
IMT School for Advanced Studies, Lucca

Lucca, Italy

Programming Abstractions for Data Sharing
in Distributed Spaces

PhD Program in Computer Science and Engineering

XXVIII Cycle

By

Marina Andrić

2017

http://www.imtlucca.it
mailto:marina.andric@imtlucca.it

The dissertation of Marina Andrić is approved.

Program Coordinator: Prof. Rocco De Nicola, IMT Institute for Ad-
vanced Studies, Lucca

Supervisor: Prof. Rocco De Nicola, IMT Institute for Advanced Studies,
Lucca

Supervisor: Prof. Alberto Lluch Lafuente, Techincal University of Den-
mark

Tutor: Prof. Rocco De Nicola, IMT Institute for Advanced Studies, Lucca

The dissertation of Marina Andrić has been reviewed by:

Prof. Christian W. Probst, Techincal University of Denmark

Prof. Francesco Tiezzi, University of Camerino

IMT School for Advanced Studies, Lucca

2017

http://www.imtlucca.it

suavis laborum est præteritorum memoria

Contents

List of Figures xi

List of Tables xiii

List of Listings xiv

Acknowledgements xvi

Vita, Publications and Presentations xvii

Abstract xx

1 Introduction 1

1.1 Context and Overview . 1

1.2 Background and Motivation 3

1.3 Contributions and Organization 8

I Preliminaries 10

2 Klaim, X10 and XTEXT 11

2.1 The Klaim Programming Language 11

2.2 The X10 Programming Language 20

2.3 Domain Specific Languages 28

2.3.1 The XTEXT Framework 29

viii

3 The Memory Consistency Guarantees 32
3.1 Overview . 32
3.2 The Memory Consistency Guarantees in

High-Level Programming Languages 34
3.2.1 Data Races in SharedX10 and RepliKlaim Programs 36

3.3 Consistency Models for Replicated Data 40

II Contributions 46

4 RepliKlaim 47
4.1 Syntax . 48
4.2 Examples . 51
4.3 Structural Operational Semantics 53
4.4 Performance Evaluation . 58
4.5 Summary and Related Work 64

5 SharedX10 67
5.1 Primitives for Data Sharing 68
5.2 Syntax . 70
5.3 Encoding . 74

5.3.1 Transformation Rules 75
5.4 Implementation . 85
5.5 Performance Evaluation . 87
5.6 Summary and Related Work 95

6 Case Studies 96
6.1 Preliminaries . 96
6.2 Maximum Graph Degree . 98

6.2.1 X10 and SharedX10 Specifications 98
6.2.2 Klaim and RepliKlaim Specifications 102

6.3 PageRank . 105
6.3.1 X10 and SharedX10 Specifications 106
6.3.2 Klaim and RepliKlaim specifications 107

6.4 Evaluation . 108
6.4.1 Performance Evaluation 109

ix

6.4.2 Programmability Evaluation 114
6.5 Summary and Related Work 114

7 Conclusions 116
7.1 Directions for Future Work 117

Appendices 119

A Additional Experimental Results 120

B SharedX10 Grammar 123

C Specifications of Case Studies 129
C.1 Case Study I: Maximum Graph Degree 129

C.1.1 Specification in X10 129
C.1.2 Specification in SharedX10 130
C.1.3 SharedX10 Specification Encoded in X10 131
C.1.4 Specification in Klaim 133
C.1.5 Specification in RepliKlaim 134
C.1.6 Update function . 135

C.2 Case Study II: PageRank . 136
C.2.1 Specification in X10 136
C.2.2 Specification in SharedX10 136
C.2.3 SharedX10 Specification Encoded in X10 137
C.2.4 Specification in Klaim 138
C.2.5 Specification in RepliKlaim 139
C.2.6 Update function . 140

References 141

x

List of Figures

1 Parallel computing cluster 3
2 Projected performance development 4
3 Programmer’s view of computation and memory 6

4 The Linda model . 12
5 Syntax of Klaim . 13
6 Operational semantics of Klaim 16
7 A network of tuple spaces in Klaim 17
8 Programmer’s view of NUMA architecture 20
9 Overview of X10 activities, places and data distribution . . 21

10 Sequential consistency . 33
11 Two programs with a data race 34
12 CPU caching . 36
13 Replicating data in RepliKlaim and SharedX10 with strong

(a) and (b) weak guarantees 38
14 Two RepliKlaim specifications 39
15 Linearizable execution . 44
16 Sequentially consistent execution 45

17 Syntax of RepliKlaim . 48
18 RepliKlaim transitions (1) 51
19 RepliKlaim transitions (2) 53
20 Structural congruence for RepliKlaim 54
21 Operational semantics of RepliKlaim [1] 55

xi

22 Operational semantics of RepliKlaim [2] 56
23 Comparing three strategies in a scenario with 3 nodes . . . 64
24 Comparing three strategies in a scenario with 9 nodes . . . 65

25 Syntax of SharedX10 primitives for declaring shared vari-
able x . 68

26 Schematic view of replica allocation 75
27 Generic example illustrating Rules 8-9 78
28 X10 Experiments: Performance comparison (1) 91
29 X10 Experiments: Performance comparison (2) 92
30 X10 Experiments: Performance comparison (3) 93
31 X10 Experiments: Performance comparison (4) 94

32 Graph representation . 97
33 Graph representation - with replicas 98
34 Performance of mgd no-replicas and mgd replicas at dif-

ferent sizes of graph (shown along x-axis) on 8 hardware
threads (1 cluster node). 111

35 Performances of pr no-replicas at different sizes of graph
(shown along x-axis) on 8, 16 and 24 hardware threads (HT).112

36 Performances of pr replicas at different sizes of graph
(shown along x-axis) on 8, 16 and 24 hardware threads (HT).113

37 X10 Experiments: Scenario with 8 places 120

xii

List of Tables

1 Tuple evaluation function 14
2 Pattern-matching predicates 15

3 SharedX10 syntax . 73
4 Function θ . 74

5 Evaluated programs . 108
6 Evaluation datasets . 110
7 Average performance speedup of pr replicas over pr no-

replicas . 113
8 Programmability comparison between X10 and SharedX10 114
9 Programmability comparison between Klaim and

RepliKlaim . 114

xiii

List of Listings

2.1 Simple graph processing . 18
2.2 Barrier synchronization . 18
2.3 Java-Klaim graph node processing 19
2.4 Java-Klaim graph node processing with a barrier 19
2.5 A distributed array creation 23
2.6 Value copying . 24
2.7 Place-shifting via GlobalRef 25
2.8 Graph processing . 26
2.9 Use of clocked finish and clocked async 27
2.10 Sample grammar . 30
3.1 Count class in Java (1) . 37
3.2 Count class in Java (2) . 37
3.3 Count class in SharedX10 39
4.1 Implementation of inw . 58
4.2 InU implementation snippet 59
4.3 OutU implementation snippet 59
4.4 Implementation of ins . 59
5.1 Example use of rvals statement 76
5.2 Compare function . 82
5.3 Token class . 82
5.4 SharedX10 program snippet 83
5.5 Transformed program snippet 84
5.6 SharedX10 grammar snippet 85
5.7 Data access function . 87

xiv

5.8 Program replicas in SharedX10 88
5.9 Program replicas in X10 . 89
5.10 Program no-replicas in SharedX10 90
5.11 Program no-replicas in X10 90
6.1 Case study I in X10 (1) . 98
6.2 Case study I in X10 (2) . 99
6.3 SharedX10 implementation (1) 100
6.4 SharedX10 implementation (2) 102
6.5 Klaim specification . 103
6.6 RepliKlaim specification . 104
6.7 X10 implementation . 106
6.8 SharedX10 implementation 106
6.9 Klaim specification . 107
6.10 RepliKlaim specification . 108
appendix/C/figures/MaxDegreeX10.x10 129
appendix/C/figures/MaxDegreeShared.sx10 130
appendix/C/figures/MaxDegreeEncoded.x10 131
appendix/C/figures/MaxDegreeKlaim.java 133
appendix/C/figures/MaxDegreeRKlaim.java 134
appendix/C/figures/update.java 135
appendix/C/figures/PageRankX10.x10 136
appendix/C/figures/PageRankShared.sx10 136
appendix/C/figures/PageRankEncoded.x10 137
appendix/C/figures/PageRankKlaim.java 138
appendix/C/figures/PageRankRKlaim.java 139
appendix/C/figures/updatePR.java 140

xv

Acknowledgements

First and foremost I would like to express my deep gratitude
to my advisors, Professor Alberto Lluch Lafuente and Pro-
fessor Rocco De Nicola, for sharing enthusiasm and insight
into the subject, as well as help and guidance throughout the
entire doctorate.

I am also grateful to the reviewers: Professor Christian W.
Probst and Professor Francesco Tiezzi for their valuable com-
ments and suggestions.

I owe a debt of gratitude to the following staff of IMT and
DTU: Leonardo, Andrea, Sebastian, Simon and Bernd for
their unfailing support and assistance in accessing computer
clusters for the experimental evaluations.

I wish to thank to my colleagues and friends for the enjoyable
working atmosphere and pleasant moments spent together. It
has indeed been a great privilege to spend three years at IMT
in a wonderful city such as Lucca.

Last but not least, a special thanks goes to my family and to
L. for their encouragement, support and understanding.

xvi

Vita

September 2, 1986 Born, Belgrade, Serbia.

2005 - 2011 Degree in Mathematics,
Average grade: 9.5 (out of 10),
Department of Computer Science,
Faculty of Mathematics,
University of Belgrade.

2011 - 2013 Designer of software systems,
Power Symbol Technology.

2013 - 2017 PhD in Computer Science,
IMT School for Advances Studies, Lucca.

2015 - 2016 Visiting Research Student during 3 months,
DTU Compute - Section for Formal Methods,
Technical University of Denmark.

xvii

Publications

1. Y. Abd Alrahman, M. Andric, A. Beggiato, A. Lluch Lafuente. Can We
Efficiently Check Concurrent Programs Under Relaxed Memory Models in
Maude? In Rewriting Logic and Its Applications - 10th International Workshop,
(WRLA), LNCS 21-41, Springer Vol. 8663, 2014.

2. M. Andric, R. De Nicola, A. Lluch Lafuente. Replica-Based High-
Performance Tuple Space Computing. In Coordination Models and Lan-
guages - 17th IFIP WG 6.1 International Conference, (COORDINATION),
LNCS 3-18, Springer Vol. 9037, 2015.

3. M. Andric, R. De Nicola, A. Lluch Lafuente. Replicating Data for Better
Performances in X10. In Semantics, Logics, and Calculi - Essays Dedicated to
Hanne Riis Nielson and Flemming Nielson on the Occasion of Their 60th Birth-
days, LNCS 236-251, Springer Vol. 9560, 2016.

xviii

Presentations

1. “Replica-Based High-Performance Tuple Space Computing”, 17th Interna-
tional Conference on Coordination Models and Languages, Inria Grenoble
Rhne-Alpes, Grenoble, France, June 2015.

2. “Replicating Data for Better Performances in X10”, 8th Swedish Workshop
on Multi-Core Computing, Technical University of Denmark, Copenhagen,
Denmark, November 2015.

xix

Abstract

The cost of moving data is becoming a dominant factor for
performance and energy efficiency in high-performance com-
puting systems. To minimize data movement, applications
have to consider data placement in order to optimize data
transfer between processing units. To address this scenario,
new compiler techniques, tools, libraries and programming
abstractions are necessary for harnessing data locality.

The goal of this thesis is to offer suitable solutions to the chal-
lenging problems of data distribution and locality in large-
scale high-performance computing. To this end, we have
developed new programming primitives for two partitioned
data space languages, namely, Klaim and X10. Abstractions
for partitions and data items are called tuple spaces and tu-
ples in Klaim, and places and objects in X10. As a result, we
designed two languages, RepliKlaim and SharedX10 which
enrich Klaim and X10 with new primitives for data sharing.

Our approach aims at allowing programmers to specify and
coordinate shared data and, specifically, to replicate shared
data items while taking into account desired consistency
properties. Programmers can exploit such flexible mecha-
nisms to adapt data distribution and locality to the desired
levels, e.g., to improve performance in terms of concurrency
and data access. We investigate issues related to replica
consistency and provide analysis of performance and pro-
grammability, including several applications from large scale
graph analytics.

xx

Chapter 1

Introduction

1.1 Context and Overview

Data locality and consistency are identified as critical issues for guar-
anteeing scalability, availability and good performances primarily in
large-scale distributed systems such as cloud systems (SKQ13; CGB+06),
and have recently gained the interest of the High-Performance Comput-
ing (HPC) community (TKD+14; UNZ+16).

Data locality in distributed systems is typically improved via replica-
tion. In early systems, the implied consistency level of replicas was strong
consistency, while with the advent of highly scalable systems, the notion
of consistency has been weakened. In fact, as captured by the CAP theo-
rem (GL02), strong consistency of replicas, partition tolerance and avail-
ability cannot be achieved at the same time. This has motivated weak
consistency models of replicated data, e.g., eventual consistency (see opti-
mistic data replication (SS05; BEH14)), in which local replicas can be modi-
fied at any time, without immediate synchronization with other replicas,
and it is only guaranteed that all replicas will eventually converge to the
same state. Weak consistency levels reduce the cost of synchronization
and machine latency, however, they are not always sufficient to appli-
cation developers. For instance, problems considered in the cloud sys-

1

tems community, such as reserving a seat on an airplane or withdrawing
money from a bank account, require stronger guarantees. To address this
challenge, the recent work in (BFLW12), inspired by (SPBZ11), proposes
linguistic support for controlling data consistency in cloud applications
and thus brings replica-awareness to the programming language level.

The concept of data locality is currently gaining a good deal of at-
tention also in the HPC domain. Indeed, with the increasing rate of
parallelism, the cost of moving data has become a dominant factor for
performance, in term of execution time and energy efficiency of HPC
systems. Moreover, the long-held programmability assumption such as
cache-coherence is no longer attainable, hence programmers, to achieve
the performance goals, are expected to manually orchestrate communi-
cations between computational entities. As a result of these develop-
ments, harnessing data locality has become a concern of fundamental
importance for compiler and hardware experts, and also for program-
ming language designers who need to come up with new models for the
coming era of HPC systems.

In our view, programmers should be equipped with programming
abstractions to carefully specify locality of shared data, in order to be able
to specify the sharing pattern, that could, e.g., take advantage of replica-
tion or rely on centralized data. In this work, we consider two levels of
replica consistency, namely, strong and weak consistency, corresponding
to the notions of linearizability and sequential consistency. Our approach
considers replica-awareness at the programming language level. It has
to be said that this is not a full novelty; for example CPU caching of
shared data in multithreaded programs has led to the possibility of data
races and, consequently, to high-level programming abstractions that can
guarantee safe access to shared data (e.g., the volatile and synchronized
constructs in Java).

In this thesis we present two languages, RepliKlaim and SharedX10,
equipped with programming abstractions for specifying locality and
consistency of shared data. They are based on Klaim (DNFP98) and
X10 (CGS+05; X1017), respectively; two languages with a partitioned data
space. Abstractions for partitions and data items are respectively called

2

Figure 1: A schematic view of a parallel computing cluster

tuple spaces and tuples in Klaim, and places and objects in X10. Our results
include a number of experiments aimed at providing some performance
related criteria for deciding whether to employ a specific sharing strat-
egy. These performance measures are accompanied by two case studies
from large-scale graph analytics to demonstrate programmability and ef-
ficiency of our approach.

1.2 Background and Motivation

Parallel and distributed computing systems are used to solve more and
more complex computational problems in HPC. Now, when more com-
puting power is needed, one does not buy a faster uniprocessor but
another processor or another thousand processors, and connects them
with a high-speed communication network into the so-called High-
Performance Computing Cluster (HPCC). This gives one whatever de-
sired number of computer cycles but poses the problem of how to use
those computer cycles effectively by dividing the workload into chunks
that can be executed simultaneously.

The emerged HPCC structure in the present time is a Non-Uniform
Cluster Computing (NUCC) system with nodes that consist of physically
linked symmetric multiprocessor (SMP) cores with non-uniform mem-
ory hierarchies, that are interconnected by horizontally scalable cluster
configurations, as shown in Figure 1. According to the current forecasts,

3

Figure 2: Projected performance development

the number of cores on cutting-edge HPCC systems will soon be of the
order of thousands, meaning that the order of parallelism continues to
increase. Figure 2 shows the projected performance development for
the top 500 supercomputers in the world growing linearly at least until
2020. The green dots represent the total performance, the orange trian-
gles represent the performance of the current No.1 supercomputer and
blue squares that of the machine on position 500 (as of November 2015).
According to the forecast, by 2020 the fastest supercomputer will exe-
cute at speed of 1 EFlop/s, while the slowest will execute at speed of 1
PFlop/s, which translate respectively to 1018 and 1015 calculations per
second.

These developments have lead to an increased cost of data move-
ments in terms of energy and computation (KS13). Several studies
suggested that asynchronous computation, with reduced communica-

4

tion, is necessary to reduce those costs for large exascale cluster sys-
tems (SDM11; WPC16). Consequently, programming models for these
systems are required to be data-centric, i.e., they need to provide pro-
gramming abstractions that describe how data are laid down and permit
to perform asynchronous computations that are aware of data location.

From the programmer’s point of view, the key question is what pro-
gramming model should be used to orchestrate concurrency and data
sharing. The most straightforward model is the traditional Shared Mem-
ory (SM) model, e.g., as offered by POSIX Threads (PThreads) over
cache-coherent shared memory hardware. However, modern HPCC
systems use distributed memory for scalability, hence sacrificing the
programmability advantages of SM models. In contrast to SM, Mes-
sage Passing (MP) libraries allow efficient implementations of parallel
programs on distributed memory systems. Message Passing Interface
(MPI) (OM15) is de facto standard for programming cluster systems, how-
ever the design and development of MPI programs is intrinsically com-
plex. The main drawback being that it requires the explicit management
of the interaction between multiple processes and the coordination of
data exchange; large data-structures that are conceptually unitary must
be thought of as fragmented across different nodes.

The most notable proposals of programming models which aimed
to resolve the tension between programmer’s desire for shared memory
model and architect’s need to sacrifice cache-coherency for scalability
include the Partitioned Global Address Space (PGAS) model and Dis-
tributed Shared Memory (DSM). The PGAS has been proposed to per-
mit programmers to think of a single computation running across mul-
tiple processors, sharing a global address space and relying on zone-
based memory management, and it has been implemented in several
languages (EGS06; YSP+98; NR98; CCZ07). A notable form of DSM is
the tuple space (TS) coordination model, which gained popularity due to
the simplicity of its programming primitives. TS has been accompanied
by many implementations (Bet03; BDP02; FAH99; Erl16; PyL16; jRe17)
for distributed/parallel computing, including TUPLEWARE (Atk08) for
programming HPCC systems.

5

(a) MPI

2 WCAT05

relying on a host language (e.g. C, C#, or Java) for expressing the computa-
tional requirements of the application (this aspect is discussed in more detail in
Section 1.2 below).

The Linda model comprises a conceptually shared memory store (called tuple
space) in which data is stored as records with typed fields (called tuples). The
tuple space is accessed using five simple operations2:

out Outputs a tuple from a process into the tuple space
in Removes a tuple from the tuple space and returns it to a process, blocking

if a suitable tuple cannot be found
rd Returns a copy of a tuple from the tuple space to a process, blocking if a

suitable tuple cannot be found
inp Non-blocking form of in — returns an indication of failure, rather than

blocking if no suitable tuple can be found
rdp Non-blocking form of rd

The input operations specify the tuple to be retrieved from the tuple space
using a form of associative addressing in which some of the fields in the tuple
(called an antituple, or template, in this context) have their values defined. These
are used to find a tuple with matching values for those fields. The remainder of
the fields in the antituple are variables which are bound to the values in the
retrieved tuple by the input operation (these fields are sometimes referred to
as wildcards). In this way, information is transferred between two (or more)
processes.

Fig. 1. A Simple One-to-One Communication Pattern

A simple one-to-one message communication between two processes can be
expressed using a combination of out and in as shown in Fig. 1. In this case
("point", 12, 67) is the tuple being deposited in the tuple space by Process 1.
The antituple, ("point", ?x, ?y), consists of one defined field (i.e. "point"),
which will be used to locate a matching tuple, and two wildcard fields, denoted
by a leading ?. The variables x and y will be bound to the values 12 and 67

2 A sixth operation, eval, used to create an active tuple, was proposed in the original
Linda model as a process creation mechanism, but can easily be synthesized from
the other operations, with some support from the compiler and runtime system, and
is not present in any of the commercial Java implementations of the Linda model.

(b) TS

Process 1 Process 2 Process 3

Powered by TCPDF (www.tcpdf.org)

(c) PGAS

Figure 3: Programmer’s view of computation and memory. Arrows repre-
sent memory accesses.

6

Figure 3 shows programmer’s view of computation and memory in
MPI, TS and PGAS. In MPI, computation is organized around a col-
lection of processes that communicate by sending and receiving mes-
sages. Data transfers require synchronous communication, i.e., a send
operation must have a matching receive operation, and each process has
to have a separate memory that is inaccessible to other processes (Fig-
ure 1.3(a)). In TS model processes are meant to interact by exchang-
ing messages (tuples) through a data repository called tuple space (Fig-
ure 1.3(b)). The PGAS model rests on the idea of a partitioned global
address space; data structures can be allocated either privately (in lo-
cal partitions) or globally (shared with other processes). Global data
sets are typically organized into a common structure, such as a glob-
ally distributed array, which allows processes to work collectively on the
same data structure, while each process works on a different portion (Fig-
ure 1.3(c)). Differently from MPI, the communication model underlying
TS and PGAS is asynchronous.

To study abstractions for data sharing we wanted a minimal model
that is close enough to the SM model to ensure programmability and
with features to allow good performances in a distributed memory en-
vironment. This criterion have led us to select two languages, namely
X10 and Klaim. X10 has been proposed as a parallel object-oriented lan-
guage and one of the first members of the second generation of PGAS
languages, extending the PGAS model with notions for asynchrony and
locality. Klaim is based on the idea of multiple tuple spaces (Gel89) with
explicit information about the location of the nodes where each tuple
space is allocated.

Both X10 and Klaim make information about data locality explicitly
visible to the programmer who should control which data and processes
are co-located. However, adjusting the data locality to the need of appli-
cation may require significant efforts from the programmer.

X10 promotes locality awareness in the form of places which group
activities (i.e., processes) and data local to the activities. Accesses to re-
mote data, i.e., located at places different from the one of the execut-
ing activity, must comply with the following points: (1) an activity must

7

spawn a remote activity or shift to the place of the remote data, (2) remote
data must be modified via specific cross-place references i.e., a reference
to a data item at one place that can be shared with other places, and
(3) the previous requirements apply to mutable but not necessarily to im-
mutable data, which are additionally replicated by the runtime at each
place that accesses the remote data.

Klaim’s equivalent for X10 place is a node on which a tuple space is
allocated; the data management is simpler compared to that of X10, pri-
marily due to the fact that, unlike the latter, Klaim does not consider the
cost of data accesses at the linguistic level, i.e., the linguistic mechanisms
for local and remote data accesses are the same.

1.3 Contributions and Organization

In our view, programmers should be equipped with suitable primitives
to deal with locality of shared data in a natural and flexible way. More-
over, efficient data management can be particularly challenging in pro-
cessing applications with large volumes of data (HLH+11; LK14). To this
end, in this thesis we propose two languages with programming abstrac-
tions for data sharing: the RepliKlaim language based on Klaim, and the
SharedX10 language based on X10.

The thesis is organized into two parts. Part I introduces the main no-
tions and tools we deal with in the thesis and it is structured into two
chapters. Part II discusses the contributions in three chapters. In partic-
ular, the questions we address are following:

– What is a suitable programming abstraction to share data? We answer
this question in Chapters 4 and 5 by providing extensions of Klaim
and X10. In RepliKlaim, data sharing is based on replication, while
SharedX10 features additional sharing strategy based on central-
ized data locality. Furthermore, the granularity of consistency is at
the level of an operation in RepliKlaim, while in SharedX10 it is at
the level of a data item.

– What are the suitable consistency levels for replicated data? Our ap-

8

proach aims at allowing programmers to specify and coordinate
replication of shared data items by taking into account one of the
two consistency properties, namely linearizability and sequential con-
sistency.

– What is the impact of proposed solutions for data sharing? We answer
this question in Chapter 6 by conducting a performance and pro-
grammability analysis on two case studies from large-scale graph
analytics. We measure performance in term of execution time, an
programmability in terms of lines of code.

Last but not least, the conclusions, introspections and perspectives of
our work are presented in the final chapter of the thesis.

9

Part I

Preliminaries

10

Chapter 2

Klaim, X10 and XTEXT

In this chapter we introduce the programming languages Klaim and X10
in Sections 2.1 and 2.2, respectively. In particular, we detail on their pro-
gramming models and main concepts that we refer to in Part II to present
contributions of the thesis, namely, RepliKlaim and SharedX10. The sec-
tions introduce several code specifications which serve as a introduction
to the real-world applications presented in Chapter 6. Final Section 2.3
gives an overview of Domain Specific Languages (DSLs) and the XTEXT

framework for DSL development.

2.1 The Klaim Programming Language

Klaim (DNFP98) was proposed as a coordination language for code mo-
bility, i.e., for specifying migratory applications in network program-
ming. Essentially, Klaim consists of Linda (GC92) features for process
communication and a set of operators for process building inspired by
CCS (Mil89). As a coordination language, Klaim focuses on coordina-
tion and communication requirements of an application, while the com-
putation should be expressed in an additional language, called the host
language (e.g. C, Java). For simplicity, in this section we present several
code snippets using Java as a host language, hence we refer to them as
Java-Klaim specifications.

11

Figure 4: A simple process communication expressed in the Linda model

The Linda model is based on a shared memory store called tuple space
in which data items are fields called tuples. There are four operations
provided to access the tuple space:

• out - Inserts a tuple into the tuple space,

• in - Removes a tuple from the tuple space, and returns it to a pro-
cess, if a matching tuple cannot be found the process is blocked,

• rd - Retrieves a copy of a matching tuple from a tuple space to a
process, blocks if the tuple cannot be found, and

• eval - Inserts a tuple into the tuple space, unlike in the case of out,
a new concurrent process is created for evaluating the tuple.

The input operations (rd and in) specify template to retrieve a tuple
from the tuple space using the pattern-matching. Some fields in the tem-
plate have their values defined, often referred to as actual fields, which
are used to find a tuple with matching values for those fields. Remaining
fields in the template, called formal fields, are variables which are bound
to the values in the retrieved tuple by the input operation. In that way
the information is transferred between processes.

A simple process communication can be expressed using out and
in as shown in the Figure 4. In this case (’x’, 1) is the tuple being
deposited in the tuple space by Process 1. The template, (’x’, !v) consists
of one defined field (i.e., ’x’) which will be used to find a matching tuple,

12

N ::= 0 | l :: [K,P] | N ‖ N (networks)
K ::= ∅ | et | K,K (repositories)
P ::= nil (null process)

| A.P (action prefixing)
| P + P (choice)
| P | P (parallel composition)

A ::= out(t)@` | in(T)@`
| read(T)@` | eval(P)@` (actions)

t ::= e | P | ` | t, t′ (tuples)
T ::= e | P | ` | !x | T, T ′ (templates)

Figure 5: Syntax of Klaim

and a variable v denoted by a leading !. As a result of matching, the
variable v will be nondeterministically bound to either 1 or 5 since tuple
(’x’, 5) in the tuple space is also matching the template. Other forms
of communication, as well as synchronization, can easily be expressed
using the four operations of the Linda model, as we show in examples in
this section.

Klaim extends Linda with multiple tuple spaces, which are allocated
to nodes or components of a network, whose configuration may even
change dynamically due to new nodes being added or existing ones re-
moved. Definition 1 introduces a formal specification of Klaim, which
differs from the original specification given in (DNFP98) in several as-
pects. In fact, we decided to choose a subset of Klaimwhich was mini-
mal, yet sufficient to study the main programming abstractions we had
in mind. Recursion, for example, is an orthogonal feature that would not
have helped in our study.

Definition 1 (Klaim syntax) The syntax of Klaim is defined by the grammar
of Figure 5, where L is a set of locations (ranged over by `, `′, . . .), U is a set
of basic values (ranged over by u, v, . . .), V is a set of value variables (ranged
over by x, y, . . .), !V denotes the set binders over variables in V (i.e. !x, !y, . . .),
T ⊆ (U ∪ V)∗ is a set of tuples (ranged over by t, t′, . . .), ET ⊆ U∗ is a set

13

of evaluated tuples (ranged over by et , et ′, . . .), T T ⊆ (U ∪ V∪!V)∗ is a set
of templates (ranged over by T, T ′, . . .), and EXP is a set of value expressions
(ranged over by e) built from values and value variables by using a set of opera-
tors.

A Klaim specification is a network N , i.e. a possibly empty set of com-
ponents, such that a component ` :: [K,P] has a locality name `, a data
repository K, and parallel processes P . In the original Klaim presenta-
tion, each node is characterized by both a physical and logical locality re-
lated by the allocation environment which provides (partial) mapping from
logical to physical localities. Such approach enables controlling visibility,
i.e., by allowing processes from one node to access only nodes included
in the image of its allocation environment. We simply assume that each
node has a single and unique locality known at each other node of a
network. Furthermore, we assume that the configuration of a network
is static, hence we omit the newloc construct for dynamic allocation of
new nodes. In fact, we present only the minimal set of Klaim features
that would allow us to study abstractions for data sharing.

