
IMT School for Advanced Studies, Lucca

Lucca, Italy

A Foundational Theory for Attribute-based
Communication

PhD Program in Computer Science (CDSS\CS)

XXIX Cycle

By

Yehia Abd Alrahman

2017

http://www.imtlucca.it
mailto:yehia.abdalrahman@imtlucca.it

The dissertation of Yehia Abd Alrahman is approved.

Program Coordinator: Prof. Mirco Tribastone, IMT School for Advanced

Studies, Lucca

Supervisor: Prof. Rocco De Nicola, IMT School for Advanced Studies,

Lucca, Italy

Supervisor: Prof. Michele Loreti, Università degli Studi di Firenze, Flo-

rence, Italy

The dissertation of Yehia Abd Alrahman has been reviewed by:

Prof. Gul Agha, Department of Computer Science, University of Illinois

at Urbana-Champaign, United States

Prof. Luca Aceto, School of Computer Science, Reykjavik University,

Iceland

Prof. Francisco Martins, Department of Informatics, University of Lisbon,

Portugal

IMT Institute for Advanced Studies, Lucca

2017

http://www.imtlucca.it

Only until you have climbed a mountain can you look behind and see

the vast distance you have covered, and remember those you have met

along the way who made your trek a little easier. Now that this thesis

is finally finished, after many miles of weary travel, I look back to those

who helped me turn it into reality and offer my heartfelt thanks.

First of all, I would like to express my sincere gratitude to my su-

pervisor Prof. Rocco De Nicola for his continuous support of my Ph.D

study and related research activities, for his patience and motivation. His

guidance helped me in all the time of research and the writing of this

thesis.

I would like to express my indebtedness and profound veneration to my

supervisor Prof. Michele Loreti for all his efforts, his ultimate patience,

availability, and immense knowledge. Above all he is a great friend whose

continuous support has been critical to my growth.

I offer my heartfelt thanks to the reviewers: Prof. Gul Agha, Prof.

Luca Aceto, and Prof. Francisco Martins for their time and precious

efforts. Their comments and questions were very useful in preparing the

final draft of this thesis.

Special thanks go to the members of the SysMA group at IMT School

for fruitful discussions and suggestions, especially to Prof. Mirco Tribas-

tone, Dr. Hugo Torres Vieira, and Dr. Claudio Antares Mezzina. I would

like also to express my appreciation to the members of the LFCS labora-

tory, Edinburgh University, especially to Prof. Jane Hillston for hosting

me as a visiting researcher in the final year of my Ph.D.

Words would never be able to fathom the depth of feelings for my

reverend mother. She was always an indelible inspiration and affection

during my research.

Yehia Abd Alrahman

Lucca, Italy

January, 2017

To my people in my homeland, Syria, who are struggling in

their quest for freedom and might not have had the same

opportunities that I had.

Contents

List of Figures xi

List of Tables xiii

Declaration xiv

Vita and Publications xv

Abstract xviii

1 Introduction 1

1.1 Motivations . 1

1.2 Approach . 4

1.3 Contributions . 8

1.4 Structure of the Thesis . 10

2 AbC in a Nutshell 12

2.1 Introduction . 12

2.2 A Smart Conference System 14

2.2.1 The participant component behavior 16

2.2.2 The room component behavior 20

3 The AbC Calculus and its Expressive Power 28

3.1 Syntax of the AbC Calculus 28

3.2 Expressiveness of the AbC Calculus 35

3.2.1 Encoding channel-based interaction 35

3.2.2 Encoding interaction patterns 38

viii

4 AbC Operational Semantics 40

4.1 Operational semantics of component 40

4.2 Operational semantics of systems 45

4.3 Case Studies: The AbC calculus at work 50

4.3.1 TV Streaming channels 50

4.3.2 Stable Marriage Problem 56

4.3.3 A swarm robotics scenario in AbC 61

5 Behavioral Theory for AbC 67

5.1 Reduction barbed congruence 67

5.2 Bisimulation Proof Methods 70

5.3 Properties of the Bisimilarity Relation 77

5.4 Correctness of the encoding 87

6 Ab
a
CuS: A Run-time Environment for the AbC Calculus 90

6.1 From AbC primitives to Ab
a
CuS programming constructs . 91

6.2 Implementing the Communication Infrastructure 98

6.3 Multiparty Interaction Style 105

6.4 Distributed Coordination Infrastructures 106

6.4.1 A Cluster-based Infrastructure 107

6.4.2 A Ring-based Infrastructure 110

6.4.3 A Tree-based Infrastructure 113

6.5 Performance Evaluation 120

6.6 A Scalable and relaxed abstract machine for AbC 128

7 Related Works 133

7.1 Channel-based interaction 133

7.2 Constraint- and attribute-based interaction 135

7.3 Broadcast-based interaction 138

7.4 The Actor communication model 139

7.5 Other approaches for programming adaptive behavior . . 144

7.6 The old AbC Calculus . 145

8 Concluding Remarks and Future Works 147

ix

A Appendix: Additional Materials 149

A.1 The completeness of the encoding 149

A.2 The Smart Conference System in Ab
a
CuS 153

A.3 A Formal Definition for the Old AbC Calculus 158

References 162

x

List of Figures

1 A high-level specification of an AbC component. 14

2 The AbC specifications for a participant component . . . 16

3 The AbC specifications for a room component 17

4 The relationship between the “or” predicate and the non-

deterministic choice . 83

5 The system with assumptions about the network topology 84

6 System N simulates the test component T , but initial in-

terference is possible, Hence N 6≈ T 85

7 Centralized communication infrastructure 102

8 Cluster: Average Delivery Time (155 agents with 10, 20

and 31 cluster elements). 123

9 Cluster: Average Message Time Gap (155 agents with 10,

20 and 31 cluster elements). 123

10 Ring: Average Delivery Time and Average Message Time

Gap. 124

11 Average Delivery Time: T [5, 2, 5] and T [3, 5, 5]. 125

12 Average Message Time Gap: T [5, 2, 5] and T [3, 5, 5]. . . . 125

13 Cluster/Ring/Tree infrastructure results (155 agents, 310

agents). 126

14 Data provider scenario: Average Delivery Time. 127

15 Data provider scenario: Average Message Time Gap. . . . 127

16 Asynchronous decentralized infrastructure 129

xi

17 Protein of type ‘A‘ is only permitted to bind to an operator

of type ‘A‘. Type equality is tested by applying the lambda

function λx.x = ‘A‘ . 137

xii

List of Tables

1 The syntax of the AbC calculus 29

2 The predicate satisfaction 30

3 Encoding bπ-calculus into AbC 37

4 Discarding input . 42

5 Component semantics . 44

6 System semantics . 45

7 Predicate restriction •Ix 47

8 First scenario: process definitions 51

9 First scenario: predicates 52

10 First scenario: interaction fragment 52

11 Second scenario: process definitions 53

12 Second scenario: predicates 55

13 Second scenario: interaction fragment 57

14 The syntax of the old AbC calculus 158

15 Reduction semantics of the old AbC calculus 160

16 Structural congruence . 161

xiii

Declaration

Most of the material in this thesis has been published. In particular:

Chapter 3, 4, and part of Chapter 5 are based on (ADL16a), coauthored

with Rocco De Nicola, IMT School for Advanced Studies, Lucca, Michele

Loreti, University of Florence. One adapted case study from Chapter 4 is

based on (ADL+15), coauthored with Rocco De Nicola, Michele Loreti,

Francesco Tiezzi, University of Camerino, and Roberto Vigo, Technical

university of Denmark. The scenario from Chapter 2 and the initial part

of Chapter 6 is based on (ADL16b), coauthored with Rocco De Nicola and

Michele Loreti. Finally, the Ab
a
CuS Java run-time environment, presented

in Chapter 6, has been developed in collaboration with Michele Loreti.

xiv

Vita

October 1, 1986 Born, Irbid, Jordan

2004-2009 Bachelor degree in Computer Engineering

Philadelphia University, Jordan

2010-2012 Master degree in Computer Science

Philadelphia University, Jordan

2013-2016 Ph.D In Computer Science

IMT School for Advanced Studies Lucca, Italy

Jan-June 2016 Visiting Research Student

LFCS Laboratory, School of Informatics

The University of Edinburgh, UK

Sep-Dec 2016 Intern/Automated verification and approximation

Max Planck Institute for Software Systems, Germany

Feb 2017-present Research Collaborator

IMT School for Advanced Studies Lucca, Italy

xv

Publications

1. Y. Abd Alrahman et al, “Distributed Coordination of Multiparty Com-
munication,” International Conference, Coordination 2017, Part of the
12th International Federated Conference on Distributed Computing Tech-
niques, DisCoTec 2017, in Springer LNCS, (Submitted).

2. Y. Abd Alrahman et al, “On the Power of Attribute-Based Communica-
tion,” International Conference, FORTE 2016, Held as Part of the 11th In-
ternational Federated Conference on Distributed Computing Techniques,
DisCoTec 2016, Heraklion, Crete, Greece, in Springer LNCS, vol. 9688,
pp.1–18, 2016.

3. Y. Abd Alrahman et al, “Programming of CAS systems by relying on
attribute -based communication,” 7th International Symposium, ISoLA
2016, Imperial, Corfu, Greece, in Springer LNCS, vol. 9952, pp.539–553,
2016.

4. Y. Abd Alrahman et al, “A calculus for attribute-based communication,”
In Proceedings of the 30th Annual ACM Symposium on Applied Com-
puting, SAC’15, Salamanca, Spain, ACM, pp. 1840 – 1845, 2015.

5. Y. Abd Alrahman et al, “Can We Efficiently Check Concurrent Programs
Under Relaxed Memory Models in Maude?,” Rewriting Logic and Its Ap-
plications - 10th International Workshop, WRLA 2014, Held as a Satellite
Event of ETAPS, Grenoble, France, Springer LNCS, pp. 21 – 41, 2014.

xvi

Presentations

Conference talks:

1. Y. Abd Alrahman, “On the Power of Attribute-based Communication”,
at DISCOTEC, FORTE, Crete, Greece, 2016.

2. Y. Abd Alrahman, “A Calculus for Attribute-based Communication”, at
SAC’15, Salamanca, Spain, 2015.

Invited talks:

3. Y. Abd Alrahman, “An infrastructure for Attribute based Communica-
tion”, at QUANTICOL meeting, Pisa, Italy, 2017.

4. Y. Abd Alrahman, “On the Expressiveness of Attribute-based Commu-
nication”, at PEPA CLUB, Edinburgh, UK, 2016.

5. Y. Abd Alrahman, “On Expressiveness and Behavioural Theory of At-
tribute based Communication”, at QUANTICOL meeting, Lucca, Italy,
2015.

6. Y. Abd Alrahman, “A Calculus for Attribute-based Communication”, at
CINA meeting, Turin, Italy, 2015.

xvii

Abstract

In open systems, i.e. systems operating in unpredictable en-

vironments and with components that may join or leave at

any time, behaviors can arise as side effects of intensive com-

ponents interaction. Finding ways to understand and design

these systems and, most of all, to model the interactions of

their components, is a difficult but important endeavor. To

tackle these issues, we present AbC , a calculus for attribute-

based communication. An AbC system consists of a set of

parallel agents each of which is equipped with a set of at-

tributes. Communication takes place in an implicit multicast

fashion, and interactions among agents are dynamically estab-

lished by taking into account “connections” as determined by

predicates over the attributes of agents. First, the syntax and

the semantics of the calculus are presented, then expressive-

ness and effectiveness of AbC are demonstrated both in terms

of modeling scenarios featuring collaboration, reconfiguration,

and adaptation and of the possibility of encoding channel-

based interactions and other interaction patterns. Behavioral

equivalences for AbC are introduced for establishing formal re-

lationships between different descriptions of the same system.

A Java run-time environment has been developed to support

programming of the above mentioned class of systems by re-

lying on the communication primitives of the AbC calculus.

The impact of centralized and decentralized implementations

for the underlying communication infrastructure, that medi-

ates the interaction between components, has been studied.

xviii

Chapter 1

Introduction

“
But still, the emphasis ought to be on modeling what hap-

pens in real systems, whether they are human-made sys-

tems like operating systems, or whether they exist already.

There is a subtle change from the Turing-like question of

what are the fundamental, smallest sets of primitives that

you can find to understand computation. I think some of

that applies in concurrency, like naming: what is the small-

est set of primitives for naming? So some of that applies.

But as we move towards mobility, understanding systems

that move about globally, you need to commit yourself to a

richer set of semantic primitives. I think we are in a ter-

rific tension between (a) finding a small set of primitives

and (b) modeling the real world accurately. ”
Robin Milner, from an interview, Cambridge, 2003

1.1 Motivations

The ever increasing complexity of modern software systems has changed

the perspective of software designers who now have to consider a broad

1

range of new classes of systems, consisting of a large number of inter-

acting components and featuring complex interaction mechanisms, e.g.

Software-Intensive Systems (Bro06), IoT Systems (Kop11), and Collec-

tive Adaptive Systems (CAS) (Fer15). These systems are usually dis-

tributed, heterogeneous, decentralized and interdependent, and are oper-

ating more and more in dynamic and often unpredictable environments.

There exist different kinds of complexity in the development of software

systems. Historically, as software systems grew larger, the focus shifted

from the complexity of developing algorithms to the complexity of struc-

turing large systems, and to the inevitable complexities of building dis-

tributed and concurrent systems. We are facing another level of com-

plexity arising from the fact that systems have to operate in large, open

and non-deterministic environments where the complexity of interaction

is increased.

Most of the current programming frameworks still handle the inter-

action between distributed components by relying on channel-based com-

munication primitives. These include point-to-point (SW03), multicast

with explicit addressing (i.e. IP multicast (HC99)), and broadcast com-

munication (Pra91). To derive the interaction between components, these

primitives rely on channel names or addresses that are totally independent

of the run-time properties, status, and capabilities of the communicating

components. This makes programming complex behaviors and interaction

mechanisms, that are tightly coupled to components status such as recon-

figuration, adaptation, and opportunistic interactions, quite difficult. In

our view, it is important to consider more abstract interaction primitives

and in this thesis we study the impact of a new paradigm that permits se-

lecting groups of partners by considering their knowledge, status, and ca-

pabilities at run-time. The findings we report in this thesis have been trig-

gered by our interest in CAS, and the recent attempts to define appropri-

ate linguistic primitives to deal with such systems, see e.g. TOTA (MZ04),

SCEL (DLPT14) and the calculi presented in (ADL+15; VDB13).

CAS consist of large numbers of interacting components which com-

bine their behaviors by forming collectives to achieve specific goals de-

pending on their attributes, objectives, and functionalities. Decision-

2

making is complex and interaction between components may lead to un-

expected behaviors. CAS are inherently scalable and the boundaries be-

tween CASs are very fluid in the sense that large number of components

may enter or leave the collective at any time and may have different

(potentially conflicting) objectives; so they need to dynamically adapt

to their environmental conditions and contextual data. New engineering

techniques to address the challenges of developing, integrating, and de-

ploying such systems are needed (SCC+12).

To move towards this goal, in our view, it is important to develop a

theoretical foundation for this class of systems that would help in under-

standing their distinctive features. From the point of view of the language

designers, the challenges are:

• to devise appropriate abstractions and linguistic primitives to deal

with the large dimension of systems;

• to guarantee adaptation with respect to the working environment;

• to take into account evolving requirements and to control the emer-

gent behaviors resulting from intensive and complicated interac-

tions.

Obviously, handling the communication mechanisms of CAS can no longer

depend on the current existing communication models that are totally in-

dependent from the characteristics of the communicating systems. These

models do not allow scalability with the high level of dynamicity of such

systems and it is a necessary to devise new techniques that change the

perspective of how communication can be realized, possibly by taking into

account run-time properties, status, and capabilities of systems. The cor-

nerstone concepts of CAS have to guide the development of these commu-

nication techniques and their effectiveness has to be assessed by showing

to what extent these concepts were guaranteed by such techniques.

The main concepts of CAS can be summarized according to their rel-

evance as follows:

• Adaptivity: components should adapt their behaviors in response

to the change in their contextual conditions and collected awareness

3

data. The interaction policies of components are tightly coupled to

their run-time properties, status, and capabilities.

• Awareness: components should be aware of their run-time status,

characteristics, capabilities, and should also have partial views of

their surroundings.

• Collaboration: components can collaborate and combine their be-

haviors to achieve system-level goals in response to either changes

in the environment or because of their predefined roles.

• Distribution, decentralization, and interdependence: components

are distributed on a shared environment and execute independently

without any centralized control. However, since these components

are partially aware of their surroundings and share the same envi-

ronment, any change of a component surroundings, possibly induced

by other components, might influence its behavior, forming a sort

of interdependence between components.

• Anonymity: components should be able to communicate and ex-

change data without knowing the existence of each other. The iden-

tity of a service provider is not relevant, only its characteristics and

its ability to provide the service are important.

• Scalability: components can join or leave the system at anytime

without disturbing the overall system behavior which means that

components should not be tightly coupled. The synchronization

dependencies between senders and receivers should be broken in the

sense that a sender can always send without being aware of existing

receivers. Also receivers should always receive based on the fraction

of system that is able to provide the message or the service, not

based on a specific sender.

1.2 Approach

In this thesis we focus on modeling the interaction of complex software

systems, e.g., CAS, with the appropriate level of abstraction that permits

4

natural modeling and reasonable verification. These issues can be obvi-

ously tackled by resorting to the current existing interaction paradigms,

introduced to handle communication in distributed systems. Some of

the well-known approaches include: channel-based models (Mil80; Hoa78;

MPW92), group-based models (AC93; CKV01; HC99), and publish/sub-

scribe models (BN02; EFGK03). Below we briefly report the main fea-

tures and limitations of such approaches.

Channel-based models rely on explicit naming for establishing commu-

nication links in the sense that communicating partners have to agree on

channels or names to exchange messages. This implies that communicat-

ing partners are not anonymous to each other. Actually, communicating

partners have static interfaces that determine the target of communica-

tion e.g., CCS (Mil80), CSP (Hoa78). This issue inspired Robin Milner to

develop the π-calculus (MPW92) as a way to mitigate this problem by al-

lowing names to be communicable, thus providing a greater flexibility by

enabling dynamic interfaces. However even in π-calculus, the dynamicity

of interfaces is limited in the sense that even if we allow generic (bound)

input or output actions, these actions are disabled until they are instanti-

ated with specific channel names. This means that a process is only willing

to engage in communication when its actions are enabled. Furthermore,

π-calculus and most process calculi rely on synchronous communication

where a sender blocks until a receiver is available. Though this results

in an elegant algebra, it creates synchronization dependencies between

senders and receivers and affects the overall scalability of the system.

In group-based models, like the one used for IP multicast (HC99), the

group is specified in advance in the sense that the reference address of the

group is explicitly included in the message. On the other hand, groups

or spaces in the ActorSpace model (AC93) are regarded as passive con-

tainers of processes (actors) and may be created and deleted with explicit

constructs. Spaces may be nested or even overlap and can be created dy-

namically at run-time. Actually, the notion of space is a first class entity

in the ActorSpace model. However, in real CAS systems the notion of

a group or collective is quite abstract and is dynamically formed at the

time of interaction by the available interested partners. Actually, com-

5

municating partners are unaware of the existence of each other and they

receive messages based on mutual interests. The ActorSpace model relies

on asynchronous primitives which are more suitable for distributed set-

tings. The arrival order of messages is nondeterministic but each message

is guaranteed to be eventually delivered which makes this model suitable

for specific classes of applications. It is worth mentioning that coordina-

tion in the ActorSpace model is difficult because of the reliance only on

asynchronous primitives.

In the publish/subscribe model, like the one used in NASA Goddard

Mission Services Evolution Center (GMSEC)1, each component can take

the role of a publisher or a subscriber. Publishers produce messages and

subscribers consume them. The subscribers are indirectly addressed by

the contents of sent messages. That is, a subscriber expresses its interest

independently from the publisher that produces the messages, and then

it is asynchronously notified when a message that matches its interest ar-

rives. The propagation of messages from publishers to subscribers is real-

ized by introducing an exchange server that mediates the interaction. The

exchange server stores the subscriptions of subscribers, receives messages

from publishers, and forwards the messages to the correct subscribers.

The result is that publishers and subscribers are unaware of the existence

of each other. Though the anonymity of interaction is an effective solu-

tion to achieve scalability by allowing participants to enter or leave the

system at anytime, the scalability problems move to the realization of the

exchange server. In fact, since the exchange server is responsible for sub-

scriptions and message filtering, it should be able to face a large number of

participants with evolving subscriptions while maintaining an acceptable

level of performance.

Clearly, a good candidate for modeling the interaction in CAS systems

should aim at combining the advantages of the already existing communi-

cation paradigms while avoiding their inherent shortcomings. In this the-

sis we argue that Attribute-based communication is a promising paradigm

for modeling the interaction in highly adaptive systems like CAS.

Attribute-based communication is a novel communication paradigm

1http://opensource.gsfc.nasa.gov/projects/GMSEC_API_30/index.php

6

http://opensource.gsfc.nasa.gov/projects/GMSEC_API_30/index.php

that permits selecting groups of partners by considering the predicates

over the attributes they expose. Thus communication takes place anony-

mously in an implicit multicast fashion without a prior agreement between

the communicating partners. Because of the anonymity of the attribute-

based interaction, scalability, dynamicity, and openness can be achieved at

a high degree in distributed settings. The semantics of sending operations

is non-blocking while input operations are blocking. This breaks synchro-

nization dependencies between interacting partners, and communicating

partners can enter or leave a group at any time without disturbing the

overall system behavior.

Groups or collectives are dynamically formed at the time of interaction

by means of available/interested receiving components that satisfy sender

predicates. In this way run-time changes of attributes introduce oppor-

tunistic interactions between components. Indeed, interaction predicates

can be parametrized with respect to local attribute values and when these

values change, the interaction groups or collectives do implicitly change.

This makes modeling adaptation quite natural.

Modeling opportunistic behavior in classical communication paradigms

like channel-based communication, e.g., π-calculus (MPW92), is definitely

more challenging. Components should agree on specific names or channels

to interact. Channels have no connection with the component attributes,

characteristics or knowledge. They are specified as addresses where the

exchange should happen. These names/channels are static and changing

them locally at run-time requires explicit communication and intensive

use of scoping which affect program readability and compositionality.

The attribute-based system is however more than just the parallel com-

position of interacting partners; it is also parametrized with respect to the

environment or space where system components are executed. The en-

vironment has a great impact on how components behave. It introduces

a new way of indirect communication which we refer to as Interdepen-

dence, where components mutually influence each other unintentionally.

For instance, in the ant foraging system (JR06), when an ant disposes

pheromone in the shared space to keep track of her way back home, she

influences other ants behavior as they are programmed to follow traces

7

of pheromone with higher concentration. In this way, the ant uninten-

tionally influences the behavior of the other ants by only modifying the

shared space. This type of indirect communication cannot be easily mod-

eled even when relying on asynchronous communication (HT91) where

messages are placed in specific temporary places with the intention that

other addressed components will pick/receive them at some point of time.

To further support our approach, we would like to stress that attributes

make it easy to encode interesting features of CAS. For instance, awareness

can be easily modeled by locally reading the values of the attributes that

represent either the component status (e.g., the battery level of a robot)

or the external environment (e.g., the external humidity). Also localities

of CAS components can be naturally modeled as attributes. In fact,

the general concept of attribute-based communication can be exploited

to provide a unifying framework to encompass different communication

models and interaction patterns such as those outlined above and many

others.

1.3 Contributions

The main contribution of this thesis is the introduction of AbC (ADL16a),

a foundational calculus for modeling CAS systems by relying on Attribute-

based Communication. The AbC calculus consists of a minimal set of

primitives that permits attribute-based communication. AbC systems

are represented as sets of parallel components, each equipped with a set

of attributes whose values can be modified by internal actions. Commu-

nication actions (both send and receive) are decorated with predicates

over attributes that partners have to satisfy to make the interaction pos-

sible. Thus, communication takes place in an implicit multicast fashion,

and communication partners are selected by relying on predicates over

the attributes in their interfaces. Unlike IP multicast (HC99) where the

reference address of the group is explicitly included in the message, AbC

components are unaware of the existence of each other and they receive

messages only if they satisfy the sender’s requirements. It should be noted

that the messages should also satisfy the receiver’s requirements, other-

8

wise messages are discarded.

The AbC calculus, presented in this thesis, is a refined and extended

version of our early work presented in (ADL+15) which from now on

we shall call “the old AbC ”. The latter is a very basic calculus with a

number of limitations, see the discussion in Chapter 7. Here, we fully

redesign the calculus, enrich it with behavioral equivalences and assess its

expressiveness and effectiveness. The contributions of the thesis are:

• A process calculus, named AbC , with a minimal set of primitives tai-

lored for modeling the interaction in highly dynamic and adaptive

systems, like CAS, by relying on attribute-based communication.

The set of primitives have been designed to serve this purpose. Ac-

tually, the brand new primitives model CAS concepts as first class

citizens. For instance, adaptation, awareness, anonymity, and col-

lective formation can be expressed in AbC in a natural and intuitive

way. We present the formal syntax and semantics of the AbC calcu-

lus through a running example from the realm of collective-adaptive

systems.

• The study of the expressive power of AbC both in terms of the ability

of modeling scenarios featuring collaboration, reconfiguration, and

adaptation and of the possibility of encoding channel-based com-

munication and other communication paradigms. Indeed, we show

that attribute-based communication can be used as a general uni-

fying framework to accommodate different models and interaction

patterns.

• The definition of behavioral equivalences for AbC by first introduc-

ing a context based reduction barbed congruence relation and then

the corresponding extensional labelled bisimilarity. We also show

how to use the equivalence relations to prove system properties.

• The proof of the existence of a uniform encoding from channel-based

communication into AbC with the conjecture that the converse is

not possible. To illustrate the correctness of the encoding, a process

calculus, named bπ-calculus (EM01), has been chosen as a repre-

9

sentative for channel-based process calculi and it has been encoded

into AbC .

• Ab
a
CuS, a Java run-time environment that allows programmers to

use the linguistic primitives of the AbC calculus in Java programs,

has been introduced. The implementation of Ab
a
CuS fully relies on

the formal semantics of the AbC calculus which enhances the confi-

dence on the behavior of Ab
a
CuS programs. We provide both central-

ized and decentralized implementations for the underlying commu-

nication infrastructure that mediates the interaction between Ab
a
CuS

components and we study their performance. We provide a scalable

and relaxed2 abstract machine for the AbC calculus and study its

implications.

1.4 Structure of the Thesis

The reminder of this thesis is organized as follows:

In Chapter 2 the main features of the AbC calculus are presented

informally in a step-by-step fashion using a case study from the realm

of collective-adaptive systems. The idea is to motivate the need for the

communication primitives of the AbC calculus and to show the impact of

attribute-based communication paradigm.

Chapter 3 presents the formal syntax of the AbC calculus and provides

evidence of the expressive power of AbC by showing how other commu-

nication models and interaction patterns can be easily rendered in AbC .

In essence, a static translation from the bπ-calculus syntax into AbC syn-

tax, to illustrate the encoding of channel-based interaction, is presented.

Also possible renderings of group-based and publish/subscribe interaction

patterns are shown in terms of examples.

Chapter 4 presents the operational semantics for the AbC calculus and

employs the semantics in different case studies from different application

domains.

2We do not preserve the atomicity of message sending.

10

Chapter 5 presents a behavioral theory for the AbC calculus. Two

behavioral relations are introduced: a reduction barbed congruence and

its equivalent labeled bisimilarity. At the end of the chapter, bisimilarity

is used to prove system properties and the correctness of the encoding,

presented in Chapter 3, has also been proved.

Chapter 6 presents a Java run-time environment for supporting the

communication primitives of the AbC calculus. Both centralized and de-

centralized implementations for the underlying communication infrastruc-

ture are studied. At the end of the chapter a scalable and relaxed abstract

machine for the AbC calculus is discussed.

Chapter 7 and Chapter 8 discuss the related works and sketch some

concluding remarks and future works. we also discuss the main shortcom-

ings of the old AbC , published in (ADL+15), and how they are handled

in the new version of AbC that we discuss in this thesis.

Finally, in the Appendix, we provide a detailed proof of the complete-

ness of the encoding, presented in Chapter 3, a full implementation of

the running example, presented Chapter 2, in Ab
a
CuS, and the formal

definition of the old AbC calculus, published in (ADL+15).

11

Chapter 2

AbC in a Nutshell

2.1 Introduction

This chapter presents the AbC calculus, its design choices, and its com-

munication mechanisms. To help the reader appreciate AbC features we

proceed with a running example from the realm of collective adaptive

systems. The presentation in this chapter is intended to be intuitive and

informal. Full details concerning the formal definition of the AbC calcu-

lus will be presented in the next chapters. Along the way we demonstrate

how, through this running example, the AbC calculus covers a larger part

of well-known collective-adaptive features than is obvious from the syntax.

Notably, it covers the following:

• Anonymous interaction: AbC components are anonymous to each

other and interact based on the satisfaction of predicates over their

run-time attribute values.

• Awareness: AbC components have local views to their status and

their environment. These views are used to collect awareness data

at run-time to be used for decision making.

• Adaptation: The interaction predicates of AbC components are

parametrized with respect to their local views and any run-time

change in their views changes the possible set of interaction partners.

12

Another level of adaptation is achieved by modifying the shared en-

vironment. Since this environment is shared, any change to it might

influence the behavior of other components. This ensures decentral-

ized control while achieving some sort of interdependence between

components. The interesting part about such kind of behavior is

that it is not usually intentional. For example, as mentioned previ-

ously, when an ant disposes pheromone in the shared space, it does

not directly instruct the other ants to follow her traces of pheromone,

but actually increases the probability that other ants would adjust

their behaviors.

• Scalability: This is achieved in AbC by means of different factors.

First, the communication primitives in AbC support group-based

communication rather than binary communication which scale well

in large systems. Second, the non-blocking nature of sending op-

erations in AbC breaks the synchronization dependencies between

senders and receivers. The sender does not wait for a receiver and

actually is not aware of the existence of receivers. Finally, the anony-

mous nature of the interaction requires no agreement between in-

teracting partners and this can offer a high degree of scalability in

distributed settings.

• Collaboration: This is achieved as a form of adaptation at the sys-

tem level where components decide to combine their behavior based

on changes in the surrounding environment of one or more compo-

nents.

We proceed with a high-level specification language syntax as reported

in Figure 1, rather than with the formal syntax of the AbC calculus, to

explain the main features of attribute-based communication in an intu-

itive way, thus avoiding excessive verbosity in the running example. This

syntax has a one-to-one correspondence with the formal syntax of the

AbC calculus. Actually it represents a generic template for defining an

AbC component which is the basic building block of AbC specifications.

As shown in Figure 1 each component has a name and a set of optional

arguments used to initialize its state. The body of a component consists

13

1 Component name (type1 arg1,. . ., typen argn) =

2 Env { · · ·
3 attr kind anamei := expressioni; · · ·
4 }

5 behavior { · · ·
6 Process Pi =

7 inist stmt
8 EndProcess

9 · · ·
10 }

11 init { P1|· · ·|Pi }

12 EndComponent

Figure 1: A high-level specification of an AbC component.

of three main blocks: its environment block, Env, which consists of a set

of attributes identifiers, possibly with assigned initial values; its behav-

ior block, behavior, which consists of a set of process definitions; and

its initialization block, init, which specifies its initial behavior, possibly

a parallel composition of a set of co-located processes P1| · · · |Pi. Each

process is defined with a unique process identifier Pi and a set of initial

statements/commands inist stmt.

In this section we focus on the role of the communication primitives

and the external environment in deriving the communication between in-

teracting components. We motivate the need for the communication prim-

itives of the AbC calculus and show why attribute-based communication

is a good candidate for handling the interactions in collective-adaptive

systems.

2.2 A Smart Conference System

We proceed with a smart conference system as a running example which

will be used to illustrate the main concepts of attribute-based communi-

cation. The idea is to exploit the mobile devices of the conference par-

ticipants to guide them to their locations of interest. Each participant

expresses his topic of interest and the conference venue is responsible for

guiding each participant into the location that matches his interest. The

14

conference venue is composed of a set of rooms where the conference ses-

sions are to be held. We assume that the name of each room identifies its

location, e.g., “1st Floor, Room.101” and each participant has a unique

id. The conference program and session relocation can be dynamically

adjusted at anytime to handle specific situations, i.e., a crowded session

can be moved into a larger room and this should be done seamlessly with-

out any disruption to the whole conference program. When relocation

happens, the new updates should be communicated to the interested par-

ticipants.

Each participant is represented as an AbC component, Figure 2, and

the conference venue is represented as a set of parallel AbC components,

each of which representing a room, Figure 3. The overall system is rep-

resented as the parallel composition of the conference venue and the set

of available participants. As mentioned previously, each AbC component

consists of a set of attributes, which we call attribute environment, that

represents its status, capabilities and also a partial view of its surrounding

environment and a process which takes these attribute values as parame-

ters and represents the component behavior. The attribute environments

for participants and rooms contain the following attributes according to

the specifications in Figure 2 and Figure 3 respectively:

• id: Identifies the identity of a participant.

• interest: Identifies the current participant topic of interest.

• destination: Identifies the location of the room where the topic of

interest for a participant is to be held.

• name: Identifies the location of a room, e.g., “1st Floor, Room.101”.

• role: Identifies the role of a component.

• session: Identifies the current scheduled session for a room.

• previousSession: Identifies the previous session that was supposed

to be held in a room if any.

15

1 Component ParticipantComponent (String id, String topic) =

2 Env {

3 attrib id := id;

4 attrib interest := nil;

5 attrib destination := nil;

6 }

7 behavior {

8 Process ParticipantAgent = · · ·
9 }

10 init { ParticipantAgent }

11 EndComponent

Figure 2: The AbC specifications for a participant component

• newSession: Identifies an environmental attribute (i.e., its value is

provided by the environment), that associates a room with a new

session.

• relocate: Identifies a boolean environmental attribute, when en-

abled it instructs the room to start the relocation process.

2.2.1 The participant component behavior

The behavior of the participant component is represented by the process

ParticipantAgent as reported in Figure 2, Line 10. When a participant

arrives to the conference venue, a participant component is created and

associated with a ParticipantAgent process where the topic of interest

is selected and is passed to the process ParticipantAgent through the

component argument topic (Line 1).

The process ParticipantAgent is reported in Specification 2.1 be-

low. The participant starts executing by updating the value of his at-

tribute interest with the selected topic as shown at line 2. The command

setValue (interest, topic) is used to update the value of the attribute

interest with the initial topic of interest. This will allow the participant

to communicate his topic of interest to the conference venue by sending

a session request to nearby providers; in our case, this is a room. The

send operation, at line 3, consists of mainly two parts: the predicate

16

1 Component RoomComponent (String name, String role, String session)

=

2 Env {

3 attrib name := name;

4 attrib role := role;

5 attrib session := session;

6 attrib previousSession := nil;

7 attrib newSession := nil;

8 attrib relocate := False;

9 }

10 behavior {

11 Process Service = · · ·
12 Process Relocation = · · ·
13 Process Updating = · · ·
14 }

15 init { Service | Relocation | Updating}

16 EndComponent

Figure 3: The AbC specifications for a room component

“role==PROVIDER” which specifies the targeted group of the message to

be the set of nearby components with a provider role; and the tuple of

the communicated values “〈this.interest, REQUEST, this.id〉”. The

communicated values include the current topic of interest of the partic-

ipant, a label REQUEST, and the identity of the participant respectively.

Once the message is emitted, the process blocks its execution until a reply

notification that matches his interest arrives. The notification contains the

session name, a REPLY label, and the name of the room where the session

is to be held. The participant is eligible to receive the message only if

its attribute environment satisfies the attached message predicate. If the

participant is eligible to receive the message, the receive method, Line 4,

passes the tuple of communicated values “o” to the following predicate:

(o.get(0)==this.interest ∧ o.get(1)==REPLY)

The predicate checks if the received values satisfy the receiving con-

straints. In principle it returns true if the first element of the tuple

matches the participant topic of interest and the second element is a

17

REPLY label, otherwise it returns false. By receiving this notification, the

process updates its destination and waits for new possible updates about

his topic of interest. It should be noted that the send operation is non-

blocking while the receive one blocks until the desired message arrives. In

anyway, synchronization is still required (i.e., messages are not buffered)

if receivers are available and that is why sometimes we need to spawn a

new AbC process to make sure that messages are not lost.

