IMT Institute for Advanced Studies, Lucca

Lucca, Italy

Ontology-Driven Knowledge Discovery

PhD Program in Computer Science and Engineering

XXI Cycle

By
Barbara Furletti

2009

http://www.imtlucca.it
mailto:barbara.furletti@imtlucca.it

The dissertation of Barbara Furletti is approved.

Program Coordinator: Prof. Ugo Montanari, University of Pisa

Supervisor: Prof. Franco Turini, University of Pisa

The dissertation of Barbara Furletti has been reviewed by:

Dr. Hans-Ulrich Krieger, DFKI - Language Technology Lab. Saarbrucken
- Germany

Prof. Bettina Berendt, Department of Computer Science - Catholic Uni-
versity of Leuven - Belgium

IMT Institute for Advanced Studies, Lucca

2009

http://www.imtlucca.it

To the important people of my life.

Contents

List of Figures

List of Tables
Acknowledgements
Vita and Publications
Abstract

1 Introduction

2 Contextualizing the Work
2.1 Knowledge Discovery: a Brief Introduction.
2.2 Ontologies: Stateof the Art.
22.1 From Philosophy...
222 ..to the Information Science
22.3 Logics and Ontology: Languages and Reasoning . . .
224 Description Logic Based Approaches
225 Ontology Based Reasoning: an Example

3 Answering the Open Questions
3.1 How to Mine the Ontology Schema?
3.1.1 Graph Theory: a Structural Analysis
3.1.2 Ontology Evaluation Metrics: Pointing Out the Rel-
evantConcepts

vii

3.1.3 Link Analysis: Another Way for Measuring Rele-
vantConcepts

3.14 Semantic Association Discovery: a Promising Ap-
proach
3.1.5 Multi-Relational Data Mining

3.2 How to Compute Weights and How to Associate Them to
Implications?
3.3 Semantic Web: Social Networks, Ontologies or Both?

Extracting New Knowledge from the Ontology
41 TheStrategy
42 Ontology SchemaMining

42.1 From the Ontology to the Weighted Adjacency Matrix

422 HITSxONTO Algorithm
4.3 Giving a Structure to the “Influence Rules”
44 Influence Rules Characterization: the Use of the Instances .
45 Validation

Case Study: the MUSING Project

51 MUSING Project
5.1.1 The Extraction and the Use of the IRs in MUSING . .

52 OtherTests

Conclusions
6.1 What We Did and What Can StillBe Done

Technical Specifications

Al DevelopmentTools.

A.2 TheSystem Structure

A.3 Subroutines Specification 0L
A3.1 Subroutines of Algorithm[2]- sectiong.3]
A.3.2 Subroutines of Algorithm[3]- sectionf.4]

Additional Information
B.1 Additional Information Provided By the Expert.
B.2 Qualitative Questionnaire.

viii

[106
[L10]

11l
112
115

References 153

ix

List of Figures

Q1 = W N

10
11
12
13
14
15

16
17
18
19
20

Knowledge extraction from the ontology schema.

KDD Process.
Semantic Web layers..
Graphic representation of two linked RDF statements.
Asimpleontology.

Example of rules extraction from ontology schema and in-

stances. L
Representative subgraphs.
Graph of the (subset) resume ontology.
Evaluation of Relations.
Evaluation of theconcepts.
Hub and Autority pages.
A small web graph with its adjacency matrix associated.
Subgraph
A web graph with non-unique largest eigenvalue for AT A. .
A web graph with simple largest eigenvalue but repeated

lowerones, for ATA.
Example of Rho Operators on RDF Ontology
Relational Database.
Steps of the Frequent Itemsets generation.
Social Network: visualization.
An instance of a three-layered social semantic network. . . .

X

21
22
23
24
25
26
27
28
29
30
31
32

33
34
35

36
37

38

Stepsofanalysis. B1]
The fragment of the ontology used in the “running example”. [84]

Case 1 - Simple Inheritance. 8]
Case 2 - Complex Inheritance. 891
Case 3-No Inheritance (1/3).
Case 4 - No Inheritance 2/3). 90
Case 5 - No Inheritance (3/3). 90
Case 6 - Circular Properties. oT]
Case 7 - Class Intersection. o]
Case 8 - Multiple properties. 92]
The adjacency matrix associated to the ontology in figure 92
Web and Ontology comparison. 93]
MUSING servicesin FRM. 113
Logic schema of the Online Self Assessment tool. 114
Technical view of the Online Self Assessment service fo-

cused on the BPA component.
The MUSING Ontologies structure. 118
Ontologies imports diagram.
Ontology Miner Class Diagram [139]

xi

List of Tables

NGk W DN -

o]

10
11

Identification of the sentence elements. 25)
OWL Class definition. 28]
OWL Individuals definition. 29]
OWL Properties definition. 29]
OWL definition of Properties on Individuals. 30]
Parts of OWL ontology reasoning rules. B2
Reasoning about location by using OWL ontology. 33
Statistics on Tests (part1).. 127
Statistics on Tests (part2).. [127]
Ontolology Miner: Java Packages.
Ontolology Miner: JavaClasses. 141l

xii

List of Abbreviations

Al
AR
BCM
BN
BPA
DB
DBMS
DL
DM
ER
FOL
IDE
ILP
IR
KD

KDD

Artificial Intelligence
Association Rule

Bayesian Causal Map
Bayesian Network

Business Plan Analyser
Database

Database Management System
Description Logic

Data Mining

Expert Rule

First Order Logic

Integrated Development Environment
Inductive Logic Programming
Influence Rule

Knowledge Discovery

Knowledge Discovery in Databases

xiii

KR

LP
MRDM
NLR
ODCA
OWL
RDF
RDFS
SLA
SME
SN
SNA
SQL
SVM
URI

XSD

Knowledge Representation

Logic Programming

Multi-Relational Data Mining
Non-Linear Rating

Ontology-Driven Conceptual Analysis
Web Ontology Language

Resource Description Framework
Resource Description Framework Schema
Service Level Agreement

Small Medium Enterprise

Social Network

Social Network Analysis

Structured Query Language

Support Vector Machine

Uniform Resource Identifiers

XML Schema Document

Xiv

Acknowledgements

I would like to express my deep and sincere gratitude to my
supervisor, Prof. Franco Turini. His teachings, suggestions
and his experience have been of great value to me. His guid-
ance was essential for the success of the work.

I'would like to thank Prof. Dino Pedreschi and Prof. Alessan-
dro D’ Atri for having supervised my progress these past three
years and for having contributed to the improvement of my
the work.

I am grateful to Dr. Hans-Ulrich Krieger and Prof. Bettina
Berendt for having accepted to be the reviewers of this Ph.D.
Thesis and for their detailed reviews, constructive criticisms
and excellent advice.

I have to thank the MUSING project for having provided a
useful and convenient framework, and to all the partners that
worked with me and that supplied hints for concluding my
work.

Thanks to Prof. Laura Fatuzzo, to all my colleagues for their
collaboration, and to my friends for having made my days
happy.

A special thanks to my family that is always present.

Finally, my best and warmest thanks are for Francesco who
shared with me the whole experience with his mind and his
heart. Loving thanks to him for his great enthusiasm and his
patience, and for having placed his knowledge and his expe-
rience at my disposal.

This work is especially for him, and for all the people that
believed in it.

XV

If you are not sure what to do, make something — Paul Graham

Vita
December 3, 1976 Born, Livorno, Italy
1995 High School Certificate Commercial School

Final mark: 60/60
Istituto Tecnico Commerciale “C. Cattaneo”,
Cecina (LI), Italy
February 2003 Degree in Computer Science
Final mark: 104/110
University of Pisa
Pisa, Italy
March 2003 Master Degree in Computer Science
Final mark: 103/110
University of Pisa
Pisa, Italy
Novw. 2003 - Apr. 2006 Collaboration at the Department
of Computer Science
University of Pisa
Pisa, Italy
May 2006 - Feb. 2009 Fellowship grant at the Department
of Computer Science
University of Pisa
Pisa, Italy
Mar. 2009 - Feb. 2010 Collaboration at the Department
of Computer Science
University of Pisa
Pisa, Italy

Xvi

Publications

. M. Baglioni, B. Furletti, F. Turini. “DrC4.5: Improving C4.5 by means of
Prior Knowledge”, in Proceedings of the 2005 ACM Symposium on Applied
Computing, Vol 1, pp. 474 — 481, 2005.

. M. Baglioni, B. Furletti, F. Turini. “A Tool for Economic Plans analysis based
on expert knowledge and data mining techniques”, in Proceedings of The
IADIS International Conference - Applied Computing 2006, pp 421 — 426, 2006.

. E Turini, M. Baglioni, B. Furletti, S. Rinzivillo. “Examples of Integration of
Induction and Deduction in Knowledge Discovery”, in O. Stock, M. Schaerf
(Eds.) , Reasoning, Action and Interaction in Al Theories and Systems, LNAI
4155, pp. 307 — 326, 2006.

. A. Bellandi, B. Furletti, V. Grossi, A. Romei. “Pushing Constraints in Asso-
ciation Rule Mining: An Ontology-Based Approach”, in the Proceedings of
the IADIS International Conference WWW/INTERNET 2007, 2007.

. A. Bellandi, B. Furletti, V. Grossi, A. Romei. “Ontology-driven association
rules extraction: a case of study”, in the Proceedings of the Workshop “Context
and Ontologies: Representation and Reasoning 2007”, pp. 5 - 26, 2007.

. M. Baglioni, A. Bellandi, B. Furletti, C. Pratesi, F. Turini. “Improving the
Business Plan Evaluation Process: the Role of Intangibles”, in International
Journal Quality Technology and Quantitative Management - Special Issue on “Non-
Standard Analysis of Customer Satisfaction Survey Data”, to be published in
March 2010.