Klaim tuples are sequences of actual fields (i.e., expressions, pro-
cesses, localities) while templates are sequences of both actual and for-
mal fields (these are denoted by ’!v’ where v is a generic variable). Data
repository is a collection of evaluated tuples according to the tuple eval-
uation function in Table 1. In particular, the evaluation function, T JK,
uses evaluation mechanism, EJeK, which in turns applies on expressions
e ∈ EXP .

T JeK = EJeK
T JP K = P
T JlK = l

T Jt, t′K = T JtK, T Jt′K
T J!xK = !x

Table 1: Tuple evaluation function

Processes are created from the nil process, using the constructs for
action prefixing (A.P), non-deterministic choice (P+P) and parallel execution

14

(P | P). The actions of Klaim are based on standard Linda primitives for
tuple spaces which are additionally located, i.e., each operation has an
additional @l part to designate the target tuple space, where self is a
distinguished locality which points to the local tuple space.

The operational semantics of Klaim presented in Figure 6 combines
a structural operational semantics (SOS) style for collecting the process
actions (rules ACTP, CHOICE and PAR) and reduction rules for the evo-
lution of nets. The operational semantics of nets exploits an evaluation
mechanism for tuples and a pattern-matching to select tuples in a tu-
ple space. We use notation Pσ where σ = match(T, et), to indicate the
substitution of T for et in P. The rules for defining the patter-matching
predicate are reported in Table 2.

match(v, v)

match(l, l)

match(et1,et2)
match(et2,et1)

match(P, P)

match(!x, v)

match(et1,et2) match(et3,et4)
match((et1,et3),(et2,et4))

Table 2: Pattern-matching predicates

Reduction rule OUT adds a new (evaluated) tuple to the tuple space
located at l’. As for the communication operations in and read, we
remark that in (Rule IN) modifies the tuple space while read does not
(READ), as matching tuple et remains at the component l’. Rule EVAL

describes a case in which a process is spawned at a component l’.

15

A.P
A−→P

(ACTP) P
A−→P ′

P+Q
A−→P ′

(CHOICE) P
A−→P ′

P |Q A−→P ′|Q
(PAR)

P
out(t)@l′−−−−−→P ′ et=T JtK

N‖`::[K,P]‖`′::[K`′ ,P`′] −→ N‖`::[K,P ′]‖`′::[(K`′ ,et,)P`′]
(OUT)

P
in(T)@`′−−−−−→P ′ σ=match(T,et)

N‖`::[K,P]‖`′::[(K`′ ,et),P`′] −→ N‖`::[K,P ′σ]‖`′::[K`′ ,P`′]
(IN)

P
read(T)@`′−−−−−−−→P ′ σ=match(T,et)

N‖`::[K,P]‖`′::[(K`′ ,et),P`′] −→ N‖`::[K,P ′σ]‖`′::[(K`′ ,et),P`′]
(READ)

P
eval(Q)@`′−−−−−−→P ′

N‖`::[K,P]‖`′::[K`′ ,P`′] −→ N‖`::[K,P ′]‖`′::[K`′ ,P`′ |Q]
(EVAL)

Figure 6: Operational semantics of Klaim

16

Figure 7: A network of tuple spaces in Klaim

Figure 7 illustrates a network of two nodes, characterized by localities
l and l’, used by processes to address the target tuple spaces.

Tuples can be used as building blocks for encoding more complex
information. For example, a graph can be represented as a series of tu-
ples of the form: (’graphA’, 1, firstElement), (’graphA’, 2,

secondElement), . . . , (’graphA’, m, mthElement). Each tuple
models a graph node, the first field designates the corresponding graph
name, the second stands for the node index in the graph, while the third
is in this case generic, e.g. it can store some node property, such as node
degree or the PageRank value, depending on the application.

Distribution of tuples across tuple spaces is controlled via the out

operation, e.g. out(’graphA’, i, ithElement)@l places the argu-
ment tuple to the node with locality l. For example, assuming there are
m graph nodes and n network nodes associated with localities l1,. . . ,ln,
one can implement a block distribution via e.g., out(’graphA’, i,

ithElement)@lh(i), where function h computes i modulo n. As a re-
sult, graph nodes will be allocated to tuple spaces in blocks of approxi-
mately the same number (m/n) of elements.

Listing 2.1 illustrates read/write operations over a graph node. We
use terms write and update interchangeably to refer to the operation
which modifies the data. The operation at line 1 reads the element,
while the update operation has to be realized in two steps, first, tuple is
withdrawn via in (line 2), followed by inserting a new tuple via out
(line 3).

17

Listing 2.1: Simple graph processing

1 rd(’graphA’, i, ?x)@l; /* reads i-th element */
2 in(’graphA’, i, ?oldValue)@l;
3 out(’graphA’, i, newValue)@l; /* updates i-th element */

Klaim has no specific constructs for process synchronization, how-
ever the synchronization can be implemented via set of instructions that
each process should perform reaching the point of synchronization. For
example, in barrier synchronization, each process within a group must
wait at a specific point, called barrier, until all processes in the group
reached it; then all can proceed. To implement barrier synchronization
in Klaim, one process needs to execute in advance out(’barrier’,

n)@l, which places a tuple (’barrier’, n), usually called a synchro-
nization token, to a specific tuple space, and where n is the number of
processes. Coming to the point of synchronization each process performs
the code fragment in Listing 2.2, which comprise the barrier function.

Listing 2.2: Barrier synchronization

1 in(’barrier’, ?val)@l;
2 out(’barrier’, val-1)@l;
3 rd(’barrier’, 0);

The barrier function consists of conceptually two phases. In the first
phase, the process signals that it reached the barrier by updating the syn-
chronization tuple (lines 1-2). If it was not the last process to reach
the barrier, i.e., val is greater that 0, then the process remains blocked
in the second phase by the rd operation (line 3), until the last process
reaches the barrier.

Finally, we present two code snippets in Listings 2.3 and 2.4, which
illustrate the basic idea of graph processing we present in Chapter 6. We
assume that the number of graph nodes is stored in n and the number of
iterations for the iterative step in numIter.

18

Listing 2.3: Java-Klaim graph node processing

1 for (i = 0; i < n; i = i + 1)
2 eval(compute(i));
3 compute(i):
4 {
5 for (j = 0; j < numIter; j++) {
6 /* graph processing code*/
7 }
8 }

The main idea is that n processes are spawned to evaluate in parallel
the compute function for different argument, i, indicating the index of
a graph node. The body of the function simply specifies iterative com-
putation in which node processing is realized. Snippet in Listing 2.4 in
addition implements previously introduced barrier synchronization to
ensure that each process proceeds at the same speed.

Listing 2.4: Java-Klaim graph node processing with a barrier

1 out(’barrier’, n)@l;
2 for (i = 0; i < n; i = i + 1)
3 eval(compute(i));
4 compute(i):
5 {
6 for (j = 0; j < numIter; j++) {
7 in(’barrier’, ?val)@l;
8 out(’barrier’, val--)@l;
9

10 /* graph processing code*/
11

12 in(’barrier’, ?val)@l;
13 out(’barrier’, val++)@l;
14 rd(’barrier’, 0)@l;
15 }
16 }

19

Figure 8: Programmer’s view of NUMA architecture

2.2 The X10 Programming Language

X10 (CCS+14) is a programming language developed at IBM, and its
design philosophy is based on a belief that prevailing configuration of
the future high-end systems will consist of multi-core nodes with pos-
sibly non-uniform memory access time (NUMA nodes) (illustrated in
Figure 8) interconnected in scalable clusters called Non-Uniform Cluster
Computing (NUCC) systems. Four main goals set for X10 are to 1) be
more productive than current models (X10 stands for ”ten times produc-
tivity boost”), 2) exploit multiple levels of parallelism and non-uniform
data access, 3) be suitable for multiple architectures and 4) support high
levels of abstraction. Furthermore, X10 was created to combine ease
of programming of object-oriented languages and efficiency of high-
performance languages, targeting high-end computers supporting≈ 105

hardware threads and ≈ 1015 operations per second (SBP+14). Using
the words of the designers, X10 was designed to “to increase programmer
productivity for NUCC without compromising performance”.

X10 is built upon asynchronous partitioned global address space (AP-
GAS) (SAB+10) that enriches PGAS with two main concepts: places,
which provide an explicit mechanism for data and code locality, and
asyncs which allows forking a task, possibly at a remote place. Essen-
tially, the PGAS model combines data locality (partitioning) of a dis-
tributed memory model and global address space of a shared memory
model, thus each processor has private memory for local data and shared

20

Figure 2: Overview of X10 Activities, Places and Partitioned Global Address Space (PGAS)

execution in parallel with the child thread, and may termi-
nate prior to the child thread. Therefore it may not be
available to catch exceptions thrown by the child thread.

The statement finish S in X10 converts global termina-
tion to local termination. finish S terminates locally (and
globally) when S terminates globally. If S terminates nor-
mally, then finish S terminates normally and A continues
execution with the next statement after finish S. Because
finish requires the parent activity to suspend, it is also a
very natural collection point for exceptions thrown by chil-
dren activities. X10 requires that if S or an activity spawned
by S terminates abruptly, and all activities spawned by S

terminate, then finish S terminates abruptly and throws a
single exception formed from the collection of all exceptions
thrown by S or its spawned activities.

There is an implicit finish statement surrounding the
main program in an X10 application. Exceptions thrown by
this statement are caught by the runtime system and result
in an error message printed on the console.

Example 2 (Copy, revisited) Consider Example 1. The
finish on Line 3 ensures global termination of both A1 and
A2; thus under normal execution A0 advances to Line 7 only
after t.val is not null. A1 may terminate abruptly, e.g.
with an OutOfMemoryException thrown at Line 4. This will
cause A0 to terminate abruptly with an exception thrown at
Line 3; A0 will not progress to Line 7.

3.3 Partitioned Global Address Space
X10 has a global address space. This means that it is

possible for any activity to create an object in such a way
that any other activity has the potential to access it.2 The
address space is said to be partitioned in that each mutable
location and each activity is associated with exactly one
place, and places do not overlap.

A scalar object in X10 is allocated completely at a single
place. In contrast, the elements of an array (Section 3.4)

2In contrast, MPI processes have a local address space. An
object allocated by an MPI process is private to the process,
and must be communicated explicitly to another process
through two-sided or one-sided communications.

may be distributed across multiple places.
X10 supports a Globally Asynchronous Locally Syn-

chronous (GALS) semantics [12] for reads/writes to mutable
locations. Say that a mutable variable is local for an activity
if it is located in the same place as the activity; otherwise
it is remote. An activity may read/write only local vari-
ables (this is called the Locality Rule), and it may do so
synchronously. Any attempt by an activity to read/write
a remote mutable variable results in a BadPlaceException.
Within a place, activities operate on memory in a sequen-
tially consistent fashion [38], that is, the implementation en-
sures that each activity reads and writes a location in one in-
divisible step, without interference with any other activity.3

However, an activity may read/write remote variables only
by spawning activities at their place. Thus a place serves
as a coherence boundary in which all writes to same datum
are observed in the same order by all activities in the same
place. In contrast inter-place data accesses to remote vari-
ables have weak ordering semantics. The programmer may
explicitly enforce stronger guarantees by using sequencing
constructs such as finish, force (Section 3.8) or clocks

(Section 3.6).

Example 3 (Copy, once again) Consider Example 1
again. Both the asyncs are necessary to avoid a
BadPlaceException in any execution of the program
with more than one place.

3.4 Arrays, Regions and Distributions
An array is associated with a (possibly multi-dimensional)

set of index points called its region. For instance, the re-
gion [0:200,1:100] specifies a collection of two-dimensional
points (i,j) with i ranging from 0 to 200 and j ranging
from 1 to 100. Points are used in array index expressions to
pick out a particular array element. A distribution specifies
a place for each point in the region. Several built in distribu-
tions are provided in X10, e.g. the constant distribution, a
block distribution, a blockCyclic distribution etc. Various

3As outlined in Section 3.7, atomic blocks are used to ensure
atomicity of groups of intra-place read/write operations.

Figure 9: Overview of X10 activities, places and data distribution

memory for globally shared data.

The set of places is fixed before program execution. To set the num-
ber of places, one needs to set a value to X10 NPLACES program envi-
ronment variable prior to the program execution. The program starts
executing in Place.places()(0), other places can be addressed in a
similar fashion by their integer ranks. An activity’s local place can be
simply addressed by a keyword here.

Figure 9 shows a schematic overview of the X10 programming mo-
del. Each place hosts some data and runs a number of possibly dynam-
ically created lightweight threads (i.e. activities). Data items in X10 can
be mutable (var) or immutable (val), also called values. X10 supports
user-defined types, standard types (Boolean, Byte, Short, Char, Int,
Long, Float, Double, Complex and String), functional literals and
multi-dimensional arrays (DistArrays). For example, var i:Long =

0 defines a mutable variable i of type Long that is initialized to 0. Sim-
ilarly, val j:Long = 0 defines an immutable variable j of type Long

initialized to zero. Unlike mutable data, immutable data cannot be re-
assigned; for example, an attempt of assigning a new value, e.g., j =

1, would trigger a compile-time error. It is important to note that al-

21

though variable j is immutable, object it points to can be itself mutable,
such as val j = new DataType()where DataType is a user-defined
class possibly with mutable methods. Moreover, immutable data are
copied by the X10 runtime between places via mechanism called value
copying, while mutable data reside only at a place of allocation and need
to be accessed via global references and place-shifting mechanism by re-
mote activities. Both these concepts, i.e., value copying and place-shifting
via global references are in relation to our idea of data sharing, introduced
in SharedX10, and we explain them in details further below. In fact, one
of the main ideas behind data sharing is to hide the low-level details of
orchestrating data accesses from the programmer.

X10 features function literals that can be assigned to a variable. In
general, a function literal (x1:T1...xn:Tn)c:T => e creates a func-
tion of type (x1:T1...xn:Tn)c:T, with the body e and condition c

For example, a function literal val f:(x:Long){x!= 0} => Long =

(x:Long){x!= 0} => (1/x), stored in value f, computes inverse of
long integer x if condition x != 0 evaluates to true. We use this con-
venient feature to specify a function literal cmp that compares integer
numbers inside a sorting function in Section 5.3.

DistArrays (distributed array) are used to spread globally shared
data across places. DistArray relies on a Dist object for defining dis-
tribution, i.e., mapping of elements to places. Dist in turn uses a Region
object that captures shape and dimensionality of the array. Furthermore,
the region and distribution associated with an array are first-class con-
structs, i.e., they can be used independently of arrays. It is worthwhile
to mention that the distribution remains unchanged throughout the pro-
gram’s execution.

As an example, region [0:50, 0:100] specifies a collection of two-
dimensional points (i, j) where i ranges from 0 to 50 and j ranges from
0 to 100. Points are used in array to select a specific element in a possi-
bly multi-dimensional grid, while distribution specifies a place for each
point in the region. The two distributions that we use in the thesis are:

22

Unique distribution. Unique distribution maps elements to distinct
places provided that there are sufficient places available, otherwise some
points will be co-located. For example, distribution
Dist.makeUnique(Region.make(1...k)) maps every point in a 1-
dim region of k points to a distinct place of those available in the pro-
gram.

Block distribution. Block distribution
(e.g. Dist.makeBlock(Region.make(1...k))) distributes ele-
ments in the region in approximately even blocks over all places avail-
able in the program.

Remaining distributions are cyclic, which cyclically distributes points,
constant, which maps all points to a single place, and combinations of
previous such as blockcyclic, blockblock and so on.

Each distribution may also specify an initializer function which ap-
plies to all points in the region. Listing 2.5 shows a distributed array
creation with the initializer function stored in a variable.

Listing 2.5: A distributed array creation

1 val ident = ([i]:Point(1)) => i;
2 val data:DistArray[Long] = DistArray.make[Long](Dist.

↪→ makeUnique(Region.make(1,10), ident))

The data variable stores a reference to an array of ten elements, such
that each element is initialized to the value of its index via the initializer
function stored in ident. We use distribution promoted in this example
when we present the SharedX10 encoding, in Section 5.3.

The main X10 construct for concurrency within a place is the async
construct. The main form of async is async S that starts a new activ-
ity to execute a statement S in the same place of the executing process.
Remote execution is achieved by means of the at construct. For exam-
ple, the activity that executes at(P) S is place-shifted, meaning that its
execution is suspended in the current place and shifted to place P where
S will be executed. After completion of S the control comes back to the
current place, with the result of S.

23

One needs to be careful when using the at(P) S construct as it in-
volves copying values and it can potentially lead to high costs as the
values used in S (and depending objects) are copied to place P. Such
copying is called value coping and it can be avoided by using global ref-
erences (GlobalRefs) and place-shifting, as we will show in following
examples.

Program in Listing 2.6 defines a variable x which stores an object of
some generic class ClassG (line 1), which should be updated with
contributions from computations performed at each place. In particular,
the enumerator for loop in combination with the at construct ensures
that the localCompute() function will be executed at each place and
the obtained value t will be used to update x.

Listing 2.6: Value copying

1 val x = new ClassG();
2 for (p in Place.places()) at(p) {
3 var t = localCompute();
4 x.add(t);
5 }

One may expect that x defined at line 1 and used for reference at
line 4 are pointers to the same object in memory, however, this is not
the case. In particular, due to value copying that at entails, there will
be several replicas of x created (one per each place), and each will be
modified independently. As a result, the object stored in x at line 1

will not be modified in the scope of at(p).

This behavior can be altered via global references, i.e., GlobalRef
objects, as variables reachable through GlobalRefs are ommitted in
value copying. Therefore, to modify a value in computations that in-
volve several places, one needs to define a global reference (line 2)
and use the place-shifting operation (line 5) as shown in the snippet in
Listing 2.7.

24

Listing 2.7: Place-shifting via GlobalRef

1 val x = new DataObject(0);
2 val xRef = GlobalRef[DataObject](x);
3 for (p in Place.places()) at(p) {
4 var t = localCompute();
5 at(xRef.home) xRef().add(t);
6 }

In general, val ref = GlobalRef[T](v) creates a reference to a
variable v of a generic type T and stores it in ref. Retrieval of the value
is done via ref() and it demands place-shifting to the place where v is
allocated, i.e., at(ref.home).

Parallelism across places is achieved by combining async and at to
spawn a new activity at a remote place, e.g. at(P) async S creates
a new activity at place P to execute statement S. X10 provides several
primitives for synchronizing concurrently executing activities. In partic-
ular X10 features atomic blocks, the finish statement and the clock
construct.

There are two types of atomic blocks provided, i.e., the unconditional
and conditional atomic block. The unconditional atomic block, atomic
S, is used to guarantee execution of a statement S as if it was a single
step with respect to other concurrently executing atomic blocks in the
same place. The conditional atomic block provides the same guarantees
for the execution of body S which is additionally guarded with the con-
dition c. Any executing activity of such a statement gets suspended until
the guard evaluates to true, moreover the checking of the guard and ex-
ecution of body S is done atomically. However, the guarantees given by
the atomic blocks hold only if none of the three restrictions on body S

is violated: 1) S must be sequential, i.e., must not spawn another activ-
ity, 2) S must execute at a single place and 3) S must not use blocking
statements.

finish construct provides a simple mechanism to synchronize ac-
tivities. An activity that executes finish S will execute S and then be
suspended until all the activities spawned by S terminate. Moreover,
finish is a distributed termination construct, meaning that it may be

25

applied to synchronize activities across multiple places.
The underlying idea of the clock construct is based on a notion of

phased computation. Each phase in such computation consists of a set of
memory locations which are read and written by concurrently execut-
ing activities whose termination signals the end of a phase, and each
following phase starts with a new set of activities. Clocks may be explic-
itly created by the programmer as instances of x10.lang.Clock class.
However, it is more common to create clocks implicitly by the clocked
finish construct. An activity gets registered to the generated clock when
it is created by the clocked async construct. Synchronization occurs
when an activity executes the Clock.advanceAll() primitive; at that
point the activity gets suspended until every registered activity have ex-
ecuted Clock.advanceAll() and then all activities are released. The
clocks can be seen as a generalization of the classical barriers as activities
may be registered to several clocks that work independently.

The following code listings are instrumental to introducing the case
studies of Chapter 6. The main idea is parallel graph processing, in the
fist code variant activities process at their speed, while in the second vari-
ant the barrier synchronization is employed to ensure phased execution.
A graph is represented as a distributed array of nodes (GraphNode ob-
jects), which are block-distributed across available places.

Listing 2.8: Graph processing

1 val graph:DistArray[GraphNode] = DistArray.make[GraphNode](
↪→ Dist.makeBlock(Region.make(0, size-1)), (Point) =>
↪→ new GraphNode());

2 /* graph instantiation code, e.g. via processing input
↪→ file */

3 for (nodeId in graph) async
4 for (var i:Long = 0; i < numIter; i++)
5 at (graph.dist(nodeId)) graph(nodeId).compute();

To keep the presentation simple, we commented the code for instan-
tiating such graph (line 2) in Listing 2.8, which includes processing an
input file that records links between nodes, and storing the information

26

in corresponding GraphNode elements of graph. Node computations
are conceptually done in parallel by separate activities spawned by the
async construct at line 3. Each activity executes an iterative for loop
with a body that performs computation on a corresponding node object
referenced via graph(nodeId). We leave for now the size of the graph,
size, the number of iterations, numIter, and the compute() function
unspecified as we detail them in Chapter 6. The code variant which fea-
tures clock constructs to synchronize activities is shown in Listing 2.9.
As one may notice, accessing a node requires a place-shifting operation
to the place where the node is allocated (line 3).

Listing 2.9: Use of clocked finish and clocked async

1 clocked finish for (nodeId in graph) clocked async
2 for (var i:Long = 0; i < numIter; i++) {
3 at (graph.dist(nodeId)) graph(nodeId).computation();
4 Clock.advanceAll();
5 }

As we illustrated in the examples in this section, the low-level mecha-
nism for data communication, such as activity place-shifting, is transpar-
ent to X10 programmers. Moreover, the side-effect of the at construct,
i.e., the value copying, entails hazard in terms of creating replicas which
can be easily neglected by the programmer. The idea of SharedX10 is
to introduce the concept of shared data as a first class primitive, so the
programmer can specify how the data item is shared between places,
with two options: via replication or centralized instance. Thus, the low-
level details of data accesses are left to the implementation, i.e., activity
place-shifting and replica consistency. We further detail the data sharing
primitives in Section 5.1.

We conclude this introduction to X10 with the remark that X10 is
still under development at IBM in collaboration with academia. There
are two implementation available via source-to-source compilation to
another language. The two provided runtime frameworks are named
Native X10 and Managed X10 that are respectively based on C++ and
Java backends. The resulting C++ or Java program is then compiled

27

by either a specific C++ compiler to produce an executable or compiled
to class files and then executed on a Java Virtual Machine (JVM). De-
tailed performance model of X10 can be found in (GTC+11). The se-
mantics of the language has been formalized in (SJ05) along with a re-
silient version (CCS+13). A core calculus with X10’s main constructs
for parallelism is presented in (LP10). Cogumbreiro et al. developed
Armus (CHMY15), a verification tool that detects barrier deadlocks for
Java and X10 programs. Gligoric et al. attempted to develop a model
checking tool (GMM12) for X10 based on the JAVA PATH FINDER tool for
model checking Java programs. A line of work focuses on compiling
and porting programs to X10, specifically, (KH14) reports on compiling
MATLAB to X10 for high performance computing. The work in (GN15)
presents a kernel benchmark suite implementing distributed algorithms
in X10. A complete list of X10 related publications can be found online
at the official website (IBM17).

2.3 Domain Specific Languages

The main goal when developing a programming language is to make
programming more efficient. Ideally, one programming language should
provide the suitable level of abstraction which allows solutions to be
expressed naturally and hides unnecessary details. Furthermore, it
should be expressive enough, should provide guarantees on the prop-
erties which are important in the domain and it should also have precise
semantics to enable formal reasoning about a program.

Domain Specific Languages (DSLs), according to (Bet11), are small
languages dedicated to a particular aspect of a software system. Hence,
DSLs are designed with an aim to improve programmers’ productivity
in a particular domain compared to General Purpose Languages (GPLs)
such as Java or C.

Implementing a DSL at least consists of a series of procedures which
would allow one machine to perform lexical analysis, syntax analysis or
parsing, and finally interpret program or generate the code in another
language.

28

In the lexical analysis, an input textual file representing the source
code is decomposed into atomic elements or tokens which are of four
types: keywords, identifiers, symbols and literals. For example, a variable
declaration int value = 100; contains a keyword int, an identifier
value, a literal 100 and symbols ’;’ and ’=’. Lexical analysis is followed
by the syntax analysis which for an input construct checks whether it
respects the syntactic structure specified by the language grammar. The
main idea of the grammar is to describe the concrete syntax and how
it is mapped to an in-memory representation, i.e., the semantic model.
This model is produced during parsing and it is called the Abstract Syn-
tax Tree (AST). Upon successful completion of the previous phases, such
program is ready to be interpreted or alternatively it can be used as in
input to a code generator to generate code in a different language.

2.3.1 The XTEXT Framework

XTEXT (Xte16) is an open source framework for developing DSLs. Im-
plementing a DSL starts with specifying the language grammar and can
include additional specifications for program verification, code genera-
tor or interpreter, type checking and scoping. XTEXT promotes a Java-
like programming language, Xtend, to write parts of a DSL implemen-
tation. Additionally, XTEXT provides integration of a DSL in the Eclipse
Integrated Development Environment (IDE). The main advantages that
come along with an IDE support are syntax highlighting, that improves
code visibility through coloring and formatting keywords, background
parsing, which continuously checks the program syntax and marks er-
rors, content assistant, which provides auto completing mechanism, and
hyperlinking, which permits navigation between references in a program.

The Grammar Language

The grammar language of XTEXT is itself a DSL designed for describing
other DSLs. Essentially, grammar specification of a languages establishes
a connection between the language syntax and its semantic model.

29

The body of a grammar file is a list of grammar rules. For example,
rule ID:

1 terminal ID:
2 (’ˆ’)?(’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_

↪→ ’|’0’..’9’)*;

specifies that a token ID can start with optional ” ˆ ” character, fol-
lowed by a letter or underscore, followed by an arbitrary number of let-
ters, underscores and numbers. Symbols *, + and ? indicate the cardi-
nality of expressions in the brackets; operator * means zero or greater,
+ indicates one or greater, while ? indicates cardinality zero or one. If
no operator is used the assumed cardinality is exactly one. Rule ID is a
terminal rule in that it contains only elementary symbols, such as letters,
numbers and other characters.

Apart from terminal rules, two other types of rules are data type and
production rules. Data type rules, like terminal rules, do not contain fea-
ture assignments, but may use other rules. On the other hand, production
rules contain one or more feature assignments and yield an instance in
the AST of the parsed program.

Listing 2.10 shows a grammar snippet which defines two rules.

Listing 2.10: Sample grammar

1 grammar org.xtext.example.Sample
2 with org.eclipse.xtext.common.Terminals
3 Program:
4 (’package’ name = QualifiedName ’;’)?
5 classes += Class*
6 ;
7 QualifiedName: ID (’.’ ID)* ;

QualifiedName rule exemplifies a data type rule, while Program is
an example of a production rule as it contains a feature assignment, i.e.,
name = QualifiedName. Moreover, the first line declares the name of
the language and of the grammar, while the second line states the use of
the built-in grammar Terminals which defines basic rules, such as the

30

ID rule, which can be used in the grammar, as in the definition of the
QualifiedName rule.

Each rule has a return type. If it is not explicitly stated, it is implied
that the type’s name equals the rule’s name. As Program is the starting
rule, it defines the type of the root element of the syntax tree. Types of
features name and classes are inferred from the right hand sides of as-
signments and correspond respectively to QualifiedName and Class.
Moreover, operator += indicates a collection of zero or more objects of
type Class to be stored in feature classes.

XTEXT allows declaration of cross-links in the grammar. Rule:

1 Variable:
2 ’var’ name = ID ’:’ type = [Type];

contains a cross-reference pointing to a Type, meaning that for a fea-
ture type only instances of Type are allowed. Cross-reference resolution
involves scoping. Typically, a DSL designer implement scopes that define
target candidates for the given cross-reference. Such references in the
source code are validated during parsing. An additional feature to name
can be used to record a boolean value which captures is variable type is
specified or not, as in the following:

1 Variable:
2 ’var’ name = ID (istyped ?=’:’ type = [Type])?;

Once a language grammar is defined, a DSL designer may specify an
interpreter that works on the AST or a code generator to translate the one
program to another or generate a configuration file.

31

Chapter 3

The Memory Consistency
Guarantees

Several concepts from the domain of memory models are essential for
understanding our work on replica-aware programming in RepliKlaim
and SharedX10. This chapter starts by providing a short introduction to
the theory of the memory consistency models in Section 3.1. Section 3.2
presents a brief overview of the consistency guarantees in high-level pro-
gramming languages, and provides an example that promotes the pro-
gramming styles introduced in RepliKlaim and SharedX10. Section 3.3
outlines several ubiquitous consistency models for replicated data in
replicated systems (e.g., distributed systems with replicas), and presents
formalizations of the two consistency models for replicated data sup-
ported in RepliKlaim and SharedX10.