Specification 2.1: The process ParticipantAgent

1 Process ParticipantAgent =

2 setValue(interest, topic);

3 send(role==Provider , 〈this.interest , REQUEST ,this.id〉);
4 var value = receive(o -> (o.get(0)==this.interest ∧

o.get(1)==REPLY));

5 setValue(destination, value.get(2));

6 repeat {

7 var value = receive(o -> (o.get(1)==this.interest ∧
o.get(2)==UPDATE));

8 setValue(destination, value.get(3));

9 }

10 EndProcess

The code in lines 6-9 ensures that the participant is always ready to re-

ceive new updates about the topic of his interest. Precisely, it blocks until

it receives an update notification about a session that matches the partici-

pant interest. The notification message contains the previous session that

was supposed to be held in this room, the current session, an UPDATE label,

and the name of the room where the session of interest has been moved.

The predicate “(o.get(1)==this.interest ∧ o.get(2)==UPDATE)”,

at line 7, returns true if the attached session matches the participant topic

of interest and the message is labeled with “UPDATE”, otherwise it returns

false. Once a notification message is received, the process updates the des-

tination to the new location and waits for future updates. The repeat{}
structure is equivalent to an infinite loop that keeps executing the code

in its body. As we will see in the next chapter this structure is equivalent

to a recursive call in process calculi.

18

Discussion

We consider the collective adaptive features that were evident in the pre-

vious specifications. These features include anonymity, scalability, and

some sort of adaptivity. The role of the attribute environment was not

clear in this part of the running example and we will discuss it alongside

with its features in the next two sections.

Anonymity was guaranteed by allowing the interaction primitives (both

send and receive) to rely on predicates over the run-time attribute values

of the interacting partners rather than on specific names or addresses to

derive the interaction. These attributes might represent the run-time sta-

tus, capabilities and knowledge of the interacting partners. This means

that the question of being qualified to receive a message no longer de-

pends on what channel or address you are listening to, but rather if your

run-time attribute values satisfy the sender requirements. For instance,

the ParticipantAgent process sends a session request to the group of

components that currently serve as providers and expects to receive an

interest reply from a component which holds a session that matches his

topic of interest. The sending operation is non-blocking and the partici-

pant is unaware if his message has been received or not. There is no prior

agreement between the participant and the conference venue. Actually,

the set of possible receivers is specified at the time of interaction in the

sense that any change in the session schedule will change the possible set

of targeted components. Any number of new participants can arrive to

the conference venue without any disruption to the overall system behav-

ior, under the assumption that the total number of participants cannot

exceed the capacity of the overall conference venue.

The interaction primitives adopt multiparty rather than binary com-

munication which scale well in large systems. Actually AbC supports an

implicit multicast communication in the sense that the multicast group

is not specified in advance, but rather is specified at the time of interac-

tion by means of the available set of receivers with attributes satisfying the

sender predicate. The non-blocking nature of the AbC multicast alongside

with anonymity of the interaction break the synchronization dependencies

19

between senders and receivers and make it more suitable for supporting

applications that require a higher degree of scalability.

Some sort of adaptation was evident in the ParticipantAgent process.

For instance, the code in lines 6-9, the participant changes his destination

based on interest updates coming from the conference venue. This is an

obvious kind of adaptation which relies solely on explicit communication

messages from other partners. More interesting kinds of adaptation will

be presented in the next two sections.

2.2.2 The room component behavior

The behavior of a room component in the conference venue is presented

by the parallel composition of three different processes, namely Service,

Relocation, and Updating as reported in Figure 3, Line 15.

The Service process is responsible for providing a normal service for a

room. When a room receives a session request, the process Service replies

back to the requester with the room location in case that the current ses-

sion of the room matches the requester topic of interest. The Relocation

and the Updating processes are responsible for handling sessions and par-

ticipants relocation from one room to another. These co-located processes

cannot communicate directly, but can influence the behavior of each other

through the shared attribute environment by modifying the values of some

attributes at run-time. Since the interaction predicates of AbC processes

are parametrized with respect to the shared attribute values, any run-

time change to these values changes the set of possible interaction part-

ners and introduces opportunistic interaction between components. This

makes modeling adaptivity in AbC specifications quite natural.

The process Service, reported in Specification 2.2, shows how the

room normally handles participant requests. The Service process is busy-

waiting for session requests from the available participants. Once a mes-

sage with a possible session request is received, it is passed to the predicate

(o.get(0)==this.session ∧ o.get(1)==REQUEST) (Line 3) to check

if its first value matches the current room session and its second value is a

“REQUEST” label. If so, a new AbC process is created to send an inter-

est reply message to the requester and again the process Service is made

20

available to handle session requests. The operation exec, Line 4, is used

to create a new process and execute it in parallel with the main process.

In principle process Service replicates itself every time a session request

is received to ensure that it is always ready to handle concurrent requests

from different participants. This kind of replication is safe in the sense

that we create a new process only when a session request is received and

this process terminates soon after. The send operation at line 5 replies to

the requester with an interest reply addressing the requester with its iden-

tity id==value.get(2). The interest reply message contains the current

session of the room, a REPLY label, and the name of the room. Note that,

since the predicate of the interest reply message addresses the requester

with its identity, there is only one possible receiver for this message which

is the requester himself.

Specification 2.2: The service process

1 Process Service =

2 repeat {

3 var value = receive(o -> (o.get(0)==this.session ∧
o.get(1)==REQUEST));

4 exec(new Process =

5 send(id==value.get(2), 〈 this.session , REPLY

,this.name〉);
6 EndProcess

7);

8 }

9 EndProcess

The ParticipantAgent process in the previous section appends the par-

ticipant identity to the session request message and the Service process

sends an interest reply only to the requesters addressing them with their

identities in the interaction predicate as mentioned before. In this way a

one-to-one communication between a room and a participant is guaran-

teed. The size of the collective is reduced to include only two partners

and if for some reason the message is lost, the participant ends up in a

deadlock state waiting for an interest reply message that will never arrive.

The implementation of the processes ParticipantAgent and Service can

be enhanced by relying only on the attributes session and interest for

deriving the communication. This means that the ParticipantAgent

21

process no longer needs to append its identity in the session requests and

the process Service will send interest replies to participants with interests

that match the room’s current session. The superiority of attribute-based

communication arises in the sense that as the collective size increases, the

probability that a participant ends up in a deadlock state decreases. The

idea is that if more than one participant is interested in the same topic,

only one successful reception of a session request from one of them is suf-

ficient so that all of them receive an interest reply from a component with

a session that matches their topic of interest.

The process Relocation reported in Specification 2.3 is responsible for

handling unexpected changes of the schedule for a room. The idea is to

handle these run-time changes in a way such that interested participants

in the new session and also other rooms where a swap of schedule should

happen are notified. The behavior of this process is triggered by environ-

mental changes. The environmental attributes NewSession and Relocate

play a crucial role in controlling the behavior of the Relocation process.

The values of these attributes are provided by the environment or by other

components working in the same environment. These components might

be humans or sensors that intervene to adapt the system behavior in a

way that keeps it functioning properly.

A possible scenario is that the session is becoming too crowded and

needs to be relocated to another larger room with possibly few attendees.

Another component that plays a portal role and keeps information about

the capacity and the run-time utilization of all rooms can propose a new

session that best fits with the capacity of this room. Note that the portal

component only proposes suitable sessions for rooms based on their capac-

ities and their run-time utilization, but has no control on their behaviors.

The decision of relocation is made by the room itself depending on the

readings from sensors which set the value of the attribute relocate to true

if the level of overcrowding exceeded a certain threshold. To achieve relo-

cation we have to steer the crowd from one room to another and vice versa.

Actually, three different parties have to be notified about the changes of

the schedule. The participants who are interested in the new proposed

session, the room that is currently assigned the new proposed session and

22

should swap its session with the crowded room, and the participants who

are interested in the crowded session.

The Relocation process is only responsible for notifying the room

where a swap of schedule should happen and also the participants who

are interested in the new proposed session. The Updating process in Spec-

ification 2.4 will take part in notifying the participants who are interested

in the crowded session about the new location of their topic of interest.

An awareness construct is needed to enable the Relocation process to

keep track of environmental changes. The awareness construct is to be

used to collect run-time awareness data from the attribute environment

of the component where the process Relocation is executed and based

on these data decisions can be made. The construct appears at line 3,

Specification 2.3 and is called waitUntil(). It takes a predicate as input

argument and blocks the execution of the process Relocation until the

predicate evaluates to true.

Specification 2.3: The relocation process

1 Process Relocation =

2 repeat {

3 waitUntil(this.relocate==true);

4 setValue(previousSession, this.session);

5 setValue(session, this.newSession);

6 setValue(relocate , false);

7 send((interest==this.session) ∨ (session==this.session)

8 , 〈this.previousSession, this.session, UPDATE, this.name〉);
9 }

10 EndProcess

The process Relocation, in Specification 2.3, blocks its execution un-

til the value of the attribute relocate becomes true, indicating that the

overcrowding of the current session exceeded a certain threshold and a

relocation is needed. The Relocation process first updates the room’s

previous session to the current one and the current session to the new ses-

sion provided by the portal component through the value of the attribute

newSession. The relocation flag relocate is turned off by setting its value

to false (Lines 4-6). The process continues by sending a session/interest

update to the participants who are interested in the new assigned session

and also to the room where a swap of schedule should happen as shown

23

in the “∨” predicate at line 7. The interest update message contains the

name of the previous session, the name of the new session, an UPDATE

label, and the name of the room (Line 8).

To relocate the sessions and steer the crowds correctly both of the in-

volved rooms should collaborate and propagate the changes in their sched-

ules to the interested participants. The global goal is to make both groups

of participants, interested in either one of the two rooms sessions, aware

of the new location of their topics of interest. As we have seen before the

process Relocation was partly responsible for propagating the changes,

through a session update message, to the group of participants who are in-

terested in the new assigned session for the room which was crowded. The

same message was used to ask the other room, where a swap of schedule

should happen, to collaborate. Now, it is the responsibility of the other

room to update its session and propagate these changes to the other group

of participants who are interested in the crowded session. Actually, this

is the role of the process Updating, reported in Specification 2.4.

Specification 2.4: The Updating process

1 Process Updating =

2 repeat {

3 var value = receive(o -> (o.get(1)== this.session ∧
o.get(2)==UPDATE));

4 setValue(previousSession, this.session);

5 setValue(session, value.get(0));

6 exec(new Process =

7 send((interest==this.session)∨
8 (session==this.session), 〈

this.previousSession , this.session,

UPDATE ,this.name〉);
9 EndProcess

10);

11 }

12 EndProcess

When a room receives a session update message, it passes the message to

the predicate (o.get(1)==this.session ∧ o.get(2)==UPDATE)which

checks if the message is relevant for the current room as shown at line 3,

Specification 2.4. If this is the case, the attribute previousSession takes

the value of the attribute session and the attribute session takes the

24

value of the communicated previous session name from the other room

(Lines 4-5). Once the changes have been applied, a new AbC process is

created to send a session/interest update message and again the process

Updating is made available to handle session update messages. This is

important to ensure that a room is always ready to handle concurrent ses-

sion updates. The new created process sends a session/update message

to the other group of participants so that they relocate to the new desti-

nation. It should be noted that the structure of this message is exactly

the same of the one sent by process Relocation. The only difference is

that the sent values depend on the current attribute values of the room

where the process Updating is executed.

Discussion

We consider other collective adaptive features that were evident in the

previous specification excerpts. These features include awareness, adapta-

tion and interdependence, and also collaboration to achieve specific goals.

These features were possible because of their dependencies on the at-

tribute environment.

The attribute environments play a crucial role in orchestrating the be-

havior of AbC components. They make the components aware of their

own status and also provide partial views of the surrounding environment.

Components behave differently under different environmental contexts.

This is possible because the behavior of AbC processes is parametric with

respect to the run-time attribute values of the component in which they

are executed. For instance, the normal behavior of a room is represented

by the process Service. If the room is made aware, through its sensors,

that the present number of participants exceeds its capacity, the room

triggers the execution of the process Relocation to cope with the new

situation. The room has also a partial view of its own environment, in our

case this is the portal component. As mentioned previously, at run-time

the portal component proposes to each room an alternative session that

best fits with its capacity through the value of the attribute “newSession”

and the room considers this proposal when relocation is needed. The

constructs “waitUntil()” and “this.a” are used as environmental pa-

25

rameters that influence the behavior of AbC processes at run-time. For

instance, the behavior of the process Relocation, in Specification 2.3,

is controlled by the guard “waitUnil(this.relocate== true)” at line

3, which blocks its execution until the value of the attribute relocate

becomes true. In the update operation setValue() at line 4, the de-

pendency of the attribute “previousSession” on the value of attribute

“session” is made possible through the reference this. which returns

the current value of the attribute after the dot.

Components might adapt their behavior by either considering col-

lected awareness data or receiving adaptation requests from other com-

ponents using explicit communication as we have seen in the process

ParticipantAgent before. Adaptation can come in different ways ei-

ther by triggering the execution of a process in response to changes in the

environment as the case with the process Relocation, or by explicitly

changing the values of local attributes which change the possible set of

interacting partners as shown in the code of the process Relocation after

line 6. When the value of the attribute session is changed using the

method “setValue()”, each sending or receiving predicate that depends

on the value of this attribute will consider another possible set of inter-

acting partners. This way interdependence between co-located processes

arises. For instance the process Service will now consider session requests

from participants with interests that match the new session name.

Interdependence between components arises either directly or indi-

rectly. For instance, when the sensors detect that the present number of

participants in the current session exceeds the room capacity, the value

of attribute relocate is set to true and this will trigger the relocation

process. The participants do not communicate their presence directly,

but interdependence arises from the fact that these components share the

same working space. Interdependence can also arise directly when one

or more components are responsible for providing data to other compo-

nents. In our example the portal component proposes new sessions for

rooms based on their capacity and their run-time utilization.

One interesting feature that is evident in the behavior of the smart

conference system is collaboration which is crucial when a certain behavior

26

should be achieved at the system level. One component alone cannot

achieve such kind of behavior. The idea is to combine local component

behaviors through message exchange to achieve a global goal. In our

example the goal was to relocate sessions and steer the crowd from one

session to another in a way that each participant is notified about the

new location of his session. That was achieved by allowing two different

components one executing process Relocation and the other executing

process Updating. As we have seen before each of the two rooms was

responsible for updating its behavior and steering part of the crowd. The

overall combined behavior of these rooms and the targeted participants

allowed this goal to be achieved.

It is worth mentioning that the initial behavior of all components

with the same type (i.e., room components or participant components)

is exactly the same. However, since this behavior is parametrized with

respect to the run-time attribute values of each component, components

might behave differently as we have seen when collaboration happened

between components to steer the crowd. This means that the context

where a component is executing has a great influence on its behavior

and it either disables or enables specific behaviors based on the run-time

requirements. In some sense, the behavior of components evolves based on

contextual conditions. Components do not need to have complex behavior

to achieve adaptation at the system level. Complex and emergent behavior

can be achieved by combining the local behavior of individual components

to achieve system level goals.

27

Chapter 3

The AbC Calculus and its
Expressive Power

In this chapter we formally present the syntax of the AbC calculus and

show its expressive power by means of encoding other communication

paradigms into it. For the sake of simplicity we explain the syntax in a

step by step fashion using the smart conference system from the previous

chapter.

3.1 Syntax of the AbC Calculus

The syntax of the AbC calculus is reported in Table 1. The top-level en-

tities of the calculus are components (C); a component is either a process

P associated with an attribute environment Γ, denoted Γ :P , or the par-

allel composition C1‖C2 of two components, or the replicating component

!C which can always create a new copy of C. An attribute environment

Γ:A 7→ V is a partial map from attribute identifiers a ∈ A to values v ∈ V
where A∩V = ∅. A value could be a number, a name (string), a tuple, etc.

The scope of names say ñ, can be restricted by using the restriction op-

erator νñ. For instance, in a component of the form C = C1 ‖ νñC2, the

occurrences of the names ñ in C2 are only visible within C2. The visibility

of attribute values can be restricted while the visibility of attribute iden-

28

(Components) C ::= Γ :P | C1‖C2 | !C | νx̃C

(Processes) P ::=

(Inaction) 0

(Input) | Π(x̃).P

(Output) | (Ẽ)@Π.P

(Update) | [ã := Ẽ]P

(Awareness) | 〈Π〉P
(Non-determinism) | P1 + P2

(Interleaving) | P1|P2

(Call) | K

(Predicates) Π ::= tt | ff | E1 on E2 | Π1 ∧Π2

| Π1 ∨Π2 | ¬Π

(Expressions) E ::= v | x | a | this.a

Table 1: The syntax of the AbC calculus

tifiers is instead never limited. The attribute identifiers represent domain

concepts and it is assumed that each component in a system is always

aware of them1

Example 3.1 (step 1/6). The smart conference system in Chapter 2, Sec-
tion 2.2 is represented as the parallel composition of the conference venue
and the set of available participants. The conference venue is represented
as a set of parallel AbC components, each of them representing a room
(Room1‖ . . . ‖Roomn) and each room has the following form Γi :R where
Γi represents the attribute environment of the room and R represent its
behavior. The Participant instead has the following form Γp :P where Γp
represents its attribute environment and P represents its behavior. The
overall system is defined below:

Room1‖ . . . ‖Roomn ‖ Participant1 ‖ . . . ‖ Participantm

1In the rest of this thesis, we shall however occasionally use the term “attribute”
instead of “attribute identifier”.

29

Γ |= tt for all Γ

Γ |= ff for no Γ

Γ |= E1 on E2 iff Γ(E1) on Γ(E2)

s.t. Γ(v) = v ∧ Γ(this.a) = this.a

Γ |= Π1 ∧Π2 iff Γ |= Π1 and Γ |= Π2

Γ |= Π1 ∨Π2 iff Γ |= Π1 or Γ |= Π2

Γ |= ¬Π iff not Γ |= Π

Table 2: The predicate satisfaction

A process is either the inactive process 0, or a process modeling action-

prefixing •.P (where “•” is replaced with an action), attribute update

[ã := Ẽ]P , context awareness 〈Π〉P , nodeterministic choice between two

processes P1 + P2, parallel composition of two processes P1|P2, or recur-

sive behaviour K (it is assumed that each process has a unique process

definition K , P).

The attribute update construct in [ã := Ẽ]P sets the value of each

attribute in the sequence ã to the evaluation of the corresponding expres-

sion in the sequence Ẽ with respect to the attribute environment where

the update process is executing. The term ã is the sequence of pairwise

different attribute identifiers. The awareness construct in 〈Π〉P is used to

test awareness data about a component status or its environment. This

construct blocks the execution of process P until the predicate Π becomes

true. The parallel operator “|” models the interleaving between co-located

(i.e., residing within the same component). In what follows, we shall use

the notation JΠKΓ (resp. JEKΓ) to indicate the evaluation of a predicate Π

(resp. an expression E) under the attribute environment Γ. Notice that

the expression Jthis.aKΓ denotes the value of the attribute a under Γ

(i.e.,Jthis.aKΓ = Γ(a)). In essence, the evaluation operator J�KΓ is used to

concretize the predicates or the expressions by replacing the occurrences

of the expression this.a with their concrete values under Γ at the time of

evaluation. This means that the evaluation of a predicate returns a con-

crete predicate while the evaluation of an expression returns a concrete

value.

30

Example 3.2 (step 2/6). The structures of process P , specifying the
behavior of a participant, and the process R, specifying the behavior of a
room, are defined as follows:

P , [this.interest := initialTopic] P’

R , Service | Relocation | Updating

When a participant arrives to the conference venue, he selects his topic
of interest and behaves as P ′. On the other hand, the room behavior is
defined as the the parallel composition of three different processes Service,
Relocation, and Updating. It should be noted that these process cannot
communicate directly and they can influence the behavior of each other by
only updating the attribute environment.

In AbC there are two kinds of communication actions:

• the attribute-based input Π(x̃) which binds to sequence x̃ the cor-

responding values received from components whose communicated

messages and/or attributes satisfy the predicate Π;

• the attribute-based output (Ẽ)@Π which evaluates the sequence

of expressions Ẽ under the attribute environment and then sends

the result to the components whose attributes satisfy the predicate

Π.

A predicate Π is either a binary operator on2 between two values or

a propositional combination of predicates. Predicate tt is satisfied by all

components and is used when modeling broadcast while ff is not satisfied

by any component and is used when modeling silent moves. The satisfac-

tion relation |= of predicates is presented in Table 2. In the rest of this

thesis, we shall use the relation l to denote a semantic equivalence for

predicates as defined below.

Definition 1 (Predicate Equivalence). Two predicates are semantically
equivalent, written Π1 l Π2, iff for every environment Γ, it holds that:

Γ |= Π1 iff Γ |= Π2

2Note that on ranges over basic binary operations like >, <, ≤, ≥,=, etc. In other
words, every predicate of the form E1 on E2 should be decidable.

31

Clearly, the predicate equivalence, defined above, is decidable because

we limit the expressive power of predicates by considering only standard

boolean expressions and simple constraints on attribute values as shown

in Table 2.

An expression E is either a constant value v ∈ V, or a variable x, or an

attribute identifier a, or a reference to a local attribute value this.a. The

properties of self-awareness and context-awareness are guaranteed in AbC

by referring to the values of local attributes via a special name this. (i.e.,

this.a). These values represent either the current status of a component

(i.e., self-awareness) or the external environment as perceived by the com-

ponent (i.e., context-awareness). Expressions within predicates contain

also variable names, so predicates can check whether the values that are

sent to a specific component do satisfy specific conditions. This permits

a sort of pattern-matching. For instance, component Γ:(x > 2)(x, y).P

receives a sequence of values “x, y” from another component only if the

value x is greater than 2.

We assume that our processes are closed (i.e., without free process

variables), and that free names can be used whenever needed. The con-

structs νx and Π(x̃) act as binders for names (i.e., in νxC and Π(x̃).P , x

and x̃ are bound in C and P , respectively). We use the notation bn(P)

to denote the set of bound names of P . The free names of P are those

that do not occur in the scope of any binder and are denoted by fn(P).

The set of names of P is denoted by n(P). The notions of bound and free

names are applied in the same way to components, but free names also

include all attribute values that do not occur in the scope of any binder.

Example 3.3 (step 3/6). In the previous step, if we further specify the
process P ′ in P , the processes Service, Relocation, and Updating in R,
the behavior of a participant and a room becomes:

P , [this.interest := initialTopic]

(this.interest, REQUEST, this.id)@(role = Provider). P”

32

Service , (x = this.session ∧ y = REQUEST)(x, y, z). S’

Relocation ,
〈this.relocate = tt〉[this.prevSession := this.session,

this.session := this.newSession, this.relocate := ff]

(this.prevSession, this.session, UPDATE, this.name)
@(interest = this.session ∨ session = this.session).Relocation

Updating , (y = this.session ∧ z = UPDATE)(x, y, z, l). U’

The correspondence with respect to the specifications in Chapter 2, Sec-
tion 2.2 is evident. The participant sends a session request to the nearby
providers and continues as P ′′. On the other hand, the room accepts
session requests by the Service process which waits for a session request
that matches the room current session and continues as S′. Processes
Relocation and Updating are defined accordingly. Notice that a single
attribute update construct can be used for specifying a set of possible up-
dates. The behavior of the continuation processes P” , S’ , and U’ are
shown below:

P” , (x = this.interest ∧ y = interestRply)(x, y, z).

[this.dest := z]()@ff.Upd

Upd , (y = this.interest ∧ z = interestUpd)(x, y, z, l).

[this.dest := l]()@ff.Upd

S’ , (

(this.session, interestRply, this.name)@(id = z).0

|
Service

)

U’ , [this.prevSession := this.session, this.session := x]

((this.prevSession, this.session, interestUpd, this.name)

@(interest = this.session ∨ session = this.session).0
|
Updating

)

33

Notice that ()@ff denotes an output action on a false predicate. The execu-
tion of this action cannot be perceived by any component and is interpreted
as a silent move in AbC as we will see in the operational semantics chap-
ter. The attribute update is not an action and it takes place atomically
with the first move of the following process, in our case this is a silent
move.

34

3.2 Expressiveness of the AbC Calculus

In this section, we provide an evidence of the expressive power of the

AbC calculus by showing how different communication models and in-

teraction patterns can be easily rendered in AbC and advocate the use

of attribute-based communication as a unifying framework to encompass

different communication models.

3.2.1 Encoding channel-based interaction

The interaction primitives in AbC are purely based on attributes. In

contrast to other process calculi where senders and receivers have to agree

on an explicit channel or name, AbC relies on the satisfaction of predicates

over attributes for deriving the interaction.

Attribute values in AbC can be modified by means of internal actions.

Changing attribute values permits opportunistic interaction between com-

ponents in the sense that an attribute update might provide new opportu-

nities of interaction. This is because the selection of interaction partners

depends on predicates over the attributes they expose. Changing the val-

ues of these attributes implies changing the set of possible partners and

this is why modelling adaptivity in AbC is quite natural. Offering this

possibility is difficult in channel-based process calculi. Indeed, we would

like to argue that finding a compositional encoding in channel-based pro-

cess calculi for the following simple AbC system is very difficult, if not

impossible :

Γ1 : (msg, this.b)@(tt)‖
Γ2 : ([this.a := 5]()@ff.P | (y ≤ this.a)(x, y).Q)

If we assume that initially Γ1(b) = 3 and Γ2(a) = 2, we have that changing

the value of the local attribute a to “5” by the left-hand side process in the

second component gives it an opportunity of receiving the message “msg”

from the process residing in the first component. One would argue that

using restriction to hide local communication and bound input/output

actions would be sufficient to encode such kind of behaviors in channel-

based process calculi. However, this is not the case in the sense that bound

35

input/output actions are only willing to engage in communication when

they are instantiated with concrete channel names. In the example above,

the input action in the process at the right hand side of the interleaving

operator of the second component is always enabled. This means that

before the update, an input is available on the predicate y ≤ 2 and after

the update it is available on the predicate y ≤ 5.

Looking from the opposite perspective one might ask whether it is

possible to model channel based message passing in AbC . Indeed, a fea-

ture that is not present in AbC is the possibility of specifying a single

name/channel where the exchange happens instantaneously, i.e., the pos-

sibility of relying on a channel that appears at the time of interaction and

disappears afterwards. Attributes are always available in the attribute

environment and cannot disappear when one would like them to do so.

However, this is not a problem, since it is possible to exploit the fact that

AbC predicates can check the message values. Thus, we can add the name

of the channel where the exchange happens as a value in the message. The

receiver is left with the responsibility to check the compatibility of that

value with its receiving channel.

To show the correctness of this encoding, we choose the bπ-calculus

(EM01) as a representative for channel-based process calculi. The bπ-

calculus is a good choice because it uses broadcast instead of binary

communication as a basic primitive for interaction which makes it a sort

of variant of value-passing CBS (Pra91). Furthermore, channels in bπ-

calculus can be communicated like in π-calculus (MPW92) which is con-

sidered as one of the richest paradigms introduced for concurrency so far.

Based on a separation results presented in (EM99), it has been proved

that bπ-calculus and π-calculus are incomparable in the sense that there

does not exist any uniform, parallel-preserving translation from bπ-calculus

into π-calculus up to any “reasonable” equivalence. On the other hand, in

π-calculus a process can non-deterministically choose the communication

partner while in bπ-calculus cannot.

Proving the existence of a uniform and parallel-preserving encoding of

bπ-calculus into AbC up to some reasonable equivalence ensures at least

the same separation results between AbC and π-calculus.

36

(Component Level)

LGMc , ∅ : LGMp LP1‖P2Mc , LP1Mc ‖ LP2Mc

Lνx̃P Mc , νx̃LP Mc

(Process Level)

LnilMp , 0 Lτ.GMp , ()@ff.LGMp

La(x̃).GMp , Π(y, x̃).LGMp
with Π = (y = a) and y 6∈ n(LGMp)

Lāx̃.GMp , (a, x̃)@(a = a).LGMp

L(rec A〈x̃〉).G)〈ỹ〉Mp , (A(x̃) , LGMp)
where fn(LGMp) ⊆ {x̃}

LG1 +G2Mp , LG1Mp + LG2Mp

Table 3: Encoding bπ-calculus into AbC

We consider a two-level syntax of bπ-calculus (i.e., only static contexts

(Mil89) are considered) as shown below.

P ::= G | P1‖P2 | νxP

G ::= nil | a(x̃).G | āx̃.G | G1 +G2 | (rec A〈x̃〉.G)〈ỹ〉

Dealing with the one level bπ-syntax would not add any difficulty con-

cerning channel encoding; only the encoding of parallel composition and

name restriction occurring under a prefix or a choice would be slightly

more intricate. As reported in Table 3, the encoding of a bπ-calculus

process P is rendered as an AbC component LP Mc with Γ = ∅. Notice

that LGMc encodes a bπ-sequential process while LP Mc encodes the paral-

lel composition of bπ-sequential processes. The channel is rendered as

the first element in the sequence of values. For instance, in the output

action (a, x̃)@(a = a), a represents a channel name, so the input action

(y = a)(y, x̃) will always check the first element of the received values to

37

decide whether to accept or discard the message. Notice that the predi-

cate (a = a) is satisfied by any Γ, however including the channel name in

the predicate is crucial to encode name restriction correctly.

The formal definition which specifies what properties are preserved

by this encoding and a proof sketch for the correctness of the encoding

up to a specific behavioral equivalence will be presented in Chapter 5,

Section 5.4.

3.2.2 Encoding interaction patterns

In this section, we provide insights on how the concept of attribute-based

communication can be exploited to provide a general unifying framework

encompassing different interaction patterns tailored for multiway interac-

tions. We show how the notion of group in group-based (AC93; CKV01;

HC99) and publish/subscribe-based (BN02; EFGK03) interaction pat-

terns can be naturally rendered in AbC . Since these interaction patterns

do not have formal descriptions, we proceed by relying on examples.

We start with group-based interaction patterns and show that when

modelling a group name as an attribute in AbC , the constructs for joining

or leaving a given group can be modelled as attribute updates, like in the

following example:

Γ1 : (msg, this.group)@(group = a) ‖
Γ2 : ((y = b)(x, y) | [this.group := c]()@ff) ‖ . . .
‖ Γ7 : ((y = b)(x, y) | [this.group := a]()@ff)

We assume that initially we have Γ1(group) = b, Γ2(group) = a, and

Γ7(group) = c. Component 1 wants to send the message “msg” to group

“a”. Only Component 2 is allowed to receive it as it is the only member of

group “a”. Component 2 can leave group “a” and join “c” by performing

an attribute update with a silent move. On the other hand, if Component

7 joined group “a” before “msg” is emitted then both of Component 2

and Component 7 will receive the message.

It is worth mentioning that a possible encoding of group communi-

cation into bπ-calculus has been introduced in (EM01). The encoding is

relatively complicated and does not guarantee the causal order of message

38

reception. “Locality” is neither a first class construct in bπ-calculus nor

in AbC . However, “locality” (in this case, the group name) can be nat-

urally modeled as an attribute in AbC while in bπ-calculus, more efforts

are needed.

Publish/subscribe interaction patterns can be considered as special

cases of the attribute-based ones. For instance, a natural modeling of the

topic-based publish/subscribe model (EFGK03) into AbC can be accom-

plished by allowing publishers to broadcast messages with “tt” predicates

(i.e., satisfied by all subscribers) and only subscribers can check the com-

patibility of the exposed publishers attributes with their subscriptions,

see the following example:

Γ1 : (msg, this.topic)@(tt) ‖ Γ2 : (y = this.subscription)(x, y) ‖
. . . ‖ Γn : (y = this.subscription)(x, y)

The publisher broadcasts the message “msg” tagged with a specific topic

for all possible subscribers (the predicate “tt” is satisfied by all); sub-

scribers receive the message if the topic matches their subscription.

The operational semantics of the AbC calculus abstracts from a spe-

cific underlying communication infrastructure that mediates the interac-

tion between components. Thus, we do not model the exchange server

or the broker that mediates the interaction between publishers and sub-

scribers. We consider this an implementation related concern which we

are going to discuss in details in Chapter 6.

39

Chapter 4

AbC Operational
Semantics

In this chapter we first introduce the operational semantics of the AbC

calculus and then we explore the modeling power of the AbC primitives

through different case studies form different application domains. We use

interaction fragments to show how the semantics rules apply.

The operational semantics of AbC is based on two relations. The

transition relation 7−−−→ that describes the behavior of single components

and the transition relation −−−→ that relies on the former relation and

describes system behaviors.

4.1 Operational semantics of component

We use the transition relation 7−−−→ ⊆ Comp × CLAB × Comp to

define the local behavior of a component where Comp denotes the set of

components and CLAB is the set of transition labels α generated by the

following grammar:

α ::= λ | Π̃(ṽ) λ ::= νx̃Πṽ | Π(ṽ)

The λ-labels are used to denote AbC output (νx̃Πṽ) and input (Π(ṽ))

actions. The output and input labels contain the sender’s predicate that

40

specifies the communication partners Π, and the transmitted values ṽ. An

output is called “bound” if its label contains a bound name (i.e., if x̃ 6= ∅).
The α-labels include an additional label Π̃(ṽ) to denote the case where a

component is not able to receive a message. As it will be shown later in

this section, this kind of labels is crucial to appropriately handle dynamic

constructs like choice and awareness. Free names in α are specified as

follows:

• fn(νx̃Π(ṽ)) = fn(Π(ṽ))\x̃ and fn(Π(ṽ)) = fn(Π) ∪ ṽ

• fn(Π̃(ṽ)) = fn(Π) ∪ ṽ

The free names of a predicate is the set of names occurring in that predi-

cate except for attribute identifiers. Notice that this.a is only a reference

to the value of the attribute identifier a. Only the output label has bound

names (i.e., bn(νx̃Πṽ) = x̃).

The transition relation 7−−−→ is formally defined in Table 4 and Ta-

ble 5. We start by defining the set of rules used by a component to discard

unwanted input messages and then we continue with the actual behavior

of a single component. These rules will be later used to correctly define

the behavior of systems and also individual components. We consider

AbC terms up to α-conversion (≡α).

Discarding input. The rules for enabling components to discard input

messages are presented in Table 4. The label Π̃(ṽ) is used to indicate

discarding an input message.

Rule (FBrd) states that any sending component discards messages

from other components and stay unchanged. Rule (FRcv) states that if

one of the receiving requirements is not satisfied then the component will

discard the message and stay unchanged.

Rule (FUpd) state that process [ã := Ẽ]P discards a message if process

P is able to discard the same message after applying attribute updates i.e.,

Γ[ã 7→ ṽ] where ∀a ∈ ã and ∀v ∈ ṽ, we have that: Γ[a 7→ v](a′) = Γ(a′) if

a 6= a′ and v otherwise. The following structural congruence rule is used

41

FBrd FRcv

Γ :(Ẽ)@Π.P
Π̃′(ṽ)7−−−→ Γ :(Ẽ)@Π.P

JΠ[ṽ/x̃]KΓ 6l tt ∨ (Γ 6|= Π′)

Γ :Π(x̃).P
Π̃′(ṽ)7−−−→ Γ :Π(x̃).P

FUpd FZero

JẼKΓ = ṽ Γ[ã 7→ ṽ] : P
Π̃(w̃)7−−−→ Γ[ã 7→ ṽ] : P

Γ : [ã := Ẽ]P
Π̃(w̃)7−−−→ Γ : [ã := Ẽ]P

Γ :0
Π̃(ṽ)7−−−→ Γ :0

FAware1 FAware2

JΠKΓ l tt Γ :P
Π̃′(ṽ)7−−−→ Γ :P

Γ :〈Π〉P Π̃′(ṽ)7−−−→ Γ :〈Π〉P

JΠKΓ l ff

Γ :〈Π〉P Π̃′(ṽ)7−−−→ Γ :〈Π〉P

FSum
Γ :P1

Π̃(ṽ)7−−−→ Γ :P1 Γ :P2
Π̃(ṽ)7−−−→ Γ :P2

Γ :P1 + P2
Π̃(ṽ)7−−−→ Γ :P1 + P2

FInt
Γ :P1

Π̃(ṽ)7−−−→ Γ :P1 Γ :P2
Π̃(ṽ)7−−−→ Γ :P2

Γ :P1|P2
Π̃(ṽ)7−−−→ Γ :P1|P2

Table 4: Discarding input

to collapse multiple consecutive attribute updates into one.

[a1 := E1][a2 := E2]P ≡

{
[a1 := E1, a2 := E2]P if a1 6= a2

[a1 := E2]P otherwise

Rule (FAware1) states that process 〈Π〉P discards a message even if Π

evaluates to (tt) if process P is able to discard the same message. Rule

(FAware2) states that if Π in process 〈Π〉P evaluates to ff, process 〈Π〉P
will discard any message from other processes.

