
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

A Voronoi Based Framework for the Definition
of P2P Distributed Virtual Environments

PhD Program in Computer Science and Engineering

XXI Cycle

By

Luca Genovali

2009

http://www.imtlucca.it
mailto:l.genovali@imtlucca.it

The dissertation of Luca Genovali is approved.

Program Coordinator: Prof. Ugo Montanari, University of Pisa

Supervisor: Prof. Carlo Ghezzi, Politecnico di Milano

Supervisor: Prof. Fabrizio Baiardi, University of Pisa

Tutor: Prof. Laura Ricci, University of Pisa

The dissertation of Luca Genovali has been reviewed by:

Prof. Dana Petcu, University of Timisoara

Prof. Igor Kotenko, Russian Academy of Sciences

IMT Institute for Advanced Studies, Lucca

2009

http://www.imtlucca.it

Contents

List of Figures viii

Vita and Publications xiii

Abstract xv

1 Introduction 1

2 State of the Art 7
2.1 P2P Models . 8

2.1.1 Centralized Unstructured P2P 8
2.1.2 Pure Unstructured P2P Overlays 9
2.1.3 Hybrid Unstructured P2P Overlays 9
2.1.4 Structured P2P Overlays 10

2.2 P2P Overlays for DVE . 13
2.2.1 MOPAR: Mobile Overlay P2P Architecture 14
2.2.2 SimMud . 15
2.2.3 Solipsis . 17
2.2.4 APOLO: Ad-Hoc Peer-to-Peer Overlay Network for

Massively Multiplayer Online Games 21
2.2.5 VON: Voronoi Based Overlay Network 23
2.2.6 DiVES: A Distributed Support for Networked Dis-

tributed Virtual Environments 28
2.2.7 JaDE: a JXTA Support for Distributed Virtual Envi-

ronments . 35
2.3 Conclusions . 41

v

3 Location Aware Reactive Computations 43
3.1 Ambient . 43

3.1.1 The Folder Calculus 45
3.1.2 An Example: The Adobe Distiller 45

3.2 Mobile Unity . 48
3.2.1 Location Aware Computations 48
3.2.2 System specification 49
3.2.3 Reactive Statements 53

3.3 Modelling DVE by Mobile Unity 55

4 Voronoi Based Overlays for DVE 57
4.1 Introduction . 57
4.2 Improving DVE Scalability by Areas of Interest 58
4.3 Mathematical Definitions 61

4.3.1 Voronoi Diagrams and Delaunay Triangulations . . 61
4.3.2 Edge Flipping . 64

4.4 Compass Routing on Delaunay Networks 65
4.4.1 Compass Routing in Constrained Regions 68
4.4.2 A Distributed Algorithm for the Spanning Tree Con-

struction . 74
4.5 A P2P Overlay for Voronoi Based DVE 80
4.6 Avoiding Overlay Partition 89
4.7 Experimental Results . 91

4.7.1 Real time Constraints 91
4.7.2 Peersim . 92
4.7.3 Overlay Evaluation 94
4.7.4 Routing Evaluation 101
4.7.5 Mobility Models . 110
4.7.6 Grid 5k: Experimental Results 118

4.8 Conclusions . 120

5 Passive Objects Management in Voronoi based DVE 122
5.1 Introduction . 122
5.2 Managing Passive Objects in DVE 122
5.3 A Voronoi Based Approach 123

vi

5.4 Object Replication by Ownership Forecasting 127
5.5 Object Consistency . 129
5.6 Forced Coordination . 132
5.7 SHB Notification by Compass Routing 133
5.8 Mobile Unity Specification 135
5.9 Experimental Results . 138

6 Hierarchical Voronoi Based Overlay 142
6.1 Introduction . 142
6.2 Additive Weighted Voronoi Diagrams 142
6.3 Modeling Hierarchical Overlays by AWV Tessellations . . 144
6.4 AWV Based Overlays Management: Distributed Appro-

aches . 147
6.5 Experimental Results . 149

6.5.1 Constant weights scenario 149
6.5.2 Different numbers of weighty peers 150
6.5.3 Dynamic weigths scenarios 152
6.5.4 Number of links . 153

7 Conclusions and Future Works 156
7.1 Conclusions . 156
7.2 Future Work . 158

Bibliography 165

vii

List of Figures

1 A Voronoi Tessellation . 3
2 Additive Weighted Tessellations 5

3 P2P Models. 8
4 Distributed Hashed Table. 11
5 Chord and Pastry. 12
6 CAN. 13
7 The convex hull of the adjacent of e. In situation a, e re-

spects the Global Connectivity property while it does not
in b. 18

8 Restoring the Global Connectivity of an entity e. 20
9 The APOLO Overlay. 21
10 APOLO Multicast. 23
11 Voronoi Diagrams and AOI. 24
12 VON: Discovering New Neighbors 24
13 The forwarding path on VON Forwarding model. 26
14 An unevenly crowded situation. 27
15 Entity-Based group definition 31
16 The Optimized Routing Algorithm. 32
17 Definition of Area of Interests. 36

18 Mobile Ambient textual and visual syntax. 46
19 Adobe Distiller as folders representation. 47
20 The Sender . 50

viii

21 The Receiver . 50
22 System specification in Mobile Unity. 52
23 React-to example . 54

24 DVE Scenarios . 59
25 A Voronoi diagram and a Delaunay Triangulation 62
26 A Delaunay triangulation on top of a Voronoi diagram . . 63
27 The Edge Flipping Procedure 65
28 Compass Routing. 66
29 Compass Routing: Computation of the Spanning Tree . . . 67
30 A Rectangular Region . 69
31 An AOI-graph . 70
32 A Delaunay Triangulation Including a Single Triangle . . . 71
33 Intersection Between AOI and the Circumcircle of a Triangle 72
34 Inserting a Node in a triangle whose vertexes are external

to the circumference . 73
35 Sorting the Voronoi Neighbors 76
36 Delaunay Triangle Test: First Condition 77
37 Delaunay Triangle Test: Second Condition 78
38 Delaunay Links and Voronoi Neighbors 79
39 Neighbors Comparison . 80
40 Angle Evaluation Phase . 81
41 Angle Evaluation Phase . 82
42 Area of Interest . 83
43 Internal and Peripheral Areas of Interest. 84
44 AOI-cast: A Mobile Unity-Based High Level Specification . 86
45 Partition at risk in a Voronoi based overlay. 90
46 VAST functions overhead. 93
47 Average number of links during 1500 cycles. 97
48 Max number of links during 1500 cycles. 97
49 Average numbers of links with increasing number of peers

from r10 to r50. 98
50 Average numbers of links with increasing number of peers

on nigh. 98

ix

51 New links frequency with increasing velocity. 99
52 New links frequency with increasing velocity varying link-

ing type. 99
53 Spatial drift inconsistencies. 102
54 Average number of peer . 103
55 Tests examples. 104
56 Average number of messages. 105
57 Average number of redundant messages. 105
58 Average max number of hops for each HB. 105
59 Average number of not receiving peers. 106
60 Average number of messages sent for each peer. 106
61 Number of messages. 108
62 Number of redundant messages. 108
63 Maximum number of hops for each heartbeat. 108
64 Number of peers not receiving the heartbeat. 109
65 Number of messages sent for each peer. 109
66 Time to live value = 3. 112
67 Network links consistency: Random Walking, no Com-

pass tolerance. 113
68 Network links consistency: Random Walking, Variable ve-

locity, no Compass tolerance. 113
69 Network links consistency: Complex Battle, Variable ve-

locity, no Compass tolerance. 114
70 Network links consistency: Random Walking, Variable ve-

locity, Compass tolerance. 114
71 Network links consistency: Complex Battle, Variable ve-

locity, Compass tolerance. 115
72 Average messages for each peer: Random Walking, Com-

pass tolerance. 115
73 Average messages for each peer: Complex Battle, Com-

pass tolerance. 116
74 Average number of links. 119
75 Maximum number of links. 119
76 Average number of links varying the peers number. 120

x

77 Visibility Areas and Voronoi Areas. 125
78 Static Heartbeat. 126
79 SHB propagation outside ViAOI. 128
80 Ownership forecast. 129
81 AOI’s ranges. 132
82 Forced Coordination Area of Interest 133
83 Extended Propagation Area 134
84 Object far from the owner. 134
85 Passive Objects Protocol: A Mobile Unity Specification . . 137
86 Number of ownership changes for each cycle. 139
87 Maximum number of ownership changes as a function of

the forced coordination radius. 139
88 Maximum number of ownership changes as a function of

the speed . 140
89 Maximum number of objects owned by a Peer 140

90 Classical (left) and Weighted (right) Voronoi tessellation. . 143
91 AWV Tessellation (left) and the Corresponding Overlay . . 145
92 Number of visible peers (left) and mean number of hidden

peers (right) for different weights. 150
93 Number of visible peers (per cycle and mean value) for 10,

20 and 40 weighty peers. 151
94 Number of hidden peers (per cycle and mean value) for

10, 20 and 40 weighty peers. 151
95 Number of visible peers (left) and number of peers hidden

by each visible peer (right) against the weight of weighty
peers. 152

96 Number of peers that own passive objects (left) and mean
number of passive objects per owner (right). 153

97 Number of links between visible peers: mean value (left)
and discerning weightless and weighty peers (right). . . . 154

98 A few peer managing the DVE. 159
99 AOI and CCAOI. 160
100 Each object is managed by a peer. 161

xi

101 A Crowding Scenario . 162
102 Object delegation between peer and the server. 163
103 Object delegation between peers. 164

xii

Vita

July 16, 1973 Born, Pietrasanta, Italy

2005 Degree in Computer Science
Final mark: 108/110
Pisa University, Italy

xiii

Publications

1. A.Bonotti, L.Genovali, L.Ricci, ”DIVES: A Distributed Support for Net-
worked Virtual Environments”, 20th IEEE AINA, Wien, April, 2006.

2. F.Baiardi, A. Bonotti, L.Genovali, L.Ricci, ”A publish subscribe support for
networked multiplayer games”, Internet and Multimedia Systems and Appli-
cations (EuroIMSA 2007), Chamonix, March, 2007.

3. F.Baiardi and L.Genovali and L.Ricci, ”Improving Responsiveness by Lo-
cality in Distribited Virtual Environments”, 21 ECMS, Prague, June, 2007.

4. L.Genovali, L.Ricci, ”JaDE: A JXTA Support for Distributed Virtual En-
vironments”, 13th IEEE Symposium on Computers and Communications Pro-
gram, Marrakesh, July, 2008.

5. L.Genovali, L.Ricci, ”Voronoi Models for Distributed Virtual Environments”,
ACM CoNEXT, Student Workshop, Madrid, 2008.

6. L.Genovali, L.Ricci, ”AOI-Cast Strategies for P2P Massively Multiplayer
Online Games”, 6th Annual IEEE Consumer Communications and Networking
Conference IEEE CCNC,Las Vegas, Nevada, January, 2009.

7. L.Genovali, A.Quartulli, L.Ricci ”A Voronoi Based Framework for the De-
velopment of P2P Distributed Virtual Environments”, Journal of Peer-to-
Peer Networking and Applications, Springer, Verlag, Submitted for publi-
cation.

xiv

Abstract

The diffusion of wide area networks has lead to the defini-
tion of novel applications such as the Distributed Virtual En-
vironments (DVE), for instance massively multiplayer games,
militar or civil distributed simulations. In a DV E a set of
active entities (avatars), interact with each other and with a
set of passive objects located in their surroundings. While
most DV E are currently still managed according to the client
server model, the P2P model has recently been investigated,
even if the killer application for P2P has been till now the
file sharing one. This thesis investigates the feasibility of a
P2P architecture for Distributed Virtual Environments. Locality
of DV E interactions, modeled through the notion of Area of
Interest, AOI of each entity, is properly exploited by the P2P
communication support to reduce the amount of messages
exchanged through the P2P overlay. Furthermore, a mecha-
nism to dynamically acquire knowledge of the state located
beyond the AOI and a strategy to preserve consistency of the
replicated state is defined. We propose to model a DV E by
a Voronoi Tessellation, where the sites correspond to peers and
the Delaunay triangulation links define the topology of the
P2P overlay. Different solutions for the definition of the over-
lay network and a set of protocols for the propagation of the
heartbeats and the management of the passive objects have been
formally defined, implemented and evaluated with respect
to consistency and scalability. Finally, this thesis investigates
the definition of a hybrid P2P support for the development of a
DV E, where a hierarchy of peers is defined according to their
computational/communication power. The resulting overlay
is modeled through a Weighted Voronoi Diagram.

xv

Chapter 1

Introduction

Distributed Virtual Environments (DVE)(75) such as military or civil pro-
tection distributed simulations and massively multiplayer online games
(MMOG), for instance World of Warcraft(72) or Second Life(76), are cur-
rently gaining increasingly attention in the software market.

In aDV E users located at geographically distributed hosts interact within
a virtual world which is populated by user controlled avatars or by com-
puter controlled entities. Each avatar moves within the DV E and may
interact with other avatars and with the passive objects of the virtual
world.

Currently the client server model is still the reference computational
model for this kind of applications, but approaches based on the P2P
model (1; 57; 65; 71) have recently been proposed.

In the client server architecture a single server is responsible both of
the notifications of the position updates of the avatars to the interested
avatars and of the management of the state which is modified due to
the clients interactions. According to this model, each client notifies any
event to the central server which updates the state of the DV E and noti-
fies the event to the interested clients. Furthermore the server computes
a meaningful ordering of the events. The main disadvantage of this so-
lution is due to the low level of robustness and of scalability due to the
presence of the single server.

1

The definition of a fully distributed architecture for DV E is an actual
challenge because of the complexity of these applications which integrate
networks, graphics and AI programming. On the other hand, the adop-
tion of a distributed computational model is mandatory to overcome the
low scalability of client server architectures.

The P2P computational model has recently received a considerable
attention. Most P2P systems developed till now support file sharing ap-
plications. In this context, several P2P models have been proposed, each
one corresponding to a different topology of the overlay network connect-
ing the peers. These models range from the unstructured ones, to those
based on the Distributed Hash Table approach (3; 6; 9; 12; 17) which defines
a structured overlay in order to bound the number of routing hops re-
quired to retrieve an information in the network. Unstructured overlays
include centralized architectures, like the pioneer proposal of Napster
(12; 16), pure P2P architectures, like those of Gnutella 0.4 (4; 5; 10; 12; 16)
and hybrid architectures, like Kazaa and Gnutella 0.6 (12).

On the other hand, only a few proposals of P2P Distributed Virtual En-
vironments have been presented till now. The definition of a P2P architec-
ture for this kind of applications introduces novel problems related to the
interactive nature of these application, to their consistency requirements
and to the presence of concurrent updates of the state of the passive ob-
jects of the virtual world. For instance, interactive applications like DVE,
require that every event is executed in a particular instant over the time,
therefore the concept of time is fundamental for this kind of applications.

In a DV E, a set of active entities, represented by avatars, interact with
each other and with a set of passive objects, like weapons, potions, etc.
Each avatar moves continuously within the DV E and in general it in-
teracts with the avatars and the objects located in its surroundings only.
This locality property which is modeled through the notion of Area of Inter-
est (AOI) of an avatar, should be properly exploited by a communication
support to reduce the amount of messages exchanged through the P2P
overlay. On the other hand, since the view of each avatar is constrained
by its AOI, a mechanism to dynamically acquire knowledge of avatars
and of passive objects located beyond the AOI is required.

2

Figure 1: A Voronoi Tessellation

The management of the state of the passive objects of the DV E is a fur-
ther critical issue for the development of P2P supports because it re-
quires to manage the concurrent updates that may occur when several
avatars concurrently update the same object. The adoption of classical
solutions like those based on logical timestamps is not suitable in this
case, due to the high number of messages required to implement these
mechanisms. Furthermore, since P2P networks are highly dynamic, a
set of mechanisms to guarantee object persistence should be defined as
well.

This thesis investigates the feasibility of exploiting Voronoi Tessella-
tions (56) to model DV E applications.

Given a set of sites S = s1...sn in a 2D space, a Voronoi tessellation is
a space partition that assigns to each site si the region V oro(si), that in-
cludes the set of points which are closer to si than to any other site sj ∈ S,
i 6= j, according to a given metric. Standard euclidean metric is exploited
in classical Voronoi tessellations. Two sites are Voronoi Neighbors iff the
borders of their region overlaps. A Delaunay triangulation is a graph that
connects the Voronoi neighbors. Fig. 1 shows a 2D Voronoi Tessellation.

We propose to model a DV E by a Voronoi Tessellation where sites cor-
respond to peers and the Delaunay triangulation links define the topology

3

of the P2P overlay. Any passive object in V oro(si) is assigned to the peer
corresponding to si, which becomes the object owner, stores its state and
manages concurrent updates.

The notion of locality is modeled through the concept of area of inter-
est, i.e. a zone of the virtual world surrounding an entity E and including
those entities that can interact with E.

In a DV E, any peer P periodically sends a heartbeat, i.e. a message
notifying its position to any other peer in its AOI. We have exploited
compass routing, (64) an algorithm that properly exploits the property of
Delaunay triangulations to compute a multicast spanning tree covering
the peers belonging to AOI(P). A large number of routing hops may be
required to reach any peer inAOI(P) especially when a crowding scenario
occurs, i.e. a huge amount of peers is located in AOI(P). Note that
crowding often occurs in a DV E, where peers may either be attracted
by the same object, for instance a sword or a magic potion, or gather to
fight each other. Hence a large delay may have a negative impact on the
responsiveness of these applications. To reduce this delay, any peer may
dynamically define direct connections with a subset of peers in its AOI .
These connections are added to the Delaunay links and act as ’shortcuts’
by reducing the notifications delay.

The most challenging issue of our approach is the definition of proper
distributed algorithms to guarantee that the structure of the Delaunay over-
lay is correctly preserved and no overlay partition occurs. We propose
a ’pass the word’ approach, where peers becomes acquainted with each
other through their Voronoi neighbors. A peer receiving an heartbeat
H from one of its neighbors N checks if any of its further neighbors
Q, Q 6= N , is entering AOI(N), and in this case it propagates H to Q.
In this way, each peer acts as a beacon for its neighbors by ’putting in
touch’ peers that are not acquainted with each other. A similar approach
is adopted to acquire new objects located beyond the AOI of a peer.

It is worth noticing that several inconsistencies may rise due to net-
work delays, messages loss, or abrupt peer crashes which often occurs in
P2P environments. A certain amount of replication is required to avoid
irrecoverable situations due to these inconsistencies. For instance, it is

4

Figure 2: Additive Weighted Tessellations

necessary to guarantee that each peer is always connected to its Voronoi
neighbors to avoid the partitioning of the overlay. This may be obtained,
for instance, by sending redundant heartbeat messages generated by a
peer P to the Voronoi neighbor of its neighbor, even when the latter do
not belong to its AOI .

This thesis also investigates the feasibility of exploiting Weighted Voronoi
Tessellations (56) to model hierarchical P2P networks. A Weighted Tessella-
tion assigns a weightwi to each site si, so that the size of V oro(si) depends
uponwi. The metric exploited by Additively Weighted Voronoi Tessellations,
AWV, defines the distance of a point from a site si as the sum of wi and
the euclidean distance between the point and si. Fig. 2 shows an Additive
Weighted Tessellation where the weight of a peer P is proportional to the
extension of the circle centered at P . Notice the presence of peers which
have been ’absorbed’ by peers with a larger weight located in their sur-
roundings. No Voronoi region is associated with these peers which are
hidden to the rest of the world and do not belong to the Delaunay Trian-
gulation.

We exploit AWV tessellations to model a hierarchical P2P Network, where
the weight assigned to each peer is proportional to its computational
power. The adoption of AWV Tessellations to model hierarchical P2P

5

overlays offers several advantages. First of all, larger Voronoi regions
are assigned to peers characterized by larger weights. This defines a load
balancing strategy for passive objects, because the number of passive ob-
jects assigned to each peer will be proportional to its weight. Since no
area is assigned to hidden peers, they will not manage any object.

Furthermore, peers which have ’absorbed’ other peers become Super-
peers acting as servers toward them. An hidden peer P characterized by
a low weight may rely on the corresponding Superpeer which acts as a
proxy for P by forwarding any notification generated by P to its neigh-
bors and by notifying to P events generated in its surroundings. Note
that the same peer may play a different roles according to the DV E sce-
nario. For instance, the same peer may act as a Superpeer if the number
of neighbors is bounded by a threshold, while it requires the support of
a Superpeer if this number exceeds this threshold.

The structure of the thesis is the following one.
Chapter 2 describes the most important P2P architectural models pre-

sented in the last years and the most relevant P2P Distributed Virtual
Environments presented in the literature.

Chapter 3 presents the formalism exploited in the following chap-
ters for the specification of the heartbeat propagation and passive objects
management protocols.

Chapter 4 and Chapter 5 present the original solutions we propose.
The mathematical structures upon which our solutions are based are pre-
sented in chapter 4, that introduces the compass-routing based spanning
tree construction algorithm, proves some properties of the algorithm and
finally evaluates the proposed approach through a set of simulations de-
veloped through the Peersim simulator.

Chapter 5 introduces our original proposal for the management of
the passive objects of the DV E in a Voronoi based P2P overlay. A set of
experimental results are presented as well.

Chapter 6 presents a hierarchical overlay forDV E exploiting Additive
Weighted Voronoi Diagrams and shows a set of preliminary experimental
results.

Finally, Chapter 7 presents our conclusions and the future works.

6

Chapter 2

State of the Art

File sharing has been the ”killer application” for P2P system till now. Re-
cently further applications like Content Distribution Networks, CDN(73),
Computer Supported Collaborative Works, CSCW(74) and Distributed Virtual
Environments, DVE(75) have been proposed. Nevertheless, these appli-
cations generally exploit an architectural model originally proposed for
file sharing. For this reason, this chapter will first briefly review the main
P2P architectural model with reference to file sharing applications. We
will present the evolution of P2P systems during the last ten years, from
the centralized solution of Napster to the pure P2P solutions like that ex-
ploited by Gnutella. Hybrid solution introducing a hierarchy of peers on
the basis of their computational/communication power, like Gnutella 0.6
and Kazaa are also discussed. Finally, we briefly present solutions defin-
ing a structured overlay,like those based on the definition of a Distributed
Hash Table.

The second part of the chapter describes the most important P2P Dis-
tributed Virtual Environment recently proposed. We will present both pro-
posal which extend the architectural models originally proposed for file
sharing, like Mopar,SimMud and JaDE and more innovative proposals
based on the definition of highly dynamic overlays like Solipsis, Apolo and
VON.

7

2.1 P2P Models

In this section we review the main P2P architectural models proposed
in the last years which are summarized in Figure 3. We will present the
evolution of P2P system in the last ten years, first describing the unstruc-
tured P2P overlays, then the distributed hash table structured overlays.

Figure 3: P2P Models.

2.1.1 Centralized Unstructured P2P

Napster (13; 17) is a centralized file sharing application (Fig.3) targeted
to music files that belongs to the first generation of P2P systems. Each
peer establishes a connection with a central server S, and sends to S the
descriptors of all the files it is going to share. The central server stores the
descriptors in a centralized database. Dynamic connections are defined
between the peers, and files are exchanged directly between them, on
demand.

8

If a peer P looks for a file, it sends to the central server a query in-
cluding a list of keywords describing it. The server searches its database
for the file descriptors matching the query, and sends to P a set of pairs
(F ′, Q), where Q is a reference to a peer sharing a file F ′ matching the
query. P chooses a pair according to some criterion and establishes a
connection with the corresponding peer.

Even if the file searching step exploits the Client Server computa-
tional pattern, the file exchange step occurs directly between pair of peers,
according to the P2P model.

The main drawback of this approach is the bottleneck and the single
point of failure introduced by the presence of a centralized server.

2.1.2 Pure Unstructured P2P Overlays

Gnutella 0.4(13; 17) and Freenet(6; 13) are both examples of pure P2P sys-
tems (Fig.3) characterized by the lack of any centralized element in the
P2P overlay. Connections between peers are, in general, defined at ran-
dom. In Gnutella, peers exchange PING messages, at regular time inter-
vals, to discover new peers in order to increase the knowledge of the
network and QUERY messages to search files described by a list of key-
words. The mechanism for the transmission of these messages is the TTL
enhanced flooding, i.e. each message is paired with an integer value, the
TTL, which is exploited to limit the number of its hops.

The flooding mechanism is the most important drawback of these
approaches. As a matter of fact, a large amount of traffic is generated,
even if the TTL is exploited. Furthermore, since in general the overlay
network does not match the underlying physical network, each message
can be routed through a zig-zag path on the underlying physical network.

These issues reduce the scalability of pure P2P unstructured systems
and may introduce an high delay in the delivery of a message.

2.1.3 Hybrid Unstructured P2P Overlays

JXTA, Gnutella 0.6, Kazaa (13) are examples of a hybrid P2P systems be-
longing to the second generation of P2P(Fig.3). These systems exploit the

9

heterogeneity of the peers to introduce a peer hierarchy defined on the
basis of their computational/communication capability. In most cases,
this is a two-level hierarchy including Simple Peers and Super Peers. The
Super Peers generally carry out a richer set of functionalities with respect
to the simple ones. For instance, in Gnutella 0.6 or in Kazaa, the resource
shared by the peers are indexed only by the Superpeers and the traffic
due to the trasmission of the queries is limited to the overlay connecting
the Superpeers.

The term JXTA stands for juxtapose, i.e. it reflects the intention to put
P2P system side by side with respect to client-server or Web-based com-
puting. JXTA is an open network computing platform designed for P2P
computing. Its goal is to develop the basic building blocks and services
to support innovative applications for peer groups. JXTA conceptually
is a set of open P2P protocols that allow any connected device on the net-
work (from cell phone to PDA, from PC to server) to communicate and
collaborate as peers. JXTA defines an hybrid architecture that introduces
different types of peers i.e. Minimal edge, Full-featured edge, Relay and Ren-
dezvous peers and introduces the concept of Peergroup which represents a
set of peers with a common set of interests, for instance peers belonging
to a chat room. Peer belonging to a Peergroup may publish the resources
they are going to share through advertisements. The Rendez vous peers act
as Superpeers by managing a set of Edge peers and indexing the advertise-
ment published by them.

2.1.4 Structured P2P Overlays

Both the solution based on a central server and the one based on en-
hanced flooding are characterized by a low degree of scalability due, in
the former case to the bottleneck represented by the central server, in the
latter case to the breadth-first search on the unstructured overlay. While
hybrid solutions reduce these problems through the introduction of a set
of superpeers, the Distributed Hash Tables, DHT approach (7; 10; 18) de-
fines a structured P2P ovelay so that the no central host is required and the
cost of retriving an item in the overlay is reduced.

10

Figure 4: Distributed Hashed Table.

The basic idea of the DHT approach is to assign a logical identifier
through an hash function to both the nodes and the data items and to map
both of them to a common logical address space. A proper mapping function
is defined so that each data item is mapped to a single node.

Figure 4 shows a logical ring overlay over the real network topology.
The nodes of the ring are ordered according to a clockwise ordering and
each node manages the linear portion of the logical address space rang-
ing from the identifier which is the successor of its predecessor on the
ring, and its identifier.

When a data item is stored in the system, a unique ID is assigned to
it. Then, the data item itself or a reference to it is stored at the node that
manages the subset of identifiers including ID.

The key concept of the DHT approach is to define a routing algorithm
able to reach the node storing a data idem through a limited number of
steps, for instance in most DHT the number of steps is logarithmic with
respect to the number of nodes of the DHT. For this reason each node
stores a routing table including a proper subset of nodes of theDHT . This
subset of nodes is chosen so that the routing respects the defined bound
on the number of routing steps.

Suppose, for instance, that a node submits a query for a data item

11

Figure 5: Chord and Pastry.

identified by ID. A node that receives the query selects among its neigh-
bors, i.e. the nodes included in its routing table, the one whose identifier
is numerically closest to the ID.

These basic ideas have been implemented in several different DHT
which differ in the organization of the identifier space:

• Chord: In Chord(4; 7; 10; 13) the nodes are organized according
to a circular ring where nodes are ordered clockwise. Each data
item, characterized by a key K generated to a SHA-1 hash function,
is stored at the node whose ID is the first one on the logical ring
which is greater than or equal to K . For instance in Figure 5(left
side), the key K01 belongs to node N01, K03 belongs to N10, K12
belongs to N21, K22 belong to N23, and both K32 and K33 be-
longs to N33.

• Pastry: in the Pastry DHT (13; 18) a key K is stored to the node N
whose ID is numerically closest to K, as shown in figure 5(right
side), where, K01 belongs to N01, both K03 and K12 belongs to
node N10, K22 belongs to N21 and N23 because both of them sat-
isfy the requirements, and both K32 and K33 belong to N33.