3.1 Overview

To reason on the behavior of a program one has to rely on the memory
(consistency) model for the guarantees on results of their programs. More-
over, the memory model for a multithreaded program specifies how
memory actions (i.e., reads and writes) in a program will appear to ex-
ecute to the programmer (MPA05a). In particular, the memory model

32

Implicit Memory Model

Sequential consistency (SC) [Lamport]

Result of an execution appears as if

• All operations executed in some sequential order

• Memory operations of each process in program order

No caches, no write buffers

MEMORY

P1 P3P2 Pn

Figure 10: Programmers’ view of memory and computation in a sequen-
tially consistent system

specifies the values that a shared variable read in a multithreaded pro-
gram is allowed to return.

The simplest model for reasoning is sequential consistency (SC), de-
fined in (Lam97), which states that the result of any execution is the same
as if operations of all processors were executed in a sequential order, and
operations of each individual processor appear in this sequence in the
order specified by its program. Such model imposes two requirements:
(1) write atomicity, that is, memory operations must execute atomically
with respect to each other and (2) total program order, which means that
program order is maintained between operations from individual pro-
cessors.

Sequential consistency is arguably the most intuitive consistency mo-
del as it can be seen as an extension of the uniprocessor model to multi-
processor. Figure 10 shows the programmers’ view of a sequentially con-
sistency system. One can assume that each of the concurrently running
threads accesses memory one at a time, as if there would be a dynamic
switch that established an exclusive and temporary connection between
the shared memory and a thread.

SC is easy for programmers to understand and adopt, but hampers
the system performance (e.g., see discussion in (Sut05)). Indeed, the in-
creasing demand for performance has lead hardware designers and com-
piler constructors to develop sophisticated optimization techniques that

33

thread 1 thread 2
count.inc(1) count.getValue()

(a)

thread 1 thread 2
count.inc(1) count.inc(1)

(b)

Figure 11: Two programs with a data race

give up sequential consistency to accelerate memory operations. This has
lead to a lattice of relaxed memory models, which can be categorized based
on the relaxation of the requirements 1 and 2 for sequential consistency.

3.2 The Memory Consistency Guarantees in
High-Level Programming Languages

The memory model of a high-level programming language should make
a balance between being simple enough for programmers to use and flex-
ible enough to be implemented efficiently. Despite the fact that sequen-
tial consistency is appealing to programmers of high-level languages, it
is deemed to significantly restricts the use of many compiler and hard-
ware transformations. To this end, data-race-free (DRF) models (Adv93)
have been proposed to achieve both programming simplicity and imple-
mentation flexibility. The DRF approach states: sequential consistency is
guaranteed only to programs that don’t contain data races.

The memory model specification of a programming language is ex-
pected to clarify the program behavior when conflicting operations (at
least one is write), in different threads, are accessing the same memory
location with no specified order of operations. This scenario is called
data race, and programming languages may take different approaches to
giving semantics to programs with data races.

Figure 11 shows two scenarios in Java in which a data race occurs
in a two-threaded program. The idea is that two threads, thread 1 and
thread 2, are concurrently operating on a shared data object count (see

34

Listing 3.1 for class definition). Figure 11(a) shows a scenario in which
conflicting operations are a write operation inc(1) (increments object’s
attribute counter by 1) and a read operation getValue() (returns the
counter value), while in Figure 11(b), both conflicting operations are
writes. Due to the presence of data race in the first scenario, the values
observed by thread 1 and thread 2 for counter may differ, while in the
second scenario the result stored in countermay be incorrect. We detail
how to avoid data races in this example in the following section, using
the synchronization mechanisms.

Examples of high-level programming languages that adopt the data-
race-free approach are Java and C++ (since C++11). However, the two
memory model specifications differ in the approach towards giving se-
mantics to programs containing data races. In particular, C++ mem-
ory model leaves the semantics for such programs unspecified (C++14),
while Java Memory Model (JMM) also provides semantics for programs
with data races (MPA05b).

To avoid data races, C++ programmers are provided with synchro-
nization mechanisms (i.e., atomic variables, mutexes, lock objects) that es-
tablish ordering between conflicting actions. By default, these synchro-
nization mechanism enforce sequential consistency, however C++ also
promotes several additional memory orderings (i.e., relaxed, acquire, re-
lease and consume) that deviate from sequential consistency for produc-
ing more efficient software. Java, on the other hand, provides the volatile
modifier and synchronized methods and statements for specifying pro-
grams without data races.

Klaim’s semantic model, as it is presented in (DNFP98), guarantees
sequential consistency. One of the first performance improvements for
tuple-space implementations was the ghost tuple technique proposed
in (RW96), and proven not to alter the sequentially consistent semantics
in (DPR00). Three additional semantics for Linda-like languages have
been proposed in (BGZ00), based on relaxing the atomicity of the out

operation which is seen as composed of two phases called emission and
rending. The three proposed semantics are called instantaneous, ordered
and unordered, and to our knowledge no implementation and perfor-

35

Figure 12: CPU caching of shared counter variable

mance comparison of the three semantics is yet carried out.

To the best of our knowledge, X10’s memory model is at the present
time only implicitly defined, by the implementation. Furthermore, the
behavior of X10 programs is expected to be the same, regardless of which
compiler backend is selected, C++ or Java. A recent work (Zwi16) pro-
posed a reasoning for defining the X10 memory model under the as-
sumption that X10 will gradually evolve into a language primarily dedi-
cated to achieving high performance and targeting the C++ backend.

3.2.1 Data Races in SharedX10 and RepliKlaim Programs

In a multithreaded Java application each thread may create a replica of
a shared variable into its CPU cache for performance reasons. Caching
of the shared counter variable introduced in Figure 11 and below List-
ing 3.1 is illustrated in Figure 12. In general, the Java implementation
does not provide strong guarantees for consistency of cached copies. In
particular, the two cached copies in our example may be temporarily in-
consistent, such that thread 1 and thread 2 observe different states for
the same variable. Java offers the volatile keyword which gives guar-
antees that the replicas will be strongly consistent, i.e., ensures that only
one consistency state may be observed.

36

Listing 3.1: Count class in Java (1)

1 public class Count {
2 private int counter = 0;
3 public void inc(value) {
4 this.counter += value;
5 }
6 public int getValue() {
7 return this.counter;
8 }
9 }

Write operations, such as the one that comprise the body of the inc
method (line 4 in Listing 3.1), do not by default exclusively access
the memory, hence their interleaving during concurrent executions can
lead to program errors. Indeed, if prior to execution of program in Fig-
ure 11(b), the counter value was 0, then as a result of the program ex-
ecution, the new counter value can be 1 instead of 2; i.e., if thread 1 is
preempted by thread 2 before storing the incremented value. To avoid
this scenario, Java provides the synchronized keyword, and guaran-
tees that two synchronized methods on the same object will not be inter-
leaved. Listing 3.2 shows a specification that uses both volatile and
synchronized modifiers to avoid both data races in programs shown
in Figure 11.

Listing 3.2: Count class in Java (2)

1 public class Count {
2 public volatile int counter = 0;
3 public synchronized void inc(value) {
4 this.counter += value;
5 }
6 public int getValue() {
7 return this.counter;
8 }
9 }

As we have motivated in the Introduction in Chapter 1, caching is no
longer held assumption for modern large-scale high-performance com-

37

RepliKlaim SharedX10
outs(’count’, 0)@L rvals@places count:Counter

(a)

RepliKlaim SharedX10
outw(’count’, 0)@L rvalw@places count:Counter

(b)

Figure 13: Replicating data in RepliKlaim and SharedX10 with strong (a)
and (b) weak guarantees

puting systems. The approach we took in SharedX10 and RepliKlaim
is to allow the programmer to use special primitives for specifying
the placement of data replicas across the underlying physical units
through abstractions: nodes in RepliKlaim, inherited from Klaim, and
places in SharedX10, inherited from X10. Using the data race exam-
ple we introduced, Figure 13 shows how such replication of the shared
count variable can be expressed in RepliKlaim and SharedX10, with
two consistency levels, namely strong (case (a)) and weak (case (b)). In
general, RepliKlaim specifications rely on the outα(t)@L operation to
output tuple t on all nodes with localities in L, while in SharedX10,
rvalα@places x is used to replicate the variable x across places con-
tained in the variable places, where α = s stands for the strong replica-
tion and α = w stands for weak.

The strong guarantees conceptually correspond to having a central-
ized data instance, while our weak guarantees correspond to sequential
consistency, which is, as we outlined, typically assumed in high-level
programming languages. We provide formal definitions of the two con-
sistency models in the following section.

Specifications in Figure 11, along with the specification of the Count
class in Listing 3.3, can as well serve to illustrate data races in SharedX10,
as Java and SharedX10 are related with the object-oriented syntax. To
avoid data race in those programs, two points needs to be addressed,
similarly to the case in Java. Firstly, strong consistency of replicas elimi-
nates the data race in scenario (a), which is achieved via declaring rvals

38

inw(’counter’, ?x)@l1 thread 1
outw(’counter’, x+1)@{l1, l2}
rd(’counter’, ?x)@l2 thread 2

(a)

inw(’counter’, ?x)@l1 thread 1
outw(’counter’, x+1)@{l1, l2}
inw(’counter’, ?x)@l2 thread 2
outw(’counter’, x+1)@{l1, l2}

(b)

Figure 14: Two specifications in RepliKlaim: with data race in (a) and no
data race in (b)

count. Secondly, unlike in Java, in the SharedX10 implementation, in-
vocation of methods on the same object are guaranteed not to interleave,
except in the case when they are declared as const (see Section 5.3).
The justification for this reasoning is following: const methods are not
propagated to all replicas unlike regular methods; i.e., they are executed
only against the local replica. Hence, to have a correct implementation of
the Count class in Listing 3.3, const should be added in getValue()

declaration, i.e., public def getValue() const.

Listing 3.3: Count class in SharedX10

1 public class Count {
2 var counter:Long = 0;
3 public def inc(value) {
4 this.counter += value;
5 }
6 public def getValue() {
7 return this.counter;
8 }
9 }

Unlike data items in SharedX10, in RepliKlaim the same data item
could be accessed with operations of different consistency levels. Input

39

of a replicated tuple is typically enacted from a local node and entails re-
moval of all replicas, while output requires the specification of all replica
localities.

Figure 14 presents two RepliKlaim specifications analogue to previ-
ously shown; i.e., showing the interplay of a concurrent write and read
(a) and two concurrent writes (b), where thread 1 is executing at local-
ity l1, and thread 2 is executing at locality l2. A data race is present in
the first scenario (a), due to the weak consistency which can leave local-
ities temporarily inconsistent. To avoid the data race, thread 1 needs to
specify strong operations, i.e., ins and outs. Scenario (b) shows concur-
rent execution of two write operations, however, there is no data race in
this specification. This is due to the fact that there is always an ordering
between two writes as in operation, in both variants ins and inw, is a
blocking operation.

3.3 Consistency Models for Replicated Data

In the past decades, many memory consistency models have produced
and used across different research communities, i.e., distributed systems,
databases, multiprocessor computer hardware (AG96; PWS+00; SS05).
In particular, data replication is commonly used approach in these sys-
tems to improve availability and performance (TS06). Such systems that
employ replication are referred to as replicated systems. For a program-
mer it is important to know what functionalities one can rely on when
operating on replicated data. A replication consistency model abstracts
away implementation details and identifies functionality of operations.

A particular replication consistency model is usually presented in
terms of a condition that can be true or false for individual executions. If
every possible execution that can occur makes the condition true, then it
is said that the design satisfies the consistency model.

The most common consistency models in replicated systems accord-
ing to (FR10) are:
Strong consistency. The simplest way the programmer can understand
the behavior of a replicated systems is to ignore the replication; if every

40

execution on replicated system is the same as on an unreplicated system,
with only a single site, it is said that system is strongly consistent, i.e.,
linearizable or atomic.

Sequential consistency. Compared to strong consistency, sequential
consistency disregards the order of operations at different locations (e.g.,
threads in a concurrent system).

Release consistency. The idea of release consistency model is based on
two operations labeled as release and acquire. Acquire operation is used
to signal that a critical region (e.g., access to shared/replicated data) is
about to be entered, while release operation signals that a critical region
has just been exited. This consistency models is an example of a cache
consistency model used in hardware architecture community, and in par-
ticular it has inspired a new memory consistency model called regional
consistency (RRV14) with the aim of providing programmability and per-
formance on non-cache-coherent systems.

Eventual consistency. Eventual consistency has attracted a lot of atten-
tion in large-scale distributed system, such as cloud systems (e.g., see
discussion in (Vog09)). Replicating data allows any replica to be mod-
ified without remote synchronization, guaranteeing that all the replicas
will eventually be consistent. Since updates can be executed at different
replicas in different orders typically a conflict-resolution mechanism is
required to implement this consistency model.

Main considerations in replicated systems can be summed up as fol-
lows:

• Replication improves performance by reducing access latency.

• Replication can lead to a potentially high network overhead of
maintaining strong consistency.

E.g., suppose an object is replicated N times. If read frequency
is R, write frequency is W, and if R�W then the outcome is likely
high consistency overhead.

41

• The solution to decrease the synchronization cost and improve per-
formance is to weaken the consistency guarantees.

Replication Consistency Guarantees in RepliKlaim and SharedX10

We now formulate replication consistency guarantees in SharedX10 and
RepliKlaim associated with operating on replicated data. In particular,
we considered two replication consistency levels in both languages that
we refer to as strong and weak consistency. In the literature on consistency
models, strong consistency is also known as linearizability (introduced by
M.Herlihy in (HW90)), and it is the strictest consistency model, while
our weak consistency corresponds to the notion of sequential consistency
(introduced by L.Lamport in (Lam97)).

To describe the replication consistency guarantees we use the frame-
work based on operation-ordering style presented in (FR10). For the pur-
pose of completeness, we include the definitions of the two consistency
models, along with the auxiliary ones, and a set of examples.

A sequential data type captures an aspect of a consistency model
related to the semantics of operations in a replicated system. It is defined
by a set of operations O, a set of states S, an initial state s0, a set of return
values R, function next-state: O × S → S and function return-value:
O × S → R. Formalization of a sequential data type is used to help the
user to understand the behavior of a replicated system by relating it to a
simpler, unreplicated system.

In order to make an intuitive presentation we describe a simple se-
quential data type with elements borrowed from the object-oriented do-
main. Hence, our set of operationsO corresponds to {o.read(), o.write(x),
for o ∈ Obj, x ∈ Int}, whereObj is a finite set of data objects with one in-
teger (Int) field, which is read by the read() operation and written to by
the write() operation. The set of states S consists of functions Obj → Int

which map objects to the values of their integer fields, the initial state has
all objects mapped to zero; the return values are integers and the string
OK (returned by the write() operation) i.e., R = Int ∪OK. The next-state
function is defined by next-state(o.read(),s) = s, next-state(o.write(x),s) =
t, where t : Obj → Int such that t(o) = s(o1) if o 6= o1 and t(o) = x. The

42

return-value function is then specified with return-value (o.read(), s) =
s(o), return-value(o.write(x),s) = OK. As one can observe, each operation
in the model has a unique next state and a return value.

Our replicated system thus consists of parallel threads of execution
which perform operations read() and write() on objects possibly repli-
cated across several sites.

A legal history H is a sequence of pairs (operation, return value),
where an operation is paired with its return value, and it is performed
in the state that results from all the operations before it in the sequence,
done in order.

The definition of strong consistency relies on a real-time partial or-
der,<E,rt, on operations that occur in the executionE, in which p <E,rt q
means that the duration of operation p (time between invocation and re-
turn) occurs entirely before the duration of operation q. If the two op-
erations overlap, they cannot be related by this order. The definition of
sequential consistency uses thread partial order, <E,t, in which p <E,t q
means that p and q are executed by the same thread and that p returns
before q is invoked.

As an example to illustrate the introduced notions, one can con-
sider a parallel execution E of threads t1 and t2 such that thread t1 ex-
ecutes a.write(5) followed by b.read(), while t2 executes b.write(3) fol-
lowed by a.read(). If we assume that a.write(5) <E,rt b.write(3), then
the two legal histories whose total order is compatible with the real-
time partial order in E are: H1 = {(a.write(5), OK), (b.write(3), OK),
(b.read(),3), (a.read(),5)} and H2 = {(a.write(5), OK), (b.write(3), OK),
(a.read(),5), (b.read(),3)}. An example of legal history whose total or-
der is not compatible with the real-time partial order, but compatible
with the thread partial order is H = {(b.write(3), OK), (a.write(5), OK),
(b.read(),3), (a.read(),5)}.

Strong consistency (Linearizability). Every execution on strongly
replicated data is said to be linearizable i.e., its effect is atomic. The replica
management algorithm states: each read is done on one (local) replica,
each write is done on all replicas, different writes are done in the same

43

a.write(5)

a.read()

5

a.write(7)

a.read()

5

A1 A2P1 P2

Figure 15: Linearizable execution

order at all replicas, and a write does not return until all replicas are
modified.

Definition 2 (strong consistency) Execution E is strongly consistent pro-
vided that there exists a history H such that:

L1 H contains exactly the same operations that occur in E, each paired with
the return value received in E,

L2 The total order of operations in H is compatible with the real-time partial
order between operations that occur in E, <E,rt

L3 H is a legal history of the sequential data type.

Sequential consistency. A weaker model is obtained by relaxing the
condition L2 to allow reads to appear out of their real-time order. The
obtained notion of consistency is sequential consistency. Unlike strong
consistency, the replica management algorithm allows write to return be-
fore all replicas are modified.

Definition 3 (weak consistency) An execution E is sequentially consistent
provided that there exists a history H such that it is satisfies conditions L1 and
L3 of Def. 1, and

SC The total order of operations in H is compatible with the thread partial
order, <E,t.

44

a.write(5)

a.read()

5

a.write(7)

a.read()

5

P1 P2A1 A2

Figure 16: Sequentially consistent execution

Figures 15 and 16 show two space-time diagrams; time increases
down the page, each operation is shown happening on a vertical line
and messages are shown as diagonal arrows. Each rectangle illustrates
the duration of operation - from it’s invocation until it returns. A1 and
A2 indicate a stream of operations coming from two concurrent threads,
while P1 and P2 represent two sites each hosting one replica of a.

Figure 15 shows a linearizable execution as H ′ = {(a.write(5), OK),
(a.read(), 5), (a.read(), 5), (a.write(7), OK)} satisfies all three conditions.
Figure 16 presents sequentially consistent (with the same history H ′),
but not linearizable execution because for any sequence H , (a.read(), 5)
would have to be before (a.write(7), OK) which is not compatible with
the real-time partial order on operations inE, where a.write(7) is ordered
before a.read().

Strong and sequential consistency are both chosen as the basis of
many concurrent programming constructs. Because of its strong con-
straints, linearizabiity is easier to reason about, however, it often incurs a
high cost in terms of synchronization. Weaker notions of consistency are
provided as a trade-off for better performance.

45

Part II

Contributions

46

Chapter 4

RepliKlaim

As we motivated in Part I, two key aspects in the design of distributed
and parallel systems are data locality and data consistency. A proper de-
sign of those aspects can bring significant performance advantages, e.g.
in terms of minimization of communication between computational en-
tities.

In this chapter we present the coordination language RepliKlaim, a
variant of Klaim, with first-class features to deal with data locality and
consistency. In particular, the idea is to let the programmer specify and
coordinate data replicas and operate on them with two levels of consis-
tency, i.e., strong and weak (see Definition 2 and Definition 3 in Chap-
ter 3). This chapter investigates issues related to replica consistency,
provide an operational semantics and discuss the main synchronization
mechanisms of our implementation. Finally, we provide a performance
evaluation study in our prototype run-time system. Our experiments
include scenarios where replica-based specifications and relaxed consis-
tency provide significant performance gains.

Structure of the chapter

We start with the definition of the syntax in Section 4.1 and proceed then
with the description of the operational semantics in Section 4.3. Sec-
tion 4.2 discusses some examples aimed at providing some insights on

47

N ::= 0 | l :: [K,P] | N ‖ N (networks)
K ::= ∅ | 〈et i, L〉 | K,K (repositories)
P ::= nil | A.P | P + P | P | P (processes)
A ::= outs(ti)@L | ins(Tι)@` | read(Tι)@` (strong actions)

outw(ti)@L | inw(Tι)@` | (weak actions)
inu(Tι, L)@` | outu(et i, L)@` | (unsafe actions)
eval(P)@` (eval action)

L ::= ε | ` | ` | L • L (locations)
t ::= e | P | ` | t, t′ (tuples)
T ::= e | P | ` | !x | T, T ′ (templates)

Figure 17: Syntax of RepliKlaim

semantics; implementation and performance aspects are detailed in Sec-
tion 4.4, while Section 4.5 describes related work and provides a sum-
mary of the chapter.

4.1 Syntax

The syntax of RepliKlaim is based on Klaim’s syntax (see Section 2.1 and
Figure 5 in Chapter 2). The main difference is the extension of commu-
nication primitives to explicitly deal with replicas, and the absence of
features to deal with recursion.

Definition 4 (RepliKlaim syntax) The syntax of RepliKlaim is defined by
the grammar of Figure 3, where L is a set of locations (ranged over by `, `′, . . .),
U is a set of values (ranged over by u, v, . . .), V is a set of variables (ranged over
by x, y, . . .), !V denotes the set binders over variables in V (i.e. !x, !y, . . .), I
is a set of tuple identifiers (ranged over by i, i′, j, j′), T ⊆ (U ∪ V)∗ is a set of
I-indexed tuples (ranged over by ti, t′i′ , . . .), ET ⊆ (U∗ is a set of I-indexed
evaluated tuples (ranged over by et i, et

′
i′ , . . .), and T T ⊆ (U ∪V∪!V)∗ is a set

of templates (ranged over by Tι, T ′ι′ , . . . , with ι ∈ I ∪ !V).

48

Networks. A RepliKlaim specification is a network N , i.e. a possibly
empty set of components or nodes.

Components. A component ` :: [K,P] has a locality name ` which is
unique (see well-formedness in Definition 5), a data repositoryK, and par-
allel processes P . Components may model a data-coherent unit in a large
scale system, where each unit has dedicated memory and computational
resources.

Repositories. A data repository K is a set of data items, which are pairs
of identifier-indexed tuples and their replication information. In particu-
lar a data item is a pair 〈et i, L〉, where eti is a tuple, i is a unique identifier
of the tuple, and L is a list of localities where the tuple is replicated. For a
data item 〈et i, L〉with |L| > 1 we say that ti is shared or replicated. We use
indexed tuples in place of ordinary anonymous tuples to better represent
long-living data items such as variables and objects that can be created
and updated. We require the replication information to be consistent, also
this property is preserved by the semantics, as we show further below.

It is worth to note that a locality ` in L can appear as ` or as `. The
latter case denotes a sort of ownership of the tuple. Each replicated tuple
is required to have exactly one owner (cf. well-formedness in Def. 5).
This is fundamental to avoid inconsistencies due to concurrent weak op-
erations, i.e, retrievals or updates of a replicated tuple.

Processes. Processes are the main computational units and can be ex-
ecuted concurrently either at the same locality or at different localities.
Each process is created from the nil process, using the constructs for ac-
tion prefixing (A.P), non-deterministic choice (P + P) and parallel execution
(P | P).

Actions and targets. The actions of RepliKlaim are based on standard
primitives for tuple spaces, extended to suitably enable replica-aware
programming. Some actions are exactly as in Klaim. For instance,
read(Tι)@` is the standard non-destructive read of Klaim.

49

The standard output operation is enriched to allow a list of localities
L as target. RepliKlaim features two variants of the output operation: a
strong (i.e. atomic) one and a weak (i.e. asynchronous) one. In particular,
outα(ti)@L is used to place the shared tuple ti at the data repositories
located on sites l ∈ L atomically or asynchronously (resp. for α = s

or α = w). In this way the shared tuple is replicated on the set of sites
designated with L. In RepliKlaim output operations are blocking: an
operation outα(ti)@L cannot be enacted if an i-indexed tuple exists at
L. This is necessary to avoid inconsistent versions of the same data item
in the same location to co-exist. Hence, before placing a new version
of a data item, the previous one needs to be removed. However, weak
consistency operations still allow inconsistent versions of the same data
item to co-exist but in different locations.

As in the case of output operations, RepliKlaim features two variants
of the standard destructive operation in: a strong input ins and a weak
input inw. A strong input ins(Tι)@` retrieves a tuple et i matching Tι at `
and atomically removes all replicas of et i. A weak input inw(Tι)@` tries
to asynchronously remove all replicas of a tuple et i matching Tι residing
in `. This means that replicas are not removed simultaneously. Replicas
in the process of being removed are called ghost replicas, since they are
reminiscent of the ghost tuples of (RW96; DPR00) (cf. the discussion in
Section 4.5).

RepliKlaim features two additional (possibly) unsafe operations:
outu(eti, L)@` puts a data item 〈et i, L〉 at all locations in L, while
inu(Tι, L)@` retrieves a tuple et i matching Tι at ` and does not remove
the replicas of et i. These operations are instrumental for the semantics
and are not meant to appear in user specifications.

As we showed, the syntax of RepliKlaim admits some terms that we
would like to rule out. We therefore define a simple notion of well-
formed network.

Definition 5 (well-formedness) Let N be a network. We say that N is well
formed if:

1. Localities are unique, i.e. no two distinct components ` :: [K,P], ` ::
[K ′, P ′] can occur in N ;

50

N

• •

•

`1:: ins

��

`2:: read

��

`1:: ins{{

Ns

• •

•

`1:: ins

��

`2:: read

��

`1:: ins{{

Nw

• •

••

•

`1:: inw

��

`2:: read

��

`1:: inw{{

`2:: read

��

`1:: inu

��

`1:: inu{{

Figure 18: Concurrent reads and inputs with no replicas (left), replicas and
strong input (center) and weak input (right).

2. Replication is consistent, i.e. for every occurrence of ` :: [(K, 〈et i, L〉), P]
in a network N it holds that ` ∈ L and for all (and only) localities `′ ∈ L
we have that component `′ is of the form `′ :: [(K ′, 〈et ′i, L〉), P ′]. Note
that et′ is not required to be et since we allow relaxed consistency of repli-
cas.

3. Each replica has exactly one owner, i.e. every occurrence of L has at most
one owner location `.

4. Tuple identifiers are unique, i.e. there is no K containing two data items
〈et i, L〉, 〈et ′i, L′〉. Note that this guarantees local uniqueness; global
uniqueness is implied by condition (2).

Well-formedness is preserved by the semantics, but as usual we admit
some intermediate bad-formed terms which ease the definition of the
semantics.

We assume the standard notions of free and bound variables, respec-
tively denoted by fn(·) and bn(·).

4.2 Examples

We provide here a couple of illustrative examples aimed at providing in-
sights on semantics, implementation and performance aspects. In below
we use notation .

= to define a RepliKlaim specification.

51

Concurrent reads and inputs. The following example illustrates three
ways of sharing and accessing a tuple and is meant to exemplify the ben-
efit of replicas and weak inputs. The example consists of the networks

N
.
= `1 :: [〈et i, `1〉,ins(Tι)@`1]
‖
`2 :: [∅,read(Tι)@`1]

Nα
.
= `1 :: [〈et i, {`1, `2}〉,inα(Tι)@`1]
‖
`2 :: [〈et i, {`1, `2}〉,read(Tι)@`2]

with α ∈ {s,w}. The idea is that in N a tuple that has to be accessed by
both `1 and `2 is shared in the traditional Klaim way: it is only stored in
one location (namely, `1) with no replicas. On the contrary, Nα models
the same scenario with explicit replicas. The tuple et i is replicated at
both `1 and `2, possibly after some process executed out(ti)@{`1, `2}.
Networks Ns and Nw differ in the way the tuple et i is retrieved by `1:
using strong or weak input, respectively. Figure 18 depicts the transition
systems for the three networks. The transition systems of N and Ns are
similar but differ in the way the transitions are computed. InN , the input
is local to `1, but the read is remote (from `2 to `1), while in Ns the input
is global (requires a synchronization of `1 and `2 to atomically retrieve
all replicas of et i), and the read is local to `2. The main point inNw is that
the process in `2 can keep reading the ghost replicas of et i even after `1
started retrieving it.

Concurrent reads and outputs. The next example illustrates (see also
Fig. 19) the interplay of reads with strong and weak outputs.

Mα
.
= `1 :: [∅,outα(ti)@{`1, `2}] ‖ `2 :: [∅,read(Tι)@`1]

with α ∈ {s,w}. The idea is that component `1 can output a tuple with
replicas in `1 and `2 in a strong or weak manner, while `2 is trying to read
the tuple from `1. In the strong case, the read can happen only after all
replicas have been created. In the weak case, the read can be interleaved
with the unsafe output.

