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1 Introduction

Urban and Environmental Economics are two branch of Economics
that are more and more tightly interconnected and always should be.
Trying to study how population is distributed across cities is a key point
for several issues, either from a theoretical point of view or from a policy
implementation point of view. Among the policies possibly affected by
population distribution, policies dealing with climate change are one of
the most affected, as people keep attributing a growing importance to
the quality of their life, to the protection to natural risks and, then, policy
makers have to care about how people are spread across cities. Viceversa,
an effective climate policy should try to improve people’s life quality and
to leave at least unaltered the population distribution, as it can cause, for
example, job losses due to company relocation, which can alter in a sub-
stantial way the way in which population distributes in cities.
In this thesis work, we aim to provide the international scientific com-
munity with new insights on some of the most relevant topics in these
two branches: What is the actual distribution of population in cities of a
country and what were the processes leading to it? Using different de-
mographics variables or introducing some demographic characteristics
(as age structure) could lead us to different results and give us different
insights on the way in which people distribute across cities in a country?
Could the greenhouse gas emissions behavior of a company be affected
by the way in which the company is given the rights to emit a certain
amount of carbon dioxide? These are the main topics concerning the
three chapters of which this thesis is constituted.

In the first chapter, we tackle a long living research question: in which
way people distribute across cities? The only stylized fact recognized by
the entire scientific community is that the way in which people agglome-
rate is not random, but it follows a certain distribution. Three are three
main candidates to be the real distribution: power-law, log-normal and
Double Pareto log-normal distributions. Scientific community provided
empirical evidences supporting all of them, therefore an agreement bet-
ween the three opponents has not still reached. Approaching to these
topics means to get in touch with two empirical regularities: Zipf’s Law
and Gibrat’s Law. Roughly speaking, the first one states that the city
size in a country is proportional to its rank and, then, it follows a power-
law distribution, whereas the second one affirms that the growth rate of
an entity (i.e., firm, city, etc.) is independent of its size. Although the
acknowledgement of two empirical regularities could be an help in de-
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veloping a theory, this is not the case because the two above mentioned
relationships seem to be not unified by a single theory, as Gibrat’s Law
should lead to a Log-normal distribution, instead of a power law one, as
predicted by Zipf’s Law.
In the chapter, we study city size distribution for Italian cities, using
data from three different censuses. After collecting some empirical re-
sult confirming or rejecting the stylized facts collected in the previous
literature (and, in particular, about Zipf’s Law and Gibrat’s Law), we
find that, among the different distributions proposed in the literature,
the most suitable distribution for Italian cities seems to be the Double
Pareto log-normal distribution, as distribution of Italian cities seems to
be log-normal in the body and Pareto in both the tails. Then, we try to
provide a simple model about the evolution of the city distribution in
order to find average parameters for the growth rate distribution (in par-
ticular, mean and variance) leading to the actual distribution. As this
task was not fulfilled, then, we start to question some of the widely rec-
ognized regularities and we find that they have not been always as they
seem at the moment.

In the second chapter, instead, we go beyond the idea of finding
what the actual distribution of people in cities should be and we look at
whether the way in which people spread across cities can vary whether
we consider different demographic variables (for example, employment
rather than population) or whether we add another parameter to the
analysis, as age structure can be. In this chapter, we use yearly data
on population and employment for all German cities and towns, from
2001 to 2011, split by age cohorts, to perform Zipf’s Law analysis and
Gibrat’s Law analysis. We found that differentiating for age cohort and
using different dependent variables can lead to very different result. For
what Zipf’s analysis is concerned, we found that employment is much
more concentrated with respect to population and younger cohorts show
a clear tendency towards agglomeration in larger cities, whereas elder
cohorts show the opposite behavior1. For what, instead, Gibrat’s Law
is concerned, we found that the two variable behave in a different way.
For example, Gibrat’s Law seems to be in operation for employment but
not for population, where biggest cities seem to grow more than smallest
ones.
All of these new results should be taken into consideration, either in de-
veloping new theoretical models of urban growth that want to be more
accurate and in structuring new policies that want to be more effective.

1Zipf’s exponent of Pareto distribution can be seen as a measure of concentration
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Then, in the last chapter, we move from urban economics to environ-
mental economics, and we try to analyze emissions behavior of establish-
ments under the EU ETS (Emissions Trading Scheme), a cap-and-trade
scheme regarding greenhouse gases emissions. In few words, establish-
ments under this scheme must have permits to emit CO2: these permits
can be grandfathered (in the first two steps of the project, almost all of the
permits were released in this way) or they have to be auctioned and then
traded among the plants (in the third phase of the project, the amount
of grandfathered permits was drastically reduced). Since the beginning,
this scheme has attracted a lot of attention among scholars and policy
makers, because it represents the central EU policy instrument in order
to mitigate climate change and to be compliant to objectives recorded in
the Kyoto protocol. The potentially harmful impacts on the competitive-
ness of European firms subject to the EU ETS (industries have to buy per-
mits for emissions and this increases costs) coupled with the fact that the
EU ETS was unilaterally introduced in Europe may induce firms to re-
locate their carbon-intensive production activities in countries with less
stringent regulations for mitigating climate change (this effect is called
carbon leakage effect). Carbon leakage has two negative implications for
the country (or group of countries) that introduces an unilateral strin-
gent climate mitigation policy. First of all, emissions at the global level
are not reduced but only displaced towards other countries. Second, the
relocation of carbon-intensive industries has a negative impact on the
wealth within the country, as it causes job losses. For this reason, the
European Commission has been particularly sensitive about the issue of
carbon leakage and in the third phase of the scheme (the phase in which
industries are required to auction all of the permits they need) decided
to allocate permits for free, only to those sectors that are exposed to high
level of carbon leakage risk. So we decided exploit the asymmetry in the
allocation mechanisms introduced from the third phase of the EU ETS as
a way to evaluate whether different allocation mechanisms are neutral in
terms of emission abatement decisions.
We found that, for establishments in the sector of manufacturing, it seems
that grandfathering permits leads to an increase in emissions with re-
spect to plant who have to auction or buy all of their permits.
This result is in contradiction with respect to the theoretical prediction
of neutrality of allocation mechanisms in cap-and-traade schemes, thus
leading to sub-optimal outcomes. These findings should be taken in con-
sideration by policy makers about possible ways of improving ETS-like
schemes in order to improve their economic efficiency and correct for po-
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tential distortions induced by specific rules for specific case, such as the
case of carbon leakage.
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2 On the distribution of (all) the Italian cities

2.1 Introduction

An accurate description of the spatial distribution of population is
important for a number of theoretical and policy relevant issues, rang-
ing from a better understanding of firms and people localization deci-
sions to the implementation of national and regional policies in terms
of incentives and transport infrastructures (as it is reported in Fazio and
Modica (2012)[1]). The only fact about the international scientific com-
munity agreed is that the way the population is distributed across geo-
graphic areas, while continuously changing, is not totally random, but
it follows a certain distribution. In fact, there is a strong tendency to-
ward agglomeration, i.e. the concentration of the population within com-
mon restricted areas like cities or towns. And while physical geography
(rivers, seas, coasts and mountains) may have played a crucial role in
early settlements, in the current day and age, the evolution of the popu-
lation across geographic locations is an extremely complex amalgam of
incentives, and actions taken by millions of individuals, businesses and
organizations at the same time. Most of the people involved in this kind
of research agrees that economic factors are the principal determinant of
the dynamics of city population. Unfortunately, the literature is still far
from reaching consensus on which kind of distribution should be.
This lack of consensus about city size distribution is essentially due to a
puzzle caused by two well-known and well-established empirical regu-
larities: Zipf’s law (named after the name of the economist who first pro-
posed it, George Zipf, in his work of 1949[2]: that is, city size distribution
must follow a Pareto distribution, at least in the upper tail) and Gibrat
law (named after the first economist who proposed it in 1931, Robert
Gibrat[3]: that is, city growth size does not depend on the city size). Al-
though the acknowledgement of two empirical regularities could be an
help in developing a theory, this is not the case because the two above
mentioned relationships cannot be unified by a single theory: Gibrat law,
also known as proportionate growth process, gives rise to a log-normal
distribution, instead of a Pareto one, as it is supposed by Zipf’s Law. On
the basis of these results, most of the literature dealing with this topic is
based on the debate between scientists providing theoretical and empir-
ical support to the Pareto distribution and scientists opposing this view
and providing theoretical and empirical support to the log-normal dis-
tribution.
However, more recently, another kind of distribution attracted the atten-

5



tion of the scientific community: the Double Pareto log-Normal distri-
bution, proposed in the seminal paper by Giesen et al. (2010)[4], that is
a distribution that is Pareto in the two tails and log-normal in the body.
This is because this distribution seems to be the perfect trait-d’union bet-
ween the two above mentioned empirical regularities: it arises from a
little modification of the proportionate growth process (we will explain
it better later on) and it shows Pareto behavior in both of the tails.
So, three specific distributions are the most accredited in the literature:
the power-law, the log-normal and the Double-Pareto log-normal. Dis-
entangling between the three has even important implications from a
theoretical point of view. For example, a power-law distribution implies
that cities are the result of agglomeration forces and industry specific
shocks. A log-normal distribution, instead, implies that cities grow pro-
portionally and independently from the initial city size and their distri-
bution results from city-wide rather than industry specific shocks, as ex-
plained in Gabaix (1999)[5]. In Reed(2002)[6], we can find the proof that
a Double Pareto log-normal distribution arises, instead, from a process
in which cities have not all the same age but some are older than others;
this process resembles the Yule process, first described in biology (Yule
(1925)[7]).
As you can simply see from this brief introduction on the topic, study-
ing the actual city size distribution is still an open question, without an
agreement on what kind of distribution it is neither an universally ac-
cepted theory to explain it. Our paper aims to provide further empirical
evidence to the debate using the most recent data about Italian distribu-
tion (2011 census) together with the last two censuses (2001 and 1991) in
order to confirm or reject some of the main findings obtained in the lite-
rature (explained in details in sec. 2.2). We find that, among the different
distributions proposed in the literature, the most suitable distribution
for Italian cities seems to be the Double Pareto log-normal distribution,
as distribution of Italian cities seems to be log-normal in the body and
Pareto in both the tails.
Based on this result, we try to develop a simple model about the evolu-
tion of city distribution in order to find the average parameters for the
growth rate distribution leading to the actual city size distribution. As
we did not succeed in this task, we start questioning the hypothesis of
the model, and, in particular, the hypothesis of proportionate growth
process, the so-called Gibrat Law.
The rest of the paper is structured in the following way. First, in section
2.2, we give a complete literature review of the topic. Then, in section 2.3,
we describe our data. Instead, in section 2.4, we will provide the whole
set of our empirical results and in section 2.5 we present the theoretical
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results obtained by means of numerical simulations. Lastly, in section
2.6, we question the validity of the law of proportionate growth for the
evolution of Italian cities, showing some examples in which it seems to
not hold. Section 2.7 concludes.

2.2 Literature review

As we said before, the main substantial difficulty in the description of
the population mobility derived from a puzzle caused by two very well
known empirical regularities.
The first empirical regularity is that the largest cities satisfy Zipf’s Law.
As we said before, despite the apparent chaotic evolution of city popula-
tions, surprising regularities have been observed in the size distribution
of cities. As early as 1682, Alexander Le Maı̂tre observed a systematic
pattern of the size distribution cities in France. He describes how the
size of Paris is related to two groups of cities, each of them proportionally
smaller than Paris[9]. But it was not until 1913 that Felix Auerbach[10],
and George Kingsley Zipf[2] in 1949, formally established the first em-
pirical regularity. They proposed for the first time that the city size dis-
tribution could be closely approximated by a power-law distribution. In
particular, city sizes are said to satisfy a peculiar power-law distribution,
referred to as Zipf’s Law, that is, for large sizes S, we have

P(Size > S) =
a

Sζ
(2.1)

where a is a positive constant and ζ = 1. That is, the size of a city
times the percentage of cities with larger size equals a constant.
An approximate way of stating Zipf’s Law is the so-called rank-size rule.
This is a deterministic rule that follows from the definition: the second
largest city is roughly half the size of the largest city, the third largest
city is roughly a third the size of the largest, etc. That is, whether we
rank cities from largest (rank 1) to smallest (rank n), and denote their
sizes S1 ≥ S2 ≥ ... ≥ Sn, respectively, the rank i for a city of size Si
is proportional to the proportion of cities greater than i. Therefore, by
rewriting Eq. (2.1) we have

Si '
k
i

(2.2)

where k is a positive constant.
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Figure 2.1: Log Size vs Log Rank

This relation can easily be derived in an elementary way. Let us sup-
pose that at each time a person is born in a city, that all cities have the
same birth rate and that with very small probability, this person creates
a new city. Then, the total population n0 of cities existing at time t0 is
proportional to t0: n0 ∼ t0. The rank of the city created at time t is
proportional to t: R ∼ t0. The ratio between the size of the city and
the total population remains the same: K/n = 1/n0. This implies that:
K ∼ 1/n0 ∼ 1/t0 ∼ 1/R. In the end, size is inversely proportional to the
rank. It is important to bear in mind that even though Zipf’s law holds
perfectly, the rank-size rule would hold only approximately.

In fig. (2.1) we can visualize the rank-size rule for cities of the United
States. In order to do this, we took a country (in this particular exam-
ple, the United States), and ordered its cities by population: New York
has rank 1, Los Angeles has rank 2, etc. We then draw a graph, known
as Zipf’s plot: on the y-axis, we place the logarithm of the rank (New
York has rank ln1, Los Angeles has rank ln2, etc.); on the x-axis, the log-
arithm of the population of the corresponding city (which we previously
referred to as the size of the city). As we can see, the result is something
very close to a straight line. Furthermore, fitting a linear regression yields
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ln Rank = 10.53− 1.005 ln Size (2.3)

we can observe that R2 is 0.986 (these data have been taken from
Gabaix (1999)[5]). As you can see, the slope of the regression line is very
close to -1, as it is predicted by the rank-size rule.
Support for this empirical regularity comes from numerous country stu-
dies and comparative international evidence. In the field of country stu-
dies, we can mention Dobkins and Ioannides (2000[11]), Fujita, Krug-
man and Venables (1999[12]) and Gabaix (1999[5]) while Rosen and Ros-
nick (1980[13]), Brakman, Garretsen and van Meerwijk (2001[44]) and
Soo (2005[15]) are the most complete empirical international compara-
tive studies. These are typically conducted along the lines given by the
following equation:

ln Rank = A− ζn ln Sizei (2.4)

where by ζn we denote the Zipf exponent deriving from a sample
whose length is n. This procedure is the most used in this kind of stu-
dies because it has the main advantage that it yields even a direct visual
goodness of fit with the power law.
Dobkins and Ioannides report OLS estimates of ζ, that are obtained along
the lines of eq. (2.4) with repeated cross sections of U.S. Census data
for metro areas. Their estimates decline from 1.044 in 1900, to 0.949, in
1990. When they use the upper one-half of the sample only, a practice
that conforms to some other estimations of Zipf’s Law (such as in Fujita,
Krugman and Venables (1999[12])), the estimate of ζ declines from 1.212
in 1900, with 56 metro areas in the entire sample, to 0.993 in 1990, with
167 metro areas in the sample. Fig. (2.1) is taken from Gabaix (1999)[5]
and reports an estimate equal to 1.005, using the 135 largest metro ar-
eas in 1991 as reported in the Statistical Abstract of the United States.
Rosen and Resnick (1980[13]) examine city distributions for 44 countries
in 1970. The average Zipf’s exponent is 1.13 with a standard deviation
of 0.19, with almost all countries falling between 0.8 and 1.5. Brakman
et al. (2001[44]) show that city-proper data are associated with higher
Zipf exponent (mean=1.13, standard deviation=0.19, N=42) than urban
agglomeration data (mean=1.05, standard deviation=0.22, N=22). Soo
(2005[15]) updates these results without altering the basic findings. He
finds a Zipf coefficient of 1.105, for cities, but 0.854 for urban agglomer-
ations. As we can simply see, the estimated dispersion in the Zipf expo-
nent is large. Looking at the average of exponent estimates, however, we
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see that whether the average value ζ is not exactly equal to 1, it is typi-
cally in the range [0.85 1.15]. This results lead the international scientific
community to conclude that power laws describe well the empirical reg-
ularity, with a Zipf exponent typically around 1. Furthermore, they add
that predicting a value in a range [0.8 1.2] may be included in the list of
criteria used to judge the success of urban theories (as reported in Gabaix
(1999)[5]).

