
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

Graph and Network Data:
Mining the Temporal Dimension

PhD Program in Computer Science and Engineering

XXI Cycle

By

Michele Berlingerio

2009

http://www.imtlucca.it
mailto:michele.berlingerio@gmail.com

The dissertation of Michele Berlingerio is approved.

Program Coordinator: Prof. Ugo Montanari, IMT, Lucca

Supervisor: Dr. Fosca Giannotti, ISTI - CNR, Pisa, Italy

Supervisor: Dr. Francesco Bonchi, Yahoo! Research, Barcelona, Spain

Tutor: Prof. Paolo Ciancarini, IMT, Lucca

The dissertation of Michele Berlingerio has been reviewed by:

Dr. Aristides Gionis, Yahoo! Research, Barcelona, Spain

Prof. Dimitrios Gunopulos, University of Athens, Greece

Dr. Christophe Rigotti, INSA, Lyon, France

IMT Institute for Advanced Studies, Lucca

2009

http://www.imtlucca.it

To my family

Contents

List of Figures x

List of Tables xii

Acknowledgements xiii

Vita and Publications xv

Abstract xviii

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Thesis Contribution . 3
1.3 Thesis Organization . 4

2 Mining the Temporal Dimension of Graph and Network Data 6
2.1 Action . 6

2.1.1 Information Propagation 7
2.1.2 Workflow Mining . 10

2.2 Evolution . 12

3 Mining Graph Data 14
3.1 Preliminary concepts . 15
3.2 Constraints on Graph Data 16
3.3 Mining Frequent Subgraphs 21
3.4 State of the Art on Graph Mining 21

3.4.1 Greedy Algorithms 22

vii

3.4.2 Inductive Logic Programming 24
3.4.3 Kernel Function Based Approaches 24
3.4.4 Apriori-like Algorithms 25

3.5 The Transactional Setting . 32
3.5.1 Support definition 33
3.5.2 Pushing monotone constraints 34
3.5.3 Extending the ADI structure 40
3.5.4 The Gamp algorithm 42
3.5.5 Experimental Results 45
3.5.6 An algorithm for constraint-based graph mining in

transactional setting 50
3.6 The Single Graph Setting . 52

3.6.1 Support Definition 53
3.6.2 State of the art . 56
3.6.3 Pushing constraints 57
3.6.4 An Algorithm for Constraint-Based Graph Mining

in Single Graph Setting 59

4 Mining the Information Propagation in a Network 60
4.1 On Mining the Information Propagation 61
4.2 Problem definition . 63
4.3 The TAS mining paradigm 66

4.3.1 TAS-based Mining 70
4.4 Case study . 71

4.4.1 Dataset . 71
4.4.2 Tools . 72
4.4.3 Steps of Analysis . 72
4.4.4 Results . 74

4.5 Discussion . 79

5 Mining Graph Evolution Rules 81
5.1 On Mining the Evolution of a Network 82
5.2 Patterns of graph evolution 83

5.2.1 Time-evolving graphs 83
5.2.2 Patterns . 84

viii

5.2.3 Rules and Confidence Measure 86
5.3 Mining graph evolution rules 89
5.4 Experimental Results . 91

5.4.1 Datasets . 91
5.4.2 Results . 94

5.5 Extensions . 102
5.6 Discussion . 103

6 From Local Patterns to Graphs 105
6.1 On Workflow Mining . 105
6.2 A TAS-based workflow mining approach 108

6.2.1 Problem setting: workflow analysis 109
6.2.2 The process workflow context 110
6.2.3 Detecting parallelism and choice 111
6.2.4 A TAS-based representation of traces 114
6.2.5 Parallelism and choice over TAS 115
6.2.6 A graph summarization of TAS 116
6.2.7 Interactive Workflow Analysis 118
6.2.8 Run-through example 119

6.3 Case Study . 122
6.4 Discussion . 125

7 Conclusions 127

References 130

ix

List of Figures

1 Different DFS coding for a graph 27
2 Different solution spaces. 34
3 Example of AMp pruning. 36
4 Run-through example: the input database D. 38
5 After the firstMp and AMp. 39
6 After the thirdMp and AMp. 39
7 Run-through example: the final reduced database. 40
8 The ADI index structure for graphsG3 andG5 from database

D of Figure 4. 41
9 The extended ADI index structure (EADI) for graphs G3

and G5 after the third round of pruning as in Figure 6. . . 42
10 Experimental results: data reduction. 48
11 Experimental results: search space and run-time reduction. 49
12 Example of non anti-monotoniticy of the support 54
13 A graph with three different occurrences of a pattern eval-

uates to σ = 2. 55
14 A portion of a single graph and a possible pattern. 57

15 Example of τ -containment computation 68
16 Example of mail flow for the subject “2002 capital plan” . 74
17 Subgraphs found in Enron dataset 75
18 Subgraphs found in newsgroups dataset 76
19 An example of TAS found 77
20 Quantitative Analysis of the Results 78

x

21 A Graph Evolution Rule extracted from the DBLP co-authorship
network. 82

22 Relative time patterns extracted from two different sam-
ples of the DBLP co-authorship network: respectively 1992-
2002 for (P1), and 2005-2007 (P2). Dataset details are given
in Sec. 5.4.1. 85

23 A graph H with relative edge labels and all possible rela-
tive subgraphs A,B,C,D,E, F,G. 86

24 Two example host-graphs X and Y illustrating different
problems with support and confidence notions. 88

25 (a)–(d): comparison of confidence of graph evolution rules
in the two bibliografic networks 95

26 (a)–(d): comparison of confidence of graph evolution rules
in the two social networks. (e),(f): comparison of support
of patterns in different networks. 96

27 (a): confidence comparison between monthly and weekly
granularity. (b): scatter plot comparing the two different
definitions of confidence discussed in section 5.2.3. (c) num-
ber of valid rules as percentage of the number of frequent
patterns, for varying confidence. 98

28 (a)–(f): run time and number of patterns found with vary-
ing min. support and max. edge thresholds. 100

29 Run time and number of patterns found on networks with
labelled nodes with varying min sup. 101

30 TAG for TAS T in Example 11 117
31 TAG after choice factorization in Examp. 11 117
32 The poset of derived TAGs (dashed ellipses indicate the

new items introduced by factorizations) 121
33 The graph derived from the original input data 122
34 The initial mined TAG . 123
35 The TAG after one factorization step 124
36 The TAG after two factorization steps 124

xi

List of Tables

1 Constraints and their properties. 20
2 The DFS codes for the graphs (b),(c) and (d) in Figure 1 . . 28
3 Gamp data reduction on Cfreq[D,600] ∧ Csize[E,≥,12]. 47

4 The labels assigned to the users in the datasets 74
5 The dataset statistics. 75

6 Dataset statistics: Number of nodes and edges and result-
ing average degree for the total graph as well as for the
largest connected component (LCC) out of all connected
components (CC). Further the growth rate in terms of edges:
total growth as ratio between the graph size at the final and
the initial time-stamps, and average growth rate per time-
stamp. 92

7 Distribution of vertex labels 94
8 Number of patterns of different size at various minimum

support (ei denotes a pattern with ≤ i edges). 102

9 Example of Process Logs . 120
10 The corresponding mined TAS 120

xii

Acknowledgements

There is a very long list of persons I would like to thank for
helping me achieving me this result.

First, I would like to thank my supervisor Fosca Giannotti: her
guide started during my Master thesis and continued during
my Ph.D. During all these years she has helped me in finding
interesting problems, guiding me to their solutions, always
encouraging me to ask the best to myself.

Second, I am particularly grateful to Francesco Bonchi, whose
advises and collaboration have always led to good results and
achievements, from my Master thesis to this Ph.D thesis. My
admiration for him started many years ago and still keeps be-
ing alive.

I would express also my best gratitude to all my co-authors
with which I share part of the results of this thesis: Björn
Bringmann, Michele Coscia, Aristides Gionis, Mirco Nanni
and Fabio Pinelli.

My gratefulness goes also to the reviewers of the thesis for
their useful and positive comments: Aristides Gionis, Dim-
itrios Gunopulos and Christophe Rigotti.

I would like to thank all my friends and the people I met so
far: either in a direct or indirect way, all of them contributed
to this result.

The achievement of this important result would not have been
possible without the continuous support of all my family, which
always encouraged me in any moment, and helped me when-
ever I needed it. This thesis is dedicated to them.

xiii

A warm thank to my girlfriend Maddalena, whose support
during all these years was very precious, and with which I’ve
shared all the pains and successes I’ve been living so far.

xiv

Vita

October 10, 1980 Born in Bari, Italy

August 2002-December 2002 Erasmus Student
University of Uppsala, Sweden

December 2005 Degree in Informatica (Computer Science)
Final mark: 110/110
University of Pisa, Italy

Since February 2006 Phd Student
IMT Lucca Institute for Advanced Studies, Italy

July 2006 Student
Proteoms and Proteins Summer School
Lipari Island, Italy

September 2006 Student
KDUbiq Summer School
Dortmund, Germany

June 2007 Student
SADA Summer School
Helsinki, Finland

Since 2008 Research Associate
KDD-Lab, ISTI-CNR
Pisa, Italy

May 2008 - February 2009 Internship
Yahoo! Research
Barcelona, Spain

September 2009 Visiting
UBC, prof. Laks V.S. Lakshmanan
Vancouver, Canada

xv

Publications

1. Michele Berlingerio, Francesco Bonchi, Silvia Chelazzi, Michele Curcio, Fosca
Giannotti, Fabrizio Scatena: “Mining HLA Patterns Explaining Liver Dis-
eases.” In Proceedings of the 19th IEEE International Symposium on Computer-
Based Medical Systems (CBMS 2006), 22-23 June 2006, Salt Lake City, Utah,
USA. 702-707

2. Michele Berlingerio, Francesco Bonchi, Fosca Giannotti: “Towards Constraint-
Based Graph Mining.” In Proceedings of the Fifteenth Italian Symposium
on Advanced Database Systems, SEBD 2007, 17-20 June 2007, Torre Canne,
Fasano, BR, Italy. 274-281

3. Michele Berlingerio, Francesco Bonchi, Fosca Giannotti, Franco Turini: “Time-
annotated Sequences for Medical Data Mining.” In Proceedings of The
IEEE International Workshop of Data Mining in Medicine 2007 (DMMed
’07 in conjunction with ICDM’07), 28 October 2007, Omaha, Nebraska. 133-
138

4. Michele Berlingerio, Francesco Bonchi, Fosca Giannotti, Franco Turini: “Min-
ing Clinical Data with a Temporal Dimension: a Case Study.” In Pro-
ceedings of The 1st IEEE International Conference on Bioinformatics and
Biomedicine (BIBM 2007), 2-4 November 2007, San Jose, California. 429-
436

5. Michele Berlingerio, Fosca Giannotti, Mirco Nanni, Fabio Pinelli: “Tempo-
ral analysis of process logs: a case study.” In Proceedings of the Sixteenth
Italian Symposium on Advanced Database Systems, SEBD 2008, 22-25 June
2008, Mondello, PA, Italy. 430-437

6. Michele Berlingerio, Michele Coscia, Fosca Giannotti: “Mining the Infor-
mation Propagation in a Network.” In Proceedings of the Seventeenth Ital-
ian Symposium on Advanced Database Systems, SEBD 2009, 21-24 June
2009, Camogli, GE, Italy. 333-340

7. Michele Berlingerio, Fabio Pinelli, Mirco Nanni, Fosca Giannotti: “Tem-
poral mining for interactive workflow data analysis.” In Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, June 28 - July 1, 2009, Paris, France. 109-118

8. Michele Berlingerio, Francesco Bonchi, Michele Curcio, Fosca Giannotti,
Franco Turini: “Mining Clinical, Immunological, and Genetic Data of Solid
Organ Transplantation.” Book Chapter In “Biomedical Data and Applica-
tions”, Amandeep S. Sidhu and Tharam S.Dillon Ed., Studies in Computa-
tional Intelligence, Volume 224/2009, Springer, 2009.

xvi

9. Michele Berlingerio, Michele Coscia, Fosca Giannotti: “Mining the Tem-
poral Dimension of the Information Propagation.” In Proceedings of the
8th International Symposium on Intelligent Data Analysis, IDA 2009, Lyon,
France. 237-248

10. Michele Berlingerio, Francesco Bonchi, Bjoern Bringmann, Aristides Gio-
nis: “Mining Graph Evolution Rules.” In Proceedings of Machine Learn-
ing and Knowledge Discovery in Databases, European Conference, ECML
PKDD 2009, Bled, Slovenia. 115-130

xvii

Abstract

In the last years, there have been many studies on analyzing
network and graph data. A wide range of problems, such as
studying the global and local properties of a graph, finding
interesting structures, modeling particular characteristics, as-
sessing the properties of some particular networks such as the
Web or a co-authorship networks, have increased the attention
of the scientific community, involved in finding efficient and
powerful techniques to enable the achievement of the desired
results. For example, with the aim of finding interesting and
frequent substructures in graphs, algorithms such as AGM,
FSG, gSpan, Gaston, FFSMY, ADI-Mine, HSIGRAM and VSI-
GRAM have been presented for improving scalability on min-
ing subgraphs one after one.

However, only in the last few years the attention has moved to
a particular aspect of graphs and networks: the temporal di-
mension. Thanks also to the larger availability of online social
network services, the amount of data that allows for the anal-
ysis of the dynamics of complex networks has increased very
fast in the last five years. This kind of data contains rich in-
formation about what happens to a network during time, and
enables the analysts to model and discover interesting proper-
ties related to the temporal dimension, which are both mean-
ingless and impossible in the static setting.

The temporal dimension can play a double role for a network.
First, the underlying structure, namely the graph, can evolve
over time, showing new users joining a community, new con-
nections created among users, change of properties of a partic-
ular group of people, and so on. Second, given an established

xviii

network, users may perform actions during time, leading to
flows of information circulating among the connections, se-
quences of tasks performed by a sequence of users, spread of
influence among the network, and so on.

Despite the clear richness of the above setting, the current
graph mining techniques are somehow too generic, and they
do not explicitly take into consideration the time during their
stages.

In order to overcome to this problem, in this thesis we study
the current graph mining algorithms, we study the possibil-
ity of pushing constraints during the computation that would
allow us to efficiently analyze the temporal dimension at min-
ing stage, and we develop new techniques that can help in this
kind of analysis.

In order to prove the effectiveness of our approach, we apply a
pre-existent graph miner, a modified version of it specialized
to deal with the temporal dimension, and another pre-existent
tool of analysis, namely the Temporally Annotated Sequences
framework, to real data, to show how we can deal with the
above setting, with particular focus on problems such as min-
ing the information propagation in a network, mining graph
evolution rules, and mining the temporal dimension of pro-
cess logs to derive the actual workflow diagram in a process.

Our results justify the need for this approach, and show that
specialized techniques help in modeling and analyzing tem-
poral graph and network data.

xix

Chapter 1

Introduction

1.1 Context and Motivation

With the advent of automated data collection tools, our ability to gener-
ate and collect data have increased rapidly in the last few decades. This
explosive growth in data has opened the possibility of extracting useful
information and knowledge from the data. Data mining helps in discov-
ering non-trivial patterns on a stored data and hence more research is
being done in this field to extract useful information from large amounts
of collected data. Most often the data of interest is very complex and it
is common to model it with the help of graphs consisting of nodes and
edges that are often labeled to store additional information. Graphs are
hence useful to model networks of users, or entities, connected by any
kind of relationship: two users can be friends, relative, colleagues, they
can like the same kind of music or movies, they are geographically close
to each other, the share the same customer profile, and so on.

This kind of rich data, moreover, can be analyzed considering another
important dimension: the time. While, so far, much attention was de-
voted to the analysis of static graphs, such as identifying communities in
a network of users, identifying frequent segments of proteins sharing a
subset of functionalities, analyzing the Web Graph, and so on, only in the
last few years the scientific community has realized that the dynamic as-

1

pects of graph data are of large interest, and allow for a richer and wider
analysis, that can not be performed on static data. When considering,
for example, an online social network, where people keep in touch with
each other, interact exchanging information, commenting the actions of
other users, sharing interests, joining communities, and so on, it is clear
how a static analysis can not model the classical cause-and-effect schema
properly, as the temporal information about the sequence of events is not
definied and can not be pushed into the analysis stages.

Generally speaking, there can be two temporal settings when dealing
with graph data:

• Action. In this setting, users perform actions along time: they may
pass information among the network, they may perform tasks in-
dependently from each other, they may look at the actions of their
neighbors and get influenced by performed similar actions, and so
on.

• Evolution. Here the structure of the network may change over time:
new users may join a community, they can break the connection
with a set of friends or colleagues, they can quit a specific network,
new components of the network may appear independently, they
may form a single core after a specific amount of time, and so on.

Moreover, the two settings may coexist: this is exactly the case of real-
world online social networks: a network of connections among users
evolve over time, typically growing, and those users usually interact with
their friends or with other users of the network. As a result of this, often
in the literature we find the information about the social connections sep-
arated from the list of actions performed.

Furthermore, the temporal dimension of a network can also induce
different views of the same data, or may suggest the presence of hidden
layers of networks among the users. As a result of this, often the social
connections themselves can be learned based on the observations of the
actions performed by the users.

All the above considerations suggest questions such as:

2

• How does a network evolve over time?

• How will a specific network look like in 2 years?

• How fast the information can spread among users?

• What are the characteristics of the users that spread the information
faster?

• Is there a relationship among the structure of a network, the types
of actions performed by its users, the time needed by the network
to evolve, and the time in which the information can reach all the
users?

1.2 Thesis Contribution

In this thesis, we address the above questions, trying to catch the intrin-
sic relations among users, structure, and time, by means of Graph Mining
and Temporally Annotated Sequences (TAS) techniques. The first aims at
finding frequent subgraphs in graph data, and it is of particular help in
finding communities, detecting properties of users in a community, de-
tecting changes in the structure of a network, and so on. The second aims
at discovering frequent sequences of events during time, for which the
transition time between any consecutive pair of events was automatically
found frequent in the data, making the temporal analysis of action logs
and information flows possible.

However, while the second of the two techniques was explicitly in-
tended to deal with the temporal dimension, and does not require any
further adaptation to deal with most of the available data, the current
available Graph Mining tools do not take into account the evolution, thus
we need to find new ways of performing such analysis by extending the
state of the art of this area with new more powerful tools.

For this purpose, in this thesis we study the main problems of Fre-
quent Subgraph Mining and Constraint-Based Frequent Subgraph Mining. Af-
ter formally defining the two problems, we give an extensive state of the
art of the current approaches, we show an algorithm for pre-processing

3

graph data according to a conjunction of constraints, and we give a generic
approach for solving the two problems. We then show how to combine
Graph Mining and TAS Mining techniques in order to analyze the flows
of information in a real-world network, we present a specialized version
of a graph miner capable of dealing with the temporal dimension of graph
and network data, then we show a possible application of TAS mining to
workflow data, where the goal is to contruct the actual workflow dia-
gram, annotated with transition times between tasks found frequent in
the data.

The original contribution of this thesis hence includes: the study of
the literature in analyzing graph and network data with the temporal di-
mension, the study of constraints on graph data with their main proper-
ties; the definition, implementation and experimental evaluation of a pre-
processing algorithm for the constraint-based graph mining problem; the
definition of an algorithm for pushing contraints deep into the computa-
tion; the application of this algorithm to real life problem such as mining
the information propagation in a network, and mining frequent patterns
in an evolving graph, for which the generic approach to graph mining has
been specialized; the study of an application of the opposite problem, i.e.
reconstruncting of a graph from local patterns, to a real-life problem such
as workflow mining, the application of the existing TAS mining frame-
work to networks showing a temporal dimension.

1.3 Thesis Organization

The remainder of the thesis is organized as follows: chapter 2 reviews the
state of art on analyzing the temporal dimension of graph and network
data; chapter 3 presents the graph mining technique, and gives original
contribution to it; in chapter 4 we show how to combine graph mining
technique to TAS mining technique for mining the information propaga-
tion in a network; in chapter 5 we deal with evolving graphs, for which
we define a specialization of the approach proposed in chapter 3, and
we define graph evolution rules; chapter 6 shows the problem of recon-
structing a temporally-annotated graph from local patterns, in workflow

4

mining; finally, chapter 7 summarizes the conclusions of the thesis.

5

Chapter 2

Mining the Temporal
Dimension of Graph and
Network Data

In this Chapter we review some of the current analyses performed in the
literature to deal with the temporal with the temporal dimension in graph
and network data. Following the two settings defined in Chapter 1, we
give an overview of the approaches in each of the two cases.

2.1 Action

When speaking about actions performed on a network, there are actually
several possible scenarios. Users, in fact, can interact, by propagating in-
formation, exchanging emails, performing joint actions (such as playing a
football match), commenting the same pictures on an online photo shar-
ing service, and so on. Often we are not even provided with the social
graph on which these kind of interactions rely, and one possibility is to
infer this graph based on the observation of the actions performed: any
jointly performed task, any direct pass of information, any simultaneous
action, tell us something about the users involved. Based on our obser-
vation, we may want to consider these users connected, obtaining, at the

6

end, a possible hidden social graph among them.
In sections 2.1.1 and 2.1.2 we give examples of two possible settings.

In the first, the focus is on analyzing the propagation of information in
a network. In some cases the network connections are learned during
the analysis of the flows of information. In the second, users perform
actions independently from each other, there is no explicit connection
among them, but the focus is on finding the connections among the tasks
performed, as the setting under investigation is that of workflow mining.

2.1.1 Information Propagation

During the last years, several approaches have been proposed addressing
the problem of analyzing how the information propagates in a network
(2; 3; 12; 24; 40; 66; 87; 98).

In (87), Tyler et al. develop an automated method applying a between-
ness centrality algorithm to rapidly identify communities, both formal
and informal, within the network. In this work, the authors learn the
communities from the email interaction, i.e. they simply consider the
senders and the receivers of the emails as nodes, connecting them in the
derived social graph if they exchanged emails with each other. This ap-
proach also enables the identification of leadership roles within the com-
munities. The automated analysis was complemented by a qualitative
evaluation of the results in the field.

In (98), Wu et al. analyze email to model the flows of information
in social communities, taking into account the observation that an item
relevant to one person is more likely to be of interest to individuals in
the same social circle than those outside of it. This is due to the fact that
the nodes that are close in the social network tend to have similar prop-
erties. An epidemic model on a scale-free network with this property
has a finite threshold, implying that the spread of information is limited.
These hypotheses were tested by measuring the diffusion of messages in
an organization and also by experiments that take into consideration the
organizational distance among individuals. Since social structure affects
the flow of information, knowing the communities that exist within a net-

7

work can also be used for browsing a network when looking for specific
individuals or specific topics.

Adamic and Adar do exactly this in (2), by simulating a small world
experiment on the HP Labs email network. The small world experiment
has been carried out a number of times in the last years, always demon-
strating that individuals passing messages to their friends can form a
short chain between two people separated by geography, profession, or
other attributes. While the existence of these chains has been established,
how people are able to navigate this kind of data without knowing the
complete social networks residing under the model has remained an open
question. Recently, models have been proposed to explain the phenomenon,
and the work of Adamic and Adar is a first study to test the validity of
these models on a social network.

In (3), Adamic et al. studied the propagation of information through
blogspace, both to uncover general trends and to explain specific instances
of URL transmission. They determine general categories of popularity,
ranging from sustained interest to short lived events, through the use of
cluster analysis. By analyzing the routes of individual URLs they built
a tool able to visualize and explain how information travels. Both the
availability and quantity of temporal information is unique in blog data.
Using it they were able to not only infer link structure, but also to create
a novel ranking algorithm, iRank, for ranking blogs. Whereas traditional
ranking strategies rely primarily on explicit link structure, iRank success-
fully folds in implicit paths of propagation to find blogs that are at the
source of information.

In (24), the model of timestamped graph and digraph are introduced
in order to study the influence in a network. In particular, the authors
studied the associated influence digraphs of time-stamped graphs, fo-
cusing on their realizability. Their motivating examples of collaboration
graphs are undirected, as an edge represents a collaboration between two
authors, and hence each is influenced by the other. In some situations,
however, a collaboration between two persons may induce a one-way in-
fluence; for example a student may be influenced by but not influence
her/his supervisor. In this case, the time-stamped graph may be a di-

8

rected graph, with parallel arcs allowed.

Leskovec et al. analyze in (66) the problem of Viral Marketing with
several different statistical approaches. They present an analysis of a
person-to-person recommendation network, consisting of 4 million peo-
ple who made 16 million recommendations on half a million products.
They observe the propagation of recommendations and the cascade sizes,
which they explain by a simple stochastic model. They analyze how user
behavior varies within user communities defined by a recommendation
network. Despite the fact that it is frequently assumed that in epidemic
models individuals have an equal probability of being infected every time
they, the authors observe that the probability of infection decreases with
repeated interaction. In the context of marketing, they also found that
the probability of purchasing a product increases with the number of rec-
ommendations received but quickly saturates to a constant and relatively
low probability. This means individuals are often impervious to the rec-
ommendations of their friends, and resist buying items that they do not
want. They hence establish how the recommendation network grows
over time and how effective it is from the viewpoint of the sender and
receiver of the recommendations. While on average recommendations
are not very effective at inducing purchases and do not spread very far,
they present a model that successfully identifies communities, product,
and pricing categories for which viral marketing seems to be very effec-
tive.

Kossinets et al., in (59), formulate a temporal notion of “distance” in
the underlying social network by measuring the minimum time required
for information to spread from one node to another. That is, they ex-
ploited the possibility of considering the connections as weighted, mak-
ing thus explicit the potential for the information to flow. In this model,
then, some of the direct connections in the network become much longer,
due to low rates of communication, while other multi-step paths become
much shorter, due to the rapidity with which information can flow along
them. Moreover, they define the network backbone to be the subgraph
consisting of edges on which information has the potential to flow the
quickest. They find that the backbone is a sparse graph with a concentra-

9

tion of both highly embedded edges and long-range bridges.
In (67), the authors, rather than concentrating in the speed of com-

munication, they put emphasis on how much a topic can spread. They
find that rather than fanning out widely, reaching many people in very
few steps according to “small-world” principles, the progress of chain
letters proceeds in a narrow but very deep tree-like pattern, continu-
ing for several hundred steps. This suggests a new and more complex
picture for the spread of information through a social network. They
describe a probabilistic model based on network clustering and asyn-
chronous response times that produces trees with this characteristic struc-
ture on social-network data.

Goyal et al., in (40), introduce a novel frequent pattern mining ap-
proach to discover leaders and tribes in social networks. In their scenario,
they assume an known underlying social graph, and an action table con-
taining all the actions performed by the users in the graph. They assume
that users act based on the feeds of other users, calling this effect influ-
ence. They define the two problems of finding users that influence a given
number of users (leader discovery), and its tribe version, where the users
influenced must by the same for each action (tribe leader discovery).

2.1.2 Workflow Mining

In the past few years, research has been performed on discovering a pro-
cess model from a set of process instances. Most of the work done as-
sume the existence of a process model underlying the given set of process
instances. Workflow mining, or process mining, aims at the automatic
discovery of a process diagram, also called workflow or process schema,
from process logs. In this diagram nodes represent the performed tasks,
while there is a (directed) edge between two tasks if the two appeared
to be executed consecutively in a process log. Several different appro-
aches have been proposed to solve such a problem (5; 6; 13; 27; 29; 43; 49;
81; 91; 95). The idea of applying process mining in the context of work-
flow management was first introduced in (5) by Agrawal et al. This work
is based on workflow graphs, which are inspired by workflow products

10

such as IBM MQSeries workflow (formerly known as Flowmark) and In-
Concert. In this paper, two problems are defined. The first problem is to
find a workflow graph generating events appearing in a given workflow
log. The second problem is to find the definitions of edge conditions. A
concrete algorithm is given for tackling the first problem. The approach
is quite different from other approaches, as the authors claim that there
is no need to identify the nature (AND or OR) of joins and splits, that
are the possible dependencies among any two tasks. In (27), Cook et
al. describe three different methods for process discovery: the one uses
neural networks, the second purely algorithmic approach, and the third
uses a Markovian approach. The authors consider the latter two the most
promising approaches. The purely algorithmic approach builds a finite
state machine (FSM) where states are fused if their futures (in terms of
possible behavior in the next k steps) are identical. The Markovian ap-
proach uses a mixture of algorithmic and statistical methods and is able
to deal with noise. In (6; 49) directed graphs are used, and in both papers,
the researchers consider tasks that can be executed in parallel. These are
actually the first papers in which temporal dependencies of different tasks
are also modeled. However, in (49) the notion of parallelism between
tasks is more sophisticated, i.e. they go beyond the simple temporal de-
pendency between tasks that was treated in (6): they define overlapping
and disjointed activities. Finite state machines are proposed in (29), and
Petri-nets are used in (90) for representing process instances. Hwang et
al., in (48), define the concept of temporal graphs, which help in modeling
the dependencies among the performed tasks during specific instances
of the processes. They propose three different algorithms that work with
temporal graphs, itemsets or sequences. These algorithms solve the tem-
poral pattern discovery problem, defined as the discovery of the maximal
temporal graphs among all frequent temporal graphs. In this work, the
authors consider the starting and ending time of each task to explicitly
detect situations of parallelism or choice between pairs of tasks. How-
ever, they do not look for frequent transition times or execution times of
the tasks, i.e. they use the temporal dimension only to detect the temporal
dependencies between tasks. Greco et al. deal in (41) with the problem of

11

mining unconnected patterns in workflows, i.e. detecting sets of activities
that are frequently executed together and do not exhibit explicit depen-
dent relationships. They present two different algorithms for solving the
problem. This paper uses the concept of frequency of a pattern.