. A. Bellandi, B. Furletti, V. Grossi, A. Romei. “Ontological Support for As-
sociation Rule Mining”, in the proceedings of the IASTED International Con-
ference on Artificial Intelligence and Applications (AIA 2008), 2008.

. F. Fornasari, B. Furletti, C. Montanari. “An Extensible and Interactive Soft-
ware Agent for Mobile Devices based on GPS Data”, in the Proceedings of
the IADIS International Conference on Applied Computing 2008, 2008.

. D. Bacciu, A. Bellandi, B. Furletti, V. Grossi, A. Romei. “Discovering Strate-
gic Behaviour in Multi-Agent Scenarios by Ontology-Driven Mining”, in
Advances in Robotics, Automation and Control, IN-TECH publisher, pp. 171 -
198, 2008.

XVii

10.

11.

12.

13.

Presentations

. B. Furletti, “A Tool for Economic Plans analysis based on expert knowledge
and data mining techniques”, at The IADIS International Conference - Applied
Computing 2006, San Sebastian, Spain. 25-28 February 2006.

B. Furletti, “Log analysis and monitoring ontology”, at BRITE Project: Joint
SC1/SC2 Meeting, Brussels, Belgium. 1-2 March 2007.

M. Baglioni, B. Furletti, “Mining ontologies and classification of business
plans”, at MUSING Project: Foundation Meeting, Sheffield, UK. 19 March
2007.

M. Baglioni, B. Furletti, “Analizzatore di Documenti di Business: II Sis-
tema”, at TetraModel Project: Final Review, Pisa, Italy. 20 April 2007.

A. Bellandi, B. Furletti, “The Event Ontology - first definition”, at BRITE
Project: SC1 and SC2 Workshop. Stockholm, Sweden. 31 May 2007.

B. Furletti, “The Business Plan Analyser ver. 1.0”, at MUSING Project: 6th
Plenary Financial Risk Management Meeting, Brussels, Belgium. 12 September
2007.

B. Furletti, F. Turini, “Pilot B2.4 Biz Plan Analyser” at MUSING Project: 7 th
Plenary Financial Risk Management Meeting, Siena, Italy. 13 December 2007.

A. Bellandi, B. Furletti, “Ontological Support for Association Rule Mining”,
at Artificial Intelligence and Applications (AIA 2008) Conference. Innsbruck. 12
February 2008.

B. Furletti, “Pilot B2.4 - Business Plan Analyser”, at MUSING Project: gth
Plenary Financial Risk Management Meeting, Milan. 1 April 2008.

B. Furletti, “Mining Influence Rules out of Ontologies”, at MUSING Project:
Foundation Meeting, Munich, Germany. 8 May 2008.

B. Furletti, “Discovering suspicious behaviour by means of direct queries
the the ontology”, at BRITE Project: Technical meeting, Pisa, Italy. 16 May
2008.

B. Furletti, S. Miniati “Pilot B2.4 - Business Plan Analyser: Technical De-
velopments”, at MUSING Project: 10" Plenary Financial Risk Management
Meeting, Pavia, Italy. 19 June 2008.

B. Furletti, “Mining Influence Rules out of Ontologies”, at Workshop - Uni-
versity of Pisa, INTEX company, Metaware company, Pisa, Italy. 9 July 2008.

XViil

14

15.

16.

17.

18.

19.

20.

21.

. B.Furletti,”Knowledge extraction from ontology - PhD thesis on going work”,
at Pisa Lab Workshop, Pisa, Italy. 12 September 2008.

A. Bellandi, B. Furletti, “Ontology and reasoning technologies’, at MUSING
Project: 2™ Integration Meeting, Saarbrucken, Germany. 21 November 2008.

B. Furletti, S. Miniati, “Pilot B2.4 - The prototype”, at MUSING Project: 11th
Plenary Financial Risk Management Meeting, Milan, Italy. 11 December 2008.

B. Furletti, “Ontology and reasoning technologies”, at MUSING Project: 3™
Integration Meeting, Milan, Italy. 12 December 2008.

B. Furletti, “Ranking Ontologies: problems and solutions”, at University
meeting, Pisa, Italy. 25 February 2009.

B. Furletti, “Pilot B3.1 - On line Self-Assessment”, at MUSING Project: 13"
Plenary Financial Risk Management Meeting, Brussels, Belgium. 31 May 2009.

B. Furletti, “Pilot 3.1 - Ontology Self Assessment”, at MUSING Project: Inte-
gration Meeting, Saarbrucken, Germany. 7 April 2009.

B. Furletti, F. Turini,”Online Self Assessment: theoretical and technical as-
pects”, at Unilateral Meeting - Monte Paschi Siena, University of Pisa, Univer-
sity of Pavia, Siena, Italy. 31 July 2009.

Xix

Abstract

The problem of Knowledge Discovery has always attracted
many researchers and continues to be of great relevance to the
computer science community in the branch of learning. This
thesis aims to contribute to this topic, getting hints from the
Ontology and Data Mining environments.

We investigate a method for extracting new implicit knowl-
edge directly from an ontology by using an inductive/deductive
approach. By giving a sort of Bayesian interpretation to rela-
tionships that already exist in an ontology, we are able to re-
turn the extracted knowledge in form of Influence Rules.

The idea is to split the extraction process in two separate phases
by exploiting the ontology peculiarity of keeping metadata
(the schema) and data (the instances) separate. The deduc-
tive process draws inference from the ontology structure, both
concepts and properties, by applying link analysis techniques
and producing a sort of implications (rules schemas) in which
only the most important concepts are involved. Then an in-
ductive process, realized by a data mining algorithm, explores
the ontology instances for enriching the implications and build-
ing the final rules.

A final rule has a form like <premise—-consequence> where
premise and consequence refer to the class names, and values
to their datatype properties, while w, the weight, measures the
strength of the influence.

An example of a final rule is:

Manager.hasAge < 45 28 Project.hasDegreeOfSuccess = good.
This can be read as, in 80% of the cases, whenever a manager
of a company is less then 45 years old, then the project he man-
ages has a good degree of success.

XX

What we want to prove, besides the correctness and feasibil-
ityﬂ of the project, is that the approach allows us to extract
“higher level” rules w.r.t. classical knowledge discovery tech-
niques. In fact, ontology metadata gives a general view of the
domain of interest and supplies information about all the ele-
ments apart from the fact that they are included as instances
in the collected data. The technique is completely general
and applicable to each domain. Since the output is a set of
“standard” Influence Rules, it can be used to integrate existing
knowledge or for supporting any other data mining process.

The thesis includes the following chapters:

Chapter 1 contains a brief introduction of the work, focusing
on the main questions that have to be addressed.

Chapter 2 offers an overview of the context of research in which
the thesis is part of: data mining and ontologies.

Chapter 3 explores the literature dealing with the open ques-
tions raised in chapter 1.

Chapter 4 is the core section; it discusses the proposed solu-
tions and presents all the phases of the extraction process as
well as the algorithms and the proofs.

Chapter 5 describes an application of the methodology in the
context of MUSING, a European project in the field of busi-
ness intelligence.

Chapter 6 ends this thesis with final considerations and future
possible works.

IThe term feasibility, here and in the rest of the thesis, has to be intended as the “capabil-
ity of being done”.

xxi

Chapter 1

Introduction

We begin to speak about databases (DBs) as repositories of data begin-
ning in the late 1960s when E.F. Codd (Cod70) and his research group at
IBM labs applied some mathematical principles and predicate logic to the
field of data modelling. Since then, DBs and their evolutions have been
used as a source of information to query and manipulate data. But DBs,
seen as single static tables, have evolved very quickly becoming actual
systems for data management (the Database Management Systems and
Relational Database Management Systems) (AGO97;|ACPT99), including
a collection of programs and tools for storing, modifying, and extracting
information.

Knowledge extraction from DBs can be made directly by using a query
language or, indirectly by means of inductive methods. In the former case
we essentially carry out a data retrieval process, while in the latter higher-
level knowledge is mined i.e., association rules, clusters, trees.

In 1974, still at IBM labs, the first language for DB was developed. SE-
QUEL (Structured English Query Language) (CB74), later called SQL for
copyright issues, was the forerunner of all the query languages becom-
ing the standardE] for relational DB. Despite many efforts in this direction,
now only the core of the SQL, the so-called Entry Level has been main-

IThe IBM dialect of SQL become an ANSI standard in 1986 and one year later also stan-
dard ISO.

tained. Each company selling DBMS extended the standard SQL, creating
a proprietary query language i.e., Oracle uses PLSQL, SQLServer uses T-
SQL and the IBM System now uses DB2.

In any case, the querying process returns a set of data possibly aggregated
or projected in several ways.

Using Knowledge Discovery techniques we can, instead, analyse the
rough data and extract new unknown implicit knowledge i.e., associa-
tions among data, similarities of data (Qui86; [HK00; IHMS01). Knowl-
edge discovery represents a real non-trivial process for identifying pat-
terns that are new, valid, useful and understandable, starting from a set
of data. Depending on the objectives, the final knowledge can be a new
result, a prediction or a confirmation about consolidated facts and theo-
ries.

In recent years, with the advent of Web 2.0 and the Semantic Web era,
ontologies have became important, replacing the traditional storing sys-
tems in many applications (SHB06). We can say that they now represent
the new technology for knowledge representation, data storage and in-
formation sharing (Bie03;/Smi; [Smi03).

