
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

Stochastic Approximations in Model Checking:
A New Scalable Approach to

Collective Systems Verification

PhD Program in Computer Science (CDSS\CS)

XXVIII Cycle

By

Roberta Lanciani

2017

http://www.imtlucca.it
mailto:roberta.lanciani@imtlucca.it




Program Coordinator: Prof. Rocco De Nicola, IMT Insitute for Ad-
vanced Studies Lucca

Supervisor: Prof. Rocco De Nicola, IMT Insitute for Advanced Stud-
ies Lucca

Supervisor: Prof. Luca Bortolussi, Università degli Studi di Trieste
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Abstract

A collective system is a complex model comprised of a large
number of individual entities, whose interaction gives rise
to non-trivial emergent behaviours. The automatic verifica-
tion of the intrinsically noisy dynamics of this type of models,
by means of Stochastic Model Checking techniques, is severely
hampered by the large size of their state space. In this project,
we consider a new scalable and effective technique to validate
the performance of these systems, based on Stochastic Approx-
imations of the dynamics of the model. In this context, this
works merges and extends the few preliminary results avail-
able in the literature at the beginning of this project and de-
fines some interesting contributions leading the investigation
in two major directions. First, we consider various types of
Stochastic Approximations to accurately capture the proba-
bilistic noise that characterises the evolution of collective sys-
tems when the number of individuals in the population is
limited (mesoscopic collective systems). Second, we extend the
set of properties that can be validated exploiting the efficiency
of Stochastic Approximations. In particular, we consider re-
quirements on the behaviour of the individuals (local proper-
ties), of the population (global properties) and of the individu-
als in the global context (local-to-global properties). Moreover,
we develop procedures to verify the dynamics of time-critical
systems. Finally, we prove the theoretical results that guaran-
tee the quality of the developed model checking procedures,
showing the asymptotic convergence of the results and the
exactness in the limit of an infinite population size.

xvi



Chapter 1

Introduction

1.1 Motivation

Many real-life examples of large complex systems, ranging from (natu-
ral) biological mixtures to (artificial) computer networks, exhibit collec-
tive behaviours. These global dynamics are the result of intricate interac-
tions between the large number of individual entities that comprise the
populations of these systems. Understanding, predicting and control-
ling these emergent behaviours is becoming an increasingly important
challenge for the scientists of the modern era. In particular, the develop-
ment of an efficient and well-founded mathematical and computational
modelling framework is essential to master the analysis of these complex
collective systems.

In the Formal Methods community, powerful automatic verification
techniques have been developed to validate the performance of a model
of a system. In such procedures, called model checkers (BK08), the mo-
del and a property of interest are given in input to an algorithm which
verifies whether or not the requirement is satisfied by the representation
of the system. In the standard model checking techniques, the model
is specified as a variant of a transition system, while the properties are
usually instances of temporal logics.

In this context, it is essential to consider that the dynamics of a collec-
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tive system is intrinsically subject to noisy behaviours, especially when
the population is not very large and the stochastic evolution of the single
individuals become relevant. Hence, the formal analysis and verification
of a collective system have to rely on appropriate probabilistic extensions
of the standard model checking techniques. In Stochastic Model Checking
(BBHK00) the representation of the system is validated taking into ac-
count its stochastic dynamic behaviour, considering transition systems
enriched with probabilities and extending the specification languages of
the temporal logics to deal with stochastic constraints.

In the last decade, very powerful and successful verification algo-
rithms have been developed in a stochastic framework, but unfortunately
they all suffer from the well known curse of the state space explosion: when
the number of interacting agents in the population increases, the variety
of possible behaviours exhibited by a collective model can hamper the
efficiency and applicability of the standard model checking procedures.
Indeed, these verification techniques are based on an exhaustive explo-
ration of the state space the model, which can be simply too large in the
case of collective systems. To deal with this problem, some of the most
successful applications of Stochastic Model Checking to large popula-
tion models are based on numerical integration and statistical analysis
(KNP11; JCL+09; BMS16), which however to date remain costly from a
computational point of view.

1.2 Approach

In this work, we efficiently tackle the problem of model checking collective
systems by designing fast and efficient Stochastic Model Checking pro-
cedures in which we exploit a powerful class of methods to accurately
approximate the dynamics of the individuals and the population: the
Stochastic Approximations.

Stochastic Approximations (BHLM13) have been successfully used in
recent years in the Biology community (Gri10; Van92) to approximate the
noisy behaviour of collective systems with a stochastic process, whose
dynamics is encoded in a (numerically integrable) set of Differential Equa-
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tions (DEs). Hence, when we make use of the right formal framework
to describe the collective system, Stochastic Approximations represent
a fast and easy way of obtaining an estimation of the dynamics of the
model. Moreover, for almost all the techniques that we are going to con-
sider in this work, the quality of the estimations improves as the number
of agents in the system increases, keeping constant the computational
cost and reaching exactness in the limit of an infinite population. In this
way, these approximation methods actually take advantage of the large
sizes of the collective systems, making them a fast, accurate and reliable
approach to deal with the curse of the state space explosion. Among
the many types of Stochastic Approximations present in the literature,
we are going to exploit the Fluid Approximation (FA) (BH12b), the Central
Limit Approximation (CLA) (Van92; EK05), and the System Size Expansion
(SSE) (SSG16), and in some cases, we are going to compare them with the
results obtained by the Moment Closure (MC) combined with a distribu-
tion reconstruction based on the Maximum Entropy Principle (AMW15a).

This thesis extends the few preliminary works that, before the be-
ginning of this project, had already applied Stochastic Approximation
procedures to the verification of collective systems. In particular, we ex-
tend the work done in (BH12b) and in (HSB12; HBC13). In the former,
the authors exploit Fluid Approximation to verify properties of a sin-
gle individual in a collective system. This was done by approximating
the dynamics of the stochastic model with a deterministic trajectory, en-
coded in a system of Ordinary Differential Equations (ODEs). A similar
approach was taken in (HSB12; HBC13), where also Moment Closure
techniques where taken into account. In this framework, this work de-
fines some interesting contributions in the verification of collective sys-
tems by merging and extending the work of (BH12b; HSB12; HBC13) in
two major directions:

- Accurate estimation of the stochastic noise in a collective system - To
go beyond the deterministic approximation of the dynamics of the
collective system given by the Fluid Approximation, we consider
higher order estimations like the Central Limit Approximation, the
System Size Expansion, and the Moment Closure. These latter meth-
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ods, indeed, can be used to define a description of the stochastic
fluctuations of the probability distribution that represents the state
of a collective system at a given time instant. As we have said,
the behaviour of populations is intrinsically stochastic, especially
when the number of agents is not very large (in these cases, we
refer to the system as a mesoscopic collective system). Hence, mo-
del checking procedures that involve higher order approximations
prove to be the perfect tool for a fast and accurate verification of
mesoscopic collective systems.

- Extension of the set of properties that can be validated - Together with
the possibility of verifying requirements that characterise the be-
haviour of the single individual (local properties) as in the work of
(BH12b), we want to extend the set of properties that can be vali-
dated to comprise requirements on the behaviour of the entire pop-
ulation (global properties) and on the actions of the individuals in the
global context (local-to-global properties). Moreover, we want to be
able to model-check time-critical collective systems, meaning sys-
tems that show behaviours that are subject to time constraints.

1.3 Contributions

In this work, we efficiently tackle the problem of model checking collec-
tive systems by designing fast and efficient Stochastic Model Checking
procedures to validate a wide set of properties exploiting different types
of Stochastic Approximations.

We define a procedure to verify the behaviour of individual agents in
the global context (Local-to-Global properties) exploiting Central Limit Ap-
proximations, System Size Expansion and Moment Closure (BL13a; BLN17).
The requirements that we investigate in this context are stochastic prop-
erties of the type: “it is almost sure that 95% of the population will satisfy
a specific behaviour within a time instant T“. Hence, in this type of prop-
erties, we are interested in a specific behaviour that has to be met by the
single agents in the population (a local property), and we look at the frac-
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tion of individuals that satisfy it at the global level (local-to-global prop-
erty), assigning a probability measure to the fact that this group of agents
reaches at least 95% of the population within time T . The local property
is expressed as a Deterministic Time Automata (DTA) (AD94), which, as
in (BBHK00), is synchronised with an appropriate representation of the
collective system, i.e. a (Markov) Population Model, in order to keep track
of the behaviour of the single agents in the population. The dynamics
of the synchronised model is then approximated using the Central Limit
Approximation, the System Size Expansion and the Moment Closure to
compute the probability measure of the Local-to-Global requirement. As
it was already said in the previous sections, in this work we shall see
how this type of model checking procedure becomes extremely power-
ful in the validation of mesoscopic systems, meaning systems with popula-
tions comprised of a limited number of agents and where the dynamics
is intrinsically stochastic.

We also tackle the problem of validating Global Reachability Proper-
ties (BL14), meaning that we are interested in the fast computation of an
accurate approximation of the probability that, within a given time hori-
zon T , the collective system reaches a specific region of the state space,
defined by a linear inequality of the counting variables that identify the
state of the population. The stochastic model checking procedure that we
develop in this case, transforms this type of reachability problems into a
form of Hitting-Time Problem. Indeed, based on (EK05), we validate the
Global Reachability Property by actually approximating the probability
distribution of the time tR in which the system enters the target region
R. To estimate tR, we again exploit the accuracy and efficiency of the
Central Limit Approximation and the System Size Expansion.

Finally, we extend the procedure of Fluid Model Checking of (BH12b)
to deal with timed local properties of single agents, specified by a Deter-
ministic Timed Automata (DTA) endowed with a single clock that is al-
lowed to be reset. Hence, building on the theory of the Fluid Approxi-
mation, to estimate the statisfaction probability of the local properties,
we actually compute the probability that a properly defined subclass
of Time-Inhomogeneous Markov Renewal Processes (CHKM11a), with expo-
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nentially and deterministically-timed transitions, reaches an absorbing
region of its states space. In doing this, we reduce the computation of
the satisfaction probability to the numerical integration of a set of Delay
Differential Equations (DDE).

In the following, we are going to show that all the Stochastic Mo-
del Checking techniques that we develop are reliable, fast and accurate.
Moreover, we are going to prove the theoretical results that guarantee their
quality, by showing their asymptotic convergence and their exactness in
the limit of an infinite population size.

1.4 Structure of the thesis

In Chapter 2, we review the theoretical background that is at the basis of
the model checking procedures that we develop. In particular, we look
at the definition of a collective system as a Markov Population Model
whose evolution is encoded in a Markov Chain. Afterwards, we review
the theory of Stochastic Approximations, describing in detail the Fluid
Approximation, the Central Limit Approximation, the System Size Ex-
pansion and the Moment Closure combined with the Maximum Entropy
Principle. Finally, we move to the description of the properties and of the
specification languages that we consider in this work.

In Chapter 3, we review the first results, defining a model checking
procedure to validate local-to-global properties of collective systems ap-
plying Central Limit Approximation, Sistem Size Expansions and Mo-
ment Closure.

In Chapter 4, we illustrate the model checking algorithm that effi-
ciently and accurately validates Global Reachability Properties comput-
ing the probability distribution of a Hitting-Time Problem.

In Chapter 5, we review the validation techniques for time-critical
systems, approximating the dynamics of the system with a Time Inho-
mogeneous Markov Renewal Process, and integrating the set of DDEs
that defines the its evolution in time.

Finally, in Chapter 6, we summarise the major results of this project,
we draw some conclusions and we discuss new possible lines of research.
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Chapter 2

Background

2.1 Overview

In this chapter, we review the theoretical background behind the mo-
del checking procedures that we build in this work. In particular, we
illustrate the definition of the formal models that describe the collec-
tive systems we are interested in, the Markov Population Models and the
mathematical specification that enables the approximation of their be-
haviour, the Markov Chains (Sections 2.2 and 2.3); we introduce the theory
of Stochastic Approximations (Section 2.4), focusing on the Fluid Approx-
imation, the Central Limit Approximation, the System Size Expansion
and the Moment Closure; and finally, in Section 2.5 we review the proper-
ties and the specification languages that we exploit in our model checking
procedures.

2.2 Markov Chains

Markovian processes (MP) are stochastic processes (i.e. dynamical pro-
cesses taking a random value at any time instant (Dur10)) that enjoy the
Markov property: the evolution of the probability distribution depends
only on the current state of the process and is not altered by additional
knowledge concerning its past behaviour. This means that this sort of
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processes retain no memory. Moreover, MPs can be classified according
to the cardinality of their state space or whether they depend on discrete
or continuous time. The processes that have finite or countably infinite
state spaces are called Markov chains (Nor97; Dur10; EK05).

Discrete Time Markov Chains

A discrete time stochastic process {X(n) ∈ S | n ∈ N}with finite or count-
ably infinite state space S is called a Discrete Time Markov Chain (DTMC)
if, for every n ∈ N and j, i, i1, . . . , in ∈ S,

P (X(n+ 1) = j | X(n) = i,X(n− 1) = i1, . . . , X(0) = in) =

= P (X(n+ 1) = j | X(n) = i) . (2.1)

Condition (2.1), known as the Markov property, states that the con-
ditional probability on X(n + 1) = j depends only on the previous
state X(n) = i and not on the entire history of the stochastic process
X(n− 1) = i1, . . . , X(0) = in.

A DTMC is (temporally) homogeneous if the conditional probability (2.1)
is independent of n ∈ N, i.e. there exists pij ∈ [0, 1] such that

P(X(n+ 1) = j | X(n) = i) = pij , ∀n ∈ N.

The element pij is called transition probability from i to j and a state i ∈ S
is absorbing if

pij = 0, ∀j ∈ S, j 6= i.

The matrix P = (pij) ∈ [0, 1]S×[0, 1]S is the transition matrix of the DTMC
and is a stochastic matrix, meaning that every row in P is a probability
distribution, i.e.

pij ∈ [0, 1], ∀i, j ∈ S, and
∑
i

pij = 1.

The first formulation of DTMCs goes back to Markov in 1906, and
since then it has been applied and studied in different research fields:
from systems biology and social sciences, to electrical engineering and

8



information theory. For a full review good textbooks are (Nor97; Dur10;
EK05).

The power of this mathematical model relies totally in the memory-
less property (2.1). This principle not only turns out to be adequate to
model a great variety of interesting real-life examples of random phe-
nomena, but also makes the mathematical formulation simple and intu-
itive from a computational point of view. Indeed, given a (finite) path σ
of the form

σ := i0 −→ i1 −→ i2 −→ . . . −→ iT−1 −→ iT , T ∈ N, (2.2)

where ij ∈ S and pijij+1
> 0, ∀ j ∈ {0, 1 . . . , T − 1}, thanks to the

Markov property (2.1), the probability for the evolution of the DTMC
{X(n) | n ∈ N} to coincide with σ is simply the initial probability of be-
ing in i0 multiplied by the product of the transition probabilities within
the states, i.e.

P(σ) := P(X(0) = i0, X(1) = i1, . . . , X(T ) = iT ) = p0,i0

T∏
j=1

pijij+1 ,

where p0,i0 = P(X(0) = i0). Analogously, if we consider the transient-
state probability π(s0, s, T ) of being in state s at time T starting at s0,

π(s0, s, T ) =
∑
σα

P(σα),

where the sum is made over all the paths σα ∈ Path(X ) such that σα(0) =

s0 and σα(T ) = s, if we apply property (2.1), it is not difficult to prove
that

π(s0, s, T ) = p(T )
s0s ,

where p(T )
s0s is the (s0, s)-th entry of the T -th power of the transition matrix

P.
Furthermore, there is a one-to-one correspondence between transi-

tion matrices and labelled graphs (Nor97) (an example is illustrated in Fig-
ure 1). For this reason, DTMCs can be intuitively seen as variants of
transition systems enriched with probabilities. Indeed, labelled graphs
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Figure 1: Example of the graph representing a DTMC with state space S =
{a, b, c} and transition matrix P.

are a simple class of models that admit probabilistic choice, meaning that
one can specify the probability of making a transition form one state (or
vertex) to the other, and they are a simple and intuitive descriptions of
DTMCs. As we shall see in the following, the same is true for Contin-
uous Timed Markov Chains (CTMCs) and what distinguishes the two
types of probabilistic models is the interpretation of time: the underlying
time domain of DTMCs is discrete and each transition is assumed to take
a single time unit.

Continuous Time Markov Chains

Continuous Time Markov Chains (CTMCs) are well known probabilistic
models which admits continuous time and no memory. We shall see that a
CTMC is completely specified by the definition of its initial state and of
the rates of taking a transition form one state to the other.

Formally, a continuous time stochastic process
{
X(t) ∈ S | t ∈ R≥0

}
with finite or countably infinite state space S is a Continuous Time Markov
Chain (CTMC) if it enjoys the Markov property, which in the continuous
domain takes the following form: for every t, s ∈ R≥0 and i, j ∈ S,

P(X(t+ s) = j | X(s) = i,X(r) = ir, ir ∈ S, r ∈ R≥0, r < s) =

= P(X(t+ s) = j | X(s) = i). (2.3)

A CTMC is (temporally) homogeneous if its probability distribution is
constant with respect to the translation in time, i.e. for every t, s ∈ R≥0
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and i, j ∈ S,

P(X(t+ s) = j | X(s) = i) = P(X(t) = j | X(0) = i) = pij(t).

The function P : R≥0 −→ [0, 1]S × [0, 1]S , P(t) = (pij(t)), is called the
transition probability function and we require for its elements pij : R≥0 −→
[0, 1] to be differentiable in t for every i, j ∈ S.

Given a CTMC with finite state space S and transition probability
function P : R≥0 −→ [0, 1]S × [0, 1]S , P(t) = (pij(t)), we define the
infinitesimal generator or rate matrix Q = (qij) of the CTMC to be theRS ×
RS-matrix whose elements are such that, for small intervals of time4t,

pij(4t) = δij + qij4t+ o(4t),

where δij is the Kronecker delta, i.e. the matrix that has δij = 0, for all
i 6= j, and δii = 1. The elements qij of Q, instead, are called rate functions
and, since pij(t) is a probability, we have

0 ≤ −qii <∞ ∀i, qij ≥ 0 for i 6= j,
∑
j

qij = 0 and qii = −
∑
j 6=i

qij .

A CTMC with finite state space S is well-defined when we specify its
state space S, its infinitesimal generator Q ∈ RS×RS , and the initial dis-
tribution p0 = (pj)j∈S . Indeed, given the tuple (S,Q,p0), the transition
probability function P : R≥0 −→ [0, 1]S × [0, 1]S , P(t) = (pij(t)), can be
computed according to the following Theorem (Nor97).

Theorem 2.1 (Kolmogorov’s forward and backward equations) Let Q be
the infinitesimal generator of a CTMC

{
X(t) ∈ S | t ∈ R≥0

}
with finite state

space S. Then,

• the transition probability function P : R≥0 −→ [0, 1]S × [0, 1]S of
{X(t)} is the minimal non-negative solution of the matrix differential
equation

∂P

∂t
= QP(t), P(0) = I; (2.4)

• P is also the minimal non-negative solution of

∂P

∂t
= P(t)Q, P(0) = I; (2.5)
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Figure 2: Example of the graph representing the CTMC given by (S =
{1, 2, 3, 4},Q,p0). Only arrows with positive rates are drawn.

• P can be expressed in terms of the matrix exponential as

P(t) = eQt =

∞∑
n=0

Qntn

n!
;

• the semigroup or memoryless property holds true:

P(s+ t) = P(s)P(t) ∀s, t ∈ R≥0.

In analogy with the discrete time case, there is a one-to-one corre-
spondence between rate matrices Q and labelled graphs (see Figure 2),
and CTMCs can be seen as another way to add probabilities to transi-
tion systems. As in the case of DTMCs, the Markov property makes
the CTMCs a very powerful mathematical tool to model a great variety
of natural probabilistic phenomena and the continuous real-time frame-
work widens the area of applicability even more. For this reason, CTMCs
are among the most popular operational models in performance evalua-
tion and are the basis of this work.