2.2 Evolution

Several papers have focussed on the global evolution of networks by an
exploratory point of view. Leskovec et al. (65) discovered the shrink-
ing diameter phenomena on time-evolving networks. Backstrom et al.
(8) study the evolution of communities in social networks. Still from
an exploratory perspective, Leskovec et al. (64) study the evolution of
networks but at a more local level. Using a methodology based on the
maximum-likelihood principle, they investigate a wide variety of net-
work formation strategies, and show that edge locality plays a critical
role in evolution of networks.

Other recent papers, present algorithmic tools for the analysis of evolv-
ing networks. Tantipathananandh et al. (86) focus on assessing the com-
munity affiliation of users and how this changes over time. Sun et al. (84),
apply the MDL principle to the discovery of communities in dynamic net-
works, developing a parameter-free framework. This is the main differ-
ence to previous work such as (4; 85). However, as in (86), the focus lies
on identifying approximate clusters of users and their temporal change.
No exact patterns are found, nor is time part of the results obtained with
these approaches. Ferlez et al. (33) use the MDL principle for monitoring
the evolution of a network.

While the aforementioned body of work studies the evolution in net-
works, it does not take a pattern mining approach as we do in this the-
sis. Desikan and Srivastava (31) study the problem of mining temporally
evolving web graphs. Three levels of interest are defined: single node,
subgraphs and whole graph analysis, each of them requiring different
techniques. They study changes of properties on each of the three lev-
els under investigation. Inokuchi and Washio (50) propose a fast method
to mine frequent subsequences from graph sequence data defining a for-

12

malism to represent changes of subgraphs over time. However the time in
which the changes take place is not specified in the patterns. Liu et al. (68)
identify subgraphs changing over time by means of vertex-importance
scores and vertex-closeness changes in subsequent snapshots of the graphs.
The most relevant subgraphs are hence not the most frequent, but the
most significant based on the two defined measures. Another interesting
paper is (19),where Borgwardt et al. represent the history of an edge as a
sequence of 0’s and 1’s representing the absence and presence of the edge
respectively. Then conventional graph-mining techniques are applied to
mine frequent patterns. However, there are several insights in their ap-
proach. First, the employed mining algorithm GREW is not complete,
but heuristic. Further, the overlap-based support measure used requires
solving an maximal independent set problem for which a greedy algo-
rithm is used. Another computational issue with their approach (next to
the overlap-graph and the subsequent MIS problem), is the extension of
an edge in the so-called inter-asynchronous FDS case. Accordingly the
size of the networks analyzed in the paper is rather small.

13

Chapter 3

Mining Graph Data

In this chapter we present the basic insights of Graph Mining. This tech-
nique is the most popular way to handle graph data, when looking for
frequent patterns. It constitutes also the basis for the remainder of the
thesis, where extensions of the current existing approaches, presented in
this chapter, are used as underlying framework to mine the temporal di-
mension of graph data. In this chapter the problems of Frequent Subgraph
Mining and Constraint-Based Frequent Subgraph Mining are formally de-
fined, together with various classes of constraints with their properties.
The chapter presents also an overview of several approaches to the fre-
quent subgraph mining problem. The chapter is organized as follows:
section 3.1 gives the preliminaries definitions, introducing the reader to
the graph data we are interested in; section 3.2 presents the concept of
constraint on graph data, together with a list of possible interesting con-
straints on graphs with their main properties; section 3.3 presents the two
main problems we treat in this chapter; section 3.4 reviews the state of the
art of the current approaches to Graph Mining; the two above problems
are studied in section 3.5 in the transactional setting and in section 3.6 in
the single graph setting.

14

3.1 Preliminary concepts

As most of the work on frequent subgraph mining, the focus is on undi-
rected connected labeled graphs without multiple edges.

Definition 1 (Labeled Graph) A labeled graph is a 4-tuple G = (V,E,L, l),
where V is a set of vertices, E ⊆ V × V is a set of edges, L is a set of labels, and
l : V ∪ E → L is a labeling function that assigns a label to an edge or a vertex.

Definition 2 (Connected Graph) A graph G is called connected if for any
vertices u, v ∈ V , there exist vertices w1, . . . , wn ∈ V such that {(u,w1),
(w1, w2), . . . , (wn−1, wn), (wn, v)} ⊆ E.

In the remainder of the thesis, we assume to work on a dataset of graph
data. We discern between the transactional setting (also known as graph-
transaction setting), i.e. where the dataset is a collection of usually small
graphs, each one representing a transaction, and the single graph setting,
i.e. where the dataset is a single usually large graph. Examples of the first
setting are a dataset of proteins, or chemical compounds, while examples
of the single graph case are large networks such as the Web, a Social Net-
work, a graph of interactions between proteins, and so on.

One of the most important issues in Graph Mining is to find an occur-
rence of a pattern, i.e., to solve the Subgraph Isomorphism Problem.

Definition 3 (Subgraph isomorphism) A subgraph isomorphism fromG′ to
G is an injective function f : V ′ → V such that: (1) for any vertex u ∈
V ′, f(u) ∈ V and l′(u) = l(f(u)); and (2) for any edge (u, v) ∈ E′, (f(u), f(v))
∈ E and l′(u, v) = l(f(u), f(v)).

Definition 4 (Subgraph) A graph G′ = (V ′, E′, L′, l′) is a subgraph of a
graph G = (V,E,L, l) (denoted as G′ ⊆ G), if there exists a subgraph iso-
morphism from G′ to G.

Note that while the graph isomorphism problem (i.e. the problem of de-
ciding wheter two graph have identical topological structure) has un un-
known computational complexity (except for a few particular cases for
which it is proven to be polynomial), the subgraph isomorphism prob-
lem is known to be NP-complete.

15

3.2 Constraints on Graph Data

This section introduces the kind of constraints that we encounter in the re-
mainder of the thesis, and discusses their main properties (anti-monotonicity
or monotonicity). Since the proofs of these properties are always straight-
forward, they are not provided. The variety of constraints presented is
not meant to be exhaustive, since meaningful constraints will be sug-
gested by the application at hand: the objective here is to show that most
of the fundamental properties of graphs can be modelled as either mono-
tone or anti-monotone constraints.

Definition 5 (Constraint) Let G be the domain of all possible connected graphs,
a constraint on graph patterns is a function C : G→ {true, false}. We denote
Th(C) = {G ∈ G|C(G) = true} the set of all graphs satisfying a constraint C.

One of the most important constraint is the frequency. We give here a
general definition of the frequency constraint, defined on the basis of a
support (sup) function. As we see in the rest of the thesis, defining a con-
venient support function is a crucial step when mining graph data, and
it turns out to be easy in the transactional setting, but not trivial in the
single graph setting.

Definition 6 (Frequency constraint) Given a minimum support threshold σ,
the frequency constraint Cfreq[D,σ] is satisfied by all the graphs G such that
sup(G) ≥ σ.

In the following there is a distinction between topological constraints, i.e.,
those constraints regarding only the topological structure of a graph pat-
tern, and labeled graph constraints, i.e., those constraints that involve not
only the structure of a graph pattern but also its labels. In particular, the
focus is on the problem of pushing monotone constraints in the frequent
pattern computation. A monotone constraint CM is such that, if satisfied
by a graph G, then it is satisfied by any connected supergraph of G. The
frequency constraint Cfreq instead behaves the opposite: if satisfied by a
graph G, then it is satisfied by any connected subgraph of G. Constraints
that behave as Cfreq are said anti-monotone and denoted CAM .

16

Topological Constraints

Given a graph G = (V,E, L, l), a topological constraint is such that, if
satisfied or not by G can be decided on the basis of just the V and E

components of G. The first simple example of topological constraint is
the constraint on the size, in terms of number of vertices or edges, that a
substructure should have in order to qualify as interesting pattern.

Definition 7 (Size Constraint) The size constraint is denoted Csize[S,θ,α],
where S ∈ {V,E}, θ ∈ {≥,≤}, and α ∈ N. It is satisfied by a graph G iff
|S| θ α. It is trivial to see that the size constraint Csize[S,≤,α] is anti-monotone,
while Csize[S,≥,α] is monotone.

Often in molecular biology one is not interested in generic substructures,
but in rigid structures such as chains and rings. These can be expressed
as topological constraints.

Definition 8 (Cycle Constraint) Given α ∈ N, the cycle constraint Ccycle[α]

is satisfied byG = (V,E,L, l) iffG contains a simple cycle of size≥ α, i.e., there
exist n ≥ α distinct vertices v1, . . . , vn ∈ V such that {(v1, v2), . . . , (vn−1, vn),
(vn, v1)} ⊆ E. The cycle constraint Ccycle[α] is monotone.

One could be interested in mining frequent acyclic substructures. This
topological constraint can be obtained by negating a cycle constraint, i.e.,
we can define Cacyc ≡ ¬Ccycle[2]. Since the negated of a monotone con-
straint is anti-monotone (and viceversa), Cacyc is anti-monotone. Since
only connected substructures are considered, also the chain constraint Cchain,
which is satisfied only by graphs that are chains, is anti-monotone: any
connected substructure of a chain is still a chain, or the other way around,
if a graph is not a chain, all its supergraphs are not chains as well. Many
other constraints, which are either monotone or anti-monotone, can be
defined on the topological structure of the graph patterns we are mining:
the point is to individuate the meaningful constraints for the given appli-
cation. As an example, here the girth and the circumference constraints are
provided.

Definition 9 (Girth and Circ Constraints) The girth of a graph is the length
of a shortest simple cycle in the graph; while the circumference is the length of

17

a longest simple cycle. Given θ ∈ {≥,≤} and α ∈ N, the girth constraint
is denoted Cgirth[θ,α], while the circumference constraint is denoted Ccirc[θ,α].
The constraint Cgirth[≤,α] is monotone, while Cgirth[≥,α] is anti-monotone; con-
versely, the constraint Ccirc[≤,α] is anti-monotone while Ccirc[≥,α] is monotone.

Labeled Graph Constraints

Given a graph G = (V,E,L, l), a labeled graph constraint is such that, if
satisfied or not byG can not be decided simply on the basis of its topology
(the V andE components), but also the labels are needed. The first simple
example of constraint on labels specifies which particular elements (both
vertices or edges labels) must be contained or not in the patterns.

Definition 10 (Labels Constraint) LetL′ be a set of labels, andG = (V,E,L,
l) a graph. The following four constraints on vertices labels are defined:

• Cvrtx[L′,⊆](G) ≡ ∀l ∈ L′,∃ v ∈ V : l(v) = l.

• Cvrtx[L′,⊇](G) ≡ ∀v ∈ V, l(v) ∈ L′.

• Cvrtx[L′,∩](G) ≡ ∃l ∈ L′,∃ v ∈ V : l(v) = l.

• Cvrtx[L′,∩/](G) ≡ ∀l ∈ L′, @ v ∈ V : l(v) = l.

Similarly, the same four constraints are defined for edges labels (using the nota-
tion Cedge).

It is straightforward to see that: Cvrtx[L′,⊆](G) is monotone, Cvrtx[L′,⊇](G)
is anti-monotone, Cvrtx[L′,∩](G) is monotone, and Cvrtx[L′,∩/](G) is anti-
monotone. The same properties hold for constraints on edges labels.

Example 1 Suppose that from a database of molecules D we want to mine fre-
quent (σ = 30) substructures, that are made only of vertices labeled with atom
types O, N and C, that contain at least one double bond (i.e., an edge with label
1), and that contain at least a ring of size at least 4. This query can be expressed
as:

Th(Cfreq[D,30] ∧ Cvrtx[{O,N,C},⊇] ∧ Cedge[{1},⊆] ∧ Ccycle[4])

The first two constraints in the conjunction are anti-monotone, while the
second two are monotone: this is the kind of query that we address here.

Given a graph G′ one could be interested in mining only patterns that
are supergraph (or subgraph) of G′.

18

Definition 11 (Sub/Super-graph Constraints) Given a graph G′,

• the constraint Csubg[G′](G) ≡ G ⊆ G′ is anti-monotone

• the constraint Csupg[G′](G) ≡ G ⊇ G′ is monotone.

Also constraints based on aggregates of the labels (either of vertices
or edges) can be defined. Such aggregates can be computed directly over
the labels, or on some attributes of the labels. In the second case, such
attributes must be in functional dependency with the labels. For instance,
suppose that labels of vertices are atom types, then it is possible to de-
fine a constraint on the sum of atomic weights, where atomic weight is an
attribute of the label atom type, in functional dependency (i.e., the same
atom type must have a unique atomic weight all over the database).

Example 2 Suppose that from a molecules database D the user wants to mine
frequent (σ = 30) substructures, that contain at least 3 atoms of oxygen, and
have sum of atomic weights larger than 120. This query can be expressed as:

Th(Cfreq[D,30] ∧ Ccount[V=O,≥,3] ∧ Csum[V.weight,≥,120])

Definition 12 (Aggregate Constraints) An aggregate constraint is denoted
Caggr[ϕ,θ,α], where:

• aggr ∈ {count,min,max, sum};

• ϕ ∈ {S, S.a, S ϑ l, S.a ϑ v};

• S.a is an attribute of S and v one value;

• ϑ ∈ {=, 6=,≥,≤};

• l is a label of S;

• S ∈ {V,E}, θ ∈ {≥,≤}, and α ∈ R

Table 1 resumes all the constraints introduced in this section and their
properties.

Proposition 1 The constraint Csum[ϕ,≤,α] is anti-monotone and Csum[ϕ,≥,α]

is monotone, if ϕ has non negative values. Otherwise they are neither anti-
monotone nor monotone. All the other constraints listed in Table 1 are anti-
monotone or monotone according to the Table.

19

Constraint Anti Mono
size[S,≤, α] X
size[S,≥, α] X
cycle[α] X
acyc X
chain X

girth[≤, α] X
girth[≥, α] X
circ[≤, α] X
circ[≥, α] X
vrtx[L,⊆] X
vrtx[L,⊇] X
vrtx[L,∩] X
vrtx[L,∩/] X
edge[L,⊆] X
edge[L,⊇] X
edge[L,∩] X
edge[L,∩/] X
subg[G] X
supg[G] X

count[ϕ,≤, α] X
count[ϕ,≥, α] X
min[ϕ,≤, α] X
min[ϕ,≥, α] X
max[ϕ,≤, α] X
max[ϕ,≥, α] X
sum[ϕ,≤, α] X
sum[ϕ,≥, α] X

Table 1: Constraints and their properties.

We have introduced a set of simple generic constraints, which is not
meant to be complete. It is possible to define other constraints on graph
data, and we expect the applications to suggest new interesting ones.
Moreover, monotonicity and anti-monotonicity are not the only interest-
ing properties of constraints: for the itemset, for example, other proper-
ties such as loose anti-monotonicity (16), succinctness (72) and convert-
ibility (77; 78) have been defined. However, the intent in this chapter
was to provide a general idea, while ad-hoc solutions can be studied and
implemented when applying a specialized framework for a specific prob-

20

lem. Chapter 5, for example, show how to deal with the evolution of a
graph, by defining a new constraint that requires a particular implemen-
tation.

3.3 Mining Frequent Subgraphs

At this point, we can define the two main problems under analysis in this
thesis (we omit D and σ when reasonable).

Definition 13 (Frequent Subgraph Mining)

Th(Cfreq)

As we see in section 3.4, many approaches have been proposed so far to
tackle this challenging problem from many points of view.

If the substructures have to satisfy also a conjunction of other con-
straints C, we obtain the constraint-based frequent subgraph mining problem:

Definition 14 (Constraint-based Frequent Subgraph Mining)

Th(Cfreq) ∩ Th(C)

As we have stated above, in order to be these two problems correctly de-
fined, we still have to define an appropriate support function. This is
done in sections 3.5 and 3.6, where we treat the transactional and the sin-
gle graph settings, respectively, as they need different support functions.

3.4 State of the Art on Graph Mining

The earliest studies to find subgraph patterns characterized by some mea-
sures from massive graph data were conducted by Cook and Holder (25)
and Yoshida and Motoda (GBI) (100) in the middle of the 1990’s. Their
approaches used greedy search to avoid high complexity of the graph
isomorphism problem, which resulted in an incomplete set of character-
istic subgraphs. In 1999, Dehaspe and Toivonen proposed an ILP-based
algorithm, WARMR, enabling a complete search for frequent subgraphs

21

from graph data (30). Subsequent work done by Nijssen and Kok pro-
posed a faster algorithm, FARMAR (73). In 2000, Inokuchi et al. proposed
an approach called AGM to combine Apriori algorithm and mathemati-
cal graph theory (51). In 2001, De Raedt and Kramer proposed the ver-
sion space based approach called MolFea to find characteristic paths from
the graph data (60). Based on these pioneering studies, several other ap-
proaches were proposed to tackle the challenging problem of finding fre-
quent subgraphs in graph data, or other interesting related problems such
as graph similarity search, graph indexing, graph compression, problems
related to social network analysis, and so on.

From the point of view of the search strategy, they can all be cate-
gorized into heuristic search methods and complete search methods in
terms of the completeness of search. They can also be categorized into di-
rect and indirect matching methods from the view point of the subgraph
isomorphism matching problem. The indirect matching does not solve
the subgraph isomorphism problem but subgraph similarity problem un-
der some similarity measure.

From a more high-level point of view, all the approaches can be cat-
egorized into four groups: greedy search based approaches, inductive
logic programming (ILP) based approaches, kernel function based ap-
proaches and apriori-like approaches. We now briefly introduce the first
three categories, then we focus on the last one, as the rest of the thesis
follows this kind of approach.

3.4.1 Greedy Algorithms

Two pioneering works appeared in around 1994, both of which were in
the framework of greedy search based graph mining (25; 100). Interest-
ingly both were originated to discover concepts from graph representa-
tions of some structure, e.g. a conceptual graph similar to semantic net-
work and a physical system such as electric circuits. One is called SUB-
DUE (25). SUBDUE deals with conceptual graphs which belong to a class
of connected graph. The vertex set V (G) is R ∪ C where R and C are
the sets of labeled vertices representing relations and concepts respec-

22

tively. The edge set E(G) is U which is a set of labeled edges. Though
the original SUBDUE targeted the discovery of repeatedly appearing con-
nected subgraphs in this specific type of graph data, i.e., concept graph
data, the principle can be applied to generic connected graphs. SUBDUE
starts looking for a subgraph which can best compress an input graph
G based on Minimum Description Length (MDL) principle (80). The
found subgraph can be considered a concept. This algorithm is based on
a computationally-constrained beam search. It begins with a subgraph
comprising only a single vertex in the input graph G, and grows it incre-
mentally expanding a node in it. At each expansion it evaluates the total
description length (DL), I(Gs) + I(G | Gs), of the input graph G which
is defined as the sum of the two: DL of the subgraph, I(Gs), and DL of
the input graph, I(G | Gs), in which all the instances of the subgraph are
replaced by single nodes. It stops when the subgraph that minimizes the
total description length is found. The search is completely greedy, and
it never backtracks. Since the maximum width of the beam is predeter-
mined, it may miss an optimum Gs. One of the good features of SUBDUE
is that it can perform approximate matching to allow slight variations of
subgraphs. It can also embed background knowledge in the form of pre-
defined subgraphs. After the best substructure is found and the input
graph is rewritten, the next iteration starts using the rewritten graph as
a new input. This way, SUBDUE finds a more abstract concept at each
round of iteration. As is clear, the algorithm can find only one substruc-
ture at each iteration. Furthermore, it does not maintain strictly the origi-
nal input graph structure after compression because its aim is to facilitate
the global understanding of the complex database by forming hierarchi-
cal concepts and using them to approximately describe the input data. In
2002, a new technique to induce a graph grammar has been developed
by the same group (53). The other one is called Graph Based Induction
(GBI) (100). GBI was originally intended to find interesting concepts from
inference patterns by extracting frequently appearing patterns in the in-
ference trace. GBI was formulated to derive a graph having a minimal
size similarly to SUBDUE by replacing each found subgraph with one
vertex that it repeatedly compress the graph. It used an empirical graph

23

size definition that reflected the sizes of extracted patterns as well as the
size of compressed graph. This prevented the algorithm from continually
compressing, which meant the graph never became a single vertex. GBI
can handle both directed and undirected labeled graph with closed paths
(including closed edges). An opportunistic beam search similar to genetic
algorithm was used to arrive at local minimum solutions.

3.4.2 Inductive Logic Programming

The first system to try complete search for the wider class of frequent
substructure in graphs named WARMR was proposed in 1999 (30). They
combined ILP method with Apriori-like level wise search to a problem of
carcinogenesis prediction of chemical compounds. Because this approach
allows variables to be introduced in the arguments of the predicates, the
class of structures which can be searched is more general than graphs.
However, this approach easily faces the high computational complexity
due to the equivalence checking under θ-subsumption (an NP-complete
operation) on clauses and the generality of the problem class to be solved.
To alleviate this difficulty, a new system called FARMAR has later been
proposed (73). It also uses the level wise search, but applied less strict
equivalence relation under substitution to reduced atom sets. FARMAR
runs two orders of magnitudes faster. However, its result includes some
propositions having different forms but equivalent in the sense of the θ-
subsumption due to the weaker equivalence criterion. A major advantage
of these two systems is that they can discover frequent structures in high
level descriptions. However, finding first-order pattern is harder than
finding propositional patterns, and it is unclear how fast such techniques
will work on very large graph datasets.

3.4.3 Kernel Function Based Approaches

Graph invariants are the quantities to characterize the topological struc-
ture of a graph. If two graphs are topologically identical, i.e., isomor-
phic, they also have identical graph invariants, though the reverse prop-
erty does not hold. Examples of graph invariants are the number of ver-

24

tices, the number of edges, the number of cyclic loops, and so on. From a
graph G is possible to collect its invariants in a feature vector XG. When
the graph G is very complex, the dimension of XG required to approxi-
mate the graph topology closely can be very large. This causes computa-
tional problems for many mining approaches. To alleviate these issues,
it is possible to introduce a kernel function K(XGx

, XGy
) and a map-

ping φ : Xg → H enabling the representation of K by the inner prod-
uct < φ(XGx), φ(XGy) >. K represents a similarity between two graphs
Gx and Gy , and H is usually the Hilbert space. For the application to
graph-based data mining, the key issue is to find the good combinations
of the feature vector XG and the mapping φ : Xg → H to define appro-
priate similarity. A recent study proposed a composition of a kernel func-
tion characterizing the similarity between two graphs Gx and Gy based
on the feature vectors consisting of graph invariants of vertex labels and
edge labels in the certain neighbor area of each vertex (44). This is used to
classify the graphs into binary classes by SVM (Support Vector Machine).
Given training data consisting of graphs having binary class, the SVM
is trained to classify each graph. Though the similarity is not complete
and sound in terms of the graph isomorphism, the graphs are classified
properly based on the similarity defined by the kernel function. Another
framework of kernel function related with graph structures is called diffu-
sion kernel (58). Though this is not dedicated to graph-based data mining,
each instance is assigned to a vertex in a graph structure, and the sim-
ilarity between instances is evaluated under the diffusion process along
the edges of the graph. Some experiments report that the similarity eval-
uation in the structure characterizing the relations among the instances
provides better performance in classification and clustering tasks than the
distance based similarity evaluation.

3.4.4 Apriori-like Algorithms

This set of algorithms mines a complete set of subgraphs under a support
measure. The search strategy of these approaches can be BFS or DFS. The
breadth-first algorithms have the same setup as the original Apriori algo-

25

rithm for mining frequent itemsets (7). They iterate a process of generat-
ing candidate subgraphs and determining their support in the database.
Candidates are generated by joining two subgraphs that were previously
found to be frequent. After the joined subgraph is obtained, it is checked
whether all its subgraphs are frequent; if not, the candidate is pruned.
The depth-first algorithms do not subdivide the search into strict can-
didate generation and candidate evaluation phases. Essentially, each of
these algorithms scans all embeddings of a subgraph in the database, and
collects from that scan the support of the refinements, i.e., the individual
edges and nodes that can be connected to the subgraph. The search re-
curses immediately on each of the frequent refinements. Disadvantages
of the first approach include a large memory consumption, as at any mo-
ment the complete search space at level k is in memory, while the DFS
approach has the drawback that only an arbitrary part of the isomorphic
subgraphs can be found when the search is stopped due to the search
time constraints if the search space is very large. In sections 3.5 and 3.6
we show how to overcome these limitations by using a multi-level data
structure that can be dropped on disk level by level, or making usage
of a maximum size constraint that allows to stop the pattern expansion
on the basis of an arbitrary user-defined level that is appropriate to the
application under analysis.

The initial work in this set was AGM (51). Starting from frequent
graphs where each graph is a single vertex, the frequent graphs having
larger sizes are search in bottom up manner by generating candidates
having an extra vertex. AGM represents the graphs with vertex-sorted
adjacency matrices. Every sub-matrix is normalized and since for every
candidate all the normal forms are calculated and stored at each step, this
leads to an extreme redundancy. This means that, despite the ease of im-
plementation and the good performances for small datasets, AGM does
not perform well on large datasets.

After the proposal of AGM, a family of graph-based data mining based
on similar principles has been proposed. A work is FSG (Frequent Sub-
Graph discovery) system (62) which also takes similar definition of canon-
ical labeling of graphs based on the adjacency matrix. To increase the ef-

26

ficiency of deriving the canonical labels, the approach uses some graph
vertex invariants such as the degree of each vertex in the graph. FSG also
increases the efficiency of the candidate generation of frequent subgraphs
by introducing the transaction ID (TID) method. Furthermore, FSG limits
the class of the frequent subgraphs to connected graphs. Under this lim-
itation, FSG introduces an efficient search algorithm using core which is
a shared part of the size k − 1 in the two frequent subgraphs of the size
k. FSG increases the joining efficiency by limiting the common part of
the two frequent graphs to the core. Once the candidate set is obtained,
their frequency counting is conducted by checking the cardinality of the
intersection of both TID lists. FSG runs fast due to the introduction of
many techniques, but it consumes much memory space to store TID lists
for massive graph data.

More recently, DFS based canonical labeling approach called gSpan
(graph-based Substructure pattern mining) has been proposed (99). This
approach also uses the idea of canonical labeling which is derived from a
coding scheme of a graph representation. The main difference of the cod-

X

Y

a

X

b

Z

c

Z

a

d

b

X

Y

a

X

b

Z

c

Z

d

b

b

Y

Y

a

X

a

Z

c

Z
a

d

b

X

X

a

y

a

Z

b

Z

a

d

c

V0

V1

V2

V3

V4

V0 V0

V1 V1

V2 V2

V3 V3

V4

V4

(a) (b) (c) (d)

Figure 1: Different DFS coding for a graph

ing from the other approach is that it uses a tree representation of each
graph instead of the adjacency matrix to define the code of the graph as
depicted in Figure 1. Given a graph (a), various quasi-tree expressions

27

of the graph exist depending on the way to take a root vertex among
the vertices. (b), (c) and (d) are the examples where the least number of
edges to remove all cyclic paths are represented by dashed lines. Upon
this representation, starting from the root vertex, the code is generated by
following the lexicographical order of the labels for the combinations of
vertices and the edge bound by the vertices. For example, the combina-
tions of (v0, v1) with the label (v0, v1, X, a, Y) comes first in the code be-
cause this is younger than dashed (v0, v2) having (v0, v2, X, a,X). Next,
starting from v1 which is the last vertex of the previous code element,
the youngest code element (v1, v2, Y, b,X) is chosen. Then from the last
v2, the element (v2, v0, X, a,X) is chosen. When this trace returns to a
vertex which is involved in the previous code element, the trace back-
tracks by one step, and the next younger element starting from v2, i.e.,
(v2, v3, X, c, Z) is chosen. The subsequent elements (v3, v1, Z, b, Y) and
(v1, v4, Y, d, Z) are traced in a recursive manner. The sequence of these
elements is called a code of this quasi-tree expression. The other quasi-
tree expressions including (c) and (d) have their own codes respectively.
Table 2 shows the DFS codes for the graphs (b), (c) and (d) of Figure 1.
Among the codes, the quasi-tree expression having the minimum code in

edge (b) (c) (d)
0 (v0, v1, X, a, Y) (v0, v1, Y, a,X) (v0, v1, X, a,X)
1 (v1, v2, Y, b,X) (v1, v2, X, a,X) (v1, v2, X, a, Y)
2 (v2, v0, X, a,X) (v2, v0, X, b, Y) (v2, v0, Y, b,X)
3 (v2, v3, X, c, Z) (v2, v3, X, c, Z) (v2, v3, Y, b, Z)
4 (v3, v1, Z, b, Y) (v3, v0, Z, b, Y) (v3, v0, Z, c,X)
5 (v1, v4, Y, d, Z) (v0, v4, Y, d, Z) (v2, v4, Y, d, Z)

Table 2: The DFS codes for the graphs (b),(c) and (d) in Figure 1

terms of the lexicographical order is the canonical form, and the corre-
sponding code is the canonical label. Because the code is derived in the
DFS algorithm, this code is called DFS code. Every graph in a data set
is represented by the multiple codes in this manner. Then all codes are
sorted according to ascending lexicographical order, and the matching of
the codes starting from the first elements among the codes are conducted

28

by using DFS in the sorted order. This means that the search trees of the
DFS matching are ordered trees where the left branch is always younger
than the right branch. Accordingly, when the branch representing a sub-
graph which is identical to the subgraph previously visited in the ordered
tree search are found, the further DFS in the search tree can be pruned. By
applying this DFS coding and DFS search, gSpan can derive complete set
of frequent subgraphs over a given minsup in a very efficient manner
in both computational time and memory consumption. In conclusion,
gSpan ensures a lower spatial complexity w.r.t. its predecessor, thanks to
the DFS search strategy, and performs globally much better than FSG.