As with the DBs, ontologies are also equipped with query languages that
permit one to retrieve information. As expected, the ontology query lan-
guages are implemented in ontology query systems. These systems, that
correspond to the DBMSs for the DBs, are frameworks that provide sev-
eral “tools” such as reasoner engines, languages for querying and lan-
guages for defining the rules. Some of these query languages, for exam-
ple SPARQL (PS08), resemble the SQL syntax. Even in this field, the most
interesting knowledge is extracted by using a reasoner (]ena?ﬂ RACEREL
Pelletﬁ are examples of most popular reasoners), that is, an engine able to
infer logical consequences from a set of asserted facts or axioms.

A reasoner makes implicit knowledge explicit by implementing a sort of
decision procedure which starts from a set of logical axioms and finds the
relations between them and whether (or not) they are satisfiable. From

%Jena2: http://jena.sourceforge.net/inference/

SRACER - Renamed Abox and Concept Expression Reasoner: |http://www.sts.
tu-harburg.de/~r.f.moeller/racer/

4Pellet: http://clarkparsia.com/pellet/

2

http://jena.sourceforge.net/inference/
http://www.sts.tu-harburg.de/~r.f.moeller/racer/
http://www.sts.tu-harburg.de/~r.f.moeller/racer/
http://clarkparsia.com/pellet/

this point of view, the ontology is the collection of axioms (relations, def-
initions and constraints).

The question that we ask ourselves and try to answer with this thesis,

is about the possibility of extracting further knowledge from ontologies,
besides the one obtained by using the traditional reasoning systems.
The answer is yes, and with respect to traditional methods, our method
gives a Bayesian interpretation to the relationships that already exist in
an ontology. Traditional reasoners, in fact, perform deductive reasoning
for extracting “hidden” facts that are true under every interpretation. In-
stead, the approach we propose, adopts a probabilistic interpretation and
returns a set of weighted Influence Rules (IRs).

The thesis deals with the idea of combining ontologies and Data Min-
ing techniques in a novel way. We investigate a method for extracting
new implicit knowledge starting from the ontology schema rather than
from the instances. To realize it, we adopt essentially a deductive/inductive
approach, and we take hints and inspiration from graph theory (Die00;
CMHO03; WMO03), link analysis (AP05; [FLM*06; [Kle98) and traditional
data mining techniques (BGL*06; BL04; BL05). The idea is to explore
the T-Box first, and then to integrate the extracted information by mining
the A-Box. The T-Box represents the ontology structure and is composed
by concepts (classes or types of instances), roles (built-in predicates), and
features (attributes/properties) of the instances, while the A-Box repre-
sents the instances, that is, the assertions about individuals (relation in-
stances). The output of this analysis is a set of IRs, e.g. a set of weighted
implications between ontology concepts.

What we would like to prove is the feasibility of the technique and
also show that the extracted knowledge is at a “higher level” since it ab-
stracts from the instances but is domain-dependent at the same time. In
this way, the hidden information can be considered in a general way, in-
dependent of the representation/description given by the data. In our
case, the ontology schema is the “formalism” for representing the knowl-
edge: it is our Knowledge Representation (KR) formalism. It aims at rep-
resenting the world, objects and relations, and permits us to have a point
of view at a higher level. A further objective is to see how this high level

3

knowledge, extracted from the ontology, can improve the inductive con-
struction of classification models.
The general idea is summed up by figure|l] pointing out the merging of
the deductive and inductive approach.

The deductive step operates on the ontology schema (T-Box) by ex-

General
Rules

Implications

IR

=

Processing

Figure 1: Knowledge extraction from the ontology schema.

ploring concepts and object properties. For this purpose, graph theory
and link analysis techniques have been used. The result is a set of rule
schemas that have the form of classical implications:

L— R,

which means that when the left hand side L holds, then the right hand

side R holds too.

Nevertheless, the instances are a fundamental component of our approach:
they are used in the second phase not for extracting additional rules but

for characterizing the deducted implications providing them with values

for the variables, and a measure for the importance of the rules. This ac-

tion that realizes the inductive step has been put in place by applying a

data mining technique. We can re-write the previous implication as a rule

4

in a stricter sense:
pi
L5 R,

where p; is the strength by which L implies R.

The IRs are general rules among concepts of the domain, thus can be used
for supporting any other (data mining) process or in other applications
for enriching the existing knowledge (processing task).

The methodology, described and developed in the thesis, has been
customized and tested inside the European project MUSING (Mus06).
MUSING (MUlti-industry, Semantic-based next generation business IN-
telliGence) aims at developing a new generation of Business Intelligence
tools and modules based on semantic-based information and content sys-
tems. It integrates Semantic Web and Human Language technologies
and combines declarative rule based methods and statistical approaches
for enhancing the technological foundations of knowledge acquisition
and reasoning in BI applications. In MUSING, the ontologies have been
adopted as a means for representing the knowledge and as a source of
information. Furthermore, several analysis tools of inductive and deduc-
tive type have been developed. MUSING has been a good testing envi-
ronment and a valuable source of data for our system. In particular, the
knowledge extraction process has been applied to a subset of the MUS-
ING ontology, and the IRs extracted have been used for enriching and
integrating the expert knowledge.

The proposal is part of an interesting research sector that tries to an-
swer many relevant questions. In this thesis, we intend to answer some
of these questions and to present the results of our research work.

We organized the thesis in a modular and hopefully original way, exploit-
ing the multi-disciplinary nature of the work, and sometimes digressing
into some historical and interesting facts. The state of the art has been
dived in two parts. In chapter 2 we describes essentially the two main
research areas, giving background information on data mining and on-
tologies, while in chapter 3 we analyse recent results and articles whose

5

topics are closely related to those of our thesis and from which we take
inspiration. Due to this particular organization, part of our work is still
shown in these first chapters, but an exhaustive and detailed discussion
is given in chapter 4, the core chapter, where we describe in depth algo-
rithms and strategies. The last two chapters contain a case of study and
the conclusions. Below is a detailed summary of each chapter.

Chapter 2 presents an overview of the two main research areas in
which the proposed approach finds its basis: data mining and ontologies.
In the first part, basic notions of the knowledge discovery field are pro-
vided. In the second part, we introduce the ontologies starting from its
philosophical origins up to the “modern”, or computer science oriented,
conceptualization.

Chapter 3 analyses thoroughly the various aspects of the proposal. It
is presented in the form of open questions which we try to answer taking
inspiration from the literature and the state-of-the-art main techniques
for knowledge discovery and ontology analysis. We tried to create and
maintain a certain correspondence among raised problems, questions and
phases of the extraction process. Furthermore, we make comparisons
with other, both recent and consolidated, representation formalisms or
analysis methods.

Chapter 4 is the core of the thesis. After having provided the reader
with sufficient background, we explain, step-by-step, our methodology
showing both the theoretical and technical details including specifica-
tions, theorems, formulas and pseudo codes, all supported by a simple
but useful example.

Chapter 5 describes the case study which is an actual application of
our methodology in the context of MUSING (Mus06). We present the
domain of application and a general overview of the project, the require-
ments, the available tools, its objectives and a short description of the
developed components. The description is then focused on the compo-
nent we are directly involved with, and on how the ontology extraction
process has been customized and applied. Finally, an exhaustive discus-
sion of the results is provided.

Chapter 6 concludes this work summing up the objectives, the main

steps and discussing the obtained results. Some proposals for future ex-
tensions and improvements are then suggested.

Appendix A provides some technical details about the implementa-
tion of the system while Appendix B provides additional information.

Chapter 2

Contextualizing the Work

Data mining and reasoning are the two main research areas in which our
work bases its theoretical foundations. In this chapter we dedicate two
separate sections for introducing Knowledge Discovery (KD) and Ontol-

ogy.

2.1 Knowledge Discovery: a Brief Introduction

Knowledge Discovery in Databases (KDD) is focused on the develop-
ment of methodologies and techniques that “make sense” out of data,
i.e. for extracting relevant and non-trivial information from rough data.
The phrase “knowledge discovery in databases” was coined at the first
KDD workshop in 1989 to emphasize that knowledge is the end-product
of a data-driven discovery. Formally, KDD is defined as:

the non trivial process for identifying patterns that are new, valid,
useful and understandable, starting from a set of data.

In this context, data are a set of facts i.e. cases in a database, while a pat-
tern is an expression in some language describing a subset of the data
or a model applicable to the subset. KDD is thus a sequence of steps
that, starting from rough data, leads to the discovery of knowledge. De-
pending on the objectives, the final knowledge can be a new result or the

8

discovery of unknown information, a prediction or a confirmation about
consolidated facts and theories. One of the most complete and exhaustive

Interpretation/Evaluation

= A“‘;

HU'

e A Patterns
= I
A

Preprocessing

| Transformed |
data

A Preprocessed | I
| data | I
&/ Target data |

|
|
|
|
|
4 I I
L el e d e 4

”~

Figure 2: KDD Process.

definitions of the KDD process presented in the literature was provided
by Shapiro in 1996 (PSFS96). Shapiro’s definition (depicted in figure
highlights the following steps:

1. Developing an understanding of the application domain. This
step aims at identifying the goal of the KDD process from the cus-
tomer’s point of view.

2. Creating a target data set. It is for selecting a data set, or focusing
on a subset of variables or data samples, on which a discovery must
be performed.

3. Data cleaning and preprocessing. It is a basic operation that filters
the data from incorrect, unnecessary information or noise. It in-
cludes removing noise, collecting the necessary information to mo-
del or account for noise, deciding on strategies for handling miss-
ing data fields, and accounting for time-sequence information and
known changes.

4. Data reduction and projection. It is for finding useful features to
represent the data depending on the goal of the task. With dimen-
sionality reduction or transformation methods, the effective num-
ber of variables under consideration can be reduced, or invariant
representations for the data can be found.