52

Ms

•

•

`1:: outs

��

`2:: read

��

Mw

•

• •

•

`1:: outw

��

`1:: outu

��

`2:: read

��

`2:: read

��

Ws

•

•

`1:: ins

��

`2:: outs

��

Ww

•

• •

•

•

`1:: inw

��

`1:: inu

��

`2:: outw

��

`1:: inu{{
`2:: outw ��

`2:: outu ��

Figure 19: Transitions forMs (concurrent read and strong output), Mw (con-
current read and weak output),Ws (concurrent strong input and strong out-
put) and Ww (concurrent weak input and weak output).

Concurrent inputs and outputs. The last example (see also Figure 19)
illustrates the update of a data item using strong and weak operations.

Wα
.
= `1 :: [〈et i, {`1, `2}〉,inα(Tι)@{`1, `2}.outα(f(et)i)@{`1, `2}]
‖ `2 :: [〈et i, {`1, `2}〉, nil]

with α ∈ {s,w}. The idea is that component `1 retrieves a tuple and then
outputs an updated version of it (after applying function f). Relaxing
consistency from s to w increases the number of interleavings.

4.3 Structural Operational Semantics

RepliKlaim terms are to be intended up to the structural congruence in-
duced by the axioms in Figure 20 and closed under reflexivity, transitiv-
ity and symmetry. As usual, besides axiomatising the essential structure
of RepliKlaim systems, the structural congruence allows us to provide a
more compact and simple semantics. The axioms of the structural con-
gruence are standard. We just remark the presence of a clone axiom (bot-
tom) which is similar to the one used in early works on Klaim. In our
case, this clone axiom allows us to avoid cumbersome semantic rules for

53

P + (Q+R) ≡ (P +Q) +R
P + nil ≡ P
P +Q ≡ Q+ P

P | (Q | R) ≡ (P | Q) | R
P | nil ≡ P
P | Q ≡ Q | P

N ‖ (M ‖W) ≡ (N ‖M) ‖W
N ‖ 0 ≡ N
N ‖M ≡ M ‖ N

` :: [K,P] ≡ ` :: [K, nil] ‖ ` :: [∅, P]

Figure 20: Structural congruence for RepliKlaim

dealing with multiparty synchronisations where the subject component
is also an object of the synchronisation (e.g. when a component ` re-
moves a shared tuple ti that has a replica in ` itself). The clone axiom
allows a component to participate in those interactions, by separating
the processes (the subject) from the repository (the object). It is worth to
note that this axiom does not preserve well-formedness (uniqueness of
localities is violated).

54

A.P
A−→P

(ACTP) P
A−→P ′

P+Q
A−→P ′

(CHOICE) P
A−→P ′

P |Q A−→P ′|Q
(PAR)

P
eval(Q)@`′−−−−−−→P ′

N‖`::[K,P]‖`′::[K`′ ,P`′] −→ N‖`::[K,P ′]‖`′::[K`′ ,P`′ |Q]
(EVAL)

P
outs(ti)@L−−−−−−→P ′ ∀`′∈L. 6∃et′,L′.〈et′i,L

′〉∈K`′ eti=T JtiK
N‖`::[K,P]‖Π`′∈L`′::[K`′ ,P`′] −→ N‖`::[K,P ′]‖Π`′∈L`′::[(K`′ ,〈eti,L〉),P`′]

(OUTS)

P
outw(ti)@L−−−−−−−→P ′ `′′∈L 6∃et′,L′.〈et′i,L

′〉∈K`′′ eti=T JtiK
N‖`::[K,P]‖`′′::[K`′′ ,P`′′] −→ N‖`::[K,P ′]‖`′′::[(K`′′ ,〈eti,L〉),P`′′ |Π`′∈(L\`′′)eval(outu(eti,L))@`′]

(OUTW)

P
outu(eti,L)−−−−−−−→P ′ 6∃et′,L′.〈et′i,L

′〉∈K
N‖`::[K,P] −→ N‖`::[(K,〈eti,L〉),P ′]

(OUTU)

Figure 21: Operational semantics of RepliKlaim [1]

55

P
ins(Tι)@`

′′
−−−−−−→P ′ `′′∈L σ=match(Tι,eti)

N‖`::[K,P]‖Π`′∈L`′::[(K`′ ,〈eti,L〉),P`′] −→ N‖`::[K,P ′σ]‖Π`′∈L`′::[K`′ ,P`′]
(INS)

P
inw(Tι)@`

′′
−−−−−−−→P ′ `′′∈L `′∈L σ=match(Tι,eti)

N‖`::[K,P]‖`′::[(K`′ ,〈eti,L〉),P`′] −→ N‖`::[K,P ′σ]‖`′::[K`′ ,P`′ |
∏
`′′′∈(L\`′) eval(inu(eti,L))@`′′′]

(INW)

P
inu(Tι,L)−−−−−→P ′ σ=match(Tι,eti)

N‖`::[(K,〈eti,L〉),P] −→ N‖`::[K,P ′]
(INU)

P
read(Tι)@`

′
−−−−−−−→P ′ σ=match(Tι,eti)

N‖`::[K,P]‖`′::[(K`′ ,〈eti,L〉),P`′] −→ N‖`::[K,P ′σ]‖`′::[(K`′ ,〈eti,L〉),P`′]
(READ)

Figure 22: Operational semantics of RepliKlaim [2]

56

The operational semantics in Figures 21 and 22 mix an SOS style for
collecting the process actions (cf. rules ACTP, CHOICE and PAR) and
reductions for the evolution of nets. The rules for defining pattern-
matching, match(Tι, ti), which yields a substitution for the bound vari-
ables of Tι and the evaluation function are already given in Table 2 and
Table 1 of Chapter 2. Note that ι may be a bound variable to record the
identifier of the tuple. We use

∏
to denote parallel composition of pro-

cesses and Pσ , where σ = match(T, et), to indicate the substitution of T
for et in P. The standard congruence rules are not included for simplicity.

It is worth to remark that the replicas located at the owner are used
in some of the rules as tokens to avoid undesirable race conditions. The
role of such tokens in inputs and outputs is dual: the replica must not
exist for output to be enacted, while the replica must exist for inputs to
be enacted.

Rule OUTS deals with a strong output outs(ti)@L by putting the
evaluated tuple et i in all localities in L. However, the premise of the
rule requires a version of data item i (i.e. a tuple et ′i) to not exist in the
repository of the owner of et i (`′′).

Rule OUTW governs weak outputs of the form outw(ti)@L by re-
quiring the absence of a version of data item i. The difference with re-
spect to the strong output is that the effect of the rule is that of creating
a set of processes that will take care of placing the replicas in parallel,
through the unsafe output operation. Such operation is handled by rule
OUTU which is very much like a standard Klaim rule for ordinary out-
puts, except that the operation is blocking to avoid overwriting existing
data items.

Rule INS deals with actions in(Tι)@` by retrieving a tuple et i match-
ing Tι from locality `, and from all localities containing a replica of it.
Rule INW retrieves a tuple et i from an owner `′ of a tuple that has a
replica in the target `. As a result, processes are installed at `′ that deal
with the removal of the remaining replicas in parallel (thus allowing the
interleaving of read operations). As in the case of weak outputs, weak
inputs resort to unsafe inputs. Those are handled by rule INU, which is
like a standard input rule in Klaim.

57

Finally, rule READ is a standard rule for dealing with non-destructive
reads.

4.4 Performance Evaluation

We describe in this section our implementation and present a set of ex-
periments aimed at showing in which conditions an explicit use of repli-
cas can provide significant performance advantages.

Implementing RepliKlaim in KLAVA.

The run-time framework is based on KLAVA, a Java package used for
implementing distributed applications based on Klaim. KLAVA provides
a set of process executing engines (nodes) connected in a network via
one of the three communication protocols (TCP, UDP, local pipes). The
implementation of RepliKlaim is based on an encoding of RepliKlaim
into standard Klaim primitives. However, we do not provide here a for-
mal encoding from RepliKlaim to Klaim, instead we take a practical ap-
proach. To this end, we present several code snippets that illustrate how
RepliKlaim primitives are rendered in KLAVA. Such implementation is
guided by the semantic rules presented in Figures 21 and 22. Hence,
replicated tuples are indexed with integers and contain localities of repli-
cas in a data structure which permits standard tuple space operations,
and finally, the owner of a tuple is the first locality contained in such data
structure. Listing 4.1 shows the rendering of inw(t)@`.

Listing 4.1: Implementation of inw

1 TupleSpaceVector vectorLoc = t.getItem(1);
2 Tuple template = new Tuple(new PhysicalLocality());
3 vectorLoc.read nb(template);
4 PhysicalLocality ploc = template.getItem(0);
5 in(t, ploc);
6 while(vectorLoc.read nb(template)) {
7 PhysicalLocality ploc = template.getItem(0);
8 eval(new InU(t), ploc);
9 template.resetOriginalTemplate();

10 }

58

Lines 1-5 withdraw replica from the owner, while following lines
withdraw remaining replicas asynchronously via the eval operation,
which triggers execution of the executeProcess method defined in
the InU class (see below Listing 4.2).

Listing 4.2: InU implementation snippet

1 public void executeProcess() throws KlavaException {
2 in(t, self);
3 }

outw is implemented similarly to inw, including a difference at line
8 such that a tuple is inserted relying on the OutU definition. In ad-
dition, before a new version is inserted, it is required to check that the
older version is not present. Listing 4.3 show the implementation of the
executeProcess method of OutU class.

Listing 4.3: OutU implementation snippet

1 public void executeProcess() throws KlavaException {
2 if(!read nb(t, self))
3 out(t, self);
4 }

Implementation of strong operations requires using a lock, i.e., to-
ken, to ensure that each access to replicated data is atomic. Token
is represented with two fields, one that specifies index of the repli-
cated tuple and the other stating that the tuple is representing a to-
ken. As an example, an expression new Tuple(new KInteger(0),

new KString("token")) creates a token for synchronizing accesses
to replicated tuple indexed with 0. Such token is stored at the owner
location once the tuple is replicated for the first time. Finally, Listing 4.4
shows how ins(t)@` in rendered in KLAVA.

Listing 4.4: Implementation of ins
1 TupleSpaceVector vectorLoc = t.getItem(1);
2 Tuple template = new Tuple(new PhysicalLocality());
3 vectorLoc.read nb(template);
4 PhysicalLocality tokenLoc = template.getItem(0);
5 in(new Tuple(new KInteger(0), new KString("token"),

↪→ tokenLoc);

59

6 template.resetOriginalTemplate();
7 while(vectorLoc.read nb(template)) {
8 PhysicalLocality ploc = template.getItem(0);
9 eval(new InU(t), ploc);

10 template.resetOriginalTemplate();
11 }
12 out(new Tuple(new KInteger(0), new KString("token"),

↪→ tokenLoc);

Experiments: Hypothesis

The main hypothesis of our experiments is that better performances are
achieved with improved data locality and data communication mini-
mized through the use of replicated tuples and weak operations. Indeed,
maximizing data locality can be easily done by replicating data, however
it comes at a cost in terms of synchronization if replicated data need to
be kept consistent (e.g. when using strong inputs and outputs). Our ex-
perimental results show how the ratio between the frequencies of read
and update (i.e. sequences of inputs and outputs on the same data item)
operations affects the performance of three different versions of a pro-
gram: a traditional one that does not use replicas, and two versions using
replicas: one using strong operations and another one using weak op-
erations. However, we had to deviate in one thing from the semantics:
while spawning parallel processes in rules INW and OUTW to deal with
the asynchronous/parallel actions on replicas seems very appealing, in
practice performing such operations in sequence showed to be more ef-
ficient. Of course, in general, the choice between parallel and sequential
composition of such actions depends on several aspects, like the number
of available processors, the number of processes already running in the
system and the size of the data being replicated.

Experiments: Configuration of the Scenario

The general idea of the scenario we have tested is that multiple nodes
are concurrently working (i.e. performing inputs, reads and outputs) on
a list whose elements can be scattered on various nodes. A single element

60

(i.e. the counter) is required to indicate the number of the next element
that can be added. In order to add an element to the list, the counter is
removed using an input, the value of the counter is increased and the
tuple is re-inserted, and then a new list element is inserted. We call such
a sequence of input and output operations on the same data item (i.e.
the counter) an update operation. The source code and Klava library are
available online at below link1.

Each of the nodes is running processes that perform read or update
operations. Both reader and updater processes run in loops. We fix the
number of updates to 10, but vary the number of read accesses (20, 30,
50, 100, 150, 200). We consider two variants of the scenario. The first
variant has 3 nodes: one node containing just one reader process, an-
other node containing just one updater process and a last one containing
both a reader and an updater process. The second variant has 9 nodes,
each containing process as in the previous case, i.e. this scenario is just
obtained by triplicating the nodes of the previous scenario. The main
point for considering these two variants is that we run the experiment
in a dual core machine, so that in the first case one would ideally have
all processes running in parallel, while this is not the case in the second
variant.

Formally, the RepliKlaim nets N we use in our experiments are spec-
ified as follows

N
.
=

n∏
i=1

{
`i,1 :: [∅,P1(`i,1)] ‖ `i,2 :: [∅,P2(`i,2)] ‖ `i,3 :: [∅,P1(`i,3) | P2(`i,3)]

}
where P1 is an updater process and P2 is a reader process, both para-
metric with respect to the locality they reside on. P1 is responsible for
incrementing the counter and adding a new list element, while P2 only
reads the current number of list elements. For the scalability evaluation
we compare results for nets obtained when n = 1 and n = 3, mean-
ing that corresponding nets have 3 and 9 nodes respectively. Our aim is
to compare the following three alternative implementations of processes

1http://sysma.imtlucca.it/wp-content/uploads/2015/03/
RepliKlaim-test-examples.rar

61

http://sysma.imtlucca.it/wp-content/uploads/2015/03/RepliKlaim-test-examples.rar
http://sysma.imtlucca.it/wp-content/uploads/2015/03/RepliKlaim-test-examples.rar

P1 and P2 which offer the same functionality, but exhibit different per-
formances:

Program no-replicas: this implementation follows a standard approach
that does not make use of replica-based primitives. The idea here
is that the shared tuple is stored only in one location, with no repli-
cas. The consistency of such model is obviously strong, as there
are no replicas. Local access to the shared tuple is granted only to
processes running on the specified location, while other processes
access remotely. In the begining we assume that one of the sites
has executed outs(countera)@`1 which places the counter tuple
countera at place `1, with a being a unique identifier. Then pro-
cesses P1 and P2 can be expressed as follows:

P1(self) ≡ ins(countera)@`1.
outs(f (countera))@`1.
outs(ltacounter)@self .P1(self)

P2(self) ≡ read(Ta)@`1.P2(self)

where f (·) refers to the operation of incrementing the counter and
lt refers to the new list element which is added locally after the
shared counter has been incremented. Note that we use a as unique
identifier for the counter and acounter as unique identifier for the
new elements being inserted.

Program strong-replicas: The difference between this model and the
non-replicated one is the presence of replicas on each node, while
this model also guarantees strong consistency. Concretely, each up-
date of replicated data items is done via operations ins and outs.
The formalization is presented below, after the description of the
weak variant of this implementation.

Program weak-replicas: In this variant, the replicas are present on
each node, but the level of consistency is weak. This means that
interleavings of actions over replicas are allowed. However, to
make this program closer to the functionality offered by the above

62

ones, we forbid the co-existence of different versions of the same
data item. Such co-existence is certainly allowed in sequences
of operations like inw(ti)@`.outw(t′i)@L as we have seen in the
examples of Section 4.2. To avoid such co-existence, but still allow
concurrent reads we use an additional tuple that the updaters used
as sort of lock to ensure that outputs (respectively, inputs) are only
enacted once inputs (respectively, outputs) on the same data item
are completed on all replicas. Of course, this makes this program
less efficient than it could be but it seems a more fair choice for
comparison and still our results show its superiority in terms of
performance.

In the above two replication-based implementations we assume
that the counter is replicated on all nodes by executing
outα(countera)@{`1, `2, `3} with α ∈ {s,w}. In this case the pro-
cesses are specified as:

P1(self) ≡ inα(countera)@self.outα(f (countera))@{`1, `2, `3}.
outs(acounter)@self.P1(self)

P2(self) ≡ read(Ta)@self.P2(self)

where the strong and weak variants are obtained by letting α be s
and w, respectively.

Experiments: Data and Interpretation

The results of our experiments are depicted in Figures 23 and 24. The
x axis corresponds to the ratio of reads and updates performed by all
processes, while the y axis corresponds to the time needed by the pro-
cesses to complete their computation. We measure the relation between
average running time and the ratio between access frequencies. Time is
expressed in seconds and presents the average of 15 executions, while the
ratio is a number (2, 3, 5, 10, 15, 20). The results obtained for programs
no-replicas, strong-replicas and weak-replicas are respectively depicted
in blue, green and red.

63

2 4 6 8 10 12 14 16 18 20

20

40

60

80

100

120

140

160

180

200

220

Read/Update ratio

T
im

e
(s

ec
)

No replicas
Strong−replicas
Weak−replicas

Figure 23: Comparing three strategies in a scenario with 3 nodes

It can be easily observed that when increasing the ratio the weak-
replicas program is the most efficient. This program improves over pro-
gram no-replicas only after the ratio of reading operations reaches a cer-
tain level that varies from the two variants used (3 and 9 nodes). Re-
sults show that strong-replicas offers the worst performance. Indeed,
as we hinted in Section 3.3, preserving strong consistency in presence of
replicas is often unfeasible in practice because it requires a great deal of
synchronization.

4.5 Summary and Related Work

In this chapter we presented the RepliKlaim language, which enriches
Klaim with primitives for data sharing. In particular, the new primitives
allow the programmer to specify and coordinate the replication of shared
data items and the desired consistency properties so to obtain better per-

64

2 4 6 8 10 12 14 16 18 20

100

200

300

400

500

600

700

800

900

Read/Update ratio

T
im

e
(s

ec
)

No replicas
Strong−replicas
Weak−replicas

Figure 24: Comparing three strategies in a scenario with 9 nodes

formances. We provided an operational semantics to formalize our pro-
posal as well as to guide the implementation of the language in KLAVA,
a Java-based implementation of Klaim. We also discussed issues related
to replica consistency and the main synchronization mechanisms of our
implementation. Finally, we provided an evaluation study which com-
pares performances of programs following different strategies for data
sharing.

Many authors have investigated issues related to the performance of
tuple space implementations and applications of tuple space coordina-
tion to large-scale distributed and concurrent systems (cloud computing,
high-performance computing, services, etc.).

One of the first performance improvements for tuple-space imple-
mentations was the ghost tuple technique (RW96), which improves lo-
cal operations by allowing existence of local tuple replicas under several
conditions. Another seminal work considering performance issues in tu-

65

ple space coordination was the introduction of asynchronous tuple space
primitives in Bonita (asynchronous Linda) (Row97). This work provided
a practical implementation and an illustrative case study to show the
performance advantages of asynchronous variants of tuple space prim-
itives for coordinating distributed agents. A thorough theoretical study
of possible variants of tuple space operations is presented in (BGZ00).
In particular, the authors studied three variants for the output operation:
an instantaneous output (where an output can be considered as instanta-
neous creation of the tuple), and ordered output (where a tuple is placed
in the tuple space as one atomic action) and an unordered output (where
the tuple is passed to the tuple space handler and the process will con-
tinue, the tuple space handler will then place the tuple in the tuple space,
not necessarily respecting order of outputs). A clear understanding of
(true) concurrency of tuple space operations was developed in (BGZ97),
where the authors provide a contextual P/T nets semantics of Linda. All
these works have inspired the introduction of the asynchronous weak
operations in RepliKlaim.

Performance issues have been also considered in tuple space imple-
mentations. Besides Klaim implementations (BDP02; BDL06), we men-
tion GigaSpaces (Gig17), a commercial tuple space implementation, Blos-
som (vdG01), a C++ high performance distributed tuple space imple-
mentation, Lime (MPR06), a tuple space implementation tailored for
ad-hoc networks, TOTA (MZ09), a middleware for tuple-based coor-
dination in multi-agent systems, and PeerSpace (BMZ04) a P2P based
tuple space implementation. Moreover, tuple space coordination has
been applied and optimised for a large variety of systems where large-
scale distribution and concurrency are key aspects. Among other, we
mention large-scale infrastructures (Cap08), cluster computing environ-
ments (Atk10), cloud computing systems (Har12), grid computing sys-
tems (LP05), context-aware applications (BCP07), multi-core Java pro-
grams (GH11), and high performance computing systems (JXLY06). As
far as we know, none of the above mentioned implementations treats
replicas as first-class programming citizens.

66

Chapter 5

SharedX10

In Chapter 4 we introduced our first contribution, namely, the
RepliKlaim language which enriched Klaim with primitives for data
sharing. This chapter presents the transfer of ideas from our work on
Klaim to X10, which resulted in the SharedX10 language. Klaim’s no-
tions for locality and asynchronous computation, i.e., node/locality and
eval(s)@p, are comparable with X10’s place and the async operation,
where at(p) async s is used to spawn a new activity (i.e., process) at
locality p to remotely execute s. However, as we outlined in Chapter 2,
access to data in Klaim is uniform, while in X10 there are specific mech-
anisms to be used depending on whether the data item is local to the
accessing activity or remote. This has lead us to introduce primitives for
sharing based on a centralized data location in SharedX10, in addition to
sharing based on replication with strong and weak levels of consistency,
that had previously been introduced in RepliKlaim.

Structure of the chapter

Section 5.1 introduces the primitives for data sharing, while the complete
syntax of SharedX10 is presented in Section 5.2. Section 5.3 presents the
encoding scheme for SharedX10 programs. Section 5.4 introduces the
implementation of SharedX10 syntax in terms of the XTEXT grammar.
Section 5.5 reports on a number of performance experiments aimed at

67

comparing different strategies of data sharing. Section 5.6, provides a
brief summary of the chapter.

i sval x:T

ii rvals@l:ArrayList[Place] x:T

iii rvalw@l:ArrayList[Place] x:T

iv sval x:DistArray[T]

v rvals@l:DistArray[ArrayList[Place]] x:DistArray[T]

vi rvalw@l:DistArray[ArrayList[Place]] x:DistArray[T]

Figure 25: Syntax of SharedX10 primitives for declaring shared variable x

5.1 Primitives for Data Sharing

As we motivated in Section 2.2 of Chapter 2, which introduced the X10
programming model, the work on SharedX10 is motivated by our critical
view of X10 mechanisms for data management. In particular, the data
replication (i.e., value copying) is implicit and can lead to program errors,
while the use of global references for data communication adds to the
complexity of the program.

This section introduces the concept of shared data, which is the core
of SharedX10, and primitives for specifying sharing strategies, with the
following aims:

1. To allow programmers to easily express how data is shared, with
several possibilities to help programmers fit shared data access pat-
terns to the need of their applications.

2. To hide the orchestration of data communication from the pro-
grammer.

68

3. To allow programmers to sacrifice performance for the sake of pro-
grammability, i.e., to allow programmers to write programs as in
shared-memory languages (e.g. Java), evading the problems asso-
ciated with value-copying and global references.

Figure 25 shows the syntax of SharedX10 primitives for declaring
shared variables. The main idea is that the SharedX10 programmer uses
the primitives to specify data sharing according to the application shar-
ing pattern. When designing the primitives we had in mind common
variable access patterns, i.e., read-mostly, producer-consumer, general read-
write and stencil. Accesses to a shared variable follow the

• read-mostly pattern if the variable is initialized once and subse-
quently only read, sequentially or concurrently, by activities from
multiple places;

• producer-consumer pattern if variable is updated to by activities
(writers) from a single place and read by activities (readers) from
possibly multiple places;

• general read-write pattern if the variable is read and updated to by
activities from multiple places;

• stencil pattern if the variable is organized as a distributed array and
each array element is updated with the contributions from a subset
of neighbor variables.

Shared variable refers either to an object of built-in or user-defined
type denoted with T (primitives (i) - (iii)) or to a one-dimensional dis-
tributed array of objects of type T (primitives (iv) - (vi)). When declar-
ing a shared variable, the programmer decides whether data should be
stored at a single place (sval) or replicated (rvals and rvalw). When
sharing is based on replication, the programmer also provides an array
of places where replicas would be allocated, denoted in Figure 25 with l.
Sharing based on a centralized data location. Primitive (i) declares
shared a sval variable to be stored at a single place, i.e., the place of
allocation in the program. If an array is declared as sval (primitive (iv))

69

then each array element is to be stored at a single place. This sharing pat-
tern fits general read-write data access pattern, as the replication-based
strategy would reduce read latency but increase write latency due to the
added expense of updating all data replicas.

Sharing based on the replication strategy creates data replicas at
places provided in an (array) variable l of type ArrayList[Place]

(primitives (ii) and (iii)). If the replicated variable refers to a dis-
tributed array (primitives (v) and (vi)), then the expected type of l is
DistArray[ArrayList[Place]] such that an array element x(i) is
replicated over the list of places contained in l(i) (pair-wise sharing).
This strategy fits producer-consumer, read-mostly and stencil pattern, as
localizing accesses, in the presence of infrequent writes, avoids expen-
sive data movements from remote places. The programmer is expected
to annotate read methods as const, while the other are considered as
write (see example in Section 3.2). Data sharing based on replication
in SharedX10 offers two levels of replica consistency, namely strong and
weak.
Sharing based on strong data replication. Primitives (ii) and (v) declare
rvals variable specifying that referenced data is shared via replication
with strong replica consistency (see Definition 2).
Sharing based on weak data replication. Primitives (iii) and (vi) declare
rvalw variable for data shared based on weakly consistent replicas (in
the sense of Definition 3).

A SharedX10 programmer is expected to identify the sharing pattern
for each variable, which is typically not a difficult task. The programmer
can then use the suitable SharedX10 mechanisms to optimize the com-
munication needs of the data and improve application performance.

5.2 Syntax

Syntactic constructs of SharedX10 are shown in Table 3. We use v, w, l, r
to range over values, x, y for variables and f to range over field names.
A SharedX10 program runs over a finite set of places ranged over by p.

The construct async s spawns an activity to execute statement s.

70

finish s executes s and waits for the termination of all the activities
spawned during the execution of s. Statement at(e) s synchronously
executes s at place that corresponds to the evaluated expression e. The
sequence statement {s, t} executes t after executing s. However, if s
is an async, its execution will spawn a new activity and then activate t,
and hence statements s and t will actually be executed in parallel. The
grammar of SharedX10 uses ”{” and ”}” for grouping of statements.

Variable declarations val v:T = e s and var x:T = e s de-
clare a new (immutable) variable v and (mutable) x, respectively, of
type T, bind it to the value of expression e and continue as s. A func-
tion literal (x1:T1,...,xn : Tn):T => e creates a function of type
(x1 : T1,...,xn : Tn) => T. For example, (x:Long):Long => x*x

is a function literal describing the squaring function on integers.
Statement def m(v1:T1, ..., vn:Tn) s defines a standard X10

method with a name m, body s and arguments vi of type Ti, i = 1, n.
SharedX10’s const methods are declared with a const keyword.

Atomic statements, unconditional atomic s and conditional when
(e) s, execute body s as if in a single step with respect to atomic blocks
executed by all other activities in the same place. Conditional variant
suspends the execution until the guard e is evaluated to true, further-
more the execution of the test when (e) is atomic with the execution of
the block s.

The expression GlobalRef[T](e) creates a new global reference to
the evaluation of the expression e. When an expression e evaluates to a
global reference, then e() returns the object referenced by e.

SharedX10 distinguishes the between two method invocations for a
variable v, one for the standard X10 method calls i.e., v.m(e1,...,en)

and the other for the const method calls i.e., v.mconst(e1,...,en),
where e1,...,en are arguments corresponding to the method’s formal
parameters.

The rest of the constructs are common language constructs, typical of
object-oriented languages.

The syntax of SharedX10 presented in Table 3 omits the boilerplate
part, such as statements for importing packages, main function and class

71

s, t ::= s′

| sval v : T = e s

| rvals@l : ArrayList[Place] v : T = e s

| rvalw@l : ArrayList[Place] v : T = e s

| sval v : DistArray[T] = e s

| rvals@l : DistArray[ArrayList[Place]] v : DistArray[T] = e s

| rvalw@l : DistArray[ArrayList[Place]] v : DistArray[T] = e s

s′ ::= async s (spawn s in a different task)
| finish s (run s and wait for termination)
| at(e) s (run s at place e)
| while (b) s (while loop)
| if (b) s else t (if − else branch)
| for (s; s; s) s (for loop)
| for (w in r) s (enumerator loop)
| def m(v1 : T1, . . . , vn : Tn) s (method m with a body s)
| def m(v1 : T1, . . . , vn : Tn) const s (const method m with a body s)
| return s′ (return statement)
| atomic s (atomic statement)
| when (e) s (when statement)
| try s catch t (try s on failure execute t)
| val v : T = e s (binds e to value v in s)
| val v : (x1 : T1, . . . , xn : Tn) => T

= (x1 : T1, . . . , xn : Tn) => e s (function literal binds e to value v in s)

72

s′ ::= | var x : T = e s (let bind e to variable v in s)
| x = e s (update var x to e in s)
| {s t} (run s and then t)
| e (expression)

b ::= e ./ e (logical expression)
| ! b (negation)
| true (tautology)

e ::= e.f (field selecton)
| new T() (object construction)
| e.m(e1, . . . , en) (method invocation)
| e.mconst(e1, . . . , en) (const method invocation)
| v (values)
| x (variables)
| v(i) (array access)
| GlobalRef[T](e) (GlobalRef construction)
| e() (GlobalRef deconstruction)
| e⊕ e (arithmetic expression)

Table 3: SharedX10 syntax

73

declaration, that is required to change an SharedX10 program into an
executable one. X10 relies on a type system to ensure that any selection
operation occurring at runtime is performed on an object that actually
contains the selected field. We don’t provide static semantic rules, nor
work with exceptions in the syntax, we simply assume correctness of
programs written in SharedX10.