 

Figure 2.2: Growth rate vs city size

The second most important empirical regularity is that the growth
rate of city populations does not depend on the size of the city. Even
though growth rates between different cities can even vary substantially,
there is no systematic pattern with respect to size, i.e., the underlying
stochastic process is the same for all cities (as reported in Gibrat (1931)[3]).
This is labeled the proportionate growth process and it is usually referred
to as the Gibrat Law. Empirical research (among which we can men-
tion, for example, Eaton and Eckstein (1997[17]), Ioannides and Overman
(2003[18]) and Glaeser Scheinkman and Shleifer (1995[47])) has repeat-
edly shown that city growth is proportionate: larger cities on average do
not grow faster or slower than smaller cities. This effect is visually shown
in fig. (2.2): in this picture, it is reported a scatter plot in logarithmic scale
of city growth rate versus city initial size. As we can simply see, there is
no emergency of any trend in the study of growth rates as a function of
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the city size: the data can be very well fitted by means of an horizontal
line meaning that there is no systematic difference between the growth
rate of large and small cities.

While it is surprising that such regularities emerge from a highly in-
tricate underlying mechanism, there is also a puzzle: the two regularities
cannot easily be reconciled, leading Krugman to write in 1995 ”We have
to say that the rank-size rule is a major embarrassment for economic theory:
one of the strongest statistical relationship we know, lacking any clear basis in
theory”[20]. In particular, the proportionate growth process gives rise
to the log-normal distribution (as reported in Eeckhout (2004[16]) and
not to the power-law distribution we have seen in eq. (2.1). This is a
well-known proposition established by Gibrat (1931[3]) and originally
formulated by the astronomer Jacobus C. Kapteyn (1903[21]): a stochas-
tic growth process that is proportionate gives rise to an asymptotically
log-normal distribution. This is not to say that a proportionate growth
process plus ”something else” cannot give rise to a power-law distribu-
tion or another distribution.
There is a long tradition in the economics of income inequality starting
with David G. Champernowne (1953[22]) and industrial organization
(for example, John Sutton (1997 [23]) and Boyan Jovanovic (1982 [24]))
studying the relation between proportionate growth and size distribu-
tions different from the log-normal. With respect to the size distribution
of cities, Xavier Gabaix (1999[5]) and Aharon Blank and Sorin Solomon
(2000[25]) propose a resolution of the puzzle and show that proportio-
nate processes can generate Zipf’s Law at the upper tail. In particu-
lar, they consider random growth processes with the entry of new cities
and apply a process developed in Champernowme (1953[22]) and Kesten
(1973[26]). In order to have a steady state, they need a mechanism that
prevents the small cities from becoming too small: the clearest version
they propose of such a mechanism is given by a ”random walk with a
lower barrier”. They claim this mechanism is necessary because if such
a mechanism were not present, the city-size distribution would become
degenerate, and in particular they claim the city-size distribution would
become a log-normal one, where most cities would have infinitesimal
size.
While these process do generate steady states that are power-law distri-
butions, Blank and Solomon (2000[25]) point out that details specifying
and enforcing the smallest size of the cities are crucial, as are the rules for
creating new entries cities. Whether or not the resulting limiting distri-
bution is power-law with exponent equal to one is very sensitive to this
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entry process. Moreover, testing whether the entry process satisfies the
exact and detailed requirements for the power-law distribution is a chal-
lenging empirical endeavor (for the Metropolitan Areas in the United
States, for example, there has been no entry or exit in the set of MAs bet-
ween 1990 and 2000; the 276 MAs in 1990 are identical to those in 2000)
and up to date, no such evidence has been provided.

In contrast to all this literature, Eeckhout (2004[16]) proposes a differ-
ent solution to this puzzle, exploiting the availability of US Census 2000
data. This dataset is substantially larger than those of earlier censuses,
including observations on the entire size distribution of geographic lo-
cations, referred to as ”places”. In particular, in this dataset, there are
25359 places, including cities, towns and villages, ranging in population
from 1 to over 8 million while, in the datasets used in the previous lite-
rature, only the truncated distribution, i.e., the upper tail of the distri-
bution (the 135 largest cities) was considered, namely the 0.5 percent of
the 2000 sample and 30.2 percent of the sample population. Using this
new dataset, Eeckhout shows that the size distribution of the entire sam-
ple is log-normal and not power-law, as it was claimed by the previous
literature. Moreover, for the observations for which it was possible, he
computes the growth rate of cities, showing that growth is independent
of city size. Thanks to these two results, he can establish that, when we
consider the entire distribution and not only the upper tail, Gibrat’s pre-
diction concerning the stochastic process holds. The only issue to solve
is to explain why there is a so wide confirmation of Zipf’s Law in the lite-
rature, even though the underlying distribution is log-normal. The two
distributions are very different and this is why the distribution should
never fit to power-law whether the true distribution is a log-normal one:
goodness of fit tests will categorically reject the power-law distribution.
Nevertheless, when regressing log rank on log size (even for the entire
size distribution), the coefficient comes out significant. However, this
regression test merely confirms that there is a relation between rank and
size, but it does not provide a test for the linearity of this relation. As
such, testing the significance of the linear coefficient is not the equivalent
of a goodness of fit test for the power-law distribution.
More important though is that until this work the literature considered
the truncated distribution. At the very upper tail of the distribution,
there is no dramatic difference between the density function of the log-
normal and the power-law because both the power-law and the trun-
cated log-normal distributions are downward sloping and similar (the
power-law is slightly more convex). As a result, both the distributions
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trace the data relatively closely. The problem is that the estimated coef-
ficient on the power-law distribution is extremely sensitive to the choice
of the truncation point: as the truncation point increases, the estimated
coefficient increases, while the estimated log-normal coefficients remain
unchanged. Moreover, for lower truncation points, the power-law fits
the data less and less well. In the paper, it is shown that these observed
empirical changes in the estimated power-law coefficient are theoret-
ically consistent with the comparative static of a changing truncation
point of the log-normal distribution. This sensitivity of the power-law
coefficient to the truncation point has been observed even in the previ-
ous literature (as reported in Gabaix and Ioannides (2003[8]) even though
they have been explained by different theories.
Levy (2009[27]) criticizes the work by Eeckhout (2004[16] claiming that
in the top 0.6 percent range of the largest cities, the size distribution di-
verges dramatically and systemically from the log-normal, and instead
the size distribution is much better described by a power-law. For this
reason, he divides the distribution of city size in two different regions:
the bottom and the middle ranges where the empirical distribution fits
the log-normal, and the top range where the empirical data fit a power-
law distribution. While this upper part accounts only for the top 0.6
percent of the cities (about 150 out of 25359), the claim is relevant since
these cities account for over 23 percent of the total US population.
Eeckhout (2009[28]) replies to this criticism claiming that Levy is induced
in a mistake by the peculiarities of the log-log plot that, according to him,
has 4 main caveats:

1. The log scale heavily distorts low rank observations because it blows
up bounds and deviations for very few at low ranks

2. The data are heavily concentrated in the middle of the distribution

3. Log-log plots are very uninformative for parts of the distribution
with a high density and a large number of observations

4. A biased representation similar to log-log plots occurs with a nor-
mal probability plot (one of the evidences brought by Levy), where
the deviations in the middle of the distribution are not picked up.

In the end, he concludes claiming that city size distribution is a log-
normal one because the upper tail falls into the confidence bands of the
log-normal estimates.
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Recently, a new distribution arose support from the international sci-
entific community: the Double Pareto Log-Normal distribution2. This
distribution has a log-normal body in the medium range and exhibits
a power-law in both the lower and the upper tail. Empirical evidences
on 8 different countries show that the city size distribution in all coun-
tries can be well approximated by a log-normal but they show even that
a Double Pareto log-normal distribution approximates data even better
(as reported in Giesen et al. (2010[4]). The authors claim that, although it
is quite obvious that a more flexible functional form delivers a better fit,
their work is not a theory free one because they rely on a mechanism de-
veloped by Reed (2002[6]). In this model, cities grow stochastically as un-
der Gibrat’s law, but in every time interval dt there is the probability λdt
that a new city emerges as a satellite of an existing one. The initial size of
the new city is drawn from a log-normal distribution with mean µ0 and
variance σ2

0 . These new cities then also exhibit proportionate growth.
Asymptotically, this process leads to a Double Pareto log-normal distri-
bution, which now comes out from a reasonable evolutionary process
and not only as a trick to better fit the data.

2.3 The data

It is important to point out that there is no universally accepted def-
inition of a city for statistical purposes. The main distinction is between
the proper city and the so-called Metropolitan Area (MA). A metropolitan
area is a region consisting of a densely populated urban core and its less-
populated surrounding territories, sharing industry, infrastructure, and
housing. A metropolitan area usually comprises multiple jurisdictions
and municipalities: neighborhoods, townships, cities, exurbs, counties,
and even states. As a general definition, a metropolitan area combines
an urban agglomeration (the contiguous, built-up area) with zones that
are not necessarily urban in character, but closely bound to the center
by employment or other kinds of commerce. These outlying zones are
sometimes known as a commuter belt, and may extend well beyond
the urban zone, to other political entities. In practice, the parameters
of metropolitan areas, in both official and unofficial usage, are not con-
sistent. Sometimes they are little different from an urban area, and in
other cases they cover broad regions that have little relation to a sin-
gle urban settlement; comparative statistics for metropolitan area should

2Pareto distribution is another name given to the power-law distribution
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take this into account. Population figures given for one metro area can
vary by millions. There has been no significant change in the basic con-
cept of metropolitan areas since its adoption in 1950, although significant
changes in geographic distributions have occurred since then, and more
are expected. Because of the fluidity of the term ”metropolitan statisti-
cal area,” the term used colloquially is more often ”metro service area,”
”metro area,” or ”MSA” taken to include not only a city, but also sur-
rounding suburban, extra urban and sometimes rural areas, all which it
is presumed to influence. Moreover, always because of the fluidity of
the term, each country has its own unique definition. For example, in
the United States (the most used country in the previous literature), the
Office of Management and Budget defines Core Based Statistical Areas
(CBSA) used for statistics purposes among federal agencies. Each CBSA
is based on a core urban area and is composed of the counties which
comprise that core as well as any surrounding counties that are tightly
socially or economically integrated with it. These areas are designated as
either metropolitan or micropolitan statistical areas, based on population
size; a ”metro” area has an urban core of at least 50,000 residents, while
a ”micro” area has fewer than 50,000 but at least 10,000.

To perform this work, instead, we have data about all the Italian
cities (”comuni” in Italian, more or less the equivalent of municipalities)
recorded in the last three censuses (1991, 2001 and 2011). We choose this
kind of data because, in despite of the fact that all the previous literature
uses data about the upper tail of the Metropolitan Areas distribution, we
believe whether one wants to explain how people distributes in cities, he
has to rely on the entire distribution and to rely on proper city data. This
is due to the fact that, as we said before, it does not exist a unique defi-
nition of Metropolitan Areas (each country has its own definition). Fur-
thermore, all the existing definitions are given for statistical purposes: in
some way, this fact can affect the distribution derived from this kind of
data. Moreover, Metropolitan Areas data do not cover the whole popu-
lation. On the opposite, proper city definition is based only on admin-
istrative criteria and they take into account the whole distribution of the
population, leading to a natural study on the people distribution.

Let us have a look to the data. All the three data-sets provide us with
the population for each municipality: for these data, in tab. (2.1) we re-
port some basic descriptive statistics. As one can simply see, whereas
the minimum size, the maximum size and the standard deviation show
an alternating behavior from 1991 to 2011, the average population per
municipality is constantly increasing from 1991 to 2011. Obviously, these
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Table 2.1: Some descriptive statistics

1991 Census 2001 Census 2011 Census
Minimum 31 33 30
Maximum 2733908 2546804 2663666
Average 7008.68 7035.643 7361.663
St. Dev. 42087.29 39326.61 40262.28
Median 2315 2345 2443

Skewness 42.85704 42.22574 43.72075
Kurtosis 2415.146 2374.504 2546.574

consideration should be read carefully, since we are dealing only with
three historical observations.

Two interesting descriptive statistics are those that are presented in
the two last rows of tab. (2.1), namely skewness and kurtosis.
In probability theory and statistics, skewness is a measure of the asym-
metry of a distribution. The skewness value can be positive or negative.
Qualitatively, a negative skew indicates that the tail on the left side of the
probability density function is longer than the right side and the bulk of
the values lie to the right of the mean. A positive skew indicates that the
tail on the right side is longer than the left side and the bulk of the values
lie to the left of the mean. A zero value indicates that the values are re-
latively evenly distributed on both sides of the mean, typically implying
a symmetric distribution. According to this definition, the city-size dis-
tribution for Italian cities is strongly positively skewed (with a skewness
value around 43 in all the three observations): this means that the most
part of the Italian cities are smaller than the average. This observation
can be confirmed by looking at the percentile distribution3 which tells us
that more than the 75% of the whole population lies at the left of the ave-
rage (the 75% being around cities with 5000/6000 inhabitants in all the
three observations). A further confirmation to this observation can be
given by looking at the comparison between the average and the median
of the distribution. As one can simply see, median and average differ
a lot for all the three distribution. On average, the median has a value
around 2000 while the average has a value around 7000. In a symmetric
(not skewed) distribution, this two values should, more or less, coincide.
As for the kurtosis, this is another descriptor of the shape os a probability
distribution. In particular, this measure indicates the fatness of the tails

3we decided to not report this distribution, for the sake of conciseness
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of the distribution. Usually, a way to interpret this statistics is to com-
pare the value for the required distribution with the standard value for
a Gaussian distribution that is equal to 3. If a distribution has a kurtosis
value greater than 3, this distribution is called leptokurtic distribution:
this indicates that distribution’s tails are fatter than Gaussian’s ones. If a
distribution has a kurtosis value smaller than 3, this distribution is called
platykurtic: this indicates that distribution’s tails are thinner than the
Gaussian’s ones. According to these definitions, the city-size distribu-
tion for Italian cities is strongly leptokurtic, having a value around 2400
that is much bigger than 3. This means that there is a much higher prob-
ability to find extreme cities (very small or very big cities) than it would
be predicted if the cities distribution was a Gaussian one.

Beyond this kind of data, our data-sets come providing us with some
further data. For example, 1991 and 2001 censuses data provide the dif-
ference in population for each municipality (either in value or in percen-
tage rate) and the population density per square kilometer, whereas the
2011 census data provides some more information: for each municipality,
it provides data on men and women populations, number of family, re-
siding population in family, average number of family components and
residing population in cohabitation. However, we are interested only in
understanding the spatial distribution of population, so we will use only
some of those additional data in order to control some of our results.

2.4 Empirical results

The first empirical result we want to show is the rank-size relation
for the entire distribution of Italian cities. Let us recall briefly the way in
which we can build up this relation. We sort the distribution by number
of inhabitants in descending order. In this way, the largest city (Rome, in
our case) has rank 1, the second largest has rank 2 (Milan, in our case) and
so on and so forth. So, we have two columns: one for cities population
and one for ranks. We take the base-n logarithm (natural logarithm) of
the two column. Then, we plot on the x-axis the base-n logarithm of rank
and on the y-axis the base-n logarithm of the population. In fig. (2.3), we
report the obtained result for all the three census for which we have data.