2.3 Markov Population Models

In this section, we start to tackle the problem of the design of a collec-
tive system and we introduce the modelling framework that enables the
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stochastic approximation of its behaviour. In particular, we define an
automata-based formalism to specify Markov Population Models consist-
ing of large collections of interacting components, or agents. Each compo-
nent is a finite transition system, instance of an Agent Class A that defines
its (finite) state space and its (finite) set of local transitions. The material
is mainly based on (BL13b).

Definition 2.1 (Agent Class) An Agent Class A is a pair

A = (S,E)

where S = {1, . . . , n} is the state space of the agent and E = {ε1, . . . , εm} is
the set of local transitions of the form

εi = si
αi−→ s′i, i ∈ {1, . . . ,m},

where αi is the transition label, taken from the label set L .

An agent belonging to class A = (S,E) defines a continuous time
random variable Y (t) ∈ S, which denotes the state of the agent at time t.
Moreover, let Y (0) ∈ S be its initial state.

In the following, we consider populations of N agents Y (N)
k , k ∈

{1, . . . , N}, all belonging to the same class A = (S,E) with S = {1, . . . , n}
We further make the classical assumption that agents in the same state
are indistinguishable, hence the state of the population model can be de-
scribed by collective or counting variables

X(N) = (X
(N)
1 , . . . , X(N)

n ), X
(N)
j ∈ {0, . . . , N},

defined by

X
(N)
j =

N∑
k=1

1{Y (N)
k = j}.

The initial state x
(N)
0 is given by x

(N)
0 = X(N)(0), and the counting vari-

ables satisfy the conservation relation
∑
j∈S X

(N)
j = N . To complete the

definition of a Markov Population Model, we need to specify its global
transitions, describing all possible events that can change the state of the
system.
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Definition 2.2 (Markov Population model) A Markov Population Model
X (N) of size N is a tuple

X (N) = (A, T (N),x
(N)
0 ),

where:

• A is an Agent Class, as in Definition 2.1;

• T (N) = {τ1, . . . , τ`} is the set of global transitions of the form

τi = (Si, f (N)
i ),

where:

– Si = {s1
α1−→ s′1, . . . , sp

αp−−→ s′p} is the (finite) set of local transi-
tions synchronized by τi;

– f
(N)
i : Rn −→ R≥0 is the (Lipschitz continuous) global rate func-

tion.

• x
(N)
0 is the initial state.

The rate f (N)
i gives the expected frequency of transition τi as a func-

tion of the state of the system. We assume f (N)
i equal to zero if there

are not enough agents available to perform the transition. The synchro-
nization set Si, instead, specifies how many agents are involved in the
transition τi and how they change state: when τi occurs, we see the local
transitions s1

α1−→ s′1, . . . , sp
αp−−→ s′p fire at the (local) level of the p agents

involved in τi.

Remark 2.1 The population models we consider in this thesis assume that the
size N of the population is constant. This limitation eases the presentation (and
the notation) of the model checking procedures that we define and that exploit
Stochastic Approximations, however the assumption can be removed, as it is not
a necessary condition. In doing so, though, extra care has to be taken in treating
local properties, as discussed in (BH12b).

Given a Markov Population Model X (N) = (A, T (N),x
(N)
0 ) and a

global transition τ = (Sτ, f (N)
τ ) ∈ T (N) with Sτ = {s1

α1−→ s′1, . . . , sp
αp−−→

s′p}, we encode the net change in X(N) due to τ in the update vector

vτ =

p∑
i=1

(esi − es′i),

14
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Figure 3: The automaton representation of a network node.

where esi is the vector that is equal to 1 in position si and zero elsewhere.
We define the CTMC X(N)(t) associated with X (N) as the continuous

time stochastic process that has state space

S(N) = {(z1, . . . , zn) ∈ Nn |
n∑
i=1

zi = N},

initial probability distribution concentrated on x
(N)
0 , and infinitesimal

generator matrix Q defined for x,x′ ∈ S(N), x 6= x′, by

qx,x′ =
∑

τ∈T |vτ=x′−x

fτ (x).

Example. To illustrate the modelling technique, we consider a simple
example of a worm epidemic in a peer-to-peer network composed of
N nodes. Each node is modelled by the simple agent shown in Figure
3, which has three states: susceptible to infection (S), infected (I), and
patched/immune to infection (R). The contagion of a susceptible node
can occur due to an event external to the network (ext), like the reception
of an infected email, or by file sharing with an infected node within the
network (inf ). Nodes can also be patched, at different rates, depending
if they are infected (patch1) or not (patch0). A patched node remains im-
mune from the worm for some time, until immunity is lost (loss), mod-
elling for instance the appearance of a new version of the worm.
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The Agent Class of the network node has the form

Anode = (Snode, Enode)

and can be easily reconstructed form the automaton representation in
Figure 3. The Markov Population Model

X (N)
net = (Anode, T (N),x

(N)
0 )

with population variables

X = (XS , XI , XR)

is obtained by specifying transitions and initial conditions. We start the
model with a simple network of susceptible nodes, hence the initial con-
ditions are

x
(N)
0 = (N, 0, 0).

The transition set of the Markov Population Model instead is given by
five global transitions: τext, τloss, τpatch0

, τpatch1
, τinf ∈ T (N). For exam-

ple, the external infection is defined by

τext = ({S ext−−→ I}, fext),

where the synchronisation set specifies that only one susceptible node is
involved and changes state from S to I at a rate given by

fext(X) = κextXS ,

corresponding to a rate of infection κext per node. The transitions τloss,
τpatch0

, τpatch1
have a similar format, while the internal infection is de-

scribed by

τinf = ({I inf−−→ I, S
inf−−→ I}, finf ),

and involves one S-node and one I-node. Furthermore, in this case of
τinf , we assume that an infected node sends infectious messages at rate
κinf to a random node, giving a classical density dependent rate function
(AB00)

finf (X) =
1

N
κinfXSXI .
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2.4 Stochastic Approximations

The Stochastic Approximation techniques that we are about to describe
have been studied and applied in recent years to tackle the state space
explosion problem in the analysis of collective systems. Indeed, when the
size of the system increases, and thus the set of reachable states enlarges,
the numerical integration of the CTMCs that describe the evolution of
the marginal probability distribution of a collective system over its the
states, becomes infeasible. Hence, various types of Stochastic Approxima-
tions have been studied in recent years, in order to provide a fast and
accurate estimation of the probability distributions for collective systems
like the ones we are interested in.

Among the possible approximation methods, in this work, we focus
on five particular techniques: the Fluid Approximation, the Fast Simulation,
the Central Limit Approximation, the System Size Expansion and the Moment
Closure. The first four methods represent a direct analytical approxima-
tion of the probability that describes the evolution of the collective sys-
tem, and are all based on Van Kampen’s system size expansion (EK05). The
latter method, the Moment Closure, instead, reconstructs an approxima-
tion of the probability distribution that describes the evolution in time
of the population model, starting from an estimate of the moments of the
real distribution. Moreover, since a finite set of moments defines a set
of probability distributions, the Moment Closure relies on the Maximum
Entropy Principle to choose as the best approximation of the probability
distribution of the collective system, the one that maximises the entropy
(i.e. the probabilistic noise) of the system.

As we shall see in the following, all the Stochastic Approximations
that we present in this work are particularly fruitful in cases like the ones
modelled in Section 2.3, where we consider large populations comprised
of big clusters, or classes, of identical interacting agents. Indeed, the com-
plexity of these methods is independent of the population size. Actually, for
the methods based on the system size expansion, we are going to prove
that the accuracy of the approximation increases with the population size
and is exact in the limit of an infinite population.
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2.4.1 Fluid Approximation and Fast Simulation

Fluid Approximation, also known as Mean Field Approximation, has been
successfully applied in a great variety of research fields including biol-
ogy (BP09; Car08), game theory (BW03), computer viruses (BGH08), gos-
sip protocols (BCFH09), crowd models (MLBH10; MLBH11) and perfor-
mance evaluation of computer networks (TG11), Petri Nets (SR04) and
computational grids (BCGH05). In Fluid Approximation the discrete,
stochastic behaviour of the system is approximated by that of a contin-
uous, deterministic model. This is done by treating the global transition
rates as flows, thus obtaining a set of ODEs that estimate the behaviour
of the underlying CTMC of the system.

Formally, we initially consider the Markov Population Model X (N) =

(A, T (N),x
(N)
0 ) of the system, built as described in Section 2.3. We then

construct an infinite sequence (X (N))N∈N of population models, all shar-
ing the same structure, for increasing population sizeN ∈ N (e.g. the net-
work models (X (N)

net )N∈N of the example in Section 2.3 with an increasing
number of network nodes). The Fluid Approximation technique works
by approximating the stochastic dynamics of X (N) by the behaviour of
the sequence (X (N))N∈N in the limit N −→∞.

To compare the dynamics of the models in the sequence (X (N))N∈N,
we consider the normalised counting variables X̂ = 1

NX (known also as
population densities or occupancy measures, see (BHLM13) for further de-
tails) and we define the normalized (Markov) Population Models X̂ (N) =

(A, T̂ (N), x̂
(N)
0 ), obtained fromX (N) by making the rate functions depend

on the normalised variables and rescaling the initial conditions.

For simplicity, we assume that the rate function of each transition
τ ∈ T̂ (N) satisfies the density dependent condition

1

N
f (N)
τ (X̂) = fτ (X̂)

for some Lipschitz function fτ : Rn −→ R≥0, i.e. rates on normalised
variables are independent of N .

To define the limit ODEs, we introduce the drift of X (N), which is the
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mean instantaneous change of the normalized models and is given by

F(X̂) =
∑

τ∈T̂ (N)

vτfτ (X̂).

The Fluid Approximation of the CTMC X̂(N)(t) associated with X̂ (N) is the
unique solution of the ODE system{

dΦ(t)
dt = F(Φ(t));

Φ(0) = x̂
(N)
0 .

(2.6)

The existence and uniqueness of X̂(N)(t) is guaranteed by the fact
that all fτ are Lipschitz continuous, thus F is.

The correctness of the estimate of the Fluid Approximation in the
limit of an infinite population is guaranteed by the following Theorem.
The proof of this result involves the theory of Markov Processes and the
interested reader can refer to (EK05).

Theorem 2.2 Let X̂(N)(t) and Φ(t) be defined as before. Assume that there
exists x0 ∈ S such that limN→∞ X̂(N)(0) = x0. For any finite time horizon
T <∞, it holds that:

lim
Ω→∞

sup
t∈[0,T ]

∥∥∥X̂(N)(t)−Φ(t)
∥∥∥ = 0 almost surely.

Fast Simulation

In this work, we are also interested in the behaviour of a (random) single
agent inside a population. As we have just seen, the dynamics of a large
population can be accurately described by a deterministic limit, the Fluid
Approximation. But when we focus on one single agent in a collective
system, we need to keep in mind that its behaviour in time will always
remain a stochastic process, even in large populations. Nevertheless, the
Fast Simulation Theorem (DN08; BLB08; GB10) guarantees that in the limit
of an infinite population size, the stochastic process of the single agent
senses only the mean behaviour of the rest of the agents (i.e. there is no
need to keep track of all the states of all the other entities in the popu-
lation). This means that, when the population size is large enough, to
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analyse the dynamics the single agent, we can define the Fluid Approxi-
mation of the population model, and then use its state (i.e. the mean state
of the rest of the agents) to compute the rates of a Time-Inhomogeneous
CTMC (ICTMC) (BH15) that describes the behaviour of the single agent.

Formally, let Y (N)(t) be the stochastic process that describes the state
of the single agent in the population model X (N) = (A, T (N),x

(N)
0 ) with

state vector X(N)(t). By definition, Y (N)(t) is not independent of X(N)(t).
Now consider the normalised model X̂ (N) described by X̂(N)(t), and let
Φ(t) be the Fluid Approximation of X (N). Define the generator matrix
Q(N)(x) = (q

(N)
ij (x)) of Y (N)(t) as a function of the normalised counting

variables, i.e. ∀ q(N)
ij (x),

Prob
{
Y (N)(t+ dt) = j | Y (N)(t) = i, X̂(N)(t) = x

}
= q

(N)
ij (x)dt.

Notice thatQ(N)(x) can be computed from the rates in X (N). Indeed, for
i 6= j,

q
(N)
ij (x) =

∑
τ∈T

[
|{|i→ j ∈ Sτ |}|

Xi

f̂
(N)
τ (X̂)

N

]
,

where |{|i → j ∈ Sτ |}| is the multiplicity of i → j in the transition set
Sτ of τ , i.e. the number of agents that take this transition according
to τ . Furthermore, as customary, let q(N)

ii (x) = −
∑
j 6=i q

(N)
ij (x). Then,

since f̂ (N)
i (X̂)/N

N→+∞−−−−−→ fi(X̂), we have that Q(N)(x) → Q(x), where
Q(x) is computed in terms of the Lipschitz limits fi(X̂). Now, define the
stochastic processes:

1. Z(N)(t), that describes the state of the process Y (N)(t) for the single
agent in class A, when Y (N)(t) is marginalised from X(N)(t);

2. Z(t), that is the ICTMC, defined on the same state space of Z(N)(t),
with time-dependent generator matrix Q(Φ(t)), i.e. the generator
matrixQ(t), where the Lipschitz limits fi(t) are computed over the
components of Φ(t).

Then, the following theorem can be proved (DN08).
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Theorem 2.3 (Fast Simulation) For any time horizon T < +∞ and ε > 0,

Prob

{
sup

0≤t≤T
||Z(N)(t)− Z(t)||> ε

}
N→+∞−−−−−→ 0.

2.4.2 Central Limit Approximation

While the Fluid Approximation correctly describes the transient collec-
tive behaviour for very large populations, it is less accurate when one
has to deal with a mesoscopic system, meaning a system with a popula-
tion in the order of hundreds of individuals and whose dynamics turn
out to be intrinsically probabilistic. Indeed, the (stochastic) behaviour
of single agents becomes increasingly relevant as the size of the popula-
tion decreases. The technique of Central Limit Approximation (EK05), also
known as Linear Noise Approximation (Van92), provides an alternative and
more accurate estimation of the stochastic dynamics of mesoscopic sys-
tems. In particular, in this technique, the probabilistic fluctuations about
the average deterministic behaviour (described by the fluid limit) are ap-
proximated by a Gaussian process.

Consider the setting (notions and notations) of the Fluid Approxima-
tion described in Section 2.4.1. Define the stochastic process given by

Z(N)(t) := N
1
2

(
X̂(N)(t)−Φ(t)

)
,

which captures the (rescaled) fluctuations of the CTMC X̂(N)(t) associ-
ated with X̂ (N) around the fluid limit Φ(t) given by (2.6). Then, by rely-
ing on the theory of Markov Processes, one can prove (Van92; EK05) that,
in systems with large population sizes N , Z(N)(t) can be approximated
by a Gaussian process {Z(t) ∈ Rn | t ∈ R} (independent of N ), whose
mean E[t] and covariance C[t] are the unique solutions of the following
ODE systems, {

∂E[t]
∂t = JF(Φ(t))E[t]

E[0] = 0
(2.7)

and {
∂C[t]
∂t = JF(Φ(t))C[t] + C[t]JTF (Φ(t)) + G(Φ(t))

C[0] = 0,
(2.8)
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where JF(Φ(t)) denotes the Jacobian of the limit drift F calculated along
the deterministic fluid limit Φ : R≥0 −→ Rn, and

G(X̂) =
∑

τ∈T̂ (N)

vτvTτ fτ (X̂)

is called the diffusion term. Formally, the following Theorem holds true
(EK05).

Theorem 2.4 Let Z(N)(t) be the random variable given by

Z(N)(t) := N
1
2

(
X̂(N)(t)−Φ(t)

)
,

and Z(t) be the Gaussian process with mean (2.7) and covariance (2.8). Assume
that limN→∞ Z(N)(0) = Z(0). Then, Z(N)(t) converges in distribution to Z(t)

(Z(N)(t)⇒ Z(t)).

In conclusion, the Central Limit Approximation of the normalized CTMC

X̂(N)(t) = Φ(t) +N−
1
2 Z(N)(t)

associated with X̂ (N) is the stochastic process

Φ(t) +N−
1
2 Z(t), (2.9)

and Theorem 2.4 guarantees that the approximation is correct in the limit
of an infinite population.

2.4.3 System Size Expansion

As discussed in the previous section, the Central Limit Approximation
(CLA) is an estimation of the behaviour of a population model which
is exact in the limit of an infinite population size, but can be efficiently
applied even when considering mesoscopic systems. Indeed, the CLA
provides a Gaussian estimation of the stochastic fluctuations of the dy-
namics of the population model around the (deterministic) average be-
haviour described by the fluid limit. Again, this Gaussian approximation
is asymptotically correct, but in the case of mesoscopic populations it can
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happen that even the CLA fails to properly describe the dynamics of the
population model: the fluid limit itself may indeed fail to accurately de-
scribe the average behaviour of the system and/or the stochastic fluctu-
ations around the fluid estimation could be not normally distributed. In
these cases, to tackle the error in the estimation of the CLA, higher-order
approximations of the system behaviour that are referred to as the System
Size Expansion (SSE) (ABG+15) or Inverse Omega Square, (IOS) (Gri10),
have been proposed and applied in the literature.

Let us introduce the higher-order approximation of the CTMC X(N)(t)

of a Markov Population Model X (N). To ease the presentation, we will
describe just the fundamental steps of the definition, leaving aside most
of the mathematical details (the interested reader can refer to (Gri10)
and (Van92)). As in the case of the CLA, we are interested in estimat-
ing the (normalised) process Z(N)(t) := N

1
2 (X̂(N)(t)−Φ(t)), capturing

the noise of X̂(N)(t) around the deterministic Fluid Approximation Φ(t)

given by (2.6). To achieve this, we write X̂(N)(t) = Φ(t) + N−
1
2 Z(N)(t)

and we substitute this formula in an expansion in powers of N of the
Master Equation associated with X̂(N)(t) (Nor97), describing the evo-
lution in time of the transient probability P(X̂(N)(t)) of being in state
X̂(N)(t) = Φ(t) +N−

1
2 Z(N)(t) at time t. By dropping high order terms in

N in the so-obtained form of the Master Equation, we can control the
level of accuracy and define different higher-order approximations of
X̂(N)(t). The simplest correction to the CLA, known also as IOS (Gri10),
defines a stochastic process Z∗(t) whose first and second moments are
given by

∂E∗(t)

∂t
= J(Φ(t))E∗(t)+N−1/2∆(C∗(t))+O(N−1), E∗(0) = 0, (2.10)

and

∂C∗(t)

∂t
= J(Φ(t))C∗(t)+C∗(t)JT (Φ(t))+G(Φ(t))+O(N−

1
2 ), C∗(0) = 0,

(2.11)
where: F and G are the drift and diffusion terms, respectively; J is the
Jacobian of F; and ∆(C∗(t)) is the vector whose i-th component is given
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by

∆i(C
∗(t)) = −1

2

∑
j,k

∂2

∂Φj∂Φk
Fi(Φ)C∗ij −

∑
j

Φj
∂2

∂Φj
2Fi(Φ)

 . (2.12)

Notice that Z∗(t) depends on N , and moreover, if in Equation (2.10) we
drop the term that is O(N−1/2), Equations (2.10) and (2.11) describe the
mean and covariance of the Central Limit Approximation (i.e. they cor-
respond to the ODE systems (2.7) and (2.8)). For this reason, we can
indeed say that the System Size Expansion is a higher order estimation
of the Central Limit Approximation. Furthermore, due to this relation
between the CLA and the IOS, we can also state that the quality of the
estimation of the IOS is guaranteed by its definition and Theorem 2.4.
Hence, we have the following result.

Theorem 2.5 Let Z(N)(t) be the random variable given by

Z(N)(t) := N
1
2

(
X̂(N)(t)−Φ(t)

)
,

and Z∗(t) be the Gaussian process with mean (2.10) and covariance (2.11). As-
sume that limN→∞ Z(N)(0) = Z∗(0). Then, Z(N)(t) converges in distribution
to Z∗(t) (Z(N)(t)⇒ Z∗(t)).