5.3 Encoding

In this section we introduce the transformation function

[]θ,π : s→ s′

that takes as an argument a SharedX10 program s, and transforms
into an X10 program s’.

v θ(v) Description
sval u Sharing based on a single data instance.
rvals rs Sharing based on strong replication.
rvalw rw Sharing based on weak replication.

Table 4: Function θ

The rules for transformation use auxiliary functions θ and π, com-
pare function and synchronization variable, i.e., tokens. Function θ when
applied to a shared variable returns the sharing strategy of the shared
variable. Table 4 shows the possible values for θ. Function π for a repli-
cated variable returns a variable that contain a set of places for replicas.
For example, evaluation: [rvals@l v:T = new T(); s]θ,π is com-
posed of two consecutive steps; the first step evaluates rvals statement
i.e., [rvals@l v:T = new T();]θ,π, and it is followed by [s]θ′,π′ ,
where θ and π are updated after the first step, such that θ′(v) = rs, π′(v)
= l. It is assumed that initially, at the beginning of the program transfor-
mation, it holds that domains of the functions are empty i.e., Dom(θ) = ∅
and Dom(π) = ∅.

74

Figure 26: Schematic view of possible allocation of variables to places in
Rules 2 and 3

5.3.1 Transformation Rules

The transformation rules we present below guided our prototype
implementation of SharedX10 in XTEXT.

1) [sval v:T = e; s]θ,π →

val v:T = [e]θ,π;
val v_gref:GlobalRef[T] = new GlobalRef[T](v);
[s]θ∪(v,u),π

Definition of a shared variable sval v of generic type T, and ini-
tialized to the value of expression e, is transformed into a definition
of variable val v which has an associated global reference v gref.
This representation ensures that an sval is stored at a single place
(that of allocation) with no replicas. We detail the transformation of
data accesses to sval variable in the rule 4. In the continuation of the
program transformation, θ is updated such that it maps v to u, indicating
that v is stored at a single place, i.e., unreplicated.

2-3) [rval(s/w)@l:ArrayList[Place] v:T = e; s]θ,π →

val v:DistArray[T] = DistArray.make[T]
(Dist.makeUnique(l), Point => [e]θ,π]);
val v_token = new Token();
val v_token_gref:GlobalRef[Token] =
new GlobalRef[Token](v_token);
[s]θ∪(v,rs(rw)),π∪(v,l)

To replicate (either strongly or weakly) a variable v of type T across an ar-

75

ray of places, l:ArrayList[Place], we use X10’s built-in distributed
array class, DistArray, that represents a generic multidimensional ar-
ray distributed over multiple places. There are various strategies avail-
able for initializing such array (e.g. see Section 2.2). We choose the unique
distribution, which stores one data element (Point), initialized to the
value of evaluated expression e, per place contained in array l. Further-
more, token v token and its global reference v token gref are created
to be used for synchronizing accesses to v.
Figure 26 illustrates allocation of variables to places for the code snip-
pet in Listing 5.1. Lines 1-3 are dedicated to creating list of places
l, which in this case contains two places out of possible n. At line 5
rvals is initialized to a new instance of a generic class ClassG. Con-
sequently, v token and v token gref are allocated at the same place
where rvals statement is executed.

Listing 5.1: Example use of rvals statement

1 val l:ArrayList[Place] = new ArrayList[Place]();
2 l.add(Place.places(0));
3 l.add(Place.places(2));
4 rvals@l v:ClassG = new ClassG();

4) [v]θ,π

If v /∈ Dom(v) then apply 4a) [v]θ,π →

v

If θ(v) = u then apply 4b) [v]θ,π →

at(v_gref.home) v_gref()

If θ(v) ∈ {rs, rw} then apply 4c) [v]θ,π →

v(v.dist.get(here).maxPoint())

Rule 4 describes transformation of a variable reference. There are
tree cases: if v /∈ Dom(θ) then no transformation is needed since v is
not a shared variable (Rule 4a); if θ(v) = u the reference is resolved
by using the global reference v gref created in rule 1 (Rule 4b); and if
θ(v) ∈ {s,w} the transformed expression targets the local replica of v
(Rule 4c).

76

5) [v.m(e1,. . . ,en)]θ,π

If v /∈ Dom(v) ∨ θ(v) = u
then apply 5a) [v.m(e1,. . . ,en)]θ,π →

[v]θ,π.m([e1]θ,π,...,[en]θ,π)

If θ(v) ∈ {rs, rw} then apply 5b) [v.m(e1,. . . ,en)]θ,π →

at(v_token_gref.home) v_token_gref().acquire();
finish for (p in π(v)) at(p) async
[v]θ,π.m([e1]θ,π,...,[en]θ,π);
at(v_token_gref.home) v_token_gref().release();

Rule 5 is applicable when transforming method invocations, where
m is a method name, e1 to en are arguments and the method is invoked
on variable v. There are two cases depending on the type of v. Rule 5a
is applicable if v is not shared, or defined as sval (see Rule 1), while
Rule 5b is applicable if v is shared via replication, in which case the
method m needs to be invoked on all replicas, and such code needs to
be synchronized by acquiring and releasing the synchronization token
v token (see Rule 2 and Listing 5.3). There are several strategies one
can employ to make replicas consistent. We chose finish and async
constructs to synchronize several parallel activities (one activity per
replica).

6) [v.mconst(e1,. . . ,en)]θ,π

If θ(v) = rw then apply 6a) [v.mconst(e1,. . . ,en)]θ,π →

[v]θ,π.m([e1]θ,π,...,[en]θ,π)

If θ(v) = rs then apply 6b) [v.mconst(e1,. . . ,en)]θ,π →

at(v_token_gref.home) v_token_gref().acquire();
[v]θ,π.m([e1]θ,π,...,[en]θ,π);
at(v_token_gref.home) v_token_gref().release();

Rule 6 is dedicated to const methods which play important role for
replicated variables. According to the replica management algorithms

77

Figure 27: Generic example illustrating Rules 8-9

(see Section 3.3), when variable v is weakly replicated (Rule 6a) then
no synchronization is required, while when v is strongly replicated
then then the method invocation happens between token acquisition
and release. In both cases, const method is invoked only on the local
replica, obtained by transforming [v]θ,π via Rule 4.

7) [sval v:DistArray[T] = e; s]θ,π →

val v:DistArray[T] = [e]θ,π;
[s]θ∪(v,u),π

Rule 7 applies when variable sval v is a distributed array of elements
of generic type T. Each array element is allocated and accessed at a
single place (see Rule 10b).

Figure 27 illustrates on a generic example an allocation of variables
to places as a result of transformation specified in following Rules 8 and
9. From the figure one can note that each element of v is a distributed
array v[i], such that v[i][j] = v’[i] located at l[i][j].

8-9) [rval(s/w)@l:DistArray[ArrayList[Place]]
v:DistArray[T] = v’; s]θ,π →

78

val v:DistArray[DistArray[T]] = DistArray.make[DistArray
↪→ [T]](v’.dist);

val v_tokens:DistArray[Token] = DistArray.make[Token](v
↪→ ’.dist);

for (p in v’) at(v’.dist(p)) {
l(p).sort(cmp);
val s:Long = l(p).size();
val temp:Rail[Place] = new Rail[Place](s);
for (var j:Long = 0; j<s; i++)
temp(j) = l(p)(j);
val replicaPlaces:PlaceGroup = new SparsePlaceGroup(temp

↪→);
val replicaDist = Dist.makeUnique(replicaPlaces);
v_tokens(p) = new Token();
v(p) = DistArray.make[T](replicaDist, ([i]:Point(1)) =>

↪→ [v’(i)]θ,π(p));
}
[s]θ∪(v,rs(rw)),π∪(v[0],l[0])∪···∪(v[n],l[n])

Rules 8 and 9 describe transformations applied when sharing of
distributed array elements is based on replication. Such replication
is pair-wise, i.e., each element v(i) is replicated across places in
the corresponding array l(i). Auxiliary variables v tokens and
v distributions, both being distributed arrays with the same ele-
ment distribution as v, are used to store synchronization tokens and
distributions of replicas for each element in v. It is required that the type
of variable v’ used for initialization corresponds to the type of v, i.e.,
DistArray[T].

Rules 10, 11 and 12 describe transformations involving elements
v(i) and are respectively analogue to rules 4, 5 and 6. Expression
v.dist(i) is used to refer to the place where v(i) is stored.

10) [v(i)]θ,π

If v(i) /∈ Dom(v(i)) then apply 10a) [v(i)]θ,π →

v(i)

If θ(v(i)) = u then apply 10b) [v(i)]θ,π →

79

at(v.dist(i)) v(i)

If θ(v(i)) ∈ {rs, rw} then apply 10c) [v(i)]θ,π →

(at(v.dist(i)) v(i))(v(i).dist.get(here).maxPoint())

11) [v(i).m (e1,. . . ,en)]θ,π

If θ(v(i)) = u then apply 11a) [v(i).m (e1,. . . ,en)]θ,π →

[v(i)]θ,π.m([e1]θ,π,...,[en]θ,π)

If θ(v(i)) ∈ {rs, rw} then apply 11b) [v(i).m (e1,. . . ,en)]θ,π →

at(v.dist(i)) v_tokens(i).acquire();
finish for (p in π(i)) at(p) asyns
[v(i)]θ,π.m([e1]θ,π,...,[en]θ,π);
at(v.dist(i)) v_tokens(i).release();

12) [v(i).mconst(e1,. . . ,en)]θ,π

If θ(v(i)) = rs then apply
12a) [v(i).mconst(e1,. . . ,en)]θ,π →

[v(i)]θ,π.m([e1]θ,π,...,[en]θ,π)

If θ(v(i)) = rw then apply 12b) [v(i).mconst(e1,. . . ,en)]θ,π →

at(v.dist(i)) v_tokens(i).acquire();
[v(i)]θ,π.m([e1]θ,π,...,[en]θ,π);
at(v.dist(i)) v_tokens(i).release();

The remaining rules, starting from the 13th until the 39th, just propagate
the transformation as follows:

13) [async s]θ,π → async [s]θ,π

14) [finish s]θ,π → finish [s]θ,π

15) [at(e) s]θ,π → at([e]θ,π) [e]θ,π

80

16) [while (b) s]θ,π → while [b]θ,π [s]θ,π

17) [if (b) s else t]θ,π → while [b]θ,π [s]θ,π

18) [for (s; s; s) s]θ,π → for ([s]θ,π;[s]θ,π;[s]θ,π)[s]θ,π

19) [for (w in r) s]θ,π → for (w in r) [s]θ,π

20) [def m(v1:T1, . . . ,vn:Tn) s]θ,π →

def m(v1:T1, . . . ,vn:Tn) [s]θ,π

21) [def m(v1:T1, . . . ,vn:Tn) const s]θ,π →

def m(v1:T1, . . . ,vn:Tn) const [s]θ,π

22) return [s]θ,π → return [s]θ,π

23) atomic [s]θ,π → atomic [s]θ,π

24) [when (e) s]θ,π → when ([e]θ,π) [s]θ,π

25) [try s catch t]θ,π → try [s]θ,π catch [t]θ,π

26) [val v:T = e; s]θ,π → val v:T = [e]θ,π;[s]θ,π

27) [val v:(x1:T1, . . . ,xn:Tn) => T
= (x1:T1, . . . ,xn:Tn) => e s]θ,π →
val v:(x1:T1, . . . ,xn:Tn) => T
= (x1:T1, . . . ,xn:Tn) => [e]θ,π[s]θ,π

28) [var x:T = e; s]θ,π → var x:T = [e]θ,π;[s]θ,π

29) [x = e; s]θ,π → x = [e]θ,π;[s]θ,π

30) [{s; t}]θ,π → {[s]θ,π;[t]θ′,π′}

31) [e ./ e]θ,π → [e]θ,π ./ [e]θ,π

81

32) [!b]θ,π → ![b]θ,π

33) [true]θ,π → true

34) [e.f]θ,π → [e]θ,π.f

35) [new T()]θ,π → new T()

36) [x]θ,π → x

37) [GlobalRef[T](e)]θ,π → GlobalRef[T] ([e]θ,π)

38) [e()]θ,π → [e]θ,π()

39) [e⊕ e]θ,π → [e]θ,π ⊕ [e]θ,π

The function literal cmp is used in the rule number 8 for sorting an array
of places, its specification is shown in the Listing 5.3.

Listing 5.2: Compare function

val cmp : (p1:Place, p2:Place) => Int
= (p1:Place, p2:Place) => {
if (p1.id() > p2.id())
return Int.operator_as(1);

else if (p1.id() < p2.id())
return Int.operator_as(-1);

else return Int.operator_as(0);
};

Accesses to replicated variables is guarded by the synchronization vari-
ables which are instances of the Token class. The definition of the Token
class is shown in the Listing 5.3. The class contains one integer (Long)
field named token and two methods for acquiring (acquire()) and
releasing (release()) hold of the synchronization token.

Listing 5.3: Token class

public class Token {
var token:Long;
def this() {
token = 0;

}

82

def acquire() {
when(token == 0) token = 1;

}
def release() {
atomic token = 0;

}
}

Example

Listing 5.4 shows a simple SharedX10 program snippet which will serve
to illustrate how some of the transformation rules work. The main idea
of the snippet is to define a distributed object which would represent a
graph and, based on it, to define a shared graph that replicates its nodes
such that neighboring nodes are co-located.

Lines 1-2 define a variable graph as a distributed array whose
elements will be block distributed across available places (see block
distribution in Section 2.2). Lines 3-5 define a distributed ar-
ray allPlaces which will be instrumental in defining shared graph
sharedGraph (Line 7), hence it should store localities (places) in ar-
rays of places (ArrayList[Place]). For instance, places of neigh-
bors of node graph(p) would be stored at allPlaces(p). Further-
more, its distribution should correspond to that of graph, i.e., dist.
For conciseness, we leave out code that stores information in graph and
allPlaces based on some input data (Line 6). Final line simply stores
degree of node at position 0 to a local variable degree.

Listing 5.4: SharedX10 program snippet

1 val dist = Dist.makeBlock(Region.make(0, size-1));
2 val graph:DistArray[GraphNode] = DistArray.make[GraphNode](

↪→ dist, (Point) => new GraphNode());
3 val allPlaces:DistArray[ArrayList[Place]] = DistArray.make[

↪→ ArrayList[Place]](dist);
4 for (nodeId in allPlaces) at(dist(nodeId))
5 allPlaces(nodeId) = new ArrayList[Place]();
6 /* Code that instantiate graph and allPlaces */
7 rvalw@allPlaces sharedGraph:DistArray[GraphNode] = graph;
8 val degree:Long = sharedGraph(0).getDegree();

83

Listing 5.5 shows an X10 program obtained after applying the trans-
formation rules (Rules 8 and 10) on program snippet in Listing 5.4.
Lines in red 7-19 and Line 20 show replacements for Lines 7 and
8 in the SharedX10 program snippet.

Listing 5.5: Transformed program snippet

1 val dist = Dist.makeBlock(Region.make(0, size-1));
2 val graph:DistArray[GraphNode] = DistArray.make[GraphNode](

↪→ dist, (Point) => new GraphNode());
3 val allPlaces:DistArray[ArrayList[Place]] = DistArray.make[

↪→ ArrayList[Place]](dist);
4 for (nodeId in allPlaces) at(dist(nodeId))
5 allPlaces(nodeId) = new ArrayList[Place]();
6 /* Code that instantiate graph and allPlaces */
7 val sharedGraph:DistArray[DistArray[GraphNode]] =

DistArray.make[DistArray[GraphNode]](graph.dist);
8 val sharedGraph tokens:DistArray[Token] =

DistArray.make[Token](graph.dist);
9 for (p in graph) at (graph.dist(p)) {

10 allPlaces(p).sort(cmp);
11 val s:Long = allPlaces(p).size();
12 val temp:Rail[Place] = new Rail[Place](s);
13 for (var j:Long = 0; j < s; j++)
14 temp(j) = allPlaces(p)(j);
15 val replicaPlaces:PlaceGroup = new

SparsePlaceGroup(temp);
16 val replicaDist = Dist.makeUnique(replicaPlaces);
17 sharedGraph tokens(p) = new Token();
18 sharedGraph(p) = DistArray.make[GraphNode](replicaDist,

([i]:Point(1)) => graph(p));
19 }
20 val degree:Long = (sharedGraph(0)(sharedGraph(0).dist

↪→ .get(here).maxPoint())).getDegree();

In the transformed program, sharedGraph is represented as a dis-
tributed array, such that each array element is yet another distributed
array (Line 7). The distribution of the main distributed array corre-
sponds to that of graph. Line 8 creates a distributed array which stores
tokens for synchronization.

for loop in Lines 9-19 is responsible for creating a distributed ar-
ray of replicas for each graph node. Essentially, a distributed array of
replicas of node graph(p) is stored at sharedGraph(p), according to
distribution recorded in replicaDist, at line 18. In particular, at

84

each place contained in replicaDist, one replica of the current node is
created. Leading Lines 10-16 perform several necessary and prepara-
tory computations. First, the set of places for replicas is sorted (line
10), then copied to an auxiliary data structure (Rail), at lines 12-14,
which is used to form a PlaceGroup (line 15), and finally used to cre-
ate a distribution replicaDist. Line 17 creates an instance of Token
class for synchronizing accesses to replicated node graph(p) and as-
signs it to the dedicated array.

As a result, sharedGraph is a two-dimensional distributed array,
such that element at position p, sharedGraph(p), is a distributed
array of replicas of graph(p). Finally, at line 20, a local replica
of node at position 0 is accessed to retrieve its degree. Expression
sharedGraph(0).dist.get(here).maxPoint() computes the po-
sition of (local) replica at the place of execution (here) as it first finds
indexes of all points in replica distribution mapped to here, and then
takes the maximum one, which is also the unique, as distribution maps
only one point (replica) per place (line 16).

5.4 Implementation

It is worth to mention that our initial goal was to implement primitives
for data sharing as X10 annotations. Program transformation associated
with annotations would then be applied by a pre-processor during the
pre-processing phase of program compilation. However, we were unable
to apply this approach as X10 compiler infrastructure was under devel-
opment at the time and no documentation for annotations was available.
Our following choice was to implement SharedX10 as a DSL using the
XTEXT framework. The implementation encompasses grammar specifi-
cation, routines for scoping and type checking and a specification of a
code generator that produces X10 code for an input SharedX10 program.

Listing 5.6 shows a snippet of main SharedX10 syntactic rules in
terms of XTEXT grammar.

Listing 5.6: SharedX10 grammar snippet

1 Program:
2 class += Class*
3 ;
4 Class:
5 ’public’ ’class’ name = ID

85

6 (’extends’ superclass=[Class])?
7 ’{’ members += Member* ’}’
8 ;
9 Member:

10 Method | VariableDef | SharedVariableDef
11 ;
12 Method:
13 ’def’ name = (ID | ’this’) ’(’ (params += Parameter
14 (’,’ params += Parameter)*)? ’)’ (isconst ?= ’const’)?
15 body = Body
16 ;
17 Parameter:
18 name = ID (istyped ?= ’:’ type = VariableType)?
19 ;
20 Body:
21 ’{’ statements += Statement* ’}’
22 ;
23 VariableType:
24 type = [Class]
25 (isarray ?= ’[’ innerType = VariableType ’]’)?
26 ;
27 VariableDef:
28 vartype = (’var’ | ’val’)
29 name = ID (istyped ?= ’:’ type = VariableType)?
30 (isinit ?= ’=’ expression = Expression)? ’;’
31 ;
32 SharedVariableDef:
33 ’sval’ name = ID ’:’ type = VariableType ’=’ expression =
34 Expression ’;’ |
35 ’rvals’ name = ID ’@’ places = [VariableDef] ’:’ type =
36 VariableType ’=’ expression = Expression ’;’ |
37 ’rvalw’ name = ID ’@’ places = [VariableDef] ’:’ type =
38 VariableType ’=’ expression = Expression ’;’
39 ;

Starting rule, Program, indicates that the root element of program syn-
tax tree is a collection of Class objects, which are in turn collections
of Member objects. Class members are methods, standard X10 variable
definitions and shared variable definitions, modeled with rules Method,
VariableDef and SharedVariableDef. Methods begin with a key-
word ’def’ followed by a method name (this for a constructor), fol-

86

lowed by a list of method parameters and a body. If the method is a
const, then the value of feature isconst in corresponding node of the
syntax tree will be true, otherwise false. Rule Parameter indicates that a
parameter has a name and that it can be typed. VariableType defines
variable type through cross-reference mechanism. Standard variable def-
inition contains a keyword val or var, a name, and it is possibly typed
and initialized to a expression. Shared variable definition contains cross-
references for the feature places and it is expected to be initialized to
an expression.

The grammar snippet omits the standard rules for expressions and
statements. The complete grammar specification can be found in Ap-
pendix B.

5.5 Performance Evaluation

In this section we describe the practical experiments that were performed
in X10 on a synthetic benchmark application, in order to measure the
impact on performance that shared data accesses can have.

The model behind the benchmark application is based on intensive
parallel data accesses. Figure 5.7 shows a pseudo-code specification of
the data access function. Each access to data is done by a separate ac-
tivity, that is spawned in a loop (line 1). The number of concurrently
running activities can be up to some pre-defined NUM AC number. Fur-
thermore, each activity can perform either an update or a read access on
a shared variable v, with a pre-defined probability p.

We tuned parameters p and NUM AC to compare program perfor-
mances with respect to different ratios of read/update access, levels of
concurrency, as well as size of accessed data.

Listing 5.7: Data access function

1 for (var i:Long = 0; i < NUM_AC; i++) async {
2 with probability p { // update
3 v.update();
4 }
5 with probability 1-p { // read
6 val temp = v.getData();
7 }
8 }

87

Hypothesis. The main motivation behind the experiments is to demon-
strate that better data locality and minimized communication can be ach-
ieved by replicating data in X10. In a classical, non-replicated scenario,
local read access is granted only to activities residing at the same place
of the data. Remote read access to data involves network data transfer
cost, which is not negligible, and increases with the size of accessed data,
as we experimentally confirm. Data replication can be seen as an opti-
mization that can remedy this problem. However, replications calls for
consistency protocols, that introduce the costs of performing the same
update access on each replica. We performed a set of experiments that
provide indications about the situations when such optimization is ben-
eficial and the level of impact it can have on performance. Our experi-
mental results show how the ratio between frequencies of updates and
reads, the degree of concurrent data accesses and the size of data affects
the performance of two different versions of a program: a standard one
that does not use replicas (program no-replicas) and the one with repli-
cas (program replicas).

Program replicas: In this variant, the shared data is replicated at each
place. Presence of replicas call for the use of consistency protocols. In
these implementations the level of consistency for replicated data is weak
i.e., sequential consistency. According to the definition of SC presented
in the Section 3.3, this means that the interleaving of actions is allowed as
update of replicas does not happen instantaneously across all the places.
Particularly, when one replica is updated at a certain place, multiple ac-
tivities update in parallel remaining replicas in non-atomic way. During
this process, local reads can occur at remote places, before all replicas
have the same values. Interleaving of two or more update operations is
prevented by the synchronization operations.

Listing 5.8: Program replicas in SharedX10

1 val places = Place.places();
2 rvalw@places a = new A();
3 for (place in places) at(place) async {
4 for (var i:Long = 0; i < NUM_AC; i++) async {
5 with probability p { // update
6 a.update();
7 }
8 with probability 1-p { // read
9 val temp = a.getData();

10 }

88

11 }
12 }

The SharedX10 code snippet (Listing 5.8) presents a pseudo-code
specification of the program replicas in SharedX10. Variable a, an in-
stance of class A, is shared via weak replication across all available places
(lines 1-2). All places perform the same kind of access to the data in
parallel (specified in Listing 5.7) (lines 3-12).

Following Listing 5.9 shows the same program specified in X10, ob-
tained by applying the program transformation described in Section 5.3.
The same code snippet also demonstrates the programmer’s effort in im-
plementing replicated shared variable in X10.

Listing 5.9: Program replicas in X10

1 val places = Place.places();
2 val a:DistArray[A] = DistArray.make[A](Dist.makeUnique(

↪→ places), Point => new A());
3 val a_token = new Token();
4 val a_token_gref:GlobalRef[Token] = new GlobalRef[Token](

↪→ a_token);
5 for (place in places) at(place) async {
6 for (var i:Long = 0; i < NUM_AC; i++) async {
7 with probability p { // update
8 at(a_token_gref.home) a_token_gref().acquire();
9 finish for (p in places) at(p) async

10 a(a.dist.get(here).maxPoint()).update();
11 at(a_token_gref.home) a_token_gref().release();
12 }
13 with probability 1-p { // read
14 val temp = a(a.dist.get(here).maxPoint()).getData();
15 }
16 }
17 }

Program no-replicas: the implementations of these programs are
based on the standard approach that does not involve replication of
shared data. The basic idea is that shared data is stored at a single place,
with no replicas. Local access to the shared data is granted only to ac-
tivities running at that place, while other accesses are done remotely, via
global-references.

89

Listing 5.10 shows a specification of pseudo-code of program no-
replicas in SharedX10. The only difference to the program replicas
shown in the Listing 5.8 is that variable a is declared as sval.

Listing 5.10: Program no-replicas in SharedX10

1 val places = Place.places();
2 sval@places a = new A();
3 for (place in places) at(place) async {
4 for (var i:Long = 0; i < NUM_AC; i++) async {
5 with probability p { // update
6 v.update();
7 }
8 with probability 1-p { // read
9 val temp = v.getData();

10 }
11 }
12 }

Listing 5.11 shows the same program specification in X10 obtained by
the program transformation.

Listing 5.11: Program no-replicas in X10

1 val places = Place.places();
2 val a:A = new A();
3 val a_gref:GlobalRef[A] = new GlobalRef[A](a);
4 for (place in places) at(place) async {
5 for (var i:Long = 0; i < NUM_AC; i++) async {
6 with probability p { // update
7 at(a_gref.home) a_gref().update();
8 }
9 with probability 1-p { // read

10 val temp = at(a_gref.home) a_gref().getData();
11 }
12 }
13 }

The source code of the program specifications is available for down-
load at below link1.

1http://sysma.imtlucca.it/wp-content/uploads/2015/05/Source_X10_
example.rar

90

http://sysma.imtlucca.it/wp-content/uploads/2015/05/Source_X10_example.rar
http://sysma.imtlucca.it/wp-content/uploads/2015/05/Source_X10_example.rar

200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
Update/read ratio = 0.25

NUM_AC

T
im

e
(s

ec
)

200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
Update/read ratio = 0.2

NUM_AC

T
im

e
(s

ec
)

200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
Update/read ratio = 0.1

NUM_AC

T
im

e
(s

ec
)

200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
Update/read ratio = 0.01

NUM_AC

T
im

e
(s

ec
)

 no−replicas

 replicas

Figure 28: (Ratio): The two strategies with shared data of size ≈ 0.4MB

Experiments: Configuration of the Scenario. We compare perfor-
mances of two variants which we refer to as no-replicas and repli-
cas. The essence of the program with replicas has been introduced
through Listings 5.8 and 5.9. In contrast to the replicated variant, the
non-replicated one excludes creation of replicas, hence every access is
directed towards a single centralized data variable, as promoted in List-
ings 5.10 and 5.11.

To obtain more elaborate results we tune three parameters in our im-
plementations:

• The ratio of update/read rates;

• The number of shared data accesses per place NUM AC; and

• The size of shared data.

Update and read rates are used to compute the probability p with
which update can happen inside our dataAccess function, and it is

91

0.050.10.150.20.25
0

0.5

1

1.5

2

2.5

3

Update/read ratio

T
im

e
(s

ec
)

NUM_AC = 200

0.050.10.150.20.25
0

0.5

1

1.5

2

2.5

3

Update/read ratio

T
im

e
(s

ec
)

NUM_AC = 300

0.050.10.150.20.25
0

0.5

1

1.5

2

2.5

3

Update/read ratio

T
im

e
(s

ec
)

NUM_AC = 400

0.050.10.150.20.25
0

0.5

1

1.5

2

2.5

3

Update/read ratio

T
im

e
(s

ec
)

NUM_AC = 500

 no−replicas

 replicas

Figure 29: (Access number): The two strategies with shared data of size
≈ 0.4MB

calculated by the formula:

p = update rate/(update rate + read rate)

For calculating p we use the following pairs of update and read
rates: {(1, 100), (1, 10), (1, 5), (1, 4)}. The number NUM AC is a number of
data accesses/concurrently spawned activities per place and takes val-
ues 200, 300, 400 and 500. As an example, if the update/read ratio is 1/5
and NUM AC is 400, it means that there are approximately 80 update and
320 read accesses to shared data per place.