Rule (FZero) states that process 0 always discards messages from other

processes. Rule (FSum) states that process P1 + P2 discards a message

if both its subprocesses P1 and P2 can do so. The role of the discarding

label is to keep dynamic constructs like awareness and choice from dis-

42

solving after a message refusal. Rule (FInt) has a similar meaning of Rule

(FSum).

Example 4.1 (step 5/6). Assume that the current scheduled session for
room r1 is “Theory”. A participant, say pi with id = 1 and he is interested
in “V erification”, sent a session request for nearby providers. If room
r1 receives this request, it can discard it by taking the following transition.

Γi :

R︷ ︸︸ ︷
Service|Relocation|Updating

˜(role=Provider)(V erification, REQUEST, 1)7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Γi : Service|Relocation|Updating

Clearly, process Service discards the request because it does not satisfy its
receiving predicate (i.e., (x = Theory∧y = REQUEST)[V erification/x,
REQUEST/y] 6l tt), so it applies rule (FRcv) and stays unchanged. Pro-
cess Relocation also discards the request because it is not ready to accept
messages, so it applies rule (FAware2) and stays unchanged. Finally pro-
cess Updating discards the message for a similar reason to process Service
and stays unchanged. The process R, which is the parallel composition of
those processes, applies the rule (FInt) and discards the request.

Component behavior. The set of rules in Table 5 describes the be-

havior of a single AbC component. The symmetrical rules for (Sum) and

(Int) are omitted.

Rule (Brd) evaluates the sequence of expressions Ẽ, say to ṽ, and the

predicate Π1 to Π after replacing any reference (i.e., this.a) with its value

according to the attribute environment Γ, and sends this information in

the message, afterwards the process evolves to P .

Rule (Rcv) replaces the free occurrences of the input sequence vari-

ables x̃ in the receiving predicate Π with the corresponding message values

ṽ and evaluates Π under the environment Γ. If the evaluation semantically

equals to tt and the receiver environment Γ satisfies the sender predicate

Π′, the input action is performed and the substitution [ṽ/x̃] is applied to

the continuation process P .

43

Brd

JẼKΓ = ṽ JΠ1KΓ = Π

Γ : (Ẽ)@Π1.P
Πṽ7−−→ Γ : P

Rcv

JΠ[ṽ/x̃]KΓ l tt Γ |= Π′

Γ : Π(x̃).P
Π′(ṽ)7−−−→ Γ : P [ṽ/x̃]

Upd
JẼKΓ = ṽ Γ[ã 7→ ṽ] : P

λ7−→ Γ[ã 7→ ṽ] : P ′

Γ : [ã := Ẽ]P
λ7−→ Γ[ã 7→ ṽ] : P ′

Aware
JΠKΓ l tt Γ : P

λ7−→ Γ′ : P ′

Γ : 〈Π〉P λ7−→ Γ′ : P ′
Sum

Γ : P1
λ7−→ Γ′ : P ′1

Γ : P1 + P2
λ7−→ Γ′ : P ′1

Rec
Γ : P

α7−→ Γ′ : P ′ K , P

Γ : K
α7−→ Γ′ : P ′

Int
Γ : P1

λ7−→ Γ′ : P ′1

Γ : P1|P2
λ7−→ Γ′ : P ′1|P2

Table 5: Component semantics

Rule (Upd) evaluates the sequence of expressions Ẽ under the envi-

ronment Γ, apply attribute updates, and then performs an action with a

λ label if process P under the updated environment can do so.

Rule (Aware) evaluates the predicate Π under the environment Γ. If

the evaluation semantically equals to tt, process 〈Π〉P proceeds by per-

forming an action with a λ-label and continues as P ′ if process P can

perform the same action.

Rule (Sum) and its symmetric version represent the non-deterministic

choice between the subprocesses P1 and P2 in the sense that if any of

them say P1 performs an action with a λ-label and becomes P ′1 then the

overall process continues as P ′1.

Rule (Rec) and rule (Int) are the standard rules for handling process

definition and interleaving of the actions of two processes, respectively.

Example 4.2 (step 4/6). Assume that we have a participant p1 with
id = 1 and initial topic equals to “Verification”. The participant agent
P , running on the mobile device of participant p1, can take the following
transition.

Γp : P
(role=Provider)(V erification, REQUEST, 1)7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Γp[interest 7→ V erification] : P ′

44

Comp
Γ : P

λ7−→ Γ′ : P ′

Γ : P
λ−→ Γ′ : P ′

C-Fail
Γ : P

Π̃(ṽ)7−−−→ Γ : P

Γ : P
Π(ṽ)−−−→ Γ : P

Rep
C

γ−→ C ′

!C
γ−→ C ′‖!C

τ-Int Res

C1
νx̃Πṽ−−−→ C ′1 Π l ff

C1‖C2
τ−→ C ′1‖C2

C[y/x]
γ−→ C ′ y 6∈ n(γ) ∧ y 6∈ fn(C)\{x}

νxC
γ−→ νyC ′

Sync
C1

Π(ṽ)−−−→ C ′1 C2
Π(ṽ)−−−→ C ′2

C1 ‖ C2
Π(ṽ)−−−→ C ′1 ‖ C ′2

Com

C1
νx̃Πṽ−−−→ C ′1 C2

Π(ṽ)−−−→ C ′2
Π 6l ff

x̃ ∩ fn(C2) = ∅

C1 ‖ C2
νx̃Πṽ−−−→ C ′1 ‖ C ′2

Hide1

C
νx̃Πṽ−−−→ C ′

(Π Iy) l ff

y ∈ n(Π)

νyC
νx̃ffṽ−−−→ νyνx̃C ′

Hide2

C
νx̃Πṽ−−−→ C ′

(Π Iy) 6l ff

y ∈ n(Π)

νyC
νx̃ΠIyṽ−−−−−→ νyC ′

Open
C[y/x]

Πṽ−−→ C ′ Π 6l ff y ∈ ṽ\n(Π) ∧ y 6∈ fn(C)\{x}

νxC
νyΠṽ−−−→ C ′

Table 6: System semantics

The process P first applies the rule (Upd) to update its interest to “Verifi-
cation” and then applies rule (Brd) and sends a session request to nearby
providers.

4.2 Operational semantics of systems

An AbC system describes the global behavior of a component and the

underlying communication between different components. We use the

transition relation −−−→ ⊆ Comp × SLAB × Comp to define the

behavior of a system where Comp denotes the set of components and

SLAB is the set of transition labels γ which are generated by the following

45

grammar:

γ ::= νx̃Πṽ | Π(ṽ) | τ

The γ-labels extend λ with τ to denote silent moves (i.e., send on

a false predicate ()@ff). The τ -label has no free or bound names. The

definition of the transition relation −−−→ depends on the definition of

the relation 7−−−→ in the previous section in the sense that the effect of

local behavior is lifted to the global one. The transition relation −−−→ is

formally defined in Table 6; there the symmetric rules for τ-Int and Com

are omitted.

Rule (Comp) states that the relations 7−−−→ and −−−→ coincide when

performing either an input or output actions. Rule (C-Fail) states that

any component Γ :P can discard a message and stay unchanged if its local

process is willing to do so. Rule (Rep) is standard for replication. Rule

(τ-Int) and its symmetric rule model the interleaving between components

C1 and C2 when performing a silent move (i.e., a send action (ṽ)@Π with

Π l ff). In this thesis, we will use ()@ff to denote a silent action/move.

Rule (Res) states that component νxC with a restricted name x can

still perform an action with a γ-label as long as x does not occur in the

names of the label and component C can perform the same action. If

necessary, we allow renaming with conditions that ensure avoiding name

clashing.

Rule (Sync) states that two parallel components C1 and C2 can syn-

chronize while performing an input action. This means that the same

message is received by both C1 and C2. Rule (Com) states that two par-

allel components C1 and C2 can communicate if C1 can send a message

with a predicate that is different from ff and C2 can possibly receive that

message.

Rules (Hide1) and (Hide2) are unique to AbC and introduce a new

concept that we call predicate restriction “•Ix” as reported in Table 7.

In process calculi where broadcasting is the basic primitive for commu-

nication like CSP (Hoa78) and bπ-calculus (MPW92), broadcasting on a

private channel is equal to performing an internal action and no other

process can observe the broadcast except the one that performed it.

For example in bπ-calculus, if we let

46

ttIx = tt

ffIx = ff

(a = m)Ix =

{
ff if x = m

a = m otherwise

(Π1 ∧Π2)Ix = Π1Ix ∧ Π2Ix

(Π1 ∨Π2)Ix = Π1Ix ∨ Π2Ix

(¬Π)Ix = ¬(ΠIx)

Table 7: Predicate restriction •Ix

P = νa(P1‖ P2)‖ P3 where P1 = āv.Q, P2 = a(x).R, and P3 = b(x)

then if P1 broadcasts on a we would have that only P2 can observe it

since P2 is within the scope of the restriction. P3 and other processes

only observe an internal action, so P
τ−→ νa(Q‖R[v/x])‖ b(x).

This idea is generalized in AbC to what we call predicate restriction

“•I x” in the sense that we either hide a part or the whole predicate

using the predicate restriction operator “•I x” where x is a restricted

name and the “•” is replaced with a predicate. If the predicate restriction

operator returns ff then we get the usual hiding operator like in CSP and

bπ-calculus because the resulting label is not exposed according to (τ-Int)

rule (i.e., sending with a false predicate).

If the predicate restriction operator returns something different from

ff then the message is exposed with possibly a smaller predicate and the

restricted name remains private. Note that any private name in the mes-

sage values (i.e., x̃) remains private if (Π I y) l ff as in rule (Hide1)

otherwise it is not private anymore as in rule (Hide2). In other words,

messages are sent on a channel that is partially exposed.

We would like to stress that the predicate restriction operator, that

filters the exposure of the communication predicate either partially or

completely, is very useful when modelling user-network interaction. The

user observes the network as a single node and interacts with it through

47

a public channel and is not aware of how the messages are propagated

through the network. Networks propagate messages between their nodes

through private channels while exposing messages to users through public

channels. For instance, if a network sends a message with the predicate

(keyword = this.topic ∨ capability = fwd) where the name “fwd” is

restricted then the message is exposed to the user at every node with

forwarding capability in the network with this predicate (keyword =

this.topic). Network nodes observe the whole predicate but they receive

the message only because they satisfy the other part of the predicate (i.e.,

(capability = fwd)). In the following Lemma, we prove that the satisfac-

tion of a restricted predicate ΠIx by an attribute environment Γ does

not depend on the name x that is occurring in Γ.

Lemma 4.1. Γ |= ΠIx iff ∀v. Γ[v/x] |= ΠIx for any environment Γ,
predicate Π, and name x.

Proof. The “if” implication is straightforward. For the “only if” implica-
tion, the proof is carried out by induction on the structure of Π.

• if (Π = tt): according to Table 7, (ttIx = tt) which means that the
satisfaction of tt does not depend on x (i.e., Γ |= ttIx iff Γ |= tt).
From Table 1, we have that tt is satisfied by all Γ, so it is easy to
that if Γ |= ttIx then ∀v. Γ[v/x] |= ttIx as required.

• if (Π = ff): according to Table 7, (ffIx = ff) which again means
that the satisfaction of ff does not depend on x. From Table 1, we
have that ff is not satisfied by any Γ, so this case holds vacuously.

• if (Π = (a = m)Ix): according to Table 7, we have two cases:

– if (x = m) then Π = ff and by induction hypotheses, the case
holds vacuously.

– if (x 6= m) then Π = (a = m), according to Table 1, we have
that Γ |= (a = m) iff Γ(a) = m. Since x 6= m, then Γ(a) = m
holds for any value of x in Γ and we have that if Γ |= (a =
m)Ix then ∀v. Γ[v/x] |= (a = m)Ix as required.

• if (Π = Π1 ∧ Π2): according to Table 7, (Π1 ∧ Π2)I x = (Π1 I
x ∧ Π2Ix). From Table 1, we have that Γ |= (Π1Ix ∧ Π2Ix) iff
Γ |= Π1Ix and Γ |= Π2Ix. By induction hypotheses, we have that

48

if (Γ |= Π1Ix then ∀v. Γ[v/x] |= Π1Ix) and if (Γ |= Π2Ix then
∀v. Γ[v/x] |= Π2Ix).
Γ |= (Π1Ix∧Π2Ix) iff ∀v.(Γ[v/x] |= Π1Ix∧Γ[v/x] |= Π2Ix) and
now we have that if Γ |= (Π1∧Π2)Ix then ∀v. Γ[v/x] |= (Π1∧Π2)Ix
as required.

• if (Π = Π1 ∨Π2): This case if analogous to the previous one.

• if (Π = ¬Π): According to Table 7, (¬Π)I x = ¬(ΠI x). From
Table 1, we have that Γ |= ¬(Π I x) iff not Γ |= (Π I x). By
induction hypotheses, we have that if (not Γ |= ΠIx then ∀v. not
Γ[v/x] |= ΠIx) and now we have that if Γ |= ¬(Π)Ix then ∀v.
Γ[v/x] |= ¬(Π)Ix as required.

Rule (Open) states that a component has the ability to communicate

a private name to other components. This rule is different from the one

in π-calculus in the sense that AbC represents multiparty settings. This

implies that the scope of the private name x is not expanded to include

a group of other components but rather the scope is dissolved. In other

words, when a private name is communicated in AbC then the name is

not private anymore. Note that, a component that is sending on a false

predicate (i.e., Π l ff) cannot open the scope.

Example 4.3 (step 6/6). Let us assume that a participant, say p1 with
id = 1 and with “Theory” as his initial topic of interest, sent a session
request for nearby providers. The participant p1 applies rule (Comp) and
take the following transition:

Γp : P
(role=Provider)(Theory, REQUEST, 1)−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Γp[interest 7→ Theory] : P ′

If a room, say r1 scheduled for the session “Theory”, receives this mes-
sage, it applies rule (Comp) and take the following transition:

Γ1 : Service|Relocation|Updating
(role=Provider)(Theory, REQUEST, 1)−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Γ1 : S′[Theory/x, REQUEST/y, 1/z]

|Relocation|Updating

49

All other rooms will just discard the request and apply rule (C-Fail). Now
the overall system evolves by applying rule (Com) as follows:

S
(role=Provider)(Theory, REQUEST, 1)−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Γ1 : (S′[Theory/x, REQUEST/y, 1/z] |
Relocation|Updating)

‖ Γp :P ′ ‖ Γ2 :R2‖ . . . ‖ Γn :Rn

The components Γ2 : R2, . . . , Γn : Rn represent the other rooms in the
conference venue.

4.3 Case Studies: The AbC calculus at work

We start with a very simple case study to show how predicates can be used

to derive the attribute-based interaction in an intuitive way. Afterward

we proceed with more involved case studies to show the modeling power

of the AbC primitives.

4.3.1 TV Streaming channels

We show how the AbC calculus can be used to model two application

scenarios, both of them from the realm of TV streaming channels like Sky

Online, Sky Go, Netflix, etc. The first scenario is simple and demonstrates

how natural and intuitive it is to use AbC to model run-time collective

formation in these systems. The second scenario is more involved and

shows how predicates over attributes can be used to tell apart messages

coming from different parties (as it is usually done via channels in calculi

relying on more standard communication models).

Basic scenario

In this scenario, we consider a TV broadcaster (e.g., CNN) represented by

the process CNN, and two receivers represented by the processes RcvA and

RcvB, respectively, as shown in Table 8. The overall system is expressed

as the parallel composition Γcnn :CNN ‖ ΓA :RcvA ‖ . . . ‖ ΓB :RcvB, where

the dots refer to other possible broadcasters or receivers.

50

CNN , (vs, this.Qbrd)@Πsport.CNN + (vn, this.Qbrd)@Πnews.CNN

+ [Qbrd := LD]()@ff.CNN + [Qbrd := HD]()@ff.CNN

RcvA, (y = HD)(x, y).RcvA

+ [Genre := Sport]()@ff.RcvA + [Genre := News]()@ff.RcvA

RcvB, (tt)(x, y).RcvB

+ . . .

Table 8: First scenario: process definitions

CNN periodically broadcasts Sport or News and targets different groups

of receivers based on the predicates Πsport and Πnews given in Table 9.

Πsport targets the group of receivers who want to watch Sport (Genre =

Sport) provided that those receivers have subscribed to CNN (CNN-Sub =

tt). On the other hand, Πnews targets the group of receivers who want

to watch News (Genre = News). The quality of the broadcasted multi-

media varies according to different factors (i.e., low bandwidth, etc). CNN

channel non-deterministically chooses to broadcast low-definition (Qbrd

:= LD) or high-definition (Qbrd := LD) multimedia. The receiving pro-

cesses RcvA and RcvB almost have the same behaviour except that RcvA is

only interested in high quality broadcasts while RcvB is willing to accept

broadcasts of any quality. So they either accept the broadcast that their

attributes in ΓA and ΓB satisfy, or change the genre.

Now we show a fragment of the possible interactions in this scenario.

For the sake of readability, we shall use grey-shaded box to indicate those

components that are involved in the evolution. Assume that initially the

attribute environments Γcnn, ΓA and ΓB are defined as follows:

Γcnn = {(Qbrd, HD), . . . }, ΓA = {(Genre, News), . . . }
ΓB = {(Genre, News), . . . }

Assume also that the process CNN initiates the interaction by broadcasting

high quality News. As shown in Table 10, both RcvA and RcvB can join

the collective and receive the broadcast because their attributes satisfy

51

Πsport = (Genre = Sport) ∧ (CNN-Sub = tt)

Πnews = (Genre = News)

Table 9: First scenario: predicates

Γcnn :CNN ‖ ΓA :RcvA ‖ . . . ‖ ΓB :RcvB

Πnews(vs,HD)−−−−−−−−→ Γcnn :CNN ‖ ΓA :RcvA ‖ . . . ‖ ΓB :RcvB

...

ff()−−→ Γcnn[Qbrd 7→ LD] :CNN ‖ ΓA :RcvA ‖ . . . ‖ ΓB :RcvB

Πnews(vs,LD)−−−−−−−−→ Γcnn :CNN ‖ ΓA :RcvA ‖ . . . ‖ ΓB :RcvB

Table 10: First scenario: interaction fragment

the condition of the broadcast (i.e., ΓA |= Πnews and ΓB |= Πnews). The

system evolves according to rule (Com) in Table 6. However, after a

while CNN chooses to lower the quality of multimedia (Qbrd 7→ LD) to

cope with some situations (i.e., low bandwidth) and the system evolves

according to rule (τ-Int). Finally, CNN continues broadcasting News and

in this case RcvA chooses to leave the collective because the quality of the

broadcast does not satisfy its receiving predicate (i.e., (y = HD)[LD/y] 6l
tt), while RcvB stays because it has no requirement for the input quality

(i.e., (tt)(x, y)).

Scenario with subscription

In the previous scenario we assume that receivers expect to interact with

only content providers (i.e., CNN, BBC, etc.) that broadcast a unique kind of

data (i.e., Multimedia). For this reason we do not consider compatibility

52

CNN , (vs, this.Content)@Πsport.CNN

+ (vn, this.Content)@Πnews.CNN

CNN-Ctr, [Trans := Renew]

(tt, this.Content, this.Trans)@Πconf .CNN-Ctr

+ [Trans := check]

(ff, this.Content, this.Trans)@Πcanc.CNN-Ctr

RcvA ,Πbrd(x, y).RcvA

+[CNN-Paid := tt]()@ff.RcvA

+[Genre := News]()@ff.RcvA

+Πsub(x, y, z).[CNN-valid := x, CNN-Sub := x]()@ff.RcvA

+Πunsub(x, y, z).[CNN-Sub := x]()@ff.RcvA

RcvB ,Πbrd(x, y).RcvB

+ . . .

Table 11: Second scenario: process definitions

53

of data on the receiving inputs. In channel-based process calculi, this

is equivalent to the idea that all processes communicate with each other

by agreeing on only one channel/name. However, in reality processes

interact with different kinds of processes and receive different kinds of

data. Usually processes rely on different channels/names to tell apart

messages coming from different parties. In our calculus we do not have

channels and rely only on predicates to handle this situation.

In the following, we extend the previous scenario to show how pred-

icates can replace channels. We assume that the receiving processes are

able to subscribe or cancel their subscriptions for some contents. In our

scenario, if the processes RcvA and RcvB want to subscribe or cancel their

subscription for CNN, they have to communicate with another party which

is called CNN center (CNN-Ctr) as shown in Table 11. The overall system

is expressed as the parallel composition Γcnn : CNN ‖ Γctr : CNN-Ctr‖ ΓA :

RcvA ‖ ΓB : RcvB. The process CNN-Ctr identifies its contents as sub-

scription contents (Content = Subscription) and periodically looks for

users who are willing to subscribe or cancel their subscription for CNN.

The process CNN-Ctr either sets the type of transaction (Trans) to Renew

and broadcasts a subscription confirmation message to all processes that

satisfy the predicate Πconf or sets the type of transaction to check and

broadcasts a subscription cancel message to all processes that satisfy the

predicate Πcanc. The behaviour of CNN is reduced to only broadcasting

Sports or News and now CNN identifies its contents as Multimedia in its

attributes environment Γcnn. The behaviour for the processes RcvA and

RcvB is extended to enable them to communicate with different parties

and receive different types of data in an appropriate way. This is done

by imposing predicates on the input actions. Hence, the process receives

data only from those whose messages satisfy its input predicates. RcvA

and RcvB either receive broadcast from those satisfying the predicates

Πbrd,Πsub or Πunsub, pay CNN subscription (CNN-Paid 7→ tt), or change

the genre. It is obvious that a subscriber can cheat and pretend that he

already paid by changing the attribute CNN-Paid to tt without commu-

nicating with the subscription center CNN-Ctr. However, this is not the

point of the example in which we intend to show how the communication

54

Πconf = (CNN-Paid = tt) ∧ (CNN-valid = ff)

Πcanc = (CNN-Paid = ff) ∧ (CNN-valid = ff)

Πbrd = (y = Multimedia)

Πsub = (y = subscription) ∧ (z = Renew)

Πunsub = (y = subscription) ∧ (z = check)

Table 12: Second scenario: predicates

links between interacting partners are established in a simple and intu-

itive scenario. Once RcvA and RcvB subscribe, their subscriptions become

valid (CNN-Valid 7→ tt) and they can receive paid broadcasts.

The predicates Πconf , . . . ,Πunsub are specified in Table 12. The pred-

icates Πsport and Πnews are the same as in the previous scenario and the

rest can be intuitively described as follows:

• Πconf targets users who paid and their subscription expired.

• Πcanc targets users who did not pay and their subscription expired.

• Πbrd targets the processes who broadcast Multimedia where y is a

place holder for the second element of the received values.

• Πsub targets processes for subscription where y and z are place hold-

ers for received values.

• Πunsub targets processes for canceling subscription where y and z

are place holders for received values.

Now we show a fragment of the possible interactions when process CNN

-Ctr is involved. Assume that the initial states of the environments Γcnn,

Γctr, ΓA, and ΓB associated to the processes CNN, CNN-Ctr, RcvA and RcvB

55

respectively are as follows:

Γcnn = {(Content, Multimedia), . . . }
Γctr = {(Trans, φ), (Content, Subscription), . . . }
ΓA = {(CNN-Sub, ff), (Genre, Sport),

(CNN-Paid, ff), (CNN-valid, ff), . . . }
ΓB = {(CNN-Sub, tt), (CNN-valid, tt), (Genre, Sport), . . . }

Assume that process CNN initiates the interaction by broadcasting

Sports which targets subscribed receivers as shown in Table 13. Only

RcvB is allowed to receive the broadcast because its attributes satisfy the

condition of the broadcast (i.e., ΓB |= Πsport). The system evolves accord-

ing to rule (Com) in Table 6 and RcvA, CNN-Ctr stay unchanged. Then

RcvA pays the subscription by changing the value of its attribute CNN-Paid

to tt and the system evolves according to rule (τ-Int). At this moment

CNN-Ctr starts looking for processes who have expired subscription and

already paid for renewal. It takes a step by setting its attribute Trans to

Renew and broadcasts a subscription confirmation message. Only RcvA is

allowed to receive this message because it is willing to subscribe and its

attributes satisfy Πconf . The system evolves according to rule (Com).

RcvA takes the next step to update its subscription validity. Finally, CNN

continues broadcasting Sports and in this case both RcvA and RcvB are

allowed to receive the broadcast because now also the attributes of RcvA

satisfy the condition of the broadcast (i.e., ΓA |= Πsport). Hence, the

system evolves according to rule (Com).

4.3.2 Stable Marriage Problem

We consider the classical stable marriage problem (SMP) (GS62), a prob-

lem of finding a stable matching between two equally sized sets of elements

given an ordering of preferences for each element.

In our scenario, we consider n men and n women, where each person

has ranked all members of the opposite sex in order of preferences; we have

to engage the men and women together such that there are no two people

of opposite sex who would both rather have each other than their current

partners. When there are no such pairs of people, the set of marriages

56

Γcnn :CNN ‖ Γctr :CNN-Ctr ‖ ΓA :RcvA ‖ ΓB :RcvB

Πsport(vs, Multimedia)−−−−−−−−−−−−−−→
Γcnn :CNN ‖ Γctr :CNN-Ctr ‖ ΓA :RcvA ‖ ΓB :RcvB

ff()−−→
Γcnn :CNN ‖ Γctr :CNN-Ctr

‖ ΓA[CNN-Paid 7→ tt] : RcvA ‖ ΓB :RcvB

Πconf (tt, Subscription, Renew)−−−−−−−−−−−−−−−−−−−−→
Γcnn :CNN ‖ Γctr[Trans 7→ Renew] : CNN-Ctr

‖ ΓA : [CNN-valid := tt, CNN-Sub := tt]()@ff.RcvA
‖ ΓB :RcvB

ff()−−→
Γcnn :CNN‖ Γctr :CNN-Ctr

‖ ΓA[CNN-valid 7→ tt, CNN-Sub 7→ tt] : RcvA ‖ ΓB :RcvB

Πsport(vs, Multimedia)−−−−−−−−−−−−−−→
Γcnn :CNN ‖ Γctr :CNN-Ctr ‖ ΓA :RcvA ‖ ΓB :RcvB

Table 13: Second scenario: interaction fragment

57

is deemed stable. For convenience we assume there are no ties; thus, if

a person is indifferent between two or more possible partners he/she is

nevertheless required to rank them in some order. The marriage scenario

can be modeled in AbC as follows:

Man1‖ . . . ‖Mann ‖Woman1‖ . . . ‖Womann

Men and women interact in parallel and each is modeled as an AbC com-

ponent, Mani of the form Γm,i : M and Womani of the form Γw,i : W .

The attribute environments of men and women, Γm,i and Γw,i, contain

the following attributes:

• partner: identifies the current partner identity; in case a person is

not engaged yet, the value of its partner is −1;

• preferences: a ranking list of the person preferences, the head of

this list is the person’s preferred partner;

• Mid for man and Wid for woman, identify their identities;

• exPartner for a woman, identifies her ex-fiancé.

The structures of process M , specifying the behavior of a man, and the

process W , specifying the behavior of a woman, are defined as follows:

M , [this.partner := Top(this.preferences),

this.preferences := 	(this.preferences)] a.M’

W , b. (〈BOF(this.partner, y)〉 W1 +

〈¬BOF(this.partner, y)〉 W2) | W

A man, M , picks his first best from the ranking list “this.preferences”

and assumes it to be his partner. This element is removed from his pref-

erences. In the same transition he proposes to this possible partner by

executing action a (to be specified later) and then continues as M’ . The

prefix this is a reference to the value assigned to the attribute identifier

“preferences”. Functions Top(arg) and 	(arg) both take a list as an

58

argument. The former returns the first element of the list if the list is not

empty and the empty string otherwise, while the latter returns the list

resulting from the removal of its first element.

On the other hand, the behavior of a woman, W , is activated by

receiving a proposal, i.e., executing action b (to be specified later). A

woman either accepts this proposal from a “y” man if she will be better

off with him and continues as W1 or refuses it if she prefers her current

fiancè and continues as W2. The parallel composition with W ensures that

the woman is always willing to consider new proposals. BOF(arg1, arg2)

is a boolean function that takes as arguments the current partner and the

new man, respectively, and determines whether the woman will be better

off with the new man or not, given her current fiancè and her preferences.

If she is not engaged, this function will always return true.

This example shows other uses of the awareness construct 〈Π〉 where

it is not only used to wait for some attribute values to change in response

to environmental changes, but also can be used to implement a form of

guarded process as in the π-calculus. In this way, a process behavior can

be enabled in response to the received messages. In our example, the

function BOF(arg1, arg2) enables the process W1 or disables the process

W2 in response of executing the action b which indicates a proposal re-

ception. In the main running example, we already showed how to use the

awareness operator to wait for attribute values to change. More specifi-

cally, in the process Relocation, Example 3.3, the relocation process waits

until the relocate attribute becomes true (i.e., 〈this.relocate = tt〉).

If we further specify the action “a” and the process M’ in M , the

action “b” and the processes W1 and W2 in W , the behavior of a man and

a woman becomes:

M , [this.partner := Top(this.preferences),
this.preferences := 	(this.preferences)]

(propose, this.Mid)@(Wid = this.partner).

(x = invalid)(x).M

59

W , (x = propose)(x, y). (〈BOF(this.partner, y)〉

[this.exPartner := this.partner, this.partner := y]

(invalid)@(Mid = this.exPartner).0

+

〈¬BOF(this.partner, y)〉 (invalid)@(Mid = y).0) | W

Obviously, action “a” is a proposal message to be sent to the selected

partner. This message contains a label “propose” to indicate the type

of the message and the sender identity Mid. The man stays engaged

as long as he does not receive an invalidation message from the woman

he proposed to. The invalidation message contains a label “invalid” to

indicate the message type. If this message is received, the man starts all

over again and picks his second best and so on.

On the other hand, action “b” is used to receive a proposal message

from a “y” man. If the woman prefers “y”, she will consider her current

partner as her ex-partner, get engaged to “y”, and send an invalidation

message to her ex-fiancé so that he looks for another partner. This is

also true for the case when she is not engaged, but in this case she will

send an invalidation message with a predicate (Mid = −1) which will

not be received by anyone. If she prefers her partner, she will send the

invalidation message to “y”.

Although the interaction in this specific scenario is based on partners

identities, the interaction in AbC is usually more general and assumes

anonymity between the interacting partners. Interaction relies on predi-

cates over attributes that can be changed at anytime. This means that

components interact without a prior agreement between each other.

Example 4.4 (Interaction fragment). Let us assume that a man, say
m4 with id = 4 and initial list of preferences lm = 〈4, 1, 3, 2〉, wants
to propose to the woman he ranked as his first best, in our case this is
woman w4. On the other hand, woman w4 is currently engaged to man
m3 and her list of preferences is lw = 〈2, 1, 4, 3〉. Man m4 removes his
first best from his ranking list and assumes it to be his partner, sends a
proposal to woman w4 by applying rule (Comp), and takes the following

60

transition.

Γm : M

(Wid=4)(propose, 4)−−−−−−−−−−−−−→
Γp[partner 7→ 4, preferences 7→ 〈1, 3, 2〉] : (x = invalid)(x).M

Man m4 considers himself as engaged until he receives an invalidation
message from his partner. On the other hand, woman w4 receives this
message by applying rule (Comp) and takes the following transition:

Γw : W

(Wid=4)(propose, 4)

−−−−−−−−−−−−−−−→

Γw : (〈BOF(this.partner, 4)〉

[this.exPartner := this.partner, this.partner := 4]

(invalid)@(Mid = this.exPartner).0

+

〈¬BOF(this.partner, 4)〉(invalid)@(Mid = 4).0) | W

The overall system evolves by applying rule (Com). Woman w4 can take
another step and get engaged to man m4, since she will be better off him
(i.e., BOF(3, 4)|lw=〈2, 1, 4, 3〉 = tt). So she updates her current part-
ner and sends an invalidation message to her ex-partner by applying rule
(Comp) as shown in the following transition:

(Mid=3)(invalid)−−−−−−−−−−−→
Γw[exPartner 7→ 3, partner 7→ 4] : 0 | W

4.3.3 A swarm robotics scenario in AbC

We consider a scenario where a swarm of robots spreads throughout a

given disaster area with the goal of locating and rescuing possible vic-

tims. All robots playing the same role execute the same code, defining

the functional behavior, and a set of adaptation mechanisms, regulating

the interactions among robots and their environments. All robots initially

61

play the explorer role to search for victims in the environment. Once a

robot finds a victim, it changes its role to “rescuer” and sends victim’s

information to nearby explorers. The collective (the swarm) starts form-

ing in preparation for the rescuing procedure. As soon as another robot

receives victim’s information, it changes its role to “helper” and moves to

join the rescuers-collective. The rescuing procedure starts only when the

collective formation is complete. During exploration, in case of critical

battery level, a robot enters a power saving mode until it is recharged.

The swarm robotics model exploits the fact that a process running on

a robot can either read the values of some attributes that are provided by

its sensors or read and update the other attributes in its attribute envi-

ronment. Reading the values of the attributes controlled by sensors either

provides information about the robot environment or information about

the current status of the robot. We could say that in the former case the

model formalises context-awareness while in the latter case it formalizes

self-awareness. For instance, when reading the value of the collision at-

tribute in the attribute environment Γ(collision) = tt the robot becomes

aware that a collision with a wall in the arena is imminent and this trig-

gers an adaptation mechanism to change its direction. On the other hand,

reading the value of the batteryLevel attribute Γ(batteryLevel) = 15%

makes the robot aware that its battery level is critical (i.e., < 20%) and

this triggers an adaptation mechanism to halt the movement and to take

the robot into the power saving mode.

We assume that each robot has a unique identity (id) and since the

robot acquires information about its environment or its own status by

reading the values provided by sensors, no additional assumption about

its initial state is needed. It is worth mentioning that sensors and actua-

tors are not modelled by AbC because they represent the robot internal

infrastructure while AbC model represents the programmable behaviour

of the robot (i.e., its running code).

The robotics scenario is modelled as a set of parallel AbC components,

each of which represents a robot (Robot1‖ . . . ‖Robotn) and each robot has

the following form (Γi :PR). The behaviour of a single robot is modelled

62

in the following AbC process PR:

PR , (Rescuer + Explorer)| RandWalk | IsMoving

The robot follows a random walk in exploring the disaster arena. The

robot can become a “rescuer” when he becomes aware of the presence

of a victim by locally reading the value of an attribute controlled by its

sensors or remain an “explorer” and keep sending queries for information

about the victim from nearby robots whose role is either “rescuer” or

“helper”.

If sensors recognise the presence of a victim and the value of “victim-

Perceived” becomes “tt”, the robot updates its “state” to “stop” (which

triggers an actuation signal to halt the actuators and stop movement),

computes the victim position and the number of the required robots to res-

cue the victim and stores them in the attributes “vPosition” and “count”

respectively, changes its role to “rescuer”, and waits for queries from

nearby explorers. Once a message from an explorer is received, the robot

sends back the victim information to the requesting robot addressing it

by its identity “id” and the collective (i.e., the swarm) starts forming in

preparation for the rescuing procedure.

Rescuer ,
〈this.victimPerceived = tt〉[this.state := stop, this.count := 3,

this.vPosition := < 3, 4 >, this.role := rescuer]()@ff.

(y = qry ∧ z = explorer)(x, y, z).

(this.vPosition, this.count, ack, this.role)@(id = x)

On the other hand, if the victim is still not perceived, the robot continu-

ously sends queries for information about the victim to the nearby robots

whose role is either “rescuer” or “helper”. The query message contains

the robot identity “this.id” , a special name “qry” to indicate the request

type, and the current role of the robot “this.role”. If an acknowledge-

ment arrives containing victim’s information, the robot changes its role

63

to “helper” and starts the helping procedure.

Explorer ,
(this.id, qry, this.role)@(role = rescuer ∨ role = helper).

(((z = rescuer ∨ z = helper) ∧ x = ack)(vpos, c, x, z).

[this.role := helper]()@ff.Helper + Rescuer + Explorer)

Remark 4.1. The interaction between an explorer robot currently run-
ning and a rescuer robot that is waiting for a request from nearby ex-
plorers suggests a possible way of modelling binary communication like in
π-calculus (MPW92). Rendezvous can be modelled in a similar way by
defining an attribute to count the number of needed acknowledments to
signal synchronisation.