• CAN: In CAN, Content Addressable Network (13), the identifier space
is a d-dimensional space. The space is partitioned into a set of zones,

12

Figure 6: CAN.

each peer is paired with a zone and manages any key belonging to
it. The routing table of a node N stores the neighbors of N , i.e. the
nodes paired with zones whose border overlaps that of the zone
managed by N . In figure 6, we assume, for the sake of simplicity,
a two dimensional space. When a new item is stored in the CAN
DHT, the hash function is exploited to pair a binary key with the
item, then the binary sequence is divided into two parts which are
the coordinates that define the zone Z where the item is mapped.
The key is then stored at the node managing Z. CAN exploits a
greedy routing strategy, i.e. when a node receives a key K, it propa-
gatesK to the node which is nearer to the zone whereK is mapped.

2.2 P2P Overlays for DVE

This section presents the most important proposals of P2P Distributed
Virtual Environment presented in the literature. First we will introduce
two proposals which exploit the Pastry DHT for the development of a

13

P2P DVE overlay. In the first proposal, MOPAR, the DHT is exploited
to define a hierarchical network, in the second one SimMud for the man-
agement of the passive objects of the DV E. The following proposals, i.e.
Solipsis, APOLO and VON are based on the definition of a highly dynamic
overlay. Finally we present two approaches DiVES and JADE which in-
troduce several ideas developed in this thesis.

2.2.1 MOPAR: Mobile Overlay P2P Architecture

MOPAR, Mobile Overaly P2P Architecture(23) is a fully distributed P2P in-
frastructure supporting DV E applications which defines an overlay net-
work using both a Pastry based DHT and an hybrid P2P architecture. Mopar
decomposes the virtual environment into hexagonal cells, which, despite
their discrete nature, assure a continuous view to all the participants.

MOPAR introduces three types of nodes based on their roles in the
interest management scheme: master, slave and home nodes.

The original idea of MOPAR is to define a hierarchical overlay for
DV E and is motivated by the need of reducing the number of messages
exchanged among the peers for the management of their Area of Interest.
MOPAR introduces a Master Node for each cell of the DV E. Each cell has
at most one master node, but can have multiple slave nodes. The Master
Node of a cell acts as a ”beacon node” for the slave nodes by notifying
them the new peers entering their Area of Interest. Slave nodes query the
Master Node to build direct connections with their neighboring slave
nodes, therefore, they do not need the master nodes involvement for no-
tifying the accurate positions to their neighbors. In the same way, they
also know when a participant is leaving their AOI. Each Master Node is
connected to the Master Nodes of its 6 neighboring cells. In this way each
Master Node covers an enlarged area and is able to notify its slave nodes
about new peers entering their Area of Interest.

MOPAR pairs with each cell a Home Node which is a Virtual Node
which acts as a registration point for master nodes and stores the state of
the passive objects of that cell. Each hexagonal cell in MOPAR is charac-
terized by its coordinates which are the unique Cell ID of the cell. MOPAR

14

hashes the Cell ID to a 128-bit ID by applying SHAI-1 hash function get-
ting the HexID of the cell, afterward it exploits the Pastry DHT to obtain
the node N whose Pastry identifier is numerically closest to the HexID.
Node N is now identified as the home node for this cell. Note that while
each cell has a single home node, a node may be home node for a set of cells.

If a newly joined node finds that there is no master node registering
for this cell after querying the home node, it registers itself as the master
node; otherwise, it becomes a slave node. Master nodes build direct con-
nections with the neighboring master nodes by querying the home nodes
of the neighboring cells. The home node of a cell may be dynamically mod-
ified during the life-time of the DV E, and this step is supported by the
underlying DHT .

2.2.2 SimMud

SimMud (48), is a support for Massively Multiplayer Games built on top of
Pastry 2.1.4, a widely used P2P DHT, and use Scribe, the multicast infras-
tructure built on top of Pastry, to disseminate game state. The proposal
exploits locality of interest typical of these applications.

Pastry maps both the participating nodes and the application objects
onto random, uniformly distributed IDs in a circular 128-bit name space,
and implements a distributed hash table to support object insertion and
lookup. Objects are mapped onto live nodes whose ID is numerically
closest to the object ID. ”Closeness” in this context is limited to the nu-
merical ID, no geographical or topological closeness is considered.

Scribe, instead, is an applicative scalable multicast infrastructure built
on top of Pastry. Multicast groups are mapped to the same 128-bit ring of
identifiers. A multicast tree associated with the group is built by merging
the Pastry routes from each group member to the group ID’s root, which
also acts as the root of the multicast tree. Messages multicast from the
root to the members uses reverse path forwarding.

The design of SimMud is based upon the limited movement speed
and sensing capabilities of the avatars of the DV E. The world is stat-
ically partitioned into regions and the nodes in the same region form an

15

interest group for that portion of the map, so that state updates relevant
to that part are disseminated within the group only. A node changes
group when it moves from one region to another. Additionally, objects
in a given region have to communicate only the part of their state that is
visible to nodes.

A live node whose ID is the closest to the region ID serves as the
coordinator for that region. Besides coordinating all the shared objects
of the region, the coordinator also acts as the root of the multicast tree,
as well as the distribution server of the region map. The load can be
distributed by creating a different ID for each type of object in the region,
thus mapping them on to different peers.

SimMud defines different classes of game state and pairs different
consistency maintenance strategies with each class.

• The Player state is accessed according to a single-writer multiple-reader
pattern. Each player updates its own location as it moves around.
Player-player interactions, such as fighting and trading, only affect
the states, e.g., life points, of the players involved. Since position
change is the most common event in a game, the position of each
player is multicasted at a fixed interval to all other players in the
same region. The interval is determined during game design, ac-
cording to the requirements of the game.

• The Object State is managed by a coordinator-based mechanism to
keep shared objects consistent while introducing a certain degree of
replication. Each object, characterized by a key K, is assigned to a
coordinator, managing any update of that object. The coordinator
is the node N whose ID is the closest to the key K. Similarly, the
next node M whose ID is closest to N ID’s, will be the owner of
the object’s replica. The coordinator both resolves conflicting up-
dates, and stores the current object value. Successful updates are
multicasted to the region to update each player’s local copy.

• The map is a non-graphical, abstract description of the terrain of a
region. Graphic elements for the terrain and players are typically

16

installed as part of the game client software, and can be updated
through standard software mechanisms.

SimMud uses shared state replication to manage the crash of some
peers. The copies are kept consistent in spite of node and network fail-
ures through a lightweight primary-backup mechanism which tolerates
fail-stop failures of the network and nodes. These failures are detected
using regular game events, without any additional network traffic.

2.2.3 Solipsis

Solipsis, introduced in (2; 3), is a massively shared virtual reality system
based on a network of peers. It is one of the first system that does not
rely on any server nor on IP multicast, and its goal is to scale to an un-
bounded number of participants and to be accessible by any computer
connected to the Internet. Each peer implements a subset of the entities
of the virtual world where each entity is identified by an unique id and
is implemented by a peer. The only elements of the Solipsis world are
the entities, which may be virtual objects and avatars where the only dif-
ference between these entities is that an avatar is associated with a user.
Each avatar ”perceives” its surroundings by a set of interactions with
adjacent avatars that are the avatars located in its surroundings.

The global properties of a Solipsis network should match with the
DV E application features. In particular, Solipsis should preserve con-
sistency and support the ability of an avatar to move all over the DV E.
This is guaranteed if each entity respects two local properties:

• Local Awareness: Each entity perceives only a part of the virtual
world, or Awareness Area, inhabited by some entities and it should
be aware of all updates to the entities located in this area. In other
proposals, this area is referred as the Area of Interest of the entity
and is generally defined by a disk centered at the entity. The Local
Awareness property is satisfied if the peer P paired with the entity
E is connected to any peer P ′ paired with an entity E′ belonging to
Awareness Area of E. If this property is satisfied, when an entity E

17

Figure 7: The convex hull of the adjacent of e. In situation a, e respects the
Global Connectivity property while it does not in b.

updates its virtual representation, the corresponding peer should
inform the peers managing entities in the Awareness Area of E only.

• Global Connectivity: In order to ensure the Local Awareness prop-
erty, an entity should only rely on its adjacent entities. If it does not
know any entity in a sector of the DV E, it is not able to become
aware of an entity arriving from this sector. Conversely, if it moves
towards a sector with no known entity, it will hardly get aware of
entities located in this sector. Based on a set of computational ge-
ometry notions, the Global Connectivity property guarantees that
an entity will not ”turns its back” to a portion of the world. The
global connectivity property is verified for an entity e when the
position of e belongs to the convex hull defined by the set of enti-
ties adjacent to e, as shown in Fig.7. If this property is satisfied, the
risk of an overlay disconnection is reduced and the isolation of a
set of entities of the DV E may be avoided.

The graph defining the connections between the peers describes the
P2P overlay network of the DV E. Note that the overlay is highly dynamic,
because the connections between the peers change as they move. Each
peer P exchanges data such as video, audio, avatars movements or any
kind of events affecting the representation of the virtual world through

18

the overlay links.
Let us now describe the procedures proposed in (2; 3) to guarantee

that both the Local Awareness and the Global Connectivity properties are
satisfied.

In order to satisfy the Local Awareness property, an entity should know
all the entities in its surroundings. Because of the mobility of the peers,
some other entities may dynamically enter into its Awareness Area. Solip-
sis proposes a spontaneous collaboration scheme where each entity sends
a message when it detects an entity entering into the Awareness Area of
another entity.

Let us consider an entity e and suppose that the peer managing e

is connected two a pair of peers managing respectively, e′ and e′′ and
suppose that e′ enters the Awareness Area of e′′. In this case e must ”put
in touch” e′ and e′′. The following events may force e to send a message
to e′:

• e’ moves closer to e”;

• e” moves closer to e’;

• e moves away from e”;

• e” Awareness Area grows up;

• e’ does not belong to set of entities adjacent e at time ∆t, while it
belongs to this set at time t.

To guarantee the Global Connectivity Property an entity e must order
its adjacent entities according to a counter clockwise ordering and detect
for each adjacent entity e’ such that the successor of e’ in the ordering
is e”, if the counterclockwise angle defined by (e′, e, e′′) is smaller than
π. When an entity e detects two consecutive adjacent entities e′ and e′′

violating this property it enters a Global Connectivity restoring phase. In
this phase, e sends a connectivity restoring message to e′ which in turn
searches among its adjacent entities, one entity e′′′ such that (e′, e, e′′′) is
smaller than π and (e′′′, e, e′′) is smaller than π. If such an entity e′′′ does
exist, then e′′′ is notified to e which inserts it among its adjacent nodes,

19

Figure 8: Restoring the Global Connectivity of an entity e.

otherwise a new connectivity restoring message is sent to the successor of
e′ which, in turn, checks among its adjacent nodes one which may re-
store the global connectivity property at e. This process is shown in Figure
8. e detects that the counterclockwise angle defined (e1, e, ef) is greater
than π and sends a connectivity restoringmessage to e1. If e1 respects the
global connectivity property, it is connected to an entity e2 lying in the
half plane determined by ∆1. If (e2, e, ef) < π, then e inserts e2 among
its adjacent entities, otherwise the procedure is recursively applied. The
algorithm ends when e finds an entity that forms with ef an angle < π.

The Solipsis virtual world is able to handle thousand of entities: both
participants and static objects. This is due both to the lack of a server
and to the underlying distributed algorithms which rely on local commu-
nications only. In this way, the global amount of messages exchanged on
the underlying overlay is proportional to the number of entities in the
virtual world.

20

Figure 9: The APOLO Overlay.

2.2.4 APOLO: Ad-Hoc Peer-to-Peer Overlay Network for
Massively Multiplayer Online Games

APOLO (54) proposes a protocol for the distributed definition of an over-
lay able to support efficient local group communication where the peers
are able to self-organize. While each node creates a small number of links
to the nearby nodes, the links are consistently re-organized only using
soft-state local information.

In APOLO, the two-dimensional plane representing the DV E is par-
titioned into quadrants and each node maintains four links to the nearest
neighbors in each quadrant, as Figure 9 shows. Note that links are directed
because the existence of a link between the node n1 and the node n2 does
not imply the existence of a link in the opposite direction.

To guarantee the connectivity of the overlay, four special-purpose vir-
tual nodes, namely the Portals are defined. In Figure 9 these are the nodes
P1, P2, P3, P4. The portals are located at the corners of the plane and are
primarily used to guarantee the link property of APOLO, i.e. for each
node a link to the nearest neighbor for each quadrant must be defined.

21

Otherwise, the nodes adjacent the borders of the virtual world may not
connect to the nearest neighbor on each quadrant. The main objective of
APOLO is to reduce the number of links which should be managed by
each node.

APOLO develops a 2-hop beaconing protocol to support node mobility.
As a matter of fact, the overlay topology should be continually updated
because of node mobility, unexpected node failures and join/leave of
new nodes. Each node n periodically generates a beacon message which
contains its up-to-date location information. The beacon message is re-
cursively forwarded up to 2 hops away from n. In this way, each node
knows the up-to-date locations of all its 2 hops far neighbors, and may
identify the correct nearest neighbors and create direct links to them. In
general, m-hop beaconing, m ≥ 2 may be adopted to further reduce over-
lay inconsistencies.

APOLO considers different message coverages depending from mes-
sage types. For instance, any event should be notified to nearby nodes,
while only position updates are notified to distant nodes. This corre-
sponds to define different content based multicast mechanisms. Multicast
is based on the dynamic definition of a spanning tree. Each node n in
APOLO is able to autonomously detect its parent in the multicast tree
rooted at r by detecting its nearest neighbor which belongs to the same
quadrant of r, with respect to the coordinate system whose origin is at
n. For instance in Figure 10, node CN determines node A1 as its parent
for a root node SN because A1 and SN locate in the same quadrant with
respect to CN .

When a node n receives a multicast message, it forwards the message
according the following rule. If the root node r and n are both positioned
in the same quadrant, r sends the message to its neighbors belonging to
the Area of Interest of r and such that the quadrant relations are satisfied.

Note that the unidirectional links make the message transmission in-
efficient. A node cannot forward the message to the nearby node even
if there the two nodes are connected. As Figure 9 shows, each node is
connected to other nodes through directed links. When node s4 multi-
casts a message, the message to node s8 passes through nodes s6, s3, s7.

22

Figure 10: APOLO Multicast.

Although there is a connection between s6 and s8, the message cannot
relay on this connection due to the unidirectional link.

2.2.5 VON: Voronoi Based Overlay Network

Voronoi based Overlay Network (VON)(1; 8; 9) is a P2P overlay network
based on Voronoi Diagrams (56) which preserves high consistency of the
overlay topology in a bandwidth-efficient manner.

A Voronoi Diagram (Fig.11) is a mathematical construction that, given
n nodes on a plane, partitions the plane into n Voronoi regions, where a
Voronoi region of a node x includes all the points of the plane which are
nearer to x with respect to any other node.

VON exploits the concept of Area of Interest, AOI, to increase the scal-
ability of the application. The AOI of a node n defines a circular or rect-
angular area surrounding n. Since only events generated within its AOI
are relevant to n, theAOI reduces the number of messages exchanged by
the application thus considerably increasing its scalability. An example is
shown in Figure 11, where the green circle represent the AOI of the peer
S, i.e. the area including peers which generate events S is interested in.

The initial proposal of VON defines a direct connection model, where
any node of the DV E is directly connected to all the nodes located in
its AOI . Due to the limited bandwidth of each node, this model may
constrain the number of neighbors that may appear within the area of
interest of a given node. VON defines different kind of neighbors of a

23

Figure 11: Voronoi Diagrams and AOI.

Figure 12: VON: Discovering New Neighbors

24

node. The enclosing neighbors of a node n are the nodes whose regions im-
mediately surround the Voronoi region defined by n, the boundary neigh-
bors are the nodes whose Voronoi region intersects the border of AOI(n),
while the AOI neighbors are all further nodes belonging toAOI(n). In Fig-
ure 11 the pink nodes are the enclosing neighbors of S, the green nodes
are boundary and AOI neighbors of S. Each node keeps a Voronoi Dia-
gram including its enclosing, boundary and AOI neighbors.

In VON, each node acts as a ”watchman” for another one in discover-
ing approaching neighbors. When an entity moves (Fig.12), it sends its
new position to all the neighbors belonging to its Voronoi Diagram. If the
receiver is a boundary neighbor, it performs an overlap-check, i.e. it checks
whether the Voronoi region of one of its enclosing neighbors overlaps the
AOI of the mover. The receiver notifies the mover if a new overlap oc-
curs, i.e. previously disjoint regions currently overlap. In this case the
boundary neighbor explicitly notifies the mover about the new neighbors.
This allows the moving entity to become aware of neighbors outside its
AOI with minimal network overhead, since position notification may be
exploited to discover new neighbors.

If a node leaves the DV E or fails, its neighbors update their Voronoi
Diagram by removing that node.

This basic model of VON has been successively refined (8; 52; 53). As
a matter of fact, the direct connection model may require a large amount
of bandwidth, especially when crowding occurs. The most recent models
reduce the number of connections by linking each node with its enclosing
neighbors only. Event notifications are propagated to eachAOI neighbor
by forwarding notification through neighbor nodes.

VON Forwarding Models

The first forwarding model for VON has been introduced in (9). This mo-
del not only requires, for each node n, approximately a constant number
of connections, but can exploit aggregation and compression to reduce the
bandwidth consumption of n. Thus, this model enables a larger amount
of nodes within the AOI of a node with respect to the direct connection
model. However, as shown in Figure 13, this model introduces a certain

25

Figure 13: The forwarding path on VON Forwarding model.

amount of redundancy, i.e. a node may receive the same notification by a
set of neighbors.

To remove this redundancy, two further forwarding models, VoroCast
and FiboCast, have been proposed in (52). Both models have been in-
troduced to reduce the bandwidth requirement of the direct connection
model by limiting the connections of each node to its enclosing neighbors
only.

VoroCast exploits Voronoi Diagrams to build a spanning tree covering
all theAOI neighbors of an entity, while FiboCast dynamically adjusts the
propagation range of a notification by exploiting a Fibonacci sequence, so
thatAOI neighbors of a node n receive updates at frequencies depending
on their distance measured as hop counts from n.

VoroCast constructs a multicast spanning tree rooted at a node n and
sends the notifications of events generated by n along the edges of this
tree. In this way any redundancy in the transmission of the messages
is avoided. Like in VON, the AOI is partitioned by a Voronoi diagram
based on the coordinates of the AOI neighbors.

26

Figure 14: An unevenly crowded situation.

Messages generated by a root node R are first sent to all one-hop
neighbors of R. Upon receiving the message, an intermediate node x for-
wards it to a uniquely selected child node within theAOI of R. To construct
the spanning tree, the same node should be selected as child by a single
neighbor node. VoroCast chooses as parent of a node n in the spanning
tree, the neighbor of n which is nearer to the root R of the spanning tree.
This requires that each node knows not only its one hop neighbor,but
also the two-hop neighbors, which are the one-hop neighbors of its one-
hop neighbors. In this way each node n may evaluate if a node x is its
child in the spanning tree by comparing its distance from the root r of
the spanning tree with the distance of any neighbor of x from r.

FiboCast adjusts the message frequency based on a Fibonacci sequence,
which contains a series of numbers where each is the sum of the two
previous ones (e.g., 0, 1, 1, 2, 3, 5, 8...). Different sequences can thus be
created with different initial numbers.

This model has been defined to reduce the number of messages ex-
changed in crowding. As a matter of fact, when nearby nodes are sending
simultaneously a notification, each node has to send its own messages

27

plus those coming from its neighbors. Consequently, bandwidth deple-
tion may still occur.

Consider, for example, the red node in Figure 14 and observe itsAOI .
The left side of the AOI is more crowded, so even if both node u and v
are roughly equidistant from the red node, node u may ”observe” the red
node more easily since it belongs to the less crowded area and a smaller
number of nodes are located in between itself and the red node. On
the other hand, the red node may appear ”obscured” to v due to the
large amount of nodes located between them. In this case, it makes sense
for the red node to send its notifications more frequently to u than to v.
This can be obtained by adaptively adjusting the transmission frequency so
that neighbors requiring more hops to be reached receive messages less
frequently.

FiboCast adds two more fields to each notification, the maximal hop
count and the current hop count. The maximal hop count is set according to
a Fibonacci sequence, while the current hop count is incremented at each
hop and it acts as a TTL. A notification forwarding stops when the vale
of the current hop count equals the maximal hop count. As Fibonacci
grows slowly at first but quickly later, nodes would receive messages
with gradually decreasing frequency when the number of hops required
to reach them starting from the root increases.

2.2.6 DiVES: A Distributed Support for Networked Dis-
tributed Virtual Environments

DiVES(19), that was developed by us before the work on this thesis, is a
distributed support for the development of Networked Distributed Vir-
tual Environments which exploits the publish subscribe interaction model to
define a flexible communication support and to implement the Areas of
Interest.

In a publish/subscribe system, hosts deliver events and publish them
by notifications. Furthermore, hosts may express their interest in an event
or in a pattern of events, in order to be notified of any event generated by
a publisher and matching their interest. Matching of subscriptions and

28

publications is generally supported by a network of brokers which also
routes notification to interested subscribers.

In DiVES each host publishes its current position in a 2D virtual world
through a notification. Furthermore each node delivers a subscription
which defines the zone of the DV E corresponding to its Area of Inter-
est and is described by a filter. The brokers of the Broker Network match
the notifications with the corresponding subscriptions.

DiVES defines an acyclic peer to peer network of brokers to support an
event based communication framework. The network can be dynami-
cally reconfigured and it can tolerate broker crashes by a proper recovery
mechanism.

DiVES also exploits a set of optimization strategies of the basic pub-
lish/subscribe routing mechanism defined through an accurate analysis
of the information exchanged in DVE applications. The message traffic
on the network is reduced by packing notifications and filters into a sin-
gle message. Furthermore, approximated filters are introduced to fur-
ther reduce message traffic. Advertisement are exploited to optimize the
routing of filters.

Two alternative strategies can be adopted to implement an Area of In-
terest, the Cell Based and the Entity Based strategy. Both of them exploit
Communication Groups. A Communication Group is a pair defining a com-
munication channel and a group of hosts interested in receiving all the
messages sent to that channel.

Cell Based

The Cell based approach defines an approximation of the Area of Interest
by statically partitioning the shared world into cells and by pairing a
different Communication Group to each cell.

A communication group is defined as the set of nodes whose sub-
scriptions intersect a given cell C. Any notification delivered by any
node belonging to C will be forwarded to all these nodes. The Area
of Interest of a node is approximated by the region including the cell
where it is currently placed and the surrounding ones. Each node dy-
namically joins and leaves communication groups while moving in the

29

virtual world, during the evolution of the game. Each node notifies its
position to the communication group corresponding to its cell and joins
the communication groups corresponding to the surrounding cells. In
this way, the node receives any message sent by nodes belonging to the
surroundings areas.

This is implemented in DiVES by defining proper filters. The virtual
world is partitioned into a set of square cells and each node delivers fil-
ters describing the square region including its cell and the neighboring
ones. DiVES supposes that the Area of Interest of any node is always
included in a cell of the virtual world. The filter delivered by a node P is
not modified until P moves within the same cell. Each node is connected
to a single broker, Broker(P), and, for any movement, P notifies its new
position to Broker(P). When P crosses the border of a cell it notifies this
event to Broker(P), that exploits both the position of P and the map of the
shared world to define its new filter.

For the sake of simplicity, let us suppose that a broker B is connected
to a single node P. When B receives a notification from the network, it
computes the Area of Interest of P by exploiting both the last position no-
tified by P and the characteristics of P. Notifications received from nodes
located outside the Area of Interest P are not sent to P. In this way, the
notification filtering is performed by Broker(P) and P is not overwhelmed
by useless messages. Both input bandwidth and computational load of
P are therefore optimized.

The trade off of this approach is between the number of subscriptions,
i.e. filters delivered on the network and the number of useless notifica-
tions delivered to each broker. Since a node delivers a new filter when
crossing a cell boundary only, the number of delivered subscriptions can
be controlled by tuning the size of the cells. Small cell size defines a
good approximation of the area of interest of a node, but implies a large
number of subscriptions.

Entity Based

The Entity Based approach pairs a distinct communication group with
each node P, and P sends its position to this communication group. Each

30

Figure 15: Entity-Based group definition

node joins the communication groups of all the nodes belonging to its
Area of Interest and a communication group includes all the nodes whose
areas of interest overlap.

Consider, for instance, Fig.15. The dashed area, corresponding to the
intersection of the areas of interest of P1, P2, P3, defines a communica-
tion group including these nodes. Any notification sent within this area
will be received by these nodes. It is important to notice that, even if a
node P belongs to the area of interest of node Q, this does not imply that
Q belongs to the area of interest of P . For instance node P4 belongs to
the intersection of the area of interest of P1, P2, P3, but its area of inter-
est, shown in the figure by the dashed line, does not include any of the
previous nodes. This implies that all the notification of P4 will be sent to
P1, P2, P3, but no notification of P1/P2/P3 will be sent to P4.

In entity-based DiVES each node P delivers a filter defining its exact
Area of Interest. In this way, the position of each node belonging to this
area will be notified to P. This approach cannot be directly implemented
because it requires the exchange of a large amount of filters. As a matter
of fact, the area of interest of any node P is modified at each movement

31

of P. This implies that a new filter is generated for each movement of any
node and this is the main drawback of this approach. On the other hand,
since filters are more accurate than in the cell-based approach, routing
of notifications improves and no useless notification are sent to a broker.
Several optimizations to improve the effectiveness of this method can be
exploited, and the resulting approach is a compromise between the cell-
based and the entity-based approaches whose purpose is to reduce the
message traffic.

Optimizations

Figure 16: The Optimized Routing Algorithm.

DiVES considers the behavior of each node during an interval of time
∆t and defines the Predicted Notification Area (PNA) of a node P as the
set of positions that can be reached by P starting from its current posi-
tion, traveling along a straight line, during the interval ∆t. This set of
positions is defined by a circle whose center is the current position of P
and depends on the speed of P. DiVES also defines the Predicted Area of
Interest (PAI) of P as the subspace of the virtual world including all the
areas of interests corresponding to any point in the Predicted Notification
Area. It can be easily shown that any Predicted Notification Area is a subset
of the corresponding Predicted Area of Interest.

32

A node P subscribes its PAI, rather than its exact Area of Interest. The
same subscription remains valid as long as the current Area of Interest of
a node is included in its PAI. When adopting this approach the amounts
of filters exchanged through the network, can be tuned by modifying
∆t. Since ∆t can be updated according to the characteristics and the
state of each node, the resulting strategy is more flexible than the cell
based approach. As in the cell-based approach, brokers filters incoming
notifications according to the area of interest of their nodes.

As an example consider in Figure 16. The left part of the figure shows
four nodes at different positions of the virtual world. The right part
shows the brokers network and the relevant part of their routing tables.
Let us consider node P1. When it notifies its position to B1, B1 computes
the area of interest Y of P1, and its PAIX . Then B1 forwards the PAI to
its neighbors and the PAI will be flooded on the network. Since both P2

and P3 belong to the PAI of P1, their positions will be notified to P1 by
the routing algorithm. B1 discards any notification it receives from P3,
because it does not belong to Y . On the other side, the notification of
P2 will be sent to P1 because it belongs to Y . Note that Y is notified to
B1 anytime P1 moves, but B1 does not propagate Y on the network. The
position of P4 is not routed to P1, because P4 does not belong to the PAI
of P1. Let us now suppose that P1 moves from position b to position c.
B1 detects that the Area of Interest of P1 does not belong to the PAI of
P1. The new PAI of P1 is computed and flooded on the network. If P4

now belongs to the PAI of P1, its notifications will be routed to P1.

A further reduction of the number of messages flowing in the net-
work is obtained by an accurate analysis of the kind of messages pro-
duced by DVE applications. A new Predicted Notification Area is delivered
at the same time of a new notification. A new Predicted Area of Interest is
delivered when the current area of interest is not included in the previ-
ous Predicted Area of Interest and this is associated again to a movement
of a node and, hence, to a notification. In this way, a larger amount of
information is packed into the same message.

DiVES defines different kinds of messages. For instance,position(x, y)
corresponds to the notification of a new position, while positionpai(x, y, pai)

33

corresponds the notification of a new position and of a new PAI . Fur-
ther messages are exploited in advertisement based routing. Each broker
Bi routes a message position(x, y) according its routing table, while the
message positionpai(x, y, pai) implies both the forwarding of the notifi-
cation notify(x, y) according to the routing table and the forwarding of
the filter PAI to all the neighbors. The described approach is based on a
simple filter routing strategy, that is flooding.

