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Abstract

The problem of Knowledge Discovery has always attracted
many researchers and continues to be of great relevance to the
computer science community in the branch of learning. This
thesis aims to contribute to this topic, getting hints from the
Ontology and Data Mining environments.
We investigate a method for extracting new implicit knowl-
edge directly from an ontology by using an inductive/deductive
approach. By giving a sort of Bayesian interpretation to rela-
tionships that already exist in an ontology, we are able to re-
turn the extracted knowledge in form of Influence Rules.

The idea is to split the extraction process in two separate phases
by exploiting the ontology peculiarity of keeping metadata
(the schema) and data (the instances) separate. The deduc-
tive process draws inference from the ontology structure, both
concepts and properties, by applying link analysis techniques
and producing a sort of implications (rules schemas) in which
only the most important concepts are involved. Then an in-
ductive process, realized by a data mining algorithm, explores
the ontology instances for enriching the implications and build-
ing the final rules.

A final rule has a form like <premise
wÐ→consequence> where

premise and consequence refer to the class names, and values
to their datatype properties, whilew, the weight, measures the
strength of the influence.
An example of a final rule is:

Manager.hasAge < 45
0.80Ð→ Project.hasDegreeOfSuccess = good.

This can be read as, in 80% of the cases, whenever a manager
of a company is less then 45 years old, then the project he man-
ages has a good degree of success.

xx



What we want to prove, besides the correctness and feasibil-
ity1 of the project, is that the approach allows us to extract
“higher level” rules w.r.t. classical knowledge discovery tech-
niques. In fact, ontology metadata gives a general view of the
domain of interest and supplies information about all the ele-
ments apart from the fact that they are included as instances
in the collected data. The technique is completely general
and applicable to each domain. Since the output is a set of
“standard” Influence Rules, it can be used to integrate existing
knowledge or for supporting any other data mining process.

The thesis includes the following chapters:
Chapter 1 contains a brief introduction of the work, focusing
on the main questions that have to be addressed.
Chapter 2 offers an overview of the context of research in which
the thesis is part of: data mining and ontologies.
Chapter 3 explores the literature dealing with the open ques-
tions raised in chapter 1.
Chapter 4 is the core section; it discusses the proposed solu-
tions and presents all the phases of the extraction process as
well as the algorithms and the proofs.
Chapter 5 describes an application of the methodology in the
context of MUSING, a European project in the field of busi-
ness intelligence.
Chapter 6 ends this thesis with final considerations and future
possible works.

1The term feasibility, here and in the rest of the thesis, has to be intended as the “capabil-
ity of being done”.

xxi



Chapter 1

Introduction

We begin to speak about databases (DBs) as repositories of data begin-
ning in the late 1960s when E.F. Codd (Cod70) and his research group at
IBM labs applied some mathematical principles and predicate logic to the
field of data modelling. Since then, DBs and their evolutions have been
used as a source of information to query and manipulate data. But DBs,
seen as single static tables, have evolved very quickly becoming actual
systems for data management (the Database Management Systems and
Relational Database Management Systems) (AGO97; ACPT99), including
a collection of programs and tools for storing, modifying, and extracting
information.

Knowledge extraction from DBs can be made directly by using a query
language or, indirectly by means of inductive methods. In the former case
we essentially carry out a data retrieval process, while in the latter higher-
level knowledge is mined i.e., association rules, clusters, trees.
In 1974, still at IBM labs, the first language for DB was developed. SE-
QUEL (Structured English Query Language) (CB74), later called SQL for
copyright issues, was the forerunner of all the query languages becom-
ing the standard1 for relational DB. Despite many efforts in this direction,
now only the core of the SQL, the so-called Entry Level has been main-

1The IBM dialect of SQL become an ANSI standard in 1986 and one year later also stan-
dard ISO.
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tained. Each company selling DBMS extended the standard SQL, creating
a proprietary query language i.e., Oracle uses PLSQL, SQLServer uses T-
SQL and the IBM System now uses DB2.
In any case, the querying process returns a set of data possibly aggregated
or projected in several ways.

Using Knowledge Discovery techniques we can, instead, analyse the
rough data and extract new unknown implicit knowledge i.e., associa-
tions among data, similarities of data (Qui86; HK00; HMS01). Knowl-
edge discovery represents a real non-trivial process for identifying pat-
terns that are new, valid, useful and understandable, starting from a set
of data. Depending on the objectives, the final knowledge can be a new
result, a prediction or a confirmation about consolidated facts and theo-
ries.

In recent years, with the advent of Web 2.0 and the Semantic Web era,
ontologies have became important, replacing the traditional storing sys-
tems in many applications (SHB06). We can say that they now represent
the new technology for knowledge representation, data storage and in-
formation sharing (Bie03; Smi; Smi03).
As with the DBs, ontologies are also equipped with query languages that
permit one to retrieve information. As expected, the ontology query lan-
guages are implemented in ontology query systems. These systems, that
correspond to the DBMSs for the DBs, are frameworks that provide sev-
eral “tools” such as reasoner engines, languages for querying and lan-
guages for defining the rules. Some of these query languages, for exam-
ple SPARQL (PS08), resemble the SQL syntax. Even in this field, the most
interesting knowledge is extracted by using a reasoner (Jena22, RACER3,
Pellet4 are examples of most popular reasoners), that is, an engine able to
infer logical consequences from a set of asserted facts or axioms.
A reasoner makes implicit knowledge explicit by implementing a sort of
decision procedure which starts from a set of logical axioms and finds the
relations between them and whether (or not) they are satisfiable. From

2Jena2: http://jena.sourceforge.net/inference/
3RACER - Renamed Abox and Concept Expression Reasoner: http://www.sts.

tu-harburg.de/˜r.f.moeller/racer/
4Pellet: http://clarkparsia.com/pellet/

2
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this point of view, the ontology is the collection of axioms (relations, def-
initions and constraints).

The question that we ask ourselves and try to answer with this thesis,
is about the possibility of extracting further knowledge from ontologies,
besides the one obtained by using the traditional reasoning systems.
The answer is yes, and with respect to traditional methods, our method
gives a Bayesian interpretation to the relationships that already exist in
an ontology. Traditional reasoners, in fact, perform deductive reasoning
for extracting “hidden” facts that are true under every interpretation. In-
stead, the approach we propose, adopts a probabilistic interpretation and
returns a set of weighted Influence Rules (IRs).

The thesis deals with the idea of combining ontologies and Data Min-
ing techniques in a novel way. We investigate a method for extracting
new implicit knowledge starting from the ontology schema rather than
from the instances. To realize it, we adopt essentially a deductive/inductive
approach, and we take hints and inspiration from graph theory (Die00;
CMH03; WM03), link analysis (AP05; FLM+06; Kle98) and traditional
data mining techniques (BGL+06; BL04; BL05). The idea is to explore
the T-Box first, and then to integrate the extracted information by mining
the A-Box. The T-Box represents the ontology structure and is composed
by concepts (classes or types of instances), roles (built-in predicates), and
features (attributes/properties) of the instances, while the A-Box repre-
sents the instances, that is, the assertions about individuals (relation in-
stances). The output of this analysis is a set of IRs, e.g. a set of weighted
implications between ontology concepts.

What we would like to prove is the feasibility of the technique and
also show that the extracted knowledge is at a “higher level” since it ab-
stracts from the instances but is domain-dependent at the same time. In
this way, the hidden information can be considered in a general way, in-
dependent of the representation/description given by the data. In our
case, the ontology schema is the “formalism” for representing the knowl-
edge: it is our Knowledge Representation (KR) formalism. It aims at rep-
resenting the world, objects and relations, and permits us to have a point
of view at a higher level. A further objective is to see how this high level

3



knowledge, extracted from the ontology, can improve the inductive con-
struction of classification models.
The general idea is summed up by figure 1, pointing out the merging of
the deductive and inductive approach.

The deductive step operates on the ontology schema (T-Box) by ex-

Figure 1: Knowledge extraction from the ontology schema.

ploring concepts and object properties. For this purpose, graph theory
and link analysis techniques have been used. The result is a set of rule
schemas that have the form of classical implications:

L→ R,

which means that when the left hand side L holds, then the right hand
side R holds too.
Nevertheless, the instances are a fundamental component of our approach:
they are used in the second phase not for extracting additional rules but
for characterizing the deducted implications providing them with values
for the variables, and a measure for the importance of the rules. This ac-
tion that realizes the inductive step has been put in place by applying a
data mining technique. We can re-write the previous implication as a rule

4



in a stricter sense:

L
piÐ→ R,

where pi is the strength by which L implies R.
The IRs are general rules among concepts of the domain, thus can be used
for supporting any other (data mining) process or in other applications
for enriching the existing knowledge (processing task).

The methodology, described and developed in the thesis, has been
customized and tested inside the European project MUSING (Mus06).
MUSING (MUlti-industry, Semantic-based next generation business IN-
telliGence) aims at developing a new generation of Business Intelligence
tools and modules based on semantic-based information and content sys-
tems. It integrates Semantic Web and Human Language technologies
and combines declarative rule based methods and statistical approaches
for enhancing the technological foundations of knowledge acquisition
and reasoning in BI applications. In MUSING, the ontologies have been
adopted as a means for representing the knowledge and as a source of
information. Furthermore, several analysis tools of inductive and deduc-
tive type have been developed. MUSING has been a good testing envi-
ronment and a valuable source of data for our system. In particular, the
knowledge extraction process has been applied to a subset of the MUS-
ING ontology, and the IRs extracted have been used for enriching and
integrating the expert knowledge.

The proposal is part of an interesting research sector that tries to an-
swer many relevant questions. In this thesis, we intend to answer some
of these questions and to present the results of our research work.
We organized the thesis in a modular and hopefully original way, exploit-
ing the multi-disciplinary nature of the work, and sometimes digressing
into some historical and interesting facts. The state of the art has been
dived in two parts. In chapter 2 we describes essentially the two main
research areas, giving background information on data mining and on-
tologies, while in chapter 3 we analyse recent results and articles whose
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topics are closely related to those of our thesis and from which we take
inspiration. Due to this particular organization, part of our work is still
shown in these first chapters, but an exhaustive and detailed discussion
is given in chapter 4, the core chapter, where we describe in depth algo-
rithms and strategies. The last two chapters contain a case of study and
the conclusions. Below is a detailed summary of each chapter.

Chapter 2 presents an overview of the two main research areas in
which the proposed approach finds its basis: data mining and ontologies.
In the first part, basic notions of the knowledge discovery field are pro-
vided. In the second part, we introduce the ontologies starting from its
philosophical origins up to the “modern”, or computer science oriented,
conceptualization.

Chapter 3 analyses thoroughly the various aspects of the proposal. It
is presented in the form of open questions which we try to answer taking
inspiration from the literature and the state-of-the-art main techniques
for knowledge discovery and ontology analysis. We tried to create and
maintain a certain correspondence among raised problems, questions and
phases of the extraction process. Furthermore, we make comparisons
with other, both recent and consolidated, representation formalisms or
analysis methods.

Chapter 4 is the core of the thesis. After having provided the reader
with sufficient background, we explain, step-by-step, our methodology
showing both the theoretical and technical details including specifica-
tions, theorems, formulas and pseudo codes, all supported by a simple
but useful example.

Chapter 5 describes the case study which is an actual application of
our methodology in the context of MUSING (Mus06). We present the
domain of application and a general overview of the project, the require-
ments, the available tools, its objectives and a short description of the
developed components. The description is then focused on the compo-
nent we are directly involved with, and on how the ontology extraction
process has been customized and applied. Finally, an exhaustive discus-
sion of the results is provided.

Chapter 6 concludes this work summing up the objectives, the main
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steps and discussing the obtained results. Some proposals for future ex-
tensions and improvements are then suggested.

Appendix A provides some technical details about the implementa-
tion of the system while Appendix B provides additional information.
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Chapter 2

Contextualizing the Work

Data mining and reasoning are the two main research areas in which our
work bases its theoretical foundations. In this chapter we dedicate two
separate sections for introducing Knowledge Discovery (KD) and Ontol-
ogy.

2.1 Knowledge Discovery: a Brief Introduction

Knowledge Discovery in Databases (KDD) is focused on the develop-
ment of methodologies and techniques that “make sense” out of data,
i.e. for extracting relevant and non-trivial information from rough data.
The phrase “knowledge discovery in databases” was coined at the first
KDD workshop in 1989 to emphasize that knowledge is the end-product
of a data-driven discovery. Formally, KDD is defined as:

the non trivial process for identifying patterns that are new, valid,
useful and understandable, starting from a set of data.

In this context, data are a set of facts i.e. cases in a database, while a pat-
tern is an expression in some language describing a subset of the data
or a model applicable to the subset. KDD is thus a sequence of steps
that, starting from rough data, leads to the discovery of knowledge. De-
pending on the objectives, the final knowledge can be a new result or the
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discovery of unknown information, a prediction or a confirmation about
consolidated facts and theories. One of the most complete and exhaustive

Figure 2: KDD Process.

definitions of the KDD process presented in the literature was provided
by Shapiro in 1996 (PSFS96). Shapiro’s definition (depicted in figure 2)
highlights the following steps:

1. Developing an understanding of the application domain. This
step aims at identifying the goal of the KDD process from the cus-
tomer’s point of view.

2. Creating a target data set. It is for selecting a data set, or focusing
on a subset of variables or data samples, on which a discovery must
be performed.

3. Data cleaning and preprocessing. It is a basic operation that filters
the data from incorrect, unnecessary information or noise. It in-
cludes removing noise, collecting the necessary information to mo-
del or account for noise, deciding on strategies for handling miss-
ing data fields, and accounting for time-sequence information and
known changes.
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4. Data reduction and projection. It is for finding useful features to
represent the data depending on the goal of the task. With dimen-
sionality reduction or transformation methods, the effective num-
ber of variables under consideration can be reduced, or invariant
representations for the data can be found.

5. Matching. It matches the goals of the KDD process (step 1) with
a particular data mining method i.e. summarization, classification,
regression, clustering, . . .

6. Exploratory analysis and model and hypothesis selection. It chooses
the data mining algorithms and selects methods to be used for search-
ing data patterns. This process includes the task of deciding which
models and parameters might be appropriate, and matching a par-
ticular data mining method with the overall criteria of the KDD pro-
cess. For example, the end user might be more interested in under-
standing the model than its predictive capabilities.

7. Data mining. It searches for patterns of interest in a particular rep-
resentational form or a set of such representations including classi-
fication rules or trees, regression, and clustering. The user can sig-
nificantly aid the data mining method by correctly performing the
preceding steps.

8. Interpretation of the mined patterns. It aims at interpreting the
mined patterns, possibly returning to any of steps 1 through 7 for
further iterations. This step can also involve visualization of the
extracted patterns and models or visualization of the data given the
extracted models.

9. Activities over the discovered knowledge. It uses the knowledge
directly, incorporating the knowledge into another system for fur-
ther action, or simply documenting it and reporting it to interested
parties. This process also includes checking for and resolving po-
tential conflicts with previously believed (or extracted) knowledge.
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The KDD process can involve significant iterations and can contain
loops between any two steps. Most of the previous work on KDD was
focused on step 7, the data mining (HK00), but the other steps are indeed
important, and probably more so, for the success of the KDD application.
KDD is considered an interdisciplinary process that binds in a strong way
various research fields such as machine learning, pattern recognition, da-
tabase, statistics, artificial intelligence, knowledge acquisition, expert sys-
tems and high-performance computing. KDD processes and data mining
techniques were first used in the scientific field. At the beginning of the
1990s, data mining was used in astronomy for analyzing large quantities
of data. In this context, scientists realized images analysis systems based
on data mining techniques (i.e. classification and clustering), for classify-
ing images and objects present in space.
Some primary research and application challenges for KDD include:

• Massive datasets and high dimensionality. These datasets create
combinatorial explosive search spaces for model induction. Pos-
sible solutions include efficient algorithms, sampling, approxima-
tion methods, massive parallel processing, dimensionality reduc-
tion techniques, and incorporation of prior knowledge.

• User interaction and prior knowledge. Since the KDD process is,
by definition, interactive and iterative, it is a challenge to provide
a high-performance, rapid-response environment that also assists
users in the proper selection and matching of appropriate tools and
techniques to achieve their goals. There needs to be more emphasis
on human-computer interaction and less emphasis on total automa-
tion, with the aim of supporting both expert and “novice” users.
Many current KDD methods and tools are not truly interactive and
do not easily incorporate prior knowledge, about a problem ex-
cept in simple ways. For example, Bayesian approaches use prior
probabilities over data and distributions as one way of encoding
prior knowledge while others employ deductive database capabili-
ties to discover knowledge that is then used to guide the data min-
ing search.
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• Overfitting and assessing statistical significance. Overfitting is
caused when an algorithm searches for the best parameters for one
particular model using a limited set of data. Possible solutions in-
clude cross-validation, regularization, and other sophisticated sta-
tistical strategies. Simple methods to handle this problem include
adjusting the test statistic as a function of the search and random-
ization testing.

• Missing data. This problem is massively present in business da-
tabases where important attributes can be missing if the database
is not well designed. Missing data can result from operator error,
actual system and measurement failures, or from a revision of the
data collection process over time e.g., new variables are measured,
but they were considered unimportant a few months before. Pos-
sible solutions include greater sophisticated statistical strategies in
order to identify hidden variables and dependencies.

• Understandability of patterns. In many applications, it is impor-
tant to make the discoveries more understandable to humans. Pos-
sible solutions include graphical representations, rule structuring,
natural language generation, and techniques for visualization of
data and knowledge. Rule refinement strategies can also help to
address a related problem: discovered knowledge may be implic-
itly or explicitly redundant.

• Managing changing data and knowledge. Rapidly changing (non-
stationary) data may make previously discovered patterns invalid.
In addition, the variables measured in a given application database
may be modified, deleted, or augmented with new measurements
over time. Possible solutions include incremental methods for up-
dating the patterns and treating change as an opportunity for dis-
covery by using it to drive the search of the patterns.

• Integration. Integration issues include integration with a Database
Management System (DBMS) (e.g., via a query interface), integra-
tion with visualization tools, and accommodation of real-time sen-
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sor readings. Highly interactive human-computer environments as
outlined by the KDD process permit both human-assisted computer
discovery and computer-assisted human discovery. Development
of tools for visualization, interpretation, and analysis of discovered
patterns is of fundamental importance. Such interactive environ-
ments can enable practical solutions to many real-world problems
far more rapidly than humans or computers operating indepen-
dently.

A very attractive application field is Business Analysis (marketing, fi-
nance, fraud detection, . . . ) where the KDD process is used as “decision
support” for making previsions and for wide range analysis. In the mar-
keting field during the 90s, Agrawal opened a very important research
stream, the so called “market basket analysis” (AIS93; AS95). In the fi-
nance and investment fields, the KDD gives a strong support to decision
makers in the hard task of granting credits, and to managers in the task
of self-assessment. In this context, many applications move within the
sphere of action of the Basel II International Agreement1, that enforce the
use of analysis tools for identifying and evaluating the credit risk and for
validating the evaluations.

By getting ideas from our experience in KDD, we have also contributed
to this area in the past. We have, in fact, investigated a system for im-
proving the discovery process by means of domain rules. Our focus was
to classify business documents that described innovative projects in or-
der to make previsions of success/failure (feasibility) of new submitted
plans, and to realize a sort of (self) assessment (BFT06; KMS02). In our
case, rules provided by experts in the economic and business fields have

1The Basel II Framework describes a more comprehensive measure and minimum stan-
dard for capital adequacy that national supervisory authorities are now working to imple-
ment through domestic rule-making and adoption procedures. It seeks to improve on the
existing rules by aligning regulatory capital requirements more closely to the underlying
risks that banks face. In addition, the Basel II Framework is intended to promote a forward-
looking approach to capital supervision, one that encourages banks to identify the risks they
may face today and in the future, and to develop or improve their ability to manage those
risks. As a result, it is intended to be more flexible and better able to evolve with advances
in markets and risk management practices [http://www.bis.org/publ/bcbsca.htm].
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been formalized by means of Bayesian Causal Maps, a formalism that
combines Causal Maps and Bayesian Networks (Hec96). Historically,
Causal Maps have been introduced for the formalization and the inter-
pretation of human intents and human thinking through relations among
concepts. By adding the concepts of Bayesian Networks (BNs) to Causal
Maps we get Bayesian Causal Maps, which enrich the former by introduc-
ing a probability by which a concept may imply a related one. The clas-
sification strategy, instead, was based on the well-known Quinlan’s C4.5
classification trees algorithm (Qui93). For this purpose, we developed a
new algorithm, DrC4.52, in which we drive the construction of classifi-
cation trees by using the domain rules (BFT05). The carried out system
is an example of how classical techniques can be improved by means of
a-priori or domain knowledge. In particular, we obtained satisfactory re-
sults concerning the correctness of classification (higher number of new
instances correctly classified) and the size of the models (trees with less
leaves), compared with the C4.5 algorithm. So, in the cases where the
classification accuracy was the same as for C4.5, we generated trees that
reduced the over-specialization of the models.

DrC4.5 is cited here because it is the first prototype algorithm to in-
spire the implementation of YaDT-DRb (Bel07), the algorithm, based on
YaDT (Rug04), that we use in the MUSING project for developing an ana-
lytical tool. It will become more clear later, especially during the descrip-
tion of the case study in chapter 5, why, in this section, we make reference
to these particular works on Business Analysis, and what are the relation-
ships with the work developed in this thesis. It is nevertheless useful, to
note that this section focuses on a particular application of the thesis in
order to extend and upgrade the system analysis on business documents.

2DrC4.5 stands for “Domain Rules C4.5”.
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2.2 Ontologies: State of the Art

In the last 10 years, within the computer science community, the word
“ontology” has immediately recalled “technical” concepts such as graphs,
semantic reasoning and knowledge representation. For example, a devel-
oper, can rely on the wide range of specification languages and tools for
representing, editing and analysing such knowledge. Maybe theoretical
researcher knows, instead, that the notion of ontology originates from a
more remote past far from the modern and technological world of com-
puters and internet.

By looking at various literatures, we find many correct definitions of
ontology that highlight its theoretical and technical aspects. It will be
very useful to look at these ontologies though their formal definitional
language, as a representational model (conceptual diagram) or through
the software programs that implement them.

In this section, we present a general view of the genesis and the state
of the art of the ontologies as well as some significant examples of appli-
cations.

2.2.1 From Philosophy ...

In short, “ontology” may be defined as the study of being as such. The in-
troduction of the Latin word “ontologia” was an attempt to modernize
the classical debate about metaphysics. The term metaphysics was used
initially by Aristotle’s students to refer to what Aristotle himself called
“first philosophy” (ØAS05). Aristotle’s view of ontology is often referred
to as the realist view. In his work “Categories” (AriCE) he provides a list
of categories, which can be seen as an inventory of what there is in terms
of the most general kinds of entities. These categories can be used to dif-
ferentiate things as well as to refine specific aspects of things. Since these
categories are one of the first recognized ontology, it could be interesting
to show them.

Substance (e.g., man, horse)
Quantity (e.g., two cubits long, three cubits long)
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Quality (e.g., white, grammatical)
Relation (e.g., double, half, greater)
Place (e.g., in the Lyceum, in the market-place)
Time (e.g., yesterday, last year)
Position (e.g., is lying, is sitting)
State (e.g., shod, armed)
Action (e.g., to lance, to cauterize)
Affection (e.g., to be lanced, to be cauterized)

The important property of the categories is that they are not composite.
That is, they need to be composed in order to make statements about the
nature that can yield affirmation. One should not focus too much on the
used language but rather on the things that the categories try to define.
The exhaustiveness of the list is also debatable but as a first guide for
structuring an ontology, its precision is striking. As we will show later,
these categories have a strong relation with computer science (see section
2.2.2) even if they come from a remote past.

The term ontologia instead, was created in the circles of German protes-
tants around 1600. The first appearance of the Latin word ontologia can be
found in two books published in 1613 by Rudolf Göckelin (Professor of
Logic in the University of Marburg) (Goc80) and Jacob Lorhard (Professor
at the University of St. Gallen - Switzerland) (Lor). However, as Dennis
Bielfeldt (Bie03) pointed out, “ontology is as old as philosophy itself”.
Sometimes “ontology” is used in a broader sense to refer to the study of
what might exist, while “metaphysics” is used for the study of which of
the possible kind of ontologies is in fact true. The first occurrence in En-
glish appeared instead, in Bailey’s 1721 dictionary which defines ontol-
ogy as “an Account of being in the Abstract” (Smi03). Philosophical on-
tology is called descriptive or realist ontology. It does not seek to explain
but rather to describe reality in terms of a classification of entities. This
description can be considered exhaustive in the sense that it can serve as
an answer to such questions as:

What classes of entities are needed for a complete description
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and explanation of all the goings-on in the universe?
Or, what classes of entities are needed to give an account of
what makes true all truths?
Or, what classes of entities are needed to facilitate the making
of predictions about the future?

Sometimes a division is made between formal and material (or re-
gional) ontology.
Formal ontology is domain-neutral and it deals with those aspects of re-
ality (for example the identity) which are shared by all material regions.
Material ontology instead deals with those features (for example mind or
causality) which are specific to given domains. The history of philosoph-
ical ontology is indeed marked by a certain tradeoff between generativity
on the one hand and descriptiveness on the other. “Generativity” means
the power of an ontology to yield new categories and thus to exhaust the
domain that is to be covered by ontological investigation in some recur-
sive fashion. Thus, generativity gives ontology its power while descrip-
tiveness ties an ontology to the world beyond.