There are two main features one can notice from this plot. First, over
the last twenty years (from 1991 to 2011) the city distribution showed ab-
solutely no change at all in her shape, neither in the upper tail (the range
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Figure 2.3: Rank-size relation

in which we have the largest cities) or in the lower tail (the range in which
we have the smallest cities): the three distributions overlap in a perfect
way. Obviously, this graph does not tell us anything whether there has
been some changes in the rank position of the cities even though, at least
for the upper tail, we can check that no changes have been looking at the
data: Rome has been the largest city in all the twenty years we are look-
ing at, Milan has always been the second and so on an so forth.
Another simple observation we can draw from this graph is that Zipf’s
Law (or, more properly, a linear relation between rank and size) does
not hold for the lower tail of the distribution. Indeed, at a certain point,
the linear relation between rank and size starts to deviate in the lower
tail since it becomes almost a vertical line. This result is essentially due
to the very high concentration of very small cities: as we can see from
tab. (2.1), the 50 percent of the distribution (then, about 4000 cities out of
8000, composing our population) has a size lower than 2000 inhabitants
and the lowest has about 30 inhabitants. So, even though in logarith-
mic term there is a huge change in city size, the rank does not change so
much (always speaking in logarithmic terms).

However, in order to verify whether at least largest cities satisfy Zipf’s
Law, we have to check the linear coefficient in the regression eq. (2.4). We
have to say that, with respect to eq. (2.4), we perform the inverse regres-
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Figure 2.4: Fitted rank-size relation

sion but this would absolutely not affect our results whether Zipf’s Law
is satisfied. Indeed, according to Zipf’s Law, both the regressions should
show a coefficient ζ = 1. Since this coefficient would be equal to 1 in
both the regressions, there is no particular reason to choose one choice of
the axis with respect to the other one. If, instead, the Zipf’s Law will be
not satisfied by our data, the result will be different in both the possible
choices so, again, there is no reason to prefer one choice to the other one.
Obviously, since it is glaring that the whole distribution cannot be fitted
by a linear fit, we have to exclude some points from the regression, in or-
der to have approximately a line on which we are going to perform our
regression.
One of our results is shown in fig. (2.4), from which we can see that
the coefficient is quite far from 1, being about 0.75 with a confidence
interval ranging from 0.7495 to 0.7544. However, we found that this co-
efficient is very sensitive to the truncation point, ranging from 0.68 (CI
[0.6774,0.6897]) to 0.78 (CI [0.7788,0.7844]). This observation leads us di-
rectly to another consideration driven to our mind by the work by Eeck-
hout (2004[16]): the linear coefficient in the regression changes depend-
ing on the truncation point of the upper tail of the distribution, whether
the underlying distribution is not a power-law, as clearly it is in our case.

However, as we said before, we know that even though Zipf’s Law
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holds perfectly (then with an exponent equal to 1), the rank-size relation
could hold only in an approximate way. So, before claiming that, for Ital-
ian city size distribution, Zipf’s Law does not hold, we have to check it
on the counter cumulative distribution function, namely the probability
that the size of a city is greater than a specified size, for all the possible
sizes (P(S > S)). In order to perform this regression, we compute the
cumulative distribution function of our distribution and then we work
on the counter cumulative by means of the transformation

CCDF = 1− CDF (2.5)

where, obviously, CCDF stands for Counter Cumulative Distribution
Function and CDF stands for Cumulative Distribution Function.
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Figure 2.5: Fitting of CCDF

The result of our fitting is reported in fig. (2.5). As you can sim-
ply see, the linear coefficient (1.48 with CI [1.479,1.483] is very different
from the previous fit (fig. (2.4)). This is because, in this case, we have
a natural choice regarding the two axis: on the x-axis we put the base-n
logarithm of the population and on the y-axis we put the value of the
counter cumulative distribution. In a rank-size relation this corresponds
to the inverse of the choice we adopted before but we think in that case
the most natural choice is to put the population on the y-axis and the
rank on the x-axis, as we do. To compare the two results, it is enough
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to invert one of the two results and compare the two. If we perform this
computation, we see that the two results are quite different (1.33 against
1.48), however, we have to remember that these coefficients are very sen-
sitive to the choice about excluded points and, furthermore, that the two
relations are not properly the same. However, what we are interested in
is the fact that the two coefficients are both quite far from 1, meaning that
we can exclude that Zipf’s Law could hold for the Italian cities distribu-
tion.

So far, we were only able to exclude that Italian cities can follow a
power-law distribution. So, according to all the literature, we have to
check whether the distribution could be a log-normal one or a Double-
Pareto log-normal one.
Let us test whether our empirical data could be best fitted by a log-
normal distribution. First, we present the histogram of the base-n log-
arithm of our distribution.
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Figure 2.6: Histogram of the base-n logarithm of the distribution

Doing this, whether the distribution is a log-normal one, we would
observe a Gaussian distribution. Our result is sketched in fig. (2.6). By
simply looking at the graph, we can see there is some similarity between
our histogram and a Gaussian distribution but we have to go deeper in
checking. The first thing we can do is to estimate mean and standard
deviation for a normal distribution from the logarithm of our empirical
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data and then generate a theoretical normal distribution with the same
parameters. Then, we can easily plot the rank-size relation for both the
distributions.
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Figure 2.7: Rank-size comparison.

The results for this kind of test are shown in fig. (2.7) where we show
a comparison between rank-size relation for the empirical and the theo-
retical Gaussian distribution. As we can see, there is high overlapping
in the body and in the left tail of the two distributions, but this overlap-
ping is totally lost in the right tail of the distribution: this would mean
that the log-normal distribution fails in describing the behavior of the
biggest cities. However, before pronouncing such a definitive sentence,
let us perform some other comparisons. What we want to do now is to
perform the fit of a log-normal distribution with some simple function.
To do this, we have to recall that, in a log-log plot, a log-normal distribu-
tion should look like a parabola. So, we can plot our empirical data on a
log-log scale and the try to fit them with a quadratic fit. The results are
reported in fig. 2.8.

This comparison, like the previous one, tells us that the distribution of
our empirical data is very close to a log-normal distribution in the body
but this tends to not to be true in both the tails: biggest and smallest cities
in our data are not well described from what a log-normal distribution
predicts.
Lastly, we perform a quantile-quantile plot of the natural logarithm of
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our empirical data against a normal distribution. A Q–Q plot (where ”Q”
stands for quantile) is a probability plot, which is a graphical method
for comparing two probability distributions by plotting their quantiles
against each other. First, the set of intervals for the quantiles is chosen. A
point (x,y) on the plot corresponds to one of the quantiles of the second
distribution (y-coordinate) plotted against the same quantile of the first
distribution (x-coordinate). Thus the line is a parametric curve with the
parameter which is the (number of the) interval for the quantile. If the
two distributions being compared are similar, the points in the Q–Q plot
will approximately lie on the line y = x. If the distributions are linearly
related, the points in the Q–Q plot will approximately lie on a line, but
not necessarily on the line y = x.

The results are reported in fig. 2.9. If the data followed a log-normal
distribution, this plot would result in a straight line (y = x, as we said
before) and it would completely overlap the red dotted line. Once again,
there is a perfect overlapping between the two distributions in the body
but there is not in both the tails. It is worth notice that the left tail seems
more little than the right one, that is, there is a smaller number of small-
est cities showing a Pareto behavior with respect to those biggest cities
showing the same behavior: we will find this result again in the follow-
ing.
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Figure 2.9: Quantile-quantile plot

All of these results lead us to the hypothesis that the log-normal dis-
tribution could not be the distribution we were looking for, even though,
at least for the main body of the distribution, this could be a very good
approximation.
Next step to perform is to move towards a more sophisticated distribu-
tion that could give us a better fit of our empirical data and that can be
derived by a realistic hypothesis on random growth process. In order
to find this distribution, it comes in our help the work by Giesen et al.
(2010[4]) in which they suggest a Double Pareto log-normal distribution
as a possible solution to our puzzle.
So far, we showed in several ways that the body of our distribution fol-
lows a log-normal distribution. Then, we have to show that both the
tails show a Pareto behavior so we can argue that the Double Pareto log-
Normal distribution could be a very good approximation for our empiri-
cal data. To perform this check, we will use the test developed by Clauset
et al. in (2009[29]). The results, for the two tails, are shown in fig. 2.10:
on the left, we have the right tail of the distribution (biggest cities) while
on the right we have the left tail of the distribution (smallest cities).

As we can simply see, both the tails are well described by means of
a Pareto distribution. The right tail shows a Pareto behavior in the first
1200 cities, with a cutoff point (the point where the distribution loses its
Pareto behavior) set around a population of 10269 inhabitants and an ex-
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Figure 2.10: Pareto test for tails.

ponent equal to 1.32 (a value that is in the range we established with our
fits). The left tail, instead, shows a Pareto behavior for the last 50 cities
with a cutoff point around 100 inhabitants and an exponent equal to 3.65.
These results confirmed something we already said in the previous: the
left tail is much smaller than the right one but the left tail is much steeper
than the right one (remember, the left tail seemed to be almost a vertical
line). In terms of population, this represents mathematically what we no-
ticed before: in the left tail, there is a high concentration of cities and then,
even though there is huge change in city size, there is a small change in
city rank.

2.5 The model

So far, we showed that the Double Pareto log-Normal seems to be the
most suitable distribution to describe the distribution of all Italian cities.
Now, what we want to do is to simulate the process on which the Double
Pareto log-Normal distribution grounds, in order to find what are those
historical average parameters in terms of cities growth rate mean and
standard deviation that could describe the actual Italian cities distribu-
tion. The question we would like to answer is: ”If we try to average out
all the exogenous shocks in Italian history, what would be the average
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and the standard deviation of the cities growth rate giving rise to the ac-
tual Italian cities distribution?”.

The model that we are going to simulate has been firstly derived by
Reed (2002[6]) and it is based on very simple probabilistic assumptions
about the formation and the growth of cities, which reflect the intrinsic
variability in these two processes. This model is essentially mathematic
since it is a consequence of a stochastic process which has certain char-
acteristics. However, this does not mean that geographic and economic
factors are not important in determining the growth and eventual size of
any city. Rather it means that when we look at the distribution of cities,
the effects of the variation in these factors can be modeled effectively by
stochastic processes.
This stochastic model is composed by two main components, one for the
foundation of new cities and the other for their evolution after founda-
tion. Cities grow in different and varying ways. The proportional rate of
growth size in a given year will vary from city to city and for a given city
will likely vary from year to year, depending on economic, demographic
factors, etc. This variability can be modeled mathematically by assuming
that the logarithm of population size for any city constitutes a realization
of a random walk (Gibrat (1931[3])). So, the size X(t) of a city will be
assumed to follow Geometric Brownian Motion (GBM) governed by the
Itô stochastic differential equation

dX = µXdt + σXdω (2.6)

where dω is white noise (the random increment of a Wiener process
in time dt). The parameter µ is the mean proportional growth rate over
all cities and all times (the so-called drift), and σ is a parameter reflecting
the variability in this growth rate. If the initial size of the city is X0, then,
under the GBM model, the size XT of the city T time units after will be a
log-normal random variable.
It is possible that the distribution of starting sizes has changed over time
(for example, agricultural cities likely were initially smaller than indus-
trial ones). One can easily accommodate this by assuming that X0 also
evolves as a GBM.
Another important characteristics of the model is the way in which we
can model the foundation of new cities. Of course, this can depend on
many factors but we assume that all these factors can be modeled by a
simple stochastic process.
The simplest stochastic model that one could assume is that foundations
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occurred in a Poisson process, i.e. they occurred randomly and inde-
pendently at a constant average time. However, an even more realistic
model results from assuming that in the time interval (t, t+ dt), any exist-
ing cities can form a new satellite settlement with probability λdt. This is
a so-called Yule process first proposed by Yule[7] as a model for the cre-
ation of new biological species, a process that is similar in many respects
to the foundation of new cities. For this model one can show that the dis-
tribution of the time T since foundation of a city currently in existence, is
of the form of an exponential distribution truncated at τ (the age of the
first city), with an atom of probability (reflecting the probability that the
given city is the oldest) of size λτe−λτ

1−e−λτ at the point τ. In most cases it is
probably reasonable to assume that τ is large, thus to consider the limit-
ing distribution as τ → ∞. This is exponential distribution with density
λe−λt for t > 0.
Under the Yule process for the foundation of cities and the GBM model
for their subsequent growth, the distribution of the current size can be
computed yielding a probability density of the form

f (x) =
αβ

α + β

[
x−α−1 exp

{
αµ0 +

α2σ2
0

2

}
Φ

(
ln(x)− µ0 − ασ2

0
σ0

)
+

xβ−1 exp

{
−βµ0 +

β2σ2
0

2

}
Φc

(
ln(x)− µ0 − βσ2

0
σ0

)]
(2.7)

on x > 0 where Φ is the cumulative distribution function of the stan-
dard normal distribution, Φc is the counter cumulative distribution func-
tion, and α and β are the roots of a characteristic quadratic equation. This
distribution is called Double Pareto log-normal (DPLN).

In order to see whether we can obtain what are the historical ave-
rage parameters giving rise to the actual city distribution, we simulate
this Yule process in Matlab. However, to simulate the evolution, we had
only parameters coming from the nowaday distributions (either of po-
pulation and growth rate of population) but these parameters for sure
do not reflect the situation as it was during all Italian history. To provide
for this lack of information, we multiply all the parameters we needed
in our simulation for some adjustment coefficients in order to take into
account the fact that distributions could have been very different during
the evolution.
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We start from a sample of n cities, normally distributed with mean given
by the actual mean of the distribution divided by 1.5 (it corresponds to
an average population of 200 inhabitants, as it is known that new born
cities were smaller in the past) and standard deviation given by the ac-
tual distribution. At each time step (we simulate 2800 time steps, as the
first settlements we can refer to as city are from the 8th century BC), each
city receives a shock in its population4: these shocks are normally dis-
tributed with mean a times the actual mean and standard deviation b
times that of the actual growth rate distribution. Our goal is to find the
parameters a and b that give rise to the distribution best approximating
our empirical data and, for this reason, we performed cycles over a wide
range of values, in order to find the best possible parameters. At each
time step, with a fixed probability λ5, several new cities are born with a
size normally distributed with the same mean and standard deviation as
the initial ones. To avoid the possibility of too small cities or even a city
with negative population, we set a lower barrier at the process: if, during
the evolution, a city became smaller than the nowaday smallest city, we
erased it from our simulations. To make all the results less sensitive to
the process of random number generation, for each couple of parameter,
we simulate 1000 evolutions and then we take the average.
The best result we obtain is shown in fig. (2.11), where we report the
rank-size relation obtained either for our empirical data and for the dis-
tribution arising from our simulations.

As we can simply see, there is a very good approximation for the
body of the two distribution, whereas there is no agreement in the two
tails: in particular, the theoretical size of the biggest and of the smallest
cities seems to be smaller than the empirical one.
To try to overcome these problems and, hence, to improve our model and
the adherence to the empirical data, we applied a series of modification
to our initial hypothesis:

• Sine wave varying probability of creation of new cities. Creation
of new cities is a process that is more likely and more favourite
when the state of economy is glowing rather than when the eco-

4To avoid lack of generality, we performed several tests varying each of these parame-
ters (number of initial cities, average size of initial cities, number of time steps): none of
these parameters can affect the shape of the final distribution. Each of these parameters
affect only the final parameter a and b that approximate the empirical distribution in the
best way.

5Even this parameter underwent several changes to avoid lack of generality: no effect
was seen on the shape of distribution, there was an effect only on the values of the best
fitting parameters.
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Figure 2.11: Comparison between empirical data and simulation

nomy is not. With this modification, we try to capture the possible
influence economic cycles can have on the probability of creation
of new cities.

• Increasing average size of new cities. It is well known that, as time
goes by, average size of new cities becomes bigger (for example,
industrial cities are bigger than agricultural ones). So, we set the
average size for the new cities directly proportional to our variable
representing years gone by.