5. Matching. It matches the goals of the KDD process (step 1) with
a particular data mining method i.e. summarization, classification,
regression, clustering, . ..

6. Exploratory analysis and model and hypothesis selection. It chooses
the data mining algorithms and selects methods to be used for search-
ing data patterns. This process includes the task of deciding which
models and parameters might be appropriate, and matching a par-
ticular data mining method with the overall criteria of the KDD pro-
cess. For example, the end user might be more interested in under-
standing the model than its predictive capabilities.

7. Data mining. It searches for patterns of interest in a particular rep-
resentational form or a set of such representations including classi-
fication rules or trees, regression, and clustering. The user can sig-
nificantly aid the data mining method by correctly performing the
preceding steps.

8. Interpretation of the mined patterns. It aims at interpreting the
mined patterns, possibly returning to any of steps 1 through 7 for
further iterations. This step can also involve visualization of the
extracted patterns and models or visualization of the data given the
extracted models.

9. Activities over the discovered knowledge. It uses the knowledge
directly, incorporating the knowledge into another system for fur-
ther action, or simply documenting it and reporting it to interested
parties. This process also includes checking for and resolving po-
tential conflicts with previously believed (or extracted) knowledge.

10

The KDD process can involve significant iterations and can contain
loops between any two steps. Most of the previous work on KDD was
focused on step 7, the data mining (HKOQ), but the other steps are indeed
important, and probably more so, for the success of the KDD application.
KDD is considered an interdisciplinary process that binds in a strong way
various research fields such as machine learning, pattern recognition, da-
tabase, statistics, artificial intelligence, knowledge acquisition, expert sys-
tems and high-performance computing. KDD processes and data mining
techniques were first used in the scientific field. At the beginning of the
1990s, data mining was used in astronomy for analyzing large quantities
of data. In this context, scientists realized images analysis systems based
on data mining techniques (i.e. classification and clustering), for classify-
ing images and objects present in space.

Some primary research and application challenges for KDD include:

* Massive datasets and high dimensionality. These datasets create
combinatorial explosive search spaces for model induction. Pos-
sible solutions include efficient algorithms, sampling, approxima-
tion methods, massive parallel processing, dimensionality reduc-
tion techniques, and incorporation of prior knowledge.

¢ User interaction and prior knowledge. Since the KDD process is,
by definition, interactive and iterative, it is a challenge to provide
a high-performance, rapid-response environment that also assists
users in the proper selection and matching of appropriate tools and
techniques to achieve their goals. There needs to be more emphasis
on human-computer interaction and less emphasis on total automa-
tion, with the aim of supporting both expert and “novice” users.
Many current KDD methods and tools are not truly interactive and
do not easily incorporate prior knowledge, about a problem ex-
cept in simple ways. For example, Bayesian approaches use prior
probabilities over data and distributions as one way of encoding
prior knowledge while others employ deductive database capabili-
ties to discover knowledge that is then used to guide the data min-
ing search.

11

* Overfitting and assessing statistical significance. Overfitting is
caused when an algorithm searches for the best parameters for one
particular model using a limited set of data. Possible solutions in-
clude cross-validation, regularization, and other sophisticated sta-
tistical strategies. Simple methods to handle this problem include
adjusting the test statistic as a function of the search and random-
ization testing.

e Missing data. This problem is massively present in business da-
tabases where important attributes can be missing if the database
is not well designed. Missing data can result from operator error,
actual system and measurement failures, or from a revision of the
data collection process over time e.g., new variables are measured,
but they were considered unimportant a few months before. Pos-
sible solutions include greater sophisticated statistical strategies in
order to identify hidden variables and dependencies.

¢ Understandability of patterns. In many applications, it is impor-
tant to make the discoveries more understandable to humans. Pos-
sible solutions include graphical representations, rule structuring,
natural language generation, and techniques for visualization of
data and knowledge. Rule refinement strategies can also help to
address a related problem: discovered knowledge may be implic-
itly or explicitly redundant.

e Managing changing data and knowledge. Rapidly changing (non-
stationary) data may make previously discovered patterns invalid.
In addition, the variables measured in a given application database
may be modified, deleted, or augmented with new measurements
over time. Possible solutions include incremental methods for up-
dating the patterns and treating change as an opportunity for dis-
covery by using it to drive the search of the patterns.

¢ Integration. Integration issues include integration with a Database
Management System (DBMS) (e.g., via a query interface), integra-
tion with visualization tools, and accommodation of real-time sen-

12

sor readings. Highly interactive human-computer environments as
outlined by the KDD process permit both human-assisted computer
discovery and computer-assisted human discovery. Development
of tools for visualization, interpretation, and analysis of discovered
patterns is of fundamental importance. Such interactive environ-
ments can enable practical solutions to many real-world problems
far more rapidly than humans or computers operating indepen-
dently.

A very attractive application field is Business Analysis (marketing, fi-
nance, fraud detection, ...) where the KDD process is used as “decision
support” for making previsions and for wide range analysis. In the mar-
keting field during the 90s, Agrawal opened a very important research
stream, the so called “market basket analysis” (AIS93; [AS95). In the fi-
nance and investment fields, the KDD gives a strong support to decision
makers in the hard task of granting credits, and to managers in the task
of self-assessment. In this context, many applications move within the
sphere of action of the Basel II International Agreemen that enforce the
use of analysis tools for identifying and evaluating the credit risk and for
validating the evaluations.

By getting ideas from our experience in KDD, we have also contributed
to this area in the past. We have, in fact, investigated a system for im-
proving the discovery process by means of domain rules. Our focus was
to classify business documents that described innovative projects in or-
der to make previsions of success/failure (feasibility) of new submitted
plans, and to realize a sort of (self) assessment (BFT06; KMS02). In our
case, rules provided by experts in the economic and business fields have

IThe Basel I Framework describes a more comprehensive measure and minimum stan-
dard for capital adequacy that national supervisory authorities are now working to imple-
ment through domestic rule-making and adoption procedures. It seeks to improve on the
existing rules by aligning regulatory capital requirements more closely to the underlying
risks that banks face. In addition, the Basel II Framework is intended to promote a forward-
looking approach to capital supervision, one that encourages banks to identify the risks they
may face today and in the future, and to develop or improve their ability to manage those
risks. As a result, it is intended to be more flexible and better able to evolve with advances
in markets and risk management practices [http://www.bis.org/publ/bcbsca.html].

13

http://www.bis.org/publ/bcbsca.htm

been formalized by means of Bayesian Causal Maps, a formalism that
combines Causal Maps and Bayesian Networks (Hec96). Historically,
Causal Maps have been introduced for the formalization and the inter-
pretation of human intents and human thinking through relations among
concepts. By adding the concepts of Bayesian Networks (BNs) to Causal
Maps we get Bayesian Causal Maps, which enrich the former by introduc-
ing a probability by which a concept may imply a related one. The clas-
sification strategy, instead, was based on the well-known Quinlan’s C4.5
classification trees algorithm (Qui93). For this purpose, we developed a
new algorithm, DrC4.qﬂ in which we drive the construction of classifi-
cation trees by using the domain rules (BFI05). The carried out system
is an example of how classical techniques can be improved by means of
a-priori or domain knowledge. In particular, we obtained satisfactory re-
sults concerning the correctness of classification (higher number of new
instances correctly classified) and the size of the models (trees with less
leaves), compared with the C4.5 algorithm. So, in the cases where the
classification accuracy was the same as for C4.5, we generated trees that
reduced the over-specialization of the models.

DrC4.5 is cited here because it is the first prototype algorithm to in-
spire the implementation of YaDT-DRb (Bel07), the algorithm, based on
YaDT (Rug04), that we use in the MUSING project for developing an ana-
lytical tool. It will become more clear later, especially during the descrip-
tion of the case study in chapter[5} why, in this section, we make reference
to these particular works on Business Analysis, and what are the relation-
ships with the work developed in this thesis. It is nevertheless useful, to
note that this section focuses on a particular application of the thesis in
order to extend and upgrade the system analysis on business documents.

2DrC4.5 stands for “Domain Rules C4.5”.

14

2.2 Ontologies: State of the Art

In the last 10 years, within the computer science community, the word
“ontology” has immediately recalled “technical” concepts such as graphs,
semantic reasoning and knowledge representation. For example, a devel-
oper, can rely on the wide range of specification languages and tools for
representing, editing and analysing such knowledge. Maybe theoretical
researcher knows, instead, that the notion of ontology originates from a
more remote past far from the modern and technological world of com-
puters and internet.

By looking at various literatures, we find many correct definitions of
ontology that highlight its theoretical and technical aspects. It will be
very useful to look at these ontologies though their formal definitional
language, as a representational model (conceptual diagram) or through
the software programs that implement them.

In this section, we present a general view of the genesis and the state
of the art of the ontologies as well as some significant examples of appli-
cations.

2.21 From Philosophy ...

In short, “ontology” may be defined as the study of being as such. The in-
troduction of the Latin word “ontologia” was an attempt to modernize
the classical debate about metaphysics. The term metaphysics was used
initially by Aristotle’s students to refer to what Aristotle himself called
“first philosophy” (JAS05). Aristotle’s view of ontology is often referred
to as the realist view. In his work “Categories” (AriCE) he provides a list
of categories, which can be seen as an inventory of what there is in terms
of the most general kinds of entities. These categories can be used to dif-
ferentiate things as well as to refine specific aspects of things. Since these
categories are one of the first recognized ontology, it could be interesting
to show them.