It is interesting to point out how ontology and science are related to
each other. Philosophical ontology is a descriptive enterprise. It is dis-
tinguished from the specific sciences not only in its radical generality but
also in its primary goal or focus. Ontology especially seeks taxonomy
rather than predication or explanation. Therefore, we can assert that On-
tology is (very largely) qualitative while Science is (very largely) quan-
titative. Science starts, very roughly, with measurement and prediction.
Even if there exists an ontology of measure (BP90), ontologists do not
measure reality.
Philosophical ontology tells us what categories exist within a given do-
main of reality and thus what categories are available for the measure-
ment process. Science tells us for example how the measurable behaviour
of entities of a certain class is correlated with the behaviour of entities of
a second class. The sciences, by definition, can deal only with the objects
that fall within their respective domains. Ontology deals with transcate-
gorial relations including the relations that hold between entities belong-
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ing to distinct domains of science, and also between those entities and the
entities recognized by common sense.

Indeed, in the course of the Twentieth Century, a range of formal tools
became available to ontologists for the development and testing of their
theories. Ontologists nowadays have a choice of formal frameworks (de-
riving from formal logic, as well as from algebra, category theory, mere-
ology, set theory, topology) in terms of which their theories can be for-
mulated. These new formal tools allow philosophical ontologists to ex-
press intuitive principles and definitions in a clear and rigorous fashion,
and they can also allow for the testing of theories for consistency and
completeness through the application of the methods of formal seman-
tics (Smi; Smi03).

2.2.2 ...to the Information Science

As stated by B. Smith, the first use of the term “ontology” in the computer
and information science literature occurred in 1967, in a work on the foun-
dations of data modelling by S. H. Mealy (Mea67). From the scientific
point of view, the ontology is, in its first approximation, a table of cate-
gories in which every type of entity is captured by some node within a hi-
erarchical tree. This view comes directly from Aristotle’s thinking of cat-
egories, and it has been adopted also by contemporary ontologists. With
a reference to Aristotle’s categories (AriCE), for example, things like sub-
stance, quantity, quality, location and time are all vital components of a
Service Level Agreement3 (SLA). A typical SLA would have, for example,
statements concerning maximum (quantity) bandwidth (substance) in a
subnet (place) during peak hours (time) with a certain reliability (quality).

In a related development, the term “ontology” has become popular in
the field of computer and information science and especially in domains
such as knowledge engineering, natural language processing, coopera-
tive information systems, intelligent information integration, and knowl-

3Service Level Agreement describes the obligations and guarantees of service providers
and consumers.
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edge management. The philosopher-ontologist, in principle at least, has
only the goal of establishing the truth about the domain in question. In
contrast, in the world of information systems, an ontology is a software or
formal language designed with a specific set of uses and computational
environments, and often ordered by a specific client, customer or appli-
cation program in a specific context. In this field, ontologies are rapidly
developing thanks to their focus on classification and on constraints on
allowable taxonomies and definitions, a focus not foreseen by its initial
progenitors. One of the first important work is (GW00), in which the
authors propose a general methodology for ontology-driven conceptual
analysis (ODCA), which combines the established tradition of formal on-
tology and philosophy with the needs of information systems design. In
particular, they outline a common problem of ontologies, i.e. that their
taxonomic structure is often poor and confusing. Their methodology,
based on four fundamental ontological notions (identity, unity, rigidity,
and dependence), permits them to represent the behaviour of a property
with respect to these notions by means of a set of meta-properties. Their
goal is to show how these meta-properties impose some constraints on
the way subsumption is used to model a domain.

So to the question “What are the advantages of developing an ontology?”,
we can answer with more and interesting reasons:

- To share common understanding of the structure of informa-
tion among people or software agents.

- To enable reuse of domain knowledge.
- To make domain assumptions explicit.
- To separate domain knowledge from operational knowledge.
- To analyze domain knowledge.

Since the beginning of 1990, one of the most common goals in develop-
ing ontologies has been for technical people and software agents to share
a common understanding of the structure of information. For example,
different Websites share and publish the same ontology of the terms they
all use, allowing computer agents to extract and aggregate information
from them. The agents can use this aggregated information to answer
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user queries or as input data to other applications.
Reuse is one of the principles of programming methods, and it is also
valid for knowledge (ontology). Therefore, if one group of researchers de-
velops an ontology in detail (for example for describing “Time”, “Banking
system”, . . . ), others can simply reuse it for their domains an purposes.
It is common practice to start from general upper ontologies, such as
SUMO4 or PROTON5 ontologies, and extend them to describe their own
domain of interest. Making explicit domain assumptions permits one to
make changes easily when the knowledge about the domain changes. In
addition, explicit specifications of domain knowledge are useful for new
users who must learn the used terms.

Separating the domain knowledge from the operational knowledge
is another common use of ontologies, similar to the method adopted in
object-oriented programming. For example, we can describe a task of
configuring a product from its components according to a required spec-
ification, and implement a program that does this configuration indepen-
dent of the products and components themselves.
Analysing domain knowledge is possible once a declarative specification
of the terms is available. Formal analysis of terms is extremely valuable
when attempting both to reuse existing ontologies and extending them.

2.2.3 Logics and Ontology: Languages and Reasoning

Ontologies are made up of formal theories about a specific domain, and
thus have a formal logical language associated with them.
Logic has been proposed since the early days of the Artificial Intelligence
(AI) as a framework for KR and reasoning (Nil02; MW85). In this con-
text it provides the three main components necessary for structuring and
handling the objects of the actual world, that is:

[Syntax] - An alphabet;
[Semantic] - An interpretation of the alphabet symbols;

4SUMO: Suggested Upper Merged Ontology - http://www.ontologyportal.org/
5PROTON: PROTo ONtology - http://proton.semanticweb.org/
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[Proof System] - A method for making proofs.

Propositions are the basic items that logic deals with. The Propositional
logic or 0-order logic is used essentially for expressing beliefs, and in com-
puter science, for hardware specifications. Its syntax is based on Atoms
(P , Q, . . . ) which represent propositions, and Logic Connectives such as
conjunction, disjunction, negation, implication (∧, ∨, ¬ and ⊃). Its seman-
tics is given by an Interpretation Function that assigns a truth-value to each
set of propositional symbols (e.g., ν: P Ð→ Bool).

One of the most straightforward way to determine whether a sentence
is valid is by a complete case analysis of the possible truth values assigned
to its propositional symbols. Such a process is facilitated by means of
Truth Tables or Semantic-based trees. The main limitation in the expressiv-
ity of the propositional language is its lack of generality. For example, in
order to express a general fact such as, “every block is on the table”, one
has to state this property for each single block in the world.

Predicate Logics or First Order Logic (FOL) overcomes the limitations
of propositional languages by allowing a better granularity in the con-
struction of atomic statements. The language is extended to include terms
(a term denotes an object in the world), and relational symbols of ariety n (n
≥ 0), representing a relation between n objects. Existential and Universal
(∃ and ∀) quantification over a variable are introduced. An interpreta-
tion function I gives semantics to predicates. In general, an interpreta-
tion for an expression ε may assign a value to some symbols that are not
free in ε (constant, variable, function or predicate) or variables that occur
only bound in ε. Many proof systems have been developed from which
Tableau, Axiomatic approaches, . . .
While FOL is used for software/hardware specification and for build-
ing models, higher order, modal, temporal, probabilistic and fuzzy logics
have been introduced for formalizing actions and their effects and for
modelling more complex concepts (MW85; NS93; IA06).
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Researches first adopted the existing logics (developed by mathemati-
cians, logicians and philosophers), such as propositional, FOL, and modal
logic to represent and reason about knowledge. However, the need to rep-
resent and efficiently reason about the many aspects of the world have
lead to the design of “new logics”. The main examples are description
logics and Horn clause logics which gave rise to Prolog and Logic Pro-
gramming6. They are at the basis of current systems for representing on-
tologies and taxonomic knowledge.
For the logic-based KR, it is necessary to pay attention to the fundamental
trade off between expressive power, influenced by ontological require-
ments, and computational complexity, determined both by the intrinsic
properties of the modelling constructs and by the computational proper-
ties of the reasoning algorithms.

The main problem in automated reasoning is to determine whether a
“conjecture” ϕ, that represents a property to be verified, is a logical conse-
quence of a set S of assumptions which express properties of the reference
object (e.g., a system, a circuit, a program, a data type, a communication
protocol, a mathematical structure). Theorem proving tries to solve the
problem of finding a proof of ϕ from S. It comprises both deductive the-
orem proving, which concerns the problem stated above, (in symbols: S
⊧ ϕ), and inductive theorem proving where the problem is to determine
whether S entails all ground instances of ϕ; in symbols: S ⊧ ϕσ, for all
ground substitutions σ).

In general the more expressive the logic, the more difficult it is to rea-
son on it. For instance, checking if S ⊧ ϕ in propositional logic is decid-
able, while in FOL it is not. For subsets of FOL it is decidable, but with
varying complexity depending on the set of operators. Decidability may
stem from imposing restrictions on the logic, the form of admissible for-
mulas for S and ϕ, or the theory presented by the assumption in S.
For this proposal, we will focus on DL approaches.

6Logic programming was proposed with the goal of combining the use of logic as a
representation language with efficient deduction techniques, based on a backward inference
process (goal-directed) which allows one to consider a set of formulas as a program. Prolog
is the most widely used logic programming language.
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2.2.4 Description Logic Based Approaches

Description Logics (DLs) are a family of knowledge representation lan-
guages that can be used to represent the knowledge of an application
domain in a structured and formal way. The name “description logics” is
motivated by the fact that, on the one hand, the important notions of the
domain are described by concept descriptions, i.e., expressions that are
built from atomic concepts (unary predicates) and atomic roles (binary
predicates) using the concept and role constructors provided by the par-
ticular DL. On the other hand, DLs differs from their predecessors, such
as semantic networks and frames, in that they are equipped with a for-
mal, logic-based semantics.
As we can see in the following of this paragraph, DL is the theoretical ba-
sis of the recommended standard language for ontology representation
(Dlg; Wik).

The evolution (and especially the hierarchy) of the various XML-based
languages is shown in figure 3 which explains the semantic web architec-
ture in agreement with the Tim Barners-Lee7 point of view (BLF97).

The XML layer is used as a syntax layer while the RDF layer repre-
sents the data layer and permits to assign types to resources and links.
The ontology layer specifies meaning and structure of the data: it is the
container that defines in a formal way the relations between terms. The
logic layer provides rules that enable further intelligent reasoning while,
the proof layer supports the exchange of proofs in inter-agent communi-
cation.

XML documents are supported by XML Schemas (generally referred
as XSD). An XML Schema provides a means for defining the structure
and the content of an XML document and the corresponding constraints.
These constraints are generally expressed by using combinations of gram-
matical rules, Boolean predicates on the content, data types that regulate
the content of elements and attributes, and more specialized rules such as
uniqueness and referential integrity constraints.

7Tim Barners-Lee is currently the Director of the World Wide Web Consortium and con-
sidered the founder of the web.
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Figure 3: Semantic Web layers.

RDF - Resource Description Framework (LS99) is most commonly men-
tioned as a language, but it is rather a data model, independent of any
domain or implementation. It has been developed to provide meaning to
the Web documents, adding metadata in order to achieve terminological
consensus on the Web. It provides interoperability between the appli-
cations that exchange machine-understandable information on the Web,
and it emphasizes facilities to enable automated processing of Web re-
sources. RDF can be used in various application areas such as in resource
discovery to provide better search engine capabilities and in cataloguing for
describing the content and content relationships available at a particular
Web site, page, or digital library. It can also be used by intelligent software
agents to facilitate knowledge-sharing and exchange, in content rating, in
describing collections of pages that represent a single logical “document”,
for describing intellectual property rights of Web pages, and for expressing
the privacy preferences of a user as well as the privacy policies of a Web
site. RDF with digital signatures will be the key for building the “Web of
Trust” for electronic commerce, collaboration, and other applications.

The RDF model is based on three types of objects: Resources, Proper-
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Subjects (Resources) http://www.MarioRossi.it/doc1.html
www.comuni.it/servizi/codfisc/RSSMRA70A01E715H

Predicates (Properties) Author, Name, Affiliation
Objects (Values) Mario Rossi

mario.rossi@imtlucca.it
IMT

Table 1: Identification of the sentence elements.

ties and Statements.

[Class] Resources are all things being described by RDF expressions. Thus
a resource may be an HTML document, part of a Web page (e.g. a
specific HTML or XML element within the document source), or it
can be a collection of pages (e.g. an entire Web site).

[Property] A Property is a specific feature, attribute or a relation that de-
scribes resources and that has a defined meaning. A property to-
gether with its value for a specific resource makes a statement about
that resource.

[Statement] An RDF statement is a resource with its own property so a
Statement is a tuple composed of subject (resource), predicate (prop-
erty) and object (value).

RDF is a graph based data model, and it consists of nodes and edges.
Nodes correspond to objects or resources and the edges correspond to
properties. The labels on the nodes and on the edges are Uniform Re-
source Identifiers (URIs). As an example, consider the following sentence:

The person identified by the fiscal code RSSMRA70A01E715H with
name Mario Rossi, Email address mario.rossi@imtlucca.it, affilia-
tion IMT, is author of the resource
http://www.MarioRossi.it/doc1.html.

The sentence has the parts shown in table 1 and graphically corresponds
to the diagram in figure 4.

Graphically, relations between resources, properties and values are
depicted by using labelled and oriented graphs; resources are nodes (el-
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Figure 4: Graphic representation of two linked RDF statements.

lipses), properties are oriented edges while values are rectangles.

RDF itself does not define any primitives for creating ontologies, but
it provides the basis for several other ontology definition languages such
as RDFS. The RDF Schema or RDFS (Com04b) has been developed, such
as the XML Schema for an XML document, in order to define the vocab-
ulary used in RDF data models by specifying which kinds of properties
apply to which kinds of objects, what values the objects can take and
what kinds of relationships between those objects exist. Therefore, RDFS
is considered as a first move toward an ontology language for the Web.
It offers a fixed set of modelling primitives such as rdfs:Class, rdf:Property
or the rdfs:subClassOf relationship to define RDF vocabularies for some
specific application. In RDFS it is possible to define classes of classes,
classes of properties, classes of literals that are strings, integers, Booleans
and so forth, and classes of statements. Using RDFS properties, which
are rdf:type, rdfs:subClassOf and rdfs:subPropertyOf, it is possible to define
instanceOf relationship between resources and classes, subsumption rela-
tionship between classes and subsumption relationship between proper-
ties, respectively. Using rdfs:domain and rdfs:range properties it is possible
to restrict the resources that can be subjects or objects of the property.
Nevertheless, RDFS is not expressive enough for defining useful ontolo-
gies. For example, disjoint, union, intersection and complement classes
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cannot be defined, cardinality restrictions are not present, and properties
cannot be declared as transitive, symmetric or inverse of each other.

Recently, a work-group at W3C has continued the work for producing
a recommendation for an ontology language. The Web Ontology Lan-
guage (OWL) (Com04a) is designed for use by applications that need to
process the content of information instead of just presenting information
to humans. It facilitates the machine interpretability of Web contents bet-
ter than that supported by XML, RDF, and RDFS. OWL is syntactically
layered on RDF, but it adds more vocabulary for describing properties
and classes: among others, relations between classes (e.g. disjointness),
cardinality (e.g. “exactly one”), equality, richer typing of properties, char-
acteristics of properties (e.g. symmetry), and enumerated classes. The
basic elements of the OWL ontology are classes, properties, instances of
classes, and relationships between these instances.

[Class] A class is a collection of individuals (object, things, . . . ) and it is
the most basic concept for describing part of the world. Every indi-
vidual in the OWL world is a member of the class owl:Thing. Do-
main specific root classes are defined by simply declaring a named
class.

[Individual] An individual is an object of the world, and in particular a
member of a class. Individuals are related to other objects and to
data values via properties.

[Property] A property is a binary relation that lets us assert general facts
about the members of classes and specific facts about individuals
(e.g. hasFather, hasPet, serviceNumber). There are two types
of properties: datatype property and object property. While the former
expresses relations between instances of classes and RDF literals
and XML Schema datatypes, the latter expresses relations between
instances of two classes.

The following example 2.1, taken from (Cap05), can exemplify the con-
cepts just described.
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Example 2.1 A simple ontology.
Suppose we have seven individuals (Andrew, Milan, Naples, Nic, Rome,
Pisa and Mary) grouped in two classes (Towns and Persons) and re-
lated by means of three types of properties (hasBrother, hasWife,
liveInTown). A simple ontology, built by using those elements, is graph-
ically depicted in figure 5.
Nic, Mary and Andrew are Persons while Naples, Milan, Rome and
Pisa are Towns. Mary, who lives in Pisa, is the wife of Nic. Mary also
has a brother named Andrew who lives in Naples. The OWL formal-

Figure 5: A simple ontology.

ization of the classes is shown in table 2. The meaning is that Towns and
Persons are resources of RDF8 and classes in OWL. The individuals

<owl:Class rdf:ID=“Towns”/>
<owl:Class rdf:ID=“Persons”/>

Table 2: OWL Class definition.

are introduced by declaring them as being members of a class (table 3).
Each object property is defined and linked to the classes by expressing

the domain (rdfs:domain) and the co-domain (rdfs:range) as shown
in table 4.

Since hasWife and hasBrother properties tie individuals of the
same class, it is possible to express the individuals involved in the rela-

8The rdf:ID attribute on a node element gives a relative RDF URI reference.
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<Towns rdf:ID=”Milan” />
<Towns rdf:ID=”Naples” />
<Towns rdf:ID=”Pisa” />
<Towns rdf:ID=”Rome” />
<Persons rdf:ID=”Nic” />
<Persons rdf:ID=”Mary” />
<Persons rdf:ID=”Andrew” />

Table 3: OWL Individuals definition.

<owl:ObjectProperty rdf:ID=”hasBrother”>
<rdfs:domain rdf:resource=”&owl;Thing” />
<rdfs:range rdf:resource=”#Persons” />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID=”hasWife”>
<rdfs:domain rdf:resource=”&owl;Thing” />
<rdfs:range rdf:resource=”#Persons” />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID=”liveInTown”>
<rdfs:domain rdf:resource=”Persons” />
<rdfs:range rdf:resource=”#Town” />

</owl:ObjectProperty>

Table 4: OWL Properties definition.
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tions. Therefore, we can extend the definition of table 3 with that one of
table 5.

<Persons rdf:ID=”Nic” />
<hasWife rdf:resource=”#Mary” />

</Persons >
<Persons rdf:ID=”Mary” />
<hasBrother rdf:resource=”#Andrew” />

</Persons >

Table 5: OWL definition of Properties on Individuals.

◁

The standard (Com04a) foresees three increasingly-expressive sublanguages:

[OWL Lite] It supports the users’ primarily needs with a classification
hierarchy and simple constraints. For example, while it supports
cardinality constraints, it only permits cardinality values of 0 or 1. It
has a lower formal complexity than the other versions, so it should
be simpler to provide tool support for OWL Lite. Furthermore, it
provides a quick migration path for thesauri and other taxonomies.

[OWL DL] It owes its name to the correspondence with description log-
ics, a field of research that has studied the logics that form the for-
mal foundation of OWL. OWL DL supports those users who want
the maximum expressiveness while maintaining computational com-
pleteness and decidability. OWL DL includes all OWL language
constructs, but they can be used only under certain restrictions. For
example, while a class may be a subclass of many classes, a class
cannot be an instance of another class.

[OWL Full] It is for users who want maximum expressiveness and the
syntactic freedom of RDF with no computational guarantees. For
example, in OWL Full a class can be treated simultaneously as a
collection of individuals and as an individual in its own right. OWL
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Full allows an ontology to augment the meaning of the predefined
(RDF or OWL) vocabulary.

It is important to point out that OWL Full can be considered as an ex-
tension of RDF, but OWL Lite and OWL DL can be considered only as
extensions of a limited version of RDF. Thus, each OWL (Lite, DL, Full)
document is an RDF document, and each RDF document is an OWL Full
document, but only some RDF documents are an OWL Lite or OWL DL
documents.

2.2.5 Ontology Based Reasoning: an Example

As we have seen in the previous section, languages like OWL specify a
vocabulary and constrain the use of that vocabulary by restrictions. How-
ever, they also provide axioms which allow one to deduce new informa-
tion from explicit information. Ontologies are set to play a key role in the
“Semantic Web” by providing a source of shared and precisely defined
terms that can be used for describing the resources. Reasoning over such
descriptions is essential for accessibility purposes, automating processes
and discover new knowledge. From a formal point of view, OWL can be
seen as to be equivalent to a specific member in the DLs family, which
allows OWL to exploit the considerable existing body of DL reasoning
including class consistency and subsumption, and other ontological rea-
soning.

A very useful example of reasoning by using OWL is taken from
(WGZP04). In this paper, the authors propose an OWL encoded con-
text ontology (named CONON) for modelling context in pervasive com-
puting environments, and for supporting logic based context reasoning.
CONON provides an upper context ontology that captures general con-
cepts about basic context, and provides extensibility for adding domain-
specific ontology in a hierarchical manner. Based on this context ontol-
ogy, they studied the use of logic reasoning to check the consistency of
context information, and to reason over low-level, explicit context to de-
rive high-level, implicit context. In the specific, the example shows how
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Transitive
Property

(?P rdf:type owl:TransitiveProperty) ∧ (?A ?P ?B) ∧ (?B ?P ?C)⇒
(?A ?P ?C)

subClassOf (?a rdfs:subClassOf ?b) ∧ (?b rdfs:subClassOf ?c) ⇒ (?a
rdfs:subClassOf ?c)

subPropertyOf (?a rdfs:subPropertyOf ?b) ∧ (?b rdfs:subPropertyOf ?c) ⇒ (?a
rdfs:subPropertyOf ?c)

disjointWith (?C owl:disjointWith ?D) ∧ (?X rdf:type ?C) ∧ (?Y rdf:type ?D)⇒
(?X owl:differentFrom ?Y)

inverseOf (?P owl:inverseOf ?Q) ∧ (?X ?P ?Y)⇒ (?Y ?Q ?X)

Table 6: Parts of OWL ontology reasoning rules.

to deduce information starting from a specific context, and the formaliza-
tion of rules. In particular it explains how to extract implicit knowledge
from an explicit one. The OWL rules, that involve OWL properties, are
shown in table 6. The application context can be informally described as
follows:

User Wang is currently located in the bedroom, which is in turn, a
part of the home building.

By means of the rules that involve the owl:TransitiveProperty and
owl:inverseOf, we can conclude that:

Wang is located in the home building.

The formalization of the example is shown in table 7.

While the ontology layer already provides means for deducing new
knowledge (information) and provides restricted reasoning support, many
applications require further means to combine and deduce information.
OWL adds considerable expressive power to the Semantic Web, however,
for a variety of reasons it has expressive limitations. Many of the lim-
itations of OWL stem from the fact that, while the language includes a
relatively rich set of class constructors, the language provided for talking
about properties is much weaker. In particular, there is no composition
constructor, so it is impossible to capture relationships between a com-
posite property and another possibly composite property. To address this
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INPUT DL Reasoning (?P rdf:type owl:TransitiveProperty) ∧ (?A ?P ?B)
Rules ∧ (?B ?P ?C)⇒ (?A ?P ?C)

(?P owl:inverseOf ?Q) ∧ (?X ?P ?Y)⇒ (?Y ?Q ?X)
Explicit <owl:ObjectProperty rdf:ID=”locatedIn”>
Context <rdf:type=”owl:TransitiveProperty” />

<rdfinverseOf rdf:resource=”#contains” />
</owl:ObjectProperty>
<Person rdf:ID=”Wang”>

<locatedIn rdf:resource=”#Bedroom” />
</Person>
<Room rdf:ID=”Bedroom”>

<locatedIn rdf:resource=”#Home” />
</Room>

OUTPUT Implicit <Person rdf:ID=”Wang”>
Context <locatedIn rdf:resource=”#Home” />

</Person>
<Building rdf:ID=”Home”>

<contains rdf:resource=”#Bedroom” />
<contains rdf:resource=”#Wang” />

</Building>
<Room rdf:ID=”Bedroom”>

<contains rdf:resource=”#Wang” />
</Room>

Table 7: Reasoning about location by using OWL ontology.
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problem, a possible solution is to extend OWL with a more powerful lan-
guage for describing properties. For example, a decidable extension of
the description logics underlying OWL DL to include the use of compo-
sition in subproperty axioms has already been investigated. However,
in order to maintain decidability, the usage of the constructor is limited
(Hor05).

Logic Programming systems (LP), such as Prolog, offer efficient en-
vironments to do so. Large communities from the LP environment are
working on new solutions for improving the exchange of rules and the
reasoning ability. Some of them are working on a standard for exchang-
ing rules in the semantic web called RuleML9. Although it is a valid can-
didate, RuleML is not layered on top on ontology but operates on the data
layer only, so the two “environments” are split. Some other researchers
are studying instead on systems for integrating ontologies and rules.
SWRL10 (Semantic Web Rule Language) is a proposal for a Semantic Web
rules-language, combining sublanguages of the OWL with those of the
Rule Markup Language (Unary/Binary Datalog).