MoFa (18) has been targeted towards molecular databases, but it can
also be used for arbitrary graphs. MoFa performs a depth-first search
and generates new fragments by extending smaller ones while keeping
embedding lists to speed up the support computation. MoFa stores all
embeddings (both nodes and edges). Extension is restricted to those frag-
ments, that actually appear in the database. Isomorphism tests in the
database can cheaply be done by testing whether an embedding can be
refined in the same way. MoFa uses a fragment-local numbering scheme
to reduce the number of refinements generated from a fragment: MoFa
counts the nodes of a fragment according to the sequence in which they
have been added. When a fragment is extended at node n, later refine-
ments may only occur at n or at nodes bigger than n. Moreover, all exten-
sions that grow from the same node n are ordered according to increasing
node and edge labels. Although this local ordering helps, MoFa still gen-
erates many isomorphic fragments and then uses standard isomorphism
testing to prune duplicates.

FFSM (46) represents graphs as triangle matrices (node labels on the
diagonal, edge labels elsewhere). The matrix-code is the concatenation
of all its entries, left to right and line by line. Based on lexicographic or-
dering, isomorphic graphs have the same canonical code (CAM - Canon-
ical Adjacency Matrix). When FFSM joins two matrices of fragments to
generate refinements, only at most two new structures result. FFSM also
needs a restricted extension operation: a new edge-node pair may only
be added to the last node of a CAM. After refinement generation, FFSM

29

permutes matrix lines to check whether a generated matrix is in canon-
ical form. If not, it can be pruned. FFSM stores embeddings to avoid
explicit subgraph isomorphism testing. However, FFSM only stores the
matching nodes, edges are ignored. This helps speeding up the join and
extension operations since the embedding lists of new fragments can be
calculated by set operations on the nodes. FFSM performs generally bet-
ter than gSpan, thanks to the fact that it does not need to solve the sub-
graphs isomorphism problem during the frequency counting, but still it
needs for a simple but costly canonical labeling.

Gaston (74) stores all embeddings, to generate only refinements that
actually appear and to achieve fast isomorphism testing. The main in-
sight is that there are efficient ways to enumerate paths and (non-cyclic)
trees. By considering fragments that are paths or trees first, and by only
proceeding to general graphs with cycles at the end, a large fraction of
the work can be done efficiently. Only in that last phase, Gaston faces the
NP-completeness of the subgraph isomorphism problem. Gaston defines
a global order on cycle-closing edges and only generates those cycles that
are larger than the last one. Duplicate detection is done in two phases:
hashing to pre-sort and a graph isomorphism test for final duplicate de-
tection. Among the algorithms presented so far, Gaston is the one the
performs better.

In ADI-Mine (93), a new data structure was proposed to deal with the
problem of most the above approaches: the memory consumption. They
are, in fact, also known as memory-based approaches, while ADI-Mine
was introduced as the first disk-based approach to graph mining. The
ADI structure, shown in section 3.5, is a three-level data structure con-
taining all the information in the database needed for the mining stage.
In the first level, it contains all the frequent edges in the database. In
the second level, for each edge, the list of graphs containing the edge is
present. In the last level, each graph is represented in a adjacency list, and
for each occurrence of a particular edge in a particular graph, a pointer
to it is set in this level. If the structure is unavailable, then the ADI-Mine
algorithm scans the graph database and constructs the index. Otherwise,
it just uses the ADI structure on the disk. The frequent edges can be ob-

30

tained from the edge table in the ADI structure. Each frequent edge is one
of the smallest frequent graph patterns and thus should be output. Then,
the frequent edges should be used as the “seeds” to grow larger frequent
graph patterns, and the frequent adjacent edges of e should be used in
the pattern-growth. An edge e′ is a frequent adjacent edge of e if e′ is
an adjacent edge of e in at least minsup graphs. The set of frequent ad-
jacent edges can be retrieved efficiently from the ADI structure since the
identities of the graphs containing e are indexed as a linked-list, and the
adjacent edges are also indexed in the adjacency information part in the
ADI structure. The pattern growth is implemented as calls to procedure
subgraph-mine. Procedure subgraph-mine tries every frequent adjacent
edge e (i.e., edges in set Fe) and checks whether e can be added into the
current frequent graph pattern G to form a larger pattern G′. The DFS
code is used to test the redundancy. Only the patterns G′ whose DFS
code is minimum is output and further grown. All other patterns G′ are
either found before or will be found later at other branches. The correct-
ness of this step is guaranteed by the property of DFS code. Once a larger
patternG′ is found, the set of adjacent edges of the current pattern should
be updated, since the adjacent edges of the newly inserted edge should
also be considered in the future growth from G′. This update operation
can be implemented efficiently, since the identities of graphs that contain
an edge e are linked together in the ADI structure, and the adjacency in-
formation is also indexed and linked according to the graph-ids.

CabGin (94) is a recent freamework developed for pushing various
classes of constraints in the task of frequent subgraph mining. This algo-
rithm is the first attempt to push certain classes of constraints, together
with the frequency, when working on graph datasets. The CabGin frame-
work was developed on the structure of ADI-Mine, modifying the latter
for working with monotone and succint constraints. However, the mono-
tone constraints are used only to minimize the computational cost of the
check for antimonotonicity, without being really pushed in the computa-
tion to reduce the search space.

GPrune (101) is a more recent work that allows the user to push con-
straints into the mining stage. However, only a few constraints are pro-

31

posed, and the data pruning can be further enhanced to support the dis-
connected components of a graph. Moreover, this approach is still memory-
based.

In section 3.5 we present an extension of the ADI structure, together
with an enhanced set of pruning strategy. These concepts have been im-
plemented in a graph preprocessor that can be coupled with any existing
graph miner, and tested for efficiency and effectiveness. The results of
this analysis are shown in section 3.5. In the same chapter, we propose
a general algorithm for constraint-based graph mining that includes the
strategies of the preprocessor into the mining stage.

Other algorithms have been proposed in the last years, especially to
overcome the need for specialized approaches to particular problems that
show peculiar characteristics. A few more algorithms are presented in
section 3.6.2, as they deal with the problem of finding frequent subgraphs
in a single large graph. In the very few last years, there has been increas-
ing attention in mining pattern in dynamic graphs, to model problems
such as Social Network Analysis, Information Propagation, Viral Mar-
keting, and so on. A few of them were discussed in chapter 2. Other
approaches solve a different problem, opposite to what we defined here:
starting from local patterns, they reconstruct the original graph. Such ap-
proaches are of particular interest when performing Workflow Mining, and
some of them were discussed in chapter 2.

3.5 The Transactional Setting

In section 3.3 we have defined the frequent subgraph mining problem and
its constrained version. In this section, we analyze the latter, in the trans-
actional setting, i.e. when the dataset is a collection of graphs. This set-
ting fits problems in biology, chemistry, workflow mining, and whenever
the data can be aggregated in graph-transactions. For sake of simplicity
here we focus on the problem Th(Cfreq) ∩ Th(CM), but since a conjunc-
tion of CAM constraints is still a CAM constraint, the proposed solutions
work more generally for any conjunction of anti-monotone and mono-
tone constraints: i.e., Th(CAM)∩Th(CM). We present Gamp (Graphs anti-

32

monotone and monotone pruning), a pre-processing algorithm, which re-
duces dramatically the input database, hence inducing a strong pruning
of the search space. Furthermore, a novel data structure, named EADI,
is introduced. The EADI is an extension of the ADI structure (93), and is
the basis of efficient Gamp implementation. Being a pre-processor, Gamp
can be coupled with any subgraph miner proposed so far. This is the
first work showing how to effectively push monotone constraints in fre-
quent subgraph mining, using them to reduce input data and to prune
the search space.

This section is organized as follows: section 3.5.1 give the needed def-
inition of support for the problem; section 3.5.2 explains how to push
monotone and anti-monotone constraints into the computation; section
3.5.3 shows an extension of the mentioned ADI data structure; section
3.5.4 shows the Gamp preprocessing algorithm; in section 3.5.5, the results
of applying Gamp to both synthetic and real datasets are presented; fi-
nally, in section 3.5.6, we show a generic algorithm for solving the Constraint-
Based Frequent Subgraph Mining problem.

3.5.1 Support definition

As mentioned in the previous section, we have to define an appropriate
and convenient support function in order to have a well defined mining
problem. Fortunately, in the transactional setting, such a function is easy
to define: we take as the support of a pattern the number of graphs in
which the pattern can be found at least in one occurrence. More formally:

Definition 15 (Support)

supD(G) = σD(G) =| {G′ ∈ D | G ⊆ G′} |

It is easy to see that the support defined in this way is anti-monotone, and
this property helps in the apriori-like approaches, as the expansion of a
pattern can be stopped as soon as the frequency constraint is not satisfied
anymore, since all the supergraphs of it will not satisfy it as well.

33

3.5.2 Pushing monotone constraints

The previous section has provided a large variety of constraints which
are all either monotone or anti-monotone. Dealing with conjunctions of
such kinds of constraints is very significant in many contexts. In fact,
while the frequency constraint (which is anti-monotone) makes patterns
emerge from the mere random component of the data, monotone con-
straints privilege larger, more structured patterns (e.g., with many ver-
tices, containing a cycle, having sum of atomic weight larger than, etc.).
The situation is graphically represented in Figure 2. On the left is shown
how, conjoining another anti-monotone constraint to Cfreq , just results is
strengthening the focus on small patterns, most of which are insignificant
and redundant (just think about all frequent 1-edge graphs). But conjoin-
ing a monotone constraint to frequency (as in the right half of Figure 2),
really helps in making few, interesting (i.e., frequent enough and struc-
tured enough) patterns emerge: while Cfreq cuts away many large but
infrequent patterns, CM cuts away many small patterns.

*
**

*
*

*

*

*

**

*** **
*
* *

*

*

*

**

**
*

*

**

*

**

**

**

*

*
*

*
**

*

**

*
**

**

*

*

large patterns

small patterns

**
*** **

T

 T

T

 T

Th(Cfreq) ∩ Th(CAM) Th(Cfreq) ∩ Th(CM)

Figure 2: Different solution spaces.

However, while pushing anti-monotone constraints deep into the min-

34

ing algorithm is easy and effective, due to the fact that the computation
is geared on Cfreq , the case is different for monotone constraints. Many
authors (20; 22; 61) have attacked the challenging computational prob-
lem Th(Cfreq) ∩ Th(CM) (especially on the pattern class of itemsets) fo-
cusing on its search space and facing the intrinsic tradeoff between CAM

and CM based pruning. Still on itemsets, (15) introduced a completely dif-
ferent approach which exploits monotone constraints by means of data-
reduction. The ExAnte Property (15) is obtained by shifting attention from
the pattern search space to the input data: indeed, the CAM -CM tradeoff ex-
ists only if we focus exclusively on the search space of the problem, while
if exploited properly, monotone constraints can reduce dramatically the
data in input, in turn strengthening the anti-monotonicity pruning power.
With data reduction techniques it is possible to exploit the effectiveness of
a CAM -CM synergy (14; 17). In the following the same idea is applied and
it is showed that, in the case of graph mining, the idea can be strengthen
further thanks to the fundamental constraint of mining only connected sub-
graphs.

Data Reduction Properties

The ExAnte property states that a transaction (i.e., a graph in the database,
in our case) which does not satisfy the given monotone constraint can be
deleted from the input database since it will never contribute to the sup-
port of any solution substructure. Thanks to this property, we can define
the monotone pruning of graph data as follows:

Proposition 2 (Monotone Pruning) Given a conjunction of monotone con-
straints CM , it is possible to define the monotone pruning of a database of graphs
D as the dataset resulting from removing the graphs that do not satisfy CM :

Mp[CM](D) = {G ∈ D | G ∈ Th(CM)}.

It holds that this data reduction does not affect the support of solution patterns:
∀G′ ∈ Th(CAM) ∩ Th(CM) :

supD(G′) = supMp[CM](D)(G
′).

35

A major consequence of reducing the input database in this way is
that it implicitly reduces the support of a large amount of edges that do
not satisfy CM as well, resulting in a reduced number of patterns vis-
ited during the mining. Moreover, infrequent edges can not only be re-
moved from the search space together with all their supergraphs, for the
same anti-monotonicity property of Cfreq , they can be deleted also from
all graphs in D.

Subsequently, we can define also an anti-monotone pruning as follows:

Proposition 3 (Anti-monotone Pruning) Given a conjunction of anti-mon-
otone constraints CAM , the anti-monotone pruning of a graph G = (V,E, L, l)
is defined as the graph obtained removing the edges that do not satisfy CAM from
G: this pruning is denoted as AMp[CAM](G). Given a database of graphs D
the anti-monotone pruning of D is defined as the anti-monotone pruning of all
graphs in D: AMp[CAM](D) = {G′ | G ∈ D ∧ G′ = AMp[CAM](G)}. It
holds that this data reduction does not affect the support of solution patterns:
∀G′ ∈ Th(CAM) ∩ Th(CM) :

supD(G′) = supAMp[CAM](D)(G
′).

12

12

15 5

b

c

a

b

a

c

b
1012

5

5

12

12

15 5

b

c

a

b

a

c

b
12

5

5

Figure 3: Example of AMp pruning.

Removing edges from graphs has got another positive effect: after the
anti-monotone pruning, a growing number of graphs that do not sat-
isfy CM can be found in the input database. Therefore the anti-monotone
pruning creates new opportunities for monotone pruning, and viceversa:
in this way we enter a loop where two different kinds of pruning re-
duce the input data, strengthening each other step by step. Moreover,
removing edges from the connected graphs in the input database, can
disconnect these graphs. Since the focus is in mining frequent connected
substructures, it is possible to strengthen theMp pruning to remove any

36

connected component, i.e., maximal connected subgraph, in the input database
which does not satisfy CM .

Example 3 LetG be the graph in Figure 3. Consider the query: Th(Cfreq[D,30]∧
Csum[E,≥,35]). We have that Csum[E,≥,35](G) = true, since the sum of edge la-
bels of G is 76. Suppose now that the edge (a, 10, a) results to be infrequent.
AMp removes it from G, which results to be divided in two connected compo-
nents. When the satisfaction of CM is checked, the sum of edge labels of the whole
G must not be considered, but instead the one of all its connected components
in isolation. In this case none of the two connected components satisfies CM and
thus they will be both deleted by the subsequentMp.

On the basis of these considerations it is possible to make the monotone
pruning more effective.

Proposition 4 (Connected Components Pruning) Let G ∈ D be a graph
non necessarily connected. Given a conjunction of monotone constraints CM ,
the monotone pruningMp[CM](G) is defined as the graph resulting by removing
from G all its connected components that do not satisfy CM . The monotone
pruning of the whole database is defined as the monotone pruning of all graphs
in the database: Mp[CM](D) = {G′ | G ∈ D ∧ G′ = Mp[CM](G)}. It
holds that this data reduction does not affect the support of solution patterns:
∀G′ ∈ Th(CAM) ∩ Th(CM) :

supD(G′) = supMp[CM](D)(G
′).

This section has described a loop where two different kinds of prun-
ing (AMp and Mp) cooperate to reduce the search space and the input
dataset, strengthening each other step by step until no more pruning is
possible (a fix-point has been reached). In the end, the reduced dataset
resulting from this fix-point computation is usually much smaller than
the initial dataset, and it can feed any frequent substructure miner for a
much smaller (but complete) computation. We call this method the Gamp
(Graph Anti-monotone Monotone Pruning) pre-processing, which can be
further clarified by the following example.

Run-through Example

Let D in Figure 4 be the input database of graph and suppose that we
want to mine patterns having support ≥ 2 and sum of edge labels ≥ 35,

37

i.e., Th(Cfreq[D,2]∧Csum[E,≥,35]). If we start counting the support of edges,
we discover that they are all frequent. Therefore it could seem that no
pruning is possible at this time. But if we take in consideration the mono-
tone constraint Csum[E,≥,35], we discover that graph G2 does not satisfy
it. Therefore G2 can be removed from D (pruning Mp). This removal

12

12

15 5

b

c

a

b

a

c

b
1012

5

5

12

a

b

b

a

c
12

12

12
cc

5

25

5

G4 G5

12

20

5 5

a

b

a

b

b

c

b
10

12

20

15

b

c

a

c

b
12

25
a

12

12

G2 G3

15

G1

Figure 4: Run-through example: the input database D.

makes the support of the edge (b, 20, b) shrink to 1, and thus such edge
which was initially frequent, is now infrequent and can be removed in all
its occurrences from D (pruning AMp). In particular, it is removed from
graph G1. The database after the first round of Mp and AMp pruning
is as in Figure 5. After the removal of (b, 20, b), the graph G1 has a sum
of edges which does no longer satisfy CM , and thus it will be Mpruned
during the second iteration. After the removal of G1, the edge (a, 10, a)
turns out to be infrequent, and thus it isAMpruned. This pruning, which
corresponds to the one in Figure 3, has the effect of dividing G4 in two
connected components, that do not satisfy CM .

Therefore, both components can beMpruned. At this point both the
edges (a, 15, c) (supported only by G3) and (b, 5, c) (supported only by
G5) turn out to be infrequent and they areAMpruned. After this pruning
the input database has been reduced as in Figure 6.

BothG3 andG5 are divided in two connected components. During the
followingMp the components not satisfying CM are deleted. In this case,

38

12

12

15 5

b

c

a

b

a

c

b
1012

5

5

12

a

b

b

a

c
12

12

12
cc

5

25

5

G4 G5

12

a

b

a

b

10

12 15

b

c

a

c

b
12

25
a

12

12

G3

15

G1

Figure 5: After the firstMp and AMp.

12

a

b

b

a

c
12

12

12
c

25

G5

b

c

a

c

b
12

25
a

12

12

G3

Figure 6: After the thirdMp and AMp.

in both graphs, there is one connected component made only by the edge
(c, 25, c): since it has not a sum of edge labels larger than 35 it is removed
by both graphs. Note that, even if the edge (c, 25, c) is frequent, since it
appears in two graphs, it is removed byMp (as a connected component)
and not by AMp (as an edge). At this point the input database is as in
Figure 7. The unique edge which is present in both graphs (a, 12, b) is
frequent, and thus no other pruning is possible. This is the final database,
the result of our Gamp pre-processing, which can feed any frequent sub-
structure miner for a much smaller (but complete) computation. Note
that on this toy-example there is no need to run a mining algorithm: the
unique pattern solution to the query (i.e., a graph with 3 (a, 12, b) edges
appropriately connected, with support = 2 and sum of edge labels = 36)
is evident in Figure 7.

39

12

a

b

b

a

12

12

12

G5

b a b
12

a

12

12

G3

Figure 7: Run-through example: the final reduced database.

3.5.3 Extending the ADI structure

This section introduces an extension of the ADI structure (93), which is
a key point for an efficient implementation of our Gamp pre-processing
algorithm. In Figure 8 the ADI index structure for graphs G3 and G5

from database D of Figure 4 is reported. Recall from section 3.4 that the
ADI structure is composed by three levels, in which we have the frequent
edges, the list of graphs in which they appear, and the pointers to every
occurrence in a linked-list representation of the graphs in the dataset.

We decided to implement our Gamp pre-processing on the basis of the
ADI index, because Gamp requires all the operations for which the ADI
index was designed:
OP1: for each new loop, Gamp requires to compute the support of all
edges, because some of them could have become infrequent;
OP2: when an edge is found infrequent, Gamp needs to remove all its
appearances in the database (AMp), thus it has to access all the graphs
where it appears;
OP3: when an edge isAMpruned from a graph, we must check if it was a
bridge or not, i.e., if its removal disconnects the graph. An edge is a bridge
if it does not lie on any simple graph (28): this can be easily checked using
the adjacency information.

While all the fundamental operations for which the ADI index was de-
signed are necessary for the Gamp algorithm, they are not enough. In fact,
when the disconnection of a graph in the database occurs, we must from
that moment consider its connected components (Proposition 4). But we
can not consider each connected component simply like a new graph,

40

(a,12,b)

(b,5,c)

(a,12,b)

(c,25,c)

G3

G3

G5

G3

G5

G5

1 2

1 5

2 3

3 4

3 5

5 6

1 2

1 4

2 3

2 6

3 4

4 5

6 7

G3

G5

Figure 8: The ADI index structure for graphs G3 and G5 from database D of
Figure 4.

otherwise we risk to count twice when checking the support for an edge
appearing in two different subcomponents of the same graph. Thus we
have two different conflicting requirements: on one hand the support of
edges must be counted on the original graphs (by definition), on the other
hand, monotone constraints must be checked on the connected compo-
nents (for more effective pruning). To this purpose we extend the ADI in-
dex, adding a new level, named connected components level, in between the
linked list of graphs and the adjacency information level. This new level
contains, for each edge and for each graph in which the edge appears, a
linked list of connected component-ids. In the adjacency information level we
keep connected components information needed for checking constraints
satisfaction: for instance, we keep the sum of edges if Csum[E,≥,35] is one
of the constraints in the given query. Moreover, for each edge in the ad-
jacency information level, we keep not only the vertices ids, but also the
labels: this is needed to go back to the edge table, when we remove a con-

41

nected component, and we need to update the information for the edges
it contains (see later line 6 of Algorithm 4).

This extended ADI index, named EADI (Extended-ADI, see an exam-
ple in Figure 9), is suited for an efficient execution of the following oper-
ations needed by the Gamp preprocessing:

OP4 Edge-host component checking: given an edge and a graph find
the connected components of the graph in which the edge appears;

OP5 Monotone constraint checking: find which connected components
of graphs in the input database do not satisfy a given CM constraint.

(a,12,b)

(c,25,c)

G3

G3

G5

G5

1 2

2 3

3 4

5 6

1 2

1 4

2 3

3 4

6 7

C3.1

C5.1

C3.2

C5.2

C3.1
36

C3.2
25

C5.1
48

C5.2
25

Figure 9: The extended ADI index structure (EADI) for graphs G3 and G5

after the third round of pruning as in Figure 6.

3.5.4 The Gamp algorithm

This section describes how to implement the Gamp pre-processing idea,
described in section 3.5.2, on the extended ADI structure introduced in
section 3.5.3.

42

Given the mining problem Th(Cfreq[D,σ]) ∩ Th(CM), the Gamp pre-
processing (Algorithm 1) outputs a reduced database D′ obtained as fol-
lows. First the EADI structure is constructed using only the graphs in
the input database D that satisfy CM . Then the AMp and Mp pruning
procedures are applied directly on the EADI structure in a loop until the
number of frequent edges stops shrinking. At the end, the reduced EADI
structure in written to a file D′ (see line 8 of Algorithm 1), so that we it
can be reused by some subgraph miner. Obviously this last step is not
strictly necessary: if after the Gamp pre-processing, the adopted mining
algorithm works on the ADI structure, we can just transform the result-
ing EADI structure back to ADI and return it, so that the miner can start
directly mining, thus saving the time for building the ADI structure.

Algorithm 1 Gamp
Input: D, σ, CM
Output: A reduced database D′.

1: build EADI(D, CM);
2: f ← 0;
3: while f 6= EADI.number frequent edges do
4: f ← EADI.number frequent edges;
5: AMp(EADI, σ);
6: Mp(EADI, CM);
7: end while
8: D′ ← eadi2db(EADI)

The procedure for constructing the EADI index (Algorithm 2) works
as follows. For each graph in the database the satisfaction of CM is checked,
and only if the graph satisfies the constraint it is inserted in the data struc-
ture, otherwise it is discarded. For each graph satisfying CM , we first
build the adjacency information (4th level of the EADI index, line 3 of
Algorithm 2): in this step the edges are encoded according to the DFS-
tree in the minimum DFS code (93; 99). Then each edge of the graph is
added to the edge table (if not already present), the graph-id is inserted
in the graph-id linked list of the edge (2nd level of the EADI index, line
6 of Algorithm 2), and the connected components-id linked list is initial-

43

Algorithm 2 build EADI
Input: D, CM
Output: An EADI structure.

1: for all G ∈ D do
2: if CM (G) then
3: create G.adj inf ;
4: for all edges e ∈ G do
5: insert e in edge table (if not present);
6: insert G.id in e.graph id;
7: initialize e.G.component id;
8: link e.G to e.G.component id;
9: link e.G.component id to G.adj inf ;

ized adding a unique connected component, corresponding to the graph
G (3rd level of the EADI index, line 5 of Algorithm 2). Finally the con-
struction algorithm links the 2nd to the 3rd level of the index, and the 3rd
to the 4th level appropriately. The AMp procedure (Algorithm 3), works
directly on the EADI structure, removing infrequent edges. When an in-

Algorithm 3 AMp

Input: EADI, σ
Output: A reduced EADI.

1: for all edges e ∈ EADI.edge table do
2: if |e.graph id| < σ then
3: for all G ∈ e.graph id do
4: for all C ∈ e.G.component id do
5: remove e from e.G.C.adj inf ;
6: if bridge(e) then
7: identify new connected components;
8: update(EADI);
9: end if

10: end for
11: end for
12: set pruned(e);
13: end if
14: end for

44

frequent edge is removed from a connected component, we must check
if it was a bridge, and in the case, we must take the appropriate actions:
identifying the new connected components, and update all the informa-
tion in the EADI structure regarding the new components and the com-
ponent from which they originates. At the end of the AMp procedure
infrequent edges are not yet removed from the edge table: they are just
marked as pruned. This is needed for the subsequentMp procedure (Al-
gorithm 4) to directly access only those connected components that risk
to no longer satisfy the monotone constraint, i.e., those components from
which some edges have been removed by AMp. For each edge which
has been marked as pruned by the previous AMp, the Mp procedure
checks CM satisfaction for all the connected components that were con-
taining the pruned edge. If a connected component is found no longer
satisfying CM , it is removed from the EADI structure (lines from 5 to 13
of Algorithm 4). At the end of theMp procedure, also the edges which
were marked from the previous AMp are definitively removed from the
EADI structure (lines from 15 to 18 of Algorithm 4).

3.5.5 Experimental Results

This section reports the results of the experiments we conducted in or-
der to asses the effectiveness of the method proposed. Gamp was imple-
mented in C++, and experimented on a IBM Thinkpad T43, equipped
with a Pentium M 1.6Ghz, 1 GB Ram, running the Linux (Ubuntu 6.06)
operating system. As subgraph miners to be run after Gamp preprocess-
ing we used a breadth-first apriori-like miner such as FSG (62), and depth-
first miner such as gSpan (99). We experimented Gamp on Th(Cfreq) ∩
Th(CM) with CM being either Csize[E,≥,m] or Ccycle[m]. We measured the
benefits of our approach in terms of data reduction, search space reduc-
tion, and run-time reduction.

Datasets

We tested Gamp on both synthetic and real-world datasets. In particular,
as real-world datasets we used the molecules dataset of the HIV essay

45

Algorithm 4Mp

Input: EADI, CM
Output: A reduced EADI.

1: for all edges e ∈ EADI.edge table do
2: if pruned(e) then
3: for all G ∈ e.graph id do
4: for all C ∈ e.G.component id do
5: if not CM (C) then
6: for all edges e′ ∈ C do
7: remove C from e′.G.C.component id;
8: if |e′.G.C.component id| = 0 then
9: remove G from e′.graph id;

10: end if
11: end for
12: destroy e.G.C.adj inf ;
13: end if
14: end for
15: destroy e.G.component id;
16: end for
17: destroy e.graph id;
18: remove e from edge table;
19: end if
20: end for

from 19991: it contains 42,689 graphs, having in average 27 edges, the
number of distinct labels is 58 for vertices and 2 for edges. The synthetic
datasets were generated using the software described in (62). We have
created two datasets: one with 100,000 graphs (D100kE2V 30) and one
with 250,000 graphs (D250kE2V 30), both having 30 vertex labels, 2 edge
labels, while all the other parameters are kept at the default values: i.e.,
average size of frequent graphs is 5, the number of potentially frequent
graphs is 100, and average transaction size is 10.

1http://dtp.nci.nih.gov/docs/aids/aids data.html

46

Data Reduction

In Table 3 we report the output of a typical Gamp execution. In this
example we used the dataset D100kE2V 30 with quite a low minimum
support threshold (0.6%) and the monotone constraint Csize[E,≥,12]. We

D100kE2V30
Iter Edges Graphs

0 642 63118
1 339 31997
2 258 21193
3 204 13424
4 130 6118
5 58 2538
6 16 1197
7 12 1197
8 12 1197

Table 3: Gamp data reduction on Cfreq[D,600] ∧ Csize[E,≥,12].

can see how, iteration by iteration the two different pruning cooperate
to reduce the graphs in the input dataset and the frequent edges they
contain. At the end both frequent edges and graphs are reduced of two
orders of magnitude. Figure 10(a), (b) and (c) report data reduction exper-
iments on the same dataset D100kE2V 30, using the cycle constraint (i.e,
CM ≡ cycle[m]): for three different support thresholds the figures report
the reduction in terms of number of graphs, number of frequent edges
and size of the reduced datasets. It is worth noting that the reduction
on the number of frequent edges is an important measure, because even
a small reduction of this number implies a strong pruning on the search
space.