Finally, the size of shared data in one case of our experiments is
≈0.4MB and ≈4MB in the other.

For evaluating our test examples, we used the X10 compiler tar-
geting the Java backend (a.k.a. the Managed X10), version X10-2.5.0-
linux/x86 64 on OS Ubuntu 14.4.

All results are obtained on hardware with 2 processors Intel(R)
Xeon(R) CPU E5620 @ 2.40GHz, each one with 4 cores and 2 threads
per core, with 40GB of RAM.

92

200 250 300 350 400 450 500
0

5

10

15

20

25
Update/read ratio = 0.25

NUM_AC

T
im

e
(s

ec
)

200 250 300 350 400 450 500
0

5

10

15

20

25
Update/read ratio = 0.2

NUM_AC

T
im

e
(s

ec
)

200 250 300 350 400 450 500
0

5

10

15

20

25
Update/read ratio = 0.1

NUM_AC

T
im

e
(s

ec
)

200 250 300 350 400 450 500
0

5

10

15

20

25
Update/read ratio = 0.01

NUM_AC

T
im

e
(s

ec
)

 no−replicas

 replicas

Figure 30: (Ratio): The two strategies with shared data of size ≈ 4MB

Experiments: Data and Interpretation. The results of our experiments
are given in terms of dependencies between the ratio of updates and
reads performed by all activities (Fig. 28, 30) or the number of accesses
NUM AC (Fig. 29, 31), represented on x axis, and time taken by activities
to complete their computations, on y axis. Time is expressed in seconds
and it is obtained as the average of 10 executions. Fig. 28 and 29 corre-
spond to results obtained for size of shared data of≈ 0.4MB, while Fig. 30
and 31 correspond to results obtained for the size of ≈ 4MB.

Figs. 28 to 31 are obtained for 4 places. The results obtained for 8
places can be found in the Appendix A.

From the presented results we can conclude that the performance
benefit of replication tends to grow with the increasing number of to-
tal accesses and decreasing update/read ratio. Furthermore, the greater
the size of shared data, the more desirable it is to replicate it.

As it can be seen from the figures, preserving consistency across many
replicas can be expensive. However, replication still brings good pays
off when the size of data is either large enough (Fig A.38(c)) or the up-

93

0.050.10.150.20.25
0

5

10

15

20

25

Update/read ratio

T
im

e
(s

ec
)

NUM_AC =200

0.050.10.150.20.25
0

5

10

15

20

25

Update/read ratio

T
im

e
(s

ec
)

NUM_AC =300

0.050.10.150.20.25
0

5

10

15

20

25

Update/read ratio

T
im

e
(s

ec
)

NUM_AC =400

0.050.10.150.20.25
0

5

10

15

20

25

Update/read ratio

T
im

e
(s

ec
)

NUM_AC =500

 no−replicas

 replicas

Figure 31: (Access number): The two strategies with shared data of size
≈ 4MB

date/read ration is small enough (Fig. A.38(a)).
Our initial attempts to scale the experiments to 16 places failed at run-

time with a “Place(0):TOO MANY THREADS” error. We found that a
similar issue with X10 was reported in (IS14). By reconsidering our ex-
periments, we came to the conclusion that the problem was mainly due
to a centralized lock variable and to the large number (more than a thou-
sand) of activities competing simultaneously for it. This should have cre-
ated congestion at home place of the lock, i.e. at place 0. Initially, we did
aim for high parallelism and implemented each access to shared data as
a separate activity, by using the async feature (see listing 5.7 line 1).
Alternatively, one could dedicate a smaller number of activities to handle
those accesses. Indeed, update accesses are atomic and hence could be
sequentialized rather than parallelized. Conversely, read accesses can be
interleaved and therefore should be parallelized in order to achieve high
performance. To reach this goal, one has to take into account certain lim-
itations posed on the maximum number of activities and the amount of
memory dedicated to the program.

94

5.6 Summary and Related Work

In this chapter we presented the SharedX10 language which comprises
of a subset of X10 enriched with primitives to allow the program-
mer to specify data sharing following the application sharing pattern.
Such sharing is based on two strategies: 1) replication, with two lev-
els of replica consistency, and 2) centralized data instance. In particu-
lar, the chapter presented language syntax, formalization of encoding of
SharedX10 into X10, the implementation in terms of XTEXT grammar and
experimental results. The evaluations were based on a synthetic bench-
mark application, which show how the data sharing strategy impacts the
application performance in term of the size of shared body of data, fre-
quency and ration of read and write accesses.

To our knowledge, the most closely related work on X10 to ours is
presented in (PTA14). The main idea is improving performance of X10
programs by employing compiler and runtime in deciding which shar-
ing strategy should be used for each variable. In this approach, no hints
from the programmer are required, however, profiling activities by com-
piler and runtime as reported incur significant performance cost in some
cases. We believe that using primitives for data sharing, such as the ones
we propose, supported by the X10 compiler, could lead to optimal per-
formances.

95

Chapter 6

Case Studies

The focus of this chapter is on evaluation of the proposed approach
in terms of performance and programmability. To this end, we exper-
imented with X10, SharedX10, Klaim and RepliKlaim using two case
studies from the large-scale graph analytics. In particular, we considered
two graph algorithms; one which computes the maximum node degree
and the other that computes PageRank values. Both algorithms are iter-
ative, in which computations are realized conceptually in parallel, how-
ever, they differ in terms of required level of synchronization between
parallel processes. This chapter presents several program specifications
and experimental results.

Structure of the chapter

Section 6.1 is a preliminary, while Sections 6.2 and 6.3 introduce the
two case studies with specifications in X10, SharedX10, Klaim and
RepliKlaim. Section 6.4 describes the performance evaluation setup and
the discusses results. Finally, in Section 6.5 provides a brief summary
with a reference to related work.

6.1 Preliminaries

Algorithms presented in the subsequent sections operate on data repre-
senting graph input from an external resource (i.e., a textual file) and dis-
tributed across a number of localities (see Figure 32). In terms of X10 and

96

Figure 32: A graph representation based on block distribution across four
localities

SharedX10 one such locality corresponds to the notion of place, while in
Klaim and RepliKlaim’s terms a locality corresponds to a network node.
Each node in a graph is at least characterized by an integer id and a list
of ids of neighboring nodes. Distribution of nodes across localities is or-
ganized into blocks of approximately the same size, which would be de-
ployed at run-time on homogeneous cluster nodes, equal in terms of stor-
age and computational power. X10 and SharedX10 feature a distributed
array (DistArray, see Section 2.2) which facilitates spreading blocks of
globally shared data across places. In the corresponding algorithm spec-
ifications, the graph variable refers to such distributed array, while the
expression graph.dist(nodeId) is used to obtain the place of alloca-
tion of the node with id nodeId. In Klaim and RepliKlaim specifications,
a graph is represented as a collection of tuples whose block distribution
is achieved by placing a tuple t, associated to node with id nodeId, to
a network component whose locality corresponds to nodeId%n, where
n is the total number of components (see Section 2.1). Moreover, we use
notation lh(nodeId) to refer to locality of such tuple t.

For each case study we consider two approaches in specifying locality
of graph data; the traditional one with no replicas and one based on repli-
cas. Figure 32 provides an illustration of an undirected graph distributed
across four localities. Figure 33 shows the same graph distributed across
four localities such that some nodes are replicated so that neighboring
nodes are co-located. The choice of distribution may have a significant
impact on application performance, as it is experimentally shown in this
chapter. Moreover, both case studies employ weak level of replica con-
sistency i.e., the sequential consistency, which provides sufficient guar-

97

Figure 33: A graph representation based on block distribution with replicas
across four localities

antees in both cases.

6.2 Maximum Graph Degree

The algorithm presented here computes the maximum degree of an undi-
rected graph in an iterative computation. At each step of the algorithm,
each node degree is updated to the maximum value of degrees of its
neighbor nodes. The algorithm finishes when the number of iterations
is equal to graph diameter, at which point the maximum degree is prop-
agated to each node. The algorithm requires all processes to proceed
at the same speed, meaning that the synchronization step is required at
each iteration.

6.2.1 X10 and SharedX10 Specifications

The following code listings use constructs: clocked finish, clocked
async and Clock.advanceAll() to achieve synchronous execu-
tion (e.g., as exemplified in Section 2.2). Methods getDegree(),
setDegree() and getNeighbors() are invoked on a node object to
respectively retrieve/set node degree and retrieve a list of neighbor node
ids.

The first code snippet shown in Listing 6.1 presents a naive implemen-
tation of the algorithm in X10.

Listing 6.1: Case study I in X10 (1)

1 clocked finish for (nodeId in graph) clocked async
↪→ at(graph.dist(nodeId))

2 for (var i:Long = 0; i < diameter; i = i + 1) {

98

3 for (neighId in graph(nodeId).getNeighbors()) {
4 if (graph(nodeId).getDegree() <

↪→ at(graph.dist(neighId))
↪→ graph(neighId).getDegree())

5 graph(nodeId).setDegree(at(graph.dist(neighId))
↪→ graph(neighId).getDegree());

6 }
7 Clock.advanceAll();
8 }

Line 1 spawns an activity for each node in the graph, to execute
at the place the node is allocated to, which computes the main iterative
computation (lines 2-8) such that all spawned activities synchronize
at the end of each iterative step (line 7). One could rightfully remark
that spawning an activity per graph node could be impractical in real im-
plementations, in fact, we address this point below in section dedicated
to the experimental evaluations. In each iteration (lines 3-6), an ac-
tivity iterates through neighbor nodes of the local node, compares their
degrees with the local node degree, and updates its value if greater is
found.

The highlighted code performs the place-shifting operation which
temporarily suspends the executing activity, until the body of the op-
erations is executed at a remote place; in this case the activity is
suspended until remote data is retrieved. We remark that omitting
at(graph.dist(neighId)) would cause a run-time error when an
activity attempts to access array data which is not co-located with it.
Realization of the highlighted operation requires the undesirable inter-
place communication. In fact, in X10, such communication is made trans-
parent to the programmer, to prompt the programmer to optimize his
code by reducing remote communication. We hence refer to the imple-
mentation as naive as obviously the same data is retrieved twice by each
activity.

Listing 6.2 shows a more carefully written specification in which a lo-
cal variable neighDegree (line 4) is used to store the value of neigh-
bor node degree and hence reduce the number of times each activity is
place-shifted to half as many.

Listing 6.2: Case study I in X10 (2)

1 clocked finish for (nodeId in graph) clocked async
↪→ at(graph.dist(nodeId))

2 for (var i:Long = 0; i < diameter; i = i + 1) {

99

3 for (neighId in graph(nodeId).getNeighbors()) {
4 val neighDegree = at(graph.dist(neighId))

graph(neighId).getDegree();
5 if (graph(nodeId).getDegree() < neighDegree)
6 graph(nodeId).setDegree(neighDegree);
7 }
8 Clock.advanceAll();
9 }

Since each node object is involved in computations which realize at
two or more places, it can be considered as shared data object. Further-
more, it is easy to conclude that the shared data access pattern corre-
sponds to stencil (see Section 5.1).

We further present two specifications in SharedX10, of the same algo-
rithm, representing two different approaches to specifying shared data
locality.

The first approach, shown in Listing 6.3, is based on the idea that each
node object is to be stored at a single place, or it may not be even relevant
to the programmer, who simply wishes to declared data as shared and
not having to consider data communication in the program.

sharedGraph in below listing is defined as

sval sharedGraph:DistArray[GraphNode] = graph

where graph object is constructed from an input file. sharedGraph
shares the same node distribution as graph, illustrated in Figure 32.

While place-shifting is not visible in this specification, it is implied by
the above sharedGraph definition that all remote data accesses will be
realized by inter-place communication (e.g. see Rule 10b in Section 5.3).

Listing 6.3: SharedX10 implementation (1)

1 finish for (nodeId in sharedGraph) clocked async
↪→ at(sharedGraph.dist(nodeId))

2 for (var i:Long = 0; i < diameter; i = i + 1) {
3 for (neighId in nodes(nodeId).neighbors) {
4 if (sharedGraph(nodeId).getDegree() < sharedGraph(

↪→ neighId).getDegree())
5 sharedGraph(nodeId).setDegree(sharedGraph(neighId).

↪→ getDegree());
6 }
7 Clock.advanceAll();
8 }

100

While it is clear that this approach will not lead to an efficient pro-
gram, for the same arguments used for Listing 6.1, the proportionate
advantage is gained on the side of programmability. As one may ob-
serve, data communication is not visible, which led to a simpler and
more straightforward specification.

An alternative approach, based on the bulk synchronous parallel
(BSP) model (Val90), is presented in Listing 6.4. The BSP model organizes
parallel computation in a sequence of steps separated by a synchroniza-
tion barrier. Each step consists of computation phase and communication
phase. In computation phase only local variables can be accessed (and lo-
cally held copies of remote variables), while in communication phase
data are exchanged between parallel processes.

To make the computation part of the main iterative step execute lo-
cally, it is required that neighbor nodes are collocated, as illustrated in
Figure 33. Hence, implementing the BSP-style of computation calls for
node replication. The style of the computation described requires that
each processor must complete its iterations and communicate the results
to other processors before a new iteration can begin. This can be achieved
with sequential consistency of replicas. In fact, sequential consistency of
replicated variable enables the programmer to apply the same program-
ming logic used for programming common variable accesses (see Sec-
tion 3.2), additionally having in mind that frequent write accesses should
be optimized, i.e., intermediate results should be saved locally and only
final results should be propagated to all replicas. Furthermore, methods
getDegree() and getNeighbors(), invoked on GraphNode objects,
need to be annotated as const as they do not modify the state of repli-
cated node objects.

As a result of the above analysis, sharedGraph used in following
code listing is defined as

rvalw@l sharedGraph:DistArray[GraphNode] = graph

where l is a distributed array of lists of places which shares the
same distribution with graph, and it is constructed during of the
graph inputing phase (complete program specification is available in Ap-
pendix C.1.2).

101

Listing 6.4: SharedX10 implementation (2)

1 clocked finish for (nodeId in sharedGraph) clocked async
↪→ at(sharedGraph.dist(nodeId))

2 for (var i:Long = 0; i < diameter; i = i + 1) {
3 val maxDegree:Long = sharedGraph(nodeId).getDegree();
4 for (neighId in sharedGraph(nodeId).neighbors)
5 if(sharedGraph(neighId).getDegree() > maxDegree)
6 maxDegree = sharedGraph(neighId).getDegree();
7 if(sharedGraph(nodeId).getDegree() != maxDegree)
8 sharedGraph(nodeId).setDegree(maxDegree);
9 Clock.advanceAll();

10 }

Line 1 spawns clocked activities and distributes them across
places where graph nodes are allocated. The computation phase of the
algorithm is realized at lines 3-6. line 3 defines a local variable
maxDegree to store the computed maximum value of neighbor node de-
grees. In communication phase, lines 7-8, maxDegree is propagated
to node replicas if it is greater than the current degree value.

Localizing array accesses reduces data movements from remote
places and can hence have a beneficial affect on the application perfor-
mance. In fact, we carried out experiments based on above specifications
and real-world large graph datasets and report the results in Section 6.4.

The complete programs are available in Appendix C; X10 pro-
gram C.1.1 and SharedX10 program C.1.2 correspond to specifications in
Listings 6.2 and 6.4, while the final X10 program C.1.3 is the SharedX10
program encoded in X10.

6.2.2 Klaim and RepliKlaim Specifications

A graph is a collection of tuples of the form (nodeId, nodeDegree)
and (nodeId, i, neighId)where neighId is an id of the i-th neigh-
bor node, whose total number corresponds to nodeDegree.

Listing 6.5 shows a specification in Java-Klaim which relies on tradi-
tional approach, with no replicas.

102

Listing 6.5: Klaim specification

1 out(’token’, size)@ltoken;
2 for (i = 0; i < size; i = i + 1)
3 eval(compute(i))@lh(i);
4 compute(nodeId):
5 {
6 for (i = 0; i < diameter; i = i + 1) {
7 in(’token’, ?value)@ltoken;
8 out(’token’, value--)@ltoken;
9 read(nodeId, ?nodeDegree)@self;

10 for (j = 0; j < nodeDegree; j++) {
11 read(nodeId, j, ?neighId)@self;
12 read(neighId, ?neighDegree)@lh(neighId);
13 if (neighDegree > nodeDegree) {
14 in(nodeId, nodeDegree)@self;
15 out(nodeId, neighDegree)@self;
16 }
17 }
18 in(’token’, ?value)@ltoken;
19 out(’token’, value++)@ltoken;
20 read(’token’, size)@ltoken;
21 }
22 }

At the beginning, the synchronization token is inserted to tuple space
with locality ltoken (line 1), which is followed by a for loop (lines
2-3) that spawns a tread to evaluate compute function (defined at line
4) per each graph node and at its home location.

Instructions at lines 7-8 and 18-20 implement barrier synchro-
nization via the synchronization token, which ensures that a process
spawned at line 3, can proceed to a next iteration (line 6-21), only
after each such process completed the previous one. The approach shows
a standard implementation of the barrier synchronization in tuple space
languages (see Section 2.1).

The essential steps of the algorithm are realized at lines 9-17.
Firstly, node degree is stored in a local nodeDegree variable (line 9),
used to realize iterations through neighbor nodes (lines 10-17). If a
greater value for degree is found, then node degree is updated with a
new value (lines 14-15).

As one may observe, obtaining neighbor node degree is a remote op-
eration (@lh(neighId)), while operations over the current node are local

103

(@self).

Listing 6.6 shows a specification in RepliKlaim, based on the idea of
replicas illustrated in Figure 33. The specification in Klava is given in
Appendix C.1.4.

Listing 6.6: RepliKlaim specification

1 outw(’token’, size)@ltoken;
2 for (i = 0; i < size; i = i + 1)
3 eval(compute(i))@lh(i);
4 compute(nodeId):
5 for (i = 0; i < diameter; i = i + 1) {
6 inw(’token’, ?value)@ltoken;
7 outw(’token’, value--)@ltoken;
8 read(nodeId, ?nodeDegree);
9 outw(’copy’, nodeId, nodeDegree)@self;

10 for (j = 0; j < nodeDegree; j++) {
11 inw(nodeId, j, ?neighId)@self;
12 read(neighId, ?neighDegree)@self;
13 read(nodeId, ?copyDegree)@self;
14 if (neighDegree > copyDegree) {
15 inw(’copy’, nodeId, copyDegree)@self;
16 outw(’copy’, nodeId, neighDegree)@self;
17 }
18 }
19 inw(’copy’, nodeId, ?copyDegree)@self;
20 if (nodeDegree != copyDegree) {
21 inw(nodeId, nodeDegree)@self;
22 outw(nodeId, copyDegree)@LnodeId;
23 }
24 inw(’token’, ?value)@ltoken;
25 outw(’token’, value++)@ltoken;
26 read(’token’, size)@ltoken;
27 }

The essential characteristic of the RepliKlaim specification is that op-
erations over neighbor node are local, i.e., realized @self, the introduc-
tion of an auxiliary tuple to store a copy of the current node, and the use
of weak operations (lines 21-22) to propagate updates to all replicas.

The corresponding specification in Klava is given in Appendix C.1.5.

104

6.3 PageRank

The PageRank (BP98) algorithm was reported to be a fundamental com-
ponent of the early versions of Google search engines and it remained
the best-known approach to ranking web pages since its announcement.
Essentially, the PageRank value of a web pageA, or PR(A), represents an
approximation of the importance of the page A obtained by examining
the importance of the pages linked to it. It is computed in a simple itera-
tive algorithm that employs the hyperlinks between pages. In particular,
the PageRank of a page A is given as follows:

PR(A) = (1− d) + d((PR(T1)/C(T1) + · · ·+ PR(Tn)/C(Tn))

where

• PR(Ti) is the PageRank of a backlink page Ti, which contains a link
to page A,

• C(Ti) is the number of outbound links on page Ti, i.e., the number
of links going out of page Ti, and

• d is a damping factor which can be set between 0 and 1, and is usually
set to 0.85.

The algorithm operates on a graph, such that nodes represent web
pages and edges represent hyperlinks between them. Initially, each node
is assigned some starting PageRank value, which is further updated in
iterations. It is considered that it takes approximately around hundred
iterations to get good PageRank approximations for the entire web.

Parallel processing techniques are widely adopted to improve effi-
ciency of large-scale PageRank computations. There are several possibil-
ities for specifying the PageRank algorithm. The aforementioned bulk
synchronous parallel model requires that the computation and commu-
nication phases of an iteration should be completed for each processor,
before the new iteration can begin. This approach enhances well order-
ing of operations of the algorithm and simplifies the convergence analy-
sis, albeit it has some disadvantages such as the need for synchroniza-
tion. In fact, given a distributed algorithm it is natural to determine
the minimum degree of synchronization which is necessary for the al-
gorithm to work correctly. As the PageRank algorithm computes the ap-
proximative values, we thus consider a variant that offer a more flexible
ordering of computation and communication between processors and al-
low processors to proceed at different speed.

105

6.3.1 X10 and SharedX10 Specifications

In the code listings presented below it is assumed that a GraphNode
object contains information of its page rank value (pageRank), the
number of outbound links (c) and a list of ids of nodes that
link to it (backlinkNodes). Methods getBacklinkNodes(),
getContribution() and setPageRank() are used respectively
to retrieve backlinkNodes, ration pageRank/c and set node’s
pageRank value.

Listing 6.7 shows an X10 implementation of the algorithm. Like in the
previous case study, an activity is spawned per each node to execute the
main iterative computation at lines 2-7. We assume that the desirable
number of iterations numIterations is specified in advance. Line 3
defines a local variable contribution that stores summed contribu-
tions from the backlink nodes. Finally, the new PageRank value is stored
at line 6.

Listing 6.7: X10 implementation

1 finish for (nodeId in graph) async at (graph.dist(nodeId))
2 for (var i:Long = 0; i<numIterations; i = i + 1) {
3 var contribution:Double = 0.0;
4 for (neighId in graph(nodeId).getBacklinkNodes())
5 contribution += at (graph.dist(neighId))

graph(neighId).getContribution();
6 graph(nodeId).setPageRank((1 - d) + d*contribution);
7 }

The highlighted code retrieves a contribution from a backlink node,
and it is executed at the place where a backlink node belongs to. An
alternative specification, in which the computation of contribution is
local, is shown in Listing 6.8. The idea is apply the stencil pattern, based
on the replication strategy, i.e.,

rvalw@l sharedGraph:DistArray[GraphNode] = graph

Listing 6.8: SharedX10 implementation

1 finish for (nodeId in sharedGraph) async at (sharedGraph.
↪→ dist(nodeId))

2 for (var i:Long = 0; i<numIterations; i = i + 1) async {

106

3 var contribution:Double = 0.0;
4 for (neighId in sharedGraph(nodeId).getBacklinkNodes())
5 contribution+=sharedGraph(neighId).getContribution();
6 sharedGraph(nodeId).setPageRank((1 - d) + d*sum);
7 }

The full programs are available in Appendix C; X10 program C.2.1
and SharedX10 program C.2.2 correspond to specifications in Listings 6.7
and 6.8, while the final X10 program C.2.3 is obtained after transforming
the SharedX10 program.

6.3.2 Klaim and RepliKlaim specifications

Similarly to the specification of the maximum graph degree, a graph
is represented as a collection of tuples of form (nodeId, pageRank,
c), (nodeId, i, neighId) where neighId is id of the i-th neighbor
node. Listing 6.9 shows an implementation in Java-Klaim.

Listing 6.9: Klaim specification

1 for (i = 0; i < size; i = i + 1)
2 eval(compute(i))@lh(i);
3 compute(nodeId):
4 {
5 for (i = 0; i < numIter; i = i + 1) {
6 in(nodeId, pageRank, ?c);
7 out(’contribution’, 0);
8 for (j = 0; j < c; j ++) {
9 read(nodeId, j, ?neighId)@self;

10 read(neighId, ?neighPageRank, ?neighC)@lh(neighId);
11 in(’contribution’, ?val);
12 out(’contribution’, val += neighPageRank/neighC)@self;
13 }
14 in(’contribution’, ?val)@self;
15 out(nodeId, (1-d) + d*val, c)@self;
16 }
17 }

Specification in Klava in given in Appendix C.2.4.
Listing 6.10 shows a specification in RepliKlaim. Differently from the

above specification, access to the pagerank value of the neighbor node is
a local operation.

107

Listing 6.10: RepliKlaim specification

1 for (i = 0; i < size; i = i + 1) {
2 eval(compute(i))@lh(i)
3 }
4 compute(nodeId):
5 {
6 inw(nodeId, pageRank, ?c)@self;
7 outw(’contribution’, 0)@self;
8 for (i = 0; i < numIter; i = i + 1) {
9 for (j = 0; j < c; j ++) {

10 read(nodeId, j, ?neighId)@self;
11 read(neighId, ?pageRank, ?c)@self;
12 inw(’contribution’, ?val)@self;
13 outw(’contribution’, val += pageRank/c)@self;
14 }
15 inw(’contribution’, ?val)@self;
16 inw(nodeId, pageRank, c)@self;
17 outw(nodeId, pageRank, (1-d) + d*val)@LnodeId;
18 }
19 }

Specification in Klava are given in Appendix C.2.5

6.4 Evaluation

This section presents experimental results obtained by running the case
study programs on a high-performance computing cluster. However, we
could carry out experiments only using the X10 framework, as we came
across several highly severe issues in Klaim implementation (Klava). In
particular, those included excessive memory consumption that caused
a program failures in some cases, as well as high inefficiency of tuple-
matching operations and communication protocols.

The results reported below show the performance comparison be-
tween two approaches in specifying data locality, namely, the standard
one that relies on a centralized data locality (no replicas) and the other
based on the replication strategy.

no-replicas replicas

maximum graph degree (mgd) Listing 6.2 Listing 6.4

pageRank (pr) Listing 6.7 Listing 6.8

108

Table 5: Evaluated programs

Table 5 associates the presented code listings with the program names
and strategy applied for data sharing. The evaluated programs are
based on specifications in the table, we refer to them as mgd no-replicas,
mgd replicas, pr no-replicas and pr replicas. We make two remarks be-
low in reference to adjustment we undertook to overcome a couple of
limiting factors.

6.4.1 Performance Evaluation

The performance evaluation was carried out on a cluster that features 64
HP ProLiant SL2x170z G6 nodes. Each node is configured with 2x Intel
Xeon Processor X5550 (quad-core, 2.66 GHz) and 24GB of main memory.
The cluster is interconnected with QDR Infiniband interconnect.

X10 runtime relies on X10RT library which provides a communica-
tion layer between places. The X10RT is responsible for sending and
receiving messages and data between places. There are 3 X10RT imple-
mentations available for inter-place communication on multiple hosts,
based on TCP/IP, MPI or PAMI protocols. According to the X10 specifi-
cation, the best performances are achieved with PAMI implementation,
while MPI-based takes second place and the TCP/IP sockets third.

Our cluster setup supports only MPI implementation with serialized
threading level allowing multiple threads to make MPI calls, but only
one thread at a time. Consequently, all evaluated programs had to be
compiled to C++ backend, which was done via gcc v.5.2.0, openmpi
v.2.0.0 and current X10 runtime version 2.6.0.

The X10 runtime executes activities by scheduling them on a pool
of worker threads within each place. To fully exploit physical capaci-
ties of our cluster, we set the environment variable X10 NTHREADS to
1, while the value of X10 NPLACES is set to the number of hardware
threads, thus collocating 8 X10 places per one SMP node of the cluster.
Such configuration enables the workload for our graph computations to
be divided uniformly across physical machines.

Methodology. Each program is run ten times to account for potential
variances in the X10 runtime.

109

Evaluation dataset. Experiments are performed using real world graph
dataset from Stanford Large Network Dataset Collection (SNAP) reposi-
tory (SNA16). Each graph is given in a textual format, such that the first
line contains the number of nodes and the number of edges, and each of
the remaining lines contains two integer numbers representing the two
node ids that form an edge.

Nodes Edges Diameter Max Degree Description
5 242 14 496 17 94 Collaboration network
9 877 25 998 17 65 Collaboration network

36 692 183 831 11 1 383 Email comm. network
196 591 950 327 14 14 730 Loc. based soc. netw.
317 080 1 049 866 21 306 DBLP collab. netw.

Table 6: Evaluation datasets

Limitations. Our initial goal was to compare performance of X10 and
SharedX10 implementations of specifications as shown in Table 5. How-
ever, the evaluation revealed that SharedX10 implementation based on
the encoding scheme into (see Section 5.3), was not sufficiently efficient,
hence we manually modified implementations of SharedX10 specifica-
tions to overcome the issue we detail below.

