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Abstract

This thesis is concerned with the development of
optimisation methods to solve stochastic Model Pre-
dictive Control (MPC) problem and employ them in
the management of Drinking Water Networks (DWNs).
DWNs are large-scale, complex both in topology and
dynamics, energy-intensive systems subjected to ir-
regular demands. Managing these networks play a
crucial role in the economic sustainability of urban
cities. The main challenge associated with such in-
frastructures is to minimise the energy required for
pumping water while simultaneously maintaining
uninterrupted water supply. State-of-the-art control
methodologies as well as the current engineering
practices use predictive models to forecast upcom-
ing water demands but do not take into considera-
tion the inevitable forecasting error. This way, the
water network is operated in a deterministic fash-
ion disregarding its inherent stochastic behaviour
which accrues from the volatility of water demand
and, often, electricity prices. In this thesis, we ad-
dress two challenges namely: optimisation meth-
ods for solving stochastic MPC problems and closed-
loop feedback control for the management of drink-
ing water networks.

MPC is an advanced control technology that copes

xxiii



with complex control problem by repeatedly solv-
ing a finite horizon constrained optimal control prob-
lem; uses only the first decision as input and dis-
cards the rest of the sequence. This methodology
decides the control action based on present state of
the system and thus provides an implicit feedback
to the system. Instead of historical demand profile,
time-series models were developed to forecast the
future water demand. The economic and the so-
cial aspects involved in operation of the DWN were
captured in a cost function. Now the MPC con-
troller combined with online forecaster minimise the
cost function across a prediction horizon of 1 day
with sampling time equal to 1 hour and thus the
closed-loop strategy for DWN management is de-
vised.

The forecasts are just nominal demands and differ
from the actual demands. There exist several ap-
proaches when it comes to working with uncertain
forecasts: (i) to assume that forecast errors are negli-
gible and disregard them, (ii) to assume knowledge
of their worst-case values (maximum errors), (iii)
to assume knowledge of probabilistic information.
These three approaches lead to the three principal
flavours of MPC: the certainty-equivalent (CE), the
worst-case robust and the stochastic MPC. CE-MPC
is simple but not realistic (because the errors are not
negligible), worst-case MPC is more meaningful but
it is too conservative (because it is highly improb-
able that the errors admit their worst-case values)

xxiv



and then we have stochastic MPC which is the ap-
proach pursued in this thesis.

A stochastic MPC allows a systematic framework
as trade-off performance against constraint viola-
tion by modelling the uncertainty as stochastic pro-
cess and quantifying its influence. However, this
formulation is an infinite dimensional optimisation
problem and its corresponding discrete approxima-
tion is deemed to be a large-scale problem with mil-
lions of decision variables. Therefore, the applica-
bility of stochastic MPC in control applications is
limited due to the unavailability of algorithms that
can solve them efficiently and within the sampling
time of the controlled system.

Here we developed optimisation algorithms that solve
stochastic MPC problem by exploiting their struc-
ture and using parallelisation. These algorithms are
(i) accelerated proximal gradient algorithm also kn-
own as forward-backward splitting and (ii) LBFGS
method for forward-backward envelope (FBE) func-
tion. Both these algorithms employ decomposition
to solve the Fenchel dual and make them suitable
for parallel implementation. Graphics processing
units (GPUs) are capable of perform parallel com-
putation and are therefore perfect hardware to solve
the stochastic MPC problem with the accelerated
proximal gradient method.

The water network of the city Barcelona is consid-
ered to study the validity of the proposed algorithm.
The GPU implementation is found to be 10 times

xxv



faster than commercial solvers like Gurobi running
in multi-core environment and made the problem
computationally tractable in the sampling time. The
efficiency of the stochastic MPC to manage the DWN
is quantified in terms of key performance indicators
like economic utility, network utility and quality of
service.

The forward-backward splitting is a first-order me-
thod and has slow convergence for ill-conditioned
problems. We constructed a continuously differen-
tiable real-valued forward-backward envelope func-
tion that has the same set of minimisers as the ac-
tual problem. Then we use quasi-Newton method,
in particular LBFGS method, that utilises second-
order information to solve the FBE. The computa-
tions with this algorithm are also parallelisable and
it demonstrated fast convergence compared to ac-
celerated dual proximal gradient algorithm.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Motivation

There is an increasing interest for efficient water management
policies from academia, from industry and also from policy
makers due to the looming environmental crisis. Water is a
renewable natural resource that lies at the heart of everything
essential for human life: in agriculture, in transport, in indus-
tries and in biosphere. Recent study predicts double in the util-
ity of water demand by 2030 in every sector (Uni12). On the
other hand, recent changes in climate is causing a shift in the
pattern of rains resulting in floods and droughts. Even though,
water is renewable, unsustainable human activities and water
management policies are aiding more in depletion of the wa-
ter resources than their conservation. These issues make wa-
ter management an increasingly important environmental and
socio-economic subject globally that needs serious attention.
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Cities are the economic power-houses of a country and wo-
uld become the residence for 5 billion population by 2030 (Uni15).
The same report noted that there would be 41 mega-cities with
more than 10 million inhabitants. Drinking Water Network
(DWN) will be a critical infrastructure supplying water from
the sources to the resident regions in these cities. This is vital
for the survival of urban life, for maintaining a healthy level
of economic development, and for the continuous operation of
factories and hospitals. Management of this network plays a
crucial role in economic growth and in fighting the water secu-
rity challenge.

The water network is composed of a large number of in-
terconnected pipes, tanks, pumps, valves and other hydraulic
elements. The demands of certain region are lumped together
and modelled as a single demand and referred as a demand
unit. This network can be represented as a hierarchical system
with interacting layers with each layer having different control
objectives:

• In the treatment layer water is collected from various sour-
ces like bores, rivers, springs and processed into portable
water with a specified quality by means of advanced pro-
cess control methods. Sometimes the source of water is
far off from the treatment plant so the water needs to be
transported for long distance before the treatment plants.
The control problem in this layer is to minimise cost (both
in terms of energy and cost of chemicals) of the treatment
plant.

• The transportation layer is an intermediate step involv-
ing water transfer from the treatment plants to the de-
mand units via overhead tanks. Here, we should main-

2



tain enough water in the tanks to meet the requirement
of the demand units. The control problem in this layer is
energy efficient pumping of water while guaranteeing the
needs of the consumers. A standard practice is to main-
tain a safety volume of water to counter emergency sit-
uations, like fire accidents, during network maintenance.
Here the quality of water is also guaranteed by mixing
water from various sources.

• The service layer is the final stage of supplying water to
the individual consumers. The optimal control of this
layer covers pressure zone monitoring and control by booster
pumps and reduction valves to guarantee minimum pres-
sure to all consumers and reduce leakage by maximum
pressure reduction.

In 2014, the IEEE Control Systems Society identified the above
aspects of the management of complex water networks as emerg-
ing future research directions (HTS14).

In the transportation layer, water from the treatment plants
is transported to the overhead tanks and from these tanks to the
demand units. Generally pumping consumes energy and the
objective is to minimise the economic cost of pumping while
guaranteeing uninterrupted water. A naive control policy is
to fill the tanks completely during the off-peak hours and use
this water to meet the demands during peak hours. But this
policy is unsustainable and the water resources are exhausted
excessively. The actuators and the tanks are needed to operate
within their are physical limits. This policy could not guarantee
satisfaction of these constraints.

In the previous decades, this policy is improved by consid-
ering forecast of the water demand for the next 24 hours. These

3



demand forecasts are obtained from the historical data. Sub-
sequently the optimal control policy is the one that minimise
the economic cost for the next while meeting the demand for
the next 24 hours. The physical constraints are included in the
optimisation and the control policy satisfies them. A gener-
alised version of this policy also includes dynamic pricing of
the electricity, i.e., use predictions of the electricity prices. The
core optimisation problem is solved off-line and hence this is an
off-line control policy. With this policy, timely intervention by
the operator is required to facilitate uninterrupted water sup-
ply and guarantee constraint satisfaction.

These state-of-art control practices fail to address a major
source of uncertainty – demand uncertainty. In practice, the off-
line policy cannot meet the demand requirements and does not
satisfy the constraints in closed-loop, so the operator resorts to
some heuristic rules to satisfy them. The consequence of this is
an ad hoc operation of the system. On the other hand, modern
technologies like high-performance computation, accurate de-
mand predictions, and advanced control techniques can enable
to improve the operation of the drinking water network.

Model Predictive Control (MPC) is a modern control tech-
nology capable of handling constraints and has demonstrated
enormous success in industrial process control. At each sam-
pling time, the system dynamics over the future is predicted
and a control policy that minimises the cost function over the
future is calculated. The first element in the control policy is
applied and the rest are discarded. This process is repeated at
the next sampling time. Thus, MPC avoids solving the infi-
nite horizon optimal control problem by repeatedly solving a
finite horizon optimal every time. This also provides an ’im-

4



plicit’ feedback action that can cope with uncertainties. The
main reasons behind the success of MPC are (i) its ability to
handle constraints and (ii) the recent increase in computational
power of the hardware.

Besides handling constraints, another main advantage of
the MPC for drinking water network is its ability to incorporate
on-line demand forecasts. We develop a time-series model that
can forecast the demand for the next 24 hours at every sam-
pling. Based on these demand forecasts, the control policy is
calculated by the MPC controller. However, the use of demand
forecasts is not straightforward as they are subject to uncertain-
ties. Neglecting these uncertainties is not a good practice and
including them could reduce the process costs. In MPC, uncer-
tainties are handled either with a robust formulation or stocha-
stic formulation. A stochastic formulation includes the proba-
bilistic information about the uncertainty and allows a trade-
off between performance and satisfaction of constraints. Apart
from this, water demands are stochastic by nature and there-
fore, we formulate a stochastic model predictive control which
is investigated in the thesis.

Another aspect of the distribution layer in water network is
the hierarchical nature in its operation. The economic optimi-
sation provides set-points for the actuators which are achieved
with local controllers (like PID or LQR controller). These con-
trollers operate at lower sampling time. Due to historical rea-
sons these networks have a complex topology and designing a
centralised controller is cumbersome. It is time to call for de-
centralised strategies based on spatial and temporal decompo-
sition of the overall dynamics so as to leverage the high com-
putational cost of a centralized MPC.

5



1.2 Scope and Contributions of this the-
sis

In this thesis, we identify some critical and limiting challenges
in the control of water networks: (i) need for closed-loop con-
trol policies (ii) uncertainty in demand forecast (iii) meeting
water demands uninterruptedly and (iv) computational bur-
den for a centralised controller. First we employ a MPC inte-
grated with online demand forecast to manage the DWN. This
strategy has a feedback from the network and guarantees to
provide water that can meet the actual demands at every time
instance. In order to address the uncertainty in the demand
forecast, we extend the MPC to stochastic version that takes
into consideration the randomness of the demand. This prob-
lem is of the form of an infinite dimensional optimisation prob-
lem, so we approximate this to a finite dimensional large-scale
problem and employ convex optimisation to solve the stocha-
stic MPC problem efficiently.

Publications

This work lead to the following publications
1. A.K. Sampathirao, P. Sopasakis, A. Bemporad and P. Patrinos,

“Proximal quasi-Newton methods for scenario -based stochastic
optimal control”, IFAC 2017, submitted.

2. A.K. Sampathirao, P. Sopasakis, A. Bemporad and P. Patrinos,
“Stochastic predictive control of drinking water networks: large-
scale optimisation and GPUs”, (provisionally accepted) IEEE
Control Systems Technology, preprint: http://arxiv.org/
abs/1604.01074.

3. A.K. Sampathirao, P. Sopasakis, A. Bemporad and P. Patrinos,
“Proximal quasi-Newton methods for scenario-based stochastic
optimal control”, EUCCO 2016, Leuven, Belgium.
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4. A.K. Sampathirao, P. Sopasakis, A. Bemporad and P. Patrinos,
“Distributed solution of stochastic optimal control problems on
GPUs”, in Proc. 54th IEEE Conf. on Decision and Control, Os-
aka, Japan, 2015, pp. 7183–7188, https://eprints.imtlucca.
it/2779/1/APG_GPU.pdf.

5. A.K. Sampathirao, P. Sopasakis and A. Bemporad, “Decentra-
lised hierarchical multi-rate control of large-scale drinking wa-
ter networks”. In: 9th International Conference on Critical In-
formation Infrastructures Security, Oct. 13-15 2014, Limassol,
Cyprus, pp. 1-12, 2014. http://link.springer.com/chapter/
10.1007%2F978-3-319-31664-2_6

6. A.K. Sampathirao, J.M. Grosso, P. Sopasakis, C. Ocampo-Martı́nez,
A. Bemporad, and V. Puig, “Water demand forecasting for the
optimal operation of large-scale drinking water networks: The
Barcelona case study”, in Proc. 19th IFAC World Congress, Cape
Town, South Africa, 2014.
http://www.ifac-papersonline.net/Detailed/68585.
html

1.2.1 Working papers
1. A.K. Sampathirao, P. Sopasakis, A. Bemporad and P. Patrinos,

“Parallelizable Quasi-Newton Methods for Stochastic Optimal
Control”, working paper.

Software
The algorithms developed during this thesis are available on public
repositories for the interested reader to experiment with the develop-
ments presented in this thesis.

1. The matlab version for the dual proximal gradient algorithm to
solve the stochastic optimal control is available at
https://github.com/ajaykumarsampath/APG--stochastic-
optimal-control

2. The CUDA implementation of the dual proximal gradient algo-
rithm is available at
https://bitbucket.org/ajaykumarsampath/tb-gpad
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3. The matlab version for the LBFGS-FBE algorithm to solve the
stochastic optimal control discussed in Chapter 6 is available at
https://github.com/ajaykumarsampath/L-BFGS-update

The implementation of dual proximal method in CUDA for the
DWN and the closed-loop simulations will be provided upon request.

Other reports

The case study for this thesis is the Barcelona city network which
is taken as a part of the EU FP7 research project EFFINET “Efficient
Integrated Real-time monitoring and Control of Drinking Water Net-
works”. During the course of this project I co-authored four deliver-
able reports (SSG+13; OMPG+14; SSG+14; SFS+14) which have been
successfully approved by the European Commission.

1.3 Structure

Chapter 2 — Worst-case control of DWN

Chapter 2 introduces the main challenges in management of Drink-
ing Water Networks (DWNs) and derive its dynamic model using the
mass-balance equation. We identified water demands as the main
source of uncertainty in the network. Instead of using historical de-
mand data, real-time forecasts improve the operation of the DWN.
The demand time series are governed by multiple seasonalities and
we propose various time series models to perform forecasts — namely,
seasonal ARIMA, BATS and SVM. These models— along with a sto-
chastic component which describes their uncertainty — are later used
in Chapter 4.

The DWN of Barcelona city is selected as our case study. The time-
series models developed for this system are analysed in terms of their
predictive ability taking also into consideration the complexity of the
model. Taking into account the worst-case prediction errors we for-
mulate a robust worst-case model predictive control problem and we
propose a computationally feasible formulation.
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Chapter 3 — SMPC & Numerical Solution
In the first part of Chapter 3 we introduce the concept of stochastic mo-
del predictive control (SMPC). In SMPC, the uncertainty is seen as a
stochastic process and incorporates the information about its probabil-
ity distribution in the problem formulation. However, typical SMPC
formulations — unless under restrictive assumption — this lead to
infinite dimensional optimisation problems which, in most cases, are
computationally intractable. We recast this as finite-dimensional prob-
lem using a discrete representation of the involved random process —
scenario trees. The outcome of this is a rather large-scale yet well-
structured optimisation problem.

In the second part we formulate the Fenchel dual optimisation prob-
lem on which we apply the accelerated proximal gradient algorithm
elaborating on how the involved operations can be parallelised to a
great extent. This parallel algorithm is implemented on graphics pro-
cessing units (GPUs) and computational performance is investigated
for a numerical example.

Chapter 4 — SMPC for DWNs
Whereas in Chapter 3 we formulate a generic algorithmic framework
for solving stochastic optimal control problems, in Chapter 4 we apply
it to controlling a real drinking water network — that of the city of
Barcelona — using the models and concepts laid out in Chapter 2.

We analyse the closed-loop performance with a stochastic MPC
controller for various scenario tree structures and we discuss the ad-
vantages of the proposed control scheme vis-à-vis state-of-the-art meth-
ods.

Chapter 5 — Spatial & Temporal Decomposition
In Chapter 5, we address the problem of the spatial decomposition of
networks of dynamical systems (partitioning into subsystems) and their tem-
poral decomposition (multiple time scales) across two control layers. Indeed,
DWNs have a multi-scale hierarchical control architecture — an upper
control layer that provide the set-point based on economic considera-
tions and a lower layer that track the set-point. In this chapter we ex-
plore decentralised control techniques for systems with multi-rate hi-
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erarchical control architecture under hard state-input constraints. The
large-scale dynamical system is partitioned into interconnected sub-
systems with state and input constraint and the worst-case interac-
tions between subsystems are modelled and accounted for in a robust
manner.

Chapter 6 — Quasi-Newton methods
First-order methods like the proximal-gradient methods we present in
Chapters 4 and 3 are suitable for medium precision. First-order meth-
ods are rather sensitive to bad conditioning which is likely to compro-
mise their convergence speed and accuracy, often despite precondi-
tioning. A remedy to these pathologies would be the introduction of
second-order information in the smooth part of the cost, as in Sequen-
tial Quadratic Programming (SQP) aiming at a Q-superlinear conver-
gence rate, but this approach would destroy the separability proper-
ties of the method and would call for an inner iterative algorithm.

Quasi-Newton methods such as the celebrated limited-memory
BFGS (L-BFGS) method are successfully used for large-scale smooth
unconstrained problems and enjoy good convergence rate properties.
In this presentation we will show a different approach based on the
forward backward envelope (FBE) function, which — under certain as-
sumptions — is real-valued, continuously differentiable with Lips-
chitz gradient and (strongly) convex. The minimisers of the FBE are
the minimisers of the original optimisation problem, so we may ap-
ply methods for smooth unconstrained minimisation such as L-BFGS.
Additionally, at every iteration the proposed algorithm incurs a com-
putational cost which is similar to that of a forward- backward step.

Overall, the proposed algorithm is parallelisable and to some ex-
tent we reuse parallelisation concepts from Chapters 4 and 3.
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Chapter 2

Drinking water
networks: modelling
and control

Drinking Water Networks (DWN) are large-scale multiple-input mul-
tiple-output systems with uncertain disturbances (such as the water
demand from the consumers) and involve components of linear, non-
linear and switching nature. Operating, safety and quality constraints
deem it important for the state and the input of such systems to be con-
strained into a given domain. Moreover, DWNs’ operation is driven
by time-varying demands and involves a considerable consumption of
electric energy and the exploitation of limited water resources. Fore-
casts about the demands provides a means to increase the reliability
of the network. Traditional operators rely on historical demands and
are not integrated in real-time operation of the network.

This chapter explores various state-of-the-art methods for demand
forecasting, such as Seasonal ARIMA, BATS and Support Vector Ma-
chine, and presents a set of statistics to validate these models. These
models are integrated with a Model Predictive Control (MPC) strat-
egy to generate an online control policy. The constraints in this MPC
formulation are shrunk to accommodate the worst case forecast er-
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rors. This strategy allows for an online optimal flow management of a
DWN. These results presented in this chapter have appeared in (SGS+14).

2.1 Introduction

2.1.1 Motivation
Drinking Water Networks (DWN) are large-scale, multiple-input mul-
tiple-output systems whose operation is liable to be subjected to a
set of operating, safety and quality-of-service constraints while at the
same time their dynamics is affected by disturbances of stochastic na-
ture (see (BU94; GOMP13)). All these characteristics render their con-
trol a challenging problem. The optimal management of DWNs is
a complex task with outstanding socio-economic and environmental
implications and has received considerable attention by the scientific
community.

One popular way to minimise the operational cost is to formu-
late the problem as optimal scheduling of pumps best known in lit-
erature as pump scheduling problem. Such open-loop approaches are
known since the 80’s and a review of the early optimisation meth-
ods for pump scheduling is given in (OL94). Various techniques are
proposed in the literature to solve the pump scheduling problem; dy-
namic programming (ZS89), linear programming (SS97), mixed inte-
ger nonlinear programming (BBMJ+13) and evolutionary algorithm
based methods (MP04). Using the 24 hour demand forecast, the op-
timal pump scheduling is solved for a small system using dynamic
programming in (ZS89) which cannot be recreated for a large system.
Sherali et al. (SS97) uses the linearisation based technique to construct
a tight linear programming relaxation of the pump scheduling prob-
lem and then uses a branch-and-bound algorithm to obtain global op-
timal solutions. In (BBMJ+13) the problem was formulated as a mixed-
integer nonlinear program to account for the on/off operation of the
pumps. Heuristic approaches using evolutionary algorithms, genetic
algorithms, and simulated annealing have also appeared in the litera-
ture (MP04).

The control policy obtained from all the above methods is an “open-
loop policy” as it is based on an offline optimisation and does not in-
clude the feedback from the network during its operations. In most
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cases these problem cannot be solved online and not suitable for real-
time control. It is pointed in (SO96) that feedback to the decision
maker will improve the decision making in DWNs.

Model Predictive Control (MPC) (RM09; QB03) is an advanced
control technology that solves a finite-horizon constrained optimal
control problem online at every time instance and implicitly induce
a feedback in the system. It is known that MPC is well suited for large-
scale MIMO (multiple-input multiple-output) systems and is also ame-
nable to structural changes of the dynamical model of the considered
system. Based on the MPC technology strategies are developed for
real-time management of the drinking water networks in (OMPC+09;
BOMPB10). Additional constraints for water quality can be included
with MPC controller (BMLL+04).

However these methods did not account for a crucial source of
uncertainty–demand uncertainty. The control policy is based on the de-
mand forecast generated from the historical data. Using such forecast
is limiting as they cannot adjust with the previous observations. So
we propose to build a time-series model that forecast the future de-
mands using the current and the previous observations. In general,
water usage can vary in both the long-term and the short-term, usu-
ally exhibiting time-based patterns for different areas. Hence, a better
understanding of the characteristics of the time-series is necessary so
as to perform accurate forecasts of water demand and have an optimal
closed-loop performance. The overall objective of DWNs managers
is to provide a reliable water supply in the cheapest way, guarantee-
ing availability and continuity of the service with a certain probability
and without delay under some operating conditions, specific environ-
ments and uncertain events.

Therefore, the operation of a DWN is strongly conditioned by the
uncertain water demand, which follows a non-stationary dynamics
(see (QPC+06)). In this chapter, three well-established time series mod-
elling methodologies are employed to capture the dynamics of wa-
ter demand, namely a Seasonal Auto-Regressive Integrated Moving-
Average (sARIMA) model, a Box-Cox transformation (BATS) model
developed by (LHS11), and a Support Vector Machine (SVM) model.
All these models are statistically validated and are accompanied by an
estimation of their prediction error. All these approaches proved to be
adequate for the modelling of the demand.
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Afterwards, Model Predictive Control (MPC) is used for comput-
ing optimal decisions regarding the operation of a DWN taking into
account the management criteria and the various operating, safety and
physical constraints of the problem. Moreover, a performance index
related to water and energy costs is optimised leading to a suitable
operation of the water network. The forecasting of demands and their
variances are then used to propagate uncertainty in the open-loop
prediction within the MPC strategy to assure better handling of con-
straints and proper fulfilment of the control objectives (management
criteria).

2.1.2 Outline
Section 2.2 explains how the the dynamic model of the drinking wa-
ter network is obtained from mass-balance equations. Afterwards, in
Section 2.3 three different modelling approaches are presented to fore-
cast water demand using historical data. Finally, Section 2.4 explains
how these forecasts are integrated in the management of the DWN
and tested on the DWN of Barcelona. The dynamic model and the
forecasting models developed here are used later in Chapter 4.

2.1.3 Notation
In this chapter, N[k1,k2] denotes the set of natural numbers between k1.
Let k2, P ⊂ Rn be a polytope and A ∈ Rm×n be a matrix; then it is
definedA·P := {y ∈ Rm : y = Ax;x ∈ P}. LetP ,Q be two polytopes
in Rn; the Pontryagin difference of these polytopes is the polytope
P	Q := {z ∈ Rn,∃q ∈ Q, such that z+q ∈ P}. The Minkowski sum
of P andQ is the polytope P ⊕Q := {z = p+ q : p ∈ P, q ∈ Q}.

2.2 Modelling
A DWN generally involves a number of actuators; namely valves and
pumps (the latter being grouped into pumping stations). Let u ∈ Rnu
denote the vector of all these inputs. The state of the DWN can be
fully observed by measuring the reservoir volumes. This will be de-
noted by x ∈ Rnx . The water demand from the various outlets of
the distribution network will be considered to be a stochastic variable
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d ∈ Rnd . At each time instant t, the current demand d(t) = d(t | t) is
measured while subsequent demands d(t + j | t) can be forecast (as
random variables) through appropriate demand prediction models.

The mass balance equations of the network lead to a continuous-
time dynamical model in the form of a stochastic differential equation:

dx(t) = f(x(t), u(t))dt+ g(d(t))dBt, (2.1)

where f : Rnx × Rnu → Rnx , g : Rnd → Rnx and B is a Wiener sto-
chastic process. In this equation, a deterministic part and a stochastic
(additive) component is identified. The aforementioned model is lin-
ear, i.e. f(x, u) = Ax + Bu and g(d) = Gdd where A, B and G are
matrices of appropriate dimensions. In the following sections it will
be explain how such a model is derived. The exact linearisation of (2.1)
with sampling period Ts yields the following discrete-time stochastic
dynamical model:

xk+1 = Axk +Buk +Gddk (2.2)

for k ∈ N so that x(kTs) = xk and u(t) = uk for t ∈ [kTs, (k + 1)Ts).
In the sequel it is explained how such a model can be derived based
on principles of mass transfer.

2.2.1 Hydraulic modelling
The dynamics of DWNs have been studied in depth in the last two
decades (see (BU94; OMPC+09)). The hydraulic model of the DWN
consists of the mass-balance equations for the water in every reservoir
i = 1, . . . , Nr and distribution node j = 1, . . . , Nn. In simple words,
the mass-balance equation of a single tank is the rate of change of the
water level in the tank is the difference between inflow and outflow.
This equation is based on mass conservation and it neglects pressure-
head required to achieve the flow into the tank. It is always assumed
that there is a pressure combination that can meet the flow require-
ment.

Let Vi(t) be the volume of water inside the tank i and let qouti,p (t)
for p = 1, . . . ,Mout

i and qini,q(t) for q = 1, . . . ,M in
i be the influx and

outflux streams from and to tank i. It then follows that:

dVi(t)

dt
=

Min
i∑

p=1

qini,p(t)−
Mout
i∑
l=1

qouti,l (t). (2.3)
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At every tank it should hold that:

V mini ≤ Vi ≤ V maxi , (2.4)

where V mini and V maxi are respectively the lower and the upper tank
volume capacities. The upper limit is imposed so that the tank does
not overflow and should in all cases be treated as a hard constraint.
In most cases, the flows qini,p and qouti,l are not driven by gravity, but are
instead controlled by a set of pumps which come with certain technical
limitations which give rise to the constraints:

0 ≤ qi(t) ≤ qmaxi . (2.5)

In a DWN, a node is a meeting point of three or more pipes. There,
the mass balance yields the static equality constraint:

Min
j∑

p=1

qinj,p(t) =

Mout
j∑
l=1

qoutj,l (t) (2.6)

for j = 1, . . . , Nn whereNn is the number of nodes.It is assumed here,
that all flows in the network can be modelled with a set of unidirec-
tional positive flows, which translates to the constraint qi(t) ≥ 0, for
every flow. Certain outgoing flows qi are actual demands from the
supply network and, as such, they are stochastic variables. When the
above mentioned mass balance equations put together to arrive at the
following expression in discrete-time:

xk+1 = Adxk +Bduk +Gddk, (2.7)

where x ∈ Rnx is the state vector corresponding to the volumes of
water in the storage tanks, u ∈ Rnu is the vector of manipulated inputs
and d ∈ Rnd is the vector of uncertain demands. Mass preservation
gives rise to the following input-disturbance coupling equation:

Euk + Eddk = 0, (2.8)

where E and Ed are matrices of proper dimensions.
In this context, the state and input constraints can be rewritten as:

uk ∈ U := {u ∈ Rnu | umin ≤ u ≤ umax}, ∀k ∈ N (2.9a)

xk ∈ X := {x ∈ Rnx | xmin ≤ x ≤ xmax}, ∀k ∈ N (2.9b)
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Both X and U are compact polytopes. The flow model that results
from this analysis is a Linear Time-Invariant (LTI) discrete-time dy-
namical model with linear constraints which perfectly fits into the con-
trol framework of linear MPC.

The above formulation has been widely used in the formulation of
model predictive control problems for DWNs (GOMPJ14; OMFBP10).

2.3 Demand forecasting models

The reliable modelling and the ability to predict the upcoming water
demands from every output node of the network is an essential task
for the design of proper controllers for the DWN. The non-stationary
of the demand time series along with the presence of multiple sea-
sonal patterns calls for state-of-the art modelling approached that can
capture such complex dynamics.

In this section, three different modelling approaches are presented
to model the water demand from a DWN case study. These models are
trained using the same dataset of 2700 demand measurements from
the DWN of Barcelona, out of 8760 data points that are available. The
rest is used as an external test-set for validating these models. These
data were provided by AGBAR (Aguas de Barcelona, s.a.), which is
the company that manages the Barcelona DWN)1. A quick glance at
the historical demands will revile that demands have a daily and a
weekly pattern and suggests to use forecast with seasonal models.