The “Helper” process defined below is triggered by receipt of the

victim information from the rescuer-collective as mentioned above.

Helper , [this.vPosition := vpos, this.target := vpos]()@ff.

(
〈this.position = this.target〉[this.role := rescuer]()@ff

|
〈c > 1〉(y = qry ∧ z = explorer)(x, y, z).

(this.vPosition, c− 1, ack, this.role)@(id = x)
)

The helping robot stores the victim position in the attribute “vPosition”

and updates its target to be the victim position. This triggers the actua-

tors to move to the specified location. The robot moves towards the victim

but at the same time is willing to respond to other robots queries, in case

more than one robot is needed for the rescuing procedure. Once the robot

reaches the victim (i.e., its position coincides with the victim position),

the robot changes its role to “rescuer” and joins the rescuer-collective.

The “RandWalk” process is defined below. This process computes a

random direction to be followed by the robot. Once a collision is detected

by the proximity sensor, a new random direction is calculated.

RandWalk , [this.direction := 2πrand()]()@ff.

〈this.collision = tt〉RandWalk

Finally, process “IsMoving” captures the status of the battery level

in a robot at any time. Once the battery level drops into a critical level

64

(i.e., less than 20%), the robot changes its status to “stop” which results

in halting the actuators and the robot enters the power saving mode. The

robot stays in this mode until it is recharged to at least 90% and then it

starts moving again.

IsMoving , 〈this.state = move ∧ ¬(this.batteryLevel > 20%)〉
[this.state := stop]()@ff.〈this.batteryLevel ≥ 90%〉
[this.state := move]()@ff.IsMoving

For simplifying the presentation, in this scenario we are not modelling

the charging task and assume that this task is accomplished according to

some predefined procedure. It is worth mentioning that if more victims

are found in the arena, different rescuer-collectives will be spontaneously

formed to rescue them. To avoid forming multiple collectives for the same

victim, we assume that sensors only detect isolated victims. Light-based

message communication (OGCD10) between robots can be used. Thus

once a robot has reached a victim, it signals with a specific color light

to other robots not to discover the victim next to it (PBMD15). Since

we do not model the failure recovery in this scenario, we assume that all

robots are fault-tolerant and they cannot fail. For more details, a runtime

environment for supporting the linguistic primitives of AbC can be found

at the following website http://lazkany.github.io/AbC/. There we

provide also a short tutorial to provide some intuition about how to use

these primitives for programming.

Example 4.5 (Interaction fragment). Let us assume that the role of
Robot1 is “rescuer” and Robot2 is “explorer”. Robot2 can send a query
to nearby rescuing or helping robots (i.e., Robot1) by using rule (Comp)

and generate this transition:

Robot2

(role=rescuer∨role=helping)(2, qry, explorer)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Γ2 : (P2|P3)

On the other hand, Robot1 can receive this query by using rule (Comp)

and generate this transition:

65

http://lazkany.github.io/AbC/

Robot1

(role=rescuer∨role=helping)(2, qry, explorer)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Γ1 : (P ′1[2/x, qry/y, explorer/z]|P3)

Other robots which are not addressed by communication discard the
message by applying rule (C-Fail). Now the overall system evolves by
applying rule (Com) as follows:

S

(role=rescuer∨role=helping)(2, qry, explorer)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Γ1 : (P ′1[2/x, qry/y, explorer/z]|P3)

‖ Γ2 : (P2|P3)‖ Γ3 :PR3
‖ . . . ‖ Γn :PRn

66

Chapter 5

Behavioral Theory for
AbC

In this chapter, we define a behavioral theory for AbC . We start by in-

troducing a reduction barbed congruence, then we present an equivalent

definition of a labeled bisimulation. At the end of the chapter, we extract

some equational laws and we sketch the proof of the correctness of the

encoding of Section 3.2.1 up to strong reduction barbed congruence.

5.1 Reduction barbed congruence

In the behavioral theory, two terms are considered as equivalent if they

cannot be distinguished by any external observer. The choice of observ-

ables is important to assess models of concurrent systems and their equiv-

alences. For instance, in the π-calculus both message transmission and

reception are considered to be observable. However, this is not the case in

AbC because sending is non-blocking and only message transmission can

be observed. It is important to notice that the transition C
Π(ṽ)−−−→ C ′ does

not necessarily mean that C has performed an input action but rather it

means that C might have performed an input action. Indeed, this transi-

tion might happen due to the application of one of two different rules in

Table 6, namely (Comp) which guarantees reception and (C-Fail) which

67

models non-reception. Hence, input actions cannot be observed by an

external observer and only output actions are observable in AbC . In this

thesis we use the term “barb” as synonymous with observable, following

the works in (BDP99a; MS92). In what follows, we shall use the following

notations:

• C τ−→ C ′ iff ∃x̃, ṽ, and Π such that C
νx̃Πṽ−−−→ C ′ and Π l ff.

• =⇒ denotes (
τ−→)∗.

• γ
=⇒ denotes =⇒ γ−→=⇒ if (γ 6= τ).

• γ̂
=⇒ denotes =⇒ if (γ = τ) and

γ
=⇒ otherwise.

• _ denotes
γ−→ where γ is an output or γ = τ .

Definition 2 (External context). An external context C[•] is a component
term with a hole, denoted by [•]. The external contexts of the AbC calculus
are generated by the following grammar:

C[•] ::= [•] | [•]‖C | C‖[•] | νx[•] | ![•]

Definition 3 (Barb). Let C↓Π mean that component C can send a mes-

sage with a predicate Π′ (i.e., C
νx̃Π′ṽ−−−−→ where Π′ l Π and Π′ 6l ff). We

write C ⇓Π if C _∗ C ′ ↓Π for some C ′. From now on, we consider the
predicate Π to denote only its meaning, not its syntax. In other words,
we consider predicates up to semantic equivalence l.

Definition 4 (Barb Preservation). R is barb-preserving iff for every
(C1, C2) ∈ R, C1↓Π implies C2 ⇓Π

Definition 5 (Reduction Closure). R is reduction-closed iff for every
(C1, C2) ∈ R, C1 _ C ′1 implies C2 _ ∗ C ′2 for some C ′2 such that
(C ′1, C

′
2) ∈ R

Definition 6 (Context Closure). R is context-closed iff for every (C1, C2)
∈ R and for all external contexts C[•], (C[C1], C[C2]) ∈ R

Now, everything is in place to define reduction barbed congruence. We

define notions of strong and weak barbed congruence to reason about

68

AbC components following the definition of maximal sound theory by

Honda and Yoshida (HY95). This definition is a slight variant of Milner

and Sangiorgi’s barbed congruence (MS92) and it is also known as open

barbed bisimilarity (SW03).

Definition 7 (Weak Reduction Barbed Congruence). A weak reduc-
tion barbed congruence is a symmetric relation R over the set of AbC-
components which is barb-preserving, reduction closed, and context-closed.

Two components are weak barbed congruent, written C1
∼= C2, if (C1, C2)

∈ R for some weak reduction barbed congruence relation R. The strong

reduction congruence “'” is obtained in a similar way by replacing ⇓ with

↓ and _∗ with _ .

Lemma 5.1. If C1
∼= C2 then

• C1 ⇓Π iff C2 ⇓Π

• C1 _∗C ′1 implies C2 _∗ ∼= C ′1 where ∼= C ′1 denotes a component that
is weakly bisimilar to C ′1.

Proof. (We prove each statement separately)

• The proof of first statement proceeds by induction on the length of
the derivation _∗n where n is the number of derivations. We only
prove the “if implication” and the “only if implication” follows in a
similar way.

– Base case, n = 0: Since C1
∼= C2, we have that C1 ↓Π implies

C2 ⇓Π as indicated in Definition 7 and Definition 4 respectively.
From Definition 3, we have that C1 ↓Π if C1 _∗0 C ′1 ↓Π and
C1 ≡ C ′1 for some C ′1 and n = 0. In other words, C1 ⇓0

Π implies
C2 ⇓Π as required.

– Suppose that ∀k ≤ n: C1 ⇓kΠ implies C2 ⇓Π where C1 ⇓kΠ
denotes C1 _∗k C ′1 ↓Π. It is sufficient to prove the claim for
k + 1.
Now, we have that C1 _∗k+1 C

′
1 ↓Π= C1 _ C ′′1 _∗k C ′1 ↓Π for

some C ′′1 . Since C1
∼= C2 and from Definition 7 and Defini-

tion 5, we have that C1 _ C ′′1 implies C2 _∗ C ′′2 for some C ′′2

69

such that C ′′1
∼= C ′′2 . Since C ′′1 _∗k C ′1 ↓Π and from induction

hypothesis, we have that C ′′1 ⇓kΠ implies C ′′2 ⇓Π. As a result,
we have that C1 ⇓Π implies C2 ⇓Π as required.

• Again the proof of second statement proceeds by induction on the
length of the derivation _∗n where n is the number of derivations.

– Base case, n = 1: Since C1
∼= C2 and from Definition 7 and

Definition 5, we have that C1 _ C ′1 implies C2 _∗ C ′2 for some
C ′2 such that C ′1

∼= C ′2. In other words, C1 _∗1 C ′1 implies
C2 _∗ ∼= C ′1 as required.

– Suppose that ∀k ≤ n: C1 _∗k C ′1 implies C2 _∗ ∼= C ′1. It is
sufficient to prove the claim for k + 1.
Now, we have that C1 _∗k+1 C

′
1 = C1 _C ′′1 _∗k C ′1 for some C ′′1 .

Since C1
∼= C2, we have that C1 _ C ′′1 implies C2 _∗ C ′′2 for

some C ′′2 such that C ′′1
∼= C ′′2 . Since C ′′1 _∗k C ′1 and by induction

hypothesis, we have that C ′′1 _∗k C ′1 implies C ′′2 _∗ ∼= C ′1.
As a result, we have that C1 _∗C ′1 implies C2 _∗ ∼= C ′1 as
required.

5.2 Bisimulation Proof Methods

In this section, we define a notion of bisimulation for AbC components,

given in terms of an LTS. We prove that bisimilarity coincides with the

reduction barbed congruence, introduced in the previous section, and thus

represents a valid tool for proving that two components are reduction

barbed congruent.

Definition 8 (Weak Bisimulation). A symmetric binary relation R over
the set of AbC-components is a weak bisimulation if for every action γ,
whenever (C1, C2) ∈ R and γ is of the form τ, Π(ṽ), or (νx̃Πṽ with
Π 6l ff), it holds that:

C1
γ−→ C ′1 implies C2

γ̂
=⇒ C ′2 and (C ′1, C

′
2) ∈ R

where every predicate Π occurring in γ is matched by its semantics mean-
ing in γ̂. Two components C1 and C2 are weakly bisimilar, written C1 ≈
C2 if there exists a weak bisimulation R relating them. Strong bisimilarity,

“∼”, is defined in a similar way by replacing
γ̂
=⇒ with

γ−→.

70

It is easy to prove that ∼ and ≈ are equivalence relations by relying

on the classical arguments of (Mil89). However, our bisimilarity enjoys a

much more interesting property: closure under any external context.

The following Lemma is useful to prove that a component with a

restricted name does not need any renaming when performing a τ action.

We will use it in the proof of Lemma 5.4.

Lemma 5.2. C[y/x] =⇒ C ′ implies νxC =⇒ νyC ′ if and only if y 6∈ fn(C).

Proof. The proof proceeds by induction on the length of the derivation
=⇒n where n is the number of derivations.

• Base Case, n = 0:
C[y/x] ≡α C ′ which implies νxC ≡α νyC[y/x] where ≡α is the
structural congruence under α-conversion.

• Suppose that ∀k ≤ n: C[y/x] =⇒k C ′ implies νxC =⇒k νyC ′
if C[y/x] =⇒n+ 1 C ′, then we have that C[y/x] =⇒n C ′′

τ−→ C ′ for

some C ′′. This implies that νxC =⇒n νyC ′′ and C ′′
τ−→ C ′ which

means that νyC ′′
τ−→ νyC ′.

In other words, C ′′
τ−→ C ′ implies C ′′[y/y]

τ−→ C ′. Now we can
apply (Res) rule. Since y 6∈ fn(C ′′)\{y} and y 6∈ n(τ), we have that

νyC ′′
τ−→ νyC ′ and we have that νxC =⇒ νyC ′ as required.

In the next three lemmas, we prove that our bisimilarity is preserved

by parallel composition, name restriction, and replication.

Lemma 5.3 (∼ and ≈ are preserved by parallel composition). Let C1

and C2 be two components such that:

• C1 ∼ C2 implies C1‖C ∼ C2‖C for all components C.

• C1 ≈ C2 implies C1‖C ≈ C2‖C for all components C.

Proof. (We only prove the second statement)
It is sufficient to prove that the relation R = {(C1‖C,C2‖C)| for all C
such that (C1 ≈ C2)} is a weak bisimulation. Depending on the last rule

applied to derive the transition C1‖C
γ−→ Ĉ, we have several cases.

• Assume that C1‖C
τ−→ Ĉ: Then the last applied rule is (τ -Int) or its

symmetrical counterpart.

71

– If (τ -Int) is applied then Ĉ = C ′1‖C and C1
τ−→ C ′1. Since C1 ≈

C2 then there exists C ′2 such that C2 =⇒ C ′2 and (C ′1 ≈ C ′2).
By applying (τ -Int) several times, we have that C2‖C =⇒ C ′2‖C
and (C ′1‖C,C ′2‖C) ∈ R

– If the symmetrical counterpart of (τ -Int) is applied then Ĉ =
C1‖C ′ and C

τ−→ C ′. So it is immediate to have that C2‖C =⇒
C2‖C ′ and (C1‖C ′, C2‖C ′) ∈ R

• Assume that C1‖C
νx̃Πṽ−−−→ Ĉ with x̂ ∩ fn(C) = ∅ and Π 6l ff, then

the last applied rule is (Com) or its symmetrical counterpart.

– If (Com) is applied then Ĉ = C ′1‖C ′, C1
νx̃Πṽ−−−→ C ′1 and C

Π(ṽ)−−−→
C ′. Since C1 ≈ C2 then there exists C ′2 such that C2

νx̃Πṽ
===⇒

C ′2 and (C ′1 ≈ C ′2). By an application of (Com) and several

application of (τ -Int), we have that C2‖C
νx̃Πṽ
===⇒ C ′2‖C ′ and

(C ′1‖C ′, C ′2‖C ′) ∈ R
– If the symmetrical counterpart of (Com) is applied then Ĉ =

C ′1‖C ′, C1
Π(ṽ)−−−→ C ′1 and C

νx̃Πṽ−−−→ C ′. So it is immediate to

have that C2‖C
νx̃Πṽ
===⇒ C ′2‖C ′ and (C ′1‖C ′, C ′2‖C ′) ∈ R

• C1‖C
Π(ṽ)−−−→ Ĉ, then the last applied rule is (Sync) and Ĉ = C ′1‖C ′,

C1
Π(ṽ)−−−→ C ′1, and C

Π(ṽ)−−−→ C ′. Since C1 ≈ C2 then there exists C ′2

such that C2
Π(ṽ)
==⇒ C ′2 and (C ′1 ≈ C ′2). By an application of (Sync)

and several application of (τ -Int), we have that C2‖C
Π(ṽ)
==⇒ C ′2‖C ′

and (C ′1‖C ′, C ′2‖C ′) ∈ R.

The strong case of bisimulation (∼) follows in a similar way.

Lemma 5.4 (∼ and ≈ are preserved by name restriction). Let C1 and
C2 be two components, then the following statements hold:

• C1 ∼ C2 implies νxC1 ∼ νxC2 for all names x.

• C1 ≈ C2 implies νxC1 ≈ νxC2 for all names x.

Proof. (We only prove the second statement)
It is sufficient to prove that the relation R = {(C,B)| C = νxC1, B =
νxC2 with (C1 ≈ C2)} is a weak bisimulation. We have several cases

depending on the performed action in deriving the transition C
γ−→ Ĉ.

72

• If (γ = τ) then only rule (Res) is applied. if (Res) is applied, then

C1[y/x]
τ−→ C ′1 and Ĉ = νyC ′1. As (C1 ≈ C2), We have that

C2[y/x] =⇒ C ′2 with (C ′1 ≈ C ′2). By Lemma 5.2 and several ap-
plications of (Res), we have that B =⇒ νyC ′2 and (νyC ′1, νyC

′
2) ∈ R.

• If (γ = νỹΠṽ) then either rule (Open), (Res), (Hide1) or (Hide2) is
applied.

– If (Open) is applied, then x ∈ (ṽ∪ ỹ)\n(Π) and C1[z/x]
Πṽ−−→ C ′1

with Ĉ = C ′1. As (C1 ≈ C2), we have that C2[z/x]
Πṽ
=⇒ C ′2

with (C ′1 ≈ C ′2). By Lemma 5.2, an application of (Open),

and several applications of (Res), we have that B
νỹΠṽ
===⇒ C ′2 and

(C ′1, C
′
2) ∈ R.

– If (Res) is applied, then C1[z/x]
νỹΠṽ−−−→ C ′1 and Ĉ = νzC ′1. As

(C1 ≈ C2), we have that C2[z/x]
νỹΠṽ
===⇒ C ′2 with (C ′1 ≈ C ′2).

By Lemma 5.2 and several applications of (Res), we have that

B
νỹΠṽ
===⇒ νzC ′2 and (νzC ′1, νzC

′
2) ∈ R

– If (Hide1) is applied, then C1
νỹΠṽ−−−→ C ′1 and Ĉ = νxνỹC ′1.

As (C1 ≈ C2), we have that C2
νỹΠṽ
===⇒ C ′2 with (C ′1 ≈ C ′2). By

Lemma 5.2, an application of (EHide1), and several applications

of (Res), we have that B
νỹffṽ
===⇒ νxνỹC ′2 and

(νxνỹC ′1, νxνỹC
′
2) ∈ R

– If (Hide2) is applied, then C1
νỹΠṽ−−−→ C ′1 and Ĉ = νxC ′1. As

(C1 ≈ C2), we have that C2
νỹΠṽ
===⇒ C ′2 with (C ′1 ≈ C ′2). By

Lemma 5.2, an application of (EHide2), and several applications

of (Res), we have that B
νỹΠIxṽ
=====⇒ νxC ′2 and (νxC ′1, νxC

′
2) ∈ R

• If (γ = Π(ṽ)) then x 6∈ n(γ) and only rule (Res) is applied. So

we have that C1[y/x]
Π(ṽ)−−−→ C ′1 and Ĉ = νyC ′1. As (C1 ≈ C2),

we have that C2[y/x]
Π(ṽ)
==⇒ C ′2 with (C ′1 ≈ C ′2). By Lemma 5.2

and several applications of (Res), we have that B
Π(ṽ)
==⇒ νyC ′2 and

(νyC ′1, νyC
′
2) ∈ R

The strong case of bisimulation (∼) follows in a similar way.

73

Lemma 5.5 (∼ and ≈ are preserved by replication). Let C1 and C2 be
two components such that:

• C1 ∼ C2 implies !C1 ∼ !C2.

• C1 ≈ C2 implies !C1 ≈ !C2.

Proof. (We only prove the second statement)
Given that C1 ≈ C2, we have that there is a weak bisimulation relation,
say R, that relate them where R = {(C1, C1) | C1 ≈ C2}. The closure
of R under parallel composition is also a weak bisimulation as shown by
Lemma 5.3. We will use the notation R‖ to denote the closure of R under
parallel composition. Now it is sufficient to prove that the relation
R′ = {(!C1, !C2)}

⋃
{(C ′‖!C1, C

′′‖!C2)| (C ′, C ′′) ∈ R‖)} is a weak bisim-

ulation. The proof follows easily by applying rule (Rep). if !C1
γ−→ Ĉ, so

we have that C1
γ−→ C ′1 and Ĉ = C ′1‖!C1. As (C1 ≈ C2), then there exists

C ′2 such that C2
γ
=⇒ C ′2 with (C ′1 ≈ C ′2). By an application of rule (Rep)

and several applications of rule (Comp), we have that !C2
γ
=⇒ C ′2‖!C2 and

(C ′1‖!C1, C
′
2‖!C2) ∈ R′ as required.

The strong case of bisimulation (∼) follows in a similar way.

As an immediate consequence of Lemma 5.3, Lemma 5.4, and Lemma 5.5,

we have that ∼ and ≈ are congruence relations (i.e., closed under any

external AbC context). We are now set to show that our bisimilarity

represents a proof technique for establishing reduction barbed congruence.

Theorem 5.1 (Soundness). Let C1 and C2 be two components such that:

• C1 ∼ C2 implies C1 ' C2.

• C1 ≈ C2 implies C1
∼= C2.

Proof. (We only prove the second statement)
It is sufficient to prove that bisimilarity is barb-preserving, reduction-
closed, and context-closed.

• (Barb-preservation): By the definition of the barb C1↓Π if C1
νx̃Πṽ−−−→

for an output label νx̃Πṽ with Π 6l ff. As (C1 ≈ C2), we have that

also C2
νx̃Πṽ
===⇒ and C2 ⇓Π.

74

• (Reduction-closure): C1 _ C ′1 means that either C1
τ−→ C ′1 or

C1
νx̃Πṽ−−−→ C ′1. As (C1 ≈ C2), then there exists C ′2 such that either

C2 =⇒ C ′2 or C2
νx̃Πṽ
===⇒ C ′2 with (C ′1 ≈ C ′2). So C2 _∗ C ′2.

• (Context-closure): Let (C1 ≈ C2) and let C[•] be an arbitrary AbC-
context. By induction on the structure of C[•] and using Lemma 5.3,
Lemma 5.4, and Lemma 5.5, we have that C[C1] ≈ C[C2].

In conclusion, we have that C1
∼= C2 as required.

Finally, we prove that our bisimilarity is more than a proof technique, but

rather it represents a complete characterization of the reduction barbed

congruence.

Lemma 5.6 (Completeness). Let C1 and C2 be two components, then the
following statements hold:

• C1 ' C2 implies C1 ∼ C2.

• C1
∼= C2 implies C1 ≈ C2.

Proof. (We only prove the second statement)
It is sufficient to prove that the relation R = {(C1, C2) |C1

∼= C2} is a
weak bisimulation.

1. Suppose that C1
νx̃Πṽ−−−→ C ′1 for any Π and a sequence of values ṽ

where Π 6l ff. We build up a context to mimic the effect of this
transition. Our context has the following form:

C[•] , [•] ‖
∏
i∈I

Γi :Πi(x̃i).〈x̃i = ṽ〉(x̃i, a)@(in = a)

‖
∏
j∈J

Γj : (y = a)(x̃j , y).(x̃j , b)@(out = b)

where |x̃i| = |x̃j | , I ∩ J = ∅ for all J and Γj |= (in = a), and the
names a and b are fresh. Πi is an arbitrary predicate. We use the no-
tation 〈x̃i = ṽ〉 to denote 〈(xi,1 = v1) ∧ (xi,2 = v2) ∧ · · · ∧ (xi,n = vn)〉
where n = |x̃i| and

∏
i∈I

Γi :Pi to denote the parallel composition of

all components Γi : Pi, for i ∈ I. To be able to mimic the effects

75

of the transition C1
νx̃Πṽ−−−→ C ′1 by the above context we need to as-

sume that (Γi |= Π) and Πi is satisfied given the sequence of values
ṽ. Intuitively, the existence of a barb on (in = a) indicates that
the action has not yet happened, whereas the presence of a barb on
(out = b) together with the absence of the barb on (in = a) ensures
that the action happened.

As ∼= is context-closed, C1
∼= C2 implies C[C1] ∼= C[C2]. Since

C1
νx̃Πṽ−−−→ C ′1, it follows that:

C[C1] _∗ C ′1 ‖
∏
i∈I

Γi :0 ‖
∏
j∈J

Γj : (ṽ, b)@(out = b) = Ĉ1

with Ĉ1 6⇓ (in=a) and Ĉ1 ⇓(out=b).
The reduction sequence above must be matched by a correspond-
ing reduction sequence C[C2] _∗Ĉ2

∼= Ĉ1 with Ĉ2 6⇓ (in=a) and

Ĉ2 ⇓(out=b). By Lemma 5.1 and the conditions on the barbs, we get
the structure of the above reduction sequence as follows:

C[C2] _∗ C ′2 ‖
∏
i∈I

Γi :0 ‖
∏
j∈J

Γj : (ṽ, b)@(out = b) ∼= Ĉ1

This implies that C2
νx̃Πṽ
===⇒ C ′2 . Reduction barbed congruence is

preserved by name restriction, so we have that νaνbĈ1
∼= νaνbĈ2

and C ′1
∼= C ′2 as required.

2. Suppose that C1
Π(ṽ)−−−→ C ′1 for some Π and a sequence of values ṽ.

Assume C1 ≡ Γ :P1, we build up the following context to mimic the
effect of this transition.

C[•] , [•] ‖ Γ′ : (ṽ)@(in = a).(ṽ)@(out = b)

where Γ |= Π and Π = (in = a), and the names a and b are fresh.
As ∼= is context-closed, C1

∼= C2 implies C[C1] ∼= C[C2]. Since

C1
Π(ṽ)−−−→ C ′1, it follows that:

C[C1] _∗ C ′1 ‖ (ṽ)@(out = b) = Ĉ1

with Ĉ1 6⇓ (in=a) and Ĉ1 ⇓(out=b).
The reduction sequence above must be matched by a correspond-
ing reduction sequence C[C2] _∗ Ĉ2

∼= Ĉ1 with Ĉ2 6⇓ (in=a) and

76

Ĉ2 ⇓(out=b). By Lemma 5.1, we have that:

C[C2] _∗ C ′2 ‖ (ṽ)@(out = b) ∼= Ĉ1

This implies that C2
Π(ṽ)
==⇒ C ′2. Reduction barbed congruence is

preserved by name restriction, so we have that νaνbĈ1
∼= νaνbĈ2

and C ′1
∼= C ′2 as required.

3. Suppose that C1
τ−→ C ′1. This case is straightforward.

Theorem 5.2 (Characterization). Bisimilarity and reduction barbed con-
gruence coincide.

Proof. As a direct consequence of Theorem 5.1 and Lemma 5.6, we have
that bisimilarity and reduction barbed congruence coincide.

5.3 Properties of the Bisimilarity Relation

We have already proved in the previous section that bisimilarity is a con-

gruence relation with respect to all external AbC contexts (i.e., component

level contexts), presented in Definition 2. In this section we want to show

that because of the dependencies of processes on the attribute environ-

ment, except for the awareness operator, all process-level operators do

not preserve bisimilarity. The rest of this section is concerned with other

properties and equational laws, exhibited by bisimilarity. The properties

also hold for strong bisimilarity unless stated otherwise.

The following remark shows that weak bisimilarity is not preserved by

most process level operators.

Remark 5.1. Let Γ :P ≈ Γ :Q, then

• Γ :Pσ 6≈ Γ :Qσ for some substitution σ

• Γ :α.P 6≈ Γ :α.Q for some action α

• Γ :P |R 6≈ Γ :Q|R for some process R

• Γ :〈Π〉P ≈ Γ :〈Π〉Q for every predicate Π

77

• Γ : [ã := Ẽ]P 6≈ Γ : [ã := Ẽ]Q for some update [ã := Ẽ]

Proof. Let C1 = Γ :

P︷ ︸︸ ︷
〈this.a = w〉(v′)@Π.0 where Γ(a) = v , C2 = Γ :

Q︷︸︸︷
0

, and R= [a := v]()@ff.0. It is easy to see that C1 ≈ C2, because both
components are not able to progress. Notice that Jthis.a = wKΓ l ff.

• If we apply the substitution [v/w] to both processes P and Q, we

have that Γ : P [v/w]
Πv′−−→ and Γ : Q[v/w] 6 Πv

′

−−→ and Γ :Pσ 6≈ Γ :Qσ
as required.

• The statement, Γ : α.P 6≈ Γ : α.Q for some action α, is a direct
consequence of the first statement. For instance, consider an input
prefix of the following form (tt)(w).

• The statement, Γ :P |R 6≈ Γ :Q|R for some process R, holds easily
from our example when we put the process R in parallel of the
processes P and Q.

• The statement, Γ : 〈Π〉P ≈ Γ : 〈Π〉Q for every predicate Π, is a
direct sequence of operational rules for the awareness operator.

• The statement, Γ : [ã := Ẽ]P 6≈ Γ : [ã := Ẽ]Q for some update
[ã := Ẽ], holds easily with the following update [a := w].

It should be noted that if we close bisimilarity under substitutions by

definition, all of the statements in Remark 5.1 follow directly. The defi-

nition would be a slight variant of the notion of full bisimilarity proposed

by Sangiorgi and Walker in (SW03). In this way, the components C1 and

C2 in the proof above are no longer bisimilar since they are not closed

under the substitution [v/w]. However, the notion of full bisimilarity is

more finer than the notion of bisimilarity proposed in this thesis.

The following remark shows that, as expected, the non-deterministic

choice does not preserve bisimilarity. The reason is related to the fact

that input transitions cannot be observed. Below we explain the issue

with a concrete example.

78

Remark 5.2. Γ :P ≈ Γ :Q does not imply Γ :P +R ≈ Γ :Q+R for
every process R

Proof. Let C1 = Γ : Π1(x).0 , C2 = Γ : Π2(x).0 , and R = (v)@Π.0.
Though the receiving predicates for both components are different we
still have that C1 ≈ C2 and this is because that input actions are not
perceived. When a message Π3w arrives, where Γ |= Π3, JΠ1[w/x]KΓ l tt
and JΠ2[w/x]KΓ l ff, component C1 applies rule (Comp) and evolves
to Γ : 0 while component C2 applies rule (C-Fail) and stays unchanged.
Both transitions carry the same label and again Γ : 0 and Γ : Π2(x).0 are
equivalent for the same reason. An external observer cannot distinguish
them.

Now if we allow mixed choice within a single component, then one can
distinguish between Π1(x) and Π2(x).

Γ :Π1(x).0 + R 6≈ Γ :Π2(x).0 + R

Assume that the message Π3w is arrived, we have that:

Γ :Π1(x).0 + R
Π3(w)−−−−→ Γ :0 6 Πv−−→

while

Γ :Π2(x).0 + R
Π3(w)−−−−→ Γ :Π2(x).0 + R

Πv−−→ Γ :0

However, this is obvious since our relation is defined at the component-
level. So it abstracts from internal behavior and characterizes the behavior
of AbC systems from an external observer point of view. In practice this
is not a problem since mixed choice is very hard to be implemented.

The following lemmas prove useful properties about AbC operators

(i.e., parallel composition is commutative, associative, . . .).

Lemma 5.7 (Parallel composition).

• C1‖C2 ≈ C2‖C1

• (C1‖C2)‖C3 ≈ C1‖(C2‖C3)

• Γ :0 ‖ C ≈ C

Proof. Directly from the operational semantics of AbC , Chapter 4 and
from the definition of bisimilarity in Definition 8.

79

Lemma 5.8 (Name restriction).

• νxC ≈ C if x 6∈ fn(C)

• νxνyC ≈ νyνxC if x 6= y

• νxC1 ‖ C2 ≈ νx(C1 ‖ C2) if x 6∈ fn(C2)

Proof. We only prove the last statement and the other statements are
straightforward. To prove that νxC1 ‖ C2 ≈ νx(C1 ‖ C2) if x 6∈ fn(C2), it
is sufficient to prove that the relationR = {(νxC1 ‖ C2, νx(C1 ‖ C2)) | x 6∈
fn(C2) and νxC ≈ C} is a weak bisimulation. We do a case analysis on

the transition νxC1 ‖ C2
γ−→ Ĉ.

We omit the trivial cases when C2 takes a step.

• Case (γ = νxΠṽ) where x ∈ ṽ: We can only apply rule (Com) and

we have that νxC1 ‖ C2
νxΠṽ−−−→ C ′1 ‖ C ′2 = Ĉ ′. On the other hand

νx(C1 ‖ C2) evolves to C ′1 ‖ C ′2 by Lemma 5.2, an application of
(Open), and several applications of (Res) and we have that C ′1 ‖ C ′2 ≈
Ĉ ′.

• Case (γ = νyΠṽ) where x 6= y∧x 6∈ ṽ: We can only apply rule (Com)

and we have that νxC1 ‖ C2
νyΠṽ−−−→ νzC ′1 ‖ C ′2 if νxC1

νyΠṽ−−−→ νzC ′1.
On the other hand νx(C1 ‖ C2) evolves to νz(C ′1 ‖ C ′2) by Lemma 5.2
and several applications of (Res).

• Case (γ = Π(ṽ)): Again with rule (Com), we have that

νxC1‖C2
Π(ṽ)−−−→ νyC ′1 ‖ C ′2, while νx(C1 ‖ C2) evolves to νy(C ′1 ‖ C ′2)

by Lemma 5.2 and several applications of (Res).

• Case (γ = τ): νxC1 ‖ C2 can only apply rule (τ-Int) and evolves to

νxνỹC ′1 ‖ C2 if νxC1
νỹΠIxṽ−−−−−→ νxνỹC ′1 where Π I x l ff. On the

other hand νx(C1 ‖ C2) evolves to νxνỹ(C ′1 ‖ C2) by Lemma 5.2,
an application of (Hide1), and several applications of (Res), since

C1
νỹΠṽ
===⇒ C ′1 where Π I x l ff. Notice that νỹffṽ is equivalent to τ

(i.e., sending on a false predicate).

• Case (γ = νỹΠ I xṽ) where where Π I x 6l ff and x ∈ n(Π):
νxC1 ‖ C2 can only apply rule (Com) and evolves to νxC ′1 ‖ C ′2
if νxC1

νỹΠIxṽ−−−−−→ νxC ′1. On the other hand νx(C1 ‖ C2) evolves to

80

νx(C ′1 ‖ C ′2) by Lemma 5.2, an application of (Hide2), and several

applications of (Res), since C1
νỹΠṽ
===⇒ C ′1.

By induction hypotheses we have that (νxC1 ‖ C2, νx(C1 ‖ C2)) ∈ R
as required.

Lemma 5.9 (Non-deterministic choice).

• Γ :P1 + P2 ≈ Γ :P2 + P1

• Γ :(P1 + P2) + P3 ≈ Γ :P1 + (P2 + P3)

• Γ :P + 0 ≈ Γ :P

• Γ :P + P ≈ Γ :P

• Γ :〈Π〉(P +Q) ≈ Γ :〈Π〉P + 〈Π〉Q

• Γ : [ã := Ẽ](P +Q) ≈ Γ : [ã := Ẽ]P + [ã := Ẽ]Q

Proof. Directly from the operational semantics of AbC , Chapter 4 and
from the definition of bisimilarity in Definition 8.

Lemma 5.10 (Interleaving).

• Γ :P1|P2 ≈ Γ :P2|P1

• Γ :(P1|P2)|P3 ≈ Γ :P1|(P2|P3)

• Γ :P |0 ≈ Γ :P

Proof. Directly from the operational semantics of AbC , Chapter 4 and
from the definition of bisimilarity in Definition 8.

Lemma 5.11. Γ1 :P ≈ Γ2 : [ã := Ẽ]P if and only if Γ2[ã 7→ JẼKΓ2
] =

Γ1.

Proof. Directly from the operational semantics of AbC , Chapter 4 and
from the definition of bisimilarity in Definition 8.

Lemma 5.12 (Awareness).

• Γ :〈ff〉P ≈ Γ :0

• Γ :〈tt〉P ≈ Γ :P

81

• Γ :〈Π1〉〈Π2〉P ≈ Γ :〈Π1 ∧Π2〉P

Proof. Directly from the operational semantics of AbC , Chapter 4 and
from the definition of bisimilarity in Definition 8.

Lemma 5.13 (Silent components cannot be observed). Let Act(P) denote
the set of actions in process P . If Act(P) does not contain any output
action, then:

Γ :P ≈ Γ :0

Proof. The proof follows from the fact that components with no external
side-effects (i.e., do not exhibit barbs) cannot be observed. When Act(P)
does not contain output actions, component Γ :P can either make silent
moves, which component Γ : 0 can mimic by simply doing nothing, or
input a message, which component Γ : 0 can mimic by discarding the
message.

Now we proceed with a set of examples to show interesting observations

about the AbC calculus.