Substance (e.g., man, horse)
Quantity (e.g., two cubits long, three cubits long)

15

Quality (e.g., white, grammatical)

Relation (e.g., double, half, greater)

Place (e.g., in the Lyceum, in the market-place)
Time (e.g., yesterday, last year)

Position (e.g., is lying, is sitting)

State (e.g., shod, armed)

Action (e.g., to lance, to cauterize)

Affection (e.g., to be lanced, to be cauterized)

The important property of the categories is that they are not composite.
That is, they need to be composed in order to make statements about the
nature that can yield affirmation. One should not focus too much on the
used language but rather on the things that the categories try to define.
The exhaustiveness of the list is also debatable but as a first guide for
structuring an ontology, its precision is striking. As we will show later,
these categories have a strong relation with computer science (see section
even if they come from a remote past.

The term ontologia instead, was created in the circles of German protes-
tants around 1600. The first appearance of the Latin word ontologia can be
found in two books published in 1613 by Rudolf Gockelin (Professor of
Logic in the University of Marburg) (Goc80) and Jacob Lorhard (Professor
at the University of St. Gallen - Switzerland) (Lor). However, as Dennis
Bielfeldt (BieO3) pointed out, “ontology is as old as philosophy itself”.
Sometimes “ontology” is used in a broader sense to refer to the study of
what might exist, while “metaphysics” is used for the study of which of
the possible kind of ontologies is in fact true. The first occurrence in En-
glish appeared instead, in Bailey’s 1721 dictionary which defines ontol-
ogy as “an Account of being in the Abstract” (Smi03). Philosophical on-
tology is called descriptive or realist ontology. It does not seek to explain
but rather to describe reality in terms of a classification of entities. This
description can be considered exhaustive in the sense that it can serve as
an answer to such questions as:

What classes of entities are needed for a complete description

16

and explanation of all the goings-on in the universe?

Or, what classes of entities are needed to give an account of
what makes true all truths?

Or, what classes of entities are needed to facilitate the making
of predictions about the future?

Sometimes a division is made between formal and material (or re-
gional) ontology.
Formal ontology is domain-neutral and it deals with those aspects of re-
ality (for example the identity) which are shared by all material regions.
Material ontology instead deals with those features (for example mind or
causality) which are specific to given domains. The history of philosoph-
ical ontology is indeed marked by a certain tradeoff between generativity
on the one hand and descriptiveness on the other. “Generativity” means
the power of an ontology to yield new categories and thus to exhaust the
domain that is to be covered by ontological investigation in some recur-
sive fashion. Thus, generativity gives ontology its power while descrip-
tiveness ties an ontology to the world beyond.

It is interesting to point out how ontology and science are related to
each other. Philosophical ontology is a descriptive enterprise. It is dis-
tinguished from the specific sciences not only in its radical generality but
also in its primary goal or focus. Ontology especially seeks taxonomy
rather than predication or explanation. Therefore, we can assert that On-
tology is (very largely) qualitative while Science is (very largely) quan-
titative. Science starts, very roughly, with measurement and prediction.
Even if there exists an ontology of measure (BP90), ontologists do not
measure reality.

Philosophical ontology tells us what categories exist within a given do-
main of reality and thus what categories are available for the measure-
ment process. Science tells us for example how the measurable behaviour
of entities of a certain class is correlated with the behaviour of entities of
a second class. The sciences, by definition, can deal only with the objects
that fall within their respective domains. Ontology deals with transcate-
gorial relations including the relations that hold between entities belong-

17

ing to distinct domains of science, and also between those entities and the
entities recognized by common sense.

Indeed, in the course of the Twentieth Century, a range of formal tools
became available to ontologists for the development and testing of their
theories. Ontologists nowadays have a choice of formal frameworks (de-
riving from formal logic, as well as from algebra, category theory, mere-
ology, set theory, topology) in terms of which their theories can be for-
mulated. These new formal tools allow philosophical ontologists to ex-
press intuitive principles and definitions in a clear and rigorous fashion,
and they can also allow for the testing of theories for consistency and
completeness through the application of the methods of formal seman-
tics (Smi; [Smi03).

2.2.2 ..to the Information Science

As stated by B. Smith, the first use of the term “ontology” in the computer
and information science literature occurred in 1967, in a work on the foun-
dations of data modelling by S. H. Mealy (Mea67). From the scientific
point of view, the ontology is, in its first approximation, a table of cate-
gories in which every type of entity is captured by some node within a hi-
erarchical tree. This view comes directly from Aristotle’s thinking of cat-
egories, and it has been adopted also by contemporary ontologists. With
a reference to Aristotle’s categories (AriCE), for example, things like sub-
stance, quantity, quality, location and time are all vital components of a
Service Level Agreemenlﬂ (SLA). A typical SLA would have, for example,
statements concerning maximum (quantity) bandwidth (substance) in a
subnet (place) during peak hours (time) with a certain reliability (quality).

In a related development, the term “ontology” has become popular in
the field of computer and information science and especially in domains
such as knowledge engineering, natural language processing, coopera-
tive information systems, intelligent information integration, and knowl-

3Service Level Agreement describes the obligations and guarantees of service providers
and consumers.

18

edge management. The philosopher-ontologist, in principle at least, has
only the goal of establishing the truth about the domain in question. In
contrast, in the world of information systems, an ontology is a software or
formal language designed with a specific set of uses and computational
environments, and often ordered by a specific client, customer or appli-
cation program in a specific context. In this field, ontologies are rapidly
developing thanks to their focus on classification and on constraints on
allowable taxonomies and definitions, a focus not foreseen by its initial
progenitors. One of the first important work is (GWO0O0), in which the
authors propose a general methodology for ontology-driven conceptual
analysis (ODCA), which combines the established tradition of formal on-
tology and philosophy with the needs of information systems design. In
particular, they outline a common problem of ontologies, i.e. that their
taxonomic structure is often poor and confusing. Their methodology,
based on four fundamental ontological notions (identity, unity, rigidity,
and dependence), permits them to represent the behaviour of a property
with respect to these notions by means of a set of meta-properties. Their
goal is to show how these meta-properties impose some constraints on
the way subsumption is used to model a domain.

So to the question “What are the advantages of developing an ontology?”,
we can answer with more and interesting reasons:

- To share common understanding of the structure of informa-
tion among people or software agents.

- To enable reuse of domain knowledge.

- To make domain assumptions explicit.

- To separate domain knowledge from operational knowledge.

- To analyze domain knowledge.

Since the beginning of 1990, one of the most common goals in develop-
ing ontologies has been for technical people and software agents to share
a common understanding of the structure of information. For example,
different Websites share and publish the same ontology of the terms they
all use, allowing computer agents to extract and aggregate information
from them. The agents can use this aggregated information to answer

19

user queries or as input data to other applications.

Reuse is one of the principles of programming methods, and it is also
valid for knowledge (ontology). Therefore, if one group of researchers de-
velops an ontology in detail (for example for describing “Time”, “Banking
system”, ...), others can simply reuse it for their domains an purposes.
It is common practice to start from general upper ontologies, such as
S UM(ﬂ or PROTONE] ontologies, and extend them to describe their own
domain of interest. Making explicit domain assumptions permits one to
make changes easily when the knowledge about the domain changes. In
addition, explicit specifications of domain knowledge are useful for new
users who must learn the used terms.

Separating the domain knowledge from the operational knowledge
is another common use of ontologies, similar to the method adopted in
object-oriented programming. For example, we can describe a task of
configuring a product from its components according to a required spec-
ification, and implement a program that does this configuration indepen-
dent of the products and components themselves.

Analysing domain knowledge is possible once a declarative specification
of the terms is available. Formal analysis of terms is extremely valuable
when attempting both to reuse existing ontologies and extending them.

2.2.3 Logics and Ontology: Languages and Reasoning

Ontologies are made up of formal theories about a specific domain, and
thus have a formal logical language associated with them.

Logic has been proposed since the early days of the Artificial Intelligence
(Al) as a framework for KR and reasoning (Nil02; MW85). In this con-
text it provides the three main components necessary for structuring and
handling the objects of the actual world, that is:

[Syntax] - An alphabet;
[Semantic] - An interpretation of the alphabet symbols;

4SUMO: Suggested Upper Merged Ontology - http://www.ontologyportal.org/
5PROTON: PROTo ONtology - http://proton.semanticweb.org/

20

http://www.ontologyportal.org/
http://proton.semanticweb.org/

[Proof System] - A method for making proofs.

Propositions are the basic items that logic deals with. The Propositional
logic or 0-order logic is used essentially for expressing beliefs, and in com-
puter science, for hardware specifications. Its syntax is based on Atoms
(P, Q, ...) which represent propositions, and Logic Connectives such as
conjunction, disjunction, negation, implication (A, v, - and 2). Its seman-
tics is given by an Interpretation Function that assigns a truth-value to each
set of propositional symbols (e.g., v: P — Bool).

One of the most straightforward way to determine whether a sentence
is valid is by a complete case analysis of the possible truth values assigned
to its propositional symbols. Such a process is facilitated by means of
Truth Tables or Semantic-based trees. The main limitation in the expressiv-
ity of the propositional language is its lack of generality. For example, in
order to express a general fact such as, “every block is on the table”, one
has to state this property for each single block in the world.

Predicate Logics or First Order Logic (FOL) overcomes the limitations

of propositional languages by allowing a better granularity in the con-
struction of atomic statements. The language is extended to include terms
(a term denotes an object in the world), and relational symbols of ariety n (n
> 0), representing a relation between n objects. Existential and Universal
(3 and V) quantification over a variable are introduced. An interpreta-
tion function I gives semantics to predicates. In general, an interpreta-
tion for an expression € may assign a value to some symbols that are not
free in € (constant, variable, function or predicate) or variables that occur
only bound in €. Many proof systems have been developed from which
Tableau, Axiomatic approaches, ...
While FOL is used for software/hardware specification and for build-
ing models, higher order, modal, temporal, probabilistic and fuzzy logics
have been introduced for formalizing actions and their effects and for
modelling more complex concepts (MW85} INS93; [TAQ6).