The analysis showed that the problem in SharedX10 implemen-
tation lies the encoding of distributed arrays, rvals and rvalw,
which are shared via replication (see Rules 8 and 9). In particular,
one such object, sharedGraph, used in Listings 6.4 and 6.8, is en-
coded as a 2-dim distributed array, e.g. sharedGraphX10, such that
sharedGrahX10(nodeId) is a distributed array of replicas of graph
node whose id is nodeId. As captured by the Rule 10, the translation of
sharedGraph(neighId), which targets the local replica of neighbor
node neighId, is

(at(sharedGraphX10.dist(neighId))sharedGraphX10(neighId)) (
↪→ sharedGraphX10(neighId).dist.get(here).maxPoint())

Essentially, evaluating the element location in a 2-dim distributed ar-
ray requires remote communication, i.e., involves the place-shifting at
construct, even when the data is collocated with the activity that accesses
it. On the contrary, it is desirable and expectable that one can write

110

Sheet1

Page 1

5 242 9 877 36 692 196 591 317 080
0

500

1000

1500

2000

2500

3000

3500

4000

 mgd_no-replicas

mgd_replicas

Figure 34: Performance of mgd no-replicas and mgd replicas at different
sizes of graph (shown along x-axis) on 8 hardware threads (1 cluster node).

directly array2(nodeId1)(nodeId2) to access the local element on
position (nodeId1, nodeId2) in a 2-dim distributed array array2.
This seems to be a limitation of the current X10 implementation for 2-
dim distributed arrays, as in the case of 1-dim distributed arrays, local
array elements can be accessed directly, without the need for activity
place-shifting. Furthermore, we found no alternative possibility to en-
code such shared distributed arrays. Therefore, we concluded that an ef-
ficient SharedX10 implementation would have to include optimizations
on the compiler and/or runtime level, primarily concerning the mem-
ory management, as e.g. done in (SU15). Further investigation of these
optimizations is a possible direction for the future work.

As a consequence of the aforementioned problem, the performance
gain which would come from localizing data accesses by replication was
entirely canceled by the costly place-shifting operation. In order to obtain
performance measures for programs which rely on replicas, we modified
programs mgd replicas and pr replicas by manually programming data
replication and consistency such that no place-shifting is required when
accessing local replicas.

The second remark concerns the organization of graph processing.

111

Sheet1

Page 1

5 242 9 877 36 692 196 591 317 080
0

1000

2000

3000

4000

5000

6000

7000

8000

8 HT

16 HT

24 HT

graph size (nodes)

tim
e

 (
se

co
n

d
s)

Figure 35: Performances of pr no-replicas at different sizes of graph (shown
along x-axis) on 8, 16 and 24 hardware threads (HT).

For the purpose of presentation, in the code listings each graph node
is processed by a separate activity, hence all graph nodes are conceptu-
ally processed in parallel. In practice, this approach causes congestion
of resources due to scheduling a large number of activities on incom-
parably fewer number of physical threads. Instead, in our implemen-
tations, graph nodes are divided into regions equal to the number of
places and processed sequentially by one activity, scheduled on single
hardware thread.

Case Study I - Results

Figure 34 shows the performance comparison between mgd no-replicas
and mgd replicas. The evaluation showed significant performance gain
attainable with replication-strategy on all datasets given in Table 6. The
speedup mainly comes from localizing accesses to neighbor nodes for
retrieving their degrees. However, we discovered that performances did
not improve with increased number of hardware threads, due to the in-
creased communication cost.

112

Sheet1

Page 1

5 242 9 877 36 692 196 591 317 080
0

1000

2000

3000

4000

5000

6000

7000

8000

8 HT

16 HT

24 HT

graph size (nodes)

tim
e

 (
se

co
n

d
s)

Figure 36: Performances of pr replicas at different sizes of graph (shown
along x-axis) on 8, 16 and 24 hardware threads (HT).

Case Study II - Results

Figures 35 and 36 show respectively performances of pr no-replicas and
pr replicas. Each figure shows 3 bars for each graph dataset representing
results obtained on 1, 2 and 3 cluster nodes each featuring 8 hardware
threads each. Table 7 shows the average speedup in percentages that
pr replicas achieved over pr no-replicas.

Dataset
size 5 242 9 877 36 692 196 591 317 080

Speedup 683% 417% 301% 179% 299%

Table 7: Average performance speedup of pr replicas over pr no-replicas

The results showed that performances depend heavily on the ratio
between the number of edges and nodes. Increasing the number of hard-
ware threads did not significantly impact performances on the case of
graph with 196 591 nodes. Furthermore, it took more than twice as much
time for that dataset than for a larger one of 317 080 nodes, even though
the number of edges is almost similar for the two graphs. We conclude

113

that this result is due to the high communication cost which increased
with the number of hardware threads.

6.4.2 Programmability Evaluation

This section addresses the impact of the proposed approach on the pro-
grammability aspect using the two case studies presented in this chap-
ter. Therefore, we measured the programmer’s effort, in terms of lines
of code, required to express carefully hand-written solutions that would
lead to optimal performances. We drew comparison between SharedX10
and RepliKlaim programs and their encoded variants in, respectively,
X10 and Klaim.

Table 8 reports on the number of code lines taken to expresses algo-
rithms in SharedX10 programs and the encoded variants in X10 .

Maximum Degree PageRank
X10 33 29

SharedX10 13 11

Table 8: Programmability comparison between X10 and SharedX10

Table 9 reports on a similar comparison between RepliKlaim and
Klaim programs.

Maximum Degree PageRank
Klaim 48 32

RepliKlaim 27 19

Table 9: Programmability comparison between Klaim and RepliKlaim

The results show that programming abstractions for data sharing can
significantly reduce the programmer’s effort in expressing performant so-
lutions.

6.5 Summary and Related Work

In this chapter we considered two case studies to make a performance
and programmability comparison between SharedX10 and X10, as well

114

as RepliKlaim and Klaim. The results pointed to the benefits of program-
ming abstractions for data sharing, however, a few limitations and chal-
lenges remained for the future work. In particular, a more efficient im-
plementation of Klaim is required, as well as a more efficient implemen-
tation of SharedX10 that could potentially include compiler and runtime
optimizations.

Numerous frameworks and libraries have been proposed particularly
for large-scale graph analytics, including an open-source library SCALE-
GRAPH (SU15) built on top of X10. Its model is based on the bulk syn-
chronous parallel model, and the implementation includes optimizations
of X10 runtime in terms of communication and memory management.

115

Chapter 7

Conclusions

The multiprocessor structures that are currently emerging are built out
of many multi-core SMP nodes with non-uniform memory hierarchies
which are interconnected in scalable cluster configurations. It is argued
that with increasing rate of parallelism the cost of moving data has be-
come a dominant factor for performance, in term of application execution
time and energy efficiency. Consequently, this shift in hardware evolu-
tion, towards highly parallel systems, has posed challenges for new so-
lutions for programming those systems efficiently.

In the realm of distributed computing, one can find several high-
performance computing languages that offer support for designing ap-
plications on the emerging hardware architectures. The de-facto stan-
dard, the message-passing model (MPI), is being challenged by new
languages and programming models that try to address concerns such
as the memory address to physical location problem. In fact, as cache-
coherence is no longer attainable on emerging cluster systems, achieving
good data locality without compromising programmability has become
the primary goal. As a result, programmers are expected to properly
place data and processes operating on them and to adequately orches-
trate data exchange among the different locations containing memory
and processors.

In this work, we tackled the problem of providing appropriate lin-
guistic abstractions to handle data sharing that, in presence of multiple
computational contexts, can rely either on replication or on centralized
locality of data. Moreover, the granularity of consistency for replicated
data can be at the level of a single operation or at the level of a data item.

116

The choice may depend on the application domain; for example, in re-
active applications, allowing the same data to be accessed with different
consistency levels, could provide opportunities to sacrifice strong consis-
tency for performance in the presence of system overload or opportuni-
ties to meet the real-time needs of an application. The main goal of this
thesis was to show the benefits of using specific linguistic abstractions
for data sharing in terms of programmability and performance, when
compared to the standard approaches based on orchestrating data com-
munication.

We designed programming abstractions for data sharing for two par-
titioned space languages, namely Klaim and X10, where data items and
partitions are tuples and tuple spaces in Klaim, and objects and places in
X10. Both languages rely on asynchronous computations and make use
of explicit localities, and these features make them suitable candidates for
programming scalable cluster systems. However, they offer different fea-
tures which highly influenced the proposed data sharing abstractions. In
particular, Klaim is more suitable for programming applications with re-
active behavior, while X10 is better suited for imperative programming.
Moreover, X10 features different mechanisms for data access, depending
on whether the data is local or remote to the process trying to access,
while Klaim offers uniform approach in accessing data item.

In the thesis, we introduced extensions of Klaim and X10: RepliKlaim
enriches Klaim with primitives for sharing based on replication, while
SharedX10 extends X10 and in addition to replication strategy provides
sharing based on centralized locality of data which guarantees uniform
access to data by both local and remote processes. We considered two
levels of consistency for replicated data, namely strong and sequential
consistency, and adjusted the granularity of consistency to the individual
language. In RepliKlaim consistency is guaranteed at the level of a single
operation, thus permitting the same data item throughout its lifetime to
be accessed with operations of different consistency levels. In SharedX10,
the granularity of consistency is suited to the imperative paradigm and
is thus provided at the level of the data item.

7.1 Directions for Future Work

We would like to conclude by simply listing the challenges that we see
in front of us and that could be the topics of future research.

117

• To consider other forms of consistency beyond strong and sequen-
tial consistency (see (FR10; VV16) for an overview), as advocated,
e.g., in (Ter13; Bre12), or offered in C++ though ordering annota-
tions (C++16).

• To understand if there are automatic ways to support the program-
mer in deciding when and which form of consistency to use; e.g.,
by following the approach described in (LPC+12).

• To investigate compiler and runtime optimizations techniques for
guaranteeing more efficient implementations, such as the one pre-
sented in (SU15; PTA14).

• To apply our approach to other paradigms and languages. In par-
ticular, suitable models would be those that come closer to the tra-
ditional shared memory model where the idea of sharing is already
present.

Relatively to the last item, we would like to stress that we see it difficult
to apply our approach to models such as agent-based and actor-based
that adhere to the set of rules defined by the message passing. In these
models, the idea of data sharing is not natural and forcing it would vio-
late their essence. An interesting candidate for our extension is the SCEL
language (DLPT14). One specific difference between SCEL and Klaim
is that in the former the target of tuple operations can be specified by a
predicate on the attributes of components. This provides a great flexi-
bility as it allows to use group-cast operations without explicitly creat-
ing groups (ensembles in SCEL). In many applications creating replicas
is a convenient mechanism to share information among groups. How-
ever, the dynamicity of ensembles (components may change attributes at
run-time and thus join and leave ensembles arbitrarily) poses additional
challenges when defining the semantics and providing implementation
of shared data items that are worth further investigations.

118

Appendices

119

Appendix A

Results for eight places

Figure 37: X10 Experiments: Scenario with 8 places

200 250 300 350 400 450 500
0

2

4

6

8

10

12

14
Update/read ratio = 0.25

NUM_AC

T
im

e
(s

ec
)

200 250 300 350 400 450 500
0

2

4

6

8

10

12

14
Update/read ratio = 0.2

NUM_AC

T
im

e
(s

ec
)

200 250 300 350 400 450 500
0

2

4

6

8

10

12

14
Update/read ratio = 0.1

NUM_AC

T
im

e
(s

ec
)

200 250 300 350 400 450 500
0

2

4

6

8

10

12

14
Update/read ratio = 0.01

NUM_AC

T
im

e
(s

ec
)

 no−replicas

 replicas

(a) (Ratio): The two strategies with shared data of size ≈ 0.4MB

120

0.050.10.150.20.25
0

2

4

6

8

10

12

14

Update/read ratio

T
im

e
(s

ec
)

NUM_AC = 200

0.050.10.150.20.25
0

2

4

6

8

10

12

14

Update/read ratio

T
im

e
(s

ec
)

NUM_AC = 300

0.050.10.150.20.25
0

2

4

6

8

10

12

14

Update/read ratio

T
im

e
(s

ec
)

NUM_AC = 400

0.050.10.150.20.25
0

2

4

6

8

10

12

14

Update/read ratio

T
im

e
(s

ec
)

NUM_AC = 500

 no−replicas

 replicas

(b) (Access number): The two strategies with shared data of size ≈ 0.4MB

121

200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50
Update/read ratio = 0.25

NUM_AC

T
im

e
(s

ec
)

200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50
Update/read ratio = 0.2

NUM_AC

T
im

e
(s

ec
)

200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50
Update/read ratio = 0.1

NUM_AC

T
im

e
(s

ec
)

200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50
Update/read ratio = 0.01

NUM_AC

T
im

e
(s

ec
)

 no−replicas

 replicas

(c) (Ratio): The two strategies with shared data of size ≈ 4MB

0.050.10.150.20.25
0

5

10

15

20

25

30

35

40

45

50

Update/read ratio

T
im

e
(s

ec
)

NUM_AC =200

0.050.10.150.20.25
0

5

10

15

20

25

30

35

40

45

50

Update/read ratio

T
im

e
(s

ec
)

NUM_AC =300

0.050.10.150.20.25
0

5

10

15

20

25

30

35

40

45

50

Update/read ratio

T
im

e
(s

ec
)

NUM_AC =400

0.050.10.150.20.25
0

5

10

15

20

25

30

35

40

45

50

Update/read ratio

T
im

e
(s

ec
)

NUM_AC =500

 no−replicas

 replicas

(d) (Access number): The two strategies with shared data of size ≈ 4MB

122

Appendix B

SharedX10 Grammar

Appendix B presents the complete SharedX10 grammar specification in
the XTEXT framework.

1 grammar org.xtext.SharedX10
2 with org.eclise.xtext.common.Terminals
3 Program:
4 (’package’ name = QualifiedName ’;’)?
5 importElements += AbstractElements*
6 class += Class*
7 ;
8 AbstractElements:
9 ’import’ importedNamespace = QualifiedNameWithWildcard’;’

10 ;
11 QualifiedNameWithWildcard:
12 QualifiedName ’.*’?
13 ;
14 QualifiedName:
15 ID (’.’ ID)*
16 ;
17 Class:
18 ’public’ ’class’ name = ID
19 (’extends’ superclass=[Class|QualifiedName])?
20 ’{’ members += Member* ’}’
21 ;
22 Member:
23 MainMethod |
24 Method |

123

25 Print |
26 Operator |
27 FuncVariableDef |
28 VariableDef |
29 SharedVariableDef
30 ;
31 MainMethod:
32 ’public’ ’static’ ’def’ ’main’
33 ’(’ type = VariableType ’)’
34 body = Body
35 ;
36 Method:
37 ’def’ name = (ID | ’this’) ’(’ (params += Parameter
38 (’,’ params += Parameter)*)? ’)’ (isconst ?= ’const’)?
39 body = Body
40 ;
41 Print:
42 ’Console’ (’.’ ID)*
43 ’(’ expression = Expression ’)’ ’;’
44 ;
45 Operator:
46 ’public’ ’operator’ name = (ID | ’this’)
47 ’(’ (params += Parameter (’,’ params += Parameter)*)? ’)’
48 ’=’ expression = Expression ’;’
49 ;
50 FuncVariableDef:
51 ’val’ name = ID ’:’
52 ’(’ (params += Parameter (’,’ params += Parameter)*)? ’)’
53 ’=>’ type = VariableType ’=’
54 ’(’ (params += Parameter (’,’ params += Parameter)*)? ’)’
55 ’=>’ body = Body ’;’
56 ;
57 VariableDef:
58 vartype = (’var’ | ’val’)
59 name = ID (istyped ?= ’:’ type = VariableType)?
60 (isinit ?= ’=’ expression = ArithExpression)? ’;’
61 ;
62 SharedVariableDef:
63 ’sval’ name = ID ’:’ type = VariableType ’=’ expression =
64 Expression ’;’ |
65 ’rvals’ name = ID ’@’ places = [VariableDef] ’:’ type =
66 VariableType ’=’ expression = Expression ’;’ |
67 ’rvalw’ name = ID ’@’ places = [VariableDef] ’:’ type =

124

68 VariableType ’=’ expression = Expression ’;’
69 ;
70 Parameter:
71 name = ID (istyped ?= ’:’ type = VariableType)?
72 ;
73 Body:
74 ’{’ statements += Statement* ’}’
75 ;
76 Block:
77 statements += Statement |
78 ispar ?= ’{’ statements += Statement* ’}’
79 ;
80 VariableType:
81 type = [Class|QualifiedName]
82 (isarray ?= ’[’ innerType = VariableType ’]’)?
83 ;
84 Statement:
85 Async |
86 Finish |
87 At |
88 Atomic |
89 WhenAtomic |
90 For |
91 ForEnum |
92 If |
93 While |
94 Return |
95 Print |
96 TryCatch |
97 SharedVariableDef |
98 VariableDef |
99 FuncVariableDef |

100 Expression ’;’
101 ;
102 Async returns Statement:
103 ’async’ body = Block
104 ;
105 Finish returns Statement:
106 ’finish’ body = Block
107 ;
108 At returns Statement:
109 ’at’ ’(’ exppression = SelectionExpression ’)’
110 body = Block

125

111 ;
112 Atomic:
113 ’atomic’ statement = Statement
114 ;
115 WhenAtomic:
116 ’when’ ’(’ expression = Equality ’)’
117 statement = Statement
118 ;
119 For returns Statement:
120 ’for’ ’(’ init = VariableDef
121 condition = ArithExpression ’;’ finalexp = Expression ’)’
122 body = Block
123 ;
124 ForEnum returns Statement:
125 ’for’
126 ’(’ par = Parameter ’in’ data = TerminalExpression ’)’
127 body = Block
128 ;
129 If returns Statement:
130 ’if’ ’(’ expression = ArithExpression ’)’
131 thenBlock = Block
132 (=> iselse ?= ’else’ elseBlock = Block)?
133 ;
134 While returns Statement:
135 ’while’ ’(’ expression = Expression ’)’
136 body = Body
137 ;
138 Return returns Statement:
139 ’return’ expression = Expression ’;’
140 ;
141 TryCatch returns Statement:
142 ’try’ bodyTry = Body
143 ’catch’ ’(’ name = ID ’)’ bodyCatch = Body
144 ;
145 Expression:
146 Assignment
147 ;
148 ArithExpression returns Expression:
149 Or
150 ;
151 Assignment returns Expression:
152 SelectionExpression
153 ({Assignment.left = current} ’=’

126

154 right = ArithExpression)?
155 ;
156 SelectionExpression returns Expression:
157 TerminalExpression
158 (
159 {MemberSelection.receiver = current}
160 ’.’ member = [Member]
161 (ispar ?= ’[’ par = [Class] ’]’)?
162 (methodinvocation ?=
163 ’(’ (args += Expression (’,’ args += Expression)*)? ’)’
164)?
165)*
166 ;
167 Or returns Expression:
168 And ({Or.left = current} ’||’ right = And)*
169 ;
170 And returns Expression:
171 Equality ({And.left = current} ’&&’ right = Equality)*
172 ;
173 Equality returns Expression:
174 Comparison
175 (
176 {Equality.left = current} op = (’==’ | ’!=’)
177 right = Comparison
178)*
179 ;
180 Comparison returns Expression:
181 PlusOrMinus
182 (
183 {Comparison.left = current} op = (’<=’ | ’>=’ | ’<’ |
184 ’>’)
185 right = PlusOrMinus
186)*
187 ;
188 PlusOrMinus returns Expression:
189 MulOrDiv
190 (
191 ({Plus.left = current} ’+’ | {Minus.left = current} ’-’)
192 right = MulOrDiv
193)*
194 ;
195 MulOrDiv returns Expression:
196 Primary

127

197 (
198 {MulOrDiv.left = current} op = (’*’ | ’/’)
199 right = Primary
200)*
201 ;
202 Primary returns Expression:
203 ’(’ Expression ’)’ |
204 {Not} ’!’ expression = Primary |
205 SelectionExpression |
206 ’at’ ’(’ expression = SelectionExpression ’)’
207 body = SelectionExpression
208 ;
209 TerminalExpression returns Expression:
210 {StringConstant} value = STRING |
211 {IntConstant} value = IntegerNegative |
212 {BoolConstant} value = (’true’ | ’false’) |
213 {DeRef} ref = [VariableDef] ’(’ ’)’ |
214 {This} ’this’ |
215 {Null} ’null’ |
216 {Here} ’here’ |
217 {Reference} base = [Base] (isarray ?= ’(’
218 params += SelectionExpression ’)’)? |
219 {New} ’new’ type = VariableType ’(’ (args += Expression
220 (’,’ args += Expression)*)? ’)’ |
221 {Init} ’(’type = VariableType ’)’ ’=>’
222 expression = TerminalExpression
223 ;
224 IntegerNegative:
225 (isneg ?= ’-’)? value = INT
226 ;
227 Base:
228 SharedVariableDef |
229 FuncVariableDef |
230 Parameter |
231 Class
232 ;

128

Appendix C

Specifications of Case
Studies

C.1 Case Study I: Maximum Graph Degree

C.1.1 Specification in X10

1 /* Algorithm computing maximum graph degree */
2 clocked finish for (reg in dist.regions()) clocked async
3 for (nodeId:Point in reg) at(dist(nodeId)){
4 for (var i:Long = 0; i < diameter ; i++) {
5 for (neighId in graph(nodeId).neighbors) {
6 val neighDegree:Long = at(dist(neighId)) graph(

↪→ neighId).getDegree();
7 if (neighDegree > graph(nodeId).getDegree())
8 graph(nodeId).setDegree(neighDegree);
9 }

10 }
11 Clock.advanceAll();

129

C.1.2 Specification in SharedX10

1 /* Graph sharing */
2 rvalw@l sharedGraph:DistArray[GraphNode] = graph;
3 /* Compute the maximum graph degree */
4 clocked finish for (reg in dist.regions()) clocked async
5 for (nodeId:Point in reg) at(dist(nodeId)) {
6 for (var i:Long = 0; i < diameter ; i++) {
7 val maxDegree:Long = sharedGraph(nodeId).getDegree();
8 for (neighId in sharedGraph(nodeId).neighbors)
9 if (sharedGraph(neighId).getDegree() > maxDegree)

10 maxDegree = sharedGraph(neighId).getDegree();
11 if (sharedGraph(nodeId).getDegree() != maxDegree)
12 sharedGraph(nodeId).setDegree(maxDegree);
13 Clock.advanceAll();
14 }
15 }

130

C.1.3 SharedX10 Specification Encoded in X10

1 /* Creation of sharedGraph */
2 val sharedGraph:DistArray[DistArray[GraphNode]] = DistArray

↪→ .make[DistArray[GraphNode]](graph.dist);
3 val sharedGraph_tokens:DistArray[Token] = DistArray.make[

↪→ Token](graph.dist);
4 val sharedGraph_distributions:DistArray[Dist] = DistArray.

↪→ make[Dist](graph.dist);
5 for (p in graph) at (graph.dist(p)) {
6 allPlaces(p).sort(cmp);
7 val s:Long = allPlaces(p).size();
8 val temp:Rail[Place] = new Rail[Place](s);
9 for (var j:Long = 0; j < s; j++)

10 temp(j) = allPlaces(p)(j);
11 val replicaPlaces:PlaceGroup = new SparsePlaceGroup(temp)

↪→ ;
12 val replicaDist = Dist.makeUnique(replicaPlaces);
13 sharedGraph_tokens(p) = new Token();
14 sharedGraph_distributions(p) = replicaDist;
15 sharedGraph(nodeId) = DistArray.make[GraphNode](

↪→ replicaDist, ([i]:Point(1)) => graph(p));
16 }
17 /* Computation of the maximum graph degree */
18 clocked finish for (reg in dist.regions()) clocked async {
19 for (nodeId:Point in reg) {
20 for (var i:Long = 0; i < diameter ; i++) {
21 var maxDegree:Long = (sharedGraph(nodeId)(

↪→ distributions(nodeId).get(here).maxPoint())).
↪→ getDegree();

22 for (neighId in (sharedGraph(nodeId)(distributions(
↪→ nodeId).get(here).maxPoint())).neighbors)

23 if ((sharedGraph(nodeId)(distributions(nodeId).get(
↪→ here).maxPoint())).getDegree() > maxDegree)

24 maxDegree = at (sharedGraph.dist(neighId)) (
↪→ sharedGraph(neighId)(distributions(neighId).
↪→ get(here).maxPoint())).getDegree();

25 }
26 if ((sharedGraph(nodeId)(distributions(nodeId).get(

↪→ here).maxPoint())).getDegree() != maxDegree)
27 val newDegree_graph = newDegree;
28 sharedGraph_tokens(nodeId).acquire();

131

29 finish for (p in sharedGraph(nodeId)) at (
↪→ distributions(nodeId)(r))

30 sharedGraph(nodeId)(r).setDegree(newDegree_graph);
31 sharedGraph_tokens(nodeId).release();
32 }
33 }
34 Clock.advanceAll();
35 }

132

C.1.4 Specification in Klaim

1 for (int i = 0; i < diameter.integer; i++) {
2 /* Synchronization I */
3 tokenValue = new KInteger();
4 in(new Tuple(new KString("token"), tokenValue), server);
5 out(new Tuple(new KString("token"), new KInteger(

↪→ tokenValue.integer-1)), server);
6 KInteger nodeId = new KInteger();
7 KInteger nodeDeg = new KInteger();
8 Tuple node = new Tuple(nodeId, nodeDeg);
9 while(read_nb(node, self)) {

10 System.out.println(nodeId);
11 neighbors = new TupleSpaceVector();
12 read(new Tuple(node.getItem(0), neighbors), self);
13 /* Iterate through neighbors */
14 Tuple neighborId = new Tuple(new KInteger());
15 while(neighbors.read_nb(neighborId)) {
16 neighId = (KInteger) neighborId.getItem(0);
17 neighL = (PhysicalLocality) vectorClients.getTuple(

↪→ neighId.integer%numClients).getItem(1);
18 neighborDeg = new KInteger();
19 read(new Tuple(neighborId.getItem(0), neighborDeg),

↪→ neighL);
20 if(neighborDeg.integer > nodeDeg.integer) {
21 in(new Tuple(node.getItem(0), node.getItem(1)), self)

↪→ ;
22 out(new Tuple(node.getItem(0), neighborDeg), self);
23 }
24 neighborId.resetOriginalTemplate();
25 }
26 node.resetOriginalTemplate();
27 }
28 /* Synchronization II */
29 tokenValue = new KInteger();
30 in(new Tuple(new KString("token"), tokenValue), server);
31 out(new Tuple(new KString("token"), new KInteger(

↪→ tokenValue.integer+1)), server);
32 read(new Tuple(new KString("token"), new KInteger(

↪→ numClients)), server);
33 }

133

C.1.5 Specification in RepliKlaim

1 for (int i = 0; i < diameter.integer; i++) {
2 /* Synchronization part I */
3 tokenValue = new KInteger();
4 /* Token is stored at a distinguished locality - server

↪→ */
5 in(new Tuple(new KString("token"), tokenValue), server);
6 out(new Tuple(new KString("token"), new KInteger(

↪→ tokenValue.integer-1)), server);
7 KInteger nodeId = new KInteger();
8 TupleSpaceVector neighbors = new TupleSpaceVector();
9 Tuple node = new Tuple(nodeId, new TupleSpaceVector());

10 KInteger copyDegree = new KInteger();
11 while(read_nb(node, self)) {
12 KInteger nodeDeg = new KInteger();
13 read(new Tuple(node.getItem(0), nodeDeg), self);
14 /* Create a copy of the current node */
15 out(new Tuple(new KString("copy"), node.getItem(0), node

↪→ .getItem(1)), self);
16 /* Iterate through neighbors */
17 Tuple neighborId = new Tuple(new KInteger());
18 while(neighbors.read_nb(neighborId)) {
19 neighId = (KInteger) neighborId.getItem(0);
20 neighborDeg = new KInteger();
21 read(new Tuple(neighborId.getItem(0), neighborDeg),

↪→ self);
22 read(new Tuple(new KString("copy"), node.getItem(0),

↪→ copyDegree), self);
23 if(neighborDeg.integer > copyDegree.integer) {
24 /* Update the local copy */
25 in(new KString("copy"), node.getItem(0), new KInteger

↪→ ()), self);
26 out(new KString("copy"), node.getItem(0), neighborDeg

↪→), self);
27 }
28 neighborId.resetOriginalTemplate();
29 }
30 /* Update the current node if necessary */
31 copyDegree = new KInteger();
32 in(new Tuple(new KString("copy"), node.getItem(0),

↪→ copyDegree), self);
33 if(copyDegree.integer > nodeDeg.integer) {

134

34 update(new Tuple(node.getItem(0), copyDegree));
35 }
36 node.resetOriginalTemplate();
37 }
38 /* Synchronization part II */
39 tokenValue = new KInteger();
40 in(new Tuple(new KString("token"), tokenValue), server);
41 out(new Tuple(new KString("token"), new KInteger(

↪→ tokenValue.integer+1)), server);
42 read(new Tuple(new KString("token"), new KInteger(

↪→ numClients)), server);
43 }

C.1.6 Update function

1 public void update(Tuple t) throws KlavaException {
2 PhysicalLocality ploc;
3 Tuple template = new Tuple (new LogicalLocality(), new

↪→ PhysicalLocality());
4 while(vectorClients.read_nb(template)) {
5 ploc = (PhysicalLocality) template.getItem(1);
6 if(read_nb(new Tuple(t.getItem(0), new KInteger()), ploc

↪→)) {
7 in(new Tuple(t.getItem(0), new KInteger()), ploc);
8 out(new Tuple(t.getItem(0), t.getItem(1)), ploc);
9 }

10 template.resetOriginalTemplate();
11 }
12 }

135

C.2 Case Study II: PageRank

C.2.1 Specification in X10

1 /* Algorithm computing node pageRank values */
2 finish for (reg in dist.regions()) async
3 for (nodeId:Point in reg) at(dist(nodeId)){
4 for (var i:Long = 0; i < numIterations ; i++) {
5 var sum:Double = 0.0;
6 for (neighId in graph(nodeId).backlinkNodes) {
7 sum += at (graph.dist(neighId)) graph(neighId).