A mechanism based on advertisements is exploited to optimize the
routing of filters on the network. In DiVES, the advertisements corre-
spond to Predicted Notification Areas. As a matter of fact, PNA defines the
positions each node can reach during the next interval of time ∆t. These
positions define the notifications P is going to deliver in the next inter-
val. Advertisements, i.e. PNAs, are periodically injected in the network.
Since a notification is considered valid only if it belongs to the last ad-
vertisement delivered on the network, a new PNA is produced when
the node approaches the border of its current PNA. The distance from
the border depends upon the latency of the underlying network, because
any broker has to be notified before the node crosses its PNA. Routing
of advertisements is based on flooding. As for PAI , a single message
positionpna(x, y, pna) carries both a notifications and a PNA. Each broker
propagates notifications according to the routing table and forwards ad-
vertisements to all its neighbors. Routing of filters is optimized, because
each broker forwards any filter F only to the neighbors storing in their
advertisement table at least an advertisement overlapping F. The dotted
circle around P4, in Figure 16, represents the PNA of P4. This informa-
tion is flooded in the network and is registered in the advertisement table
of each broker.

Let us suppose that P1 is located at b and that brokerB3 receives from
B1 the PAI of P1. Suppose also that B4 = Broker(P4) Since no overlap
exists between the PAI of P1 and the PNA of P4, this PAI is not sent to
B4.

A further optimization is related to the reduction of the entries of the
routing tables. A broker can merge the filters corresponding to existing
routing entries and forward the merged filter to a subset of its neighbors.

34

Merging filters introduces another level of approximation in the routing
algorithm. DiVES adopts a simple strategy to merge filters. Two filters
are merged if and only if the size of the resulting region does not exceed
a given threshold. This guarantees that the corresponding filter defines
a limited region of the shared world.

2.2.7 JaDE: a JXTA Support for Distributed Virtual Envi-
ronments

JaDE(71), which was developed by us during the analysis of instruments
used in this thesis, is a P2P support for the development of Distributed
Virtual Environments that improves DVE scalability through the notion
of Area of Interest. JaDE defines a set of protocols to support both the ac-
tive entities and passive objects of the DVE. The state of passive objects
is replicated on a set of peers to increase the reliability and the respon-
siveness of the application. Since passive objects may be concurrently
updated by the active entities of the DVE, a novel consistency protocol is
defined together with a set of mechanisms to guarantee the persistence
of passive objects in a DVE environment.

JaDE: Protocol Specification

A basic choice for the definition of JaDE protocols is the adoption of the
concept of Area of Interest to improve the DVE scalability. JaDE stati-
cally partitions the DVE into a set of regions whose shape and extension
depend upon the characteristics of the DVE. JaDE assume that, a peer
P located in a region R of the DVE renders, at any instant of time, the
events occurring in R only. For this reason, at any instant of time, the
AOI of P includes at least R. Each peer periodically

• Sends its current positions to the any other one in its AOI through
an heartbeat message.

• Receives the position of other avatars in its AOI.

• Updates its local view of the DVE through the received messages.

35

Figure 17: Definition of Area of Interests.

36

The DVE is decomposed into a set of equal, square regions as those
shown in Figure 17 where the main region of a peer is the DVE region
where a peer is located. Since a peer dynamically moves within the DVE,
its AOI may change and anytime it enters a new region R, it must be
initialized with the state of each passive and active entity located in R.
Then, as far as the peer stays in R, it is interested in any event occurring
in its AOI, such as the update to the position of any other peer or to the
state of a passive object in R. Since in a WAN the latency of any notifica-
tion mechanism cannot be neglected, each region of the DVE is further
partitioned into a central zone C and eight peripheral zones, as shown in
Figure 17. When the peer P stays in C, its AOI overlaps its main region.
When the peer approaches the border of its main region and enters a pe-
ripheral zone, it starts prefetching the state of the entities of the region
R it is going to enter. In this way, it initializes its AOI before entering R.
Note that any peer in R must promptly detect the presence of P as well.
A straightforward implementation of this prefetching mechanism just re-
quires the extension of the AOI of a peer when it enters a peripheral zone.
For instance, the AOI of the peer displayed by the black circle in the top
part of Figure 17 includes its dark grey main region R and the southern
light grey neighbor region of R. For the same reason, the AOI of the peer
located in the northeastern peripheral region in the bottom part of the
Figure 17 overlaps the whole DVE. To avoid that peers belonging to the
new region perceives a delay in detecting a new peer entering their main
region, the entering peer should notify its presence to any peer in its ex-
tended AOI as well. To reduce the number of events that are prefetched
from a neighboring region before entering it, the size of the enlarged AOI
may be reduced. For instance, a peer entering a new region may be inter-
ested in initially perceiving the state of the entities close to the border of
the new region while acquiring the knowledge of the state of the whole
region later.

JaDE adopts the Sequential Consistency(30; 31; 34) model which guar-
antees that, while any interleaving to passive objects updates may be ac-
cepted, all the peers observe the same interleaving of the updates of the
objects in their AOI. Sequential Consistency may be easily implemented

37

in client server architectures where a central server manages the state of
any passive object forwarding them to any interested client, while its im-
plementation in a P2P environment is more complex. A similar solution
may be adopted in a P2P environment as well by the dynamic election
of one of the peers of a region R to manage the state of the passive ob-
jects. Even if this solution is more scalable, because it distributes the load
among a set of servers, the election of a single server for each region still
introduces a bottleneck resulting in both a lower DVE responsiveness
and a lower reliability. On the other hand, a fully distributed solution
which replicates the state of any passive object to each peer of a region
may be adopted. Here, each peer holds a local copy of the objects of
its AOI and updates their state by accessing its copy. This approach in-
creases the reliability of the DVE because the crash or the voluntary de-
parture of a peer does not imply the loss of the objects of a region. Also
the DVE responsiveness improves because concurrent updates are pos-
sible. However, a mechanism to preserve the consistency of replicated
copies in spite of concurrent updates has to be adopted. Note that this
situation often occurs in a DVE because an object may ”attract” peers so
that a typical DVE scenario is a crowd of peers that try to modify the
same object. JaDE exploits object replication to improve responsiveness
and reliability. Each peer stores in a local cache, the Object Cache, the
state of any object in its AOI. The cache is initialized when the peer en-
ters a region and flushed when it leaves the region in order to avoid to
overwhelm the cache with a large amount of useless information. As far
as concerns object consistency, several approaches have been proposed to
guarantee the consistency of multiple replicated copies in the presence of
concurrent updates. It is worth noticing that while a process of a concur-
rent application is not generally aware of the other processes which may
concurrently update a copy of data, in a DVE each peer is always aware,
because of the heartbeats notifications, of the positions of the other peers
of its main region and it may detect when a crow of peers gathers around
a shared object. JaDE exploits this property to optimize the consistency
protocol. This protocol is described in the following section.

38

Another important issue in the definition a P2P support is the defi-
nition of a set of mechanisms to guarantee the persistence of the objects
belonging to regions which are not inhabited by any peer. A region may
be inhabited because either no peer has still visited it or every peer has
left it. JaDE assumes that each peer holds a map of the whole DVE that in-
cludes static objects, like landscapes, trees and other graphical elements.
Some of these objects may be modified by the peers, while others are
immutable. We are interested in objects which may be modified dynam-
ically. If the peer modifies some object, the object is activated, i.e. a data
structure is allocated by JaDE to store its state. This state is replicated to
the peers of that region and, to avoid that the state is lost if all of them
exit the region, the last peer leaving the region stores the state of any ob-
ject in a Backup Cache. A more complex situation is that where the last
peer of the region leaves the DVE. If its departure is voluntary, this peer
may choose another one in the DVE and send to this peer the content of
its local cache. The chosen peer stores these objects in its Backup Cache. In
both cases, the peer holding the objects of the region becomes the Backup
Peer of the objects. Note that a set of Backup Peers may be defined to take
into account abrupt peer crashes. It is worth noticing that the identity of
the Backup Peer must be notified to all the peers in the DVE because they
need to find out the objects when they enters the region. As a matter of
fact, when a peer P enters a region it first checks if it is inhabited by any
peer. In this case, it chooses at random a peer in the region and asks it for
the region objects, otherwise P must contact the Backup Peer.

JaDE: Passive Object Consistency

JaDE consistency protocols exploit the relative positions of the peers and
the knowledge of the maximum latency of the underlying notification
mechanism to detect scenarios where replicated objects may be concur-
rently updated. It is worth noticing that in a DVE each peer may update
an object only if it is close to it. For instance, a peer should be close to a
magic potion to drink it. If the peer is far from the potion, it may throw a
stone to break the bottle containing the portion. In any case, for each ob-
ject O, we can define an Update Area, that is the portion of the DVE region

39

where a peer must be located in order to modify O. This area is different
for different kind of objects. In JaDE, it is a circle centered at the object lo-
cation. The updates performed by a set S of peer in the Update Area of an
object O should be considered as concurrent ones because it is likely that
a peer in S modifies O before receiving a previous update of O by another
peer in S. On the other hand, if the latency of the underlying notification
mechanism is high, even a peer located outside the Update Area of O may
enter it and update O before receiving the updated value of O. For this
reason, JaDE defines the Conflict Area of each object as a larger, circular
area centered at the object. The radius of the Conflict Area of an object O
should be defined so that the time interval required to reach the Update
Area of O from any point in its Conflict Area is smaller than the interval
of time required to notify an update to O to any peer of the region. The
radius of the Conflict Area depends upon both the larger peer speed and
the maximum latency of the mechanism to notify updates. JaDe assumes
that the Update Area of an object is always included in its Conflict Area.
When a peer P in the Update Area of an object O modifies it, P checks if
the Conflict Area does not include any other peer and, in this case:

• Reads the current state of O from the local cache, because its copy
of O is up to date

• Notifies the update to any peer in its main region, since they will
receive the update before entering the Update Area.

On the other hand, if P finds out at least another peer in the Con-
flict Area, it should exploit a mechanism to guarantee the consistency of
O in presence of potential concurrent updates. Totally-ordered Multi-
cast based on Lamport’s timestamps, may be exploited to guarantee that
each peer orders concurrent updates in the same way since the update
messages are delivered in the same order to each peer. However, the
implementation of this mechanism requires a high amount of messages,
that results in a low scalability and prevents its adoption in a large dis-
tributed systems. JaDE solution is based upon the distributed definition
of a coordinator for each object of a region R. In JaDE each peer may cre-
ate a new object, which is not present on the static map of the DVE, or

40

it may activate an object, if the object is initially present on the static
map, but it has not been modified yet by any peer. The peer which cre-
ates or activates an object O becomes the coordinator of O. As soon as
it is elected, the coordinator informs all the peer in its main region of the
election and detains the coordination of the object as long as it remains
within the region. When the coordinator leaves R it passes the coordi-
nation to another peer in R. The coordinator is the unique owner of the
object O, it holds the up to date state of O and it serializes the updates
when concurrent updates to O occurs. When a peer updates an object
whose Conflict Area R is not empty, it sends the update to the coordinator
which resolves the update conflicts among the peers in the Conflict Area.
Then the coordinator sends the state of the updated object to any peer of
its main region. JaDE exploits a timestamp based mechanism to resolve
the conflict among peers trying to activate the same object concurrently
so competing for the acquisition of the coordination of the object.

2.3 Conclusions

All the proposals described in this chapter are characterized by the gen-
eral idea to obtain, for each peer, the maximum degree of consistency in the
portion of DV E close to it. Furthermore, each protocol is designed to
cope with problems such as the crowding and the persistence of the state
of the DV E.

In SimMud direct links are maintained between neighbors, so trans-
mission latency is reduced (e.g. messages are exchanged directly, not
through intermediate nodes). However, constant exchange of neighbors
list introduces network overhead (if 10 nearest neighbors are kept, one
exchange requires receiving updates of 10x10 nodes). The more seri-
ous problem is keeping the topology fully-connected. Since only a finite
number of nearest neighbors are maintained, groups of users may lose
contact to each other if they are far away each other.

In Solipsis an inconsistent topology may occur during normal opera-
tion occasionally, since an incoming node may be unknown to directly
connected-neighbors, proper neighbors discovery is thus not guaran-

41

teed. In some other cases, proper neighbors discovery could be slow
as it may require a few queries.

In Apolo the restricted direction links make the message transmission
inefficient. A node cannot forward the message to the nearby node even
if there is a link between the two nodes.

In Jade the biggest limitation is the presence of static areas of interest.
One of the main advantage of Jade is the definition of a mechanism for
the management of the persistence of the passive objects and the proto-
cols for to support the concurrent updates of the objects.

The main drawback of Dives is the presence of a set of brokers imple-
menting the publish subscribe support which introduce an indirection
level in the transmission of the events between the peers.

Von is, according to our point of view, the best approach of those in-
troduced in this chapter. However, the approach needs the definition of
proper mechanism for the management of the passive objects, to balance
the load among the peers of the DV E, and for the management of the
persistence of the state.

In the following chapters we will define a scalable approach for the
management of the DV E based on Voronoi tessellations. Our proposal
will extend those presented in the literature in several directions. First
of all, a set of mechanisms to support passive objects management will
be defined. The proposed solution will manage both the consistency
and the persistency of the DV E state by exploiting the properties of
the Voronoi tessellations. We will also propose and evaluate an hybrid
P2P architectures based on Additively Weighted Voronoi graphs (Apollo-
nius graphs)(56), where each peer may have a different role in the P2P
network according to its computational/communication power. This ar-
chitecture will manage an heterogeneous network that includes peers
characterized by different network bandwidth, CPU power and mem-
ory capacity. Moreover, passive objects will be assigned to peers such
that the load for the management of the passive objects is balanced.

42

Chapter 3

Location Aware Reactive
Computations

This chapter presents some formalisms which can be exploited to specify
the behavior of DV E applications. In particular, we will introduce Mo-
bile Unity(67) and Ambient(66). Mobile Unity is an extension of Unity(70)
supporting components location and transient interactions. Ambient pro-
poses a modal logic to describe the structural and computational proper-
ties of distributed and mobile computations. Both formalisms are able to
model locality in the interactions among the components of a distributed
application, which is a basic issues for DV E applications. Furthermore,
the reactive behavior of a peer can be naturally modeled by the reac-
tive statement of Mobile Unity. For these reason, Mobile Unity has been
exploited as a specification formalism for both the heartbeat routing pro-
tocol defined in Chapter 4 and for the protocol for the management of
the passive objects, which has been defined in Chapter 5.

3.1 Ambient

The inspiration for Mobile Ambient(66) comes from the potential for mo-
bile computation over the World Wide Web. The geographic distribution
of the Web introduces the problem of modeling the mobility of compu-

43

tations. There are two distinct areas of interest in mobility: mobile com-
puting, which describe the ability to use technology that is not physically
connected or in remote and mobile environment, and mobile computa-
tion, which concern mobile code that moves between devices (applets,
agents, etc.). Mobile Ambient aims to describe both these aspects of mo-
bility within a single framework that encompasses mobile agents, the
ambients where agents interact and the mobility of the ambients them-
selves. With these motivations, Mobile Ambient adopts a paradigm of mo-
bility where computational ambients are hierarchically structured, where
agents are confined to ambients and where ambients move under the
control of agents.

The main characteristics of an ambient are the following ones:

• An ambient is a bounded place where computation happens. The interest-
ing property here is the existence of a boundary around an ambient.
Examples of ambients, in this sense, are: a web page (bounded by
a file), a virtual address space (bounded by an addressing range),
a Unix file system (bounded within a physical volume), a single
data object (bounded by ’self’) and a laptop (bounded by its case
and data ports). Non-examples are: threads (where the boundary
of what is ’reachable’ is difficult to determine) and logically related
collections of objects. A boundary implies some flexible address-
ing scheme that can denote entities across the boundary. Examples
are symbolic links, Uniform Resource Locators and Remote Proce-
dure Call proxies. Flexible addressing is what enables, or at least
facilitates, mobility.

• An ambient is something that can be nested within other ambients.
For instance, administrative domains are (often) organized hierar-
chically. If we want to move a running application from work to
home, the application must be removed from an enclosing (work)
ambient and inserted in a different enclosing (home) ambient. A
laptop may need a removal pass to leave a workplace, and a gov-
ernment pass to leave or enter a country.

• An ambient is something that can be moved as a whole. If we re-

44

connect a laptop to a different network, all the address spaces and
file systems within it move accordingly and automatically. If we
move an agent from one computer to another, its local data should
move accordingly and automatically.

3.1.1 The Folder Calculus

An ambient can be represented as a folder. A folder confines its contents:
something is either inside or outside any given folder. Each folder has
a name that is written on the folder tag. Folders are naturally nested,
and can be moved from place to place. The computational aspect of the
calculus is represented by assuming that folders are active. In addition
to subfolders, folders may contain entities that cause the folder to move
around, and are moved together with their folder. The folders example
can be used to better explain the textual syntax of Mobile Ambient. As we
can see in the table showed in Figure 18 there is a one-to-one correspon-
dence between textual syntax and visual syntax; therefore, it is possible
to freely mix them, if desired, nesting either one inside the other expres-
sions. As shown in the table, P,Q,R are used to range over ambient and
process expressions, and M,N to range over message expressions. The
creation of a new name is written (νn)P where the Greek letter ν(nu)
binds the name n within the scope P . An ambient is written n[P] where
n is the ambient name, where the brackets denote the ambient boundary,
and where P is the contents of the ambient.

3.1.2 An Example: The Adobe Distiller

Adobe Distiller is a program that converts files form the Postscript for-
mat to Adobe Acrobat one. The program can be set up to work automat-
ically on files that are placed in a special location. In particular, when a
user drops a Postscript file into an inbox folder, the file is converted to
Acrobat format and dropped into a nearby outbox folder. Figure 19 de-
scribes such a behavior. The distiller folder contains the inbox and out-
box folders mentioned above; outbox is initially empty. The input folder
contains the file the user wants to convert, in the form of a message. The

45

Figure 18: Mobile Ambient textual and visual syntax.

46

Figure 19: Adobe Distiller as folders representation.

input folder contains also a gremlin that moves the input folder into the
inbox.

The inbox contains the program necessary to do the format conver-
sion and drop the result into the outbox. First, any input folder arriving
into the inbox must be opened to reveal the Postscript file. This is done
by the copy machine on the left. Then, any such file is read and this
is done by the copy machine on the right. As a result of each read, an
output folder is created to contain a result. Inside each output folder, a
file is distilled (by the external operation distill(x)) and left there as an
output. The output folder is moved into the outbox folder. It should be
noted that the program above represents highly concurrent behavior, ac-
cording to the reduction semantics of the folder calculus. Multiple files
can be dropped into the inbox and can be processed concurrently. The
opening of the input folders and the reading of their contents is done in
a producer-consumer style.

This, instead, is the textual representation of the Adobe Distiller ex-
ample:

47

Distiller[
inbox[

!open input |
!(x) output[.distill(x). | out inbox. in outbox]] |

outbox[]]
|
Input[.”%!PS...”. | in distiller. in inbox]

3.2 Mobile Unity

Mobile Unity (67) is an extension of Unity which provides a programming
notation that captures the notion of mobility and of transient interactions
among mobile nodes and includes an assertion-style proof logic. Code
mobility is defined informally as the capability to dynamically reconfigure
the binding between code fragments and the location where they are exe-
cuted. This reconfiguration may occur in different scenarios. For instance
in an agent based computation, an agent may migrate and be executed on
different physical nodes. On the other hand, even if a computation C is
tied to a single hostH , the environment whereC is executed may change
if H is a mobile device, due to network connections and disconnections.
The Mobile Unity model adheres to the minimalist philosophy of the orig-
inal Unity so that it focuses only on essential abstractions needed to cope
with the presence of mobility. In section 3.3, we will show that the mo-
bility model of Mobile Unity and its notion of locality aware interactions
can be naturally exploited to define the behavior of peers in a DV E. Mo-
bile Unity will be exploited in Chapter 4 to define the heartbeat routing
protocol, and in Chapter 5 to define the protocol for the management of
the DV E passive objects.

3.2.1 Location Aware Computations

Mobile computing systems must operate under conditions of transient
connectivity. Connectivity will depend on the current location of the com-
ponents and therefore location is part of the Mobile Unity model. In Mo-

48

bile Unity, the unit of mobility is a program. Migration is captured by
augmenting the program state with a location attribute, defined by a lo-
cation variable λ, whose change in value is used to represent motion. In
this way, Unity is augmented with an explicit representation of space and
of its properties. Mobile Unity like standard Unity does not constrain nei-
ther the types of programs variables nor the types of the location variable
λ. This variable may define single or multi-dimensional coordinates, it
may model the latitude or the longitude of a physically mobile platform,
or may be a network or memory address for a mobile agent. A program
may have explicit control over its own location by the assignment of a
new value to the variable modeling its location.

For instance, a mobile receiver might contain the following statement

λ := NewLoc(λ)

where the function NewLoc returns its new location, given the previ-
ous one. In general, such an assignment could compute a new location
based on arbitrary portions of the state of the program as well. Even if
the process does not have explicit control over its own location, we can
still model its movement by an internal assignment statement that is oc-
casionally selected for execution.

3.2.2 System specification

This section first review the structure of a standard Unity program, after-
wards the extensions defined by Mobile Unity are introduced.

Unity programs are set of assignments that are selected for execution
in a weakly fair manner, that implies that in an infinite computation each
statement is scheduled for execution infinitely often. Furthermore each
statement is executed atomically.

Figures 20 and 21 show a simple system specified by Unity. The fig-
ures show a sender and a receiver exchanging bit values. We can note
that each program first introduces, in the declare section, the variables it
uses. Note that abstract variable types such as sets and sequences can be
used freely. The initially section may define an initial values for the vari-
ables of the program, if a variable is not referred in this section, its initial

49

program sender
declare
bit : boolean

initially
bit = 0

assign
bit := 0

� bit := 1
end

Figure 20: The Sender

program receiver
declare
bit : boolean

� history : sequence of boolean
initially
bit = 0

� history = ε
assign
history := history ∗ bit

end

Figure 21: The Receiver

value is a default value defined only by its type. The core of a Unity pro-
gram is the assign section which consists of a set of atomic assignment
statements.

The assignment in these programs are single assignment statements,
but, in general, several right hand expressions may be atomically as-
signed to several left hand variables. In this case all the right hand
expressions are evaluated in the current state before any assignment to
variables is made. The basic execution mechanism of Unity is a nonde-
terministic fair interleaving of the assignment statements. Each statement
produces an atomic transformation of the program state. At each compu-
tation step, one statement is selected for the execution and the program

50

state is atomically modified according to this statement. Fairness is guar-
anteed, that is no statement is excluded from selection forever.

Unity introduces a static composition mechanism, defined by the oper-
ator �, to construct a new system from several program units. For in-
stance sender�receiver is a system including the union of the program
variables of sender and of receiver, where the variables with the same
name refer to the same physical memory location, the union of the as-
signment statements of the two program units and the intersection of the
initial conditions. The resulting assignments are executed according a
fair atomic interleaving.

Note that the variable bit, which is defined both in the sender and in
the receiver, is the shared medium exploited for their interaction. The
sender writes an infinite sequence of 0 and 1 to this variable, while the
receiver occasionally reads a value from this variable.

If the two programs sender and receiver represent mobile component,
or software running on mobile hardware, then it is not appropriate to
represent the resulting system by a static composition of the sender and
the receiver. Composition by standard Unity union prohibits dynamic
reconfiguration and disconnection of the components that characterize
the mobile computing systems. For instance, in standard Unity, the vari-
able bit is shared between the sender and the receiver during the entire
execution, thus inhibiting disconnections and reconnections.

Mobile Unity instead ensures the isolation of the namespaces of the in-
dividual processes, and assumes that variables that are associated with
distinct programs are distinct even if they have the same name. For ex-
ample the variable bit in the sender is no longer shared with the variable
bit in the receiver, they are distinct variables and can be specified by pre-
fixing the name of the component in which they appear to their name,
for instance sender.bit or receiver.bit.

Figure 22 illustrates the structure of the sender receiver system spec-
ification in Mobile Unity. To start we find the system name declaration,
then a set of programs, for instance the two programs explained above,
with the addiction of the program variable λ, which stands for the cur-
rent location of the program. The two programs are here type declara-

51

System sender-receiver
program sender at λ
...
end
program receiver at λ

...
end
Components

receiver at λ0

� sender at λ0

Interactions
...

end

Figure 22: System specification in Mobile Unity.

tions instantiated in the Components section.
The Interaction Section defines a set of transient interactions among pro-

gram instances. These interactions should be context dependent, i.e. they
should occur only when certain conditions are verified. Suppose, for
instance, that the sender and the receiver can only communicate when
they are at the same location. In this case the Interaction section should
include the following statement

receiver.bit := sender.bit when receiver.λ = sender.λ

The statement copies the value of sender.bit to receiver.bit when the
two program units are at the same location.

Finally note that Mobile Unity extends the set of constructs of standard
Unity by the following constructs:

• Transactions: provide a form of sequential execution. They con-
sist of sequences of assignment statements which must be sched-
uled in the specified order with no other statements interleaved
in between. The assignment statements of standard Unity may be
viewed as singleton transactions.

52

• Inhibitors: provide a mechanism for strengthening the guard of an
existing statement without modifying the original. This construct
permits us to simulate the effect of redefining the scheduling mech-
anism so as to avoid executing certain statements when their exe-
cution may be deemed undesirable.

• Reactive statements: provide a mechanism for extending the effect
of individual assignment statements with an arbitrary terminating
computation. Since these statements have been widely exploited
for the specification of our protocols, they will be described in the
following section in more details.

3.2.3 Reactive Statements

A construct unique to Mobile Unity is the reactive statement which pro-
vides a mechanism for extending the effect of individual assignment
statements with an arbitrary terminating computation. The syntax of an
assignment statement is the following:

s reacts-to p

where s is an assignment which is extended by the reaction clause p,
where p is an arbitrary predicate. The informal semantics of a reactive
statement is that any assignment A which makes the predicate p true
triggers a set of reactions, i.e. all the assignment guarded by the clause
p must be executed. Operationally, we can think of each assignment in
a Mobile Unity program as being extended with the execution of all trig-
gered reactions up to such point that no further state changes are pos-
sible by executing reactive statement alone. More formally, the set of
reactive statements forms a program that is executed to fixed point after
each atomic state change by the assignment of the program. Clearly this
program must be terminating.

It is worth noticing that both event driven computations and inter-
rupt processing mechanisms can be easily modeled by MobileUnity.

Figure 23 shows a program exploiting the reacts-to construct. It con-
sists of two non-reactive statements (one of which is a transaction in-

53

program simple-example
declare

x,debug : integer
initially

x = 0
� debug = 0

assign
s :: x := x+ 1
� t :: 〈x := x+ 1;x := x− 1〉
� inhibit s when x ≥ 15
� debug := x reacts-to x > 15

end

Figure 23: React-to example

cluding the sequence of statements between the angle brackets), one in-
hibiting clause, and one reactive statement. The statement s increments
x by one. The statement t is a transaction consisting of two substate-
ments. The first increments x by one. The second decrements x by one.
The programmer might add the inhibiting clause to prevent x from be-
ing incremented past 15. This prevents statement s from performing this
action, but the statement t may still execute and temporarily increase x
to 16. In this case, the reactive predicate becomes true, the reaction is
immediately triggered and the assignment of x to the variable debug is
executed.

Reactive statement can be exploited to model reactive interactions in
the Interaction section. Consider again the program shown in Figure 22
and suppose that the Interaction section includes the following statement

receiver.bit := sender.bit when receiver.λ = sender.λ

This statement is considered as an additional program statement which
is executed in interleaved fashion with other program statements. This
does not guarantee that each value written in the bit variable by the
sender is received by the receiver. To guarantee that each value writ-
ten to the value bit by the sender is received by the receiver when they

54

are at the same location, the following statement can be exploited

receiver.bit := sender.bit reacts-to receiver.λ = sender.λ

The reactive statement is scheduled for the execution as soon as the
two program unit are at the same location. Note that the reactive state-
ments can be treated as higher priority statements and that all reactive
statements have the same priority.

3.3 Modelling DVE by Mobile Unity

As shown in the previous sections, Mobile Unity has been introduced
mainly to describe mobile computations. The location variable λ may
be exploited to define the location of a program unit, for instance the IP
address of the host where the program is currently executed. Interactions
among program unit may be location aware, that is they may occur only
if the locations of the interacting programs satisfy some relation.

These characteristics are exactly those which are needed to model the
behavior of peers in a DV E application. As a matter of fact, there is
nothing in the model that precludes a more abstract view of space. In
our case we can exploit the location variable λ to define the position of
the peer in the virtual space and the new value of λ is assigned according
to the mobility model defined by the DV E application.

The time is a very important aspect of a DVE because of its real-time
nature. On the contrary of Mobile Ambient model, Mobile Unity, al-
lows, in a simple way, to model the concept of time (with an incremental
counter) and then to specify and manage the real-time actions among
peers trough the react-to statement.