2.4.4 Moment Closure and Maximum Entropy Principle

The last approximation technique that we consider in this work is the
Moment Closure or Method of Moments combined with the Maximum
Entropy Principle (AMW15a; SSG16; ABG+15). This technique gives an
estimation of the probability distribution of the CTMC that describes the
evolution of a population model, starting from an approximation of its
moments. With this aim, let P : R≥0 → [0, 1]S × [0, 1]S , P(X(t)), be the
transient probability distribution of the CTMC describing the evolution
of a Markov Population Model X (N) = (A, T (N),x

(N)
0 ), given a time in-

stant T ∈ R≥0. The approximation technique we are going to describe
follows of two steps:
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(1) Estimation of the moments of P(X(T )) - Based on the Dynkin For-
mula, an estimation of moments of P(X(T )) of order lower than
K ≥ 0 is computed as the solution of a finite set of ODEs.

(2) Definition of the approximation of P(X(T )) - Relying on the Maxi-
mum Entropy Principle, the approximation of P(X(T )) is given by
the probability distribution that has the first K moments defined in
Step (1) and that maximizes the Shannon entropy of the system.

In the following, we review some of the mathematical background
that defines the two steps of this approximation technique. We are going
to omit the details regarding the functional analysis results that guaran-
tee some of the results exploited in the following. For a full review see
(AMW15a; SSG16; ABG+15).

Estimation of the moments of P[X(T )]. Let τ ∈ T (N) be the transitions
of the Markov Population Model X (N), each with rate f (N)

τ (X(t)) and
update vector vτ . According to the Dynkin Formula (Kal06; AKS13), the
moments of P(X(t)) satisfy the following relation:

d

dt
E [h(X(t))] =

∑
τ

E
[
(h(X(t) + vτ )− h(X(t))) f (N)

τ (X(t))
]

(2.13)

where h : R(N) → R(N) is a suitable sufficiently smooth function. Start-
ing form Equation (2.13), we can easily obtain the exact ODEs for the
moments of P(X(t)) by choosing the right polynomial form for the func-
tion h. For example, given the identity h(X(t)) = X(t), we obtain an
ODE system that is satisfied by the mean of P(X(t)), indeed we have:

d

dt
E [X(t)] =

∑
τ

vτE
[
f (N)
τ (X(t))

]
. (2.14)

Notice that system (2.14) is closed and fully integrable when the rate
functions f (N)

τ (X(t)) are linear. If, instead, we consider transition func-
tions that are more than linear (like the infection finf in the running Ex-
ample (3)), higher order moments appear in system (2.13), that is no
more closed. Differential equations for the covariances C [X(t)] can be

25



obtained from (2.13) setting h(X(t)) = X2(t) and letting C [X(t)] =

E
[
X2(t)

]
− E [X(t)]

2, but again, the system of the Dynkin Formula is
not closed when the transition functions are more than linear, as it com-
prises moments of order greater than 2.

In general, the Dynkin Formula (2.13) is an infinite hierarchy of ODEs
that couples lower and higher order moments. Moment Closure Approxi-
mations truncate (and close) this infinite set of equations at a certain or-
der K in an appropriate way in order to be able to integrate the system
at time T ∈ R≥0 and find an approximation of the first K moments of
P(X(T )). Many different strategies of closure have been proposed in the
literature, but in this work, as in the experimental analysis we are going
to exploit in the tools STAR (LMW11) and CERENA (KFR+16), we are
going to rely on the Low Dispersion Moment Closure, where all the central
moments of P(X(T )) above order K are set to 0.

Definition of the approximation of P(X(T )). Given the estimation of the first
K moments of P(X(T )) obtained in the previous step, we can now re-
construct an approximation of P(X(T )). To do this, we exploit the Max-
imum Entropy Principle (A+10; AMW15a; AMW15b) and among all the
probability distributions that share the moments of order K computed
in Step (1), we choose as best approximation of P(X(T )) the distribution
P∗(X(T )) that maximizes the Shannon entropy of the system.

Formally, to ease the notation consider a one dimensional Markov
Population Model with one counting variable X : R≥0 → R≥0 and let
µ(k), k = 0, 1, . . . ,K, be the moments of P(X(T )) = P(x) of order lower
thanK computed in Step (1). Let G be the set of non-negative distribution
function g that share the non-central moments µ(k), i.e. such that

Eg[x
k] =

∫
xkg(x)dx = µ(k), k = 0, 1, . . . ,K, µ0 = 1. (2.15)

In accordance with the Maximum Entropy Principle, we choose as best
approximation P∗(x) of P(x), the probability distribution that maximises
the Shannon Entropy H(g), i.e.

P∗(x) = arg max
g∈G

H(g) = arg max
g∈G

(
−
∫
g(x)lng(x)dx

)
. (2.16)
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Remark 2.2 The Shannon Entropy H(g) is related to the amplitude of the
stochastic fluctuations (or noise) of the stochastic process whose probability dis-
tribution is P(x). In particular, by choosing P∗(x) as the probability distri-
bution that maximizes the Shannon Entropy, we actually choose, among all the
stochastic processes described by P(x), the one that has the maximum noise,
hence we put the minimum number of assumptions on the behaviour of the pro-
cess described by P∗(x).

In order to compute the approximation P∗(x) defined by Equation
2.16, we need to solve a non-linear constrained optimisation problem,
and to achieve this, we leverage the functional theory of the Lagrangian.
It is beyond the scope of this thesis to go in deep detail of the procedure
that gives as a result the right formula for P∗(x), but in the following
we try to give a general idea of the theory that leads us to the definition
of P∗(x). The interested reader may refer to (A+10; AMW15a) for a full
review.

The Kuhn-Tucker Theorem states that, if a solution P∗(x) of the non-
linear constrained optimisation problem (2.16) given (2.15) exists, then
this solution is a stable point for the Lagrangian Function given by

L(g, λ) = H(g)−
K∑
k=0

λk

(∫
xkg(x)dx− µ(k)

)
. (2.17)

In the above function, the vector λ = (λ1, . . . , λK) is called the vector
of the Lagrangian Multipliers. Setting to zero all the first derivatives of
L(g, λ) with respect to g, we obtain that the stable points of L(g, λ) have
the form

q(x, λ) = exp

(
−1−

K∑
k=0

λkx
k

)
. (2.18)

Among all the stable points that satisfy (2.18), we need to identify the
function P∗(x), i.e. we need to find the right vector of Lagrangian multi-
pliers λ∗ = (λ∗1, . . . , λ

∗
K), such that P∗(x) = q(x, λ∗) and P∗(x) is indeed

the maximum of the constrained problem (2.16) given (2.15). To do this,
we exploit a corollary of the Kuhn-Tucker Theorem, that states that the
vector of Lagrangian multipliers λ∗ = (λ∗1, . . . , λ

∗
K) is the solution of the
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dual problem given by

λ∗ = arg min Ψ(λ), (2.19)

where Ψ(λ) is the dual function of H(q) given the form of q(x, λ) ob-
tained in (2.18). The dual problem (2.19) is an unconstrained convex min-
imization problem and can be numerically solved by considering that its
solution λ∗ = (λ∗1, . . . , λ

∗
K) is the point where the first derivatives of Ψ(λ)

are zero and its Hessian is positive definite. The final value of λ∗ de-
fines the approximation P∗(x) of the distribution P(T ) as the following
function

P∗(x) = q(x, λ∗) = exp

(
−1−

K∑
k=0

λ∗kx
k

)
.

Remark 2.3 Theoretically, the greater the order K chosen in Step (1), the more
accurate should be the estimate of the lower moments, like the mean. In real-
ity, this is not always the case as the accuracy of the Moment Closure actually
depends (in complex ways) on the structure of the population model under con-
sideration. Indeed, among the possible drawbacks of this approach there is the
fact that the ODEs for higher order moments defined in Step (1) tend to be stiff
and difficult to integrate. Moreover the multidimensional optimisation prob-
lem of Step (2) could be also unstable for complex systems. For a more detailed
discussion in this sense, see (ABG+15).

2.5 Formalization of Behavioural Properties

In the model checking procedure, the model of the system under con-
sideration has to be accompanied with a specification of the property of
interest that has to be verified. The properties of interest in this work can
be classified under the following general paradigms.

Stochastic properties

In this project we focus on stochastic model checking, considering stochas-
tic models of collective systems, and thus we consider stochastic properties
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to specify their behaviour. In particular, instead of focusing on the abso-
lute correctness of a requirement (“the system will not fail”), we are in-
terested in the likelihood (probability) of occurrence of the requirement
(“with 95% chance the system will not fail”).

Individual, global and local-to-global properties

When we consider a population model the analysis of its behaviour can
follow three different approaches: we can specify the evolution of a sin-
gle agent (individual properties); we can look at the behaviour of the entire
population (global properties) or we can choose to characterise the actions
of the individuals in the global context (looking at the fraction of pop-
ulation that satisfies a given individual property). We refer to the last
class of requirements as the local-to-global properties. While the collective
behaviour of a large system is almost deterministic, the evolution of a
single agent is always intrinsically stochastic. For this reason, different
approaches and methodologies have to be investigated and developed
for each of these class of properties.

Timed and time bounded properties

We are interested in the evaluation of the evolution of population models
in time. A system is said to be time-critical if its behaviour is subject to
timing constraints (e.g. requirements over the residence time in a state
or the possibility of taking a transition within a particular time interval).
In this context, the timed properties that are used to specify the behaviour
of the system can assume or enforce the existence of a time horizon within
which something should happen (think about processes subject to dead-
lines or timeouts). These constraints fall into the class of time bounded
properties. This classification is particularly relevant to this work, since,
as shown in Section 2.4, in most cases the results of the limit theorems for
the Fluid, the Central Limit and the System Size Expansion approxima-
tions hold true only for a finite time horizon T > 0.
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Safety, invariant, liveness and reachability properties

These are among the most classical and well-known categories of proper-
ties. Safety and liveness properties can be used to specify the behaviour
of reactive systems and their definition goes back to the seventies (Lam77).
Safety properties state that “nothing bad should happen” (a typical exam-
ple is the mutual exclusion problem: always at most one process is in
its critical section). Invariants are particular safety properties that require
that a particular condition holds for all reachable states (if we consider
the well known problem of the Dining Philosophers the constraint ”at
least one philosopher is not waiting to pick the chopsticks” is an ex-
ample of an invariant). Liveness propeties, instead, specify that “some-
thing good will eventually happen” (an example in concurrency requires
that a process will enter its critical section infinitely often). For a survey
see (Kin94). Finally, we should remark that in the stochastic validation
framework, both the safety and liveness properties, and many other in-
teresting requirements, can be grouped under the fundamental and most
discussed class of the stochastic reachability properties. In these require-
ments, we measure the probability associated with the system compu-
tations that “visit” (i.e. reach) a certain target subset of the state space,
while avoiding some other specific regions. In this sense, a liveness prop-
erty, in which we state that the system will eventually reach a good con-
figuration, is a reachability requirement. And the same is true for safety
properties, where the state of the system should be kept in a good region
of the space (avoiding the bad configurations). For a good review on
some of the methodologies related to this subject see (Buj12).

2.5.1 Specification of Local Properties: the DTA

In Chapters 3 and 5, we are interested in properties specifying how the
agents in a population model behave in time. In order to monitor these
requirements, we assign to them a personal or a global clock, which start
at time 0 and can be either reset whenever the agent undergoes specific
transitions or not. The personal clock is used to keep track of the actions
of a single agent, thus it can be reset as it is influenced by the actions
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taken by the single individual; the global clock, instead, monitors the be-
haviour of the agents within the population, recording the time at global
level, and thus it cannot be influenced (or reset) by the actions taken by
the single agents. Hence, in this work, we exploit personal clocks to val-
idate local properties characterising the behaviour of single agents, while
we consider global clocks to monitor local-to-global properties, that describes
the actions of the single agents in the global context of the population.

In this section, we introduce the specification language that we use to
express and monitor the local (timed) properties considered in Chapter
5: the single-clock Deterministic Timed Automata (DTA)(AD94; CHKM11a).
We start from this formal setting, because, as we shall see in Chapter 3,
the specification of the local-to-global requirements is very similar and
in some way, it can be seen as an instance of the DTAs introduced in this
section, where no reset is allowed.

The single-clock Deterministic Timed Automata (DTA) exploited in Chap-
ter 5 to specify local properties keeps track of the behaviour of the single
agent with respect to a personal clock, that, as we have just said, starts
at time 0 and can be reset whenever the agent undergoes specific transi-
tions. Moreover, since we want to exploit the Stochastic Approximations
illustrated in Section 2.4, we restrict ourselves to time bounded properties
and, hence, we assign to the DTA a finite time horizon T < +∞, within
which the requirement must be true. Considering the formal settings of
the Markov Population Models of Section 2.3, we introduce the following
definition.

Definition 2.3 (Timed Properties) A timed property for a single agent in
Agent Class A is specified as a single-clock DTA of the form

D = D(T ) = (T,L , c, CC, Q, q0, F,→),

where T < +∞ is the finite time horizon; L is the label set of A; c is the personal
clock; CC is the set of clock constraints, which are conjunctions of atoms of the
form c < λ, c ≤ λ, c ≥ λ or c > λ for λ ∈ Q; Q is the (finite) set of states;
q0 ∈ Q is the initial state; F ⊆ Q is the set of final (or accepting) states; and
→ ⊆ Q × L × CC × {∅, {c}} × Q is the edge relation. Moreover, D has to
satisfy:
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• (determinism) for each initial state q ∈ Q, label α ∈ L , clock constraint
c./ ∈ CC, and clock valuation η(c) ∈ R≥0, there exists exactly one edge
q
α,c./,r−−−−→ q′ such that η(c) |=CC c./1;

• (absorption) the final states are all absorbing.

The timed property D is assessed over the time-bounded paths (of
total duration T ) of the Agent Class A sampled from the stochastic pro-
cesses Y (N)(t) that describes the state of the agent belonging to A. The
labels of the transitions of A act as inputs for the DTA D, and the latter is
defined in such a way that it accepts a time-bounded path σ if and only
if the behaviour of the single agent encoded in σ satisfies the property
represented by D. Formally, a time-bounded path σ = s0

α0,t0−−−→ s1
α1,t1−−−→

. . .
αn,tn−−−−→ sn+1 of A sampled from Z(N)(t), with

∑n
j=0 tj ≤ T , is accepted

by D if and only if there exists a path q0
α0−→ q(1) α1−→ q(2) α2−→ . . .

αn−−→
q(n+1) of D such that q(n+1) ∈ F . In the path of D, q(i+1) ∈ Q denotes
the (unique) state that can be reached from q(i) ∈ Q taking the action
q(i) αi,c./,r−−−−−→ q(i+1) whose clock constraint c./ is satisfied by the clock val-
uation η(c) updated according to time ti. In the following, we will denote
by ΣA,D,T the set of time-bounded paths of A accepted by D.

1The notation η(c) |=CC c./ stands for the fact that the value of the valuation η(c) of c
satisfies the clock constraint c./.
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Chapter 3

Stochastic Approximations
for Local-to-Global
Properties

3.1 Overview

The first Stochastic Model Checking procedures based on Fluid Approx-
imations (FA) of the behaviour of the system appeared in the literature
only a few years ago (BH12b; HSB12; HBC13). In (BH12b), the authors
exploit FA to construct an approximate model of a single individual agent
in a (large) population, and check efficiently Continuous Stochastic Logic
(CSL) properties for that individual. A similar approach is taken in (HBC13),
restricting to path properties specified by Deterministic Finite Automata
(DFA, (BK08)). In (HSB12; HBC13), the authors consider also global
properties concerned with the fraction of agents satisfying local speci-
fications, using moment closure techniques to find approximate bounds
on the associated probabilities.

In this chapter, we continue along this direction, focussing on the lift-
ing of local specifications to the global level, but using different Stochas-
tic Approximations to provide a more accurate estimate of the satisfac-
tion probabilities: the Central Limit Approximation (CLA (EK05)), also
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known as Linear Noise Approximation (Van92), the System Size Expan-
sion (Gri10), and the Moment Closure technique combined with the Maxi-
mum Entropy Principle (AMW15b). In this respect, our approach comple-
ments that of (HSB12; HBC13). We also consider a richer class of path
properties, expressed by Deterministic Timed Automata (DTA) with 1
global clock, i.e. a clock referring to the global time of the model. Hence,
this work goes in the direction of merging the approaches of (BH12b)
and (HSB12; HBC13) in the light of the logics asCSL (BCH+07) or CSL-
TA (DHS09), in which until path properties of CSL are replaced by DFA
or DTA specifications. The link between local and global properties, with
exclusive focus on average collective properties estimated using the fluid
limit, has also been discussed in a logical setting in (KRdH13).

The chapter is organised as follows. In Section 3.2, we discuss the
DTA specification of local properties and their lifting to the global level.
In Section 3.3, we discuss how to combine a population model and a
DTA specification into a larger sequence of population models, which is
the key step of the algorithm of Section 3.4.1, based on the Central Limit
Approximation. In the Section 3.4.2, we also discuss higher order ap-
proximations like the System Size Expansion and the Moment Closure
combined with the Maximum Entropy distribution reconstruction. Fi-
nally, in Section 3.5 we discuss the quality of the approximations, and, in
Section 3.6, we discuss the result and the future prospectives.

Part of the content of this chapter has beed published in (BL13a).

3.2 Local-to-Global Properties

We start the presentation of our model checking procedure by consid-
ering the theoretical framework and notation of Section 2.3. Hence, we
consider a Markov Population Model X (N) = (A, T (N),x

(N)
0 ) of size N ,

and in this section, we introduce the class of properties and the specifi-
cation languages that we want to exploit.

As it was described in Section 2.5, we distinguish two levels of prop-
erties: local properties, describing the behaviour of individual agents, and
global properties, describing the collective behaviour of agents with re-
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spect to a local property of interest. In this classification, our approach
is similar to (KRdH13; HSB12). Moreover, we focus time-bounded local
properties specified by Deterministic Timed Automata (DTA). The re-
striction to finite time horizons is justified because the analysis of steady
state properties is always problematic in the context of Stochastic Ap-
proximations (see (BH12b; BHLM13; HSB12) for further discussion on
this point).

The global property layer, instead, allows us to specify queries about
the fraction of agents that satisfies a given local specification. In particu-
lar, given a (local and time-bounded) path property φ, we want to com-
pute the probability that the fraction of agents that satisfies φ at time T is
smaller or larger than a threshold α. In the following, these requirements
are captured by an appropriate operator, that can then be combined to
specify more complex global queries, as in (KRdH13).

Formally, consider the theoretical setting (and the notation) of Section
2.3, and let us fix a Markov Population Model composed of N agents be-
longing to a class A = (S,E). We consider local path properties spec-
ified by 1-global-clock Deterministic Timed Automata (1gDTA), which are
DTAs similar to those introduced in Section 2.5.1, but are endowed with
one single clock variable x ∈ R≥0, called global clock, that is never reset.
As in Definition 2.3, we call V the set of valuations of x, i.e. functions
η : {x} −→ R≥0 that assign a nonnegative real-value to the global clock
x, and CC the set of clock constraints, which are positive boolean combi-
nations of basic clock constraints of the form x ≤ a or x ≥ a, where
a ∈ Q≥0. We write η(x) |=CC c if and only if c ∈ CC is satisfied when
the clock variable takes the value η(x). In addition to actions and clock
constraints, we also label the edges of 1gDTA by a boolean formula, in-
terpreted on the states s ∈ S of agent A, similarly to asCSL (BCH+07)
and CSL-TA (DHS09). Let ΓS be the set of these (atomic) state proposi-
tions over S, and B(ΓS) the set of boolean combinations over ΓS . We use
the letter φ to range over formulae in B(ΓS) and we denote by |=ΓS the
satisfaction relation over B(ΓS)-formulae. In this way, a local transition
s

ατ−−→ s′ matches an edge with label α, c, φ in the 1gDTA if and only if
the action name is the same, the clock constraint c is satisfied and the

35



B(ΓS)-formulae holds on the initial state s, i.e. ατ = α, η(x) |=CC c, and
s |=ΓS φ. We obtain the following definition.

Definition 3.1 (1-global-clock DTA) A 1-global-clock Deterministic Timed
Automaton (1gDTA) is specified by the tuple

D = (L ,ΓS , Q, q0, F,→)

where:

– L is the label set of A;

– ΓS is the set of atomic state propositions;

– Q is the (finite) set of states of the DTA, with initial state q0 ∈ Q;

– F ⊆ Q is the set of final (or accepting) states;

– →⊆ Q×L×B(ΓS)×CC×Q is the edge relation, where (q, α, φ, c, q′) ∈→
is usually denoted by q α,φ,c−−−→ q′.