The dataset reduction in bytes is interesting because not only the num-
ber of graphs in the input dataset is reduced, but these graphs are also
smaller than the original ones, thanks to edge reduction and to the re-
moval of whole subgraphs.

The same constraint is also applied to the HIV dataset (Figure 10(d),
(e) and (f)). We can note that the graphs in the HIV datasets are much

47

D100kE2V30

m

3 4 5 6 7

nu
m

be
r

of
 g

ra
ph

s

0

20000

40000

60000

80000

100000

min_sup = 500
min_sup = 1000
min_sup = 1500

D100kE2V30

m

0 2 4 6

nu
m

be
r

of
 fr

eq
ue

nt
 e

dg
es

0

100

200

300

400
min_sup = 500
min_sup = 1000
min_sup = 1500

(a) (b)
D100kE2V30

m

3 4 5 6 7

da
ta

ba
se

 s
iz

e
(b

yt
es

)

0

5x106

10x106

15x106

20x106

min_sup = 500
min_sup = 1000
min_sup = 1500
original dataset

HIV

m

6 8 10 12 14

nu
m

be
r

of
 g

ra
ph

s

10000

20000

30000

40000

min_sup = 250
min_sup = 500
min_sup = 1000

(c) (d)
HIV

m

6 8 10 12 14

nu
m

be
r

of
 fr

eq
ue

nt
 e

dg
es

0

5

10

15

20

25

30

min_sup = 250
min_sup = 500
min_sup = 1000

HIV

m

6 8 10 12 14

da
ta

ba
se

 s
iz

e
(b

yt
es

)

2x106

4x106

6x106

8x106

10x106

12x106

14x106

16x106

18x106

20x106

min_sup = 250
min_sup = 500
min_sup = 1000
original database

(e) (f)

Figure 10: Experimental results: data reduction.

larger and more structured that those in the synthetic dataset: while a
cycle threshold of 6 destroys almost all the data in the syntectic datasets,
much larger thresholds are needed on the HIV dataset.

48

Search-space Reduction

Figure 11(a) reports the number of candidates generated by FSG (which
being an apriori-like algorithm, is based on candidate generation): this
number can be seen as a measure of the search space explored by the
algorithm. We can observe that as the monotone constraint becomes more
selective, the number of candidates generated shrinks accordingly. The
Gamp preprocessing does not only reduce data and search space, it also
increases the density of the patterns contained in the data. In 11(b) the
ratio between the number of frequent patterns found and the number of
candidates generated is reported: as the monotone constraint becomes
more selective, this ratio increases.

D250kE2V30, min_sup = 500

m

11,0 11,5 12,0 12,5 13,0 13,5 14,0

nu
m

be
r

of
 c

an
di

da
te

s
ge

ne
ra

te
d

0

5000

10000

15000

20000

25000

FSG
Gamp-FSG

D250kE2V30, min_sup = 500

m

11,0 11,5 12,0 12,5 13,0 13,5 14,0

|fr
eq

ue
nt

| /
 |c

an
di

da
te

s|

0,80

0,85

0,90

0,95

1,00

FSG
Gamp-FSG

(a): CM ≡ size[E,≥,m] (b): CM ≡ size[E,≥,m]
D250kE2V30, min_sup = 500

m

11,0 11,5 12,0 12,5 13,0 13,5 14,0

ru
n-

tim
e

(s
ec

)

0

20

40

60

80

100

120

140

160

180

FSG
Gamp-FSG
gSpan
Gamp-gSpan

(c): CM ≡ size[E,≥,m]

Figure 11: Experimental results: search space and run-time reduction.

49

Run-time Reduction

Finally, Figure 11(c) reports a run-time comparison to better appreciate
the benefits of Gamp preprocessing. The comparison is between the exe-
cution time of FSG, gSpan and the one of Gamp-FSG and Gamp-gSpan, i.e.,
the pre-processor coupled with the two miners. We can note a run-time
gain ranging from 40 to more than 100 seconds depending on the selec-
tivity of the monotone constraint. It is worth noting that the time paid
by Gamp to build the EADI data structure, has not to be paid twice if we
exploit a fine-grained tight coupling of Gamp with some algorithm based
on the ADI data structure such as ADI-Mine. Next section describes a
constraint-based graph miner which encapsulate the data reductions and
the EADI ideas introduced in this chapter, in a depth-first algorithm such
as ADI-Mine, suitable for both memory-based and disk-based mining.

3.5.6 An algorithm for constraint-based graph mining in
transactional setting

During the years in which this thesis was developed, a new graph miner
named gPrune (101) was published by Zhu et al. This is a memory-based
miner that is able to push monotone and anti-monotone constraints deep
into the computation. However, this miner has some limitations: first,
the set of constraints that the authors claim to be able to handle is some-
how restricted; second, it does not consider the possibility of pruning the
connected components, which we indeed proved to be a key feature; fi-
nally, it does not take advantage of any sophisticated data structure such
as ADI or EADI, thus remaining a memory-based approach. Please note
that, despite the saving of memory and runtime guaranteed by the use
of constraints, when reasonable threshold are specified thus making the
pruning effective, the check for a large set of constraints requires some-
how additional time and memory, so an efficient data structure is a crucial
key feature and its usage should definitely taken into account.

In the next section, we propose our algorithm for solving the Con-
straint-Based Frequent Subgraph Mining problem that takes into account
these peculiarities.

50

The GP 3 algorithm

It is possible to integrate the data reduction technique used by Gamp in-
side an gSpan-like algorithm to dramatically reduce the size of the DFS
Code Tree, avoiding costly subgraphs generations and counting. Unlike
CabGin, the GP 3 (Graph Pattern discovery P runing and Pushing con-
straints) is able to push monotone and antimonotone constraints deep
into the computation, and use them to reduce the input dataset and to
prune the search space.

Algorithm 5 GP 3

Input: D, σ, CM
Output: {G} frequent and that satisfy CM .

1: build EADI(D, CM);
2: Gamp(D, σ, CM)
3: for all edges e ∈ EADI.edgetable do
4: if Cm(e) then
5: output(e)
6: D′ ← {G ∈ D} that contains e
7: Gamp(D′, σ, CMe

)
8: Fe ← {(frequent) extensions of e}
9: call subgraphmining(D′, Fe)

The Algorithm 5 shows the steps taken by the GP 3 miner: in line 1,
the EADI structure for the database D is built according to Algorithm 2
presented in section 3.5.4. Then the Gamp preprocessor is performed on
the input dataset to reduce the graphs according to user-specified mono-
tone and antimonotone constraints. In lines 4-8 all the frequent edges are
taken as minimal graph patterns: if they satisfy Cm then they are graph
pattern to be output, then, in any case, the projected database D′ is calcu-
lated on line 6. In line 7 GP 3 calls the Gamp routine for efficiently pruning
the projected dataset. In line 8, the set Fe of all the frequent extensions
for a minimal graph pattern is calculated. Then GP 3 calls the procedure
subgraphmining on D′ and Fe.

Algorithm 7 shows the procedure subgraphmining: Fe is a set of graph
patterns G; for each of them, the procedure checks the minimality of the

51

Algorithm 6 subgraphmining(D,Fe)
Input: D,Fe

1: for all G ∈ Fe do
2: if DFS(G) not minimal then
3: return;
4: if Cm(G) then
5: output G
6: D′ ← {G′ ∈ D} that contains G
7: Gamp(D′, σ, CMe)
8: newFe ← {(frequent) extensions of e}
9: call subgraphmining(D′, newFe)

10: return;

DFS code in line 2. If the pattern satisfies the constraints, then it is output
in line 5. In 6 the procedure calculates the projected dataset for the pat-
tern G. Again, in line 7, the set newFe of all the frequent exstensions of G
is calculated. Then the procedure is recursively called in line 8.

GP 3 shows how, integrating Gamp into a dept-first algorithm, it is possi-
ble to obtain a mining algorithm capable to push deep into the computa-
tion monotone constraints and to keep advantage of the synergy between
monotone and antimonotone pruning for efficiently reduce both the orig-
inary input database and the search space.

3.6 The Single Graph Setting

In this section we study the problem of finding frequent subgraph pat-
terns in the single graph setting, where the database consists in only one
single graph, which is potentially large and unconnected.

As we have seen in section 3.5, in recent years, a number of efficient
and scalable algorithms have been developed to find patterns in the trans-
actional setting. These algorithms are complete in the sense that they are
guaranteed to discover all frequent subgraphs and were shown to scale
to very large graph datasets. However, algorithms that are capable of

52

finding patterns in the single graph setting have received much less at-
tention, despite the fact that this problem setting is more generic and ap-
plicable to a wider range of datasets and application domains than the
other. Recently, in fact, there arose a large number of graphs with mas-
sive sizes and complex structures in many new applications, such as bi-
ological networks, social networks, and the Web, demanding powerful
Data Mining methods. Examples of such data are collaborative networks
(DBLP2, arXiv3), social networks (Flickr4), Y!3605, the Web, protein inter-
action databases (UniProt6), and so on.

Because of their complex topological and semantical characteristics,
we are now interested in patterns that frequently appear at many different
places of a single network.

The remainder of this section is organized as follows: section 3.6.1
gives a possible definition of support in the single graph setting; section
3.6.2 briefly summarizes some of the approaches to the problem of min-
ing frequent subgraphs in a single large graph; in section 3.6.3 we show
what are the issues in pushing contraints in this setting and finally, in sec-
tion 3.6.4 we give a possible algorithm for solving the Constraint-Based
Frequent Subgraph Mining in the single graph setting.

3.6.1 Support Definition

Recalling from section 3.5, our problem is defined as mining Th(Cfreq) ∩
Th(C). The difference with the transactional setting is the computation of
Th(Cfreq). While for the graph-transaction setting, the frequency of a pat-
tern is determined by the number of graph transactions that the pattern
occurs in, irrespective of how many times a pattern occurs in a particular
transaction, in the single graph setting, the frequency of a pattern should
be based on the number of its occurrences (i.e., embeddings) in the single
graph. Otherwise, every pattern would have a support of either 0 or 1,

2http://www.informatik.uni-trier.de/˜ley/db/
3http://arxiv.org/
4http://www.flickr.com/
5http://360.yahoo.com/
6http://www.ebi.ac.uk/uniprot/

53

http://www.informatik.uni-trier.de/~ley/db/
http://arxiv.org/
http://www.flickr.com/
http://360.yahoo.com/
http://www.ebi.ac.uk/uniprot/

depending if it is possible to find an occurrence of it into the graph.
Defining a concept of support for the single graph setting is a non-

trivial task, which has received attention recently (21; 23; 34; 63). Let
GΣ be the set of all graphs over an alphabet Σ. We define support as a
function σ : GΣ × GΣ → N. Given a host-graph G and a pattern P , the
value of σ(P,G) reflects the support of the pattern in the host-graph. The
most important property that a definition of support must satisfy is anti-
monotonicity, that is, for all graphs G, P and P ′, where P is a subgraph
of P ′, it must hold that σ(P,G) ≥ σ(P ′, G). This property is exploited by
pattern miners to prune the search space.

However, there are some issues related to this problem: naive defini-
tions of support have the problem that they are not anti-monotonic. For
example, consider Figure 12. If we count the number of occurrences, what

ba G

Figure 12: Example of non anti-monotoniticy of the support

would be the support of pattern a in the graph dataset G? The answer is
simple, it is 1. Then, what would be the support of pattern b? Simple
again, 4. This simple example shows that definitions based on the num-
ber of occurrences of the pattern in the graph do not work well, as they are
not anti-monotone, To address this problem, Kuramochi and Karypis (63)
as well as Fiedler and Borgelt (35) studied anti-monotonic support mea-
sures based on computing maximum independent sets (MIS) in overlap
graphs, which is NP-complete.

Anti-monotonicity is then not the only requirement for efficient fre-
quent pattern mining. It is also important that the frequency measure can
be evaluated efficiently. We argue that the computation of overlap-based

54

Host Graph Pattern

2

5

4

7

3

1

6

8 9

A CB

A B C

8 1 9

5 3 7

2 6 4

1 8 1

Embeddings

Figure 13: A graph with three different occurrences of a pattern evaluates
to σ = 2.

support measures is not feasible in many graph databases, and that more
scalable support measures are needed to enable the use of frequent graph
mining algorithms on network data. Bringmann and Nijssen (21) propose
a new support measure, and provide practical and theoretical evidence
that this measure is more scalable, more general and more widely appli-
cable than the support measures mentioned earlier. This measure is based
on the number of unique nodes in the graph G = (VG, EG) that a node of
the pattern P = (VP , EP) is mapped to, and defined as follows:

Definition 16 (Support)

σ(P,G) = min
v∈VP

|{ϕi(v) : ϕi is an occurrence of P in G}|

By taking the node in P as reference which is mapped to the least number
of unique nodes in G, the anti-monotonicity of the measure is ensured.

An example of minimum image based support is given in Fig. 13(a).
Even if the pattern has 3 occurrences in the host graph, it has support
σ = 2. In fact the lower white node of the pattern can only be mapped to
nodes 1 and 8 in the host graph.

The advantage of this definition over other definitions introduced (34;
63) is twofold. From a practical point of view it is computationally easier
to calculate since it does not require the computation of all possible oc-
currences of a pattern-graph in the host-graph. Additionally it does not
require to solve a maximal independent set problem for each candidate
pattern. From a theoretical perspective we know that this definition is an

55

upper bound for the according overlap based definitions (21; 34). Hence
the support according to this definition is closer to the real number of
occurrences in the graph.

In the remainder of the thesis, and in particular in chapters 4 and 5,
when we are in the single graph setting, we assume the use of this support
measure.

3.6.2 State of the art

This section extends section 3.4 with a brief overview of some approaches
to the problem of finding frequent subgraphs in a single large graph.

The most well-known algorithm for finding recurring subgraphs in a
single large graph is the SUBDUE system, originally developed in 1994,
and improved over the years (25; 26). We have presented SUBDUE in
Section 3.4. Ghazizadeh and Chawathe developed an algorithm called
SEuS (36) that uses a data structure called summary to construct a lossy
compressed representation of the input graph. This summary is obtained
by collapsing together all the vertices of the input graph that have the
same label and is used to quickly prune infrequent candidates. As the
authors indicate, this summary data-structure is useful only when the in-
put graph contains a relatively small number of frequent subgraphs with
high frequency, and is not effective if there are a large number of frequent
subgraphs with low frequency. Vanetik et al. (92) presented an algorithm
for finding all frequently occurring subgraphs from a single labeled undi-
rected graph using the maximum number of edge-disjoint embeddings of
a graph as a measure of its frequency. Each subgraph is represented by its
minimum number of edge-disjoint paths (path number) and use a level-
by-level approach to grow the patterns based on their path-number. Their
emphasis is on efficient candidate generation and no special attention is
paid for frequency counting. In 2005, Kuramochi and Karypis (63) pre-
sented two computationally efficient algorithms that can find subgraphs
which are frequently embedded within a large sparse graph. The first
algorithm, called HSIGRAM, follows a horizontal approach and finds
the frequent subgraphs in a breadth-first fashion, whereas the second

56

algorithm, called VSIGRAM, follows a vertical approach and finds the
frequent subgraphs in a depth-first fashion. These algorithms incorpo-
rate efficient algorithms for candidate generation and frequency count-
ing that allow them to scale to graphs containing over 120,000 vertices
and find patterns with relatively low occurrence frequency. The experi-
mental evaluation on eight real graphs shows that both HSIGRAM and
VSIGRAM achieve reasonably good performance, scale to large graphs,
and substantially outperform previously developed approaches for solv-
ing similar or simpler versions of the problem. In 2008, Bringmann and
Nijssen (21), together with the aforementioned definition of support, de-
veloped a gSpan-based algorithm for mining frequent substructures in a
single graph. Basically, they simply replaced the gSpan definition of sup-
port, intented so solve the problem in the transactional setting, with their
definition, in order to deal with the single graph case. This algorithm can
be further expanded to deal with constraints, as we see in section 3.6.4,
and it is used in chapter 4 for mining the information propagation in a
network, and in chapter 5, in a modified version, in order to solve the
problem of mining patterns in an evolving graph.

3.6.3 Pushing constraints

12

a

b

a

b

10

12

2

12

a

b

20

5

12

a

b b
5

(a) (b)

Figure 14: A portion of a single graph and a possible pattern.

In section 3.5 we have shown how to push monotone and anti-mono-
tone constraints in graph mining in the transactional setting, both at pre-
processing stage and at mining stage. Unfortunately, dealing with con-
straints in the single graph setting is not as easy as in the transactional.

57

Recall from Proposition 2 in section 3.5, that a transaction (i.e., a graph of
the database, in that setting) which does not satisfy the given monotone
constraint can be deleted from the input database since it will never con-
tribute to the support of any solution substructure. Applying this propo-
sition to the single graph case in not straightforward, as we should first
define what a transaction is in this setting. Basically, we can keep saying
that each graph in our database represents a transaction. In the single
graph setting, this translates in having only one transaction. With this
view, it is clear that Proposition 2 still holds: if the sole transaction we
have does not satisfy the monotone constraints we can just delete it from
our input. However, this approach turns out not to be really helpful, and
the intuition suggest that we can do more than this.

Thus, what exactly can be pruned in a single graph? For example,
consider Figure 14, showing in (a) a portion of an input graph, and in
(b) a subgraph pattern (drawn in bold in (a)). Consider the monotone
constraint sum(E,≥, 20), i.e., we want the sum of the edge labels in the
patterns to be greater than or equal to 20. It is clear that we can not simply
remove the edges in bold in Figure (a) since considering larger patterns
by including, for example, the edge labeled with “20”, would result in a
pattern satisfying the constraint. However, if there is a connected compo-
nent of the graph not satisfying the monotone constraint, it can be safely
pruned according to the Proposition 4: in fact, this proposition remains
still valid as is in the single graph setting, where the only difference with
respect to it is that the database contains only one graph.

Now consider Proposition 3, Figure 14 and the anti-monotone con-
straint sum(E,≤, 15). It is clear that the edge (a, 20, a) does not satisfy
the constraint, and no pattern that contains it will satisfy it. Thus, exactly
as in the transactional setting, it can be safely removed from the data.
As one can see, this operation is in fact possible for all the anti-monotone
constraints. That is, Proposition 3 holds in the single graph setting as well
as the other two.

To summarize, we have just shown that all the three propositions
that allow for data reduction are still valid in the single graph case, even
though Proposition 2 is not as helpful as in the transactional case, as we

58

have only one graph that can be pruned here, and that Proposition 4 can
be applied in the only graph we have (which can actually consist of many
connected components).

3.6.4 An Algorithm for Constraint-Based Graph Mining
in Single Graph Setting

At this point, defining a generic miner for solving the Constraint-Based
Frequent Subgraph Mining problem in the single graph setting is straigth-
forward. Recall algorithms 5 and 7. Here, the only changes we need to
apply are in the two lines 8. In these two lines, in fact, the frequency com-
putation of the patterns are performed. These lines need to implement
one of the possible support functions (for example, the minimum image
based support function aforementioned). Moreover, the algorithms call
the Gamp loop, that in turns calls Algorithm 3 to perform antimonotone
pruning. Line 2 of this algorithm should be changed according to the
chosen support definition.

In chapters 4 and 5, we show the results obtained by pushing a few
constraints into the computation, for dealing with two specific applica-
tions: mining the information propagation in a network, and mining fre-
quent patterns of evolution in a single graph. In these two chapters, in-
stead of showing the performances of the generic algorithm, we show two
specific applications, the constraints we needed in those analysis, and the
results of applying the miner to real-life datasets.

59

Chapter 4

Mining the Information
Propagation in a Network

In the previous chapters we have introduced the general setting we are
analyzing in the thesis, namely graph and network data showing a tem-
poral dimension, and the basic technique we could use to discover in-
teresting patterns in this setting, namely Graph Mining. In this chap-
ter, we present possible applications of constraint-based Graph Mining
in real life data. While in he previous chapter the focus was on a theo-
retical, general approach to the problem of finding frequent subgraphs in
graph data with constraints, in this chapter and in chapter 5 we show how
to implement and make use of generic and specialized constraint-based
graph mining in real world applications. That is, the focus is on showing
that starting from the general view of the previous chapter, specific appli-
cations may suggest and need for specific ad-hoc constraints, that need
to be implemented in specialized ways, thus focusing in a particular set
of results. In detail, we show the results obtained performing an analy-
sis aimed at mining the information propagation in a network. For such
analysis, we make use of three constraints:

• vrtx[L,⊇]: we want the labels of the vertices in the patterns to be in
a specific set. Thanks to this constraint, we can achieve this goal by
checking the node labels in the patterns. Moreover, for some of the

60

analyses performed, the set was totally ordered, which translated in
constraining the labels to be between a minimum and a maximum
label.

• edge[L,⊇]: similarly to the above constraint, we want the labels of
the edges to be in a specific set. This can be easily achieved by check-
ing this constraint on the edge labels.

• size[S,≤, α]: we want to restrict the size of the patterns (in number
of edges) to be less than a maximum size specified as parameter.
Please note that this constraint is both helpful and meaningful: be-
ing the search strategy of the miner a DFS, constraining the size of
the patterns means to block the expansion of unwanted candidates,
and it helps in assuring to achieve in feasible time all the results
smaller than a specific size. On the other hand, it avoids the search
for too large, non meaningful patterns, where the local properties
are lost due to the large size.

In this chapter, in order to tackle the problem of finding frequent pat-
terns of information propagation together with their causes in a network,
Graph Mining is used in conjunction with TAS Mining, another mining
technique already existing in the literature, presented in section 4.3.

4.1 On Mining the Information Propagation

In the last decade, the interest in Social Network Analysis topics from re-
searchers in the Data Mining area has increased very fast. Much effort
has been devoted, for example, in the Community Discovery, Leader De-
tection and Network Evolution problems (9; 19; 31; 84; 86). Another topic
that has attracted much interest recently is how the information propa-
gates over a network (3; 47; 54; 59; 66; 79). This problem has been studied
from several points of view: statistics, modeling, mining are few of the
approaches that have been applied so far in this direction. However, only
a few answers to the questions ”How does the information propagates
over a network, why and how fast?” have been discovered so far. On

61

the other hand, these answers are of large interest, since they help in the
tasks of finding experts in a network, assessing viral marketing strate-
gies, identifying fast or slow paths of the information inside a collabora-
tive network, and so on. In this chapter we study the problem of finding
frequent patterns in a network focusing in two aspects:

• The temporal dimension intrinsically contained in the flow of infor-
mation: why certain topics are spread faster than others? What is
the distribution of the temporal intervals among the “hops” that the
information passes through?

• The causes of the information propagation: why certain discussions
are passed over while others stop in two hops? What are the char-
acteristics of the nodes that pass the information?

As one can notice, the two dimensions of our focus are orthogonal to each
other: certain nodes with certain characteristics may let a particular kind
of information spread faster or slower than other nodes, or compared to
information with other characteristics. The combination of the two as-
pects finds several possible application in real life. Among all of them, we
believe that Viral Marketing can be powerfully enhanced by such kind of
analysis. Companies willing to advertise a new product in their network
of users may discover that giving a certain kind of information or special
offers to a particular set of selected nodes may result in a cheaper or more
effective advertisement campaign.

In this chapter, we study the above problem on the well known En-
ron email dataset (57), and the 20 Newsgroup dataset (52; 70), and with
the help of two different techniques: TAS (Temporally Annotated Se-
quences) mining, which is a paradigm aimed at extracting sequential
patterns where each transition between two events is annotated with a
typical transition time that emerges from input data, and Graph Mining,
which is helpful for locally analyzing the nodes of the networks with their
properties.

The contribution of this chapter can be summarized as follows: we
show how to extract useful information from a network in order to mine
the information propagation, in the format of a graph where nodes are

62

users and edges are words used as email subjects, and a set of times-
tamped sequences of emails grouped by threads; we show how to apply
the two techniques above to a real-life dataset with the aim of mining a
particular aspect of the temporal dimension in graph and network data,
namely the information propagation; we present the preliminary results
obtained by applying the two algorithms on graphs extracted from the
datasets, and on the sequences of exchanged email, showing a general
methodology that can be applied in any sort of network where an ex-
change of information is present.

The remainder of the chapter is organized as follows: section 4.2 de-
fines the problem under investigation and which kind of data we want
to analyze; section 4.3 reviews the TAS mining paradigm together with
some scenarios of application; section 4.4 shows the preliminary results
obtained during our analysis of the datasets; section 4.5 briefly summa-
rizes the results of our work and some possible future work.

4.2 Problem definition

We are given a dataset D of activities in a network, from which we can
extract both a network of users U as a graph G and a flow of any kind
of information (emails, documents, comments, instant messages, etc.) as
a set of timestamped sequences S. Examples of such datasets can be a
set of emails exchanged among people, the logs of an instant messaging
service, the logs of a social networking system, the content of a social
bookmarking site, and so on. In this dataset we are interested in find-
ing frequent patterns of information propagation, and we want to let the
causes of such patterns emerge from the data. We then want to compare
these rich patterns with the local patterns found in the graph G, to see
how the characteristics of the nodes interact both with the information
spread and with the interactions of the nodes with their local communi-
ties in the network.
We assume D to contain at least the information about:

• a set of users with their characteristics (such as: gender, country,

63

age, typical discussed topics, degree, betweenness and closeness
centrality computed over the network, and so on)

• a timestamped set of sequences of actions performed by the above
users that involve the propagation of a certain kind of information
(such as: exchange of emails, posts in a forum, instant messages,
comments in a blog, and so on)

From the first, we can build several kinds of graphs that can be analyzed
with classical graph mining techniques. In order to mine and analyze
the local communities of the nodes with the focus on the spread of in-
formation, we want to build such graphs on the basis of the information
exchanged among the nodes. As an example, the nodes of the graph can
be the users of a mailserver, while there is an edge between two nodes
if the nodes exchanged an email. The edge can be then labeled with the
typical words used in the communications, that may be also grouped se-
mantically or by statistical properties. Depending on the characteristics
of the users and the way we consider them connected among each other,
we are able to perform Social Network Analysis of the original network
from several different points of view. For example, we may want to use
as vertex labels the gender, the country and the age if we are analyzing a
so called web social network, while we may want to use structural prop-
erties such as the degree, the closeness centrality, the betweenness or the
clustering coefficient, if we are analyzing a network of a company. Each
different combination of properties would result in a different kind of
analysis.

From the second, we can derive a set of timestamped sequences to use
as an input of the TAS mining paradigm (see Section 4.4), in order to be
able to extract sequences of itemsets (i.e. characteristics of the users) that
are found frequent in the data, together with frequent temporal annota-
tions for them.

The entire analysis will be an interactive and iterative loop of the fol-
lowing steps:

1. Building a graph G of users in U , connected by edges representing
typical words or topics discussed by or among them

64

2. Assigning labels to the users in U according to their semantical (such
as age, gender, newsgroup of major activity, preferred topic, etc.)
and statistical (computed in G, such as betweenness, closeness cen-
trality, etc.) characteristics, collecting them in a set L

3. Assigning labels to the edges in G according to their semantical
(such as semantical cluster, etc.) or statistical (such as frequency
of the stemmed word or topic in the subjects, etc.) characteristics,
collecting them in a setW

4. Extracting the flows of information in D, grouped by any property
to use as transaction identifier (thread, email subject, conversation
ID, ..), and building a set of temporally annotated sequences S, con-
taining both the information on the users involved in each flow (rep-
resented as itemsets of labels in L), and the temporal information
about the flow (usually found as timestamps in seconds since the
Epoch)

5. Extracting frequent Temporally Annotated Sequences T from S, rep-
resenting the frequent flows of information, and containing both the
temporal dimension of the patterns, and the characteristics of the
users involved

6. Extracting frequent subgraphs from Gwith the help of classical Graph
Mining, that represent the local communities of nodes together with
their characteristics and typical words or topics used

7. Analyzing the results produced in 4 in order to find frequent items
(users’ caracteristics) associated with typical fast or slow transition
times, then analyze the patterns produced in 6 in order to find pat-
terns containing nodes with the same characteristics as labels: these
patterns will tell if the users with these characteristics are the best
ones in spreading fast the type of information described by the graph
patterns

Steps 1, 2, and 3, are clearly crucial and may vary the analysis that
will be performed. By setting different labelings for the edges in G and

65

including or excluding different characteristics as vertex labels in 6, the
analyst may drive the search for frequent patterns in different directions.

4.3 The TAS mining paradigm

In this section we briefly summarize the main aspects of the TAS mining
paradigm, developed and widely used in the last few years (10; 11; 37; 39).
This technique is used both in this chapter and in chapter 6.
TAS are sequential patterns where each transition between two events

is annotated with a typical transition time that is found frequently in the
data. In principle, this form of pattern is useful in several contexts: for
instance:

• in web log analysis, different categories of users (experienced vs.
novice, interested vs. uninterested, robots vs. humans) might react
in similar ways to some pages - i.e., they follow similar sequences
of web access - but with different reaction times

• in medicine, the relationship in time between the onset of patients’
symptoms, drug consumption, and response to treatments

• in workflow logs, the typical data is a sequence of operations per-
formed with specific moments, and from this, it could be interesting
to extract frequent sequences containing frequent temporal annota-
tions.