Note also that the interactions among the peers of the DV E are loca-
tion aware, for instance a peer sends an heartbeat to the peers which are
located in its Area of Interest. These interaction can be modeled by a set of
clause in the Interaction section of Mobile Unity, where each interaction
may be guarded by a predicate defining a relation between the positions
of the interacting peers.

55

Finally, the events characterizing our protocols may be naturally cap-
tured by the reactive statements of Mobile Unity, For instance, as we will
see in the following, a reactive statement could be useful to model the
routing protocol for the propagation of the heartbeats among the peers.
For instance, the transmission of an heartbeat executed by a peer P may
cause the triggering of a set of reaction corresponding to the reception/
forwarding of the heartbeat by the peers belonging to the Area of Interest
of P .

Then the react-to statement of Mobile Unity allows to model the event-
driven interaction of a DVE in a more natural way than Mobile Ambient
does.

56

Chapter 4

Voronoi Based Overlays for
DVE

4.1 Introduction

The definition of a scalable communication support is a basic issue for the
wide diffusion of DVEs. Several proposals exploit the concept of Area of
Interest, AOI (1; 57), to define a scalable communication support. The
implementation of the AOI concept requires the definition of a highly dy-
namic P2P overlay. This chapter presents our solution for the definition of
a dynamic overlay network for P2P DVEs. The chapter first introduces the
mathematical concepts upon which this solution is based, then a strat-
egy for the definition of the dynamic overlay and a routing strategy for
heartbeats propagation is defined. Finally, a set of experimental results
are presented.

Section 4.2 introduces the general strategy we exploit to define the
concept of Area of Interest and the problems related to particular situa-
tions which may occur in a DV E, like crowding scenarios. Section 4.3
introduces Voronoi diagrams and defines the mathematical structures
which are exploited in our approach, while Section 4.5 shows how the
P2P overlay may be defined by exploiting Voronoi Tessellations and the
corresponding concept of Delaunay graph. Section 4.4 introduces Compass

57

Routing, a routing strategy defined in (69) for general Delaunay networks,
while Section 4.4.1 shows that Compass Routing can be exploited to route
heartbeats within a constrained area like the Area of Interest of a peer. The
routing strategy we propose is introduced in Section 4.5 which includes
a formal specification of the routing based on the Mobile Unity frame-
work introduced in chapter 3. Section 4.6 includes considerations about
overlay partitioning. Finally Section 4.7 shows a set of experimental re-
sults resulting from a set of simulations developed through PeerSim and
a prototype developed on the GRID5000 platform, in this section will be
introduced a new mobility model to test the behavior of the overlay un-
der more realistic assumptions.

4.2 Improving DVE Scalability by Areas of In-
terest

The Area of Interest, AOI, of a player P is a region of the virtual world sur-
rounding P and such that P is aware only of other players and passive
objects located in this area. Each peer generally notifies its position to the
others ones located in its AOI with a high temporal frequency (up to 5
times per second). This message is generally referred (52; 53) as heartbeat.

Each peer may propagate within itsAOI other events as well, like ac-
tions executed by the corresponding avatar or updates to passive objects.
However these events are less critical, since they occur less frequently.

As discussed in Chapter 2, several proposals exploit the concept of
Area of Interest to define a scalable communication support (1; 57) for the
DVE. As a matter of fact, the AOI reduces the number of communications
within the DV E since each event e is notified only to peers which are
interested in e.

The implementation of the AOI concept requires that a peer P dy-
namically defines a set of connections with all the peers located in its
AOI or with a subset of these peers. In the first case, the heartbeats are
directly sent from P to the other ones, while in the latter case, an AOI-
cast mechanism should be defined, i.e. a routing strategy to propagate
the heartbeat to all the peers located in the AOI. In both cases, the over-

58

Figure 24: DVE Scenarios

lay changes over time because, due to the movement of the peer, new
peers may enter its AOI, while others may leave it. Furthermore, a set
of mechanisms should be defined to guarantee the connectivity of the
overlay when the DVE is scarcely populated, i.e. the AOI of the peers are
empty.

Note that even if the AOI increases the scalability of DVE, it may be
not enough when a crowding scenario occurs. In a crowding scenario,
like that shown in the right part of Figure 24, an high number of avatars
is located within a small virtual space. Figure 24 compares a crowded
scenario (shown in the right part) vs. a not crowded one (shown in the
left part).

Different crowding scenario may occur in a DV E.

• Battle Crowding. In player vs. player (PVP) MMOGS, a large amount
of avatar may meet in a DV E region to fight a virtual battle. In this
situation the speed of the avatars is generally high, hence their in-
teraction pattern changes very frequently. While interactions among
avatars are very frequent, interaction between the avatars and the
passive objects of the virtual world are less frequent.

• City Crowding. In a DV E virtual city, avatars generally gather in
order to carry out some social activity, like buying objects, eating
or drinking and so on. As a consequence, the interactions with
passive objects are very frequent, and the speed of the avatars is

59

generally low.

Any proposal must handle crowding in a very scalable way to be
eligible to support a real-time DV E. The concept of AOI may not suffice
to define a scalable communication, since the amount of peers in the AOI
may be too high when a crowding scenario occurs.

Two different approaches may be exploited in this case. One (1) is
based on the definition of a set of direct links between a peer and any
other one in its AOI . This solution minimizes the latency because it avoids
a large amount of routing hops for the propagation of the heartbeats
within the crowded AOI. Its main drawback is that it increases the num-
ber of connections of each peer because, in a crowding scenario like the
ones previously described, a peer should manage a large number of con-
nections, since a large amount of peers are located in its AOI . The ap-
proach of dynamically enlarging or shrinking the size of the AOI (1) ac-
cording to the bandwidth of the peers is not fair, because the size of the
AOI depends upon the semantics of the application and players with a
larger AOI could be favored.

An alternative approach is the definition of an AOI-cast mechanism
(52), i.e. an application level multicast constrained within the boundary
of the area of interest. In this case each peer P is connected to a subset
of the peers belonging to its AOI (for instance the nearest ones) and any
event is sent to these peers only. A suitable routing mechanism should
then be defined to propagate any event to each peer located in the AOI
of P . The simplest approach is based on flooding, i.e. each peer receiv-
ing a notification should propagate it to all its neighbors. This approach
generates a large amount of redundant messages and presents evident
scalability problems. A more refined approach is based on the definition
of a proper routing mechanism which dynamically computes a spanning
tree including all the peers of the AOI and then exploits these links to
notify the heartbeats to the peer of the AOI. Both solutions are based on
forwarding, i.e. any heartbeat is routed to the peers in the AOI through a
sequence of intermediate peers.

The main advantage of this approach is that the number of connec-
tions which must be managed by each peer is reduced with respect to

60

previous solution. An obvious drawback is the high latency in the de-
livery of an event, especially in crowding scenarios. In this case several
routing hops may be required to notify an event due to the large amount
of peers located in the AOI. The resulting latency may be not tolerable in
a MMOG and may compromise the interactivity of the application.

In the following, we will propose an intermediate solution, which de-
fines direct connections between a peer P and a subset of the peers in
its AOI, i.e. the peers nearer to P , and exploits forwarding to reach any
other peer of the AOI. Our solution is based on the definition of a Voronoi
based overlay and of a routing algorithm which exploits the mathematical
properties of the corresponding Delaunay Triangulation. The following
sections will describe our approach in more detail.

4.3 Mathematical Definitions

4.3.1 Voronoi Diagrams and Delaunay Triangulations

In this section we introduce the mathematical concepts required by our
approach.

A Voronoi diagram, (56) also referred as Voronoi tessellation, is a special
kind of decomposition of a metric space determined by the distances of
the points of the spaces to a specified discrete set of objects in the space,
i.e. the sites.

Let us denote the Euclidean distance between two points p and q by
dist(p,q).

Definition 1 Let S = {s1, s2, ..., sn} be a set of n distinct points in the plane,
i.e. the sites. The V oronoiDiagram of S is a partition of the plane into n cells,
one for each site in S, such that the point q belongs to the cell corresponding to
a site si if and only if dist(q, si) < dist(q, sj)∀sj ∈ S, i 6= j.

In the following, we will denote the Voronoi Diagram of S by V or(S)
and the cell corresponding to a site si by V (si). The left side of Fig. 25
shows the Voronoi Tessellation defined by the set of sites represented
by black dots. Each colored region represents V (si), where si is the site
corresponding to the black dot belonging to the region.

61

In a Voronoi based DV E model, the sites correspond to the peers and
the DV E is partitioned among the peers according to the Voronoi tessel-
lation.

This decomposition is motivated by the following reasons

• this decomposition naturally defines an assignment of the passive
objects to the peers. Each passive object O is assigned to the peer P
such that O is located in V (P). The management of passive objects
will be discussed in chapter 5.

• the dual structure of the Voronoi Tessellation, i.e. the Delaunay Trian-
gulation is exploited to define the overlay P2P network.

Figure 25: A Voronoi diagram and a Delaunay Triangulation

A Delaunay Triangulation is a mathematical structure dual with respect
to the Voronoi Tessellation.

Definition 2 A Delaunay triangulation Dt(P) for a set P of sites in the plane
is a triangulation, i.e. a partition of the plane into a set of triangles, such that
the circumcircle of any triangle in Dt(P) is empty, i.e. it does not include any
other point in P .

The right side of Figure 25, shows the delaunay triangulation for a
given set of points and the circumcircles corresponding to the triangles.

62

Given a set of n sites S = {s1, s2, ..., sn} of the plane, the Delaunay
triangulation is the dual structure of the Voronoi diagram, where the sites
correspond to the vertexes of the triangles, and an edge of a triangle con-
nects two vertexes s1, s2 if and only if V (s1) and V (s2) share a common
edge, i.e. s1 and s2 are Voronoi neighbors.

Figure 26 shows a Delaunay Triangulation on the top of s Voronoi di-
agram, where the borders of the Voronoi regions are shown by dotted
lines and the corresponding Delaunay Triangulation links are shown by
continuous lines.

Figure 26: A Delaunay triangulation on top of a Voronoi diagram

A Delaunay Triangulation is characterized by several interesting prop-
erties.

• Local equiangularity for any pair of triangles whose union is a con-
vex quadrilateral, the replacement of their common edge by the
alternative diagonal does not increase the minimum of the six inte-
rior angles of the triangles.

• No Delaunay Triangulation exists for a set of points on the same line

• The Delaunay Triangulation defined on a set of sites S={s1, ..., si, ...sn}
always includes the convex hull of S.

63

• For 4 points on the same circle (e.g., the vertexes of a rectangle)
the Delaunay triangulation is not unique: clearly, the two possible
triangulations that split the quadrangle into two triangles satisfy
the Delaunay condition.

• Convex hull: The union of all the triangles of the triangulation is
the convex hull of the points, i.e. the exterior face of the Delaunay
triangulation is the convex hull of the set of points.

4.3.2 Edge Flipping

Edge Flipping is an incremental construction algorithm for Delaunay graph
proposed by (69). The algorithm can be exploited to define an incremen-
tal construction procedure for Delaunay Networks.

Given a Delaunay Triangulation D, a new site s is added to D by in-
serting it in a triangle T of D and by linking s to the three vertexes of T .
Then the flipping procedure is exploited to correct triangles which do not
satisfy the empty circle property.

Given a set of sites S={s1, ...sn}, the algorithm starts from any trian-
gulation T of S and then locally optimizes each edge in order to obtain
a Delaunay Triangulation. Let e be an internal (non convex hull) edge of
T and Qe be the quadrilateral formed by the triangles sharing e. Qe is
reversed by flipping its diagonal if the two angles without the diagonal
sum to more than 180◦ or equivalently if the circumcircles of the two
triangles contain the opposite vertex. If Qe is reversed, it is flipped by
exchanging e for the other diagonal.

Figure 27 shows an example of the edge flipping procedure.

In (i) the new site pi is inserted into the triangle sqr. In (ii) the new
edge connecting pi to q, r and s has been added, and the edge qr of the
quadrilater pi q, r t has already been flipped. Two more flips are neces-
sary before the final state shown in (iii) is reached.

64

Figure 27: The Edge Flipping Procedure

4.4 Compass Routing on Delaunay Networks

As discussed in Section 4.2, a solution based on the routing of any event
generated by a peer P to all the peers located in its AOI may be feasi-
ble when crowding does not occur. In a crowding scenario, direct con-
nections between a peer and the other ones in its AOI should be pre-
ferred. Anyway, the number of direct connections may be too large for
low bandwidth peer and an intermediate solution exploiting direct links
with closer peers and routing to reach the farthest ones may be required.

Therefore, the definition of a proper AOI-cast mechanism defining a
routing strategy to spread message within the AOI is mandatory. The def-
inition of an efficient AOI-cast mechanism is fundamental in our case,
especially un case of crowding. For instance. a solution based on flood-
ing is not practical, because of the large amount of messages exchanged
through the overlay.

This section describes compass routing (59)(60), a routing algorithm
which exploits the properties of Delaunay Triangulations to minimize the
information required at each routing step.

Compass routing has been introduced in (60) for generic geometric
graphs and is based upon the following observation. Consider a con-
nected graph G and assume of being located at a node n of G with the
goal to reach a destination node d. (60) shows that the best strategy looks

65

Figure 28: Compass Routing.

at the edges incident in n and chooses the edge whose slope is minimal
with respect to the segment connecting n and d. Consider, for instance,
Figure 28 and suppose to be located at A with target R. The best way
to reach the target R is to pass through B, because the angle ∠RAB is
smaller than the ∠RAC.

(60) shows that while compass routing is not cycle free for general
graphs, it can always find a finite path between two nodes of a Delau-
nay Triangulation.

The original formulation of Compass Routing makes it possible to dis-
cover a path from a node n toward a root node r. (69) suggests to exploit
compass routing to implement a multicast routing algorithm on a Delau-
nay based Overlay. The basic idea is to define a Spanning Tree rooted at
any node R of the overlay and spanning the Delaunay links by revers-
ing the path which compass routing computes from any node to R. In
our case, the root R of the multicast tree is the node which generates the
heartbeat and the tree includes all the peers belonging to the AOI of P .
It is worth noticing that no algorithm for the construction of the multi-

66

Figure 29: Compass Routing: Computation of the Spanning Tree

cast spanning tree is defined in (69). In this section we present a novel
algorithm, based on compass routing, whose goal is the definition of a
multicast spanning tree on Delaunay Networks. The algorithm dynami-
cally builds the spanning tree, starting from the root and will be exploited
to define a proper AOI-cast strategy to propagate events generated by a
peer P to its AOI-neighbors.

A simple algorithm, based upon the original definition of compass
routing, requires a node n to know, not only its Voronoi neighbors, but
also those that are distant two Voronoi hops, i.e. the neighbors of its
Voronoi neighbors. As a matter of fact, since n is the parent of a node
v in the tree iff v chooses n as its parent by compass routing, n must be
aware of the position of all the neighbors of v to compute the reverse
path. The problem of building a spanning tree in a fully distributed P2P
environment, is mainly due to the limited information available at each
node. As a matter of fact, each node cannot make any assumption about
the structure of the entire overlay and may rely on the knowledge of its
Voronoi neighbors only.

67

This simple solution can be improved by considering a basic prop-
erty of the Delaunay triangulation. We recall that any Delaunay Triangu-
lation satisfy the empty circle condition which states that the circumcircle
of each triangle belonging to the triangulation is empty, i.e. it does not
contain vertexes besides those that define it. Consider now the Voronoi
Diagram and the corresponding Delaunay Triangulation in Fig.29. Let us
suppose that R is the peer generating the heartbeat, i.e. the root of the
spanning tree and let us consider nodeAwhich receives the heartbeat di-
rectly from the root. A should decide whether it is the parent of nodeD in
the spanning tree. A may apply compass routing by considering only the
triangles ABD and ACD and by comparing only the slopes of the edges
AD, BD, and DC with respect to the segment RD. As a matter of fact,
the empty circle property guarantees that other edges incident in D can-
not intersect these triangles, hence their slope with respect to the segment
RD is larger. Hence, A is the parent of D iff the angle ∠ADR is smaller
than∠BDR and∠CDR. Therefore our approach requires that each node
knows its own coordinates, the coordinates of its Voronoi neighbors and
those of the root of the spanning tree to determine its children in the tree.
This minimizes the amount of information to implement compass routing
and the number of messages exchanged through the overlay. For this
reason, our approach is more scalable with respect to (61) that requires
a larger amount of information. In Sect. 4.4.2 we will introduce a novel
algorithm based on this approach.

4.4.1 Compass Routing in Constrained Regions

In the previous sections we have described a compass routing based
strategy to compute a spanning tree covering all the nodes belonging to a
given Delaunay graph. On the other hand, since our goal is the definition
of an AOI cast mechanism, we should define a spanning tree including
a subset of the Delaunay nodes of the DV E, i.e. the nodes corresponding
to the peers belonging to the AOI of a peer. In the following we will use
the term node and peer as synonymous.

Let us now consider R a 2D region including a set S of n sites and

68

let Dt(S) be a Delaunay Triangulation of S. Let us consider a subregion
C of R. We consider the graph G(C)including the nodes of the Dt(W)
belonging to C and the subset of Delaunay links including only the links
of Dt(S) such that their end points both belong to C.

Note that compass routing should consider a set of nodes located out-
side G(C) to define a spanning tree rooted at one of the nodes in C and
covering all the nodes in C when:

• G(C) is not connected

• G(C) is not a Delaunay triangulation

Consider, for instance, Fig.30, where C is a rectangular region is de-
fined upon a Delaunay Triangulation. Let us suppose that node a corre-
sponds to a peer and that the rectangular region corresponds to the Area
of Interest of the peer. No path between a and c including only nodes in
the G(C) does exist. Therefore, compass routing should compute a path
from a to c including node b which is located outside G(C).

Figure 30: A Rectangular Region

Consider now Fig. 31 which shows a circular region C centered at the
peer A. This region represents the AOI of A. G(C) includes the nodes A,
B, D, E, F , but not the node C. Hence the Delaunay edges represented

69

Figure 31: An AOI-graph

by dashed lines do not belong to G(C), since one of their end points, i.e.
C, does not belong to C. G(C) is not a Delaunay Triangulation because it
does not include the convex hull of its nodes.

In our case, it is interesting to evaluate the number of external Delau-
nay links which must be evaluated, because each of these links implies a
routing hops so introducing a further latency in the delivery of an heart-
beat.

The following results show that a spanning tree including all and only
the nodes of the AOI may be computed by compass routing when the
AOI has a circular shape. Hence, no hop outside the AOI is required in
this case and latency is not increased.

We will first show that the graph G(C) corresponding to a circular
region is always connected.

Theorem 1 Let Dt(R) be a Delaunay triangulation defined on a set of nodes
belonging to the 2-dimensional space R. If C is circular shaped subregion of R,
then G(C) is connected.

70

Figure 32: A Delaunay Triangulation Including a Single Triangle

Proof
We prove this property by induction. As base of the induction, con-

sider a Delaunay Triangulation including a single triangle T such that T
⋂

C 6= 0. In this case, either T ⊂ C, or a single vertex/edge of T ∈ C. In
both cases, G(C) is connected, as shown in Fig.32.

First we show that Edge Flipping may not replace a link of Dt(R)
whose end points both belongs to C by another one whose end points
are both located outside C. The proof is given by contradiction. Con-
sider Fig. 33 and suppose that the edge(si,sj) whose end points are both
located in C is replaced by the link (sk, st) whose end points are both lo-
cated outside C. The secant sk, st partitions C into two circle segments,
Ci, which includes si and Cj , which includes sj . Let us consider the cir-
cumcircle Circ of the triangle sk, si st. The intersection points between
C and Circ are A and B and, since two circumferences may intersect
at most at two points, Cj⊂Circ. Hence sj ∈ Circ and the empty circle
property does not hold which brings to the contradiction.

Let us now consider a Delaunay triangulation Dt(R) including n tri-
angles such that G(C) is connected. Let us insert a further node P inside
the triangle T of Dt(R) and consider the Delaunay triangulation Dt′(R)
obtained by applying the Edge Flipping procedure to the new triangles ob-
tained by connecting P to the vertexes of T . We have to prove thatG′(C),
i.e. the graph including the sites of Dt′(R) belonging to C, is connected.

We consider three cases. If P /∈ C, the edge flipping procedure may
flip some side of new triangles defined inside T , but previous argument
shows that no links whose end points both belong to C is flipped by one

71

Figure 33: Intersection Between AOI and the Circumcircle of a Triangle

whose end points are both outside C: In the second case, p∈C and T has
at least an end point n ∈ C, then p is connected to n and this link cannot
be replaced by edge flipping. The last case, which is shown in Fig.34,
no vertex of T ∈ C. Since P is connected to the vertexes of T which
are located outside C, no connection is initially defined between P and
other vertexes belonging to C. In this case the union of the circumcircles
of the new triangles defined within T and having a vertex in P cover
C. Consider, for instance, Fig.34. P is the new vertex included in the
triangle ABC. It is easy to prove that the circumcircles of the triangles
APB, PAC, PBC cover C. Hence, if C includes at least a further ver-
tex, the links connecting P to the vertexes of T will be flipped until P is
connected to a vertex inside C. In conclusion, if the link ni, nj of G(C)
is flipped the new link will have at least one end point e ∈ C and ni, nj

72

Figure 34: Inserting a Node in a triangle whose vertexes are external to the
circumference

will be connected to e. This implies that any path passing through ni, nj

in G(C) may be replaced by the path ni, e, nj in G′(C), hence G′(C) is
connected. �

This result guarantees that it is possible to define a spanning tree cov-
ering all and only the nodes belonging to a circular shaped AOI. On the
other way, it is still possible that the spanning tree computed by compass
routing is not minimal, i.e. it includes some nodes located outside the
AOI . Let us consider, for instance the rectangular AOI R shown in Fig.
30. While G(R) is connected, compass routing chooses the node a which
is located outside the AOI as parent of node b.

The following theorem shows that if we consider a circular region R
centered at the node n, then compass routing may compute a spanning
tree rooted at n and including all and only the nodes belonging to R.

Theorem 2 LetDt(S) be a Delaunay Triangulation defined by a set S of sites
belonging to a 2D space W . If R is a circular subregion of W centered at the
node s∈ S, compass routing is able to compute a spanning tree rooted at s and
including all and only the sites of S ∈ R.

Proof: (60) shows that compass routing decreases at each step the
distance to the target node. Since the construction of the spanning tree
reverses any path computed by compass routing, the distance from s

increases at each step. Consider a site p /∈ R. Since the distance of p

73

from the root s is larger than the radius of R, p cannot be the parent of a
peer q ∈ R, otherwise the distance from the root s should decrease when
passing from p to q. �

On the other hand, the theorem may be not valid for different shaped
area of interest. As shown in (58), if rectangular or squared areas are con-
sidered, some path of the spanning tree may zig zag around the borders
of the considered region.

Previous results guarantee that the algorithm introduced in Sect.4.4
is valid when considering a circular region centered at the peer. Further-
more, the last theorem suggests that any peer belonging to the AOI of
a peer P should consider, in the angle evaluation phase of the spanning
tree construction, its Voronoi neighbors belonging to the AOI of P only.
As a matter of fact, peers located outside the AOI cannot belong to the
spanning tree and should not be considered.

4.4.2 A Distributed Algorithm for the Spanning Tree Con-
struction

This section defines a distributed algorithm to compute a spanning tree
within a circular region R which is a subset of a 2d region. The algorithm
exploits the properties proved in the previous sections.

The AOI-cast strategy defined on the P2P overlay which enables a
peer of the DV E to propagate an heartbeat within its AOI is based on
this algorithm. This strategy will be presented in Section 4.5.

Let us suppose that a spanning tree rooted at r has to be computed. r
first sends to its Voronoi neighbors through the Delaunay links a message
including its coordinates. Each neighbor receiving the message should
determine its children in the spanning tree with respect to r and forward
them the message received form r. The procedure is recursively executed
by each node receiving the message until the borders of R are reached.

Our goal is to define an algorithm to determine the children of a node
in the spanning tree which requires a minimal knowledge of the struc-
ture of the overlay, i.e. the knowledge of the Voronoi neighbors of a given
node only. Furthermore, the algorithm requires a minimal set of func-

74

tionality to manage the Voronoi tessellation. In our case, we only require
the existence of a support able to return the Voronoi neighbors of a given
node. This function is present in any package supporting Voronoi Dia-
grams, while more complex functionality, for instance functions for the
management of Delaunay triangulations are not always available.

The algorithm requires the sequential execution of the following steps:

• Neighbors Sorting

• Children Detection

In the Neighbors Sorting phase, n sorts its Voronoi neighbors according
to a counter-clockwise ordering. This ordering is then exploited in the
Children Detection phase when each neighbor v of n is considered to de-
tect if it is a child of n in the spanning tree. This phase requires that the
vertexes of the Delaunay triangles sharing the link l connecting n to v

are detected. The nodes s and p corresponding to these vertexes are both
neighbor of n and of v and should be considered in the angles evalua-
tion phase. As a matter of fact, the compass based construction of the
spanning tree introduced in Section 4.4 computes the vectors connecting
v to n, s, p and compares the angle between each of these vector and
the straight line connecting v to the root. The node corresponding to the
smallest angle is the father of v in the spanning tree.

If l is an internal link of the Delaunay triangulation, i.e. if l do not
belong to the convex hull or the nodes, p, r.s. s is the node that precedes,
r.s. follows v in the counter clockwise ordering.

Consider, for instance, Fig.35 where the neighbors of nodeA are num-
bered according to the counter clockwise ordering, starting from the small-
est one which is A1. To detect if A4 is a child of A, nodes A1, rs. A3, i.e.
the predecessor, r.s. the successor ofA4 in the counter clockwise ordering
are considered.

This procedure is not valid when l belongs to the convex hull of the
set of nodes since l is an external link of the triangulation and it belongs
to a single triangle. In this case a single node, i.e.the predecessor,r.s. the
successor of v in the counter-clockwise ordering should be considered.

75

Consider for instance the Delaunay link l between nodes B and node
B1 in Fig.35. Since this link belongs to the convex hull,B should consider
only node B5 when deciding whether B1 is its child. Note also that B2

is not a Voronoi neighbor of B1, even if it follows B1 in the counter-
clockwise ordering.

Figure 35: Sorting the Voronoi Neighbors

As a consequence, a triangle defined by n and a pair of consecutive
nodes p and s in the counter clockwise ordering of its neighbor may not
belongs to the Delaunay triangulation. Following conditions may be ex-
ploited to detect if the triangle pns does not belong to the Delaunay tri-
angulation.

• the straight line which connects p and s intersects at least one of
the links connecting n and the predecessor of p or n and the succes-
sor of s. This implies that the line connecting p and s cannot be a
Delaunay edge.

• the triangle defined by vertexes p, n and s includes at least a node
between the predecessor of p and the successor of t. This implies
that the triangle does not belong to the Delaunay triangulation.

76

Figure 36: Delaunay Triangle Test: First Condition

Figure 36 shows that the line from node B to node C intersects at
least a link from A to a a node that is predecessor of B and successor of
A. Note that B and C are consecutive in the counter-clockwise ordering,
but they are not Voronoi neighbors, because their Voronoi are intersects
the border of the 2d region.

Figure 37 shows that the triangleBAC includes the nodeE and hence
cannot be a Delaunay triangle.

It is worth noticing that a simple test checking if a pair of neighbor of
n are Voronoi neighbors themselves cannot replace previous conditions.
Consider for instance Fig.38. Even if nodeB andD are Voronoi neighbor,
A should consider only node C when evaluating if node D is its child in
the tree. Note also that this implies that two neighbors of a node n which
are neighbors themselves are not necessarily contiguous in the counter-
clockwise ordering.

Let us now define the algorithms exploited to implement the Neigh-
bors Sorting, and the Children Detection phase.

To define the counter clockwise ordering, we define in the 2d space
a coordinate system whose origin is at n with unit vectors

−→
i and

−→
j . A

counter-clockwise ordering of the neighbors of n is defined by consid-

77

Figure 37: Delaunay Triangle Test: Second Condition

ering the angles between
−→
j and the vector connecting n to each of its

Voronoi neighbors v. We consider the convex angle a between n and v if
the x-coordinate of v is negative, otherwise the angle obtained by adding
up π to the supplementary of a is considered.

The function compareneighbors(n, a, b), shown in Fig.39, takes as in-
put the coordinates of a pair of neighbors, a and b, of node n and returns
the smallest one with respect to the ordering. The coordinates are re-
ferred to the coordinate system whose origin is at n.

The algorithm first checks if the neighbors have opposite x-coordinates
and, in this case, the neighbor with the negative x-coordinate is the small-
est one. Otherwise, the convex angles α, r.s. β between

−→
j and −→na , r.s.