2.3.1 Seasonal ARIMA time-series models

ARIMA models are widely used as they can capture complex linear
dynamics of stationary processes or processes that become stationary
after one applies the difference operator finitely many times. ARIMA
models put more emphasis on the recent past of the time series they
intercept, so, they are considered to be suitable for short-term forecast-
ing (see (BJR94)). Here the Seasonal ARIMA models are considered

1The patterns of the water demand which are used here were synthesised
from real values measured at the Barcelona DWN in 2007. The data were ob-
tained within the FP7-funded EU project EFFINET. See http://effinet.eu.
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and seasonally integrated with seasonal AR (Auto-Regressive) terms
which describe well time series that follow a periodic pattern.

In order to derive ARIMA models, the following notation is in-
troduced. For a time series dk, let Ldk = dk−1 be the backward shift
operator. For i ≥ 2, define Li = LLi−1, then, Lidk = dk−i. Denoting
by 1 the identity operator 1zt = zt and ∇ = 1 − L, it follows that
∇dt = dt − dt−1. Let αt be a white noise process, i.e., a time series
such that Eαt = 0, αt ∼ N(0, σ2

α) and cov(at, at+k) = 0 for all k 6= 0.
Let φ be a polynomial of L of order p with unitary constant term,

symbolically φ ∈ K1
p[L], i.e., φ(L) = 1− φ1L− φ2L

2 − . . .− φpLp and
let ψ ∈ Kq[L] be a polynomial with of the form ψ(L) = 1+ψ1L+ . . .+
ψqL

q . Then, an ARIMA(p, d, q) model has the form:

φ(L)(1− L)dd̄t = ψ(L)αt, (2.10)

where d̄t = dt − µ where µ = Edt is the (known) expected value of dt.
In certain cases, φ and ψ are assumed to have some of their coefficients
fixed to 0. Then, if χp and χq are the sets of non-zero coefficients of φ
and ψ respectively (with maxχp = p and maxχq = q), the respective
ARIMA model is denoted by ARIMA(χp, d, χq).

The water demand exhibits also a periodic variation which in time
series analysis is referred to as seasonality; this seasonality follows some
calendar trend such as daily, weekly or monthly. An ARIMA pro-
cess may have a single or multiple seasonalities. This periodicity is
captured by a term of the form 1 − Ls (that acts on d̄t) where s is
the seasonality of the process and the respective model is denoted as
SARIMA(χp, d, χq; s). An ARIMA process with single seasonality s
is denoted by ARIMA(p, d, q) × (P,D,Q)s. A single-season seasonal
ARIMA model has the following representation:

φ(L)(1− L)dφs(L
s)(1− Ls)Dd̄t = ψ(L)ψs(L

s)αt, (2.11)

where the order of the polynomial φs is P and the order of ψs isQ and
they have the following form:

φs(L
s) = 1− β1L

s − β2L
2s − . . .− βPLPs (2.12a)

ψs(L
s) = 1 + ζ1L

s + ζ2L
2s + . . .+ ζQL

Qs (2.12b)

Such seasonal ARIMA models as (2.11) can be combined with sea-
sonal AR and seasonal MA elements giving rise to a more flexible set-
ting. A multi-seasonal MA polynomial operator Φ(L) = 1 + Φs1L

s1 +
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. . . + ΦsPL
sP whose exponents form the set χΦ

P = {s1, s2, . . . , sP }
where si < si+1 for all i = 1, . . . , P − 1. The elements of χΦ

P are called
MA seasons and they are not assumed to be multiples of some ele-
mentary season. A multi-seasonal AR component represented by the
polynomial Ψ(L) = 1 − Ψt1L

t1 − . . . − ΨtQL
tQ for which the set of

seasonal AR lags χΨ
Q is defined accordingly.

An s-seasonal ARIMA model seasonally integrated with a χΦ
P -

seasonal MA and a χΨ
Q-seasonal AR component will be hereinafter

denoted by:

SARIMA(χp, d, χq; s)× SAR(χΦ
P )× SMA(χΨ

Q).

The problem of parameter estimation of ARIMA models is formu-
lated either as a Least Squares problem or as a (nonlinear) Maximum
Likelihood problem. Model parameter estimates are always accompa-
nied by their variance and their t-statistic; what one optimally expects
is low variance and high statistical significance justifying the choice of
the underlying model. The Log-Likelihood as well as the Root Mean
Square (RMS) value of the residuals will be used as a measure of the
goodness-of-fit of the model. Here the estimation of model parameters
was carried out using the function estimate of MATLAB’s econo-
metrics toolbox.

One of the principle factor to be considered in selecting the mo-
del is parsimony; model with smallest number of coefficients to fit the
availability data produce better forecasts. Other criteria useful in eval-
uating the model are quality of the coefficients (statistical significance),
predictive power, and stationarity. Keeping these features in mind, a
set of models was created for each of the 88 demands of the DWN of
Barcelona. Indicatively, the following model for the demand form the
output node c450BEG of the Barcelona DWN:

ARIMA({1 : 4, 6 : 9}, 1, {1 : 13, 15, 17}; 168)× SAR({168, 336}),
(2.13)

which was trained using 2700 samples and was formulated as a max-
imum likelihood problem. All the parameters of this model were de-
termined with high statistical significance (based on their t-statistic).

For the evaluation of the predictive power of each model, the wa-
ter demand forecast throughout a horizon of Hp = 24h ahead is con-
sidered to demonstrate how each model performs in the long run. Let
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Figure 1: Stochastic forecasts using the SARIMA model (2.13).
The purple dashed thin lines represent the 99% upper and lower
bounds computed by a Monte Carlo simulation using 105 seeds.

d̂k+j|k be the predicted expected demand of water for the future time
instant k + j performed at time k. Let dk+j be the actual value of
the demand. The total prediction error along the period [k, k + Hp] is
quantified by the prediction mean squared error (PMSE), defined as:

PMSEHp,k =
1

Hp

Hp∑
i=1

(d̂k+i|k − dk+i)
2, (2.14)

and its square root is the PRMSE, i.e., PRMSEHp,k =
√

PMSEHp,k.
Model (2.13) was found to have PMSE24 = 0.0158 (with st. dev.
0.0049) and a PRMSE24 = 0.1311 on average2.

If the fitted SARIMA model is adequate, then the residuals should
follow approximately a distribution with zero mean and should be
uncorrelated. A special statistical test, namely the Ljung-Box test, has
been devised to test this hypothesis. This model (2.13) passed the
Ljung-Box test for uncorrelated residuals with a p-value of 0.2908, the

2Based on external data and using 150 samples. The computation was car-
ried out against an external test-set, not available to the model.

20



value of the Ljung-Box statistic being 22.96 with critical value 31.41.
This model was selected among a set of many other models using the
Akaike Information Criterion given by AIC = ln(σ̂2

α) + 2k/T , where
σ̂2
α is the statistical estimate of σ2

α, k is the number of parameters of
the model and T is the number of observations used for the estima-
tion of the model. This criteria penalise the estimated variance of the
residuals and the complexity of the model aiming to choosing the sim-
plest model that achieves good fit. For the model in (2.13) there was
obtained an AIC = −8.5044.

Conclusively, model (2.13) interpolates very well the demand time
series, it has high predictive ability, its residuals are uncorrelated, it
is determined with high statistical significance and good predictive
power.

2.3.2 Box-Cox transformation, ARMA Errors, trends
and seasonality (BATS) Modelling

BATS models were introduced by De Livera et al. (LHS11) and have
proven to be well-suited for modelling time series with multiple sea-
sonal patterns and complex dynamics.

Let dk, k ∈ N, denote an observed time series of any water de-
mand, and d(ω)

k its Box-Cox transformation with the parameter ω. The
transformed series is then decomposed into an irregular component
hk, a level component lk, a growth component bk and possible seasonal
ones s(i)

k with seasonal frequencies mi, for i = 1, . . . , P , where P is
the total number of seasonal patterns in the series. The irregular com-
ponent hk is described by an ARMA(p, q) process with parameters φi
for i = 1, . . . , p and θi for i = 1, . . . , q, and an error term εk which
is assumed to be a Gaussian white noise process with zero mean and
constant variance σ2. The smoothing parameters, given by αd, βd, γd,i
for i = 1, . . . , P , determine the extent of the effect of the irregular
component on the states lk, bk, s(i)

k respectively. The equations of the
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model are:

d
(ω)
k =

{
d
(ω)
k
−1

ω
, ω 6= 0,

log (dk) , ω = 0,
(2.15a)

d
(ω)
k = lk−1 + φbk−1 +

P∑
i=1

s
(i)
k−mi + hk, (2.15b)

lk = lk−1 + φbk−1 + αdhk, (2.15c)

bk = φbk−1 + βdhk, (2.15d)

s
(i)
k = s

(i)
k−mi + γd,ihk, (2.15e)

hk =

p∑
i=1

ϕihk−i +

q∑
i=1

θiεk−i + εk. (2.15f)

The decomposition of the time series into such components and
the use of them for modelling and forecasting offers also a qualitative
insight into the dynamics of the process.

A set of BATS models was trained for the demand time series by
maximising their log-likelihood according to (DLHS10) using two sea-
sonal patterns: one daily and one weekly. The best BATS model for
each demand time series was chosen on the basis of the Akaike Infor-
mation Criterion given by AIC = L? + 2k, where L? is the maximum
log-likelihood of the model, and k is the number of tunable parame-
ters of the model.

2.3.3 RBF-based support vector machine
Other modelling approaches involving non-linear functions have been
proposed in the literature and can be employed for the modelling of
the demand time series. Neural Networks (GRP07), Discrete Wavelet
Transform methods (Sol02), Support Vector Machine methods (TvBdW+03)
are only some of the methods available in the literature. In this section
we propose the use of a time series modelling approach using a Sup-
port Vector Machine (SVM) model with a Radial Basis Function (RBF)
with γ = 0.015.

The problem was formulated as an ε-SVM (see (CV95)) with ε =
10−5 and was solved using the celebrated library libSVM by (CCCJ11).
The parameter C of the cost function of the problem was set to 1000.
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Figure 2: Forecasting of water demand using the proposed BATS
model. (Black thick line) expected forecast, (surrounding lines)
confidence intervals for 90%, 95%, 97%, 99% and 99.9999% con-
fidence levels.

The explanatory variables used were 200 past values of the demand
and a set of binary calendar variables as follows: Letmi be 1 if the day
when the measurement was taken was the i-th day of the week (for
i = 0, . . . , 6) and 0 otherwise. Let hj be the corresponding variable
referring to the hour of the day for j = 0, . . . , 23. In this way, the
information about the seasonal pattern of the time series is encoded.
All the features of the dataset were scaled to the interval [0, 1].

A 10-fold cross-validation of the model produced a q2 = 0.9952. It
was found that PMSE24 = 0.0065 (with st. dev. 0.0051) and PRMSE24 =
0.0743 on average based on 150 samples. The performance of the
SVM-based predictor and the stringency of the confidence intervals
for its forecasts is illustrated in Figure 3.

2.3.4 Comparison and evaluation

The three proposed models are concisely compared in Table 1 in re-
gard to their complexity and predictive ability against external data.

23



3250 3260 3270 3280 3290 3300 3310 3320

3

4

5

6

7

8

9

10
x 10

−3

Time [hr]

D
e
m

a
n
d
 [
m

3
 h

r−
1
]

RBF−SVM Prediction

Figure 3: Forecasting of the demand time series using the pro-
posed RBF-SVM model. (Blue line): past demand data, (Red
line): Actual demand, (Black dashed line): SVM predictions,
(Light magenta dashed lines): 99% confidence intervals calcu-
lated by Monte Carlo simulations using 5000 seeds.

Table 1: Comparison of the Predictive Models

Performance Index sARIMA BATS RBF-SVM

Average PMSE24 0.0158 0.0043 0.0065
Average PRMSE24 0.1311 0.0584 0.0743
No. Parameters 25 26 229
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2.4 Model predictive control for the op-
erating management of DWN

Managing drinking water network is a complex task as it involves bal-
ancing various social and economical objectives. In this section, it is
discussed how these objectives are translated into cost function and
formulated a Model Predictive Control (MPC) problem.

2.4.1 Model predictive control

Model Predictive Control (MPC) also popular as Receding Horizon
Control (RHC) is an optimisation-based control technique that has
demonstrated phenomenal success in various industries. The reasons
behind this success can be attributed to its conceptual simplicity, abil-
ity to cope with complex system dynamics, handle constraints on state
and inputs and accommodate conflicting interests. The theory and ap-
plications have evolved a lot over the past three decades and several
monographs are available on MPC (see Rawlings and Mayne (RM09),
Camacho and Alba (CBA07) and Grüne and Pannek (GP11)).

The most vital components of MPC is the dynamics model of the
system to predict the future behaviour. Using this model, MPC solves
a finite-horizon open-loop optimal control problem to produce a fi-
nite control sequence given by π = {uk|k, uk+1|k, . . . uk+N−1|k}where
uk+i|k is the control action predicted time k + i from the time k. The
first element of the control sequence is applied to the system discard-
ing the rest of the sequence. The same computation is repeated at the
next sampling time. This aspect of online solving an optimal control
problem in MPC results in an implicit feedback action and offers re-
silience to system uncertainties. This procedure can be summarised in
Algorithm 1.

2.4.2 Control objectives

The cost function used in MPC formulation reflects the control objec-
tive of the system. In drinking water networks, this cost comprised of
production and transportation cost, deviation of the volume of water
in storage tanks from the prescribed operating limits and delivering
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Algorithm 1 Receding horizon control policy
1. Measure the state at xk at time instance k.
2. Solve the finite-horizon optimal control problem to gener-
ate π? = {u?k|k, u

?
k+1|k, . . . u

?
k+N−1|k}.

3. Apply u?k|k to the system and begin from step 1 for the next
time instance.

smooth control actions. These costs were quantified following the ap-
proach reported by (BOMPB10).

Water production and transportation cost

This cost is associated with treatment of drinking water, regulations
and electricity consumptions and is quantified by the cost function:

`w(uk, k) := Wα(α1 + α2,k)′uk, (2.16)

where α1 is a vector related to the production costs of water according
to the selected source (treatment plant, dwell, etc.), and α2,k is associ-
ated with the pumping cost for the transportation of the water through
certain paths. Wα is a proper scaling factor.

As the price of electricity is non-constant throughout the day, α2,k

is time-dependent. This price model depends on the agreement be-
tween the electricity provider(s) and the network operator. This agree-
ment could be a fixed price for certain time or a price that follow a
certain way whose pattern is known to the operator.

Safety storage

It is important that the stored volume of water in the tanks remain
into certain prescribed levels. This safety volume is to compensate
unexpected and unpredictable events and also to maintain pressure
levels in the network. For this reason, a safety-storage cost is included.
This cost is given by:

`s(xk) = s′kWxsk, (2.17)

where sk = max {0, xs − xk} and xs = βxmax where β ∈ (0, 1) is
a factor that represents the safety volume with the storage capacity.
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Wx ∈ Rnx×nx is a positive semi-definite matrix with non-negative
entries. This cost is non-quadratic and also replaced it with the term:

`S(ξk) = ξ′kWxξk, (2.18)

where ξk = ξk(xk) ≥ xs − xk accompanied by the convex constraint
ξk ≥ 0.

Smooth operation

In order to avoid intermittent, rapid oscillating actuation, which may
lead to glitches in operation and mechanical failures, the variations of
the control variables between consecutive time instants. This is the
smooth operation cost is defined as:

`∆(∆uk) = (∆uk)′Wu∆uk, (2.19)

where Wu ∈ Rnu×nu is a square positive definite matrix, and ∆uk =
uk−uk−1.

Total cost

The stage-cost at a time instance k incurred during the operation of
DWN is the summation of the all the above costs and given as

`(xk, uk, uk−1, k) = `w(uk, k) + `∆(∆uk) + `S(ξk). (2.20)

The total cost function and performance index is made up of the
aforementioned costs; it is:

V (xk,uk,Ξk,∆uk, k)=Lw(uk, k)+L∆(∆uk)+LS(Ξk), (2.21a)

where Lw is the total water production cost, L∆ is the total smooth opera-
tion cost and LS is the total safety volume cost given by:

Lw(uk, k) =
∑

i∈N[0,N−1]

`w(uk+i|k, k), (2.21b)

L∆(∆uk) =
∑

i∈N[0,N−2]

`∆(∆uk+i|k), (2.21c)

LS(Ξk) =
∑

i∈N[0,N−1]

`S(ξk+i|k). (2.21d)
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2.4.3 Demand forecasts
The water demand is the main source of uncertainty that affects the
dynamics of the model. Using the time-series forecaster that are dis-
cussed in the Section 2.3, a nominal forecast of the upcoming N stages
of the demand is predicted at time k. Lets denoted nominal demand
by d̂k+j|k. Then, the actual future demands dk+j — which are un-
known to the controller at time k — can be expressed as

dk+j(εj) = d̂k+j|k + εj , ∀j ∈ N[0,N ]. (2.22)

In general, this prediction errors increases with the horizon and
unbounded. Neglecting this forecasting errors, could result in violat-
ing the constraints in the closed-loop. One way to avoid this is by
assuming the errors are bounded and robustifying the constraints in
the MPC. Let’s assume that prediction error εj draw values from a
compact set Ej = {ε : εminj ≤ ε ≤ εmaxj } which contains the origin in
its interior; in practice, such sets are constructed from the prediction
error data by choosing confidence intervals of 99.9%(or higher).

2.4.4 Certainty-equivalence MPC problem
MPC algorithms recently started being used for the control of DWNs
(see for example (OMBPB12a)) as they guarantee certain quality of
service, satisfaction of the operating constraints of the plant and op-
timal operation (according to the prescribed performance indices). In
this section, an MPC problem is formulated taking into account the
nominal demand forecasts and the estimated bounds for the predic-
tion error.

At a given time instance k, the controller has access to the current
demand measurement dk and to a set of N future demand estimates,
namely d̂k+j|k given by the equation (2.22). Henceforth, the index
k+j|k will refer to a prediction at time k for the future time instant
k + j.

Hereinafter, we use the notation uk := (uk, uk+1|k, . . . , uk+N−1|k)
for the sequence of control actions, ∆uk := (uk+1|k−uk, . . . , uk+N−1|k−
uk+N−2|k) for the successive differences of u, and Ξk = (ξk+1|k, . . . ,
ξk+N|k). The vector dk that appears in the formulation of the MPC
problem is defined as dk = (dk, d̂k+1|k, . . . , d̂k+N−1|k) and is provided
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Figure 4: The closed loop system with the MPC controller and a
demand estimator.

to the controller from the demand forecast module along with the vec-
tor of maximum/minimum estimated prediction errors:

ek = (εmink+1|k, . . . , e
min
k+N−1|k, ε

max
k+1|k, . . . , e

max
k+N−1|k).

It is known that the prediction error εk+j|k ∈ Ek+j|k and Ek|k = {0} be-
cause dk|k = dk is measured. This implies that the predicted sequence
of states is:

xk+j|k = x̂k+j|k +

j∑
l=1

Al−1Gdεk+l|k, (2.23)

where x̂k+j|k stands for the nominal predicted state, whose dynamics,
starting from x̂k|k = xk is described following (2.7), i.e.,

x̂k+j+1|k = Ax̂k+j|k +Buk +Gdd̂k+1|k, (2.24)

The MPC problem is then formulated with decision variable
π = {uk|k, uk+1|k, . . . uk+N−1|k, ξk+1|k, . . . , ξk+N|k} as

V ?(xk,dk, k) = min
uk,Ξk

V (xk,uk,Ξk,∆uk, k) (2.25a)
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subject to the constraints:

x̂k+i|k ∈ X 	
i⊕

j=1

Aj−1GdEk+j|k, ∀i ∈ N[1,N ] (2.25b)

umin ≤ uk+i|k ≤ umax, ∀i ∈ N[0,N−1] (2.25c)

x̂k+i+1|k=Ax̂k+i|k+Buk+i|k+Gdd̂k+i|k,

∀i ∈ N[0,N−1] (2.25d)

Euk+i|k + Edd̂k+i|k = 0, ∀i ∈ N[0,N−1] (2.25e)

ξk+i|k ≥ xs − x̂k+i|k,∀i ∈ N[0,N ] (2.25f)

ξk+i|k ≥ 0, ∀i ∈ N[0,Hp] (2.25g)

d̂k|k = dk, and x̂k|k = xk (2.25h)

In this formulation, only the nominal demand is used in the dynamic
model of the system equation (2.25d) and popularly termed as Certainty-
Equivalence MPC.

Here the equation (2.25b) implies that for all i ∈ N[1,N ], then xk+i|k ∈
X as long as εk+j|k ∈ Ek+j|k for all j ∈ N[1,i]. Normally, in order to
perform the set operations in (2.25b), it is required to iterate over all
vertices of the sets Ek+j|k (i.e., 2nd elements). However, in the context
of water networks, Gd is a very sparse matrix (maximum 3 non-zero
elements per row) so the complexity is such that allows the on-line im-
plementation of the proposed algorithm. Notice that the (predicted)
state is constrained in a set that is smaller than X and that the con-
straints are time-varying along the prediction horizon and are condi-
tioned by the estimated prediction error.

2.4.5 Formulation as convex QP

The forecasts d̂k+i|k are computed using any of the time series models
described in the previous section and in the deterministic formulation
only the nominal values of the forecasts are used (certainty equiva-
lence approach), i.e., the forecasts are treated as accurate. The above
problem can be formulated as a constrained quadratic problem using
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the batch as follows:

V ?(xk,dk, k) = min
y
V (y) (2.26a)

subject to : Gy = γ(dk) (2.26b)

Fy ≤ φ(xk,dk) (2.26c)

yl ≤ y ≤ yh (2.26d)

where y ∈ Rnu(Hu+1)+nxHp is the vector y = (uk,Ξk) and

V (y) =
1

2
y′Hy + f ′y. (2.27)

Here, the formulas of the these matrices H ,f , G, F , φ, γ, yl and yh
is derived below. First the ∆uk+i|k is rewritten as follows:

∆uk+i|k = ∆̃ · uk+i|k (2.28)

where ∆̃ ∈ RnuHu×nu(Hu+1) is the matrix:

∆̃ =


−Inu Inu

−Inu Inu
. . .

. . .
−Inu Inu

 (2.29)

The total cost function V (·) of (2.21) in the following form:

V (y) = W̃αuk + Ξ′kW̃xΞk + u′kW̃uuk, (2.30)

where
W̃α = Wα

(
a1 ⊗ 1N + veci∈N[0,N−1]

(a2,k+i)
)′
,

W̃x = IN⊗Wx and W̃u = ∆̃′(IN−1⊗Wu)∆̃. The notation veci∈N[0,N−1]
(a2,k+i)

should be interpreted as:

veci∈N[0,N−1]
(a2,k+i) =


a2,k

a2,k+1

...
a2,k+N−1


where a′2,k+i ∈ Rnu for all i ∈ N[0,N−1], therefore W̃α ∈ R1×nu(N−1).
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As a result, the matricesH and f that appear in (2.26) are given by
H = 2 blockdiag{W̃u, W̃x} and f =

[
W̃ ′α 0′nxN

]′
. Note that H is

symmetric.
Let’s denote xk = (xk+1|k, . . . , xk+N|k) ∈ RnxN . Now the dynam-

ics of the system in given as:

xk = Sxxk + Suuk + Sddk, (2.31)

where Sx ∈ RnxN×nx and Su ∈ Rnx(N−1)×nu(Hu+1) are the matrices

Sx =


A
A2

...
AN−1

 , Su =


B
AB B

...
...

. . .
AN−2B · · · B

 , (2.32a)

Sd =


Gd
AGd Gd

...
...

. . .
AN−2Gd · · · Gd

 , (2.32b)

Then the inequality constraints of (2.25) are translated, in terms of
uk, dk and xk into:

Suuk ≤ xmax − Sxxk − Sddk (2.33a)

−Suuk ≤ −xmin + Sxxk + Sddk (2.33b)

−Suuk − Ξk ≤ −βxmax + Sxxk + Sddk (2.33c)

Ξk ≥ 0 (2.33d)

umin ≤ uk ≤ umax (2.33e)

where xmax = 1N ⊗ xmax, xmin = 1N ⊗ xmin, umax = 1N−1 ⊗ umax
and umin = 1N−1⊗umin. Therefore, the matrixF ∈ R3nxN×nxN+nu(N+1)

and the vector φ ∈ R3nxN in (2.26):

F=

 Su

−Su
−Su −InxHp

 , φ(xk,dk)=

 xmax − Sxxk − Sddk
−xmin + Sxxk + Sddk
−βxmax + Sxxk + Sddk


(2.34)
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and

yl =

[
umin

0

]
, yh =

[
umax

∞

]
. (2.35)

Let E ∈ Rne×nu . The equality constraints of (2.25) can be written
as (IN ⊗ E)uk = (IN ⊗ Ed)dk, hence:[

IN ⊗ E 0
]︸ ︷︷ ︸

G∈Rne(N)×nu(N)+nxN

·y = −(IN ⊗ Ed)d〈1,N−1〉
k︸ ︷︷ ︸

γ(dk)∈Rne(N)

. (2.36)

Note that only γ and φ need to be updated at every iteration while
all the other matrices are calculated off-line. This problem can be
solved on-line, very efficiently using either gradient (PB12) or Newton
method (PSS11a) or using a commercial solvers like Gurobi (Gur10) or
CPLEX (ILO09) . The closed-loop system with certainty-equivalence
MPC can be summarised in the Algorithm

Algorithm 2 MPC for DWN
Require: Current state information x0 and previous control ac-

tion u−1.
Compute the error bounds of the forecast ek.
loop

1. Measure the state xk at time instance k.
2. Predict the demand estimates dk using the time-series
model. If necessary update the prediction error ek.
3. Update γ and φ in the QP (2.26) for the control policy
π? = {u?k+j|k, ξk+j+1|k}N−1

j=0 .
4. Apply u?k|k to the system and begin from step 1 for the
next time instance.

end loop

This approach allows for the decoupling of the predictor from the
controller. The effect of the predictor’s estimated error on the con-
troller is clear from the formulation of the problem as in (2.25): the
bigger the error is, the stricter the constraints and the more conserva-
tive the control policy will be.
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Figure 5: Structure of the DWN of Barcelona.

2.5 Case Study: Barcelona DWN

In this section, MPC with demand forecaster is investigated in the
management of Barcelona drinking water network which has been re-
ported by Ocampo et al. (OMBP11).

The drinking water network in Barcelona require to meet the wa-
ter demands of the city and the metropolitan area. This is managed
by the company Aguas de Barcelona (AGBAR) which provided the
data and the network topology. The layout of the network is given
in the Figure 5. The system is modelled following Section 2.2.1, using
a linear time-invariant dynamical system with 63 state variables, 114
manipulated inputs, 88 disturbances and 17 flow intersection nodes.
All other parameters and technical characteristics, such as xmin, xmax,
xs were specified by the network manager (AGBAR). This analysis is
carried for a period of 7 days (Hs = 168) from 1st to 8th July 2007.

The time series models calibrated in Section 2.3 are used in a closed-
loop setting with the MPC controller described above. The predic-
tion horizon is N = 24 with sampling time of 1 hour. The weighting
matrices in (2.16), (2.18) and (2.19) are chosen to be Wα = 2 · 104,
Wu = 105 · I , and Wx = I , respectively.

The optimisation problem (2.25) was solved online using CPLEX.
In terms of complexity, it comprises 4248 decision variables, 1512 bound
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constraints, 408 linear equations and 4536 linear inequality constraints.
On average (based on 500 samples) the computational time for the so-
lution of the optimisation problem was 1.85s (st. dev.: 0.055s) and the
time needed for the its formulation was 0.018s (st. dev.: 0.005s).
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Figure 6: The MPC control action (scaled in the range [0, 1]) and
the water production cost. The bold dashed lines represent the
average values (average control action and average production
cost). The input trajectories are split in two graphs for clarity.
Only pumping actions are presented here.

As shown in Figure 6, the controller tends to operate the pumps
when the electricity cost is low. Moreover, Figure 7 shows that the
volume of water in the tanks remains always between the prescribed
bounds and tends to stay over the safety storage limit.

In order to demonstrate how the prediction ability of the demand
forecasting model effect the economical operations of the DWN, com-
parison between the case with actual demands and with the forecast
demand. The SVM model developed is considered for forecast. The
operational cost are measure in economical units (e.u) is calculated. It
is found that SVM model incur an additional cost of 11.17% than exact
future demand scenario. This comparison is shown in Figure 8.

35



4500 4505 4510 4515 4520 4525 4530 4535 4540 4545
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Time [hr]

V
o
lu

m
e
 [
m

3
]

Safety Volume

Minimum Volume

Maximum Volume

MPC Upper Bound

MPC Lower Bound

Predicted Traj.

Closed−loop trajectory

Figure 7: The controlled trajectory of the volume of water in the
tank d130BAR of the Barcelona DWN.

2.6 Conclusions
Model predictive controller combine with demand forecaster is pro-
posed for the management of drinking water networks. Water de-
mand is identified as the main source of uncertainty and is predicted
with three different time-series models – seasonal ARIMA, RBF-SVM
and BATS. Finally, the controller is tested on the drinking water net-
work of Barcelona.