It is important to mention that there are important connections and
implications between the knowledge modelling components (concepts,
roles, etc.) used to build an ontology, the knowledge representation para-
digms (frames, description logics, logic) used to represent formally such
components, and the languages used to implement the ontologies under
a given knowledge representation paradigm.
Most languages have been developed following two approaches: First-
Order predicate Logic (FOL) and the XML-RDF (Description Logic based).
Whereas the languages of the first type are more generic, the XML-RDF
based languages are specific for the development of Web ontologies. The
Semantic Web in fact, is built around a semi-structured data model (RDF)
and an explicit conceptualization for such data (the ontologies).

9RuleML: http://www.ruleml.org/
10SWRL: http://www.w3.org/Submission/SWRL/
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Chapter 3

Answering the Open
Questions

In this chapter we look at the main issues related to the proposal, and
the solutions we judge suitable for approaching the problems. Therefore,
each paragraph is titled with a question that refers to a particular step of
analysis for the system we propose. In each subsection, we inquire several
methodologies and theories with the attempt to answer the correspond-
ing initial question. Furthermore, section 3.3 gives a short overview of
Social Networks and Social Network Analysis, and discusses their rela-
tionships with ontologies.

3.1 How to Mine the Ontology Schema?

The main issue deals with the analysis of the ontology schema and the
extraction of the interesting information based on the ontology structure
(concepts, object and datatype properties). The ontology schema essen-
tially refers to the structural aspect of the ontology, and the attempt to
infer “semantics” starting from this schema can seem too ambitious. Nev-
ertheless, if one considers the objective of the work, the idea makes sense.
The schema describes objects and relations, and the analysis we want
to perform concerns the discovery of the most important relationships
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Figure 6: Example of rules extraction from ontology schema and instances.

among concepts (for the first phase). In figure 1, this phase is represented
by a deductive step. By navigating the ontology throughout its connec-
tions, we can identify the more relevant concepts and the corresponding
relationships. This analysis leads to the definition of the Implications as
shown in figure 1.

The example that has driven us during this study is reported in figure
6. Let us suppose we have a fragment of ontology that describes compa-
nies and the business environment where Company, Manager and Project
are concepts. Furthermore, continuous arrows represent properties of the
ontologies while the dotted ones are used for connecting instances to the
classes they belong to. From the ontology schema, we would like to ex-
tract the causal relation that links up the four concepts and that express a
relationship like:

“If a manager has a certain age, and he leads a certain project, then
the project he manages has a certain degree of innovation.”.

More formally:
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Manager(X) ∧ has age(X, N) ∧ leads(X, P) Ð→ has innovation degree(P, V).

At this stage, this relation is not properly a (influence) rule, but rather
a schema of the possible rules because it lacks both a weight and a quan-
tification for the variables N and V . To solve this problem, many tech-
nologies have been investigated, taking inspiration from the graph theory
and the Semantic Web environment.
What follows is a short survey.

3.1.1 Graph Theory: a Structural Analysis

The simplest way of analysing the ontology structure is to consider it as
a Direct Graph. If we want to “capture” the structural information, the
correspondence between ontology and graph has to be formalized and
implemented. For our purpose, it is sufficient to put in place the following
simple actions:

A1: Identify each ontology concept as a labelled node in the graph.
This correspondence is quite obvious and it is essential to keep track
of the concept name.

A2: Codify each object property between concepts as a direct edge be-
tween the corresponding nodes.
Again, matching object properties with edges is quite natural, but
in this case for the kind of analysis we want to perform, we can
leave out the semantics of the properties; we are not interested in
the information a property carries, but rather its existence.

A3: Keep track of the is-a relationships by using “special” arrows.
As we will explain in section 4.2.1, these kinds of relationships are
important even if they are not considered to be the object properties,
and for this reason they are coded as “special arrows”.

In addition to this formalization, it has been proven that the represen-
tation of the ontology graph by means of its Adjacency Matrix is practi-
cally used. This is, in fact, a means of representing which vertices of a
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graph are adjacent to which other vertices. Given a graph G with n ver-
tices, it is an n×n matrix where the nondiagonal entry aij is the number
of edges from vertex i to vertex j, and the diagonal entry aii, depend-
ing on a convention, is either once or twice the number of edges (loops)
from vertex i to itself. Undirected graphs often use the former convention
of counting loops twice, whereas directed graphs typically use the latter
one. In the special case of a finite simple graph, it is a (0,1)-matrix with
zeros on its diagonal. The useful feature is that the adjacency matrix is
unique for each graph up to permuting rows and columns.

Section 4.2.1 supplies formalizations and examples of the expounded
concept as well as all the technical details.
Nevertheless, we think it is important to mention that the graph theory
supplies a wide range of tools for the structural analysis of the graphs. Of
particular interest is the research line that merges the graph analysis to the
DM or, rather, that tends to apply DM techniques to graphs. As we will
see in section 3.3, this kind of research has become attractive thanks to the
increasing interest on Social Networks and Social Networks Analysis. For
the sake of completeness, we report a brief review of graph theory related
to the DM (getting hints from (WM03)), and we point to section 3.3 for an
overview of the Social Networks.

For our purposes, it is interesting and useful to explicitly cite the five
theoretical bases of graph-based data mining: subgraph categories, sub-
graph isomorphism, graph invariants, mining measures and solution meth-
ods.

Subgraph categories. Let us consider a graphG represented asG(V,E, f)
where: V is a set of vertices,E a set of edges connecting some vertex
pairs in V and f a mapping f ∶ E → V × V (figure 7(a)).
The most generic class of the substructure of G is a general subgraph
where Vs ⊂ V , Es ⊂ E and vi, vj ∈ Vs for all edges f(eh) = (vi, vj) ∈
Es. Figure 7(b) is an example in which a vertex v5 and edges e4, e6,
e7, e8, e9 are missing.

Another important and generic class of the sub-structure is an in-
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Figure 7: Representative subgraphs.
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duced subgraph where: Vs ⊂ V , Es ⊂ E and ∀vi, vj ∈ Vs, eh = (vi, vj) ∈
Es ⇔ f(eh) = (vi, vj) ∈ E. An induced subgraph Gsi of a graph G

has a subset of the vertices of G and the same edges between pairs
of vertices as in G. In the case of figure 7(c) the vertex v5 is missing
and only the edges e8 and e9 are also missing. e4, e6, e7 are retained
since they exist among v1, v3 and v4 in the original G.

The third class of the substructure is a connected subgraph where Vs ⊂
V , Es ⊂ E and all vertices in Vs are mutually reachable through
some edges in Es. Figure 7(d) shows the case where v6 is further
missing from the graph of figure 7(c).
Considering the labels of edges in the tree, and whether they are
ordered in a way that the label of an edge is always younger than the
labels of its lower (upper) and right (left) edges, the tree is defined
as an ordered tree (figure 7(e)). If the edge is not ordered or does not
have labels, the tree is called an unordered tree (figure 7(f)).
Finally, if the substructure does not include any branches, it is called
a path of the original graph G (figure 7(g)).

Subgraph isomorphism. Given two graphs Gx(Vx,Ex, fx) and
Gy(Vy,Ey, fy), the subgraph isomorphism problem consists of find-
ing the subgraphs Gsx(Vsx,Esx, fx), Gsy(Vsy,Esy, fy) and a bijec-
tion mapping gxy between the vertices in Vsx and the vertices in Vsy
such that Gsx and Gsx are identical, i.e., fx(exh) = (vxi, vxj) ∈ Esx iff
fy(eyh) = (vyi, vyj) ∈ Esy , where vyi = gxy(vxi) and
vyj = gxy(vxj).

For example, the graphs (b) and (d) in figure 7 share the subgraph
composed of the vertices {v1, v2, v3} and the edges {e1, e2, e3, e5} un-
der the bijection mapping of vi = gbd(vi), i = 1,2,3. This mapping is
a subgraph isomorphism between the graphs (b) and (d) of figure 7.

Graph invariants. Graph invariants are the quantities that characterize
the topological structure of a graph. If two graphs are topologically
identical, i.e. isomorphic, they also have identical graph invariants,
though the reverse property does not hold. Examples of graph in-
variants are the number of vertices, the degree of each vertex, i.e.,
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the number of edges connected to the vertex, and the number of
cyclic loops. This method can be used to reduce the search space
to solve the subgraph isomorphism problem. If any of the graph
invariants show different values between two subgraphs, the sub-
graphs are not isomorphic.

One of the most generic and important graph invariants is the canon-
ical label and the canonical form. The former is defined as the lexico-
graphic minimum (or maximum) code, and the canonical form of
the adjacency matrix is the matrix corresponding to the canonical
label. The use of both significantly reduces the graph representation
ambiguity and the search space. Often, when we want to apply ma-
chine learning, DM or statistical approaches, a graph has to be trans-
formed into a feature vector. A feature vector is an n-dimensional
vector of numerical features that represent some objects.

Mining measures. The measures assigned with substructures of graphs
are very similar to those applied to the DM analysis. The most pop-
ular is the Support. Given a graph data set D, the support of the
subgraph Gs, is defined as:

sup(Gs) = number of graphs includingGs inD
total number of graphs inD .

The anti-monotonicity of the support is insufficient for some mining
objectives, for example, for finding subgraphs which appear more
than a minimum support (minsup) but also less than a maximum
support (maxsup).
Many other mining measures which are very commonly used in the
machine learning field are also used in some graph-based data min-
ing approaches, especially, information entropy, information gain,
gini-index and minimum description length.

Solution methods. It concerns the research methods. The first type of
search method is the conventional greedy search that belongs to
heuristic search and direct matching (depth-first search and breadth-
first search). The second type of search method applies the Inductive
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Logic Programming (ILP). The induction is the combination of the ab-
duction to select some hypotheses and the justification to seek the
hypotheses to justify the observed facts.

The third type uses an inductive database. Given a data set, a mining
approach such as inductive decision tree learning, basket analysis
and ILP is applied to the data to pregenerate inductive rules, re-
lations or patterns. The induced results are stored in a database.
The database is queried by using a query language designed to ex-
press query conditions on the forms of the pregenerated results in
the database. This framework is applicable to graph-based mining.
Subgraphs and/or relations among subgraphs are pregenerated by
using a graph-based mining approach, and stored in an inductive
database. A query on the subgraphs and/or the relations is made
by using a query language dedicated to the database.

The fourth type is to apply a complete level-wise search which is pop-
ularly used in the basket analysis. In case of graph-based data min-
ing, the data are not the transactions, i.e., sets of items, but graphs,
i.e., combinations of a vertex set V (G) and an edge set E(G) which
include topological information. Accordingly, the above level-wise
search is extended to handle the connections of vertices and edges.
The search in a given graph data starts from the frequent graphs of
size 1 where each one consists of only a single vertex; this is simi-
lar to the A-priori algorithm. Subsequently, the candidate frequent
graphs of size 2 are enumerated by combining two frequent ver-
tices. Then the support of each candidate is counted in the graph
data and only the graphs having higher support than the minsup
are retained. In this counting stage edge information is used. If
the existence and the label of the edge between the two vertices do
not match, the graph of size 2 is not counted as an identical graph.
This process is further repeated to incrementally extend the size of
the frequent graphs in a level-wise manner, and finishes when the
frequent graphs are exhaustively searched.

The fifth type is Support Vector Machine (SVM). This is a heuristic
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search and an indirect method in terms of the subgraph isomor-
phism problem and used in the graph classification problem. It is
not dedicated to graph data but to feature vector data. Given feature
and class vectors (x1, y1), . . . , (xL, yL) xi ∈ Z, yi ∈ {+1,−1}, where L
is the total number of data, i = 1, . . . L, Z a set of vectors and yi a
binary class labels, each sample feature vector x1 in the data is clas-
sified by:

y = sgn(∑nj=1 jiαjφ(xi) ● φ(x) + b).

Here φ ∶ Z → H where H is the Hilbert space1, αi, b ∈ R and αi

positive finite. By extending the feature space to a far higher di-
mension space via φ, SVM can properly classify the samples by a
linear hyper plane even under complex nonlinear distributions of
the samples in terms of the class in Z. The product φ(xi) ● φ(x)
can be represented by the kernel function K(XGx ,XGy) for graphs
where XGx = xi and XGy = x. This function K represents a similar-
ity between two graphs Gx and Gy . Accordingly, SVM can provide
an efficient classifier based on the set of graph invariants (WM03).

3.1.2 Ontology Evaluation Metrics: Pointing Out the Rel-
evant Concepts

When we talk about evaluating ontologies, what we usually have in mind
is a sort of “objective” evaluation of how “good” an ontology is. Method-
ologies such as OntoClean (GW02) help to validate taxonomic relation-
ships with respect to general ontological notions such as essence, identity
and union. Others suggest assessing ontology completeness, consistency
and correctness in terms of consistency of inference, lack of redundancy,
lack of errors, and so on. Furthermore, many have argued that the only
true way to evaluate an ontology is to use it in applications and to assess

1The mathematical concept of a Hilbert space generalizes the notion of Euclidean space.
It extends the methods of vector algebra from the two-dimensional plane and three-
dimensional space to infinite-dimensional spaces. Explicitly, a Hilbert space is an inner
product space, an abstract vector space in which distances and angles can be measured,
which is “complete” [Wikipedia].
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the applications performances. In other words, like every software prod-
uct, ontologies need to be controlled before being deployed in practical
applications. Because of their nature, the evaluation metrics and qual-
ity enforcement procedures developed for software engineering do not
work. For example, we can not evaluate ontologies in terms of their cor-
rectness with respect to a given process specification, described, for in-
stance, using an I/O function. For this reason, many ad hoc techniques
have been developed (SGPD+04).

There exist two types of evaluation:

i) content evaluation, and

ii) ontology technology evaluation.

Evaluating contents is for preventing applications from using inconsis-
tent, incorrect, or redundant ontologies. A well-evaluated ontology does
not guarantee the absence of problems, but it will make its use safer. Sim-
ilarly, evaluating ontology technology will ease its integration with other
software environments, ensuring a correct technology transfer from the
academic to the industrial world.

For our purposes, we found some ideas in (HD06), where the authors
propose some evaluation techniques based only on the ontology struc-
ture. Their aim is to supply parameters and methods for increasing the
quality of an ontology. The evaluation method includes six parts: Con-
cept Quantity, Property Expectation, Property Standard Deviation, Tree Bal-
ance, Concept Connectivity, and Key Concept Quantity.
From this set, the more attractive and useful technique is the last one. The
goal of Key Concept Quantity evaluation is to find out the key concepts in
the ontology. This evaluation helps the ontology developers to focus their
attention on the main concepts (the key ones), and for us it can represent
a starting point for the analysis of a large ontology.
The authors’ idea is to extract the most important concepts from the on-
tology and to start, from this set, the search of the more interesting rela-
tionships.
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Since it is difficult to judge what the most important concepts are without
considering and knowing their semantics, the authors propose to con-
sider the following heuristic:

“if a concept is more important than the others, it has more contacts
with other concepts than the other concepts”.

As described in 3.1.1, also in this case the suitable formalism for the
ontology is a (direct) graph G =< V,E >, where each concept is a vertex
V in the graph. The strategy for highlighting the key concepts is the fol-
lowing: if a concept has an object property, whose value is an instance
of another concept, an edge E will be drawn between these two con-
cepts. At first, each edge in graph G is given a weight with the default
value of 1. Consequently, because the subclasses inherit the property of
their parents, a contact between parents implies the relations of their sub-
classes. Therefore, the edge between two higher concepts also implies the
edges between every two subclasses even if we do not draw them. Conse-
quently, the weight between two higher concepts depends on the number
of invisible edges2, and we update the weight of an edge with the product
obtained by multiplying the number of concepts and subclasses of each
side.
Secondly, we calculate the weight of each concept by adding the weight
of each edge that connects to the concept and sort the concepts with their
weight.
Finally, we consider some of the concepts as key concepts by selecting
those who obtain a score above the threshold. For different applications,
developers can decide the proportion themselves.

This approach was certainly a good starting point for tackling the
problem and for directing the research to more suitable techniques. Since
the beginning, it has been clear that the approach gave simplistic solu-
tions and presented some weaknesses. The similarity of an ontology with
a graph is not completely exploited because the computation of the im-

2For invisible edges we mean the “hidden” connections that are induced by the taxo-
nomic relations of an ontology.
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portant concepts is based only on the in-links. As we will prove, it is
possible, even necessary, to consider also the out-links. In this way we do
not ignore the importance of the concepts that originate the relationships.
The example below shows the application of the Key Concept Quality
technique to the resume ontology (Yan) an ontology that models relevant
information about a person’s career. We will now point out the weakness
just described in the example below.

Example 3.1 Key Concepts of the resume ontology.
This example aims at showing the application of the Key Concept evalua-
tion to an actual ontology: the resume ontology (Yan). This ontology mod-
els essentially the concepts for describing the career of a person. For the
case study we use the subset of the resume ontology shown in figure 8. As
described earlier, we consider the hierarchy of concepts and their object
properties, and we apply the sequence of steps for weighting properties
and consequently for ranking the concepts. First, we point out the triples
Concepti - Relationh - Conceptj . Then we weight all the relations keeping
into consideration the fact that the edge between two higher concepts also
implies the existence of the same edges between every two subclasses of
them. In other words, if Concepti has 2 subclasses and Conceptj has 3
subclasses, then Relationh has a weight of 12. 12 results from the mul-
tiplication of 3 (Concepti and its 2 subclasses) and 4 (Conceptj and its 3
subclasses).

For evaluating the concepts, we calculate the weight of each concept
by adding the weight of each edge that connects to the concept. Each
step of analysis on the resume ontology is shown and summarized in the
following pictures. Figure 9 shows the main classes related with an ob-
ject property; for lack of space, for each parent class we omitted the list
of all the subclasses reporting only their number. For example, the con-
cept Award has 14 subclasses and it is related to Organization by the object
property awardedBy. Organization has 8 subclasses. In agreement with the
evaluation strategy, the weight 135 of the edge (relation) awardedBy (con-
necting Award and Organization) results from the product of 15 (Award
and its 14 subclasses) and 9 (Organization and its 8 subclasses).

In the next step of evaluation we give a weight to the concepts sum-
ming up the weights of the incoming edges. Figure 10 shows the results
in the last column named Concept Weight. For clarity, we order the re-
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Figure 8: Graph of the (subset) resume ontology.
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sulting table on the basis of range concepts so we can see immediately
what are the incoming edges considered for each range class. Referring
again to Organization, its final weight is 162 resulting from the sum of the
weights of awaredBy (135 + 9 + 9) and employedBy (9).
At the end, the Key Concepts of resume ontology are: Award (180), Or-
ganizaton (162), Activity (20), Career (20), CareerAccomplishment (16), Ex-
pertiseArea (14), and so on. Notice that, the hidden3 subclasses have the
same value of the corresponding parent classes, while those presented in
the result table maintain the value collected.

An important observation is what we expected after taking a look at
the ontology, and what we actually obtained. Since the ontology describes
the careers of persons, we would expect, without knowing the computa-
tion strategy, that Person appeared as Key concept. Obviously it is not so,
because Person has many outgoing links, and no incoming ones. From
this point of view this methodology underestimates the actual “expres-
sive power” of this ontology, in the sense that Person is, objectively, a
significant concept but the method “badly” rates it.
We will see that the link analysis principles could go beyond this limita-
tion.

◁

3The subclasses are not explicitly reported in the picture.
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Figure 9: Evaluation of Relations.
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Figure 10: Evaluation of the concepts.

50



3.1.3 Link Analysis: Another Way for Measuring Relevant
Concepts

The Link Analysis “was born” almost simultaneously at the IMB Research
Centre and at Stanford University in 1998 thanks to Kleinberg (Kle98),
and Brin and Page (BP98). While Brin and Page’s PageRank algorithm
became the core component of the Google search engine, bringing them
fame and an office in the Google’s headquarters), Kleinberg’s work (the
HITS algorithm) was not immediately successfully commercially devel-
oped. Nevertheless, it has earned him the recognition in the mathemat-
ical community “for outstanding contributions in mathematical aspects
of Information Science”. Finally, in 2001, the search engine Teoma (now
purchased by Ask Jeeves) adopted it as the heart of its technology. In any
case, both of them completely revolutionized the way we use the web,
and much more.

However, the real precursors of the link analysis á la PageRank and
HITS, have been part of a long tradition of analytics and measures from
Bibliometrics. This tradition also includes what was essentially PageR-
ank, 22 years earlier (refer to the contribution of Pinski and Narin (PN76)),
and Social Network Analysis (see for example Wassermann and Faust’s
book (WF94)). In particular, Pinski and Narin described a methodology to
determine “influence measures” for the scientific press, authors and sci-
entific subfields, based on citations. These methods, as we will see with
PageRank and HITS, tried to assign a weight to each publishing entity so
that the higher the weight, the more influence the particular entity had
within the collection.

The Link Analysis is a set of methods for determining, in the web
world, the relative authority of a web page on the basis of the hyperlink
structure. A hyperlink is a technological capability that enables, in princi-
ple, one specific Web site to connect seamlessly with another. The shared
(bilateral or unilateral) hyperlinks among Web sites allow documents and
pictures to be referred to through the Web. A hyperlink between two Web
sites functionally brings them closer together. These methods also aim at
producing improved algorithms for the ranking of Web search results.
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In our context, the idea that drives these methods can be used to provide
a sort of “authority measure” to the ontology concepts as done for Web
pages.

As stated in (The06), in the information science the potential for link
analysis was recognized when the commercial search engine AltaV ista4

released an interface that allowed users to conduct various types of searches
for pages containing links. Subsequently, the term webometrics was coined
for the quantitative analysis of web-related phenomena, including links
from an information science perspective (AI97). Later on, webometrics
analysed search engine results (BI99) and web page changes over time
(BIP04; Koe04). Although much has been written about analysis method-
ologies, there is no unanimity concerning the question of how to inter-
pret link analysis research results. The question of interpretation has been
addressed in published studies but typically from the perspective of in-
dividual research questions rather than from a generalized framework.
Summing up, there is no clearly stated theory or methodology for link
count interpretation. In (The06) an exhaustive overview is reported.
Now, we will present an overview of the two first methods previously
introduced.

PageRank

PageRank, developed by Brin and Page (BP98), is a topological measure
of the “prestige” of Web pages independent from the query or other infor-
mation (semantics). It is based on the assumption that good quality pages
are more likely to be linked than poor quality ones, and therefore that
mining information about the link structure of the Web could be more ef-
fective at identifying the best pages matching search engine queries than
a simple text-matching algorithm. The PageRank method can be seen as a
“random walk with random reset” on graph G that represents the pages
and their connections. With this view in mind, it is easy to interpret the
formal representation.

Given graph G and the associated adjacency matrix An×n (a definition

4AltaVista: http://www.altavista.com/
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is given in section 4.2.1), an estimation of the out-degree of a node is given
by the matrix Wn×n, where each entry is calculated as:

wij =
aij

∑nk=1 aik
(3.1)

The random reset part of PageRank is described by a factor composed
by a probability 0 < α < 1 (which determines whether we restart) and a
positive n × n uniform transition probability matrix U :

U =
⎡⎢⎢⎢⎢⎢⎣

1/n . . . 1/n
⋮ ⋱ ⋮

1/n . . . 1/n

⎤⎥⎥⎥⎥⎥⎦
(3.2)

Composing 3.1 and 3.2, the PageRank algorithm can be algebraically
described by the matrix P :

P = αU + (1 − α)W (3.3)

α, also called damping factor is, by default, set to 0.15.
Mathematically speaking, this process describes a Markov chain, and thanks
to this fact it is easy to prove the convergence of the method. In particular,
it converges to the dominant eigenvector of the matrix PT (see (FLM+06)
for all the details).

We can informally say that the method describes “a user surfing the
web”: he starts from a random page i and, with probability (1 − α) he
follows one of the links of the current page and, with probability α, he
moves to a random page. At the end, the pi ∈ P measures the time a prob-
abilistic surfer lasts on page i.
PageRank is currently famous because it is adopted by the Google5 search
engine to sort all documents matching a given query, with particularly
valuable results (BGS02).
Recently PageRank has been used for solving problems not related to the
web environment. We cite, for example (BRdS06), where the authors de-
scribe the use of a weighted version of the algorithm to obtain a metric

5Google: www.google.com
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that reflects the prestige of a journal. Instead of merely counting the total
citations of a journal, the “importance” of each citation is determined in a
PageRank fashion.

In a completely different context, there is Jiang’s work (Jia06) where
PageRank has been used to rank spaces or streets in order to predict
how many people (pedestrians or vehicles) come to the individual spaces
or streets. In their paper, they apply an extended PageRank algorithm
(weighted PageRank) to the space-space topology for ranking the indi-
vidual spaces, and find surprisingly that the resulting scores are signif-
icantly correlated to human movement, both pedestrian and vehicle, in
four observed areas of London.

HITS: Hypertext Induced Topic Selection

HITS is a link analysis algorithm that rates Web pages based on two eval-
uation concepts: authority and hub. The authority estimates the content
value of the page, while the hub the value of its links to other pages. In
other words, as shown in figure 11, hub is a page with outgoing links and
authority is a page with incoming links.

Figure 11: Hub and Autority pages.

Kleinberg observed that there exists a certain natural type of balance
between hubs and authorities in the WWW graph defined by the hyper-
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links, and that this fact could be exploited for discovering both types of
pages simultaneously.