21

Researches first adopted the existing logics (developed by mathemati-

cians, logicians and philosophers), such as propositional, FOL, and modal
logic to represent and reason about knowledge. However, the need to rep-
resent and efficiently reason about the many aspects of the world have
lead to the design of “new logics”. The main examples are description
logics and Horn clause logics which gave rise to Prolog and Logic Pro-
grammingﬂ They are at the basis of current systems for representing on-
tologies and taxonomic knowledge.
For the logic-based KR, it is necessary to pay attention to the fundamental
trade off between expressive power, influenced by ontological require-
ments, and computational complexity, determined both by the intrinsic
properties of the modelling constructs and by the computational proper-
ties of the reasoning algorithms.

The main problem in automated reasoning is to determine whether a
“conjecture” ¢, that represents a property to be verified, is a logical conse-
quence of a set S of assumptions which express properties of the reference
object (e.g., a system, a circuit, a program, a data type, a communication
protocol, a mathematical structure). Theorem proving tries to solve the
problem of finding a proof of ¢ from S. It comprises both deductive the-
orem proving, which concerns the problem stated above, (in symbols: .S
E), and inductive theorem proving where the problem is to determine
whether S entails all ground instances of ¢; in symbols: S = o, for all
ground substitutions o).

In general the more expressive the logic, the more difficult it is to rea-
son on it. For instance, checking if S = ¢ in propositional logic is decid-
able, while in FOL it is not. For subsets of FOL it is decidable, but with
varying complexity depending on the set of operators. Decidability may
stem from imposing restrictions on the logic, the form of admissible for-
mulas for S and ¢, or the theory presented by the assumption in .S.

For this proposal, we will focus on DL approaches.

®Logic programming was proposed with the goal of combining the use of logic as a
representation language with efficient deduction techniques, based on a backward inference
process (goal-directed) which allows one to consider a set of formulas as a program. Prolog
is the most widely used logic programming language.

22

2.2.4 Description Logic Based Approaches

Description Logics (DLs) are a family of knowledge representation lan-
guages that can be used to represent the knowledge of an application
domain in a structured and formal way. The name “description logics” is
motivated by the fact that, on the one hand, the important notions of the
domain are described by concept descriptions, i.e., expressions that are
built from atomic concepts (unary predicates) and atomic roles (binary
predicates) using the concept and role constructors provided by the par-
ticular DL. On the other hand, DLs differs from their predecessors, such
as semantic networks and frames, in that they are equipped with a for-
mal, logic-based semantics.

As we can see in the following of this paragraph, DL is the theoretical ba-
sis of the recommended standard language for ontology representation
(Dlg; Wik)).

The evolution (and especially the hierarchy) of the various XML-based
languages is shown in figure [B|which explains the semantic web architec-
ture in agreement with the Tim Barners—Le{] point of view (BLE97).

The XML layer is used as a syntax layer while the RDF layer repre-
sents the data layer and permits to assign types to resources and links.
The ontology layer specifies meaning and structure of the data: it is the
container that defines in a formal way the relations between terms. The
logic layer provides rules that enable further intelligent reasoning while,
the proof layer supports the exchange of proofs in inter-agent communi-
cation.

XML documents are supported by XML Schemas (generally referred
as XSD). An XML Schema provides a means for defining the structure
and the content of an XML document and the corresponding constraints.
These constraints are generally expressed by using combinations of gram-
matical rules, Boolean predicates on the content, data types that regulate
the content of elements and attributes, and more specialized rules such as
uniqueness and referential integrity constraints.

7Tim Barners-Lee is currently the Director of the World Wide Web Consortium and con-
sidered the founder of the web.

23

Rules Trust
Data Proof g
2
) Data Logic ;_?:?
j:i(; Ontology vocabulary E
o0
doc. RDF + rdfschema o

Unicode

Figure 3: Semantic Web layers.

RDF - Resource Description Framework (LS99) is most commonly men-
tioned as a language, but it is rather a data model, independent of any
domain or implementation. It has been developed to provide meaning to
the Web documents, adding metadata in order to achieve terminological
consensus on the Web. It provides interoperability between the appli-
cations that exchange machine-understandable information on the Web,
and it emphasizes facilities to enable automated processing of Web re-
sources. RDF can be used in various application areas such as in resource
discovery to provide better search engine capabilities and in cataloguing for
describing the content and content relationships available at a particular
Web site, page, or digital library. It can also be used by intelligent software
agents to facilitate knowledge-sharing and exchange, in content rating, in
describing collections of pages that represent a single logical “document”,
for describing intellectual property rights of Web pages, and for expressing
the privacy preferences of a user as well as the privacy policies of a Web
site. RDF with digital signatures will be the key for building the “Web of
Trust” for electronic commerce, collaboration, and other applications.

The RDF model is based on three types of objects: Resources, Proper-

24

Subjects (Resources) http:/ /www.MarioRossi.it/docl.html
www.comuni.it/servizi/codfisc/RSSMRA70A01E715H
Predicates (Properties) | Author, Name, Affiliation

Objects (Values) Mario Rossi

mario.rossi@imtlucca.it

IMT

Table 1: Identification of the sentence elements.

ties and Statements.

[Class] Resources are all things being described by RDF expressions. Thus
a resource may be an HTML document, part of a Web page (e.g. a
specific HTML or XML element within the document source), or it
can be a collection of pages (e.g. an entire Web site).

[Property]l A Property is a specific feature, attribute or a relation that de-
scribes resources and that has a defined meaning. A property to-
gether with its value for a specific resource makes a statement about
that resource.

[Statement] An RDF statement is a resource with its own property so a
Statement is a tuple composed of subject (resource), predicate (prop-
erty) and object (value).

RDF is a graph based data model, and it consists of nodes and edges.
Nodes correspond to objects or resources and the edges correspond to
properties. The labels on the nodes and on the edges are Uniform Re-
source Identifiers (URIs). As an example, consider the following sentence:

The person identified by the fiscal code RSSMRA70A01E715H with
name Mario Rossi, Email address mario.rossi@imtlucca.it, affilia-
tion IMT, is author of the resource
http://www.MarioRossi.it/doc1.html.

The sentence has the parts shown in table|l|and graphically corresponds
to the diagram in figure[d]

Graphically, relations between resources, properties and values are
depicted by using labelled and oriented graphs; resources are nodes (el-

25

http://www.MarioRossi.it/doc1.html

Www.comuni.it/servizi/codfisc/RSSMRA70AQ1ET 15H

Affiliation

Mario Rossi ‘ ‘ mario.rossi@imtlucca.it ‘

Figure 4: Graphic representation of two linked RDF statements.

lipses), properties are oriented edges while values are rectangles.

RDF itself does not define any primitives for creating ontologies, but
it provides the basis for several other ontology definition languages such
as RDFS. The RDF Schema or RDFS (Com04b) has been developed, such
as the XML Schema for an XML document, in order to define the vocab-
ulary used in RDF data models by specifying which kinds of properties
apply to which kinds of objects, what values the objects can take and
what kinds of relationships between those objects exist. Therefore, RDFS
is considered as a first move toward an ontology language for the Web.
It offers a fixed set of modelling primitives such as rdfs:Class, rdf:Property
or the rdfs:subClassOf relationship to define RDF vocabularies for some
specific application. In RDEFS it is possible to define classes of classes,
classes of properties, classes of literals that are strings, integers, Booleans
and so forth, and classes of statements. Using RDFS properties, which
are rdf:type, rdfs:subClassOf and rdfs:subPropertyOYf, it is possible to define
instanceOf relationship between resources and classes, subsumption rela-
tionship between classes and subsumption relationship between proper-
ties, respectively. Using rdfs:domain and rdfs:range properties it is possible
to restrict the resources that can be subjects or objects of the property.
Nevertheless, RDFS is not expressive enough for defining useful ontolo-
gies. For example, disjoint, union, intersection and complement classes

26

cannot be defined, cardinality restrictions are not present, and properties
cannot be declared as transitive, symmetric or inverse of each other.

Recently, a work-group at W3C has continued the work for producing
a recommendation for an ontology language. The Web Ontology Lan-
guage (OWL) (Com04a) is designed for use by applications that need to
process the content of information instead of just presenting information
to humans. It facilitates the machine interpretability of Web contents bet-
ter than that supported by XML, RDF, and RDFS. OWL is syntactically
layered on RDEF, but it adds more vocabulary for describing properties
and classes: among others, relations between classes (e.g. disjointness),
cardinality (e.g. “exactly one”), equality, richer typing of properties, char-
acteristics of properties (e.g. symmetry), and enumerated classes. The
basic elements of the OWL ontology are classes, properties, instances of
classes, and relationships between these instances.

[Class] A class is a collection of individuals (object, things, ...) and it is
the most basic concept for describing part of the world. Every indi-
vidual in the OWL world is a member of the class owl : Thing. Do-
main specific root classes are defined by simply declaring a named
class.

[Individual] An individual is an object of the world, and in particular a
member of a class. Individuals are related to other objects and to
data values via properties.

[Property] A property is a binary relation that lets us assert general facts
about the members of classes and specific facts about individuals
(e.g. hasFather, hasPet, serviceNumber). There are two types
of properties: datatype property and object property. While the former
expresses relations between instances of classes and RDF literals
and XML Schema datatypes, the latter expresses relations between
instances of two classes.