TAS patterns have been also used as building blocks for a truly spatio-
temporal trajectory pattern mining framework (38). In all these cases,
enforcing fixed time constraints on the mined sequences is not a solution.
It is desirable that typical transition times, when they exist, emerge from
the input data.

Time in FSP (Frequent Sequence Patterns) is mainly considered:

• for the sequentiality that it imposes on events

• as a basis for user-specified constraints to the purpose of either pre-
processing the input data into ordered sequences of (sets of) events

66

• as a pruning mechanism to shrink the pattern search space and
make computation more efficient.

In all of these cases, time is not explicitly returned in the ouput as times-
tamps or timestamped intervals, although in some cases interval prece-
dence and overlap is expressed (55; 56; 71; 75; 76; 82; 97). For these
reason, the TAS , a form of sequential patterns annotated with temporal
information representing typical transition times between the events in a
frequent sequence, was introduced in (39).

Definition 17 (TAS) Given a set of items I, a temporally - annotated se-
quence of length n > 0, called n-TAS or simply TAS , is a couple T = (s, α),
where s = 〈s0, ..., sn〉,
∀0≤i≤nsi ∈ 2I is called the sequence, and α = 〈α1, ..., αn〉 ∈ Rn+ is called the
(temporal) annotation. TAS will also be represented as follows:

T = (s, α) = s0
α1−→ s1

α2−→ ...
αn−−→ sn

Example 4 In a temporally-annotated sequence referring to process mining,
shown above, the operations are represented as items, and the typical transition
time between two consecutive operations are indicated as annotations. E.g.:

Download(foo) 1−→ Update(foo) 5−→ Upload(foo) 35−→ Delete(foo)

represents a sequence of workflow operations of the object ’foo,’ which is down-
loaded at a certain time, updated after 1 second, then uploaded after 5 seconds,
and finally deleted after 35 seconds.

Similar to traditional sequence pattern mining, it is possible to define a
containment relation between annotated sequences:

Definition 18 (τ -containment (�τ)) Given a n-TAS T1 = (s1, α1) and a m-
TAS T2 = (s2, α2) with n ≤ m, and a time threshold τ , we say that T1 is
τ -contained in T2, denoted as T1 �τ T2, if and only if there exists a sequence of
integers 0 ≤ i0 < ... < in ≤ m such that:

1. ∀0≤k≤n. s1,k ⊆ s2,ik

2. ∀1≤k≤n. | α1,k − α∗,k | ≤ τ

67

Figure 15: Example of τ -containment computation

where ∀1≤k≤n. α∗,k =
∑
ik−1<j≤ik α2,j . As special cases, when condition 2

holds with the strict inequality we say that T1 is strictly τ -contained in T2,
denoted with T1 ≺τ T2, and when T1 �τ T2 with τ = 0 we say that T1 is
exactly contained in T2. Finally, given a set of TAS D, we say that T1 is τ -
contained in D (T1 �τ D) if T1 �τ T2 for some T2 ∈ D.

Essentially, a TAS T1 is τ -contained into another, TAS T2 if the former is a
subsequence of the latter and its transition times do not differ too much
from those of the corresponding itemsets in T2. In particular, each itemset
in T1 can be mapped to an itemset in T2. When two itemsets are consecu-
tive in T1, but their mappings are not consecutive in T2, the transition time
for the latter couple of itemsets is computed by summing up the times of
all the transitions between them, which is exactly the definition of the an-
notations α∗. The following example describes a sample computation of
τ -containment between two TAS :

Example 5 Consider two TAS :

T1 = (〈{a}, {b}, {c}〉, 〈4, 9〉)
T2 = (〈{a}, {b, d}, {f}, {c}〉, 〈3, 7, 4〉)

also depicted in Figure 15, and let τ = 3. Then, in order to check if T1 �τ T2,
we verify that:

• s1 ⊂ s2:the first and the last itemsets of T1 are equal to the first and the last
itemsets of T2 respectively, while the second itemset of T1 ({b}) is strictly
contained in the second one of T2 ({b,d}).

• The transition times between T1 and its corresponding subsequence in T2

are similar: the first two itemsets of T1 are mapped to contiguous itemsets
in T2, so we can directly take their transition time in T2, which is equal

68

to α∗,1 = 3 (from {a} 3−→ {b, d} in T2). The second and third itemsets
in T1 are instead mapped to non-consecutive itemsets in T2, and so the
transition time for their mappings must be computed by summing up all
the transition times between them, i.e.: α∗,2 = 7 + 4 = 11 (from {b, d} 7−→
{f} and {f} 4−→ {c} in T2). Then, we see that | α1,1−α∗,1 |=| 4−3 |< τ
and | α1,2 − α∗,2 |=| 9− 11 | < τ .

Therefore, we have that T1 � τT2. Moreover, since all inequalities hold strictly,
we also have T1 ≺τ T2.

Now, frequent sequential patterns can be easily extended to the notion of
frequent TAS :

Definition 19 (Frequent TAS) Given a setD of TAS , a time threshold τ and a
minimum support threshold σ, we define the τ -support of a TAS T as supp[τ,D](T) =|
{T ∗ ∈ D | T �τ T ∗} | and say that T is frequent in D, given a minimum sup-
port threshold σ if supp[τ,D](T) ≥ σ.

It should be noted that a frequent sequence s may not correspond to any
frequent TAS T = (s, α): indeed, its occurrences in the database could have
highly dispersed annotations, thus not allowing any single annotation
α ∈ Rn

+ to be close (i.e. similar) enough to a sufficient number of them.
That essentially means s has no typical transition times.

At this stage, introducing time in sequential patterns gives rise to a
novel issue: intuitively, for any frequent TAS T = (s, α), we can usually
find a vector ε of small, strictly positive values such that T ′ = (s, α + ε)
is frequent as well, since they are approximatively contained in the same
TAS in the dataset, and then have very similar τ -support. Since any vec-
tor with smaller values than ε (e.g., a fraction ε/n of it) would yield the
same effect, we have that, in general, the raw set of all frequent TAS is
highly redundant (and also not finite, mathematically speaking), due to
the existence of several very similar - and then practically equivalent -
frequent annotations for the same sequence.

Example 6 Given the following toy database of TAS :

a
1−→ b

2.1−−→ c a
1.1−−→ b

1.9−−→ c
a

1.2−−→ b
2−→ c a

0.9−−→ b
1.9−−→ c

69

if τ = 0.2 and smin = 0.8 we see that T = a
1−→ b

2−→ c. In General, we can see
that any a α1−→ b

α2−→ c is frequent whenever α1 ∈ [1, 1.1] and α2 ∈ [1.9, 2.1].

This problem is solved by the TAS mining software developed in (39),
by finding “dense regions” of annotations, and thus grouping together TAS
patterns accordingly. The output of this process is a set of TAS patterns
where the annotations are no longer points in Rn+, but instead are inter-
vals: e.g.,

a
[1,1.1]−−−−→ b

[1.9,2.1]−−−−−→ c

We say that this resulting pattern can be read as: the sequence a, b, c is
frequently executed, with typical transition times of t1 ∈ [1, 1.1] for the
first transition and t2 ∈ [1.9, 2.1] for the second one.
The MiSTA software gives the user a special parameter strict: by means of
this parameter it is possible to look for sequences made of strictly consecu-
tive tasks. For example, having a sequence a→ b→ c→ d, it is possible to
obtain, say, a→ b→ c and c→ d, but not a→ d. This parameter is useful
when looking for tasks which are performed consecutively without gaps
among them. In addition to this, it has a positive side effect in terms of
performance: since every sequence that does not match this constraint is
removed from the search space at runtime, the problem of extracting TAS
becomes more feasible. For more details see (37; 39).

4.3.1 TAS-based Mining

In (10; 11) it is shown how it is possible to apply the TAS mining paradigm
to medical data when its structure is a sequence of clinical observations
taken at different times. In this context the temporal dimension of the
data is a variable that should be taken in account in the mining pro-
cess and returned as part of the extracted knowledge. In these papers
a real-world medical case study was reported in which the TAS mining
paradigm was applied to such a data.

In (38), the authors introduce a novel spatio-temporal pattern that for-
malizes the idea of aggregate movement behaviour. In their approach a
trajectory pattern is a sequence of spatial regions that, on the basis of the

70

source trajectory data, emerge as frequently visited in the order specified
by the sequence; in addition, the transition between two consecutive re-
gions in this sequence is annotated with typical travel times that emerge
from the input trajectories.

4.4 Case study

4.4.1 Dataset

We used for our experiments two e-mail datasets. The first one is the En-
ron email dataset(57). This dataset contains 619,446 email messages com-
plete with senders, recipients, cc, bcc, and text sent and received from 158
Enron’s employees. It was published in 2004 in response to inquiries re-
garding the well known fraudulent bankruptcy. This dataset is character-
ized by an exceptional wealth of information, and it enables the tracking
of chains of communication, together with their associated subjects and
the complete data regarding the exchange of information.

We took from the entire dataset the “from”, “to”, “cc”, “bcc”, “subject”
and “date” fields in each email in the “sent” folder of every employee.
We took only the emails that were sent to other Enron employees, remov-
ing the outgoing emails. We also performed basic cleaning by removing
emails with empty subjects, noise, and so on. After the cleaning stage,
the number of remaining emails was about 12,000. We refer to it as the
“Enron” dataset.

The second dataset consists of Usenet articles collected from 20 differ-
ent newsgroups about general discussions on politics and religion, tech-
nical discussions on computers and hardware, general discussions on
hobbies and sports, general discussion on sciences, and a newsgroup for
items on sale, and was first used in (52; 70). Over a period of time, 1000
articles were taken from each of the newsgroups, which makes an overall
number of 20,000 documents in this collection. Except for a small fraction
of the articles, each document belongs to exactly one newsgroup. We took
from each sent email the “from”, “to” and “date” field. After a cleaning
stage, the number of remaining emails was about 18,000. We refer to it as

71

the “Newsgroup” dataset.

4.4.2 Tools

For our analysis, we used the MiSTA software (37; 39), which extracts fre-
quent Temporally Annotated Sequences from a dataset of timestamped
sequences; we also used a single graph miner in order to find frequent
subgraphs of a large graph, implementing a Minimum Image Support
function as described in (21).
All the experiments were conducted on a machine equipped with 4 pro-
cessors at 3.4GHz, 8GB of RAM, running the Ubuntu 8.04 Server Edition,
and took from seconds to minutes for the TAS mining, and from minutes
to hours for the Graph Mining.

4.4.3 Steps of Analysis

We then followed the steps described in section 4.2 in order to perform
our analysis. In the following steps, the subscripts E and N indicate
wether the sets refer to the Enron or Newsgroup datasets, respectively.

As step 1, we built the graph GE for the Enron dataset by taking the
users as nodes and connecting two nodes with edges representing the
subjects of emails exchanged between them. For the Newsgroup dataset,
we built GN by taking the users as nodes and connecting two nodes with
edges representing the subjects for which both users posted a message to
the newsgroups.

As step 2, we labeled the users UE and UN following five different pos-
sible labeling, according to their structural characteristics in the graphs GE
and GN : the degree (the number of ties to other nodes in the network, re-
ferred as “DEG”), the closeness centrality (i.e., the inverse of the distance
in number of edges of the node from all other nodes in the network, re-
ferred as “CL”), the betweenness centrality (i.e., the number of geodesic
paths that pass through the node, referred as “BET”) and two different
clustering annotations (following two different clustering strategies, re-
ferred as “CC1” and “CC2”). Table 4.4.3 shows the labeling according to
the real values of these variables. For users in UN we also performed a

72

labeling according to the newsgroup in which the user was most active,
assigning thus 20 possible labels for each node.

As step 3, the edges in GE and GN have been assigned a label accord-
ing to various criteria. Both for the Enron and the Newsgroup datasets,
the most frequent words in the subjects were manually clustered by their
semantic in 5 different clusters per dataset. Each edge was then labeled
with the most frequent cluster among its words (ignoring the words not
belonging to any cluster). The edges corresponding to subjects for which
none of the contained words was frequent or was not belonging to any of
the clusters were removed from the graphs. We refer to the graphs cre-
ated in this way as “Enron S” and “Newsgroup S”. For the Newsgroup
dataset we performed also a different labeling: all the words were divided
in three frequency classes and the edges were then labeled accordingly.
We refer to this graph as “Newsgroup F”. Finally, in each graph, multiple
edges between two nodes have been collapsed into a single edge labeled
with its more frequent label. Table 5 shows some statistical properties of
the graphs generated, in which: n is the number of nodes, e the number of
edges, k̄ the average degree, #Components the number of components, Gi-
antComponent the size of the largest component of the graph (percentage
of the total number of nodes), C̄ the average clustering coefficient of the
graph (betweem 0 and 1), ` the average length of the shortest paths in the
graph and Diameter the length of the longest shortest path in the graph.

For the step 4, in order to build our SE and SN for the TAS mining
paradigm, we grouped all the emails by subject, keeping the timestamp
given by the mailserver to every email. Figure 21 is a graphical repre-
sentation of the flow of emails in Enron with initial subject “2002 capital
plan”. In order to give this in input to the software, we processed each
of these flow by splitting it in all the possible sequences of emails passed
from an user to the others, following the natural temporal ordering. This
last step was not necessary for Newsgroup, as the emails were sent only
to one recipient, namely the newsgroup. The complete set of these times-
tamped sequences constituted then our SE and SN .

Steps 5 and 6 produced the results in the following paragraph.

73

Enron
Label Degree Closeness Betweenness CC1 CC2

1 [0, 5] [0, 0.21[[0, 0.0015[0 0

2 [6, 15] [0.21, 0.2329[[0.0015, 0.0046[]0, 0.2[
˜
0, 35e−6ˆ

3 [16, 33] [0.2329, 0.2513[[0.0046, 0.013[[0.2, 0.34[
ˆ
35e−6, 14e−5ˆ

4 [34, 75] [0.2513, 0.267[[0.013, 0.034[[0.34, 0.67[
ˆ
14e−5, 61e−5ˆ

5 [76,+∞[[0.267, 1] [0.034, 1] [0.67, 1]
ˆ
61e−5, 1

ˆ
Newsgroup

Label Degree Closeness Betweenness CC1 CC2
1 [0, 15] 0 0 0 0
2 [16, 39]]0, 0.12[]0, 0.0002[]0, 0.42[]0, 0.00015[
3 [40, 84] [0.12, 0.145[[0.0002, 0.001[[0.42, 0.61[[0.00015, 0.00085[
4 [85, 154] [0.0002, 0.001[[0.001, 0.002[[0.61, 1[[0.00085, 0.005[
5 [155,+∞[[0.1632, 1] [0.002, 1] 1 [0.005, 1[

Table 4: The labels assigned to the users in the datasets

 john.fiscus

 steve.gilbert

1000362295 999091311 998915761

 tracy.geaccone

1000362295

 dana.jones

998915761 998041532

 dave.neubauer

998041532

 lee.ferrell

 kimberly.watson

998489420

Figure 16: Example of mail flow for the subject “2002 capital plan”

4.4.4 Results

Although the focus in this chapter is only to show the power of the combi-
nation of the two techniques we used in our analysis to graph data show-
ing a temporal dimension, we can make some interpretation of some of
the resulting patterns, that clearly show the differences between the two
datasets.

Graph Mining.

The Enron graph represents interactions in the working environment
of a company, from which we can infer particular considerations regard-

74

Graph n e k̄ Comps Giant C̄ ` Diameter
Component

Enron S 3731 9543 5.11 30 98.01% 0.17 4.52199 15
Newsgroup S 1457 12560 17.24 151 64.51% 0.78 4.02730 11
Newsgroup F 3923 31632 16.12 249 82.41% 0.73 4.42142 17

Table 5: The dataset statistics.

5

4
4

5
3

51

1
5

<5
a

5
y

5z

x

2

2
1

21

1

(a) (b) (c)

Figure 17: Subgraphs found in Enron dataset

ing possible stages of the workflow followed by the employees. Contacts
between employees are direct (not thus as in the newsgroup case), and
are very often of the one-to-many type (many cc in an email).

The first pattern extracted, Figure 17a, represents an exchange of emails.
The labels on the nodes represent the level of Clustering Coefficient 2,
i.e. the tendency of an employee to create a working group around him
or she. It can be notice that employees with high CC2 have a frequent
exchange of emails with several subjects. At a certain moment, one of
these high CC2 employees has a contact with a low CC2 employee (a
node outside the central part of the graph beeing maybe a specific mem-
ber of a work group) with a different subject. This pattern may represent
the mechanism by which members acting as “bridges” between groups
detect, with a mutual exchange of knowledge, who can solve a problem.

The pattern is even more interesting because there are many instances
of the abstract pattern like the in Figure 17b, where the label “<5” means
any label lower than 5.

Another interesting pattern in the Enron graph is represented in Fig-
ure 17c, where labels are assigned to nodes according to the first defini-

75

5

4
2

5
1

5

1
5 5

2

31

3

1

(a) (b)

Figure 18: Subgraphs found in newsgroups dataset

tion of clustering coefficient (CC1). You can see that nodes with a low
clustering coefficient (often synonymous of high degree, so central nodes
of the graph) tend to behave in constrast to their typical feature, as the
nodes are found in a frequent clique. This happens when the semantics
of the label of their connection is the cluster number 1, that is typical of
managers and directors.

We finish the discussion on frequent graph patterns noting that, using
labels such as the frequencies of the words of the topics of discussions
for the edges and CC2 for nodes, users who create groups around them-
selves tend to use with people like them the same classes of words, but
do not use the same words with users of other CC2 categories. This may
be a typical mechanism of communication inter and intra-groups: within
an entertainment community are often used “slang” terms less common
(edge label = 1) that those that come from groups outside do not under-
stand or use (and use more common and frequent words, edge label = 2).
Examples of this behavior are patterns in Figure 18a and 18b.

TAS Mining.

We now present some considerations derived from the analysis of the
most frequent temporal sequences extracted from the two datasets. Fig-
ure 19 is a graphical representation of a possible extracted pattern.

Consider graphs in Figure 20. The 20a and 20b graphs were generated
by analyzing the average response time of the most frequent sequences
(i.e. the most representative) according to different characteristics (De-

76

DEG:4 CC2:5 CC2:5
[10, 14]

CL:5
[278, 284]

Figure 19: An example of TAS found

gree, Closeness, Betweenness and CC2) of the sender.
First, we can notice the difference of scale: in the Enron dataset there

are higher average response times. This can be explained considering
the different nature of the exchange of knowledge in a working-like com-
munication: there are not (frequent) immediate answers, since, after an
email, usually several stages of documentation, meetings and brainstorm-
ing, follow, enlarging the time needed for providing a response. On the
opposite side, users within a social community usually only need to read
all the messages before answering, leading to usual short response time.

Regarding the Enron dataset, Figure 20a reveals an important infor-
mation regarding the response time of the employees with an high degree
of betweenness centrality: having an high betweenness centrality for an
employee means that many shortest paths in internal communications
pass through that employee. The TAS mining revealed that this tends to
result in much higher response times, due to the additional working bur-
den that employees of this type have to face. The knowledge that can be
extracted from this analysis of mining is to avoid, if possible, the struc-
tural hubs when there is the need to speed up a communication. This
pattern of reaction times in relation to betweenness is completely absent
in the Newsgroup dataset.

Regarding the Newsgroup dataset, Figure 20b, shows another differ-
ence of behavior from the Enron dataset: the higher regularity of growth
of the reaction time for users with higher degree. The degree grows as
the user follows many different discussions and, especially, when these
discussions involve an increasing number of users. The mining stage
showed that the typical response times go up because these discussions

77

 1

 10

 100

 1000

 10000

 100000

 2 3 4 5

R
ea

ct
io

n
tim

e
in

 5
 m

in
ut

e
un

its

Value of the Characteristic

Deg
Bet

CC2
CL

 100

 1000

 2 3 4 5

R
ea

ct
io

n
tim

e
in

 5
 m

in
ut

e
un

its

Value of the Characteristic

Deg
Bet

CC2
CL

(a) Reaction times - Enron (b) Reaction Times - Newsgroup

 1

 10

 100

 1000

Politics
Religion

Computers
Hardware

Hobby
Sports

Science Sales

R
ea

ct
io

n
tim

e
in

 5
 m

in
ut

e
un

its

Newsgroup of major activity

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4

A
vg

. #
D

is
tic

nt
 L

ab
el

s

Pattern Size (#Edges)

Enron
Newsgroups

(c) Reaction times - Newsgroup (d) Graph Patterns Heterogeneity

Figure 20: Quantitative Analysis of the Results

are probably the most controversial and interesting ones, and in order to
follow them, much time and attention have to be spent. These consider-
ations are not necessarily true in a business context: an employee with a
high degree (many different contacts) often respond very quickly.

Another consideration can be done w.r.t to the “newsgroup” labeling.
Consider Figure 20(c). In the x axis we have the newsgroup of major
activity of the users (i.e., a possible value of the “newsgroup” label for
the nodes), clustered by main topics (x labels), while in the y the reac-
tion times as found in the frequent TAS. Each of the 20 bars represents
one particular newsgroup. As we can notice, there are differences in the
reaction times according to the main topic of the newsgroups. While poli-
tics and religion seem to be general “relaxed” discussion topics, technical
discussions in computers and hardware find more reactive answers. The

78

most reactive is the newsgroup where people put items for sale: the first
offer in generally set after 5-10 minutes, as we can see from the figure.

Based on the above consideration, we can give a “draft” of what could
be done in order to perform step 7 of the general approach described in
section 4.2: once found that the “Sale” label could be a characteristic re-
lated to the speed of the users, it is possible to go back on the results of the
graph mining and see if that label was found frequent, possibly in the cen-
ter of a large subgraph pattern where other nodes have different labels. If
the frequency of this pattern is found high, one can argue that passing the
information to “Sale” nodes would result in a faster and effective spread
of information. In this case study, the meaning of the “Sale” label does
not really suggest anything special, but the focus here is to give an idea
of the potentialities of the general approach followed in this Section.

Finally, consider Figure 20d that shows a direct comparison between
the two datasets. It shows the degree of heterogeneity of the communica-
tion (i.e. the number of different semantic labels associated with the edges
of the frequent patterns) compared with the volume of communication
(number of edges in the pattern). From the graph it can be inferred that
the business environment shows a greater heterogeneity in the commu-
nications: while in the Enron dataset employee tend to speak about dif-
ferent topics with their neighbors, in the Newsgroup dataset close users
speak about the same topics. This seems quite easy to explain: employees
usually manage more than one different situation, while users in news-
groups tend to be clustered by newsgroup, and hence by topics.

4.5 Discussion

In this chapter, we have shown a general methodology to mine the infor-
mation propagation in a network where users exchange information. We
have described how to extract useful information from such a network
in order to be able to use a combination of two powerful techniques,
namely TAS mining and Graph Mining, in order to find frequent pat-
terns of propagation of information that involve also the possible causes
of these propagation. We have shown how this combination can help

79

in finding frequent temporal behaviors in the network together with the
characteristics of the users, and what are the roles of these users in the
network. We have presented preliminary results of a case study on real-
life datasets and we have provided a possible interpretation of some of
these results.

While in this chapter the focus was on datasets of exchanged emails,
one can easily see that this approach is easily applicable to any kind of
network of users where flows of any kind of information are detectable.
In particular, other possible uses of this approach include:

• the study of the temporal behavior of a network of users, with a
priori knowledge of the social connections among them (that in this
chapter were, on the other hand, learnt from the flows of emails
themselves)

• the study of the influence that a user can have in a network, and
the time needed for a user with certain characteristics to influence a
certain kind of users

• the study of possible redundancy or bottlenecks in a network where
information is spread

• the identification of particular kinds of users that could be replaced
or moved from a position in the network to another, in order to
optimize the information flow

• the study of spread of viruses

and many other related problems.

80

Chapter 5

Mining Graph Evolution
Rules

While in the previous chapter we have focused in the analysis of action, in
this chapter we show how to apply constraint-based graph mining in the
context of evolution. In particular, here we deal with the evolution of real
world social and bibliographic networks, topic that is increasing attention
during the last few years.

For this kind of analysis, besides the size[S,≤, α] constraint mentioned
in the previous chapter, we wanted the pattern to express some evolution
of the network. Thanks to the edge labeling, according to which the label
represents the time in which the edge first appeared in the graph, this can
be done by enforcing the expansion of patterns with at least two different
edge labels. As we show later, this is not easily implementable as a simple
constraint check as all the examples we showed so far in this thesis, but it
requires a modification of the canonical form. Moreover, in this analysis,
we modified also the matching operator of a gSpan-based graph miner
that implements the subgraph isomorphism check, in order to be able
to mine the evolution both with relative and with absolute timestamps.
Again, this is much different than simply checking for a constraint during
the pattern expansion.

81

2

3

2

2

1

0
2

2

0

00

confidence =

support =

0.305

1190

Figure 21: A Graph Evolution Rule extracted from the DBLP co-authorship
network.

5.1 On Mining the Evolution of a Network

With the increasing availability of large social-network data, the study of
the temporal evolution of graphs is receiving a growing attention. While
most research so far has been devoted to analyze the change of global
properties of evolving networks, such as the diameter or the clustering
coefficient, not much work has been done to study graph evolution at
a microscopic level. In this chapter, we consider the problem of search-
ing for patterns that indicate local, structural changes in dynamic graphs.
Mining for such local patterns is a computationally challenging task that
can provide further insight into the increasing amount of evolving net-
work data.

Following a frequent pattern-mining approach, we introduce the prob-
lem of extracting Graph Evolution Rules (GER), which are rules that sat-
isfy given constraints of minimum support and confidence in evolving
graphs. An example of a real GER extracted form the DBLP co-authorship
network is given in Fig. 21: nodes are authors, with an edge between two
nodes if they co-authored a paper.

In this specific example, the node labels represent a class of degree
of the node: the higher the label the higher the degree of the node. It
is important to note that the label refers to the degree of the node in the
input graph, not in the rule. In particular the label 3 indicates a node
with degree > 50. In general, node labels may represent any property
of a node. The labels on the edges instead are more important as they
represent the (relative) year in which the first collaboration between two

82

authors was established. Intuitively (later we will provide all the needed
definitions) the rule might be read as a sort of local evidence of preferential
attachment, as it shows a researcher with a large degree (label 3) that at
time t is connected to four medium degree researchers (labels 2), and that
at time t+ 1 will be connected to another medium degree researcher. The
definition, extraction and subsequent empirical analysis of such Graph
Evolution Rules (GER) constitute the main body of our work.

The remainder of the chapter is organized as follows: section 5.2 de-
scribes the problem under investigation and defines the novel kind of
pattern we are interested in. In section 5.3 we describe the details of our
algorithm. We report on our experimental results in section 5.4. Finally,
in section 5.5 we discuss possible future research directions and in sec-
tion 5.6 we discuss our approach.

5.2 Patterns of graph evolution

5.2.1 Time-evolving graphs

We start by describing how we conceptually represent an evolving graph,
and subsequently discuss how to actually represent the graph in a more
compact format. As usual the terminologyG = (V,E, λ) is used to denote
a graph G over a set of nodes V and edges E ⊆ V × V , with a labeling
function λ : V ∪ E → Σ, assigning to nodes and edges labels from an
alphabet Σ. These labels represent properties, and for simplicity we as-
sume that they do not change with time. As an example, in a social net-
work where nodes model its members, node properties may be gender ,
country , college, etc., while an edge property can be the kind of connec-
tion between two users. The evolution of the graph over time is concep-
tually represented by a series of undirected graphs G1, . . . , GT , so that
Gt = (Vt, Et) represents the graph at time t. Since G1, . . . , GT represent
different snapshots of the same graph, we have Vt ⊆ V and Et ⊆ E. For
simplicity of presentation, we assume that as the graph evolves, nodes
and edges are only added and never deleted: i.e., V1 ⊆ V2 ⊆ . . . VT and
E1 ⊆ E2 ⊆ . . . ET .

83

It is worth noting that the number of edge deletions in social networks
is so small to be negligible when analyzing the temporal evolution of
networks. However, in our framework we can handle also deletions by
slightly changing the matching operator as described in section 5.5.

Our mining algorithm represents the dataset by simply collapsing all
the snapshots G1, . . . , GT in one undirected graph G, in which edges are
time-stamped with their first appearance. Thus, we have G = (V,E) with
V =

⋃T
t=1 Vt = VT andE =

⋃T
t=1Et = ET . To each edge e = (u, v) a time-

stamp t(e) = arg minj{Ej | e ∈ Ej} is assigned. Note that time-stamps on
the nodes may be ignored as a node always comes with its first edge and
hence this information is implicitly kept in edge time-stamps. Overall,
a time-evolving graph is described as G = (V,E, t, λ), with t assigning
time-stamps to the set of edges E.

5.2.2 Patterns

Consider a time-evolving graphG, as defined above. Intuitively a pattern
P of G is a subgraph of G that in addition to matching edges of G also
matches their time-stamps, and if present, the properties on the nodes
and edges of G.