HITS (like PageRank) is put into an iterative algorithm applied to the
subgraph Gσ of the web graph, derived from a sort of text matching pro-
cedure (for further details see the procedure Subgraph in (Kle98)) of the
query terms σ in the search topic. For this reason it is query-dependent.
The core of the algorithm starts from Gσ and computes hub (y<p>) and
authority (x<p>) weights by using an iterative procedure qualified to mu-
tually reinforce the values. It becomes natural to express the mutually
reinforcing relationship between hubs and authorities, as: “If p points to
many pages with high x-values, then it should receive a large y-value,
and if p is pointed to by many pages with large y-values, then it should
receive a large x-value”. I and O operations have been defined for up-
dating the weights.
I updates the authority x-weights as:

I ∶ x<p> ← ∑
q∶(q,p)∈E

y<q>.

O updates the hub y-weights as:

O ∶ y<p> ← ∑
q∶(p,q)∈E

x<q>.

Since the two operations are mutually recursive, a fixed point is needed
for guaranteeing the termination of the computation. Even if the num-
ber k of iterations is a parameter of the algorithm, it is proven that, with
arbitrarily large values of k, the sequences of vectors x1, x2, . . . , xk and
y1, y2, . . . , yk converge to the fixed points x∗ and y∗ (Theorem 3.1 in (Kle98)).
As one can guess, and as it happens for the main information retrieval
methods, linear algebra (Aba00) supplies “tools” of support for formal-
izations and proofs.

First, it is possible to represent the graph Gσ in matrix form with the
help of the adjacency matrix A:

Aij = { 1 if an edge from i to j exists
0 otherwise
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For example, an adjacency matrix A associated to the small web graph G
is shown in figure 12.

Figure 12: A small web graph with its adjacency matrix associated.

Then, one can easily observe that, the iterative and mutual call of I
and O, can be (re)written as:

xi = AT yi−1

yi = Axi
(3.4)

Stated that, it is easy to trace the computation of x∗ and y∗ back to the
mathematical computation of the principal eigenvector 6 of a matrix ATA
and AAT , respectively. From 3.4, after k iterations, we obtain

x(k) = (ATA)(k−1)ATu
y(k) = (AAT )(k)u (3.5)

where u is the initial seed vector for x and y.

Example 3.2 HITS Example.

Let us suppose that the subset of nodes that contains the query terms is
{1,6}. Let us suppose again that the subgraph G of the whole web graph
is the one depicted in figure 13.

6It should be useful to recall that, ifM is a symmetric nxnmatrix, an eigenvalue ofM is a
number λ with the property that, for some vector ω, we have Mω = λω. The set of all such
ω is a subspace of Rn, which we refer to as the eigenspace associated with λ; the dimension
of this space will be referred to as the multiplicity of λ. It is a standard fact that M has at
most n distinct eigenvalues, each of them a real number, and the sum of their multiplicities
is exactly n.
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Figure 13: Subgraph

The adjacency matrix A associated with G is the following:

A =

1 2 3 5 6 10
1
2
3
5
6

10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The corresponding authority and hub matrices are:

ATA =

1 2 3 5 6 10
1
2
3
5
6

10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 0 0
0 0 2 1 1 0
0 0 1 1 0 0
0 0 1 0 3 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

AAT =

1 2 3 5 6 10
1
2
3
5
6

10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 1 0 1 1
0 1 0 0 0 0
1 0 1 0 0 1
0 0 0 0 0 0
1 0 0 0 2 0
1 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The characteristic polynomial of ATA is λ2(λ−1)(λ3−6λ2+9λ−2)

and the correspondent eigenvalues are λ1 = 0, λ2 = 1, λ3 = 2 −
√

3, λ4 = 2
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and λ5 = 2 +
√

3.
The characteristic polynomial of AAT is λ2(λ − 1)(λ − 2)(λ2 − 4λ + 1) and
the correspondent eigenvalues are λ1 = 0, λ2 = 1, λ3 = 2 −

√
3, λ4 = 2 and

λ5 = 2 +
√

3.
The normalized7 eigenvectors related to authority and hub and associ-
ated to the dominant eigenvalue (λ5 = 2 +

√
3), are:

xT = [0,0,0.3666,0.134,0.5,0]
yT = [0.3660,0,0.2113,0,0.2113,0.2113]

This means that node (or page) 6 is the most authoritative for the query,
while node (or page) 1 is the best hub for this query.

◁

Kleinberg made the assumption that a unique eigenvalue exists, i.e.
that ∣λ1(M)∣ > ∣λj(M) for each 1 < j ≤ n.
The key point is that the dominant eigenvalue of a matrix is not always
unique. When it is so, the (HITS) convergence is valid but, when the
dominant eigenvalue is repeated, the ranking vector could be any non-
negative vector in the multidimensional dominant eigenspace. In partic-
ular, the ranking vector may not be unique and may depend on the initial
seed vector. The following example 3.3, taken from (FLM+06), should
clarify this.

Example 3.3 Repeated eigenvalues.
Given the web graph of figure 14 and the correspondent associated

adjacency matrix A, we apply the algorithm as in equation 3.5. By using
the uniform vector y0 = [1/

√
6, . . . ,1/

√
6] as seed, we obtain the following

authority and hub vectors:

x = [2/
√

5,1/2
√

5,1/2
√

5,1/2
√

5,1/2
√

5,0]
y = [0,1/

√
5,1/

√
5,1/

√
5,1/

√
5,1/

√
5].

This would mean that vertex 6 is not a better hub than vertices 2, 3, 4 and
5, and that we would obviously expect a different result.
Let us try, instead, to use the seed vector x0 rather than y0, and let us see
how hub and authority vectors change.

7The normalization is done by using the norm 1, i.e. ∥x∥1 = ∑n
i=1 ∣xi∣.
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Figure 14: A web graph with non-unique largest eigenvalue for ATA.

x = [1/
√

5,1/
√

5,1/
√

5,1/
√

5,1/
√

5,0]
y = [0,1/2

√
5,1/2

√
5,1/2

√
5,1/2

√
5,2/

√
5].

This would mean that vertex 1 is now not a better authority than vertices
2, 3, 4 and 5.
The output is sensitive to the initial seed vector because the dominant
eigenvalue is not unique. In fact:

DET (ATA) = λ4(λ − 4)2 ⇒
λ1 = ⋅ ⋅ ⋅ = λ4 = 0
λ5 = λ6 = 4.

◁

Unfortunately, HITS suffers another weakness in the presence of badly-
connected graphs: it can return ranking vectors that inappropriately as-
sign 0-weights to part of the network that should gain a higher rank.
From a mathematical point of view, this happens when the dominant
eigenvalue is unique but there are “lower” eigenvalues repeated. Exam-
ple 3.4 shows such a case.

Example 3.4 Repeated lower eigenvalues.
Suppose we now have the web graph of figure 15 and the correspond-

ing associated adjacency matrix A. In this case the characteristic polyno-
mial for (ATA) is:

DET (ATA) = λ5(λ − 3)(λ − 2)2 ⇒
λ1 = ⋅ ⋅ ⋅ = λ5 = 0
λ6 = λ7 = 2
λ6 = 3.
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The dominant eigenvalue is simple (λ6 = 3) but eigenvalues 0 and 2 are
repeated. In this case, as long as the initial seed vector is positive, the
output of HITS is:

x = [0,1,0,0,0,0,0,0] and
y = [0,0,0,1/

√
3,1/

√
3,1/

√
3,0,0].

Figure 15: A web graph with simple largest eigenvalue but repeated lower
ones, for ATA.

Only node 2 gets a positive authority. We would expect that node 1
should be a better authority than any other node because it is accessible
from every node. Meanwhile, node 3 should be only slightly less impor-
tant than node 2 since there is only one more node pointing to node 2.

◁

The two limitations just discussed can be overcome by applying the
strategy of Farhat et all. In (FLM+06) they propose to replace the simple
adjacency matrix A associated to the web graph with the Exponentiated
Adjacency Matrix able to give information about paths longer than 1. In
this way, during the computation of the hub score of a page, each itera-
tion HITS does not only look at the authority scores of adjacent pages, but
also considers “indirect connections”. The idea starts from the observa-
tion that, if A identifies the paths of length 1 from each couple of nodes,
then A2 identifies the path of length 2 up to Am that identifies the path
of length m. Considering paths of length 1 more important than paths
of greater length, the proposed exponentiated matrix has the following
format:

A +A2/2! +A3/3! + ⋅ ⋅ ⋅ +Am/m! + ⋅ ⋅ ⋅ = eA − I, (3.6)
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where I is the identity matrix.
This series converges because each entry in the mth term is bounded by
nm/m!. Also, the matrices A + A2/2 or I + A would overcome the weak-
nesses.
We omit the details because our aim is to exploit this important result for
our problem rather than to go back again over the proofs.
In section 4.2 we will show how this work helps us in the task of extract-
ing the relevant concepts from an ontology.

Another interesting study that “justifies” the generalisation of Klein-
berg’s ideas to other domains besides the web has further driven us to im-
prove our work. Agosti and Pretto in (AP05) present a theoretical study
of a generalized version of HITS. They perform a mathematical analysis
by focusing on the convergence of the algorithm, examining it in a general
“abstract” context, independently of the web application.

The result that interests us is the possibility of giving positive weight
to the edges of the graph, maintaining the correctness and termination
requirements related to the HITS computation. This fact enables us to
semantically enrich the graph, and to model different problems. Essen-
tially it maintains the procedures but it changes the input representation
replacing the simple adjacency matrix A with a “weighted adjacency ma-
trix” W .
As one can imagine, W = [wij] is an n × n matrix whose the generic entry
(i, j) is:

wij = { eij if an edge from i to j has the positive weight eij
0 if no edge exists from i to j (3.7)

In this revised formulation, the mathematical representation of the itera-
tive procedure of the algorithm becomes:

x(k) = (WTW )(k−1)WTu
y(k) = (WWT )(k)u (3.8)

Theorem 4.1 in (AP05) guarantees that matrix B = WTW has a strictly
dominant eigenvalue if and only if one of the matrices B1,B2, . . . ,Bm has
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a strictly dominant eigenvalue that is greater than the strictly dominant
eigenvalue of every other matrix of this multiset of matrices. B is a matrix
with diagonal blocks with this structure:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B1 0 . . . 0
0 B2 . . . 0
⋮ ⋱
0 0 . . . Bm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(3.9)

where Bi is the matrix having as an underlying graph the weighted com-
ponent i.
Omitting the proofs, we can point out that the convergence of the revised
HITS guarantees that x(k) and y(k) converge to the unit authority and hub
vectors which are linear combinations of all the dominant eigenvectors of
WTW and WWT , respectively.

3.1.4 Semantic Association Discovery: a Promising Ap-
proach

One of the approaches for retrieving information from ontologies and in
general from the Semantic Web is to search for relations between con-
cepts. The simple (direct) relations such as the is-a or is-part-of relations
can be found easily also by using a query language (KAC+02). This means
that all descending classes of one class can be retrieved even on a differ-
ent level. However, in the Semantic Web there are more complex relation-
ships among entities; such complex relationships can be represented by a
path between two entities consisting of other entities and their properties.
An interesting contribution can be found in (AS02; Bar04) where the au-
thors propose and implement a class of operators (called ρ−operators) for
discovering semantic associations over RDF. This class contains ρ path, ρ
connect and ρ iso operators that have the following meaning:

ρ path returns all paths between two entities in the graph (ontology schema).

ρ connect returns all intersecting paths on which two entities lie.

ρ iso implies a similarity of nodes and edges along the path, and returns
such similar paths between entities.
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This work seems to come very close to our approach and it proposes
interesting solutions to common issues such as how to extract information
from an ontology and how to find hidden relationships among concepts.
For this reason we report the example 3.5 (taken from (AS02)) with the
aim of clarifying the power of these operators.

Example 3.5 ρ-operators on RDF graph
Suppose we have the ontology (schema and instances) of figure 16.

The ontology describes the association between Artists and Museums.
Thanks to ρ operators we can discover the following information.
(i) Relation between resources &r6 and &r8. Such an association rep-
resents a piece of information that a painter called Pablo Picasso had
painted a painting that is exhibited in the Reina Sofia Museum.
(ii) Intersection between resources &r6 and &r8 and between resources
&r9 and &r8. This association represents the fact that two artists had their
artefacts (a painting and a sculpture respectively) exhibited in the same
museum.
(iii) Relation between resources &r1 and &r9. This represents a fact that
both subjects are classified as painters.

◁

Beyond this simple example, an important usage of searching such
complex associations can be found in the field of national security for
identifying suspicious passengers at airports. This is done by looking
for available connections between them or in the field of business in-
telligent applications. Note that it is not possible to always encode this
kind of association as inference rules because they cannot be known a pri-
ori, but instead discovered with experience. Then, it is important to de-
velop methods for identifying or discovering associations by using gen-
eral and domain-independent characteristics, and then by applying do-
main knowledge to guide the search process, allowing the search to focus
on only associations that are important in that context.
As one can notice, the main strategy makes use of ontology instances be-
sides the only ontology schema, but for the first step of our research it
does not seem to be useful. Furthermore, we think that the general idea
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Figure 16: Example of Rho Operators on RDF Ontology
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could be exploited in intermediate phases and we would like to study this
approach in depth.

3.1.5 Multi-Relational Data Mining

As we have already described in section 2.1, traditional DM looks for pat-
terns in data and a lot of existing approaches known as Propositional DM
look for patterns in a single data table. Most real-world databases, how-
ever, store information in multiple tables. Records in each table represent
parts, and individuals can be reconstructed by joining over the foreign
key relations between the tables. Multi-Relational Data Mining (MRDM)
approaches act on this structure and look for patterns that involve mul-
tiple tables (relations) from a relational database. When we are looking
for patterns in multi-relational data, it is natural that the patterns involve
multiple relations.

It is known that there is the growing interest in the development of the
DM algorithms for various types of structured data, for example, graph-
based data mining, and mining of tree-structured and XML documents.
Some interesting improvements are in the web search (CMH03) and in
Molecular Biology (FM04).
We already discussed in section 3.1.1 the theoretical bases of graph-based
data mining that is actually a case of Structural Data Mining like MRDM.
We will discuss now some fundamentals of the MRDM so that it will be
easier to catch the similarity with the ontology mining strategy that we
are proposing.

MRDM can analyse data from a multi-relation database directly, with-
out the need to transfer the data into a single table first. Thus the mined
relations can reside in a relational or deductive database. The relational
data can be represented by means of tables (extensional view) or explicit
logical rules (intentional view that consists of relationships that can be
inferred from other relationships). The corresponding relational patterns
extend the types of propositional patterns considered into a single table.
They are stated in a more expressive language than patterns defined into
a single table, so we have relational classification rules, relational asso-
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ciation rules, and so on. They are typically expressed by using a subset
of first-order logic. The following example 3.6, taken from (Dze03), will
clarify the concepts.

Example 3.6 Multi relational data mining.
Let us consider the relational database in figure 17 composed of two

tables: Customer contains the general information of a customer, and
MarriedTo contains the matrimonial relationships. The relational clas-

Figure 17: Relational Database.

sification rule, predicting the feature of a person to be a big spender and
that involves both tables, is the following:

big spender(Ca, Agea, Incomea, TotalSpenta) ←
married to(Ca,Cb) ∧
customer(Cb, Ageb, Incomeb, TotalSpentb, BSb) ∧
Incomeb ≥ 108000

In agreement with the rule, a big spender is one who is married with
a person with a high income. As we can see the rule uses predicates;
big spender defines the “goal feature” while married to and customer
belongs to the tables Customer and MarriedTo, respectively.
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Instead, a propositional rule is defined on a single table and it does not
involve predicates. The following is an example:

IF Income > 108000 THEN BigSpender = Yes.

This example clearly shows how relational patterns are more expressive
than propositional ones.

◁

An alternative approach to MRDM (called propositionalization) consists
in the creation of a single table from a multi-relational database in a sys-
tematic fashion by joining the tables. This system permits one to apply to
the resulting unique table, the traditional data mining algorithms. What
is the actual benefit in making efforts to update the existing algorithms in
order to handle relational databases and in order to increase the compu-
tational complexity?
The answer is the simplest and the most reasonable one: for one-to-one
and many-to-one relations, we can join the extra fields to the original re-
lation without problems, but for one-to-many relations, problems occur
either in loss of meaning or in loss of information through aggregation.
Consider for example the relations:

customer(CustID, Name, Age, SpendsALot)
purchase(CustID, ProductID, Date, Value, PaymentMode)

where each customer can make multiple purchases, and suppose we are
interested in characterizing customers that spend a lot. Merging the two
tables via natural join, builds a relation purchase1 where each row cor-
responds to a purchase and not to a customer. One possible aggregation
would give rise, for example, to the relation:

customer1(CustID, Age, NofPurchases, TotalValue,
SpendsALot)

with loss of information. In fact, it is not possible to induce the pattern:

customer(CID, Name, Age, yes) ←
Age > 30 ∧
purchase(CID, PID, D, Value, PM) ∧
PM = credit card ∧ Value > 100
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from either of the relations purchase1 and customer1 considered on
their own.
Clearly, these approaches benefit of the efficiency of the traditional DM
algorithms but have limited expressiveness.

If we represent a relational database by means of a graphical formal-
ism, for example the Entity-Relation diagram, a certain similarity with
graphs (and why not, with an ontology graph) immediately rises. Each
database table (relation) can be seen as a node and the corresponding
items as the associated properties or as datatype properties if speaking in
terms of ontologies. Primary and foreign keys can be seen as edges (ob-
ject properties on the other hand) between the nodes.
Without going into detail, in general, MRDM algorithms traverse the
graph of tables and associations, that makes the data model a strong way
of guiding the search process. One can simply see here the similarity be-
tween the exploration of a graph that maybe represents an ontology and
the search of patterns in a data base with multiple tables.

As is the case of many DM algorithms originating from the field of
machine learning, many MRDM algorithms come from the field of In-
ductive Logic Programming (ILP) that is situated at the intersection of
machine learning and logic programming. Initially, ILP focussed on au-
tomated program synthesis from examples, formulated as a binary clas-
sification task, but in recent years its scope has broadened to cover the
whole spectrum of DM tasks such as classification, regression, clustering
and association analysis.

The ILP paradigm employs (small) logic programs to describe pat-
terns. The logic programs need to be induced from a database of logical
facts. The facts in the database represent parts of the structured individ-
uals, while the class of each part can be identified by the predicate of the
fact. The individuals are often identified by means of group or facts. ILP
typically uses a logic language as the pattern language, for example Pro-
log. ILP algorithms often allow as input not only the database of ground
facts, but also intentional predicate definitions that may help the search
process for interesting patterns.
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3.2 How to Compute Weights and How to Asso-
ciate Them to Implications?

This question corresponds to the characterization of the implications dis-
covered at schema level during the deductive step (see section 3.1.3 for
theoretical aspects and section 4.2 for technical details). Since we have
not exploited the data until now, the use of the instances is now essential.
The idea is to perform an inductive step of analysis over the knowledge
base where the ontology instances are stored. In general, we can presume
that the instances are stored in a repository separate from the ontology;
if they are directly part of the ontology, instead, an intermediate step is
needed for retrieving them.

The approach that seems to be more suitable for characterizing the
implications consists in the use of one of the consolidated algorithms for
knowledge discovery, and in particular, methods for Association Rule
Discovery (AIS93; AS94; AMS+96). Actually, as we will see later, for our
purposes it will be sufficient to stop the process after the discovery of the
frequent patterns.
The goal of these techniques is to detect relationships or associations be-
tween specific values of categorical variables in large data sets, that is, to
show attribute value conditions that occur frequently together in a given
dataset. A typical well known and widely-used application example of
AR mining is the Market Basket Analysis (AIS93). In short, given a large
number of items (articles from a supermarket like bread, milk, napkins,
etc. . . ), the market basket problem aims at discovering what items the
customers buy together, even if we do not know who the customers are.

The formal definition follows.
Let I = I1, I2, . . . , Im be a set of binary attributes, called items. Let T be
a database of transactions. Each transaction t is represented as a binary
vector, with t[k] = 1 if t bought the item Ik, and t[k] = 0 otherwise. There
is one tuple in the database for each transaction. Let X be a set of some
items in I . We say that a transaction t satisfies X if for all items Ik in X ,
t[k] = 1.
An AR is an implication of the form X ⇒ Ij , where X is a set of some
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items in I , and Ij is a single item in I that is not present in X . The rule
X ⇒ Ij is satisfied in the set of transactions T with the confidence factor
0 ≤ c ≤ 1 if at least c% of transactions in T that satisfy X also satisfy Ij .
The intuitive meaning is that, if the items X are found together in the
itemset, then there is a good chance (the confidence factor) of finding also
the item Ij .
Normally we search only for rules that had confidence above a certain
threshold.

Beside the confidence, another important measure of a rule is the sup-
port. The support is the fraction of transactions in T that satisfy the union
of items in the consequent and antecedent of the rule. Notice that the
support should not be confused with the confidence. While the latter is
a measure of the rule’s strength, the former corresponds to statistical sig-
nificance (please refer to (AIS93; AS94; AMS+96) for an exhaustive treat-
ment).

The ARs mining problem can be decomposed into two subproblems:

P1 Generate all combinations of items that have fractional transaction
support above a certain threshold, called minimum support.

P2 For a given large itemset Y = I1, I2, . . . Ik, with k ≥ 2, generate all rules
(at the most k rules) that use items from the set I1, I2, . . . Ik.

This problem has been extensively studied in the last years. Several vari-
ations to the original A-priori algorithm (AS94), as well as completely
different approaches, have been proposed. All the proposed algorithms
browse bottom-up the huge solution search space, i.e. the lattice graph of
2∣I ∣ itemsets, by exploiting various strategies for pruning it. Among these
strategies, the most effective regards the exploitation of the downward
closure property: if a k-itemset is frequent, then all of its k − 1-subsets
have to be frequent as well. On the other hand, if a k-itemset is discov-
ered to be infrequent, then all its supersets will not be frequent as well.

For completeness, we report the main steps of the AR mining process,
in its standard formulation associated to the A-priori algorithm, just cited.
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Step 1 Scan the transaction database to get the support S of
each 1-itemset, compare S with the minimum support
(min sup) threshold, and get a set of frequent 1-itemsets,
L1.

Step 2 JoinLk−1 with itself for generating a set of candidate k-
itemsets. Use A-priori property to prune the infrequent
k-itemsets from this set.

A-priori Property

• Reduce the search space to avoid finding of each Lk re-
quires one full scan of the database.

• If an itemset I does not satisfy min sup, then the I is not
frequent.

• If an item A is added to the itemset I , then the resulting
itemset (i.e., I ∪ A) cannot occur more frequently than I .
Therefore, I ∪A is not frequent either.

Step 3 Scan the transaction database to get the support S of
each candidate k-itemset in the final set, compare S with
min sup, and get a set of frequent k-itemsets, Lk.

Step 4 If the candidate set is empty, then go ahead to Step 5,
else go back to Step 2.

Step 5 For each frequent itemset l, generate all non-empty
subsets of l.

Step 6 For every non-empty subset s of l, output the rule:
“s⇒ (l − s)”.

The following example 3.7, shows an application of the algorithm.

Example 3.7 Running the A-Priori algorithm.
Suppose we have table (a) of figure 18 that describes transactions.

Each transaction is identified by a code with which is associated the list
of items. Let us see how the process generates the frequent itemsets from
which the AR set can be derived. Applying Step 1, the algorithm gen-
erates table (b) in which the association between (single) items and the
number of occurrences (sup count) is shown. By joining table (b) with
itself (in agreement with Step 2), both the 2-Itemset candidates and the
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support count are computed (table (c)). Having fixed the minimum sup-
port min supp = 2, the pruning procedure eliminates the itemset with
sup count < 2 (table (d) is the result). Since from table (d) a new list of
candidates can be computed, the process re-starts from Step 2 until the
frequent 3-Itemsets are obtained (table (e)).

Figure 18: Steps of the Frequent Itemsets generation.

◁

As already mentioned, the result we are interested in corresponds to
the output of sub-problem P1 because at this stage we have all the ele-
ments for characterizing the rule schemas (values for the attributes and a
probability estimation). This statement, that might appear obscure here,
will be clarified during the explanation of the methodology in section 4.4.

For our purposes we use PATTERNIST, a pattern discovery algorithm
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developed at the CNR8 in Pisa by colleagues of the ISTI9 department,
within the project P3D10. PATTERNIST is the result of a research activity
that has now come to the implementation of a more sophisticated (and
documented) system: ConQueSt (BGL+06; BL05; BL04).

ConQueSt is a constraint-based querying system devised with the aim
of supporting the intrinsically exploratory nature of pattern discovery. It
provides users with an expressive constraint-based query language which
allows the discovery process to be effectively driven toward potentially
interesting patterns. Constraints are also exploited to reduce the cost of
pattern mining. The system is built around an efficient constraint-based
mining engine which entails several data and search space reduction tech-
niques, and allows new user-defined constraints to be easily added.
As stated, PATTERNIST represents the “forefather” of the current core
component of ConQueSt dedicated to the computation of the frequent
itemsets. For our purposes, the whole ConQueSt system is more com-
plex than required, so we actually use the basic implementation of PAT-
TERNIST now available only for the didactics and that circulates among
colleagues.

In order to answer the original question put by the title of this para-
graph, let us consider again the example depicted in figure 6, section 3.1.
Let us again suppose that we have extracted the following rule schema
by means of the analysis of the ontology structure:

Manager(X) ∧ has age(X, N) ∧ leads(X, P) Ð→
has innovation degree(P, V)

This rule sounds like:

“If a manager has a certain age, then the project he manages has a
certain degree of innovation.”.