The following example taken from (Cap05), can exemplify the con-
cepts just described.

27

Example 2.1 A simple ontology.

Suppose we have seven individuals (Andrew, Milan, Naples, Nic, Rome,
Pisa and Mary) grouped in two classes (Towns and Persons) and re-
lated by means of three types of properties (hasBrother, hasWife,
liveInTown). A simple ontology, built by using those elements, is graph-
ically depicted in figure 5|

Nic, Mary and Andrew are Persons while Naples, Milan, Rome and
Pisa are Towns. Mary, who lives in Pisa, is the wife of Nic. Mary also
has a brother named Andrew who lives in Naples. The OWL formal-

livelnTown

‘\ ’
- Persons Towns -

Figure 5: A simple ontology.

ization of the classes is shown in table 2} The meaning is that Towns and
Persons are resources of RDHY and classes in OWL. The individuals

<owl:Class rdf:ID="Towns” />
<owl:Class rdf:ID="Persons” />

Table 2: OWL Class definition.

are introduced by declaring them as being members of a class (table [B).
Each object property is defined and linked to the classes by expressing
the domain (rdfs: domain) and the co-domain (rdfs : range) as shown
in table[d
Since hasWife and hasBrother properties tie individuals of the
same class, it is possible to express the individuals involved in the rela-

8The rdf : ID attribute on a node element gives a relative RDF URI reference.

28

<Towns rdf:ID="Milan” />
<Towns rdf:ID="Naples” />
<Towns rdf:ID="Pisa” />
<Towns rdf:ID="Rome” />
<Persons rdf:ID="Nic” />
<Persons rdf:ID="Mary” />
<Persons rdf:ID="Andrew” />

Table 3: OWL Individuals definition.

<owl:ObjectProperty rdf:ID="hasBrother”>
<rdfs:domain rdf:resource="&owl;Thing” />
<rdfs:range rdf:resource="#Persons” />
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasWife”>
<rdfs:domain rdf:resource="&owl;Thing” />
<rdfs:range rdf:resource="#Persons” />
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="liveInTown">
<rdfs:domain rdf:resource="Persons” />
<rdfs:range rdf:resource="#Town” />

</owl:ObjectProperty>

Table 4: OWL Properties definition.

29

tions. Therefore, we can extend the definition of table |3| with that one of
table Bl

<Persons rdf:ID="Nic” />

<hasWife rdf:resource="#Mary” />
</Persons >
<Persons rdf:ID="Mary” />

<hasBrother rdf:resource="#Andrew” />
</Persons >

Table 5: OWL definition of Properties on Individuals.

<

The standard (Com04a) foresees three increasingly-expressive sublanguages:

[OWL Lite] It supports the users’ primarily needs with a classification
hierarchy and simple constraints. For example, while it supports
cardinality constraints, it only permits cardinality values of 0 or 1. It
has a lower formal complexity than the other versions, so it should
be simpler to provide tool support for OWL Lite. Furthermore, it
provides a quick migration path for thesauri and other taxonomies.

[OWL DL] It owes its name to the correspondence with description log-
ics, a field of research that has studied the logics that form the for-
mal foundation of OWL. OWL DL supports those users who want
the maximum expressiveness while maintaining computational com-
pleteness and decidability. OWL DL includes all OWL language
constructs, but they can be used only under certain restrictions. For
example, while a class may be a subclass of many classes, a class
cannot be an instance of another class.

[OWL Full] It is for users who want maximum expressiveness and the
syntactic freedom of RDF with no computational guarantees. For
example, in OWL Full a class can be treated simultaneously as a
collection of individuals and as an individual in its own right. OWL

30

Full allows an ontology to augment the meaning of the predefined
(RDF or OWL) vocabulary.

It is important to point out that OWL Full can be considered as an ex-
tension of RDF, but OWL Lite and OWL DL can be considered only as
extensions of a limited version of RDF. Thus, each OWL (Lite, DL, Full)
document is an RDF document, and each RDF document is an OWL Full
document, but only some RDF documents are an OWL Lite or OWL DL
documents.

2.2.5 Ontology Based Reasoning: an Example

As we have seen in the previous section, languages like OWL specify a
vocabulary and constrain the use of that vocabulary by restrictions. How-
ever, they also provide axioms which allow one to deduce new informa-
tion from explicit information. Ontologies are set to play a key role in the
“Semantic Web” by providing a source of shared and precisely defined
terms that can be used for describing the resources. Reasoning over such
descriptions is essential for accessibility purposes, automating processes
and discover new knowledge. From a formal point of view, OWL can be
seen as to be equivalent to a specific member in the DLs family, which
allows OWL to exploit the considerable existing body of DL reasoning
including class consistency and subsumption, and other ontological rea-
soning.

A very useful example of reasoning by using OWL is taken from
(WGZP04). In this paper, the authors propose an OWL encoded con-
text ontology (named CONON) for modelling context in pervasive com-
puting environments, and for supporting logic based context reasoning.
CONON provides an upper context ontology that captures general con-
cepts about basic context, and provides extensibility for adding domain-
specific ontology in a hierarchical manner. Based on this context ontol-
ogy, they studied the use of logic reasoning to check the consistency of
context information, and to reason over low-level, explicit context to de-
rive high-level, implicit context. In the specific, the example shows how

31

Transitive (?P rdf:type owl:TransitiveProperty) A (?A ?P ?B) A (?B ?P ?C) =

Property (?A?P 2C)

subClassOf (?a rdfs:subClassOf ?b) A (?b rdfs:subClassOf ?¢) = (?a
rdfs:subClassOf ?¢)

subPropertyOf | (?a rdfs:subPropertyOf ?b) A (?b rdfs:subPropertyOf ?c) = (?a
rdfs:subPropertyOf ?c)

disjointWith (?C owl:disjointWith ?D) A (?X rdf:type ?C) A (?Y rdf:type ?D) =
(?X owl:differentFrom ?Y)
inverseOf (?P owl:inverseOf ?Q) A (?X ?P ?Y) = (?Y ?Q ?X)

Table 6: Parts of OWL ontology reasoning rules.

to deduce information starting from a specific context, and the formaliza-
tion of rules. In particular it explains how to extract implicit knowledge
from an explicit one. The OWL rules, that involve OWL properties, are
shown in table[6] The application context can be informally described as
follows:

User Wang is currently located in the bedroom, which is in turn, a
part of the home building.

By means of the rules that involve the owl : TransitiveProperty and
owl:inverseOf, we can conclude that:

Wang is located in the home building.

The formalization of the example is shown in table[7}

While the ontology layer already provides means for deducing new
knowledge (information) and provides restricted reasoning support, many
applications require further means to combine and deduce information.
OWL adds considerable expressive power to the Semantic Web, however,
for a variety of reasons it has expressive limitations. Many of the lim-
itations of OWL stem from the fact that, while the language includes a
relatively rich set of class constructors, the language provided for talking
about properties is much weaker. In particular, there is no composition
constructor, so it is impossible to capture relationships between a com-
posite property and another possibly composite property. To address this

32

INPUT DL Reasoning (?P rdf:type owl:TransitiveProperty) A (?A ?P ?B)
Rules A(?B?P?2C) = ?A?P 20)
(?P owl:inverseOf ?Q) A (?X ?P ?Y) = (?Y ?Q ?X)
Explicit <owl:ObjectProperty rdf:ID="locatedIn”>
Context <rdf:type="owl:TransitiveProperty” />
<rdfinverseOf rdf:resource="#contains” />
</owl:ObjectProperty>
<Person rdf:ID="Wang">
<locatedIn rdf:resource="#Bedroom” />
</Person>
<Room rdf:ID="Bedroom” >
<locatedIn rdf:resource="#Home” />
</Room>
OUTPUT| Implicit <Person rdf:ID="Wang”>
Context <locatedIn rdf:resource="#Home” />

</Person>
<Building rdf:ID="Home" >
<contains rdf:resource="#Bedroom” />
<contains rdf:resource="#Wang” />
</Building>
<Room rdf:ID="Bedroom”>
<contains rdf:resource="#Wang” />
</Room>

Table 7: Reasoning about location by using OWL ontology.

33

problem, a possible solution is to extend OWL with a more powerful lan-
guage for describing properties. For example, a decidable extension of
the description logics underlying OWL DL to include the use of compo-
sition in subproperty axioms has already been investigated. However,
in order to maintain decidability, the usage of the constructor is limited
(Hor05).

Logic Programming systems (LP), such as Prolog, offer efficient en-
vironments to do so. Large communities from the LP environment are
working on new solutions for improving the exchange of rules and the
reasoning ability. Some of them are working on a standard for exchang-
ing rules in the semantic web called RuleMI_ﬂ Although it is a valid can-
didate, RuleML is not layered on top on ontology but operates on the data
layer only, so the two “environments” are split. Some other researchers
are studying instead on systems for integrating ontologies and rules.
SWRI_FEI (Semantic Web Rule Language) is a proposal for a Semantic Web
rules-language, combining sublanguages of the OWL with those of the
Rule Markup Language (Unary/Binary Datalog).

It is important to mention that there are important connections and

implications between the knowledge modelling components (concepts,
roles, etc.) used to build an ontology, the knowledge representation para-
digms (frames, description logics, logic) used to represent formally such
components, and the languages used to implement the ontologies under
a given knowledge representation paradigm.
Most languages have been developed following two approaches: First-
Order predicate Logic (FOL) and the XML-RDEF (Description Logic based).
Whereas the languages of the first type are more generic, the XML-RDF
based languages are specific for the development of Web ontologies. The
Semantic Web in fact, is built around a semi-structured data model (RDF)
and an explicit conceptualization for such data (the ontologies).