Example 5.1. Let C1 = Γ : Π(x).P and C2 = Γ : Π1(x).P + Π2(x).P
where Π l Π1 ∨Π2, it holds that:

C1 ≈ C2

Clearly, components C1 and C2 are bisimilar because any message, ac-
cepted by C2, can also be accepted by C1 and vice versa. After a suc-
cessful input both components proceed with the same continuation process
P [v/x]. For instance the message Π1v which is satisfied by only predicate
Π2 (i.e., JΠ2[v/x]KΓ l tt) is still satisfied by predicate Π. The overlapping
between the input and the non-deterministic choice constructs is clear in
this scenario. For this special case we can replace the non-deterministic
choice with an “or” predicate while preserving the observable behavior.
The intuition is illustrated in Figure 5.3.

Corollary 5.1. Let C1 and C2 be two components where C1 = Γ :
Π1(x̃).P + · · ·+ Πn(x̃).P and C2 = Γ :(Π1 ∨Π2 ∨ · · · ∨Πn)(x̃).P we have
that C1 ≈ C2.

Example 5.2. Γ1 : (E1)@Π.P ≈ Γ2 : (E2)@Π.P if and only if JE1KΓ2 =
JE2KΓ1 and Act(P) does not contain input actions.

82

Γ :Π(x).P

Π ′v

��
Π ′w

��

Γ|=Π′

Γ :Π1(x).P + Π2(x).P

Π ′w

��
Π ′v

��
Γ :P [v/x] Γ :P [w/x] Γ :P [w/x] Γ :P [v/x]

Figure 4: The relationship between the “or” predicate and the non-
deterministic choice

It is clear that even if Γ1 6= Γ2, these components are still bisimilar since
the exposed attribute values (i.e., JE1KΓ2

) are the same. The intuition is
that sending components can control what attribute values to be exposed
to the communication partners. In some sense the sending component has
the power of selecting the criteria in which its communicated messages can
be filtered. If the continuation process P contains at least one input action,
the property cease to hold. The reason is that any incoming message with
a predicate, satisfied by Γ1 but not Γ2 can tell them apart.

Now we show some interesting properties about name restriction in

AbC . The next example is simple and the intuition behind it will be used

later in a more involved scenario.

Example 5.3. Let C1 = Γ : (v)@Π1.P and C2 = Γ : (v)@Π.P where
Π l Π1 ∨Π2, it holds that:

νxC1 ≈ νxC2 if and only if Π2 I x = ff

Clearly νxC1 can apply rule (Res) and evolves to C ′1 = νxΓ : P with a
transition label Π1v while νxC2 can apply rule (Hide2) and evolves C ′2 =
νxΓ :P ≈ C ′1 with a transition label Π I xv. From Table 7, Chapter 4 we
have that (Π I x) = (ff∨Π1) = Π1. Now it is easy to see that components
νxC1 and νxC2 are bisimilar. The hiding mechanism in AbC where a
predicate can be partially exposed is very useful in describing collective
behavior with a global point of view. In the next example we show the
expressive power of name restriction in a more involved scenario.

Example 5.4. We consider two types of components, a provider compo-
nent CP = Γp : P and a forwarder component CF = Γi : F where the

83

CF1CP1

CF2

Figure 5: The system with assumptions about the network topology

behavior of processes P and F is defined below.

P , (this.role, ṽ)@(Π1 ∨ (role = fwd)).0

F , (x = pdr)(x, ỹ).(this.grp, x, ỹ)@(role = fwd).

(x, ỹ)@Π1.0

+

(x = this.grp ∨ x = this.nbr)(x, y, z̃).(y, z̃)@Π1.0

Process P sends an advertisement message to all components that either
satisfy predicate Π1 where Π1 = (role = client) or have a forwarder role
(i.e., (role = fwd)). Process F may receive an ad from a provider, then
it first appends its group id (i.e., this.grp) to the message and sends it
to nearby forwarders. Process F continues by sending the ad to nearby
clients. Alternatively process F may receive a message from one member
of its group (i.e., the forwarder that shares the same group id) or from a
neighbor forwarder from another group (x = this.nbr) and then it will
propagate the message to nearby clients. The scenario is simplified to al-
low at most two hops from the provider. The communication links between
providers and forwarders are private (i.e., the name “fwd” and all group
and neighbor ids (i.e., ñ) are private names) to avoid interference with
other components running in parallel.

The goal of the provider component is to ensure that its advertising
message reaches all clients across the network.

To prove if the above specification guarantees this property1, we first
need to fix the topology of the network as reported in Figure 5. For the sake
of simplicity we will only consider a network of one provider CP1 = Γp :P
and two forwarders CF1 = Γ1 :F and CF2 = Γ2 :F . We assume short-
range communication where CP1 messages can reach to CF1 and CF2 can

1The results in this scenario holds only for weak bisimulation.

84

T

Π1 (pdr ,ṽ)

��

6≈

N = ν(fwd, ñ)(CP1 ‖ CF1 ‖ CF2)

Π1 (pdr ,ṽ)

��
�

Π1 (pdr ,ṽ)

��

ν(fwd, ñ)(Γp :0 ‖ CF ′1 ‖ CF2)

τ

��
�

Π1 (pdr ,ṽ)

%%

Π1 (pdr ,ṽ)

yy
�

Π1 (pdr ,ṽ)

��

� �

Π1 (pdr ,ṽ)

##
Π1 (pdr ,ṽ)

{{
Γt :0 ν(fwd, ñ)(Γp :0 ‖ Γ1 :0 ‖ Γ2 :0)

Figure 6: System N simulates the test component T , but initial interfer-
ence is possible, Hence N 6≈ T

85

only receive the messages when CF1 forwards them. Assume that initially
the attribute environments Γp, Γ1 and Γ2 are defined as follows:

Γp = {(grp, n), (role, pdr)}, Γ1 = {(grp, n), (role, fwd), (nbr, n′)}
Γ2 = {(grp, n), (role, fwd), (nbr, n′′)}

The full system is represented by the component N as defined below:

N = ν(fwd, ñ)(CP1 ‖ CF1 ‖ CF2)

The behavior of N without any interventions from other providers is re-
ported on the right side of Figure 6. The provider component CP1 ini-
tiates the interaction by sending an advertisement to nearby clients and
forwarders and evolves to Γp :0. Forwarder CF1 receives the message and
evolves to CF ′1. The overall system N applies rule (Hide2) and evolves to
ν(fwd, ñ)(Γp :0 ‖ CF ′1 ‖ CF2) with the label (Π1 ∨ (role = fwd)) I fwd
(pdr, ṽ) which is equivalent to Π1(pdr, ṽ) according to Table 7, Chapter 4.
The forwarder CF ′1 adds its group id to the message and sends it se-
cretly to nearby forwarders, in our case this is CF2. The overall sys-
tem applies rule (Hide1) and evolves to ν(fwd, ñ)(Γp : 0 ‖ CF ′′1 ‖ CF ′2)

with the label νn1((role = fwd)) I fwd(n1, pdr, ṽ) which is equivalent to
νn1ff(n1, pdr, ṽ). This message is private and is perceived externally as a
τ -move. The overall system terminates after emitting the ad, Π1(pdr, ṽ),
two more times, one from CF ′′1 and the other from CF ′2. By applying the
rule (Res) twice, the system evolves to ν(fwd, ñ)(Γp :0 ‖ Γ1 :0 ‖ Γ2 :0).

To prove that the advertising message is propagated to all clients in
the network it is sufficient to show that each forwarder takes its turn in
spreading the message. Formally it is sufficient to prove that the behavior
of the overall system is bisimilar to the behavior of a test component T ,
defined below, which is able to send the same message three times sequen-
tially and then terminates.

T = Γt : (pdr, ṽ)@Π1.(pdr, ṽ)@Π1.(pdr, ṽ)@Π1.0

Figure 6 shows that system N weakly simulates component T , but they are
not bisimilar, i.e., T 6≈ N . This is because forwarders are initially pre-
pared to accept messages from any component with a provider role. For
instance if we put another provider, say CP2 = Γh : (this.role, w̃)@(tt).0
where Γh(role) = pdr, there is a possibility that CF1 first receives a mes-
sage from CP2 and the system evolves as follows:

N‖CP2
tt(pdr,w̃)−−−−−−→ Π1(pdr,ṽ)−−−−−−→ Π1(pdr,w̃)−−−−−−→ Π1(pdr,w̃)−−−−−−→

86

while

T‖CP2
Π1(pdr,ṽ)−−−−−−→ tt(pdr,w̃)−−−−−−→ Π1(pdr,ṽ)−−−−−−→ Π1(pdr,ṽ)−−−−−−→

and it is easy to see that N‖CP2 6≈ T‖CP2. One way to avoid interference
and ensure that the property holds is shown below:

P ′ , (this.grp, this.role, ṽ)@(role = fwd) .(this.role, ṽ)@ Π1 .0

F ′ , (x = this.grp ∧ y = pdr)(x, y, z̃). (this.grp, y, z̃)@(role = fwd).

(y, z̃)@Π1.0

+

(x = this.grp ∨ x = this.nbr)(x, y, z̃).(y, z̃)@Π1.0

Now for components ĈP 1 = Γp :P ′, ĈF 1 = Γ1 :F ′, ĈF 2 = Γ2 :F ′, and

system N̂ where N̂ = ν(fwd, ñ)(ĈP 1 ‖ ĈF 1 ‖ ĈF 2) we have that T ≈
N̂ . The interference is avoided by isolating process F ′ from the external
world and now it can only receive messages from its group members with a
provider role, in our case this is ĈP 1. To allow ĈP 1 and ĈF 1 to interact,
process P ′ is adapted so that it first sends a secret message to its group
and then continues by sending a public message to nearby clients.

5.4 Correctness of the encoding

In this section, we provide a proof sketch for the correctness of the encod-

ing presented in Section 3.2.1. We begin by listing the properties that we

would like our encoding to preserve. Basically, when translating a term

from bπ-calculus into AbC , we would like the translation: to be compo-

sitional by being independent from contexts; to be independent from the

names of the source term (i.e., name invariance); to preserve parallel com-

position (i.e., homomorphic w.r.t. ‘|’); to be faithful in the sense of pre-

serving the observable behavior (i.e., barbs) and reflecting divergence; to

translate output (input) action in bπ-calculus into a corresponding output

(input) in AbC , and to preserve the operational correspondence between

the source and target calculus. This includes that the translation should

be complete (i.e., every computation of the source term can be mimicked

by its translation) and it should be sound (i.e., every computation of a

translated term corresponds to some computation of its source term).

87

Definition 9 (Divergence). P diverges, written P ⇑, iff P _ω where ω
denotes an infinite number of reductions.

Definition 10 (Uniform Encoding). An encoding L � M : L1 → L2 is
uniform if it enjoys the following properties:

1. (Homomorphic w.r.t. parallel composition): L P‖Q M , L P M‖L Q M

2. (Name invariance): L Pσ M , L P Mσ, for any permutation of
names σ.

3. (Faithfulness): P ⇓1 iff L P M ⇓2;P ⇑1 iff L P M ⇑2

4. Operational correspondence

1. (Operational completeness): if P _1 P ′ then L P M_∗2 '2

L P ′ M where ' is the strong barbed equivalence of L2.

2. (Operational soundness): if L P M _2 Q then there exists a
P ′ such that P_∗1P ′ and Q _∗2 '2 L P ′ M, where ' is the
strong barbed equivalence of L2.

Lemma 5.14 (Operational Completeness). if P _bπ P
′ then LP Mc_∗ '

LP ′Mc.

Now we provide a proof sketch for the operational completeness and

we leave the full proof details in the Appendix A.1.

Proof. (Sketch) The proof proceeds by induction on the shortest transition
of _bπ. We have several cases depending on the structure of the term P .
We only consider the case of parallel composition when communication

happens: P1‖P2
νỹāz̃−−−→ P ′1‖P ′2. By applying induction hypotheses on the

premises P1
νỹāz̃−−−→ P ′1 and P2

a(z̃)−−→ P ′2, we have that L P1 Mc _∗ ' L P ′1 Mc
and L P2 Mc _∗ ' L P ′2 Mc. We can apply rule (Com).

∅ : LP1Mp
νỹ(a=a)(a,z̃)−−−−−−−−→ ∅ : LP ′1Mp ∅ : LP ′2Mp

(a=a)(a,z̃)−−−−−−−→ ∅ : LP ′2Mp

∅ : LP1Mp ‖ ∅ : LP2Mp
νỹ(a=a)(a,z̃)−−−−−−−−→ ∅ : LP ′1Mp ‖ ∅ : LP ′2Mp

Now, it is easy to see that: LP ′1‖P ′2Mc ' ∅ : LP ′1Mp‖ ∅ : LP ′2Mp. Notice
that the bπ term and its encoding have the same observable behavior i.e.,
P1‖P2 ↓a and LP1‖P2Mc ↓(a=a).

88

Lemma 5.15 (Operational Soundness). if LP Mc _ Q then ∃P ′ such that
P_∗bπP ′ and Q _∗ ' LP ′Mc.

Proof. The proof holds immediately due to the fact that every encoded
bπ-term (i.e., L P M∅) has exactly one possible transition which matches
the original bπ-term (i.e., P).

The idea that we can mimic each transition of bπ-calculus by exactly

one transition in AbC implies that soundness and completeness of the

operational correspondence can be even proved in a stronger way as in

corollary 1 and 2.

Corollary 5.2 (Strong Completeness). if P _bπ P
′ then ∃Q such that

Q ≡ LP ′Mc and LP Mc _ Q.

Corollary 5.3 (Strong Soundness). if LP Mc _ Q then Q ≡ LP ′Mc and
P _bπ P

′

Theorem 5.3. The encoding L � M : bπ → AbC is uniform.

Proof. Definition 10(1) and 10(2) hold by construction. Definition 10(4)
holds by Lemma 5.14, Lemma 5.15, Corollary 5.2, and Corollary 5.3 re-
spectively. Definition 10(3) holds easily and as a result of the proof of
Lemma 5.14 and the strong formulation of operational correspondence in
Corollary 5.2, and Corollary 5.3, this encoding preserves the observable
behavior and cannot introduce divergence.

As a result of Theorem 5.2, Theorem 5.3 and of the strong formulations

of Corollary 5.2, and Corollary 5.3, this encoding is sound and complete

with respect to bisimilarity as stated in the following corollaries.

Corollary 5.4 (Soundness w.r.t bisimilarity).

• LP Mc ∼ LQMc implies P ∼ Q

• LP Mc ≈ LQMc implies P ≈ Q

Corollary 5.5 (Completeness w.r.t bisimilarity).

• P ∼ Q implies LP Mc ∼ LQMc

• P ≈ Q implies LP Mc ≈ LQMc

89

Chapter 6

Ab
a
CuS: A Run-time

Environment for the AbC
Calculus

We present Ab
a
CuS1, a Java run-time environment for supporting the com-

munication primitives of the AbC calculus. Having a run-time environ-

ment allows us to assess the practical impact of this young communication

paradigm in real applications. In fact, we plan to use the new program-

ming framework to program challenging case studies, dealing with collec-

tive adaptive systems, from different application domains.

Ab
a
CuS provides a Java API that allows programmers to use the linguis-

tic primitives of the AbC calculus in Java programs. The implementation

of Ab
a
CuS fully relies on the formal semantics of the AbC calculus. There

is a one-to-one correspondence between the AbC primitives and the pro-

gramming constructs in Ab
a
CuS. This close correspondence enhances the

confidence on the behavior of Ab
a
CuS programs after they have been an-

alyzed via formal methods, which is made possible by the fact that we

rely on the operational semantics of the AbC calculus. To facilitate inter-

operability with other tools and programming frameworks, Ab
a
CuS relies

1http://lazkany.github.io/AbC/

90

http://lazkany.github.io/AbC/

on JSON2, a standard data exchange technology that simplifies the in-

teractions between heterogenous network components and provides the

basis for allowing Ab
a
CuS programs to cooperate with external services or

devices.

The operational semantics of the AbC calculus abstracts from a spe-

cific communication infrastructure. An AbC model consists of a set of par-

allel components that cooperate in a highly dynamic environment where

the underlying communication infrastructure can change dynamically. We

start by showing the obvious rendering of AbC models as Ab
a
CuS programs

and then we show how the underlying communication infrastructure can

be implemented to facilitate the interaction between different components.

We lay the basis for an efficient implementation of a communication in-

frastructure that respects that semantics of the AbC calculus and we rely

on stochastic simulation to evaluate the performance.

The advantages of our programming framework can be summarized by

saying that it provides a small set of programming constructs that natu-

rally supports collective-adaptive features including scalability, awareness,

adaptation and interdependence, and also permits collaboration to achieve

system goals.

6.1 From AbC primitives to Ab
a
CuS program-

ming constructs

In this section we show the rendering of the AbC primitives in terms of the

programming constructs of the Ab
a
CuS framework. These constructs can

be viewed as Java macros that mimic the behavior of the AbC primitives.

We use the running example (Section 2.2.1), and more specifically the

description of the participant component, to illustrate the rendering.

Components AbC components are implemented via class AbCComp-

onent. Instances of this class are executed on either virtual or physical

machines that provide access to input/output devices and network con-

nections. An instance of the class AbCComponent contains an attribute

2http://www.json.org

91

http://www.json.org

environment and a set of processes that represents the behavior of the

component. Components interact via ports supporting either local com-

munication, i.e., components that run on the same machine, or external

communication, i.e., components that run on different machines.

The following Ab
a
CuS code shows how to create a participant compo-

nent p, to set the values of its attributes, to assign the process “Particip-

ant(topic)” to it, and finally to start its execution.

1 AbCComponent p = new AbCComponent("Participant-1");

2 p.setValue(Defs.id, 1);

3 p.addProcess(new Participant(topic));

4 p.start();

Notice that the programer is not required to construct the attribute envi-

ronment for each component from scratch. He is only required to initial-

ize the values of the component attributes via method “setValue(arg1,

arg2)” as shown at (line 2). This method takes two arguments, “arg1”,

which specifies the type of the attribute, and “arg2”, which specifies its

assigned value. The method checks if the attribute identifier already exists

in the attribute environment and assigns the new value to it. Otherwise

a new identifier is added to the attribute environment and assigned the

initial value. It is a good programming practice to define all constants,

attribute identifiers, and other data structures in a single Java class; in

our case we use “Defs”, and then one can refer to any of them from Ab
a
CuS

programs. This will help creating more clean, compact, and less verbose

Ab
a
CuS programs.

Attribute Environments AbC attribute environments are implement-

ed via the class AbCEnvironment. An instance of the class AbCEnvironme-

nt contains a set of attribute identifiers, implemented via class AbCAttri-

bute, and their corresponding values. The attribute environment main-

tains the attribute values by providing read and update operations via

the methods getValue(attribute) and setValue(attribute,value)

respectively. The class AbCAttribute implements an AbC attribute and

provides a mechanism to ensure type compatibility of the possible assigned

values. The following Ab
a
CuS code shows how to create an AbC attribute

92

and to read and update its value respectively.

1 AbCAttribute<Integer> id = new AbCAttribute<>("ID", Integer.class);

2 getValue(id);

3 setValue(id, 1);

Processes The generic behavior of an AbC process is implemented via

the abstract class AbCProcess. To create an AbC process you have to

extend the class AbCProcess as shown in the process template, Pro-

gram 6.1 below. The text between square brackets represents the ed-

itable part of the template while the code preceeded by the operator

“?” represents the optional part of the template. For instance the text

“[PROCESS-IDENTIFIER]” is replaced by a process identifier, in our case

it is “ParticipantAgent”. The set of instance variables and the construc-

tor of any process and its parameters are optional unless the process is

parametrized and needs to initialize some variables. In our example pro-

cess ParticipantAgent in Specification 2.1 is parametrized with respect

to the topic of interest, that is why we defined an instance variable topic

and initialized it in the constructor of the process ParticipantAgent as

shown in the Ab
a
CuS implementation in Program 6.2 (Lines 3-8). In Pro-

gram 6.2 we only report the translation of Specification 2.1 into Ab
a
CuS

code. The full translation of the smart conference system can be found in

Appendix A.2.

Program 6.1: Process Template

1 public class [PROCESS-IDENTIFIER] extends AbCProcess {

2
3 ? [INSTANCE-VARIABLES]

4 ? public [PROCESS-IDENTIFIER](?[PARAMETERS]) {

5
6 [INITIALIZATION]

7 }

8 @Override

9 protected void doRun() throws Exception {

10
11 [PROCESS-BODY]

12 }

13 }

93

The actual behavior of an AbC process is specified by implementing

the abstract method “doRun()” (lines 8-12). This method is automatically

invoked when the process starts executing. The text “[PROCESS-BODY]”

is replaced with a sequential AbC process. In what follows we show the

translation of AbC process constructs into Ab
a
CuS constructs.

• Action prefixing, α.P : the sequentialization of the dot operator is

naturally translated into the semicolon Java operator which marks

the ending of a Java command/statement.

• Attribute update, [a := E]: The attribute update is implemented

via the method “setValue(Attribute<?>, Object)”.

• Awareness, 〈Π〉: The awareness construct “〈Π〉” is implemented

via the method “waitUntil(AbCPredicate)”.

• Non-determinism, P1 +P2: We only allow for a non-deterministic

choice between processes enabling input actions, possibly preceded

by attribute updates and/or awareness operators. This is imple-

mented via the method “receive(in1, . . . , inn)”. This method

takes any finite number of arguments of type InputAction, each of

which represents a process of the following form [ã := Ẽ]〈Π′〉Π(x̃).

An instance of the class InputAction contains a local attribute en-

vironment that represent possible updates (i.e., [ã := Ẽ]), imple-

mented via class AbCEnvironment, and two predicates, implemented

via class AbCPredicate: Π′ (the awareness predicate) and Π (the

receiving predicate on the selected branch of the choice). When a

message arrives to the component, this method only enables the cor-

rect branch or blocks the execution in case of unwanted messages.

Non-deterministic choice between an input and output or between

several output actions is not allowed because output actions are

non-blocking.

• Interleaving, P1|P2: This construct is implemented via method

“addProcess(AbCProcess)”. This method is invoked by a com-

ponent. Adding a process to a component with this method has

94

the same effect of running that process in parallel with the existing

processes in that component.

• Process call, K: This is implemented via the method call(AbC-

Process) which takes an AbC process as a parameter.

• Recursive call, e.g., P , α.P : This construct is naturally trans-

lated into a Java “while(true){}” loop.

• Process replication: Though this is not an explicit AbC process

construct, its effect can be obtained when we have a parallel com-

position in the context of a recursive process call. For instance, pro-

cess “P , Π(x̃).Q|P” replicates itself every time it receives a new

message. The method “exec(AbCProcess)” is used to create a new

AbC process and run it in parallel. Generally we only allow guarded

replication, enabled by either an input action or an awareness con-

struct. This restriction makes it simpler to implement replication,

since it becomes clear when one needs to create a new copy of the

replicated process. For instance, the process, P , a.Q|P where a

is an output action, is hard to implement because the semantics of

output actions is non-blocking, so it would quickly fill up the heap

with copies of P.

Actions The AbC communication actions send, (Ẽ)@Π, and receive,

Π(x̃), are implemented via the methods Send(Predicate, Object) and

receive(msg−>Function(msg)) respectively. The receive operation ac-

cepts a message and passes it to a boolean function that checks if it

satisfies the receiving predicate.

Program 6.2: The ParticipantAgent in Ab
a
CuS

1 public class ParticipantAgent extends AbCProcess {

2
3 private String topic;

4
5 public ParticipantAgent(String name , String topic) {

6 super(name);

7 this.topic = topic;

8 }

95

9
10 @Override

11 protected void doRun() throws Exception {

12 setValue(Defs.interest, this.topic);

13 send(

14 new HasValue(

15 Defs.ROLE,

16 Defs.PROVIDER

17) ,

18 new Tuple(

19 getValue(Defs.interest) ,

20 Defs.REQUEST ,

21 getValue(Defs.id)

22
23)

24);

25 Tuple value = (Tuple) receive(o -> isAnInterestReply(o));

26 setValue(Defs.destination, (String) value.get(2));

27 while (true) {

28 value = (Tuple) receive(o -> isAnInterestUpdate(o));

29 setValue(Defs.destination, (String) value.get(3));

30 }

31 }

32
33 private AbCPredicate isAnInterestReply(Object o){

34 if (o instanceof Tuple) {

35 Tuple t = (Tuple) o;

36 try {

37 if ((getValue(Defs.interest).equals(t.get(0))&&

38 Defs.REPLY.equals(t.get(1)))

39 {

40 return new TruePredicate();

41 }

42 } catch (AbCAttributeTypeException e) {

43 e.printStackTrace();

44 }

45 }

46 return new FalsePredicate();

47 }

48
49 private AbCPredicate isAnInterestUpdate(Object o) {

50 if (o instanceof Tuple) {

51 Tuple t = (Tuple) o;

52 try {

53 if ((getValue(Defs.interest).equals(t.get(1)))&&

54 (Defs.UPDATE.equals(t.get(2))) {

55 return new TruePredicate();

56 }

57 } catch (AbCAttributeTypeException e) {

58 e.printStackTrace();

96

59 }

60 }

61 return new FalsePredicate();

62 }

63
64 }

Communication Ports In Ab
a
CuS each component is equipped with a

set of ports for interacting with other components. A port is identified

by an address which can be used to manage the connection with the

underlying communication infrastructure that mediates the interaction

between AbC components. It should be noted that these ports are not

meant to be used by components to identify the addresses of others, but

rather as a way to access the communication infrastructure.

The abstract class AbCPort implements the generic behavior of a port.

It provides the instruments to dispatch messages to components and par-

tially implements the communication protocol used by AbC components

to interact. The send method in AbCPort is abstract to allow for different

concrete implementations depending on the underlying network infras-

tructures (i.e., Internet, Wi-Fi, Ad-hoc networks, . . .).

In this section we abstract from the existence of a specific communica-

tion infrastructure and provide an implementation for a virtual port. This

implementation serves as a proof of concept and is also used for running

case studies.

The virtual port is used to run components in a single application

without relying on a specific communication infrastructure and the inter-

actions are performed via a buffer stored in the main memory. The virtual

port is implemented via the class VirtualPort. An instance of this class

consists of a set of local ports that are used by components to send and

receive messages. Every AbC component acquires a unique local port for

interaction. The class LocalPort implements the class AbCPort and pro-

vides custom mechanisms for sending and receiving messages. The virtual

port manages the use of its local ports by assigning a unique local port

to each component and ensures that only a single local port can send at

a given moment by relying on a lock, shared between all local ports. If a

97

component wants to send a message, it acquires the lock through its as-

signed local port and releases it only when the send operation terminates.

This is important to guarantee that messages are handled in the correct

order.

Example 6.1. Assume that the processes P and Q represent the behav-
ior of two different components C1 = Γ1 : P and C2 = Γ2 : Q where
P , (v)@Π1.(x = w)(x).0 and Q , (w)@Π2.(x = v)(x).0. Assume
that Γ1 |= Π2 and Γ2 |= Π1. If we execute these components in paral-
lel, the possible outcomes according to the interleaving semantics would be

either Γ1 : 0 ‖ Γ2 : (x = v)(x).0, by executing the sequence
Π1v−−→ Π2w−−−→, or

Γ1 : (x = w)(x).0 ‖ Γ2 :0, by executing the sequence
Π2w−−−→ Π1v−−→. If we allow

concurrent execution of send operations we might end up in a situation
where both processes receive messages from each other which is not sound
with respect to the semantics (i.e., Γ1 : 0 ‖ Γ2 : 0). This is why a shared
lock is needed to program interleaving correctly.

The following Ab
a
CuS code shows how to create a VirtualPort, get a

fresh local port, assign it to a participant component “p”, and start its

execution respectively.

1 VirtualPort vp = new VirtualPort();

2 AbCPort port=vp.getPort();

3 p.setPort(port);

4 port.Start();

6.2 Implementing the Communication Infras-
tructure

As we have seen in previous chapters, AbC has proved to be powerful by

means of encoding other classical communication paradigms, however, the

question about the tradeoff between its expressiveness and its efficiency,

when implemented to program distributed systems, is still to be answered.

In the rest of this chapter, we lay the basis for an efficient implementation

of a distributed communication infrastructure for AbC that respects its

formal semantics. The main issue when implementing a communication

model, especially for group-based models, is to ensure that every message

98

is delivered to all possible receivers in the same order. In the operational

semantics of AbC , to respect the order of message delivery and as the

case in any theoretical model, we abstracted from implementation details

and assumed that message exchange is atomic and thus that at a given

instant only one component can send while all others block execution until

the sent message is delivered to all possible receivers. However, in real

implementations we cannot afford atomic message exchange, because it is

extremely inefficient. Actually, we wish to reduce synchrony as much as

possible, but still we want to mimic the effect of atomic message exchange.

Despite the extensive theoretical results on process calculi, and es-

pecially broadcast-based process calculi, distributed coordination infras-

tructures for managing the interaction of actual computational systems

are still scarce. In distributed infrastructures, many servers collaborate

asynchronously to deliver messages to available receivers which makes the

correctness of their overall behavior not obvious. In this chapter, we pro-

pose three possible implementations of a distributed coordination infras-

tructure to manage multiparty interactions, independently from a specific

set of coordination primitives. These include cluster-based, ring-based,

and tree-based infrastructures. We prove their correctness and finally we

model them as stochastic processes to evaluate their performance. The re-

sults show that the tree-based infrastructure outperforms others in terms

of minimizing the average delivery time and the average time gap between

the delivery of two consecutive messages. Since the decision on whether

to accept or discard a message in AbC is resolved at the receiver side, it

is easy to see that the expressive power of attribute-based communica-

tion does not add any extra complexity to message exchange and actually

has a similar complexity when implementing any broadcast process cal-

culus. Thus, these infrastructures can be used efficiently for AbC or any

multicast/broadcast process calculus.

In the literature, a plethora of approaches have been proposed to main-

tain the order of message delivery for multiparty communication. These

approaches are however difficult to compare as they often differ in their

assumptions, properties, objectives, or target applications. A compre-

hensive comparative study that highlights the commonalities and the dif-

99

ferences between these approaches can be found in (DSU04). However,

these approaches can be classified according to the ordering mechanisms

they adopt. These include: the fixed sequencer-based approach (CM95),

the moving sequencer-based approach (CM84), the privileged-based ap-

proach (Cri91), and the communication history-based approach (PBS89).

In the fixed sequencer approach, one node takes the responsibility of

maintaining the order of message delivery and agents can communicate by

sending and receiving messages to/from the sequencer. Our centralized

algorithm, used e.g in (ADL16b) is based on this approach. The cluster-

based infrastructure is a natural extension of this approach, in the sense

that multiple copies of the sequencer can collaborate to deliver messages

by sharing an input queue and a counter. Also our tree-based infrastruc-

ture can be considered as a generalization of this approach where instead

of a single sequencer, we consider a propagation tree which is a common

infrastructure for group communication (Pel00). The ordering decisions

are resolved along the tree paths. When the depth of the propagation tree

is 1, our algorithm behaves just like other fixed sequencer approaches.

The moving sequencer approach tries to avoid the bottleneck induced

by a single sequencer, by transferring the sequencer role among several

nodes. These nodes form a logical ring and circulate a token that carries

a sequence number and a list of all sequenced messages. Upon receipt of

the token, a sequencer assigns sequence numbers to its messages, sends

all sequenced messages to destinations, updates the token, and passes the

token and sequenced messages to the next sequencer. In this way the load

is distributed among several nodes. However, the liveness of the algorithm

depends on the token and, if the number of senders in one node is larger

than others, fairness is hard to achieve. The ring-based infrastructure can

be viewed as a generalization of this technique where fairness is resolved

by sharing a common counter rather than circulating a token.

In the privilege-based approach, senders circulate a token that carries

a sequence number and each sender has to wait for the token. Upon

receipt the sender assigns sequence numbers to its messages, sends them

to destinations, and passes the token to the next sender. This approach

is not suitable for open systems, since it assumes that all senders know

100

each other. Also fairness is hard to achieve, when some agents send larger

number of messages than the others.

In the communication history approach, senders also define the order

in which their messages are to be received. Senders can send at anytime by

simply attaching timestamps to their messages. The order is maintained

by delaying the delivery of messages, i.e., an agent can deliver a message

m from another agent only after it has received, from every agent in the

network, a message that was sent before reception of m. Liveness problem

arises if some agents in the network are unable to send messages. This

approach is suitable for synchronous systems with synchronized clocks

and physical timestamps.

It should be noted that with the exception of the last approach, which

is however not suitable for asynchronous systems, all the above approaches

either make assumptions about the topology of the communication infras-

tructure or require that the communicating partners know each other to

guarantee the order of message delivery.

Clearly, centralized infrastructures are not efficient, nonetheless they

are easy to develop and maintain, e.g., it is not difficult to respect the

order of message delivery in a centralized infrastructure since messages are

maintained by a single server that stores incoming messages in a specific

order in its FIFO queue and delivers them to receiver in a specific order.

For some application, it is much more convenient to rely on a centralized

infrastructure rather on a distributed one. For the sake of completeness we

proceed by providing a centralized implementation for the communication

infrastructure. We discuss its advantages and disadvantages and then we

focus more on our distributed proposals.

Centralized communication infrastructure

In this section we provide a centralized implementation of the commu-

nication infrastructure which is based on the fixed sequencer approach.

We assume the presence of a centralized server/ broker that mediates the

interaction between components as shown in Figure 7. In essence the

message broker, labeled “X”, accepts messages from sending components,

and delivers them to all subscribed components with the exception of the

101

X

C1

(M)@Π

C2

C3 C4

Γ4 |= Π

C6

Γ6 |= Π

C5

Figure 7: Centralized communication infrastructure

sending ones. This central server plays the role of a forwarder and does

not contribute in any way to message filtering. The decision about ac-

cepting or ignoring a message is taken when the message is delivered to

the receiving components. The implementation of the coordination al-

gorithm is straightforward. Components have to subscribe to server X

at any point of time to be considered for future communication. Once a

component is subscribed, it will be able to receive messages from other

components through the message broker. The broker keeps an entry for

each subscribed component which is the tuple 〈id, addr〉, where id rep-

resents a unique id for each component and addr which specifies the ad-

dress of the subscribed component. During the subscription phase, server

X communicates the port number where it accepts data messages to the

subscribed component. If a component, say C1, wants to send a message

M to a group of components that satisfy the predicate Π, it just sends the

message to server X and blocks execution until server X signals back an

acknowledgement to indicate that the message has been processed. Server

X forwards message M to all subscribed components with the exception

of the sending one and the receiving components decide either to accept

or ignore the message based on their satisfaction of the sending predi-

cate Π. In our case, only components C4 and C6 are qualified to receive

message M because they satisfy the sending predicate Π, while the other

components discard the message.

The interleaving semantics is preserved by this algorithm even if mul-

102

tiple components send messages concurrently. This is because only server

X is mediating the interaction and can dispatch messages to components

in some order. The order of messages is preserved because each com-

ponent is blocked until the server signals acknowledgement of processing

the message. This means that the next action of the sending process is

not enabled until an acknowledgment is received. However, we still need

to constrain individual components from concurrently sending and/or re-

ceiving messages in the sense that if a component is receiving a message,

it is not allowed to send any other messages until the receiving operation

is finished and the same applies to the sending operation. Otherwise there

would be the chance, in a multi-threaded component, to receive a mes-

sage that was not supposed to be received according to the operational

semantics.

Example 6.2. Let the behavior of component C = Γ1 : P be defined as
follows:

P , (a, v)@Π1.(x = a)(x, y).0 | (x = b)(x, y).0

which is the parallel composition of two processes, one is attempting to
send a message on Π1 and then wait for receiving on (x = a) and the
other is waiting to receive on (x = b). Now consider the following:

1. Another component C ′ = Γ2 : Q executes in parallel and has the
following behavior Q , (a, v′)@Π2.(x = a)(x, y).0 such that Γ1 |=
Π2 and Γ2 |= Π1. Notice that this behavior is similar to the behavior
of the subprocess on the left hand side of the parallel composition in
process P . If both components C and C ′ send concurrently and
continue executing without waiting for an acknowledgements, they
will both receive from each other since the next action is enabled
for both of them. However, this is not sound with respect to the
operational semantics. That is why acknowledgements are necessary
to preserve the semantics.

2. If message Π3(a, v′′) reaches component C before message Π1(a, v)
is emitted where Γ1 |= Π3, the sending operation is blocked until the
receiving operation is finished. In our case the message is discarded
since process P is either sending on Π1 or receiving on (x = b). If we
allow concurrent sending and receiving for co-located processes then
there is a chance that the component C emits the message Π1(a, v)

103

while processing Π3(a, v′′) and evolves to Γ1 : 0 | (x = b)(x, y).0
which is not sound with respect to the operational semantics. That
is why we do not allow concurrent execution of send and receive
operations.