8Consiglio Nazionale delle Ricerche: http://www.cnr.it/
9Institute of information science and technology “Alessandro Faedo”: http://www.

isti.cnr.it/
10P3D: Privacy Preserving Pattern Discovery is a project developed by the Knowledge Dis-

covery and Delivery Laboratory together with the High Performance Computing Labora-
tory with the aim of designing a frequent pattern query engine within a privacy preserving
environment.
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Now, what we would like to obtain from the inductive step (i.e., by
applying PATTERNIST to the set of ontology instances), is the assignment
of values for the attributes V and N on the basis of the data frequencies,
and a weight for the implication on the basis of the support measure. A
characterization for the implication shown in the example could be the
following:

Manager(X) ∧ has age(X, N) ∧ (N < 40) ∧ leads(X, P)
0.6Ð→

has innovation degree(P, good)

The intuitive meaning is:

“If the manager’s age is lower than 40, than the innovation degree
of the project he manages is good with a probability of 60%”.

The details are provided in the core chapter 4, section 4.4.

3.3 Semantic Web: Social Networks, Ontologies
or Both?

Nowadays, when we say Social Networks, we immediately think of one
of the platforms accessed by people of every age, whether for meeting
other people or for sharing information: Social Video Sharing (YouTube),
Social Photo Sharing (Flickr), Social Community (MySpace, Facebook,
LinkedIn), Social Bookmarking (Delicious) Social Encyclopedia (Wikipedia),
Social Music Community (LastFM), etc . . .
We can assert that the way of consuming information has changed be-
cause of or thanks to, the birth of the Web 2.0 and, consequently, to the
creation of these networks. Especially in the younger generations, people
do not necessarily go into bookshops or libraries to increase their general
knowledge, but instead they prefer to spend time on Google, MySpace,
Facebook, Yahoo, MSN or authoring Web sites. Surfers have converted
themselves from spectators to actors.

Statistics, taken from (BH06), report that the market share of Internet
visits to the top 20 social networking websites grew by 11.5% from Jan-
uary to February 2007, to account for 6.5% of all Internet visits in February
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2007.

In the third decade, just started, the information available on-line is
becoming understandable also to computers; in that way it can be linked,
merged, processed and re-used under other “forms” (e.g. originating
other information) by means of automatic tools.
Technically speaking, a Social Network (SN) is a model where social en-
tities such as people and organisations, happenings such as events and
finally locations, are connected to each other by certain relationships at a
certain time. More precisely, it can be defined as a social structure, com-
munity, or society made of nodes that are generally accounts, individuals
or organizations. It shows the ways in which they are connected through
various social familiarities, affiliations and/or relationships ranging from
casual acquaintance to close familial bonds (figure 19).
The Social Network Analysis (SNA) is thus the mapping and measuring

Figure 19: Social Network: visualization.

of relationships and flows between people, groups, organizations, ani-
mals, computers or other information/knowledge processing entities.
As for the ontology, also the SNA originates from a more “ancient” sci-
ence: Sociology (1700). We passed though Modern Sociology and So-
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cioeconomics (1800), Formal Sociology (1900), Sociometry (1950) before
speaking explicitly of SNA (1990).

One of the first examples of SNA was the study conducted by Dr. Stan-
ley Milgram, an American social psychologist at Yale University. In 1967,
he conduced the small-world experiment that is the basis of the six degrees
of separation concept. Milgram sent several packages to random people in
the United States, asking them to forward the package, by hand, to some-
one specific or to someone who is more likely to know the target. The av-
erage path length for the received packages was around 5.5 or 6, resulting
in widespread acceptance for the term “six degrees of separation”.
After that, but before the advent of the massive use of the internet, the
British anthropologist and evolutionary biologist Robin Dunbar, who spe-
cialized in primate behaviour, theorized a limit to the number of people
with whom one can maintain stable social relationships, the so called
“Dunbar’s number” (Dun92). According to Dunbar, as brains evolve,
they become larger in order to handle the unique complexities of larger
social groups. Humans have the largest social groups because they have
the largest cortex. For this reason, he developed an equation, which
works for most primates, in which he plugged in what he calls the neo-
cortex ratio of a particular species (the size of the neo-cortex relative to the
size of the brain), and the equation gives the maximum expected group
size for each species. For humans, the maximum group size is 147.8, or
about 150.

One can ask whether the internet and the (Virtual) Social Networks
can change this theory. The answer, I think, is an open question.

Going back to the technical aspect, the nodes in the network are the
people and groups, while the links show relationships or flows between
the nodes. SNA provides both a visual and a mathematical analysis of
human relationships. The relationships among people are distinguished
in kinship (i.e. father of, wife of ), other role-based (i.e. boss of, teacher of,
friend of ), cognitive (i.e. knows, aware of ), affective (likes, trusts) and inter-
actions (give advice, talks to, fights with). While the relationship examples
between people and organisations could be: buy from / sell to, leases, owns
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shares of, subsidiary of, is leader of or is founder of.

The notion of time is another important aspect to take into account
during the design of SNs. Events happen at a given time; states of affairs
evolve over time such that places that are present now may not exist later;
people who are alive today may be dead tomorrow, or organizations that
did not exist before may come into being today.
Already in this first definition, the similarity between SNs and ontolo-
gies clearly rises: the ontology is commonly made for the specification
and explication of concepts and relationships related to a given domain,
while a SN has the same purpose but with the focus on social relations
and entities. SNs are often modelled via ontologies because an ontology
through reasoning and inference mechanisms do not allow for the defini-
tion of contradictory or inconsistent information. Thanks to the inference
and to the definition of rules, the discovery of new hidden information is
possible.

As an example, we cite the recent work of Jung and Euzenat (JE07)
in which it is stated that, since the goal of SNA is to help users to take
advantages from SNs, it would be convenient to take more information
into account. With that aim, the authors introduce a three-layered model
which involves the network between people (social network, S), the net-
work between the ontologies they use (ontology network, O) and a net-
work between concepts occurring in these ontologies (concept network,
C). The O layer shows what the ontology under analysis are, and how
they are related. The typical relations are the inclusion and the import.
This layer is “pointed” by the upper S layer. In this way for each individ-
ual (a physical person), we know the ontology it belongs to (i.e. where it
is defined). The C layer describes the concepts, the hierarchies of concepts
and shows the properties that binds them.
Figure 20 shows an instance of a three-layered social semantic network.
It is not surprising that, even in this context, the metrics used for measur-
ing the individual tendency to be collaborative with each other is based
on the Hub and Authority concepts introduced by Kleinberg.

The objective relationship from the S to O is through the explicit us-
age of an ontology by a user, while the one from O to C is through the
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Figure 20: An instance of a three-layered social semantic network.
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definition of a concept in an ontology. In order to exploit the actual po-
tential of this model, it is necessary to analyse these nets and to propagate
information between the layers. Without going much into detail, in the
C layer the interesting relationship to infer is the similarity because, in
order to find relationships between concepts from different ontologies, it
is necessary to identify the entities denoting the same concepts. Also, at
the O layer level a distance metrics is defined: it provides a good idea of
the distance between two ontologies. Once these measures on ontologies
are obtained, this distance is further used on the S layer, assuming that
people using the same ontologies should be close to each other. Please
refer to (JE07) for all the details about the strategy and the exact metrics.

This is only an example of how ontologies and SNs are related, and
how they can be used for extracting new implicit knowledge; the research
is very active in this context. On the other hand, we are quite confident
that the approach we are presenting could be applied for discovering so-
cial relationships in a social context.
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Chapter 4

Extracting New Knowledge
from the Ontology

This chapter represents the core of the thesis. Referring to the four-steps
analysis sketched in chapter 1, and also to the available alternatives pro-
posed in chapter 3, we discuss here the solutions that we have adopted
and what we think are the more suitable ways of solving the problem of
extracting new knowledge from an ontology. We then present the result in
IRs form. After having summarized some technical aspects of the strategy
(section 4.1), we dedicate the remaining sections to an accurate descrip-
tion of choices we did, methodologies, algorithms and technical details.
The algorithms, described here by showing the pseudo-code, have been
implemented, and the software of the whole system has been realized and
found to work.
The whole presentation is supported by a “running example” that is up-
dated little by little starting from example 4.1 until example 4.5. The aim
of these examples is to clarify each step of the analysis and to show the
intermediate results. We are aware that the example could seem too much
simplistically structured to an expert reader, but the objective is to exem-
plify the contents rather than to show the advantages of our method. The
actual power of the system will be discussed in detail in chapter 5 during
the discussion of the case study (the MUSING project).
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4.1 The Strategy

While in the previous sections (see chapter 1 and 3) we gave a rough
outline of the approach, in this section we will look at all the main steps
in detail (figure 21).
We split the whole procedure into four main tasks each one dedicated to
a particular phase of the extraction.

Figure 21: Steps of analysis.

[Step 1] Identification of the concepts.
Analysis of the ontology schema and extraction of the most relevant
concepts.
For the extraction, we exploit the possibility of representing the on-
tology as a graph with its associated Adjacency Matrix (AM). The
AM points out the existence of a link between two concepts. In or-
der to extract the relevant concepts, we analyse only the schema
of the ontology; the idea is to use a link analysis method as the one
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used in the semantic web environment. We customized the HITS al-
gorithm by Kleinberg, implementing a new algorithm able to han-
dle ontologies: HITSxONTO. While HITS works with web pages
and hyperlinks, HITSxONTO works on concepts and object proper-
ties.

[Step 2] Influence Rule Schema building.
After having pointed out the relevant concepts, we have to identify
the “original”1 concept connections (direct and indirect) by using
their object properties. Note that for this purpose, we are not inter-
ested in the semantics of the relations but in their existence. Further-
more, we have to associate to all concepts their own data properties,
that will be used in the following step.

[Step 3] Characterization of the Influence Rules Schemas.
We would like to give values to the IRs items (in particular to the
datatype properties associated with the involved concepts) and a
weight for the implications previously discovered. To do so, we
analyse the instances that correspond to the metadata in the ontol-
ogy, and we extract the frequent items with an associated value. The
algorithm we use is PATTERNIST, a tool developed at the KDD Lab
in Pisa. We then collect, from the frequent itemsets, the values for
the Influence Rules schemas and the weights for the implications.

[Step 4] Validation.
The Validation is needed to guarantee that the IRs are consistent and
do not conflict with each other. The best way for validating the rules
is to ask a domain expert; nevertheless some ad-hoc procedures can
be implemented with reference to the domain under analysis and
foreseeable use.

The first two steps are essentially deductive; they are a sort of “top-
down” approach that starts from the theory and tries to find something.
The third one is an inductive step, a sort of “bottom-up” approach; we

1The term “original” refers to the concepts existing in the actual definition of the ontol-
ogy.
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move from the observations (the instances) to the results (the IRs).
The methodology we propose can be employed in all applications (data
mining or non-data mining applications) that make use of additional in-
formation in the form of rules or for enriching pre-existing knowledge
repository / structures.

Before getting to the significant part, let us introduce the “running
example” we already mentioned.

Example 4.1 Running Example - Part 1: The ontology.
Let us consider the fragment of ontology shown in picture 222. This

ontology describes questions and answer options of a qualitative ques-
tionnaire that a financial institution submits to its customers (in this case,
managers of companies) when they ask for credit. The data (qualita-
tive information) collected by the questionnaire are used for computing
a qualitative score as part of a measure used for deciding the company
“worthiness”. The list of concepts is the following:

A - CapitalizationStrategy
B - Company
C - CustomerBase
D - DiversificationOfProduction
E - FinancialDebt
F - LevelOfCompetition
G - MPSQuestionnaire
H - ManagementTeam
I - MarketState
J - OrganizationalStructure
K - PreviousAchivements
L - QualitativeScore
M - QualityCertificate
N - RelationshipWithTheBankingSystem
O - ResearchAndDevelopment
P - StrategicVisionAndQualityManagement

The object properties, with the corresponding domain and range con-
cepts are:

2The picture has been realized by using the Jambalaya plug-in from Protégé. Jambalaya
is a tool developed by the University of Victoria’s CHISEL software engineering group that
merges the Shrimp information browser into Protégé as a tab widget.
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Figure 22: The fragment of the ontology used in the “running example”.
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Concept = Company
Obj Prop. = hasQualitativeScore
⇒ QualitativeScore

Obj Prop. = hasFinancialDebt
⇒ FinancialDebt

Obj Prop. = hasCapitalizationStrategy
⇒ CapitalizationStrategy

Obj Prop. = hasDiversificationOfProduction
⇒ DiversificationOfProduction

Obj Prop. = hasCost
⇒ ResearchAndDevelopment

Obj Prop. = hasOrganizationalStructure
⇒ OrganizationalStructure

Obj Prop. = hasManagementTeam
⇒ ManagementTeam

Obj Prop. = hasLevelOfCompetition
⇒ LevelOfCompetition

Obj Prop. = hasRelationshipsWithBankingSystem
⇒ RelationshipWithTheBankingSystem

Obj Prop. = hasQualityCertificateAchieved
⇒ QualityCertificate

Concept = MPSQuestionnaire
Obj Prop. = hasQQ8
⇒ ResearchAndDevelopment

Obj Prop. = hasQQ9
⇒ LevelOfCompetition

Obj Prop. = hasQQ10
⇒ QualityCertificate

Obj Prop. = hasQQ1
⇒ DiversificationOfProduction

Obj Prop. = hasQQ3
⇒ ManagementTeam

Obj Prop. = hasQQ2
⇒ CustomerBase

Obj Prop. = hasQQualitativeScore
⇒ QualitativeScore

Obj Prop. = hasQQ14
⇒ CapitalizationStrategy

Obj Prop. = hasQQ5
⇒ StrategicVisionAndQualityManagement
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Obj Prop. = hasQQ4
⇒ PreviousAchivements

Obj Prop. = hasQQ13
⇒ FinancialDebt

Obj Prop. = hasQQ7
⇒ MarketState

Obj Prop. = hasQQ12
⇒ FinancialDebt

Obj Prop. = hasQQ6
⇒ OrganizationalStructure

Obj Prop. = hasQQ11
⇒ RelationshipWithTheBankingSystem

Concept = ManagementTeam
Obj Prop. = hasPreviousAchievements
⇒ PreviousAchivements

Obj Prop. = hasSVAndQM
⇒ StrategicVisionAndQualityManagement

◁

4.2 Ontology Schema Mining

This section aims at describing the first step of the extraction process.
Both theoretical and technical aspects will be discussed, and a short ex-
ample will be provided.

4.2.1 From the Ontology to the Weighted Adjacency Ma-
trix

As previously discussed, one of the main changes to HITSxONTO w.r.t.
HITS is the adjacency matrix to use in input. The adjacency matrix is
the algebraic and computable representation of the ontology that permits
one to handle this structure in a simpler way. Furthermore, it permits
one to prove important and desirable properties of the whole algorithm
(termination/convergence and stability).
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An adjacency matrix A is, by definition, an nxn matrix associated with a
graph G having n nodes, so that each entry aij of A is defined as follows:

aij = { 1 if an edge from i to j exists
0 otherwise

This matrix is symmetric if G is not directed.
The ontology cannot be represented as a simple directed graph be-

cause “multiple relationships” can occur between two nodes, i.e. two
nodes can be connected by more than one object property with differ-
ent label (semantics). The solution is to use a weighted adjacency matrix
where each entry represents the number of edges connecting two nodes.
If we call W the nxn matrix associated with the ontology O, the corre-
spondent definition is:

wij = { k if k edges from i to j exist
0 otherwise

It is interesting to consider all the possible cases rising from the on-
tology relationships (object properties and is-a relations) and the way in
which they are solved in the matrix. Critical aspects are related to the ex-
istence of more than one object property between the same two concepts,
and to the relationships in presence of hierarchies of concepts. In this lat-
ter case, the inheritance property has to be handled. The general rule that
drives the inheritance is the fact that only the super-concept determines
the hierarchy, i.e. specifies whether each of its sub-concept is the domain
or the range. This is because in an ontology the sub-concepts inherit the
object properties of the parents; the opposite case does not hold.
It is important to observe that in OWL it is possible to specify restric-
tions on properties in a way that the general notion of inheritance among
classes (subconcepts and superconcepts) does not always hold. By means
of restriction, one can define exceptions, and it is further possible to con-
strain the range of a property in specific contexts in a variety of ways
(Com04a). For the moment, we can ignore this fact because in the first
step of our analytical process, we consider only the structure of the ontol-
ogy (e.g. its graph representation) and the information about the restric-
tions is lost during the codification from ontology to a graph. Neverthe-
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less, this non-trivial aspect is very interesting and could be part of future
extensions in which we refine the structural analysis by using additional
information coded in the ontology.

Each of the following cases presents a fragment of both the ontology
and the associated weighted adjacency matrix.

Case 1: Simple inheritance [Figure 23]. The sub-concepts inherit the ob-
ject properties of the super-concept to which they are connected by
the isA property. A1 inherits from A the object property r1, becom-
ing in its turn, the domain of r1. B, being the range of r1, hands on
the “range state” to B1. Even if the edges from A1 to both B and B1

do not physically exist, the corresponding relationships hold and
can be coded in W as shown in figure 23.

Figure 23: Case 1 - Simple Inheritance.

Case 2: Complex inheritance [Figure 24]. With respect to Case 1, here we
also have one object property (r3) connecting a super-concept (A)
with a not relative (i.e. a concept that is not sibling or son) sub-
concept (B1). It is the first case of indirect multiple relationships.
A1 inherits from A the object properties r1 and r3, establishing re-
lations with B and B1. A has a single relation with B but a double
relation with B1 (one indirectly induced by r1, and the other di-
rectly induced by r3 as the entry wAB1 shows). Notice that wAB = 1
(and not = 2) because r3 is defined on B1 and the inheritance is not
applicable toward B, i.e. B does not inherit the “range state” of B1

induced by r3. In fact, given instances inst A ∈ A and inst B ∈ B,
they cannot be connected by means of r3.
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Figure 24: Case 2 - Complex Inheritance.

Case 3: No inheritance (1/3) [Figure 25]. The inheritance is not applica-
ble from the sub-concepts to the parent, so only the relationship be-
tween C1 and C2 exists and it is pointed out in the entry wC1C2 = 1.

Figure 25: Case 3 - No Inheritance (1/3).

Case 4: No inheritance (2/3) [Figure 26]. This is the case in which neither
the parent concept, nor the sibling concept inherit the “domain state”
induced by an object property defined on a concept which is son
and brother, respectively. Among the set of relative concepts {D,
D1, D2}, only D2 has a relation directly with E and indirectly with
E1.

Case 5: No inheritance (3/3) [Figure 27]. As already stated, brother con-
cepts do not inherit the “mutual” object properties, and parents con-
cepts do not inherit from their (son) sub-concepts. In this case, only
F2 is domain of the object property r5, and it can establish a direct
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Figure 26: Case 4 - No Inheritance (2/3).

relation with F and an indirect one with F1 (because this latter in-
herits the “range state” from F ).

Figure 27: Case 5 - No Inheritance (3/3).

Case 6: Circular properties [Figure 28]. A “circular property” exists when
its domain and its range coincide: this is the case of G w.r.t. the ob-
ject property r6 and G2 w.r.t. r7. G is thus in relation with itself, and
both its sons G1 and G2 thanks to r6. On the other hand, both G1

and G2 inherit from G the object property r6 so that they establish a
connection with all the other concepts. Moreover, G2 has one more
connection with itself, thanks to r7 (note in fact that wG2G2 = 2).

Case 7: Class Intersection [Figure 29]. We introduce here the intersection
class. This class contains instances that are common to its parent
classes. B2intD2 is the intersection of B2 and D1 because it is si-
multaneously sub-concept of both B2 and D1.
B2intD2 is range of the object property r8 but does not hand on this
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Figure 28: Case 6 - Circular Properties.

“range state” to B2 or D1. Moreover, B2intD2 inherits the “range
state”, induced by r9, from D1 so that the concept I can establish a
connection with D1 (directly), and with B2intD1 (indirectly). The
concept H is connected only with B2intD1.

Figure 29: Case 7 - Class Intersection.

Case 8: Multiple Properties [Figure 30]. In an ontology two concepts can
be related by more than one property; for example, they can be re-
spectively, domain and range for two object properties with differ-
ent semantics. For our analysis it is important to point out this fact
in the matrix by writing the number of relationships. A and B are
related by the object properties r1 and r3, so wAB = 2.

As you can see, two important cases are missing in this description:
the Union Classes and the Property hierarchies. As stated in the W3C
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Figure 30: Case 8 - Multiple properties.

specifications ((Com04a)), the union class contains elements that are in-
cluded in some of its subclasses, while property hierarchies may be cre-
ated by making one or more statements indicating that a property is a
sub-property of one or more other properties. These cases are ignored in
this release, but we have already planned their implementation for the
future prototype.

Example 4.2 Running Example - Part 2: The adjacency matrix.
With reference to the ontology in figure 22 and the list of associated con-
cepts, the corresponding adjacency matrix that respects the constraints
just reported, is in figure 31. As one can expect, the matrix contains for
the most part the value 0; this is because in the ontology there are not
many connections.

Figure 31: The adjacency matrix associated to the ontology in figure 22.
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◁

4.2.2 HITSxONTO Algorithm

HITSxONTO is the customized version of the HITS algorithm for han-
dling ontologies that we presented in section 3.1.3. Like HITS, HITSx-
ONTO is based on the concept of authority and hubness, and its pur-
pose is to measure the importance of the ontology concepts, basing only
on the ontology topology (the T-Box). In other words, it tries to deduce
which concepts can be considered particularly “important” (authorities)
and which ones give a particular importance to other concepts (hubs).
The general idea of the original version, as well as the main strategy, has
been preserved thanks also to the natural comparison that can be made
between web and ontology “elements” (figure 32). In the ontology the
elements we have to consider are the concepts and the object properties.
In addition, the is-a relation is taken into consideration, but only for con-
structing the matrix as shown in the previous section. The datatype prop-
erties, instead, are not relevant to this process but will be indispensable in
the next steps. Therefore, a web page can be seen as an ontology concept,
and a hyperlink resembles an object property.

Figure 32: Web and Ontology comparison.

The main algorithm variant concerns the pre-processing phase, such
as the preparation of the input and the general adaptation to the ontology.
As already stated, the object properties no longer become important but
maintain their importance as connective elements. We are, in fact, inter-
ested in the existence of a property rather then its meaning. Furthermore,

93



as discussed in section 4.2.1, we must also consider the “hidden” relation-
ships induced by the is-a properties.

HITSxONTO is iterative as well, and follows the same core steps as
HITS. Algorithm 1 shows the pseudo code.

INPUT: An ontology O
OUTPUT: A set of ranked concepts

1: Read O;
2: Construct the Graph G = (V,E) from O;
3: Draw M;
4: Compute MT;
5: Reset hScore and aScore;
6: Initialize hprev and aprev;
7: repeat
8: hScore←Mxaprev;
9: aScore←MTxhScore;

10: Normalize hScore and aScore;
11: hprev ← hScore;
12: aprev ← aScore;
13: until {(hScore ≠ hprev) ∣∣ (aScore ≠ aprev)};
14: Return hScore and aScore;

Algorithm 1: Pseudo code of the HITSxONTO algorithm.

Algorithm 1 Description. After having loaded the ontology O, the
correspondent graph representation (G) is derived (steps 1 and 2). G is
a graph where each node corresponds to an ontology concept, and each
edge to an object property or to an is-a relation.
By using the translation rules discussed in section 4.2.1, the input matrix
M is filled in (step 3), and from M , the transposed matrix MT is com-
puted (step 4). M (and obviously MT ) is an nxn matrix, where n is the
number of concepts of the ontology/nodes of the graph.
hScore and aScore are two n-dimensional vectors where the ranking val-
ues (hub and authority respectively) associated to the concepts, are stored
at each iterative run (the cycle is performed by steps 7, . . . , 13). In order
to support the iterative computation, two temporary vectors are needed:
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hprev and aprev store the ranking values, computed at the iteration i − 1,
that are needed in the next iteration i.
In steps 5 and 6 we initialize the vectors. It is usual (see (FLM+06; Kle98;
AP05)) to initialize these authority and hub vectors with a uniform distri-
bution, such as 1/n, 1 or 1/

√
n, for each i ∈ [1, ..., n] entry. The following

are examples of hub seed vectors.

i) hScore0 = [1/n, . . . ,1/n]
ii) hScore0 = [1/

√
n, . . . ,1/

√
n]

We already discussed in section 3.1.3 the problem of stability of the
HITS algorithm related to the dependency of the starting seed vectors:
whenever the dominant eigenvalue is not unique, the HITS output is sen-
sitive to the initial seed vector. It is important to point out that HITSx-
ONTO does not suffer from this weakness because, in order to solve this
issue, we applied the strategy proposed by Farahat et all. in (FLM+06)
(and discussed in section 3.1.3). We remind the reader that, reasoning in
algebraic terms, the computation of the authority and hub vectors (of both
HITS and HITSxONTO) can be reduced to the computation of the dom-
inant eigenvectors of the matrix ATA and AAT respectively (where A is
the original adjacency matrix). From this statement, there obviously fol-
lows the strong relation with the initial adjacency matrix (A in this case).
Farahat et all. proved this dependency and found a way for solving the
HITS weakness by acting on (modifying) the adjacency matrix and build-
ing from that an exponentiated adjacency matrix:

EXPO(A) = (eA − I) =
∞

∑
k=0

1
k!
Ak

They also assert that matrices such asA+A2/2! or I+A, rather than eA−I ,
would exclude these possibilities so long as the ontology graph is weakly
connected 3. For our purposes, we adopt the same strategy. The adjacency
matrix derived directly from the ontology graph is a weighted matrix in

3By “weakly connected” we mean a graph ontology in which many of nodes/concepts
that are connected to few other nodes, are isolated, or an ontology graph that is composed
of unconnected graphs.
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its own right, because we apply the translation rules (described in section
4.2) and the matrix entries can have positive integer values different from
0 and 1. Then we compute the exponentiated adjacency matrix.
Here, for obvious computational complexity issues related to the matrix
size (in an ontology it is possible to have to handle hundreds of concepts)
and also related to the computation of the matrix eA − I , we approximate
the exponentiated matrix to:

EXPO(A) =
m

∑
k=0

1
k!
Ak

where m is a finite positive integer.
This choice does not limit us and does not disprove the theory just

discussed. Let us observe that if a matrix is nilpotent4, then An = 0 and
the exponentiated matrix can be computed directly from the series ex-
pansion, and the series terminates after a finite number of terms:

eA = I + A
2

2
+ A

3

3!
+ ⋅ ⋅ ⋅ + A(n−1)

(n − 1)!
.