• Decreasing probability of creation of new cities. As years pass
by, creation of new cities is always less likely, as the increasing con-
centration, due to the increasing number and size of cities, does
not allow for the creation of new cities (for example, we saw that
there is no creation of new cities in Italy between 2001 and 2011
censuses).

We tried to include all of these new features in our simulations but
none of these made our results improve. The only way these modifica-
tions affected our results is in a change in the value of the best parameters
but the shape of the distribution, and, hence, the drawbacks of our theo-
retical distribution, were totally unaffected.
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2.6 A change in the paradigm

Once we attested we were not able to overcome these bad results by
modifying our simulations, we started to question whether the hypothe-
sis of the model were correct.
In particular, the main hypothesis of our model (and of all the literature
dealing with city size distribution) is the law of proportionate growth,
also known as Gibrat Law, stating the independence of city growth rate
on city size. First, let us give a look to the city growth rate as a function
of the logarithm of the city size at time t− 1.
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Figure 2.12: Growth-size relation

Results are sketched in fig. (2.12). In this graph, growth rate are com-
puted as percentage returns, hence:

g =
S(2001)− S(1991)

S(1991)
(2.8)

where S(1991) and S(2001) are, respectively, the city size as result-
ing from the 1991 census and the 2001 census. The graph has the same
shape, even though we consider the next period (2001-2011) or whether
we move to another growth rates computation method (for example log-
arithmic returns, g = ln

(
S(t+1)

S(t)

)
). For sake of conciseness, we do not
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RHS var. 1 2

Const. -0.143 *** -0.510***
(0.008) (0.030)

Log(Popt−1) 0.022*** 0.117***
(0.001) (0.008)

Log2(Popt−1) -0.006***
(.000)

# obs. 8085 8085
R2 0.0622 0.0804

Table 2.2: Results of the regressions

report all the plots we have done, showing, more or less, the same be-
havior.
To state that Gibrat’s law holds for Italian cities, we have to test the equa-
tion

g = β0 + β1 · log(St−1) (2.9)

where with St−1 we denote the city size at t− 1, i.e. the city size in
the year from which we start computing the growth rate g. If Gibrat Law
holds, we should obtain that the regression coefficient β1 is not statis-
tically significant. Furthermore, as from the graph it seems to emerge
a parabolic pattern (despite the noise due to the high concentration of
points), we are going to test even the equation

g = β0 + β1 · log(St−1) + β2 · log2(St−1) (2.10)

Results of these regressions are sketched in tab. (2.2): in this table, the
dependent variable is city growth rate in percentage returns, standard
errors are reported in brackets and *** means 1% statistical significance
(in column 1 we report results for regression based on eq. (2.9) whereas
in column 2, we report results for regression based on eq. (2.10). As you
can simply see, either the first order and the second order coefficient are
highly statistically significant, leading us to the conclusion that Gibrat
law does not hold for Italian cities. However, one may assert that our
result is driven by the high noise in points distribution. So, in order to
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reduce the noise, we perform the same graph on average, i.e. we take
the average population and the average growth rate of a certain range
of cities. In this way, we can erase much of the noise due to the high
number of observation. In order to check the previous results, we divide
the whole range of our cities in N bins6. For each bin, we take the average
population and growth rate of all the cities falling in the bin, i.e. for each
bin, we compute the average population of the cities falling in the bin

S =
1

Nb

Nb

∑
i=1

Si (2.11)

and the average growth rate of the cities falling in the bin

g =
1

Nb

Nb

∑
i=1

gi (2.12)

where Nb is the number of cities falling in each bin.
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Figure 2.13: Growth size relation for averages

The results we obtained are shown in fig. (2.13): each point repre-
sents the average population and the average growth rate of the cities

6As for the other parameters, we perform several tests with different values of N but the
results were not affected: in all the graphs, we report the result for a number of bin equal
more or less to the square root of the number of observations.
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falling in a bin. Now, there is no need of a regression to see that there is
a parabolic behavior in the distribution of city growth rate with respect
to city size. This could imply that, in the distribution, there is a sort of
”ideal” number of inhabitants for the city size that is around 104: city
whose size is around this ideal value can attract people while cities with
a number of inhabitants above or under that threshold make people run
away from them. This result is confirmed even if we perform the same
computation not over the whole Italian cities but on a single region (in
Italian, ’Regioni’): we found the same behavior (not reported) for almost
all the regions.
One could think that this result could be due to the particular way in
which we built our bins. For this reason, we built our bins in another
way. Instead of having bins with the same length, we have bins with the
same number of cities in each bin and then we perform all the computa-
tions: we found exactly the same results, either on a national level and
on a regional level.
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Figure 2.14: Growth size relation for averages

The last check we made on this result is whether this seeming escape
from small and big cities could depend (at least for big cities) on inhabi-
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tants’ density (number of inhabitants per square kilometer). Our results
are sketched in fig. (2.14), where we plotted the same result as fig. (2.13)
but now the circles’ size is proportional to the average population den-
sity of the cities falling in the bin. As we can simply see, there is not a
huge change in city density, unless we move to very big cities (Rome,
Milan etc.), as the most of the cities ranges from 1000 to 3000 thousands
persons for square kilometer. So, this parabolic behavior does not seem
to be density driven.

We did not try to adapt this new result to our model in simulations
because our hypothesis is that this seeming escape from small and big
cities is not a structural feature of the growth rate distribution but only
something that emerged in the last years as a result of the fact that peo-
ple are always more careful about life quality and medium size cities
offer the best compromise in terms of life quality: this kind of city is not
so much crowded (as biggest cities are) but, at the same time, medium
size cities offer a good range of services and leisure activities (differently
from smallest cities, that, usually, offer poor services). To prove our hy-
pothesis, we obtained census data from 1951 and 1961 censuses and we
perform the same exercise as before.

For Italy, that was the period of the so-called Economic miracle: in
this period, the country was transformed from a poor, mainly rural na-
tion into a major industrial power. Moreover, it was also a period of mo-
mentous change in society and culture. The results of this new exercise
are shown in fig. (2.15): as before, each point represents the average po-
pulation and the average growth rate of the cities falling in a bin. As we
can simply see, although a simple graph of growth size relation would
result in very similar graph to the previous one (not reported for the sake
of conciseness), when we go to average out growth rates and population,
we obtain a result that is very different from what we obtained before. In
that period, biggest cities grew at a rate that is, on average, very much
bigger than the one of small and medium: cities growth rate grew almost
linearly with city size.

These results, on the one hand, suggest a possible justification to the
scarcity of the results of our simulation, as we applied a proportionate
growth hypothesis to the entire evolution process, and, doing so, we did
not take into account any different possible behavior. On the other hand,
more importantly, they could (and they should, in our opinion) suggest a
discontinuous change in the way to approach the search for the right city
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Figure 2.15: Growth size relation for averages

size distribution. When we go to average out city growth rate and size,
Gibrat law does not seem to hold anymore and, moreover, the relation
coming out does not seem to be constant over time. Thus, on average
over the whole history, growth size relation could be very different from
what Gibrat law told us up to now.

2.7 Conclusions

The way in which population is distributed among cities and/or Me-
tropolitan Areas is still an open question, in which either scholars and
policy makers are interested. Giving a globally accepted answer to this
question can be of fundamental importance to better understand even
firms localization decisions or to implement policies regarding transport
at all the levels. Unfortunately, only two regularities are widely accepted
by the international scientific community: Zipf’s Law for the upper tail of
the distribution and Gibrat law for the growth rates of cities. Moreover,
it seems these two empirical regularities cannot be unified by a single
theory.
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In this work, we studied the distribution of all the Italian cities, exploit-
ing data from the last three censuses. We obtained several important
results. First, we proved that the upper tail of the distribution follows
a power-law distribution, even though the linear coefficient in a log-log
plot is quite far away from what it is expected to be. According to Zipf’s
Law, the linear coefficient should be equal to one, while from our fits
we found at most a coefficient around 0.78. This lead us to claim that,
according to all the previous literature, there were two possible curves
fitting our data: log-normal and Double Pareto log-normal distribution.
From our fits and our tests, we found that a log-normal distribution fits
very well the body of our distribution but the agreement gets a bit lost
either in the lower and in the upper tail. Thus, we skipped to the only
distribution that could be according to the literature on the topic: the
Double Pareto log-Normal distribution. As we obtained several confir-
mation about the fact that the body of our distribution is a log-Normal
one, we checked the tails in order to see if they are Pareto. The tests gave
a positive result, so that we can affirm that, among the proposed distri-
butions in the literature, the Double Pareto log-Normal seems to be the
most suitable one to describe the 2011 distribution of Italian cities.
At this point, we moved away from detecting what is the actual city size
distribution for Italian cities and we tried to simulate the Yule process
leading to a steady state represented by the Double Pareto log-normal
distribution in order to find out what are the parameters, in terms of ave-
rage and standard deviation of growth rate distribution, that best repre-
sent the historical evolution of Italian cities. The question we would like
to give an answer to was: ”If we try to average out all the exogenous
shocks in Italian history, what would be the average and the standard
deviation of the cities growth rate giving rise to the actual Italian city size
distribution?” These simulations gave us an incredibly high overlapping
with the distribution of our empirical data, for what the body of the dis-
tribution is concerned, but very scarce results for the tails; in particular,
in both the tails, theoretical predicted cities were smaller than empirical
ones. We tried our best to improve the model and, hence, the agreement
between theoretical and empirical distribution but we did not succeed in
obtaining it. This lead us to question the goodness of model hypothe-
sis, and, in particular, the goodness of proportionate growth hypothesis
(Gibrat law) to represent the average historical growth size relation. We
found out that, averaging over N bins either cities growth rate and city
size, we do not obtain a straight horizontal line (as it is supposed to be if
Gibrat law held) but a functional form depending on the particular his-
torical period: for example, we obtained a parabola in the last 20 years
and an almost straight line (not horizontal) if we go back to the ’50s.
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Is it the Gibrat law the correct way to model the growth size relation?
Is the evolution of cities a proportional growth process? In our opinion,
we should start to go behind Gibrat law, at least for Italian cities, and to
propose new ways of relating cities growth and size
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3 Ageing and Labor Market: Testing Gibrat’s
Law for Germany

3.1 Introduction

Gibrat’s law and Zipf’s law are two very well known empirical regu-
larities, currently very debated among scholars and policy makers. Very
briefly, Gibrat’s law affirms that the growth rate of an entity (i.e. firm,
city) is independent of its size, meaning that no systematic behavior ex-
ists between its growth rate and its size. In the field of city size distribu-
tion, this implies that, although cities can grow at different rates, it is not
possible to affirm that larger cities grow faster than smaller ones or vice
versa.
Zipf’s law, instead, states that the city size distribution could be closely
approximated by a power-law distribution, at least in its upper tail. An
approximate way of stating Zipf’s Law is the so-called rank-size rule that
states the size of a city in a country is proportional to its rank. This means
that, for example, the largest city of a country is twice the second larger
city, three times the third one and so on. In fact, Zipf’s law (by means of
this rank-size rule) is able to measure how unequal the city distribution
is. According to Gabaix (1999[5]), Zipf’s law is directly linked to Gibrat’s
law because it is an outcome of Gibrat’s law, at least in the upper tail.
Many studies have focused on the analysis of these two regularities,
driven by the idea that a truthful description of the actual distribution
of people along the space might be very important for policy relevant
issues and also for defining more precise theoretical models. These is-
sues can range from a better understanding of firms and people local-
ization choices to the implementation of national and regional policies,
for instance, in terms of incentives and transport infrastructures (Fazio
and Modica (2015[30])). Indeed, Gabaix (1999[5]), provides a theoretical
model leading to a population growth process that follows the Gibrat’s
law (i.e a random growth process described by a common mean and vari-
ance) driven by migration which, in turn, “forces utility-adjusted wages
to equate at the margin” (Berry and Okulicz-Kozaryn, (2011[31]) p. S18).
At the same time, Eeckhout (2004[16]), providing empirical evidence
about Gibrat’s and Zipf’s law validity, models a city growth process char-
acterized by two main driving forces: random productivity process of
local economies and the perfect mobility of workers. Both these models
(but literature provides other similar models, see, for instance, Cordoba,
(2008[32])) underline how local labor market characteristics and migra-
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tion are important factors that concur in the ‘materialization’ of both
Gibrat’s and Zipf’s law. However, there might be also idiosyncratic rea-
sons why individuals decide to localize in a given city or choose to move
between cities that typically are not considered in this literature. For in-
stance, Peri (2001[33]) shows how young educated workers prefer work-
ing in larger cities. Hunt (2006[34]) provides evidence of different local-
ization behavior between old and young people, finding that young Ger-
man people are more mobile and they show more sensitivity to source
region wages and relative insensitivity to source unemployment, in com-
parison with elders. Moreover, the migration of young people is seen as
labour-force related in densely populated urban areas (Bures, (1998[35]);
Frey and Speare (1988[36]), Longino et al., (1984[37])), while elderly mi-
grants prefer less densely and amenity areas (Bures, (1998[35]); Longino
et al., (1984[37]); Scott and Storper, (2003[38])). Furthermore, many coun-
tries and especially Europe will become an ageing society in the decades
to come. Indeed, ”as Europe continues to age, the historical shape of its
age pyramid has moved away from a triangle (associated with an ex-
panding population) and has been reshaped, with a smaller proportion
of children and young people and an increased share of elderly persons.
”(Eurostat (2015[39], being young in Europe today).
This shift in the old-age dependency ratio will predictably have massive
impacts on many socio-economic phenomena, such as, for example, the
housing market, the labour market, the demand for goods and services
and so forth. Consequently, ageing has become an important source of
serious research and policy concern, among scholars and policy mak-
ers. However, it should be noted that the multitude of ageing effects will
not show a uniform pattern across and within countries. Most likely,
the spatial (urban and regional) variations will be significant, as a result
of different local circumstances, region-specific labour market participa-
tion, differences in regional in- and outmigration patterns etc.
The above mentioned demographic developments will certainly have
deep consequences for the functioning and evolution of local and re-
gional labour markets. They will most likely exhibit varying develop-
mental profiles, in terms of labour force participation, exit rates, produc-
tivity impacts and the like; ageing is not a neutral generic phenomenon,
but may create significant socio-economic disparities across cities and
regions in the same country, especially over a longer time horizon. A
country like Germany, for example, – with a rapidly rising ageing pro-
file – will most likely witness an unprecedented dynamics on its regional
labour markets.
Aim of the paper is then to provide a truthful description of the distri-
bution of people along the space taking into account the demographic
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differences between people. To provide this analysis, we will focus both
on population (in terms of place of residence) and employment (in terms
of place of work) data: we will use annual observations regarding po-
pulation and employment for all German towns and cities in the period
from 2001 to 2011. Then, the questions we want to answer are the follow-
ing: does the growth rate of employment/population depend on the size
of the cohort? What is the level of employment and population concen-
tration/deconcentration? Are there any differences between these two
variables? Are there any differences if we differentiate for age cohorts?
In answering all of these questions, we will first show the results of Zipf’s
analysis and we move then to Gibrat analysis. The main idea is then to
verify whether the size of a city (either in terms of population and in
terms of employment) according to 5-years age classes and its growth
rate are independent. To the best of our knowledge, this is the first study
attempting to introduce demographic characteristics (and in particular,
age structure) into the Zipf’s and Gibrat’s analysis. The novelty intro-
duced by the present study is then given by: the introduction in the anal-
ysis of demographic characteristic and the use of different measures for
city size other than population for place of residence (e.g. number of
employees for place of work). Furthermore, this study will definitively
provide new information for modeling a city growth process more in line
with the reality, incorporating idiosyncratic factors of the population and
the different localization preferences of young and elders. Moreover, it
will provide a better picture of the local and regional labour markets able
to support the implementation of national and regional employment and
urban policies.
The paper is structured in the following way. In section 3.2, we will pro-
vide the readers with a very brief reminder about the theory about Zipf’s
Law and Gibrat’s Law and the literature dealing with these two empiri-
cal regularities. In section 3.3, we will describe the data used to perform
our analysis. In section 3.4, we will show the methods we used to ob-
tain our results and the results themselves. Then, in section 3.5, we will
briefly conclude.