In certainty-equivalence MPC, only the nominal forecast of the de-
mand is considered and the constraints are shrunk to avoid closed-
loop constraint violation. Here we utilise only information related to
the worst-case prediction errors. This is a drawback with this formu-
lation as it risks infeasibility and leads to a conservative control law.
These limitations are addressed in a better way with stochastic model
predictive control in the next chapter.
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Chapter 3

GPU-accelerated
methods for stochastic
optimal control

Model predictive controller combined with demand forecaster is pro-
posed for real-time management of drinking water networks in Chap-
ter 2. The forecasting errors are taken care by including the worst-case
prediction errors and shrinking the constraints. This risks infeasibility
and also provides a conservative control law. This encouraged for a
stochastic optimal control formulation. In general, stochastic optimal
control problems are deemed to be large-scale involving up to mil-
lions of decision variables. Their applicability in control applications
is often limited by the availability of algorithms that can solve them
efficiently and within the sampling time of the controlled system.

This motivated to develop optimisation algorithms that solve sto-
chastic optimal control problems in parallel. Here we propose a dual
accelerated proximal gradient algorithm which is amenable to paral-
lelisation and demonstrate that its GPU implementation affords high
speed-up values and greatly outperforms well-established commer-
cial optimisers such as Gurobi. These results are published in (SSBP15).
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3.1 Introduction

3.1.1 Background
Stochastic optimal control problems typically give rise to large-scale
optimisation problems involving up to tens of millions of constrained
decision variables. Such problems arise in stochastic model predic-
tive control of Markovian switching systems (PSSB14), stochastic con-
trol of networked systems (PSS11b) and of large-scale uncertain sys-
tems (SGS+14), portfolio optimisation under uncertainty (RK12), in-
ventory management (Zip00), management of supply chain systems
(Son13) and in many other applications of stochastic optimal control.

Despite their popularity, control engineering practice has taken lit-
tle initiative towards adopting the theoretical results of stochastic opti-
mal control theory, and this is mainly due to the prohibitive computa-
tional footprint that accompanies it. The increasing need for computa-
tional power gives the floor to graphics processing units (GPUs) and
field programmable gate arrays (FPGAs) which are gaining momen-
tum in control applications (LPBC14; MXAM12; RS13). Since one’s
ability to apply stochastic control methodologies is conditioned by the
system’s sampling rate, the need for algorithms and hardware that can
solve such problems fast is becoming imperative.

Recently, Constantinides authored a tutorial paper in which he
outlines the potential advantages of the use of FPGAs and GPUs for
(deterministic) model predictive control (MPC) applications (Con09).
Rogers and Slegers demonstrated the potential of in situ GPU-aided
controllers for the guidance of a parafoil where Monte-Carlo simula-
tions are performed in real-time to counteract the wind uncertainty
(RS13). Although, there have been efforts to parallelise algorithms
for the solution of MPC-related optimisation problems (see (GNDJ14;
DBB13; PSA14)), there is no approach that exploits the structure of
stochastic optimal control problems to achieve high computational
throughput. For example, the approach of Di Cairano et al. (DBB13)
treats the MPC optimisation problem as a general quadratic program-
ming problem and, as a result, cannot scale up with the problem size.
A GPU-based framework to solve large scale two-stage stochastic opti-
misation problems with applications to uncertain energy dispatch sys-
tems is presented in (PSA14).

In this chapter, a scalable parallelisable algorithm is proposed for
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solving multi-stage stochastic optimal control problems. It uses accel-
erated proximal gradient method applied to the Fenchel dual optimi-
sation problem and exploits the problem’s structure to further accel-
erate computations. The dual gradient is calculated as the solution of
an unconstrained minimisation problem which is solved by dynamic
programming. This problem can be properly decomposed and solved
in a parallelised way.

This boils down to an algorithm that requires only matrix-vector
products, it is highly parallelisable and can be readily implemented on
a GPU or FPGA architecture. The algorithm is well-suited the control
for linear dynamical systems with additive and multiplicative uncer-
tain components assuming that these are driven by a stochastic pro-
cess that can be modelled as an evolution along a scenario tree. The
proposed algorithm is division-free and therefore, as O’Donoghue et
al. accentuate in (OSB13), it is suitable for embedded applications us-
ing fixed-point arithmetic. Moreover, it allows the cost function of the
optimisation problem to have a nonsmooth part which can be used to
encode hard or soft constraints, or terms involving ‖ · ‖1.

3.1.2 Outline

In Section 3.2, we define some mathematical preliminaries that are
used in this chapter. Section 3.3 introduces the stochastic optimal con-
trol problem and formulates for linear system with additive and mul-
tiplicative uncertainty. Later we state the computational limitations
with this formulation and present a finite dimension approximation.
This formulation is derived using a scenario-tree representation whose
outcome is a large-scale optimisation problem. In the Section 3.4, the
proximal-gradient algorithm and its accelerated variant are discussed
for both primal and the dual problem. In the Section 3.5, the proximal
gradient algorithm is applied to the stochastic optimal control prob-
lem where the structure of the problem is exploited leading to a par-
allisable algorithm. In Section 3.6 the performance of this algorithm
is demonstrated on the spring-mass example with varying complex-
ity of the scenario tree and increasing prediction horizon. Finally the
conclusions are drawn in Section 3.7.
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3.1.3 Notation
Let R, N, Rn, Rm×n, Sn+, Sn++ denote the sets of real numbers, non-
negative integers, column real vectors of length n, real matrices of di-
mensions m-by-n, symmetric positive semidefinite and positive defi-
nite n-by-n matrices respectively. Let R̄ = R ∪ {±∞} denote the set
of extended-real numbers. The transpose of a matrix A is denoted by
A′. The set of of nonnegative numbers {k1, k1 + 1, . . . , k2}, k2 ≥ k1

is denoted by N[k1,k2]. We denote by ‖ · ‖1 and ‖ · ‖2 the 1-norm and
Euclidean norm on Rn. Unless otherwise stated ‖ · ‖ stands for ‖ · ‖2.

3.2 Mathematical preliminaries
In this section we provide the definitions of some mathematical terms
which will be used in this chapter.

3.2.1 Probability theory
In this section we provide a quick presentation of some useful defini-
tions and facts from probability theory

Probability Space. A probability space is the triplet (Ω,F,P), where
Ω is called the sample space, F is the event space and P is a probability
measure. In particular,

• Sample space. The set of all possible outcomes of an experiment is
the sample space.

• Event space. The event space F is a subset of the powerset of Ω —
that is, it is a collection of subsets of Ω — which is a σ-algebra,
that is

1. ∅ ∈ F,

2. A ∈ F⇒ Ω\A ∈ F,

3. A1, A2, . . . ∈ F =⇒
⋃∞
i=1 Ai ∈ F.

• Probability measure. This is a function P : F→ [0, 1] such that

1. P(Ω) = 1,

2. If A1, A2, . . . ∈ F are disjoint events then P
[⋃∞

i=1 Ai
]

=∑∞
i=1 P(Ai).
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Measurable function. A function ξ : (Ω,F) → (Ω′,F′) between two
measurable spaces is called measurable if ξ−1(B) ∈ F for every B ∈
F′.

Random variable. Let (Ω,F,P) be a probability space. A measurable
function ξ : Ω→ R is called a (real-valued) random variable over Ω —
here we assume that R is equipped with the Borel σ-algebra. 1

Stochastic process. Let (Ω,F,P) be a probability space. and let
T be a parameter set — which is either T = N or a finite set T =
{0, 1, . . . , N}. Any collection (sequence) of random variables ξ = {ξt}t∈T
defined on (Ω,F,P) is called a stochastic process with the index set T .
The index t is often referred to as “time”. For each ω ∈ Ω, let ξ(ω) de-
note the function t 7→ ξt(ω) from T into R; then ξ(ω) is a sequence — an
element of RT . According to (Ç11, p. 53), the stochastic process ξ can
be seen as a random variable ξ(ω) on the measurable space (ΩT ,RT ).

Filtration. For a stochastic process ξ = {ξk}k∈N, a filtration is a con-
struct which describes the information that is available to the random
process up to given time k. Formally, for a probability space (Ω,F,P),
the sequence of sub-σ-algebras {Fk}k∈N is called a filtration if it satis-
fies Fs ⊂ Fk, for all s < k. A filtration is a formal way to represent
a “stream of information”. We can think Fk as the information that is
observed up to time k. As time progress, we observe the process and
more information about it is gathered. This is represented with the
nested sequence of σ-algebras of the filtration.

If the probability space (Ω,F,P) is endowed with a filtration {Fk}k∈N
is called a filtered probability space and denoted as (Ω,F, {Fk}k∈T ,P).

A stochastic process {ξt}t∈T is said to be adapted to a filtration
{Fk}k∈N if ξk is Fk-measurable for each k ∈ N. It means the value of
the random variable ξt can be determined by the information available
at time k.

Expectation and Conditional expectation. For a probability space (Ω,F,P)
the expectation of a random variable ξ(ω) is defined as

E[ξ] =

∫
Ω

ξ(ω)P(dω), (3.1)

where the integral is the Lebesque integral. Now let G be a sub-σ-
algebra of F. Then a G-measurable random variable ξ̄ is the condi-

1The Borel σ-algebra of R is the standard σ-algebra used with the set of real
numbers. It is the smallest σ-algebra to contain the open intervals of R.
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tional expectation of C on G, denoted as ξ̄ = E[ξ|G], if it satisfies∫
C

ξ̄dP =

∫
C

ξdP for all C ∈ G. (3.2)

Note that the conditional expectation of a random variable is itself a
random variable.

The conditional expectation satisfies E
[
E[ξ|G]

]
= E[ξ] whenever ξ

is G-measurable and the well-known and widely-used tower property,
that is, for two σ-algebras G1 ⊆ G2 it is E [E [ξ | G2] | G1] = E [ξ | G1].

3.2.2 Convexity
In this section we provide a quick presentation of some useful defini-
tions and facts from convex theory (BV04; RW09).

A set C is called convex if

x, y ∈ C, λ[0, 1], implies λx+ (1− λ)y ∈ C. (3.3)

For a function f : X → R̄we define

1. epi f = {(x, α)|x ∈ X , α ∈ R, f(x) ≤ α} which is called the
epigraph of f , and

2. dom f = {x ∈ X|f(x) <∞}which is called the domain of f .

The function f : X → R̄ is said to be convex when epi f is a con-
vex set. Another classical — and equivalent — definition of convexity
requires that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (3.4)

holds for λ ∈ [0, 1] and all x, y ∈ dom f such that left-hand side is well
defined. The function is called strictly convex if (3.4) holds strictly (<)
for every λ ∈ (0, 1) and for all pairs x, y ∈ dom f with x 6= y.

A function f : X → R̄ is σ-strongly convex if x 7→ (x)− σ
2
‖x‖22 is a

convex function.
Proper function: A function f : Xn → R̄ is called proper if f(x) >

−∞ for some x ∈ dom f and its domain is non-empty.
Closed and Lower semicontinuous: A function f : X → R̄ is lower

semicontinuous at x ∈ X if f(x) ≤ lim infk→∞ f(xk) for every se-
quence {xk} ⊂ X with xk → x. A function f : X → R̄ is closed if
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epi f is closed set. If the function is lower semicontinous on X , then
the epigraph of f is closed set in X × R.

Properness, convexity, and lower semicontinuity are our standard
assumptions for the functions occurring in the optimization problems
within this thesis.

β-Lipschitz continuous. A mapping F : Rn → Rm is called β-Lips-
chitz continuous, with β ≥ 0, if ‖F (x1) − F (x2)‖∗ ≤ β‖x1 − x2‖ for
every x1, x2 ∈ Rn.

Euclidean projection & Euclidean distance. The indicator function of
a set C ⊆ Rn is the extended-real valued function δ(·|C) : Rn → R̄
and for x ∈ C it is δ(x|C) = 0 and δ(x|C) = +∞ otherwise. Ev-
ery non-empty closed convex set C ⊆ Rn defines the convex function
proj(x|C) = argminc∈C ‖x− c‖2, which is called the (Euclidean) projec-
tion of x onto C. The Euclidean distance of a x ∈ Rn from C is defined
as d(x|C) = minc∈C ‖x− c‖2.

Subgradient & Subdifferential. A vector g ∈ Rn is a subgradient of f
at x ∈ dom f when

f(y) ≥ f(x) + 〈g, y − x〉, for all y ∈ dom f (3.5a)

The subdifferential of f at x ∈ dom f is the set of all the subgradients g
of f at x ∈ dom f and denoted by ∂f(x)

∂f(x) = {g | f(y) ≥ f(x) + 〈g, y − x〉, y ∈ dom f} (3.5b)

In case of a smooth function, the subdifferential is a singleton ∂f(x) =
{∇f(x)}.

Conjugate function. Let f : Rn → R̄ closed, convex, proper ex-
tended real-valued, lower semi-continuous function. The conjugate
function f∗ : Rn → R̄ of a function is

f∗(y) = sup
x∈Rn

{〈y, x〉 − f(x)} . (3.6a)

This is the point-wise supremum of a family of affine function of y.
This function is lower semi-continuous and convex (even if f is not
convex).

The function f and its conjugate f∗ satisfies the Young-Fenchel
inequality

f(x) + f∗(y) ≥ 〈y, x〉, for all x, y ∈ Rn (3.6b)
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This inequality follows from the supremum in the definition of the
conjugate (3.6a) as

f∗(y) ≥ 〈y, x〉 − f(x), =⇒ f(x) + f∗(y) ≥ 〈y, x〉, for all x, y ∈ Rn,

We use this relation in the next section to calculate the subgradient of
the conjugate function.

Moreau envelope. The Moreau envelope or Moreau-Yosida regularisa-
tion of the function f with parameter γ is defined as

fγ(x) = inf
v∈Rn

{
f(v) +

1

2γ
‖x− v‖2

}
, (3.7a)

for γ>0. This function can also be seen as the infimal convolution2 of γf
and the Euclidean distance function ‖ · ‖2

fγ(x) =(γf)� 1
2
‖ · ‖2 (3.7b)

Let us define the function which is minimised inside the Moreau
envelope as L(v, x) := f(v) + 1

2γ
‖x− v‖2. This is strongly convex and

has a unique minimiser. So fγ(x) = infv L(v, x) is convex according
to (RW09, Prop. 2.22) because it is written as an inf-projection and it
has domain Rn because of (RW09, Thm. 1.17). The envelope function
fγ is continuously differentiable, even when f is nonsmooth (RW09,
Theorem 1.25). The Moreau envelope fγ is essentially a smooth or
regularised version of f . It approximates f from below, that is fγ ≤ f ,
and has the same set of minimisers and minimisation of fγ which is
smooth is equivalent to minimising f (RW09). We discuss more details
about Moreau envelope and its relationship with proximal algorithms
in the Section 3.4.

3.3 Problem statement
This section introduces the general stochastic optimal control problem.

2The infimal convolution of two functions f1 and f2 is a function
(f1 � f2)(v) = infx1+x2=v(f1(x1) + f2(x2)) which has two remarkable prop-
erties: (i) dom(f1 � f2) = dom f1+dom f2 and (ii) (f1 � f2)∗ = f∗1 (v)+f∗2 (v).
The infimal convolution operator is, therefore, dual to addition and it is of-
ten termed epi-addition. More information can be found in (RW09, Sec. 1-H)
and (PB14a, Sec. 3.1).
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3.3.1 Stochastic optimal control
Consider the following discrete-time stochastic linear system

xk+1 = Aξkxk +Bξkuk + wξk , (3.8)

where xk ∈ Rnx is the system state, uk ∈ Rnu is the input, and wξk is
an additive disturbance term.

Let Ωk be the sample space of the random variable ξk. In what
follows we shall consider that each Ωi, i ∈ N is a nonempty finite set.
We define the product space Ω =

∏
i∈N R

nx×Rnu×Ωi and the filtered
probability space (Ω,F, {Fk}k∈N,P), where F is the Borel σ-algebra on
Ω and {Fk}k∈N is a filtration on Ω where Fk is the Borel σ-algebra on∏k
i=0 R

nx×Rnu×Ωi. Finally, P is the product probability measure on
Ω.

In a deterministic setting, the outcome of optimal control problem
is a sequence of control actions, but that sequence is no longer optimal
in presence of uncertainty. This challenge is addressed by minimising
over control laws rather than sequences of control actions. Let us de-
fine π = {uk(·)}N−1

0 as the control policy — the decision variable of the
stochastic problem — where uk(·) are the control laws. For a given time
instant k the control laws are defined as

uk(·) = ψ(xxxk,uuuk−1, ξξξk−1)), (3.9)

with ξξξk = (ξ0, . . . , ξk), xxxk = (x0, . . . , xk) and uuuk = (u0, . . . , uk). This
means that decisions at time k are taken using only prior knowledge
— in a causal fashion.

This is equivalent to saying that uk(·) is Fk-measurable. Markov
policies are a special case of this where the policy depends only on the
present state uk = ψ(xk) (BS78).

Let us define a stage-cost ` : Rnx×Rnu×Ωk → R̄ that is associated
with xk and uk and depends on the random variable ξk. The stage cost
function ` is written as

`(x, u, ξ) = φ(x, u, ξ) + φ̄(Fξx+Gξu, ξ), (3.10a)

where φ is real-valued, smooth in (x, u), and it is such that the follow-
ing function of π

E

[
N−1∑
k=0

φ(xk, uk, ξk)

]
(3.10b)
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is strongly convex over the manifold that defines the system dynamics
3, while φ̄ is an extended-real valued function, lower semicontinuous,
proper, convex and possibly non-smooth.

The stage-by-stage description of the underlying decision-making
process can be described as

• starting from x0 = p, choose u0, apply to the system to get x1,
ξ0 ∈ Ω0 and pay `(x0, u0, ξ0),

• choose u1 = ψ(x0, u0, ξ0, x1), apply to the system to get x2, ξ1 ∈
Ω1 and pay `(x1, u1, ξ1),

...

• choose uN−1 = ψ(xxxN−1,uuuN−2, ξξξN−2), apply to the system to
get xN and ξN−1 ∈ ΩN−1 and pay `(xN−1, uN−1, ξN−1) and
Vf (xN , ξN )

Here, Vf (·, ·) : Rnx × ΩN → R̄ is the terminal cost function. This
cost can also be decomposed as

Vf (x, ξ) = φN (x, ξ) + φ̄N (FN,ξx, ξ) (3.10c)

The stochastic optimal control of horizon N ∈ N is formulated as:

V ?(p) = min
π
E

[
Vf (xN , ξN ) +

N−1∑
k=0

`(xk, uk, ξk)

]
, (3.11a)

subject to

xk+1 = Aξkxk +Bξkuk + wξk , (3.11b)

x0 = p, (3.11c)

where E is the conditional expectation with respect to the above prod-
uct measure P. Here the expectation E[·] operation serves as a quanti-
fier of the cost function which is a random variable.

This problem (3.11) encompasses a very wide class of optimiza-
tion problems by allowing the stage cost ` and the terminal cost Vf
to be extended-real valued functions. In what follows the stage cost

3This is the case when, for instance, φ(x, u, ξ) = x′Qξx+u′Rξu andQξ are
symmetric positive semi-definite and Rξ are symmetric positive definite.
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can be readily taken to be a function of both k and ξξξk, i.e., it can be
`(xk, uk, ξξξk, k), but for the sake of simplicity of presentation we will
consider the simpler, yet quite general, case of Equation (3.11).

Function φ̄ can be chosen to be any nonsmooth function as dictated
by the problem we need to solve. The function φ̄ is used to encode
arbitrary hard constraints on states and inputs of the form Fξkxk +
Gξkuk ∈ Yξk by choosing

φ̄(·, ξk) = δ(·|Yξk ), (3.12)

where Yξk are non-empty convex closed sets for which projections
proj(·|Yξk ) can be easily computed. This way we may impose poly-
hedral constraints by choosing Yξk to be boxes (hypercubes) or ellip-
soidal constraints by choosing Yξk to be 2-norm-balls.

Soft constraints can be encoded by choosing

φ̄(·, ξk) = ηξkd(·|Yξk ), (3.13)

where ηξk > 0 is a scaling factor, while one may also choose

φ̄(·, ξk) = ‖ · ‖1 (3.14)

to force the optimizer to be sparse.
The smooth part of the stage cost ` is here taken to be a quadratic

function of the form φ(xk, uk, ξk) = x′kQξkxk+u′kRξkuk, whereRξk ∈
Snu++ and QξkS

nx
+ . The smooth part of the terminal cost function Vf is

a quadratic function φN (xN , ξN ) = x′NPξNxN , with PξN ∈ S
nx
++. The

function φ̄N can be selected in the same way as explained for φ̄, e.g.,
terminal constraints of the form FN,ξxN ∈ Xf can be encoded using
φ̄N (·, ξ) = δ(·|Xf ), where Xf is assumed to be such that proj(·|Xf )
can be easily evaluated computationally.

Challenges in stochastic optimal control

The main characteristics of the above stochastic optimal control prob-
lem (3.11) are (i) the decision variables are causal policies uk(·) instead
of single variables and (ii) the objective function is an expectational
cost involving multi-dimensional integrals. Both these features make
this an infinite dimensional optimisation problem. One has to con-
sider either approximations of the original problem or draw restrictive
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assumptions on the driving random process such as that ξk1 and ξk2
are independently distributed for k1 6= k2 and that ξk are normally
distributed.

A popular approximation is assuming the uncertainty is Gaussian
with known mean and variance and restricting the set of admissible
policies to affine feedback policies. Some popular works based on
these assumptions are the stochastic tube formulation with predefined
feedback policy (CKW09; KCRC10) and affine disturbance feedback
policies (OJM08; CL15). Such assumptions make sense in some cases
but fails to be realistic more often than not.

3.3.2 Finite dimension formulation
An alternative approach to solve the infinite dimensional is to approx-
imate it with a finite number of scenarios bundled in the form of a sce-
nario tree which is a discrete approximation of the probability distribu-
tion of the underlying random process. In this section we describe the
stochastic optimal control formulation with the scenario-trees.

Scenario trees

A scenario is an outcome of the random process ξξξN . A scenario tree
is a structure dictated by the filtration of the probability space and
describes the evolution of the process. This is illustrated in Figure 9.
In this section, we discuss the structure and primitives through which
we can describe the evolution of the scenario tree (SDR09).

The scenario tree is a finite set of nodes interconnected as shown
in Figure 9. The node at stage k = 0 is called the root node. At the
root node, there is no information about the stochastic process but the
observation of x0. At this stage, there is no uncertainty about the state
of the system. The nodes at the next stage k = 1 correspond to the
possible outcomes of the random variable ξ0. In the tree shown in the
Figure 9 there are three possible outcomes of ξ1. Similarly the nodes at
the last stage k = N are the possible outcome of the random variable
ξN−1 — these are the leaf nodes of the tree.

Every node at stage k = 1 is a child of root node and the root node
is the ancestor node. Similarly each node at stage k = 2 is a child of
a node at stage k = 1 and nodes of stage k = 1 their ancestor. The
leaf nodes of the tree have no children. A particular realisation of ξk is
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Figure 9: Example of a scenario tree structure. This figure repre-
sents the evolution of the system dynamics using a scenario tree
structure.

denoted by ξik and it is associated with the i-th node at k-th stage. We
will call the maximum number of children at a stage k the branching
factor bk of this stage.

The sample space Ωk of stage k is the set of all the nodes at stage
k ∈ N[1,N ]. The cardinality of the set Ωk is denoted by µ(k), while
the total number of nodes of the tree is µ. Non-leaf nodes have a set
of children; for i ∈ N[1,µ(k)] we denote the children nodes of the i-th
node at stage k by child(k, i) ⊆ N[1,µ(k+1)]. The ancestor of the node
i at stage k ∈ N[1,N ] is denoted by anc(k, i) and it gives a node at the
k − 1 stage. Finally, as it follows from the above discussion, a node
of the tree is uniquely identified by the pair (k, i) with k ∈ N[0,N ] and
i ∈ N[1,µ(k)].

A scenario is an admissible path from the root node to a leave
nodes. Every node in the tree has a unique path from the root node
which represents the history of the process. Let us denote s(k, i) as the
path to node i at stage k from the root node which can be recursively
written as

s(k, i) = {(k, i), (k − 1, s(k − 1, anc(k − 1, i)))}, (3.15)
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with s(0, 1) = {(0, 1)}.
The number of scenarios in the tree are equal to the number of leaf

nodes µ := µ(k). Let us denote with scen(k, i) as the set of scenarios
that run through node i at stage k. This set is given by

scen(k, i) = {j | i ∈ s(N, j)}. (3.16)

The sets of children are disjoint, i.e., child(k, i)∩child(k, j) = ∅, for
i, j ∈ Ωk, i 6= j, k ∈ N[1,N−1] and Ωk+1 = ∪i∈Ωk child(k, i). Shapiro
et al. use this very structure to describe the scenario tree structure
over the sample space ΩN with σ-algebra FN = 2ΩN and proceed
to identifying Ωk by a filtered space (Ω,F, {Fk}Nk=0) where {Fk}Nk=0

is induced by a successive regrouping of the leaf nodes according to
their ancestors (SDR09; SB16). We shall discuss this further at the end
of this section.

Different nodes of certain realisations of ξk can have the same nu-
merical value but they may differ in their histories. Each node in the
tree is associated with a probability mass which indicates the proba-
bility of its occurrence. The root node has probability 1 and the prob-
ability of moving from node i at stage k to a node l ∈ child(k, i) is plik .
Naturally

∑
l∈child p

il
k+1 = 1. These probabilities represent the condi-

tional distribution of ξk+1 given the path of the process s(k, i). These
probabilities are in one-to-one correspondence with the boughs of the
tree.

Let us denote the probability of reaching a node i at stage k from
root as pik. This probability is the product of the conditional probabili-
ties of the nodes encounter in its path from the root node, i.e.,

pik = p
i anc(k,i)
k p

anc(k,i)
k−1

The summation of these probabilities at every stage gives

µ(k)∑
i=1

pik = 1,

and for k ∈ N[0,N−1] and i ∈ N[1,µ(k)] we have∑
j∈child(k,i)

pjk+1 = pik.

51



The tree structure can also be related with the filtration associated
with the data process. Let us define FN as the sigma algebra associ-
ated with the set ΩN . Now the set ΩN can be represented as a union of
disjoint sets child(N − 1, i), i ∈ ΩN−1 and the sigma algebra FN is the
collection of these subsets. Let FN−1 be the sub-algebra of FN gener-
ated by the sets child(N−1, i), i ∈ ΩN−1. As these sets are disjoint, the
resulting sets become the elementary events of FN−1. By continuing in
this way, a sequence of sigma algebra F0 ⊂ F1 . . . ⊂ FN is constructed
with F0 = {∅,ΩN}. This sequence of nested sigma algebras is called
filtration and the corresponding scenario tree is a representation of this
filtration. The elementary events of Fk is a subset of ΩN for which is
corresponded to a node in Ωk.

3.3.3 Stochastic optimal control based on scenario
trees

The scenario tree approximate the stochastic process to finite dimen-
sion process. This section formulates the stochastic optimal control
problem using the scenario tree. In practice, such scenario trees can
be generated, inter alia, from real data by the algorithm proposed by
Heitsch and Römisch (HR03).

Let us denote by xik, uik as the state and control action at the node i
of stage k and let π = {{xik}k,i, {uik}k,i}. Let us also denote the states
and control actions at k as xk = {xik},uk = {uik} respectively. This is
shown in Figure 9.

At k = 0, the state x1
0 = p is known and the states at the next stages

are predicted based on the scenario tree structure as:

xjk+1 = Ajkx
i
k +Bjku

i
k + wjk+1, j ∈ child(k, i). (3.17)

At stage k = 0, the only information available is x1
0 = p and the

action u0 is decided. At stage k = 1, the state of the system is either of
xi1 with i ∈ Ω1 and the action ui1, i ∈ Ω1 is to be chosen. This action is
based only on the past information x1

0, u
1
0, w

i
1. Similarly, the action uik

at a state xik, i ∈ Ωk is chosen based on the history s(k, i).
The expectation operation on the scenario tree is equivalent to

summation across all the nodes of the tree weighted with the respec-
tive probability values. Here the decision variables are π = {xik, uik}k,i.
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Now the stochastic optimal control (3.11) can be rewritten as:

V ?(p) = min
π

N−1∑
k=0

µ(k)∑
i=1

pik`(x
i
k,u

i
k,i)+

µ(N)∑
i=1

piNV
i
f (xiN , i) (3.18a)

subject to

xjk+1 = Ajkx
i
k +Bjku

i
k + wjk+1, j ∈ child(k, i), (3.18b)

x1
0 = p. (3.18c)

The number of decision variables depend on the number of sce-
narios which is given by

N−1∑
k=0

µ(k)(nx + nu) + µ(N)nx (3.19)

So the number of decision variables depends on the nodes of the sce-
nario tree. With a scenario tree, the stochastic optimal control becomes
a large-scale finite-dimensional optimisation problem. Although the
number of decision variables may be at the order of millions, the prob-
lem possesses a certain structure which can be exploited in the context
of numerical optimisation methods to solve it very efficiently.

3.4 Proximal methods
Proximal algorithms are a class of numerical optimisation methods
for solving nonsmooth, convex optimisation problems where (i) we
identify a certain structure of the problem — a splitting of the cost
function in two parts and (ii) we make use of the proximal operator —
an operator of key importance in modern optimisation theory — to
formulate such efficient solution algorithms.

3.4.1 Proximal operator & properties
In this section we introduce the proximal operator and we present
some of its properties. A comprehensive overview of the main prop-
erties of the proximal operator are given in (PB14a).
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Let us first define the proximal operator proxγf : Rn → Rn of f as
follows

proxγf (v) = argmin
x∈Rn

{
f(x) + 1

2γ
‖x− v‖22

}
, (3.20)

for γ > 0. The function inside the minimiser is strongly convex and
not everywhere infinite. So this operation always results in a unique
solution. The proximal operator generalises the Euclidean projection
operation. When f(x) is the indicator function f(x) = δC(x), then the
proximal operator is the projection operator

proxf (v) = proj(x|C) = argmin
x∈Rn

‖x− v‖22.