We would like to stress that, although this implementation is central-

ized, components interact anonymously and combine their behaviors to

achieve the required goals. Components are unaware of the existence of

each other, as they only interact with the message broker. The latter

can be seen as an access point which mediates the interaction between

components. It serves as a forwarder that shepherds the interaction, but

it has nothing to do with message filtering. It should be noted that the

AbC server and the client ports usually operate from different machines.

The following Ab
a
CuS code shows how to create an AbCServer and start

its execution.

1 AbCServer server = new AbCServer();

2 server.start();

The following code shows how to create a client port, register it to an

existing server, assign the port for a participant component p1, and finally,

start its execution.

1 AbCClient client = new AbCClient(InetAddress.getLoopbackAddress(),

1234);

2 client.register(

InetAddress.getLoopbackAddress(),DEFAULT_SUBSCRIBE_PORT);

3 p1.setPort(client);

4 client.start();

Centralized infrastructures are easy to develop and deploy. Actually they

can be prototyped and tested very quickly. They are also easy to main-

tain, as there is only a single point of failure which is the main server.

However, these advantages come with a price as such infrastructures are

not fault tolerant or stable. For instance if the main server fails, the entire

infrastructure will be non-functioning. Also relying on a single exchange

server may become a bottleneck for performance because these infras-

tructures do not scale well with a large number of connected components.

When the number of messages increases substantially, the server becomes

104

overloaded and unable to handle further requests and most likely will go

down. So there is a trade off between ease of development, maintainabil-

ity, stability, scalability, and fault tolerance and it really depends on the

application of interest. In some applications, with a fixed and relatively

small number of components distributed in a small geographic area, this

kind of infrastructures might be the optimal choice. On the other hand,

if the number of components is very large and can increase at anytime

with different factors and the components are distributed in a large area,

other kinds of infrastructures are needed.

6.3 Multiparty Interaction Style

In this section, we fix the general multiparty communication model that

we consider for our distributed proposals, independently from a specific

set of communication primitives. In essence, a system, in this model,

consists of a set of parallel agents that interact through message passing.

Each agent can perform either send or receive activities. The criteria for

deriving the interaction between different agents vary according to the

set of communication primitives of interest. For instance, in bπ-calculus,

agents can exchange messages only when they agree on a specific chan-

nel name while in AbC , agents rely on the content of messages and if

the receiver satisfies the sender requirements. Message transmission is

autonomous (non-blocking), but reception is not. For instance, an agent

can still send a message even there are no receivers, but receive operation

can only happen through synchronization with an available sent message.

Whenever an agent transmits a message, all agents running in parallel

catch the message. Agents can then decide whether to accept or discard

the message according to the criterion, adopted by their communication

primitives. To respect the order of message delivery in such cases, the

multiparty communication model relies on the notion of interleaving se-

mantics or atomic message exchange where at a given instant only one

agent can send a message while all other agents block execution until the

sent message is delivered to all possible receivers. The following example

explains how the communication links are derived.

105

Example 6.3. Let us consider three agents A1, A2,and A3, executing in
parallel with the following behaviors A1 = av.0, A2 = b(x).a(x).P , and
A3 = a(x).bw.0 where av (resp. bw) denotes sending message v (resp.
w) on channel a (resp. b) and a(x) (resp. b(x)) denotes receiving a
message on channel a (resp. b). Messages sent on a channel name, e.g.,
a, can only be received on the same name, e.g., a. According to the above
description, the only legal interaction trace is the following:

A1‖A2‖A3
av−→ 0‖A2‖bw.0

bw−−→ 0‖(a(x).P)[w/x]‖0

When we assume atomic message exchange, agent A1 takes the first

step and sends message av while both A2 and A3 block execution until av

is delivered to both of them. In this case, only A3 can receive the message

while A2 stays unchanged. The next step is taken by A3 which sends bw

that can only be received by A2 and after this step no agent is able to

send any message.

6.4 Distributed Coordination Infrastructures

In this section, we consider three different implementations of a dis-

tributed coordination infrastructure for multiparty communication models

that assume atomic message exchange with non-blocking message sending.

The idea is to allow modelers to specify systems in a synchronous way,

which is more intuitive and simpler in terms of modeling and mathemat-

ical reasoning, while the implementation is asynchronous, which is more

efficient and desired in distributed settings. The implementation should

still provide the same guarantees of the synchronous model. In essence,

the infrastructure should guarantee the following properties:

1. A message cannot be lost and should be delivered to all agents

connected to the infrastructure.

2. Message sending is non-blocking in the sense that an agent does not

have to wait until its message is delivered.

3. Multiple messages may travel concurrently in the infrastructure, but

the order, in which they are delivered to every agent, is the same.

106

The first two properties are obvious and to explain the third one we rely on

Example 6.3. For an implementation, we cannot assume atomic message

exchange, but we still want to mimic its effect. Now consider the following

scenario: assume that after A1 sent message av, the infrastructure sent a

copy of av to all connected agents, i.e., A2 and A3. Agent A3 received its

copy and then sent bw. Two different messages are now in transit and if

bw arrives first to A2, we are in trouble since A2 can now consume both

messages while it is supposed to consume only bw. The third property

above guarantees that av is delivered to A2 before bw.

In the rest of this section we show how these properties can be guar-

anteed by relying on sequence numbers. The idea is to label each message

with a unique id that is globally identified and based on this id, messages

can be delivered in a correct order.

6.4.1 A Cluster-based Infrastructure

We consider a set/cluster of nodes, sharing a counter for sequencing mes-

sages and an input queue to retrieve messages sent by agents. Cluster

nodes can have exclusive locks on both the cluster counter and the input

queue. A cluster infrastructure can be viewed as a cloud infrastructure

where agents are registered. Formally, the cluster-based infrastructure is

defined below:

Definition 11 (Cluster node). A cluster node c is represented by the
tuple c = 〈addr, C〉 where addr denotes its address, C is a reference to the
cluster infrastructure where c belongs.

Definition 12 (Cluster infrastructure). A cluster infrastructure C is rep-
resented by the tuple C = 〈addr, ctr, S, A, I〉 where addr denotes its
address, ctr denotes a counter to generate fresh ids, initially the value of
ctr equals 0, S denotes the set of connected cluster nodes, A denotes the
set of connected agents, and I denotes an input queue.

In this chapter and for any tuple T = 〈t1, . . . , tn〉, we shall use the

notation T [ti] to refer to the value of the element ti in tuple T . Sometimes

we abuse the notation and use ti instead of T [ti] when it is understood

from context. Also if T [ti] is uniquely identified, we use ti to refer to it,

e.g., we use ctr and I for C[ctr] and C[I] in the cluster infrastructure.

107

Definition 13 (Cluster agent). A cluster agent a is represented by the
tuple a = 〈addr, nid, mid, W, C〉 where addr denotes its address, nid
denotes the expected next message id to be processed, initially equals to 0,
mid denotes the id of a recent reply message, W denotes a priority waiting
queue to store unordered messages where the top of W is the message with
the least id, and C is a reference for the cluster infrastructure where a
belongs.

Algo 1: Cluster Agent
1 when (Receive(m))
2 switch m do
3 case {“RPLY”, id, src, addr}
4 mid = id;
5 end
6 case {“DATA”, id, src, addr}
7 if id ≥ nid then
8 W ←[m;
9 end

10 end

11 endsw

12 when (Send(m))
13 〈I ← [{“REQ”, addr, C[addr]}〉;
14 mid = −1;
15 when (nid = mid)
16 nid = nid + 1;
17 〈I ← [{“DATA”,mid, addr,C[addr]}〉;
18 when (!W.isEmpty() ∧W.top.id == nid)
19 m =W.remove();
20 nid = nid + 1;
21 handle(m);

Agents are not aware of the

cluster nodes and they only

emit messages to be added di-

rectly to the cluster’s input

queue I. Cluster nodes concur-

rently retrieve messages from I
and handle them by either as-

signing them unique ids based

on the shared counter ctr and

send them back to the re-

questers or forwarding them to

other agents in the cluster. We

consider three labeled messages:

a request message {“REQ”, src, dest}, a reply message {“RPLY”, id, src, dest},

and a data message {“DATA”,id, src, dest}.

Algo 2: Cluster node
1 while true do
2 〈m = I.remove()〉;
3 switch m do
4 case {“REQ”, src, dest}
5 〈id = ctr; ctr = ctr + 1〉;
6 Send({“RPLY”,id, addr,

src},src);
7 end
8 case {“DATA”, id, src, dest}
9 ∀a ∈ A : if a ! = src then

10 Send(m, a);
11 end

12 end

13 endsw

14 end

We also use the notation

〈op1(obj); . . . opn(obj); 〉 to denote

an exclusive lock to object obj

where the execution of the block

〈〉 is atomic and blocking.

When a cluster node takes this

lock on either ctr or I, other

nodes can neither have write nor

read access to them. The be-

havior of a cluster agent is re-

ported in Algo 1. A cluster

agent can concurrently perform

three events, represented by the keyword “when”. When a reply message

108

with a fresh id arrives (Lines 3-5), mid is assigned the reply’s id, this will

signal a waiting send activity to proceed. When a data message arrives

(Lines 6-9), the message is put in the agent waiting queue. In case an

agent wants to send a message (Lines12-17), it emits an id request mes-

sage to be put in the cluster input queue I, resets mid to -1 and waits

until the reply signal arrives. The agent needs also to wait until previous

messages are received (i.e., nid = mid), it then increments its nid and

emits a data message to be put in the cluster input queue. If the agent is

multithreaded, this method ensures that send activities of a single agent

are processed sequentially, otherwise the order is violated. Finally, when

the id of message m, on top of the waiting queueW, becomes equal to the

agent nid (i.e., m is in a correct order) (Lines 18-21), the agent removes

the message from W, increments its nid by 1, and handle message m.

Algo 3: Ring agent
1 when (Receive(m))
2 switch m do
3 case {“RPLY”, id, src, addr}
4 mid = id;
5 end
6 case {“DATA”,id, src, addr}
7 nid = nid + 1;
8 handle(m);

9 end

10 endsw

11 when (Send(m))
12 Send({“REQ”, addr, r},r);
13 mid = −1;
14 when (nid = mid)
15 nid = nid + 1;
16 Send({“DATA”,mid, addr, r},r);

The behavior of a cluster

node is reported in Algo 2.

Cluster nodes always compete

to retrieve messages from the

shared queue I by acquiring ex-

clusive locks (Line 2). In case

of request messages, (Lines 4-

7), a cluster node takes a lock

on the shared counter, copies its

current value to be sent to the

requester, releases it after in-

crementing it by 1, and finally

sends a reply message, carrying a fresh id, to the requester, addressing it

by its address, src. In case of data messages, (Lines 8-12), except for the

sender, a node forwards the message to all registered agents in the cluster.

Proposition 1. For every agent a ∈ C[A], if a sends a request to C then
eventually some c ∈ C[S] will send a reply to a.

Proof. The proof is immediate from Algo 1, Line 13, where an agent
emits a request to be put in the input queue of the cluster I with an
exclusive lock and from Algo 2, Lines 1-7, where cluster nodes are always
competing to retrieve messages from I. If the message is a request, then

109

a node should send a reply to the exact requester.

Theorem 6.1. Any data message is eventually received by all cluster
agents.

Proof. The proof is immediate from Algo 2, Lines 2 and Lines 8-11, where
nodes are always retrieving data messages from I and forwarding them
to connected agents. There is no a chance that a message can stay in I
indefinitely.

The order of message delivery is guaranteed because the shared counter

ctr and the shared input queue I can only be modified and/or read with

an exclusive lock which maintains their consistency, thus two different

messages can neither take the same id nor be retrieved by two different

cluster nodes. Also the priority queue of an agent, W, stores data mes-

sages and only allows the agent to handle them when they are in correct

order as shown in Algo 1, Lines 18-21.

6.4.2 A Ring-based Infrastructure

We consider a set of nodes, organized in a ring-based topology and sharing

a counter for sequencing messages coming from agents. Each node is

responsible for a group of agents and can have exclusive locks to the ring

counter. Formally, the ring-based infrastructure is defined below:

Definition 14 (Ring node). A ring node r is represented by the tuple
r = 〈addr, nid, nxt, A, W〉 where addr, nid, A, and W are defined as
before while nxt is a reference for its next ring node.

Definition 15 (Ring infrastructure). A ring infrastructure R is repre-
sented by the tuple R = 〈S, ctr〉 where ctr is defined as before while S
denotes the set of ring nodes. We have that:

• ∀r ∈ R[S] : r[nxt] 6= ⊥ ∧ r[nxt] ∈ R[S].

• ∀r1, r2 ∈ R[S] : r1[nxt] = r2[nxt] implies r1 = r2.

Definition 16 (Ring agent). A ring agent a is represented by the tuple
a = 〈addr, nid, mid, r〉 where addr, nid, and mid are defined as before
while r is reference for a ring node where the agent is connected.

110

The behavior of a ring agent is reported in Algo 3. A ring agent can

concurrently perform two events. When a reply message with a fresh id

arrives (Lines 3-5), mid is assigned the reply’s id, this will signal a waiting

send activity to proceed. When a data message arrives (Lines 6-9), the

agent increments its nid by 1 and handles the message. In case an agent

wants to send a message (Line 11-16), it sends an id request message to

its ring node where it belongs. the agent waits a reply id, mid, and also

until previous messages are received (i.e., nid = mid), it then increments

its nid and sends a data message to its ring node.

Algo 4: Ring node
1 while true do
2 when (Receive(m))
3 switch m do
4 case {“REQ”, src, addr}
5 〈id = ctr; ctr = ctr + 1〉;
6 Send({“RPLY”,id, addr,

src} , src);

7 end
8 case {“DATA”,id, src, addr}
9 if id ≥ nid then

10 W ←[m;
11 end

12 end

13 endsw

14 when (!W.isEmpty() ∧W.top.id == nid)
15 m =W.remove();
16 nid = nid + 1;
17 Send(m,nxt);
18 ∀a ∈ A : if a ! = m.src then
19 Send(m, a);
20 end

21 end

The behavior of a ring node

is reported in Algo 4. A ring

node can concurrently respond

to two events. When an id re-

quest message arrives (Lines 4-

7), the node acquires an exclu-

sive lock to the ring counter,

copies it current value, releases

it after incrementing it by 1,

and finally sends a reply mes-

sage, carrying a fresh id, to

the requester agent. When a

data message arrives (Lines 8-

12), the message is added to the

node’s waiting queue, W. Fi-

nally, when the id of message m, on top of the waiting queueW, becomes

equal to the node nid (Lines 14-20), the node removes the message from

W, increments its nid by 1, forwards the message to its next node in the

ring, and finally forwards m to all of its connected agents except for the

sender.

Proposition 2. For every node r ∈ R and agent a ∈ r[A], if a sends a
request to r then eventually r will send a reply to a.

Proof. The proof is immediate from Algo 3, Line 12, where an agent
emits a request to the ring node where it belongs and from Algo 4, Lines
4-7, where ring nodes are always competing to get exclusive access to the

111

shared counter and get fresh ids. A node sends a reply directly to the
requester as required.

Theorem 6.2. Any data message is eventually received by all ring agents.

Proof sketch. We sketch the proof here because it is a bit similar to the
proof of Theorem 6.3 which we will cover in details. The reason is to avoid
repetition and highlight more involved proofs. In any case, to prove this
theorem, we need to define a successor relation between ring nodes. e.g.,
we say that r2 is a direct successor of r1, written r2 � r1, if and only if
r1[nxt] = r2[addr] and �+ is the transitive closure of �. We need to stress
that a node cannot be a successor of itself. i.e., for each node r ∈ R, we
have that r 6�+ r. We need a similar definition of Definition 20 to define
the algorithm execution. We need a similar lemma of Lemma 6.1 where
we show that two neighbor nodes will eventually converge to the same
nid. This lemma can be proved by induction on on the difference between
r2[nid] and r1[nid]. We need also a similar proposition of Proposition 6
to prove that any two nodes in the ring infrastructure will eventually
converge to the same nid. This proposition can be proved based on the
previous lemma and by induction on the distance between two nodes in
the infrastructure. The distance can be computed in a similar way of
Function d(t1, t2) in the proof of Proposition 6. Finally, we need to make
sure that messages do not stay in a ring node indefinitely, so we need
a similar proposition of Proposition 7 which can be proved by relying
on the previous proposition, also Proposition 2, and by induction on the
difference by between r[nid] and m.id where m =W.top().

The order of message delivery is guaranteed because the shared counter

ctr again can only be modified and/or read with an exclusive lock. Also

requests and replies involve only the agent and its parent node, so du-

plicate requests and replies are avoided. Data messages, coming from a

neighbor node, are only added to the node’s queue if their ids are greater

of equal to the node’s nid and thus discarding duplicate data messages

(i.e., when m.id < nid). Finally, data messages are only forwarded to

children and neighbor when they are in correct order, thus incrementing

the nid counter as shown in in Algo 4, Lines 14-20.

112

6.4.3 A Tree-based Infrastructure

We consider a set of nodes, organized in a tree-based topology. An agent

can be connected to one node in the tree and can interact with other agents

in any part of the tree by only sending and receiving messages to/from its

parent node. As in the previous infrastructures, when an agent wants to

send a message, it asks for a fresh id from its parent node. If the parent

node is the root of the tree, it sends a reply message with a fresh id to

the requester agent, otherwise it forwards the message to its own parent.

Only the root of the tree is responsible for assigning fresh ids to messages.

To reduce the number of messages needed to get a reply message with a

fresh id from the root, the request and reply messages now have an extra

a field, called route.

Algo 5: Tree agent
1 when (Receive(m))
2 switch m do
3 case {“RPLY”, id, route, src, addr}
4 mid = id;
5 end
6 case {“DATA”,id, src, addr}
7 handle(m);
8 nid = nid + 1;

9 end

10 endsw

11 when (Send(m))
12 rt = route.add(addr);
13 Send({“REQ”, rt, addr, t},t);
14 mid = −1;
15 when (nid = mid)
16 Send({“DATA”,mid, addr, t},t);
17 nid = nid + 1;

The route field is a linked

list, used to backtrack to the re-

quester agent. When an agent

sends a request message, it adds

its address to the route and ev-

ery time the request message

is received by an intermediate

node, its address is added to the

route. Finally, when the root

receives the request message, it

removes the last added address

in the route and sends it the re-

ply. The same happen until the reply reaches the requester agent. For-

mally, the tree-based infrastructure is defined as follows:

Definition 17 (Tree node). A tree node t is represented by the tuple
t = 〈addr, ctr, nid, P, D, W〉 where addr, ctr, nid and W are defined
as before. The symbol P denotes a reference to a parent node (if any) and
D denotes the node’s descendants which can be agents and/or tree nodes
(i.e., D = A ∪ S).

The counter ctr is only used in the root node to generate fresh ids and,

for the sake of uniformity, we have it in the definition of a tree node.

113

Definition 18 (Tree infrastructure). A tree infrastructure T consists of
a set of tree nodes {t0, . . . , tk}, structured in a tree-based topology. For
every pair of nodes t1, t2 ∈ T , we say that:

• t1 is a direct descendant of t2, written t1 ≺ t2, if and only if t1[P] =
t2[addr] and ≺+ denotes the transitive closure of ≺

• t[addr] = t′[addr] to denote that t = t′, with possibly different
ctr, nid, and W (i.e., node t evolved into t′ in response to message
exchange in the infrastructure).

Definition 19 (Well formedness). A tree infrastructure T is well formed
if and only if:

1. For each node t ∈ T , we have that t 6≺+ t.

2. There exists a node t ∈ T such that for any t′ ∈ (T \{t}), t′ ≺+ t
and we have that:

• t′[nid] ≤ t[ctr].

• For any message m ∈ t′[W] we have that m.id ≤ t[ctr].

3. For each node t ∈ T and for each message m ∈ t[W], we have that
m.id ≥ t[nid].

4. If nodes t, t′ ∈ T and t[P] = t′[P] = ⊥ then we have that t = t′.

The first statement in Definition 19 states that every node is not a

descendent of itself. The second statement defines the root of the in-

frastructure where all nodes are considered to be its descendants. The

next id for each node in the infrastructure is at most equal to the value

of the counter in the root node (i.e., t′[nid] ≤ t[ctr]). The value of the

counter in the root node gives an upper bound on the number of message

ids (i.e., t′[nid] ≤ t[ctr]). The third statement states that the expected

next id for any node cannot be greater than any message in its waiting

queue. The last statement ensures that there exists a unique root in the

infrastructure.

114

Algo 6: Tree node
1 while true do
2 when (Receive(m))
3 switch m do
4 case {“REQ”, route, src, addr}
5 if P == ⊥ then
6 id = ctr;
7 ctr = ctr + 1;
8 dest = route.remove();
9 m’={“RPLY”, id, route, addr,

dest}
10 Send(m’, dest);

11 else
12 m.route.add(addr);
13 Send(m,P);

14 end

15 end
16 case {“RPLY”,id, route, src, addr}
17 dest = route.remove();
18 Send(m, dest);

19 end
20 case {“DATA”,id, src, addr}
21 if P ! = src ∧ P ! = ⊥ then
22 m.src = addr;
23 m.dest = P;
24 Send(m,P);

25 end
26 W.add(m);

27 end

28 endsw

29 when (!W.isEmpty() ∧W.top.id == nid)
30 m =W.remove();
31 src = m.src;
32 m.src = addr;
33 ∀d ∈ D\{src} : m.dest = d;
34 Send(m, d);
35 nid = nid + 1;

36 end

A tree agent a =

〈addr, nid, mid, t〉, is

defined in a similar way

of a ring agent with

the exception that it has

a reference to a tree

node t, instead of a ring

node. The behavior of a

tree agent is reported in

Algo 5. It has almost the

same behavior of a ring

agent with the exception

that an agent adds its

own address in the route

linked list before sending

a request as shown at line

12. The behavior of a

tree node is reported in

Algo 6. A tree node can

concurrently respond to

two events, represented by the keyword “when”. When an id request

message arrives (Lines 4-15), if the node is the root of the tree, it gener-

ates a fresh id which is equal to the current value of its counter, increments

its counter by 1, determines the source of the message by getting the last

value added to the route, creates a reply message, carrying the fresh id,

and sends to the source. If the node is an intermediate node, it adds its

own address to the route of the message and forwards the message to its

parent. When a reply message arrives (Lines 16-19), the node determines

the destination of the message by getting the last value added to the mes-

sage’s route and forwards the message to that destination. When a data

message arrives (Lines 20-27), if the node is not the root and its parent

is not the source of the message, the message is directly forwarded to the

node’s parent and in any case the message is added to the node’s waiting

queue W. Each time a message arrives to a node. Its source field is set

115

to be the node’s address and its destination field is set according where it

should go. This is important to make sure that messages do not circulate

in the tree indefinitely. Finally, when the id of message m, on top of the

waiting queue W, becomes equal to the node nid (Lines 29-35), the node

removes the message from W, copies the source of the message, sets its

address to be the source of the message, forwards the message to all of

its connected nodes and agents with the exception for the source of the

message, and increments its nid by 1.

Now we discuss the properties that are preserved by the tree infras-

tructure.

Definition 20. We write T → T ′ if and only if T evolves to T ′ after the
execution of Algorithm 6. The relation ⇒ denotes multiple executions of
Algorithm 6.

Proposition 3. If T is well formed then each T ′ such that T → T ′ is
well formed.

Proof. The proof is immediate from Definition 19 and the fact that the
algorithm does not change the underlying infrastructure. Also the root
node is the only node that can increment the counter, used to assign ids
to messages, and nodes can only increment their next id with respect to
already generated message ids as shown in Algo 6, Lines 29-35. So it is
immediate that the expected next id in any node can be at most equal to
the root counter. The same applies for message ids.

We will only consider well formed infrastructures. Since the topology

of the infrastructure is tree-based, the request messages should be prop-

agated from a node to its parent and so on. The reply messages should

be propagated from a parent to its children and so on, as stressed in the

following proposition.

Proposition 4.

• If node t receives a message, m, and m.type =“REQ”, we have that
m.src ∈ t[D].

• If node t receives a message, m, and m.type =“RPLY ”, we have that
m.src = t[P].

116

Proof.

• From Algo 6, Lines 11-14, we have that request messages are only
forwarded to parent nodes (i.e., m.src ∈ t[S]) and from Algo 5, Line
13, we have that agents always send messages to their parent nodes
(i.e., m.src ∈ t[A]). From Definition 17, we have that D = A∪S as
required.

• From Algo 6, Lines 4-11, we have the replies are sent to the re-
questers which are always the children of a node as proved in the
first statement and from Lines 16-19, we have that reply messages
are only forwarded to the last address in route of the message which
only contains the address of requesters as shown in Line 12, Algo 6
and also Line 12, Algo 5. Again by the proof of the first state-
ment, we know that requesters are always children of a node (i.e.,
m.src ∈ n[P]) as required.

The rest of the section is dedicated to show that our coordination

tree infrastructure works as expected. In Proposition 5, we prove that

if any node in the infrastructure sends a request for a fresh id, it will

eventually get it. In Proposition 6, we prove that for any two nodes in the

infrastructure with different expected next id (nid), they will eventually

converge to the same next id. This is important to show that messages

do not circulate indefinitely in the infrastructure. Proposition 7 instead

ensures the progress of the infrastructure in the sense that no data message

stays in a node’s queue indefinitely.

Proposition 5. For each pair of nodes t1, t2 ∈ T , if t1 sends a request
to t2 then eventually t2 will send a reply to t1.

Proof. The proof proceeds by induction on the level of n2, L(n2).

• Base case: L(t2) = 0, this implies that node t2 is the root of the
infrastructure. By Algo 6, Lines 11-14, when t1 receives a request,
it adds its address to the route of the message and forwards it its
parent, in this case t2. By Algo 6, Lines 5-11, we have that when the
root receives a request message, it creates a reply message, carrying
a fresh id, and sends it to the source where the request came from.
So we have that t2 will eventually send a reply back to t1.

117

• Suppose that ∀t2 : L(t2) ≤ k, if t1 sends a request to t2, then t2 will
eventually send a reply to t1.

Now it is sufficient to prove the claim for n2, where L(n2) = k+ 1∧
k > 0. By Algo 6, Lines 11-14, t1 can send a request to t2. On the
other hand t2 can also forward the request to its parent node, say
t′ where L(t′) = k, by Algo 6, Lines 11-14. By induction hypothesis
t′ will eventually send a reply to t2 since the claim holds for level
k. When the reply arrives to t2, it will eventually send it to t1 by
using Algo 6, Lines 16-19, as required.

The following lemma ensures that adjacent nodes will eventually con-

verge to the same nid. In other words, a node must forward the removed

data message from its queue to all immediate neighbors (i.e., tree nodes

in its D) before incrementing its nid.

Lemma 6.1. For every two tree nodes t1 and t2 and a tree-based infras-
tructure T such that t1, t2 ∈ T , we have that:

• If t1 ≺ t2 ∧ t1[nid] < t2[nid] then T ⇒ T ′ and ∃t′ ∈ T ′ : t′[addr] =
t1[addr] ∧ t′[nid] = t2[nid].

• If t2 ≺ t1 ∧ t1[nid] < t2[nid] then T ⇒ T ′ and ∃t′ ∈ T ′ : t′[addr] =
t1[addr] ∧ t′[nid] = t2[nid].

Proof. The proof proceed by induction on the difference between t2[nid]
and t1[nid]. We only prove the first statement as the second one is anal-
ogous.

• Base case, t2[nid]−t1[nid] = 1: From Algo 6, Lines 29-35, nid is only
incremented after message m, where m.id = t2[nid]−1, is forwarded
to children in D (Lines 33-34) and/or parent, P (Lines 20-27). So
we know that t1 already received m and added m to its queue by
(Lines 20-27), i.e., t1[W] = m :: q. Notice that this is a priority
queue that sorts its messages according to their identities. Since
t2[nid]− t1[nid] = 1, we have that t2[nid]−1 = t1[nid] = m.id. This
means that m is ordered with respect to t1 and by Algo 6, Lines 29-
35, we have that t′[nid] = t1[nid] + 1 = t2[nid] ∧ t′[addr] = t1[addr]
as required.

118

• Suppose that ∀t1[nid], t2[nid] : t2[nid]−t1[nid] ≤ k where k > 1 and
given that t1 ≺ t2, we have that T ⇒ T ′ and ∃t′ ∈ T ′ : t′[addr] =
t1[addr] ∧ t′[nid] = t2[nid].

Now it is sufficient to prove the claim for t1 and t2 such that t2[nid]−
t1[nid] = k + 1 where k > 1.

From Algo 6, Lines 29-35, we know that message m, where m.id =
t2[nid] − 1, has been already forwarded to children in D and/or
to parent, P (Lines 20-27) and t1 already received m and added
m to its queue, i.e., t1[W] = m :: q, by Algo 6, Lines 29-35. Since
t2[nid]−t1[nid] = k+1, we have that m.id−t1[nid] = k. This means
that k-messages from t2 already exist in the queue of t1 and need to
be processed first and then after m can be processed. By induction
hypothesis, it holds that T ⇒ T ′ and ∃t′ ∈ T ′ : t′[addr] = t1[addr]∧
t′[nid] = t2[nid] where t2[nid]− t1[nid] ≤ k and k > 1. So we have
that t′[nid] = t1[nid] + k, but m.id− t1[nid] = k. This implies that
m.id = t′[nid] which means that message m is ordered with respect
to t′. Now again by Algo 6, Lines 29-35, T ′ ⇒ T ′′, t′′ ∈ T ′′ :
t′′[addr] = t′[addr]∧ t′′[nid] = t′[nid] + 1 = t2[nid] = t1[nid] + k+ 1
and t2[nid] = t′′[nid] ∧ t′′[addr] = t1[addr] as required.

Proposition 6. Let t1 and t2 be two tree nodes and T be a tree-based
infrastructure, ∀t1, t2 ∈ N ∧ t1[nid] < t2[nid], we have that T ⇒ T ′ and
∃t′ ∈ T ′ : t′[addr] = t1[addr] ∧ t′[nid] = t2[nid].

Proof. Since the topology of the infrastructure is tree-based, we have three
cases.

• Case 1, t1 ≺+ t2: This case can be proved by induction on the
distance, d(t1, t2), between t1 and t2 in the tree. Function d(t1, t2)
is defined inductively as follows:

d(t1, t2) =


0, for t1 ≺ t2 or t2 ≺ t1
1 + d(t′, t2), for t1 ≺+ t2 where t1 ≺ t′

1 + d(t1, t
′), for t2 ≺+ t1 where t2 ≺ t′

– Base case, d(t1, t2) = 0: directly from Lemma 6.1.

– Suppose that ∀t1, t2 ∈ T : d(t1, t2) ≤ k where k > 0 and
given t1[nid] < t2[nid], we have that T ⇒ T ′ and ∃t′ ∈ T ′ :

119

t′[addr] = t1[addr] ∧ t′[nid] = t2[nid]. Now it is sufficient to
prove the claim for t1 and t2 where d(t1, t2) = k+ 1 and k > 1.

From Lemma 6.1 and for t2 at distance k+1 and t3 at distance
k from t1, i.e., t1 ≺+ t3 ≺ t2, we have that T ⇒ T ′ and ∃t′ ∈
T ′ : t′[addr] = t3[addr] ∧ t′[nid] = t2[nid]. But d(t1, t

′) = k, so
by induction hypothesis we have that T ′ ⇒ T ′′ and ∃t′′ ∈ T ′′ :
t′′[addr] = t1[addr] ∧ t′′[nid] = t′[nid] = t2[nid] as required.

• Case 2, t2 ≺+ t1: is analogous to the previous case.

• Case 3, ∃t3 : t1 ≺+ t3 ∧ t2 ≺+ t3: we have several cases, but here
we only consider one case and the others follow in a similar way.

If t1[nid] > t3[nid] < t2[nid], we first take t3 and t2 and by Case 2,
we have that T ⇒ T ′ and ∃t′ ∈ T ′ : t′[addr] = t3[addr] ∧ t′[nid] =
t2[nid] > t1[nid]. Now for t1 and t′ and by Case 1, we have that
T ′ ⇒ T ′′ and ∃t′′ ∈ T ′′ : t′′[addr] = t1[addr] ∧ t′′[nid] = t′[nid] =
t2[nid] as required.

Proposition 7 (Progress). For any node t ∈ T and t[W] = m :: q′,
we have that T ⇒ T ′ and there exists t′ ∈ T ′ : t[addr] = t′[addr] and
t′[W] = q′ :: q”.

Proof. The proof follows from Proposition 5 and Proposition 6 and by
induction on the difference between t[nid] and m.id where m =W.top().

Theorem 6.3. Any data message is eventually received by all agents.

Proof. The proof follows directly from Proposition 5, Proposition 6 and
Proposition 7.

6.5 Performance Evaluation

To compare the three coordination infrastructures presented in the pre-

vious section, we model them in terms of a Continuous Time Markov

Process (And12). The state of a process represents possible system con-

figurations, while the transitions (that are selected probabilistically) are

associated with the events that let the infrastructure progress.

120

In our system we can consider three kind of events: a new message

sent by an agent; a message transmitted from a node to another in the

infrastructure; a message locally handled by a node (i.e. removed from

an input/waiting queue). Each event is associated with a rate that is the

parameter of the exponentially distributed random variable governing the

event duration. To perform the simulation we need to fix three parameters:

the agent sending rate λs; the infrastructure transmission rate λt; and

the handling rate λh. In all of our experiments we fix the values of these

parameters as follows: λs = 1.0, λt = 15.0, and λh = 1000.0. As usual

we rely on kinetic Monte Carlo simulation (Sch08). In this section, the

following notations are used to denote system configurations:

• C[x, y], indicates a cluster infrastructure composed by x nodes and

y agents;

• R[x, y] indicates a ring infrastructure composed by x nodes each of

which manages y agents;

• T [x, y, z] indicates a tree infrastructure composed by x levels. Each

node in the tree (but the leafs) has y + z children: y nodes and z

agents. The leaf nodes have z agents each.

Since it is very difficult, if not impossible, to perform statistical analy-

sis on real distributed systems when the number of involved participants

is large, like in the scenarios considered in this section, we model our

infrastructures as Markov processes and evaluate their performance. We

consider two scenarios: The first one, named communication intensive

(CI), is used to estimate the performance of the infrastructures when a

large number of messages are exchanged among agents. All the involved

agents send messages continuously with a fixed rate and the scenario is

used to assess the infrastructure performance when it is overloaded.

The second scenario we consider is based on a fixed number of data

providers (DP): only a fraction of agents sends messages. This scenario

models a more realistic configuration where data are only sent by specific

agents that, for instance, may acquire these data via sensors from the

environment where they operate. Following a typical pattern in CAS,

121

this data are used by other agent to adapt their behavior. An example

could be a Traffic Control System where data providers are specific devices

located in the city, while the data receivers are the vehicles traveling in

the area.

For each scenario we consider two kind of measures: the time needed

by a message to reach all the agents in the system and the message time

gap. The first measure indicates how old is a message, while the latter

indicates the time between two different messages received by a single

agent.

Communication intensive scenario

We consider systems composed by 155 agents that continuously send mes-

sages to all the other receivers. Simulations are performed by considering

the following configurations:3

• Cluster-based infrastructure: C[10, 155], C[20, 155] and C[31, 155];

• Ring-based infrastructure: R[5, 31] and R[31, 5];

• Tree-based infrastructure: T [5, 2, 5] and T [3, 5, 5].

Among the three approaches considered in the previous section, the

cluster-based is the one with worst performance. This can be appreciated

by considering the results in Fig. 8 where the average time (together with

the confidence interval) needed by a message to reach all the agents in the

system is reported. One can easily notice that when the system reaches

the equilibrium (at around time 2000), about 600 time units are needed in

order to deliver a message to all agents. These results are not surprising.

Indeed, on average, an agent has to wait that all other precedent messages

are delivered before it can deliver its own.

We can also observe that the number of nodes in the cluster has a min-

imal impact on this measure. It is because an agent will send a message

only when all the previous ones are received. This aspect can be under-

stood if we consider Average Message Time Gap experienced by agents,

3The simulator is available at https://github.com/lazkany/AbCSimulator

122

https://github.com/lazkany/AbCSimulator

Figure 8: Cluster: Average Delivery Time (155 agents with 10, 20 and
31 cluster elements).

Figure 9: Cluster: Average Message Time Gap (155 agents with 10, 20
and 31 cluster elements).

123

Figure 10: Ring: Average Delivery Time and Average Message Time
Gap.

reported in Fig. 9. We can observe that in the long run an agent receives

a message every 6/5.5 time units.