Moreover, D satisfies:

• (determinism) for each q ∈ Q, α ∈ L , s ∈ S and clock valuation

η(x) ∈ R≥0, there is exactly one edge q α,φ,c−−−→ q′ such that s |=ΓS φ
and η(x) |=CC c;

• (absorption) the final states F are all absorbing, i.e. they only have looping
transitions out of them.

When we write a 1gDTA, we stick to the convention that all non-specified
edges are self-loops on the automata states. Hence, given α, s, and η(x), if
there is no specified edge from state q with label α, with formula satisfied
by s and clock constraint satisfied by η(x), then we assume the existence
of an edge looping on q and satisfying all conditions.

Example 3.1 As a running example for this chapter, we consider the Agent
Class and the Markov Population Model of the network epidemic model of Figure
3 of Section 2.3, and the 1gDTA specification at the top of Figure 4 (a), where
the formula atS is true in local state S and false in states I and R. The property
is satisfied when a susceptible node is infected by an internal infection after the
first τ units of time. The sink state qb is used to discard agents infected before τ
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inf , φS
x ≤ 4

(b)

Figure 4: The 1gDTA specification discussed in the running example.

units of time. The use of the state formula φS allows us to focus only on agents
that get infected, rather than also on agents that spread the contagion.

Exploiting the same specification language, we can of course define more
complex requirements like the automaton of Figure 4 (b). This local timed prop-
erty states that an agent is infected by internal contact twice, the first infection
happening between time 1 and 2, and the second infection happening before time
4. The sink state q3 is used again to discard agents being infected for the first
time before time 1.

A run ρ of a 1gDTA D is a sequence

q0
α0,t0−−−→ q1

α1,t1−−−→ . . . qn,

where q0, q1, q2 ∈ Q are states, α0, α1 are actions and t0, t1 correspond to
the times taken by α0, α1. Moreover, we require for t0, t1 to satisfy the
clock constraints. Finally, a run is said to be accepting if qn ∈ F .

Consider now a Markov Population Model X (N), and focus on a sin-
gle individual agent of class A in the population. A path σ of length n for
the agent is a sequence of the form

s0
α0,t0−−−→ s1

α1,t1−−−→ s2
α2,t2−−−→ . . . sn,
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where si ∈ S, ti ∈ R≥0 is the time spent in the local state si, and αi is the
action taken at step i. The set of those paths will be denoted by Pathn[A]

and the set of paths of finite length will be indicated by Path∗[A]. Given
σ, we let τ [σ] =

∑|σ|−1
i=0 ti be the total time taken to go from state s0 to

state sn, and with τi[σ] the time taken to reach state si. The set of paths
of total duration equal to T ∈ R≥0 is denoted by PathT [A]. Given a path
σ of length n, we define the run ρσ of a 1gDTA D induced by σ to be the
sequence

q0
α0,t0−−−→ q1

α1,t1−−−→ . . . qn,

where state qi+1 is determined by the unique transition

qi
αi,φ,c−−−−→ qi+1,

such that
si |=ΓS φ and Ti+1[σ] |= CC.

If ρσ is accepting, we write σ |= D.
Given a 1gDTA D, we denote it by D[φ1, . . . , φk], when we want to ex-

plicitly list all the atomic propositions ΓS used to build the state propo-
sitions B(ΓS).

Definition 3.2 (CSL-TA) A CSL-TA formula Φ on a Agent Class A is defined
recursively as

true | a | ¬Φ | Φ1 ∧ Φ2 | P≤T./p (D[Φ1, . . . ,Φk]) ,

where

– a is an atomic proposition interpreted on S;

– T ∈ R≥0 is the time horizon;

– ./ p is the bound on the probability, with p ∈ [0, 1] and ./∈ {<,≤,≥, >};

– D[Φ1, . . . ,Φk] is a 1gDTA with atomic formulae taken to be CLS-TA for-
mulae Φ1, . . . ,Φk.

This definition is similar to (DHS09), with the only difference being the
use of a restricted class of DTA, and the time bound on the probability
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operator T . The satisfaction relation is defined relatively to state s ∈ S
of an individual agent Y (t) in X (N) of class A and an initial time t0. The
only interesting case is the one involving 1gDTA specifications, for which
the relation is

s, t0 |= P≤T./p (D[Φ1, . . . ,Φk]) iff P{σ ∈ PathT [A] | σ |= D[Φ1, . . . ,Φk]} ./ p

An individual agent in a population model satisfies the local property
specified by a 1gDTA D at time T if, feeding to D the agent trajectory up
to time T , we reach a final state. This can be formalised in a standard
way, see for instance (CHKM11a; DHS09). In order to lift these local
specifications to the collective level, we count the number of agents that
satisfy the 1gDTA D at time T . More specifically, we check if the fraction
of agents satisfying D is included in the interval [a, b], which we write as
D(T ) ∈ [a, b], where the bounds a, b are specified in terms of the fraction
of agents or population density (the number of agents divided by the
total population size). To verify the random event D(T ) ∈ [a, b], we com-
pute its probability, which is then compared with a given threshold. The
atomic global properties can be combined together by boolean operators,
as in (KRdH13), to define more expressive queries.

Definition 3.3 (Syntax of global properties) Given a Markov Population Mo-
del X (N), a collective/global property on X (N) is given by the following syntax:

Ψ = true | P./p(D(T ) ∈ [a, b]) | ¬Ψ | Ψ1 ∧Ψ2,

where P./p(D(T ) ∈ [a, b]) is true if and only if q ./ p, for ./∈ {<,≤,≥, >},
with q being the probability that at time T the number of agents that satisfies
the local path property D is contained in the interval [a, b].

As an example, consider again the 1gDTA property D of Figure 4 (a). The
atomic global property P≥0.8(D(4) ≤ 1

3 ) specifies that, with probability
at least 0.8, less than one third of network nodes will be infected after 4
time units by an internal contact.

Remark 3.1 In addition to path properties specified by 1gDTA, we could have
considered state properties in the style of CSL-TA (DHS09). This can be done
at the price of dealing with nesting of path and state properties, which for local
specifications raises issues of time-dependency of truth values similar to those
discussed in (BH12b). We leave this for future work.
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Remark 3.2 The fact that final states are absorbing implies that we are looking
for properties in which an accepting state of the 1gDTA must be reached at a
time instant within [0, T ]. Punctual properties, looking at satisfaction exactly
at time T , can be obtained by dropping the absorbing condition in Definition
3.1.

Remark 3.3 In Definition 3.2, we allow the arbitrary nesting of CSL properties
within 1gDTA. By the discussion of (BH12b), this operation requires some care.
The problem is that individual agents are non-Markov processes (in fact, they
are projections of Markov processes, the global model), for which the satisfaction
of a CSL-TA formula involving the probability quantifier depends on the initial
time at which the formula is evaluated. Hence, the satisfaction of a CSL-TA
formula is a time-sdependent function, while 1gDTA require time independent
state formulae. This discrepancy can be reconciled by encoding this time depen-
dency in the 1gDTA using clock constraints. Hence, a state formula that is true
in s up to time 5 and false afterwards, will give rise to two edges in the 1gDTA,
the first considering a state formula in which s is true, and with an additional
clock constraint x ≤ 5, while the second corresponding to an edge with s false
in its state formula, and additional clock constraint x > 5.

However, for simplicity, in this thesis we will consider only non-nested CSL-
TA formulae, leaving the formal definition of the so-modified 1gDTA for future
work.

3.3 Model-Property Synchronization

In this section, we present the model checking procedure for the ver-
ification of global atomic properties. We aim at approximating these
probabilities by means of central limit results (EK05; Van92). The first
step is to synchronize the agent and the property, constructing an ex-
tended Markov Population Model in which the state space of each agent
is combined with the specific path property we are observing. The Cen-
tral Limit Approximation is then applied to the so-obtained model.

The main difficulty in this procedure is the presence of time con-
straints in the path property specification. However, thanks to the re-
striction to a single global clock, we can partition the time interval of
interest into a finite set of subintervals, within which no clock constraint
changes status. Thus, in each subinterval, we can remove the clock con-
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straints, deleting all the edges that cannot fire since their clock constraint
false. In this way, we generate a sequence of Deterministic Finite Au-
tomata (DFA), that are then combined with the local model A by a stan-
dard product of automata. Then, we construct the Markov Population
Models associated with the local model (paying attention to the rates)
and we obtain a sequence of population CTMC models to which we ap-
ply the Central Limit Approximation.

Let A = (S,E) be an Agent Class, D = (L ,ΓS , Q, q0, F,→) be a local
path property, and T > 0 be the time horizon.

First step: uniqueness of transition labels. We define a new Agent Class
Ā = (S, Ē) by renaming the local transitions in E to make their labels
unique. This allows us to remove edge formulae in D, simplifying the
product construction. In particular, if there exist

s1
α−→ s′1, . . . , sm

α−→ s′m ∈ E

having the same label α, we rename them by αs1 , . . . , αsm , obtaining

s1

αs1−−→ s′1, . . . , sm
αsm−−−→ s′m ∈ Ē.

The 1gDTA D is updated accordingly, by substituting each edge q
α,φ,c−−−→

q′ with the set of edges q
αsi ,φ,c−−−−→ q′, for i = 1, . . . ,m. We call L̄ the label

set of Ā.

Second step: removal of state conditions. We remove from the edge

relation of D all the edges q
αsi ,φ,c−−−−→ q′ such that si 6|=ΓS φ, where si is the

source state of the (now unique) transition of Ā labeled by αsi . At this
point, the information carried by state propositions becomes redundant,

thus we drop them, writing q
αsi ,c−−−→ q′ in place of q

αsi ,φ,c−−−−→ q′.

Third step: removal of clock constraints. Let t1, . . . , tk be the ordered
sequence of constants (smaller than T ) appearing in the clock constraints
of the edges of D. We extend this sequence by letting t0 = 0 and tk+1 = T .
Let Ij = [tj−1, tj ], j = 1, . . . , k + 1, be the j-th sub-interval of [0, T ]

identified by the given sequence. For each Ij , we define a DFA, Dj =

(L , Q, q0, F,−→j), whose edge relation −→j is obtained from that of D by
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selecting only the edges for which the clock constraints are satisfied in
Ij , and dropping the clock constraint. Hence, from q

αsi ,c−−−→ q′ such
that η(x) |=CC c whenever η(x) ∈ (tj−1, tj), we obtain the DFA edge
(q, αsi , q

′) ∈−→j , denoted also by q
αsi−−→j q

′.

Fourth step: synchronization. To keep track of the behaviour of the
agents with respect to the property specified by D, we synchronize the
Agent Class Ā = (S, Ē) with each DFA Dj through the standard product
of automata. The sequence of deterministic automata obtained in this
procedure is called the Agent Class associated with the local property D.

Definition 3.4 (Agent Class associated with the local property D) The Agent
Class P associated with the local property D is the sequence

P = (PI1 , . . . ,PIk+1
)

of deterministic automata

PIj = (Ŝ, Êj), j = 1, . . . , k + 1,

where Ŝ = S × Q is the state space and Êj is the set of local transitions εji =

(s, q)
αs−→ (s′, q′), such that s αs−→ s′ is a local transition in Ā and q αs−→ q′ is

an edge in Dj.

Synchronisation of global properties

The Markov Population Model X (N) = (A, T (N),x
(N)
0 ) has to be up-

dated to follow the new specifications at the local level. We do this by
defining the Markov Population Model associated with the local prop-
erty D as a sequence X (N) = (X (N)

I1
, . . . ,X (N)

Ik
) of Markov Population

Models. Since the agent states are synchronized with the property au-
tomaton, each transition in the population model needs to be replicated
many times to account for all possible combinations of the extended lo-
cal state space. Furthermore, we also need to take care of rate functions
in order not to change the global rate. Fix the j-th element PIj in the
Agent Class P associated with the property D. The state space of PIj is
S × Q, hence to construct the global model we need nm counting vari-
ables (n = |S|, m = |Q|), where Xs,q counts how many agents are in the
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local state (s, q). Let τ = (Sτ, f (N)) ∈ T (N) be a global transition, apply
the relabeling of action labels, according to step 1 above, and focus on
the synchronisation set

Sτ = {s1

αs1−−→ s′1, . . . , sk
αsk−−→ s′k}.

We need to consider all possible ways of associating states of Q with the
different states s1, . . . , sk in Sτ . Indeed, each choice (q1, . . . , qk) ∈ Qk

generates a different transition in X (N)
Ij

, with synchronization set

Sτ, r = {(s1, q1)
αs1−−→ (s′1, q

′
1), . . . , (sk, qk)

αsk−−→ (s′k, q
′
k)},

where q′i is the unique state of Q such that

qi
αsi−−→ q′i.

The rate function f
(N)
r associated with this instance of τ is a fraction

of the total rate function f (N) of τ . Moreover, for all si
αsi−−→ s′i ∈ Sτ ,

f
(N)
r is proportional to the fraction of agents that before the synchro-

nisation were in si and are now in state (si, qi), i.e. Xsi,qi divided by
Xsi =

∑
q∈QXsi,q . Formally,

f (N)
r (X) =

∏
si

αsi−−→s′i∈Sτ

(
Xsi,qi∑
q∈QXsi,q

)
f (N)(X̃), (3.1)

where X̃ = (X1, . . . , Xn) with Xs =
∑m
r=1Xs,r. Due to the restrictions

enforced in Definition 2.2, summing up the rates f (N)
r (X) for all possible

choices of (q1, . . . , qk) ∈ Qk, we obtain f (N)(X̃).

Definition 3.5 (Markov Population Model associated with a local property)
The Markov Population Model associated with the local property D is the se-
quence

X (N) = (X (N)
I1

, . . . ,X (N)
Ik

).

The elements X (N)
Ij

= (PIj , T
(N)
j ) are such that PIj is the j-th element of the

Agent Class associated with D and T (N)
j is the set of global transitions of the

form τ ji = (Sij , f (N)
j,i ), as defined above.1

1Initial conditions of the population models in X (N) are dropped, as they are not re-
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3.4 Theoretical Results

In this section, we introduce the final step of our model checking pro-
cedure in which we estimate the probability of global properties by ex-
ploiting Central Limit Approximation. We then discuss how to possibly
improve this estimate by using the System Size Expansion and the Mo-
ment Closure techniques combined with the distribution reconstruction
based on the Maximum Entropy Principle.

3.4.1 Model Checking by Central Limit Approximation

Consider a Markov Population Model X (N), for a fixed population size
N , and a global property P./p(D(T ) ∈ [a, b]). In order to verify the lat-
ter, we need to compute the probability P(D(T ) ∈ [a, b]) that, at time
T , the fraction of agents satisfying the local specification D is contained
in [a, b]. This probability can be computed exploiting the construction
of Section 3.3, according to which we obtain a sequence of population
models X (N) = (X (N)

I1
, . . . ,X (N)

Ik
), synchronising local agents with the se-

quence of deterministic automata associated with D. In this construction
we identified a sequence of times 0 = t0, t1, . . . , tk = T and in each inter-
val Ij = [tj−1, tj ] the satisfaction of clock constraints does not change.

Therefore, in order to compute P(D(T ) ∈ [a, b]), we can rely on tran-
sient analysis algorithms for CTMCs (BBHK00): first we compute the
probability distribution at time t1 for the first population model X (N)

I1
;

then we use this result as the initial distribution for the CTMC associated
with the population model X (N)

I2
and we compute its probability distri-

bution at time t2; and so on, until we obtain the probability distribution
forX (N)

Ik
at time tk = T . Once we have this result, we can find the desired

probability by summing the probability of all those states X ∈ S(N) such
that

∑
s∈S,q∈F X̂s,q ∈ [a, b].

Unfortunately, this approach suffers from state space explosion, which
is severe even for a population size of a few hundreds of individuals.

quired in the following. The initial condition at time zero is obtained from that of X (N) by
letting (x0)s,q0 = (x0)s, where q0 the initial state of D and s ∈ S.
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Furthermore, for these population levels we cannot rely on the Fluid Ap-
proximation, as it would only give us an estimate of the average of the
counting variables, while we need information about their distribution.
It is here that the Central Limit Approximation enters the picture.

The idea is simply to compute the average and covariance matrix of
the approximating Gaussian Process by solving the ODEs shown at the
end of the previous section. In doing this, we have to take proper care
of the different population models associated with the time intervals Ij .
Then, we integrate the Gaussian density of the approximating distribu-
tion at time T to estimate of the probability P(D(T ) ∈ [a, b]). The jus-
tification of this approach is in Theorem 2.4, which guarantees that the
estimated probability is asymptotically correct, but in practice, we can
obtain good approximations also for relatively small populations, in the
order of hundreds of individuals.

Verification algorithm

The inputs of the verification algorithm are:

• an Agent Class A = (S,E) and a Markov Population ModelX (N) =

(A, T (N),x
(N)
0 );

• a local property specified by a 1gDTA D = (L ,ΓS , Q, q0, F,→);

• a global property P./p(D(T ) ∈ [a, b]) with time horizon T > 0.

The steps of the algorithm are:

1. Construction of the Markov Population Model associated with D.
Construct the normalised Markov Population Model

X̂ (N) = (X̂ (N)
I1

, . . . , X̂ (N)
Ik

)

associated with D according to the procedure of Section 3.3. Then
modify it by adding to its vector of counting variables X̂(N) a new
variable X̂Final that keeps track of the fraction of agents entering
one of the final states (s, q), q ∈ F .
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2. Integration of the Central Limit equations. For each j = 1, . . . , k,
generate and solve numerically the systems of ODEs of the form
similar to (2.7) and (2.8), that describe the fluid limit Φj(t) and the
Gaussian covariance Cj [Z(t)] for the population model X (N)

Ij
in the

interval Ij = [tj−1, tj ], with initial conditions

∀j > 1,

{
Φj(tj−1) = Φj−1(tj−1),

Cj [Z(tj−1)] = Cj−1[Z(tj−1)],

and {
Φ1(0) = x0,

C1[Z(0)] = Id.

For t ∈ Ij , define the population mean as

E(N)[X(t)] = NΦj(t)

and the population covariance as

C(N)[X(t)] = NCj [Z(t)].

Finally, identify the componentE(N)
Final[X(t)] and the diagonal entry

C
(N)
Final[X(t)] corresponding to XFinal.

3. Computation of the probability. Let g(x | µ, σ2) be the probability
density of a Gaussian distribution with mean µ and variance σ2.
Then, approximate P(D(T ) ∈ [a, b]) by

P̃
(N)
D (T ) =

∫ Nb

Na

g(x | E(N)
Final[X(t)], C

(N)
Final[X(t)])dx,

and compare the result with the probability bound ./ p.

The asymptotic correctness of this procedure is captured in the next theo-
rem, whose proof is a consequence of Theorem 2.4. We denote byP (N)

D (T )

the exact value ofP(D(T ) ∈ [a, b]) and by P̃ (N)
D (T ) the approximate value

computed by the Central Limit Approximation.
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Theorem 3.1 Under the hypothesis of Theorem 2.4, it holds that

lim
N→∞

‖P (N)
D (T )− P̃ (N)

D (T )‖ = 0.

Proof 3.1 Let us start by assuming that the sequence X (N) of the Markov Pop-
ulation Model associated with the property D (Definition 3.5) is composed of a
single model. It is easy to verify that all rate functions of the modified population
model of Step 1 in the verification algorithm are Lipschitz continuous, and that
the conditions of Theorem 2.4 are satisfied. In particular, the initial conditions
for Z(N)(t) and Z(t) converge by definition. Moreover, as we are interested in
the value of Z(N)(t) and Z(t) at a fixed time T > 0, let Z(N) = Z(N)(T ) and
Z = Z(T ). Theorem 2.4 implies that

Z(N) ⇒ Z (weak convergence).

To prove the convergence of P (N)
D (T ) to P̃ (N)

D (T ), let us consider the N -
dependent interval [a(N), b(N)] where

a(N) = N
1
2 (a−ΦFinal(T ))

and
b(N) = N

1
2 (b−ΦFinal(T )) .