Definition 20 (Absolute-time pattern)
Let G = (V,E, t, λ) and P = (VP , EP , tP , λP) be graphs, where G is the
time-evolving dataset and P a pattern. We assume that P is connected. An
occurrence of P in G is a function ϕ : VP → V mapping the nodes of P to the
nodes of G such that for all u, v ∈ VP :

(i) (u, v) ∈ EP it is (ϕ(u), ϕ(v)) ∈ E,

(ii) (u, v) ∈ EP it is t(ϕ(u), ϕ(v)) = t(u, v), and

(iii) λP (v) = λ(ϕ(v)) ∧ λP ((u, v)) = λ((ϕ(u), ϕ(v)))

In case no labels are present for edges or nodes, the last condition (iii)
is ignored. Two examples of patterns from the DBLP co-authorship net-
work are shown in Fig. 22. Those examples motivate us to make two
important decisions. First, since our goal in this chapter is to study pat-
terns of evolution we naturally focus on patterns that refer to more than

84

021

support = 5034

22

10

22

confidence =

support =

0.101

2063

P1 P2

Figure 22: Relative time patterns extracted from two different samples of the
DBLP co-authorship network: respectively 1992-2002 for (P1), and 2005-2007
(P2). Dataset details are given in Sec. 5.4.1.

one snapshots such as the examples in Fig. 22. In other terms we are not
interested in patterns where all edges have the same time-stamp. The sec-
ond decision is based on the following observation. Consider pattern P1:
arguably, the essence of the pattern is the fact that two distinct pairs of
connected authors, one collaboration created at time 0, and one at time
1, are later (at time 2) connected by a collaboration involving one author
from each pair, plus a third author. We would like to account for an occur-
rence of that event even if it was taking place at times, say, 16, 17 and 18.
To capture this intuition we define relative-time patterns.

Definition 21 (Relative-time Pattern) Let G and P be a graph and pattern
as in Definition 20. We say that P occurs in G at relative time if there exists
a ∆ ∈ R and a function ϕ : VP → V mapping the nodes of P to the nodes in G
such that ∀u, v ∈ VP

(i) (u, v) ∈ EP it is (ϕ(u), ϕ(v)) ∈ E,

(ii) (u, v) ∈ EP it is t(ϕ(u), ϕ(v)) = t(u, v) + ∆, and

(iii) λP (v) = λ(ϕ(v)) ∧ λP ((u, v)) = λ((ϕ(u), ϕ(v)))

The difference between Definitions 20 and 21 is only in the second
condition. As a result of Definition 21, we obtain naturally forming equiv-
alence classes of structurally isomorphic relative time patterns that dif-
fer only by a constant on their edge time-stamps. To avoid the result-
ing redundancies in the search space of all relative time patterns we only

85

012 01

0

0
1

1

012

1

H A CB

0
1

0

0

002

D GFE

Figure 23: A graph H with relative edge labels and all possible relative
subgraphs A,B,C,D,E, F,G.

pick one representative pattern for each equivalence class, namely the one
where the lowest time-stamp is zero.

In the remainder of this chapter we focus on relative time patterns,
as they subsume the absolute time case: they are both more interesting
and more challenging to mine, as obviously more patterns are found to
be frequent.

5.2.3 Rules and Confidence Measure

The support of a pattern (recall from section 3.6.1 that we are using a min-
imum image based support function) can provide insight into how often
such an event may happen compared to other specific changes, but not
how likely is a certain sequence of steps. To acquire this information we
need to decompose a pattern into the particular steps and subsequently
determine the confidence for each transition. Each step can be considered
as a rule body→head with both body and head being patterns as defined in
the previous section. Unfortunately, this does not yet solve our problem,
but rather introduces two important questions:

1. How to decompose a pattern into head and body?

2. What are reasonable definitions of confidence?

86

Regarding the decomposition consider patternH in Fig. 23. An occur-
rence ofH implies an occurrence of all its sub-patternsA−G. Similarly to
the definition of association rules all A−G can be considered candidate-
body in order to form a graph evolution rule with pattern H as head. For-
tunately, most of those possibilities can be discarded immediately. First,
we are interested in evolution and hence only care about rules describing
edges emerging in the future. This allows us to discard bodies A,C,D,E,
and F thus only leaving B and G. Furthermore, the step should be as
small as possible to allow for a high granularity wherefore we would drop
candidate-body G in the example, leaving B as body for the head H . Fol-
lowing the same reasoning, G would be the only choice as body for B as
head. Similar the other rules in the example are E → A,D → C,G → E.
The natural body thus would be the head discarding all the edges from
the last time-step of the target-pattern. More formally:

Definition 22 (Graph Evolution Rule) Given a pattern head PH the body PB
is defined as: EB = {e ∈ EH | t(e) < maxe∗∈EH

(t(e∗))} and VB = {v ∈ VH |
deg(v,EB) > 0}, where deg(v,EB) denotes the degree of v with respect to the
edges in EB . Moreover we constrain PB to be connected. Finally, the support
of a graph evolution rule is the support of its head.

This definition yields a unique body for each head and therefore a
unique confidence value for each head. This allows us to represent the
rules by the head only. Note that the definition disallows disconnected
graphs as body due to the lack of a support-definition for disconnected
graphs. As a consequence not all frequent patterns can be decomposed into
graph evolution rules.

Consider for instance pattern P1 in Fig. 22: after removing all edges
with the highest time-stamp, and discarding disconnected nodes, the graph
that remains still contains two disconnected components (the one-edge
component with label 1, and the one with label 0). Since the support is
not defined for such disconnected pattern, P1 can not be decomposed to
be a GER. On the other hand, P2 can be decomposed: in fact after remov-
ing all edges with the maximum time-stamp, and subsequently the dis-
connected node, we obtain a connected graph that will become the body
of the rule for which P2 is the head. Note that a GER can be represented

87

778

7
Head

0
1

0

Body

0

0

X

measure head body confidence
minimum image support 1 1 1.00

number of occurrences 2 6 0.33
(a)

Head

0

1

78

8

Y

Body

0

measure head body confidence
minimum image support 1 1 1.00

number of occurrences 2 1 2.00
(b)

Figure 24: Two example host-graphs X and Y illustrating different prob-
lems with support and confidence notions.

in two different ways: either explicitly as two patterns (body→head), or
implicitly by representing only the head as P2 in Fig. 22. This is possible
since there is a unique body for each head.

Finally, we have to choose a reasonable definition of confidence of a
rule. Following the classic association rules framework, a first choice is to
adopt the ratio of head and body supports as confidence. With the sup-
port being anti-monotonic this yields a confidence value which is guar-
anteed to be between zero and one. However, Fig. 24(a) shows that this
definition may in some cases lack a reasonable semantic interpretation.
In the upper host-graph X we find three possible ways to close a triangle
given the edges from time-stamp 7. The confidence of 1 suggests that all
of these will close to form triangles, while the graph shows that only one
actually does. To overcome this counterintuitive result, we investigated if
the ratio of number of occurrences of head and body can be employed to

88

solve this issue. While this definition of confidence allows for more rea-
sonable semantics for the case in Fig. 24(a), it has the clear disadvantage
that, due to the lack of anti-monotonicity, it may yield confidence values
larger than 1, as in Fig. 24(b). In our experiments we compare the two
alternative definitions showing that the minimum-image-based support
is an effective and useful concept, while the occurrence-based definition
has unpredictable behavior. Moreover, while the support is already avail-
able as it is computed for extracting the frequent patterns, the occurrence
based confidence needs a separate and costly computation.

5.3 Mining graph evolution rules

GERM is an adaptation of the algorithm in (21), which was devised to
prove the feasibility of the minimum image based support measure, and
which in turn, was an adaptation of gSpan (99). Thus, GERM inherits
the main characteristics from those algorithms. In particular, GERM is
based on a DFS traversal of the search space, which leads to very low
memory requirements. Indeed, in all the experiments that we performed
the memory consumption was negligible.

Algorithm 7 SubgraphMining(GS,S, s)
1: if s 6= min(s) then return // using our canonical form
2: S← S ∪ s
3: generate all s′ potential children with one edge growth
4: Enumerate(s)
5: for all c, c is s′ child do
6: // using definition 16 based on definition 20 or definition 21
7: if support(c)≥minSupp then
8: s← c
9: SubgraphMining(GS, S, s)

We next describe in detail how to adapt gSpan to GERM whereas the
main changes are in the SubgraphMining method shown as Algorithm 7.
The first key point is that we mine patterns in large single graphs, while
gSpan was developed to extract patterns from sets of graphs. The part
that is most involved in adapting gSpan is the support computation in line

89

7. Thus we start from the implementation of (21), where gSpan support
calculation is replaced by the minimum image based support computa-
tion, without the need for changing the core of the algorithm.

One of the key elements in gSpan is the use of the minimum DFS code,
which is a canonical form introduced to avoid multiple generations of the
same pattern.

We need to change this canonical form in order to enable GERM to
mine patterns with relative time-stamps (cf. line 1). As explained af-
ter Definition 21, we only want one representative pattern per equiva-
lence class; namely the one with the lowest time-stamp being zero. This
is achieved by modifying the canonical form such that the first edge in
the canonical form is always the one with the lowest time-stamp, as com-
pared to gSpan where the highest label is used as a starting node for the
canonical form. Any pattern grown from such a pattern by extending the
canonical form will have the same lowest time-stamp, which we set to
zero by a simple constraint on the first edge. Hence we guarantee to ex-
tract only one pattern per equivalence class which dramatically increases
performance and eliminates redundancy in the output.

Note that when matching a pattern to the host-graph we implicitly fix
a value of ∆, representing the time gap between the pattern and the host
graph. In order to complete the match all remaining edges must adhere
to this value of ∆. If all the edges match with the ∆ set when matching
the first edge, the pattern is discovered to match the host-graph with that
value of ∆.

Another important issue is to be able to deal with large real-world
graphs, in which several nodes have high degree (the degree distribution
in our datasets follows a power law). In typical applications of frequent-
subgraph mining in the transactional setting, such as biology and chem-
istry, the graphs are typically of small size and they are not high-degree
nodes. Dealing with large graphs and high degrees give rise to increased
computational complexity of the search. In particular, having nodes with
large degree increases the possible combinations that have to be evalu-
ated for each subgraph-isomorphism test. We thus equip GERM with
a user-defined constraint specifying the maximum number of edges in a

90

pattern. This constraint allows to deal more efficiently with the DFS strat-
egy by reducing the search space. Our experiments confirm that the total
running time is much more influenced by the maximum-edge constraint
than by the minimum support threshold.

5.4 Experimental Results

In this section, we report our experimental analysis. The GERM algo-
rithm is implemented in C++. All the experiments are conducted on a
Linux cluster equipped with 8 Intel Xeon processors at 1.8Ghz, 16Gb of
RAM.

5.4.1 Datasets

We conduct experiments on four real-world datasets: two social networks
(Flickr and Y!360) and two bibliographic networks (DBLP and arXiv). Ta-
ble 6 reports statistics of the resulting graphs.
Flickr (http://www.flickr.com/): Flickr is a popular photo-sharing
portal. We sample a set of Flickr users with edges representing mutual
friendship and edge time-stamp the moment when the bidirectional con-
tact is established. We generate one graph with monthly and one with
weekly granularity.
Y!360 (http://360.yahoo.com/): Yahoo! 360◦ is an online service for
blogging. Again we sample a set of users and proceed as in the Fickr
dataset. In this case the monthly and weekly datasets contain exactly the
same time period.
DBLP (http://www.informatik.uni-trier.de/˜ley/db/): This
dataset is based on a recent snapshot of the DBLP which has a yearly time-
granularity. Authors are represented by vertices with a connecting edge
if they are co-authors. The assigned time-stamp on an edge represents
the year of the first co-authorship. Three different samples are extracted
each containing the edges created in the corresponding years. These three
samples allow us to analyze and compare long and short term trends.
arXiv(http://arxiv.org/): Similar to the DBLP dataset a co-authorship

91

http://www.flickr.com/
http://360.yahoo.com/
http://www.informatik.uni-trier.de/~ley/db/
http://arxiv.org/

LC
C

G
ro

w
th

R
at

es
D

at
as

et
D

at
e

|V
|

|E
|

av
g

de
g

T
#C

C
|V
|

|E
|

av
g

de
g

to
ta

l
av

g
fli

ck
r-

m
on

th
03

-0
5

14
74

63
24

13
91

3.
27

24
16

35
7

74
79

2
18

24
17

4.
86

60
34

7.
8

2.
83

29
6

fli
ck

r-
w

ee
k

02
-0

5
14

98
63

24
63

31
3.

29
76

16
66

1
76

05
8

18
65

04
4.

90
24

63
31

0.
24

10
55

y!
36

0-
m

on
th

04
-0

5
17

72
78

20
54

12
2.

32
10

17
92

6
11

06
27

15
50

89
2.

80
68

47
0.

7
5.

15
04

2
y!

36
0-

w
ee

k
04

-0
5

17
72

78
20

54
12

2.
32

41
17

92
6

11
06

27
15

50
89

2.
80

68
47

0.
7

0.
83

43
4

ar
xi

v9
2-

01
92

-0
1

70
95

1
28

92
26

8.
15

10
65

63
49

00
8

26
09

38
10

.6
4

80
3.

41
1.

69
11

4
db

lp
92

-0
2

92
-0

2
12

90
73

27
70

81
4.

29
11

13
44

4
83

60
6

22
00

98
5.

26
25

.5
2

0.
40

81
88

db
lp

03
-0

5
03

-0
5

10
90

44
23

39
61

4.
29

3
14

50
0

53
37

0
15

37
97

5.
76

3.
47

0.
87

14
01

db
lp

05
-0

7
05

-0
7

13
51

16
29

03
63

4.
30

3
16

33
3

72
88

2
20

14
68

5.
52

3
0.

74
93

55

Ta
bl

e
6:

D
at

as
et

st
at

is
ti

cs
:

N
um

be
r

of
no

de
s

an
d

ed
ge

s
an

d
re

su
lt

in
g

av
er

ag
e

de
gr

ee
fo

r
th

e
to

ta
lg

ra
ph

as
w

el
la

s
fo

r
th

e
la

rg
es

tc
on

ne
ct

ed
co

m
po

ne
nt

(L
C

C
)o

ut
of

al
lc

on
ne

ct
ed

co
m

po
ne

nt
s

(C
C

).
Fu

rt
he

r
th

e
gr

ow
th

ra
te

in
te

rm
s

of
ed

ge
s:

to
ta

lg
ro

w
th

as
ra

ti
o

be
tw

ee
n

th
e

gr
ap

h
si

ze
at

th
e

fin
al

an
d

th
e

in
it

ia
lt

im
e-

st
am

ps
,a

nd
av

er
ag

e
gr

ow
th

ra
te

pe
r

ti
m

e-
st

am
p.

92

graph from a sample of the arXiv repository considering only physics
publications is extracted. The obtained graph arxiv92-01 contains the co-
authorships which emerged in the years 1992 to 2001 with a time granu-
larity of years.

As discussed in section 5.2, beside the time-stamp associated to each
edge, our framework allows to have labels on both nodes and edges rep-
resenting additional information. We experiment with node labels that
are based on two graph-theoretic measures: the degree and the closeness
centrality. These measures change as the graph evolves. To obtain static
labels the measures are computed once on the whole graph, correspond-
ing to the last time-stamp and then they are discretized in 5 bins.

Encoding additional information. As discussed in section 5.2, beside the
time-stamp associated to each edge, our framework allows to have labels
on both nodes and edges representing additional information. We exper-
iment with node labels that are based on two graph-theoretic measures:
the degree and the closeness centrality. These measures change as the graph
evolves. To obtain static labels the measures are computed once on the
whole graph, corresponding to the last time-stamp.

The closeness centrality (denoted cc) of a node v is defined as the av-
erage shortest path from v to all other nodes in the graph. Computing
the closeness centrality for all nodes in a graph is an expensive task, so in
order to scale our labeling process we resort to computing centralities ap-
proximately. Our approximation works by selecting a sample of random
seed nodes, performing a breadth-first search from each of those seed
nodes, and recording the distance of each node to the seed nodes. Since
the seeds are selected uniformly at random and assuming that graph dis-
tances are bounded by a small number (which is true since real graphs
typically have small diameter), we can use the Hoeffding inequality (45)
to show that we can obtain an arbitrarily good approximation to central-
ity by sampling a constant number of seeds. Once the closeness centrality
value for each node is computed, the nodes are divided in four classes: a
low centrality class, containing nodes with a centrality value below the av-
erage centrality minus one standard deviation (labeled 3), a medium cen-
trality class with values in the standard deviation of the average centrality

93

(labeled 2), a high centrality class with values above the average plus one
standard deviation (labeled 1), and finally a class miscellaneous containing
all nodes not sampled, or sampled too few times, possibly belonging to
small connected components (labeled 0).

For the degree, nodes were discretized into 5 bins with ranges fixed
in advance with the following mapping: Nodes v with deg(v) = 1 receive
label 0, deg(v) = 2 : 1, deg(v) ∈ [3, 9] : 2, deg(v) ∈ [10, 49] : 3, and nodes
with deg(v) ≥ 50 are assigned label 5. Table 7 reports the distribution of
the node labels.

Dataset 0 (%) 1 (%) 2 (%) 3 (%) 4 (%)
arxiv92-01 : deg 20.0 19.4 41.3 16.4 2.9

arxiv92-01 : cc 30.9 10.2 50.7 8.2
dblp92-02 : deg 23.5 23.2 44.5 8.6 0.2

dblp92-02 : cc 35.2 9.1 47.4 8.3
flickr-weeks : deg 72.2 8.0 13.7 5.4 0.7

flickr-weeks : cc 49.2 7.4 36.2 7.2
y!360-weeks : deg 72.1 10.6 13.3 3.8 0.2

y!360-weeks : cc 37.6 8.4 46.5 7.5

Table 7: Distribution of vertex labels

5.4.2 Results

We analyze the experimental results with regard to the following ques-
tions:

Q1 Do the extracted patterns and rules characterize the studied net-
work?

Q2 Do different time granularities influence the confidence of the rules?

Q3 How do the different confidence definitions compare?

Q4 How do the parameters and the type of dataset influence the num-
ber of derivable rules, the number of patterns obtained, and the run
time?

94

(a) (b)

(c) (d)

Figure 25: (a)–(d): comparison of confidence of graph evolution rules in the
two bibliografic networks

Q1: Discriminative analysis. The first question is if the extracted pat-
terns carry information that characterizes the analyzed network. In order
to address this question graph evolution rules from the first six datasets in
Table 6 were extracted with a minimum support threshold of 5000 for all
but the “weeks” datasets where a minimum threshold of 3000 was used.
Then we compared all pairs of datasets with respect to the rules confi-
dences found in both datasets. We show the pair-wise comparison results
in Fig. 25 and Fig. 26. The plots allow for several interesting observations.
First, we see that the comparison between a co-authorship network (arXiv
or DBLP) and a social network (Y!360) as in Fig. 25(a),(b) and (c) show dif-
ferent confidence values of the rules for each dataset (using Flickr instead
of Y!360 gives the same results).

95

(a) (b)

(c) (d)

(e) (f)
Figure 26: (a)–(d): comparison of confidence of graph evolution rules in the
two social networks. (e),(f): comparison of support of patterns in different
networks.

In contrast, the comparison of two co-authorship networks (arXiv and
DBLP, in Fig. 25(d)) or two social networks (Flickr and Y!360, in Fig. 26(a)
to (d)) reveals that all rules are in the proximity of the bisector, meaning

96

that each rule has very similar confidence values in the both datasets. This
observation confirms our claim: graph evolution rules indeed characterize the
different types of networks.

Fig. 26 (e) and (f) compare the same two datasets as in Fig. 25(c) and
Fig. 26(d) respectively. However, in Fig. 25(e) and (f) we plot the rules ac-
cording to their support instead of their confidence. Contrary to Fig. 25(c)
and Fig. 26(d), both plots Fig. 26(e) and (f) show similar results, indicating
that the support of a rule can not be used to characterize different types
of networks.

Q2: Different granularity analysis. Fig. 27(a) similarly to Fig. 26(e), fo-
cuses on the difference of confidence from rules originating in the same
network but with different time granularity. We observe that confidences
for the weekly granularity are larger than the corresponding monthly
confidences. The colors/shapes in the plot correspond to the difference
between maximum time-stamp on an edge in the head (MTH) and max-
imum time-stamp on an edge in the body (MTB) of the rule. This figure
very clearly reveals the cause for the specific structure of the plot. First,
the difference between the maximum time-stamp in head and body indi-
cated by the shape perfectly models the confidence differences between
monthly and weekly granularity: the rules form three clear clusters (with
the corresponding regression lines reported in the plot).

The second observation is that a larger difference between the time-
stamps corresponds to a higher difference in confidence towards weekly
granularity. This is quite natural if we think about confidence trough the
lenses of prediction: the difference between the time-stamps in head and
body can be thought as the temporal gap that must be bridged by a pre-
diction task, and clearly predicting further in the future is more difficult
(i.e., lower confidence). Hence clusters with higher time-difference have
higher confidences in the weekly setting simply because three weeks are
shorter than three months.

Finally, it is worth noting that only one rule in this plot has a difference
of 4 between the maximum time-stamp in head and body: as expected it
is in the left bottom corner, and is closer to the weekly axis than to the
monthly axis.

97

Q3: Confidence and rules. Fig. 27(b) shows that the two confidence mea-
sures disagree. A more thorough investigation shows that all the rules
with an occurrence-based confidence exceeding 200 have the most sim-
ple body: one single edge. Furthermore, all those rules span 3 or 4 time-
steps from body to head. Given that they all share the same simplistic
body, which can be matched anywhere, a correct prediction, especially 3
or 4 time-steps into the future is doomed to fail. The support-based confi-
dence however, nicely assigns a confidence below 0.2 to all rules with the
simplistic body, equivalent to declaring them almost meaningless, thus
proving itself one more time fruitful being investigated and worthy be-

(a) (b)

(c)

Figure 27: (a): confidence comparison between monthly and weekly granu-
larity. (b): scatter plot comparing the two different definitions of confidence
discussed in section 5.2.3. (c) number of valid rules as percentage of the
number of frequent patterns, for varying confidence.

98

ing used.

Q4: Influence of parameters and dataset. Further important insights
can be gained from an analysis of the number of rules and patterns ex-
tracted as well as the run-times. To understand how many of the ex-
tracted relative time patterns are decomposable and thus can be inter-
preted as rules we calculated the ratio of valid rules over all extracted
patterns. Fig. 27(c) reports the number of valid graph evolution rules as
percentage of the number of frequent patterns found, for various mini-
mum confidence thresholds. This is done on one bibliographic and one
social network; each with and without node labels. In all cases, the num-
ber of rules is close to 80% of the number of frequent patterns. Besides
the fact that a lower minimum confidence thresholds yields more rules,
the results nicely reaffirm the observation from Fig. 27(a). Indeed, rules
extracted from a dataset with weekly granularity enjoy a much higher
confidence than rules extracted from a dataset with yearly granularity.

As intended, the size of the result of the mining task depends on the
maximum edge and the minimum support constraint. With a higher
number of edges exponentially more graphs are possible, thus the ex-
ponentially increased number of extracted patterns for larger number of
edges in Fig. 28(e) comes at no surprise. For lowering the minimal sup-
port Fig. 28(d) shows the typical result. Lowering the support threshold
allows for more complex patterns which contain more edges and thus for
the same reason as above the growth is exponential.

As Fig 28(a)-(b) show, the run time is affected much more by the max-
imum edge (max-edge) than the minimum support constraint (min-sup).
While the increase is almost linear with decreasing minimum support,
the run time grows exponentially with an increasing maximum edge size.
Note the increase of two orders in magnitude in Fig. 28(b) from four to
five and five to six edges.

A more interesting observation can be made from the Fig 28(c) and
(f). The underlying graph structure is the same in both datasets with the
only difference being the time-granularity of the edge time-stamps. The
weekly graph with 41 edge labels is more diverse than the monthly graph
with only 10. While the runtime between both datasets varies highly

99

(a) (b)

(c) (d)

(e) (f)

Figure 28: (a)–(f): run time and number of patterns found with varying min.
support and max. edge thresholds.

with changing minimum support, the number of patterns extracted is
almost the same for each minimum support. With regard to the num-
ber of patterns a higher label-diversity allows for more different patterns
(i.e., more possible combinations for a fixed number of edges) if the sup-

100

(a) (b)

(c) (d)

Figure 29: Run time and number of patterns found on networks with la-
belled nodes with varying min sup.

port is low enough for these to be considered frequent. However, a lower
label-diversity means that patterns can be found more repeatedly since
the host-graph is more homogeneous, but the amount of different pat-
terns is limited. Thus for a fixed number of edges there are more patterns
with a high support in the more homogeneous graph and more patterns
with low support in the graph with a higher label diversity as confirmed
in Fig. 28(f). Regarding the varying run times between the datasets, in
the more diversified data more patterns of smaller size can be found. The
subgraph-isomorphism for these patterns is easier to calculate simply be-
cause they are smaller. Furthermore, it is easier to find a non-matching
edge in the more diversified graph earlier, thus being able to terminate
a search-branch for the subgraph-isomorphism check earlier. These two
reasons explain the much lower runtime on more diverse graphs.

101

A similar reasoning holds for graphs with labelled nodes (Fig. 29).
Also in this case the diversity introduced by the node labels reduced the
number of patterns found and the run time.

y!360 weeks
min supp e2 e3 e4 e5 e6

1000 16 241 1478 7253 34904
1100 16 215 1179 5337 23828
1200 16 196 963 4075 16777
1300 16 173 791 3119 12028
1400 16 155 665 2435 8814
1500 15 141 550 1933 6584
1600 15 130 487 1581 5011
1700 15 115 413 1272 3870
1800 15 106 358 1051 3004
1900 14 95 308 884 2405
2000 14 87 269 717 1903
2500 12 59 153 337 708
3000 11 43 99 180 315
3500 9 34 64 103 149
4000 8 26 43 61 76
5000 6 18 26 29 29
6000 5 12 15 16 16
7000 5 11 12 12 12

10000 3 5 5 5 5

Table 8: Number of patterns of different size at various minimum support
(ei denotes a pattern with ≤ i edges).

Finally, Table 8 shows the number of patterns of different size at vari-
ous minimum support, for the y!360 weeks dataset.

5.5 Extensions

In this section we discuss briefly how to relax some of the assumptions of
our problem definition.

Consider first the pattern H in Fig. 23. Imagine that in the data it is
the case that when there is a star of size 3 an edge between two peripheral
nodes appear. Pattern H captures partly this phenomenon, but is also too

102

“specific” as it emphasizes that the star was formed in particular time
instances before the appearance of the last edge. A more general pattern
would be to replace the time-stamp of the last edge with T , and the time-
stamp of all the edges in the star with the constraint “< T”, which will
have to be satisfied when tested with the time-stamps of the host graph.

For sake of presentation, in section 5.2 we assumed that graphs can
only grow in time. However, our approach can be easily extended to
handle edge-deletions if an edge can appear and disappear at most once.
The extension would consider two time-stamps tI (time of insertion) and
tD (time of deletion) on each edge instead of the single time t. By modify-
ing definitions 1 and 2 condition (ii) to ∀(u, v) ∈ EP it is tI(ϕ(u), ϕ(v)) =
tI(u, v) + ∆ and tD(ϕ(u), ϕ(v)) = tD(u, v) + ∆.

We did no implement the above matching since two out of four datasets
(arXiv and DBLP) are naturally only growing (thus, no deletions) and
deletions are rare in the other two.

In our approach, we have not considered node or edge relabelling so
far. Considering node and edge relabeling is very interesting, as in many
graphs, such as social networks, the properties of nodes and edges change
over time. For example, in social-network analysis it would be interesting
to study the change of leadership in communities and its effects.

5.6 Discussion

Following a frequent pattern mining approach, we defined relative time
patterns and introduced the problem of extracting Graph Evolution Rules,
satisfying given constraints of minimum support and confidence, from
an evolving input graph. While providing the problem definition we dis-
cussed alternative definitions of support and confidence, their merits and
limits. We implemented GERM an effective solution to mine Graph Evo-
lution Rules, and we extensively test it on four large real-world networks
(i.e., two social networks, and two co-authorship networks from biblio-
graphic data), using different time granularities. Our experiments con-
firmed the feasibility and the utility of our framework and allowed for
interesting insights. In particular we showed that Graph Evolution Rules

103

with their associated concept of confidence, indeed characterize the dif-
ferent types of networks.

Besides all the above extensions, one possible straightforward appli-
cation of our framework is to take advantage of the just defined rules
and confidence: such a paradigm enables us to put the basis for defin-
ing a framework that will allow us to predict graph evolution, and that,
together with GERM , will provide helpful tools for social-network anal-
ysis and other fields of research where dynamic graphs are a good data
representation.

Availability. The executable code of the GERM software is freely avail-
able at: http://www-kdd.isti.cnr.it/GERM.