3.2 Gibrat’s Law and Zipf’s Law: A reminder

Gibrat’s Law, also known as proportionate growth process,(Gibrat,
(1931[3])) may explain in stochastic terms the systematically skewed pat-
tern of the distributions of cities’ size (Santarelli et al., (2004[40])). In-
deed, since the first study on Gibrat’s law (Gibrat, (1931[3])), it has been
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observed that the size distribution of firms (in first instance) and cities are
well approximated by a log-normal distribution (even though, at least for
cities, there is no global consensus among scholars on which distribution
should be, see, for example, Giesen et al. (2010[4])). The main reason why
this happens can be always related to the initial arguments provided by
Kapteyn (1903[21]), affirming that, if a variable is generated by a stochas-
tic growth process that is proportionate, it gives rise to an asymptotically
lognormal distribution. This process states that “the change in the vari-
ate at any step of the process is a random proportion of the previous
value of the variate” (Chesher, (1979[41]), p. 403), then “the probability
of a given proportionate change in size during a specified period is the
same for all firms - regardless of their size at the beginning of the period”
(Mansfield, (1962[42]), p. 1031).
Although many efforts have been devoted to the theoretical implication
of Gibrat’s law and on the mechanisms that can lead to the fulfillment
of the law, only recently, economic interpretations of the law have been
explored. For instance, according to the city size distribution literature,
several authors have suggested a fair number of economic interpreta-
tions, nonetheless differing only in some shades. To our opinion, two
studies are remarkable for the aim of this paper (reader interested in a
more complete description can consult Modica et al., (2015[30])). In a
short run view, Black and Henderson (2003[43]) state that a shock af-
fects in the same way big and small entities (or in the other way round,
both small and big entities have the same relative growth rate, indepen-
dently by the initial size of the entity). In a long run view, Brakman et
al. (2004[44]), state that a large temporary shock can have a permanent
impact. This means that a shock can change the growth path toward an-
other size equilibrium.
According to Gabaix (1999[5]), Gibrat’s law explains well the so-called
Zipf’s law. This law can be formalized as follows:

P(Si > S) =
a

Sσ
(3.1)

where a is a positive constant and σ = 1. That is, the size of a city
times the percentage of cities with larger size equals to a constant or,
equivalently, the probability that size of city i is greater than S is inversely
proportional to S. As we said before, there is also an approximate way of
stating the Zipf’s Law: the so-called rank-size rule. This is a determinis-
tic rule that follows from the definition: the second largest city is roughly
half the size of the largest, the third largest city is roughly a third the size
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of the largest, ecc. That is, whether we rank cities from largest (rank 1) to
smallest (rank n) and denote their population P1 ≥ P2 ≥ P3 ≥ ... ≥ Pn,
respectively, the rank Ri for a city of population Pi is proportional to the
proportion of cities greater than i. Therefore, we can rewrite the previous
equation in the following way:

Pi = KR−q
i (3.2)

Equation (3.2) is also known as the rank-size rule and is usually ex-
pressed in logarithmic form, as follows:

log(Pi) = log(K)− q log(Ri) (3.3)

where Pi is the population of city i, Ri is the rank of the ith-city and K
is a constant. Zipf’s law is said to hold precisely, when the coefficient q
is equal to one7.
Also for Zipf’s law, in the recent years, they have been proposed sev-
eral economic interpretations (see, among others: Gabaix and Ioannides,
(2004[8])). Very roughly speaking, the Zipf’s coefficient, q, can be seen
as a proxy for the hierarchical degree of a system of cities (e.g , if q is
exactly equal to 0, all the cities are of the same size; on the contrary, if q
tends to infinite the city system is composed by an enormous city where
all the population is condensed). Another interesting interpretation is
the one proposed by Nijkamp and Reggiani (2015[45]), considering the
urban structure as a network. In this way, they are able to compare the
Zipf’s law with the connectivity degree distribution, as in Barabasi and
Oltvai (2004[46]), meaning that the smaller is the value of the connectiv-
ity degree and the higher the number of the connections of the hubs.
In the field of spatial economics, these two regularities have given rise to
an increasing number of empirical and theoretical studies. Empirical stu-
dies try, in different ways, to test the (non)validity of both these laws, sin-
gularly or in combination, the following partial list cover the last works:

7This relation can be easily derived in an elementary way. Let us suppose that at each
time a person is born in a city, that all cities have the same birth rate and that, with a very
small probability, this person creates a new city. Then, the total population n0 of cities
existing at time t0 is proportional to t0: n0 ∼ t0. The rank of the city created at time t is
proportional to t: R ∼ t0. The ratio between the size of the city and the total population
remains the same: K/n = 1/n0. This implies that: K ∼ 1/n0 ∼ 1/t0 ∼ 1/R. In the end,
size is inversely proportional to the rank. It is important to bear in mind that, even though
Zipf’s Law holds perfectly, the rank-size rule would hold only approximately.
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for example, see, among the others, Black and Henderson (2003[43]);
Glaeser, Ponzetto, and Tobio (2014[47]); Gonzalez-Val (2012[48]); Guerin-
Pace (1995[49]); Rosen and Resnick (1980[13]); Soo (2005[15]); and Stor-
per (2010[50]).
In most studies, Zipf’s law and Gibrat’s law are both generally accepted;
among all the studies we can suggest: Giesen and Suedekum (2011[51]),
Eeckhout (2004[16]), Gonzalez-Val (2012[48]), Ioannides and Overman
(2003[18]), Gabaix and Ioannides (2004[8]), Black and Henderson (2003[43])
and Gonzalez-Val et al. (2013[52]).
Typically, all the above mentioned studies differentiate cities only by
their population size, without taking into account any demographic dif-
ference (for example, age structure) and without considering any regula-
rities on the employment size. However, it might be useful, both to build
more realistic random population growth model, to delineate more pre-
cise policy implications in terms of population ageing and to consider
appropriate labor polices, to take into consideration the demographic
characteristics of the population and of the employment size at munic-
ipalities level. In contrast to the relevant literature, then, this paper set
out to focus on trends in geographic concentration of employment across
municipalities with a particular focus on the demographic characteristics
of the population.

3.3 Data

The data set for this study has been provided by the German Institute
for Employment Research (IAB, Institut für Arbeitsmarkt -und Berufs-
forschung). It contains annual data on the number of inhabitants and
the number of employees for all German cities, even very small towns,
covering the time period from 2001 to 2011. Data cover not only the total
amount for employment and population but are available also for co-
horts of 5 years (i.e 20-24, 25-29 and so on), for both employment and
population, giving us the possibility to analyze in depth the two above
mentioned empirical regularities, even on the age structure of the coun-
try. Descriptive statistics for the data are summarized in Table 3.1. We
have been provided with a sample of annual observations in the period
between 2001 and 2011 for more than 11,000 towns and cities. It is inter-
esting to notice that the average growth rate of employment and popu-
lation in the period taken in consideration shows different patterns, ei-
ther at aggregate level and at cohort level. The total employment shows
an average growth rate of 9.1% while the total population, instead, de-
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creases of 3.5%. We can observe the same pattern in the youngest co-
horts: the employment of young cohorts (for example, from 20 to 29
years) shows a positive trend (an increase of about 7%) while the po-
pulation of the same cohorts decreases (almost 2%). This decrease in the
population of younger cohorts can even be seen as a first sign of popu-
lation ageing. This ageing process is even more underlined by the huge
increases we can observe in the population of the elder cohorts, that is
also reflected by the increases of the employment for those cohorts8. The
only cohort in which this pattern breaks up is the cohort 60 – 64, in which
we can observe a decreasing population growth, even though we can ob-
serve a huge increase in employment.

The correlation between the two variables population and employ-
ment (either at a global level and on a cohort level), however, is high
(from 0.94 to 0.98, as you can see in Table 3.2), indicating a good source
of comparability between the results.

3.4 Methods and Results

In some papers, especially in the first reappraisal of Gibrat’s and
Zipf’s law, the interest for small towns and cities was very low (see for
example Giesen and Suedekum (2011[51]; Soo (2005[15]); Overman and
Ioannides (2003[18])). This is due to the fact that Zip’s law holds only
in the upper tail of the distribution and it deviates in a substantial way
when it comes to the body of the city size distribution: because of this
reason, the studies exploring Zipf’s law focus mainly on the upper tail of
the distribution. However, more recently, the interest in the distribution
of all the cities becomes higher. This is thanks to the seminal works of
Gabaix(1999[5]) and Eeeckhout (2004[16]), that focus on the theoretical
relation between Zipf’s and Gibrat’s law (the former) and the empiri-
cal implication (the latter) that may lead to mispecification and wrong
results (for instance, Eeckhout (2004[16]) shows that the estimated OLS

8Notice that the huge increase of the employment in the elder cohorts can also be due to
the reform of labor market that took place in Germany between 2003 and 2005, also known
as the Hartz package (Hartz I-IV). In a few word, the first three stages of the reforms sought
to improve job search efficiency and employment flexibility. They included deregulation of
the temporary work sector to give individual employers more flexibility to vary employ-
ment levels without incurring hiring or firing costs, as well as a restructuring of the federal
labor agency in order to improve training and matching efficiency of job searchers. The fi-
nal set of reforms entailed a major restructuring of the unemployment and social assistance
system that considerably reduced the size and duration of the unemployment benefits and
made them conditional on tighter rules for job search and acceptance.
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Table 3.1: Descriptive statistics in 2011

Variable Mean Standard Deviation Max Avg Growth Rate
Total Emp 2585.95 19800.52 1151344 9.1%
Emp 20-24 257.36 1709.77 92707 7.3%
Emp 25-29 305.45 2491.82 140546 7.4%
Emp 30-34 309.59 2610.99 142905 -21.6%
Emp 35-39 298.19 2344.96 122459 -30.5%
Emp 40-44 391.46 2899.82 154350 5.3%
Emp 45-49 428.00 3053.74 176104 40.8%
Emp 50-54 362.35 2441.65 138754 52.8%
Emp 55-59 284.68 1907.36 110110 78.4%
Emp 60-64 144.36 1001.87 54978 120.6%
Total Pop 7252.44 47194.49 3501872 -3.5%
Pop 20-24 439.51 3158.61 231178 0.1%
Pop 25-29 442.23 3772.01 284687 -1.9%
Pop 30-34 438.01 3706.80 276989 -29.2%
Pop 35-39 424.03 3185.06 232551 -37.6%
Pop 40-44 563.86 3691.97 270099 -4.9%
Pop 45-49 632.49 4019.15 307041 26.6%
Pop 50-54 569.16 3362.41 253595 37.3%
Pop 55-59 491.81 2854.18 215153 58.7%
Pop 60-64 434.05 2639.21 200495 -7.8%
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Table 3.2: Correlation among variables

Tot Emp Emp Emp ... Emp Emp Emp
Emp 20-24 25-29 30-34 ... 50-54 55-59 60-64

Tot 0.97 0.97 0.97 0.96 ... 0.97 0.98 0.98
pop
Pop 0.97 0.97 0.97 0.96 ... 0.97 0.98 0.98

20-24
Pop 0.97 0.97 0.97 0.97 ... 0.97 0.97 0.98

25-29
Pop 0.97 0.97 0.98 0.97 ... 0.97 0.97 0.98

30-34
Pop 0.98 0.97 0.98 0.97 ... 0.98 0.98 0.98

35-39
Pop 0.97 0.97 0.97 0.97 ... 0.98 0.98 0.98

40-44
Pop 0.96 0.96 0.96 0.95 ... 0.97 0.97 0.97

45-49
Pop 0.96 0.96 0.96 0.95 ... 0.97 0.97 0.97

50-54
Pop 0.96 0.96 0.96 0.95 ... 0.97 0.97 0.97

55-59
Pop 0.96 0.96 0.96 0.95 ... 0.97 0.97 0.97

60-64
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coefficient of the rank-size rule varies depending on the truncation point
in the city size distribution). This has lead to an always greater interest
to the definition of statistical methods providing robust tool for the right
truncation of the sample (see Fazio and Modica, (2015[30]) for a compar-
ison of the methods).
For our purpose, we keep all the data for exploring Gibrat’s law while we
truncate the sample for Zipf’s law, using the method proposed by Ioan-
nides and Skouras (2013[53]). They provide an approach that estimates
the truncation point as a parameter of a Pareto-lognormal distribution,
h(·), by means of maximum likelihood estimation:

max
µ,σ,τ,q

ln h(P; µ, σ, τ, q),

s.t. τ > exp(µ)

where the Pareto-lognormal distribution has density:

h(P; µ, σ, τ, q) =
{

b(µ, σ, τ, q) f (P; µ, σ), τ > P > 0
a(µ, σ, τ, q)b(µ, σ, τ, q)g(P; q, τ) P ≥ τ

µ and σ are the parameters of the lognormal density function f (·)
while q and τ are the parameters of the Pareto density function with τ
the truncation parameter. Finally, a(·) is a continuity condition for h(·)
and b(·) are conditions that ensure that h(·) is a density (See Ioannides
and Skouras, (2013[53]) for more details).

In this analysis, depending on whether we use population data or em-
ployment data, we get different results. The first different result is that
the population sample is truncated after 300 cities while the employment
sample is truncated after only 125 cities, even though we apply exactly
the same method. We then apply the Eq. (3.3)(that is also known as the
rank-size rule, expressed in logarithmic terms), even though we use a
slight modification of the equation; we estimate the q-coefficients in the
rank-size rule by means of a modification proposed by Gabaix and Ibrag-
imov (2011[54])9 , that is expressed by the following:

9In the above mentioned paper, the authors show the estimator obtained by means of
the usual regression is a biased one. They also show that this bias could be minimized if
they subtract 0.5 from the rank value.
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Table 3.3: Zipf’s coefficient for employment

Tot Emp Emp Emp ... Emp Emp Emp
Emp 20-24 25-29 30-34 ... 50-54 55-59 60-64

2001 0.84 0.85 0.87 0.86 ... 0.85 0.87 0.88
0.00 0.01 0.01 0.01 ... 0.01 0.01 0.01

2002 0.84 0.85 0.88 0.86 ... 0.84 0.87 0.88
0.00 0.01 0.01 0.01 ... 0.01 0.01 0.01

2003 0.84 0.84 0.88 0.86 ... 0.84 0.87 0.88
0.00 0.01 0.01 0.01 ... 0.01 0.01 0.01

2004 0.84 0.84 0.88 0.86 ... 0.84 0.86 0.88
0.00 0.01 0.01 0.01 ... 0.01 0.01 0.01

2005 0.84 0.83 0.88 0.86 ... 0.83 0.86 0.88
0.00 0.01 0.01 0.01 ... 0.01 0.01 0.01

2006 0.84 0.83 0.88 0.87 ... 0.83 0.85 0.88
0.00 0.01 0.01 0.01 ... 0.01 0.01 0.01

2007 0.84 0.82 0.88 0.87 ... 0.83 0.84 0.87
0.00 0.01 0.01 0.01 ... 0.01 0.01 0.01

2008 0.84 0.82 0.88 0.87 ... 0.83 0.84 0.86
0.00 0.01 0.01 0.01 ... 0.01 0.01 0.01

2009 0.84 0.83 0.88 0.88 ... 0.82 0.84 0.85
0.00 0.01 0.01 0.01 ... 0.01 0.01 0.01

2010 0.84 0.83 0.89 0.88 ... 0.82 0.83 0.84
0.00 0.01 0.01 0.01 ... 0.01 0.01 0.01

2011 0.84 0.82 0.88 0.88 ... 0.82 0.83 0.84
0.00 0.01 0.01 0.01 ... 0.01 0.01 0.01

log(Pi) = log(K)− q log(Ri − 0.5) (3.4)

where Pi is the population of the city i, Ri is the rank of the ith city
and K is a constant. Zipf’s law is said to hold precisely, when the coeffi-
cient q is equal to one.