The proximal operator gives the solution of minimisation that de-
fines the Moreau envelope (3.7a). So the proximal operator satisfies

fγ(x) = f(proxγf (x)) +
1

2γ
‖proxγf (x)− x‖2 (3.21a)

The gradient of the Moreau envelope , as shown in (RW09, Thm. 2.26),
is given by

proxγf (x) = x− γ∇fγ(x) (3.21b)

At a minimiser of f , x? ∈ argminx f(x), the gradient of the Moreau
envelope vanishes, i.e.,∇fγ(x∗) = 0. So substituting this in the equa-
tion (3.21b), we have

x? = proxf (x?) (3.21c)

Equation (3.21c) can be seen as a simple optimality condition for the
problem of minimising f . A simple fixed-point iteration on (3.21c)
reads

xk+1 = proxf (xk), (3.21d)

with x0 being an initial guess. This is the well-known proximal-point
algorithm applied for the minimisation of f .

The proximal-point algorithm can be viewed as a gradient step for
the regularised function fγ with a step-size γ.

54



This relationship allows to interpret the minimisation of f as equiv-
alent to finding the fixed point for the proximal operator of f with pa-
rameter γ. For further details on fixed point theory and relation with
proximal operator check (Roc76; BC11).

A property of major importance for the formulation of efficient
algorithms is the separable sum property. The proximal operator of a
separable sum reduces to evaluating the proximal operators of each of
the summands, which can be done independently and concurrently. If
f(x) =

∑n
i=1 fi(xi), then

(proxf (v))i = proxfi(vi). (3.22)

The Moreau decomposition is a property that correlates the proximal
operator of f and that of its conjugate f∗. In particular, it allows us
to express proximal operators of a conjugate function in terms of the
proximal operator of the original function. This can be stated as:

x = proxγf (x) + γ proxγ−1f∗(γ
−1x) (3.23)

Substituting the Moreau envelope gradient equation (3.21b) in (3.23),
we have

proxγ−1f∗(γ
−1x) = ∇fγ(x). (3.24)

As we will discover hereafter, this is a very useful property which en-
ables the use of proximal algorithms for the solution of Fenchel-dual
optimisation problems.

Computing the proximal operator

In proximal algorithms, the basic operation is the proximal operator,
proxf . Unlike the gradient, evaluating the proximal operator requires
to solving a small optimisation problem. When f is smooth, then this
function can be evaluated using the standard iterative methods based
on gradient or Hessian methods. But for most standard functions, the
proximal operator admits a closed-form or can be evaluated using the
properties of proximal operator. For example for indicator function,
f(x) = δ(x|C), it is proxλg(v) = proj(v|C). The proximal operator of
d(·|C) can also be easily computed provided that C is simple enough
so that both d(·|C) and proj(·|C) can be computed easily.
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In Section 4.4.6, the proximal operator of the functions that are
relevant for this thesis are evaluated and for complete list of proximal
operators check Combettes et al. (Com11).

3.4.2 Proximal algorithms
This section introduces the algorithms with proximal operators of the
objective terms. These algorithms can easily be generalised to non-
smooth, extended real-valued functions. Like gradient methods, these
methods are first-order and suitable for large-scale problems.

Proximal point algorithm

The simplest algorithm using proximal operator is proximal point algo-
rithm

xν+1 = proxλf (xν), (3.25)

where xν is the ν-th iterate and f is a closed proper convex extended
real-valued function. This is similar to Tikhonov regularisation where
an quadratic penalty term is added to improve the condition number
of the function and encourage next iterate xν+1 to be close to the xν .
As xν approaches the minimiser, the quadratic term becomes smaller
and smaller.

Another perspective is that the proximal point is the gradient me-
thod for the Moreau envelope, that is

xν+1 = proxλf (xν)

= xν −∇fγ(xν)

The convergence of this algorithm is O(1/ν) given by Güler (Gül91)
and the relationship with monotone operator is studied in Rockafel-
lar (Roc76). In some cases, the proximal operation may not be avail-
able in a closed form; then we have to resort to an inexact evaluation
of the proximal operator (HY12; Han03).

Proximal gradient algorithm

The objective function in most applications is not a single non-separable
function but rather a composite function which can be written as a
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summation of simpler functions. In the proximal point algorithm con-
text we need to be able to evaluate the proximal operator of the whole
function which is usually rather cumbersome to evaluate. Instead,
we may be able to identify two summands in the cost function: one
that is continuously differentiable and one that is prox-friendly, i.e., has
a proximal operator that is easy to evaluate. In such cases, it is rec-
ommended to devise an algorithm that takes advantage of this very
structure. Such a separation is not unique and different splittings wo-
uld result in algorithms with different computational complexity and
convergence rate.

Consider a composite function F (x) = f(x) + g(x), where f(x)
is convex and differentiable with domain Rn, g(x) is convex but not
necessarily differentiable. Assume that proximal operator of g is inex-
pensive. The optimisation problem is

min
x
F (x) = f(x) + g(x) (3.26)

Consider a given iterate xν−1. We replace the f -part of F with a
local quadratic approximation about xν−1, i.e.,

F̂λ(x, xν−1) = f(xν−1) + 〈x− xν−1,∇f(xν−1)〉

+ 1
2λ
‖x− xν−1‖2 + g(x), (3.27)

where λ > 0. This is a convex upper bound of F (x) with F̂λ(x, x) =

F (x), i.e, F (x) ≤ F̂λ(x, xν−1) for all x. This quadratic approximation
has the same minimisers as the original function, i.e.,

argmin
x

F (x) = argmin
x

F̂λ(x, xν−1). (3.28a)

Rearranging the terms in F̂λ(x, xν−1), the minimisation is written
as

argmin
x

F (x) = argmin
x

{
g(x) + 1

2λ
‖x− (xν−1 − λ∇f(xν−1))‖2

}
(3.28b)

This expansion is essentially the application of the proximal operator
proxg on the gradient update with respect to f . It can be written con-
cisely as
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xν = proxλg(x
ν−1 − λ∇f(xν−1)) (3.29)

Another approach to solving the above composite minimisation
problem is to use the following optimality condition

x = proxλg(x− λ∇f(x)), (3.30a)

which is equivalent to

0 ∈ ∇f(x) + ∂g(x). (3.30b)

A fixed-point iteration on (3.30a) is exactly the proximal gradient al-
gorithm in (3.29) which consists in a forward step involving the gradient
of f , that is x − λ∇f(x), and a backward step which is the application
of proxλg to the forward update.

When g = 0, the proximal gradient algorithm (3.29) reduces to the
gradient method and when f = 0, it reduces to the proximal point
algorithm. When g = δC(x), then the proximal gradient algorithm is
the gradient projection algorithm.

When the gradient ∇f is Lipschitz continuous with constant L >
0, this method converges with rate O(1/ν) (BT09a; Zhu95) with con-
stant step size λ = 1/L. When the Lipschitz constant is not known or
easily computable, then the step size can be calculated with an easy
backtracking rule

F (xν) ≤ F̂λν (xν , xν−1). (3.31)

As we will explain later in Section 3.4.3, a simple line search algo-
rithm can be introduced to find a Lipschitz constant estimate Lν — at
iteration ν — so that λν = 1/Lν satisfies condition (3.31).

Accelerated proximal gradient (APG) algorithm

The idea behind the accelerated version is to improve the convergence
rate by using the previous iterate. Nesterov proposed accelerated ver-
sion for the gradient-projection algorithm that can achieve a conver-
gence rate of O(1/ν2) (Nes83). This method is extended to proximal-
gradient framework by Beck et al. (BT09a). Here the proximal-gradient
update is calculated at an extrapolated vector given by
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vν = xν + θν(θ−1
ν−1 − 1)(xν − xν−1).

The choice of θν should satisfy the condition

1− θν
θ2
ν

≤ 1

θ2
ν−1

, for ν ≥ 2.

This condition facilitates the decrease of θk and in ideal case, this
decrease should be as fast as possible. An attractive choice is

θk =
2

k + 2
, (3.32a)

or solve the quadratic equation with “=” to get

θk+1 = 1/2(
√
θ4
ν + 4θ2

ν − θ2
ν), (3.32b)

which tends to zero faster. For fast convergence, the {θν} should de-
crease as fast as possible and the later choice is preferred (Tse08). The
accelerated gradient step can be summarised as:

vν = xν + θν(θ−1
ν−1 − 1)(xν − xν−1), (3.33a)

xν+1 = proxλg(x
ν − λν∇f(xν)), (3.33b)

θν+1 = 1/2(
√
θ4
ν + 4θ2

ν − θ2
ν). (3.33c)

When the step-size λ is not available, then the step size that satis-
fies sufficient decrease condition given by (3.31) is calculated by back-
tracking. This condition is:

F (xν+1) ≤ F̂λν (xν+1, v
ν).

An optimisation algorithm is defined as monotonic if their iterates
satisfy the decrease condition given as

F (xν) ≤ F (xν−1), (3.34)

where xν and xν−1 are the iterates. The value function generated by
the proximal-gradient method satisfy this monotonic condition. But
the accelerated variant does not and can be enforced on it by discard-
ing the extrapolation step when the value is not monotonic. This en-
forcement of monotonicity does not effect the theoretical convergence
of the algorithm (BT09b).
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3.4.3 Dual proximal gradient

Consider the optimisation

P ? = min
x
f(x) + g(Hx), (3.35)

where x ∈ Rn, H : Rn → Rm is a linear operator, f : Rn → R̄
is strongly convex function and g : Rm → R̄ is closed, proper and
convex function. This formulation arises in many applications. For
example, in constrained quadratic programming we may choose f to
be the quadratic cost function and g to be the indicator of a hypercube
while H is used to impose general polytopic constraints of the form
Kmin ≤ Hx ≤ Kmax. In `1-regularised least squares, we may choose
f to be the the least-squares part and g to be the regulariser (SFP16).
Similarly, the formulation in (3.35) can be used — and has been used
— as a mould for several convex optimisation problems.

Even though the proximal of g, proxg is inexpensive, the proximal
operator of g(Hx), proxH◦g is typically not available in closed form
and its computation requires the solution of an optimisation problem
(using a numerical method). Splitting is a tool that allows to decom-
pose the original variable to multiple variables. With this tool the
above problem can be written as

P ? = min
x,z

f(x) + g(z), (3.36)

subject to Hx = z.

Now the decision variables are x, z and are coupled by the con-
straint Hx = z. The dual problem associated with this is

D? = min
y
f∗(−H ′y) + g∗(y), (3.37)

where f∗, g∗ are conjugates of f and g respectively. The Fenchel dual-
ity theorem (Roc72, Corol. 31.2.1) states that if there exists x ∈ ri(dom f)4,
z ∈ ri(dom g) such that Hx = z, then strong duality holds, that is

4 The relative interior of a set A ⊆ Rn is the interior of this set with respect
to the relative topology in Rn induced by the affine hull of A. The affine hull
of A is the smallest affine set which contains A.
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P ? = D?5. Strong duality is implied from the properties of the do-
mains of f and g and it has nothing to do with the nature of f or g6.
An optimal dual solution y? (could be many) would give the primal
optimal solution (x?, z?).

x? = argmin
x∈Rn

{f(x) + 〈y?, Hx〉} , (3.38)

z? = argmin
z∈Rm

{〈y?, z〉 − g(z)} , (3.39)

with Hx? = z?.
Function f is σ-strongly convex, so f∗ is smooth with 1/σ-Lips-

chitz-continuous gradient (RW09, Prop. 12.60). In the dual formu-
lation (3.37), the linear operator is right-composed with the smooth
function f and the proximal-gradient algorithm is perfectly suitable
for this formulation. Recall that using the Moreau decomposition prop-
erty (3.23) the computation of proxγg∗ boils down to being able to com-
pute proxγ−1g .

The Fenchel-Young inequality (3.6b) gives rise to a relation which
connects conjugates and subgradients

y ∈ ∂f(x)⇔ f(x) + f∗(y) = y′x⇔ x ∈ ∂f∗(y). (3.40)

This is also popular as the conjugate-subgradient theorem (Roc72, Thm.
23.5). In the present case the conjugate f∗ is smooth and therefore the
subdiffrential set contain only the gradient, x = ∇f∗(−H ′y). From
the definition of conjugate function (3.6a), we have

x := ∇f∗(−H ′y) = argmin
x
{〈x,H ′y〉+ f(x)}. (3.41)

Now the proximal gradient algorithm applied to the dual problem
is defined as the recursion on dual variables yν

yν+1 = proxλg∗(y
ν + λHxν), (3.42)

starting from a dual-feasible vector y0, e.g., y0 = 0. As mentioned pre-
viously, the proximal with g is inexpensive and therefore the proximal

5 Such conditions (with which we may prove strong duality, P ? = D?) are
known as constraint qualifications.

6 We hereafter assume that strong duality holds; this holds if, for instance,
the primal problem can be written as a convex quadratic problem.
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of its conjugate is given by the Moreau decomposition property (3.23).
The proximal in (3.42) is determined as

zν = proxλ−1g(λ
−1yν +Hxν), (3.43)

yν+1 = yν + λ(Hxν − zν). (3.44)

The proximal gradient method, given by (3.41)–(3.44), produces a
sequence yν which, for properly small λ, converges to a dual optimal
solution y?, while the corresponding primal sequences xν and zν con-
verge to the (unique) primal optimal solution (x?, z?).

Accelerated Proximal Gradient (APG) Algorithm: With the accelera-
tion scheme mentioned in the Section 3.4.2 the dual gradient algorithm
achieves a convergence rate of O(1/ν2) for the dual problem (Nes83).
The accelerated algorithm is summarized as follows:

vν = yν + θν(θ−1
ν−1 − 1)(yν − yν−1), (3.45a)

xν = argminz{〈z,H
′vν〉+ f(z)}, (3.45b)

zν = proxλ−1g(λ
−1vν +Hxν), (3.45c)

yν+1 = vν + λ(Hxν − zν), (3.45d)

θν+1 = 1/2(
√
θ4
ν + 4θ2

ν − θ2
ν), (3.45e)

starting with y0 = y−1, θ0 = θ−1 = 1.
The primal iterate xν given in (3.45b) is not guaranteed to be feasi-

ble sinceHxν might not belong to dom g. This is a possible weak point
of algorithms on dual problems. The strong convexity of f , however,
ensures that the Euclidean distance of the ergodic primal iterate x̄ν ,
x̄ν = (1 − θν−1)x̄ν−1 + θνx

ν , from the optimal x? converge to zero
with a convergence rate of O(1/ν2) (PB14b).

Choice of λ: The APG converges with a step-size λ ∈ (0, 1/L] with
optimal step-size λ = 1/L where L is the Lipschitz constant of the
dual gradient. In the dual formulation, the smoothness of the conju-
gate function f∗ is implied from the strong convexity assumption of f .
When f is σ-strong convexity, then the Lipschitz constant of the dual
gradient ∇f∗ can be computed as 1/σ. Now the Lipschitz of ∇f̂(y)

where f̂(y) = f∗(−H ′y) is

‖∇f̂(y1)−∇f̂(y2)‖ = ‖H‖‖∇f∗(−H ′y1)−∇f∗(−H ′y2)‖,

≤ ‖H‖
2

σ
‖y1 − y2‖. (3.46)
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Even though the (best/smallest) Lipschitz constant is available in
closed-form, in many cases it is difficult to calculate it either because
of the large dimension of H or the fact that σ is not known. In such
cases, an additional backtracking line search based on the quadratic
upper bound in (3.31)7 is included in the algorithm.

Algorithm 3 Line search for λ
Require: vν , λν−1 and β ∈ (0, 1) — e.g., β = 0.5.
λ← λν−1

repeat
x← argminz{〈z,H ′vν〉+ f(z)}
z ← proxλ−1g(λ

−1vν +Hx)
y ← vν + λ(Hx− z)
λ← βλ

until f∗(−H ′y)− f∗(−H ′vν) ≤ 〈Hx, vν − y〉+ 1
2λ
‖vν − y‖2

return λ

Termination criteria

In dual methods, the goal is to find a dual optimal such that the dual
cost satisfies a dual suboptimality condition of the formD?−D(yν) ≤
εd where D(y) = f∗(−H ′y) + g∗(y). Instead, we are interested in
determining solutions with bounded dual and primal suboptimality
and, in case the problem involves constraints, bounded infeasibility.
For εV > 0 and εg > 0 we say that a primal solution (x, z) is (εV , εg)-
suboptimal if the following conditions are satisfied

P (x, z)− P ? ≤ εV , (3.47a)

‖x−Hz‖ ≤ εg, (3.47b)

7In Section 3.4.2 we stated the backtracking condition for determining the
step size online for the primal optimisation problem. Here, in Algorithm 3 we
give the necessary condition for the dual proximal gradient algorithm. When
L is not known and we cannot select the optimal value of a fixed step length
λ, we start with a large and arbitrary λ0 which, at every iteration we decrease
using Algorithm 3. Further details on this line search algorithm can be found
in (SGB14; G9̈2; Nes12).
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where P (x, z) = f(x) + g(z) the first condition is the primal subop-
timality condition and the second one will be referred to as the primal
residual.

The duality gap at iteration ν which is quantified by P (xν , zν) −
D(yν+1) is bounded by εV

P (xν , zν)−D(yν+1) ≤ εV . (3.48)

Here D(yν+1) ≤ P ? and this implies P (xν , zν)− P ? ≤ εV .
In the dual proximal gradient algorithm, the primal residual and

the primal suboptimality associated with the ergodic primal iterate,
x̄ν , z̄ν 8 convergesO(1/ν2) (PB14b). One can test the conditionP (x̄ν , z̄ν)−
D(yν+1) ≤ εV and ‖Hx̄ν − z̄‖ ≤ εg at each iteration and terminate the
algorithm. However satisfy these conditions require a lot of iterations.
On the other hand, the current iterate xν , zν reaches the required ac-
curacy levels faster than the ergodic iterate. Patrinos et al. (PB14b)
proposed a computationally tractable algorithm based on the current
iterate for the (εV , εg) optimal solution and we used the same termi-
nation criteria here.

Preconditioning

First-order methods do not include curvature information and their
performance deteriorates when applied in the solving of ill-conditio-
ned problems. The proximal gradient iterate is equivalent to minimis-
ing the smooth convex upper bounded function (3.27). The quadratic
term of this function use same curvature in every direction – the Lip-
schitz constant 1/λ. But for ill-conditioned problems this serves as a
bad approximation and results in poor convergence. In such cases pre-
conditioning transforms the original optimisation problem to a new
one by either scaling or applying a linear transformation to the origi-
nal decision variables. This transformation should be such that it im-
proves the curvature in the transformed space. For the Dual-APG al-
gorithm, the preconditioning has to applied in the dual space. Let
us define a preconditioning matrix M ∈ Rn×n. This preconditioning

8weighted sum of the primal iterates x̄ν = (1 − θν−1)x̄ν−1 + θνxν , z̄ν =
(1− θν−1)z̄ν−1 + θνzν
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matrix should be non-singular and its inverse exists. Now the the pre-
conditioned primal problem (3.36) is

P ? = min
x,z

f(x) + g(z), (3.49a)

subject to

MHx = Mz, (3.49b)

and the dual problem is

D? = min
ŷ
f∗(−H ′ŷ) + g∗(ŷ), (3.49c)

where ŷ = My.
Here we discuss the preconditioning when f(x) is a quadratic func-

tion with a Hessian Q. Then the choice of preconditioning matrix is
such that the Lipschitz constant of the dual gradient equal to 1 or

‖MHQ−1H ′M ′‖ = 1. (3.50)

Exact calculation of the precondition matrix is formulated as min-
imising the ratio between the minimum and maximum eigenvalues of
MHQ−1H ′M ′.

Boyd et al. (BEFB94) constructed this problem as a quasiconvex
problem solved as a convex semi-definite program. But this method
is applicable only for small problems. So Bradley et al. (Bra10) sug-
gested the heuristics based approach that find a positive and diagonal
M such that the rows and columns ofMHQ−1H ′M ′ have same norm.
Most popular norms are 1-norm, 2-norm and∞-norm. These methods
do not provide any guarantee for decrease in condition number, but
still they work in practice. Moreover, the fact that the preconditioning
matrix is diagonal is desirable for it does not alter the structure of the
original problem — it merely scales the variables.

The simplest of these preconditioning is the∞-norm also known
as Jacobi scaling. This methods computes a diagonal approximation
H̃ of the dual Hessian and perform a change of coordinates in the dual
variable y with scaling matrix H̃−

1
2 (Ber99, Sec. 2.3.1). More elaborate

preconditioning schemata have been proposed such as (GB14; GB15).
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3.5 Parallelisable APG for stochastic op-
timal control problems

Stochastic optimal control problems are large-scale problems typically
counting millions of decision variables. Nonetheless, such problems
possess a structure — that dictated by the scenario tree — which can
be exploited by proximal gradient algorithms. The objective function
in the stochastic optimal control problem (3.18) is:

V (π)=

N−1∑
k=0

µ(k)∑
i=1

pik`(x
i
k,u

i
k,i)+

µ(N)∑
i=1

piNV
i
f (xiN , i) (3.51a)

where π = {xik, uik}k,i are the decision variables which are related by

xjk+1 = Ajkx
i
k +Bjku

i
k + wjk+1, j ∈ child(k, i) (3.51b)

The decisions are causal in nature, i.e., they are restricted by the infor-
mation flow defined by the scenario-tree. Here the cost is a summation
of the individual cost over time and uncertainty. Without the system
dynamics (3.51b), the cost is a summation of independent costs and
easily decomposable. The cost functions are linked

• in time through the dynamics of the system

• in scenarios through the information structure dictated by the
the scenario-tree.

• in space through interconnected components in the system mo-
del which is handy in large-scale distributed systems.

Decomposition is a technique by which a complex system is divide
into smaller systems that are easier to solve. This decomposition is not
unique and in literature two decomposition means are popular:

1. Nested or chained decomposition

2. Scenario decomposition

Nested decomposition

Nested or chained decomposition is based on the principle of dynamic
programming (Ber00) — solve a sequence of simple problems; starting
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from the smallest problem and extending to bigger problems. In this
case these problems are in the order of time from k = N to k = 0.
Let us define a cost from a stage k to the last stage N as V (x, k,N)
— a cost-to-go. In dynamic programming, the optimal cost-to-go value
from the stage k+1 is assumed to be known. Then the cost-to-go value
for the stage k is given by the relation

V ?k (xk) = min
uk

µ(k)∑
i=1

pik`(x
i
k,u

i
k,i)+V

?
k+1(xk+1) (3.52a)

where V ?k+1(xk+1) is the optimal cost from k + 1 stage. This cost is
the summation of the optimal cost at the nodes at the stage k + 1 and
written as:

V ?k+1(xk+1)=

µ(k+1)∑
i=1

V ?ik+1(xik+1). (3.52b)

Now we have µ(k) subproblems at stage k which are given as:

V ?ik (xik) = min
ui
k

`(xik,u
i
k,i)+

∑
j∈child(k,i)

V ?i(xjk+1), for all i ∈ N[1,ν(k)].

(3.52c)

These subproblems are independent and can be solved in parallel ac-
ross all the nodes at a stage — reusing a popular term we shall char-
acterise such decompositions as nodal (BC05). The subproblems re-
sulted through this approach are parametric non-smooth constrained
optimisation problems which are hard to solve. This approach does
not scale well with the prediction horizon – as the horizon increase
the number of constrained problems also increase. Although dynamic
programming cannot be applied directly for solving constrained opti-
misation problems, it will prove very useful in evaluating the gradient
of the conjugate function f∗ within the APG formulations — see Sec-
tion 3.5.2.

Scenario decomposition

This decomposition generate subproblems based on the scenario fan
– the non-anticipative constraints in the scenario tree are dualised to
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Figure 10: From the original tree, a scenario fan is constructed
with additional equality constraints (non-anticipativity or causality
constraints) here denoted by vertical orange lines.

produces a scenario fan which is path from the root node to the leave
node (SDR09). This is depicted in the Figure 10. The original problem
is divided into smaller problems that are equal to the number scenar-
ios in the tree. These smaller problems are solved separately and co-
ordinate the decisions to satisfy the non-anticipative constraints. Pro-
gressive Hedging algorithm (RW91) is a popular approach that use
scenario decomposition.

Let us denote x̂ik, û
i
k the state and control at stage k for scenario i.

The non-anticipative constraint at a node i at stage k is given as

uik = ûjk for j ∈ scen(k, i). (3.53a)

Another way to express this constraint is

uik=1/nik
∑

j∈scen(k,i)

ûjk, (3.53b)

where nik is the cardinality of the set scen(k, i).
The original scenario-based optimal control problem (3.18) for sce-

nario fan is given as:

V ?(p) = min
{x̂i
k
,ûi
k
}i∈N[1,µ]

µ∑
i=1

N−1∑
k=0

piN `(x̂
i
k, û

i
k, j)+p

i
NVf (x̂iN , j), (3.54a)
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subject to :

x̂ik+1 = Ajkx̂
i
k +Bkk û

i
k + wjk, j ∈ s(N, i),∀i ∈ N[1,µ] (3.54b)

ûik = ujk, j ∈ s(N, i) (3.54c)

By dualising the non-anticipativity constraints (3.54c), we obtain
µ subproblems which can be solved independently and in parallel
and later they coordinate/synchronise to satisfy (3.54c). The paral-
lelisation on GPUs is conditioned by certain factors which discourage
the use of the scenario decomposition: (i) the lock-step architecture of
GPUs which only allows very simple operations of the same type (ad-
ditions, multiplications, comparisons, etc) to be performed in parallel,
(ii) constraints on the sharing of the available memory among parallel
threads, (iii) the availability of libraries that facilitate and enable the
development of algorithms. Matrix operations such as performing the
operations {yi ← αyi + βiAixi}i all in parallel or computing sum-
mations y ← αy +

∑
i βixi are well supported by cuBLAS and other

libraries for GPU programming (NVI12). However, performing dy-
namic programming computations all in parallel (that is, each worker
to solve a dynamic programming problem) is very complex a problem
to solve on a GPU. Besides, compared to the proposed decomposi-
tion which we discuss in the next section, the scenario decomposition
leads to a problem formulation with a significantly larger number of
decision variables without a clear advantage in terms of either com-
putational complexity or speed of convergence.

3.5.1 Dual Decomposition
In this thesis, we proposed a third type of duality based on Fenchel
dual formulation. The motivation to propose this decomposition are
(i) provide flexibility for non-smooth objective (ii) easy of implementa-
tion (iii) able to scale for huge problems both in scenarios and predic-
tion horizon. The duality used in the above scenario decomposition is
Lagrangian duality – dualise equality and inequality constraints. This
formulation is very restrictive and cannot include non-smooth penal-
ties. The Fenchel dual formulation use conjugates and provide more
flexibility (Roc99). In this section we show how the Fenchel dual for-
mulation for the scenario-based optimal control problem (3.18) can be
parallelised with proximal gradient method.

69



Let us define x = {xk,uk} the collection of the primal decision
variable and y = {yk} is the dual variables. Let us define the dy-
namic as X (p) = {x|xjk+1 = Ajkx

i
k + Bjku

i
k + wjk+1, ∀k ∈ N[0,N−1], i ∈

N[1,µ(k)], j ∈ child(i, k)}. Now the objective function of the stochastic
optimal control problem (3.18) with the splitting introduced in (3.35)
becomes

f(x)=

N−1∑
k=0

µ(k)∑
i=1

pikφ(xik,u
i
k,i)+

µ(N)∑
i=1

piNφN (xiN , i)+δ(x|X (p))

(3.55a)

g(Hx)=

N−1∑
k=0

µ(k)∑
i=1

pikφ̄(F ikx
i
k+Giku

i
k,i)+

µ(N)∑
i=1

piN φ̄N (F iNx
i
N , i), (3.55b)

where F ik ∈ Rn
i
c,k×nx , Gik ∈ Rn

i
c,k×nu , F iN ∈ Rn

i
f×nx . Let us define

z = Hx where

H =


H1 0 · · · 0
0 H2 · · · 0
...

. . .
. . .

...
0 · · · · · · HN

 , (3.55c)

where Hk = blockdiag[F ikG
i
k], for all i ∈ N[1,µ(k)] and all k ∈ N[0,N−1]

and HN = blockdiag[F iN ], for all i ∈ N[1,µ(N)].
With this choice of f , g and linear operator H the stochastic opti-

mal control problem is equivalent to (3.35). However this is not the
only way to split this problem – another way to split is exchange sys-
tem dynamic in f (3.55a) with constraints in g (3.55b) (RJM13). But
the present choice of splitting allows us to parallelise the computation
across all nodes — it effectuates a nodal decomposition; this is better ex-
plained later in Section 3.5.2. It may be observed that scenario decom-
position brings on additional overheads of coordination/synchronisation
and would lead to a significantly higher number of decision variables
without facilitating the solution of the problem and was, therefore, not
further pursued.

Further the linear operator H is associated with the non-smooth
term g(Hx). Therefore the dual of this problem is formulated which
has a structure suitable for the proximal-gradient method and H in
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the smooth function. This algorithm can be summarised in the steps
in (3.45). The proximal operator with respect to g is inexpensive and
zν is easily evaluated even for large vectors. The main computational
burden is calculating the dual gradient which is explained below.