In the context of the ontologies, the associated adjacency matrices have
mostly zero entries, because in general, big ontologies are badly con-
nected so that they benefit from the nilpotent propriety.
The choice of m in the computation of EXPO(A) depends on both the
structure and the size of the matrix and can be empirically fixed. In our
tests, in most of the cases, we fixed m = 3.

After this important digression, let us continue the description of the
algorithm.
The iterative process for computing the scores starts at step 7 and con-
tinues until step 13. As for HITS, a kind of mutual reinforcing approach
is exploited. This process can be described algebraically5 by using the
notation adopted in section 3.1.3 as the following products:

h(k) =Ma(k−1)

a(k) =MTh(k)
(4.1)

4A matrix A is nilpotent if An = 0 for some positive integer n (here 0 denotes the matrix
where every entry is 0).

5This algebraic formulation will be useful for proving important properties of the algo-
rithm: the termination and the correctness.
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h(k) and a(k), that correspond to hScore and aScore at the k-th iteration,
are computed on the basis of the results obtained at the k − 1-th iteration.
The iterative process ends when the fixed point is reached (step 13); in
real terms it ends when the vectors do not change from an iteration to the
next one.

Each iteration requires the normalization of the vectors to control the
value ranges (step 10). The normalization measure used in this case is a
very common one:

n

∑
i=0

(V [i])2 = 1, (4.2)

where V is a vector with n + 1 elements.
In steps 11 and 12 temporary vectors are re-assigned for starting a new
cycle.
At the end the vectors containing the final rankings for hub and authority,
are returned (step14).
From equation 4.1, replacing the i-th term with its definition, after k itera-
tions (a part from normalizations), we obtain the following equivalences:

h(k) = (MMT )h(k−1) = (MMT )Ma(k−2) = ⋯ = (MMT )(k−1)Ma(0)

a(k) = (MTM)a(k−1) = (MTM)MTh(k−1) = ⋯ = (MTM)(k)a(0)
(4.3)

Both the matrices (MMT ) and (MTM) play a fundamental role in the
study of the HITSxONTO convergence. The convergence is based on the
properties of these matrices and consequently of M . As for HITS, the ter-
mination is guaranteed and authority and hub vectors tend to the dom-
inant eigenvector of (MTM) and (MMT ), respectively. Furthermore,
thanks to the definition of the input matrix (as described in section 4.2.1)
and to the results obtained in (FLM+06), uniqueness is also guaranteed.

It is useful and interesting to show the proof of the HITSxONTO con-
vergence that follows directly from the results obtained by Agosti et all.
in (AP05) where they conducted a study of a generalized version of HITS.
Before the proof, we cite some theorems originated both from the work
presented in (AP05), and about known properties of the matrices, essen-
tial for justifying some crucial steps.

97



Theorem 4.2.1
The eigenvalues of a real symmetric matrix A are real numbers.

Theorem 4.2.2
Let A be a real symmetric n × n matrix. Then Rn has an orthonormal basis
consisting of eigenvectors of A.

Corollary 4.2.1
If A is an n×n real symmetric matrix, then there are real matrices L and D such
that LTL = LLT = I and LALT = D, where I is the identity matrix and D is
the diagonal matrix of eigenvalues of A.

Theorem 4.2.3
A real symmetric matrix is positive semi-definite if and only if its eigenvalues
are nonnegative. A real symmetric matrix is positive definite if and only if its
eigenvalues are positive.

Theorem 4.2.4
A real symmetric matrix A is positive semi-definite if and only if there is a real
matrix B such that A = BTB.

Theorem 4.2.5 Frobenius theorem
Let A be a real nonnegative and irreducible square matrix and ρ(A) its spectral
radius 6. Then:

1. ρ(A) > 0;

2. ρ(A) is an eigenvalue of A belonging to a real positive eigenvector;

3. ρ(A) has 1 as algebraic multiplicity.

Theorem 4.2.6
Matrix MTM has a strictly dominant eigenvalue if and only if one of the matri-
ces B1,B2, . . . ,Bm has a strictly dominant eigenvalue that is greater than the
strictly dominant eigenvalue of every other matrix of this multi-set of matrices.
This theorem follows from some results shown in (AP05).

Corollary 4.2.2
If the matrix MTM represents a connected graph Gw, then it has a strictly
dominant eigenvalue. This corollary follows from some results shown in
(AP05).

6Spectral Radius Definition: Let λ1, . . . , λs be the (real or complex) eigenvalues of a
matrix Anxn. Then its spectral radius ρ(A) is defined as: ρ(A) =maxi(∣λi∣).
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Proof or the HITSxONTO convergence.
Let us consider equations 4.3, and let us focus on the authority vector,

re-writing it in the equivalent following way:

a(k) = (MTM)(k−1)MTu (4.4)

where u is the initial seed vector and k = 1,2, . . . .
Moreover, let us define MTM ≡ B, where Bij ≡ bij = ∑nk=1mkimkj . Each
entry bij ≠ 0 iff there is at least one node k of the associated graph with
outgoing arcs towards nodes i and j at the same time.
From theorems 4.2.1, 4.2.4 and 4.2.3 we get that MTM is an n × n real
and nonnegative symmetric matrix with a particular structure, so that
all its n eigenvalues are real and nonnegative. Grouping the connected
components of the original graph and ordering them, B can be seen as a
matrix with diagonal blocks as follow:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B1 0 . . . 0
0 B2 . . . 0
⋮ ⋱
0 0 . . . Bm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(4.5)

The eigenvalues of B are calculated by adding the eigenvalues of B1 to
the eigenvalues of B2, and so forth, up to the eigenvalues of Bm. Each
of these matrices is a real, irreducible and nonnegative symmetric matrix
with real nonnegative eigenvalues since the eigenvalues ofMTM are real
and nonnegative. From corollary 4.2.2 and theorem 4.2.5, we find that
each of the matrices Bi, which is different from 0, has a strictly dominant
eigenvalue, i.e. an eigenvalue which is strictly greater than all the other
eigenvalues of the matrix. Moreover, all the entries of its associated eigen-
vector are greater than 0. We can see that the eigenvectors of matrixB can
be obtained from the eigenvectors of the matrices B1,B2, . . . ,Bm by just
considering 0 the entries corresponding to the other matrices.
For example, starting from the eigenvector ukj , i.e. the eigenvector k of
matrix Bj , for matrix B we get the eigenvector:

[ 0 . . .0
²

1

∣ 0 . . .0
²

2

∣ . . . ∣ ukj
°
j

∣ . . . ∣ 0 . . .0
²
m

] (4.6)
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Starting from each eigenvector of matrices Bi, we get n eigenvectors
of B with this structure which form a basis of Rn. Theorem 4.2.2 assures
us that each matrixBi has an orthonormal basis consisting of its eigenvec-
tors; this is the basis we will consider in the following part of this proof, so
that even B will have an orthonormal basis. Finally, since each matrix Bi
is real and symmetric, from corollary 4.2.1 we get that Bi is orthogonally
diagonalizable, meaning that an orthogonal matrix Qi such that:

Q−1
i BiQi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1i 0 . . . 0
0 λ2i . . . 0
⋮ ⋱
0 0 . . . λkii

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(4.7)

does exist, where λ1i, λ2i, . . . , λkii are the ki real and nonnegative eigen-
values of Bi.

Starting from this result, let us suppose that MTM has λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥
λn ≥ 0 as eigenvalues belonging to the eigenvectors v1, v2, . . . , vn. Each of
these eigenvectors is related to a particular diagonal block of matrix B, so
that it has entries 0 corresponding to the other matrices, as shown in for-
mula 4.6. If more than one matrix Bi has a strictly dominant eigenvalue
equal to λ1, i.e. the dominant eigenvalue of B, then we have an example
of the more general case we are interested in.
Let us suppose λ1 = λ2 = ⋅ ⋅ ⋅ = λr > λr+1 ≥ λr+2 ≥ ⋅ ⋅ ⋅ ≥ λn0. The eigenvec-
tors v1, v2, . . . , vr are related to the r different matrices
Bh1 ,Bh2 , . . . ,Bhr , so that vj , 1 ≤ j ≤ r, has positive entries corresponding
to the diagonal block Bhj , and 0 otherwise.
We can express vector WTu as:

WTu = α1v1 + ⋅ ⋅ ⋅ + αrvr + αr+1vr+1 + ⋅ ⋅ ⋅ + αnvn.

Since B ≜ v1, . . . , vn is an orthonormal basis,

αj = ⟨WTu, vj⟩ , j = 1, . . . , n

where ⟨WTu, vj⟩ is the scalar product between WTu and vj .
From formula 4.4, we can obtain:
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a(k) = (MTM)(k−1)MTu =
= (MTM)(k−1)(α1v1 + α2v2 + ⋅ ⋅ ⋅ + αnvn) =

since Ax = λx
= α1λ

k−1
1 v1 + α2λ

k−1
2 v2 + ⋅ ⋅ ⋅ + αnλk−1

n vn

k = 1,2 . . .

Let be λ ≜ λ1 = λ2 = ⋅ ⋅ ⋅ = λr, then

a(k) = λk−1 (α1v1 + α2v2 + ⋅ ⋅ ⋅ + αrvr +∑ni=r+1
αiλ

k−1
i vi

λk−1
i

) =

= λk−1(α1v1 + α2v2 + ⋅ ⋅ ⋅ + αrvr + v(k)
k = 1,2 . . .

where

v(k) ≜ ∑ni=r+1
αiλ

k−1
i vi

λk−1
i

, k = 1,2 . . .

is a sequence of vectors so that limk→+∞ v(k) = 0. All the entries, in fact,
vanish as k → +∞, since λi/λ < 1 when r + 1 ≤ i ≤ n.
The algorithm makes us compute

limk→+∞
a(k)
∥a(k)∥

where

∥a(k)∥ = ∥λk−1(α1v1 + α2v2 + ⋅ ⋅ ⋅ + αrvr + v(k))∥ =
= λk−1 ∥(α1v1 + α2v2 + ⋅ ⋅ ⋅ + αrvr + v(k))∥.

Since every vector norm ∥x∥, with x = [x1, x2, . . . , xn]T , is a continuous
function of the variables x1, x2, . . . , xn. then

limk→+∞ ∥α1v1 + α2v2 + ⋅ ⋅ ⋅ + αrvr + v(k)∥ =
= ∥α1v1 + α2v2 + ⋅ ⋅ ⋅ + αrvr∥

so that

limk→+∞
a(k)

∥a(k)∥ =
α1v1+α2v2+⋅⋅⋅+αrvr

∥α1v1+α2v2+⋅⋅⋅+αrvr∥

From this last result we find that, under whatever norm, the HITSx-
ONTO algorithm, as both HITS and the revised HITS presented by Agosti
et all., converges to a unit authority vector which is a linear combination
of all the dominant eigenvectors of MTW .
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Example 4.3 Running Example - Part 3: Hub and Authority rankings.
Let us apply the HITSxONTO algorithm to the adjacency matrix in figure
31 by using the following setting for the required parameters:

Hub Threshold: Ht = 0.0;
Authority Threshold: At = 0.2.

The Hub and Authority vectors (hScore and aScore) are:

hScore = [0.0,0.5682,0.0,0.0,0.0,0.0,0.8151,0.1131,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]

aScore = [0.2585,0.0,0.1523,0.2585,0.4109,0.2585,0.0,0.2585,
0.1523,0.2585,0.3027,0.2585,0.2585,0.2585,0.2585,0.3027]

As one can image, since the matrix contains many 0s, the concepts with
higher hubness are Company and MPSQuestionnaire, i.e. the concepts
that actually have, in the ontology, more out-going edges w.r.t. the others.
The same holds for the authority: all the concepts, except Company and
MPSQuestionnaire, have the same number of incoming edges, so the
ranking is, more or less, uniform.
Based on the hScore and aScore, the two ordered lists of the most impor-
tant concepts are generated, ready to be “filtered” in agreement with the
acceptance thresholds (see part 4 of the running example).

◁

4.3 Giving a Structure to the “Influence Rules”

The use of the HITSxONTO algorithm for finding the most relevant con-
cepts in the ontology permits us also to exploit another property for con-
structing the basic schema of the IRs. In fact, the separation of authori-
tative and hubness concepts allows us to identify and assign roles to the
concepts in the IRs. In a natural way, we associate the implicant position
to the authoritative concepts and the implicated position to the hubness
concept in a schema rule based on the fact that, by definition, the for-
mer attract incoming links and the latter are a sort of source for out-going
links.
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According to the strategy sketched at the beginning of this chapter, the
construction of the schemas involves the use of the “original” object prop-
erties, i.e. the object properties existing in the ontology under analysis.
The object properties are, in fact, the elements that connect the concepts
and permit one to create links between them. In this case, they are used
for creating the pairs < Implicant, Implicated >. Implicant is the ontol-
ogy concept the implication starts from, while Implicated is the concept
influenced by the implicant concept.

The pseudo code below (Algorithm 2) shows the simple strategy.

INPUT: The list of concepts: CL
The Adjacency Matrix: M
The length of the paths: L
The hub threshold: Ht
The Authority threshold: At

OUTPUT: A set of Influence Rules Schemas: IRSchemas

1: M̄ = computeIndirectConnections(L, M);
2: foreach (implicant ∈ CL) {
3: if (implicant.hubV alue >= Ht)
4: then {
5: foreach ((implicated ∈ CL) and

(connected(M̄, implicant, implicated)) {
6: if (implicated.authorityV alue >= At)
7: then updateIRSchema(implicant, implicated);
8: }
9: }

10: }
11: Return IRSchemas;

Algorithm 2: Pseudo code of the IRs schema generation procedure.

Algorithm 2 Description. The procedure takes as input the list of con-
cepts and the adjacency matrix. From them, the information about the
concepts and their relationships (in term of connections) are collected. Ht
and At represent the thresholds of acceptance and define the minimum
score that a concept must obtain in order to be considered “important”,
thus becomes a candidate for a IR Schema (the corresponding acceptance
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tests are made at steps 3 and 6).
Choosing the thresholds is not simple, because they strongly depend on
the ontology connectivity and on the number of concepts, and they can-
not be fixed a-priori. Since the process must be automatic (and it is not
guided by an expert in this phase), an evaluation function (heuristic) has
been created. This function depends on the number of the concepts and
on the distribution of scores, and it is based on the mean of the values. In
general, the threshold is the arithmetic mean, but when more then 70%
of the scores are “0”, the threshold is set to “0” and all the concepts are
considered as candidate.

Each rule schema is created by using the candidate implicant con-
cepts (step 2) and connecting them with the candidate implicated con-
cepts reachable directly or indirectly by object properties (step 5). In gen-
eral, two concepts are connected if an object property or a path (composed
by more than 1 object property) exist among them. Starting from the orig-
inal adjacency matrix M it is possible to quickly determine if an indirect
connection exists by multiplying M by itself many times, depending on
the intermediate steps we want to consider. In fact, from graph theory,
we know that the matrix of paths of length n are generated by multi-
plying the matrix of paths of length n − 1 by that of length 1. The method
computeIndirectConnections(L, M) at step 1, computes this new
matrix M̄ that contains all the paths from 1 to L. Formally:

M̄ =
L

∑
i=1

M i =M +M2 +M3 + ... +ML (4.8)

The set of associations < implicant, implicated > created at step 7 is the
result (step 11).

Detailed descriptions of computeIndirectConnections, connected
and updateIRSchema subroutines are available in appendix A.3.1. The
pseudo codes of computeIndirectConnections and updateIRSchema
are also reported in Algorithm 4 and 5, respectively.

Example 4.4 Running Example - Part 4: The Influence Rules Schemas.
Considering the acceptance thresholds that we set for the hub and au-

thority, the concepts candidates that can be part of rules are the following:
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Implicant set = {ManagementTeam,
Company,
MPSQuestionnaire}.

Implicated set = {CapitalizationStrategy,
DiversificationOfProduction,
LevelOfCompetition,
ManagementTeam,
OrganizationalStructure,
QualitativeScore,
QualityCertificate,
RelationshipWithTheBankingSystem,
ResearchAndDevelopment,
PreviousAchivements,
StrategicVisionAndQualityManagement,
FinancialDebt}.

Each item in the Implicant Set obtained a hub value greater than 0.0,
while each item in the Implicated Set obtained an authority value greater
than 0.2, according to the thresholds we set (see example 4.3).
Each rule schema is then created by using the candidate implicant con-
cepts and connecting them with the candidate implicated concepts reach-
able directly or indirectly by object properties. The result set of IRs Schemas
is the following:

1. Company → CapitalizationStrategy
2. Company → DiversificationOfProduction
3. Company → FinancialDebt
4. Company → LevelOfCompetition
5. Company → ManagementTeam
6. Company → OrganizationalStructure
7. Company → QualitativeScore
8. Company → QualityCertificate
9. Company → RelationshipWithTheBankingSystem
10. Company → ResearchAndDevelopment
11. MPSQuestionnaire → CapitalizationStrategy
12. MPSQuestionnaire → DiversificationOfProduction
13. MPSQuestionnaire → FinancialDebt
14. MPSQuestionnaire → LevelOfCompetition
15. MPSQuestionnaire → ManagementTeam
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16. MPSQuestionnaire → OrganizationalStructure
17. MPSQuestionnaire → PreviousAchivements
18. MPSQuestionnaire → QualitativeScore
19. MPSQuestionnaire → QualityCertificate
20. MPSQuestionnaire →

RelationshipWithTheBankingSystem
21. MPSQuestionnaire → ResearchAndDevelopment
22. MPSQuestionnaire →

StrategicVisionAndQualityManagement
23. ManagementTeam → PreviousAchivements
24. ManagementTeam →

StrategicVisionAndQualityManagement

As we stated earlier, from this set all possible implications (candidates
to became IRs) can be generated.

◁

4.4 Influence Rules Characterization: the Use of
the Instances

Until now, the only information we used for constructing the IRs have
been extracted at “schema level”, i.e. exploiting only what the ontology
structure provides (concepts and relationships). What we have obtained
is a set of rules schemas that identify only the important items and how
they are related, but do not supply information about the values and the
relations strength. At this stage of the process, the ontology instances play
a fundamental role: they, in fact contain all the information necessary for
supplementing (characterizing) the rules schemas.

The idea is to analyse the ontology instances by using a patterns dis-
covery strategy in order to extract the frequent itemsets. In particular,
we apply the PATTERNIST algorithm that has been described in section
3.2. In this context, the frequent itemsets are sets of instances of ontology
elements that appear (together) more frequently and whose support is
greater than some user-specified minimum support. A crucial point here
is to be able to organize the set of ontology instances as transactions as
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requested by PATTERNIST (and by all the pattern discovery algorithms).
In general, this type of organization is suggested by the kind of rules

we want to extract and, more general, by the kind of analysis we want to
perform. This action is possible by querying, in the right way, the ontol-
ogy and handling the results as they were tuples of a relational database.
The pseudo code (Algorithm 3) describes the steps for the identification
of the values for characterizing the IRs schemas and producing the actual
IRs set.
Algorithm 3 Description. This procedure aims at producing the candi-

INPUT: The ontology instances set: I
The minimum support: minS
The IRs Schemas set: IRSchemas

OUTPUT: The set of Influence Rules: IRsSet

1: FIsTemp = PATTERNIST(I, minS);
2: FIs = filterFrequentItems(FIsTemp);
3: IRsSet = characterizeIRSchemas(IRSchemas, FIs);
4: Return IRsSet;

Algorithm 3: Pseudo code of the IRs characterization.

date IRs by merging the IRs Schemas with the information extracted from
the instances.

The instances I , together with the minimum support value minS that
acts as threshold of acceptance, are passed to the PATTERNIST algorithm
for computing the frequent itemsets FIsTemp (step 1). The ontology in-
stances set I must be organized (in form of transactions) and formatted
in agreement with the format accepted by the algorithm: the FIMI file
format7.

FIsTemp is then passed to another utility procedure that filters the
results and returns back all the itemset of interest (step 2). For the mo-
ment, the parameter used for the selection is the number of items that
each itemset has to contain. In this first prototype the IRs we want to
extract are “simple”, i.e. composed of only one implicant and only one

7The FIMI file format is adopted for coding the input file of many algorithms for frequent
itemset mining. Some specification are available in the following website: http://fimi.
cs.helsinki.fi/util/
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implicated. The set FIs and the IRsSchemas are merged together (step
3) to obtain the final set of characterized IRs IRsSet. The technique is
implemented in the characterizeIRSchemas(., .) procedure.
The rule structure drives the construction of the IR since it defines what
the involved concepts are and how they are related. The FI instead, iden-
tify for each concept what the important attributes are (for the ontology
concepts the attributes are represented by the associated datatype prop-
erties). Moreover, the pattern discovery process gives us the information
about the values of these attributes that correspond to the datatype prop-
erties values. The support is, finally, the last component that completes
the IRs schemas supplying a measure of the IR strength, the one we call
probability of the IRs.

Detailed descriptions and pseudo-codes of
filterFrequentItems and characterizeIRSchemas subroutines
are shown in appendix A.3.2 (refer to Algorithms 6 and 7, respectively).

Example 4.5 Running Example - Part 5: Influence Rules Schema characteriza-
tion.

Now it is time to use the instances for characterizing the IRs schemas
found at the end of example 4.4. As required by the specifications dis-
cussed above, the instances are stored in a file in form of “transactions”,
that is, in tabular form. Each row represents a particular instance. Since
the fragment of the ontology under analysis describes a questionnaire, an
instance is a set of the answers for each questions. An example of a file
from which we can obtain the FIMI format is the following arff 8 file.

@relation DatiMPS
@attribute DiversificationOfProduction.hasDivOfProdValue

{1,2,3,0}
@attribute CustomerBase.hasDiversification {1,2,3,0}
@attribute ManagementTeam.hasYearOfExperience {1,2,3,0}
@attribute PreviousAchievements.hasPrevAchievements {1,2,3,0}
@attribute StrategicVisionAndQualityManagement.hasRate

{2,3,4,1,0}
@attribute OrganizationalStructure.hasType {1,2,3}
@attribute MarketState.hasTypeOfPhase {2,1,4,3,0}

8arff is a file format adopted by the famous framework for DM: weka - www.cs.
waikato.ac.nz/ml/weka/. The arff documentation can be found here: http://weka.
wikispaces.com/ARFF
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@attribute ResearchAndDevelopment.isACompanyInvestment {1,2,0}
@attribute LevelOfCompetition.competitionRate {2,1,3,0}
@attribute QualityCertificate.numberOfQCAchieved {3,1,2,0}
@attribute RelationshipWithTheBankingSystem.hasTypeOfRelationship

{2,1,4,3,0}
@attribute FinancialDebt.hasFinancialDebt {1,2,0}
@attribute CapitalizationStrategy.isTheIncreasingForeseen

{2,1,0}
@attribute CD SCORE TOT {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

16,17,18,19,20}
@data
1,1,1,1,2,1,2,1,2,3,2,1,2,13
1,1,1,1,3,1,2,1,2,1,2,1,2,13
2,1,1,1,2,1,2,2,1,3,1,1,2,12
3,2,1,1,4,2,2,1,2,1,2,2,1,9
2,2,1,2,2,1,2,1,1,3,2,1,2,10
2,1,1,1,3,2,2,2,1,1,1,1,1,10
2,2,1,2,2,2,2,1,1,3,2,1,2,9
. . .
2,1,1,1,2,1,2,1,2,3,2,1,2,12
2,2,1,1,2,1,2,2,1,3,2,1,2,11
3,2,1,1,2,1,1,1,1,1,2,1,2,12
2,2,1,1,2,1,3,2,1,3,4,2,2,8
2,1,1,2,3,2,2,1,1,1,2,1,2,9

For running PATTERNIST we set the minimum support minS = 40%.
The intermediate step, i.e. the output of PATTERNIST, is a set of fre-
quent items in which support is greater than minS. The output, before
the merging step, is in the following form:

FI1:LevelOfCompetition.competitionRate=1
FinancialDebt.hasFinancialDebt=1(41.7%)

FI2:StrategicVisionAndQualityManagement.hasRate=2
ManagementTeam.hasYearOfExperience=1(62%)

. . .
FIn: . . .

The characterization step merges the IRs Schema and the frequent pat-
terns returning the following IR.