Better performance can be obtained if the ring infrastructure is used.

In the first two plots of Fig. 10 we report the average delivery time for the

configurations R[5, 31] and R[31, 5]. The last plot compare the average

message time gap of the two configurations. We can observe that in the

first configuration a message is delivered to all the agents in 350 time

units. In the second configuration this value decreases to 250 time units.

This is because in a ring-based infrastructure all the nodes cooperate to

deliver the same message to all agents. This affects also the frequency of

messages delivered to agents. Indeed, in the considered infrastructures a

message is received every 2.6 and 1.8 time-units.

The best results are obtained by the tree-based infrastructures. In

Fig. 11 we report the how the average delivery time changes during the

simulation for T [5, 2, 5] and T [3, 5, 5]. The two configurations have ex-

actly the same number of nodes (31) with a different arrangement. We

can observe that the two configurations work almost in the same way:

124

Figure 11: Average Delivery Time: T [5, 2, 5] and T [3, 5, 5].

Figure 12: Average Message Time Gap: T [5, 2, 5] and T [3, 5, 5].

125

Figure 13: Cluster/Ring/Tree infrastructure results (155 agents, 310
agents).

a message is delivered to all the agents in about 120 time units. This

means that, with the same number of nodes, the tree-based infrastructure

is 5-time faster than the cluster-based and 2-time faster than ring-based

infrastructure. Moreover, in the tree-based approach, a message is de-

livered to agents every ∼ 1.1 time units (see Fig. 12. This means that

messages in the tree-based infrastructure are constantly delivered after an

initial delay.

Simulation results are summarized in the left side of Fig. 13. We can

observe that in this communication intensive scenario, tree-based infras-

tructures guarantee better performance; cluster-based infrastructures are

overloaded and do not work well while ring-based are in between the two.

We can observe that these differences are highlighted when increasing the

number of agents to 310 (right side of Fig. 13).

Data provider scenario

In this section we evaluate the proposed infrastructures in a scenario where

only a fraction of agents in the system sends data. We consider configu-

rations where the number of nodes is the same (31) while we the number

of agents be 155, 310 and 620. We assume that only 10% of agents are

sending data.

The average delivery time in the simulated system is reported in Fig. 14

while in Fig. 15 the average message time gap is depicted. We can observe

that even when the system is not overloaded, the tree infrastructure is the

126

Figure 14: Data provider scenario: Average Delivery Time.

Figure 15: Data provider scenario: Average Message Time Gap.

127

one with the best performance while the cluster-based infrastructure is the

worst. We can also observe that performance of ring-based infrastructure

in this scenario is similar to the one obtained in the tree based. Moreover,

in the cluster-based approach, the performance degrades soon as the num-

ber of agents increases. This does not happen when tree- and ring-based

approaches are used. Finally, we can observe that, like in the CI scenario,

also in this case messages are delivered more frequently in the ring- and

tree-based approach than in the cluster-based.

6.6 A Scalable and relaxed abstract machine
for AbC

The implementations, presented in the previous section, consider a spe-

cific communication infrastructure where servers are structured in either

cluster-based, ring-based, or tree-based topology which makes these im-

plementations more suitable for moderate sized systems distributed in a

moderate sized geographic area. If we consider systems connected through

the Internet, these implementations will not be applicable as the assump-

tions about the topology do not hold anymore. In the presence of large

sized systems, e.g., Internet, we cannot achieve a global ordering of mes-

sages in a practical way so it might be useful to consider a notion of “site”

in which we require the messages to be ordered. When messages prop-

agate from one site to another through the internet, there is no need to

worry about the order in which messages are received. Messages can be

received in any order and it is not necessary to be sound with respect to

the interleaving semantics since the time interval between sending and re-

ceiving can be very long and the atomicity of message exchange cannot be

achieved without synchronization points which are not applicable in this

context. A graphical representation of the infrastructure that we have in

mind is reported in Figure 16.

The basic idea is to extend the tree-based implementation in the pre-

vious section in a way that makes it more suitable for other kind of appli-

cations. We want to stress that we are interested in the attribute-based

interaction whether it is based on point-to-point, multiway synchroniza-

128

Internet

X1qi

qo

X2 X3

Site 1

X4qi

qo

X5 X6

Site 2

Figure 16: Asynchronous decentralized infrastructure

tion, or multicast. Our choice, influenced by the application domain of

interest, was to consider atomic multicast communication but other com-

munication models can be considered too where communication contracts

are made in attribute-based fashion. As shown in Figure 16 the internal

communication infrastructure of each site is structured in a tree-based

topology where the main server is the one which is responsible for com-

municating messages to other sites. Each site has an input queue which

is used to store received messages from other sites and an output queue

which is used to store processed data messages to be communicated to

other sites. The coordination algorithm in each site is similar to the one

we discussed in the previous section with the exception that the root

server is also responsible for placing every processed data message in the

output queue so that it is communicated later to other sites through the

Internet and also for retrieving data messages from the input queue. It

should be noted that retrieved data messages are also assigned fresh ids

by the root server and are forwarded to other local servers accordingly.

129

We define a formal abstract machine that specifies the behavior of the

communication infrastructure discussed above. Since the internal behav-

ior of each site is sound with respect to the operational semantics of the

AbC calculus, its transition rules will be derived by the transition relation

−−−→ that defines the behavior of an AbC system as reported in Table 6,

Page 44. We use the reduction relation ∼∼∼∼B ⊆ Site × Site to define the

behavior of the abstract machine where Site denotes the set of sites. The

definition of the reduction relation ∼∼∼∼B depends on the definition of the

relation −−−→ in the sense that the effect of site internal behavior is lifted

to the global one. We use the notation {C}〈i, o〉 to define an AbC site

where C denotes an AbC system operating in a tree-based communication

infrastructure, i denotes an input queue, and o denotes an output queue.

To simplify the presentation we consider C as a multi-set of components.

Rule LBrd states that when a component C ′′ ∈ C, located at a specific

site, sends a message, the root server processes the message and adds it

at the end of the output queue to be propagated later to other sites. The

internal system C evolves to C ′ as an effect of this transition.

LBrd
C

Πṽ−−→ C ′

{C}〈i, o〉 ∼∼∼∼B {C ′}〈i, o::Πṽ〉

Rule LRcv states that if the input queue of a site is not empty, the root

server of the site removes the message from the head of the input queue

and propagates it to other servers and components in the site. Of course

the root server will assign the message a fresh id before propagation, but

here we refrain from going deep in details and only provide an abstract

view of the transitions. The internal system C evolves to C ′ as an effect

of this transition.

LRcv
C

Π(ṽ)−−−→ C ′

{C}〈Πṽ::i, o〉 ∼∼∼∼B {C ′}〈i, o〉

Rule OUT states that if the output queue of a site is not empty, the

message at the head of the queue is removed and propagated to other

sites. This transition has no effect on the internal system C.

OUT {C}〈i, Πṽ::o〉 ∼∼∼∼B {C}〈i, o〉

130

Rule IN states that if a message is received from another site, the message

is added at the end of the input queue and the internal system C stays

unchanged.

IN {C}〈i, o〉 ∼∼∼∼B {C}〈i::Πṽ, o〉

Rule Silent models the internal computation of a single site.

Silent
C

τ−→ C ′

{C}〈i, o〉 ∼∼∼∼B {C ′}〈i, o〉

Rule sCom model the parallel composition of different sites where if the

output queue of one site is not empty, the head of the queue is removed

and propagated to other sites executing in parallel. The other sites add

the received message at the end of their queues to be processed later.

sCom

{C}〈i, Πṽ::o〉 ∼∼B {C}〈i, o〉 ∀j ∈ J ({Cj}〈ij , oj〉 ∼∼B {Cj}〈ij ::Πṽ, oj〉)

{C}〈i, Πṽ::o〉 ‖
∏
j∈J
{Cj}〈ij , oj〉 ∼∼∼∼B {C}〈i, o〉‖

∏
j∈J
{Cj}〈ij ::Πṽ, oj〉

Remark 6.1 (The order of message delivery is not preserved). Let C1

and C2 be two components and {•}〈i, o〉 is a site with input queue i and
output queue o, where C1 = Γ1 : (v)@Π1.(x = w)(x).0 and C2 = Γ2 :
(w)@Π2.(x = v)(x).0. Assume that Γ1 |= Π2 and Γ2 |= Π1 and the queues
i and o are initially empty.

• For C1‖C2, the possible outcomes according to the interleaving se-

mantics would be either Γ1 : 0 ‖ Γ2 : (x = v)(x).0, when executing

the sequence
Π1v−−→ Π2w−−−→, or Γ1 : (x = w)(x).0 ‖ Γ2 :0, when executing

the sequence
Π2w−−−→ Π1v−−→.

• For {C1}〈i, o〉‖{C2}〈i, o〉, the possible outcomes according to the ab-

stract machine also include {Γ1 : 0}〈∅, ∅〉 ‖ {Γ2 : 0}〈∅, ∅〉 as shown

131

below:

{Γ1 : (v)@Π1.(x = w)(x).0}〈∅, ∅〉 ‖{Γ2 : (w)@Π2.(x = v)(x).0}〈∅, ∅〉

∼∼∼∼B

{Γ1 : (x = w)(x).0}〈∅, Π1ṽ〉 ‖ {Γ2 : (w)@Π2.(x = v)(x).0}〈∅, ∅〉

∼∼∼∼B

{Γ1 : (x = w)(x).0}〈∅, Π1v〉 ‖ {Γ2 : (x = v)(x).0}〈∅, Π2w〉

∼∼∼∼B

{Γ1 : (x = w)(x).0}〈∅, ∅〉 ‖ {Γ2 : (x = v)(x).0}〈Π1v, Π2w〉

∼∼∼∼B

{Γ1 : (x = w)(x).0}〈Π2w, ∅〉 ‖ {Γ2 : (x = v)(x).0}〈Π1v, ∅〉

∼∼∼∼B

{Γ1 :0}〈∅, ∅〉 ‖ {Γ2 : (x = v)(x).0}〈Π1v, ∅〉

∼∼∼∼B

{Γ1 :0}〈∅, ∅〉 ‖ {Γ2 :0}〈∅, ∅〉

132

Chapter 7

Related Works

In this chapter, we touch on related works concerning languages and cal-

culi with primitives that model either collective interaction, constraint-

based interaction, or multiparty interaction. We also report on well-

known existing approaches for modeling interaction in distributed sys-

tems and show how they relate to AbC . At the end of this chapter we

discuss the main differences between AbC and its early version, presented

in (ADL+15).

7.1 Channel-based interaction

Channel-based interaction assumes that communicating partners have to

agree on specific channels or names to make the interaction possible. Ini-

tially process calculi, like CCS (Mil80) and CSP (Hoa78), which adopt

channel-based interaction allowed interprocess communication via static

structure of channels between processes. Mobility, which is one of the ba-

sic features of modern software systems, is hardly possible in these calculi.

Robin Milner to developed π-calculus (MPW92) to handle this problem by

allowing channels to be communicated during the interaction. This way

process interfaces become more dynamic and can change at run-time.

As an example consider the behavior of a component, named C and

133

modeled in π-calculus as follows:

C , νb(b̄a | b(x).x(y, z).P)
τ→ νba(y, z).P

Component C changes its interface locally by communicating along a pri-

vate channel “b” and uses the received channel “a” to communicate with

its peers. Here, changing the interface locally requires explicit message-

passing between processes, defining the local component behavior, and re-

stricting names to avoid interference with external components. It should

be noted that component C can receive a message from its peers on chan-

nel “a” only when its input action is enabled, i.e., “a” is received and

the substitution (x(y, z).P)[a/x] is applied, otherwise it will discard any

incoming messages. This implies that the dynamicity of process interfaces

is still limited in the sense that even if we allow generic (bound) input

or output actions, these actions are disabled until they are instantiated

with specific channel names. This means that a process is only willing

to engage in communication when its actions are enabled. In AbC ac-

tions are always enabled with respect to the current attribute values of

the component where they are executing. Once these values change, the

interaction predicates change seamlessly and become available for other

communication partners. Name restriction is not needed at the level of

processes to model locality since processes can communicate through the

shared attribute environment. In this way interdependence between co-

located processes can be achieved by changing the shared attribute values

at run-time.

A possible rendering of the above example in AbC would be as follows:

C = Γ :([this.x := a]()@ff.0 | (x = this.x)(x, y).Q)

Assume that the initial value of attribute x in Γ is “c”. The process

on the left hand side of the interleaving operator “|” takes a silent move

and updates the value of “x” into “a” and this will implicitly change the

receiving predicate of the process on the right hand side. Notice that

the difference here is that the input action is always enabled. Before the

attribute update, an input action was possible on the predicate (x = c)

and after that, it is possible on the predicate (x = a).

134

7.2 Constraint- and attribute-based interac-
tion

In this section, we discuss approaches that rely on attributes, patterns, or

constraints for enforcing interaction.

SCEL (DFLP13; DLPT14) (Software Component Ensemble Language)

is a kernel language that has been designed to support the program-

ming of autonomic computing systems. This language relies on the no-

tions of autonomic components representing the collective members, and

autonomic-component ensembles representing collectives. Each compo-

nent is equipped with an interface, consisting of a collection of attributes,

describing its features. Attributes are used by components to dynami-

cally organize themselves into ensembles and as a way to select partners

for interaction. SCEL has inspired the development of the core calculus

AbC (ADL+15; ADL16a) to study the impact of attribute-based com-

munication. Compared with SCEL, the knowledge representation in AbC

is abstract and is not designed for detailed reasoning during the model

evolution. This reflects the different objectives of SCEL and AbC . While

SCEL focuses on programming issues, AbC concentrates on a minimal set

of primitives to study attribute-based communication.

The CPC calculus (GWGJ10) adopts the pattern-matching mecha-

nism of the pure pattern calculus (JK06) for concurrent processes. The

input and output prefixes are generalized to patterns whose unification

enable a two-way, or symmetric, flow of information. The idea is to find

a compatible process by matching inputs with outputs and testing for

equality. Interaction is driven by unification that allows two processes

to exchange information. The main differences with AbC calculus are

the followings: first, the way processes agree to communicate (i.e., AbC

uses predicates over attributes rather than exposing patterns in the in-

put/output prefixes); second, the information propagation in AbC is mono

direction (i.e., from the output to the input process); finally, AbC adopts

multicast rather than point-to-point communication.

The attributed pi calculus (JLNU08; JLNU10) is an extension of the

π-calculus (MPW92) that supports a specific kind of attribute-based com-

135

munication, and was designed primarily with biological applications in

mind. As with AbC , processes may have attributes and these are used to

select partners for interaction, but communication is strictly synchroniza-

tion based and binary. The calculus is equipped with both a deterministic

and a Markovian semantics, and in the Markovian case the rates may de-

pend on the values of the attributes involved. The possible attribute

values are defined by a language L, and the definition of the attributed

pi calculus is parameterized with respect to L. The language L is also

used to model the possible rates and the constraints that can be applied

to attributes, thus offering the possibility to capture different behaviors

within the framework when rates and probabilities of interaction are all

dependent only on local behavior and knowledge. Processes are the top-

level entities of the calculus and share the same global store (i.e., attribute

environment) ρ , thus processes can communicate through message pass-

ing while sharing a global store. The global store cannot be changed at

run-time and is only used to evaluate communication constraints on at-

tribute values. This is important to enable only processes located in the

same compartment to communicate.

To better illustrate the main differences with respect to AbC we present

the main communication rule of the attributed pi calculus and then we

show a typical attributed pi calculus scenario from (JLNU08):

ρ ` e1e2 ⇓ r ∈ Succ
ρ ` x[e1]?ỹ.P1 + . . . | x[e2]!ṽ.P2 + . . . −→ P1[ṽ/ỹ] | P2

The reduction rule above shows how an attributed pi calculus system

evolves. The rule matches a receiver x[e1]?ỹ.P1 and a sender x[e2]!ṽ.P2

on the same channel x such that the lambda expression e1e2 evaluates to

some successful value r ∈ Succ under the shared environment ρ. The set

Succ in the non-deterministic semantics is the set that contains a single

element which is a binary one, i.e., Succ = {1}.

Example 7.1. Consider the binding action of a protein Prot(x) of type
x ∈ {‘A‘, ‘B‘} to an operator Op(y) as shown in Figure 17. The protein
and the operator are defined as follows:

Prot(x) , bind[x]!().0

136

Figure 17: Protein of type ‘A‘ is only permitted to bind to an operator of
type ‘A‘. Type equality is tested by applying the lambda function λx.x =
‘A‘

Op(y) , bind[λx.x=y]?().OpBound(y)

This means that the binding action of a protein is only enabled when the
value of attribute x is evaluated. On the other hand the operator Op(y)

receives the value of x and checks if it matches its own type. For instance a
system with two proteins Prot(‘A‘) and Prot(‘B‘) and operator Op(‘A‘)
can evolves as follows:

Prot(‘A‘) | Prot(‘B‘) | Op(‘A‘) −→ Prot(‘B‘) | OpBound(‘A‘)

Now everything is in place to identify the main differences between

AbC and the attributed pi calculus. The primary difference is that pro-

cesses in AbC share the same attribute environment only when they reside

in the same component. However, different components have different at-

tribute environments. In the attributed pi calculus all processes share a

common environment that allows them to communicate. As opposed to

AbC , changing attribute values at run-time is not allowed in the attributed

pi calculus. Also the receiver process is the only one which is responsible

for deriving the interaction in the sense that the sender cannot specify

the target of interaction. The sender evaluates its expression under the

shared environment and sends the evaluation to the receiver which substi-

tutes it in its receiving constraint to decide if the interaction is possible.

In AbC , the interaction between senders and receivers is based on mu-

tual interests in the sense that the sender can specify a possible group of

receivers through the sending predicate and the receiver afterwards can

decide whether the interaction is possible or not. It is worth mentioning

that the interaction, in the attributed pi calculus, is still based on com-

munication channels and the attributes are used for further filtering of

137

communication partners (e.g., only processes in the same compartment

are allowed to communicate). Other differences are related to the fact

that AbC supports implicit multicast with non-blocking message sending

while the attributed pi calculus supports binary communication with fully

synchronous communication.

The imperative π-calculus (JLN09) is a recent extension of the at-

tribute π-calculus which allow imperative programming languages L to

serve as attribute languages. In this way, the attribute π-calculus is en-

riched with a global imperative store. The attribute language has assign-

ment expressions that can be used to change the values of channels at

run-time, thus providing a fully dynamic interface. As opposed to AbC ,

the design choices, of selecting point-to-point synchronization mechanism

and channels alongside with constraints as means for deriving the inter-

action, limit the applicability of this calculus to system biology.

7.3 Broadcast-based interaction

We now report on those calculi, tailored for broadcast and group commu-

nication.

CBS (OPT02; Pra95; Pra91) is probably the first process calculus to

rely on broadcast rather than on channel-based communication. It cap-

tures the essential features of broadcast communication in a simple and

natural way. Transmission of messages is autonomous, but reception is

not. Whenever a process transmits a value, all processes running in par-

allel and ready to input catch the broadcast. The bπ-calculus (EM99;

EM01) is based on CBS and on the π-calculus (MPW92) in that it ex-

tends the former with a channel-passing mechanism. The AbC calculus

inherits the style of communication of CBS, but differs from it in that the

transmitted data can be names or values, and from bπ-calculus in that it

uses attributes rather than channels for communication. Moreover, AbC

exploits the attributes attached to processes to select dynamically the set

of destinations, and does not necessarily send a message to all listening

processes.

The broadcast Quality Calculus of (VNR13) attacks the problem of

138

denial-of-service by means of selective input actions, where an input is con-

sumed only if what is received matches what is expected. Such evaluation,

however, is tailored to avoid flooding of improper messages, and therefore

inspects the structure of messages to make sure that it agrees with the

input contract. Coherently with its purpose, the calculus of (VNR13)

only specifies contracts for inputs, and does not provide any means to

change the input contracts during the execution, whereas attribute-based

broadcast and attribute update are key features of AbC .

7.4 The Actor communication model

The Actor model, originally introduced in (HBS73; Hew77), has been

used to support the development of object-based concurrent computa-

tion. Actors embody the spirit of objects and extends their advantages to

concurrent computations. As with objects where data and behavior are

encapsulated to separate what an object can do from how it does it, the

actors separate the control (where and when) from the logic of a compu-

tation. The early proposals of the Actor model in (HBS73; Hew77) were

rather informal. However, the definition of actors that is commonly used

today follows Agha’s definition in (Agh86). This definition provides an

abstract representation for actor systems in terms of what is called Asyn-

chronous Computation Trees, building on notions borrowed from Milner’s

work (Mil89). This representation provides a suitable way of visualizing

computation in actors.

An actor system, also called a configuration, consists of autonomous

objects, called actors, and of a collection of messages in transit. Mes-

sages, what Agha calls “communications”, are the driving force of actors.

Computations in an actor system are carried out in response to received

messages. Each message contains the destination address and the actual

content of the message. As opposed to the process algebra approach, only

acceptance of a message is interpreted as a transition (Agh86). An actor

has an internal state that can be modified externally only by sending it

messages. The state is private and persistent and is made up of variables,

which contain references to other actors. Each actor has a unique name,

139

and a unique mailbox address which does not change during the lifetime

of the actor. The mailbox of an actor can be used by other actors to

send it messages. An actor may not be known to all actors in the system.

Messages can be sent only to those actors whose address is known. Fur-

thermore actors are aware of their own mailbox addresses and can send

messages to themselves. It should be noted that an actor might also re-

ceive addresses of other actors through the contents of incoming messages

thus allowing mobility and dynamic configuration of the communication

topology. This notion of mobility was not present in CCS (Mil80) and

the Actor model was a source of inspiration in the development of the

π-calculus as mentioned by Robin Milner in (Mil93; Fre93).

Message passing in actors is based on asynchronous point-to-point

communication where message delivery is guaranteed but the arrival order

of messages is indeterminate. The guarantee of message delivery relies on

a fairness assumption. An actor may change its state, and may perform

a finite number of the following actions: send a message to another actor

whose mail address is known; create a new actor by relying on the exist-

ing behavior definitions while providing initial values for the parameters;

become an actor which specifies the replacement behavior to come into

effect when the next message is processed. It should be noted that the

processing of the current message is not complete until the replacement

is specified.

AbC follows an algebraic approach in specifying distributed systems.

Process algebra and the actor model can be viewed as different schools

for specifying concurrent and distributed systems. Actually the main

differences between the two approaches stem from their different goals

and objectives. The process algebra approach focuses on understanding

elementary communication between processes by providing a rigorous al-

gebraic formulation of distributed systems while abstracting from other

programming aspects. On the other hand, the actor model approach fo-

cuses on explicitly modeling and programming distributed systems.

Several works for providing formal semantics of actors have been pro-

posed so far (AMST92; AMST97; Tal97; Tal96; MT97). However, these

papers concentrate on communication and concurrency aspects and do

140

not investigate the relationships of the actor approach with the process

algebra approach.

The key distinguishing factors can be summarized as follows: Process

calculi model the communication medium explicitly (i.e., they send and

receive on shared channels) while in the actor model (and also in AbC)

the communication medium is abstracted away. The communicable values

in actors are actor names while in process calculi these are channels. In

process calculi, any number of processes can send or receive on a given

channel, and thus processes may interfere. This is not possible in the

actor model because two actors cannot have the same name. Interference

(i.e., non-deterministic selection of communication partner) is naturally

avoided in the AbC calculus and one possible encoding of the name of a

component is to consider it as an attribute. When a component wants

to send a message to a specific component, the interaction predicate of

the sending component can be used to select only the receiver with a

specific name as we have seen in the smart conference scenario in Chap-

ter 2, Specification 2.1 and Specification 2.2, where the participant sends

its identity/name in the message and the room replies back only to the

requester addressing him by his identity.

However, the non-deterministic selection of a communication partner

is interesting and helps in achieving some sort of anonymity between com-

munication partners, which is a desired property in distributed systems.

In many cases one is interested in communicating with partners, which

are capable of offering a specific service, even if one does not know the

identity of the partner that is offering the service. This kind of behavior

is hardly possible in the actor model since the selection is deterministic.

In AbC the situation is different since it supports selective multicast com-

munication. Thus only the group of partners, enjoying specific properties,

can receive the message.

In process calculi, processes are stateless entities while actors have

associated states. However, in AbC the attribute environment can be

used to represent the internal state of a component. Finally, the actor

model assumes a fair (reliable) message delivery, which is not the case for

process calculi.

141

An interesting line of research on comparing the Actor model with

the process algebra approach, more specifically with the asynchronous

π-calculus (HT91), can be found in (TZA02). The authors defined a

process calculus for the Actor model, called Aπ. The idea is to embed the

Actor model within a typed asynchronous π-calculus where the syntax

and semantics rules are not altered. The typing rules are then used to

enforce properties specific to the Actor model. In this way, not only a

direct basis for comparison with the π-calculus can be attained, but also

it enables the possibility to adopt concepts and techniques developed for

π-calculus to the Actor model.

The properties enforced by the type system include: the persistency

property where actors do not dissolve after receiving messages; the fresh-

ness property where actor cannot be created with well-known names or

names received in a message; the uniqueness property where composed

actor configurations do not contain actors with the same name. It should

be noted that the fairness property, where the delivery of a message can

only be delayed for a finite but unbounded amount of time, is not consid-

ered in this calculus. The reason is that the paper is considering a May

testing theory (NH84) for the Aπ and compares it with the one intro-

duced for the asynchronous π-calculus (BDP99b). The fairness property

requires eventual delivery of messages while May testing is only concerned

with the occurrence of an event after a finite computation. Thus, fairness

only affects infinite computations and has no effects on the notion of May

testing.

To enforce the above mentioned properties, the type system imposes

a certain discipline on the use of names. Unlike the π-calculus where

names are used to denote communication channels, the names in Aπ de-

note unique actor names (i.e., the term x(y).C represents a configuration

with an actor x whose behavior is (y)C and the term x̄y.0 represents a

configuration with a single message targeting actor x and with contents

y). In this way, the interference resulting from a non-deterministic selec-

tion of the receiving component is ruled out in the sense that the receiving

component/Actor is deterministically specified using its unique name. To

ensure the freshness properties, terms like x(y).y(z).0 are not allowed.

142

New actors cannot be created with names received from a message. In

the previous example the message y cannot be used to create a new actor.

This means that the above term is not well-typed (i.e., not an Aπ term).

Following the terminology of (PS96), only output capability of names can

be passed in messages (i.e., the term x(y).ȳz.0 is well typed). To en-

sure uniqueness property, composed configurations like C1|C2 should not

contain actors with the same name. It should be noted that a term like

x(y).0 is considered well-typed (i.e., an Aπ term). This term represents

the actor x which dissolves after receiving the message y. However, if this

term is interpreted as the actor x assuming a sink behavior, which simply

consumes all messages it receives, the persistence property is not violated.

We conjecture that since the non-deterministic selection of the receiv-

ing component/actor is not required, the embedding of the Actor model

in both the bπ and AbC calculi is possible in a similar way as proposed

by Aπ. Although the communication rule in bπ and AbC considers mul-

tiparty settings, the rule should work as desired because different actors

cannot have the same name. In other words, it does not matter if the

communication is observed by other configurations as there is always a

single unique receiver. However, it is required to rule out terms of the fol-

lowing form x̄y.C (resp. (v)@Π.C) where C 6= 0. Also acknowledgments

of message reception are required as the semantics of output actions in

both calculi is non-blocking.

The ActorSpace model (AC93) is a generalization of the actor model

to support group-based communication where partners can be selected by

pattern matching. This model supports both point-to-point and multicast

communication. To the best of our knowledge, the ActorSpace model still

lacks a formal semantics. We believe that AbC can be viewed, to some

extent, as a generalization of the ActorSpace model. The idea is that AbC

extends the ActorSpace pattern-matching mechanism to select partners

by predicates on both sides of the communication where not only the

sender can select its partner but also the receiver can decide to either

receive or discard the message. The notion of spaces/collectives in AbC

is more abstract and is only specified at run-time.

143

7.5 Other approaches for programming adap-
tive behavior

Programming collective and/or adaptive behavior has been studied in dif-

ferent research communities like those interested in context-oriented pro-

gramming and in the component-based approach. In Context-Oriented

Programming (COP) (HCN08), a set of linguistic constructs is used to

define context-dependent behavioral variations. These variations are ex-

pressed as partial definitions of modules that can be overridden at run-

time to adapt to contextual information. They can be grouped via layers

to be activated or deactivated together dynamically. These layers can be

also composed according to some scoping constructs. Our approach is

different in that components adapt their behavior by considering the run-

time changes of the values of their attributes which might be triggered

by either contextual conditions or by local interaction. Another approach

that considers behavioral variations by building on the Helena framework

is considered in (Kla15).

The component-based approach, represented by FRACTAL (BCS04)

and its Java implementation, JULIA (BCL+06), is an architecture-based

approach that achieves adaptation by defining systems that are able to

adapt their configurations to the contextual conditions. System com-

ponents are allowed to manipulate their internal structure by adding, re-

moving, or modifying connectors. However, in this approach interaction is

still based on explicit connectors. In our approach predefined connections

simply do not exist: we do not assume a specific architecture or contain-

ment relations between components. The connectivity is always subject

to change at any time by means of attribute updates. In our view, AbC is

definitely more adequate when highly dynamic environments have to be

considered.

144

7.6 The old AbC Calculus

The old AbC 1 is a very basic calculus and has many limitations. In this

thesis, we have fully redesigned the calculus and added essential features

needed to effectively control interactions in an attribute-based framework.

The old AbC does not support awareness since its components have

no explicit way to read/check their attribute environments and react ac-

cordingly. This greatly impacts on expressiveness in that awareness-based

applications can hardly be tackled. The old calculus has also problems in

modeling adaptation; the impossibility of accessing the attribute environ-

ment implies that interaction predicates are static and cannot take into

account the changing attributes. For instance, in the robotic scenario in

Chapter 4, Section 4.3.3, if a collision with a wall in the arena is detected,

the robot cannot adapt by changing its direction because the robot is not

aware of its environment. The same applies for its own status e.g., its

battery level, so modeling such a scenario in old AbC is hardly possible.

In the old calculus, the whole component state is always exposed dur-

ing interaction in the sense that different messages sent by a component

are characterized by the same set of attributes. A simple behavior like

(āc+ b̄d) ‖ (a(x) + b(x))– where action a (resp. b) synchronizes only with

action a (resp. b) – cannot be modeled. This behavior can be simply

modeled in AbC as follows:

Γ1:(a, c)@(tt) + (b, d)@(tt) ‖ Γ2:(x = a)(x, y) + (x = b)(x, y)

By including the channel names (i.e., a and b) in the message we

are guaranteed that message c will only be received by the process with

predicate (x = a) and message d will only be received by the process

with predicate (x = b). Clearly, the absence of multi-value passing in the

old calculus impacts its expressiveness and makes modeling channel-based

communication very hard.

In the end of this chapter, we would like to refer to results from a

survey of formal methods for supporting swarm/collective behavior, pre-

sented in (RTRH05). The results show that there does not exist a single

1The full formal definition can be found in Appendix A.3

145

formalism to support such kind of behavior, but different formalisms can

be combined to reach this goal. Due to the minimality of process cal-

culi, specifications can become large and therefore difficult to read and

understand. Most process calculi cannot explicitly deal with data. They

do not support modeling and reasoning about persistent information so

adaptive behavior can be verified. The goal of AbC is to support modeling

adaptive systems with the appropriate level of abstraction that permits

a natural modeling and supports verification through compact models.

Adaptation is guaranteed by introducing the attribute environment and

its operations. However, quantitive variants of AbC are needed to answer

questions about model dynamics and steady-state behaviors to ensure

that a specific behavior will be reached.

AbC combines the lessons learnt from the above mentioned languages

and calculi, in that it strives for expressiveness while aiming to preserve

minimality and simplicity. The dynamic settings of attributes and the

possibility of inspecting/modifying the environment gives AbC greater

flexibility and expressiveness while keeping models as natural as possible.

146

Chapter 8

Concluding Remarks and
Future Works

We have introduced a foundational process calculus, named AbC , for

attribute-based communication. We investigated the expressive power of

AbC both in terms of its ability to model scenarios featuring collaboration,

reconfiguration, and adaptation and of its ability to encode channel-based

communication and other interaction paradigms. We defined behavioral

equivalences for AbC and finally we proved the correctness of the proposed

encoding up to some reasonable equivalence. We demonstrated that the

general concept of attribute-based communication can be exploited to pro-

vide a unifying framework to encompass different communication models

and interaction patterns. We developed a prototype implementation for

AbC linguistic primitives to demonstrate their simplicity and flexibility

to accommodate different interaction patterns. We studied the impact of

centralized and decentralized implementations of the underlying commu-

nication infrastructure that mediate the interaction between components.

We plan to investigate the impact of alternative behavioral relations

like testing preorders in terms of equational laws, proof techniques, etc.

We want to devise an appropriate notion of temporal logic that can be used

to specify, verify, and monitor collective adaptive case studies, modeled

in AbC . Actually since CAS components usually operate in an open and

147

changing environment, the spatial and temporal dimensions are strictly

correlated and influence each other. So we would like to investigate the

impact of spatio-temporal logic approaches in the context of AbC models.

One promising approach is presented in (NB14).

We want to develop quantitive variants of AbC to consider other

classes of systems and make reasoning and verification of large systems

in AbC affordable. Further related work in this direction can be found

in (BDG+15), where a specification language was designed based on the

AbC primitives to support quantitive analysis of large systems.

Another line of research is to investigate anonymity at the level of at-

tribute identifiers. Clearly, AbC achieves dynamicity and openness in the

distributed settings, which is an advantage compared to channel-based

models. In our model, components are anonymous; however the “name-

dependency” challenge arises at another level, that is, the level of attribute

environments. In other words, the sender’s predicate should be aware of

the identifiers of receiver’s attributes in order to explicitly use them. For

instance, the sending predicate (loc =< 1, 4 >) targets the components

at location < 1, 4 >. However, different components might use different

identifiers names (i.e., “location”) to denote their locations; this requires

that there should be an agreement about the attribute identifiers used by

the components. For this reason, appropriate mechanisms for handling at-

tribute directories together with identifiers matching/correspondence will

be considered. These mechanisms will be particularly useful when inte-

grating heterogeneous applications.

Another research direction is to establish a static semantics for AbC as

a way to discipline the interaction between components. This way we can

answer questions regarding deadlock freedom and if the message payload

is of the expected type of the receiver.

Our experience in modeling different case studies shows that point-to-

point and group-based communication are not rival paradigms but they

actually complement each other. As in the case of the ActorSpace mo-

del (AC93), we think that binary and multiway communication should be

supported in any formalism that is tailored to model the interaction in

distributed systems.

148

Appendix A

Appendix: Additional
Materials

A.1 The completeness of the encoding

of Lemma 5.14. The proof proceeds by induction on the shortest transi-
tion of →bπ. We have several cases depending on the structure of the
term P .

• if P , nil: This case is immediate LnilMc , ∅ : 0

• if P , τ.G: We have that τ.G
τ→ G and it is translated to Lτ.GMc ,

∅ : ()@ff.LGMp. We can only apply rule (Comp) to mimic this transi-
tion.

∅ : ()@ff.LGMp
ff()7−−→ ∅ : LGMp

∅ : ()@ff.LGMp
ff()−−→ ∅ : LGMp

Now it is not hard to see that L G Mc ' ∅ : LGMp. They are even
structural congruent. Notice that sending on a false predicate is not
observable (i.e., a silent move).

• if P , a(x̃).G: We have that a(x̃).G
a(z̃)→ G[z̃/x̃] and it is translated

to
La(x̃).QMc , ∅ : Π(y, x̃).LGMp where Π = (y = a). We can only apply
rule (Comp) to mimic this transition.

149

∅ : Π(y, x̃).LGMp
(a=a)(a, z̃)7−−−−−−−→ ∅ : LGMp[a/y, z̃/x̃]

∅ : Π(y, x̃).LGMp
(a=a)(a, z̃)−−−−−−−→ ∅ : LGMp[a/y, z̃/x̃]

It is not hard to see that: LG[z̃/x̃]Mc ' ∅ : LGMp[a/y, z̃/x̃] ' ∅ :
LGMp[z̃/x̃] since y 6∈ n(LGMp).

• if P , āx̃.G: The proof is similar to the previous case but by
applying this output transition instead.

• The fail rules for nil, τ , input and output are proved in a similar
way but with applying (C-Fail) instead.