3.5.2 Computation of dual gradient
The dual gradient (3.45b) is the most computational burden in the al-
gorithm. This is also results in the primal iterate for the corresponding
dual iterate xν(yν) simplify written as xν . Efficient computation of
this step is crucial for the performance of the dual proximal gradient.
This step (3.45b) can be expanded as:

xν = argmin
x∈X (p)

{
〈x, H ′yν〉+ f(x)

}
where f(x) is given as (3.55a). This is a standard convex optimisa-
tion with equality constraints which are given by the system dynamic
equations over the scenario tree. This problem must be solved multi-
ple times, once per iteration for different values of the dual vector yν .
A popular method is to build the KKT (Karush-Kuhn-Tucker) matrix
and solve the KKT system by eliminating the equality constraints. A
Ricatti-like recursion where certain matrices are pre-computed – con-
stituting a factorisation of the underlying dynamic programming pro-
cedure – is available for the case of deterministic MPC (OSB13). This
method is division-free and the flops required are linear in prediction
horizon and quadratic on the size of the dual vector (OSB13). But the
dynamics of the stochastic MPC is convoluted than deterministic MPC
because of the tree structure dictated by the non-anticipativity con-
straints. Moreover the dual variable range in millions and pursuing
this approach would need require to solve a factorisation which have
the same complexity as the original problem. Another disadvantage
with this approach is the numerical instabilities with the factorisation
of KKT matrix.

Another approach to solve (3.45b) is using dynamic programming9

which allows to decompose the original problem into smaller prob-

9 Alternatively, we may also use the approach of co-state equations (Boy09).
In both cases we end up with the Ricatti-like recursion we shall describe in
what follows.
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lems. This lead to an equation similar to (3.52a) with an additional
linear term based on the dual variable. This is

L?k(xk,yk) = min
uk

µ(k)∑
i=1

pikφ(xik,u
i
k,i)+y

i′
kH

i
kx

i
k+L?k+1(xk+1,yk+1),

(3.56a)

subject to

xjk+1 = Ajkx
i
k +Bjku

i
k + wjk+1, j ∈ child(k, i), (3.56b)

where L?k(xk,yk) is the cost-to-go function from the stage k and the
stage cost can be written as a summation of the cost-to-go at the indi-
vidual nodes L?k+1(xk+1,yk+1) as

L?k+1(xk+1,yk+1) =

µ(k+1)∑
i=1

L?ik+1(xk+1,yk+1). (3.57)

The minimisation operator has the following separability prop-
erty: minx1,x2{f1(x1) + f2(x2)} = minx1 f1(x1) + minx2 f2(x2), that
is, the optimisation can be split into smaller problems. This property
allows to split (3.56a) to µ(k) smaller problems given by:

L?ik (xik, y
i
k)=min

ui
k

pikφ(xik,u
i
k,i)+y

i′
kH

i
kx

i
k+

∑
j∈child(k,i)

L?jk+1(xjk+1, y
j
k+1),

where xjk+1 = Ajkx
i
k +Bjku

i
k + wjk+1.

The cost-to-go at last stage is written with the terminal cost and
the dualised terminal constraints as:

L?N (xN ,yN )=

µ(N)∑
i=1

L?iN (xiN , y
i
N )=

µ(N)∑
i=1

piNφN (xiN , i) + yi′NH
i
Nx

i
N

=

µ(N)∑
i=1

xi′N (piNP
i
N )xiN + yi′NH

i
Nx

i
N (3.58)

This is a quadratic cost function and outcome of the dynamic pro-
gramming iterate at stage k = N − 1 is another quadratic function
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as:

L?N−1(xN−1,yN−1)=

µ(N−1)∑
i=1

L?iN−1(xiN−1, y
i
N−1)

=

µ(N−1)∑
i=1

xi′N−1P
i
N−1x

i
N−1 + qi′N−1x

i
N−1 + ciN−1,

(3.59)

where ciN−1 is a constant term. The optimal control action is parame-
trised in state xiN−1 and the dual vector yiN−1 as

uiN−1 = Ki
N−1x

i
N−1 + ΦiN−1y

i
N−1 +

∑
j∈child(N−1,i)

Θj
N−1q

j
N + σiN−1.

(3.60a)

with

P̄ iN =
∑

j∈child(N−1,i)

Bj′NP
j
NB

j
N , (3.60b)

R̄iN−1 = 2(piN−1R
i
N−1 + P̄ iN ), (3.60c)

ΦiN−1 = −(R̄iN−1)−1Gi′N−1, (3.60d)

Ki
N−1 = −2(R̄iN−1)−1

∑
j∈child(N−1,i)

Bj′NP
j
NA

j
N , (3.60e)

σiN−1 = −2(R̄iN−1)−1
∑

j∈child(N−1,i)

Bj′NP
j
Nw

j
N , (3.60f)

Θj
N−1 = −(R̄jN−1)−1Bj′NF

j′
N . (3.60g)

This dynamic programming iterate is carried till the first stage
k = 0. This whole process can be summarised in the two step algo-
rithm: the factor step (Algorithm 4) and the solution step (Algorithm
5). In case of one scenario as in deterministic optimal control these
algorithms are the factor and solve steps described in (PB14b). Notice
that both algorithms are parallelisable across all nodes at every stage
of the scenario tree.

The factor step is performed once before the execution of the APG
algorithm, and produces the matrices Φik, Θi

k, Λik, Di
k, Ki

k and vectors
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Algorithm 4 Factor step
for k = N−1, . . . , 0 do

for i ∈ µ(k) do {in parallel}
P̄ ik+1 ←

∑
j∈child(k,i)B

j′
k+1P

j
k+1B

j
k

R̄ik ← 2(pikR
i
k + P̄ ik+1), Φik = −(R̄ik)−1Gi′k

Ki
k ← −2(R̄ik)−1

∑
j∈child(k,i)B

j′
k+1P

j
k+1A

j
k

σik ← −2(R̄ik)−1
∑
j∈child(k,i)B

j′
k P

j
k+1w

j
k+1

Ājk ← Ajk +BjkK
i
k, ∀j ∈ child(k, i)

Dj
k ← F jk +GjkK

i
k, ∀j ∈ child(k, i)

cik ← 2
∑
j∈child(k,i) Ā

j′
k P

j
k+1w

j
k+1

if k = N−1 then
Θj
N−1 ← −(R̄jN−1)−1Bj′NF

j′
N ,∀j ∈ child(N−1, i)

ΛjN−1 ← F jN Ā
j′
N ,∀j ∈ child(N−1, i)

else
Θj
k ← −(R̄jk)−1Bj′k+1,∀j ∈ child(k, i)

Λjk ← Āj′k ,∀j ∈ child(k, i)
end if
P ik ← pik(Qik +Ki′

kR
i
kK

i
k) +

∑
j∈child(k,i) Ā

j′
k+1P

j
k+1Ā

j
k

end for
end for

σik and cik which are then used in Algorithm 5 to calculate the dual
gradient for a given dual vector yν .

In Algorithm 4 we do not need to compute the inverse of R̄ik; since
this is a symmetric positive definite matrix we may, for instance, com-
pute its Cholesky factorisation and solve the involved linear systems
with it. The computations required in the factor step can be paral-
lelised across the nodes of the scenario tree at each stage as we may
observe in Algorithm 4. As these computations are carried out once
for each execution of the APG, the computational overhead associated
with this algorithm can be neglected 10. Moreover, when for a scenario

10We shall demonstrate with simulations that the runtime of the factor step
is much smaller compared to the total runtime of APG.
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tree structure and the system dynamics is fixed, these calculations can
be carried off-line.

Algorithm 5 Solve step

qiN ← yiN ,∀i ∈ N[1,µ(N)], %Backward substitution
for k = N − 1, . . . , 0 do

for i ∈ µ(k) do {in parallel}
uik ← Φiky

i
k +

∑
j∈child(k,i) Θj

kq
j
k+1 + σik

qik ← Di′
k y

i
k +

∑
j∈child(k,i) Λj′k q

j
k+1 + cik

end for
end for
x1

0 = p, %Forward substitution
for k = 0, . . . , N − 1 do

for i ∈ µ(k) do {in parallel}
uik ← Ki

kx
i
k + uik

for j ∈ child(k, i) do {in parallel}
xjk+1 ← Ajkx

i
k +Bjku

i
k + wjk

end for
end for

end for

The solve step (Algorithm 5) is executed at every iterate of the APG
algorithm to calculate the dual gradient or primal iterate ({xik, uik}k,i).
In fact this step does not require any matrix-matrix multiplications or
expensive factorisations. The only computations involved are matrix-
vector products. This algorithm has two parts: the backward substitu-
tion and the forward substitution. In the backward substitution, the tree
is traversed from the leaf nodes to the root node to calculate the offset
that depends on the dual vectors. In the forward substitution, the tree
is traversed from the root to the leaf nodes using the system dynam-
ics to calculate {xik, uik}k,i. This algorithm is parallelisable stage-wise
across all nodes of the scenario tree at each stage.
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3.5.3 GPU for parallel computations

From computational viewpoint, the factor and solve step are stage-
wise parallelisable algorithms. Therefore, it is advantageous to use a
hardware that can support parallel execution which could exploit this
feature. Graphics Processing Unit (GPU) are special hardware units
for parallel computing. Traditional hardware like CPU have few but
powerful cores (typically 8 to 16 cores) whereas GPUs have smaller
cores but many cores(ranging from 256 to 1024). So GPUs are capable
of performing many simple operations in parallel and are well-suited
for data-parallel lock-step computations — the same program is ex-
ecuted on many data elements in parallel. In both factor and solve
steps, the operations performed at each node are similar and all the
operations can be executed in parallel with GPUs.

Programming multi-core machines is more complicated as it need
additional overheads with synchronisation than single core machine.
To facilitate programming GPUs, special programming models have
been developed. One such programming model is CUDA — an NVIDIA
proprietary programming model that supports NVIDIA’s GPUs. CUDA-
C (NBGS08) is developed as an extension of C with additional prim-
itives that simplify and allow massive parallelism. CUDA introduces
three levels of abstraction for the organisation and distribution of par-
allel execution: threads which are the very basic parallel computational
entities, groups which are bundles of threads inside which parallel
memory sharing is possible and grids which are the highest level of
organisation.

In addition, NVIDIA provides many libraries for CUDA. The li-
brary cuBLAS is BLAS’s counterpart for CUDA and it is available for
dense linear algebra operations (NVI12). We used routines from this
library to implement the APG algorithm. It is advised to use them
instead of implementing custom code as these routines are optimised
for a large gamut of architectures and are updated to follow changes
in new architectures.

Computations complexity with GPUs: In order the analyse the com-
putational complexity of Algorithm 4 we consider a the m-ary scena-
rio tree, that is a scenario tree with constant branching factor m. We
also assume that the row-dimension of all F ik is constant and equal to
nc.

The first part of the algorithm is backward substitution where we

76



  sync syncsync

stage k

st
a

g
e

 k
+

1

st
ag

e
 k

-1

Figure 11: Parallelisation in backward substitution of Algo-
rithm 5

traverse backward from stage k = N to k = 0. From the algorithm we
can notice that the computations performed at stage k = i are

uik = Φiky
i
k +

∑
j∈child(k,i)

Θj
kq
j
k+1 + σik, for all i ∈ N[1,µ(k)],

qik = Di′
k y

i
k +

∑
j∈child(k,i)

Λj′k q
j
k+1 + cik for all i ∈ N[1,µ(k)].

At every node, we require 2(1 +m) matrix-vector products - one each
Φiky

i
k and Di′

k y
i
k, m each Θj

kq
j
k+1 and Λj′k q

j
k+1. Altogether we require

2mi(1 + m) matrix-vector. All these matrix-vector products are in-
dependent and can be performed in parallel in the GPU using the
cuBLAS routine cublasSgemmBatched. Once the multiplications
are completed these vectors are summed in parallel. This process con-
tinued till first stage and depicted in Figure 11. Roughly this step in-
volvesO(N(nx(nu+nc)+nu(nx+nc))) flops and with perfect paral-
lelisation this step is equivalent toO(Nm(nx(nu+nc)+nu(nx+nc))).
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Figure 12: Parallelisation in forward substitution of Algorithm 5

The second part of the algorithm we traverse forward from stage
k = 0 to k = N . At stage k = i, we have

uik = Ki
kx

i
k + uik, for all i ∈ N[1,µ(k)], (3.61)

xjk+1 = Ajkx
i
k +Bjku

i
k + wjk, j ∈ child(k, i), i ∈ N[1,µ(k)]. (3.62)

In this part we have two steps which need to be performed sequen-
tially - first uik is calculated and after this xjk+1 are updated. The first
step require mi matrix-vector product, Ki

kx
i
k, which are independent

and computed in parallel. In the next step, there are 2mi+1 matrix-
vector products, Ajkx

i
k, Bjku

i
k, but these are computed with 2mi, xik,

uik, vectors. Therefore we have 2mi parallel operations in GPU. This
process is continued till the last stage k = N and shown in Figure 12.
Overall this has a rough count of O(Nµ(n2

x + 2nxnu)) flops and with
perfect parallelisation we have O(Nm(Nµ(n2

x + 2nxnu))) flops.
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3.6 Simulation results
To evaluate the proposed algorithm we formulate the stochastic opti-
mal control problem which corresponds to the stochastic model pre-
dictive control problem for a linear discrete-time system with addi-
tive and parametric uncertainty as in (3.8). We consider a system of
m aligned interconnected masses by m − 1 linear spring-dampers of
stiffness constant κ = 1 and damping ratio β = 0.1. The manipulated
variables are the forces we may exercise on each spring along their
principal axes and the state variables are the positions and speeds of
the masses. We assume that the system dynamics is obtained by dis-
cretising the continuous-time dynamics with sampling time Ts = 0.5
and is written as in (3.8) with nx = 2m, and nu = m − 1. On the sys-
tem state and input variables we impose the constraints −5 ≤ xik ≤ 5
and−1 ≤ uik ≤ 1 for all k ∈ N[0,1] and i ∈ N[1,µ(k)]. The stage cost was
chosen to be `(x, u, ξ) = x′Qx+ u′Ru with Q = Inx and R = Inu .

APG was implemented in CUDA-C (NBGS08) as presented in the
previous section and matrix-vector multiplications were performed
using cuBLAS. We compared the GPU-based implementation of APG
with the interior point solver of Gurobi which runs on a dual-core en-
vironment. The active set algorithm of Gurobi, as well as qpOASES (FKP+14)
and QPC (SPM10) give computation times that are not very compe-
tent, and will therefore be omitted.

Computations on CPU were performed on a 4 × 2.60 GHz Intel
i5 machine with 8 GB RAM running 64-bit Ubuntu 14.04 and GPU-
based computations were carried out on a NVIDIA Tesla C2075 using
the CUDA-6.0 API.

The dependence of the computation time on the size of the sce-
nario tree is shown in Fig. 13; trees considered in this experiment
had a fixed horizon N = 14 and in their first stages were binary,
i.e., had branching factor 2 and eventually evolved without branch-
ing until the end of the horizon. Notice that for a case of 8192 leaf
nodes, Gurobi takes 32.6 s on average (max. 46.8 s), whereas APG with
εg = εV = 0.005 requires just 1.3 s (max. 5.92 s). This problem counts
6.39 · 105 primal variables, and 1.75 · 106 dual variables.

In Fig. 14 we show how the computation times scale with the in-
crease of the horizon of the problem. The problem that corresponds
to N = 60 counts 0.92 · 106 primal and 2.0 · 106 dual variables and
notice that APG with εg = εV = 0.005 can solve it 17.6 times faster
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than Gurobi on average (6.43 times faster for the maximum time).
Compared to a MATLAB implementation, a very high speedup is

achieved on GPU for the same algorithm which can be up to ×85 and
scales with the problem size as shown in Fig. 15. On average, the GPU
implementation of APG for a scenario tree of 8192 leaf nodes is as high
as ×83.

3.7 Conclusions
In this chapter we proposed a dual accelerated proximal gradient al-
gorithm tailored for the solution of stochastic optimal control prob-
lems. The computation of the dual gradient at every iteration of the
algorithm can be parallelised to offer a significant benefit in terms of
speed-up. In particular computations are executed in parallel across
all nodes at every stage of the scenario tree. As a result, for the special
case of a tree with branching only at the root node (known as a scenario
fan) stochastic MPC can be solved at the computational cost of deter-
ministic MPC provided that the GPU has adequate computational ca-
pacity to accommodate the problem size. A CUDA-C implementation
of the algorithm that runs on a GPU was found to outperform most
state-of-the-art solvers that run on a multi-core CPU.

Now we have an optimisation method that can solve the stochastic
MPC problem efficient. In the next chapter, we apply this method to
solve the optimisation problem associated with the SMPC formulation
on the DWN.
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Figure 13: Dependence of the computation time on the number
of scenarios for a system of 10 masses (20 states, 9 inputs, bound
constraints) with a fixed prediction horizon N = 14. Average
and maximum computation times reported here are for a random
sampling of 100 initial states x0 = p.
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Figure 14: Dependence of the computation time on the prediction
horizon for a system of 10 masses and 500 scenarios. Average
and maximum computation times reported here are for a random
sampling of 100 initial states x0 = p.
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Chapter 4

Stochastic predictive
control applied to
drinking water
networks

Despite the proven advantages of scenario-based stochastic model pre-
dictive control for the operational control of water networks, its appli-
cability is limited by its considerable computational footprint. In the
previous chapter, we devised a dual proximal gradient algorithm that
exploit their structure and can execute in parallel. In this chapter, we
apply this algorithm to solve the stochastic MPC formulation for the
drinking water network. The proposed methodology is applied and
validated on a case study: the water network of the city of Barcelona.
The results presented in this chapter have been provincially accepted
to publish and its archive version is (SSBP16).
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4.1 Introduction
Operation of drinking water networks is a complex decision system.
By integrating real-time forecasting with model predictive control the
reliability of the system improved. At the same, this formulation take
a conservative approach towards the forecast error. Stochastic mo-
del predictive control is an advanced control scheme which can ad-
dress effectively the above challenges and has already been used for
the management of water networks (GOMPJ14; GMOMP14). How-
ever, unless restrictive assumptions are adopted regarding the form of
the disturbances, such problems are known to be computationally in-
tractable (GMOMP14; NS06). But combining parallel accelerated dual
proximal-gradient algorithms with general-purpose graphics process-
ing units (GPGPUs) to deliver a computationally feasible solution for
the control of water networks.

4.1.1 Background
The pump scheduling problem (PSP) is an optimal control problem for
determining an open-loop control policy for the operation of a water
network. Such open-loop approaches are known since the 80’s (Cre98;
ZS89). More elaborate schemes have been proposed such as (YPS94)
where a non-linear model is used along with a demand forecasting
model to produce an optimal open-loop 24-hour-ahead policy. Re-
cently, the problem was formulated as a mixed-integer non-linear pro-
gram to account for the on/off operation of the pumps (BBMJ+13).
Heuristic approaches using evolutionary algorithms, genetic algori-
thms, and simulated annealing have also appeared in the literature (MP04).
However, a common characteristic and shortcoming of these studies
is that they assume to know the future water demand and they do
not account for the various sources of uncertainty which may alter the
expected smooth operation of the network.

The effect of uncertainty can be attenuated by feedback from the
network combined with the optimisation of a performance index tak-
ing into account the system dynamics and constraints as in PSP. This,
naturally, gives rise to model predictive control (MPC) which has been
successfully used for the control of drinking water networks (SGS+14;
OMPC+09). Recently, Bakker et al. demonstrated experimentally on
five full-scale water supply systems that MPC will lead to a more

85



efficient water supply and better water quality than a conventional
level controller (BVP+13). Distributed and decentralised MPC formu-
lations have been proposed for the control of large-scale water net-
works (LZNDS10; OMFBP10) while MPC has also been shown to be
able to address complex system dynamics such as the Hazen-Williams
pressure-drop model (SKN+15).

Most MPC formulations either assume exact knowledge of the sys-
tem dynamics and future water demands (OMPC+09; OMFBP10) or
endeavour to accommodate the worst-case scenario (SGS+14; TB09;
GN14; WM97). The former approach is likely to lead to adverse be-
haviour in presence of disturbances which inevitably act on the sys-
tem while the latter turns out to be too conservative as we will later
demonstrate in this chapter.

When probabilistic information about the disturbances is available
it can be used to refine the MPC problem formulation. The uncertainty
is reflected onto the cost function of the MPC problem deeming it a
random variable; in stochastic MPC (SMPC) the index to minimise is
typically the expectation of such a random cost function under the (un-
certain) system dynamics and state/input constraints (CKW09; BB12).

SMPC leads to the formulation of optimisation problems over spa-
ces of random variables which are, typically, infinite-dimensional. As-
suming that disturbances follow a normal probability distribution fa-
cilitates their solution (vHB02; BB07; NS06); however, such an as-
sumption often fails to be realistic. The normality assumption has also
been used for the stochastic control of drinking water networks aiming
at delivering high quality of services – in terms of demand satisfaction
– while minimising the pumping cost under uncertainty (GOMPJ14).

An alternative approach, known as scenario-based stochastic MPC,
treats the uncertain disturbances as discrete random variables with-
out any restriction on the shape of their distribution (CC06; CGP09;
PGL12). The associated optimisation problem in these cases becomes a
discrete multi-stage stochastic optimal control problem (SDR09). Sce-
nario-based problems can be solved algorithmically, however, their
size can be prohibitively large making them impractical for control
applications of water networks as pointed out by Goryashko and Ne-
mirovski (GN14). This is demonstrated by Grosso et al. who provide a
comparison of the two approaches (GMOMP14). Although compres-
sion methodologies have been proposed – such as the scenario tree
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generation methodology of Heitsch and Römisch (HR09) – multi-stage
stochastic optimal control problems may still involve up to millions of
decision variables.

Graphics processing units (GPUs) have been used for the accelera-
tion of the algorithmic solution of various problems in signal process-
ing (McC07), computer vision and pattern recognition (BMTVG12)
and machine learning (JPJ08; GDP09) leading to a manifold increase
in computational performance. To the best of knowledge, GPU tech-
nology is not exploited in a stochastic optimal control problem.

4.1.2 Outline
This chapter addresses this challenge by devising an optimisation al-
gorithm which makes use of the problem structure and sparsity. It ex-
ploits the structure of the problem, which is dictated by the structure
of the scenario tree, to parallelise the involved operations. Then, the
algorithm runs on a GPU hardware leading to a significant speed-up.

In Section 4.2, we reiterated the DWN model with stochastic de-
mand model and use this model to formulate the stochastic MPC prob-
lem in the next Section 4.3. In Section 4.4, we solve the stochastic MPC
problem with the Accelerated dual proximal gradient algorithm. Fi-
nally in the Section 4.5, we consider the Barcelona network as the
case study and compared the computational times of the APG me-
thod against the commercial solver Gurobi. Here we also studied the
closed-loop performance of the system in terms of the quality of ser-
vice and process economics. It is shown that the number of scenarios
allows us to refine our representation of uncertainty and trade the eco-
nomic operation of the network for reliability and quality of service.

4.1.3 Mathematical preliminaries
Let R̄ = R ∪ {+∞} denote the set of extended-real numbers. The set
of of nonnegative integers {k1, k1 + 1, . . . , k2}, k2 ≥ k1 is denoted by
N[k1,k2]. For x ∈ Rn we define [x]+ to be the vector in Rn whose i-th
element is max{0, xi}. For a matrixA ∈ Rn×m we denote its transpose
by A′.

The indicator function of a set C ⊆ Rn is the extended-real valued
function δ(·|C) : Rn → R̄ and it is δ(x|C) = 0 for x ∈ C and δ(x|C) =
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+∞ otherwise. A function f : Rn → R̄ is called proper if there is a x ∈
Rn so that f(x) <∞ and f(x) > −∞ for all x ∈ Rn. A proper convex
function f : Rn → R̄ is called lower semi-continuous or closed if for every
x ∈ Rn, f(x) = lim infz→x f(z). For a proper closed convex function
f : Rn → R̄, we define its conjugate as f∗(y) = supx{y′x − f(x)}. We
say that f is σ-strongly convex if f(x) − σ

2
‖x‖22 is a convex function.

Unless otherwise stated, ‖ · ‖ stands for the Euclidean norm.

4.2 Modelling of drinking water networks
In this section, the flow-based model of the DWN from the Section
2.2.1 is reiterated. Now the demand is modelled as a stochastic pro-
cess. Using the forecasting models of Section 2.3, the water demand is
predicted.

4.2.1 Flow-based control-oriented model
Dynamical models of drinking water networks have been studied in
depth in the last two decades (OMPC+09; MF84; OMFBP10). Flow-
based models are derived from simple mass balance equations of the
network which lead to the following pair of equations

xk+1 = Axk +Buk +Gddk, (4.1a)

0 = Euk + Eddk, (4.1b)

where x ∈ Rnx is the state vector corresponding to the volumes of
water in the storage tanks, u ∈ Rnu is the vector of manipulated inputs
and d ∈ Rnd is the vector of water demands. 1 Equation (4.1a) forms a
linear time-invariant system with additive uncertainty and (4.1b) is an
algebraic input-disturbance coupling equation with E ∈ Rne×nu and
Ed ∈ Rne×nd where ne is the number of junctions in the network.

1 The operation of valves is also accounted for by model (4.1a), (4.1b). Valves
receive set-points where a local controller manipulates them to achieve the de-
sired flow. The input vector uk comprises of pumping actions and valve actions
— both are flow set-points and flow constraints are imposed by (4.2a). Overall,
the model we use in this chapter has been validated with actual data from the
water network of Barcelona — see (SSG+13) for details.
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The maximum capacity of the tanks and the maximum pump-
ing capacity of each pumping station is described by the following
bounds:

umin ≤uk ≤ umax, (4.2a)

xmin ≤xk ≤ xmax. (4.2b)

In particular (4.2a) imposes constraints on the flow set-points which
are sent out to the valves and pumps of the network and (4.2b) im-
poses constraints on the minimum and maximum allowed volumes of
water in each tank. The above formulation has been widely used in the
formulation of model predictive control problems for DWNs (SGS+14;
GOMPJ14; OMFBP10).

4.2.2 Demand prediction model
The water demand is the main source of uncertainty that affects the
dynamics of the network. In the previous chapter 2.3, three different
time series models have been proposed for the forecasting of future
water demands– seasonal Holt-Winters, seasonal ARIMA, BATS and
SVM (SGS+14; WOPQ14). These models can be used to predict nom-
inal forecasts of the upcoming water demand along a horizon of N
steps ahead using measurements available up to time k, denoted by
d̂k+j|k. Then, the actual future demands dk+j — which are unknown
to the controller at time k — can be expressed as

dk+j(εj) = d̂k+j|k + εj , (4.3)

where εj is the demand prediction error which is a random variable
on a probability space (Ωj ,Fj ,Pj) and for convenience we define the
tuple εj = (ε0, ε1, . . . , εj) which is a random variable in the product
probability space. We also define d̂k = (d̂k|k, . . . d̂k+N−1|k).

4.3 Stochastic MPC for DWNs
In this section, the control objectives for the controlled operation of a
DWN are defined and the stochastic MPC problem is formulated.
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Figure 16: Collection of possible upcoming demands at a given
time instant. These results were produced using the SVM model
and the data in (SGS+14).

4.3.1 Control objectives
The following three cost functions which reflect the control objectives
are defined. The economic cost quantifies the production and transporta-
tion cost

`w(uk, k) = Wα(α1 + α2,k)′uk, (4.4)

where the term α′1uk is the water production cost, α′2,kuk is the pump-
ing (electricity) cost and Wα is a positive scaling factor.

The smooth operation cost is defined as

`∆(∆uk) = ∆u′kWu∆uk, (4.5)

where ∆uk = uk − uk−1 and Wu ∈ Rnu×nu is a symmetric positive
definite weight matrix. It is introduced to penalise abrupt switching
of the actuators (pumps and valves).

The safety operation cost penalises the drop of water level in the
tanks below a given safety level. An elevation above this safety level
ensures that there will be enough water in unforeseen cases of unex-
pectedly high demand and also maintains a minimum pressure for the
flow of water in the network2. This is given by

`S(xk) = Wxd(xk | Cs), (4.6)

2 Equation (4.6) serves as a soft constraint: it enforces the requirement that
the water in each tank should remain above a safety level — the safety storage

90



where d(x | C) = infy∈C ‖x − y‖2 is the distance-to-set function, Cs =
{x | x ≥ xs}, and xs ∈ Rnx is the safety level and Wx is a positive
scaling factor.

These cost functions have been used in many MPC formulations in
the literature (SGS+14; GOMPJ14; CCPC14). A comprehensive discus-
sion on the choice of these cost functions can be found in (OMFBP10).

The total stage cost at a time instant k is the summation of the above
costs and is given by

`(xk, uk, uk−1, k) = `w(uk, k) + `∆(∆uk) + `S(xk). (4.7)

4.3.2 SMPC formulation
Let’s formulate the stochastic MPC problem with decision variables as
π = {uk+j|k, xk+j+1|k}j∈N[0,N−1]

V ?(p, q, d̂k, k) = min
π
EV (π, p, q, k), (4.8a)

where E is expectation operator and

V (π, p, q, k) =

N−1∑
j=0

`(xk+j|k, uk+j|k, uk+j−1|k, k+j) (4.8b)

subject to the constraints

xk|k = p, uk−1|k = q, (4.8c)

xk+j+1|k = Axk+j|k +Buk+j|k +Gddk+j|k(εj),

j ∈ N[0,N−1], εj ∈ Ωj (4.8d)

Euk+j|k + Eddk+j|k(εj) = 0, j ∈ N[0,N−1], εj ∈ Ωj , (4.8e)

xmin ≤ xk+j|k ≤ xmax, j ∈ N[1,N ], (4.8f)

umin ≤ uk+j|k ≤ umax, j ∈ N[0,N−1], (4.8g)

where it is stressed out that the decision variables {uk+j|k}j=N−1
j=0 are

required to be causal control laws of the form

uk+j|k = ϕk+j|k(p, q, xk+j|k, uk+j−1|k, εj). (4.8h)
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Figure 17: The closed-loop system with the proposed stochastic
MPC controller running on a GPU device.