In terms of [a(N), b(N)], we can write

P
(N)
D (T ) = P{Z(N)

Final ∈ [a(N), b(N)]}

and
P̃

(N)
D (T ) = P{ZFinal ∈ [a(N), b(N)]},

where Z(N)
Final and ZFinal are the marginal distributions of Z(N) and Z on the

coordinate corresponding to XFinal.
By the triangular inequality, we have

‖P{Z(N)
Final ∈[a(N), b(N)]} − P{ZFinal ∈ [a(N), b(N)]}‖ ≤

‖P{Z(N)
Final ∈ [a(N), b(N)]} − P{Z(N)

Final ∈ [a∞, b∞]}‖︸ ︷︷ ︸
(a)

+

‖P{ZFinal ∈ [a∞, b∞]} − P{ZFinal ∈ [a(N), b(N)]}‖︸ ︷︷ ︸
(b)
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where [a∞, b∞] is the the limit set to which [a(N), b(N)] converges as N goes to
infinity. Hence, by definition, term (b) in the inequality above goes to zero for
N →∞.

To deal with term (a), we consider that [a∞, b∞] can assume only one of the
following four forms, depending on the relative value of a and b with respect to
ΦFinal(T ):

1. if a, b > ΦFinal(T ) or a, b < ΦFinal(T ), then [a∞, b∞] = ∅;

2. if a < ΦFinal(T ) and b > ΦFinal(T ), then [a∞, b∞] = [−∞,+∞] =
R;

3. if a = ΦFinal(T ) and b > ΦFinal(T ), then [a∞, b∞] = [0,+∞];

4. if a < ΦFinal(T ) and b = ΦFinal(T ), then [a∞, b∞] = [−∞, 0];

Moreover, we can exploit the fact that, as Z(N)
Final ⇒ ZFinal and R is a Polish

space, by the Prohorov theorem, Z(N)
Final is uniformly tight. This means that, for

each ε > 0, there exists kε > 0 such that, for all N ,

P{Z(N)
Final ∈ [−kε, kε]} > 1− ε.

Looking at each of the four forms of [a∞, b∞] separately, we have the following
results.

1. Fix ε > 0 and let N0 be such that, for N ≥ N0,

[a(N), b(N)] ∩ [−kε, kε] = ∅.

It follows that P{ZFinal ∈ [a(N), b(N)]} < ε. Moreover, due to the defi-
nition of [a(N), b(N)], we have also that P{Z(N)

Final ∈ [a∞, b∞]} = 0, and
thus the value of the whole term (a) is less than ε, which implies that (a)
goes to zero for N going to infinity.

2. Fix ε > 0 and let N0 be such that, for N ≥ N0,

[a(N), b(N)] ∩ [−kε, kε] = [−kε, kε].

As P{Z(N)
Final ∈ [a∞, b∞]} = 1, it follows that (a) is smaller than ε, hence

it has limit 0.
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3. Fix ε > 0 and let N0 be such that, for N ≥ N0,

[a(N), b(N)] ∩ [−kε, kε] = [0, kε].

By the monotonicity of the probability distributions, term (a) is smaller
than P{ZFinal > kε}, which is itself smaller than ε. Also in this case, it
follows that term (a) has limit 0.

4. This case is similar to case 3.

Hence, as desired, we have proven that

lim
N→∞

‖P{Z(N)
Final ∈ [a(N), b(N)]} − P{ZFinal ∈ [a(N), b(N)]}‖ = 0

To deal with the case in which the Markov Population Model associated with
the property D is a sequence of k > 1 models, we can rely on the fact that the
time constants defining intervals Ij are fixed, hence Theorem 2.4 holds induc-
tively for each model of the sequence. Indeed, the initial conditions of model
X̂Ij are given by the final state of model X̂Ij−1

, which converges by inductive
hypothesis. Therefore, to prove the convergence of the probability P (N)

D (T ) to
P̃

(N)
D (T ), we just need to apply the argument discussed above to the final model

of the sequence.

Remark 3.4 The introduction of the counting variableXFinal is needed to cor-
rectly capture the variance in entering one of the final states of the property.
Indeed, it holds that XFinal =

∑
s∈S,q∈F Xs,q , and in principle we could have

applied the Central Limit Approximation to the model without XFinal, by ex-
ploiting the fact that the sum of Gaussian variables is Gaussian (with mean and
variance given by the sum of means and variances of the addends). In doing
this, though, we overestimate the variance of XFinal, because we implicitly take
into account the dynamics within the final components. The introduction of
XFinal, instead, avoids this problem, as its variance depends only on the events
that allow the agents to enter one of the final states.

3.4.2 Model Checking by System Size Expansion and Mo-
ment Closure

The method just presented relies on the Central Limit Approximation
(CLA), hence its accuracy depends on the quality of the estimation of
the probability distribution given by the CLA at time T . In particular, in
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some specific cases, we found the accuracy of the approach to be ham-
pered: for example when if the probability X(N)

final(T ) is not symmetric,
or when its distribution deviates from a Gaussian, or when the Fluid Ap-
proximation fails in giving a good estimation of the mean of X(N)

final(T ).
One way of tackling these and other problems is to exploit different types
of Stochastic Approximations, like the System Size Expansion or the Mo-
ment Closure combined with the Moment Reconstruction Principle.

As it was discussed in Section 2.4.3, the System Size Expansion (SSE),
or Inverse Omega Square (IOS), is an approximation which estimates the
dynamics of a Markov Population Model by means of a Gaussian prob-
ability distribution with mean E∗[X(t)] and covariance C∗[X(t)] given
by (2.10) and (2.11), respectively. Moreover, when we drop the terms
of order O(N1/2) in the definitions of E∗[X(t)] and C∗[X(t)], we obtain
equations (2.7) and (2.8) for the mean and covariance of the Central Limit
Approximation. Hence, the System Size Expansion is indeed a higher or-
der correction of the CLA, that can be efficiently exploited when the we
want to improve the accuracy of the mean (i.e. the Fluid Approximation)
and of the covariance of the CLA.

Due to the fact that the System Size Expansion (IOS) is indeed a higher
order correction of the Central Limit Approximation, and hence their for-
mal definitions are very similar, we can easily exploit the IOS in our mo-
del checking procedure starting from the the verification algorithm of
Section 3.4.1. Indeed, to adjust the procedure to the IOS, we just need
to substitute in Step 2, the integration of the equations for E[X(t)] and
C[X(t)] with those of E∗[X(t)] and C∗[X(t)]. Moreover, as for the CLA,
the quality of the model checking procedure that is based on the System
Size Expansion is guaranteed by a limit result like Theorem 3.1, whose
proof is a straightforward adjustment of Proof 3.1 to exploit Theorem 2.5
(instead of Theorem 2.4).

When the knowledge of the typology of the probability distribution
X

(N)
final(T ) is limited, or more in general, when a Gaussian estimation

fails to accurately describe X(N)
final(T ), then the IOS faces the same drop

in the accuracy as the CLA, but we can still rely on the Moment Clo-
sure and the Maximum Entropy principle. Indeed, in the approximation
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Figure 5: The automaton representation of the Agent Class of the running
example.

technique introduced in Section 2.4.4 does not rely on any assumption
about the typology of the distribution X

(N)
final(T ) (such as Gaussian for

the CLA and the IOS), hence we can exploit it on less regular cases. To
apply this Stochastic Approximation to our model checking procedure,
in the algorithm of Section 3.4.1, we need to substitute: Step 2 with the
integration of the K moments obtained by the Moment Reconstruction;
and Step 3 with the computation of the estimate of the transient proba-
bility P(D(T ) ∈ [a, b]) = P ∗(T ) following the distribution reconstruction
based on the Maximum Entropy Principle described in Section 2.4.4. In
this case, we cannot provide a limit theorem to ensure the quality of the
approximation, but, as we shall see in the following section, the experi-
mental results are promising.

3.5 Experimental Analysis

3.5.1 Results of Central Limit Approximation

We discuss now the quality of the Central Limit Approximation for meso-
scopic populations from an experimental perspective. We present a de-
tailed investigation of the behaviour of the example describing a network
epidemics introduced in Section 2.3 (whose automaton representation is
depicted again in Figure 5 to ease the readability of this Section).

We consider the two local properties expressed as 1gDTAs shown in
Figure 6. The first property D1 has no clock constraints on the edges of
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Figure 6: The 1gDTA specifications experimentally analysed in Section 3.5.

the automaton, therefore the 1gDTA reduces to a DFA. The property is
satisfied if an infected node is patched before being able to infect other
nodes in the network, thus checking the effectiveness of the antivirus
deployment strategy. The second property D2, instead, is properly timed.
It is satisfied when a susceptible node is infected by an internal infection
after the first τ units of time. The corresponding global properties that
we consider are P(D1(T ) ≥ α1) and P(D2(T ) ≥ α2).

In Figure 7, we show the probability of the two global properties as
a function of the time horizon T , for different values of N and a spe-
cific configuration of the rates of the transitions and of the threshold of
the properties (κinf = 0.05, κpatch1

= 0.02, κloss = 0.01, κext = 0.05,
κpatch0

= 0.001, α1 = 0.5, α2 = 0.2). The CLA is compared with a sta-
tistical estimate, obtained from 10000 simulation runs. As we can see,
the accuracy in the transient phase increases rapidly with N , and the es-
timate is very good for both properties already for N = 100. The same
parameter configuration was used to compute the computational costs
(in Seconds), showed in Table 1. As we have seen, by definition the Cen-
tral Limit Approximation is independent of the population size N and
its computational costs is hundreds of times less than that of the statis-
tical estimate (the Gillespie Algorithm) for both the first and the second
properties.

Furthermore, in order to check more extensively the quality of the
approximation also as a function of the system parameters, we ran the
following experiment. We considered five different values of N (N =

20, 50, 100, 200, 500). For each of these values, we randomly chose 20
different combinations of parameter values, sampling uniformly from:

52



Figure 7: Comparison of Central Limit Approximation (CLA) and a statisti-
cal estimate (using the Gillespie algorithm, SSA) of the path probabilities of
the 1gDTA properties of Figure 6 computed on the network epidemic model
for different values of the population size N .

κinf ∈ [0.05, 5], κpatch1
∈ [0.02, 2], κloss ∈ [0.01, 1], κext ∈ [0.05, 5], κpatch0

∈
[0.001, 0.1], α1 ∈ [0.1, 0.95], α2 ∈ [0.1, 0.3]. For each parameter set, we
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First Property
N SSAcost CLAcost Speedup
20 22.4114 0.0618 362.6440
50 23.3467 0.0618 377.7783

100 24.2689 0.0618 392.7006
200 26.1074 0.0618 442.4498
500 28.8754 0.0618 467.2395

Second Property
N SSAcost CLAcost Speedup
20 32.0598 0.3035 105.6336
50 29.0915 0.3035 95.8534

100 28.8651 0.3035 95.1074
200 33.9825 0.3035 111.9687
500 43.4737 0.3035 143.2412

Table 1: Average computational costs (in Seconds) of the Gillespie Algo-
rithm (SSAcost) and the Central Limit Approximation (CLAcost), and the
relative SpeedUp (CLAcost/SSAcost). The data are shown as a function of
the population size N (by definition the CLA is independent of N ).

compared the CLA of the probability of each global property with a sta-
tistical estimate (from 5000 runs), measuring the error in a grid of 1000
equi-spaced time points. We then computed the maximum error and the
average error. In Table 2, we report the mean and maximum values of
these quantities over the 20 runs, for each considered value of N . We
also report the error at the final time of the simulation, when the proba-
bility has stabilised to its limit value.2 It can be seen that both the average
and the maximum errors decrease with N , as expected, and are already
quite small for N = 100 (for the first property, the maximum difference
in the path probability for all runs is of the order of 0.06, while the aver-
age error is 0.003). For N = 500, the CLA is practically indistinguishable
from the (estimated) true probability. For the second property, the errors
are slightly worse, but still reasonably small.

Finally, we considered the problem of understanding what are the

2For this model, we can extend the analysis to steady state, as the fluid limit has a
unique, globally attracting steady state. This is not possible in general, cf. (BHLM13).
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First Property
N MaxEr E[MaxEr] MaxE[Er] E[E[Er]] MaxEr(T ) E[Er(T )]
20 0.1336 0.0420 0.0491 0.0094 0.0442 0.0037
50 0.0866 0.0366 0.0631 0.0067 0.0128 0.0018

100 0.0611 0.0266 0.0249 0.0030 0.0307 0.0017
200 0.0504 0.0191 0.0055 0.0003 0.0033 0.0002
500 0.0336 0.0120 0.0024 0.0003 0.0002 9.5e-6

Second Property
N MaxEr E[MaxEr] MaxE[Er] E[E[Er]] MaxEr(T ) E[Er(T )]
20 0.2478 0.1173 0.1552 0.0450 0.1662 0.0448
50 0.2216 0.0767 0.1233 0.0340 0.1337 0.0361
100 0.1380 0.0620 0.0887 0.0216 0.0979 0.0208
200 0.1365 0.0538 0.0716 0.0053 0.0779 0.0162
500 0.1187 0.0398 0.0585 0.0100 0.0725 0.0108

Table 2: Errors obtained by the Central Limit Approximation in the valida-
tion of Local-to-Global Properties. Maximum and mean of the maximum
error (MaxEr, E[MaxEr]) for each parameter configuration; maximum and
mean of the average error with respect to time (MaxE[Er]), E[E[Er]]) for
each parameter configuration; maximum and average error at the final time
horizon T (MaxEr(T ), E[Er(T )] ) for each parameter configuration. Data is
shown as a function of the network size N .

most important aspects that determine the error. To this end, we re-
gressed the observed error against the following features: estimated prob-
ability value by CLA, error in the predicted average and variance of
XFinal (between the CLA and the statistical estimates), and statistical
estimates of the mean, variance, skewness and kurtosis of XFinal. We
used Gaussian Process regression with Adaptive Relevance Detection
(GP-ADR, (RW06)), which performs a regularised regression searching
the best fit on an infinite dimensional subspace of continuous functions,
and permitted us to identify the most relevant features by learning the
hyperparameters of the kernel function. We used both a squared expo-
nential kernel, a quadratic kernel, and a combination of the two, with a
training set of 500 points, selected randomly from the experiments per-
formed. The mean prediction error on a test set of other 500 points (in-
dependently of N ) is around 0.015 for all the considered kernels. Fur-
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thermore, GP-ADR selected as most relevant the quadratic kernel, and
in particular the following two features: the estimated probability and
the error in the mean of XFinal. This suggests that moment closure tech-
niques improving the prediction of the average can possibly reduce the
error of the method.

Finite-Size Threshold Correction

Results obtained by CLA can be further improved for small values of
N by introducing a correction on the thresholds a and b of a property
P./p(D(T ) ∈ [a, b]), taking into account the discrepancy between the dis-
crete nature of population counts and its continuous approximation. To
better understand the correction, let us consider a property of the form
P./p(D(T ) ≥ α). In the algorithm presented in Section 3.4.1, the CLA
works by integrating the Gaussian approximation of the variable Xfinal

from αN to infinity. However, in this way, for small N , we neglect the
discrete nature of the state space. Suppose we would like to compute
the probability of Xfinal = i. Using the Gaussian approximation, we
would always obtain zero, unless we integrate in a region around i. The
obvious candidate is [i − 1

2 , i + 1
2 ], which correspond to a partition of

the interval [0, N ] into subintervals of the form [i− 1
2 , i+ 1

2 ]3. Following
this line of reasoning, instead of integrating the Gaussian approximation
for Xfinal from αN , we should start from j − 1

2 , where j is the small-
est integer greater than or equal to αN , i.e. j = dαNe. Note that j is
the smallest value that Xfinal can take to satisfy the property, when ver-
ifying it in the discrete stochastic model. Similarly, when dealing with
properties of the form P./p(D(T ) ≤ α), we would need to integrate up
to bαNc+ 1

2 , combining the two corrections with dealing with threshold
intervals [a, b]. In several experimental tests, we observed that this sim-
ple correction improves considerably the approximation, becoming less
significant for large N .

Example 3.2 In Figure 8 we see the correction at work for N = 20 and the
first property of Figure 6, in which α = 0.5, hence dαNe = 10. We can see

3The extremes 0 andN has to be treated in a special way: (−∞, 1
2

] for 0 and [N− 1
2
,∞)

for N
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Figure 8: Comparison of a statistical estimate (using the Gillespie algorithm,
SSA), the Central Limit Approximation (CLA), and the CLA with the finite-
size threshold correction (CLAc) for the first property of Figure 6, with N =
20 and α = 0.5.

what happens if we integrate from 9.5 instead of 10. Integrating from 10, some
probability mass is lost, and the CLA under-approximates the true solution. The
correction allows us to recover some of this lost mass, improving considerably
the quality of the approximation.

3.5.2 Results of System Size Expansion and Moment Clo-
sure

At the moment of the completion of this thesis, a full and extensive ex-
perimental analysis of the stochastic model checking techniques based
on the System Size Expansion (IOS) and the Moment Closure (MC) with
distribution reconstruction is still an on going work which will be pre-
sented in the paper (BLN17). In the following, we illustrate the first (and
very promising) results for these model checking techniques, leaving the
detailed error analysis to (BLN17).

To analyse the model checking procedure for the IOS and the Moment
Closure we have considered the untimed property of Figure 6 left. The
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set of parameters considered in the experiment are the following: κinf =

0.04, κpatch1
= 0.02, κloss = 0.01, κext = 0.05, κpatch0

= 0.001, α1 = 0.6.
For the Moment Closure, we have considered a Low Dispersion of grade
3 technique, hence we have set to zero all the moments of grade greater
or equal to 4. In Figure 9, we are able to compare the results obtained for
the CLA and the Gillespie’s statistical estimates (with 10000 runs) (SSA),
with the probabilities estimated by the IOS and the MC, for two values
of the population size: N = 20 (left) and N = 100 (right). As we can
immediately see, on the case of this simple property, the performance
of the three types of approximation (CLA, IOS and MC) is comparable
(almost the same). Moreover, we can also notice how the IOS and the MC
probabilities converge to the statistical estimates quite fast, and already
obtain almost exact results at N = 100. In our next work (BLN17), we
plan to stress the three model checking procedure on more complex and
timed property, to understand better the different performances and the
quality of the estimations.

3.6 Discussion

In this chapter, we have considered Markov Population Models and timed
properties of individual agents specified by DTAs endowed with a one
global clock. We introduced stochastic model checking methods based
on Central Limit Approximation, System Size Expansion, and Moment
Closure. The Stochastic Approximations are exploited to accurately es-
timate the collective probability with which a given fraction of agents
satisfies the local specification. The correctness of our method is guaran-
teed by a convergence result and validated experimentally on a network
epidemics model.

The results of this chapter could be extended in several directions.
One possibility is to consider more complex DTA properties, for instance
allowing clock resets. This line of research is going to be further dis-
cussed in Chapter 5, but only for individual local properties. In that
chapter, we also discuss the difficulties of passing from local to collec-
tive properties when multiple clocks are involved.
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On the theoretical side, it would be interesting to compute the speed
of convergence of the approximations in Theorems 3.1 and 2.5 in order to
possibly compare it with the results obtained for the Fluid Approxima-
tion (see e.g. (BHLM13)). Experimentally, we are currently expanding
and improving the analysis of Section 3.5.2, considering also more com-
plex requirements, to better capture the performances of the different
approximation techniques. Moreover, a possible challenging area of in-
vestigation looks into the topology of the phase space of the ODEs of the
Stochastic Approximations to extensively understand the error and the
performance of the estimations.
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Figure 9: Comparison of the results obtained by the CLA, the statistical
estimate (SSA), the System Size Expansion (IOS), and the Moment Closure
(MC) for N = 20 and N = 100.
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Chapter 4

Hitting Time
Approximation for Global
Reachability Properties

4.1 Overview

In this chapter, we apply Stochastic Approximations to validate a class
of global properties of the Markov Population Models: the global reach-
ability properties. In particular, we are interested in the fast and accurate
estimation of the probability that a fraction of the population in the sys-
tem reaches, within a given time horizon T < ∞, a certain region of the
state space, the target region, defined by a non-linear inequality of the
counting variables that identity the state of the population. An exam-
ple of these properties is the probability that a large fraction of users in
a peer-to-peer network downloads an updated piece of information, or
the probability that a given fraction of computers in a LAN becomes in-
fected by a virus. Reachability queries are important in many respects:
safety properties belong to this class of properties, and moreover, these
requirements constitute the core subroutine to check time-bounded CSL
properties (BK08).