Results are shown in Table (3.3) and Table (3.4)10. According to Soo
(2005[15]), the estimated Zipf coefficient might be thought as a measure
of inequality; this is because, as we said before, if we assume that q = ∞
then, we could argue that all the population will be agglomerated in only
one big city. On the other way round, if we assume that q = 0, then all

10Complete table are provided up to request.
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Table 3.4: Zipf’s coefficient for population

Tot Pop Pop Pop ... Pop Pop Pop
Emp 20-24 25-29 30-34 ... 50-54 55-59 60-64

2001 0.75 0.73 0.79 0.79 ... 0.75 0.77 0.74
0.01 0.02 0.02 0.01 ... 0.01 0.01 0.01

2002 0.75 0.74 0.79 0.79 ... 0.74 0.77 0.75
0.01 0.02 0.02 0.01 ... 0.01 0.01 0.01

2003 0.75 0.75 0.80 0.80 ... 0.74 0.76 0.76
0.01 0.02 0.02 0.01 ... 0.01 0.01 0.01

2004 0.75 0.75 0.80 0.80 ... 0.74 0.76 0.76
0.01 0.02 0.02 0.01 ... 0.01 0.01 0.01

2005 0.75 0.75 0.81 0.81 ... 0.74 0.75 0.76
0.01 0.02 0.02 0.01 ... 0.01 0.01 0.01

2006 0.75 0.75 0.81 0.81 ... 0.74 0.75 0.76
0.01 0.02 0.02 0.01 ... 0.01 0.01 0.01

2007 0.76 0.76 0.82 0.83 ... 0.74 0.74 0.76
0.01 0.02 0.02 0.01 ... 0.01 0.01 0.01

2008 0.76 0.76 0.82 0.83 ... 0.73 0.74 0.76
0.01 0.02 0.02 0.01 ... 0.01 0.01 0.01

2009 0.76 0.76 0.82 0.84 ... 0.73 0.73 0.75
0.01 0.02 0.02 0.01 ... 0.01 0.01 0.01

2010 0.76 0.76 0.83 0.84 ... 0.73 0.73 0.74
0.01 0.02 0.02 0.01 ... 0.01 0.01 0.01

2011 0.76 0.77 0.83 0.85 ... 0.74 0.73 0.74
0.01 0.02 0.02 0.01 ... 0.01 0.01 0.01
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the cities will have same size. According to that, our results show that
the total employment results much more concentrated with respect to to-
tal population for all the samples we use. Moreover, these results hold
if we move our attention to the different cohorts: employment results
always much more concentrated with respect to population for every co-
hort. However, we do not find any substantial differences between the
concentration of employment of young people and elder ones (the esti-
mated rank-size coefficient for cohort 25-29, 0.87, for example, is almost
the same the cohort 60-64, 0.88). On the contrary, if we look at the es-
timated results for population, young people tend to concentrate more
than eldest people (if we take into consideration the same cohorts we
took before, we can see that the estimated rank size coefficient is 0.82 in
cohort 25 – 29 while it is 0.75 in cohort 60 - 64). These first results show
that agglomeration is higher when we look at the employment: this re-
sult was, in a sense, quite expected, as we can suppose places of work are
not spread uniformly across all cities and tend to agglomerate in some
cities more than others. On the population side, instead, we can notice
that young people (cohorts going from 20 to 34 years old) show a greater
agglomeration in larger cities than eldest ones, that is young people pre-
fer living in larger cities, while elderly people are more spread across
cities. This could be explained, for example, by the fact that, usually,
larger cities have a wider range of leisure activities (for example, more
gyms, wider range of restaurants, concerts, theatrical plays and so on),
usually more intended for younger people with respect to elder ones.
Or, on the other hand, young people can prefer living in biggest cities
because, usually, biggest companies locate in and around biggest cities
and these companies could be more attractive for young people than for
older ones.
Finally, if we look at how the estimated coefficients change during the
time, we do not recognize any significant difference in the estimated co-
efficients regarding the employment: aggregation level remains, more or
less, the same, either on an aggregate level and on a cohort level. In a
sense, this result is supporting our previous explanation: usually, com-
panies do not relocate their headquarters or their offices so often, even
because cities with a great number of headquarters offer a wide series of
infrastructures, that, in principle, could be not offered by any city.
The result is different when we move our attention on the historical pat-
tern for population. On an aggregate level, we cannot notice any sensible
change in agglomeration level but this result comes from a compensa-
tion effect between the pattern of younger people and elder people. In-
deed, during the ten year period taken in consideration, we can observe
a substantial increase of the estimated coefficient for the younger cohorts
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(from 0.75 to 0.81, if we consider an average among the level of cohorts
from 20 to 39 years old) and a substantial decrease in agglomeration level
for elder cohorts (from 0.75 to 0.73, if we consider an average among the
level from 50 to 64 years old): these results highlight a tendency towards
agglomeration in larger cities for younger cohorts, whereas elder cohorts
tend to spread more across little cities and towns.

If we instead move our focus to Gibrat’s law, we make use of non-
parametric analysis, strictly based on Ioannides and Overman (2003[18]).
We use the normalized growth rate, namely the difference between a
city’s growth rate and the mean city growth rate, all divided by the
standard deviation of growth rate. The strength of this non-parametric
estimation is that we do not impose any relationship between the de-
pendent and independent variables, i.e., we do not make any suppo-
sition about which the relation should be. According to Cameron and
Trivedi (2005[55], p. 294), we: “let the data show the shape of the re-
lationship”; this is an especially convenient approach when we do not
know a priori the correct distribution of the data. In our analysis, we
will use the Nadaraya-Watson (NW) method (Nadaraya (1964[56]); Wat-
son (1964[57])), where the bandwidths are calculated with an optimal
rule of thumb.
If Gibrat’s law holds, the non-parametric estimation of the conditional
mean and variance should be stable across different population sizes.
Furthermore, because of normalization, we expect the conditional mean
growth to be equal to zero, and the conditional variance of growth equal
to one. It should be noted that, while the standard parametric regres-
sion methods provide only an aggregate relationship between growth
and size, which is constrained to hold over the entire distribution of city
sizes, the non-parametric estimates allow the growth to vary with size
over the distribution.

In Figures from (3.1) to (3.6), we show the NW estimator for condi-
tional mean growth (upper panels) and variance (lower panels) for the
entire city size distribution and for their age cohorts: in particular, from
fig. (3.1) to (3.3) we report results for employment and its age cohorts,
whereas from fig. (3.4) to (3.6), we report the same results for population
and its age cohorts. Following Cordoba (2003[58]), the independence of
the expected conditional growth rate always has to be satisfied, while the
variance can be affected by the city size. In general, smaller cities face a
faster growth than larger ones. However, very quickly (in most cases),
the conditional mean appears to become stable. This evidence is consis-
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Figure 3.1: Conditional mean and conditional variance for employment

   
(a)   

   
   

 

Figure 3.2: Conditional mean and conditional variance for employment

tent with the model proposed by Gabaix (1999[5]), where a truncation
concerning the small cities is necessary to have stationarity.
Considering all the sample, without differentiating for cohort, we find
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that Gibrat’s law behave differently according to the choice of the an-
alyzed variable. For instance, for employment, Gibrat’s law is in ope-
ration, namely the growth rate of employment of a city is independent
from the initial size, when we consider all the sample (Fig. 3.1, panel a)
while, looking at the population, we can affirm that larger cities grow
more than smaller ones (Fig. 3.4, panel a). This evidence might denote
the possibility of a break-down in the choice of where to live with the
availability of work (i.e. I will choice to live in a large city close to the
city where I work, because a larger city can offer more in terms of leisure
activities, as we said before or, because in a big city there are more job
opportunities and, then, more career opportunities).

   
(a)   

   
   

 

Figure 3.3: Conditional mean and conditional variance for employment

This result is corroborate by the different behavior of the Gibrat’s law
when we differentiate for ageing cohorts. Young cohorts (20 - 29) show
a different pattern between employment and population: Gibrat’s law is
verified for cohorts 20 - 24 and 25 - 29 when we talk about employment
but it is not verified when we talk about population (see Figures 3.1,
panel b, 3.1, panel c and Figures 3.4, panel b, 3.4, panel c): in particular,
we can see that growth rate increases sensibly, as the city size increases.
Cohorts in the range 30 - 49 (See Figure 3.2, Figure 3.3, panel a, Figure 3.5
and Figure 3.6, panel a) instead show same results, both for employment
and population: we can clearly see that growth rate of employment and
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Figure 3.4: Conditional mean and conditional variance for population

population depends on the initial size, more in details larger cities show
higher growth rate. For older cohorts (50 - 65) we obtain opposite re-
sults (see Figure 3.3, panel b and c and Figure 3.6, panel b and c): indeed,
larger cities show lower growth rate both in population and in employ-
ment, indicating a situation where older people tend to concentrate in
smaller cities.

3.5 Conclusion

Understanding the actual distribution of people in cities and the dy-
namics leading to this distribution could be of fundamental importance,
either for policy relevant issues and also for developing more precise the-
oretical models. When one approaches these topics, without doubts one
have to face with the two most recognized empirical regularities: Zipf’s
law and Gibrat’s law. In an approximate way, the first one states that the
city size in a country is proportional to its rank, whereas the second one
affirms that the growth rate of an entity (cities, for example, but it can be
applied even to firms) is independent of its size.
Scholars have dedicated a lot of studies to the analysis of these two em-
pirical regularities, either in supporting them or in denying them, and no
universal consensus has been reached, at the moment. However, com-
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Figure 3.5: Conditional mean and conditional variance for population
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Figure 3.6: Conditional mean and conditional variance for population

mon literature provides analysis of Gibrat’s law and Zipf’s law without
taking into account any demographic characteristics. In this paper, we
go beyond the usual literature, focusing on population (and its age struc-
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ture) and employment (and its age structure). In this way, we obtained a
twofold novelty because first, we consider a demographic variable (em-
ployment) usually not considered in Gibrat and Zipf literature, then we
introduce the focusing on demographic characteristics, in particular age
structure. We made this by using a data set with annual observation of
these two variables for all German cities and towns.
What we have shown is how differentiating for age cohort and using dif-
ferent dependent variables can lead to very different result. In particular,
on an aggregate level, we found that employment is much more concen-
trated with respect to population (and this could be quite expected, as
places of work are, usually, not spread across all cities), and, then, tends
to concentrate in some cities rather than others. When we moved our
attention to age structure, we found that younger cohorts show a clear
tendency towards agglomeration in larger cities, whereas elder cohorts
show the opposite behavior, i.e. spread across cities and towns. All of
these results can be explained by different needs people with different
age can have. For example, larger cities, usually, offer a wider range of
leisure activities that are, usually, intended for younger people more than
for elder people, or large cities offer more career opportunities, usually
more attractive for younger people.
All of these new results should be taken into consideration, either in de-
veloping new theoretical models of urban growth that want to be more
accurate and in structuring new policies that want to be more effective.
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4 How neutral is the choice of the allocation mech-
anism in cap-and-trade schemes? Evidence
from the EU-ETS

4.1 Introduction

Since the very beginning, the European Emission Trading Scheme
(EU ETS) has attracted a lot of attention among international scholars
and policy makers, because it represents the central European Union (EU
from here on) policy instrument in order to mitigate climate change and
to be compliant with the target agreed in the Kyoto protocol. The EU
ETS represents the first attempt to develop a transboundary system of
emissions trading and, therefore, it represents a prototype to other ETSs
spreading around the world (see Borghesi et al, (2016[59])). The attrac-
tiveness of a cap-and-trade scheme like the EU ETS is due to the fact that,
under certain conditions, it allows to attain a certain environmental tar-
get exogenously defined in an efficient way as an homogeneous price for
emission permits across all the participants to the scheme will induce the
equalization of marginal abatement costs.

By setting a price for carbon emissions, the EU ETS adds a constraint
to firms, thus reducing (at least from a static point of view) expected
profits with respect to a no-policy scenario. Many recent papers (see
Martin et al, (2015[60]) for a comprehensive review) have looked at the
potential impact of the EU ETS on the economic performance of treated
firms, finding mixed evidence on a large variety of measures of economic
performance (productivity, turnover, employment, etc). Carbon pricing,
however, also induces investments in low carbon technologies aimed at
reducing the cost of complying with the regulation. Calel and Deche-
zlepretre (2016[61]) found a significant positive inducement effect of the
EU ETS on the development of low-carbon technologies (measured with
new patent applications) for EU ETS firms.

The potentially harmful impacts on the competitiveness of European
firms subject to the EU ETS coupled with the fact that the EU ETS was
unilaterally introduced in Europe may induce firms to relocate their carbon-
intensive production activities in countries with less stringent regula-
tions for mitigating climate change (this effect is called carbon leakage ef-
fect). Carbon leakage has a two negative implications for the country (or
group of countries) that introduces an unilateral stringent climate mitiga-
tion policy. First, from an environmental point of view, emissions at the
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global level are not reduced but only displaced towards other countries.
As GreenHouse Gases (GHG from here on) emissions are global exter-
nalities (i.e. they contribute to global warming no matter where they
are emitted), a simple displacement of carbon intensive activities under-
mines the environmental objective of the regulation. Second, from an
economic and a political point of view, the relocation of carbon-intensive
industries has a negative impact on the wealth and jobs created within
the country. For this reason, the European Commission has been partic-
ularly sensitive about the issue of carbon leakage. In the first two phases
of the EU ETS, emissions permits were allocated for free (i.e. grandfa-
thering) while starting from the third phase (2013-2020) an increasing
share of permits will be sold in auctions (generating revenues for pub-
lic budgets) just for those sectors that are not exposed to carbon leakage
risks.

According to the seminal paper by Coase (1960)[62], the level of emis-
sions in equilibrium does not depend on the assignment of property
rights over the emissions. If we apply this statement to the case of the
EU ETS that means that the same result in terms of the distribution of
abatement choice should be attained independently on the choice of the
allocation mechanism. Different allocation mechanisms would only gen-
erate a different distribution of net benefits across firms or between firms
and the government. This nice theoretical results implies that cap-and-
trade schemes attain the equalization of marginal abatement costs across
firms and thus a socially efficient distribution of the burden for climate
policy. On the other hand, if for any reason the allocation mechanism is
no longer neutral, a cap-and-trade scheme does not necessarily represent
a first-best solution.

In this paper we exploit the asymmetry in the allocation mechanisms
introduced from the third phase of the EU ETS as a way to evaluate
whether different allocation mechanisms are neutral in terms of emis-
sion abatement decisions. The paper is structured as follows. In section
4.2 we describe in detail the European Emission Trading Scheme. Sec-
tion 4.3 provides a theoretical discussion of the issues at stake, with a
focus on the role played by carbon leakage considerations within the EU
ETS and the possible reasons that may explain non-neutrality of the al-
location mechanism. Section 4.4 provides an overview of recent trends
in allocated and verified emissions for the EU ETS. Section 4.5 provides
empirical evidence on whether verified emissions are independent on
the allocation mechanism. Section 4.6 concludes.
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4.2 The EU ETS

The EU ETS was introduced by the Directive 2003/87/EC11 as the
main initiative of the European Union climate change mitigation policy
to reach the Kyoto targets and in order to be compliant with other cur-
rent and future regional and international targets. In a few words, this is
a cap-and-trade scheme put in place in order to keep CO2 emissions un-
der control: in this scheme, emissions permits are exogenously capped
and then are allocated to the participants at the beginning of each period,
either for free (with a method that is also known as emissions grandfa-
thering) or auctioned. At the end of each period, all the participants are
required not to have debt on emissions, that is they are required to re-
turn an amount of emissions permits at least corresponding to the actual
amount of verified emissions. In the meantime, permits can be traded
on a market, that is they can be transferred between participants at a
price per ton of CO2 that, in equilibrium, should be equal to the marginal
abatement cost, leading to an efficient distribution of abatement across
participants. Within the EU ETS, the penalty for non-complying (that is,
a participant is not able to return a sufficient number of emissions per-
mits at the end of the compliance period) was set to 40 euros per ton in
the pilot phase (2005-2007) and to 100 euros per ton for the period 2008-
2012.