Solving the above problem would involve the evaluation of multi-
dimensional integrals over an infinite-dimensional space which is com-
putationally intractable. Hereafter, however, it shall be assumed that
all Ωj , for j ∈ N[0,N−1], are finite sets. This assumption will allow to
restate (4.8) as a finite-dimensional optimisation problem.

4.3.3 Scenario trees
A scenario tree is the structure which naturally follows from the finite-
ness assumption of Ωj and is illustrated in Fig. 18. A scenario tree
describes a set of possible future evolutions of the state of the system
known as scenarios.

The nodes of a scenario tree are partitioned in stages. The (unique)
node at stage k = 0 is called root and the nodes at the last stage are the
leaf nodes of the tree. We denote the number of leaf nodes by ns. The
number of nodes at stage k is denoted by µ(k) and the total number
of nodes of the tree is denoted by µ. A path connecting the root node
with a leaf node is called a scenario. Non-leaf nodes define a set of
children; at a stage j ∈ N[0,N−1] for i ∈ µ(j) the set of children of the
i-th node is denoted by child(j, i) ⊆ N[1,µ(j+1)]. At stage j ∈ N[1,N ]

volume xs. This minimum volume corresponds to a minimum elevation and
a minimum pressure at the outflow of each tank. The exact value of xs is a
technical specification which is provided by the network operator.

92



Figure 18: Scenario tree describing the possible evolution of the
system state along the prediction horizon: Future control actions
are decided in a non-anticipative (causal) fashion; for example u2

1

is decided as a function of ε21 but not of any of εi2, i ∈ N[1,µ(3)].

the i-th node i ∈ N[1,µ(j)] is reachable from a single node at stage k− 1
known as its ancestor which is denoted by anc(j, i) ∈ N[1,µ(j−1)].

The probability of visiting a node i at stage j starting from the root
is denoted by pij . For all for j ∈ NN we have that

∑µ(j)
i=1 p

i
j = 1 and for

all i ∈ N[1,µ(k)] it is
∑
l∈child(j,i) p

l
j+1 = pij .

We define the maximum branching factor at stage j, bj , to be the
maximum number of children of the nodes at this stage. The maxi-
mum branching factor serves as a measure of the complexity of the
tree at a given stage.

4.3.4 Generation of the scenario tree

Scenario tree is constructed from raw data which is normally obtained
from historical time-series information. This data represents the dis-
crete probability measure of the stochastic process. The scenario tree
should approximate this probability distribution with a predefined
structure specified by the branching factor at each stage. Wallace et.al (HW01)
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suggested a technique that matches moments to generate the scenario
tree. But this methods lacks theoretical support and similar moments
does not guarantee similarity in their distributions.

Here we generate the tree based on a probability distance minimi-
sation algorithm proposed by Heitsch et al. (HR09). Let us assume
the probability measure of the original process is P and then gener-
ate a scenario tree with a predefined complexity and has a probability
measure Q such that two probability measures are closed in terms of
Wasserstein-Kantorovitch metric or simply the transportation distance.
For discrete probability measure this is a linear programming problem
and can be solved easily using a commercial solver. We generated the
scenario tree using the forward selection algorithm given in by Heitsch
et al. (HR03; DGKR03).

4.3.5 Reformulation as a finite-dimensional prob-
lem

Now the above tree structure is exploited to reformulate the optimal
control problem (4.8) as a finite-dimensional problem. The water de-
mand, given by (4.3), is now modelled as

dik+j|k = d̂k+j|k + εij , (4.9)

for all j ∈ N[0,N−1] and i ∈ N[1,µ(j+1)]. The input-disturbance cou-
pling (4.8e) is then readily rewritten as

Euik+j|k + Edd
i
k+j|k = 0, (4.10)

for j ∈ N[0,N−1] and i ∈ N[1,µ(j+1)].
The system dynamics is defined across the nodes of the tree by

xlk+j+1|k = Axik+j|k +Bulk+j|k +Gdd
l
k+j|k, (4.11)

for j ∈ N[0,N−1], i ∈ N[1,µ(j)] and l ∈ child(j, i), or, alternatively,

xik+j+1|k = Ax
anc(j+1,i)

k+j|k +Buik+j|k +Gdd
i
k+j|k, (4.12)

for j ∈ N[0,N−1] and i ∈ N[1,µ(j+1)].
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Now the expectation of the objective function (4.8b) can be derived
as a summation across the tree nodes

EV (π, p, q, k) =

N−1∑
j=0

µ(j)∑
i=1

pij`(x
i
k+j|k, u

i
k+j|k, u

anc(j,i)

k+j−1|k, k + j), (4.13)

where x1
k|k = p and uk−1|k = q.

In order to guarantee the recursive feasibility of the control prob-
lem, the state constraints (4.8f) are converted into soft constraints, that
is, they are replaced by a penalty of the form

`d(x) = γdd(x, C1), (4.14)

where γd is a positive penalty factor and C1 = {x | xmin ≤ x ≤ xmax}.
Using this penalty, let’s construct the soft state constraint penalty

Vs(π, p) =

N∑
j=0

µ(j)∑
i=1

`d(xik+j|k). (4.15)

The modified, soft-constrained, SMPC problem can be now writ-
ten as

Ṽ ?(p, q, d̂, k) = min
π
EV (π, p, q, k) + Vs(π, p), (4.16a)

subject to

x1
k|k = p, uk−1|k = q, (4.16b)

umin ≤ uik+j|k ≤ umax, j ∈ N[0,N−1], i ∈ N[1,µ(j)], (4.16c)

and system equations (4.10) and (4.12).

4.4 Solution of the stochastic optimal con-
trol problem

In this section the GPU-based proximal gradient method proposed in
Chapter 3 is extended to solve the SMPC problem (4.16). For ease of
notation let’s denote xj|0 = xj , uj|0 = uj , d̂j|0 = d̂j .
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4.4.1 Proximal gradient algorithm
For a closed, proper extended-real valued function g : Rn → R̄, we
define its proximal operator with parameter γ > 0, proxγg : Rn → Rn
as (PB14a)

proxγg(v) = argmin
x∈Rn

{
g(x) +

1

2γ
‖x− v‖22

}
. (4.17)

The proximal operator of many functions is available in closed form (CP10;
PB14a). When g is given in a separable sum form, that is

g(x) =

κ∑
i=1

gi(xi), (4.18a)

then for all i ∈ N[1,κ]

(proxγg(v))i = proxγgi(vi). (4.18b)

This is known as the separable sum property of the proximal operator.
Let z ∈ Rnz be a vector encompassing all states xij for j ∈ N[0,N ]

and i ∈ N[1,µ(j)] and inputs uij for j ∈ N[0,N−1], i ∈ N[1,µ(j+1)]; this is
the decision variable of problem (4.16).

Let f : Rnz → R̄ be defined as

f(z) =

N−1∑
j=0

µ(j)∑
i=1

pij(`
w(uij) + `∆(∆uij))+δ(u

i
j |Φ1(dij))

+ δ(xij+1, u
i
j , x

anc(j+1,i)
j |Φ2(dij)), (4.19)

where ∆uij = uij − u
anc(j,i)
j−1 and Φ1(d) is the affine subspace of Rnu

induced by (4.10), that is

Φ1(d) = {u : Eu+ Edd = 0}, (4.20)

and Φ2(d) is the affine subspace of R2nx+nu defined by the system
dynamics (4.12)

Φ2(d) = {(xk+1, xk, u) : xk+1 = Axk +Bu+Gdd}. (4.21)

We define the auxiliary variables ς and ζ which stand for copies
of the state variables xij — that is ςij = ζij = xij — and the auxiliary
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variable ψ which is a copy of input variables ψij = uij . The reason for
the introduction of these variables will be clarified in Section 4.4.6.

We introduce the variable t = (ς, ζ, ψ) ∈ Rnt and define an ex-
tended real valued function g : Rnt → R̄ as

g(t) =

N−1∑
j=0

µ(j)∑
i=1

`S(ςij+1) + `d(ζij+1) + δ(ψij |U), (4.22)

where U = {ψ ∈ Rnu : umin ≤ ψ ≤ umax}.
Now the finite-dimensional optimisation problem (4.16) can be

written as:

Ṽ ? = min
z,t

f(z) + g(t) (4.23a)

s.t. Hz = t (4.23b)

where

H =

 Inx 0
Inx 0
0 Inu

 . (4.24)

The Fenchel dual of (4.23) is written as (Roc72, Corol. 31.2.1):

D̃? = min
y
f∗(−H ′y) + g∗(y), (4.25)

where y is the dual variable. The dual variable y can be partitioned as
y = (ς̃ij , ζ̃

i
j , ψ̃

i
j), where ς̃ij , ζ̃ij and ψ̃ij are the dual variables correspond-

ing to ςij , ζij and ψij respectively. We also define the auxiliary variable
of state copies ξ̃ij := (ς̃ij , ζ̃

i
j).

According to (RW09, Thm. 11.42), since function f(z) + g(Hz) is
proper, convex and piecewise linear-quadratic, then the primal prob-
lem (4.23) is feasible whenever the dual problem (4.25) is feasible and
strong duality holds, i.e., Ṽ ? = D̃?. Moreover, the optimal solution
of (4.23) is given by z? = ∇f∗(−H ′y?) where y? is any solution of
(4.25). Applying (RW09, Prop. 12.60) to f∗ and since f is lower semi-
continuous, proper and σ-strongly convex — as shown at the end
of Section 4.4.3 — its conjugate f∗ has Lipschitz-continuous gradient
with a constant 1/σ.

An accelerated version of proximal-gradient method which was
first proposed by Nesterov in (Nes83) is applied to the dual problem.
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This leads to the following algorithm

wν = yν + θν(θ−1
ν−1 − 1)(yν − yν−1), (4.26a)

zν = argmin
z
{〈z,H ′wν〉+ f(z)}, (4.26b)

tν = proxλ−1g(λ
−1wν +Hzν), (4.26c)

yν+1 = wν + λ(Hzv − tv), (4.26d)

θν+1 =
1

2

(√
θ4
ν + 4θ2

ν − θ2
ν

)
, (4.26e)

starting from a dual-feasible vector y0 = y−1 = 0 and θ0 = θ−1 = 1.
In the first step (4.26a) we compute an extrapolation of the dual

vector. In the second step (4.26b) we calculate the dual gradient, that
is zν = ∇f∗(−H ′wν), at the extrapolated dual vector using the con-
jugate subgradient theorem (Roc72, Thm. 23.5). The third step com-
prises of (4.26c), (4.26d) where we update the dual vector y and in the
final step of the algorithm we compute the scalar θν which is used in
the extrapolation step.

This algorithm has a convergence rate of O(1/ν2) for the dual it-
erates as well as for the ergodic primal iterate defined through the
recursion z̄ν = (1 − θν)z̄(ν−1) + θνz

ν , i.e., a weighted average of the
primal iterates (PB14c).

The splitting given in (4.23), with this particular choice of f and g,
is not unique.

4.4.2 Computation of primal iterate
The most critical step in the algorithm is the computation of zν which
accounts for most of the computation time required by each iteration.
This step boils down to the solution of an unconstrained optimisation
problem by means of dynamic programming where certain matrices
(which are independent of wν ) can be computed once before the algo-
rithm to facilitate the online computations. This process result in three
fold calculation:

• The demand forecast and the electricity prices in the cost func-
tion update at every time k. These are the vectors βij , ûij , eij
which are associated with them are updated along with them.
These are mentioned in the Section 4.4.3.
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• Matrices that depend on the system dynamics (network topol-
ogy) – Λ,Φ,Ψ and B̄. Their calculation is referred as the factor
step which is explained in the Section 4.4.4. It should be noted
that these matrices are independent of the complexity of the sce-
nario tree.

• Finally, the solve step that is executed at each iterate of the dual
variable wν . It use the vectors updated at the time instance,
βij , û

i
j , e

i
j , and the constant matrices of the factor step to generate

the primal iterate as output. This is mentioned in the Section
4.4.5.

4.4.3 Elimination of input-disturbance coupling
This section discusses how the input-disturbance equality constraints
can be eliminated by a proper change of input variables and compute
the parameters βij , ûij , eij ∀i ∈ µ(j), j ∈ NN which are then provided as
input to Algorithm 6. These depend on the nominal demand forecasts
d̂k+j|k and on the time-varying economic cost parameters α2,k+j for
j ∈ N[0,N−1], therefore, they need to be updated at every time instant
k.

The affine space Φ1(d) introduced in (4.20) can be written as

Φ1(d) = {v ∈ Rnv : u = Lv + û(d)} (4.27)

whereL ∈ Rnu×nv is a full rank matrix whose range spans the nullspace
of E, i.e., for every v ∈ Rnv , we have Lv is in the kernel of E and û(d)
satisfies Eû(d) + Edd = 0.

Substituting uij = Lvij + ûij , ∀i ∈ µ(j), j ∈ NN in the dynamics
Φ2(d) in (4.21) gives

Φ2(d) ={(xj+1, xj , v) : xj+1 = Axj + B̄v + e,

B̄ = BL, e = Bû+Gdd}, (4.28)

and we define
eij = Bûij +Gdd

i
j . (4.29)

Now the cost in (4.19) is transformed as:
N−1∑
j=0

µ(j)∑
i=1

pij(`
w(uij) + `∆(∆uij)) =

N−1∑
j=0

µ(j)∑
i=1

pij(`
w(vij) + `∆(∆vij , û

i
j))

(4.30)
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where

R̂ = WuL, (4.31a)

R̄ = L′R̂, (4.31b)

ᾱj = Wα(α1 + α2,j+k)L (4.31c)

`w(vij) = ᾱ′jv
i
j , (4.31d)

∆vij = vij − v
anc(j,i)
j−1 , (4.31e)

∆ûij = ûij − û
anc(j,i)
j−1 , (4.31f)

`∆(∆vij ,∆û
i
j) = ∆vijR̄∆vij + 2∆ûi′j R̂∆vij , (4.31g)

By substituting and expanding ∆vij and ∆ûij in `∆(∆vij ,∆û
i
j) the cost

in (4.31g) becomes

N−1∑
j=0

µ(j)∑
i=1

pij(`
w(uij) + `∆(∆uij)) =

N−1∑
j=0

µ(j)∑
i=1

p̄ijv
i′
j R̄v

i
j − 2pijv

anc(j,i)′
j−1 R̄vij + βi′j v

i
j (4.32)

where

p̄ij = pij +
∑

l∈child(j,i)

plj+1 (4.33a)

βij = pijᾱj + 2pijR̂
(
p̄ij û

i
j − û

anc(j,i)
j−1 −

∑
l∈child(j,i)

plj+1û
l
j+1

)
(4.33b)

Now ûij , eij , βij are calculated from (4.27), (4.29) and (4.33b) respec-
tively. Using our assumption that L is full-rank, we can see that R̄ is
a positive definite and symmetric matrix, therefore, f is strongly con-
vex.

4.4.4 Factor step
Algorithm 6 solves the unconstrained minimisation problem (4.26b),
that is

z? = argmin
z
{〈z,H ′y〉+ f(z)} (4.34)
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where z = {xij , uij}, y = {ς̃ij , ζ̃ij , ψ̃ij} for i ∈ N[1,µ(j)] and j ∈ N[0,N ],
f(z) is given by (4.19) and H is given by (4.24). Substituting H the
optimisation problem becomes

z? = argmin
z

N−1∑
j=0

µ(j)∑
i=1

pij(`
w(uij) + `∆(∆uij))

+ ξ̃i′j x
i
j + ψ̃i′j u

i
j + δ(uij |Φ1(dij))

+ δ(xij+1, u
i
j , x

anc(j+1,i)
j |Φ2(dij)) (4.35)

where ξ̃ij := (ς̃ij , ζ̃
i
j).

The input-disturbance coupling constraints imposed by δ(uij |Φ1(dij))
in the above problem are eliminated as discussed in Section 4.4.3. This
changes the input variable from uij to vij given by (4.27) and the cost
function as in (4.32). We, therefore, replace the decision variable z with
z̄ := {xij , vij} and the optimisation problem (4.35) reduces to

z̄? = argmin
z̄

N−1∑
j=0

µ(j)∑
i=1

p̄ijv
i′
j R̄v

i
j−2pijv

anc(j,i)′
j−1 R̄vij+β

i′
j v

i
j + ξ̃i′j x

j
j+1

+ψ̃i′j Lv
i
j+δ(x

i
j+1, v

i
j , x

anc(k,i)
j |Φ2(dij)), (4.36)

where uij = Lvij + ûij .
The above problem is an unconstrained optimisation problem with

quadratic stage cost which is solved using dynamic programming (Ber00).
This method transforms the complex problem into a sequence of sub-
problems solved at each stage.

Using dynamic programming we find that the transformed control
actions vi?j have to satisfy

vi?j = v
anc(j,i)
j−1 +

1

2pij

(
Φ(ξ̃ij + qij+1) + Ψψ̃ij+Λ(βij + rij+1)

)
(4.37)

where

Λ = −R̄−1, (4.38a)

Φ = ΛB̄′, (4.38b)

Ψ = ΛL. (4.38c)
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Matrix R̄ is symmetric and positive definite, therefore, this can com-
pute once its Cholesky factorisation so that the inverse computation is
obviated.

The qij+1, rij+1 in (4.37) correspond to the linear cost terms in the
cost-to-go function at node i of stage j + 1. At stage j, these terms are
updated by substituting the vi?j as:

rsj =
∑

l∈child(j−1,s)

σlj + B̄′(ξ̃lj + qlj+1) + Lψ̃lj , (4.39a)

qsj = A′
∑

l∈child(j−1,s)

ξ̃lj + qlj+1 (4.39b)

where s = anc(j, i).
Equations (4.37) and (4.39) form the solve step as in Algorithm 6.

Matrices Λ, Φ and Ψ are required to be computed once.

4.4.5 Solve step

The computation of zν at each iteration of the algorithm requires the
computation of the aforementioned matrices and is computed using
Algorithm 6 to which is referred as the solve step. Computations in-
volved in the solve step are merely matrix-vector multiplications. As
the algorithm traverses the nodes of the scenario tree stage-wise back-
wards (from stage N − 1 to stage 0), computations across the nodes at
a given stage can be performed in parallel. Hardware such as GPUs
which enable us to parallelisable such operations lead to a great speed-
up as demonstrated in Section 4.5.

4.4.6 Computation of dual iterate

Function g given in (4.22) is given in the form of a separable sum

g(t) = g(ς, ζ, ψ) = g1(ς) + g2(ζ) + g3(ψ), (4.40)
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Algorithm 6 Solve step (DWN)
Require: Output of the factor step (See Sections 4.4.3 and

4.4.4), i.e., Λ,Φ,Ψ, B̄, ûij , β
i
j , e

i
j , p, q and wν = (ς̃ij , ζ̃

i
j , ψ̃

i
j).

qiN ← 0, and riN ← 0,∀i ∈ N[1,ns],
for j = N − 1, . . . , 0 do

for i = 1, . . . , µ(k) do {in parallel}
σlj ← rlj+1 + βlj ,∀l ∈ child(j, i)

vlj ← 1
2plj

(
Φlj(ξ̃

l
j + qlj+1) + Ψl

jψ̃
l
j + Λljσ

l
j

)
,

∀l ∈ child(j, i)
rij ←

∑
l∈child(j,i) σ

l
j + B̄′(ξ̃lj + qlj+1) + Lψ̃lj

qij ← A′
∑
l∈child(j,i) ξ̃

l
j + qlj+1

end for
end for
x1

0 ← p, u−1 ← q,
for j = 0, . . . , N − 1 do

for i = 1, . . . , µ(k) do {in parallel}
vij ← v

anc(j,i)
j−1 + vij

uij ← Lvij + ûij

xij+1 ← Ax
anc(j,i)
j + B̄vij + eij

end for
end for
return {xij}Nj=1, {uij}

N−1
j=0

where

g1(ς) =

N−1∑
j=0

µ(j)∑
i=1

`S(ςij+1), (4.41a)

g2(ζ) =

N−1∑
j=0

µ(j)∑
i=1

`d(ζij+1), (4.41b)

g3(ψ) =

N−1∑
j=0

µ(j)∑
i=1

δ(ψij | U). (4.41c)
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Functions g1(·) and g2(·) are in turn separable sums of distance
functions from a set and g3(·) is an indicator function. Their proximal
mappings can be easily computed below and essentially are element-
wise operations on the vector t that can be fully parallelised.

Proximal operators

Function g in (4.40) is a separable sum of distance and indicator func-
tions and its proximal is computed according to (4.18). The proximal
operator of the indicator of a convex closed set C, that is

δC(x) =

{
0, if x ∈ C
+∞, otherwise

is the projection operator onto C, i.e.,

proxλδC (v) = projC(v) = argmin
y∈C

‖v − y‖, (4.42)

When g is the distance function from a convex closed set C, that is

g(x) =µd(x | C) = inf
y∈C

µ‖x− y‖2

=µ‖x− projC(x)‖2

Then proximal operator of g given by (CP10)

proxλg (v) =

{
x+ projC(v)−v

d(v|C) , if d(v | C) > λµ

projC(v), otherwise

4.4.7 Preconditioning, Choice of λ & Termination
Preconditioning: First-order methods are known to be sensitive to scal-
ing and preconditioning can remarkably improve their convergence
rate. Various preconditioning method such as (GB15; Bra10) have been
proposed in the literature. Additionally, a parallelizable precondition-
ing method tailored to stochastic programs for use with interior point
solvers has been proposed in (CLZ16). Here, we employ a simple di-
agonal preconditioning which consists in computing a diagonal ma-
trix H̃D with positive diagonal entries which approximates the dual
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Hessian HD and use H̃−1/2
D to scale the dual vector (Ber99, Sec. 2.3.1).

Since the uncertainty does not affect the dual Hessian, the precondi-
tioning matrix for a single branch of the scenario tree and use it to
scale all dual variables.

Choice of λ : In a similar way, the parameter λ is computed. It is
chosen as λ = 1/LHD where LHD is the Lipschitz constant of the dual
gradient which is computed as ‖H‖2/σ as in (Ber99). It again suffices
to perform the computation for a single branch of the scenario tree. In
order to avoid future problems a backtracking step with initial guess
of λ is also included.

Termination: The termination conditions for the above algorithm
are based on the ones provided in (PB14c). However, rather than
checking these conditions at every iteration, we perform always a fixed
number of iterations which is dictated by the sampling time. The qual-
ity of the solution is checked a posteriori in terms of the duality gap in
relative measure and the term ‖Hzν − tν‖∞.

4.5 Case study: The Barcelona DWN
The proposed control methodology is applied to the drinking water
network of the city of Barcelona discussed in the Chapter 2 which is
based on the data found in (GOMPJ14; SGS+14). The topology of the
network is presented in Figure 19. The system model consists of 63
states corresponding to the level of water in each tank, 114 control
inputs which are pumping actions and valve positions, 88 demand
nodes and 17 junctions. The prediction horizon is N = 24 with sam-
pling time of 1 hour. The future demands are predicted using the SVM
time series model developed in Section 2.3.

4.5.1 Performance of GPU-accelerated algorithm
Accelerated proximal gradient (APG) was implemented in CUDA-C
v6.0 and the matrix-vector computations were performed using cuBLAS.
The GPU-based implementation is compared against the interior-point
solver of Gurobi3. Active-set algorithms exhibited very poor perfor-

3Gurobi does not support computations on GPUs and as we read
in http://www.gurobi.com/pdfs/webinar-parallel-and-distributed-optimisa-
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Figure 19: Structure of the DWN of Barcelona.

mance and did not include the respective results.
All computations on CPU were performed on a 4× 2.60GHz Intel

i5 machine with 8GB of RAM running 64-bit Ubuntu v14.04 and GPU-
based computations were carried out on a NVIDIA Tesla C2075.

The dependence of the computation time on the size of the scena-
rio tree is reported in the Figure 20 where it can be noticed that APG
running on GPU compared to Gurobi is 10 to 25 times faster. Further-
more, the speed-up increases with the number of scenarios as we may
notice by looking at the insert 20.

The optimisation problems we are solving here are of noticeably
large size. Indicatively, the scenario tree with 493 scenarios counts
approximately 2.52 million dual decision variables (1.86 million pri-
mal variables) and while Gurobi requires 1329s to solve it, our CUDA
implementation solves it in 58.8s; this corresponds to a speed-up of
22.6×.

In all the simulations the obtained sequence of control actions ac-
ross the tree nodes U?apg = {uij} which was, element-wise, within
±0.029m3/s (1.9%) from the solution produced by Gurobi. The max-

tion-english.pdf, the current status of GPU technology does not allow the im-
plementation of a GPU-enabled version of Gurobi. Although there have been
proposed interior point methods for the solution of stochastic optimal control
problems (HOS01; DZZ+12; BL02), a clear advantage of APG is that it can fully
exploit the structure of the problem while it generally allows for convex non-
quadratic costs and soft constraints.
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imum primal residual was ‖Hx− z‖∞ = 1.7446. Moreover, it should
be noted that the control action u?0 computed by APG with 500 itera-
tions was consistently within ±0.0025m3/s (0.08%) from the Gurobi
solution. Given that only u?0 is applied to the system while all other
control actions uij for j ∈ N[1,N−1] and i ∈ N[1,µ(j)] are discarded, 500
iterations are well sufficient for convergence.
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Figure 20: Runtime of the CUDA implementation against the
number of scenarios considered in the optimisation problem.
Comparison with the runtimes of Gurobi.

4.5.2 Closed-loop performance
This section analysis the closed-loop performance of SMPC with dif-
ferent scenario-trees. This analysis is carried for a period of 7 days
(Hs = 168) from 1st to 8th July 2007. The demand data were provided
by AGBAR (Aguas de Barcelona, s.a.), which is the company that man-
ages the Barcelona DWN). Here, the operational cost and the quality
of service of various scenario-tree structures were compared.

The weighting matrices in the operational cost are chosen asWα =
2 · 104, Wu = 105 · I and Wx = 107, respectively and γd = 5 · 107.
The demand is predicted using SVM model presented in (SGS+14).
The steps involved in SMPC using GPU based APG in closed-loop is
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summarised in Algorithm 7.

Algorithm 7 SMPC control of DWN
Require: Scenario-tree, current state measurement x0 and pre-

vious control u−1.
Compute Λ, Φ, Ψ and B̄ as in Section 4.4.4
Precondition the original optimisation problem and compute
λ as in Section 4.4.7.
loop

Step 1. Predict the future water demands d̂k using current
and past demand data.
Step 2. Compute ûij , β

i
j , e

i
j as in Section 4.4.3.

Step 3. Solve the optimisation problem using APG on GPU
using iteration (4.26) and Algorithm 6.
Step 4. Apply u1

0 to the system, update u−1 = u1
0

end loop

For the performance assessment of the proposed control method-
ology we used various controllers summarised in Table 2. The corre-
sponding computational times are presented in Figure 20.

To assess the performance of closed-loop operation of the SMPC-
controlled network we used the key performance indicators (KPIs) re-
ported in (ABCJC06; GMOMP14). For a simulation time lengthHs the
performance indicators are computed by

KPIE =
1

Hs

Hs∑
k=1

(α1 + α2,k)′|uk|, (4.43a)

KPI∆U =
1

Hs

Hs∑
k=1

‖∆uk‖2, (4.43b)

KPIS =

Hs∑
k=1

‖[xs − xk]+‖1 (4.43c)

KPIR =
‖xs‖1

1
Hs

∑Hs
k=1 ‖xk‖1

× 100%. (4.43d)
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Controller bk scenarios primal variables dual variables
CE-MPC 1 1 4248 5760
SMPC1 [3, 2] 6 24072 32540
SMPC2 [6, 5] 30 118059 160080
SMPC3 [6, 5, 5] 114 430287 583440
SMPC4 [8, 5, 5] 146 551355 747600
SMPC5 [10, 8, 5] 242 915621 1241520
SMPC6 [12, 8, 5] 303 1145544 1553280
SMPC7 [12, 8, 8] 404 1520961 2062320
SMPC8 [12, 10, 8] 493 1856022 2516640

Table 2: Various controllers used to assess the closed-loop perfor-
mance of the proposed methodology. The numbers in the bracket
denote the first maximum branching factors, bj , of the scenario tree
while all subsequent branching factors are assumed to be equal
to 1.

KPIE is the average economic cost, KPI∆U measures the average smoo-
thness of the control actions, KPIS corresponds to the total amount of
water used from storage and KPIR is the percentage of the safety vol-
ume xs contained into the average volume of water.

Risk vs Economic utility

Figure 21 illustrates the trade-off between economic and safe opera-
tion: The more scenarios we use to describe the distribution of de-
mand prediction error, the safer the closed-loop operation becomes as
it is reflected by the decrease of KPIS . Stochastic MPC leads to a signif-
icant decrease of economic cost compared to the certainty-equivalence
approach, however, the safer we require the operation to be, the higher
the operating cost we should expect. For example, if the designer opts
for 30 scenarios, they will have struck a low operating cost which,
nevertheless, comes with a high value of KPIS , that is, operation un-
der high risk. In order to decrease this risk, one needs to consider a
higher number of scenarios which comes at a higher operating cost.
We may also observe that for too few scenarios, the operation of the
network will be both expensive and will incur a rather high risk.
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Controller KPIE KPI∆U KPIS KPIR
CE-MPC 1801.4 0.2737 6507.7 64.89%
SMPC1 1633.5 0.3896 1753.7 67.96%
SMPC2 1549.7 0.4652 2264.0 61.81%
SMPC3 1574.0 0.4135 1360.0 49.65%
SMPC4 1583.2 0.4088 885.7 48.13%
SMPC5 1597.3 0.4470 508.5 46.05%
SMPC6 1606.3 0.4878 302.3 44.93%

Table 3: KPIs for performance analysis of the DWN with different
controllers. The lowest and the highest in each of the indicator is
highlighted. The economical benefit and risk is presented with
terms of number of scenarios

Quality of service

A measure of the reliability and quality-of-service of the network is
KPIS which reflects the tendency of water levels to drop under the
safety storage levels. As expected, the CE-MPC controller leads to the
most unsafe operation, whereas SMPC6 leads to the lowest value.