104

http://www-kdd.isti.cnr.it/GERM

Chapter 6

From Local Patterns to
Graphs

Like in chapter 4, here we want to analyze the setting of action in a net-
work. However, some details are in contrast with the rest of the thesis:
instead of looking for frequent local patterns in graph data, we start from
them and we build the original graph. In this chapter, the general ap-
proach to graph mining followed so far is lost, as we start from traces in a
dataset of process logs, and constraints are not used to drive the search to
an efficient and focused direction, but they are part of the model and rep-
resent properties of the local patterns. Another important detail that we
do not assume here is the network of users, neither implicit (as in chap-
ter 4) nor implicit (as in chapter 5): in this chapter, we do have a set of
users performing actions during time, but the network we want to build
is among the different tasks that the users perform. In fact, the context is
that of Workflow Mining.

6.1 On Workflow Mining

In the past few years, many organizations have started to use information
systems to support the execution of their business processes (69). With the
increasing number of these available systems, the volume of the available

105

collected processes logs is growing rapidly. These logs are very useful
in several fields: in design and production processes, it could be impor-
tant to detect the actual state of the process, how many items have been
produced and in how much time; in logistics, the optimization of times
is crucial; every step should be made strictly on time, and if there are
anomalies or problems, the entire logistic solution should be redesigned.
For such reasons, the interest in analysing process logs has been increas-
ing rapidly in the last years (32; 83; 89). However, such logs are hard to
analyse from different points of view because there is too much data, the
original process diagram is too complex, and there are too many users to
observe. Several techniques, such as workflow mining, have been pro-
posed to automatically derive the workflow models originating from the
process logs (42; 88; 96). Their focus is to derive the process model that
was actually followed, and this can be different from the original one in
several ways, e.g., certain tasks from the original process were never per-
formed or were performed too many times, or the tasks performed were
not in the original diagram. In addition, these techniques answer ques-
tions such as:

• Given the logged traces, what is the workflow network?

• Is the mined workflow network equivalent to the original design?
(Delta Analysis)

• Is the mined workflow network better than the original design?
(Performance Analysis)

However, current approaches mainly use the temporal information con-
tained in the logs just for keeping track of the temporal order of the per-
formed tasks.

Indeed, the temporal information associated with logs in the form of
timestamps conceals knowledge that allows to distinguish among differ-
ent temporal behaviors.

For example, suppose we have to execute tasks A, B and C and that
the transition time from A to B is usually 1 minute, and from B to C it
is 9 minutes. If we have a transition time of 9 minutes from A to B and

106

1 minute from B to C, we are in the presence of an anomaly during the
process, even if the sequence of the performed tasks follows the process
workflow. In this case, the usual workflow mining techniques do not de-
tect the anomaly and therefore treat the abnormal execution as normal. In
addition to anomaly detection, it could be useful to highlight situations
in which some users are faster (or slower) than others in performing cer-
tain tasks, or situations in which some resources take too much time to
be performed. In this sense, the model returned by the analysis process
might be even richer than the original model, since temporal features of
the tasks are often kept out of the design phase, or at least they are not
explicitly specified in the model.

The contributions of this chapter can be summarized in 3 points:

• a mining method that extensively takes into consideration the time
information, i.e., the extracted patterns representing a group of ex-
ecutions of a given process with similar execution times

• extracted patterns are summarized by taking into account the se-
mantics of the possible executions, namely parallelism or mutual
exclusion

• users can interact with the extracted and summarized patterns and
explore alternative cases proposed by the system.

The first point is based on Temporally-Annotated Sequences (TAS)
mining, introduced in section 4.3.

In summary we propose a methodology for helping the domain expert
in the analysis of process logs. This methodology aims at understand-
ing which possible models might have generated such logs, and whether
such models might also contain temporal constraints. The methodology
can be broken down in 4 main pieces described later in section 6.2.

This framework has been applied to a real-world system: a manu-
facturing company. We collected the logs of 3 million transactions on 9
tasks for a total of about 1 million performed tasks processing the access
to the design of various mechanic components to be put into production.
This factory is located worldwide and therefore the tasks are executed

107

by different users at different locations. The results are encouraging, and
indeed unexpected behaviours emerge.

The remainder of the chapter is organized as follows: section 6.2 is
the core of the paper that presents the original contributions of our work.
It describes the overall methodology: the formal definition of the factor-
ization operators, the exploration graph TAG, and the algorithm for the
interactive workflow analysis. Section 6.3 presents a case study in which
we applied the framework to a real dataset of process logs. Section 6.4
discusses the contributions and the results of this chapter.

6.2 A TAS-based workflow mining approach

In this section we introduce a methodology for helping the domain expert
in the analysis of process logs, aimed at understanding which possible
models might have generated such logs, and whether such models might
also contain temporal constraints. The methodology is composed of the
following elements:

• a TAS-based representation of the original log traces, that filters out
noisy behaviours and detects temporal regularities. Such represen-
tation consists of a set of frequent TAS ;

• a set of operators for recognizing and factorizing two standard com-
ponents of workflow models – i.e., parallelism and choice – from
the TAS , keeping trace of the temporal component;

• a graph summarization of a database of TAS , to provide the user
with an easy-to-grasp view of the data;

• an iterative and interactive procedure for exploring different and al-
ternative factorizations of the same database of TAS , potentially cor-
responding to different interpretations of the original input traces.

Performing these operations manually, by analyzing large quantities
of information (such as 1 million of tasks performed as in our case study
in section 6.3) is unfeasible and may not guarantee to discover what the
domain expert or the workflow designer was looking for.

108

In the following, we start the discussion by summarizing the ultimate
objective of this work, i.e., an interactive workflow analysis system. Then,
for ease of presentation, we first describe the kind of data our analysis
starts from (i.e., workflow traces) and define the above mentioned factor-
ization operators over such data type. After that, the TAS-based represen-
tation of the input data is briefly described, extending the factorization
operators to the case of TAS and defining a graph summarization of sets
of TAS . Both the factorization operators and the graph representation
will be the building blocks of the final analysis system, which is then de-
scribed in more detail.

6.2.1 Problem setting: workflow analysis

One of the most important objectives in workflow analysis consists in
reconstructing (part of) the workflow model that has generated a given
dataset of process execution traces. This sort of reverse engineering opera-
tion is often very useful for comparing the model derived from the traces
with the original model that generated them. This kind of comparison
might highlight some design mistakes, useless or redundant parts of the
model or, in general, a usage of the model that differs from the intentions
of its designer (e.g., containing the systematic adoption of actions that
were originally meant to be exceptional measures).

Reconstructing the model underlying a set of process traces usually
requires to make some guesses about the scheduled order of operations
in the model, or whether some sets of actions were executed in paral-
lel (parallelism) or they were executed as mutually exclusive alternatives
(choice). The method proposed in this work tries to perform such a recon-
struction in a step-by-step fashion, selecting (with the aid of the user) and
isolating at each stage a single relation between actions, and iterating the
process till all significant relations were caught. The whole process can
be sketched as follows:

1: Represent the input set of process traces through a set of frequent
TAS ;

2: while user does not stop the execution do

109

3: Compute a graph-based summary of the actual set of TAS ;
4: Detect the potential cases of parallelism and choice between pairs of

actions within the actual set of TAS ;
5: Ask the user to choose a single case of parallelism or choice to factor-

ize, or to backtrack;
6: if backtrack

then Return to the set of TAS preceding the last factorization
step;

else Factorize the chosen relation between two actions (paral-
lelism or choice), and update the set of TAS accordingly;

As we can see, the approach requires the interaction with the user, for
choosing, among the several possible alternatives available at each step,
the factorization that looks more promising. Performing such choice au-
tomatically would require to have a function that correctly evaluates the
quality or utility of any alternative (i.e., any case of parallelism or choice)
and selects the best one. To the best of our knowledge, the state-of-art of
the field is still far from defining any function of this kind having a suf-
ficiently wide applicability, therefore our solution demands this heavily
domain-dependent evaluation to the user. The interaction with the user is
facilitated by means of a graphical, graph-based, summarization of the set
of TAS at hand, which provides a complementary, more readable view of
the same data, that can help in choosing the next most interesting factor-
ization step to perform, among those listed by the system. These aspects
are detailed in sections 6.2.6 and following ones.

6.2.2 The process workflow context

The digital traces collected during the re-iterated execution of a workflow
process essentially have a sequential nature, and describe the ordered list
of actions executed in each run, together with the agents who performed
them and the date/time of execution:

Definition 23 (Workflow trace, Workflow log) Let A be a finite set of ac-
tions and U a finite set of users. Then σ = 〈(a1, u1, t1)(a2, u2, t2) . . . (an, un, tn)〉,
where ai ∈ A, ui ∈ U and ti is a timestamp describing when the user ui atomi-

110

cally performed ai, is a Workflow trace or Process instance. A set L of work-
flow traces is a Workflow log.

Therefore, a workflow log describes several runs (i.e., instances) of the
same workflow process, each run being represented as a sequence of op-
erations. An example of such a data can be found in Table 9 in section
6.2.8, where two workflow traces (identified by the column “Inst.ID”) are
represented, each containing 4 actions (tasks) performed by a unique user
at different times.

Basic applications of workflow log analysis focus on the sequences of
actions performed in each trace, therefore disregarding the user identity
and the temporal information, and representing each trace essentially as
a sequence of items. For instance, the sample workflow log in Table 9
could be reduced to a set of two sequences: { x→ a→ b→ c, x→ b→
a→ c }.

6.2.3 Detecting parallelism and choice

As mentioned above, a typical workflow model can schedule the actions
in several ways, including sequential execution (action a must be exe-
cuted before b), parallel execution (a and b are launched together), and
choice (only one between a and b is executed). A simple way to infer
the presence of a parallelism or of a choice looking at a set of process in-
stances, then, consists in locating possible evidences (or just clues) of such
relations in the traces. On one hand, two actions invoked in parallel can
appear in the traces in any order; on the other hand, two actions that form
a choice can never appear one after the other. Following these basic ideas
we define two relations between actions, that hold when the workflow
traces suggest that a pair of actions might be executed in parallel or as a
choice:

Definition 24 (Items relationships) Let I be a set of items, and S be a set of
sequences of items. Then, given a, b, x ∈ I , we define the relations a ‖x b (read
”a is parallel to b w.r.t. x”) and a%xb (read ”a is in choice with b w.r.t. x”) as
follows:

• a ‖x b ⇔ ∃ s, s′ ∈ S such that:
(x→ a→ b v s) ∧ (x→ b→ a v s′);

111

• a %x b ⇔ ∃ s, s′ ∈ S such that:
(x→ a v s) ∧ (x→ b v s′), and
6 ∃ s′′ ∈ S : (a→ b v s′′) ∨ (b→ a v s′′);

where v is the substring relation, i.e., s v s′′ iff all items of s appear in s′ in the
same order and in contiguous positions.

In the above definition, the relation between two items takes into con-
sideration not only their relative positions in the input sequences, but also
a limited form of context: both items (a and b) are preceded by a common
item (x). This is a trade-off between more conventional relations defined
in literature (e.g., (69)), mostly focused only on the items involved, and a
more general approach that takes into consideration a larger number of
items in the past context and a number of items also in the future context,
i.e., situations like x1 → · · · → xN → a → b → y1 · · · → yM . In our case,
essentially, we are considering N = 1 and M = 0.

Example 7 (‖x) If we have the sequences: x → a → b, x → b → a, then,
according to Definition 24, we can write: a ‖x b. On the contrary, in the case of
sequences: x→ a→ b, y → b→ a there is no parallelism under our definition,
since each context (resp. x and y) leads to a distinct and coherent order of a and
b. More standard definitions of parallelism do not consider the provenance of
subsequences a→ b and b→ a, therefore they are mixed up and interpreted as a
unique evidence of a parallelism.

Example 8 (%x) If we have the sequences: x → a → b, x → b → d, then,
according to Definition 24, we can write: a%xb. If we add the sequence x →
b→ a to this example, a%xb does not hold anymore, while now it holds a ‖x b.

After defining which pairs of items/actions might potentially be in
relation, we provide a function that lists all such relations, divided in par-
allelisms and choices:

Definition 25 (Parallelism detector) We define an unary operator P(S) that
associates to a set of sequences S the collection of relations of parallelism con-
tained in S, i.e., P(S) = {(x, a, b) | a ‖x b in S}.

Definition 26 (Choice detector) We define an unary operator C(S) that asso-
ciates to a set of sequences S the collection of relations of choice contained in S,
i.e., C(S) = {(x, a, b) | a%xb in S}

112

Example 9 (Detectors) Given a set of sequences S = {x→ a→ b→ c, x→
b→ a}, the following holds:

• P (S) = {(x, a, b)}

• C(S) = {(b, a, c)}

The approach proposed in this work consists in iteratively selecting
one of the possible relations between items, and then factorizing it in the
traces, i.e., locating the occurrences of such relation and replacing the
items involved with a new element that represents the pair of items and
the relation that connects them. That yields a new set of traces, where the
selected relation between items has been isolated and emphasized.

Definition 27 (Factorize‖) Let S be a set of
sequences. Given (x, a, b) ∈ P(S), we define the operator
Factorize‖((x, a, b), S) = S′, where every subsequence x → a → b or x →
b→ a of s ∈ S is replaced with x→ a ‖ b, where a ‖ b is a new item.

Definition 28 (Factorize%) Let S be a set of
sequences. Given (x, a, b) ∈ C(S), we define the operator
Factorize%((x, a, b), S) = S′, where every subsequence x → a or x → b of
s ∈ S is replaced with x→ a%b, where a%b is a new item.

On the new set of traces obtained by applying one of the factorization
operators above, the same kind of analysis (detection of relations) and
transformation (factorization) can be applied, iteratively.

Example 10 (Factorization) Given S, P (S) and
C(S) as in Example 9, we can apply the factorization operators in the following
way:

• Factorize‖((x, a, b), S) = S′ =
= { x→ a ‖ b→ c , x→ a ‖ b }

• Factorize%((b, a, c), S) = S′′ =
= { x→ a→ b→ a%c , x→ b→ a%c }

113

6.2.4 A TAS-based representation of traces

Applying the operators described above to the raw workflow traces has
some drawbacks, mainly due to the possible presence or errors (missing
actions, or actions registered by mistake) or very rare behaviours that we
might want to exclude from the analysis.

Our approach provides that the analysis is carried out not on the orig-
inal traces but on a set of TAS that represent the frequent behaviours
(w.r.t. a given frequency threshold) and their temporal characteristics.
That yields two results:

• first, errors and spurious behaviours are eliminated, since they are
expected to appear with very low frequency, and therefore cannot
appear in frequent patterns;

• second, the temporal information carried by the TAS can be used to
better understand the behaviours appearing in the original traces,
since different times in performing the same sequence of actions
might reveal different usages of the same resources.

An example of TAS obtained from an input dataset of workflow traces is
given in Table 10. Each TAS represents a sequence of actions (e.g., x → a

in the first TAS listed) together with the set of typical transition times
taken to move from one action to the next one (e.g., any time t ∈ [18, 20],
for the first TAS).

The set of TAS used to represent the original traces can be selected
following different criteria. Beside adopting different parameters and
thresholds for the TAS mining phase, we could choose to use all the TAS
extracted, or just the maximal ones, or those that satisfy other constraints,
for instance temporal (e.g., take only patterns having duration longer
than 5 minutes) or structural constraints (e.g., exclude patterns where the
same action appears twice, thus evidencing the presence of a loop). For
simplicity, in this paper we will adopt the first option, thus using all the
TAS extracted. However, the whole analysis process can be equally ap-
plied with different selection criteria.

114

In the following we extend the operators described above in order to
treat TAS , instead of simple sequences.

6.2.5 Parallelism and choice over TAS

All the definitions given for workflow traces do not take into account the
temporal dimension contained in the data we work with. In order to add
the time to our model, we redefine them for the case where the input
sequences are a set of TAS , as follows.

From now on, we assume to have a set of TAS T , each TAS being rep-
resented as a pair t = (s, α), where s is a sequence of items and α is a
sequence of transition times. We also define as ST the set of sequences
that appear in T , without times, i.e., ST = {s|(s, α) ∈ T}. Then, defini-
tions 24, 25 and 26 can be applied to ST , essentially defining and locating
parallelisms and choices only on the sequence component of our TAS .

However, since when we solve a parallelism or choice instance we
have to perform some operations to the temporal annotations on the cor-
responding sequences, we should redefine the factorization operators as
follows.

Definition 29 (Factorize‖) Let T be a set of TAS . Given (x, a, b) ∈ P(ST),
we define the operator
Factorize‖((x, a, b), T) = T ′, where every temporally annotated substring
x

α0−→ a
α1−→ b of (s, α) ∈ T is replaced by x α0−→ a ‖ b, and every temporally

annotated substring x
α′0−→ b

α′1−→ a of (s′, α′) ∈ T is replaced by x
α′0−→ a ‖ b,

where a ‖ b is a new item.

Definition 30 (Factorize%) Let T be a set of TAS . Given (x, a, b) ∈ C(ST),
we define the operator
Factorize%((x, a, b), T) = T ′, where every temporally annotated substring
x

α0−→ a of (s, α) ∈ T is replaced by x α0−→ a%b, and every temporally an-

notated substring x
α′0−→ b of (s, α) ∈ T is replaced by x

α′0−→ a%b, where a%b is
a new item.

Example 11 (Factorization) Given a set of frequent TAS T = {x [18,20]−−−−→
a

[3,4]−−−→ b
[7,10]−−−→ c, x

[19,22]−−−−→ b
[2,4]−−−→ a}, its corresponding set of sequences

115

is ST = {x → a → b → c, x → b → a}. Then, we can apply the factorization
operators in the following way:

• Factorize‖((x, a, b), T) = T ′ = {x [18,20]−−−−→ a ‖ b [7,10]−−−→ c, x
[19,22]−−−−→

a ‖ b}

• Factorize%((b, a, c), T) = T ′′ = {x [18,20]−−−−→ a
[3,4]−−−→ b

[7,10]−−−→ a%c, x
[19,22]−−−−→

b
[2,4]−−−→ a%c}

6.2.6 A graph summarization of TAS

The set of TAS extracted from a database of workflow traces can be rather
large, though usually much less than the original data. That makes it dif-
ficult for a human expert to obtain an overall picture of the sequences of
tasks described by the data by simply sifting through them. For this rea-
son, in this work we define a graph data structure that provides a com-
plementary, lossy yet easy-to-read view of the set of TAS under analysis.

Definition 31 (Temporally-Annotated Graph)
Given a set T of frequent TAS , we define the temporally-annotated graph
(TAG) for T as a labeled graph G(T) = 〈V,E, l〉, whose nodes represent the
actions appearing in T , the edges represent pairs of actions performed consecu-
tively in at least one TAS of T , and the label of each edge is a set containing all
the transition times that occurred in any TAS between the two corresponding
consecutive actions. More formally:

V = {a | a v s, s ∈ ST }
E = {(a, b) | a→ b v s, s ∈ ST }

l((a, b)) = {α | a α−→ b v t, t ∈ T}

Figure 30 shows the Temporally-Annotated Graph corresponding to the
starting set of TAS in Example 11. As we can see, all actions, all transitions
between consecutive actions and all transition times contained in the TAS
are depicted in the graph. On one hand, the graph loses some informa-
tion, since all sequences longer than 2 in the TAS are virtually broken into
pieces of length 2, not allowing to understand whether there is a loop in
the starting sequences (a → b → a) or whether b → c is preceded by a

116

x

a[18,20]
b

[19,22]

[3,4]

[2,4]
c

[7,10]

Figure 30: TAG for TAS T in Example 11

x

a[18,20]

b[19,22]

[3,4]

a%c

[2,4]
[7,10]

Figure 31: TAG after choice factorization in Examp. 11

in any sequence or, on the contrary, any sequence that passes through a

terminates at b. On the other hand, the graph allows to understand at first
sight some useful properties, for instance the fact that x plays the role of
a source node, and c that of a terminal node, while between a and b there
is not a strict order, which might be due to a loop or a case of parallelism.
For comparison, in Figure 31 it is reported the TAG corresponding to the
previous set of TAS after the factorization of a choice case. Notice that:
(i) factorizing the choice case has as a side effect the disappearance of
the parallelism located in the original set of TAS , due to the fact that the
two relations were in conflict and therefore the user must give priority to
only one of them and disregard the other; (ii) the transition times for the
rightmost edge (b → a%c) are obtained as union of those of b → a and
b→ c, which is a direct effect of the way the labels of edges are defined in
Definition 31.

Notice that our definitions of parallelism and choice involve a notion
of context, that leads, in the case of parallelism, to check relations between
actions in sequences of length 3 (which might become longer, if we ex-
tend the definitions to consider a longer context). That means that such
relations cannot be clearly identified from the graph alone, and therefore

117

the factorization analysis must be performed directly on the TAS , as done
in section 6.2.5.

6.2.7 Interactive Workflow Analysis

The operators defined in the previous section allow to detect particular
situations present in the dataset (parallelisms and choices), and to trans-
form the latter in order to group the items involved.

We remark that the order of application of the operations is relevant,
since after applying an operator the conditions for applying another op-
erator could be not valid anymore (e.g., the result of a factorization for
parallelism could destroy the subsequences that created a situation of
choice), or simply the result could affect a different part of the dataset.
In order to take into consideration all the possible sequences of opera-
tors applicable, we define a graph that represents the partially ordered
set (poset) of all datasets that can be obtained from the original one (T),
through a sequence of factorizations.

Definition 32 (Poset graph) Given a dataset T of TAS, we represent the poset
of transformations of T through a poset graph PG(T) = (V,E), where:

V = PC∗ ↑ω ({T})
E = {(a, b) ∈ V × V |b ∈ PC({a})}

such that

PC(Ts) = {Factorize‖((x, a, b), T)|
T ∈ Ts ∧ (x, a, b) ∈ P(ST)}

∪ {Factorize%((x, a, b), T)|
T ∈ Ts ∧ (x, a, b) ∈ C(ST)}

PC∗(Ts) = Ts ∪ PC(Ts)

i.e., V is the fix-point of operator PC∗ applied to the original dataset, which
yields the set of datasets obtained through a sequence of factorizations, and E
connects each dataset with the dataset it was obtained from.

If the original dataset of TAS is complex and contains critical situations,
such that items involved in several parallelisms or choices, loops, etc., the

118

set of transformed datasets can be very large. Therefore, it could be im-
practical for the end-user to simply fetch the whole graph of transforma-
tions. In Algorithm 6.2.7, we sketch an interactive procedure that extracts
only a subset of the possible transformations, by asking the user which
branch of the graph to explore, possibly backtracking to previous nodes
of the graph: Figure 32 shows an example of a complete poset graph for

Algorithm 8 Interactive Poset Graph Navigation

Input: dataset of process logs L
Output: a set T of (factorized) TAS

1: Extract the set T = T0 of frequent TAS from L;
2: while execution not stopped by the user do
3: Compute the TAG on T and display it;
4: Compute the set S = P(ST) ∪ C(ST);
5: Present S to the user and ask him/her to select

an operation op from S ∪ {backtrack};
6: if op = backtrack ∧ T 6= T0 then

T = T ′ s.t. (T ′, T) ∈ E, PG(T0) = (V,E);
7: else

T = factorization of T through op;
8: return T ;

a small dataset. The topmost TAG represents the (graph representation of
the) set of TAS exctracted from the input workflow log, as described in
steps 1–3 of Algorithm 8. Then, each arrow represents a possible factor-
ization operation for a given set of TAS (see step 4), and each time the
user chooses one of such operations (step 5) the algorithm factorizes the
actual set of TAS accordingly, and re-iterates the computation focusing on
the resulting set of TAS .

6.2.8 Run-through example

In this section we present a run-through example on a toy dataset of only
2 days of logs, where each day represents a transaction. For each trans-
action we have a sequence of performed tasks, together with their times-
tamps. Table 9 shows the data under investigation. On this data we apply

119

Inst.ID Task User Timestamp
1 x Administrator Oct, 09, 1980, 12:00:00
1 a Administrator Oct, 09, 1980, 12:00:19
1 b Administrator Oct, 09, 1980, 12:00:29
1 c Administrator Oct, 09, 1980, 12:00:31
2 x User1 Oct, 10, 1980, 17:10:12
2 b User1 Oct, 10, 1980, 17:10:13
2 a User1 Oct, 10, 1980, 17:10:51
2 c User1 Oct, 10, 1980, 17:10:54

Table 9: Example of Process Logs

the TAS mining paradigm, in order to extract sequences that are executed
frequently with typical transition times. Table 10 shows the TAS mined
with minimum support σ = 10% and temporal tolerance τ = 1.

TAS ID TAS TAS ID TAS
1 x

[18,20]−−−−→ a 7 x
[18,20]−−−−→ a

[9,11]−−−→ b

2 x
[0,2]−−−→ b 8 x

[0,2]−−−→ b
[37,39]−−−−→ a

3 a
[9,11]−−−→ b 9 a

[9,11]−−−→ b
[1,3]−−−→ c

4 a
[2,4]−−−→ c 10 b

[37,39]−−−−→ a
[2,4]−−−→ c

5 b
[37,39]−−−−→ a 11 x

[18,20]−−−−→ a
[9,11]−−−→ b

[1,3]−−−→ c

6 b
[1,3]−−−→ c 12 x

[0,2]−−−→ b
[37,39]−−−−→ a

[2,4]−−−→ c

Table 10: The corresponding mined TAS

Figure 32 shows the poset graph of TAG that can be obtained starting
from the TAG G1, which is the root of the graph. As we can see, we can
have several possibilities at a certain level, for example after we generate
graph G2. Each of them corresponds to having chosen to solve a particu-
lar parallelism or choice, first by enumerating all the possibilities by using
one of the two detector operators defined in section 6.2, then by applying
the corresponding factorization operator. Choosing which parallelism or
choice to solve will correspond to choose a path of TAG along the graph.
In this way we can navigate through all the possible actions that we can
perform on the original mined workflow TAG.

120

x

a

b

c

[1
8
,
2
0
]

[2
,
4
]

[0
,
2
][3

7
,
3
9
]

[9
,
1
1
]

[1
,
3
]

x

a

b

c

[1
8
,
2
0
]

[2
,
4
]

[0
,
2
][3
7
,
3
9
]

[9
,
1
1
]

[1
,
3
]

(a
)||

(b
)

[0
,
2
]
[1

8
,
2
0
]

[1
,
4
]

a

b

c
[2

,
4
]

[3
7
,
3
9
]

[9
,
1
1
]

[1
,
3
]

x

(a
)%

(b
)

(a
)||

(b
)

[0
,
2
]
[1

8
,
2
0
]

[0
,
2
]
[1

8
,
2
0
]

[1
,
4
]

x

a

b

c

[1
8
,
2
0
]

[3
7
,
3
9
]

[9
,
1
1
]

[1
,
3
]

((
a
)||

(b
))

%
(b

)
[0

,
2
]
[1

8
,
2
0
]

[1
,
4
]

x

b

a

c

[1
8
,
2
0
]

[3
7
,
3
9
]

[9
,
1
1
]

[1
,
3
]

((
a
)||

(b
))

%
(a

)
[0

,
2
]
[1

8
,
2
0
]

[1
,
4
]

[2
,
4
]

[2
,
4
]

x

a

b

c

[3
7
,
3
9
]

[9
,
1
1
]

[1
,
3
]

((
(a

)||
(b

))
%

(a
))

%
b
)

[0
,
2
]
[1

8
,
2
0
]

[1
,
4
]

G
1

G
2

G
3

G
4

G
5

G
6

Fi
gu

re
32

:T
he

po
se

to
fd

er
iv

ed
TA
Gs

(d
as

he
d

el
lip

se
s

in
di

ca
te

th
e

ne
w

it
em

s
in

tr
od

uc
ed

by
fa

ct
or

iz
at

io
ns

)

121

6.3 Case Study

In this section we present the work done as a case study on real-life data.
The dataset comes from the usage of a real-world system developed by
Think3(1), which is an object repository managing system, that allows
the users to operate on the same objects from different locations. The
timestamps contained on the logs represent the exact moment in which
the event occurred. In particular, we did not have the starting and end-
ing time of an operation, so we assumed that they are instantaneous and
that the timestamps generally refer to the pair (execution time, transition
time).

The dataset contains about 300000 transactions on 9 tasks, for a total
of about 1 million of performed tasks. The logs span along 6 months of
executions. For our analysis, we used a quite low support threshold of
0.5%, coupled with a τ of 1000 (seconds). Surprisingly, even these thresh-
olds were enough to cut away two tasks from the frequently obtained
annotated sequences. This proves that by manipulating the σ and τ pa-
rameters one can perform different grained analysis, even focusing on a
frequently performed subprocess. Figure 33 shows a graph derived from
the sequences of the original dataset of process logs in input, obtained
with a procedure identical to the construction of TAG, but without deal-
ing with the temporal information.

Delete

Construction
Modify

Administrator AVP2T Building Up

Null serie

Model definition

Released

Figure 33: The graph derived from the original input data

Figure 34 shows the TAG resulting from the initial mining step, before
looking for any dependency among the activities. As we can see, the σ
and τ parameter played already an interesting role in this first step: sev-

122

Construction

Building_Up
[0, 1128]

Released

[0, 1128]

Model_definition
[0, 1000]

Null_serie

[0, 1000]

[0, 8552]

[8600, 8680]

[8728, 8808]

[0, 2664]

[2712, 2792]

[0, 1000]

[0, 1064] Administrator

[0, 2408]

[2456, 2536]

Modify

[0, 1640]

[0, 6504]

[6552, 6632]

[0, 5608]

[5656, 5736]

Figure 34: The initial mined TAG

eral paths in the graph have disappeared, making 2 out of 9 tasks disap-
pear as well. Of course, using a lower minimum support and/or a higher
τ would have resulted in a more selective mining, making several other
paths and tasks disappear from the graph.