−→
j and

−→
nb are computed. If the x-coordinate of both a and b are negative

the smallest neighbor is the one corresponding to the smallest angle, the
other way round if both a and b have a positive x-coordinate.

The Children Detection phase determines the children of a node n in
the spanning tree. As shown in Section 4.4, compass routing chooses the
next node toward a target node d by detecting the neighbor with the
minimal slope with respect to the straight line connecting to n to d. As
shown in Section 4.4, the spanning tree may be computed by reversing
this procedure.

The function SpanningTreeChildren(r, n, i) described in Fig. 40 im-

78

Figure 38: Delaunay Links and Voronoi Neighbors

plements the Children Detection phase. The function takes as input the
coordinates of the root of the spanning tree, those of n and the index i,
of the i-th Voronoi neighbor of n according to the counter-clockwise or-
dering of the neighbors. The function returns true iff the i-th Voronoi
Neighbor of n is a child of n in the spanning tree rooted at r.

Since (69) the distance from the target decreases at each step of com-
pass routing, in our case the distance from the root should increase at
each step, since compass routing is reversed. For this reason
SpanningTreeChildren (r, n, i) first checks if vi is farthest from the root
of the spanning tree with respect to n. If this is not true, vi cannot be a
children of n and the function returns a false value, otherwise the func-
tion executes the angle evaluation phase. The function
Delaunay triangle(n, vi, vj), where vj is the predecessor or the succes-
sor of vi in the counter-clockwise ordering, checks if the triangle defined
by the three nodes belongs to the Delaunay triangulation. This check
exploits the functions previously defined. For each valid triangle, the
function executes the angle evaluation phase.

Figure 41 shows the results of the angle evaluation phase. In the fig-
ure the root R sends a message to all its neighbors. Among these, n re-
ceives the message and decides that v3 is one of its child in the spanning

79

compareneighbours(n, a, b) :
if (ax × bx) < 0

if ax < 0 return a else return b
else

α = arccos(ay)/
√
a2

x + a2
y

β = arccos(by)/
√
b2x + b2y

if ax < 0 and bx < 0
if α < β return a else return b

else
if α < β return b else return a

Figure 39: Neighbors Comparison

tree, because ∠nv3r is smaller of both ∠v2v3r and ∠v4v3r.
The construction of the spanning tree stops when a node cannot find

a child in the tree among its neighbors.

4.5 A P2P Overlay for Voronoi Based DVE

This thesis exploits a Delaunay Triangulations to define a P2P overlay for
Distributed Virtual Environments. According to this approach, the posi-
tion of each peer is exploited to define a Voronoi tessellation of the DV E.
Given n sites corresponding to the peers, a Voronoi tessellation partitions
the virtual world into a set of n regions such that the region correspond-
ing to a site s includes all the points of the DV E which are nearer to s

with respect to any other site. The P2P overlay is defined by the De-
launay links belonging to the Delaunay Triangulation corresponding to the
Voronoi tessellation.

The choice of a Delaunay based overlay has several advantages:

• Mapping of Passive Objects to the Peers: Since each point of the DV E
is mapped to a single Voronoi region, a straightforward mapping of
passive objects to the peers may be defined. This mapping assigns
each passive object to the peer which manages the Voroni region
where the object is located.

80

SpanningTreeChildren(r,n,i):
if dist(vi, r) < dist(n, r) return false
else

if Delaunay Triangle(n, vi, vi+1) and Delaunay Triangle(n, vi, vi−1)
if ∠nvir < ∠vi+1vir and ∠nvir < ∠vi−1vir

return true
else return false

else
if Delaunay Triangle(n, vi, vi+1)

if ∠nvir < ∠vi+1vir return true
else return false

else if Delaunay Triangle(n, vi, vi−1)
if ∠nvir < ∠vi−1vir return true
else return false

Figure 40: Angle Evaluation Phase

• Bounded Connections: Since, as shown in Fig.50, each site of a Voronoi
tessellation has 6 neighbor node on the average, each peer should
manage a limited number of connections with other peers, i.e. those
corresponding to the Delaunay links.

• Overlay Connectivity: The connections corresponding to the Delau-
nay links guarantee that the overlay is connected. Even if a peer
is located in a unhinabited region of the virtual world, it keeps in
touch with the rest of the DV E through the connections with its
Voronoi neighbors.

Note that the definition of a distributed algorithm for definition of the
Voronoi overlay is a real challenge for a dynamic real time environment,
like a MMOG, where the positions of the peers change continuously and
no centralized coordination entity does exist.

As shown in Sect.4.2, further connections between a peer and other
peers located in its AOI should be defined to guarantee scalability, espe-
cially in crowding scenarios. As discussed, theAOI structure may be im-
plemented according to two different approaches. The first one is based
on the definition of a set of direct links between a peer and any other
one in its AOI . An alternative approach is that which includes in the

81

Figure 41: Angle Evaluation Phase

P2P overlay Delaunay links only and defines an AOI cast mechanism to
spread any event to all the peers in the AOI through the Delaunay links.

This thesis propose an intermediate solution, which defines direct con-
nections between a peer P and a subset of the peers in its AOI, i.e. the
peers nearer to P , and exploits AOI-cast to propagate an heartbeat to any
other peer in the AOI. An approach similar mechanism is exploited to
propagate further events, for instance updates of the state of the passive
objects or events related to actions performed by the peers. These issues
will be discussed in more details in Chapter 5.

According to our approach, the overlay includes a set of connections
between a peer and its Voronoi neighbors and a set of further connections
between a peer and a subset of the peers located in its Area of Interest.

Note that some Voronoi neighbors of a peer may not belong to its Area of
Interest, but these connections are required to guarantee that the overlay
is connected. Note also that connections among peers are based on their
spatial relationship in the DV E, rather than on their physical network
proximity.

Figure42 shows the AOI of the peer A. The overlay includes direct

82

Figure 42: Area of Interest

links between A and its Voronoi neighbors B, C, D, E. Direct links be-
tween A and other peers in its AOI , like peer F , G, H , I , L, M , N and
O may be defined according to the adopted forwarding model. No link
is defined between A and P , because P neither belongs to the AOI of A
nor it is a Voronoi neighbor of A.

In the following, we will consider circular areas centered at P . In this
case all the properties introduced in the previous sections may be ex-
ploited. In any case, our approach can be generalized to different shaped
areas.

According to our approach, the Area of Interest of each peer P is parti-
tioned into two areas, the Internal Area of Interest of P , IAOI(P) and the
Peripheral Area of Interests, PAOI(P), PAOI(P) = AOI(P) − IAOI(P).
The P2P overlay includes, besides the Voronoi links, a link between P

and any peer located in IAOI(P). Each heartbeat is periodically sent by
P through these links, afterward it is forwarded to any peer located in
PAOI(P).

Figure 43 shows the IAOI of a peer a which is delimited by the inter-
nal circumference, while its PAOI overlaps the annulus between the cir-
cumferences. The corresponding overlay includes direct links between
a, and r.s. b,c,d,e,l, while forwarding is exploited to reach g, f and h. No-

83

Figure 43: Internal and Peripheral Areas of Interest.

tice that since a and e are not Voronoi neighbors, the direct link connecting
them is not a Voronoi link. Furthermore, it is worth noticing that a should
send its heartbeats to i as well, even if it is located outside its area of
interest because any Voronoi Neighbor act as ’beacon node’ that inform a

about peers approaching from farthest positions. Network connectivity
is guaranteed by these nodes, even when the AOI of a peer is empty.

In the following, we will assume that the width of the annulus of
AOI(P) is larger than 0, i.e. the border of IAOI(P) and of PAOI(P) do
not overlap. Furthermore, this width is chosen so that any peer Q enter-
ing AOI(P) sends an heartbeat when it is located in PAOI(P), before
entering IAOI(P). To compute the minimal width of the annulus which
guarantees the previous condition, both the maximum speed of a peer and
the frequency of heartbeat notifications should be considered.

The peer P which generates an heartbeat sends it to all its Voronoi
neighbors and to any peer in its IAOI . The forwarding of the heartbeat
is started by the peers located ’at the border’ of its IAOI , i.e. the bound-
ary peers, then, any peer located in PAOI(P) carries on the forwarding.
The forwarding phase exploits the routing algorithm based upon the con-
struction of a spanning tree rooted at P which has been introduced in Sect

84

4.4.
The most challenging issue of our approach is the definition of proper

distributed algorithms to guarantee that the structure of the Delaunay over-
lay is correctly preserved and no overlay partition occurs. We propose
a ’pass the word’ approach, where peers becomes acquainted with each
other through their Voronoi neighbors. A peer receiving an heartbeat
from one of its neighbors N checks if any of its further neighbors Q,
Q 6= N , is enteringAOI(N), and in this case it propagatesN heartbeat to
Q. In this way, each peer acts as a beacon for its neighbors by ’putting in
touch’ peers that are not acquainted with each other. A similar approach
is adopted to acquire new objects located beyond the AOI of a peer.

In order to avoid network partitioning, a proper mechanism to guar-
antee that each peer correctly keeps its Voronoi neighbors is required.
We can imagine two different scenarios. In a crowding scenario, a peer
Q should become aware of another peer P when entering the area of In-
terest of P . As a matter of fact, several peers are located in AOI(P) and
these should notify Q any heartbeat produced by P . In the opposite sce-
nario, AOI(P) is empty. In this case, a new peer becoming a Voronoi
neighbor of P should be notified of P by one of the previous Voronoi
neighbors of P . To implement this, we assign a TTL to each heartbeat
and we guarantee that each heartbeat is propagated at lest k hops away
from its source. This should guarantee that a peer is notified about the
presence of another peer before keeping in touch with it.

We pair a TTL with each heartbeat notification in order to guarantee
that each heartbeat generated by a peer P is propagated at least n hops
away from P .

Fig. 44 shows a specification of the distributed routing algorithm de-
fined through the Mobile Unity formalism introduced in Sect.3. We sup-
pose that each peer P (i) is uniquely identified by the value of its index
i. According to the MobileUnity formalism, a variable λ is paired with
each peer P (i) describing its current location. This variable is exploited
to define location aware interactions among the peers.

Each P (i) defines an arrayHB whose size equals the maximum num-
ber of peers in the system. HB(i) [k] stores the most recent heartbeat no-

85

System VoronoiOverlay
program P (i) at λ

declare
� HB:array [0 . . .MaxPeer − 1] of

(Pos : λ, TSS : integer, TSR : integer, TTL : integer)
� TSS,time,Gtime:integer

initially
� λ= PeerLocation(i)
� time,Gtime,TSS = 0

assign
� ClockTick::time :=time+1
� SendHB:: λ, TTL, TSS, time,Gtime:=

NewLoc(λ),MaxTTL,Gtime, 0, Gtime+ time
reacts-to time > HB frequency

� ResetHB:: HB [k]:=⊥,⊥,⊥,⊥
reacts-to Gtime−HB [k] .TSR > MaxDelay

end
Components

� i:0≤i<MaxPeer:: P(i)
Interactions

� P (i).HB [j] := (P (j).λ, P (j).TSS,Gtime, P (j).TTL− 1)
reacts-to P (i).HB [j] .TSS 6= P (j).TSS

∧
(P(i).λ ∈ IAOI (P(j)) ∨ VoronoiNeighs (P(i),P(j)))

� P (i).HB [k]:=
(P (j).HB [k] , P (j).HB [k] .TSS,Gtime, P (j).HB [k] .TTL− 1)
reacts-to
P (i).HB [k] .TSS 6= P (j).HB [k] .TSS,

∧
V oronoiNeighs(P (i), P (j)),

∧
Is Parent(P (j), P (i), P (k))

∧
((P (i).λ ∈ PAOI(P (k)) ∨ (P (i).λ /∈ AOI(P (k)) ∧ (P (j).HB [k] .TTL > 0))

Figure 44: AOI-cast: A Mobile Unity-Based High Level Specification

86

tified by peer P (k) to peer P (i). For each heartbeat received from P (k),
P (i) stores Pos, i.e. the last position of P (k) notified by the heartbeat,
TSS, the Time Stamp paired by P (k) to the heartbeat, TSR, the times-
tamp paired by P (i) to the heartbeat when it has been received, and
TTL associated with the heartbeat. TSR is exploited by P (i) to define an
heartbeat eviction policy which deletes from HB the obsolete heartbeats,
i.e. those which have been received more than MaxDelay earlier. This
minimizes the network traffic, because a peer which leaves the AOI of
P (i) should not notify this to P (i), because its heartbeat will be simply
deleted by P (i) when it becomes obsolete.

The assign section of the Mobile Unity specification defines the behav-
ior of each peer P (i). The Clock Tick event corresponds to the periodic
increment of the time, the variable which periodically updates Gtime, the
local clock of P (i). This variable is exploited to define the point of time
when a new heartbeat should be generated and, in this case, to fire the
SendHB event. The generation of the new heartbeat is modeled by the
assignment of the new position of the peer, of the corresponding times-
tamp and of the TTL to the variables λ, TTS and TTL. This event should
fire a set of reactions which propagate the heartbeat to any peer of the
AOI . The peers belonging to IAOI(P (i)) copy the value of the heart-
beat directly from P (i), those belonging to the PAOI(P (i)) receives the
heartbeat through a sequence of reactions which define the routing pro-
cess. These reactions are defined in the Interactions Section. Note that
the variable time is reset each time a new heartbeat is generated, while
the variable Gtime which defines the local time of each peer, is never re-
set and is exploited to assign the timestamp to each heartbeat which is
generated by P (i).

The ResetHB event is fired when the interval of time elapsed from an
heartbeat reception exceeds a predefined value MaxDelay.

The interactions between peers are modeled by two different clauses,
defined in the interaction section. The first one describes a direct inter-
action between the peer P (i) which generates the heartbeat and a peer
P (j) which is its Voronoi neighbor or belongs to IAOI(P (i). This inter-
action is modeled as a reaction fired by the generation of a new heartbeat

87

h by P (i), and is defined by a copy of h in the i-th position of the array
HB of P (j). A real implementation should implement this reaction by a
message sent from P (i) to P (j)

The second clause is fired by the reception from P (j), which is the
neighbor of a peer P (i), of a new heartbeat generated by P (k). P (i) re-
alizes that a new heartbeat generated by P (k) has been received by P (j)
by comparing the value stored in the k-th position of its vector with that
stored in the corresponding position of the vector store by P (k). If the
timestamp corresponding to these entries do not correspond, the heart-
beat is copied from P (j) to P (i).

P (j) propagates the heartbeat toP (i), ifP (i) is both its Voronoi neigh-
bor and its child in the spanning tree rooted at P (k) and one of the fol-
lowing conditions holds:

• Both P (i) belongs to PAOI(P (k))

• P (i) is located outside AOI(P (k)), but the value of the TTL of the
heartbeat is larger than 0.

A peer Q is a boundary peer for peer P iff one of its Voronoi neighbors
is located in PAOI(P). We exploit Is Parent(P,Q,R) to check if Q is
a son of P in the spanning tree rooted at P . This function is based on
the compass-based spanning tree construction defined in Sect.4.4. It is
worth noticing that the spanning tree built by the algorithm includes a
set of ’shortcuts’ connecting the root to its boundary peers. The results
proved in Sect4.4 are still valid in this case, because any peer belonging
to the PAOI should be a child of a boundary peer or of another peer in
the PAOI.

It is worth noticing that the reaction is fired only for peer belonging
to the PAOI of the source of the heartbeat. For instance when peer b in
Figure 43 receives a heartbeat h from peer a, it does not propagate h to its
neighbors because they are all located in IAOI(a) and they receive the
heartbeat directly from a.

Note that a peer Q located outside AOI(P) notifies the heartbeat
to each peer V which is its Voronoi neighbor that does not belong to

88

AOI(P), if the timestamp 6= 0. Notice that V may not know P because
it is approaching P from a further position with respect to that of Q. In
this case, Q ’puts in touch’ P and V . For instance, a heartbeat generated
by P and received by a peer Q located outside AOI(P), is propagated
to all the Voronoi neighbors of Q, even to those that are not neighbors
of P . In this case, an abrupt crash of Q will not disconnect the network
because a larger set of peers knows the position of P . These notifications
are critical, because they guarantee network connectivity when the area
of interest of a peer is empty. The robustness of the application may be
increased by introducing further redundancy.

It is worth noticing that in our approach the heartbeat notification
mechanism naturally supports the discovery of new neighbors. Each
peer Q approaching P , must first keep in touch with a Voronoi neighbor
V of P or with a peer located in AOI(P) (recall the width of the annulus
is different from 0). V simply propagates an heartbeat received from P

to Q. In this way, Q becomes acquainted with P . Notice that this differs
from the approach proposed in (1), where each peer acquires knowledge
of new approaching peers by explicitly querying its boundary neighbors.

Finally, it is worth noticing that AOI-cast can be further optimized
by exploiting a set of aggregation techniques. As a matter of fact, if Q is
the parent of V with respect to a set of spanning trees routed at differ-
ent peers, it may aggregate the heartbeats sent by these peers in a single
message which is periodically sent.

It is important to note that in a distributed environment the local
views of the virtual world at each peer may be inconsistent, due to net-
work delay, packet loss. For this reason, different notifications of the
same heartbeat may reach a peer, while some notification may not reach
a peer at all. This issue will be discussed in Sect 4.7.4.

4.6 Avoiding Overlay Partition

Overlay partition is a situation where the overlay graph is divided into
two or more subgraph, or partitions, and the nodes belonging to differ-
ent partitions do not know each other. In this case, each partition corre-

89

Figure 45: Partition at risk in a Voronoi based overlay.

sponds to an isolated sub world and when a peer P moves close to the
peers belonging to this partition, P and these nodes are not able to keep
in touch each other.

In a Voronoi based overlay, a partition may occur when nodes are
crowded in distinct areas, as shown in Figure 45. In this situation, a few
nodes may be located in between the crowded areas. Note that a few
nodes are located in the central area of the virtual world shown in the
figure. Since the node in the two crowds are able to communicate only
through them, if they fail simultaneously a partition does occur.

In general, the distribution of the nodes in a DV E is not uniform,
because nodes cluster in some regions where interesting events occur or
virtual cities do exist.

This situation may be faced by introducing a certain degree of redun-
dancy in the heartbeat transmission protocol. The experimental results
shown in the following sections show that this strategy avoid overlay
partition in most case.

A node can find out whether its crash may produce an overlay parti-
tion, by exploiting only local information. If the node receives heartbeats
from peers located outside its AOI , it has a view of the distances that

90

separate itself from the others and can cope with the risk of overlay par-
titioning by adopting a set of countermeasures.

We can chose for instance a threshold node distance, beyond which a
countermeasure must be exploited to reduce the risk of overlay partition.

For instance, when a node finds out that its failure can compromise
the connectivity of the overlay it can modify the protocol of heartbeat
transmission to improve the overlay stability. For instance the node lo-
cated in the central region of Figure 45 can propagate an heartbeat re-
ceived from its neighbors some steps farther. In this way the node at risk
become a bridge for two or more possible overlay partitions and even if
it fail the border nodes of the partitions know each other.

Each heartbeat used to improve the overlay stability could be prop-
erly marked to stress the risk of a partition and to inform the receiver
that it should pay attention to any delay on messages from the sender.

We can note that, even if this solution increases the number of heart-
beats, the node at risk in Figure 45 has a few neighbors, hence they can
support a larger amount of traffic. As a matter of fact, this situation is
orthogonal to crowding where a node should support a large heartbeat-
straffic.

4.7 Experimental Results

4.7.1 Real time Constraints

DV E applications are characterized by severe real-time constraints, since
state consistency must be maintained as soon as possible and time thresh-
olds must usually be respected by events dispatching. In our approach,
each peer represents its local view of the DV E through a Voronoi Dia-
gram. Each time a peer receives an heartbeat from a connections, it up-
dates its Voronoi Diagram. It is possible to reduce the frequency under
which each peer performs the updates of its local view, but a frequency
too low introduces a high degree of inconsistency in it. For this reasons,
the computation of the local view of the overlay must be very efficient. As far
as concerns the frequency of the event propagation, we define two kind

91

of events. Each peer receives any event occurring within its AOI , both
heartbeats and other events generated by actions executed by the peers.
While the latter are notified only when they occur, each peer sends an
heartbeat to the others peers with an high temporal frequency, up to 5 times
per second. This implies that, in order to maintain a consistent local view,
it must be updated up to some times per second, in the worst case each
time a peer receive an heartbeat. TheAOI increases the scalability, but as
discussed in Sec.4.2 crowding often occur in a DV E, and, in these cases,
scalability is at risk even if AOI are exploited.

The definition of an highly efficient support for the management of
Voronoi Diagrams is therefore mandatory for our approach.

The Voronoi based overlay has been implemented by a subset of the
VAST Library (68). This library supports a set of functionalities to support
the construction and management of Voronoi Diagrams. The functions
exploited by our simulations are the insertion/update of a node in the
overlay, the discovery of the neighbors of a given node, and the discovery
of the node that is the owner of a point of the DV E.

We have tested the performance of different functions of the V AST
library in order to understand if they may be exploited to support the
management of the Local Voronoi Diagrams of the peers such that real
time constraints are respected.

In Figure 46 is showed the temporal overhead introduced by the most
used VAST functions to implement and maintain the overlay, Insertion/Update
and GetEnclosingNeighbor operations. The results show that VAST may
support a Voronoi-based overlay topology without loss off scalability up
to 800 1000 nodes within the same AOI .

4.7.2 Peersim

Peersim(55) is a P2P simulator designed to support highly scalable simu-
lations of very large scale P2P systems, overlay and protocols. It supports
the modular implementation of new overlay topologies and protocols. It
handles peers which dynamically join and leave the network, but the no-
tion of dinamicity has to be redefined for our purpose. It supports the

92

Figure 46: VAST functions overhead.

simulation of a high number of peers in order to test the scalability of
new protocols.

Peersim supports two different types of simulations:

• Cycle Based: This is the simplest type of simulation as it does not
take into account delays and issues relate to the Transport layer. It
makes it possible to achieve extreme scalability and performance
and it is suitable to test, for instance, a dynamic overlay topology
in order to find out, the average degree of each peer, the number
of links created/destroyed by a peer at every simulation cycle, the
number of messages sent/received by each peer.

• Event Based: It introduces the notion of time within the simulation.
It supports the simulation of message sending/receiving and the
simulation can be configured in order to define both the delay and
the probability of messages loss. Each message is inserted into a
heap, afterward it is scheduled by the Event Scheduler. The simula-
tion stops when the event queue is empty. In our case this model

93

of simulation can be useful, for instance, to simulate delays in the
propagation of heartbeat messages.

The core simulator has been extended to make it possible the dynamic
removal of the links of the simulated overlay. In fact, in PeerSim a node
can join or leave the overlay, but it cannot modify its connections within
the overlay during the simulation. In our case, since each peer dynam-
ically moves within the DV E, the topology should be modified at each
movement of the peer.

We have exploited the cycle based version of Peersim in order to ex-
ecute several experiments to analyze the topology of the Voronoi based
overlay under different scenarios which have been generated by defining
a set of simulation parameters, like the numbers of the peers of theDV E,
their speed and the type of links of the overlay. For instance, it is possible
to define an overlay including only links between Voronoi neighbors, or
to links between a peer and other peers located within its Internal Area of
Interest. In this case, the range of the Internal Area of Interest is a parameter
of the simulation as well.

4.7.3 Overlay Evaluation

As discussed in the previous sections, it is possible to define two orthogo-
nal solutions for the definition of a Voronoi based overlay topology. As a
matter of fact, it is possible to define direct links between Voronoi neigh-
bors only, or between a peer and other peers located in a given range. We
recall that both solutions may present problems especially when crowd-
ing scenarios occur. In this case, when a lot of of peers are close each
other in the same subregion, a large amount of AOI overlaps and the
former solution suffers of the problem related to the latency of heartbeats
propagation, because of the multiple hops required to deliver an event.
Since we consider real time applications, the issue related to latency is very
important, because a high latency may compromise the interaction of the
users with the DV E.

The latter solution, instead, may require a high communication band-
width. As a matter of fact, a peer should send the same heartbeat to each

94

peer within the given range. Since some peer may have a limited com-
munication bandwidth, such problem can compromise the stability of
the application.

The purpose of the first set of tests is to evaluate the scalability of a
Voronoi based overlay when crowding occurs. We evaluate the average
number of links of each peer in different scenarios, i.e. varying the num-
ber of peers, the type of the links, the speed of peers. Our purpose is also
to evaluate the frequency which characterizes the definition/deletion of
the overlay links.

The solution introduced in Sect.4.5 which exploits Internal Area of In-
terest and Peripheral Area of Interest has been evaluated as well. The be-
havior of the overlay has been evaluated in different scenarios to under-
stand how the range of the Internal Area of Interest influences the average
number of links, when different number of peers are considered.

Configuration of the Experiments

We exploit the cycle based simulation model of Peersim, in order to relate
the length of a Peersim cycle with the interval of time elapsed between
the transmission of two successive heartbeats. Since the frequency of
heartbeat notification is up to 5 per second, to cope 5 minutes of a real
time execution, we should plan 1500 Peersim cycles. It is worth noticing
that a lower frequency can be chosen using a dynamic approach, where
the frequency of the heartbeat notification is dynamically defined. In this
case, a set of Dead Reckoning (36; 38; 39) techniques are required.

In our experiments, the peers move within a two dimensional 800x600
grid. At each simulation cycle, each peer changes its direction at random,
afterward it moves and covers a distance which is proportional to its
speed. When a peer hits the border of the grid, it rebounds to in order to
stay inside the grid. The values of the speed span from 1 to 12 pixels.

At the beginning of each test, the peers are positioned inside the grid
at random, according to a uniform distribution.

The parameters of our simulations, which may be defined through
the configuration file of Peersim are the following.

95

• Peer Number: This parameter makes it possible to measure scalabil-
ity and to simulate crowding scenarios as well.

• Peer Speed: This parameter is introduced to measure the frequency
of the changes of the topology of the overlay and to model particu-
lar types of crowding as well.

• Probability of Change Direction: This parameter may model partic-
ular types of DV E scenarios. For instance, in a RPG game the di-
rection of the avatars change more frequently than in a cars’s race,
where each avatar follows a given direction, like other avatars close
to them.

• Type of Links: This parameter defines whether a peer is connected to
its Voronoi neighbors only, or to any peer located in a given range.

We have performed three different kind of tests.

• The purpose of the first set of experiments is the analysis of the
number of connections defined by a single peer during 1500 cycles
of simulation, when different type of links are defined. We con-
sider an Only Neighbors solution, where each peer defines connec-
tion with its Voronoi neighbors only, and the solution where each
peer defines connections with each peer located within its Internal
Area of Interest. In this case, the radius of the IAOI is incremented
by 10 cells for each experiment. In this set of test the speed of each
peer is kept constant.

• The second set of experiments test the scalability of the overlay, by
varying the number of peer from 100 to 1500 and observing the
average number of link in any linking solutions.

• The third set of experiments has the purpose to test the frequency
of the topology changes, when the speed of the peers changes from
1 to 12, and the different type of links are considered.

96

Figure 47: Average number of links during 1500 cycles.

Figure 48: Max number of links during 1500 cycles.

97

Figure 49: Average numbers of links with increasing number of peers from
r10 to r50.

Figure 50: Average numbers of links with increasing number of peers on
nigh.

98

Figure 51: New links frequency with increasing velocity.

Figure 52: New links frequency with increasing velocity varying linking
type.

99

Evaluation of the Results

Figure 47 shows the average number of links defined by each peer at each
cycle of simulation, when different type of connections are considered,
i.e. from only neighbors to 50 radius. We consider 1500 simulation cycles
and we keep constant both the number of peers and their speed during
the experiment. Figure 48 shows the maximum number of links at each
simulation cycle in the same conditions.

Figure 49 shows the average number of links for each type of connec-
tions, when the number of peers range from 100 to 1500. In Figure 50 the
only neighbors linking type is considered. The scalability of the Voronoi
based overlay in crowding situations is confirmed by the results shown
in Figure 49 and Figure 50. As we can see, in the Only Neighbors solu-
tion an upper limit to the average number of links does exist. Even if in
those solutions exploiting a varying radius for the Internal Area of Interest,
the number of links increases with the number of peers, Figure 49 shows
that a good scalability may be obtained by considering a small radius.
This results can be useful to exploit a trade off solution which use Only
Neighbors linking type in general situations and a small radius in crowd-
ing situation, to limit the number of retransmissions to reach all the peers
inside the area of interest of the sender when the crowding occur.

Figure 51 shows the frequency on overlay changes when the speed of
the peers changes from 1 to 12. Figure 52 shows, instead, the trend on
new links creation in the same test of Figure 51, from the point of view
of linking type, from Only Neighbors to a solution exploiting a 50 radius.