The main idea of our approach to validate global reachability prop-
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erties is to transform the reachability problem into a hitting time problem,
and thus approximate the reachability probabilities by computing an es-
timation of the hitting time probabilities, exploiting Central Limit Approx-
imation and System Size Expansion (EK05).

Consider the Fluid Approximation, which as we have seen in Sec-
tion 2.4 of Chapter 2 is a deterministic process Φ(t) described by a set of
ODEs, and assume that Φ(t) enters the target region R at a given time
tR. Then, tR is an accurate estimate of the true time instant in which the
Markov Population Model enters R when the population size is large.
However, for populations of the order of hundreds of individuals, a typ-
ical size of mesoscopic models, this approximation loses its accuracy, as the
stochastic noise generated at the local level of the single agents cannot be
neglected. Hence, our idea is to exploit the Central Limit Approximation
and the System Size Expansion, as in Chapter 3, and estimate the hitting
time probability (and thus the global reachability probability) by a Gaus-
sian process. Throughout the chapter, the feasibility and accuracy of the
approach is going to be discussed on an example of software update pro-
cess in a peer to peer network, inspired by (Hay12).

The chapter is organised as follows. In Section 4.2, we introduce the
running example. In Section 4.3, we discuss the global reachability prob-
lem and the formalism we consider. Section 4.4 contains the main theo-
retical results: the Gaussian approximation of the hitting time, its use for
estimating the reachabilty probability, and how to exploit System Size
Expansion to improve accuracy. Section 4.5 shows the method in prac-
tice on the peer-to-peer example. A discussion can be found in Section
4.6.

The results of this paper have been published in (BL14).

4.2 Running Example

To illustrate the model checking procedure, we consider a simple variant
of the peer-to-peer software update process introduced in (Hay12). In the
modelled network, a node can be old, meaning that it has an old version
of the software, or updated, when it has been able to receive the update.
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In both cases, the node can be switched ON and OFF, and an old node
can update only when it is on. The search for the update in the network
lasts until a certain timeout is reached, after which the old node gives up
and reaches a oldOUT state from which it can be eventually switched off.
Finally, we mimic also the possibility that an oldOUT node obtains the
update from an external source (extO) and that the license of the updated
version of the software eventually expires or a new version is released
(expU ).

The Agent Class Anode = (Snode, Enode) of the network nodes can
be easily derived from the automaton representation depicted in Figure
10. The population model Xnetwork = (Anode, T ,x0) is described by the
vector of counting variables

X = (XoldOFF , XoldON , XoldOUT , XupdatedOFF , XupdatedON )

and the set of global transition is given by

T = {τonO , τoffO , τoutO , τoffT , τextO , τoffU , τonU , τupdate, τexp
U
}.

For example, the switching on of an old node is described by

τonO = {{oldOFF onO−−−→ oldON}, fonO},

where the synchronisation set specifies that only one (old) node is in-
volved and changes state from oldOFF to oldON at an expected rate given
by the function

fonO (X) = λonOXoldOFF ,

in which λonO is the constant indicating the rate of switching on of old
nodes per single unit. The other global transitions τoffO , τoutO , τoffT ,
τextO ,τoffU , τonU , τexp

U
have a similar form (with λextO and λexp

U
hav-

ing low values to implement the fact that extO and expU happen on a
much lower time-scale than the others). The global transition τupdate, in-
stead, synchronises two local transitions. In particular, τupdate involves
an oldON-node and an updatedON-node and we have

τupdate = {{oldON updateO−−−−−→ updatedON,

updatedON
updateU−−−−−→ updatedON}, fupdate}.
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Figure 10: The automaton representation of the peer-to-peer software up-
date process of Section 4.2.

In this case, we assume that an updatedON-node sends the update to an
oldON-one at an instantaneous rate given by λupdate and the rate function
has the classical mass action form

fupdate(X) = λupdateXoldONXupdatedON ,

depending on the number of pairs of nodes that are ready to communi-
cate (AB00).

4.3 Global Reachabilty Properties

In this chapter, we introduce a model checking procedure for the valida-
tion of reachability properties. In particular, we consider instances of global
reachability properties, describing the dynamics of the system at the pop-
ulation level, i.e. characterising the collective behaviour of all agents. In
order to verify these requirements, we compute the probability of reach-
ing, within a given time horizon T , a specific target region R ⊂ S of the
state space S of the population model, starting from the initial state x0:

PR(T ) = P{X(t) ∈ R | t ∈ [0, T ]}. (4.1)

Reachability is a fundamental notion in the analysis and verification of
complex systems and it has been widely studied in many disciplines, in-
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cluding physics, biology and computer science. In the latter community,
the investigation of reachability has been usually motivated by the safety
verification problem, that checks the performance of a model by computing
the probability associated with its failure, i.e. with those trajectories that
end up in a dead-lock or error state. This type of analysis is indeed fun-
damental for a sound and reliable verification of software and hardware
systems, and in recent years great variety of stochastic model checking
techniques have been developed in order to efficiently tackle the problem
(Buj12).

The standard stochastic model checking procedures address the reacha-
bility problem (4.1) by making absorbing the states in the target region R
and computing the transient probability of being in those states at time
T . However, all these methods severely suffer by the state space explosion
of population models, which hampers the computability of transient and
steady-state probabilities. In this chapter, we introduce a model check-
ing procedure, which tackles the problem of the state space explosion by
considering scalable approximations of the population dynamics.

In the following, we reformulate the reachability problem (4.1) as a
hitting time problem. In particular, instead of computing the probability of
reaching the target region R before time T , we consider the hitting time
tR, the instant in which the trajectory of the population model enters R,
and we compute the probability that tR < T :

PhitR (T ) = P{tR ≤ T} with tR = inf{t > 0 |X(t) ∈ R}. (4.2)

It is straightforward to prove that PR(T ) = PhitR (T ).
To compute the reachability probability PR(T ), we define a Gaussian

estimation of the hitting time tR, starting from the Central Limit Approx-
imation of the dynamics of the population model X . Hence, following
the procedure illustrated in Section 2.4 of Chapter 2, we define the se-
quence of Markov Population Models (X (N))N∈N and, normalising with
respect to the population size N , we consider the following reachability
probability:

P(N)
R (T ) = P{t(N)

R ≤ T} with t
(N)
R = inf{t > 0 | X̂(N)(t) ∈ R}.
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Moreover, we assume that the (normalised) target regionR is defined by
an inequality on population variables. Formally, we introduce a suitable
target function ρ : D → R, such that R is the subset of D where ρ is
negative. The function ρ is defined on the compact set D ⊆ [0, 1]n such
that

⋃
N Ŝ(N) ⊆ D and comes in the form of a nonlinear differentiable

function of the normalised counting variables X̂1(t), . . . , X̂n(t). Hence,
the final form of the reachability problem we want to solve is given by

P(N)
R (T ) = P{t(N)

R ≤ T} with t
(N)
R = inf{t > 0 | ρ(X̂(N)(t)) < 0}.

(4.3)

Example 4.1 As an example, consider the peer-to-peer software update process
described in Section 4.2 in a network with 100 nodes, i.e. the population size is
N=100. We can validate the performance of the model by considering the simple
reachability property which controls the time in which 95% of the nodes have
been updated. In this case, the target region R is that in which the number of
agents that have received the update, i.e. XupdatedOFF +XupdatedON , is greater
or equal to 95% of the population, i.e. 0.95 · 100. Hence,

R := {X(t) ∈ S | XupdatedOFF (t) +XupdatedON (t) ≥ 0.95 · 100},

and the target function ρ : D → R is given by

ρ(X̂(N)(t)) := 0.95− X̂updatedOFF (t)− X̂updatedON (t).

4.4 Theoretical Results

In this section, we present the theory behind our model checking pro-
cedure. First, we define the Central Limit Approximation of the hitting
time tR, then we build an efficient algorithm to estimate the reachability
probability, exploiting the duality between hitting times and reachability.
The algorithm relies on an hypothesis, namely that the fluid trajectories
enter the target region. We will discuss more this restriction at the end of
the chapter. At the end of the section, we also discuss how to improve the
approximation by exploiting the System Size Expansion and the Moment
Closure.
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4.4.1 Central Limit Approximation of the Hitting Time
Distribution

To compute the cumulative probability distribution associated with the
reachability problem (4.3), the model checking procedure that we are pre-
senting exploits a Corollary of Theorem 2.4, which provides a Gaussian
estimation of t(N)

R based on the Fluid and Central Limit Approximations
of X̂(N)(t). In this section, we review how to define this estimation.

The Fluid Approximation of X̂(N)(t) provides a deterministic approx-
imation tR (independent of N ) of the hitting time t(N)

R of the reachability
problem (4.3), namely

tR = inf{t > 0 | Φ(t) ∈ R}. (4.4)

As a direct consequence of Kurtz’s Theorem on the fluid limit, this ap-
proximation is exact in the limit of an infinite population. Consider now
the (normalised) stochastic variable ε(N) :=

√
N(t

(N)
R − tR), which cap-

tures the noise of t(N)
R around the deterministic fluid estimation tR. Let

{Z(t) ∈ Rn | t ∈ R} be the Gaussian noise of the Central Limit Approx-
imation with mean and covariance given by (2.7) and (2.8) respectively,
and let ε be the random variable given by

ε := − ∇ρ(Φ(tR)) · Z(tR)

∇ρ(Φ(tR)) · F(Φ(tR))
,

where: ρ : D → R is the target function identifying the (normalised)
target region R̂ in (4.3); ∇ is the gradient; and · is the Euclidean scalar
product. Then, the following result holds true ((EK05), Ch 11, Theorem
4.1).

Theorem 4.1 Assume that limN→∞ Z(N)(0) = Z(0) as in Theorem 2.4. If
tR <∞ and∇ρ(Φ(tR))·F(Φ(tR)) < 0, then ε(N)(t) converges in distribution
to ε(t).

In conclusion, the Gaussian approximation of the hitting time t(N)
R that

we consider in our model checking procedure is given by

tR −
1√
N

∇ρ(Φ(tR)) · Z(tR)

∇ρ(Φ(tR)) · F(Φ(tR))
(4.5)
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and Theorem 4.1 guarantees that the estimation is exact in the limit of an
infinite population size.

4.4.2 Verification Algorithm

The algorithm of our model checking procedure for the verification of
reachability properties over Markov Population Models has the follow-
ing form.

Input:

• an Agent Class A = (S,E) as described in Definition 2.1;

• a Markov Population Model X = (A, T ,x0) as described in Defini-
tion 2.2;

• a global reachability property with target region R identified by a
target function ρ : D → R.

Steps:

1. Integration of the Fluid and Central Limit differential equations. Nu-
merically solve the ODE systems (2.6) for the Fluid Approximation
Φ(t), and (2.7) and (2.8) for the mean E(t) and covariance C(t) of
the Gaussian noise of the Central limit Approximation;

2. Computation of the fluid estimation tR. Compute the fluid estimation
tR of the hitting time by solving tR = inf{t > 0 | ρ(Φ(t)) < 0};

3. Computation of the mean and covariance of the Gaussian approximation.
Identify the mean µhit and variance σ2

hit of the Gaussian approxi-
mation of the hitting time defined in (4.5) by solving

µhit = tR −
1√
N

∇ρ(Φ(tR)) ·E(tR)

∇ρ(Φ(tR)) · F(Φ(tR))

and

σ2
hit = − 1√

N

∇ρ(Φ(tR)) · diag(C(tR))

∇ρ(Φ(tR)) · F(Φ(tR))
,

where diag(C(tR)) is the vector of diagonal elements of C(tR).
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4. Computation of the reachability probability. Let f(t | µ, σ2) be the prob-
ability density function of a Gaussian distribution in t with mean
µ and variance σ2. Approximate the global reachability probability
P(N)
R (T ) by

P(N)
R (T ) ∼

∫ T

−∞
f(t | µhit, σ2

hit)dt. (4.6)

The asymptotic correctness of the approximation of the reachabil-
ity probability PR(T ) is guaranteed by the following result, which is a
straightforward corollary of Theorem 4.1.

Theorem 4.2 Let P(N)
R (T ) be the exact value of the global reachability proba-

bility defined in (4.3), and let P̃(N)
R (T ) =

∫ T
0
f(t |µhit,σ2

hit)dt be the Gaussian
approximation computed in (4.6). Then, under the assumptions of Theorem 4.1,
it holds that limN→∞|| P(N)

R (T )− P̃(N)
R (T ) || = 0.

4.4.3 System Size Expansion

In the same setting of the algorithm defined in Section 4.4.2, let Φ(t) be
the Fluid Approximation of a Markov Population Model described by a
stochastic process X̂(N)(t), and let Z∗(t) be the System Size Expansion
of Section 2.4.3 with mean E∗(t) and covariance C∗(t) given by 2.10 and
2.11, respectively. The approximation Z∗(t) of the noise around the fluid
limit Φ(t) of X̂(N)(t) can be used to define the System Size Expansion or
Higher Order Approximation t̃(N)

R of the hitting-time t(N)
R given by

t̃
(N)
R = tR −

1√
N

∇ρ(Φ(tR)) · Z∗(tR)

∇ρ(Φ(tR)) · F(Φ(tR))
. (4.7)

While in (4.5) the CLA guarantees that Z(t) is a Gaussian process
(EK05), in (4.7) there is no limit result that characterises the nature of
the distribution of the higher-order approximation Z∗(t) (and, thus, of
the stochastic variable t̃(N)

R defined in (4.7)). To tackle this problem and
construct a plausible probability density function for t̃(N)

R , we leverage
the same moment reconstruction technique based on the maximum entropy
principle of Section 2.4.4. Hence, to improve the estimation of the hitting
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time tR given by (4.5), we consider the first and second moments of t̃(N)
R ,

which are given by

E
[
t̃
(N)
R

]
= tR −

1√
N

∇ρ(Φ(tR)) ·E∗(tR)

∇ρ(Φ(tR)) · F(Φ(tR))
(4.8)

and

C
[
t̃
(N)
R

]
= tR −

1√
N

∇ρ(Φ(tR)) · diag(C∗(tR))

∇ρ(Φ(tR)) · F(Φ(tR))
. (4.9)

Then, in this case, the maximum entropy principle states that the best
approximation (in terms of the Shannon entropy) for a one-dimensional
probability distribution given its first and second moments, µ and σ2

respectively, is the Gaussian distribution N (µ, σ2). Hence, we conclude
that t̃(N)

R ∼ N (µ∗hit, σ
2∗
hit), where µ∗hit = E[t̃

(N)
R ] and σ2∗

hit = C[t̃
(N)
R ] are

the mean (4.8) and the variance (4.9), respectively.
In conclusion, if we consider the higher-order approximation t̃(N)

R of
the hitting time t(N)

R defined in (4.7), the algorithm of our model check-
ing procedure keeps the form described in Section 4.4.2, substituting the
occurrences of the mean E(t) and covariance C(t) of the Central Limit
Approximation with the mean E∗(t) and covariance C∗(t) of the higher-
order approximation given by (2.11) and (2.10).

Remark 4.1 Since by definition C(t) = C∗(t), in practice the higher-order ap-
proximation (4.7) improves the estimation given by the Central Limit Approx-
imation (4.5) by subtracting an N -dependent correction term from its mean,
which was actually equal to the Fluid estimation tR (indeed, by integration of
(2.7), we have that E(t) ≡ 0).

4.5 Expertimental Results

In the following, we describe the experimental results obtained on the
peer-to-peer software update process introduced in Section 4.2 where we
set λonO = λoffO = λoffT = λonU = λoffU = 0.4, λoutO = 0.9, λextO =

0.008, λexp
U

= 0.001 and λupdate = 1.
First, we considered reachability properties characterised by linear

target functions. In particular, we chose ρ(X̂) = 0.95− X̂oldON − X̂upON ,
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Figure 11: Results of the experimental analysis of the running example with
ρ(X̂) = 0.95 − X̂oldON − X̂upON and x̂0 = (0.9, 0, 0, 0.1, 0). Top: Compar-
ison of reachability probabilities obtained by Central Limit Approximation
(CLA) and Gillespie’s statistical algorithm (SSA) N = 20 and N = 200. Bot-
tom: Comparison of reachability probabilities obtained by CLA, SSA and
the System Size Expansion of Section 4.4.3 (HOA) for N = 100.
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which is used to check whenever the number of updated nodes reaches
95% of the network size (see Example 4.1). Figure 11 shows the reach-
ability probabilities P(N)

R (T ) = P{t(N)
R ≤ T} for three population sizes:

N = 20, 100, 200. On the left of Figure 11, the Gaussian estimation (4.5)
obtained by the Central Limit Approximation (CLA) is compared with
a statistical estimation (the Gillespie’s Stochastic Simulation Algorithm
(SSA)) computed over 10000 simulation runs. As expected the accuracy
of the estimation increases with N and is already very good for N = 200.
On the right of Figure 11, for the case N = 100, we show also the Sys-
tem Size Expansion defined in Section 4.4.3, which corrects the mean ob-
tained by the CLA, improving the quality of the approximation. In Table
3 Top, we report the maximum and mean absolute errors obtained by
the CLA and the higher-order approximation. Again as expected, the re-
sults improve with N and the quality is already quite good for N = 100.
Moreover, when N = 100 and N = 200, the higher-order approximation
reduces the errors of more than 50%. In Table 3 Bottom, we show also the
gain in terms of computational cost achieved by the CLA and the Higher
Order Approximation. Indeed, the approximation methods illustrated in
this chapter are up to 16 times faster than the statistical estimate even for
small population sizes N .

In the second set of experiments, instead, we considered reachability
properties identified by non-linear target functions. We chose to verify the
efficiency of the communication across the network by checking when-
ever the throughput XoldON ∗XupON gets below a certain N -dependent
threshold. In particular, we set ρ(X̂) = X̂oldON ∗ X̂upON − 0.006. In
this case, the experimental results showed that, to reach a good level
of accuracy in the approximation, much larger population sizes have to
be considered (probably due to the fact that the error in the estimation
of gets amplified by the product X̂oldON ∗ X̂upON , hence larger N are
needed for the method to converge). Indeed, Figure 12 compares the re-
sults obtained by the CLA, the SSA and the higher-order approximation
for two population sizes: N = 1000 and N = 10000. When N = 1000,
the CLA performs poorly in estimating the reachability probability and
the quality of the approximation slightly improves when we compute
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N max(erCLA) E[erCLA] max(erHOA) E[erHOA]
20 0.1453 0.0443 0.0908 0.0313

100 0.0931 0.0128 0.0415 0.0066
200 0.0623 0.0063 0.0171 0.0023

N costSSA costCLA costHOA
20 6.1828 1.0017 0.8678
100 10.9279 1.0017 0.8678
200 16.6240 1.0017 0.8678

Table 3: Top: Maximum and mean absolute error on the reachabil-
ity probability estimations obtained by the Central Limit Approximation
(max(erCLA), E[erCLA]) and the System Size Expansion of Section 4.4.3
(max(erHOA), E[erHOA]) in the experiments of Figure 11. Bottom: Av-
erage computational costs in Seconds of the Gillespie Simulation (costSSA),
the Central Limit Approximation (costCLA) and the System Size Expansion
(costHOA) in the case of the Experiment of Figure 11.

the System Size Expansion, which however still fails to capture the slope
of the cumulative distribution function obtained by the SSA, due to an
inaccuracy in the prediction of the variance. Only when we consider
population sizes of the order of 10000, the method starts to converge and
the higher-order approximation is finally able to efficiently predict the
(estimated) true reachability probability. Including higher-order terms
in the method of Section 4.4.3 may improve this scenario, too.

