proposed approach compared to CRS [69] (green contours)
for an exemplary subject under baseline conditions in between end
diastole and end systole frames.

Quantitative Comparison

Table 7.3 summarizes our results for Dice overlap measure for myo-
cardium. We compare our algorithm with an atlas-based segmenta-
tion technique, which relies on discrete registration performance
using mutual information as a similarity metric [34]. Moreover,
we include a recent joint registration and segmentation scheme
CRS [69], which relies on sum of squared distances and edge-based
differences as similarity term for registration. We generate results
based on dictionary residuals for each pixel just for segmentation
(Segmentation only). In addition, we used a sequential segmenta-
tion and registration (Sequential Seg. and Reg.), which first seg-
mentsmyocardium based on residuals and then refines the contours
with propagation of the contours via registration based on sparse
representations. Finally, we generate a variant of our algorithm,
without using the dictionary update (Proposed w.o. update) to
highlight the performance increase.

The proposed method outperforms all variants and other tech-
niques in all four datasets. Segmentation information alone shows
low performance compared to the variants, which incorporate reg-
istration. The sequential segmentation and registration has low per-
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Table 7.3: Dice overlap comparison of myocardial segmentation in
% for Dice accuracy

Baseline Ischemia
Methods Cine BOLD Cine BOLD
Atlas-based [34] 60± 3 54± 8 54± 8 45± 6
CRS [69] 71± 6 70± 6 69± 5 68± 7
Segmentation only 70± 5 71± 4 69± 4 68± 4
Sequential Seg. and Reg. 74± 6 72± 7 71± 7 68± 8
Proposed w.o update 75± 4 76± 4 75± 5 74± 4

Proposed 79± 4 79± 3 78± 5 78± 3

formance compared to the proposedmethod. This low performance
is due to the mutual dependence of registration and segmentation
that has not been factored in the objective function, which is ensured
with the proposed approach. Our method is superior to CRS [69],
which relies on edge-based terms for myocardial registration. Ische-
mia condition generates a slight decrease in the performance for all
methods. The proposed dictionary update enables a performance
improvement thanks to less coherent dictionaries. The coherence of
two dictionaries is calculated before and after the single dictionary
update. The average coherence of two dictionaries 0.850 is reduced
to 0.780 with the update. We illustrate an example set of dictionaries
before and after the update in Figure 7.9.

7.2.4 CAP Dataset

To demonstrate that our method works also non-BOLD, clinical
data, we have tested our algorithm on cine cardiac training data set
from the MICCAI 2013 SATA Segmentation Challenge. The dataset
is part of the Cardiac Atlas Project (CAP) [32] and consists of 83
subjects with a varying in plane resolution from 0.7 mm to 2mm and
a varying range of 19 to 30 frames per subject. On mid-ventricular
level, we train our algorithm on 30 subjects to learn dictionaries
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Figure 7.9: Background and foreground dictionaries before and af-
ter the dictionary update. Observe the increased number of unique
myocardial patterns after the dictionary update.

for background and myocardium. Then, we test on the remaining
53 subjects and we achieve a dice score of 0.81± 0.04 compared to
0.80± 0.05 of CRS [69] algorithm (where standard deviation refers
to variation among subjects and not on leave one cross validation).

7.3 Discussion

In this section, we have investigated the performance joint regis-
tration and segmentation scheme for dictionary learning based
approach in two different settings. We first concatanate the steps
of segmentation and registration one after each other to see the
ifluence on the general performance. Then, we proposed a more
involved framework to merge two optimization tasks in a single cost
function. Our algorithm uses a MRF-based optimization scheme
defined on dictionary learning residuals and at each iteration the
dictionaries are updated using patches corresponding to the points
that changed segmentation labels. This not only boosts the perfor-
mance by introducing subject specific information, but also adds
more discriminative power as showcased with experiments. In fu-
ture, an interesting direction for further interest is the use of similar
joint segmentation registration schemes on different challenges that
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involve spatio-temporal information, such as perfusion images and
fMRI.
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8
Conclusions