This type of regulation was set in place with the intention to reach
a double objective: first, reducing the overall abatement costs of car-
bon emissions and, second, providing the economic incentives to induce
firms to invest in and so to develop low carbon technologies. This latter
goal is pursued on the basis of the fact that the political acceptance of
the regulation is likely to be higher if high induced innovation effects are
expected.

In this scheme, three main periods can be identified: the period 2005-
2007, in which the system was set up, and it represented a pilot phase.
No banking was allowed between the pilot phase and subsequent EU
ETS phases. The first commitment period (2008-2012), that was even
the period leading to the Kyoto commitment period (2012), extended the
scope of the scheme to aviation (2012). Finally, the second commitment
period (2013-2020) introduced a single cap valid for all the EU for total
emissions and a rising use of auctioning in the allocation of permits, with
some exception for some selected sectors.

11Emended by the Directives 2004/101/EC and 2008/101/EC, the Regulation 219/2009
and the Directive 2009/29/EC
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The EU ETS covers, now, all EU28 countries plus Norway, Iceland
and Liechtenstein. As it is characterised by substantial sunk and fixed
costs (including administrative and monitoring costs for participants and
governments), the Commission decided to include in the scheme only
the biggest emitters of CO2. These emitters are identified by their sector
of operation (or type of activity) and by the size of the plant in terms of
production capacity. The scheme currently covers about 11,000 plants in
Europe that contribute to around 45 percent of overall European green-
house gases emissions12. The sectors and thresholds involved in the ETS
scheme are reported in Annex I of the Directive and have been emended
twice since 200313.

However, some exemptions were made in order to reduce the possi-
ble carbon leakage effect, that is the phenomenon for which firms may
relocate part of the production in countries where this kind of regulation
is not in place: this effect may hinder the policy effectiveness of the reg-
ulation. In this light, a major amendment to the Directive concerned the
differentiation of the allocation scheme across sectors for the second EU
ETS commitment period (2013-2020) according to the criteria described
in the new articles 10 bis and 10 ter (Directive 2009/29/EC). The Deci-
sion of the European Commission 2010/2/EU ‘Determining, pursuant to
Directive 2003/87/EC of the European Parliament and of the Council, a list of
sectors and subsectors which are deemed to be exposed to a significant risk of
carbon leakage’ provided a list of 4-digit NACE sectors for which permits
could be grandfathered rather than auctioned also in the second com-
mitment period due to potentially relevant risks of off-shoring of these
production activities deriving from the EU ETS. These sectors were iden-
tified through qualitative and quantitative analysis on the importance of
potential carbon leakage and, to some extent, through a political negoti-

12http://ec.europa.eu/clima/policies/ets/index en.htm
13The 2003 Directive refers to the following activities (with corresponding capacity

thresholds - Annex I of the Directive 2003/87/EC): Combustion installations with a rated
thermal input exceeding 20 MW (except hazardous or municipal waste installations); Min-
eral oil refineries; Coke ovens; Production and processing of ferrous metals; Metal ore (in-
cluding sulphide ore) roasting or sintering installations;Installations for the production of
pig iron or steel (primary or secondary fusion), including continuous casting, with a capac-
ity exceeding 50 tonnes per day or in other furnaces with a production capacity exceeding
50 tonnes per day; Installations for the manufacture of glass including glass fibre with a
melting capacity exceeding 20 tonnes per day; Installations for the manufacture of ceramic
products by firing, in particular roofing tiles, bricks, refractory bricks, tiles, stoneware or
porcelain, with a production capacity exceeding 75 tonnes per day, and/or with a kiln ca-
pacity exceeding 4 m3 and with a setting density per kiln exceeding 300 kg/m3; Industrial
plants for the production of (a) pulp from timber or other fibrous materials (b) paper and
board with a production capacity exceeding 20 tonnes per day. The list has been further
extended to other sectors (refer to the consolidated version of the Directive 2003/87/EC
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ation. Three main criteria were included in the amendment to identify
the list of sectors to be exempted from auctioning14:

• The first is a ‘trade-based’ criterion according to which industries
(4-digit NACE) having a non-EU trade intensity (import plus ex-
port over domestic production) greater than 30% are exempted from
auctioning (trade criterion);

• The second refers to those industries (4-digit NACE) that are ex-
pected to experience additional (either direct and indirect) costs as
a consequence of the implementation of the ETS Directive greater
than 30% of their gross value added (emission criterion);

• The last criterion concerns industries (4-digit NACE) having, at
the same time, moderate trade intensity and implementation costs
(trade intensity greater than 10% and costs greater than 5% of gross
value added15

The list was subsequently further emended to add other sectors with
the decisions of the European Commission 2012/498/EU (that added
sector 2614 ‘Manufacture of glass fibres’) and 2014/9/EU (that added
sector 2653 ‘Manufacture of plaster’ and sector 2662 ‘Manufacture of
plaster products for construction purposes’). However, the practice of
exempting specific sectors from existing regulations is not uncommon:
as Martin et al. (2014[63]) recall, since the introduction of carbon taxes
back in the ‘90s, most of the countries involved grant some sort of ex-
emptions to energy intensive firms to avoid their relocation.

4.3 Theoretical framework

As a free allocation scheme can potentially have distorting effects on
the effectiveness and the working of an emissions cap-and-trade system,
this issue has increasingly attracted interest from research and policy
communities. This is because the absence of distortionary effects of free
allocations can be seen as a necessary condition for the cost-effectiveness
of a cap-and-trade scheme. Whether such distortions occur or not is, ob-
viously, of particular interest, especially for those cap-and-trade schemes

14A fourth criterion refer to qualitative assessment (Art. 10bis.17) of the likely impact of
EU ETS on production costs, investments and profit margins.

15These criteria are thoroughly discussed in the following document:
http://ec.europa.eu/clima/policies/ets/cap/leakage/documentation en.htm
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in which a large portion (or even the most) of the total allowance alloca-
tion occurs practically free of charge: to all of the affected installations,
it is granted an annual endowment, usually based on the installation’s
behavior in the past. If we were in an idealized world, allocations and
emissions had to be totally independent: in this way, any arbitrary distri-
butions of property rights would not affect outcomes, either on the trad-
ing side and on the emissions side (Coase, 1960[62]). The occurrence of
this independence property in operational cap-and-trade schemes could
be a very high advantage, especially from a policy and from a policy-
maker perspective, as this give to the policy-makers themselves the abil-
ity to use free allocation of allowances in a political way, letting the cap-
and-trade system do not suffer any negative consequence, especially in
terms of cost effectiveness (Hahn and Stavins, 2011[64]). However, in a
real-world cap-and-trade system, there are a lot of way in which annual
endowments of free allowance allocation can distort and affect emissions
outcomes, for example the presence of transaction costs (Coase, 1960[62];
Stavins, 1995[66]) or behavioral anomalies (Kahneman et al., 1991[69]).
So, ensuring in a rigorous way if different allocation mechanisms affect
emission outcomes becomes of major relevance.

The insight that, in the absence of any significant friction, optimal
emissions at the unit level are invariant with respect to the initial alloca-
tion of property rights dates back to Coase (1960[62]). Hahn and Stavins
(2011[64]) termed this invariance, the independence property in cap-and-
trade systems. It has been shown that this independence (or invari-
ance) property holds in a frictionless cap-and-trade system, as long as
allocation occurs in a lump-sum fashion (Montgomery, 1972[68]). How-
ever, as we said before, there is a number of reasons why this indepen-
dence property could fail in a real-world cap-and-trade scheme, when
installations receive some endowments of allowance allocations free of
charge, even when the allocation is a lump-sum one. Transaction costs
(Stavins, 1995[66]) or imperfect competition (Hahn, 1984[65]) can lead
to some kind of distortions in installation-level emission and abatement
outcomes. As we said before, this independence property can fail, even
due to some behavioral anomalies. It has been shown in the behavioural
literature that in experimental settings, subjects value their allowance in
a different way, depending on their allocation status, leading to under-
trading and a loss in cost-effectiveness in the cap-and-trade system (Kah-
neman et al, 1990[69]; Murphy and Stranlund, 2007[70]).

However, using empirical analysis, it is still challenging to evaluate in
a rigorous way whether it exists a casual relationship between installation-
level allocation and emissions. The main difficulty is due to the endo-

62



geneity of allocations, which are typically set based on historical plant-
level emissions, that usually are not observed. Therefore, in order to
identify an actual causal effect of allocation on emissions, we require an
exogenous source of variation in allocations. This is the major reason
why the empirical literature focusing on the causal relationship between
emissions and initial allocations in cap-and-trade systems is very poor,
consisting of only two papers. Fowlie and Perloff (2013[71]) investigate
this question, using the context of California’s RECLAIM program16 and
using an instrumental variable approach to identification. Reguant and
Ellerman (2008[72]), instead, investigate the same question for Spanish
thermal power plants regulated under the EU ETS during ETS Phase I
(2005-2008) and exploit a non-linearity in the national allocation rule for
identification. Both of these papers did not find a significant endowment
effect.

Why in a cap-and-trade scheme there should be a free allocation sys-
tem? When a government intervenes in a marketplace, this interven-
tion is always intended as a mean to increase net social welfare. Increas-
ing social welfare by regulation could impose a cost on some industries
for being compliant to the new regulation and then a government could
use part of the revenue to partially compensate industries. This distri-
butional effects of the new regulation could have, in principle, conse-
quences on policy design. Let us suppose industries are offered no com-
pensation at all, then the same industries have strong incentives to spend
money on supporting political parties that are against the regulation, or
to push to have exemption clauses, that could weaken the policy’s effec-
tiveness. Even worse, new regulation could push industries to relocate
to unregulated countries, and this is a threat for politicians of all stripes,
as job losses could affect re-election probability.

When we are dealing with policy about climate change, this threat

16REgional CLean Air Incentives Market is an emission trading program operating in
the state of California since 1994. This program was imposed by SCAQMD (South Coast
Air Quality Management District) in order to replace a series of more than 40 prescriptive
rules, which had been opposed by the industry. The main goal of the program was to make
so that hundreds of polluting facilities cut their emissions of nitrogen oxides (NOx) and
Sulphur Oxides (SOx).

At its inception, in 1994, RECLAIM included 392 facilities whose combined NOx emis-
sions accounted for over 65% of the region’s stationary NOx emissions. Almost all facilities
in SCAQMD with annual NOx or SOx emissions of four tons or more were included in the
program. A RECLAIM trading credit (RTC) confers the right to emit one pound of emis-
sions in a twelve month period. At the outset of the program, facilities were informed of
how many permits they would be allocated for free each year through 2010. NOx emissions
permitted under RECLAIM were reduce by over the 70 percent over the first ten years of
the program.
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about relocation is more aggravated by the so-called ‘carbon leakage ef-
fect’, that is the industrial relocation does not only shifts jobs to other
country, but even GHG emissions: in this way, the policy does not only
cause job losses in the country (or countries, in case of trans-national reg-
ulation) but does not reach the goal in environmental terms. The threat
of relocation, then, gave rise to the three exemption criteria, we alerady
discussed in section 4.2. Nonetheless, the importance of carbon leakage
in climate policy design, there is little empirical evidence about the link
the defined EU criteria and a sector’s vulnerability to carbon leakage.
All the existing studies are ex-post ones and they find no evidence of
possible strong adverse impacts of the new regulation on competitive-
ness indicators, in case allocations are given for free: see, for example,
Anger and Oberndorfer (2008) [73]; Abrell et al., (2011) [74]; Bushnell et
al. (2013) [75]; Chan et al. (2013) [76]; Commins et al. (2011) [77]; Petrick
and Wagner (2014) [78]; Wagner et al. (2013) [79]; Borghesi et al. (2016)
[80]. Instead, if we move to theoretical and simulation-based studies, we
find a negative impact of the new cap-and-trade scheme on production
in most manufacturing industries: see, for example, Reinaud (2005) [81];
Demailly and Quirion (2006, 2008) [82, 83]; McKinsey and Ecofys (2006a,
2006b) [84, 85]. They also show that the free allowances allocation com-
pensate negative profit impacts in most industries and can even lead to
overcompensation, as shown in Smale et al. (2006) [86].

4.4 Trends in emissions within the EU ETS

In this section, we analyse the behaviour of emission distribution, ei-
ther considering our whole data-set and dividing it in different subsets.
We employ yearly emissions data at the establishment level available
from the European Union Registry17 for the period 2008-2014.

As a first step, we plot the rank-size distribution, reported in Figure
(4.1)

The plot is built in the following way: we sort all the plants in our
dataset in a descending order on the basis of their verified emissions and
we rank them from 1 to n, then we plot the logarithm of emissions and
the logarithm of rank. The distribution has essentially the same shape for
the first and last year of our series (2008 and 2014, respectively). What
is worth noticing is that the distribution in 2014, with few exceptions,
lies below the distribution for 2008 (only the highest ranks behave in

17http://ec.europa.eu/clima/policies/ets/registry/documentation en.htm
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Figure 4.1: Log Emissions vs Log Rank
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the opposite way, having an amount of verified emissions that is greater
with respect to the 2008) signalling that, in those 6 years, it seems that
emissions have been lowered. However, this plot gives us only a broad
picture of what happened during the 6 years taken in consideration: plot-
ting only size and rank does not tell us anything about the dynamics of
emissions, because ranks could, in principle, even change drastically in
the period, leading us to compare very different plants from one year to
another. That is why we consider another plot, reported in Figure (4.2)

In this plot, we reported, for each plant for which we have data both
in 2008 and in 2014, the plant’s verified emission growth rate (computed
as logarithmic return: ln(emissions(2014)/emissions(2008))) against the log-
arithm of the initial emission size (verified emissions in 2008). The plot
suggests that there has been a decrease in the growth rate as the emis-
sions’ size increase, i.e. the smallest plants have an higher growth rate
with respect to the biggest ones. As there is large variance in the growth
rate in verified emissions across plants, we decide to split the sample
in smaller quantiles of verified emissions and take the mean logarith-
mic growth rate within each quantile. This plot is much clearer than the
first one, confirming our first impression of growth rate decreasing as a
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Figure 4.2: Log Growth Rate vs Log (Emissions)
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function of initial emissions’ size. Moreover, as we found a very regular
behaviour, we tried to fit it, obtaining a very good fit with a power law
distribution (R2 equal to 0.63, not reported), as we show in Figure (4.3).

The decreasing relationship seems to be quite glaring: whereas the
largest emitters decreased (on average) their amount of emissions, the
lowest emitters, on average, increased a lot their amount of emissions.
This result seems to go against the evidence discussed for Figure (4.1).
However, this is not the case because, as we said before, in Figure (4.1)
we do not have any hint about which plant was in the highest ranks in
2008 and which in 2014 whereas in Figure (4.3) on the x-axis the ranking
in 2008 is, in a way, considered and we so can observe how it changed
throughout those 6 years. Moreover, whereas in Figure (4.1) there is a
complete representation of all our data, in Figure (4.3) each point repre-
sents an average of plants that fall in the same bin.

So far, we considered the longest period for which we have data (from
2008 to 2014). However, as discussed in the previous sections, during this
period, the regulation moved from the second phase (2008-2012) to the
third phase (from 2013 onwards), in which emissions were not any more

66



Figure 4.3: Fitted Log Growth Rate vs Log (Emissions)
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freely allocated (grandfathering) but increasingly auctioned, with the ex-
clusion of leakage-exposed sectors. As discussed in the theoretical part,
this change in the regulation should not have effect on the polluting be-
haviour of the plants as at the margin the opportunity cost of emitting or
abating should remain the same. As a first step to evaluate this hypoth-
esis, we look at the logarithmic growth rate of emissions as a function
of the ratio between verified and allocated emissions: this could repre-
sent a measure of how much impact could have the change of normative
on plants’ emissions, as plants with a ratio greater than 1 should reduce
their emissions or increase their number of permits to be compliant. The
plots for the two periods are reported in Figure (4.4)18.