Network utility

Network utility is defined as the ability to utilise the water in the tanks
to meet the demands rather than pumping additional water and is
quantified by KPIR. In Table 3, we see the dependence of KPIR on
the number of scenarios of the tree. KPIR remains always within rea-
sonable limits; on average we operate away from the safety storage
limit. The decrease in KPIR one may observe is because the more sce-
narios are introduced, the more accurate the representation of uncer-
tainty becomes and the system does not need to operate, on average,
too far away from xs.

Smooth operation

We may notice that the introduction of more scenarios results in an
increase in KPI∆U . Then, the controller becomes more responsive to
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accommodate the need for a less risky operation, although the value
of KPI∆U is not greatly affected by number of scenarios.

In Figure 22 we show two pumping actions during 168h (1 week)
of operation. We may observe the tendency of the controller to be
parsimonious with pumping when the corresponding pumping cost
is high.
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Figure 21: The figure shows the trade-off between risk and eco-
nomic utility in terms of scenarios. The KPIE represent the eco-
nomical utility and KPIS shows the risk of violation.

4.5.3 Implementation details
At every time instant k, state measurement and a sequence of demand
predictions were needed to be loaded onto the GPU(see Figure 17),
that is d̂k. This amounts to 8.4kB and is rapidly uploaded on the
GPU (less than 0.034ms). In case the scenario-tree values were need
to be updated,i.e.,εk, and for the case of SMPC8 it is need to upload
3.52MB which is done in 3.74ms. Therefore, the time needed to load
these data on the GPU is not a limiting factor.

The parallelisation of matrix-vector multiplications required in Al-
gorithm 6 are implemented using method cublasSgemmBatched of
cuBLAS. Vector additions are performed using cublasSaxpy and sum-
mations over the set of children of a node were done using a custom
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Figure 22: Pumping actions using SMPC4 (expressed in % of
umax) and the corresponding weighted time-varying costWαα2,k

in economic units.

kernel.

4.6 Conclusions
This chapter have presented a framework for the formulation of a
stochastic model predictive control problem for the operational man-
agement of drinking water networks. It have proposed a novel ap-
proach for the efficient numerical solution of the associated optimi-
sation problem on a GPU. The computational feasibility of this algo-
rithm and the benefits for the operational management of the system
in terms of performance quantified using certain KPIs from the litera-
ture is demonstrated.

The SMPC controller provides set-points for the controller which
are realised by local controllers. The topology of the drinking-water
network prohibit for a centralised controller. In the next chapter, we
address this by spatial decomposition of the control problem with lo-
cal decentralised controllers.
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Chapter 5

Decentralised control of
large-scale drinking
water networks

In the previous chapters, we investigated the economic stochastic mo-
del predictive control formulation and efficient algorithm for its online
solution. This chapter address the problem of the spatial decomposi-
tion of the control problem under realistic conditions: (i) hard state-
input constraints, and (ii) different time scales. Indeed, the tank level
references are instructed by the MPC module based on economical
criteria once every hour, while at a lower control layer control actions
are commanded by local controllers (such as PID, or LQR) at a higher
rate which can be at the order of magnitude of 1Hz or higher. Eco-
nomic stochastic MPC is not guaranteed to satisfy the state constraints
in closed loop; this is the motivation for the work presented in this
chapter and these results are published in (SSB16).
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5.1 Introduction

5.1.1 Motivation and background
Large-scale systems (such as drinking water networks and power dis-
tribution networks) call for control strategies based on the spatial and
temporal decomposition of the overall dynamics so as to leverage the
high computational cost of a centralised control approach (FBB+80).
In large scale systems hierarchical control is often the basis for a de-
centralised control scheme (CHL10; IY06) and various decentralised
and hierarchical control schemes have been proposed in the literature
for which Scattolini (Sca09) provides a thorough review. An overview
of the current architectural trends in decentralised control for large-
scale interconnected systems is provided by Bakule (Bak08).

Drinking Water Networks (DWNs) are large-scale systems whose
operation is liable to set of operating, safety and quality-of-service
constraints. The optimal management of DWNs is a complex task with
outstanding socio-economic and environmental implications and has
received considerable attention by the scientific community (OMPB11;
OMBPB12b). One key reason for the use of decentralised control schemes
is the need to isolate certain parts of the network for maintenance pur-
poses without the need to re-model the overall system.

In the previous Chapters ( 2 and 4) we proposed a control frame-
work for large-scale DWNs where pumping actions are computed by
minimising a cost index. Such approaches are in the spirit of economic
MPC (AAR12), and, despite the fact that are proven to lead to im-
proved closed-loop behaviour, may fail to guarantee the satisfaction
of state constraints in closed loop. The proposed methodology allows
the operator to command reference signals to the sub-systems of the
network according to some cost-optimisation strategy in such a way
so as to satisfy the constraints during controlled operation.

Various decentralised and hierarchical control schemes have been
proposed in the literature for which Scattolini (Sca09) provides a thor-
ough review. The use of reference governors has been recommended
by various authors so as to mitigate the computational burden of a
centralised approach by separating the constraint satisfaction prob-
lem from the stabilisation problem (BCM97; GK99; CMP04; CGT14;
RFT12). Recently, Kalabić and Kolmanovsky (KK13) proposed a method-
ology for the design of reference governors for constrained large-scale
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linear systems. Two-layer hierarchical control systems are considered
in the majority of relevant publications (see (PVSC10) and references
therein). Recently, Vermillion et al. (VMK13) proposed a hierarchi-
cal architecture where both the upper and the lower layer implement
MPC-based controllers with contractive terminal sets and they pro-
vide stabilising conditions but without considering state constraints.
Magni and Scattolini (MS06) also make use of contractive sets which
they impose as terminal sets in the formulation of the MPC prob-
lem for the decentralised control of nonlinear systems. Vaccarini et
al. (VLK09) proposed a decentralised MPC scheme for unconstrained
systems. Also, very recently, Riverso et al. (RFFT13) employed tube-
based MPC to design a plug-and-play decentralised control scheme
for linear constrained systems while Betti et al. (BFS13) also employ a
tube-based method for the tracking of constant reference signals and
model the interactions between subsystems of the partitioned system
as disturbances. An overview of the current architectural trends in de-
centralised control for large-scale interconnected systems is provided
by Bakule (Bak08).

Multirate control schemes are quite popular as they increase the
flexibility in the quest for the desired properties (stability, optimality,
constraints satisfaction) (SS94; PVSC10; HLndlPn+11). A multi-rate
control approach is adopted in this chapter with a quantification of
the effect that the ratio of the two sampling rates has on the control
of the system. We will show that the adoption of different reference
rates in the upper and the lower control layers offers great flexibility
and enables us to strike a balance between responsiveness to set-point
changes and optimality.

In this chapter we propose a hierarchical multi-rate decentralised
control scheme for the control of large-scale systems whose states and
inputs are subject to linear constraints. The hierarchical scheme com-
prises two control layers: At the lower one, a linear controller sta-
bilises the open-loop process without considering the constraints. A
higher-level controller commands reference signals at a lower uni-
form sampling frequency so as to enforce linear constraints on the
process variables. We propose a methodology for large-scale dynami-
cally coupled linear systems which are partitioned into interconnected
subsystems with state and input constraints. Worst-case interactions
between subsystems are modeled and accounted for in a robust man-
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ner. By optimally constraining the magnitude and rate of variation of
the reference signals to each lower-level controller, quantitative crite-
ria are provided for selecting the ratio between the sampling rates of
the upper and lower layers of control at each location, in a way that
closed-loop stability is preserved and the fulfilment of the prescribed
constraints is guaranteed. This chapter builds on previous work by
Barcelli et al. (BBR10; BB09) and on the ideas presented in (ABB11).

5.2 Multirate decentralised hierarchical con-
trol

5.2.1 Notation
Let R,Rn,Rn×m,N,N[k1,k2], Sn+, Sn++ denote the sets of real numbers,
the n-dimensional vectors, the n-by-m real matrices, the set of nat-
ural numbers, the natural numbers in the interval [k1, k2], the set of
symmetric positive semi-definite and the set of positive definite n-by-
n matrices respectively. The infinity-norm of x ∈ Rn is defined as
‖x‖∞:= maxi∈N[1,n]

|xi|.
Let A ∈ Rn×m, I ⊆ N[1,n] and J ⊆ N[1,m]; we denote by AIJ ∈

R|I|×|J | the submatrix of A formed by the rows and columns of A
whose indices are in I and J respectively and |I| stands for the cardi-
nality of the set I. For a vector x ∈ Rn, xI denotes the vector of R|I|
formed by the elements of xwhose indices are in I. We denote by (A)i
the i-th row of A, while (x)i denotes the i-th element of x. Finally, we
denote by 1n the n-vector having all entries equal to 1.

5.2.2 Problem formulation
The proposed setting comprises two control layers: the lower con-
trol layer (LCL) and the upper control layer (UCL) which operate at
different sampling frequencies. The lower control layer comprises m
independent controllers whose role is the stabilisation of the open-
loop dynamics of the controlled system without taking into account
the prescribed state and input constraints. The lower layer controllers
operate at a higher sampling frequency, namely 1/TL, and receive
reference signals from corresponding upper layer controllers which
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operate at lower sampling frequencies 1/T
〈i〉
H , i∈N[1,m]. We define

N 〈i〉 := T
〈i〉
H /TL to be the ratio between sampling frequencies of UCL

and LCL which are positive integers refereed to as reference rates. To
simplify the notation, the state variable of the system (involving all
sub-systems) at the LCL sampling instants is denoted by xk for k ∈ N
(referring to all sub-systems) and the state at the UCL sampling in-
stants is denote by xν := xνN for ν ∈ N.

Figure 23: Two-layer (LCL and UCL) decentralised hierarchical
control scheme over a network of interconnected, dynamically
coupled components.

Let xk, uk, yk respectively be the state, the input and the output
of the lower layer process in discrete time and the dynamics of the
system be given by:

xk+1 = Āxk + B̄uk, (5.1a)

yk = C̄xk + D̄uk, (5.1b)

where xk ∈ Rnx , yk ∈ Rnr , uk ∈ Rnu and Ā, B̄, C̄ and D̄ are known
matrices of proper dimensions.

The feedback law defining the LCL is:

uk = Fxk + Erk, (5.2)
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where rk ∈ Rnr stands as a reference signal to be decided by the Up-
per Layer Controller (ULC).

The reference-to-output gain Θ ∈ Rnr×nr of (5.1) under feedback
control law (5.2), is:

Θ := ((C̄ + D̄F )(I − Ā− B̄F )−1B̄ + D̄)E. (5.3)

The closed-loop system (5.1) can be rewritten as

xk+1 = Axk +Brk, (5.4a)

yk = Cxk +Drk, (5.4b)

where A := Ā + B̄F , B := B̄E, C := C̄ + D̄F and D := D̄E. Addi-
tionally, matrix E must be chosen so that (A,B) is a controllable pair.

The sparsity pattern of Ā in (5.1) can be exploited so as to decom-
pose (5.1) into m subsystems which are as decoupled as possible; the
components of the state vector are rearranged so that Ā in the new co-
ordinates is as close as possible to a block-diagonal form. Let I〈i〉x , I〈i〉u
and I〈i〉r (i ∈ N[1,m]) denote the sets of state, input and output indices
that participate in the i-th subsystem and let n〈i〉x , n〈i〉u and n〈i〉r be their
cardinalities respectively. These sets are not assumed to be necessarily
disjoint as some states and input may belong to multiple subsystems.

Assumption 1 The pair (Ā, B̄) is stabilisable and F is an asymptotically
stabilising gain for (Ā, B̄) and E possess the following structure:

Fs,j = 0, ∀s ∈ I〈i〉u , and j /∈ I〈i〉x , ∀i ∈ N[1,m], (5.5)

Es,j = 0, ∀s ∈ I〈i〉u , and j /∈ I〈i〉r .∀i ∈ N[1,m], (5.6)

Under Assumption 1 the LCL can be decomposed into a set of lo-
cal controllers whereby the i-th controller produces the control action

u〈i〉 ∈ Rn
〈i〉
u using state measurements only from the i-th subsystem

according to:
u
〈i〉
k = F 〈i〉x

〈i〉
k + E〈i〉r

〈i〉
k , (5.7)

where F 〈i〉 := FI〈i〉u I
〈i〉
x

and E〈i〉 := FI〈i〉u I
〈i〉
r

and x〈i〉k := xI〈i〉x
, u〈i〉k :=

xI〈i〉u
and r〈i〉k := rI〈i〉r

for i ∈ N[1,m].
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The dynamics of the different subsystems are described by the set
of difference equations:

Σ〈i〉 : x
〈i〉
k+1 = A〈i〉x

〈i〉
k +B〈i〉r

〈i〉
k + d

〈i〉
k , (5.8)

where A〈i〉 := AI〈i〉x I
〈i〉
x

, B〈i〉 := BI〈i〉x I
〈i〉
r

and d
〈i〉
k is a disturbance

term to compensate for the unmodeled dynamics due to neglected
state couplings between the subsystem Σ〈i〉 and its neighbours. The
gains F 〈i〉 are chosen so that the subsystems Σ〈i〉 are open-loop stable
(with rk ≡ 0 and dk ≡ 0).

Assumption 2 In addition to Assumption 1, for every i ∈ N[1,m] the feed-
back gain F 〈i〉 stabilises subsystem Σ〈i〉.

Various methodologies have been proposed for the computation of
such sparse stabilising gains (BBB10; Š91).

Let us define J 〈i〉x :=N[1,nx]\I〈i〉x , and J 〈i〉r :=N[1,nr ]\I〈i〉r . The vec-
tors x̃〈i〉:=xJ 〈i〉x and r̃〈i〉:=rJ 〈i〉r

will be referred to as neglected states

and references. The pair (Ã〈i〉, B̃〈i〉) with Ã〈i〉 := AI〈i〉x J
〈i〉
x

and B̃〈i〉 :=

BI〈i〉x J
〈i〉
r

will be used to describe the effect of the neglected states and

references on the system Σ〈i〉.
Then the UCL comprises m subcontrollers which produce the ref-

erence signals r〈i〉k so as to keep the state x〈i〉 and the reference r〈i〉

inside the polytope:

Z〈i〉:={[ xr ]∈Rn
〈i〉
x +n

〈i〉
r : H〈i〉x x+H〈i〉r r≤K〈i〉}, (5.9)

where H〈i〉x ∈ Rqi×n
〈i〉
x , H〈i〉r ∈ Rqi×n

〈i〉
r , and K〈i〉 ∈ Rqi . The overall

set of constraints is then defined as Z:={[ xr ]∈Rnx+nr : (x〈i〉, r〈i〉) ∈
Z〈i〉,∀i ∈ N[1,m]}.

LetA〈i〉0 ∈Rn
〈i〉
x ×nx be the matrix obtained by collecting the rows of

A with indices in I〈i〉x and setting to zero the elements in the columns

I〈i〉x . Similarly, we construct B〈i〉0 ∈Rn
〈i〉
x ×nr by collecting from B the

rows indexed by I〈i〉x and then zeroing the columns whose index is in
I〈i〉r . Then, it holds that:

x
〈i〉
k+1 = A〈i〉x

〈i〉
k +B〈i〉r

〈i〉
k +A

〈i〉
0 xk +B

〈i〉
0 rk. (5.10)
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Additionally, let us define the set Z := {(x, r) : (x〈i〉, r〈i〉) ∈ Z〈i〉, ∀i ∈
N[1,m]}, which is a polytope and can be written in the form Z =

{(x, r) : Hxx+Hrr ≤ K}. Let the reference vector r〈i〉 be constrained
in the set:

R〈i〉:={r〈i〉∈Rn
〈i〉
r :(H〈i〉x G〈i〉+H〈i〉r )r〈i〉≤K〈i〉−∆K〈i〉},

where G〈i〉 := (I − A〈i〉)−1B〈i〉 is the reference-to-state static gain for
Σ〈i〉 and ∆K〈i〉 ≥ 0. We assume that the reference signals r〈i〉k retain
the tracking error ∆x

〈i〉
k := x

〈i〉
k −G

〈i〉r
〈i〉
k in the set:

E〈i〉 = {∆x〈i〉 ∈ Rn
〈i〉
x : H〈i〉x ∆x〈i〉 ≤ ∆K〈i〉}. (5.11)

Notice that ∆x
〈i〉
k ∈ E

〈i〉 if and only if (x
〈i〉
k , r

〈i〉
k ) ∈ Ẽ〈i〉 where:

Ẽ〈i〉 := {
[
x〈i〉

r〈i〉

]
∈ Rn

〈i〉
x +n

〈i〉
r : x〈i〉 −G〈i〉r〈i〉 ∈ E〈i〉}. (5.12)

If we set z〈i〉 := G〈i〉r〈i〉 = A〈i〉z〈i〉 + B〈i〉r〈i〉, then the dynamics of
Σ〈i〉 can be described in terms of ∆x〈i〉 = x〈i〉 − z〈i〉 as follows:

∆x
〈i〉
k+1 = A〈i〉∆x

〈i〉
k + d

〈i〉
k , (5.13)

where, under the assumptions that (x
〈i〉
k , r

〈i〉
k ) ∈ Z〈i〉 and ∆x

〈i〉
k ∈ E

〈i〉

for all k ∈ N and i ∈ N[1,m], the disturbance d〈i〉k is drawn from the
polytope:

D〈i〉=

{
d〈i〉∈Rn

〈i〉
x

∣∣∣∣∣ ∃r ∈ Rnr , ∃x ∈ Rnx , s.t.:d〈i〉 = A
〈i〉
0 x+B

〈i〉
0 r,

and ∀j ∈ N[1,m] : (x〈j〉, r〈j〉) ∈ Z〈j〉 ∩ Ẽ〈j〉

}
.

(5.14)

The size of this polytope determines how strongly the i-th subsystem
is dynamically coupled with its neighbours.

Let Ω〈i〉(0) be the maximal robustly positive invariant set for (5.13)
under the constraints ∆x〈i〉 ∈ E〈i〉 and for d〈i〉k ∈ D

〈i〉 for all k ∈ N. Let

Ω〈i〉(0) have the minimal representation Ω〈i〉(0)={x∈Rn
〈i〉
x :H

〈i〉
0 x≤K〈i〉0 },

counting n〈i〉0 inequalities. Under Assumption 2 this set exists and is a
finitely generated polytope.
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The complexity of the computation of a maximal RPI set for the
overall large-scale system can prove preventive even for offline com-
putations. Note, however, that the computation of the maximal RPI
sets is done in a decentralised fashion. For r ∈ R〈i〉 we define the sets

Ω〈i〉(r) := {x ∈ Rn
〈i〉
x : x−G〈i〉r ∈ Ω〈i〉(0)}. (5.15)

Lemma 1 For all i ∈ N[1,m] let x〈i〉0 ∈ Ω〈i〉(r〈i〉) and assume that r〈i〉k =

r〈i〉 ∈ R〈i〉 for all k ∈ N. Then (x
〈i〉
k , r

〈i〉
k ) ∈ Z〈i〉 for all k ∈ N and

i ∈ N[1,m].

Proof. Since x〈i〉0 ∈ Ω〈i〉(r〈i〉) for all i ∈ N[1,m] it is ∆x
〈i〉
k ∈ E

〈i〉 for all
k ∈ N, or what is the same:

H〈i〉x ∆x
〈i〉
k ≤ ∆K〈i〉

⇔H〈i〉x x
〈i〉
k −H

〈i〉
x G〈i〉r〈i〉 ≤ ∆

But because r〈i〉 ∈ R〈i〉 one has that ∆K〈i〉 ≤ K〈i〉 − H〈i〉x G〈i〉r〈i〉 −
H
〈i〉
r r〈i〉, therefore H〈i〉x G〈i〉r〈i〉 ≤ ∆K〈i〉 ≤ K〈i〉 −H〈i〉x G〈i〉r〈i〉 −H〈i〉r

r〈i〉 which proves the assertion. �

5.2.3 Computation of maximum reference varia-
tions

Assume that a set of fixed reference rates N 〈i〉 for i ∈ N[1,m] is given.
In this section we will compute upper bounds on the element-wise
variations of the reference rates r〈i〉 so that (x

〈i〉
k , r

〈i〉
k ) satisfies the pre-

scribed constraints (5.9). For every subsystem i ∈ N[1,m] we formulate
the problem of determining the minimum element-wise change in the
reference signal that may lead the initial state x〈i〉νN outside Ω〈i〉(r〈i〉,ν);
the problem is stated as follows:

P〈i〉N : ρ〈i〉(N) := min
r1,r2,x0,d0,...,dN−1

‖r1 − r2‖∞ (5.16a)
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subject to:

r1, r2 ∈ R〈i〉, (5.16b)

x0 ∈ Ω〈i〉(r1), (5.16c)

d
〈i〉
j ∈ D

〈i〉, ∀j ∈ N[0,N−1], (5.16d)

(A〈i〉)Nx0+Γ
〈i〉
N r2+

N−1∑
j=0

(A〈i〉)N−j−1d
〈i〉
j /∈Ω〈i〉(r2), (5.16e)

where Γ
〈i〉
N :=

∑N−1
j=0 (A〈i〉)jB〈i〉. The above optimisation problem can

be formulated as a MILP.
The value function of (5.16a) enjoys a very useful property: it is

non-decreasing with respect to N . If PN is infeasible for some N , this
implies that for all rν−1, rν ∈ R it is xν+1 ∈ Ω(rν) whenever xν ∈
Ω(rν−1). In this case we set ρ(N) =∞.

Theorem 1 Let F be a (decentralised) asymptotically stabilising gain satis-
fying Assumption 2. Assume that for every subsystem i ∈ N[1,m] there is a
σ〈i〉 > 0 so that the references r〈i〉,ν produced by the upper-layer controllers
satisfy the following rate constraint at all time instants ν ∈ N:

‖r〈i〉,ν − r〈i〉,ν−1‖∞ ≤ ρ〈i〉(N 〈i〉)− σ〈i〉, (5.17a)

r〈i〉,ν−1, r〈i〉,ν ∈ R〈i〉. (5.17b)

Let x〈i〉0 ∈ Ω〈i〉(r−1,〈i〉) for all i ∈ N[1,m]. Then the linear system (5.1) with
the feedback control law (5.2) satisfies the the constraints [ xkrk ] ∈ Z for all
k ∈ N. Additionally, if limk→∞ rk = r with r ∈ R, then limk→∞ xk =
Gr.

Proof. If x〈i〉0 ∈ Ω〈i〉(r−1,〈i〉) for all i ∈ N[1,m], then by equations 5.17
and Lemma 1 it follows that (x

〈i〉
k , r

〈i〉
k ) ∈ Z〈i〉 for all k ∈ N. Let

ζk := xk−Grk and vk := rk−r, so the dynamics of the overall system
can be rewritten as ζk+1 = Aζk +Bvk. Based on above decomposition
the subsystem i can be represented as

Σ〈i〉 : ζ
〈i〉
k+1 = A〈i〉ζ

〈i〉
k +B〈i〉r

〈i〉
k + d

〈i〉
k . (5.18)

For ith subsystem, A〈i〉 is a stable matrix under assumption 2 and
whenever D = {0}, the system (5.18) is input-to-state stable (JW01),
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from which it follows that limk→∞ ζk = 0 (equivalently limk→∞ xk =
Gr), therefore limk→∞ yk = Θr. �

The UCL control action can be computed by a model predictive
control strategy where any optimality criterion can be used so long as
the constraints (5.17) are satisfied.

The next result, Theorem 2, states that for every system i there is
a rate N 〈i〉? for which ρ〈i〉(N?) is equal to infinity, that is, if the up-
per control layer is slow enough — so that the lower control layer has
enough time to steer the system state very closed to the previously
assigned set-point — then there is no need to impose constraints on
∆r〈i〉. Note that we require that “the sampling time of the lower con-
trol layer is fixed”, so as N 〈i〉 increases the UCL becomes slower.

Theorem 2 Assume that Assumption 2 is satisfied andR〈i〉 is a nonempty
compact set. Assume further that the sampling time of the lower control layer
is fixed. If Ω(0)〈i〉 is of full affine dimension, then there exists a N 〈i〉? ∈ N so
that ρ〈i〉(N 〈i〉? ) =∞.

Proof. We assume that D〈i〉 = {0} and fix an i ∈ N[1,m]. Since Ω〈i〉(0)
has full affine dimension and contains the origin in its interior, there
is an ε > 0 so that εB∞ Ω〈i〉(0). The compactness orR〈i〉 implies that
there is a δ > 0 so that R〈i〉 ⊆ δB∞. Since A〈i〉 is strictly Schur, the
limit limN→∞ Γ

〈i〉
N exists and is equal to G〈i〉.

This implies that there is a N 〈i〉1 ∈ N so that for all N ≥ N
〈i〉
1 it

is ‖Γ〈i〉N − G
〈i〉‖∞ ≤ ε

2
δ. For z ∈ R〈i〉 we have ‖(Γ〈i〉N − G

〈i〉)z‖∞ ≤
‖Γ〈i〉N −G

〈i〉‖∞ · ‖z‖ ≤ ε
2

, or what is the same Γ
〈i〉
N z ∈ G〈i〉z⊕ ε

2
B∞ for

all z ∈ R〈i〉. We can hence infer that1

Again because of Assumption 2 and because of the compactness
of R〈i〉, there exists a N 〈i〉2 ∈ N, N 〈i〉2 ≥ N

〈i〉
1 so that for all N ≥ N

〈i〉
2

it is (A〈i〉)Nx0 ∈ (ε/2)B∞ for all x0 ∈ R. Because of (5.16e), for P〈i〉N
to be infeasible for some N it is necessary and sufficient that for all

1We make use of the notation Γ
〈i〉
N R

〈i〉 := {Γ〈i〉N r; r ∈ R〈i〉}, Ω〈i〉(R〈i〉) :=

{Ω〈i〉(r); r ∈ R〈i〉} and δB∞ := {δz : z ∈ B∞} = {z : ‖z‖∞ ≤ δ}.

Γ
〈i〉
N R

〈i〉 ⊆ G〈i〉R〈i〉 ⊕ ε
2
B∞. (5.19)
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r1, r2 ∈ R〈i〉 and x0 ∈ Ω〈i〉(r1) it is (A〈i〉)Nx0 + Γ
〈i〉
N r1 ∈ Ω〈i〉(r2),

which can be equivalently writen as:

Γ
〈i〉
N R

〈i〉 ⊆ Ω〈i〉(R〈i〉)	 (A〈i〉)NR〈i〉. (5.20)

For N ≥ N
〈i〉
? := max{N 〈i〉1 , N

〈i〉
2 } and in light of (5.19) this inclu-

sion is satisfied if G〈i〉R〈i〉 ⊕ (ε/2)B∞ ⊆ Ω〈i〉(R〈i〉) 	 (ε/2)B∞ from
which we have that:

G〈i〉R〈i〉 ⊆ Ω〈i〉(R〈i〉)	 εB∞, (5.21)

but by definition — see (5.15) — Ω〈i〉(r) = {G〈i〉r} ⊕ Ω〈i〉(0), thus
Ω〈i〉(R〈i〉) = G〈i〉R〈i〉 ⊕ Ω〈i〉(0) and a condition for infeasibility is:

G〈i〉R〈i〉 ⊆ G〈i〉R〈i〉 ⊕
(

Ω〈i〉(0)	 εB∞
)
, (5.22)

which is true since Ω〈i〉(0)	 εB∞ is nonempty. �

5.3 Simulations - Control of a system of
interconnected Tanks

5.3.1 System dynamics and decomposition

The proposed methodology is tested on Johansson’s quadruple-tank
process (Joh00) where the control objective is to track given (possibly
time-varying, piece-wise constant) references s1 and s2 for the levels
of tanks 1 and 2, namely h1 and h2, as in Fig. 24 by manipulating the
inflows qa and qb. Constraints are imposed on the maximum flow that
can be achieved by each pump and on the upper and lower allowed
levels of water in the tanks.

The system is subject to state and input constraints and its dynam-
ics is described in (ALdlP+11) by the system of continuous-time non-
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Figure 24: Johansson’s quadruple-tank process where the two
sub-systems are denoted with different colours.

linear equations

S1
dh1

dt
= −a1

√
2gh1 + a3

√
2gh3 + γaqa, (5.23a)

S2
dh2

dt
= −a2

√
2gh2 + a4

√
2gh4 + γbqb, (5.23b)

S3
dh3

dt
= −a3

√
2gh3 + (1− γb)qb, (5.23c)

S3
dh4

dt
= −a4

√
2gh4 + (1− γa)qa. (5.23d)

The maximum allowed level for tanks 1 and 2 is set to 1.36 m and
for tanks 3 and 4 to 1.30 m. The minimum allowed level in all tanks
is 0.2 m. The maximum flows are qa,max = 3.26 m3/h and qb,max =
4 m3/h; no negative flows are possible. The values of the other pa-
rameters of the system are a1 = 1.31 · 10−4 m2, a2 = 1.51 · 10−4 m2,
a3 = 9.27 · 10−5 m2, a4 = 8.82 · 10−5 m2, S1 = S2 = 0.06 m2,
S3 = S4 = 0.20 m2, and γa = γb = 0.5. The nonlinear system
is linearised about the steady state u0 = (2.6, 2.6)′ m3/h and x0 =
(0.6545, 0.4926, 0.7852, 0.8583)′ m and discretised with sampling pe-
riod Ts = 10s.