ManagementTeam.hasYearOfExperience=1
62%Ð→

StrategicVisionAndQualityManagement.hasRate=2

This rule is the result of the characterization of the IR Schema number
24 in example 4.4 after using the frequent items FI2. As one can see, the
structure of the rule (the roles of the concepts as implicant or implicated
and the types of the concepts) is dictated by the structure of the IRs, while
the values (the interesting datatype properties and their values, and the
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probability measure) are suggested by the data.
FI1 does not produce any IR because there are no Schemas that fit with
it.

We observe that no rule that has MPSQuestionnaire as implicant,
originates an IR. This is because that concept is not interesting, and is
not part of the collected data even if it is an important concept in the
ontology since it binds many other concepts and is part of the ontology
representation model for the questionnaire.

◁

4.5 Validation

In common usage, validation is the process of checking if something satis-
fies a certain criterion or pre-defined requirements. In computer terminol-
ogy, validation can also refer to the process of data validation, ensuring
that the data inserted into an application satisfy pre-determined formats
or comply with stated length and character requirements and other de-
fined input criteria. It may also ensure that only data that is either true or
real can be considered.

Also in our context, we intend the verification of the quality of the
results: we look at the set of IRs and we discard the “wrong” or “not
trustworthy” or not compliant ones. Obviously, the best way to validate
the rules set is to ask a domain expert that is able to judge the consis-
tency of the set w.r.t. the domain of interest, and the use one wants to
make. In general, what we have to guarantee is that the IRs do not con-
flict each other, i.e. they do not contain opposite information. The need of
validating the IRs is suggested by the fact that the rules are extracted au-
tomatically without supervisors (human or artificial agent) and without
knowing the final use.
It is important to point out that the validation procedure is for evaluating
the semantic interest of the extracted IRs. For this reason we do not define
criteria and measures as usually done in a rigorous validation methodol-
ogy.

A more detailed description of the validation procedure is presented
in section 5.1.1, w.r.t. the case study we performed.

110



Chapter 5

Case Study: the MUSING
Project

In these last four chapters we have covered, step by step, the path towards
the realization of a new methodology for extracting “knowledge” out of
an ontology. We started from the study of the literature at several lev-
els of detail and continued with the investigation of related works, up to
the description of the designed and adopted solutions. We have already
mentioned the importance of having automatic tools able to retrieve high-
level information from various sources (texts, repositories, ontologies, ...),
the many applications that one can build by means of these tools, and the
several uses that one can do. As you have seen, our approach is com-
pletely general and adaptable to different domains and contexts. In this
chapter, we describe an actual application of the methodology in the con-
text of MUSING, a European project in which we are involved as a sci-
entific partner. The MUSING platform has been a good environment for
developing our research prototype and for testing it with real data. The
cooperation with other scientific and technological partners has been in-
dispensable for the success of the work.
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5.1 MUSING Project

MUSING,
“MUlti-industry, Semantic-based next generation business INtelliGence”
is a European Project started in 2006 that involves several international
partners (Mus06). MUSING aims at developing a new generation of Busi-
ness Intelligence (BI) tools and modules based on semantic knowledge
and content systems. It integrates Semantic Web and Human Language
technologies and combines declarative rule-based methods and statistical
approaches for enhancing the technological foundations of knowledge ac-
quisition and reasoning in BI applications.
It provides exclusive services for three BI areas:

Financial Risk Management. Development and validation of next gen-
eration (Basel II and beyond) semantic-based BI solutions, with par-
ticular reference to Credit Risk Management and access to credit for
enterprises, especially Small and Medium Enterprises (SMEs). Fig-
ure 33 gives a view of the service.

Internationalisation. Development and validation of next generation se-
mantic-based internationalisation platforms. Internationalisation is
the process that allows an enterprise to evolve its business from a
local to an international dimension, hereby expressly focusing on
the information acquisition work concerning international partner-
ships, contracts and investments.

IT-Operational Risk & Business Continuity. Development and validation
of semantic-driven knowledge systems for measurement and miti-
gation tools, with particular reference to operational risks faced by
IT-intensive organisations. Management of business continuity and
operational risks of large enterprises and SMEs impact positively
on the related user communities in terms of service levels and costs.

In general, MUSING provides an international framework where part-
ners share data, information, procedures and technical solutions, and en-
ables the partners to use cross-border online services and platforms in
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order to support clients in their international and domestic trade activi-
ties. It is important to point out that national and international laws and
directives, legal practices on privacy and data protection, data sharing
and public data management, affect the exchange of data at international
levels.
We were mainly involved in the first vertical stream, the Financial Risk
Management (FRM), where we shared our experience in data mining and
knowledge discovery as well as our skills in ontology analysis.

Figure 33: MUSING services in FRM.

Our main contribution is the development of a (self) assessment tool
for the analysis of economic plans and the prediction of a score express-
ing the quality and worthiness of the company under analysis (MFT+09).
The tool is supposed to fit a dual purpose. First, it can be used by Banks
and Financial Institutions to support their customer prospecting process
and their decision making process. Second, they can be used by Small
Medium Enterprises (SMEs) to approach banks on a transparent basis and
to receive indications of which strengths and weaknesses they should fo-

113



cus on, while trying to extend their access to credit (financial inclusion,
etc.).

The tool is made concrete by a web-access service that, by providing
answers to a questionnaire with qualitative and quantitative questions on
business and organisations, delivers back to the user a “Self Assessment
Card” containing indications on the company quality and on the credit
worthiness. The first version of the Online Self Assessment service, in
Italian, is available at:
http://musing-dev.metaware.it:8380/SelfAssessment/form.

html.
A general idea of the system and the data flow is depicted in figure 34. As

Figure 34: Logic schema of the Online Self Assessment tool.

shown, there are two main tools involved in the system: the Business Plan
Analyser (BPA) and the Non-Linear Rating (NLR) . The former is the one
we developed for the prevision of a qualitative score, while the latter is
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the one developed by the University of Pavia1 which implements a non-
linear rating model for the computation of the company rating based on
quantitative and qualitative data. The two modules are logically placed
in sequence (the BPA first) following the order of the operations on the
data flow. The dotted line, labelled by “End of Step 1” in figure 34, de-
fines the logical separation of the two modules. Data collected by using
an online questionnaire originate two separate flows, the qualitative in-
formation passes through the BPA and the result of the computation, to
the NLR module, while the quantitative ones are sent directly to the NLR
module.

The other important source of information is the ontology that con-
tains data and metadata and with which the BPA interacts many times.
Without loss of generality, let us focus on the BPA and let us see what the
main components are, how they work and where the method proposed
in this thesis is applied.

5.1.1 The Extraction and the Use of the IRs in MUSING

The BPA was designed in the attempt of providing SMEs with good self
assessment tools not only because of increasing market competition, but
also because of new rules in granting credit, as for example the ones re-
ferred to as Basel II. One of the critical issues in designing supporting
tools is the quality of the knowledge embedded in them. We maintain
that a better quality of decisions can be obtained by exploiting not only
quantitative, but also qualitative information and expert knowledge. The
BPA answers to this need by merging together these data and exploiting
new data mining techniques and the ontologies (BBF+08). There are two
major issues to be dealt with: finding a suitable representation for data
and domain knowledge, and automating the evaluation process followed
by the domain expert. Ontologies help us with the first issue because
they are, nowadays, the standard way of representing the domain knowl-
edge and storing the corresponding data. To handle the second problem,

1The University of Pavia (Italy) participates in the project belong with the two main
Departments: the Department of Statistics and Applied Economics, and The Department of
Business studies.

115



we utilized “material” from our previous work on classification (BFT05).
There, we presented a methodology for driving the building of classifica-
tion trees by means of probabilistic rules coded in a Bayesian Causal Map
(BCM) and extracted from it during the classification tree building.

Starting from this scenario, the extraction of IRs out of an ontology
is applied to the MUSING ontology (in particular to the subset of ontol-
ogy that describes the qualitative questionnaire), and the IRs are used to
enrich the set of Expert Rules (ERs) provided by an expert in economics,
and coded in a BCM.
Figure 35 (that is complaint to the logic schema in figure 34) shows the

Figure 35: Technical view of the Online Self Assessment service focused on
the BPA component.

components of the BPA tool in more detail.

The Classification Model Builder is the module for creating the classi-
fication and prediction model by using prior external knowledge and the
IRs mined from the ontology. The Influence Rules Miner implements the
extraction of IRs out of the ontology. The Dynamic Rules Extractor, in-
stead, finds the rules (both the ones provided by the expert and the ones
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mined from the ontology) that are applicable during the construction of
the classification tree model with reference to the current construction
stage (the path already built). The BPA, in realizing its task, interacts both
with the ontology, the interface and with the NLR model. The ontology
is the provider of the historical data needed for training the classification
engine, while the GUI is the provider of the new data (a new instance of
questionnaire to be analysed). The main output is the prevision of the
qualitative score that the NLR component takes as input and then uses
with the rough quantitative data for computing the final ranking.

Now we will describe in depth how the IR extraction procedure has
been customized, starting from the description of the data and the struc-
tures, up to the customization of the four steps of the analysis (FTB+09;
FTL09).

The Data. The dataset used to train and test the models (both the BPA
model and the NLR model) has been provided by the bank Monte
dei Paschi di Siena (MPS) 2. The data set, composed of 6000 records,
has a time extension of two years and contains the following infor-
mation:

• 13 Qualitative Variables representing a subset of the questions
included in the Qualitative Questionnaire performed by MPS
to assess the credit worthiness of a third party, and in particular
utilised to calculate the Qualitative Score of a Company.

• The Qualitative Score (target item of the classification task).

• 80 Financial/Economic indicators calculated from the Balance
Sheets and representing a part of the information utilised to
foresee the default of a company.

2MPS is the Monte dei Paschi di Siena Group’s (Italy’s fourth largest banking group)
Centre of Excellence for eBanking, eBusiness and models innovation. Working closely with
the Bank’s marketing and strategy functions, MPS is responsible for designing the eBank-
ing and web-based platforms of the Group, as well as managing the implementation process
through the internal IT division. MPS has strong competencies and experience in Financial
Risk Management (with particular reference to the major Basel II-related issues), Interna-
tionalisation, and Operational Risk fields.
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• Status of the company. A variable that defines whether the
company is currently in bonis or in default.

Data Representation and Storage. In agreement with the MUSING spec-
ification, all the data have been coded in an ontology.
The logical structure is depicted in figure 36, while the diagram in
figure 37 presents the import relationships. As one can see, MUS-
ING is built on a solid net of ontologies each one specialized in a
particular area (vertical stream or domain) but strongly inter con-
nected.

Figure 36: The MUSING Ontologies structure.

The set of ProtonAndSystem ontologies comprises generic and ax-
iomatic ontologies. The temporal ontologies are Protime, Allen, 4D
and Time; Proton ontologies are System, Top and Upper. The set
of Domain Independent ontologies is now divided into the Company
and Risk ontologies.
The emerging StandardReference level consists of IndustrialSector (rep-
resenting the NACE code3), BACH and XBRL-GAAP. The PilotSpeci-

3The NACE Code is an European classification system which groups organisations ac-
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Figure 37: Ontologies imports diagram.

ficOntologies are related to the various pilots of the project (LBS+09).
The subset of ontology we are interested in is the BPA Ontology, part
of the Pilot specific Ontologies. The concepts coded there are re-
lated to the qualitative questionnaire (please see Appendix B.2 for
the complete list of questions-answers). This ontology represents
the domain of application for the IRs extraction engine.

Input Data. The ontology that describes our domain is the BPA ontology,
nevertheless, we loaded the whole set of MUSING ontology, so that,
starting from the BPA ontology, we can extend the analysis also to
the other related concepts allowing the system to exploit the indirect
connections between the target concepts (i.e. the concepts related to
the qualitative questionnaire).

Extraction of the relevant concepts. The HITSxONTO algorithm has been
applied to the MUSING ontologies obtaining a list of 552 concepts
and a corresponding adjacency matrix AdjM of size 552x552. The

cording to their business activities (http://ec.europa.eu/competition/mergers/
cases/index/nace_all.html).
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simple AdjM has 2123 non-zero entries (the 6.97% of the total en-
tries). In agreement with the strategy, the exponentiated adjacency
matrix ExpoAdjM is computed and adopted for the analysis. This
matrix corresponds to:

ExpoAdjM = AdjM + AdjM
2

2!
+ AdjM

3

3!
,

so that paths up to length 3, are exploited. ExpoAdjM has 4415
non-zero entries, 14.49% of the total entries.
The HITSxONTO computation ends after four iterations, returning
a list of 5 concepts with hScore greater than 0 and a list of 14 con-
cepts with aScore greater than 0.
Since there are many not sufficiently connected concepts (and the
ExpoAdjM has a low number of non-zero entries) involved in the
computation, we obtain few concepts with hub and authority rank-
ing greater than 0. Therefore, to obtain a significant number of IRs
Schemas we are forced to set low thresholds for both hub and au-
thority.
Without relaxing Ht and At no IR is found because no concept of
the questionnaire dataset is part of an IR Schema just obtained.

Construction of the IRs Schemas. The IRs Schemas building action con-
siders the list of candidate implicant concepts with hScore >= Ht.
If a direct or indirect (up to a maximum path length of 3 steps) con-
nection exists among the candidate implicant concept and the can-
didate implicated concepts with aScore >= At, an IR Schema is gen-
erated. Under this parameter setting, the result is a set of 2097 IRs
Schemas with exactly one implicant and one implicated.

Characterization of the IRs. As stated earlier, the instances used for this
test are about the qualitative variable of the questionnaire. In this
case, the instances were already stored separately w.r.t. the ontol-
ogy; in particular we have a file with the instances organized as
transactions, i.e. in tabular form, where each row corresponds to
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an instance of the questionnaire (a set of answers coming from the
same interviewed subject and related to his company). The number
of instances is 5757.

Having set the minimum support minS = 20%, PATTERNIST re-
turned a set of 56 frequent itemset (pairs of concepts).
The step of characterization builds the IRs based on the IR Schemas;
in fact, the rule structure drives the construction of the IR since it de-
fines what the involved concepts are and how they are related. The
frequent items instead identify, for each concept, what the impor-
tant attributes and their values are while the support values instead
provide a measure of the IR strength.
The result of the characterization of the IRs Schemas by using the
set of frequent itemsets, is the following set of 14 IRs:

ResearchAndDevelopment.isACompanyInvestment=1
26%Ð→

PreviousAchievements.hasPrevAchievements=1

ResearchAndDevelopment.isACompanyInvestment=1
30%Ð→

CapitalizationStrategy.isTheIncreasingForeseen=2

ResearchAndDevelopment.isACompanyInvestment=2
28%Ð→

PreviousAchievements.hasPrevAchievements=2

StrategicVisionAndQualityManagement.hasRate=2
28%Ð→

CapitalizationStrategy.isTheIncreasingForeseen=2

CapitalizationStrategy.isTheIncreasingForeseen=2
36%Ð→

PreviousAchievements.hasPrevAchievements=2

ManagementTeam.hasYearOfExperience=1
32%Ð→

PreviousAchievements.hasPrevAchievements=2

ResearchAndDevelopment.isACompanyInvestment=2
31%Ð→

PreviousAchievements.hasPrevAchievements=1

StrategicVisionAndQualityManagement.hasRate=2
42%Ð→

PreviousAchievements.hasPrevAchievements=1

CapitalizationStrategy.isTheIncreasingForeseen=2
48%Ð→

PreviousAchievements.hasPrevAchievements=1

ManagementTeam.hasYearOfExperience=1
54%Ð→

PreviousAchievements.hasPrevAchievements=1

ResearchAndDevelopment.isACompanyInvestment=2
54%Ð→

CapitalizationStrategy.isTheIncreasingForeseen=2

StrategicVisionAndQualityManagement.hasRate=2
60%Ð→

CapitalizationStrategy.isTheIncreasingForeseen=2

ManagementTeam.hasYearOfExperience=1
62%Ð→
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StrategicVisionAndQualityManagement.hasRate=2

ManagementTeam.hasYearOfExperience=1
73%Ð→

CapitalizationStrategy.isTheIncreasingForeseen=2

In order to interprete correctly these rules, please refer to the de-
scription of the qualitative questionnaire and its codification, re-
ported in appendix B.2.
For example, the meaning of the last IR,

ManagementTeam.hasYearOfExperience=1
73%Ð→

CapitalizationStrategy.isTheIncreasingForeseen=2

is:

If the management team has more than 10 years of experience
in the industrial sector, then the company does not foresee to
increase its capital, with a probability of 73%.

This IR, in agreement with what we just stated, belongs to the fol-
lowing:

ManagementTeam → CapitalizationStrategy

which is one of the 2097 schemas extracted in the previous phase.
Here it is clear that the schema supplies the structure of a set of
future IRs; it defines the direction of the implication and what are
the involved concepts. The frequent itemset, instead, identifies the
interesting datatype properties (related to the considered concepts)
and assigns the weight (i.e. the support), making one of the possible
instances compatible with that schema.

Validation. As stated in section 4.5, the validation should be done by
an expert in the economic field that judges the trustworthiness, the
correctness and the compatibility of the IRs. Nevertheless, in the
context of MUSING, a sort of “automatic” validation can be done
taking into account the final objective of the extraction, i.e. how the
IRs are planned to be used. At the beginning of this chapter we said

122



that in MUSING the IRs are used inside the BPA module for enrich-
ing the set of ERs, provided by an expert, that are used for driving
the construction of the classification model. The BCM, that contains
the ERs, is a cognitive map with associated probabilities; we use it
mainly as a representation model rather than a computation mo-
del for the rules. The main issue here is to merge IRs and ERs in
the same BCM without losing the general coherence of the set, i.e.
without creating contrasts (or incompatibilities) among rules.

We can distinguish two main situations:

1. Internal conflict in the IRs set.

2. Conflict in the integration of ERs set with the IRs set when we
enrich the BCM.

We can have conflicts inside the IRs set because they are mined au-
tomatically from the ontology by using a process that is not driven
by expert knowledge and does not follow economic theories. Fur-
thermore, since the generation is influenced by the structure of the
ontology, if the ontology suffers some weaknesses the rules can re-
flect this status. In general, the generation procedure exploits some
techniques that should guarantee the consistency of the rules, but
the coherence of the rules does not depend only on this process.

The second situation concerns the integration of the ERs set with
that of IRs. In this case the conflict is between rules of two different
original sets. In fact, once we resolve the conflicts inside the IRs, we
are sure that ERs are free from conflicts because an expert provides
them and they are validated before their use by the expert itself.

In general, we can have incompatibility when the rules involve same
items but different probabilities or they semantically collide (they
provide opposite information). In these cases, an action is needed
for maintaining the final set of rules consistent. The general idea at
the basis of the conflict resolution is to impute more importance to
the ERs than to the IRs. The reason is that the IRs set results from an
automatic computation that is not strictly driven by the economic

123



theory (some economic principles are yet hidden in the ontology),
while the ERs represent the current literature, the expert belief and
the consolidated economic theory.

We identified four main conflict cases, and we propose an action for
each one. The details follow (consider the ERs already coded in the
BCM).
Cases:

1. Same rules, different probabilities

ER: A = a 0.6Ð→ B = b
IR: A = a 0.9Ð→ B = b
Action: We keep the rule of the expert.

Result: A = a 0.6Ð→ B = b

2. Same precondition, different post-condition (different items)

ER: A = a 0.6Ð→ B = b
IR: A = a 0.9Ð→ C = c
Action: We add a new rule (the IR).
Result: A = a 0.9Ð→ C = c

3. Different precondition (different items), same post-condition.

ER: A = a 0.6Ð→ B = b
IR: C = c 0.9Ð→ B = b
Action: We add a new rule (the IR).
Result: C = c 0.9Ð→ B = b

4. Same precondition, same post-condition variable with different
values.
ER: A=a

0.6Ð→ B=b1
IR: A=a

0.9Ð→ B=b2
Action: For solving this case, an input from the domain expert
is essential: he or she has to provide a list of attribute-value
pairs that, implicated by the same implicant form rules that
can coexist in the same map. The action is to add the IR if it
does not collide in accordance with the information given by
the expert.

124



In general, if a precondition of a rule is subsumed by another rule
(i.e. when there is a rule more general w.r.t. another one), we main-
tain both the rules.
An example of additional information given by the expert, in the
context of MUSING, is provided in Appendix B.1.

5.2 Other Tests

As a demonstration of how the IR extraction system works, we perform
several tests on both subsets of the MUSING ontologies and on other on-
tologies.
Unfortunately, in the latter case, owing to the lack of instances associated
to the ontologies, the experimentation stops at the second step, i.e. at the
IRs schema extraction.
Table 8 shows the results of the first set of tests in which we use MUSING
ontologies subsets. We run the experiments by “playing” with different
collections of ontologies, by using different parameter settings and by us-
ing the same set of instances (the only available) i.e. the set from the MPS
Qualitative questionnaire.

For sake of space and readability, we use labels in the table for identi-
fying tests and metrics. S1, . . . , S11 represent the descriptions of the tests,
the metrics, the settings of the experiments, and the results. The meaning
is the following:

S1: The dimension of the matrix, NRows x RColums.

S2: Percentage of the non-zero entries of the simple adjacency
matrix, w.r.t. the total number of the entries.

S3: Percentage of the non-zero entries of the exponentiated
adjacency matrix, w.r.t. the total number of the entries.

S4: Number of concepts with hub score greater than zero.

S5: Number of concepts with authority score greater than zero.

S6: Setting: hub threshold (Ht).
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S7: Setting: authority threshold (At).

S8: Number of IRs Schemas.

S9: Setting: Minimum support.

S10: Number of Frequent itemset.

S11: Number of IRs.

T1, . . . , T3 are the references to the different tests. It follows the descrip-
tion:

T1: The loaded MUSING ontology is shown in figure 37. The
instances are those corresponding to the qualitative ques-
tionnaire.

T2: The loaded ontology is a subset of the MUSING ontol-
ogy where Temp is missing. The instances are those cor-
responding to the qualitative questionnaire.

T3: The loaded ontology is a subset of MUSING: besides BPA
only Indicator, Employment, Company, QA, Credit are loaded.
These latest are the closest to the BPA ontology. The in-
stances are those corresponding to the qualitative ques-
tionnaire.

T4: travel.owl available at
http://www.dcs.bbk.ac.uk/˜michael/sw/slides/

travel.owl,
is a travel agency ontology. It includes concepts like Ho-
tel, Restaurant, Activities, Accommodations, . . . and cor-
responding relations for describing the activity of a travel
agency.

T5: The New Testament Names ontology is a semantic knowl-
edge base describing each named object in the New Tes-
tament. It is available at
http://www.semanticbible.com/index.html.

T6: gfo-bio, available at
http://onto.eva.mpg.de/ontologies/gfo-bio.owl,
is a biomedical ontology.
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Stats T1 T2 T2 T3
S1 552x552 218x218 126x126
S2 6.97% 2.13% 5.2%
S3 14.49% 4.27% 10.5%
S4 5 60 58
S5 14 63 57
S6 0.0 0.0 0.0
S7 0.0 0.0 0.0
S8 2097 1001 523
S9 40% 40% 20% 20%
S10 56 56 150 150
S11 14 7 14 13

Table 8: Statistics on Tests (part 1).

Stats T4 T4 T5 T5 T6 T6 T7 T7
S1 34x34 48x48 171x171 1745x1745
S2 33.91% 8.11% 18.32% 0.25%
S3 47.75% 12.32% 35.72% 0.46%
S4 32 26 169 569
S5 21 16 60 54
S6 0.0 0.2 0.2 0.0 0.0 > 0.0 > 0.0 > 0.08
S7 0.0 0.2 0.2 0.0 0.0 > 0.0 > 0.0 > 0.0
S8 383 117 12 179 5345 5287 6355 3657

Table 9: Statistics on Tests (part 2).

T7: e-response, available at
http://e-response.org/ontology/2006/20060406/

e-response.owl,
is an ontology created for the purpose of describing an
emergency and the response to that emergency.

Taking a general look at the results, we can say that when the ontology
is particularly big, and especially when it is a taxonomy rather than an
ontology (i.e. there are few object properties between the concepts) we
are forced to relax the constraints to ensure that we obtain some results.
In particular, we have to bring down the authority and hub thresholds
of acceptance so that the system can return back a sufficient number of
“important” concepts for creating the IRs Schemas.
In the tests reported in figure 8, the sets of ontologies we used are typical
examples of big ontologies with few object properties (see metrics S1, S2
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and S3). In this case, we have been forced to set the thresholds to 0.0 (see
metrics S6 and S7), i.e. to consider all the concepts for the construction of
the IRs Schema. This has been also induced by the fact that the instances
used to characterize the IRs Schemas covered only a small subset of the
concepts (the one related to the BPA ontology) included in the ontologies.

From test T1, starting from 2097 IRs Schemas and by using 56 frequent
itemsets, the system returns 14 influence rules.
In test T2 we loaded a smaller ontology, i.e. a subset of the ontologies used
in test T1, but we maintained the same settings for the thresholds and the
minimum support. As one can expect, the number of IRs schemas de-
creases as well as the number of the final IRs. The number of frequent
itemsets is obviously the same, since the instance set does not change.
In test T3, slowing down the minimum support w.r.t. test T2, we obtain a
greater number of IRs.
In test T4 we consider a subset of the MUSING ontology that is strongly
closed to the collected instances. We don’t have loss of information, and
under the same conditions w.r.t. the previous cases, we obtain the same
number of IRs.

The set of tests in table 9 stops at the construction of the IRs Schemas
because in the ontologies we used the instances were missing. In any
case, these tests demonstrate that the methodology we developed is fully
general and can be applied to whatever domain.