9RuleML: http://www.ruleml.org/
OSWRL: http://www.w3.org/Submission/SWRL/

34

http://www.ruleml.org/
http://www.w3.org/Submission/SWRL/

Chapter 3

Answering the Open
Questions

In this chapter we look at the main issues related to the proposal, and
the solutions we judge suitable for approaching the problems. Therefore,
each paragraph is titled with a question that refers to a particular step of
analysis for the system we propose. In each subsection, we inquire several
methodologies and theories with the attempt to answer the correspond-
ing initial question. Furthermore, section (3.3 gives a short overview of
Social Networks and Social Network Analysis, and discusses their rela-
tionships with ontologies.

3.1 How to Mine the Ontology Schema?

The main issue deals with the analysis of the ontology schema and the
extraction of the interesting information based on the ontology structure
(concepts, object and datatype properties). The ontology schema essen-
tially refers to the structural aspect of the ontology, and the attempt to
infer “semantics” starting from this schema can seem too ambitious. Nev-
ertheless, if one considers the objective of the work, the idea makes sense.
The schema describes objects and relations, and the analysis we want
to perform concerns the discovery of the most important relationships

35

[somg |

hasManagement

S
)

©

o

2

c

o

@ : iné\‘epceof e

8 ; 8 \ RE———
c i instanceOf “._instanceOf
5] g Com, i

7 instanceOf: leads

@ . : -

instanceOf

: hasM
Systam

ihstariceOf

hasAge

Figure 6: Example of rules extraction from ontology schema and instances.

among concepts (for the first phase). In figure(T} this phase is represented
by a deductive step. By navigating the ontology throughout its connec-
tions, we can identify the more relevant concepts and the corresponding
relationships. This analysis leads to the definition of the I'mplications as

shown in figure

The example that has driven us during this study is reported in figure
[6l Let us suppose we have a fragment of ontology that describes compa-
nies and the business environment where Company, Manager and Project
are concepts. Furthermore, continuous arrows represent properties of the
ontologies while the dotted ones are used for connecting instances to the
classes they belong to. From the ontology schema, we would like to ex-
tract the causal relation that links up the four concepts and that express a

relationship like:

“If a manager has a certain age, and he leads a certain project, then
the project he manages has a certain degree of innovation.” .

More formally:

36

Manager(X) A has_age(X, N) A leads(X, P) — has_innovation_degree(P, V).

At this stage, this relation is not properly a (influence) rule, but rather
a schema of the possible rules because it lacks both a weight and a quan-
tification for the variables V and V. To solve this problem, many tech-
nologies have been investigated, taking inspiration from the graph theory
and the Semantic Web environment.
What follows is a short survey.

3.1.1 Graph Theory: a Structural Analysis

The simplest way of analysing the ontology structure is to consider it as
a Direct Graph. If we want to “capture” the structural information, the
correspondence between ontology and graph has to be formalized and
implemented. For our purpose, it is sufficient to put in place the following
simple actions:

Al: Identify each ontology concept as a labelled node in the graph.
This correspondence is quite obvious and it is essential to keep track
of the concept name.

A2: Codify each object property between concepts as a direct edge be-
tween the corresponding nodes.
Again, matching object properties with edges is quite natural, but
in this case for the kind of analysis we want to perform, we can
leave out the semantics of the properties; we are not interested in
the information a property carries, but rather its existence.

A3: Keep track of the is-a relationships by using “special” arrows.
As we will explain in section these kinds of relationships are
important even if they are not considered to be the object properties,
and for this reason they are coded as “special arrows”.

In addition to this formalization, it has been proven that the represen-
tation of the ontology graph by means of its Adjacency Matrix is practi-
cally used. This is, in fact, a means of representing which vertices of a

37

graph are adjacent to which other vertices. Given a graph G with n ver-
tices, it is an nxn matrix where the nondiagonal entry a;; is the number
of edges from vertex i to vertex j, and the diagonal entry a;;, depend-
ing on a convention, is either once or twice the number of edges (loops)
from vertex i to itself. Undirected graphs often use the former convention
of counting loops twice, whereas directed graphs typically use the latter
one. In the special case of a finite simple graph, it is a (0, 1)-matrix with
zeros on its diagonal. The useful feature is that the adjacency matrix is
unique for each graph up to permuting rows and columns.

Section [4.2.1| supplies formalizations and examples of the expounded
concept as well as all the technical details.
Nevertheless, we think it is important to mention that the graph theory
supplies a wide range of tools for the structural analysis of the graphs. Of
particular interest is the research line that merges the graph analysis to the
DM or, rather, that tends to apply DM techniques to graphs. As we will
see in section[3.3] this kind of research has become attractive thanks to the
increasing interest on Social Networks and Social Networks Analysis. For
the sake of completeness, we report a brief review of graph theory related
to the DM (getting hints from (WMO03)), and we point to sectionfor an
overview of the Social Networks.

For our purposes, it is interesting and useful to explicitly cite the five
theoretical bases of graph-based data mining: subgraph categories, sub-
graph isomorphism, graph invariants, mining measures and solution meth-
ods.

Subgraph categories. Let us consider a graph G represented as G(V, E, f)

where: V' is a set of vertices, E a set of edges connecting some vertex
pairs in V and f a mapping f: E - V x V (figure[/(a)).
The most generic class of the substructure of G is a general subgraph
where V; c V, E; c E and v;, v; € V; for all edges f(en) = (v, v;) €
E,. Figure Wb) is an example in which a vertex vs and edges ey, eg,
er, eg, eg are missing.

Another important and generic class of the sub-structure is an in-

38

Ya € V3
(b} A general subgraph

V3 e V3
(c) An induced subgraph (d) A connected subgraph

(f) An unordered tree

(g) A path

Figure 7: Representative subgraphs.

39

duced subgraph where: V, c V, E; c E and Yv;,v; € Vg, e = (v,0;) €
Es < f(en) = (vi,v;) € E. An induced subgraph G; of a graph G
has a subset of the vertices of G and the same edges between pairs
of vertices as in G. In the case of figure[/[c) the vertex v5 is missing
and only the edges es and eg are also missing. ey, eg, e7 are retained
since they exist among v, v3 and v, in the original G.

The third class of the substructure is a connected subgraph where V, c
V, Es c E and all vertices in V, are mutually reachable through
some edges in E,. Figure [/(d) shows the case where v is further
missing from the graph of figure mc).

Considering the labels of edges in the tree, and whether they are
ordered in a way that the label of an edge is always younger than the
labels of its lower (upper) and right (left) edges, the tree is defined
as an ordered tree (figure e)). If the edge is not ordered or does not
have labels, the tree is called an unordered tree (figure Ekf)).

Finally, if the substructure does not include any branches, it is called
a path of the original graph G (figure mg))

Subgraph isomorphism. Given two graphs G,(V,, E;, f,) and

Gy(Vy, Ey, fy), the subgraph isomorphism problem consists of find-
ing the subgraphs Gz (Viz, Esz, f2), Goy(Vsy, Esy, fy) and a bijec-
tion mapping g., between the vertices in V, and the vertices in V,
such that G, and G, are identical, i.e., fz(ezn) = (Vgi, V) € Esy iff
fy(eyn) = (vyi, vy;) € Esy, where vy; = gy (vs;) and

Vyj = gmy(vmj)'

For example, the graphs (b) and (d) in figure [7] share the subgraph
composed of the vertices {vy, v, v3} and the edges {e1, ez, €3, €5} un-
der the bijection mapping of v; = gpq(v;), ¢ = 1,2, 3. This mapping is
a subgraph isomorphism between the graphs (b) and (d) of figure[7}

Graph invariants. Graph invariants are the quantities that characterize
the topological structure of a graph. If two graphs are topologically
identical, i.e. isomorphic, they also have identical graph invariants,
though the reverse property does not hold. Examples of graph in-
variants are the number of vertices, the degree of each vertex, i.e.,

40

the number of edges connected to the vertex, and the number of
cyclic loops. This method can be used to reduce the search space
to solve the subgraph isomorphism problem. If any of the graph
invariants show different values between two subgraphs, the sub-
graphs are not isomorphic.

One of the most generic and important graph invariants is the canon-
ical label and the canonical form. The former is defined as the lexico-
graphic minimum (or maximum) code, and the canonical form of
the adjacency matrix is the matrix corresponding to the canonical
label. The use of both significantly reduces the graph representation
ambiguity and the search space. Often, when we want to apply ma-
chine learning, DM or statistical approaches, a graph has to be trans-
formed into a feature vector. A feature vector is an n-dimensional
vector of numerical features that represent some objects.

Mining measures. The measures assigned with substructures of graphs
are very similar to those applied to the DM analysis. The most pop-
ular is the Support. Given a graph data set D, the support of the
subgraph G, is defined as:

_ number of graphs including G, in D
sup (Gs) - total number of graphs in D

The anti-monotonicity of the support is insufficient for some mining
objectives, for example, for finding subgraphs which appear more
than a minimum support (minsup) but also less than a maximum
support (maxsup).

Many other mining measures which are very commonly used in the
machine learning field are also used in some graph-based data min-
ing approaches, especially, information entropy, information gain,
gini-index and minimum description length.

Solution methods. It concerns the research methods. The first type of
search method is the conventional greedy search that belongs to
heuristic search and direct matching (depth-first search and breadth-
first search). The second type of search method applies the Inductive

41

Logic Programming (ILP). The induction is the combination of the ab-
duction to select some hypotheses and the justification to seek the
hypotheses to justify the observed facts.

The third type uses an inductive database. Given a