8.1 Thesis Summary

The thesis focused on the development of automated image segmen-
tation and registration approaches using patch-based dictionary
learning techniques. First a supervised automated segmentation
framework that exploits sparse coding techniques is developed. In
Chapter 4, we defined features for myocardium and background
sparsely using dictionary learning. We use intra- and inter-class
Gram filtering to generate mutually exclusive dictionaries using
a greedy and low complexity approach. Then, these features are
used at multiple scales for myocardial segmentation. In Chapter 5
we use motion as a key feature to guide the segmentation process
with two different approaches. The first method (UMSS) models
the background pixels using a joint appearance and motion dictio-
nary learning framework. We utilize one-clase SVM to segment
the myocardium in a unsupervised fashion. The second method
extracts a region of interest, smooths the data and concatenates
motion information with appearance in a dictionary learning set-
ting. We also model appearance and motion jointly in a dictionary
learning framework. Local smoothness is enforced to the segmen-
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tation, which is generated using two separate dictionaries using
rudimentary segmentations of background and myocardium. In
Chapter 6 we defined a dictionary learning based image descriptor
as a similarity metric to establish pixel to pixel correspondences.
Our similarity metric is capable to establish better correspondences
compared to state of the art similarity metrics. Finally, in Chapter 7
we propose sequential and simultaneous registration and segmen-
tation schemes to address both challenges together. Our framework
relies on dictionary updates to add subject-specific patterns into
dictionary learning structure, which is proven to improve the per-
formance. In comparison with the state-of-the-art segmentation
techniques a significant improvement was observed by using the
sparse coding technique, suggesting that the sparsity property of
patches can be helpful for segmentation task.

8.2 Research Findings

We have addressed the research questions in the thesis as follows:
Research Question 1

Does BOLD effect challenge segmentation and registration?
Automatedmyocardial segmentation and registration algorithms

developed for standard CINEMR under-perform in CP-BOLD. This
is due to the spatio-temporal intensity variations of the myocardial
BOLD effect [106], an example of which is shown in Figure 3.4 in
cine type acquisition of CP-BOLD. Thus, in CP-BOLD in addition
to violations of shape invariance (as with standard CINE MRI) the
principal assumption of appearance invariance (consistent intensity)
is violated as well. This question is addressed in Chapters 4, 5 and
6.

Research Question 2
How to obtain features to successfully align and extract the myocardium region?

This question is addressed in Chapter 4. In particular, we used
a low complexity and a greedy dictionary learning approach to gen-
erate two sets of dictionaries from the training images. We concate-
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nated texture to appearance features at each patch to characterize
the information of the center pixel. This feature representation adds
not only contextual information to each pixel it also helps to better
distinguish each pixel for segmentation and registration.

Research Question 3
How to segment the myocardium using the data-driven features?
We have used the learnt features for multiple scales to classify

the each pixel of the image with MSDDL method in Chapter 4. We
learn the dictionaries offline from the training using the appearance
and texture features. We capture information at multiple scales to
segment the myocardium.

Research Question 4
How to incorporate motion information for myocardial segmentation?
We use motion in two different contexts to aid the segmentation

in this thesis. In Chapter 5, we utilized an optical flow based pre-
processing to model the background pixels to learn a class-specific
dictionary. In this context, we only model one class and classify
the myocardium as the remaining pixels using one-class SVM. In
our second method, we rely on a region of interest extraction and
generate rudimentary classes for background and myocardium. We
concatenated the motion to appearance to train two separate dic-
tionaries. Finally, we added local smoothness with a MRF scheme.
The incorporation of motion has shown a significant performance
increase for segmentation accuracy.

Research Question 5
How to produce a robust measure of similarity for registering cardiac phases?

A new similarity metric, dictionary learning based image de-
scriptor (DLID) is defined in Chapter 6. With this metric, we adrress
the low specificity showed by the state-of-the-art similarity metrics
for the task cardiac image registration. We illustrated the superior
performance of our technique, which based on the sparse represen-
tations based on trained dictionaries.

Research Question 6
How to optimize registration and segmentation cost functions jointly?
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In Chapter 7, we proposed a sequential and a joint optimiza-
tion and registration scheme to merge the efforts to minimize two
cost functions. The goal of accurately extracting and registering
myocardium problem is addressed jointly with sequential and si-
multaneous setups.

8.3 Limitations

The work presented in Chapters 4, 5, 6 and 7 has been focused on
the image registration and segmentation using patches. Although
promising results have been achieved, there are some limitations
in the current registration and segmentation approaches, which
should be further investigated in future work. These limitations are
as follows:

• 3D Extension. Our work in this thesis is limited to develop-
ing registration and segmentation approaches in 2D+timeMR
images. The use of third dimension will provide valuable
information for registration and segmentation. Unfortunately
to the high flip angle, low TR, and flow compensating gra-
dients used to obtain BOLD contrast with suppressed flow
artefacts, breath-hold acquisition is long and we cannot ac-
quire a full 3D volume thus current datasets are 2D(+time).
Once advancements in 3D BOLD acquisition are possible with
good image quality we will definitely extend our work to 3D.