The experimental results confirm the theoretical one which states that
the average number of neighbors is 6, when only Voronoi links are con-
sidered. Since we consider a uniform distribution, the average number of
links is roughly constant across different simulation cycles.

The results show the feasibility of a trade off solution exploiting only
Voronoi links in the general case and an Internal Area of Interest character-
ized by a small radius in crowding scenarios. As a matter of fact, while
a small radius corresponds to a reasonable number of links, it may con-
strain the number of routing steps with respect to the solution including

100

Voronoi links only. The results also show that the length of the radius
has a modest impact on the overlay variance.

4.7.4 Routing Evaluation

We have performed several experiments in order to analyze the routing
strategy described in Sect.4.4. We recall that this strategy is exploited to
propagate the heartbeats to the peers located in the AOI , if only links
connecting with Voronoi neighbors are exploited, or to the peers of the
Peripheral AOI, if links with neighbors located within a given range are
defined.

The purpose of these experiments is to evaluate the degree of incon-
sistency introduced by the movement of the peers. As a matter of fact,
inconsistencies may arise because the location of peers change continu-
ously and two peers may have a different perception of the position of a
common neighbor, due to the delay of heartbeat notifications. This im-
plies that these peers perceive a positional drift with respect to the real
position of the neighbor. As a consequence, in a dynamic scenario, B
and C, two peers sharing a common neighbor R, which is the source of
the heartbeat, may both neglect the propagation of an heartbeat to R be-
cause of their different view of the virtual world. Due to the positional
drift, each peer may suppose that the other peer should propagate the
heartbeat to R. On the other way round, the positional drift may also gen-
erate redundant notifications, because B and C may decide to propagate
the same heartbeat to their common neighbor. As we can see in Figure
53, if the upper graph represent the local view of B and the lower graph
represent the local view of C, the first scenario occurs and both B and C
propagate the heartbeat to A. Otherwise, in the opposite situation, the
second occurs where A does not receive the heartbeat at all.

It is worth noticing that these problems are introduced by the dy-
namic nature of the application we consider, and, at the best of our knowl-
edge, they have not been investigated in the literature.

The first set of experiments evaluates the number of peers located
within the AOI of a peer P which does not receive an heartbeat generated

101

Figure 53: Spatial drift inconsistencies.

by P .
To simplify the execution of this test, each peer P is created at a ran-

dom position inside theAOI of the peerGwhich generates the heartbeat,
afterward it can move freely inside the AOI , but it cannot exit AOI(G),
i.e. it bounces on the border of theAOI . In this way, it is possible to eval-
uate, for each heartbeat h generated by G, the number of peers which
have not received h, due to the positional drift. As a matter of fact, in this
scenario, h should be received by any peer located in its AOI . In a more
general scenario, it is more difficult to detect the peers which should re-
ceive h, because of new peers entering the AOI and of peers leaving the
AOI .

To set up the simplified scenario, we have done a set preliminary tests
to find out the average number of peers belonging to theAOI of a prede-
fined peer P as a function of the number of peers present in theDV E and
of their speed. Each peer is generated at a random position of the DV E
and it can move inside the DV E and enter/exit an AOI(P). The prelim-
inary test exploits 1000 cycles, at each cycle a Peersim control counts the
number of peers inside AOI(P). The average number of peers present

102

Figure 54: Average number of peer .

inside AOI(P), as a function of the whole number of peers inside the
DV E, is the referential parameter of the real tests. The results of the anal-
ysis find out in the preliminary test are illustrated in Figure 54, where we
can find the average number of peers present inside a AOI(P) when the
radius of the AOI ranges, from 10 to 50, and when the number of peers
varies from 100 to 1000.

The number of peers generated inside the AOI is proportional to the
density found out in the preliminary test. The upper part of Figure 55
shows a snapshot of the preliminary experiment, where the AOI of the
predefined peer is highlighted, while the lower part of the Figure shows a
snapshot of the following experiments which is based upon the previous
measures.

In each test, a particular peer A generates a stream of heartbeats. Fig-
ure 56 to Figure 60 illustrates the measures of interest measured by this
sequence of tests, which are:

• Total number of messages sent for the propagation of an heartbeat.

• Number of redundant messages received for the propagation of the

103

Figure 55: Tests examples.

104

Figure 56: Average number of messages.

Figure 57: Average number of redundant messages.

Figure 58: Average max number of hops for each HB.

105

Figure 59: Average number of not receiving peers.

Figure 60: Average number of messages sent for each peer.

106

heartbeat.

• Maximum path to propagate an heartbeat

• Number of peers which have not received the heartbeat.

• Maximum number of messages sent from a peer to propagate an
heartbeat.

We consider a stream of heartbeats generated by the observed peer.
Each measure is computed by computing the average on the number
of the heartbeats belonging to the stream. The peer moves in the DV E
according to the mobility model previously described.

The left side of each Figure illustrates each one of the previous mea-
sures as a function of number of peers, from 5 to 25 peers, with a step of
5 peers while the right side of each figure shows the same measure as a
function of the speed of the peers.

As expected (Figure 56 left side) the average number of messages re-
quired for the propagation of the heartbeat increases with the number of
peers in the AOI , but the speed of the peers (Figure 56 right side) has a
low impact unless crowding occurs.

Redundant messages (Figure 57) also have the same behavior.
The length of the maximum path (Figure 58), is proportional to the

number of peers inside the AOI and the speed of the peer does not affect
it.

The average number of peers which have not received the heartbeat,
see (Figure 59), increases with the number of the peers.

Finally, as expected, the maximum number of messages sent from a
peer to propagate an heartbeat (Figure 60) is, on the average, equivalent
to the average number of link in a Voronoi based overlay, i.e. 6 links.

To face the phenomenon of peers which do not receive the heartbeat,
we have modified the algorithm defined in Sect4.4.1, in order to reduce
the number of peers which do not receive the heartbeat at the price of a
greater number of redundant messages.

In the original algorithm based on reversing compass routing, each
peer P chooses its children in the spanning tree rooted at R by consider-

107

Figure 61: Number of messages.

Figure 62: Number of redundant messages.

Figure 63: Maximum number of hops for each heartbeat.

108

Figure 64: Number of peers not receiving the heartbeat.

Figure 65: Number of messages sent for each peer.

109

ing the angle a between R, its child C and itself. This angle is compared
against the angles between R, C and each common Voronoi neighbor of
P and C. C is a child of P if a is the smallest angle.

We modify the algorithm introduced in Sect.4.5 in order to considerC
as a child iff the difference between a and the neighbors angles is smaller
than a given threshold. In this case the same an heartbeat may be notified
to a peer P by more than one peer. It is worth noticing that in our case
it is better that a greater number of messages is sent, instead that some
peers do not receive the heartbeat at all. In general, however, a com-
promise must be chosen, in relation to the type of information sent with
the heartbeat. For instance, we could choose to not increase the number
of redundant messages so introducing a number of peers not receiving
the heartbeat and to exploit some dead reckoning strategy as a counter
measure.

The threshold chosen for our experiments spans from an angle of 5
degrees to one of 30 degrees with step of 5 degrees.

Unlike previous experiments, we have fixed the number of peers to
25, ranging the degree of the threshold from 0 (which corresponds to the
previous test) to 30, and speed of the peers from 1 to 5.

The measures of interest are the same of the previous experiments.
The organization of the figures, from Figure 61to Figure 65, is the same
as well, but in this Figures, the left side shows the measures of interest as
a function of the degree threshold, while the right side shows the same
measure as a function of the speed of the peers.

We can notice that (see Figure 64 left side) the number of peers not re-
ceiving the heartbeat is decreased by the introduction of the angle thresh-
old. On the other side, a larger number of redundant messages is gener-
ated, as shown in Figure 62).

4.7.5 Mobility Models

To highlight the behavior of the network consistency in two quite sepa-
rate situations, different models of mobility have been defined and imple-
mented. A mobility model defines the strategy exploited by each peer to

110

decide the direction of its next step. Even if for each peer the choice is de-
fined on the basis of local information only, in some situation an amount
of global information may be required to define the behavior of the peers
in order to simulate a group coordination.

Beside the Random Walking model, that define a complete random
movement of the peers toward distinct targets, we have implemented
a model, the Complex Battle, to simulate a virtual battle.

The characteristics of the Complex Battle model are the following:

• Target acquisition: Each peer is directed toward a target, where it is
going to fight.

• Path calculation: To reach the target.

• Release of the target: After having reached the target, a peer returns
to its home base.

While Target acquisition and Release of the target have an explicit semantic,
the Path calculation requires further evaluations. Since the purpose is to
simulate the behavior of a set of avatars moving towards a particular
area from different directions, we have implemented a non deterministic
path manager. While a peer is going toward the target, it may modify
its direction to the target with a low probability, while maintaining with
high probability the target direction, This simulates the behavior of an
avatar in a battlefield where it can met a set of obstacles.

When the simulation starts, all the peers are arranged randomly and
partitioned into two different teams. Each team is initially positioned at
an home base, that is a particular area on the map afterwards each peer
moves to the same target, which is the center of the battle. Once the target
will be reached by all the peers, a Battle Crowding scenario (see Sect.4.2)
will be generated. The peers inside a particular range from the target will
move completely at random. Each time the protocol computes the new
direction, each peer rolls a dice and decides whether possibly leave the
battle and go toward the home base. If it happens, that peer choices its
home base as a new target and starts to move toward it.

111

Figure 66: Time to live value = 3.

When peers are back at the home base another particular scenario
is generated,the City Crowding one (see Sect.4.2) where the peers slow
down their speed and change their behavior to Random Walking. After
a while, a new cycle starts and a new target is generated.

Results

Each test described in this section concerns 200 peers. This amount of
peers is really significative to evaluate crowding scenarios, since the size
of areas of interest and areas of crowding have been calibrated so that in
crowding battle scenarios the average density of peers into the AOIs is
about 80% of the peers included in the whole DV E.

In this set of evaluations, a time to live (TTL) for the heartbeats has
been introduced. A TTL=3, for instance, guarantees that the heartbeat,
sent by its source, does at least a 3 hops path from the source, as shown
in Figure 66. Instead, if the AOI of the source is very crowded by a great
number of peers, then the heartbeat will be sent only inside the AOI. The
TTL then could be a measure to avoid the overlay partition, as expressed
in Section 4.6.

The first experiment, executed to measure the network consistency,

112

Figure 67: Network links consistency: Random Walking, no Compass toler-
ance.

Figure 68: Network links consistency: Random Walking, Variable velocity,
no Compass tolerance.

113

Figure 69: Network links consistency: Complex Battle, Variable velocity, no
Compass tolerance.

Figure 70: Network links consistency: Random Walking, Variable velocity,
Compass tolerance.

114

Figure 71: Network links consistency: Complex Battle, Variable velocity,
Compass tolerance.

Figure 72: Average messages for each peer: Random Walking, Compass
tolerance.

115

Figure 73: Average messages for each peer: Complex Battle, Compass toler-
ance.

has been executed without introducing any tolerance in the Compass
Routing based spanning tree construction, with a TTL equal to 3, speed
equal to 2 and with the Random Walking mobility model. In the following
tests, a cycle is the interval between the sending and the delivery, by each
peers, of the heartbeats. The network consistency has been calculated
after each cycle, comparing the local view of each peer, with the global
overlay. If a peer, in its local view, presents a different number of links in
respect to the number of link which that peer had in the global overlay, of
the previous cycle, then that peer is considered not consistent in the test.
The result shown in Figure 67, prove the effectiveness of the protocol.
The network topology through the distributed knowledge over various
peers with local (and then limited) vision, always keeps a consistency
degree more than 80%. Note that the test, thanks to the mobility model
used, starts from a relaxed state where the peers are spread all over the
map, and then create a really strong crowding situation.

The next tests are characterized by a variable speed of the peers, i.e. by

116

a variable length of the step of each peer at each movement.
Figure 68 shows the network consistency with the Random Walking

mobility model, TTL = 3, for different speeds.
Figure 69 shows the network consistency in the same conditions of

the previous one, but the mobility model is the Complex Battle.
Both figures show that the higher is the speed the lower is the net-

work consistency.
Till now no Compass tolerance has been used. The next test shows

how the network consistency and the number of message sent by each
peer, for different tolerance angles of the Compass. The angle spreads
from 0 to 16 degrees.

Figure 70 shows the network consistency with the Random Walking
mobility model, TTL = 3 and speed = 2. Instead, Figure 71 shows the
network consistency with the Complex Battle mobility model, TTL=3 and
speed=2.

Previous tests enables to conclude that the Compass tolerance im-
proves network consistency, as shown in Figure 70 and in Figure 71,
where the higher is the compass tolerance the higher is the network con-
sistency in both the Random Walking and the Complex Battle mobility mod-
els.

Next figures show the average number of messages received by a peer
in the tests characterized by the previous configuration. Figure 72 shows
as in the Random Walking mobility model the number of messages in-
creases very little when increasing the angle of Compass tolerance.

Figure 73, instead, shows how the tradeoff of an higher network con-
sistency is paid with an higher number of messages when the angle of
Compass tolerance increases in a crowding scenario.

117

4.7.6 Grid 5k: Experimental Results

Grid 5000 is a project of the French ACI Grid (Concertee Action Initiative)
which provides a solution to a problem revealed by many discussions on
the methodologies used by scientific research.

In addition to theory in research there is a strong need of large scale
experiments and to compare experimental results with those provided
by theoretical analysis. The size of Grid’5000 in terms of number of sites
and number of processors per site, was established according to the scale
of the experiments and the number of researchers involved.

Grid’5000 main objective aim to serve as experimental bench and then
to be used to conduct tests on a grid computing, and requires a great
effort on a large scale, involving a large amount of resources and means
to be able to have a good infrastructure for research on the grid. Indeed
it involves 17 laboratories at national level, with the aim of providing to
the researchers community an ad-hoc grid for all types of tests that can
cover all layers of software and network protocols.

Tests Configuration

Each tests have been executed upon Rennes GRID5000 frontend exploit-
ing 220 nodes. At the start of each test, 1500 peers are positioned within
a 800 ∗ 600 map at random, exploiting a uniform distribution.

As in the previous tests we have implemented 2 type of linking to
model the overlay, both of them are based on VAST functionalities.

Each peer move within the map every 200 ms.
Figure 74 shows the average number of links varying the type and

range of the linking type.
Figure 75 shows the maximum number of links in the same situations

of the previous figure.
Figure 76 shows the behavior of the average number of links for each

connection type, varying the number of peers from 100 to 1500.
The results obtained by the implementation on a real platform con-

firm the simulation results obtained by Peersim.

118

Figure 74: Average number of links.

Figure 75: Maximum number of links.

119

Figure 76: Average number of links varying the peers number.

4.8 Conclusions

This chapter defines a scalable approach for the development of a P2P sup-
port for Distributed Virtual Environments. Our approach is based on a
Voronoi Tessellation of theDV E which is exploited to define the P2P over-
lay.

After a more theoretical analysis of Delaunay characteristics, which
has lead to some theoretical results, we have defined a protocol for heart-
beat propagation which requires a minimal amount of information at
each peer. As a matter of fact, each peer should be aware only of its
Voronoi neighbors to forward a heartbeat within theAOI , while the rout-
ing algorithm presented in (52) requires the knowledge of the two hops
away neighbors. For these reason our solution considerably reduces the
number of messages exchanged through the overlay and the bandwidth
requirement at each peer especially when crowding occurs.

The algorithm is based on compass routing (60). Even if the general
idea of exploiting compass routing to build a multicast tree has been pre-
sented in (59), at the best of our knowledge, our proposal is the first one
where an algorithm is defined, implemented and evaluated.

The proposal exploits the concept of Area of Interest which models the
locality of interactions typical of the DV E. According to this approach,

120

the maximum degree of consistency is obtained, for each peer, within the
portion of the DV E within the AOI of the peer, while the consistency
decreases when the distance from the peers increases.

A further important characteristic of the proposal is that when a peer
moves within the DV E, the state of the areas not belonging but close to
its AOI can be easily accessed in comparison to those far away from its
AOI . As a matter of fact, our approach is based on a ”pass the word”
strategy, where the peers on the border of the AOI of a peer p ”put in
touch” p with new peers entering its AOI from outside. This mechanism
is simply based on the propagation of the heartbeats and does not require
a further request reply mechanism like that introduced in (1) which in-
troduces further traffic on the overlay.

The experimental results show that the Voronoi based overlay has
got good scalability properties and the routing strategy, based on a mod-
ified version of the Compass algorithm, has got a good behavior even in
crowding scenarios.

121

Chapter 5

Passive Objects
Management in Voronoi
based DVE

5.1 Introduction

This chapter introduces the problem of the management of the passive
objects in a Voronoi based DVE and illustrates our solution. The pro-
posed solution manages both the consistency and the persistency of the
state by exploiting the properties of the Voronoi tessellations. A speci-
fication of the proposed protocols is defined by Mobile Unity. The last
section shows the experimental results obtained by a set of simulations
implemented through Peersim.

5.2 Managing Passive Objects in DVE

As already discussed in chapter 4, the scalability of the DV E may be im-
proved through the concept of Area of Interest, so that an avatar receives
only notifications of events occurring in its AOI. The AOI should be ex-
ploited for the management of the passive objects as well. As a matter
of fact, the event corresponding to the creation or to the update of a pas-

122

sive object, should be propagated to any peer which is located in the
surroundings of the passive object. In this way, each peer should keep
a consistent state of any passive object in its surroundings and a lower
amount of messages should be required.

The mechanisms introduced in the previous section are still valid. For
instance each peer may dynamically acquire knowledge of the objects in its
surroundings as it moves within the DVE by exploiting a ’pass the world
approach’, like that discussed in the previous chapter. On the other way,
the problem of the management of the passive objects poses novel prob-
lems. For instance, a set of mechanisms to guarantee the persistence of
the objects of the inhabited regions of the DVE have to be defined. An-
other challenging issue is the management of passive objects in a fully
distributed environment. A solution based on the replication of the state
of the objects onto a set of peers, i.e. the peers located in its surroundings,
improves the scalability of the DVE, but requires the definition of proper
mechanisms to guarantee the consistency of the objects in spite of the con-
current updates of the peers. Finally, we should define proper mechanisms
to guarantee a good balance of the load related to the management of the
passive objects among the peers of the DVE.

5.3 A Voronoi Based Approach

In this section we propose to dynamically exploit the subdivision of the
DVE into regions defined by the Voronoi Tessellation for the management
of the passive objects.

Definition 3 The coordinator, or owner of a passive object A, is the peer P
whose Voronoi region Vor(P) includes A, i.e. the coordinates of A belong to
Vor(P).

Note that, due to the Voronoi properties, the owner of an object O is
always the peer closer to O. The owner of an object O may be modified
due to the movement of the peers. It is worth noticing that the ownership
of an objectO is always delegated by the owner ofO. When the ownerOW
of O realizes that O no longer belongs to its Voronoi Area, OW detects its

123

Voronoi neighbor V such that O belongs to Vor(V) and sends the current
state of O to V . V thus becomes the new owner of the object. A drawback
of this solution is that the ownership of an object O may be continuously
transferred between close peers in crowding scenarios. Section 5.6 will
introduce a strategy to avoid this situation.

Each passive object is characterized by the following Accessibility Ar-
eas

• Visibility Area of Interest(ViAOI). This is a circular area centered at
the object, whose radius must be equal to that of the AOI of the
peer. The Visibility Area of an object determines the boundary of
the DVE where it may be perceived. The state of the object must be
replicated and kept consistent within its ViAOI.

• Interaction Area of Interest(IAOI). This is a circular area centered at
the object, whose radius is smaller than that of the Visibility Area.
The Interaction Area of an object O determines the boundary of the
region of the DVE where a peer must be located to be able to modify
the state of O.

The following issues justify the assumption that the radius of the AOI
of a peer is equal to the radius of the ViAOI of an object:

• Let us suppose that the radius of the ViAOI of an objectO is smaller
than the radius of the AOI of a peer P . Consider an object O be-
longing to AOI(P) and a peer Q located within AOI(P) close to O.
In this scenario, P should receive any event generated byQwhile it
could not be aware of O. This implies fuzzy scenarios, for instance
Q picks up a powerful weapon and increases its power, P receives
from Q a notification of this event, but it is not able to understand
its reason that the event has generated.

• If the radius of the ViAOI of an object O is larger than the radius
of the AOI of a peer P , an opposite situation may occur. P should
perceive the updates perfomed upon O, while it is not aware of
the peer performing those updates. Fuzzy scenarios similar to the
previous ones may occur.

124

Figure 77: Visibility Areas and Voronoi Areas.

The following property holds for any assignment of objects based on
a Voronoi tessellation.

If an object O ∈ V or(P) and P /∈ V iAOI(O) then V iAOI(O) = ∅

This property follows from the structure of the Voronoi tessellation
which guarantees that any point belonging to a Voronoi region Vor(P)
is closer to P than to any other point of the DV E. For instance, Fig.77
shows a set of peers, shown by the red points and a set of passive objects
shown by circles. Object O1 belongs to the Voronoi Region of P1, but P1

does not belong to V iAOI(O1). Even if V iAOI(O1) intersects the Voronoi
Region of P2, V iAOI(O1) cannot include P2, otherwise it should include
P1 as well. On the other hand, O2 belongs to V or(P3) and its V iAOI
includes a set of peer besides P3.

The owner OW of an object O is responsible for notifying any up-
date to the state of O to any peer belonging to ViAOI(O). Furthermore,
some DVE objects may be dynamically created as well, for instance a
new weapon or a magic potion may pop up in any position of the DVE.

125

Figure 78: Static Heartbeat.

Even in this case, the OW should notify the presence of the new object to
any peer in ViAOI(O).

In the following the notification of the update of the state of a passive
object or of the creation of a new object will be referred as Static Heart-
beat, SHB, to distinguish it from the heartbeat notifying the position of
the peer. Note that, while a heartbeat is characterized by a constant fre-
quency of transmission, static heartbeats are not periodically generated.

As illustrate in figure 78, the ViAOI is centered on the (green) pas-
sive object. The owner of such object must notify to all peers, inside the
ViAOI, every change upon the state of the object and manage each mod-
ification request from the peers in the IAOI of the object. In this way,
the consistency of the state of the object is fully maintained within the
boundaries of its ViAOI and it fades beyond them. As a consequence
each peer perceives a consistent state of the portion of DV E close to it.

Even if compass Routing may be exploited to route static heartbeat,
some modifications are required. First of all, the peer which generates
the static heartbeat, i.e. the owner of the object, is no more located at

126

the center of the area where the heartbeat should be propagated, i.e. the
Visibility Areaof the object. This implies that some hops outside the ViAOI
of the object may be required to reach any peer belonging to it.

The second issue is related to the acquisition of new objects by a
peer P entering their Visibility areas. Since the static heartbeats are no
longer sent periodically, the basic mechanism of static heartbeat propaga-
tion can be no more exploited as a knowledge acquirement mechanism.
These issues will be discussed more deeply in Section 5.7.

Finally, it is worth noticing that, when a set of peers are present within
the Interaction Area of an object O, concurrent updates may be required
by different peers on the same object. As a consequence, proper mech-
anisms should be taken into account to maintain the consistency of the
DV E. The solution introduced in Section 5.5 exploits the object owner
as a coordinator of the concurrent accesses. In this way the owner acts as
a temporary server for the passive object.

5.4 Object Replication by Ownership Forecast-
ing

As discussed in the previous section, an object O, initially present in a
Voronoi region of a peerOW can find itself in a Voronoi region of another
peer P due to the movement of the peers. In order to avoid inconsisten-
cies, the ownership must be delegated by OW to P .

An important problem to be faced when defining a P2P support for
DV E is that of the state loss due to the crash of a peer or to its voluntary
leave of the DV E. These scenarios often occur in a P2P environment,
where peers may autonomously enter and leave the DV E.

Any solution to this problem should introduce a certain degree of
replication for the passive objects of the DV E. Note that the semantics
of these application naturally introduces a certain degree of replication,
because each object must be replicated and kept consistent on any peer
belonging to its Visibility Area of Interest.

We propose to increase the reliability of the DV E by exploiting the
properties of Voronoi diagrams.

127

Figure 79: SHB propagation outside ViAOI.

First of all, when V iAOI(O) is empty, the owner OW of O should
send the state of O to each one of its Voronoi neighbors even if they are
located outside V iAOI(O). As shown in the previous section, since OW
does not belong to V iAOI(O), no other peer of the DV E is aware of O
and the crash of OW implies the loss of the state of O.

This situation is shown in Fig. 79 where peer b, in the left part of the
Figure, rs. peer a in the right part of the Figure, must send to peer a,
rs. peer b, any change of state of the object x, even if V iAOI(x) does not
include a, r.s b.

In this way, if a peer P crashes, the state of the objects it owns will not
be lost and the portion of the DV E owned by P will be divided among
its neighbors, according to the Voronoi tessellation resulting by the new
partition of the DV E.

This strategy may be optimized in the following way. Each peer P ,
which is the owner of at least an object, computes a Voronoi diagram
including all its neighbor, but not itself. In this way, it can detect, for
each objectO it owns, the neighborN which will includeO in its Voronoi
Area, if it crashes. P then sends a static heartbeat to N , even if N does
not belong to V iAOI(O).

Fig. 80 illustrates this strategy. The object owner P , shown in the left
side of the figure, deletes itself from the Voronoi tessellation and finds
out that in the case of its departure from the DV E, the new owner for
x is N , as shown in the right part of the figure. P then sends a static

128

Figure 80: Ownership forecast.

heartbeat to N notifying the state of x.
This basic solution can be improved to increase the degree of repli-

cation of each object in order to decrease the probability of loss of the of
critical information of the DV E. For instance, different Voronoi tessella-
tions may be considered, each one corresponding to a different degree of
replication. While the minimum degree of replication is computed by the
ownerOW of an objectO, by deleting itself from the Voronoi diagram, an
higher degree of replication is defined by deleting itself and its Voronoi
neighbors and so on, by applying a recursive procedure. OW then con-
siders the sequence of tessellations obtained by the recursive procedure,
detects, for each tessellation, the peer whose Voronoi region includes O
and sends it a static heartbeat notifying the state of O.

5.5 Object Consistency

A critical issue for the definition of a P2P DVE support is the definition
of a proper mechanism to guarantee the consistency of the objects when
concurrent updates occur.

In a DV E each peer may update an object only if it is close to it. For
instance, a peer should be close to a magic potion to drink it. If the peer

129

is far from the potion, it may throw a stone to break the bottle containing
the potion. In any case, for each object O, we can define an Interaction
Area of Interest or IAOI, that is the portion of the DV E where a peer must
be located in order to modify O. This area can be different for different
kind of objects and its exact radius is part of the object’s state.

Note that if IAOI(O) is not empty, then at least the owner of O is
located in it, because the owner is the peer which is closer to O with
respect to any other peer.

Our solution is based on the dynamic definition of a server for each ob-
ject which guarantee the consistency of the object by serializing its up-
dates. In our model, these servers are the owners of the objects which
act as transitory servers for them and resolve the conflicts due to the con-
current updates on the same object. Each object may be managed by
different servers during its lifetime, because the ownership of the object
is delegated when the peers move, but each object is owned by at most a
server at each instant of time.

When a peer P is going to modify an objectO, P requires to the owner
OW the state of O, modifies O, then it sends back the updated state of
O to OW . OW guarantees that no further request is accepted while it is
serving the request from P .

The same conflict resolution strategies defined for the client/server
computational paradigm may be exploited to solve conflicts due to con-
current updates. For instance, the update requests may be served accord-
ing to a FIFO policy or the timestamp of the request may be considered,
for instance when the application exploits a NTP protocol (44; 45; 46).

The major drawback of this solution is the overhead introduced by
the request-reply protocol. To decrease this overhead, an optimistic ap-
proach may be considered. A peer P may locally update the state of an
object O by exploiting its local copy LS of the state of O. On the other
way round, since the update must be committed by the owner of the
object, P neither renders the updated state US of the object on the user
interface nor exploits theUS to update the local game state. P then sends
both LS and US to the owner of the object.

When the owner receives the request, it compares LS with its copy of

130

the state ofO and if they are equal, the update is committed and a positive
acknowledgement is sent to P . When P receives the acknowledgement, it
may render the new state and update the state of the game. If the two
state are not equal, a negative acknowledgement is sent to P which resets
the update. P may retry the update later. Note that while this solution
reduces the overhead, it is not fair, because a peer may not succeed in
updating an object.

Different solutions may be exploited for different kind of objects, for
instance, a particular type of object can be very important for the seman-
tic of the application, instead another type could be less important. These
objects could be managed through a different approach. The proper con-
sistency strategy may be choisen according to DV E application.