128



Chapter 6

Conclusions

This thesis has dealt with the issue of extracting new implicit knowledge
from an ontology by using both deductive and inductive techniques. This
problem is set in a multidisciplinary research context: knowledge discov-
ery and the semantic web, and inherits from both of them useful analysis
tools and the most “modern” and expressive representation languages,
but also, the whole set of problems related to them. The main issues we
faced were to find a point of contact between the two disciplines already
explored, a non-trivial task that lead to interesting theoretical and practi-
cal results.
Keeping in mind the objective and this series of issues, we organized this
dissertation trying to give, at first, a general context of the research, and
then presenting the main topics in form of questions.
By exploiting our experience in the data mining field, but especially by
taking inspiration from the current literature, we have given an (exhaus-
tive, we hope) answer to each question.
A case study ends this thesis with the aim of showing that the proposed
methodology is not only a scientific result, but that it also finds applica-
tions in actual contexts.
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6.1 What We Did and What Can Still Be Done

Knowledge extraction from databases is a consolidated practice that con-
tinues to evolve in parallel with the new storage systems. It is based not
only on querying systems, but above all, on complex reasoning tools. To-
day, with the coming of the Web 2.0, the semantic web, new methods
for representing, storing and sharing information are going to replace the
traditional systems. Roughly speaking, ontologies “could substitute” in
many applications the DBs.
The interest is moving toward the research of new methods for handling
these structures and to efficiently obtain information from them.

In the thesis, we have handled the problem of extracting interesting
and implicit knowledge out of an ontology, presenting the results in form
of influence rules. Our idea was to drive the extraction process by using
the ontology structure, and to exploit the instances only in a second step.
The main problem was to understand if and how to use traditional meth-
ods for data mining in the context of the ontology. Obviously, the tra-
ditional systems can be used only as models, but they are not directly
applicable to the ontologies.
The solution came quite slowly and in a natural but not trivial way when
we decomposed the original problem into subproblems. In this way, we
succeeded in finding a methodology taking inspiration from the consoli-
dated theories and recent developments.

We divided the extraction process into 4 main steps:

[Step 1] Identification of the concepts.

The first step is the analysis of the ontology schema and the extrac-
tion of the most relevant concepts.
For the extraction, we exploited the possibility of representing the
ontology as a graph with its associated Adjacency Matrix (AM). The
AM points out the existence of a link between two concepts. For ex-
tracting the relevant concepts, we analysed only the schema of the
ontology, and used a link analysis method very popular in the se-
mantic web environment. We customized the HITS algorithm by
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Kleinberg, implementing a new algorithm able to handle ontolo-
gies: HITSxONTO. While HITS works with web pages and hyper-
links, HITSxONTO works on concepts and object properties.

[Step 2] Influence Rule Schema building.

After having pointed out the relevant concepts, we identified the
“original” connections (direct and indirect) among concepts by fol-
lowing their object properties. Since we were not interested in the
semantics of the properties but in their existence, we were able to
simplify the problem and to use the algebra and in particular the
matrix theory, for producing these results. Then we associated all
the related concepts, building a set of influence rules schemas.

[Step 3] Characterization of the Influence Rules Schemas.

In step 2, we produced only the “skeleton” of our knowledge; in this
step we aimed at enriching the schemas with further interesting in-
formation hidden in the data (the ontology instances). In particular,
we wanted to select among the set of datatype properties associated
with each concept, those that were more important, and provide the
influence rules with a weight.
This objective drove our research towards the pattern discovery field
because it seemed to fit our problem. We analysed the instances re-
lated to the metadata in the ontology, and we extracted the frequent
items with the associated support value. We did that by using PAT-
TERNIST, an algorithm developed by colleagues at the KDD Lab in
Pisa.

[Step 4] Validation.

The Validation is needed to guarantee that the IRs are consistent
and do not conflict with each other. The best way for validating
the rules, is to ask a domain expert; nevertheless, some ad hoc pro-
cedures can be implemented with reference to the domain under
analysis and the foreseen use.

The first two steps are essentially deductive; they are a sort of “top-
down” approach where they start from the theory and try to find some-

131



thing. The third step is inductive, a sort of “bottom-up” approach; we
move from the observations (the instances) to the results (the IRs).
By studying a way of capturing information from the ontologies we have
caught many similarities with existent methodologies, as for example
graph analysis, social network analysis, link analysis and multi-relational
data mining.

In steps 1 and 2, graph theory and linear algebra supplied us with
the basis for representing the problem and making it computationally
tractable. The link analysis gave us the ideas of how to explore the on-
tology structure and how to rank the concepts.
In step 3, it was mainly the data mining that supplies the tools. The way
of combining all these “ideas” together is certainly part of our original
work.
Besides the theoretical results, we had the opportunity of testing our sys-
tem in an actual case exploiting our involvement in a European indus-
trial research project: MUSING. In this way, we had at our disposal an
integrated framework and a real set of data.

As is well known, the problem of finding suitable (for size and coher-
ence) data very often slows down the development and the experimen-
tation of new technologies that need large amount of data. This is very
common for data mining applications, where the algorithms build meta
models but only the data realizes the applicable models (let us think for
example of the classification tree, association rule mining or clustering).
Outside the specific thesis context, in MUSING our main contribution is
the development of a self assessment tool for the analysis of economic
plans and the prediction of a score expressing the quality and worthiness
of the company under scrutiny. The tool is made available in a service
accessible via the web that, by providing answers to a questionnaire with
qualitative and quantitative questions on business and organisation, de-
livers back to the user a “Self Assessment Card” containing indications
on the company quality and on the credit worthiness. A classification
model performs the core component of the analysis. This model uses and
merges historical collected data stored in an ontology with new domain
knowledge coded in a Bayesian Causal Map and provided by an expert.
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This expert knowledge, in form of rules among its items, is used during
the construction of the classification model.
In this specific context the extraction of knowledge, the topic of this the-
sis, has been applied to the subset of the MUSING ontologies dedicated
to the description of the questionnaire, and the resulting IRs have been
used as feedback to the BCM.

Besides having mined a valuable set of IRs, our analysis tool solves, in
this domain, also the problem of the availability of the expert knowledge.
In fact, in the economic field, obtaining a cognitive net of relationships
from experts is a hard task, either for the complexity of the matter, or for
the lack of specific studies (very often these rules are based on the expert
believes or his/her own experience).
Speaking in real terms, starting from an ontology of 552 concepts and
a dataset of 5757 instances, we mined 14 IRs that involve only the more
important concepts and features among the set of concepts we were inter-
ested in. This result seems promising and is gratifying to us because the
rules are semantically coherent. Obviously, other tests are also necessary
(hopefully in different domains) for bringing to light possible weaknesses
and to understand how to improve the accuracy of the analysis.

At the end, this work supplies “some highlights” of what we did in
this period of research and synthesizes (i.e. implements) some of the pos-
sible solutions among the available ones.
Obviously, more can be done, following either the undertaken direction
or exploring new solutions.

Concerning the technical aspects, improvements and optimizations
can be performed both for the data structures we used, and in the gen-
eral implementation of the algorithms. In this first release, we probably
did not give the right care to the system performance in terms of mem-
ory usage and computational speed. During the current experiments, the
computational speed has not been a strict constraint and no particular
latencies have been registered. For a stand-alone system which runs in
local machines this aspect can be left out, but it becomes crucial for online
systems where the reply time determines the success of the system itself.

A substantial re-engineerizing of the whole system has already been
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planned.
The data structure we used for storing the adjacency matrix, for exam-
ple, is not particularly “smart” and it is not optimized in the presence of
sparse data. On an empirical basis, we can state that the adjacency matri-
ces derived from large ontologies are sparse. For handling the ontologies
we used the Protégé and Jena APIs (the last stable release of OWL 1.0)
because we already used them, and we acquired some experience with
the Protégé framework. Other APIs could be adopted so as to compare
the performances in terms of loading speed and reasoning capabilities.
More or less for the same reason, we decided to use PATTERNIST as a
pattern discovery algorithm. We recall that it is a result of a research per-
formed by colleagues (here in Pisa) in the context of a previous research
project and the re-use of shared good software is a common and apprecia-
ble practice. At the same way, we could also replace PATTERNIST with
alternative algorithms such as the Ferenc Bodon’s efficient implementa-
tion of the A-priori algorithm or WARMR algorithm.

Bodon’s algorithm (Bod03; Bod04) is a new implementation of the
well known A-priori algorithm, based on trie data structure. This data
structure allows essentially to decrease the memory occupation and to
speed-up the computation.

WARMR (DT99), developed by Dehaspe and colleagues, is a general
purpose Inductive Logic Programming data mining algorithm able to dis-
cover knowledge in structured data, where patterns reflect one-to-many
and many-to-many relationships in the data. The input is a relational
database and the output is a set of conjunctive queries that succeed fre-
quently in that database. On the basis of these frequent queries, query
extensions can be generated which are the relational equivalent of associ-
ation rules obtained with A-priori.

Even if it is interesting to see how the system can change by replac-
ing its components with alternative APIs or algorithms, it is important to
point out that no particular missing functionalities have been found, for
both the Protégé and Jena APIs and PATTERNIST.

Concerning the strategy for identifying the relevant ontology concepts,
a valid alternative to the Kleinberg algorithm is PageRank. It should be
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interesting to implement a version that handles the ontologies (as we did
for HITS) and compare the results.

A final consideration deals with the application fields. In the thesis,
we focused on the economic domain using the IRs for augmenting a set
of “similar” (for meaning, structure and objective) rules. Nevertheless,
it is important to point out that the system is fully general and can be
used in several domains (i.e. in all the domains that can be described
by an ontology and where data is available). An alternative and partic-
ularly relevant application can be found in the question answering sys-
tems. These systems aim at automatically answering questions posed in
natural language. The answers are supplied on the basis of the results
obtained by querying structured DBs and by processing documents (text
or online resources). Today, ontologies are used more and more; domain
specific ontologies in the closed domain question answering, and general
ontologies in the open-domain question answering. Knowledge extrac-
tion from ontology could be used for finding key words or for driving the
searching process.

Looking at the kind of output we supply, the IRs remind the Bayesian
systems both for their structure (implications with a probability associ-
ated) and of their nature. An interesting research line to investigate is
the possibility of using the IRs for the automatic generation of these sys-
tems. The construction of a BN, for example, requires large efforts and
much time from the experts. Moreover, since it is domain dependent, it
should be desirable that, when the domains change, the associated BN be
modified accordingly. Automating the process could be useful.

A BN is a sort of acyclic graph where each node represents a domain
variable, and each arc between nodes represents a probabilistic depen-
dency between them. Moreover, each arc has a conditional associated
probability, which indicates how much a node depends on its parent.
From this informal definition, some similarities between IRs and a BN
clearly emerge. If we consider the whole set of the IRs (concepts and im-
plications) we can redraw a sort of graph where each concept becomes a
node and each implication an edge. The probability of the rule becomes
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the conditional probability between the associated nodes/concepts.
This idea, i.e. the construction of the net structure and the definition

of the probabilities, that can look like a simplistic solution, is actually
the general procedure to follow for the generation of a BN. Several cur-
rent works, that exploit existing and consolidated data structure for con-
structing BNs, are present in literature (HGC95; Hec96; Nea03; Hec08).
In (ZLJ+04), for example, the authors propose an approach based on a
Semistructured Probabilistic Database Management System that provides
them with robust storage and retrieval mechanisms for large quantities
of probability distributions. The main tool, the Bayes Net Builder allows
then, knowledge engineers to describe the structure of the Bayes Net mo-
del, and Probability Elicitation Tool designed to elicit conditional prob-
ability distributions from domain experts. Another case is reported in
(LC05), where the authors describe a method of automatically generating
BNs from scripts composing knowledge base of conversational agents. It
constructs the structure of hierarchically composing nodes and learns the
conditional probability distribution table using Noisy-OR model.

Once we solve the non-trivial issue related to the coherence of the
structure and the learning strategy to adopt, the automation of the steps
would follow a natural progress.
As stated, there are several works based on that direction and the interest
in KD represented in BNs is increasing because BNs can handle incom-
plete data sets and facilitate the combination of domain knowledge and
data. From this point of view, a set of IRs can be considered as a set
of incomplete data. In general, a set of IRs related to the same pair of
concepts do not provide the complete probabilities distributions for the
corresponding values.
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Appendix A

Technical Specifications

This section is dedicated to a short overview of the technical specifications
of the implementation: the programming languages, the main APIs, the
framework and support tools.
We also supply the pseudo-code and a more detailed description of the
main subroutines of the algorithms we have introduced and described in
chapter 4.

As we stated, the ontology miner system we have designed and de-
scribed in this thesis, has been implemented and it found to work. The
system will be available at:

http://kdd.di.unipi.it/OntologyMiner

as soon as possible.

A.1 Development Tools

The whole system has been developed by using Eclipse as IDE and Java
jdk 1.6 as programming language.

The program uses the following external libraries and external calls:

[Protégé 3.4.1 lib] It is an open-source Java library for the Web Ontol-
ogy Language and RDF(S). The API provides classes and methods
to load and save OWL files, to query and manipulate OWL data
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models, and to perform reasoning. Furthermore, the API is opti-
mized for the implementation of graphical user interfaces. Both
Jena, Core Protégé, Protégé-Frames and Protégé-OWL APIs have
been imported. The detail, codes and the corresponding documen-
tation can be found at:
http://protege.stanford.edu/.

[Jama 1.0.2 lib] JAMA is a basic linear algebra package for Java. It pro-
vides user-level classes for constructing and manipulating real, dense
matrices. The class Matrix has been extended for handling the ad-
jacency matrices we use in the system. The documentation can be
found at:
http://math.nist.gov/javanumerics/jama/.

[Weka 3.6 lib] Weka is a collection of machine learning algorithms for
data mining tasks. It contains tools for data pre-processing, classi-
fication, regression, clustering, association rules, and visualization.
It is also well-suited for developing new machine learning schemes.
This library has been used as support (load and filter the instances
file) and not for performing data mining actions. Further details
and the documentation can be found at:
http://www.cs.waikato.ac.nz/ml/weka/.

[PATTERNIST] PATTERNIST is the implementation of the algorithm for
extracting the frequent itemset. The system is reachable by means
of an external call to the corresponding executable program.
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A.2 The System Structure

The system has been divided in nine packages, each one dedicated to
the implementation of one of the main system parts. Figure 38 shows
the class diagram in UML format; the corresponding list of packages and
classes are reported in table 10 and table 11, respectively.

Figure 38: Ontology Miner Class Diagram

[OntoMinerMain] It is the main class that triggers the IRs building and
composes the various steps of the process.

[OntoReaderImpl] It contains the methods for loading and reading the
ontology, as well as for handling the lists of concepts extracted from
the ontology.
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[InfluenceRulesGenerator] It implements two of the main meth-
ods, dedicated to the construction of the IR Schema and the IRs.

[AdjMatrix] It extends the Jama Matrix class and implements some meth-
ods necessary for performing the operations on the adjacency ma-
trices.

[ConfLoader] It handles the loading of the configuration parameters of
the system.

Java Packages
it.unipi.ontologyminer.conceptsranking
it.unipi.ontologyminer.conf
it.unipi.ontologyminer.domain
it.unipi.ontologyminer.exceptions
it.unipi.ontologyminer.main
it.unipi.ontologyminer.ontomanager
it.unipi.ontologyminer.ontomanager.impl
it.unipi.ontologyminer.rulesgenerator
it.unipi.ontologyminer.utils

Table 10: Ontolology Miner: Java Packages.
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Java Classes
it.unipi.ontologyminer.conceptsranking
↪ HITSxONTO
it.unipi.ontologyminer.conf
↪ConfLoader
it.unipi.ontologyminer.domain
↪AdjMatrix
↪Concept
↪Item
↪Ranking
it.unipi.ontologyminer.main
↪OntoMinerMain
it.unipi.ontologyminer.ontomanager.impl
↪OntoReaderImpl
↪RelevantConceptsReaderImpl
it.unipi.ontologyminer.rulesgenerator
↪InfluenceRulesGenerator
it.unipi.ontologyminer.utils
↪Constant
↪Converter

Table 11: Ontolology Miner: Java Classes.
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A.3 Subroutines Specification

In this section we provide the specification of the main subroutines of
algorithms 2 and 3 described in section 4.3 and 4.4, respectively.

A.3.1 Subroutines of Algorithm 2 - section 4.3

[computeIndirectConnections(L, M)]
It computes the number of direct and indirect connections among
the concepts. Technically, it computes a new matrix M̄ starting from
the original adjacency matrixM by implementing the following for-
mula:

M̄ =
L

∑
i=1

M i =M +M2 +M3 + ... +ML (A.1)

M̄ contains the number of all the paths connecting two concepts, of
length from 1 to L steps (L is a fixed integer).

INPUT: The Adjacency Matrix: M
The length of the paths: L

OUTPUT: A new Adjacency Matrix: M̄

1: exp = 2;
2: Mi =M;
3: Mpartial =M;
4: while(exp ≤ L) {
5: Mtemp =multiplyMatrix(Mi,M);
6: Mi =Mtemp;
7: M̄ = sumMatrix(Mpartial,Mtemp);
8: Mpartial = M̄;
9: exp + +;

10: }
11: Return M̄;

Algorithm 4: Pseudo code of the sub-routine
computeIndirectConnections.
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[connected(M̄, implicant, implicated)]
It checks if the candidate concepts that become implicant and implicated
in a new IR Schema are directly or indirectly connected. This infor-
mation is easily found in M̄ by looking at the value of the matrix
entry that corresponds to the two concepts. The method returns
true if the matrix entry is greater than 0, false otherwise.

[updateIRSchema(implicant, implicated)]
It inserts in the list a new IR Schema composed of the two candidate
concepts just analysed.

INPUT: The first concept: implicant
The second concept: implicated
The list of IR Schemas: IRSList

OUTPUT: The updated list: IRSList

1: if(!(IRSList.contains(implicant, implicated)))
2: then IRSList.add(implicant, implicated);
3: Return IRSList;

Algorithm 5: Pseudo code of the sub-routine updateIRSchema.

A.3.2 Subroutines of Algorithm 3 - section 4.4

[filterFrequentItems(FIsTemp)]
It filters the list of frequent itemsets generated by PATTERNIST, re-
turning only the interesting ones. We use, as a filtering parameter
the number of items each itemset is to be composed of. Since we
are interested in creating IRs that contain exactly one implicant and
exactly one implicated, we fix this number to 2.

[characterizeIRSchemas(IRSchemas, FIs)]
It merges FIs and IRsSchemas sets to obtain the final set of char-
acterized IRs. The rule schema drives the construction of the IR
since it defines what the involved concepts are and how they are re-
lated. The frequent itemset instead identifies for each concept what
the important attributes are. In algorithm the method match finds
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INPUT: The list of temporary FIs: FIsTemp
OUTPUT: The list of FIs: FIs

1: foreach(FI ∈ FIsTemp) {
2: n = FI.getNumberOfItems();
3: if(n == 2)
4: then FIs.add(FI);
5: }
6: Return FIs;

Algorithm 6: Pseudo code of the sub-routine filterFrequentItems.

INPUT: The list of IR Schemas: IRSchemas
The list of FIs: FIs

OUTPUT: The final list of IRs: IRs

1: foreach(IRS ∈ IRSchemas) {
2: if match(IRS.implicant, FI)
3: then{
4: IR.implicant = getMatch(IRS.implicant, FI);
5: IR.implicated = getMatch(IRS.implicated, FI);
6: IR.probability = FI.support;
7: }
8: IRs.add(IR);
9: }

10: Return IRs;

Algorithm 7: Pseudo code of the sub-routine characterizeIRSchemas.

if there is a correspondence between an IR schema and a frequent
itemset. This matching is done by checking if the two items of FI
refer to the two concepts that compose the IRS.
Method getMatch instead returns the right item of the frequent
itemset that matches them with the IR schema implicant or impli-
cated to construct both the implicant and implicated parts of an IR.
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Appendix B

Additional Information

B.1 Additional Information Provided By the Ex-
pert.

This is an example of a document provided by the domain expert, in the context
of MUSING for solving the issue of IRs consistency Case 4.
This document strongly relates to the variable used in the part of the project un-
der analysis.

- Diversification of production.

1. The company operates in more than one sector.

2. The company operates in just one sector with flexible produc-
tion processes.

3. The company operates in just one sector with no flexible pro-
duction processes.

The three options are exclusive, so they cannot coexist.

- Commercial diversification.

1. Customers base well diversified, with no concentration of sales.

2. Customers base well diversified, with some key clients.
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3. Most of sales directed to a few key clients.

Options 1 and 2 can coexist, while 3 collides with both 1 and 2.

- Years of experience of the management team in the industrial sector
the company operates in:

1. > 10

2. 5 − 10

3. < 5

The three options are exclusive, so they cannot coexist.

- Previous achievements of the management team.

1. Company owner / CEO with past successful achievements even
in different fields from the one in which the company operates
today.

2. Company owner / CEO with no relevant past experiences.

3. Company owner / CEO with one or more unsuccessful past
experiences.

Options 1 and 3 collide, while 2 can coexist with the others.

- Strategic vision and quality of management (referred to previous ex-
periences).

1. Excellent.

2. Good.

3. Satisfying.

4. Insufficient.

Options 1, 2 and 3 can coexist, while 4 collides with the others.

- Organisational structure of the company.

1. Organised in a well-articulate and efficient way.
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2. Well organised even if some gaps are present, all the relevant
positions are well covered.

3. The organisation is not adequate to the company dimension
and some relevant positions are not presided.

Options 1 and 2 can coexist, while 3 collides with the others.

- Market trend.

1. Growing.

2. Stable.

3. Going toward stabilisation.

4. In recession.

Option 1 collides with 4 because they describe completely opposite
market status. Options 2 and 3 are quite neutral and can coexist
with the others.

- Does the company invest in Research and Development?

1. Yes.

2. No.

Obviously in contrast.

- Level of competition in the market.

1. High.

2. Medium.

3. Low.

Option 1 collides with 3 because they are opposite, while 2 is quite
neutral w.r.t. to the others.

- Quality certificate(s) achieved.

1. The company achieved one or more quality certificates.
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2. The company has one or more quality certificates requests in
progress.

3. The company does not have any quality certificates.

Options 1 collides with 3, while 2 is quite neutral w.r.t. to the others.

- Relationships with the banking system.

1. Good margin of utilisation of the credit lines and good credit
worthiness.

2. Good margin of utilisation of the credit lines.

3. Presence of some tensions.

4. Overdrafts are present.

Options 1 and 2 can coexist. Options 3 and 4 can coexist.

- Is the company foreseeing to increase its capitalisation?

1. Yes.

2. No.

Obviously in contrast.
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B.2 Qualitative Questionnaire.

The qualitative questionnaire aims at collecting the qualitative informa-
tion of the company/financial institution that accesses the Online Self As-
sessment service. Here is the list of questions and the corresponding op-
tion answers.
For being processed, the questionnaire has been suitable codified. In the
ontology, at schema level, each question is a datatype property of a con-
cept.
The codification, with the syntax Concept.datatypeProperty, is also
provided.

• Diversification of production.

1. The company operates in more than one sector.

2. The company operates in just one sector with flexible produc-
tion processes.

3. The company operates in just one sector with no flexible pro-
duction processes.

DiversificationOfProduction.hasDivOfProdValue

• Commercial diversification.

1. Customers base well diversified, with no concentration of sales.

2. Customers base well diversified, with some key clients.

3. Most of sales directed to few key clients.

CustomerBase.hasDiversification

• Years of experience of the management team in the industrial sec-
tor the company operates in.

1. > 10.

2. 5 − 10.

3. < 5.
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ManagementTeam.hasYearOfExperience

• Previous achievements of the management team.

1. Company owner/CEO with past successful achievements even
in different fields from the one in which the company operates
today.

2. Company owner/CEO with no relevant past experiences.

3. Company owner/CEO with one or more unsuccessful past ex-
periences.

PreviousAchievements.hasPrevAchievements

• Strategic vision and quality of management (referred to previous
experiences).

1. Excellent.

2. Good.

3. Satisfying.

4. Insufficient.

StrategicVisionAndQualityManagement.hasRate

• Organisational structure of the company.

1. Organised in a well-articulate and efficient way.

2. Well organised even if some gaps are present, all the relevant
positions are well covered.

3. The organisation is not adequate to the company dimension
and some relevant positions are not presided.

OrganizationalStructure.hasType

• Market trend.

1. Growing.

2. Stable.
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3. Going toward stabilization.

4. In recession.

MarketState.hasTypeOfPhase

• Does the company invest in Research & Development?

1. Yes.

2. No.

ResearchAndDevelopment.isACompanyInvestment

• Level of competition in the market.

1. High.

2. Medium.

3. Low.

LevelOfCompetition.competitionRate

• Quality certificate(s) achieved.

1. The company achieved one or more quality certificates.

2. The company has one or more quality certificates requests in
progress.

3. The company does not have any quality certificates.

QualityCertificate.numberOfQCAchieved

• Relationships with the banking system.

1. Good margin of utilisation of the credit lines and good credit
worthiness.

2. Good margin of utilisation of the credit lines.

3. Presence of some tensions.

4. Overdrafts are present.

RelationshipWithTheBankingSystem.hasTypeOfRelationship
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• Financial requirements trend.

1. In line with the company dynamics.

2. Not in line with the company dynamics.

FinancialDebt.hasFinancialDebt

• Is the company foreseeing to increase its capitalisation?

1. Yes.

2. No.

CapitalizationStrategy.isTheIncreasingForeseen
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