4.6 Discussion

In this chapter, we have presented a model checking procedure for global
reachability properties of Markov Population Models based on stochas-
tic approximations of the system behaviour. In particular, we exploited
the Central Limit Approximation (CLA) and the System Size Expansion
(IOS) as in Chapter 3, but for a different class of requirements: the global
reachability properties. Indeed, in Chapter 3, we considered queries
based on counting how many agents satisfy a local specification, obtain-
ing a reachability problem in which the target region R is guaranteed
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Figure 12: Results of the experimental analysis of the running example with
ρ(X̂) = X̂oldON ∗ X̂upON − 0.006 and x̂0 = (0, 0.9, 0, 0, 0.1). Comparison of
reachability probabilities obtained by Central Limit Approximation (CLA),
Gillespie’s simulation algorithm (SSA) and the higher-order approximation
of Section 4.4.3 (HOA) for N = 1000 (top) and N = 10000 (bottom).
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to be absorbing. Here, instead, we consider arbitrary regions R, defined
by differentiable functions on collective variables, which cannot be made
absorbing in a consistent way with the CLA or the IOS. Hence, we relied
on a different mathematical machinery, based on a Gaussian approxi-
mation of the time instant in which the trajectory of the population mo-
del enters R. Moreover, we improved the accuracy of the estimation
considering the IOS as an higher-order approximation of the (first two)
moments of the reachability probability distribution. The method was
experimentally validated on a peer-to-peer software update process.

The main limitation of our methodology is that it requires the fluid
limit trajectory to enter the target regionR associated with the reachabil-
ity constraint. And even when this happens, the quality of our approxi-
mation is correlated with the unimodality of the hitting time distribution:
if the true distribution is multimodal, then the accuracy of our method
will be hampered (BGH12). This can happen if the fluid trajectory passes
close to the boundary of R without crossing it. We are currently investi-
gating possible ways of overcoming these limitations.

Other directions for future work are the release of an implementa-
tion, the investigation and characterisation of the effect of higher-order
approximations on the estimate of the reachability probability, and the
application of the framework on larger case studies.
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Chapter 5

Mean-Field Approximation
for Timed Properties

5.1 Overview

In this chapter, we extend (BH15) to more complex time-bounded properties
specified by Deterministic Timed Automata endowed with a single clock
(AD94; BK08; DHS09). As in (BH15; HBC13; BL13a; CHKM11a), we
combine the agent and the DTA specification with a product construc-
tion, obtaining a Time-Inhomogeneous Markov Renewal Process (Cin13). We
then exploit results (BH12a; Hay12), defining the Fluid Approximation
of this type of models as the solution of a system of Delay Differential
Equations (DDE) (DN08). Other works dealing with the verification of
DTA properties are (Fu13; BCH+11; CDKM13; CHKM11b).

We introduce a new fast and efficient Fluid Model Checking proce-
dure to accurately approximate the probability that a single agent satis-
fies a single-clock DTA specification up to time T . Similarly to (BH15),
the technique is based of the Fast Simulation Theorem, and couples the
Fluid Approximation of the collective system with a set of Delay Differ-
ential Equations for the transient probability of the Time-Inhomogeneous
Markov Renewal Process obtained by the product construction between
the single agent and the DTA specification.
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In the chapter, we discuss the theoretical aspects of our approach, prov-
ing the convergence of the estimated probability to the true one in the limit
of an infinite population. We also show the procedure at work on a run-
ning example of a simple epidemic process, emphasising the quality of
the approximation and the gain in terms of computational time. Finally,
by exploiting the construction of (BL13a; Hay12), we also show how to
define a set of DDEs approximating the mean number of agents satisfy-
ing a single-clock DTA specification up to time T .

The chapter is organized as follows: In Section 5.2, we introduce the
main example, recalling also the modelling notation. The DTA specifica-
tion for the timed properties is discussed in Section 5.3. In Section 5.4,
we present our FMC procedure, defining the DDEs for the probability
that the single agent satisfies the timed property. We also show how to
adapt our verification technique to compute the mean number of agents
that meet the DTA requirement. In Section 5.5, we discuss the quality of
the approximation on the epidemic example. Finally, in Section 5.6, we
discuss the results of the chapter and possible extensions.

The content of this chapter was published in (BL15).

5.2 Running Example

The running example that we consider is a simple SIS model, describing
the spreading of a disease inside a population. All agents belong to the
same Agent Class A, depicted in Figure 13, and can be either susceptible
(S) or infected (I). When they are susceptible, they can be infected (inf ),
and when they are infected, they can either pass the infection (pass) or
recover (rec). Hence, the state X(N)(t) of the Markov Population Model
is

X(N)(t) = (X
(N)
S (t), X

(N)
I (t)),

and we define 2 global transitions:

τr = ({I rec−−→ S}, f (N)
r )

and
τi = ({S inf−−→ I, I

pass−−−→ I}, f (N)
i ).
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IS q0 q1 q2

inf

rec pass
rec

c ≥ 0, {c}
inf

c ≤ 5, ∅

inf , c > 5,∅

Figure 13: The agent class A (left) and property D (right) of the running
example illustrated in Section 5.2.

The former, τr, mimics the recovery of one entity inside the population,

while τi synchronises two local actions, namely S
inf−−→ I and I

pass−−−→
I , and models the transmission of the virus from an infected agent to
a susceptible one. Finally, the rate functions depend on the number of
agents involved in the transitions and follow the classical rule of mass
action (AB00):

f (N)
r (t) = krX

(N)
I (t)

and
f

(N)
i (t) =

1

N
kiX

(N)
S (t)X

(N)
I (t),

where kr, ki ∈ R≥0.

5.3 Local Timed Properties

We are interested in properties specifying how a single agent behaves in
time. In order to monitor such requirements, we assign to it a unique
personal clock, which starts at time 0 and can be reset whenever the agent
undergoes specific transitions. In this way, the properties that we con-
sider can be specified by a single-clock Deterministic Timed Automata (DTA)
(AD94; CHKM11a), which keeps track of the behaviour of the single
agent with respect to its personal clock. Moreover, since we want to
exploit the Fast Simulation Theorem 2.3, we restrict ourselves to time
bounded properties and, hence, we assign to the DTA a finite time hori-
zon T < +∞, within which the requirement must be true.
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Definition 5.1 (Timed Properties) A timed property for a single agent in
Agent Class A is specified as a single-clock DTA of the form

D = D(T ) = (T,L , c, CC, Q, q0, F,→),

where:

– T < +∞ is the finite time horizon;

– L is the label set of the Agent Class A;

– c is the personal clock;

– CC is the set of constraints on the clock c, and are thus conjunctions of
atoms of the form c < λ, c ≤ λ, c ≥ λ or c > λ for λ ∈ Q;

– Q is the (finite) set of states;

– q0 ∈ Q is the initial state;

– F ⊆ Q is the set of final (or accepting) states;

– →⊆ Q×L × CC × {∅, {c}} ×Q is the edge relation.

Moreover, the single-clock DTA D has to satisfy:

• (determinism) for each initial state q ∈ Q, label α ∈ L , clock constraint
c./ ∈ CC, and clock valuation η(c) ∈ R≥0, there exists exactly one edge
q
α,c./,r−−−−→ q′ such that η(c) |=CC c./1;

• (absorption) the final states are all absorbing.

A timed property D is assessed over the time-bounded paths (of total
duration T ) of the Agent Class A sampled from the stochastic processes
Z(N)(t) and Z(t) defined for the Fast Simulation in Section 2.4.1. The
labels of the transitions of A act as inputs for the DTA D, and the latter is
defined in such a way that it accepts a time-bounded path σ if and only
if the behaviour of the single agent encoded in σ satisfies the property
represented by D. Formally, a time-bounded path of A sampled from
Z(N)(t) (resp. Z(t)) of the form

σ = s0
α0,t0−−−→ s1

α1,t1−−−→ . . .
αn,tn−−−−→ sn+1

1The notation η(c) |=CC c./ stands for the fact that the value of the valuation η(c) of c
satisfies the clock constraint c./.
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such that
n∑
j=0

tj ≤ T,

is accepted by D if and only if there exists a path of D of the form

q0
α0−→ q(1) α1−→ q(2) α2−→ . . .

αn−−→ q(n+1)

such that
q(n+1) ∈ F.

In the path of D, q(i+1) ∈ Q denotes the (unique) state that can be reached
form q(i) ∈ Q taking the action q(i) αi,c./,r−−−−−→ q(i+1) whose clock constraint
c./ is satisfied by the clock valuation η(c) updated according to time ti.
In the following, we will denote by ΣA,D,T the set of time-bounded paths of
A accepted by D.

Example. We consider the following property for the running example:
within time T , the agent gets infected at least once during the ∆ = 5 time
units that follow a recovery. To verify this requirement, we use the DTA
D = D(T ) represented in Figure 13. If we record the actions of the single
agent on D, i.e. we synchronise A and D, when the agent recovers (rec),
D passes from state q0 to q1, resetting the personal clock c. After that, if
the agent gets infected (inf ) within 5 time units, the property is satisfied,
and D passes from state q1 to q2, which is accepting. If instead the agent
is infected (inf ) after 5 units of time, D moves back to state q0, and we
start monitoring the behaviour of the agent again. In red we highlight
the transition that resets the personal clock c in D.

5.4 Theoretical Results

Consider a single agent of class A = (S,E) in a Markov Population Mo-
del

X (N) = (A, T (N),x
(N)
0 ),

and a timed property

D = D(T ) = (T,L ,ΓS , CC, Q, q0, F,→).
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Let ΣA,D,T be the set of time-bounded paths of A accepted by D. More-
over, let Z(N)(t) and Z(t) be the two stochastic processes defined for the
Fast Simulation in Section 2.4.1. The following result holds true.

Proposition 5.1 The set ΣA,D,T of time-bounded paths of A accepted by D is
measurable for the probability measures ProbZ(N) and ProbZ defined over the
paths of Z(N)(t) and Z(t), respectively.

In this chapter, we are interested in the satisfaction probability given by

P (N)(T ) = ProbZ(N){ΣA,D,T },

that corresponds to the probability that the single agent satisfies property
D within time T in X (N). Then, the main result that we exploit in our
Fluid Model Checking procedure is that, when the population is large
enough (i.e N is large enough), P (N)(T ) can be accurately approximated
by

P (T ) = ProbZ{ΣA,D,T },

which is computed over the ICTMC Z(t), whose rates are defined in
terms of the Fluid Approximation Φ(t) of X (N). The correctness of the
approximation relies on the Fast Simulation Theorem and is guaranteed
by the following result.

Theorem 5.1 For any T < +∞, it holds true that

lim
N→∞

P (N)(T ) = P (T ).

Moreover, to compute P (T ), we define a suitable product construc-
tion AD = A⊗D, whose state is described by a Time-Inhomogeneous Markov
Renewal Process (IMRP) (Cin13) that we denote by ZAD(t). In the rest of
this section, we define AD and ZAD(t), and we show how to compute the
satisfaction probability P (T ) in terms of the transient probability P (T ) of
ZAD(t).

The Product AD

We now introduce the product AD between A and D, whose state is de-
scribed by a Time-Inhomogeneous Markov Renewal Process (IMRP) ZAD(t)

that has rates computed over the Fluid Approximation Φ(t) of X (N).
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A Markov Renewal Process (MRP) (Cin13) is a jump-process, where
the sojourn times in the states can have a general probability distribu-
tion. In particular, in the MRP ZAD(t), we allow both exponentially and
deterministically-timed transitions, and in the following, we refer to them
as the Markovian and deterministic transitions, respectively. Since the tran-
sition rates of ZAD(t) are time-dependent, ZAD(t) is indeed a Time Inhomo-
geneous MRP.

The product AD has the form

AD = (A, SD, {M, E}, s0,D, FD),

and to define it let
δ1 < . . . < δk

be the (ordered) constants that appear in the clock constraints of D, and
extend the sequence with δ0 = 0 and δk+1 = T . The state space SD of AD is
given by {1, . . . , k + 1} × S ×Q. The first element of SD identifies a time
region of the clock c, and we refer to

SDi = {(i, s, q) | s ∈ S, q ∈ Q}

as the i-th Time Region of SD. The rest of AD is going to be defined in such
a way that the agent is in SDi if and only if the time of the personal clock
c is between δi−1 and δi, i.e. c satisfies

δi−1 ≤ η(c) ≤ δi,

where η is the valuation of c.
The set M of Markovian transitions of the product AD is the smallest

relation such that

∀ i ∈ 1, . . . , k + 1,
s
α−→ s′ ∈ E ∧ q

α,c./,∅−−−−−→ q′ ∈→ ∧ [δi−1, δi] |= c./

(i, s, q)
α−→ (i, s′, q′) ∈M

,

(5.1)

∀ i ∈ 1, . . . , k + 1,
s
α−→ s′ ∈ E ∧ q

α,c./,{c}−−−−−−→ q′ ∈→ ∧ [δi−1, δi] |= c./

(i, s, q)
α−→ (1, s′, q′) ∈M

.

(5.2)
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Intuitively, rule (5.1) synchronises the local transitions

s
α−→ s′ ∈ E

of the Agent Class A = (S,E) with the transition

q
α,c./,∅−−−−−→ q′ ∈→

of property D that has the same label α, obtaining a local transition of the
form

(i, s, q)
α−→ (i, s′, q′) ∈M

in AD for each time region iwhose time interval [δi−1, δi] ⊆ [0, T ] satisfies
the clock constraint c./, i.e. such that ∀t ∈ [δi−1, δi], t |= c./.

Rule (5.2), instead, defines the reset transitions of the form

(i, s, q)
α−→ (1, s′, q′) ∈M,

that reset the personal clock c either within the 1st Time Region (when i =

1), or by bringing the agent back to the 1st Time Region. In the following,
we denote byR ⊂M the set of the reset transitions.

To describe the deterministic transitions of AD, instead, we define a
set E of clock events. Each clock event has the form

e = (Ae,∆, pe),

where

– Ae ⊂ SDi is the active set,

– ∆ is the duration,

– pe : Ae × SD −→ [0, 1] is the probability distribution.

If the agent enters Ae, that is the sets of states in which e can be active,
a countdown starts from ∆. When this elapses, ei is deactivated and the
agent is immediately moved to a new state sampled from the distribution

pe((i, s, q), ·) : SD −→ [0, 1],

where (i, s, q) ∈ Ae is the state in which the agent is when the countdown
hits 0. Moreover, ei is deactivated also when the agent takes a reset tran-
sition. In AD, we define:
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• one clock event ei ∈ E for each time region SDi, i = 2, . . . , k;

• ` + 1 clock events e0
1, e

1
1, . . . , e

`
1 ∈ E for the 1st Time Region, where

` is the number of reset events (1, s, q)
α−→ (1, s′, q′) ∈ R defined by

(5.2) with i = 1.

For i > 1, we haveAi = SDi, ∆i = δi− δi−1, and the probability distribu-
tion given by

pi((i, s, q), (i
′, s′, q′)) =

{
1 if i′ = i+ 1, s′ = s, q′ = q,

0 otherwise.
(5.3)

By definition, each clock event ei with i > 1 connects each state (i, s, q) ∈
Ai with (i + 1, s, q) ∈ SDi+1, hence, when the duration ∆i of ei elapses,
the clock event moves the agent from its state to the equivalent one in the
next time region. When i = 1, instead, the duration and the probability
distribution of each clock event ej1, j = 1, . . . , `, are defined in the same
way as before (i.e. ∆j

1 = δ1 − δ0 = δ1, and pj1 is given by (5.3)), but the
activation sets are now subsets of SD1

. Indeed, since each reset transition

(1, s, q)
αj−→ (1, s′, q′) ∈ R

initiates the clock, for each of them, we define a clock event ej1, whose
activation setAji is the set of states in SD1 that can be reached by the agent
after it has taken the reset transition (1, s, q)

αj−→ (1, s′, q′). Furthermore,
we have to define an extra clock event e0

1, withA0
1 = SD1

, ∆0
1 = δ1, and p0

1

given by (5.3), that is the only clock event initiated at time t = 0 (and not
by the agent entering A0

1). Indeed, we require for the initial state s0,D of
AD to be one of the states of the form (1, s, q0), where s ∈ S and q0 is the
initial state of D (hence, s0,D belongs to A0

1). Finally, since the probability
distributions pj1, ∀j, are all defined as in (5.3), also the clock events of the
1st Time Region move the agent from a state to the equivalent one in the
next time region (the 2nd), when the countdown from ∆j

1 = δ1 elapses.
In the following, we denote by

(i, s, q) 99Ke (i+ 1, s, q)
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the deterministic transition from (i, s, q) ∈ SDi to (i + 1, s, q) ∈ SDi+1

encoded by e ∈ E , and by

νe,s,q = 1(i+1,s,q) − 1(i,s,q)

its update vector. The last component of AD that we define is the set of
final states FD, which is given by

FD = {(i, s, q) ∈ SD | q ∈ F}.

Example. Figure 14 represents the product AD between the Agent Class
A and the property D of the running example described in Section 5.2 and
depicted in Figure 13. The state (1, I, q1) that cannot be reached by the
single agent is omitted. The black transitions are the Markovian transi-
tions without reset; the red transitions are the Markovian transitions that
reset the clock; finally, we define 2 clock events, e0

1 and e1
1, with dura-

tion ∆ = 5 for the 1st Time Region, and the dashed green (resp. blue)
transitions are the deterministic transitions encoded by e0

1 (resp. e1
1). In

blue, we also highlight the states that belong to the activation set Ae11
(while Ae01 is the whole 1st Time Region). Intuitively, the agent can be
found in one of the states belonging to the 1st Time Region whenever
its personal clock c is between 0 and 5, i.e. less that 5 time units have
passed since t = 0 or since a recovery rec. In a similar way, the agent
is in the 2nd Time Region when the valuation of c is above 5. More-
over, when the the duration of the clock events elapses (i.e. the count-
down from 5 hits 0), the agent is moved from the 1st Time Region to
the 2nd Time Region by the deterministic green and blue transitions, that
indeed have duration ∆ = 5 and are initiated at t = 0 or by the reset
actions rec, respectively. At the end, the agent is in one of the final states
((1, S, q2), (1, I, q2), (2, S, q2) or (2, I, q2)) at time T , if it meets property
D within time T , i.e. within T , the agent has been infected during the 5
time units that follow a recovery. Hence, to verify D, we will compute
the probability of being in one of the final states of AD at time T .
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1st Time Region
0 ≤ c ≤ 5

2nd Time Region
c ≥ 5

(1, S, q0)

(1, I, q0)

(2, S, q0)

(2, I, q0)

(1, S, q1) (1, S, q2)

(1, I, q2)

(2, S, q1)

(2, I, q1)

(2, S, q2)

(2, I, q2)

inf
rec

inf

inf

rec

inf rec

inf rec

inf rec

Figure 14: The Agent Class AD associated with the DTA D of the running
example.

The IMRP ZAD(t) and the Satisfaction Probability P (T )

Now we show how to formally define the IMRP ZAD(t) that describes
the state of the product AD in exploiting the Fluid Approximation and
the Fast Simulation Theorem. In particular, we derive the Delay Differen-
tial Equations (DDE) (Cin13) for the transient probability P (t) of ZAD(t), in
terms of which we compute the satisfaction probability P (T ).

Let Φ(t) be the Fluid Approximation of the Markov Population Mo-
del X (N). To define the transient probability P (t) of ZAD(t), we exploit
the fact that, in the case of an IMRP, we have (cf. (Cin13))

dP

dt
(t) = M (Φ(t))P (t) +D (Φ(t),P (t)) .

In this equation, M(Φ(t)) is the generator matrix for the Markovian tran-
sitions, and D(Φ(t),P (t)) accounts for the deterministic events. The
elements of M(Φ(t)) are computed following the same procedure that
was described in Section 2.4.1, where the multiplicity of each transition
(i, s, q)

α−→ (i, s′, q′) ∈M in AD is always equal to 1 (one single agent) and
the Lipschitz limit fα(Φ(t)) of α is that of the rate of the transition s α−→ s′
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in X (N) from which α was derived (by rules (5.1) or (5.2)).
To define the components of D(Φ(t),P (t)), instead, consider any

clock event e = (Ai,∆i, pi) ∈ E , except e0
1 (whose contribution will be

computed later on2). Choose one of the deterministic transitions

(i, s, q) 99Kei (i+ 1, s, q) (5.4)

encoded by ei. The agent takes this transition at time t when:

1. it entered Ai ⊆ SDi at time t−∆i (initiating its personal clock),

2. it is in state (i, s, q) ∈ Ai at time t (when the duration of ei elapses)

Hence, to compute the term that corresponds to transition (5.4) in the
deterministic termD(Φ(t),P (t)), we need to:

1. record the flux of probability that entered Ai at time t−∆i,

2. multiply the flux of Step (1) by the probability that the agent reaches
(i, s, q) ∈ Ai at time t, conditional on the state at which it entered
Ai at t−∆i.