Consider, for instance, a MMORG scenario where all the players are
involved in a time consuming virtual battle whose goal is the control of
a fortified city. In this case, the consistency of state of the big doors of
the fortified walls is crucial for the semantic of the application. When the
player tries to destroy the doors, or tries to enter into the city, he asks for
the state of the doors to their owner before any action. If the state of the
doors state is not consistent, some players can enter into the city even if
the doors are closed, the game is no more fair and a faction of players
may win without merit.

On the other way round, consider a battle including players and non-
players characters (NPC), which are avatars managed by artificial intel-
ligence.Like for passive objects, it is possible to assign a owner to each
NPC, managing its behaviour. Suppose now that a group of players try
to attack a group of NPC. To maintain the dinamicity of the application
each player may use its local vision of the DV E, and autonomously in-
teract with the NPC. Then, the player sends its action to the owner of
the NPC which receives the local actions performed by the player, de-
cides a meaningful order of the events and sends the new state of the
NPC through a static heartbeat.

131

Figure 81: AOI’s ranges.

5.6 Forced Coordination

The ownership delegation protocol defined in the previous section ex-
ploits the Voronoi tessellation of theDV E to define the assignment of the
objects to the peers. The main drawback of the protocol is the ’ping pong’
effect which may occur in crowding scenarios, where a pair of neighbor
peers continually exchange an object O, because their common Voronoi
edge steps over O, due to their movement.

To cope with this problem we define, for each object O, a third area of
interest, the Forced Coordination Area of Interest, FCAOI, centered upon O
as well. As shown in FIg. 81, the range of the FCAOI is larger than that
of the IAOI and smaller than that of the V iAOI .

If the owner OW of an object O is located inside FCAOI(O), then
OW should not delegate the coordination of O to its Voronoi neighbor
P , even if the peers move and, as a consequence, P includes O within its
Voronoi region. In this way, in a crowding scenario, where many avatars
and objects are very close within the same area, communications over-
head due to the bounce of the object backward and forward from a peer

132

Figure 82: Forced Coordination Area of Interest

to a neighbor may be avoided.
Figure 82 shows the exploitation of the Forced Coordinated Area of In-

terest in a crowding scenario.

• I: B is the owner of x.

• II: A and B are approaching and B is inside the FCAOI of x.

• III: Now x is located inside the Voronoi area ofA, but sinceB is still
located inside the FCAOI of x it does not delegate the ownership
of x to A.

• IV: SinceB is outside FCAOI of x and x is outside the Voronoi area
of B, then B delegates the ownership of x to A.

5.7 SHB Notification by Compass Routing

The compass routing protocol introduced in the previous chapter has
been exploited to propagate the static heartbeats within the Visibility Area
of Interest of an object. On the other way round, it is worth noticing that
unlike heartbeat messages, the static heartbeat is sent by the owner of a

133

Figure 83: Extended Propagation Area

Figure 84: Object far from the owner.

134

passive object, which is not located at the center of the Visibility Area of
Interest of the object, i.e. the area where the static heartbeat should be
propagated.

The theorems proved in the previous chapters are valid if the heart-
beat is propagated in a circular area and the source of the heartbeat is
centered in this area. If these conditions hold, only the peers included in
the circular area should be considered.

To guarantee that all the peers inside the ViAOI of the object receive
the static heartbeat notifying the update, we consider an area centered
at the owner, whose range equals the sum of the radius of the ViAOI
with the radius of the FCAOI, as shown in Figure 83. Since this area
includes the ViAOI centered at the object and the peer generating the
static heartbeat is located at the center of this area, previous results show
that any peer located in this area will receive the static heartbeat.

Note that if the owner is located outside the ViAOI of the object no
change to the object state need to be propagated because the owner is, by
definition, the peer which is closer to the object. This situation is shown
in Figure 84.

Finally, it is worth noticing that the static heartbeat notification mech-
anism cannot be exploited for the acquirement of new objects, because of
the not periodic transmission of the static heartbeats. On the other way
round, the ”pass the word” approach outlined in the previous sections
is still valid. When a peer P belonging to the Visibility Area of an object
O detects that a new peer P ′ enters the Visibility Area of O, P may send
to P ′ a static heartbeat notifying the state of O. In this way, P ′ acquires
knowledge of new objects while moving within the DV E.

5.8 Mobile Unity Specification

The figure 85 shows an high level specification of the protocols for the
management of the passive objects described in the previous sections.

To simplify the specification, the maximum number MaxObj of pas-
sive objects of theDV E is statically defined and no object may be dinam-
ically created.

135

Each peer stores the state, the owner and the position of each object
it is aware of in the array Obj where each position corresponds to a dif-
ferent object. The elements of Obj corresponding to objects which are
not perceived by P contains the value ⊥. The array ObjReq stores the
pending request for object updates required by P .

The Move clause in the Assign section models the movement of the
peer.

The GiveOwnership clause is executed when Pi realizes that one of its
objects O currently belongs to the Voronoi region of a Voronoi neighbor
Pj and Pi is located outside the Forced Area of Interest of Pi. In this case,
the owner of the object is set to Pj . This event fires a set of reactions
in the Interactions Section which corresponds to the routing of a static
heartbeat notifying the new Owner of the object.

The Reset clause is executed when a peer comes out of the Visibility
Area of Interest of an object and resets the state of the object in the vector
Obj to ⊥.

The RequestModify is executed when a peer P belongs to the Interac-
tion Area of an object O and stores in the array ObjReq the request of
update of P . This request fires one of the first two reactions in the In-
teractions Section. These reactions model the reception of the request by
the owner of the object which checks if the update may be accepted (the
first clause) or rejected (the second clause). In any case a notification is
sent to P by assigning to the value true/false to the committ field of the
object descriptor.

The ModifyMyObject clause models an update of an object executed
by the owner of the object. In any case, the update of the state of the
object fires a set of reactions, in the Interactions Section, modelling the
compass routing based routing. These reactions are defined by the last
Interaction clause.

Finally, the third Interaction clause, models the situation where a peer
enters the Visibility Area of an object O . In this case, the peer receives
the state of O by one of its Voronoi neighbors which is already aware of
O.

136

System VoronoiPassiveObjects
program P (i) at λ

declare
� Obj:array [0 . . .MaxObj − 1] of

(State : integer,Owner : [0 . . .MaxPeer − 1] , Pos : λ)
� ObjReq:array [0 . . .MaxObj − 1] of

(Req : Boolean,Newstate : integer, Committ : Booolean)
initially

� Obj [k] = (λk, valk, i) when λk ∈ V oronoi(λ)
� Obj [k] = ⊥when λk /∈ V oronoi(λ)
� ObjReq [k] = false,⊥, false

assign
� Move:: λ:= NewLoc(λ)
� GiveOwnership:: Obj [k] .Owner = j

reacts-to Obj [k] .Owner = i, V oronoi(Obj [k] .Pos, Peer [j] .λ),
dist(λ,Obj [k] .Pos) > FAOI

� Reset:: Obj [k] = ⊥ reacts-to λ /∈ V iAOI(Obj [k] .Pos)
� RequestModify:: < f = Random();

ObjReq [f]:= true,GenNewState(Obj [f] .State), false >
when (λ ∈ (IAOI(Obj [f] .Pos))

� ModifyMyObject:: < f = Random();
Obj [f] .State:= GenNewState(Obj [f] .State) >

when (Obj [f] .Owner = i)
end

Components
� i:0≤i<MaxPeer:: P(i)

Interactions
� P (i).Obj [k] , P (j).ObjReq [k] .committ:= (P (j).ObjReq [k] .NewState, true

reacts-to P (j).ObjReq [k] .Req = true
∧

P (i).Obj [k] .Owner = i
∧

P (i).Obj [k] .State=P (j).Obj [k] .State
� P (i).Obj [k] , P (j).ObjReq [k] .committ:= (P (j).ObjReq [k] .NewState, false

reacts-to P (j).ObjReq [k] .Req = true
∧

P (i).Obj [k] .Owner = i
∧

P (i).Obj [k] .State 6= P (j).Obj [k] .State
� P (i).Obj [k]:= P (j).Obj [k]

reacts-to P (i).Obj [k] = ⊥ ∧ P (j).Obj [k] 6= ⊥ ∧ V oronoiNeigh(P (i), P (j)),∧ ∧
P (i).λ ∈ V iAOI(P (j).Obj [k])

� P (i).Obj [k]:= P (j).Obj [k]
reacts-to P (i).Obj [k] 6= P (j).Obj [k],

∧
V oronoiNeighs(P (i), P (j)),

∧
Is Parent(P (j), P (i), P (j).Obj[k].Owner)

∧
P (i).λ ∈ V iAOI(P (j).Obj [k])

Figure 85: Passive Objects Protocol: A Mobile Unity Specification

137

5.9 Experimental Results

This section presents a set of experimental results whose goal is to ana-
lyze the number of ownership changes as a function of the radius of the
Forced Coordination Area of Interest and of the speed of the peers.

The simulations have been implemented by the cycle-based version
of Peersim. All the experiments consider 1000 peers and 3000 passive
objects, the position of both the peers and the objects are uniformly dis-
tributed within a 800x600 grid. At each simulation cycle, the peers can
move and change their direction at random and turn back when they hit
the border of the grid.

Figure 86 shows the number of ownership changes when the radius
of the Forced Coordination Area of Interest ranges from 0 to 50 pixels dur-
ing 200 simulation cycles. As we expected, the number of changes of
ownership decrease as the radius of the FCAOI is increases.

The goal of the following tests is to investigate the maximum num-
ber of ownership changes as a function of the speed of the peer and of
the range of the Forced Coordination Area of Interest, during a 1000 cycles
Peersim simulation.

The maximum number of ownership changes have been computed
as follows:

• a counter has been paired with each object. At each simulation cy-
cle, the counter is incremented if the object change its owner. Note
that an object can change its owner at most one time for each cycle.

• at the end of each cycle, we compute the maximum number of own-
ership changes in that cycle. Note that this value could not belong
at the same peer of the previous cycle.

• At the end of the simulation we compute the average maximum
number of ownership changes for each cycle and then we divide
this number for the number of cycles. In such case, we obtain the
probability, for each cycle, that an object has got to change owner
in the worst case.

138

Figure 86: Number of ownership changes for each cycle.

Figure 87: Maximum number of ownership changes as a function of the
forced coordination radius.

139

Figure 88: Maximum number of ownership changes as a function of the
speed

Figure 89: Maximum number of objects owned by a Peer

140

Figures 87 and 88 illustrate how the forced coordination radius influ-
ences, and decreases, the maximum number of changes even in presence
of a large avatar mobility. That is, the probability of ownership change,
for each object, is greatly lowered even when the speed of the peer is
high, as shown in Figure 87 by the Vel 5 curve, with greater forced coor-
dination range.

Note that, in general, a larger forced coordination range is paired with
a greater number of objects owned by a peer. On the other way round,
Figure 89 shows that the increase of the maximum number of objects
owned by a peer at each cycle increases slowly when the range of the
Forced Coordination Area of Interest increases.

141

Chapter 6

Hierarchical Voronoi Based
Overlay

6.1 Introduction

This chapter presents a hierarchical Voronoi based overlay which is de-
fined by pairing each peer with a weight which is proportional to its band-
width. Peers characterized by higher weights act as superpeers by offering
a set of services to peers characterized by lower bandwidth. Additive
Weighted Voronoi Diagrams(56) are exploited to define a partition of the
DV E that assigns to each peer a region whose size is dependent to the
weight of the peer. Superpeers are modeled by sites of the tessellation
that have absorbed at least the Voronoi area of another site. A simple
strategy to balance the load of passive objects management is defined. A set
of experimental results show that this approach can be a load balancing
mechanism for P2P networks, that does not impair usual properties of
Voronoi-based P2P networks.

6.2 Additive Weighted Voronoi Diagrams

The classical Voronoi tessellation, and hence the classical Delaunay trian-
gulation, is defined by considering the standard L2 metric for distance:

142

Figure 90: Classical (left) and Weighted (right) Voronoi tessellation.

d = ||si, sj || =
√

(xi − xj)2 + (yi − yj)2

where (xi, yi) are the coordinates of the site si, and (xj , yj) are the
coordinates of the site sj .

Distances different from the one induced by the standard L2 metric,
can be exploited to build a Voronoi Tessellation from a set of sites. For
instance, it is possible to assign a weight wi to each site si, to tune the size
of its Voronoi region V oro(si). The resulting tessellation is referred as
Weighted Voronoi Diagram.

The most common weighted distances are the multiplicative weighted
one:

dm = ||si, sj ||/wi =
√

(xi − xj)2 + (yi − yj)2/wi

and the additive weighted one:

da = ||si, sj || − wi =
√

(xi − xj)2 + (yi − yj)2 − wi

that lead respectively to the Multiplicatively Weighted Voronoi Graph
and to the Additively Weighted Voronoi Graph, shown in right side of Figure
90.

143

Moreover, the Additively Weighted Voronoi Graph, AWV, also referred
as Apollonius Graph, partitions the plane into a set of connected regions,
where the sides of the regions are hyperbole arcs. In general, sites with
larger weights own larger regions.

As shown in right side of Figure 90, AWV diagrams include both visible
and hidden sites. The former own a Voronoi Area which may include a set
of hidden sites and are connected to their Voronoi neighbors, i.e. the peer
whose Voronoi region overlaps their region. The latter do not own any
area and are only connected to the peer owning the Voronoi region where
they are located. As a matter of fact, a site si with an high weight may
’absorb’ the region of a close site sj with a low weight. Note that the
weights of the peers are shown in right side of 90 by circles centered at
the peer whose radius is proportional to the weight of the peer.

If at each site is assigned the same weight the Apollonius graph degen-
erates into a standard Voronoi graph.

Notice that the extent of the Voronoi Area of a peer, and the number
of hidden peers assigned to it, depends both on the ratio between its
weight and the weight of the peers located in the neighborhood, and on
the distance from those peers.

6.3 Modeling Hierarchical Overlays by AWV Tes-
sellations

A Hierarchical P2P Network can be modeled by a Weighted Voronoi Tes-
sellation where each site corresponds to a peer and whose weight is pro-
portional to the bandwidth of the corresponding peer. Even if several
resources may be considered when defining the weight, we focus our
attention on the communication bandwidth only.

As discussed above, AWV diagrams include both visible and hidden
sites. We recall that the Voronoi Region associated to a visible site may
include hidden sites, while hidden sites do not own any Voronoi area.
Furthermore, the overlay is defined only among the visible peers.

Visible sites model peers that do not rely on the support of a superpeer
to forward/receive their notifications. These peers may be characterized

144

Figure 91: AWV Tessellation (left) and the Corresponding Overlay

by a high weight, or they have low bandwidth and are not able to find
out a superpeer in their surroundings which is able to support them. In
the latter case, they should directly connect to their neighboring peers to
exchange notifications with them. These peers may act as servers for the
peers corresponding to sites that have been hidden.

Hidden sites model peers that do rely on the support of a superpeer,
that is the peer that has ’absorbed’ their Voronoi region. The superpeer
acts as a proxy for the hidden peer, so that any notification is sent/received
through it.

Figure 91 shows an AWV tessellation and the corresponding overlay.
Both peer A and peer B have absorbed some neighbors, that are shown
within their Voronoi regions. Left side of Figure 91 also shows a crowd
of peers (A, B, C) characterized by low weights, that have not been ab-
sorbed by any superpeer, because they are far away from the closest one.
As we will discuss, this situation may be handled by dynamically adapting
the weights of the peers.

The AWV Tessellation based approach presents several advantages.
First of all, each peer may autonomously decide its current role in the
DVE, i.e. visible or hidden, by considering both the ratio between its
weight and those of its neighbors, and the relative position with respect

145

to its neighbors.

As expressed in section 5.3, each object is dynamically associated to
the peer owning the Voronoi region where the object is currently located.
This peer is the owner of the object, stores its state and manages con-
current updates. The ownership of an object may be delegated to an-
other peer, when the owner moves away and the object is included in
the Voronoi area of another peer. Our approach naturally supports a load
balancing strategy, because peers characterized by larger weights are as-
sociated to larger Voronoi regions, hence they manage a larger number
of passive objects.

An important issue in our approach is the definition of proper weights
for the peers. A simple solution statically assigns weights to peers, accord-
ing to their bandwidth. For instance, it is possible to define two classes
of peers, those which may act as superpeers, and the ordinary peers. A high
weight is assigned to the former ones, while a weight equal to zero may
be assigned to the other ones. In this way, an ordinary peer never hides
other peers, while the high weight assigned to a superpeer allows it to
support close ordinary peers in crowding scenarios. The weight assigned
to superpeers must be carefully chosen with respect to size of the DVE. As
a matter of fact, if it is too high, a few superpeers would serve all the other
ones, so reverting to a classical client server architecture. If the weight
is too small, a superpeer would not be able to support a large number of
peers belonging to the crowd.

A more sophisticated solution is based on the dynamic adaptation of
the weights. For instance, a superpeer should reduce its weight when its
bandwidth is saturated by active connections, while it should increase its
weight when its bandwidth is not fully exploited. Consider for instance
the peer C in left side of Fig.91 which is characterized by a high weight
represented by the circle centered at C. Since it has not absorbed any
peer and the number of its neighbors in the Delaunay overlay is small,
its bandwidth is not fully exploited. Therefore it should dynamically
increase its weight in order to give support to some peers of the crowd.

146

6.4 AWV Based Overlays Management: Distributed
Approaches

This section briefly reviews the most important concepts and describes
the additions required to support AWV extension.

The first step performed by a new peer N joining an existing Voronoi
overlay is the discovery of its Voronoi neighbors in order to define a set of
initial connections with them. N notifies its initial position I to a bootstrap
peer, which forwards the request by greedy routing to the peer P owning
the Voronoi region including the point I . In this way, P puts N in touch
with its neighbors, and the initial connections can be defined. These con-
nections are going to change during the permanence of N in the DVE,
because N moves around the world and hence new Voronoi neighbors
might be defined.

A challenging issue is the definition of a fully distributed strategy which
guarantees that each peer is always correctly connected to its Voronoi
neighbors such that no disconnections occur in the overlay.

As in the previous chapters, we propose an approach based on a ’pass
the word’ strategy among peers, where peers get acquainted with each
other through their Voronoi neighbors. In a DVE each peer periodically
sends a heartbeat, i.e. a message notifying its position, to all the peers
in its Area of Interest. These messages may be forwarded through the
Voronoi links by proper routing strategy which exploit the properties of
the Voronoi tessellation to minimize the amount of messages exchanged.
(65) proposes compass routing (64) to dynamically define a spanning tree
covering the peers in the AoI. To reduce the notification delay a set of
direct connections between a peer and a subset of peers belonging to its
AoI may be defined.

When a peer P receives an heartbeat from Q, it checks if one of its
neighbors, say N , is entering the Area of Interest of Q, and in this case
it notifies to N the position of Q. In this way, each peer acts as a beacon
for each neighbor by putting it in touch with new peers approaching its
Area of Interest from far away locations.

A similar approach may be adopted to notify the updates of passive

147

objects. In this case, the notification is sent to each peer belonging to the
visibility area of the object, which is generally a circular area centered in
the object. These notifications may be forwarded via the same routing
mechanism defined for heartbeats.

An important issue to be considered when adopting a fully distributed
and dynamic approach is that it needs a set of mechanisms to face the in-
consistencies which may rise due to network delays, loss of messages, or
abrupt crashes of peers. To avoid network partitioning, the definition of
a set of mechanisms is therefore mandatory.

Let us now consider the Additive Weighted Voronoi approach. The rout-
ing algorithms proposed in the previous chapters must be adapted to
cope with the hierarchical structure of the network. A different strategy
must be defined to route the notifications generated by a peer which are
hidden by the Voronoi regions of other peers. These notifications should
be sent to the superpeer SP , i.e. the peer which has ’absorbed’ the hid-
den peer. SP , in turn, dispatches these notifications to its hidden peers
which are interested in these notifications, and to its visible neighbors. It
is worth noticing that peers which are physically close in the DVE may be
hidden by different superpeers, like D and E in Figure 91. For this reason
each notification received by a superpeer must be forwarded to its visible
neighbors which, in turn, may propagate the notification to interested
peers hidden in their regions. This basic mechanism can be improved by
propagating on the overlay only notifications of hidden peers whose AoI
intersect the border of the region owned by their superpeer.

It is worth noticing that each peer may turn its state from hidden to
visible and the other way around, when moving within the DVE. Each
peer is able to autonomously decide if it has been ’absorbed’ by a super-
peer by comparing its weight with those of its Voronoi neighbors and by
evaluating the euclidean distance from them. When a peer is absorbed,
it resets all its connections to visible peers and establishes a single con-
nection with its superpeer.

On the other hand, a hidden peer P cannot autonomously decide if it
has become visible, since it does not know any peer of the DVE, except its
superpeer SP . In this case, when SP hides no more P , it notifies to P the

148

change of its status. P receives from SP the list of its visible neighbors
as well. Note that this operation is equivalent to a new join of the hidden
peer to the Voronoi overlay.

6.5 Experimental Results

The model introduced in this chapter has been analyzed by means of
simulations. The simulator was composed by stable and mainstream
components. A mature library that provides Apollonius graph’s creation
and management is CGAL (Computational Geometry Algorithms Li-
brary) (62), written in C++ and developed by a large consortium of Euro-
pean research institutions. The simulation infrastructure is Peersim (55).
The softwares were linked together by means of a compatibility layer
created using SWIG (Simplified Wrapper and Interface Generator) (63).

The experiments were aimed at the analysis of the topology of peer-
to-peer networks based on Apollonius graphs, under two different sce-
narios. In the first one, that we called “constant weights scenario”, the
peers are divided into two groups, the weightless peers, with a weight
equal to 0, and the weighty peers, having all the same weight p, that
has been kept constant during each run of the simulation. The second
scenario, the ”dynamic weights scenario”, also manages weightless and
weighty peers, but the weight p has been modified from 25 to 100 during
the simulation, that is composed of only one run.

In the rest of the chapter, we use the following definitions:

• Weightless peer: a peer that has a weight of 0

• Weighty peer: a peer that can have a weight different from 0

6.5.1 Constant weights scenario

The goal of the experiment was to measure the parameters that char-
acterize peer-to-peer networks composed by active peers with different
weights. The peers were 900 and were divided into two logical groups.
The first group features 800 weightless peers, while the second group

149

Figure 92: Number of visible peers (left) and mean number of hidden peers
(right) for different weights.

is composed by 100 weighty peers characterized by the same positive
weight p, that is assigned a different value in the different runs of the
experiment. In particular, each experiment is composed by 4 runs, one
with p = 50, then one with p = 100, then one with p = 150, and fi-
nally one run with p = 200. Peersim simulator performed 1500 cycles
for each weight assignment, meaning that the experiment analyzes 1500
networks for each weight. The coordinates of the peers and of the pas-
sive objects are distributed uniformly at random at the beginning of each
cycle.

Left side of Figure 92 shows the number of visible peers against the
cycle number. Each line represents the outcome of the experiment for
a different weight p. The figure shows that, when p ≥ 100, only 100
peers (the weighty ones) are visible. This result is also confirmed by
the right side of Figure 92, that shows the mean number of peers that
are hidden by each weighty peer, against the cycle number. Each line
represents the outcome of the experiment for a different weight p. The
figure shows that, when p ≥ 100, the mean gets very close to 8, meaning
all the weightless peers got hidden by weighty peers.

6.5.2 Different numbers of weighty peers

This set of experiments analyzes the effects of having a small number
of weighty peers in the peer-to-peer network. The simulated networks

150

Figure 93: Number of visible peers (per cycle and mean value) for 10, 20
and 40 weighty peers.

Figure 94: Number of hidden peers (per cycle and mean value) for 10, 20
and 40 weighty peers.

featured 900 peer, and the weight p of the weighty peers is 100, the num-
ber weighty peers dependeds on the run and is n ∈ 10, 20, 40, and 500
networks were simulated for each different number of weighty peers.

Left side of Figure 93 shows the number of visible peers during the
simulation for different numbers of weighty peers, and it is summarized
by the right side of Figure 93, that shows the mean number of visible
peers against the number of weighty peers. The result is that, when there
are 10, 20 and 40 peers, there are respectively 500 − 600, 280 − 380 and
100−150 visible peers, hence the weighty peers hid respectively 300−400
peers, 500− 600 peers, and 750− 800 peers.

Left side of Figure 94 shows the mean number of peers hidden by
each weighty peer during the simulation for different numbers of weighty

151

Figure 95: Number of visible peers (left) and number of peers hidden by
each visible peer (right) against the weight of weighty peers.

peers, and it is summarized by the right side of Figure 93, that shows the
mean number of peers hidden by each weighty peer against the number
of weighty peers. The result is that, when there are 10, 20 and 40 peers,
each weighty peer hids respectively 31−39, 29−33 and 19−20 weightless
peers.

6.5.3 Dynamic weigths scenarios

The goal of this part of the experiment has been to measure the param-
eters that characterize peer-to-peer networks composed by active peers
that are divided into two logical groups. The peers were 900, the first
logical group featured 800 weightless peers, while the second group was
composed by 100 peers characterized by the same positive weight p, that
is modified during the experiment. There are also 4000 passive objects
in the area, to be managed by the active entities that owned the locations
where the object resided. Each experiment involved 1500 cycles (say,
1500 different networks), and p = 100 for the first 20 cycles, then p = 99
for cycles 21 − 40 and so on, down to p = 26 for cycles 1481 − 1500.
The coordinates of the peers and of the passive objects are distributed
uniformly at random for each generated network, i.e. for each cycle.

Left side of Figure 95 shows the number of visible peers against the
weight assigned to the weighty ones. It shows that, when p ≥ 80, only
the 100 weighty peers are still visible. This result is confirmed by the

152

right side of Figure 95, that shows the mean number of peers that were
hidden by each visible peer, against the weight assigned to the weighty
peers. It shows that, when p ≥ 80, the 800 weightless peers are hidden
by the 100 weighty peers, and hence each visible (weighty) peer hids a
mean of 8 hidden (weightless) peers.

Left side of Figure 96 shows the number of peers that own passive
objects against the weight p of the weighty peers. It shows that, when
p ≥ 80, the 800 weightless peers are hidden by the 100 weighty peers, and
hence only the 100 weighty peers own objects. On the other hand, when
p is small, a larger number of peers, both weightless and weighty, own
passive objects. The dual view of this result is provided in the right side
of Figure 96, that shows the mean number of objects that are managed
by each owner, against the weight p of the weighty peers. When p ≥ 80,
the 100 weighty peers are the only visible ones, hence they own all the
4000 passive objects, and the mean number of passive objects for each
owner is 4000/100 = 40. On the other hand, when p was small, a larger
number of peers, both weightless and weighty ones, own passive objects,
and hence the mean number of objects for each of them drops towards 5.

6.5.4 Number of links

Left side of Figure 97 shows the mean number of links between visible
peers. The number of links does not vary when the weight is p differed.

Figure 96: Number of peers that own passive objects (left) and mean num-
ber of passive objects per owner (right).

153

Figure 97: Number of links between visible peers: mean value (left) and
discerning weightless and weighty peers (right).

More information about the number of links of visible peers is given by
the right side of Figure 97, that discerns between weighty and weightless
peers. For this Figure only, the experiment was slightly different from the
previous ones. This time the number of weightless peers is 800, there are
100 weighty peers, the weight is p ∈ [1, 100], and we simulated 20 net-
works for each different weight. The lines represent the number of links
of a visible peer to different visible peers. In particular, the higher line
shows the mean number of links from weighty peers to visible peers. The
middle and bottom line both show the number of links from weightless
visible peers to visible peers. The middle line shows the mean number
of links from weightless peer to visible peers, normalizing it against the
number of visible weightless peers, completely ignoring hidden weight-
less peers. On the other hand, the bottom line shows the mean number of
links between weightless peers and visible peers, normalizing it against
the number of all the weightless peers (both visible and hidden), counting
hidden peers as having 0 links.

This experiment highlights a number of facts. First of all, the behav-
iors of the weightless and weighty peers converged when the weight p
of the weighty peers got to 0, and in particular the number of links con-
verged to 6, as it is the standard behavior for Voronoi graphs50. More-
over, the behavior of the weighty peers goes back to standard Voronoi
when p ≥ 80, meaning that the weightless peers were totally hidden
by the weighty ones, and hence the remaining weighty peers created a

154

Voronoi network between them. An unexpected yet interesting behavior
is the intermediate one, when the number of links of weighty peers goes
over 10. Some weightless peers, for p ∈ [10, 50], are still visible into the
network, but have small areas assigned to them, hence the weighty peers
still have their Voronoi links between them, but they have also some links
to the weightless peers.

155

Chapter 7

Conclusions and Future
Works

7.1 Conclusions

This thesis defines a scalable approach for the development of a P2P sup-
port for Distributed Virtual Environments. Our approach is based on a
Voronoi Tessellation of the DV E which is exploited to define both the P2P
overlay and the support for the management of the passive objects.