↪→ getContribution();
8 graph(nodeId).setPageRank((1-dfactor) + dfactor*sum);
9 }

10 }
11 }

C.2.2 Specification in SharedX10

1 /* Graph sharing */
2 rvalw@l sharedGraph:DistArray[GraphNode] = graph;
3 /* Compute PageRank values */
4 finish for (reg in dist.regions()) async
5 for (nodeId:Point in reg) {
6 for (var i:Long = 0; i < numIterations ; i++) {
7 var sum:Double = 0.0;
8 for (neighId in sharedGraph(nodeId).backlinkNodes)
9 sum += sharedGraph(neighId).getContribution();

10 sharedGraph(nodeId).setPageRank((1-dfactor) + dfactor
↪→ *sum);

11 }
12 }
13 }

136

C.2.3 SharedX10 Specification Encoded in X10

1 /* Creation of sharedGraph */
2 val sharedGraph:DistArray[DistArray[GraphNode]] = DistArray

↪→ .make[DistArray[GraphNode]](graph.dist);
3 val sharedGraph_tokens:DistArray[Token] = DistArray.make[

↪→ Token](graph.dist);
4 for (p in graph) at (graph.dist(p)) {
5 allPlaces(p).sort(cmp);
6 val s:Long = allPlaces(p).size();
7 val temp:Rail[Place] = new Rail[Place](s);
8 for (var j:Long = 0; j < s; j++)
9 temp(j) = allPlaces(p)(j);

10 val replicaPlaces:PlaceGroup = new SparsePlaceGroup(temp)
↪→ ;

11 val replicaDist = Dist.makeUnique(replicaPlaces);
12 sharedGraph_tokens(p) = new Token();
13 sharedGraph(nodeId) = DistArray.make[GraphNode](

↪→ replicaDist, ([i]:Point(1)) => graph(p));
14 }
15 /* Computation of PageRank values */
16 finish for (reg in dist.regions()) async
17 for (nodeId:Point in reg) at(dist(nodeId)) {
18 for (var i:Long = 0; i < numIterations ; i++) {
19 var pr:Double;
20 var sum:Double = 0.0;
21 for (neighId in graph(nodeId).backlinkNodes)
22 sum += at(dist(neighId))
23 (sharedGraph(neighId)(((distributions(neighId)).get

↪→ (here)).maxPoint())).getRatio();
24 pr = (1-dfactor) + dfactor*sum;
25 val nPr = pr;
26 tokens_graph(nodeId).acquire();
27 async for (r in sharedGraph(nodeId)) at(distributions(

↪→ nodeId)(r))
28 sharedGraph(nodeId)(r).setPr(nPr);
29 tokens_graph(nodeId).release();
30 }
31 }

137

C.2.4 Specification in Klaim

1 for (int i = 0; i < numIter.integer; i++) {
2 KInteger tid = new KInteger(); TupleSpaceVector

↪→ backlinkNodes = new TupleSpaceVector();
3 Tuple template = new Tuple(tid, backlinkNodes);
4 /* Iterates through local graph nodes */
5 while(read_nb(template, self)) {
6 KInteger cid = new KInteger();
7 read(new Tuple(tid, new KDouble(), cid), self);
8 double contribution = 0.0;
9 /* Iterates through backlink nodes and collect

↪→ contributions */
10 Tuple blNodeId = new Tuple(new KInteger());
11 while(backlinkNodes.read_nb(blNodeId)) {
12 KInteger nodeId = (KInteger) blNodeId.getItem(0);
13 PhysicalLocality blNodeL = (PhysicalLocality)

↪→ vectorClients.getTuple(nodeId.integer%numClients
↪→).getItem(1);

14 KInteger blnodeC = new KInteger(); KDouble blnodePR =
↪→ new KDouble();

15 read(new Tuple(blNodeId.getItem(0), blnodePR, blnodeC)
↪→ , blNodeL);

16 contribution += blnodePR.d/blnodeC.integer;
17 blNodeId.resetOriginalTemplate();
18 }
19 /* Updates the pagerank value of the current graph node

↪→ */
20 in(new Tuple(tid, new KDouble(), new KInteger()), self);
21 out(new Tuple(tid, new KDouble(1-d + d*contribution),

↪→ cid), self);
22 template.resetOriginalTemplate();
23 }
24 }

138

C.2.5 Specification in RepliKlaim

1 for (int i = 0; i < numIter.integer; i++) {
2 KInteger tid = new KInteger();
3 TupleSpaceVector backlinkNodes = new TupleSpaceVector();
4 Tuple template = new Tuple(tid, backlinkNodes);
5 /* Iterates through local graph nodes */
6 while(read_nb(template, self)) {
7 KInteger cid = new KInteger();
8 read(new Tuple(tid, new KDouble(), cid), self);
9 double contribution = 0.0;

10 /* Iterates through backlink nodes and collect
↪→ contributions */

11 Tuple blNodeId = new Tuple(new KInteger());
12 while(backlinkNodes.read_nb(blNodeId)) {
13 KInteger nodeId = (KInteger) blNodeId.getItem(0);
14 KInteger blnodeC = new KInteger();
15 KDouble blnodePR = new KDouble();
16 read(new Tuple(blNodeId.getItem(0), blnodePR, blnodeC)

↪→ , self);
17 contribution += blnodePR.d/blnodeC.integer;
18 blNodeId.resetOriginalTemplate();
19 }
20 /* Updates the pagerank value of the current graph node

↪→ */
21 update(new Tuple(tid, new KDouble(1-d + d*contribution),

↪→ cid));
22 template.resetOriginalTemplate();
23 }
24 }

139

C.2.6 Update function

1 public void update(Tuple newTuple) throws KlavaException {
2 /* Tuple *template* will be used to store localities of

↪→ each client */
3 Tuple template = new Tuple (new LogicalLocality(), new

↪→ PhysicalLocality());
4 /* Iterate through vector of clients and replaces the old

↪→ tuple with the new one */
5 while(vectorClients.read_nb(template)) {
6 PhysicalLocality loc = (PhysicalLocality) template.

↪→ getItem(1);
7 if(read_nb(new Tuple(newTuple.getItem(0), new KDouble(),

↪→ new KInteger()), loc)) {
8 in(new Tuple(newTuple.getItem(0), new KDouble(), new

↪→ KInteger()), loc);
9 out(new Tuple(newTuple.getItem(0), newTuple.getItem(1)

↪→ , newTuple.getItem(2)), loc);
10 }
11 template.resetOriginalTemplate();
12 }
13 }

140

References

[Adv93] Sarita Vikram Adve. Designing Memory Consistency Models for Shared-
memory Multiprocessors. PhD thesis, Madison, WI, USA, 1993. UMI
Order No. GAX94-07354. 34

[AG96] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consis-
tency models: A tutorial. Computer, 29(12):66–76, December 1996.
40

[Atk08] A. K. Atkinson. Tupleware: A distributed tuple space for cluster
computing. In 2008 Ninth International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies, pages 121–126, Dec
2008. 5

[Atk10] Alistair Kenneth Atkinson. Development and Execution of Array-based
Applications in a Cluster Computing Environment. PhD thesis, Univer-
sity of Tasmania, 2010. 66

[BCP07] Davide Balzarotti, Paolo Costa, and Gian Pietro Picco. The lights
tuple space framework and its customization for context-aware ap-
plications. Web Intelligence and Agent Systems, 5(2):215–231, 2007. 66

[BDL06] Lorenzo Bettini, Rocco De Nicola, and Michele Loreti. Implementing
mobile and distributed applications in x-klaim. Scalable Computing:
Practice and Experience, 7(4), 2006. 66

[BDP02] Lorenzo Bettini, Rocco De Nicola, and Rosario Pugliese. Klava: a
java package for distributed and mobile applications. Softw., Pract.
Exper., 32(14):1365–1394, 2002. 5, 66

[BEH14] Ahmed Bouajjani, Constantin Enea, and Jad Hamza. Verifying even-
tual consistency of optimistic replication systems. In Suresh Jagan-
nathan and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL

141

’14, San Diego, CA, USA, January 20-21, 2014, pages 285–296. ACM,
2014. 1

[Bet03] Lorenzo Bettini. PhD thesis - Linguistic Constructs for Object-
Oriented Mobile Code Programming and their Implementations.
http://klava.sourceforge.net/, 2003. 5

[Bet11] Lorenzo Bettini. A DSL for writing type systems for xtext languages.
In Probst and Wimmer (PW11), pages 31–40. 28

[BFLW12] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Ben-
jamin P. Wood. Cloud types for eventual consistency. In ECOOP
2012 - Object-Oriented Programming - 26th European Conference, Bei-
jing, China, June 11-16, 2012. Proceedings, pages 283–307, 2012. 2

[BGZ97] N. Busi, R. Gorrieri, and G. Zavattaro. A truly concurrent view of
linda interprocess communication. Technical report, University of
Bologna, 1997. 66

[BGZ00] Nadia Busi, Roberto Gorrieri, and Gianluigi Zavattaro. Compar-
ing three semantics for linda-like languages. Theor. Comput. Sci.,
240(1):49–90, 2000. 35, 66

[BMZ04] Nadia Busi, Alberto Montresor, and Gianluigi Zavattaro. Data-
driven coordination in peer-to-peer information systems. Int. J. Co-
operative Inf. Syst., 13(1):63–89, 2004. 66

[BP98] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. In Seventh International World-Wide Web Conference
(WWW 1998), 1998. 105

[Bre12] E. Brewer. CAP twelve years later: How the ”rules” have changed.
Computer, 45(2):23–29, 2012. 118

[C++14] ISO/IEC 14882:2014(E) Programming language C++. International
Organization for Standardization ISO, Geneva, CH, Nov.2014., 2014.
35

[C++16] C++ memory orderings. Reference website: http://en.
cppreference.com/w/c/atomic/memory_order, 2016. 118

[Cap08] Sirio Capizzi. A tuple space implementation for large-scale infrastruc-
tures. PhD thesis, University of Bologna, 2008. 66

[CCS+13] Silvia Crafa, David Cunningham, Vijay A. Saraswat, Avraham Shin-
nar, and Olivier Tardieu. Semantics of (resilient) X10. CoRR,
abs/1312.3739, 2013. 28

142

http://klava.sourceforge.net/
http://en.cppreference.com/w/c/atomic/memory_order
http://en.cppreference.com/w/c/atomic/memory_order

[CCS+14] Silvia Crafa, David Cunningham, Vijay A. Saraswat, Avraham Shin-
nar, and Olivier Tardieu. Semantics of (resilient) X10. In Richard
Jones, editor, ECOOP 2014 - Object-Oriented Programming - 28th Euro-
pean Conference. Proceedings, volume 8586 of Lecture Notes in Computer
Science, pages 670–696. Springer, 2014. 20

[CCZ07] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programma-
bility and the chapel language. Int. J. High Perform. Comput. Appl.,
21(3):291–312, August 2007. 5

[CGB+06] Fan R. K. Chung, Ronald L. Graham, Ranjita Bhagwan, Stefan Sav-
age, and Geoffrey M. Voelker. Maximizing data locality in dis-
tributed systems. J. Comput. Syst. Sci., 72(8):1309–1316, 2006. 1

[CGS+05] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and
Vivek Sarkar. X10: An object-oriented approach to non-uniform clus-
ter computing. SIGPLAN Not., 40(10):519–538, October 2005. 2

[CHMY15] Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko
Yoshida. Dynamic deadlock verification for general barrier synchro-
nisation. In Albert Cohen and David Grove, editors, Proc. 20th ACM
Symp. on Principles and Practice of Parallel Programming, PPoPP 2015,
pages 150–160. ACM, 2015. 28

[DLPT14] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco
Tiezzi. A formal approach to autonomic systems programming: The
SCEL language. TAAS, 9(2):7, 2014. 118

[DNFP98] R. De Nicola, G.L. Ferrari, and R. Pugliese. Klaim: a kernel language
for agents interaction and mobility. Software Engineering, IEEE Trans-
actions on, 24(5):315–330, May 1998. 2, 11, 13, 35

[DPR00] Rocco De Nicola, Rosario Pugliese, and Antony I. T. Rowstron. Prov-
ing the correctness of optimising destructive and non-destructive
reads over tuple spaces. In António Porto and Gruia-Catalin Roman,
editors, Coordination Languages and Models, 4th International Confer-
ence, COORDINATION 2000, Limassol, Cyprus, September 11-13, 2000,
Proceedings, volume 1906 of Lecture Notes in Computer Science, pages
66–80. Springer, 2000. 35, 50

[EGS06] Tarek El-Ghazawi and Lauren Smith. UPC: Unified parallel c. In
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC
’06, New York, NY, USA, 2006. ACM. 5

[Erl16] Erlinda. Website for Erlinda: https://code.google.com/
archive/p/erlinda/, 2016. 5

143

https://code.google.com/archive/p/erlinda/
https://code.google.com/archive/p/erlinda/

[FAH99] Eric Freeman, Ken Arnold, and Susanne Hupfer. JavaSpaces Princi-
ples, Patterns, and Practice. Addison-Wesley Longman Ltd., Essex,
UK, UK, 1st edition, 1999. 5

[FR10] Alan David Fekete and Krithi Ramamritham. Consistency models
for replicated data. In Bernadette Charron-Bost, Fernando Pedone,
and André Schiper, editors, Replication: Theory and Practice, Lecture
Notes in Computer Science, pages 1–17. Springer, 2010. 40, 42, 118

[GC92] David Gelernter and Nicholas Carriero. Coordination languages and
their significance. Commun. ACM, 35(2):97–107, February 1992. 11

[Gel89] David Gelernter. Multiple tuple spaces in linda. In Proceedings of
the Parallel Architectures and Languages Europe, Volume II: Parallel Lan-
guages, PARLE ’89, pages 20–27, London, UK, UK, 1989. Springer-
Verlag. 7

[GH11] Stefan Gudenkauf and Wilhelm Hasselbring. Space-based multi-core
programming in java. In Probst and Wimmer (PW11), pages 41–50.
66

[Gig17] Gigaspaces technologies ltd, www.gigaspaces.com, 2017. 66

[GL02] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web services.
SIGACT News, 33(2):51–59, 2002. 1

[GMM12] Milos Gligoric, Peter C. Mehlitz, and Darko Marinov. X10X: mo-
del checking a new programming language with an ”old” model
checker. In Giuliano Antoniol, Antonia Bertolino, and Yvan Labiche,
editors, 2012 IEEE Fifth International Conference, pages 11–20. IEEE
Computer Society, 2012. 28

[GN15] Suyash Gupta and V. Krishna Nandivada. Imsuite: A benchmark
suite for simulating distributed algorithms. J. Parallel Distrib. Com-
put., 75:1–19, 2015. 28

[GTC+11] David Grove, Olivier Tardieu, David Cunningham, Ben Herta, Igor
Peshansky, and Vijay Saraswat. A performance model for x10 appli-
cations: What’s going on under the hood? In Proceedings of the 2011
ACM SIGPLAN X10 Workshop, X10 ’11, pages 1:1–1:8, New York, NY,
USA, 2011. ACM. 28

[Har12] Hariprasad Hari. Tuple Space in the Cloud. PhD thesis, Uppsala Uni-
versitet, 2012. 66

144

www.gigaspaces.com

[HLH+11] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xi-
aodong Zhang, and Zhiwei Xu. Rcfile: A fast and space-efficient
data placement structure in MapReduce-based warehouse systems.
In Proceedings of the 27th International Conference on Data Engineering,
ICDE 2011, April 11-16, 2011, Hannover, Germany, pages 1199–1208,
2011. 8

[HW90] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Trans. Program. Lang.
Syst., 12(3):463–492, 1990. 42

[IBM17] IBM. Web site for X10: http://x10-lang.org/x10-
community/publications-using-x10.html, 2017. 28

[IS14] Shams Imam and Vivek Sarkar. A Case for Cooperative Scheduling
in X10s Managed Runtime. In The 2014 X10 Workshop, X10’14, June
2014. 94

[jRe17] jResp: Java Runtime Environment for SCEL programs. jResp in
a nutshell: http://jresp.sourceforge.net/?page_id=30,
2017. 5

[JXLY06] Yi Jiang, Guangtao Xue, Minglu Li, and Jinyuan You. Dtupleshpc:
Distributed tuple space for desktop high performance computing. In
Chris R. Jesshope and Colin Egan, editors, Advances in Computer Sys-
tems Architecture, 11th Asia-Pacific Conference, ACSAC 2006, volume
4186 of Lecture Notes in Computer Science, pages 394–400. Springer,
2006. 66

[KH14] Vineet Kumar and Laurie J. Hendren. MIX10: compiling MATLAB
to X10 for high performance. In Andrew P. Black and Todd D. Mill-
stein, editors, Proc. 2014 ACM International Conference, OOPSLA 2014,
pages 617–636. ACM, 2014. 28

[KS13] Peter Kogge and John Shalf. Exascale Computing Trends: Adjust-
ing to the ”New Normal” for Computer Architecture. Computing in
Science and Engg., 15(6):16–26, November 2013. 4

[Lam97] Leslie Lamport. How to make a correct multiprocess program exe-
cute correctly on a multiprocessor. IEEE Trans. Computers, 46(7):779–
782, 1997. 33, 42

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large
network dataset collection. http://snap.stanford.edu/data,
June 2014. 8

145

http://jresp.sourceforge.net/?page_id=30
http://snap.stanford.edu/data

[LP05] Zhen Li and Manish Parashar. Comet: a scalable coordination space
for decentralized distributed environments. In Second International
Workshop on Hot Topics in Peer-to-Peer Systems, HOT-P2P 2005, pages
104–111. IEEE Computer Society, 2005. 66

[LP10] Jonathan K. Lee and Jens Palsberg. Featherweight X10: a core calcu-
lus for async-finish parallelism. In R. Govindarajan, David A. Padua,
and Mary W. Hall, editors, Proceedings of the 15th ACM SIGPLAN,
pages 25–36. ACM, 2010. 28

[LPC+12] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno M.
Preguiça, and Rodrigo Rodrigues. Making geo-replicated systems
fast as possible, consistent when necessary. In Chandu Thekkath and
Amin Vahdat, editors, 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2012), pages 265–278. USENIX As-
sociation, 2012. 118

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989. 11

[MPA05a] Jeremy Manson, William Pugh, and Sarita V. Adve. The java mem-
ory model. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’05, pages 378–
391, New York, NY, USA, 2005. ACM. 32

[MPA05b] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory
model. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2005, Long Beach, Cali-
fornia, USA, January 12-14, 2005, pages 378–391, 2005. 35

[MPR06] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. LIME:
A coordination model and middleware supporting mobility of hosts
and agents. ACM Trans. Softw. Eng. Methodol., 15(3):279–328, 2006. 66

[MZ09] Marco Mamei and Franco Zambonelli. Programming pervasive and
mobile computing applications: The TOTA approach. ACM Trans.
Softw. Eng. Methodol., 18(4), 2009. 66

[NR98] Robert W. Numrich and John Reid. Co-array fortran for parallel pro-
gramming. SIGPLAN Fortran Forum, 17(2):1–31, August 1998. 5

[OM15] Open-MPI. Web site for MPI: http://www.open-mpi.org/, 2015. 5

[PTA14] Jeeva Paudel, Olivier Tardieu, and José Nelson Amaral. Optimizing
shared data accesses in distributed-memory X10 systems. In 21st
International Conference on High Performance Computing, HiPC 2014,
Goa, India, December 17-20, 2014, pages 1–10, 2014. 95, 118

146

[PW11] Christian W. Probst and Christian Wimmer, editors. Proceedings of the
9th International Conference on Principles and Practice of Programming in
Java, PPPJ 2011, Kongens Lyngby, Denmark, August 24-26, 2011. ACM,
2011. 142, 144

[PWS+00] Fernando Pedone, Matthias Wiesmann, Andr Schiper, Bettina
Kemme, and Gustavo Alonso. Understanding replication in
databases and distributed systems. In ICDCS, pages 464–474. IEEE
Computer Society, 2000. 40

[PyL16] PyLinda. Website for PyLinda: http://freecode.com/
projects/pylinda, 2016. 5

[Row97] Antony I. T. Rowstron. Using asynchronous tuple-space access prim-
itives (BONITA primitives) for process co-ordination. In David Gar-
lan and Daniel Le Métayer, editors, Coordination Languages and Mod-
els, Second International Conference, COORDINATION ’97, volume
1282 of Lecture Notes in Computer Science, pages 426–429. Springer,
1997. 66

[RRV14] Bharath Ramesh, Calvin J. Ribbens, and Srinidhi Varadarajan. Re-
gional consistency: Programmability and performance for non-
cache-coherent systems. 2013 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, 00:941–
948, 2014. 41

[RW96] Antony I. T. Rowstron and Alan Wood. An efficient distributed tuple
space implementation for networks of workstations. In Luc Bougé,
Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors, Euro-
Par ’96 Parallel Processing, Second International Euro-Par Conference,
Volume I, volume 1123 of Lecture Notes in Computer Science, pages
510–513. Springer, 1996. 35, 50, 65

[SAB+10] Vijay Saraswat, George Almasi, Ganesh Bikshandi, Calin Cascaval,
David Cunningham, David Grove, Sreedhar Kodali, Igor Peshansky,
and Olivier Tardieu. The asynchronous partitioned global address
space model. Technical report, Toronto, Canada, June 2010. 20

[SBP+14] Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and
David Grove. X10 language specification version 2.5, 2014. 20

[SDM11] John Shalf, Sudip Dosanjh, and John Morrison. Exascale computing
technology challenges. In Proceedings of the 9th International Confer-
ence on High Performance Computing for Computational Science, VEC-
PAR’10, pages 1–25, Berlin, Heidelberg, 2011. Springer-Verlag. 5

147

http://freecode.com/projects/pylinda
http://freecode.com/projects/pylinda

[SJ05] Vijay A. Saraswat and Radha Jagadeesan. Concurrent clustered pro-
gramming. In Martı́n Abadi and Luca de Alfaro, editors, Proc. CON-
CUR 2005, volume 3653 of Lecture Notes in Computer Science, pages
353–367. Springer, 2005. 28

[SKQ13] Jawwad Shamsi, Muhammad Ali Khojaye, and Mohammad Ali
Qasmi. Data-intensive cloud computing: Requirements, expecta-
tions, challenges, and solutions. J. Grid Comput., 11(2):281–310, 2013.
1

[SNA16] Snap datasets. Reference website: https://snap.stanford.
edu/data/, 2016. 110

[SPBZ11] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Za-
wirski. Conflict-free replicated data types. In Stabilization, Safety,
and Security of Distributed Systems - 13th International Symposium, SSS
2011, Grenoble, France, October 10-12, 2011. Proceedings, pages 386–
400, 2011. 2

[SS05] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Com-
put. Surv., 37(1):42–81, March 2005. 1, 40

[SU15] T. Suzumura and K. Ueno. Scalegraph: A high-performance library
for billion-scale graph analytics. In 2015 IEEE International Conference
on Big Data (Big Data), pages 76–84, Oct 2015. 111, 115, 118

[Sut05] Herb Sutter. The free lunch is over: A fundamental turn toward
concurrency in software. Dr. Dobbs Journal, 30(3):202–210, 2005. 33

[Ter13] Doug Terry. Replicated data consistency explained through baseball.
Commun. ACM, 56(12):82–89, 2013. 118

[TKD+14] Adrian Tate, Amir Kamil, Anshu Dubey, Armin Größlinger, Brad
Chamberlain, Brice Goglin, Carter Edwards, Chris J. Newburn,
David Padua, Didem Unat, Emmanuel Jeannot, Frank Hannig, To-
bias Gysi, Hatem Ltaief, James Sexton, Jesus Labarta, John Shalf,
Karl Fürlinger, Kathryn O’Brien, Leonidas Linardakis, Maciej Besta,
Marie-Christine Sawley, Mark Abraham, Mauro Bianco, Miquel
Pericàs, Naoya Maruyama, Paul H. J. Kelly, Peter Messmer, Robert B.
Ross, Romain Cledat, Satoshi Matsuoka, Thomas Schulthess, Torsten
Hoefler, and Vitus J. Leung. Programming Abstractions for Data
Locality. Research report, PADAL Workshop 2014, April 28–29,
Swiss National Supercomputing Center (CSCS), Lugano, Switzer-
land, November 2014. 1

148

https://snap.stanford.edu/data/
https://snap.stanford.edu/data/

[TS06] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems:
Principles and Paradigms (2Nd Edition). Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 2006. 40

[UNZ+16] Didem Unat, Tan Nguyen, Weiqun Zhang, Muhammed Nufail Fa-
rooqi, Burak Bastem, George Michelogiannakis, Ann Almgren, and
John Shalf. TiDA: High-Level Programming Abstractions for Data Local-
ity Management, pages 116–135. Springer International Publishing,
Cham, 2016. 1

[Val90] Leslie G. Valiant. A bridging model for parallel computation. Com-
mun. ACM, 33(8):103–111, August 1990. 101

[vdG01] R. van der Goot. High Performance Linda using a Class Library. PhD
thesis, Erasmus University Rotterdam, 2001. 66

[Vog09] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44,
January 2009. 41

[VV16] Paolo Viotti and Marko Vukolić. Consistency in non-transactional
distributed storage systems. ACM Comput. Surv., 49(1):19:1–19:34,
June 2016. 118

[WPC16] Jordi Wolfson-Pou and Edmond Chow. Reducing communication
in distributed asynchronous iterative methods. Procedia Computer
Science, 80:1906 – 1916, 2016. International Conference on Computa-
tional Science 2016, {ICCS} 2016, 6-8 June 2016, San Diego, Califor-
nia, {USA}. 5

[X1017] The X10 programming language website. X10 - Performance and
Productivity at Scale: x10-lang.org, 2017. 2

[Xte16] Xtext. Website for Xtext: http://www.eclipse.org/Xtext/,
2016. 29

[YSP+98] Katherine A. Yelick, Luigi Semenzato, Geoff Pike, Carleton
Miyamoto, Ben Liblit, Arvind Krishnamurthy, Paul N. Hilfinger, Su-
san L. Graham, David Gay, Phillip Colella, and Alexander Aiken. Ti-
tanium: A high-performance java dialect. Concurrency: Practice and
Experience, 10(11-13):825–836, 1998. 5

[Zwi16] Andreas Zwinkau. A memory model for X10, To appear in X10
workshop procedings, 2016. 36

x10-lang.org
http://www.eclipse.org/Xtext/

Unless otherwise expressly stated, all original material of what-
ever nature created by Marina Andrić and included in this thesis,
is licensed under a Creative Commons Attribution Noncommercial
Share Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:marina.andric@imtlucca.it

	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Vita, Publications and Presentations
	Abstract
	1 Introduction
	1.1 Context and Overview
	1.2 Background and Motivation
	1.3 Contributions and Organization

	I Preliminaries
	2 Klaim, X10 and Xtext
	2.1 The Klaim Programming Language
	2.2 The X10 Programming Language
	2.3 Domain Specific Languages
	2.3.1 The Xtext Framework

	3 The Memory Consistency Guarantees
	3.1 Overview
	3.2 The Memory Consistency Guarantees in High-Level Programming Languages
	3.2.1 Data Races in SharedX10 and RepliKlaim Programs

	3.3 Consistency Models for Replicated Data

	II Contributions
	4 RepliKlaim
	4.1 Syntax
	4.2 Examples
	4.3 Structural Operational Semantics
	4.4 Performance Evaluation
	4.5 Summary and Related Work

	5 SharedX10
	5.1 Primitives for Data Sharing
	5.2 Syntax
	5.3 Encoding
	5.3.1 Transformation Rules

	5.4 Implementation
	5.5 Performance Evaluation
	5.6 Summary and Related Work

	6 Case Studies
	6.1 Preliminaries
	6.2 Maximum Graph Degree
	6.2.1 X10 and SharedX10 Specifications
	6.2.2 Klaim and RepliKlaim Specifications

	6.3 PageRank
	6.3.1 X10 and SharedX10 Specifications
	6.3.2 Klaim and RepliKlaim specifications

	6.4 Evaluation
	6.4.1 Performance Evaluation
	6.4.2 Programmability Evaluation

	6.5 Summary and Related Work

	7 Conclusions
	7.1 Directions for Future Work

	Appendices
	A Additional Experimental Results
	B SharedX10 Grammar
	C Specifications of Case Studies
	C.1 Case Study I: Maximum Graph Degree
	C.1.1 Specification in X10
	C.1.2 Specification in SharedX10
	C.1.3 SharedX10 Specification Encoded in X10
	C.1.4 Specification in Klaim
	C.1.5 Specification in RepliKlaim
	C.1.6 Update function

	C.2 Case Study II: PageRank
	C.2.1 Specification in X10
	C.2.2 Specification in SharedX10
	C.2.3 SharedX10 Specification Encoded in X10
	C.2.4 Specification in Klaim
	C.2.5 Specification in RepliKlaim
	C.2.6 Update function

	References