The plot is realized in the following way. On the y-axis, as we did
before, we report the logarithmic growth rate of emissions, whereas, on
the x-axis, we report the ratio between verified and allocated emissions.
Each point in the plot represent the mean logarithmic growth rate and the
mean ratio of verified and allocated emissions of several plants falling
in the same bin. On the left, we find the plot for the period 2008-2012

18In this case, we directly report the mean plot
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Figure 4.4: Logarithmic emissions’ growth rate as a function of the ration between verified
and allocated emissions.
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whereas, on the right, we can find the plot for the period 2013-2014. The
red line is a zero-level line in order to distinguish plants who increased
their emissions from plants who decreased their emissions.

In this way, we can distinguish different behaviour for plants who
needed to buy allowances on the market to cover their verified emis-
sions (that is, Mean(Veri f ied/Allocated) > 1) and plants who could sell
allowances on the market because they were endowed with more than
needed (Mean(Veri f ied/Allocated) < 1). As we can see from the plot,
there was a huge change in the polluting behaviour from the first pe-
riod (2008-2012, first ETS and Kyoto commitment period) to the second
period (2013-2014). There is a huge difference in polluting behaviour bet-
ween the two period, especially for plants whose ratio between verified
and allocated emissions is greater than 1. Whereas, in the first period,
the logarithmic growth rate for those plants is very spread, ranging from
-1 to almost 6, in the second period, the range is narrower, ranging from
-1 to 1.

Lastly, we wanted to check if this different polluting behaviour is
different between exempted and not exempted sectors, in order to see
whether the above mentioned exemption from auctioning could have
had an impact on the behaviour in the two periods. To do so, we repeat
the plot of fig. (4.4), dividing our sample in two further subsets, one
for plants in sectors who were exempted (Esentati) and one for plants in
sectors who were not exempted (No Esentati): the results are reported in
fig. (4.5). On the left, we find the plot for the period 2008-2012 whereas,
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on the right, we can find the plot for the period 2013-2014. In red, we
find plants in exempted sectors whereas, in blue, we find plants in not
exempted sectors.

Figure 4.5: Logarithmic emissions’ growth rate as a function of the ration between verified
and allocated emissions.
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There does not seem to be a systematic differences in emission growth
in the two period between exempted and non-exempted plants for dif-
ferent levels of Mean(Veri f ied/Allocated). When looking at trends in
verified and allocated emissions (fig. (4.6)) we observe that, even before
the exemption, the amount of permit allocated to sectors more exposed
to trade systematically exceeded the amount of verified emissions while
the opposite occurred for sectors not exposed to leakage. This fact is a
signal that even before the change in regulation sectors exposed to leak-
age were either over-endowed of permits or they were under-abating
with respect to other sectors. As expected, the amount of allocated per-
mits dropped substantially (almost to zero) for establishments in non-
exempted sectors from 2013 onwards, while the drop was much smaller
for establishments in exempted sectors. Interestingly, in 2013 (first year
after the reform) verified emissions of sector exempted from auctioning
increased substantially while verified emissions of other sectors (that had
to buy permits) experienced only a moderate growth. This is a first indi-
cation that the initial endowment of permits matters for the distribution
of pollution abatement.
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Figure 4.6: Trend in verified and allocated emissions for exempted and non-exempted
plants

0
50

0
10

00
15

00

2008 2010 2012 2014

Verified Allocated

Not exempted

0
50

0
10

00
15

00

2008 2010 2012 2014

Verified Allocated

Exempted

70



4.5 Regression analysis

The detailed descriptive evidence highlighted so far suggests that
plants in those sectors that were forced to purchase pollution permits
through auctions from 2013 onwards reduced their emissions relatively
more than plants in sectors exempted from auction. This may suggest
that the allocation mechanism chosen by the regulator is not neutral in
terms of abatement choice of firms and that the coexistence of different
allocation mechanisms within the same cap-and-trade scheme may gen-
erate some distortions. To better identify whether this descriptive evi-
dence is not the result of other factors that influence emissions and abate-
ment choice we employ a state of the art econometric approach to eva-
luate whether this change in regulation influenced abatement choices.

A recent paper by Zaklan (2016[87]) evaluates the impact of the same
change in the allocation mechanism of the EU-ETS only for plants that
operate in the power sector. Their identification is based on the fact that
for 8 EU countries (with a GDP per capita below 60% of the EU ave-
rage) obtained from the European Commission a postponement of the
allocation through auction for plants in the power sector up to year 2020
to ease the modernization of the power sector. Exploiting this asymme-
try in regulation, the authors find little support for significant impacts of
heterogeneous allocation mechanisms on verified emissions in the power
sector.

It should be noted, however, that the features of the power sector (i.e.
large firms, non-tradability of the output and inelastic demand for elec-
tricity) are likely to attenuate the expected impact of changes in alloca-
tion mechanisms on abatement behaviour. Companies in the power sec-
tor can easily pass-through increases in production costs to consumers,
creating little incentives, at least in the short term, to change their abate-
ment behaviour. On the contrary, plants in tradable industries such as
manufacturing industries, exposed to international competition, have
much smaller possibility to pass through higher upfront costs for com-
plying with the regulation and may decide to change their abatement
behaviour even in the shorter run. For this reason, our focus from now
onwards is on the manufacturing industry only.

To evaluate how the distribution of pollution abatement changed af-
ter the reform of the EU-ETS that exempts plants in specific sector from
auctioning we estimate a simple econometric model. The idea is that
in absence of exemption, verified emissions and allocation of permits
would have evolved in the same way for both treated and control plants.
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We estimate the following equation:

log(Veri f ied emissit) = βExempts × Post2013t + X′γ + τtαi + εit (4.1)

where Veri f ied emissit represents verified emissions for establishment
i in year t, Exempts is a dummy variable (time-invariant) that equals one
for those sectors exempted from auctioning from 2013 onwards, Post2013t
equals one for years 2013 and 2014 and zero otherwise, X′γ is a vector
of control variables (EU28-level trends in production by 4-digit NACE
sector in log from PRODCOM, country-specific linear trends and main
activity-specific linear trends), τt are time dummies and αi is the plant
fixed effect.

Our parameter of interest is β which describes the estimated increase
in verified emissions in establishments that are exempted from auction-
ing. This is a simple difference-in-difference approach. The identifica-
tion assumption is that treated and untreated individuals would have
followed the same trend in absence of the treatment. As the assignment
to treatment is not random (i.e. it is based on the sector of operation of
the plant), there are many possible reasons that may give rise to different
trends in emissions even in absence of the treatment. We already partly
account for these confounding factors with the inclusion of the estab-
lishment fixed effect (that account for time-invariant differences across
plants), the sectoral trend in production (that account for the dynam-
ics of demand), country-specific trends and activity-specific trends. This
may not be enough as other systematic differences between plants in dif-
ferent sectors may give rise to different trends. For this reason, we try
to further reduce the heterogeneity between treated and control plants
by matching controls to treated by means of the propensity score. We
estimate the probability of belonging to exempted sectors as a function
of trends in production for the 4-digit NACE sector over 2005-2009 (to
account for possible difference in output growth), average ratio between
verified and allocated emissions in 2008-2009 for the 4-digit NACE sector
to account for pre-treatment systematic over- or under-endowment in the
sector and the log of verified emissions in the plant for 2008 to account for
differences in the size of plants. As the number of treated (531) is smaller
than the number of potential controls (2344) each selected control will
be employed as a counterfactual for multiple treated. We employ ker-
nel matching to exploit as much information as possible about controls
in a flexible way. In this way, in fact, the counterfactual is a weighted
average of different controls, with weights being specific for each treated
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Table 4.1: Propensity score and balancing

Propensity score PS Average
treated

Average
controls (all)

t-test on the
difference

Average
matched
controls

t-test on the
difference

Growth in production (4-digit NACE) 0.0102 2.52 1.41 4.01 2.26 1.15
for 2005-2009 (0.0063)
Average verified/allocated emissions -1.787*** 0.755 0.876 -2.59 0.718 10.13
(4-digit NACE) for 2008-2009 (0.2598)
log(verified emissions of the plant, 2008) 0.234*** -3.413 -4.268 11.33 3.8561 10.51

(0.0201)

N=2875 plants in manufacturing sectors (balanced panel 2008-2014). Matching based on kernel algorithm.

and inversely proportional to the distance in terms of estimated propen-
sity score.

Results of the propensity score estimate and of the balancing (before
and after matching) are reported in Table (4.1). The propensity score is
successful in reducing the heterogeneity in terms of long term trends
in demand between treated and controls. For the other matching vari-
ables, even though the tests on the difference in observable features post-
matching do not allow to reject the null hypothesis of insignificant dif-
ference for over-allocation and establishment size, the magnitude of the
difference in averages between treated and controls is much smaller after
matching, leading to a more credible counterfactual.

Figure (4.7) reports the distribution of the estimated propensity score
for treated, all controls and matched controls. The density function for
treated and controls is very similar, suggesting that the two groups are
rather homogeneous after matching. The dark grey dots, however, de-
scribe those plants that were not matched due to absence of common
support in the propensity score: these are 35 plants with either very low
or very high probability of being treated.

Average treatment effect on the treated, where the outcome variable
is the growth in emissions for the years 2009 to 2014 with respect to emis-
sions in 2008, are reported in table (4.2). These are simple difference-in-
differences estimates, with no additional control variable. We observe
that the estimated difference in growth rates between treated and con-
trols is small and insignificant until 2012 and becomes large and signifi-
cant from 2013 onwards, that is the year in which we observe the change
in regulation. Overall, the estimated difference is around 14 log points in
2013 and reaches 19 log points in 2014, pointing to a large estimated ef-
fect. The positive sign means that those plants that continued to receive
their allowances for free have increased their emissions with respect to
the ones that had to purchase them in auction, leading to non-neutrality
of abatement choices with respect to allocation mechanisms.
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Figure 4.7: Distribution of estimated propensity score
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Table 4.2: Average treatment effect (simple difference in differences on matched plants)

Treatment effect Difference SE t-test

Change in log verified emissions 2008-2009 Unmatched -0.0437 (0.0220) -1.99
ATT 0.0255 (0.0292) 0.87

Change in log verified emissions 2008-2010 Unmatched -0.0119 (0.0240) -0.49
ATT 0.0496 (0.0318) 1.56

Change in log verified emissions 2008-2011 Unmatched 0.0094 (0.0309) 0.30
ATT 0.0754 (0.0394) 1.91*

Change in log verified emissions 2008-2012 Unmatched -0.0232 (0.0331) -0.70
ATT 0.0552 (0.0407) 1.36

Change in log verified emissions 2008-2013 Unmatched 0.0419 (0.0424) 0.99
ATT 0.1365 (0.0453) 3.01***

Change in log verified emissions 2008-2014 Unmatched 0.0667 (0.0482) 1.38
ATT 0.1908 (0.0556) 3.43***

Table 4.3: Difference-in-differences with matching and additional controls

log(verified emissions) (1) (2) (3) (4) (5) (6)

Exempted x anticipation (2010-2012) 0.0133 0.0473* 0.0445* 0.0431* 0.0686** 0.0438
(0.0211) (0.0270) (0.0269) (0.0228) (0.0281) (0.0277)

Exempted x post 2013 0.0762** 0.151*** 0.168*** 0.136*** 0.194*** 0.169***
(0.0353) (0.0453) (0.0451) (0.0383) (0.0441) (0.0437)

log(Production, NACE 4-digit) 0.509*** 0.567***
(0.0753) (0.0957)

Matched on PS No Yes Yes No Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes
Country trends No No No Yes Yes Yes
Main activity trends No No No Yes Yes Yes

N 20125 19810 19810 20125 19810 19810

Our baseline estimates (that also account for a series of control vari-
ables) are reported in table (4.3). Column 1 and 4 report estimates for the
full sample with no matching of treated with similar controls while in
the other columns we weight plants according to the weights estimated
in the matching phase. Column 6 is our favourite estimate, in which
we match treated with similar control, add country and main activity
trends and control for the trend in production at the 4-digit level. The
treatment effect is positive, significant and around 17 log points. We also
account for possible anticipation effects as the exemption was already
agreed upon in December 2009. Overall, there is some little evidence of
anticipation which turns out to be insignificant in our preferred estimate.

We also try to differentiate the effect for plants that belong to dif-
ferent categories of exemption from auctioning, namely moderate trade
and emission intensity (criterion A), high emission intensity (criterion
B), high trade intensity (criterion C) and sector exempted according to
qualitative criteria (art 17). These criteria may coexist within the same
sector. Results are reported in table (4.4). These results, mostly descrip-
tive in nature,, suggest that the effect was driven by those sector more
exposed to trade (criteria A and C) while a negative effect was found for
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Table 4.4: Effect for different exemption criteria

log(verified emissions) (1) (2)

Criterion A x anticipation (2010-2012) 0.0632*** 0.0660**
(0.0239) (0.0287)

Criterion A x post 2013 0.222*** 0.227***
(0.0418) (0.0476)

Criterion B x anticipation (2010-2012) -0.00743 -0.340***
(0.0304) (0.0638)

Criterion B x post 2013 -0.0324 -0.697***
(0.0625) (0.126)

Criterion C x anticipation (2010-2012) 0.0619*** 0.0577**
(0.0236) (0.0266)

Criterion C x post 2013 0.150*** 0.142***
(0.0423) (0.0508)

Criterion Art 17 x anticipation (2010-2012) -0.0642* -0.00911
(0.0349) (0.0370)

Criterion Art 17 x post 2013 -0.0443 0.0659
(0.0603) (0.0590)

Matched on PS Yes Yes
Year dummies Yes Yes
Country trends No Yes
Main activity trends No Yes

N 19810 19810

emission-intensive sectors.19 These results point to the fact that when
international competition is though, even small increases in the amount
of resources that should be spent for complying with environmental reg-
ulation induces large changes abatement behaviours even in the short
run.

4.6 Concluding remarks

The paper propose an empirical evaluation of the neutrality (or ab-
sence thereof) of the allocation mechanism for abatement decisions within
cap-and-trade schemes. Our analysis is based on data on emissions of
the European ETS. This scheme, the largest in the world in terms of
amount of emissions and number of involved establishments, is partic-
ularly suitable to test the neutrality of allocation mechanisms as it expe-
rienced a change in the allocation mechanism in recent years. The move
from grandfathering to partial (i.e. with exemption) auctioning allows
to estimate whether the way permits are allocated has an influence on
abatement decisions, against the prediction of the Coase theorem.

After providing a comprehensive descriptive evidence on recent trends
in verified emissions and allocation of permits, we evaluate whether
the change in regulation, with an exemption from auctioning granted
to leakage-exposed sectors, influenced abatement behaviours of firms.

19These include, in the manufacturing sectors, only NACE codes 23.51 (manufacture of
cement, 176 plants) and 23.52 (manufacturing of lime and plaster, 148 plants).
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Focusing on manufacturing establishment, our preferred estimate sug-
gests an increase in emission of about 17 log points for plants that are
exempted from auctioning with respect to the ones that should buy per-
mits through auctions. This contradicts the theoretical prediction about
the neutrality of allocation mechanisms in cap-and-trade schemes, thus
leading to sub-optimal outcomes. These findings should inform policy
makers about possible ways of improving ETS-like schemes in order to
improve their economic efficiency and correct for potential distortions
induced by specific rules for specific case such as the case of carbon leak-
age.

Even though these findings already represent an useful contribution
for the policy debate, further research is needed to understand which
are the more important mechanisms that induce changes in abatement
choices as a consequence of changes in allocation mechanism. This ad-
ditional research should consider both theoretical reasoning about the
non-neutrality and empirical validation of these theoretical hypothesis.
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