• if P , νxQ: We have that either νxQ
γ−→ νxQ′ , νxQ

τ−→ νxνỹQ′

or νxQ
νxνỹāz̃−−−−−→ Q′ and it is translated to LνxQMc , νx∅ : LQMp. We

prove each case independently.

– Case νxQ
γ−→ νxQ′ : By applying induction hypotheses on the

premise Q
γ−→ Q′, we have that LQMc _∗ ' LQ′Mc. We can only

use rule (Res) to mimic transition depending on the performed
action.

∅ : LQMp[y/x]
γ−→ ∅ : LQ′Mp[y/x]

νx∅ : LQMp
γ−→ νy∅ : LQ′Mp[y/x]

And we have that LνxQ′Mc ' νy∅ : LQ′Mp[y/x] as required.

– Case νaQ
τ−→ νaνỹQ′ : By applying induction hypotheses on

the premise Q
νỹāz̃−−−→ Q′, we have that LQMc _∗ ' LQ′Mc. We

can only use (Hide1) to mimic this transition.

∅ : LQMp
νỹa=a(a, z̃)−−−−−−−−→ ∅ : LQ′Mp

νa∅ : LQMp
νỹff(a, z̃)−−−−−−→ νaνỹ∅ : LQ′Mp

We have that LνaνỹQ′Mc ' νxνỹ∅ : LQ′Mp as required.

– Case νxQ
νxνỹāz̃−−−−−→ Q′: follows in a similar way using rule (Open)

.

– Case νxQ
α:−→: is similar to the case with (Res) rule.

• if P , ((rec A〈x̃〉).P)〈ỹ〉): This case is trivial.

150

• if P , G1 + G2: We have that either G1 + G2
α−→ G′1 or G1 +

G2
α−→ G′2. We only consider the first case with G1

α−→ G′1 and the
other case follows in a similar way. This process is translated to
LG1 +G2Mc , ∅ : LG1Mp + LG2Mp. By applying induction hypotheses

on the premise G1
α−→ G′1, we have that L G1 Mc _∗ ' L G′1 Mc. We

can apply either rule (Comp) or rule (C-Fail) (i.e., when discarding)
to mimic this transition depending on the performed action. We
consider the case of (Comp) only and the other case follows in a
similar way.

∅ : LG1Mp
λ7−→ ∅ : LG′1Mp

∅ : LG1Mp + LG2Mp
λ7−→ ∅ : LG′1Mp

∅ : LG1Mp + LG2Mp
γ−→ ∅ : LG′1Mp

Again LG′1Mc ' ∅ : LG′1Mp

• if P , P1‖P2: This process is translated to L P1‖P2 Mc , ∅ :
L P1 Mp‖∅ : L P2 Mp. We have four cases depending on the performed

action in deriving the transition P1‖P2
α−→ P̂ .

– P1‖P2
νỹāx̃−−−→ P ′1‖P ′2: We have two cases, either P1

νỹāx̃−−−→ P ′1 and

P2
a(x̃)−−−→ P ′2 or P2

νỹāx̃−−−→ P ′2 and P1
a(x̃)−−−→ P ′1. We only consider

the first case and the other case follows in the same way. By

applying induction hypotheses on the premises P1
νỹāx̃−−−→ P ′1

and P2
a(x̃)−−−→ P ′2, we have that LP1Mc _∗ ' LP ′1Mc and LP2Mc _∗

' LP ′2Mc. We only can apply (Com).

∅ : LP1Mp
νỹ(a=a)(a,x̃)−−−−−−−−→ ∅ : LP ′1Mp ∅ : LP ′2Mp

(a=a)(a,x̃)−−−−−−−→ ∅ : LP ′2Mp

∅ : LP1Mp ‖ ∅ : LP2Mp
νỹ(a=a)(a,x̃)−−−−−−−−→ ∅ : LP ′1Mp ‖ ∅ : LP ′2Mp

Again we have that: LP ′1‖P ′2Mc ' ∅ : LP ′1Mp‖ ∅ : LP ′2Mp. Notice
that the bπ term and its encoding have the same observable
behavior i.e., P1‖P2 ↓a and LP1‖P2Mc ↓(a=a).

– P1‖P2
a(x̃)−−−→ P ′1‖P ′2: By applying induction hypotheses on the

premises P1
a(x̃)−−−→ P ′1 and P2

a(x̃)−−−→ P ′2, we have that LP1Mc _∗

151

' LP ′1Mc and LP2Mc _∗ ' LP ′2Mc. We only can apply (Sync) to
mimic this transition.

∅ : LP1Mp
(a=a)(a,x̃)−−−−−−−→ ∅ : LP ′1Mp ∅ : LP ′2Mp

(a=a)(a,x̃)−−−−−−−→ ∅ : LP ′2Mp

∅ : LP1Mp ‖ ∅ : LP2Mp
(a=a)(a,x̃)−−−−−−−→ ∅ : LP ′1Mp ‖ ∅ : LP ′2Mp

Again we have that: LP ′1‖P ′2Mc ' ∅ : LP ′1Mp‖ ∅ : LP ′2Mp.

– P1‖P2
α−→ P ′1‖P2 if P1

α−→ P ′1 and P2
sub(α):−−−−→ or P1‖P2

α−→ P1‖P ′2
if P2

α−→ P ′2 and P1
sub(α):−−−−→. we consider only the first case and

by applying induction hypotheses on the premises P1
α−→ P ′1

and P2
sub(α):−−−−→, we have that LP1Mc _∗ ' LP ′1Mc and LP2Mc _∗

' LP2Mc. We have many cases depending on the performed
action:

1. if α = τ then P1‖P2
τ−→ P ′1‖P2 with P1

τ−→ P ′1 and P2
sub(τ):−−−−→

. We can apply (τ -Int) to mimic this transition.

∅ : LP1Mp
νỹΠx̃−−−→ ∅ : LP ′1Mp Π l ff

∅ : LP1Mp‖ ∅ : LP2Mp
τ−→ ∅ : LP ′1Mp‖ ∅ : LP2Mp

and again we have that: LP ′1‖P2Mc ' ∅ : LP ′1Mp‖ ∅ : LP2Mp.

2. if α = a(x̃): then P1‖P2
a(x̃)−−−→ P ′1‖P2 with P1

a(x̃)−−−→ P ′1 and

P2
a:−→ . We can apply (Sync) to mimic this transition.

∅ : LP1Mp
(a=a)(a,x̃)−−−−−−−→ ∅ : LP ′1Mp

∅ : LP2Mp
˜(a=a)(a,x̃)7−−−−−−−→ ∅ : LP2Mp

∅ : LP2Mp
(a=a)(a,x̃)−−−−−−−→ ∅ : LP2Mp

∅ : LP1Mp ‖ ∅ : LP2Mp
(a=a)(a,x̃)−−−−−−−→ ∅ : LP ′1Mp ‖ ∅ : LP2Mp

Again we have that: LP ′1‖P2Mc ' ∅ : LP ′1Mp‖ ∅ : LP2Mp.

3. if α = νỹāx̃ then P1‖P2
νỹāx̃−−−→ P ′1‖P2 with P1

νỹāx̃−−−→ P ′1 and

P2
a:−→. We can apply (Comp).

152

∅ : LP1Mp
νỹ(a=a)(a,x̃)−−−−−−−−→ ∅ : LP ′1Mp

∅ : LP2Mp
˜(a=a)(a,x̃)7−−−−−−−→ ∅ : LP2Mp

∅ : LP2Mp
(a=a)(a,x̃)−−−−−−−→ ∅ : LP2Mp

∅ : LP1Mp ‖ ∅ : LP2Mp
νỹ(a=a)(a,x̃)−−−−−−−−→ ∅ : LP ′1Mp ‖ ∅ : LP2Mp

Again we have that: LP ′1‖P2Mc ' ∅ : LP ′1Mp‖ ∅ : LP2Mp. Notice
that the bπ term and its encoding have the same observable
behavior i.e., P1‖P2 ↓a and LP1‖P2Mc ↓(a=a).

A.2 The Smart Conference System in Ab
a
CuS

Program A.1: The set of definitions used in the scenario in Ab
a
CuS

1 public class Defs {

2 public static final String REQUEST = "S_REQ";

3 public static final String UPDATE = "INTEREST_UPDATE";

4 public static final String REPLY = "INTEREST_REPLY";

5
6 public static final String SESSION_ATTRIBUTE_NAME = "session";

7 public static final String INTEREST_ATTRIBUTE_NAME = "interest";

8 public static final String ID_ATTRIBUTE_NAME = "id";

9 public static final String ROLE_ATTRIBUTE_NAME = "role";

10 public static final String DESTINATION_ATTRIBUTE_NAME = "dest";

11 public static final String NAME_ATTRIBUTE_NAME = "name";

12 public static final String RELOCATE_ATTRIBUTE_NAME = "relocate";

13 public static final String PREVIOUS_SESSION_ATTRIBUTE_NAME =

"prevSession";

14 public static final String NEW_SESSION_ATTRIBUTE_NAME = "newSession";

15 public static final String PROVIDER = "Provider";

16
17 public final static Attribute<String> session = new

Attribute<>(SESSION_ATTRIBUTE_NAME, String.class);

18 public final static Attribute<String> interest = new

Attribute<>(INTEREST_ATTRIBUTE_NAME, String.class);

19 public final static Attribute<Integer> id = new

Attribute<>(ID_ATTRIBUTE_NAME, Integer.class);

20 public final static Attribute<String> role = new

Attribute<>(ROLE_ATTRIBUTE_NAME, String.class);

21 public static final Attribute<String> destination = new

Attribute<>(DESTINATION_ATTRIBUTE_NAME, String.class);

153

22 public static final Attribute<String> name = new

Attribute<>(NAME_ATTRIBUTE_NAME, String.class);

23 public static final Attribute<Boolean> relocate = new

Attribute<>(RELOCATE_ATTRIBUTE_NAME, Boolean.class);

24 public static final Attribute<String> previousSession = new

Attribute<>(PREVIOUS_SESSION_ATTRIBUTE_NAME, String.class);

25 public static final Attribute<String> newSession = new

Attribute<>(NEW_SESSION_ATTRIBUTE_NAME, String.class);

26
27 }

Program A.2: The ParticipantAgent in Ab
a
CuS

1 public class ParticipantAgent extends AbCProcess {

2
3 private String topic;

4
5 public ParticipantAgent(String name , String topic) {

6 super(name);

7 this.topic = topic;

8 }

9
10 @Override

11 protected void doRun() throws Exception {

12 setValue(Defs.interest, this.topic);

13 send(

14 new HasValue(

15 Defs.ROLE,

16 Defs.PROVIDER

17) ,

18 new Tuple(

19 getValue(Defs.interest) ,

20 Defs.REQUEST ,

21 getValue(Defs.id)

22
23)

24);

25 Tuple value = (Tuple) receive(o -> isAnInterestReply(o));

26 setValue(Defs.destination, (String) value.get(2));

27 while (true) {

28 value = (Tuple) receive(o -> isAnInterestUpdate(o));

29 setValue(Defs.destination, (String) value.get(3));

30 }

31 }

32
33 private AbCPredicate isAnInterestReply(Object o) {

34 if (o instanceof Tuple) {

35 Tuple t = (Tuple) o;

36 try {

154

37 if ((getValue(Defs.interest).equals(t.get(0))&&

38 Defs.REPLY.equals(t.get(1)))

39 {

40 return new TruePredicate();

41 }

42 } catch (AbCAttributeTypeException e) {

43 e.printStackTrace();

44 }

45 }

46 return new FalsePredicate();

47 }

48
49 private AbCPredicate isAnInterestUpdate(Object o) {

50 if (o instanceof Tuple) {

51 Tuple t = (Tuple) o;

52 try {

53 if ((getValue(Defs.interest).equals(t.get(1)))&&

54 (Defs.UPDATE.equals(t.get(2))) {

55 return new TruePredicate();

56 }

57 } catch (AbCAttributeTypeException e) {

58 e.printStackTrace();

59 }

60 }

61 return new FalsePredicate();

62 }

63
64 }

Program A.3: The service process in Ab
a
CuS

1 public class Service extends AbCProcess {

2 @Override

3 protected void doRun() throws Exception {

4 while (true) {

5 Tuple value = (Tuple) receive(o -> isARequest(o));

6 exec(new AbCProcess() {

7 @Override

8 protected void doRun() throws Exception {

9 send(

10 new HasValue(Defs.id, value.get(2)),

11 new Tuple(

12 getValue(Defs.session) ,

13 Defs.REPLY ,

14 getValue(Defs.name)

15)

16);

17 }});

18 }

155

19 }

20 protected AbCPredicate isARequest(Object o) {

21 if (o instanceof Tuple) {

22 Tuple t = (Tuple) o;

23 try {

24 if (((getValue(Defs.session).equals(t.get(0))&&

25 (Defs.REQUEST.equals(t.get(1))))) {

26 return new TruePredicate();

27 }

28 } catch (AbCAttributeTypeException e) {

29 e.printStackTrace();

30 }

31 }

32 return new FalsePredicate();

33 }

34 }

Program A.4: The relocation process in Ab
a
CuS

1 public class Relocation extends AbCProcess {

2 @Override

3 protected void doRun() throws Exception {

4 while (true) {

5 waitUntil(new HasValue(Defs.relocate, true));

6 setValue(

7 Defs.previousSession,

8 getValue(Defs.session));

9 setValue(

10 Defs.session,

11 getValue(Defs.newSession));

12 setValue(

13 Defs.relocate ,

14 false);

15 send(

16 new Or(

17 new HasValue(

18 Defs.interest,

19 getValue(Defs.session)

20) ,

21 new HasValue(

22 Defs.session,

23 getValue(Defs.session)

24)

25),

26 new Tuple(

27 getValue(Defs.previousSession) ,

28 getValue(Defs.session) ,

29 Defs.UPDATE ,

30 getValue(Defs.name)

156

31)

32);

33 }

34 }

35 }

Program A.5: The Updating process in Ab
a
CuS

1 public class Updating extends AbCProcess {

2
3 @Override

4 protected void doRun() throws Exception {

5 while (true) {

6 Tuple value = (Tuple) receive(o -> isAnUpdateMessage(o));

7 setValue(

8 Defs.previousSession,

9 getValue(Defs.session));

10 setValue(

11 Defs.session,

12 (String) value.get(0));

13 exec(new AbCProcess() {

14 @Override

15 protected void doRun() throws Exception {

16 send(

17 new Or(

18 new HasValue(

19 Defs.interest,

20 getValue(Defs.session)

21) ,

22 new HasValue(

23 Defs.session,

24 getValue(Defs.session)

25)

26),

27 new Tuple(

28 getValue(Defs.previousSession) ,

29 getValue(Defs.session) ,

30 Defs.UPDATE ,

31 getValue(Defs.name)

32)

33);

34 }});

35 }

36 }

37 protected AbCPredicate isAnUpdateMessage(Object o) {

38 if (o instanceof Tuple) {

39 Tuple t = (Tuple) o;

40 try {

41 if ((getValue(Defs.session).equals(t.get(1)))&&

157

(Components) C ::= Γ :P | C1|C2

(Processes) P ::=

(Inaction) 0

(Input) | Π(x).P

(Output) | (u)@Π.P

(Update) | [a := u].P

(Choice) | P1 + P2

(Call) | K

(Predicates) Π ::= tt | a = u | Π1 ∧Π2 | ¬Π

(Data) u ::= v | x

Table 14: The syntax of the old AbC calculus

42 (Defs.UPDATE.equals(t.get(2))) {

43 return new TruePredicate();

44 }

45 } catch (AbCAttributeTypeException e) {

46 e.printStackTrace();

47 }

48 }

49 return new FalsePredicate();

50 }

51 }

A.3 A Formal Definition for the Old AbC
Calculus

The syntax of the old AbC calculus is reported in Table 14. The top-level

entities of the calculus are components (C), a component consisting either

of a process P with a set of attributes Γ, denoted Γ :P , or of the parallel

composition C1|C2 of two components. The attribute environment Γ :

A → V is a map from attribute identifiers a ∈ A to values v ∈ V. No

restriction is enforced about the attributes of different components, in

the sense that different components can have equal or different sets of

attributes depending on the system being modelled.

158

A process is either the inactive process 0, an action-prefixed process,

the choice P1 + P2 between two processes, or a possibly recursive call K

to a process identified as K in the system. We assume that each process

has a unique process definition K , P .

There are three kinds of prefix actions. The attribute-based input

Π(x) receives a message from any process whose attributes satisfy the

predicate Π, variable x being a placeholder for the received message; the

attribute-based output (u)@Π broadcasts the message u to all processes

whose attributes satisfy the predicate Π; and the update [a := u] sets

the value of an attribute a to u in the local environment. A predicate Π

either checks the value of an attribute or is the propositional combination

of predicates. Predicate tt is satisfied by all attributes and is used for full

broadcast.

Data u can be a constant value, v ∈ V, or a variables, x. The only

binder of the calculus is Π(x).P , which binds variable x in the continuation

process P . The derived notions of bound and free variables are standard.

We assume that our processes are closed (i.e., no free variable), while

free names can be used whenever needed. For the sake of minimality, the

calculus does not equipped with a restriction operator. The need of such

primitives will be the subject of further studies.

In the rest of the section, we present the reduction semantics of the

old AbC calculus. The semantic definition relies on a standard structural

congruence relation, defined by the rules in Table 16. The first three laws

corresponds to the Abelian monoid laws for parallel | (with Γ :0 as unit).

The fourth law permits lifting the relation from processes to components.

The rest of the laws are the Abelian monoid laws for sum + (with 0 as

unit), the unfolding law and the α-conversion (≡α) law.

The semantics is formalised by means of an unlabelled transition re-

lation as shown in Table 15. A transition C −→ C ′ denotes that the com-

ponent C reduces to the component C ′ by either performing an attribute

update [a := u], or performing a one-to-many group communication. The

group addressed by communication is determined by the predicates on

both the sender and the receiver sides. Rule (Struct) links the congru-

ence to the transition relation: structurally congruent components are

159

(Struct)

C ≡ C1 C1 −→ C2 C2 ≡ C ′

C −→ C ′

(Upd)

Γ : [a := v].P +Q | C −→ Γ[a 7→ v] : P | C

(Com)

Γ :(v)@Π.P +Q |
m∏
i=1

Γi :Πi(xi).Pi +Qi | C −→ Γ :P |
m∏
i=1

Γi :Pi[v/xi] | C

s.t. ∀i = 1, . . . ,m (Γi |= Π ∧ Γ |= Πi)

∧ (C 6≡ Γ′ : Π′(x).P ′ +Q′ | C ′ where Γ
′ |= Π ∧ Γ |= Π

′
)

Table 15: Reduction semantics of the old AbC calculus

interchangeable. Rule (Upd) defines the ability of the system to evolve

by updating the value of an attribute in one of its components. Nota-

tion Γ[a 7→ v] denotes the environment update: Γ[a 7→ v](a′) = Γ(a′) if

a 6= a′ and v otherwise. Rule (Com) defines the ability of the system to

evolve by matching an available output (v)@Π in one of its components

with other components ready to make an input Πi(x), provided that the

attributes of the receivers Γi satisfy the output predicate Π of the sender,

and vice versa the attributes of the sender Γ satisfy the input predicates

Πi. Notation
∏m
i=1 Ci denotes the parallel composition C1 | . . . | Cm;

if m = 0, this stands for the process 0 (this permits modelling the case

where the output is executed irrespective of the presence of listeners).

Once the value is received, it replaces the free occurrences of the input

variable in the continuation process. This is achieved by applying the

substitution [v/xi] to Pi. Since we consider closed processes, this entails

that an output always ranges on values v. Moreover, a communication

reduction also requires a specific condition on the other system compo-

nents C. Every component in C is excluded from the communication. If,

160

C1|C2 ≡ C2|C1

(C1|C2)|C3 ≡ C1|(C2|C3)

C|Γ :0 ≡ C

Γ :P1 ≡ Γ :P2 if P1 ≡ P2

P1 + P2 ≡ P2 + P1

(P1 + P2) + P3 ≡ P1 + (P2 + P3)

P + 0 ≡ P

K ≡ P if K , P

P1 ≡ P2 if P1 ≡α P2

Table 16: Structural congruence

e.g., we let Γ :P be such a component then either its attributes in Γ do

not satisfy the sender predicate, or process P is not ready to perform an

appropriate input action. Notably, we exploit the structural congruence

to check the structure of these components. Clearly, the Structural con-

gruence is decidable because it does not depend on predicate equivalence.

Indeed, structural congruence can be easily computed using a static check

inductively defined on the syntax of the calculus.

161

References

[AC93] Gul Agha and Christian J Callsen. ActorSpace: an open distributed
programming paradigm, volume 28. ACM, 1993. 5, 38, 143, 148

[ADL+15] Yehia Abd Alrahman, Rocco De Nicola, Michele Loreti, Francesco
Tiezzi, and Roberto Vigo. A calculus for attribute-based commu-
nication. In Proceedings of the 30th Annual ACM Symposium on
Applied Computing, SAC ’15, pages 1840–1845. ACM, 2015. xiv, 2,
9, 11, 133, 135

[ADL16a] Yehia Abd Alrahman, Rocco De Nicola, and Michele Loreti. On the
power of attribute-based communication. In Formal Techniques for
Distributed Objects, Components, and Systems - 36th IFIP Interna-
tional Conference, FORTE, pages 1–18. Springer, 2016. Full tech-
nical report can be found on http://arxiv.org/abs/1602.05635.
xiv, 8, 135

[ADL16b] Yehia Abd Alrahman, Rocco De Nicola, and Michele Loreti. Pro-
gramming of CAS systems by relying on attribute-based communi-
cation. In Leveraging Applications of Formal Methods, Verification
and Validation: Foundational Techniques - 7th International Sym-
posium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016,
Proceedings, Part I, pages 539–553. Springer, 2016. xiv, 100

[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press, Cambridge, MA, USA, 1986. 139

[AMST92] Gul Agha, Ian A Mason, Scott Smith, and Carolyn Talcott. To-
wards a theory of actor computation. In International Conference
on Concurrency Theory, pages 565–579. Springer, 1992. 140

[AMST97] Gul A Agha, Ian A Mason, Scott F Smith, and Carolyn L Tal-
cott. A foundation for actor computation. Journal of Functional
Programming, 7(01):1–72, 1997. 140

162

http://arxiv.org/abs/1602.05635

[And12] William J Anderson. Continuous-time Markov chains: An
applications-oriented approach. Springer Science & Business Me-
dia, 2012. 120

[BCL+06] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma,
and Jean-Bernard Stefani. The fractal component model and its
support in java. Software: Practice and Experience, 36(11-12):1257–
1284, 2006. 144

[BCS04] Eric Bruneton, Thierry Coupaye, and Jean-Bernard Stefani. The
fractal component model. Draft of specification, version, 2(3), 2004.
144

[BDG+15] Luca Bortolussi, Rocco De Nicola, Vashti Galpin, Stephen Gilmore,
Jane Hillston, Diego Latella, Michele Loreti, and Mieke Massink.
Carma: Collective adaptive resource-sharing markovian agents.
Workshop on Quantitative Aspects of Programming Languages and
Systems, QAPL 2015, pages 16–31, 2015. 148

[BDP99a] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Basic
observables for processes. Inf. Comput., 149(1):77–98, 1999. 68

[BDP99b] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. A theory
of ”may” testing for asynchronous languages. In Foundations of
Software Science and Computation Structure, Second International
Conference, FoSSaCS’99, Held as Part of the European Joint Con-
ferences on the Theory and Practice of Software, ETAPS’99, Am-
sterdam, The Netherlands, March 22-28, 1999, Proceedings, pages
165–179, 1999. 142

[BN02] Michael A Bass and Frank T Nguyen. Unified publish and subscribe
paradigm for local and remote publishing destinations, June 11
2002. US Patent 6,405,266. 5, 38

[Bro06] Manfred Broy. The’grand challenge’in informatics: engineering
software-intensive systems. Computer, 39(10):72–80, 2006. 2

[CKV01] Gregory V Chockler, Idit Keidar, and Roman Vitenberg. Group
communication specifications: a comprehensive study. ACM Com-
puting (CSUR), 33(4):427–469, 2001. 5, 38

[CM84] Jo-Mei Chang and N. F. Maxemchuk. Reliable broadcast protocols.
ACM Trans. Comput. Syst., 2:251–273, August 1984. 100

[CM95] Flaviu Cristian and Shivakant Mishra. The pinwheel asynchronous
atomic broadcast protocols. In Autonomous Decentralized Systems,

163

1995. Proceedings. ISADS 95., Second International Symposium on,
pages 215–221. IEEE, 1995. 100

[Cri91] Flaviu Cristian. Asynchronous atomic broadcast. IBM Technical
Disclosure Bulletin, 33(9):115–116, 1991. 100

[DFLP13] Rocco De Nicola, Gianluigi Ferrari, Michele Loreti, and Rosario
Pugliese. A language-based approach to autonomic computing.
In Formal Methods for Components and Objects, pages 25–48.
Springer, 2013. 135

[DLPT14] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco
Tiezzi. A formal approach to autonomic systems programming: the
scel language. ACM Transactions on Autonomous and Adaptive
Systems, pages 1–29, 2014. 2, 135

[DSU04] Xavier Défago, André Schiper, and Péter Urbán. Total order broad-
cast and multicast algorithms: Taxonomy and survey. ACM Com-
put. Surv., 36:372–421, December 2004. 100

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. The many faces of publish/subscribe. ACM Com-
put. Surv., 35(2):114–131, June 2003. 5, 38, 39

[EM99] Cristian Ene and Traian Muntean. Expressiveness of point-to-point
versus broadcast communications. In Fundamentals of Computation
Theory, pages 258–268. Springer, 1999. 36, 138

[EM01] Christian Ene and Traian Muntean. A broadcast-based calculus
for communicating systems. In Parallel and Distributed Processing
Symposium, International, volume 3, pages 30149b–30149b. IEEE
Computer Society, 2001. 9, 36, 38, 138

[Fer15] Alois Ferscha. Collective adaptive systems. In Adjunct Proceedings
of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2015 ACM Interna-
tional Symposium on Wearable Computers, pages 893–895. ACM,
2015. 2

[Fre93] Karen A. Frenkel. An interview with robin milner. Commun. ACM,
36(1):90–97, January 1993. Interviewee-Milner, Robin. 140

[GS62] David Gale and Lloyd S Shapley. College admissions and the stabil-
ity of marriage. The American Mathematical Monthly, 69(1):9–15,
1962. 56

164

[GWGJ10] Thomas Given-Wilson, Daniele Gorla, and Barry Jay. Concurrent
pattern calculus. In Theoretical Computer Science, pages 244–258.
Springer, 2010. 135

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal mod-
ular actor formalism for artificial intelligence. In Proceedings of the
3rd international joint conference on Artificial intelligence, pages
235–245. Morgan Kaufmann Publishers Inc., 1973. 139

[HC99] Hugh W Holbrook and David R Cheriton. Ip multicast channels:
Express support for large-scale single-source applications. In ACM
SIGCOMM Computer Communication Review, volume 29, pages
65–78. ACM, 1999. 2, 5, 8, 38

[HCN08] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-
oriented programming. Journal of Object Technology, 7(3), 2008.
144

[Hew77] Carl Hewitt. Viewing control structures as patterns of passing mes-
sages. Artificial intelligence, 8(3):323–364, 1977. 139

[Hoa78] Charles Antony Richard Hoare. Communicating sequential pro-
cesses. Communications of the ACM, 21(8):666–677, 1978. 5, 46,
133

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asyn-
chronous communication. In European Conference on Object-
Oriented Programming, pages 133–147. Springer, 1991. 8, 142

[HY95] Kohei Honda and Nobuko Yoshida. On reduction-based process
semantics. Theoretical Computer Science, 151(2):437–486, 1995. 69

[JK06] Barry Jay and Delia Kesner. Pure Pattern Calculus, pages 100–114.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. 135

[JLN09] Mathias John, Cédric Lhoussaine, and Joachim Niehren. Dynamic
compartments in the imperative π-calculus. In Computational Meth-
ods in Systems Biology, pages 235–250. Springer, 2009. 138

[JLNU08] Mathias John, Cédric Lhoussaine, Joachim Niehren, and
Adelinde M Uhrmacher. The attributed pi calculus. In Compu-
tational Methods in Systems Biology, pages 83–102. Springer, 2008.
135, 136

[JLNU10] Mathias John, Cédric Lhoussaine, Joachim Niehren, and
Adelinde M Uhrmacher. The attributed pi-calculus with priori-
ties. In Transactions on Computational Systems Biology XII, pages
13–76. Springer, 2010. 135

165

[JR06] Duncan E Jackson and Francis LW Ratnieks. Communication in
ants. Current biology, 16(15):R570–R574, 2006. 7

[Kla15] Annabelle Klarl. Engineering self-adaptive systems with the role-
based architecture of helena. In Infrastructure for Collaborative
Enterprises, WETICE 2015, Larnaca, Cyprus, June 15-17, 2015,
pages 3–8, 2015. 144

[Kop11] Hermann Kopetz. Internet of things. In Real-time systems, pages
307–323. Springer, 2011. 2

[Mil80] Robin Milner. A calculus of communicating systems. 1980. 5, 133,
140

[Mil89] Robin Milner. Communication and concurrency. Prentice-Hall, Inc.,
1989. 37, 71, 139

[Mil93] Robin Milner. Elements of interaction: Turing award lecture. Com-
mun. ACM, 36(1):78–89, January 1993. 140

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of
mobile processes, ii. Information and computation, 100(1):41–77,
1992. 5, 7, 36, 46, 64, 133, 135, 138

[MS92] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In
Automata, Languages and Programming, pages 685–695. Springer,
1992. 68, 69

[MT97] Ian A. Mason and Carolyn L. Talcott. A semantically sound actor
tranlsation. In Automata, Languages and Programming, 24th In-
ternational Colloquium, ICALP’97, Bologna, Italy, 7-11 July 1997,
Proceedings, pages 369–378. Springer, 1997. 140

[MZ04] Marco Mamei and Franco Zambonelli. Programming pervasive and
mobile computing applications with the tota middleware. In Per-
vasive Computing and Communications, 2004. PerCom 2004. Pro-
ceedings of the Second IEEE Annual Conference on, pages 263–273.
IEEE, 2004. 2

[NB14] Laura Nenzi and Luca Bortolussi. Specifying and monitoring
properties of stochastic spatio-temporal systems in signal tempo-
ral logic. In 8th International Conference on Performance Eval-
uation Methodologies and Tools, VALUETOOLS 2014, Bratislava,
Slovakia, December 9-11, 2014. Springer, 2014. 148

[NH84] R. De Nicola and M.C.B. Hennessy. Testing equivalences for pro-
cesses. Theoretical Computer Science, 34(1):83 – 133, 1984. 142

166

[OGCD10] Rehan O’Grady, Roderich Groß, Anders Lyhne Christensen, and
Marco Dorigo. Self-assembly strategies in a group of autonomous
mobile robots. Autonomous Robots, 28(4):439–455, 2010. 65

[OPT02] Karol Ostrovsky, KVS Prasad, and Walid Taha. Towards a primitive
higher order calculus of broadcasting systems. In Proceedings of
the 4th ACM SIGPLAN international conference on Principles and
practice of declarative programming, pages 2–13. ACM, 2002. 138

[PBMD15] Carlo Pinciroli, Michael Bonani, Francesco Mondada, and Marco
Dorigo. Adaptation and awareness in robot ensembles: Scenarios
and algorithms. In Software Engineering for Collective Autonomic
Systems, pages 471–494. Springer, 2015. 65

[PBS89] Larry L. Peterson, Nick C. Buchholz, and Richard D. Schlichting.
Preserving and using context information in interprocess communi-
cation. ACM Trans. Comput. Syst., 7:217–246, August 1989. 100

[Pel00] David Peleg. Distributed Computing: A Locality-sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000. 100

[Pra91] KVS Prasad. A calculus of broadcasting systems. In TAPSOFT’91,
pages 338–358. Springer, 1991. 2, 36, 138

[Pra95] Kuchi VS Prasad. A calculus of broadcasting systems. Science of
Computer Programming, 25(2):285–327, 1995. 138

[PS96] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping
for mobile processes. Mathematical Structures in Computer Science,
6(5):409–453, 1996. 143

[RTRH05] CA Rouff, WF Truszkowski, JL Rash, and MG Hinchey. A survey
of formal methods for intelligent swarms. Greenbelt, MD: NASA
Goddard Space Flight Center, 2005. 145

[SCC+12] Ian Sommerville, Dave Cliff, Radu Calinescu, Justin Keen, Tim
Kelly, Marta Kwiatkowska, John Mcdermid, and Richard Paige.
Large-scale complex it systems. Communications of the ACM,
55(7):71–77, 2012. 3

[Sch08] Tim P Schulze. Efficient kinetic monte carlo simulation. Journal of
Computational Physics, 227(4):2455–2462, 2008. 121

[SW03] Davide Sangiorgi and David Walker. The pi-calculus: a Theory of
Mobile Processes. Cambridge university press, 2003. 2, 69, 78

167

[Tal96] Carolyn L Talcott. An actor rewriting theory. Electronic Notes in
Theoretical Computer Science, 4:361–384, 1996. 140

[Tal97] Carolyn Talcott. Interaction semantics for components of dis-
tributed systems. In Formal Methods for Open Object-based Dis-
tributed Systems, pages 154–169. Springer, 1997. 140

[TZA02] Prasannaa Thati, Reza Ziaei, and Gul Agha. A theory of may
testing for actors. In Formal Methods for Open Object-Based Dis-
tributed Systems V, IFIP TC6/WG6.1 Fifth International Confer-
ence on Formal Methods for Open Object-Based Distributed Systems
(FMOODS 2002), March 20-22, 2002, Enschede, The Netherlands,
pages 147–162, 2002. 142

[VDB13] Mirko Viroli, Ferruccio Damiani, and Jacob Beal. A calculus of
computational fields. In Advances in Service-Oriented and Cloud
Computing, pages 114–128. Springer, 2013. 2

[VNR13] Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson. Broad-
cast, Denial-of-Service, and Secure Communication. In 10th Inter-
national Conference on integrated Formal Methods (iFM’13), vol-
ume 7940 of LNCS, pages 410–427, 2013. 138, 139

Unless otherwise expressly stated, all original material of whatever
nature created by Yehia Abd Alrahman and included in this thesis,
is licensed under a Creative Commons Attribution Noncommercial
Share Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:yehia.abdalrahman@imtlucca.it

	List of Figures
	List of Tables
	Declaration
	Vita and Publications
	Abstract
	1 Introduction
	1.1 Motivations
	1.2 Approach
	1.3 Contributions
	1.4 Structure of the Thesis

	2 AbC in a Nutshell
	2.1 Introduction
	2.2 A Smart Conference System
	2.2.1 The participant component behavior
	2.2.2 The room component behavior

	3 The AbC Calculus and its Expressive Power
	3.1 Syntax of the AbC Calculus
	3.2 Expressiveness of the AbC Calculus
	3.2.1 Encoding channel-based interaction
	3.2.2 Encoding interaction patterns

	4 AbC Operational Semantics
	4.1 Operational semantics of component
	4.2 Operational semantics of systems
	4.3 Case Studies: The AbC calculus at work
	4.3.1 TV Streaming channels
	4.3.2 Stable Marriage Problem
	4.3.3 A swarm robotics scenario in AbC

	5 Behavioral Theory for AbC
	5.1 Reduction barbed congruence
	5.2 Bisimulation Proof Methods
	5.3 Properties of the Bisimilarity Relation
	5.4 Correctness of the encoding

	6 Ab1.5exaCuS: A Run-time Environment for the AbC Calculus
	6.1 From AbC primitives to Ab1.5exaCuS programming constructs
	6.2 Implementing the Communication Infrastructure
	6.3 Multiparty Interaction Style
	6.4 Distributed Coordination Infrastructures
	6.4.1 A Cluster-based Infrastructure
	6.4.2 A Ring-based Infrastructure
	6.4.3 A Tree-based Infrastructure

	6.5 Performance Evaluation
	6.6 A Scalable and relaxed abstract machine for AbC

	7 Related Works
	7.1 Channel-based interaction
	7.2 Constraint- and attribute-based interaction
	7.3 Broadcast-based interaction
	7.4 The Actor communication model
	7.5 Other approaches for programming adaptive behavior
	7.6 The old AbC Calculus

	8 Concluding Remarks and Future Works
	A Appendix: Additional Materials
	A.1 The completeness of the encoding
	A.2 The Smart Conference System in Ab1.5exaCuS
	A.3 A Formal Definition for the Old AbC Calculus

	References