To compute the probability of Step (2), we need to keep track of the
dynamics of the agent while the clock event ei is active. For this purpose,
let Āi be the activation set Ai of ei extended to contain an extra state
sout = (i, sout, qout). Moreover, define M̄ to be the new set of Markovian
transitions obtained fromM∈ AD in the following way:

• make the reset transitions that start inAi finish in sout, i.e. for every

(i, s, q)
α−→ (i′, s′, q′) ∈ R ⊂M,

we define a transition

(i, s, q)
α−→ sout ∈ M̄

• make sout absorbing3.

2If e is one of the events of the 1st Time Region, i.e. e = ej1, for some j = 1, . . . , `, in
this section, we drop the index j to ease the notation, i.e. we write ej1 = e1 = (A1,∆1, p1).

3The absorbing state sout is needed for the probability Yi(t) of step (2) to be well de-
fined. Indeed, the agent can deactivate ei by taking a reset transition.
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Let Gi(Φ(t)) ∈Matr(|Āi|×|Āi|) be the time-dependent matrix s.t.

(Gi(Φ(t)))(i,s,q),(i,s′,q′) =
∑

(i,s,q)
α−→(i,s′,q′)∈M̄

[
1

Φs(t)
fα(Φ(t))

]
, (5.5)

where again the Lipschitz limit fα(t) of each α ∈ M̄ is that of the tran-
sition s α−→ s′ in X (N) from which its copy α ∈ M was derived (by (5.1)
and (5.2)). Moreover, let the diagonal elements of Gi(Φ(t)) to be defined
so that the rows sum up to zero. Then, we introduce the probability matrix
Yi(t), which is computed in terms of the generator Gi(Φ(t)) according to
the following ODEs (see also (BH15)):{

dYi
dt (t) = Yi(t)Gi(Φ(t))−G(Φ(t−∆i))Yi(t), ∆i ≤ t ≤ T,
dYi
dt (t) = Yi(t)Gi(Φ(t)), 0 ≤ t ≤ ∆i,

(5.6)

with Yi(0) = I. By definition, (Yi(t))(i,s′,q′),(i,s,q) is the Fluid Approxi-
mation of the probability of Step (2), i.e. the probability that the agent,
which has enteredAi in state (i, s′, q′) at time t−∆i, moves (in a Marko-
vian way) withinAi for ∆i units of time, and reaches (i, s, q) ∈ Ai at time
t (exactly when ei elapses).

In terms of the probability matrix Yi(t), we can now define the com-
ponent of D(Φ(t),P (t)) that corresponds to the deterministic transition
(i, s, q) 99Kei (i + 1, s, q) of the clock event ei ∈ E . This component is
the element in position ((i, s, q), (i + 1, s, q)) in D(Φ(t),P (t)), we call it
Dei,s,q(Φ(t),P (t)), and is given by

Dei,s,q(Φ(t),P (t)) =

=
∑

(i,s̄,q̄)∈Ai

(Yi(t))(i,s̄,q̄),(i,s,q)

1{i>1}Dei−1,s̄,q̄(Φ(t−∆i),P (t−∆i)) +

+1{i=1}
∑

(i′,s′,q′)
α−→(1,s̄,q̄)∈R

1

Φs′(t)
fα(Φ(t−∆1))(P (t−∆1))(i′,s′,q′)

 ,
(5.7)
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where (P (t − ∆1))(i′,s′,q′) is the component in position (i′, s′, q′) ∈ SDi′

in the vector of the transient probability P (t−∆1) of ZAD at time t−∆1.
In (5.7), for each state (i, s̄, q̄) in the activation set Ai, the quantity inside
the squared brackets is the probability flux that entered (i, s̄, q̄) at time
t−∆i. In particular, when i > 1, Dei−1,s̄,q̄(Φ(t−∆i),P (t−∆i)) accounts
for the termination of clock event ei−1 (i.e. the deterministic transition
(i − 1, s̄, q̄) 99Kei (i, s̄, q̄) fired at time t − ∆i). When we consider the
1st Time Region, i.e. i = 1, instead, each term in the sum over the reset
transitions is the flux of probability entering (1, s̄, q̄) at time t−∆1 due to a
clock reset. Finally, (Yi(t))(i,s̄,q̄),(i,s,q) is again the probability of reaching
(i, s, q) ∈ Ai from (i, s̄, q̄) ∈ Ai in ∆i units of time.

All the other off-diagonal elements ofD(Φ(t),P (t)) can be computed
in a similar way, while the diagonal ones are defined so that the rows
sum up to zero. Moreover, since at the endD(Φ(t),P (t)) depends on the
state of the system at times t−∆1, . . . , t−∆k (through the probabilities
Yi(t), i = 1, . . . , k), we write D(Φ(t)) = D(Φ,P ,∆1, . . . ,∆k, t). Then,
we define the transient probability P (t) of the IMRP ZAD(t) as the solution
of the following system of DDEs:

P (t) =

∫ t

0

M(s)P (t)ds+

∫ t

0

D(Φ,P ,∆1, . . . ,∆k, s)ds+

+ 1t≥∆1

∑
(s,q)∈S×Q

ye01νe01,s,q. (5.8)

In (5.8), the third term is a deterministic jump in the value of P (t) at
time t = ∆1, and represents the contribution of the clock event e0

1. In
such term, the vectors νe01,s,q are the update vectors of the determinis-
tic transitions encoded by e1

0 (hence, the sum is computed over all the
transitions), and the probability ye01 is the value at time t = ∆1 of the
component in position (s0,D, (1, s, q)) (where s0,D is the initial state of AD)
in the matrix Ye01(t) defined by:

dYe01
dt

(t) = Ye01(t)G1(Φ(t)), 0 ≤ t ≤ ∆1,
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with G1(Φ(t)) defined as in (5.5), and Ye01(0) = I . Hence,

ye01=(Ye01(∆1))s0,D,(1,s,q)

is the probability that, starting from s0,D, the agents reaches (1, s, q) ∈ SD1

at time t = ∆1 (exactly when the deterministic event

(1, s, q) 99Ke01 (2, s, q)

fires).
Given the product AD, the IMRP ZAD(t), and its transient probability

P (t), the following result holds true.

Proposition 5.2 There is a one-to-one correspondence between the set ΣA,D,T
of of A of duration T accepted by the property D and the set AccPath(AD, T )
of accepted paths of duration T of AD. Hence,

P (T ) = ProbZ{ΣA,D,T } = ProbZAD
{AccPath(AD, T )} = PFD(T ),

whereProbZAD
is the probability measure defined by the IMRPZAD , andPFD(T )

is the sum of the components of P (T ) corresponding to the final states FD of
AD.

In other words, according to Proposition 5.2, when the population of
X (N) is large enough, PFD(T ) is an accurate approximation of the prob-
ability that a (random) single agent in X (N) satisfies property D within
time T .

Example. For the product AD in Figure 14, the non-zero off-diagonal
entries of the generator matrixGe11

(Φ(t)) of the clock event e1
1 are

G(S,q1)(I,q2)(t) = kiΦI(t);

G(S,q2)(I,q2)(t) = kiΦI(t);

and
G(I,q2)(S,q2)(t) = kr.

In terms of Ge11
(Φ(t)), we can define Ye11(t), as in (5.6), that is then used

in the DDEs (5.8) for the probabilityP (t). In this latter set of 9 DDEs (one
for each state of AD), we have:
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P(1,S,q1)(t) =

∫ t

0

krP(1,S,q1)(s)ds −
∫ t

0

kiΦI(s)P(1,S,q1)(s)ds +

−
∫ t

0

krY(1,S,q1),(1,S,q1)(s− 5, s)P(1,S,q1)(s)ds.

Remark 5.1 The presence of only one clock in D enables us to define AD in
such a way that ZAD(t) is an IMRP. This cannot be done when we consider
multiple clocks in D. Indeed, in the latter case, the definition of the stochastic
process which describes the state of the product AD is much more complicated,
since, when a reset event occurs, we still need to keep track of the valuations of
all the other clocks in the model (hence, the dynamics between the time regions
of AD is not as simple as in the case of one single clock). In the future, we
plan to investigate possible extensions of our model checking procedure to timed
properties with multiple clocks, also taking into account the results of (Fu13)
and (BCH+11).

5.4.1 Mean Behaviour of Markov Population Models

The Fluid Model Checking procedure described in the previous sections
can be modified to compute the mean number of agents that satisfy the
timed property D. This can be done by assigning a personal clock to each
agent, and monitoring all of them using as Agent Class the product AD

defined in Section 5.4. In terms of AD, we can build the population model
XD, with AD as the only Agent Class, and the sum PFD(T ) of the compo-
nents corresponding to the final states of AD in the Fluid Approximation
Φ(t) of XD computed at t = T is indeed the mean number of agents sat-
isfying property D within time T . The construction of XD is not difficult:
it follows the procedure described in Chapter 3, where a little extra care
has to be taken just in the definition of the global transitions of XD. In-
deed, if we build for instance the Markov Population Model XD of the
running example, we need to consider that the infected individual that
passes the virus to an agent in state (1, S, q0) can be now in one of five
infected states:

(1, I, q0), (1, I, q2), (2, I, q0), (2, I, q1), (2, I, q2). (5.9)
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For this reason, we have to define five Markovian global transition in
XD, each of which moves an agent from (1, S, q0) to (1, I, q0) at a rate
that is influenced by the number of individuals that are in the infected
states (5.9) of AD. Hence, the Markovian global transitions depend on
the counting variables

X(1,I,q0)(t), X(1,I,q2)(t), X(2,I,q0)(t), X(2,I,q1)(t), X(2,I,q2)(t).

The same reasoning has to be followed for the definition of the infec-
tions of the agents in states

(1, S, q1), (1, S, q2), (2, S, q0), (2, S, q1), (2, S, q2).

At the end, as for the single agent, due to the deterministic events, the
Fluid Approximation Φ(t) of XD is the solution of a system of DDEs sim-
ilar to (5.8). The definition of these approximating equations for a pop-
ulation model with exponential and deterministic transitions is not new
(Hay12), but, even if the results are promising (see Section 5.5), to our
knowledge, nobody has yet proven the convergence of the estimation in
the limit N → +∞. We save the investigation of this result for future
work.

5.5 Experimental Results

To validate the procedures of Section 5.4, we performed a set of experi-
ments on the running example, where we fixed: ki = 1.2, kr = 1, ∆ = 5,
and an initial state of the population model with a susceptible-infected
ratio of 9:1. As in Figure 14, we let the single agent start in the suscep-
tible state, and we considered three different values of the population
size: N = 250, 500, 1000. For each N , we compared our procedures with
a statistical estimate from 10000 runs, obtained by a dedicated Java im-
plementation of a Discrete Event Simulator (DES).

The errors and the execution times obtained by our FMC procedure
(top) and the Fluid Approximation of the mean behaviour (bottom) are
reported in Table 4. Regarding the errors, we would like to remark that
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Fluid Model Checking
N MeanRelErr MaxRelErr RelErr(T)
250 0.0927 6.4512 0.1043
500 0.0204 1.7191 0.0048
1000 0.0118 0.7846 0.0003

N TimeDES TimeFMC Speedup
250 58.2960 0.4236 137.6204
500 44.0631 0.4236 104.0205

1000 170.9154 0.4236 403.4830

Fluid Approximation of the mean behaviour
N MeanRelErr MaxRelErr RelErr(T)
250 0.1127 0.2316 0.0921
500 0.0289 0.3177 0.0289
1000 0.0117 0.2216 0.0117

N TimeDES TimeFluid Speedup
250 105.5647 0.4294 245.8423
500 415.0635 0.4294 966.6127

1000 1547.0340 0.4294 3602.7806

Table 4: Mean Relative Error (MeanRelErr), Maximum Relative Error
(MaxRelErr), and Relative Error at final time (RelErr(T)) of the FMC (top)
and the Fluid Approximation of the mean behaviour (bottom) for differ-
ent values of N . We also enlist the execution times (in seconds) of the
DES (TimeDES) and the approximations (TimeFMC and TimeFluid), and
the speedups (TimeDES divided by the other times).

the Relative Errors (RE) of both the FMC and the Fluid Approximation
reach their maximum in the very first instants of time, when the true
satisfaction probability (i.e. the denominator of the REs) is indeed really
small, but then they decay really fast as the values of PFD(t) increase (this
can be easily deduced from the values of the mean REs and the REs at
final time). As expected, the accuracy of the approximations increases
with the population size, and is already reasonably good for N = 500.
Moreover, the resolution of the DDEs is computationally independent
of N , and also much faster (approximatively 3 orders of magnitude in
the case of the Fluid for N = 1000) than the simulation based method.
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Figure 15: The satisfaction probability P (T ) = PFD(T ) obtained by the
Fluid Model Checking (top) and the Fluid Approximation of the mean be-
haviour (bottom) in the caseN = 1000. The results are compared with those
obtained by the DES.
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Moreover, notice also that the computational costs are comparable for
the FMC and the Fluid Approximation, while the times of the DES are
much higher in the second case. This is due to the fact that in the FMC,
we have to keep track of the behaviour of just one single agent, while
for the mean behaviour all the single entities in the population have to
be tagged and thus the size of the model (and the computational cost of
the DES) is much bigger. Figure 15 shows the results of the FMC and the
Fluid Approximation in the case N=1000.

5.6 Discussion

We defined a fast and efficient Fluid Model Checking ((BH12b)) pro-
cedure that accurately estimates the probability that a single agent inside
a large collective system satisfies a time-bounded property specified by
a single-clock DTA. The method requires the integration of a system of
DDEs for the transient probability of an IMRP, and the exactness of the
estimation is guaranteed in the limit of an infinite population.

During the experimental analysis, we realised that, on certain models
and properties, the DDEs (5.6) can be stiff, and their numerical integra-
tion in MATLAB is unstable (see also (BH15)). This is an issue that should
be addressed by considering alternative integration methods (GH01),
investigating also numerical techniques for MRP with time-dependent
rates(ZFGH00).

The procedure of this chapter can be extended and improved in sev-
eral directions: proving the convergence of the Fluid Approximation of
Section 5.4.1, investigating higher-order estimates as in (BL13a; BL14),
extend the FMC procedure to validate requirements specified in the logic
CSLTA (DHS09) and DTA properties endowed with multiple clocks (pos-
sibly considering the approximation techniques defined in (Fu13) and
(BCH+11)).
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Chapter 6

Conclusions

6.1 Summary and Discussion

We have developed new, fast and reliable Stochastic Model Checking
techniques for the analysis and verification of the behaviour of collec-
tive systems. In these procedures, we have exploited the efficiency and
the accuracy of different types of Stochastic Approximations, including
Fluid Approximation, Central Limit Approximation, System Size Expan-
sion and Moment Closure combined with a distribution reconstruction
based on the Maximum Entropy Principle. These estimation techniques
turn out to be extremely useful in the validation of collective systems as
they can be used to efficiently tackle the problem of the state space explo-
sion. Indeed, the computational cost of the Stochastic Approximations
that we have considered is independent of the population size, and the
accuracy of the estimation actually increases with the number of agents
comprised in the collective system.

In this work, we have merged and extended the very few model
checking techniques that, at the beginning of this project, had already ap-
plied the Fluid Approximation and the Moment Closure to the validation
of collective systems (BH12b; HSB12; HBC13), defining new interesting
contributions in two directions: (1) we have considered numerous types
of Stochastic Approximations, better capturing the probabilistic noise
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that is intrinsic in the dynamics of mesoscopic collective systems; (2) we
have widened the type of requirements on the behaviour of a collective
system that can be validated applying Stochastic Approximations in mo-
del checking procedures. In particular, we have considered instances of
local, global and local-to-global properties, and we have validated timed-
critical properties in which the behaviour of the single individuals in the
population is monitored by a single clock that can be reset.

Moreover, we have proven the theoretical results that guarantee the
quality and correctness of our model checking procedures. In particu-
lar, we have proven the asymptotic convergence of the results and the
correctness of the estimation in the limit of an infinite population.

6.2 Perspectives

The model checking procedures that we have developed in this work can
be extended in several directions.

The main and most interesting line of research that easily arise form
the presentation of this work goes in the direction of giving a solid and
uniform theoretical structure to all the three promising model checking
procedures of this thesis. This means that we should give a uniform clas-
sification to the stochastic approximations and the properties that can be
exploited and validated in the procedures suggested in this work. In-
deed, as we have seen, higher order approximations like the System Size
Expansion (SSE) and the Methods of Moments (MM) provide promising
results in the analysis of the Local-to-Global requirements. Further ef-
fort should be put in the investigation of the applicability of MM to the
validation of global properties, and of both SSE and MM to the inves-
tigation of local requirements with clock resets. While in the first case,
we expect to obtain quite good results (since the model checking proce-
dure is based on the solution of a set of ordinary differential equations
for the hitting time), in the validation of local requirements the applica-
bility of SSE and especially of the MM to differential equations involv-
ing time delays, seems a greater and interesting challenge since, to the
authors knowledge, there are no related works in the literature at the
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moment of completion of this thesis. Moreover, the possibility of vali-
dation of properties with clock resets should be investigated for the mo-
del checking procedures that consider local-to-global and global require-
ments. Finally, also the coexistence of multiple clocks in the population
model should be studied in all three cases. As it was shown in (Fu13)
and (BCH+11), the presence of more than one clock ends up in the defi-
nition of Partial Differential Equations (PPE) for the evolution of the state
of the system. The analysis and solution of PPEs would be a challenging
and most interesting novelty for all the model checking procedures illus-
trated in this thesis.

The unification of the theoretical background of the model checking
procedures of this work will of course lead the way to a more accurate
classification of the properties that can be validated exploiting stochastic
approximation techniques. Indeed, as it was discussed along this thesis,
the properties considered in this work are indeed very simple and quite
far from the requirements of interest in the case of population models
representing real life examples of epidemics or computer networks. But,
indeed, the choice of the properties considered in this thesis was mainly
focused on obtaining a easy and readable presentation of all the aspects
of the model checking procedures, especially of the theory behind the
synchronisation between the population model and the property, and of
the differential equations to be defined and solved in the process. The
investigation of more complex and expressive requirements is left for
future (and less theoretical) works.

From a theoretical point of view, other very challenging lines of re-
search include the definition of the speed of convergences of all stochas-
tic procedures, in order for them to be theoretically comparable (in this
respect, the work of (BHLM13) would be an interesting starting point).
Also the investigation of the error bounds should be an interesting chal-
lenge (for primary results involving Fluid Approximation see (BH13)).
Moreover, the investigation of the phase space of the differential equa-
tions could help the classification of the properties that can be considered
(for example distinguishing between cyclic and acyclic automaton repre-
sentations of the requirements). Finally, in the validation of the Global
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Reachability Properties, our verification procedure relies on the hypoth-
esis that the Fluid Approximation actually enters the target region and
that the probability distribution of the hitting time is unimodal. This as-
sumption limits the number of collective models and properties that we
can validate, hence it would be (tough but) extremely interesting to find
a way of lifting this hypothesis.

Finally, form an experimental point of view, the classification of the
properties and the unification of the stochastic approximation techniques
applicable in this framework of model checking techniques will also ease
the design and implementation of a tool taking care of the automation of
the steps required by the validation procedures. In this context, we need
to extensively investigate new powerful integration methods to numer-
ically solve the differential equations defined by the stochastic approx-
imations. Indeed, as discussed in Chapter 5, the stiffness of the DDEs,
that describes the dynamics of the IMRP in the validation of timed prop-
erties with clock reset, can deeply affect the computations. In this con-
text, we found the numerical integration in MATLAB to be unstable and
alternatives solvers must be consider if we want to extend the validation
procedures to more complex and expressive models and properties.
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