We then followed the steps we have described on the previous section:
after running the TAS mining software, we applied all the operators we
have in our framework, looking for interesting dependency situations.
After one step of analysis, we found one parallelism and several choices.
We followed the parallelism, obtaining the TAS graphically depicted in
Figure 35.

If we go one step forward, solving the choice between (Administra-
tor) and (Modify), we can note an interesting event: due to the particular
handling of the temporal annotations and to the definition of the choice
splitter, the annotations of the (Administrator) task became split between
the choice node and what was left to the old (Administrator) node. Thanks
to this particular feature, it was possible to detect frequent temporal be-
haviours that can be actually divided in two sub-behaviours. This situ-
ation is depicted in Figure 36. As we can see, this framework is particu-

123

Construction

Building_Up

[0, 1128]

Released

[0, 1128]

Model_definition

[0, 1000]

Null_serie

[0, 1000]

(Building_Up)||(Released)

[0, 1128]

[0, 8552]
[8600, 8680]
[8728, 8808]

[0, 2664]
[2712, 2792]

[0, 1000]

[0, 1064]

Administrator

[0, 2408]
[2456, 2536]

Modify

[0, 1640]

[0, 1128]

[0, 6504]
[6552, 6632]

[0, 5608]
[5656, 5736]

Figure 35: The TAG after one factorization step

larly suitable for any kind of temporal analysis of process logs. Thanks
to the temporal annotations, it is easily possible to find bottlenecks on
the process, unexpected behaviours, separate useless or redundant tem-
poral information while performing business process analysis and so on.
The TAS mining paradigm gives also the possibility, by a proper use of
the minimum support parameter (σ), to look at the executed task with
different granularity, looking for the most followed paths. The frame-

Construction

Building_Up

[0, 1128]

Released
[0, 1128]

Model_definition
[0, 1000]

Null_serie

[0, 1000]

(Building_Up)||(Released)

[0, 1128]

[0, 8552]
[8600, 8680]
[8728, 8808]

[0, 2664]
[2712, 2792]

[0, 1000]

[0, 1064]

(Administrator)%(Modify)

[0, 2408]
[2456, 2536]

Administrator
[0, 1128]

[0, 1384]
[0, 6504]

[6552, 6632]

Modify

[0, 5608]
[5656, 5736]

Figure 36: The TAG after two factorization steps

124

work hence results particularly suitable for performing Delta Analysis
and Performance Analysis. Analysts, in fact, can take advantage of our
methodology in two ways: by using iteratively and interactively the two
operators described in the paper, they can detect situations of choice and
parallelism performed by the users (either as their free choice or because
it was an intrinsic requirement of the corresponding tasks) that were not
designed, and discover a workflow diagram different from the designed
one (Delta Analysis); or they can take advantage of the temporal infor-
mation contained in the TAG to discover bottlenecks or to optimize the
execution of (part of) the process, by looking at the expected (possibly
designed) time needed to perform particular (sequences of) tasks (Perfor-
mance Analysis).

6.4 Discussion

In this chapter we have introduced a novel framework for mining work-
flow graphs from process logs that enables the user to perform a tem-
poral analysis by means of a TAS-based mining paradigm. We have in
fact shown that Graph Mining is not the only possible choice when trying
to analyze graph data in the temporal dimension, and that meaningful
graphs that express such a dimension can be built starting from sequence
data by means of techniques that involve the analysis of this kind of data.

We have presented a methodology for helping the domain expert in
the analysis of process logs, aimed at understanding which possible mod-
els might have generated such logs, and whether such models might also
contain frequent temporal behaviours.

After a run-through example, we have presented a case study in which
our model and framework have been used to perform visual temporal
analysis on a real-life process log dataset. Based on our work, we have
thus showed how the framework results suitable for performing Delta
Analysis and Performance Analysis involving also the temporal dimen-
sion contained in the data. The results in these directions are encouraging,
and indeed let emerge unexpected behaviours in our case study.

The presented technique opens the way for the develop of a com-

125

plete software for performing such an analysis, which will guide the user
through an iterative and interactive navigation of the poset of the possible
workflow diagrams that the data can support.

More sophisticated analysis is also possible, for example considering
the possibility of extending the management of the transition times, in
order to handle non-instantaneously executed tasks, which will enable
an even more sophisticated temporal analysis of the data.

A possible research direction would be also to take the original de-
signed workflow diagram as input, considering it during the mining step
to better analyze the process logs.

126

Chapter 7

Conclusions

In this thesis we have studied the problem of mining the temporal dimen-
sion in graph and network data.

We have identified two main settings in which time can play a role in
such data: action and evolution. We have seen how, in the former, users
(or entities) of a network perform any kind of actions during time: they
can diffuse information, they can influence other users, they can perform
actions together with other users (like playing a football match), they can
perform tasks independently from other users, and so on.

In the other setting, we have seen how graphs and networks can see
a change in their structure over time: new nodes can appear, as well as
users can quit a community, or they can densify the network by creating
new connections with other users, and so on.

From this kind of data, which is the data we have analyzed in this
thesis, we have seen how to extract useful knowledge about the temporal
dimension. In order to do so, we have investigate possible techniques of
analysis. We have shown how Graph Mining and TAS Mining can help
in this direction.

In particular, we have made an extensive study of the Graph Min-
ing literature, and we have studied its insights. We also presented a rich
study of the constraints that can be pushed in the computation, and we
have presented algorithms for pre-processing or mining graph data under

127

a conjunction of constraints, effectively extending the current literature.

We then have applied constraint-based Graph Mining to our main
purpose, and we have showed how to extract useful information in real
life datasets, both in the action and in the evolving settings. We have
proven that the general Graph Mining approach can help in this direc-
tion, and that specific constraints can play an important role.

As applications of our approach, we have first shown a general method-
ology to mine the information propagation in a network where users ex-
change information. We have described how to extract useful informa-
tion from such a network in order to be able to use a combination of two
powerful techniques, namely TAS mining and Graph Mining, in order
to find frequent patterns of propagation of information that involve also
the possible causes of these propagation. We have shown how this com-
bination can help in finding frequent temporal behaviors in the network
together with the characteristics of the users, and what are the roles of
these users in the network. We have presented results of a case study on
real-life datasets and we have provided a possible interpretation of some
of these results. While in these results the focus was on datasets of ex-
changed emails, one can easily see that this approach is easily applicable
to any kind of network of users where flows of any kind of information
are detectable. In particular, other possible uses of this approach include
the study of influence propagation, spread of viruses, the identification of
bottlenecks in a communication network, and so on.

Following a frequent pattern mining approach, we have also intro-
duced the problem of extracting graph evolution rules satisfying given
constraints of minimum support and confidence, from an evolving input
graph. While providing the problem definition we have discussed alter-
native definitions of support and confidence, their merits and limits. We
have provided an effective solution to mine Graph Evolution Rules, and
we have shown extensive tests on four large real-world networks (i.e.,
two social networks, and two co-authorship networks from bibliographic
data), using different time granularities. Our experiments confirmed the
feasibility and the utility of our framework and allowed for interesting
insights. In particular we have shown that Graph Evolution Rules with

128

their associated concept of confidence, indeed characterize the different
types of networks.

At last, we have introduced a novel framework for mining workflow
graphs from process logs that enables the user to perform a temporal anal-
ysis by means of a TAS-based mining paradigm. We have in fact shown
that Graph Mining is not the only possible choice when trying to ana-
lyze graph data in the temporal dimension, and that meaningful graphs
that express such a dimension can be built starting from sequence data by
means of techniques that involve the analysis of this kind of data.

We believe that the results of this thesis constitute a strong background
knowledge for the analysts willing to study graph and network data where
the time plays an important role. Thanks to our studies, we have proven
that our methods are applicable to a wide range of problems, and that
they are capable of extracting useful information about the explicit or im-
plicit temporal behaviors detectable in a network.

129

References

[1] The think3 company. http://www.think3.com. 122

[2] Lada A. Adamic and Eytan Adar. How to search a social network, Novem-
ber 2004. 7, 8

[3] Li Zhang Lada A. Adamic Rajan M. Lukose Eytan Adar. Implicit structure
and the dynamics of blogspace. Communications of the ACM : CACMa publ.
of the Association for Computing Machinery, 47(12):35–39, 2004. 7, 8, 61

[4] C. C. Aggarwal and P. S. Yu. Online analysis of community evolution in
data streams. In Proceedings of SIAM International Data Mining Conference
(SDM 2005), 2005. 12

[5] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining pro-
cess models from workflow logs, 1998. 10

[6] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining pro-
cess models from workflow logs. volume 1377-469+ of LNCS. Springer, ’98.
10, 11

[7] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining associa-
tion rules between sets of items in large databases. In Peter Buneman and
Sushil Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, Washington, D.C., May 26-28, 1993, pages
207–216. ACM Press, 1993. 26

[8] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan.
Group formation in large social networks: membership, growth, and evo-
lution. In KDD ’06: Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 44–54, New York, NY,
USA, 2006. ACM Press. 12

[9] Michele Berlingerio, Francesco Bonchi, Björn Bringmann, and Aristides
Gionis. Mining graph evolution rules. In ECML/PKDD (1), pages 115–130,
2009. 61

130

[10] Michele Berlingerio, Francesco Bonchi, Fosca Giannotti, and Franco Turini.
Mining clinical data with a temporal dimension: a case study. In Proc. of The
1st Intern.Conf. on Bioinf. and Biomed., ’07. 66, 70

[11] Michele Berlingerio, Francesco Bonchi, Fosca Giannotti, and Franco Turini.
Time-annotated sequences for medical data mining. In Proc. of The Intern.
Workshop of Data Min. in Medicine, 2007. 66, 70

[12] Michele Berlingerio, Michele Coscia, and Fosca Giannotti. Mining the tem-
poral dimension of the information propagation. In IDA, pages 237–248,
2009. 7

[13] Michele Berlingerio, Fabio Pinelli, Mirco Nanni, and Fosca Giannotti. Tem-
poral mining for interactive workflow data analysis. In KDD, pages 109–
118, 2009. 10

[14] F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAMiner: Op-
timized level-wise frequent pattern mining with monotone constraints.
In Proceedings of the 3rd IEEE International Conference on Data Mining
(ICDM’03), Melbourne, Florida, USA, 2003. 35

[15] F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAnte: Anticipated
data reduction in constrained pattern mining. In Proceedings of the 7th Euro-
pean Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD’03), Cavtat-Dubrovnik, Croatia, 2003. 35

[16] F. Bonchi and C. Lucchese. Pushing tougher constraints in frequent pattern
mining. In Proceedings of the 9th Pacific-Asia Conference on Knowledge Discov-
ery and Data Mining (PAKDD’05), Hanoi, Vietnam, 2005. 20

[17] Francesco Bonchi and Bart Goethals. FP-Bonsai: the art of growing and
pruning small fp-trees. In Proceedings of the Eighth Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD’04), Sydney, Australia, 2004.
35

[18] Christian Borgelt and Michael R. Berthold. Mining molecular fragments:
Finding relevant substructures of molecules. In Proceedings of the 2nd IEEE
International Conference on Data Mining (ICDM’02), Maebashi City, Japan,
2002. 29

[19] Karsten M. Borgwardt, Hans-Peter Kriegel, and Peter Wackersreuther. Pat-
tern mining in frequent dynamic subgraphs. Data Mining, IEEE International
Conference on, 0:818–822, 2006. 13, 61

[20] J.F. Boulicaut and B. Jeudy. Using constraints during set mining: Should we
prune or not. In Proceedings of BDA’00, Blois, F, 2000. INRIA., 2000. 35

131

[21] Björn Bringmann and Siegfried Nijssen. What is frequent in a single graph?
In PAKDD, pages 858–863, 2008. 54, 55, 56, 57, 72, 89, 90

[22] Cristian Bucila, Johannes Gehrke, Daniel Kifer, and Walker White.
DualMiner: A dual-pruning algorithm for itemsets with constraints. In Pro-
ceedings of the 8th ACM International Conference on Knowledge Discovery and
Data Mining (SIGKDD’02), Edmonton, Alberta, Canada, 2002. 35

[23] T. Calders, J. Ramon, and D. Van Dyck. Anti-monotonic overlap-graph sup-
port measures. In International Conference on Data Mining (ICDM). IEEE,
2008. 54

[24] Eddie Cheng, Jerrold W. Grossman, and Marc J. Lipman. Time-stamped
graphs and their associated influence digraphs. Discrete Appl. Math., 128(2-
3):317–335, 2003. 7, 8

[25] Diane J. Cook and Lawrence B. Holder. Substructure discovery using min-
imum description length and background knowledge. Journal of Artificial
Intelligence Research, 1:231–255, 1994. 21, 22, 56

[26] Diane J. Cook and Lawrence B. Holder. Graph-based data mining. IEEE
Intelligent Systems, 15:32–41, 2000. 56

[27] Jonathan E. Cook and Alexander L. Wolf. Discovering models of software
processes from event-based data. ACM Transactions on Software Engineering
and Methodology, 7:215–249, 1998. 10, 11

[28] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms, Second Edition. MIT Press and McGraw-Hill Book Com-
pany, 2002. 40

[29] A. Datta. Automating the discovery of AS-IS business process models:
probabilistic and algorithmic approaches. Inf. Sys. Res., 9(3):275–301, ’98.
10, 11

[30] Luc Dehaspe and Hannu Toivonen. Discovery of frequent DATALOG pat-
terns. Data Mining and Knowledge Discovery, 3(1):7–36, 1999. 22, 24

[31] Prasanna Desikan and Jaideep Srivastava. Mining temporally changing
web usage graphs. In WebKDD, pages 1–17, 2004. 12, 61

[32] P. Lawrence (ed). Workflow Handbook 1997, Workflow Management Coalition.
J. Wiley and S., NY, 1997. 106

[33] Jure Ferlez, Christos Faloutsos, Jure Leskovec, Dunja Mladenic, and Marko
Grobelnik. Monitoring network evolution using mdl. In ICDE, 2008. 12

132

[34] M. Fiedler and C. Borgelt. Subgraph support in a single graph. In Proc.
IEEE Int. Workshop on Mining Graphs and Complex Data (MGCS 2007 at ICDM
2007), 2007. 54, 55, 56

[35] Mathias Fiedler and Christian Borgelt. Subgraph support in a single large
graph. Data Mining Workshops, International Conference on, 0:399–404, 2007.
54

[36] Shayan Ghazizadeh and Sudarshan S. Chawathe. Seus: Structure extraction
using summaries. In In Proc. of the 5th International Conference on Discovery
Science, pages 71–85. Springer, 2002. 56

[37] Fosca Giannotti, Mirco Nanni, and Dino Pedreschi. Efficient mining of tem-
porally annotated sequences. In Proc. of the 6th SIAM Intern. Conf. on Data
Min., 2006. 66, 70, 72

[38] Fosca Giannotti, Mirco Nanni, Dino Pedreschi, and Fabio Pinelli. Trajectory
patter mining. In The 30th KDD Int.Conf. on Knowl.Disc. and Data Min., ’07.
66, 70

[39] Fosca Giannotti, Mirco Nanni, Dino Pedreschi, and Fabio Pinelli. Mining
sequences with temporal annotations. In Proc. of the 2006 ACM Symp. on
Applied Comp. (SAC), pages 593–597, 2006. 66, 67, 70, 72

[40] Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. Discovering
leaders from community actions. In CIKM, pages 499–508, 2008. 7, 10

[41] Gianluigi Greco, Antonella Guzzo, Giuseppe Manco, and Domenico Saccı́.
Mining unconnected patterns in workflows. Inf. Syst., 32(5):685–712, 2007.
11

[42] Gianluigi Greco, Antonella Guzzo, Luigi Pontieri, and Domenico Saccà.
Discovering expressive process models by clustering log traces. IEEE Trans.
Knowl. Data Eng., 18(8):1010–1027, 2006. 106

[43] Joachim Herbst. A machine learning approach to workflow management.
In In Proceedings 11th European Conference on Machine Learning, pages 183–
194. Springer-Verlag, 2000. 10

[44] H.Kashima and A.Inokuchi. Kernels for graph classification. ICDM Work-
shop on Active Mining 2002, 2002. 25

[45] W. Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58(301):13–30, 1963. 93

[46] Jun Huan, Wei Wang, and Jan Prins. Efficient mining of frequent subgraphs
in the presence of isomorphism. In Proceedings of the 3rd IEEE International
Conference on Data Mining (ICDM’03), Melbourne, Florida, USA, 2003. 29

133

[47] Bernardo A. Huberman and Lada A. Adamic. Information dynamics in the
networked world, Oct 2003. 61

[48] San-Yih Hwang, Chih-Ping Wei, and Wan-Shiou Yang. Discovery of tem-
poral patterns from process instances. Comput. Ind., 53(3):345–364, 2004.
11

[49] San-Yih Hwang and Wan-Shiou Yang. On the discovery of process models
from their instances. Decis. Support Syst., 34(1):41–57, 2002. 10, 11

[50] Akihiro Inokuchi and Takashi Washio. A fast method to mine frequent sub-
sequences from graph sequence data. In Proceedings of the 8th International
Conference on Data Mining - ICDM08, 2008. 12

[51] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. An apriori-based
algorithm for mining frequent substructures from graph data. In Proceed-
ings of the 4th European Conference on Principles and Practice of Knowledge Dis-
covery in Databases (PKDD’00), 2000. 22, 26

[52] Thorsten Joachims. A probabilistic analysis of the rocchio algorithm with
tfidf for text categorization. In Douglas H. Fisher, editor, Proceedings of
ICML-97, 14th International Conference on Machine Learning, pages 143–151,
Nashville, US, 1997. Morgan Kaufmann Publishers, San Francisco, US. 62,
71

[53] Istwan Jonyer, Lawrence B. Holder, and Diane J. Cook. Concept forma-
tion using graph grammars. In Proceedings of the KDD Workshop on Multi-
Relational Data Mining, 2002. 23

[54] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of
influence through a social network. In KDD ’03: Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 137–146, New York, NY, USA, 2003. ACM. 61

[55] Steffen Kempe and Jochen Hipp. Mining sequences of temporal intervals.
In PKDD, pages 569–576, 2006. 67

[56] Frank Klawonn. Finding informative rules in interval sequences. In Intelli-
gent Data Analysis, pages 123–132. Springer, 2001. 67

[57] Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for email
classification research. In In ECML, pages 217–226, 2004. 62, 71

[58] Risi Imre Kondor and John Lafferty. Diffusion kernels on graphs and other
discrete structures. In In Proceedings of the ICML, pages 315–322, 2002. 25

134

[59] Gueorgi Kossinets, Jon Kleinberg, and Duncan Watts. The structure of in-
formation pathways in a social communication network, Jun 2008. 9, 61

[60] Stefan Kramer, Luc De Raedt, and Christoph Helma. Molecular feature
mining in hiv data. In KDD ’01: Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 136–
143, New York, NY, USA, 2001. ACM Press. 22

[61] Stefan Kramer, Luc De Raedt, and Christoph Helma. Molecular feature
mining in hiv data. In Proceedings of the 7th ACM International Conference
on Knowledge Discovery and Data Mining (SIGKDD’01), San Francisco, CA,
USA, 2001. 35

[62] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proceedings
of the First IEEE International Conference on Data Mining (ICDM), pages 313–
320. IEEE Press, 2001. 26, 45, 46

[63] Michihiro Kuramochi and George Karypis. Finding frequent patterns in a
large sparse graph. Data Min. Knowl. Discov., 11(3):243–271, 2005. 54, 55, 56

[64] Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins. Micro-
scopic evolution of social networks. In KDD, 2008. 12

[65] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time:
densification laws, shrinking diameters and possible explanations. In KDD,
2005. 12

[66] Jurij Leskovec, Lada A. Adamic, and Bernardo A. Huberman. The dynam-
ics of viral marketing, Sep 2005. 7, 9, 61

[67] David Liben-Nowell and Jon Kleinberg. Tracing information flow on a
global scale using Internet chain-letter data. Proceedings of the National
Academy of Sciences, 105(12):4633–4638, 2008. 10

[68] Zheng Liu, Jeffrey Xu Yu, Yiping Ke, Xuemin Lin, and Lei Chen. Spotting
significant changing subgraphs in evolving graphs. In Proceedings of the 8th
International Conference on Data Mining - ICDM08, 2008. 13

[69] Hongyan Ma. Process-aware information systems: Bridging people and
software through process technology: Book reviews. J. Am. Soc. Inf. Sci.
Technol., 58(3):455–456, 2007. 105, 112

[70] T. Mitchell. Machine Learning. McGraw-Hill Education (ISE Editions), Oc-
tober 1997. 62, 71

[71] Fabian Moerchen. Algorithms for time series knowledge mining. In Proc.
of the 12th SIGKDD int.conf. on Knowl.disc. and data min., 2006. 67

135

[72] Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang. Ex-
ploratory mining and pruning optimizations of constrained associations
rules. In Proceedings of the ACM International Conference on Management of
Data (SIGMOD’98), New York, USA, 1998. 20

[73] Siegfried Nijssen and Joost N. Kok. Faster association rules for multiple
relations. In Bernhard Nebel, editor, IJCAI, pages 891–896. Morgan Kauf-
mann, 2001. 22, 24

[74] Siegfried Nijssen and Joost N. Kok. A quickstart in frequent structure min-
ing can make a difference. In Proceedings of the 10th ACM International Con-
ference on Knowledge Discovery and Data Mining (SIGKDD’04), 2004. 30

[75] Panagiotis Papapetrou, George Kollios, Stan Sclaroff, and Dimitrios Gunop-
ulos. Discovering frequent arrangements of temporal intervals. In ICDM,
2005. 67

[76] Dhaval Patel, Wynne Hsu, and Mong Li Lee. Mining relationships among
interval-based events for classification. In Proc. of the 2008 int.conf. on
Manag.of data, pages 393–404, 2008. 67

[77] Jian Pei and Jiawei Han. Can we push more constraints into frequent pat-
tern mining? In Proceedings of the 6th ACM International Conference on Knowl-
edge Discovery and Data Mining (SIGKDD’00), Boston, MA, USA, 2000. 20

[78] Jian Pei, Jiawei Han, and Laks V. S. Lakshmanan. Mining frequent item sets
with convertible constraints. In 17th IEEE International Conference on Data
Engineering (ICDE’01), 2001. 20

[79] Matthew Richardson and Pedro Domingos. Mining knowledge-sharing
sites for viral marketing. In KDD ’02: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 61–70,
New York, NY, USA, 2002. ACM Press. 61

[80] J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471,
1978. 23

[81] Guido Schimm. Process miner - a tool for mining process schemes from
event-based data. In JELIA ’02: Proceedings of the European Conference on
Logics in Artificial Intelligence, pages 525–528, London, UK, 2002. Springer-
Verlag. 10

[82] Po shan Kam and Ada Wai chee Fu. Discovering temporal patterns for
interval-based events. In Proc. of the 2nd DaWaK, pages 317–326. Springer,
2000. 67

136

[83] S.Jablonski and C.Bussler. Workflow Management: Modeling Concepts, Archi-
tecture and Implementation. Intern. Thomson Comp. Press, 1996. 106

[84] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu.
Graphscope: parameter-free mining of large time-evolving graphs. In KDD
’07: Proceedings of the 13th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 687–696, New York, NY, USA, 2007.
ACM. 12, 61

[85] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and
graphs: dynamic tensor analysis. In KDD ’06: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, pages 374–383, New York, NY, USA, 2006. ACM Press. 12

[86] Chayant Tantipathananandh, Tanya Berger-Wolf, and David Kempe. A
framework for community identification in dynamic social networks. In
KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 717–726, New York, NY, USA,
2007. ACM Press. 12, 61

[87] Joshua R. Tyler, Dennis M. Wilkinson, and Bernardo A. Huberman. Email
as spectroscopy: Automated discovery of community structure within or-
ganizations. pages 81–96. Kluwer, 2003. 7

[88] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A. J. M. M. Weijters. Workflow mining: a survey of issues and appro-
aches. Data Knowl. Eng., 47(2):237–267, 2003. 106

[89] Wil M. P. van der Aalst, Jörg Desel, and Andreas Oberweis, editors. Business
Process Management, Models, Techniques, and Empirical Studies, volume 1806
of LNCS. Springer, 2000. 106

[90] Wil M. P. van der Aalst and Kees M. van Hee. Workflow Management: Models,
Methods, and Systems. MIT Press, 2002. 11

[91] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow min-
ing: Which processes can be rediscovered? In Eindhoven University of Tech-
nology, pages 1–25, 2002. 10

[92] N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph pat-
terns from semistructured data. Data Mining, IEEE International Conference
on, 0:458, 2002. 56

[93] Chen Wang, Wei Wang, Jian Pei, Yongtai Zhu, and Baile Shi. Scalable min-
ing of large disk-based graph databases. In Proceedings of the 10th ACM In-
ternational Conference on Knowledge Discovery and Data Mining (SIGKDD’04),
2004. 30, 33, 40, 43

137

[94] Chen Wang, Yongtai Zhu, Tianyi Wu, Wei Wang, and Baile Shi. Constraint-
based graph mining in large database. In Proceedings of the 7th Asia-Pacific
Web Conference, (APWeb’05), Shanghai, China, 2005. 31

[95] A.J.M.M. Weijters and W.M.P van der Aalst. Process mining discovering
workflow models from event-based data. In Proceedings of the ECAI Work-
shop on Knowledge Discovery and Spatial Data, pages 283–290, 2001. 10

[96] T. Weijters and W. M. P. van der Aalst. Process mining: Discovering work-
flow models from event-based data., 2001. 106

[97] Edi Winarko and John F. Roddick. Discovering richer temporal association
rules from interval-based data. In A. Min Tjoa and J. Trujillo, editors, 7th
DaWaK, volume 3589 of LNCS, pages 315–325. Springer, ’05. 67

[98] Fang Wu, Bernardo A. Huberman, Lada A. Adamic, and Joshua R. Tyler. In-
formation flow in social groups. Physica A: Statistical and Theoretical Physics,
337(1-2):327–335, June 2004. 7

[99] Xifeng Yan and Jiawei Han. gSpan: Graph-based substructure pattern min-
ing. In ICDM, pages 721–724, 2002. 27, 43, 45, 89

[100] Kenichi Yoshida, Hiroshi Motoda, and Nitin Indurkhya. Graph-based in-
duction as a unified learning framework. Appl. Intell., 4(3):297–316, 1994.
21, 22, 23

[101] Feida Zhu, Xifeng Yan, Jiawei Han, and Philip S. Yu. gprune: A constraint
pushing framework for graph pattern mining. In PAKDD, pages 388–400,
2007. 31, 50

138

	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	1 Introduction
	1.1 Context and Motivation
	1.2 Thesis Contribution
	1.3 Thesis Organization

	2 Mining the Temporal Dimension of Graph and Network Data
	2.1 Action
	2.1.1 Information Propagation
	2.1.2 Workflow Mining

	2.2 Evolution

	3 Mining Graph Data
	3.1 Preliminary concepts
	3.2 Constraints on Graph Data
	3.3 Mining Frequent Subgraphs
	3.4 State of the Art on Graph Mining
	3.4.1 Greedy Algorithms
	3.4.2 Inductive Logic Programming
	3.4.3 Kernel Function Based Approaches
	3.4.4 Apriori-like Algorithms

	3.5 The Transactional Setting
	3.5.1 Support definition
	3.5.2 Pushing monotone constraints
	3.5.3 Extending the ADI structure
	3.5.4 The Gamp algorithm
	3.5.5 Experimental Results
	3.5.6 An algorithm for constraint-based graph mining in transactional setting

	3.6 The Single Graph Setting
	3.6.1 Support Definition
	3.6.2 State of the art
	3.6.3 Pushing constraints
	3.6.4 An Algorithm for Constraint-Based Graph Mining in Single Graph Setting

	4 Mining the Information Propagation in a Network
	4.1 On Mining the Information Propagation
	4.2 Problem definition
	4.3 The TAS mining paradigm
	4.3.1 TAS-based Mining

	4.4 Case study
	4.4.1 Dataset
	4.4.2 Tools
	4.4.3 Steps of Analysis
	4.4.4 Results

	4.5 Discussion

	5 Mining Graph Evolution Rules
	5.1 On Mining the Evolution of a Network
	5.2 Patterns of graph evolution
	5.2.1 Time-evolving graphs
	5.2.2 Patterns
	5.2.3 Rules and Confidence Measure

	5.3 Mining graph evolution rules
	5.4 Experimental Results
	5.4.1 Datasets
	5.4.2 Results

	5.5 Extensions
	5.6 Discussion

	6 From Local Patterns to Graphs
	6.1 On Workflow Mining
	6.2 A TAS-based workflow mining approach
	6.2.1 Problem setting: workflow analysis
	6.2.2 The process workflow context
	6.2.3 Detecting parallelism and choice
	6.2.4 A TAS-based representation of traces
	6.2.5 Parallelism and choice over TAS
	6.2.6 A graph summarization of TAS
	6.2.7 Interactive Workflow Analysis
	6.2.8 Run-through example

	6.3 Case Study
	6.4 Discussion

	7 Conclusions
	References