Our proposal differs from (1) in several directions. First of all, we
have defined a protocol for heartbeat propagation which requires a min-
imal amount of information at each peer. As a matter of fact, each peer
should be aware only of its Voronoi neighbors to forward a heartbeat
within the AOI , while the routing algorithm presented in (52) requires
the knowledge of the two hops away neighbors. For these reason our so-
lution considerably reduces the number of messages exchanged through
the overlay and the bandwidth requirement at each peer especially when
crowding occurs.

Our routing algorithm is based on compass routing (60). Even if the
general idea of exploiting compass routing to build a multicast tree has
been presented in (59), at the best of our knowledge, our proposal is the
first one where an algorithm is defined, implemented and evaluated.

156

Our proposal exploits the concept of Area of Interest which models the
locality of interactions typical of the DV E. According to this approach,
the maximum degree of consistency is obtained, for each peer, within the
portion of the DV E within the AOI of the peer, while the consistency
decreases when the distance from the peers increases.

A further important characteristic of our proposal is that when a peer
moves within the DV E, the state of the areas not belonging but close to
its AOI can be easily accessed in comparison to those far away from its
AOI . As a matter of fact, our approach is based on a ”pass the word”
strategy, where the peers on the border of the AOI of a peer p ”put in
touch” p with new peers entering its AOI from outside. This mechanism
is simply based on the propagation of the heartbeats and does not require
a further request reply mechanism like that introduced in (1) which in-
troduces further traffic on the overlay.

Furthermore the thesis presents a set of strategies for the management
of the passive objects exploiting the properties of the Voronoi Tessellation
to guarantee the consistency and the persistency of the state of the DV E.
A few proposals (20; 23) for the management of the passive objects of the
DV E have been presented in the literature and most of them exploit a
DHT to assign the management of the passive objects to the peers. We
believe that the cost of dynamically querying a DHT for objects retrieval
is not tolerable in a DV E.

Both the heartbeat propagation protocol and that for the management
of the passive objects are specified by Mobile Unity.

The thesis also proposes a hybrid P2P architectures based on Additively
Weighted Voronoi graphs. In this architecture, each peer may have a differ-
ent role in the P2P network according to its communication bandwidth,
CPU power and memory capacity. Moreover, passive objects may be
assigned to peers such that the load for their management is balanced
among the peers.

The experimental results have shown the feasibility of our approach.
First of all, we have checked the cost of maintaining a distinct Voronoi
diagram at each peer including its AOI neighbors. We have tested the
V AST library and shown that the cost of rebuilding a Voronoi diagram

157

at each heartbeat reception is tolerable with respect to the realtime con-
straints typical of this kind of applications.

Each proposed protocol has been tested and evaluated by Peersim,
a scalable simulator for P2P networks. A set of preliminary evaluation
have been also performed on the GRID 5K platform.

7.2 Future Work

Even if the definition of a P2P network for DV E is a challenging alterna-
tive to the classical client server solution, we are aware that several prob-
lems should be still be solved for the definition of a comprehensive so-
lution. The main problems which have still to be solved concern, for
instance, the authentication of the peers joining the DV E and the man-
agement of the DV E state when the number of peers is very low or zero.
The main problem when a low number of peers belong to the DV E is
related to the high load assigned to each peer. A further problem is the
maintenance of the state of the DV E when all the peers have left it, be-
cause this state should be restored later when some peer joins the DV E.

To manage the problem of state persistency and of peer authentica-
tion, we have started to investigate an hybrid solution including a small
number of ”classical” servers controlling the state of theDV E and a huge
amount of interacting peers. Note that this solution differs from that pro-
posed in Chapter 6, because the set of servers is statically defined, while in
the hybrid overlay proposed in Chapter 6, the Superpeer are dynamically
elected, they participate to the DV E as normal peers and support the
further task of routing the event notification for the peers they manage.

This section briefly sketches the resulting architecture which we plan
to develop and test as future work.

In this solution, the server controls the join of the peer to the DV E,
their authentication and manages a portion of the DV E state.

For the sake of simplicity, we consider a system where a single server
S is defined. The server is a supervisor which does not belong to the
P2P overlay and is connected to all the peers. When a peer enters the
DV E or updates its position, it notify this event to the server so that

158

Figure 98: A few peer managing the DVE.

the server continuously has a vision of the whole DV E and is able to
compute a Voronoi tessellation including all the peers of theDV E. In this
way, it is able to distribute portions of the state of the DV E to the joining
peers. On the other way round, the server does not forward the received
notification to the interested peers, since these are directly exchanged
between the peers. This avoid that the server becomes, like in classical
client server solutions, a bottleneck for the entire system.

As shown in Chapter 5 a Voronoi based tessellation enables a natural
mapping of the passive objects of theDV E to the peers where each object
is mapped to the peer whose Voronoi region includes it. In this way,
each object is managed by a single peer of the DV E. The problem of
this approach is that, when the DV E includes a small number of peers,
a large number of objects may be associated to a single peer which may
be not able to manage all them. As a matter of fact, when a few peers are
present in theDV E all objects are partitioned between them and a single
peer may result overloaded, as shown in Figure 98 where only two peers
manage the whole DV E:

To avoid peer overloading, we associate with each peer a new circular

159

Figure 99: AOI and CCAOI.

area, the CCAOI, Chain Coordination AOI, centered at the peer and whose
radius is larger than of theAOI . This area changes dynamically when the
peer moves like the other areas introduced in the preceding sections. The
goal of theCCAOI is to reduce the number of objects assigned to a a peer
when its Voronoi Area is too large. As a matter of fact, in this solution
each peer manages the objects located inside the Intersection Area, IA, i.e.
the area corresponding to the intersection between Voronoi Area and its
CCAOI , while the objects located outside the Interaction Area of any peer
are assigned to the server.

As Figure 99 shows, the area managed by the peer is only the blue
one while the yellow area does not belong to any Interaction Area and is
managed by the server.

The server initially owns the state of the whole DV E. When a peer
joins the DV E, it first contacts S for the authentication, then it receives
from S, and/or form its Voronoi neighbors the set of objects belonging
to its Intersection Area.

160

Figure 100: Each object is managed by a peer.

It is important to note that the IA overlaps the CCAOI when the the
CCAOI is totally included in the Voronoi area of the peer. This corre-
sponds to a scenario where a very small number of peers are present in
the DV E. Note that in this case the Voronoi Area is much larger than the
Interaction Area. In this scenario, the introduction of the Interaction Area
enables each peer to take care only of the coordination of the closer ob-
jects, i.e. the objects located inside its IA while the server manage the
objects located within its Voronoi Area, but not belonging to its Intersec-
tion Area, i.e. the objects located far from it.

Note that in this scenario the server does not become a bottleneck for
the system, even if a large number of objects are mapped to it because of
the presence of a few peers. As a matter of fact, the probability that the
peers update the objects mapped to the regions managed by the server,
i.e. the yellow regions in Fig. 99, is low, because these objects are located
far away the peers. Note that as the number of peer decreases, the objects
are assigned back to the server that, in a natural way, acquires the total
control of the system, when the last peer leaves theDV E. In this case the
server acts as a backup server for the DV E state, and when each peer exits
theDV E, the state of theDV E will be stored by the server to be restored
later. Furthermore, in this way the load of the peers is reduced.

161

Figure 101: A Crowding Scenario

When the number of peers increases, the number of objects owned
by the server decreases, because it delegates the management of the ob-
jects to the joining peers. In this scenario, as in a crowding situation, the
Interaction Area of each peer may overlap its Voronoi region and the man-
agement of the state of the DV E may be delegated entirely to the peers,
as shown in Figure 100, where the management of the DV E is totally
delegated to the peers and the server owns no object. In this scenario the
only task of the server is to control and authenticate the peer joining the
network since all the objects are managed by the peers.

Consider now a crowding scenario, for instance one where peers fight
against each other and a large number of peers is concentrated in a small
portion of the virtual space, as showed in Figure 101. In this case, the
Voronoi Area of each peer is included in its CCAOI , hence the IA of the
peer overlaps its Voronoi Area and, despite the large number of peers, the
area that the server must manage is very large. Even in this situation, the
server does not become a bottleneck, because it does not receive updates
for the objects it owns since they are located far away from the peers.
Again its task is to store the state of the objects and to decrease the load
of the peer.

162

Figure 102: Object delegation between peer and the server.

In our solution, the server itself becomes, compared to the classical
client server model, both a backup and a load distribution mechanism.

When a new peer enters the DV E or the overlay is modified due to
the movement of the peers, the server checks if some object it owns falls
within the IA of a peer and in this case it sends the object to this peer.

The peers instead have a limited knowledge of the DV E because of
the local information obtained by the direct connections with peers that
fall in their AOI and with their Voronoi neighbors. When a peer P re-
ceives information from a neighbor V about either a position update or a
new neighbor notification, P rebuilds its local Voronoi diagram with the
new neighbors positions and check whether any of the objects owned
fall in the IA of its neighbors or in the server area. In both cases, P is no
longer the owner of the object and sends the the object to the new owner.

For instance, in Figure 102, the peer P moves from left to right and the
object O, first included in the IA(P) managed by P, because of the shift
of P, enters the yellow area under server competence. If we observe the
movement of P, from right to left, the object O would be assigned by the

163

Figure 103: Object delegation between peers.

server to P.
In Figure 103 we see the exchange of an object between peer P and

P1. Dotted lines show the CCAOI and the Voronoi region of P before its
movement, when the object O just falls in IA(P). When P moves follow-
ing the arrow, then O enters IA(P1) and P1 becomes the new owner of O
by receiving from P all the information.

Further future improvements of our work concern the evaluation of
our protocols on a real platform to evaluate their effectiveness in a real
setting. Another open issue is the investigation of alternative Voronoi
models, for instance the Multiplicatively Weighted Voronoi graphs.

164

Bibliography

[1] Shun-Yun Hu, Jui-Fa Chen, Tsu-Han Chen, VON: A Scalable Peer-to-
Peer Network for Virtual Environments, IEEE Network, July-Aug. 2006
1, 23, 57, 58, 60, 89, 121, 156, 157

[2] Joaquin KELLER, Gwendal SIMON, SOLIPSIS: A Massively Multi-
Participant Virtual World, Proc. Int. Conf. Parallel and Distributed
Techniques and Applications (PDPTA 2003), CSREA Press, 2003 17,
19

[3] Joaquin KELLER, Gwendal SIMON, Toward a Peer-to-Peer Shared Vir-
tual Reality, Proceedings of the 22nd International Conference on
Distributed Computing Systems table of contents, 2002 2, 17, 19

[4] Joerg Eberspaecher, Ruediger Schollmeier, Stefan Zoels, Gerald
Kunzmann, Structured P2P Networks in Mobile and Fixed Environ-
ments , AEÜ - International Journal of Electronics and Communi-
cations January, 2006 2, 12

[5] Ozalp Babaoglu, Hein Meling, Alberto Montresor, Anthill: A Frame-
work for the Development of Agent-Based Peer-to-Peer Systems, Proceed-
ings: International Conference on Distributed Computing Systems
2

[6] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W.
Hong, Freenet: A Distributed Anonymous Information Storage and Re-
trieval System, LNCS, Vol: 2009/2001 2, 9

165

[7] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari
Balakrishnan, Chord: A Scalable Peer-to-peer Lookup Service for Inter-
net Applications, Proceedings of ACM SIGCOMM, San Deigo, CA,
August 2001. 10, 12

[8] Shun-Yun Hu, Guan-Ming Liao, Scalable Peer-to-Peer Networked Vir-
tual Environment, Proceedings of 3rd ACM SIGCOMM workshop on
Network and system support for games, Portland, Oregon, USA,
SESSION: Novel techniques and cheat detection, 2004 23, 25

[9] Shun-Yun Hu, Jui-Fa Chen, Tsu-Han Chen, A Forwarding Model for
Voronoi-based Overlay Network, VAST Technical Report (VAST-TR-
2005-01), 2005 2, 23, 25

[10] David R. Karger, Matthias Ruhl, Diminished Chord: A Protocol for
Heterogeneous Subgroup Formation in Peer-to-Peer Networks , Congrs
Peer-to-peer systems III, La Jolla, 26-27 February, 2004 2, 10, 12

[11] Ozalp Babaoglu, Hein Meling, Alberto Montresor, Peer-to-Peer Doc-
ument Sharing using the Ant Paradigm, Proceedings of Norsk Infor-
matikkonferanse (NIK), Troms, Norway, November 2001.

[12] Venkita Subramonian, Liang-Jui Shen, Christopher Gill Nanbor
Wang, The Design and Performance of Configurable Component Middle-
ware for Distributed Real-Time and Embedded Systems, Proceedings of
the 25th IEEE International Real-Time Systems Symposium, 2004 2

[13] Ralf Steinmetz, Klaus Wehrle, Peer-to-Peer Systems and applications,
LNCS, N.3485, State of the art survey. 8, 9, 12

[14] Shang-Wen Cheng, David Garlan, Bradley Schmerl, Joo Pedro
Sousa, Bridget Spitznagel, Peter Steenkiste, Ningning Hu, Soft-
ware Architecture-based Adaptation for Pervasive Systems, International
Conference on Architecture of Computing Systems (ARCS’02):
Trends in Network and Pervasive Computing, April 8-11, 2002

[15] David Garlan, Bradley Schmerl, and Jichuan Chang, Using Gauges
for Architecture-Based Monitoring and Adaptation, In the Working Con-

166

ference on Complex and Dynamic Systems Architecture, Brisbane,
Australia, 12-14 December, 2001.

[16] Shang-Wen Cheng, David Garlan, Bradley Schmerl, Peter
Steenkiste, Ningning Hu, Software Architecture-based Adaptation for
Grid Computing, Proceedings of the 11 th IEEE International Sympo-
sium on High Performance Distributed Computing HPDC-11 20002
(HPDC’02), 2002 2

[17] Stefan Saroiu, Krishna P. Gummadi, Steven D. Gribble, Measuring
and analyzing the characteristics of Napster and Gnutella hosts, Multi-
media Systems archive Volume 9, Issue 2, August, 2003 2, 8, 9

[18] Antony Rowstron, Peter Druschel2, Pastry: Scalable, decentral-
ized object location and routing for large-scale peer-to-peer systems, In
IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware), Heidelberg, Germany, November 2001 10, 12

[19] A. Bonotti, L. Genovali, L. Ricci, DiVES: A Distributed Support for
Networked Virtual Environments, Proceedings of the 20th Interna-
tional Conference on Advanced Information Networking and Ap-
plications - Volume 1, AINA, 2006 28

[20] B. Knutsson et al. Peer-to-peer support for massively multiplayer games,
Proc. INFOCOM, Mar. 2004 157

[21] 28] T. Iimura, H. Hazeyama, and Y. Kadobayashi, Zoned federation
of game servers: a peer-to-peer approach to scalable multi-player online
games, Proc. ACM SIGCOMM Wksp. on NetGames, Aug. 2004

[22] Y. Kawahara, T. Aoyama, and H. Morikawa, A peer-to-peer mes-
sage exchange scheme for large-scale networked virtual environments,
Telecomm Sys. vol.25, 2004.

[23] A. Yu and S. T. Vuong, MOPAR: a mobile peer-to-peer overlay architec-
ture for interest management of massively multiplayer online games, Proc.
NOSSDAV, Jun. 2005 14, 157

167

[24] A. Goldin and C. Gotsman, Geometric Message-Filtering Protocols for
Distributed Multiagent Environments, Presence, 2004

[25] A. Steed and C. Angus, Supporting Scalable Peer to Peer Virtual Envi-
ronments Using Frontier Sets, Proc. IEEE Virtual Reality, Mar. 2005

[26] S.Rooney, D. Bauer, and R. Deydier A federated peer-to-peer network
game architecture, IEEE Commun. Mag. 2004

[27] Samuel Madden, Michael J.Franklin, and Joseph M.Hellerstein Wei
Hong, TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks,
Appearing in5th Annual Symposium on Operating Systems Design
and Implementation (OSDI). December, 2002

[28] Ivan Vaghi, Chris Greenhalgh, Steve Benford, Coping with Inconsis-
tency due to Network Delays in Collaborative Virtual Environments, Pro-
ceedings of the ACM symposium on Virtual reality software and
technology, London, United Kingdom, 1999

[29] Indranil Gupta, Robbert van Renesse, Kenneth P.Birman, Scalable
Fault-Tolerant Aggregation in Large Process Groups, Proceedings of
the 2001 International Conference on Dependable Systems and Net-
works (formerly: FTCS), 2001

[30] Nicolas Bouillot, Eric Gressier-Soudan, Consistency models for dis-
tributed interactive multimedia applications, ACM SIGOPS Operating
Systems Review archive Volume 38, October, 2004 37

[31] Leslie Lamport, Time, clocks, and the ordering of events in a distributed
system, Communications of the ACM, Volume 21 , July, 1978 37

[32] Francisco J. Torres-Rojas, Mustaque Ahamad, Michel Raynal, Timed
consistency for shared distributed objects, Annual ACM Symposium
on Principles of Distributed Computing archive Proceedings of the
eighteenth annual ACM symposium on Principles of distributed
computing, 1999

168

[33] Francisco J. Torres-Rojas, Esteban Meneses, Convergence Through a
Weak Consistency Model: Timed Causal Consistency, 30ma Conferencia
Latinoamericana de Informtica, CLEI, 2004

[34] Michel Raynal, From Causal Consistency to Sequential Consistency in
Shared Memory Systems, LNCS, Vol. 1026, Proceedings of the 15th
Conference on Foundations of Software Technology and Theoretical
Computer Science, 1995 37

[35] Suiping Zhou, Wentong Cai, Bu-Sung Lee, and Stephen J. Turner,
Time-Space Consistency In Large-Scale Distributed Virtual Environ-
ments, ACM Transactions on Modeling and Computer Simulation
(TOMACS), Volume 14, January 2004

[36] Eric Cronin, Burton Filstrup, Sugih Jamin, Cheat-Proofing Dead Reck-
oned Multiplayer Games (Extended Abstract), Proceedings of ACM
SIGCOMM 2004 workshops on NetGames ’04: Network and sys-
tem support for games, Portland, Oregon, USA, SESSION: Novel
techniques and cheat detection, 2004 95

[37] Laurent Gautier, Christophe Diot, Jim Kurose, End to end Transmis-
sion Control Mechanisms for Multiparty Interactive Applications on the
Internet, Proceedings of the Conference on Computer Communica-
tions (IEEE Infocom), (New York), Mar. 1999

[38] Bu-sung Lee Wentong Cai Stephen J. Turner L. Chen, Adaptive Dead
Reckoning Algorithms For Distributed Interactive Simulation, Proceed-
ings of the thirteenth workshop on Parallel and distributed simula-
tion, Atlanta, Georgia, United States, 1999 95

[39] Lothar Pantel, On the Suitability of Dead Reckoning Schemes for Games,
Network and System Support for Games, Proceedings of the 1st
workshop on Network and system support for games, Bruan-
schweig, Germany, 2002 95

[40] Ivan Vaghi, Chris Greenhalgh, Steve Benford, Coping with Inconsis-
tency due to Network Delays in Collaborative Virtual Environments, Pro-

169

ceedings of the ACM symposium on Virtual reality software and
technology, London, United Kingdom, 1999

[41] Frank Adelstein, and Mukesh Singhal, Real-time causal message or-
dering in multimedia systems, Proceedings of the 15th International
Conference on Distributed Computing Systems (ICDCS’95), May
30-June 02, 1995

[42] Takayuky Tachikawa, Makoto Takizawa, ∆-Causality in Wide-Area
Group Communications, International Conference on Parallel and
Distributed Systems (ICPADS ’97), IEEE Computer Society, Seoul,
Korea, 11-13 December 1997

[43] R. Baldoni, R. Prakash, M. Raynal, and M. Singhal, Efficient Delta-
Causal Broadcasting, International Journal of Computer Systems Sci-
ence and Engineering, September, 1998.

[44] David L. Mills, Network Time Protocol (Version 3) Specification, Imple-
mentation and Analysis, Request for Comments: 1305, RFC 1305, Uni-
versity of Delaware, March, 1992 130

[45] David L. Mills, Simple Network Time Protocol (SNTP) Version 4 for
IPv4, IPv6 and OSI, Request for Comments: 2030, RFC 2030, University
of Delaware, October, 1996 130

[46] V. Krishnaswamy, M. Raynal, D. Bakken, and M. Ahamad, CShared
State Consistency for Time-Sensitive Distributed Applications, Proc. of
the Intl. Conference on Distributed Computing Systems, April, 2001
130

[47] F.Baiardi, A.Bonotti, L.Genovali, L.Ricci,A publish subscribe support
for networked multiplayer games, Internet and Multimedia Systems
and Applications (EuroIMSA 2007) Chamonix, France, IASTED
Press, March 14-16, 2007

[48] Bjorn Knutsson, Honghui Lu, Wei Xu, Bryan Hopkins, Peer-to-Peer
Support for Massively Multiplayer Games, INFOCOM 2004, Twenty-
third AnnualJoint Conference of the IEEE Computer and Commu-
nications Societies, 7-11 March, 2004 15

170

[49] R. Baldoni, R. Prakash, M. Raynal, M. Singhal, Efficient ∆-Causal
Broadcasting, Journal of Computer System Science and Engineering,
1998.

[50] http://www.cs.utah.edu/flux/papers/bees-openarch03-
base.html

[51] https://jmephysics.dev.java.net/

[52] Jehn-Ruey Jiang, Yu-Li Huang, and Shun-Yun Hu, Scalable AOI-
Cast for Peer-to-Peer Networked Virtual Environments,28th Int. Con-
ference on Distributed Computing Systems Workshops(ICDCSW),
June, 2008 25, 26, 58, 60, 120, 156

[53] Jui-Fa Chen, Wei-Chuan Lin, Tsu-Han Chen, and Shun-Yun Hu,A
Forwarding Model for Voronoi-based Overlay Network, 13th ICPADS
2007, P2P-NVE workshop, December, 2007 25, 58

[54] J.Lee et al. APOLO:Ad hoc Peer to Peer Overlay Network for Massively
Multi-player Online Games, Technical Report, KAIST, 2006 21

[55] The Peersim Simulator http://peersim.sourceforge.net/ 92, 149

[56] F.Aurenhammer, Voronoi Diagrams-A Survey of a Fundamental Geo-
metric Data Structure. ACM Computing Surveys, Vol 23, September,
1991 3, 5, 23, 42, 61, 142

[57] L.Ricci, A.Salvadori, Nomad: Virtual Environments on P2P Voronoi
Overlays, 1th Int. Work. on Peer to Peer Networks (PPN 2007), Vil-
amoura, LNCS, Vol. 4803, November, 2007 1, 57, 58

[58] M.Albano, M.Baldanzi, R.Baraglia, L. Ricci, VoRaQue: Range Queries
on Voronoi Overlays 13th IEEE ISCC, Marrakesh, July, 2008 74

[59] J.Liebeherr, M.Nahas, Application Layer Multicast with Delaunay Tri-
angulations IEEE Journal on Selected Areas in Communications
40(8), October, 2002 65, 120, 156

171

[60] E.Kranakis, H.Singh, J.Urrutia Compass Routing on Geometric Net-
works 11th Can. Conf. on Computational Geometry, CCCG 99, Au-
gust, 1999 65, 66, 73, 120, 156

[61] J.Jiang, Y.Huang, S.Hu, Scalable AOI-Cast for Peer-to-Peer Networked
Virtual Environments 28th ICDCSW, June, 2008 68

[62] Computational Geometry Algorithms Library,
http://www.cgal.org/ 149

[63] Simplified Wrapper and Interface Generator,
http://www.swig.org/ 149

[64] J.Urrutia. Routing with guaranteed delivery in geometric and wireless
networks Handbook of Wireless Networks and Mobile Computing, 2002
4, 147

[65] L.Genovali, L.Ricci, AOI-Cast Strategies for P2P Massively Multiplayer
Online Games., 5th IEEE International Workshop on Networking Is-
sues in Multimedia Entertainment (NIME’09) Las Vegas, Nevada,
USA, January, 2009 1, 147

[66] L.Cardelli and Andrew D.Gordon. Mobile Ambients. Theoretical
Computer Science, Special Issue on Coordination, D. Le Mtayer Ed-
itor. Vol 240/1, June, 2000 43

[67] Peter J.McCann, Gruia-Catalin Roman Compositional programming
abstractions for mobile computing., Software Engineering, IEEE Trans-
actions on Volume 24, Feb, 1998 43, 48

[68] http://vast.sourceforge.net/VON/ 92

[69] J.Liebeherr, M.Nahas Application-layer multicast with Delaunay trian-
gulations., Global Telecommunications Conference, 2001. GLOBE-
COM apos;01. IEEE Volume 3, 2001 58, 64, 66, 67, 79

[70] K.Many Chandy, Jayadev Misra Parallel Program Design: A Founda-
tion, Addison Wesley, New York, 1988 43

172

[71] L.Genovali, L.Ricci, JaDE: A JXTA Support for Distributed Virtual En-
vironments, 13th IEEE Symposium on Computers and Communica-
tions Program, Marrakesh, July, 2008 1, 35

[72] http://www.wow-europe.com/en/index.xml 1

[73] Dinesh C.Verma Content Distribution Networks, by John Wiley and
Sons, Inc. 2002 7

[74] Computer Supported Cooperative Work (CSCW), The Journal of Collab-
orative Computing Editor-in-Chief: Kjeld Schmidt 7

[75] http://www.hitl.washington.edu/projects/knowledge base/distvr/
1, 7

[76] http://secondlife.com/ 1

173

Unless otherwise expressly stated, all original material of whatever
nature created by Luca Genovali and included in this thesis, is li-
censed under a Creative Commons Attribution Noncommercial Share
Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:l.genovali@imtlucca.it

	List of Figures
	Vita and Publications
	Abstract
	1 Introduction
	2 State of the Art
	2.1 P2P Models
	2.1.1 Centralized Unstructured P2P
	2.1.2 Pure Unstructured P2P Overlays
	2.1.3 Hybrid Unstructured P2P Overlays
	2.1.4 Structured P2P Overlays

	2.2 P2P Overlays for DVE
	2.2.1 MOPAR: Mobile Overlay P2P Architecture
	2.2.2 SimMud
	2.2.3 Solipsis
	2.2.4 APOLO: Ad-Hoc Peer-to-Peer Overlay Network for Massively Multiplayer Online Games
	2.2.5 VON: Voronoi Based Overlay Network
	2.2.6 DiVES: A Distributed Support for Networked Distributed Virtual Environments
	2.2.7 JaDE: a JXTA Support for Distributed Virtual Environments

	2.3 Conclusions

	3 Location Aware Reactive Computations
	3.1 Ambient
	3.1.1 The Folder Calculus
	3.1.2 An Example: The Adobe Distiller

	3.2 Mobile Unity
	3.2.1 Location Aware Computations
	3.2.2 System specification
	3.2.3 Reactive Statements

	3.3 Modelling DVE by Mobile Unity

	4 Voronoi Based Overlays for DVE
	4.1 Introduction
	4.2 Improving DVE Scalability by Areas of Interest
	4.3 Mathematical Definitions
	4.3.1 Voronoi Diagrams and Delaunay Triangulations
	4.3.2 Edge Flipping

	4.4 Compass Routing on Delaunay Networks
	4.4.1 Compass Routing in Constrained Regions
	4.4.2 A Distributed Algorithm for the Spanning Tree Construction

	4.5 A P2P Overlay for Voronoi Based DVE
	4.6 Avoiding Overlay Partition
	4.7 Experimental Results
	4.7.1 Real time Constraints
	4.7.2 Peersim
	4.7.3 Overlay Evaluation
	4.7.4 Routing Evaluation
	4.7.5 Mobility Models
	4.7.6 Grid 5k: Experimental Results

	4.8 Conclusions

	5 Passive Objects Management in Voronoi based DVE
	5.1 Introduction
	5.2 Managing Passive Objects in DVE
	5.3 A Voronoi Based Approach
	5.4 Object Replication by Ownership Forecasting
	5.5 Object Consistency
	5.6 Forced Coordination
	5.7 SHB Notification by Compass Routing
	5.8 Mobile Unity Specification
	5.9 Experimental Results

	6 Hierarchical Voronoi Based Overlay
	6.1 Introduction
	6.2 Additive Weighted Voronoi Diagrams
	6.3 Modeling Hierarchical Overlays by AWV Tessellations
	6.4 AWV Based Overlays Management: Distributed Approaches
	6.5 Experimental Results
	6.5.1 Constant weights scenario
	6.5.2 Different numbers of weighty peers
	6.5.3 Dynamic weigths scenarios
	6.5.4 Number of links

	7 Conclusions and Future Works
	7.1 Conclusions
	7.2 Future Work

	Bibliography