• The selection of important patches. Patcheswhichmay be as-
sociated with the pathological changes of myocardium were
selected for classification in our work. Selection of impor-
tant patches were determined by using feature selection tech-
niques. A spatial distance threshold may also be defined to
control the overlap between patches. The introduction of the
spatial distance threshold may not provide an optimal strat-
egy for selecting important patches. Future work will focus
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on developing more advanced patch selection approaches as
this is an important improvement for our work.

• The level of registration. In our work, non-rigid registration
with a final control point spacing of 1.25 mm was used for
aligning images and the classification results show that the
proposed method can work efficiently at this level of registra-
tion. Themajor reason is that the extracted features (intensities
within patches) are well aligned for comparison when non-
rigid registrations are adopted. If only affine registration is
used, one patch may be extracted inside the myocardium of
an image under study, while the corresponding patch at the
same location in another image may be extracted far away
from the myocardium. In this case, the comparison between
these patches may not provide useful information for clas-
sification as it does not compare corresponding anatomical
locations. Although non-rigid registration can ensure that the
corresponding structures are well aligned, part of the differ-
ences due to pathology may also be removed at the same time.
We believe that there is a trade-off between the level of non-
rigid alignment and the amount of detectable pathological
changes, which can still allow us to measure subject-specific
differences for classification. The trade-off of the control point
spacing and the regularization should be further investigated.
The idea of using a scale-space representation of this trade-off
represents another interesting approach as this may provide
additionally useful information for classification.

• Computational Time. A natural limitation of joint registra-
tion and segmentation framework is longer processing times
compared to standard segmentation techniques. Our joint
registration and segmentation algorithm has an average exe-
cution time of approximately twenty minutes on a 2.4 GHz
processor with an average data set (192× 114× 30). Most of
this time is spent on the registration stage.
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8.4 Future Work

In this part, we will address the possible extensions of the current
techniques that are utilized in this thesis. Some of these gaps imply
open research challenges in the area. Therefore, further research
efforts might consider the following aspects.

One issue of interest is promoting the discrimination in our dic-
tionary learning framework. This can be achieved by promoting
more diverse atoms in our dictionary thanks to a refinement step de-
signed for a particular task. Moreover, the dictionary learning strate-
gies suffer from the difficulty of seeking a balance of reconstructive
and discriminative abilities of the learned dictionary. One interest-
ing approach is proposed by Wang et al. [132]. In their work they
propose to learn a shared dictionary in addition to the target and
background specific dictionaries for robust visual tracking. With the
shared dictionary modelling the commonality between the target
and background, and specific dictionaries capturing the difference,
their learned dictionary is both reconstructive and discriminative
which can better distinguish the target from the background. This
approach is particularly interesting for our task; because most of
our misclassifications are at the border areas of myocardium, where
we needmore ambiguity in our defined dictionaries for background
and myocardium respectively.

Secondly, we would like to investigate new methodologies to
enforce further spatial information into our framework. One ap-
proachwewould like to consider for this challenge is to train Hough
Forests [44] for implicitly adding spatial information to defined dic-
tionaries. Another issue of interest is the smart dictionary update
stage, where we propose to prone the atoms according to the con-
tribution to the classification in Chapters 4 and 5. One interesting
technique of interest is spatial constrains on dictionaries and spatial
pruning of atoms. The definition of radial constraints on sparse
representations is an interesting application for segmentation of the
myocardium.
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Another are of further investigation this thesis carved the path
to is disease detection. With the available tools for registration and
segmentation disease detection algorithms can be coupled. One
specific idea is to use motion information alongside the motion
patterns to identify ischemic regions.

Finally, we would like to address the computational cost of the
current framework. For defining faster sparse representations; one
idea is to replace Orthogonal Matching Algorithm (OMP) with a
more efficient algorithm. Gregor and Lecun [36] proposed amethod
for learning fast approximation of sparse coding. Furthermore, we
will investigate the approach proposed in [104] to design stage-
wise K-SVD. This algorithm designs atoms according the energy
levels of the atoms in the dictionaries. Another techniques to con-
sider is the efficient sparse coding algorithms developed by Lee
et al. [54]. In their work, they propose fast algorithms for solving
two general-purpose convex problems. First, L1-regularized Least
Squares problem solver using the feature-sign search algorithm and
secondL2-constrainedLeast Squares problem solver using Lagrange
dual. It is important to reduce the run time of the approaches to
milliseconds for them to be a part of the every day clinical practice.
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