We define the discrete-time state vector xk = (h1,k, h2,k, h3,k, h4,k)′
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which comprises the levels of the four tanks, the discrete-time input
vector uk = (qa,k, qb,k)′ of manipulated variables which are the two
flows, and the discrete output yk = xk. The linearised discrete-time
system is written in the form of (5.1).

5.3.2 Control of Johansson’s system
We consider that the lower control layer operates at sampling time
Ts = 10s. The overall system is partitioned into two subsystems with
I〈1〉x = {1, 4}, I〈2〉x = {2, 3} and I〈1〉u = {1}, I〈2〉u = {2}. The system is
controlled by means of the proposed decentralised hierarchical control
methodology which is compared to its centralised hierarchical variant.
Reference commands from the upper layer controller are computed so
that they minimise a quadratic cost function. In particular, the UCL for
subsystem 1 solves the following minimisation problem at the UCL
sampling time instant ν:

J〈1〉?(xν) = min
{rν+j1 }N−1

j=0

N−1∑
k=0

(hν+k
1 −s1)2 + λ(rν+k

a −rsa)2, (5.24)

subject to the (linearised) system dynamics, measurements from the
system, the requirement rν+k ∈ R for all k = 0, . . . , N − 1, and the
bounds on the maximum reference variation that accrue from Theo-
rem 1. In what follows, the weight λ is fixed to 0.01. Then, the solution
of problem 5.24 yields an optimal sequence of references {rν+k,?

1 }N−1
k=0 ,

the first one of which – namely rν,?1 is applied to the corresponding
controlled LCL system in a receding horizon fashion. The UCL con-
troller for sub-system 2 works in an analogous fashion where the min-
imisation problem becomes

J〈2〉?(xν) = min
{rν+j2 }N−1

j=0

N−1∑
k=0

(hν+k
2 −s2)2 + λ(rν+k

b −rsb)2,

subject to the corresponding constraints. According to Theorem 1 the
closed-loop system will satisfy the prescribed constraints.

For the decentralised control case, the dependence of the maxi-
mum reference change ρ〈i〉 on N is presented in Figure 25. The ref-
erence rate N = 40 was selected for which ρ〈1〉(N) = 0.0034 and
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Figure 25: The functions ρ〈i〉(N) and q〈i〉(N) := ρ〈i〉(N)/N .

ρ〈2〉(N) = 0.0063 for the decentralised control system and ρ(N) =
0.0035 for the centralised control approach. The maximum reference
variation ρ〈i〉(N) for the two subsystems is presented in Figure 25.
Notice that for N ≥ N? = 42, it is ρ〈2〉(N) =∞.

The controlled trajectories of the tank levels are presented in Fig-
ures 26 to 28. The tank levels h1 and h2 are steered towards four dif-
ferent set-points and the set-point values are kept constant for 5.55h.
In order to quantify the performance of the three controllers, we use
the following index introduced by Alvarado et al. (ALdlP+11) for the
same system:

J =

Ns−1∑
k=0

(h1,k−s1,k)2+(h2,k−s2,k)2 + κ((qa,k−qsa,k)2 + (qb,k−qsb,k)2),

(5.25)

where κ = 0.01 and qsa,k and qsb,k are the steady-state values of the
input variables that correspond to the set-point defined by s1 and s2,
and Ns = 8000 (22h) is the simulation horizon. The values of the
performance index J are presented in Table 4.

The maximal robust positive invariant sets Ω〈i〉(0), i ∈ {1, 2} for
the decentralised control case were computed offline in 1.97s and 2.19s
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Figure 26: The level in tank 1 and 2: Comparison between cen-
tralised hierarchical MPC (CHMPC, green) and decentralised hi-
erarchical MPC (DHMPC, blue). The dashed red line represents
the set-point s1. The inset shows the convergence of the tank
level to the desired set-point in the interval 11 to 12.2h.

Controller τs,1 (h) τs,2 (h) J
DHMPC 0.1674 0.1500 0.1495
CHMPC 0.1146 0.1458 0.1516

Table 4: Performance of a decentralised and a centralised con-
troller for Johansson’s system.

and their minimal representations involved 5 and 4 inequalities re-
spectively. The maximal positive invariant set Ω(0) for the centralised
control system was computed in 0.60s and its minimal representation
comprised 12 linear inequalities. The associated MILPs P〈i〉N as in (5.16)
were solved offline in 2.12s for subsystem 1 and 2.27s for subsystem
2 on average. The corresponding centralised computation required
6.33s on average. All reported computation times were measured in
MATLAB 2013a running on a Mac OS X machine, 2.66GHz Intel Core
2 Duo, 4GB RAM.
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Figure 27: The level in tank 2 and comparison between CHMPC,
DHMPC and offset-free MPC operating at the LCL sampling fre-
quency.

5.4 Conclusions
We developed a methodology for the decentralised hierarchical multi-
rate control of constrained linear systems with additive uncertainties
and quantified the effect of the sampling times on the responsiveness
of the closed-loop while prescribing sufficient conditions for robust
stability of the controlled system. The applicability of the proposed
method is demonstrated on the Johansson’s system. For future work,
we would like to extend this to complete drinking water network.
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Figure 28: The level in tanks 3 and 4: Closed-loop trajectories for
CHMPC (green), and DHMPC (blue).
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Chapter 6

Proximal quasi-Newton
methods for
scenario-based
stochastic optimal
control

In Chapters 3 and 4 we have shown that the structure of the stocha-
stic optimal control problems can be exploited by first-order methods
leading to an efficient parallelisable solution method. In this chapter,
we use the forward-backward envelope — a real-valued, continuously
differentiable penalty function which shares the same minimisers with
the original optimisation problem and allows us to recast the origi-
nal nonsmooth problem as an unconstrained problem which we solve
with a limited-memory BFGS algorithm.
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6.1 Introduction

6.1.1 Motivation and background
Scenario-based stochastic model predictive control is becoming increas-
ingly popular in control applications for its ability to deliver control
actions with foresight under uncertainty and has been used for the
control of power dispatch (HSB+15; PTB11), heating, ventilation and
air-conditioning (HVAC) of buildings (ZSSM13), macroeconomic sys-
tems (PSSB14), supply chains (SM16) and many another. The optimi-
sation problems associated with such problems are typically of rather
large dimension (involving millions of decision variables), but they
possess a rich structure which gradient-based methods have been shown
to be able to exploit in previous Chapters (see Chap. 3 and 4). Such
methods converge at a rate of O(1/k) and O(1/k2) using Nesterov’s
extrapolation technique (Nes83). Nevertheless, first-order methods
are sensitive to ill-conditioning which may not always be possible to
mitigate by preconditioning.

A straightforward approach to improve the convergence proper-
ties of first-order methods is to introduce second-order information.
However, this is not available in many cases of interest, or, it is very
hard to compute. In such cases, quasi-Newton algorithms (NW06)
produce successive approximations of the Hessian by measuring the
change of gradient and update a Hessian estimate using the present
gradient and the previous Hessian estimate. This algorithms generate
a sequence iterates which converges Q-superlinearly to the optimal
solution. The simplest quasi-Newton method is symmetric rank-one
(SR1) (CGT91) where it makes a symmetric rank-one change to Hes-
sian at each iterate. This method is computationally simpler but the
update does not preserve the positive definiteness of the Hessian even
though the initial Hessian is positive definite and sometimes can lead
to numerical errors (division by zero).

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method (Bro70) is
another algorithm belonging to the class of quasi-Newton algorithms
which updates the Hessian by performing a rank-2 update at each it-
erate. This method always guarantee positive definiteness of the Hes-
sian and doesn’t have any numerical issues. But this could be severe
limitation as one needs to store and update a very large dense matrix;
it is thus unsuitable for large-scale optimisation.
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The limited-memory BFGS (L-BFGS) method (LN89) has been suc-
cessfully used in optimisation problems where computing Hessian
approximations are expensive and has also been applied for solving
huge-scale problems (CWZ14; LNC+11). This method modifies the
computation of the Hessian from most recent iterates; Curvature in-
formation from earlier iterations, which is less likely to be relevant
to the actual behaviour of the Hessian at the current iteration, is dis-
carded in the interests of saving storage. It implicitly updates a di-
agonal approximation of the Hessian using a computationally cheap
algorithm known as the two-loop recursion (NW06). Despite its popu-
larity it comes with two limitations which have hindered its use for
the solution of optimal control problems. First, it can only be applied
to unconstrained optimal control problems or problems with only box
constraints on the input variables (BLNZ95) and second, it cannot be
applied to nonsmooth problems (LMO08).

Becker et al. (BF12) approximated the smooth function f in the
proximal-gradient algorithm by means of the Q-norm, where Q is the
Hessian approximation that is calculated using quasi-Newton update.
Now the proximal step becomes proxQg which is computationally de-
manding unless we restrict the structure of the Q to, say, diagonal ma-
trices. These limitations are lifted using the forward-backward envelope
(FBE) of the original optimisation problem which allows us to refor-
mulate it as an unconstrained problem of a continuously differentiable
function (PSB14; STP16).

We previously showed that stochastic optimal control problems
possess a certain structure which can be exploited for their efficient
numerical solution using an accelerated proximal gradient algorithm
in Chapter 3. In this chapter, we propose a quasi-Newtonian algo-
rithm combining the limited-memory BFGS method with the forward-
backward envelope function to achieve faster convergence while re-
taining the separability and parallelisability characteristics of the prob-
lem.

6.1.2 Outline

In Section 6.2 we introduce the stochastic optimal control problem and
the corresponding scenario-based formulation. Section 6.3 defines the
forward-back envelope function for the corresponding optimisation
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problem of scenario MPC. This function is smooth, continuously dif-
ferentiable real-valued which can be solved with the L-BFGS method.
We demonstrate that the computation of the gradient of the FBE can be
performed in parallel exploiting the structure of the problem. Finally
in Section 6.4 we compare the convergence of the L-BFGS algorithm
and the accelerated proximal gradient algorithm.

6.1.3 Notation

Let R, N, Rn, Rm×n, Sn+, Sn++ denote the sets of real numbers, nonneg-
ative integers, column real vectors of length n, real matrices of dimen-
sions m-by-n, symmetric positive semidefinite and positive definite
n-by-n matrices respectively. Let R = R ∪ {±∞} denote the set of
extended-real numbers. The transpose of a matrixA is denoted byA>

and 〈x, y〉 stands for the standard inner product of x and y. The set
of of nonnegative integers {k1, k1 + 1, . . . , k2}, k2 ≥ k1 is denoted by
N[k1,k2].

The indicator function of a set C ⊆ Rn is the extended-real valued
function δ(·|C) : Rn → R and for x ∈ C it is δ(x|C) = 0 and δ(x|C) =
+∞ otherwise. A function f : Rn → R is called lower semi-continuous
or closed if for every x ∈ Rn, f(x) = lim infz→x f(z). A f : Rn → R
is called proper if there is a x ∈ Rn so that f(x) < ∞ and f(x) > −∞
for all x ∈ Rn. For a closed convex function f : Rn → R, we define its
conjugate as f∗(x∗) = supx{〈x, x∗〉 − f(x)}. A F : Rn → Rm is called
β-Lipschitz continuous, with β ≥ 0, if ‖F (x1)− F (x2)‖∗ ≤ β‖x1 − x2‖
for every x1, x2 ∈ Rn. We call f σ-strongly convex if f(x)− σ

2
‖x‖22 is a

convex function. Unless otherwise stated ‖ · ‖ stands for ‖ · ‖2.
Every nonempty closed convex set C ⊆ Rn defines the convex

function proj(x|C) = argminc∈C ‖x − c‖2, which is called the (Eu-
clidean) projection of x onto C. The Euclidean distance of a x ∈ Rn
from C is defined as d(x|C) = minc∈C ‖x− c‖2.

6.2 Problem statement

In this section, we just recap the stochastic optimal control problem
and the reduced scenario tree based MPC from Chapter 3.
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6.2.1 Stochastic optimal control
We first provide a formal statement of general stochastic optimal con-
trol problems for linear dynamical systems. Let (Ω,F,P) be a proba-
bility space and {∅,Ω} = F0 ⊆ F1 ⊆ . . . ⊆ FN−1 = F be a nested
sequence of σ-algebras known as a filtration (SDR09). We shall use the
notation v C Fk to denote that v : Ω → R is a Fk-measurable random
variable. Consider the stochastic discrete-time linear system

xk+1 = Aξkxk +Bξkuk + wξk , (6.1)

where ξk C Fk, uk C Fk−1 and with known initial condition x0 = p.
This practically means that uk is a causal control law, i.e., it is a function
uk = ψk(p, ξ0, . . . , ξk−1) for k ∈ N[1,N−1] and u0 = ψ0(x0)1.

A stochastic optimal control problem for (6.1) with horizon N and
decision variable π = {uk}k∈N[0,N−1]

can be formulated as

V ?(p) = min
π
E

[
Vf (xN , ξN )+

N−1∑
k=0

`(xk, uk, ξk)

]
, (6.2)

subject to (6.1) and the condition x0 = p and E is the expectation
operator of the product probability space of the filtered probability
space (Ω,F, {Fk}k,P). In (6.2) functions `(·) and Vf are extended real
valued functions which, as we are about to discuss, can be used to en-
code hard and/or soft constraints, so this formulation is quite general.

We assume that in (6.2) the cost function ` is written as `(x, u, ξ) =
φ(x, u, ξ) + φ̄(Fξx+Gξu, ξ), where φ is real-valued, smooth in (x, u),
and strongly convex over the affine space that defines the system dy-
namics, while φ̄ is an extended real valued function, lower semicon-
tinuous, proper, convex and possibly nonsmooth. Likewise, Vf can be
decomposed as Vf (x, ξ) = φN (x, ξ) + φ̄N (FN,ξx, ξ).

Function φ̄ can be chosen to be any nonsmooth function as dictated
by the problem it need to solve. The function φ̄ is used to encode
arbitrary hard constraints on states and inputs of the form Fξkxk +
Gξkuk ∈ Yξk by choosing

φ̄(·, ξk) = δ(·|Yξk ), (6.3)

1In some applications we may assume that uk C Fk , i.e., uk is decided as a
function of p and all ξ0, . . . , ξk .
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where Yξk are non-empty convex closed sets for which projections
proj(·|Yξk ) can be easily computed. Soft constraints can be encoded
by choosing

φ̄(·, ξk) = ηξkd(·|Yξk ), (6.4)

where ηξk > 0 is a scaling factor, while one may also choose

φ̄(·, ξk) = ‖ · ‖1 (6.5)

to force the optimiser to be sparse.
The smooth part of the stage cost ` is a quadratic function of the

form φ(xk, uk, ξk) = x′kQξkxk + u′kRξkuk, where Rξk ∈ Snu++ and
QξkS

nx
+ . The smooth part of the terminal cost function Vf is a quadratic

function φN (xN , ξN ) = x′NPξNxN , with PξN ∈ S
nx
++. The function φ̄N

can be selected in the same way as explained for φ̄, e.g., terminal con-
straints of the form FN,ξxN ∈ Xf can be encoded using φ̄N (·, ξ) =
δ(·|Xf ), where Xf is assumed to be such that proj(·|Xf ) can be easily
evaluated computationally.

6.2.2 Scenario-based formulation
The scenario-based formulation of (6.2) accrues from the assumption
that FN−1 is finite and produces the scenario tree structure shown in
Fig. 29. A scenario tree describes the probable evolution of the state
sequence {xk}k∈N[0,N]

. The elementary events {ξiN−1}i∈N[1,µ]
identify

a set of final outcomes which correspond to the leaf nodes of the scenario
tree. In turn, each leaf node identifies a single scenario, i.e., a sequence
of realisations of the random process {ξk}k∈N[0,N−1]

. The tree is parti-
tioned inN stages. The observable scenarios at stage k are the nodes of
the tree at that stage; the number of nodes at stage k is denoted by µk.
The probability that at stage k, the scenario ξiN−1 happens is denoted
by pik.

As shown in Figure 29, at stage k ∈ N[0,N−1] the i-th node defines a
set of children nodes at stage k + 1 denoted by child(k, i) ⊆ N[1,muk+1].
Every node at stage k ∈ N[1,N ] has a unique ancestor node at stage
k − 1 denoted by anc(k, i) ∈ N[1,µk−1].

The system dynamics along scenarios can be written as

xjk+1 = Ajkx
i
k +Bjku

i
k + wjk, (6.6)
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Figure 29: Scenario tree structure describing the evolution of the
state.

with i = anc(k + 1, j), where Ajk = A
ξ
j
k

, Bjk = B
ξ
j
k

and wjk = w
ξ
j
k

.

Let x be a vector comprising all xik and uik and let us define the
dynamic asX (p) = {x|xjk+1 = Ajkx

i
k+Bjku

i
k+wjk+1, ∀k ∈ N[0,N−1], i ∈

N[1,µ(k)], j ∈ child(i, k)} be the linear space of all x satisfying for x0 =
p. Define

f(x) =

N−1∑
k=0

µk∑
i=1

pikφ(xik, u
i
k, i)+

µN∑
i=1

piN−1φN (xiN , i)+δ(x|X (p)),

g(Hx) =

N−1∑
k=0

µk∑
i=1

pikφ̄
i
k(F ikx

i
k +Giku

i
k, i)+

µN∑
i=1

piN−1φ̄
i
N (F iNx

i
N , i).

Then the problem (6.2) can be written as

P ? = min
x
f(x) + g(Hx), (6.8)

where H is a linear operator with z = Hx with zik = F ikx
i
k +Giku

i
k for

k ∈ N[0,N−1], i ∈ N[0,µk] and ziN = F iNx
i
N . The Fenchel dual of (6.8) is

D? = min
y
f∗(−H ′y) + g∗(y). (6.9)
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Under the prescribed assumptions, strong duality holds, i.e., P ? =
D? and f∗ is differentiable withL-Lipschitz gradient because of (RW09,
Prop. 12.60).

For notational convenience we define f◦(y) := f∗(−H>y), thus
∇f◦(y) = −H∇f∗(−H>y).

6.3 Optimisation algorithm
In this section, we define the Forward-Backward Envelope (FBE) func-
tion and its relationship with forward-backward algorithm.

6.3.1 Forward-backward envelope (FBE) function
The proximal operator of a proper, closed, convex function g play a
major role in modern optimisation theory and is defined as

proxλg(v) = argmin
z
{g(z) + 1

2λ
‖v − z‖2}. (6.10)

The corresponding value function is the Moreau envelope of g, that is

gλ(v) = min
z
{f(z) + 1

2λ
‖v − z‖2}. (6.11)

Let us denote the function to be minimised in (6.9) as ϕ(y) =
f∗(−H ′y) + g∗(y). Now the proximal gradient algorithm also know
as forward-backward splitting algorithm to solve (6.9) iteratively as:

yν+1 = proxλg∗(y
ν − λ∇f◦(y)), (6.12a)

for λ ∈ (0, 2/L) with L the Lipschitz of f∗. This iterate is equivalent
to minimising:

yν+1 = argmin
u∈Rn

{f◦(yν)+〈yν − u,∇f◦(yν)〉+g∗(yν) + 1
2λ
‖yν − u‖2}

(6.12b)

The optimality condition is

y − proxλg∗(y − λ∇f◦(y)) = 0, (6.13)
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By virtue of the Moreau decomposition formula, (6.13) is equiva-
lently written as

∇f◦(y) + proxλ−1g(λ
−1y −∇f0(y)) = 0. (6.14)

We define the forward-backward mapping

Tλ(y) := proxλg∗(y − λ∇f◦(y)), (6.15)

which using the Moreau decomposition property becomes

Tλ(y) = y − λ∇f◦(y)− λproxλ−1g(λ
−1y−∇f◦(y)), (6.16)

and the fixed point residual mapping

Rλ(y) := λ−1(y − Tλ(y)). (6.17)

The forward-backward envelope (FBE) of (6.2) is a real-valued func-
tion ϕλ given by (STP16; PB13)

ϕλ(y) = f◦(y) + g∗(Tλ(y))− λ 〈∇f◦(y), Rλ(y)〉+ λ
2
‖Rλ(y)‖2,

(6.18a)

This is the value function of the forward-backward algorithm (6.12b)

ϕλ(y) = min
u∈Rn

{f◦(y)+〈y − u,∇f◦(y)〉+g∗(y) + 1
2λ
‖y − u‖2} (6.18b)

This function ϕλ is always real-valued function irrespective of original
function ϕ.

Assuming that f◦ is twice continuously differentiable we have ϕλ
as continuously differentiable with Lipschitz-continuous gradient given
by

∇ϕλ(y) = (I − λ∇2f◦(y))Rλ(y). (6.19a)

By rearranging these terms we get

Tλ(y) = y + λ(I − λ∇2f◦(y)−1∇ϕλ(y), (6.19b)

For λ ∈ (0, 1/L), the matrix (I−λ∇2f◦(y) will be positive definite
symmetric matrix and we can notice that the proximal-gradient iterate
to minimise ϕ is equivalent to variable-metric iterate on ϕλ. The set

139



of minimizers of (6.2) coincides with argminϕλ ≡ zer∇ϕλ := {y :
∇ϕλ(y) = 0}, although ϕλ is not always convex. However, if f◦ is
convex quadratic, then ϕλ is also convex.

We should highlight here that the value and gradient of the FBE
are computed at the computational cost of a forward-backward step.
Moreover, for the evaluation of ∇ϕλ(y) it suffices to have a way to
compute products ∇2f∗(y) · d. In case a closed-form formula is not
available, such products can be evaluated by some numerical approx-
imation method.

6.3.2 Computation of the dual gradient

The efficient computation of the the dual gradient is of crucial impor-
tance for the performance of the algorithm we are about to describe.
By virtue of the conjugate-subgradient theorem (Roc72, Thm. 23.5), it is

∇f∗(−H>y) = argmin
z
{
〈
z,H>y

〉
+ f(z)}. (6.20)

This equality-constrained optimisation problem can be solved by
dynamic programming when φk using the following algorithm (SSBP15),
where Φik, Θi

k, Di
k, Λik, Ki

k and σik, cik are computed once offline fol-
lowing Algorithm 4.

6.3.3 Computation of the dual Hessian

The computation of ∇ϕλ(y) requires the computation of products of
the form Hf (d) := ∇2f◦ · d. Notice that to a great extent the compu-
tations in Alg. 9 can be parallelised. The dual Hessian is then used for
the computation of∇ϕλ.

6.3.4 Computation of∇ϕλ
The gradient of the FBE∇ϕλ(y) is computed as

∇ϕλ(y) = λ−1t(y)−Hf (t(y)), (6.21)
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Algorithm 8 Dual gradient computation

qiN ← yiN ,∀i ∈ N[1,µ(N)], %Backward substitution
for k = N − 1, . . . , 0 do

for i ∈ µ(k) do {in parallel}
uik ← Φiky

i
k +

∑
j∈child(k,i) Θj

kq
j
k+1 + σik

qik ← Di′
k y

i
k +

∑
j∈child(k,i) Λj′k q

j
k+1 + cik

end for
end for
x1

0 = p, %Forward substitution
for k = 0, . . . , N − 1 do

for i ∈ µ(k) do {in parallel}
uik ← Ki

kx
i
k + uik

for j ∈ child(k, i) do {in parallel}
xjk+1 ← Ajkx

i
k +Bjku

i
k + wjk

end for
end for

end for

whereHf (t(y)) is the dual Hessian along the direction t(y) (see Alg. 9,
Sec. 6.3.3), and t(y) is given by

x(y) = argmin
z
{
〈
z,H>y

〉
+ f(z)}, (6.22a)

z(y) = proxλ−1g{λ
−1y +Hx(y)}, (6.22b)

t(y) = z(y)−Hx(y), (6.22c)

where x(y) = ∇f∗(−H>y) is computed as explained in Section 6.3.2
and z(y) is a prox-step which typically consists in simple element-wise
operations which can be fully parallelised.

6.3.5 L-BFGS method

L-BFGS – limited memory BFGS method – is a computationally less
intensive quasi-Newton method suitable for large-scale optimisation
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Algorithm 9 Computation of Hessian-vector products
Require: Vector d
q̂iN ← diN ,∀i ∈ N[1,µN ]

for k = N − 1, . . . , 0 do
for i = 1, . . . , µk do {in parallel}
ûik ← Φikd

i
k +

∑
j∈child(k,i) Θj

kq̂
j
k+1

q̂ik ← Di>
k dik +

∑
j∈child(k,i) Λj>k q̂jk+1

end for
end for
x̂1

0 = 0
for k = 0, . . . , N − 1 do

for i = 1, . . . , µk do {in parallel}
uik ← Ki

kx̂
i
k + ûik

for j ∈ child(k, i) do {in parallel}
x̂jk+1 ← Ajkx̂

i
k +Bjkû

i
k

end for
end for

end for

problems. The iterate with BFGS-method is:

xν+1 = xν + τBν∇f(xν),

where Bν is the approximate of the inverse Hessian, τ is the step-size
and ∇f(xν) is the gradient. The inverse Hessian Bν is updated is
given as:

Bν = (I − ρν−1yν−1s
′
ν−1)′Bν−1(I − ρν−1yν−1s

′
ν−1)

+ ρν−1sν−1s
′
ν−1 (6.23a)

where

ρν−1 =
1

y′ν−1sν−1
, (6.23b)

yν−1 = ∇f(xν)−∇f(xν−1), (6.23c)

sν−1 = xν − xν−1 (6.23d)
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It can be observed that the inverse Hessian approximation Bν−1 is
a dense matrix and storing and updating is quadratic complexity in
both computational and memory requirement. Instead L-BFGS me-
thod stores information from the past m iterations and uses only this
information to implicitly do operations requiring the inverse Hessian
– in particular computing the next search direction, Bν∇f(xν). In L-
BFGS, a buffer of size m is maintained for yν and sν . For the first m
iterates the bufferer is filled and once it is completely filled, the oldest
yν , sν are replaced at each iterate. This calculation of search direction
with L-BFGS method is summarised in two-loop recursion (NW06,
Alg. 7.4) given below as:

Algorithm 10 Two-loop recursion

Require: d← −∇f(xν)
for i = ν − 1, . . . , ν −m do
αi ← ρis

′
id;

d← d− αiyi;
end for
d← Bνd
for i = ν −m, . . . , ν − 1 do
β ← ρiy

′
id

d← d+ si(αi − β)
end for
return search direction d = Bν∇f(xν)

The computation of dν requires only 4mnd multiplications, where
m is the memory length of the L-BFGS buffer and nd is the dimension
of d and when m << nd, the complexity is O(nd).

6.3.6 L-BFGS method for the FBE
In the above section, we described how the gradient of the FBE can
be computed. The idea is to use past gradient information to approx-
imate the Hessian using L-BFGS method and calculate the decent di-
rection. The Algorithm 11 summarises the basic steps of the proposed
algorithm. At every iteration, an L-BFGS direction dν is computed us-
ing the two-loop recursion, Alg. 10 , that is, in line 3 of Alg. 11 the
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matrix Bν — which is an approximation of the inverse Hessian when
this exists — does not need to be constructed or stored.

This step involves the computation of the gradient of the FBE at yν

which is performed as discussed in Section 6.3.4.
The dual vector yν is updated as in line 4 where τν is chosen so as

to satisfy the Wolfe conditions (NW06, Sec. 3.1):

ϕλ(yν+1) ≤ ϕλ(yν) + c1τν 〈∇ϕλ(yν), dν〉 (6.24a)〈
∇ϕλ(yν+1), dν

〉
≥ c2 〈∇ϕλ(yν), dν〉 , (6.24b)

where 0 < c1 < c2 < 1. The first inequality is a sufficient decrease
condition, while the second one is known as the curvature condition
and is used to rule out unacceptably short step lengths.

Algorithm 11 Forward-Backward L-BFGS

Require: λ ∈ (0, 1/L), y0, m (memory), ε (tolerance),
νmax (maximum iterations)

1: Initialise an L-BFGS buffer of length m
2: while ‖Rλ(yν)‖ > ε‖Rλ(y0)‖ and ν ≤ νmax do
3: dν ← −Bν∇ϕλ(yν) (L-BFGS direction)
4: yν+1 ← yν + τνd

ν where τk satisfies (6.24)
5: sν ← yν+1 − yν , qν ← ∇ϕλ(yν+1)−∇ϕλ(yν)

ρν ← 1/ 〈sν , qν〉
6: if ρν > 0 then
7: Push (sν , qν , ρν) in the L-BFGS buffer
8: end if
9: ν ← ν + 1

10: end while

The algorithm produces a sequence yν which converges to the
dual optimal solution y? satisfying (6.13), while the sequence xν =
x(yν) as in (6.22a) converges to a primal optimal solution x?.

Typically, in quasi-Newton methods for the Hessian approxima-
tions to be positive definite, the Wolfe conditions are used to deter-
mine the step-size τν (LO13) and an inexact line search is used to com-
pute an appropriate step size as in (NW06, Alg. 3.5).
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The algorithm is terminated once the fixed-point residual becomes
adequately small; we use the termination condition

‖Rλ(yν)‖ > ε‖Rλ(y0)‖.

6.4 Simulations
We compare the performance of Algorithm 11 with different L-BFGS
buffers against the dual APG of Chapter 3 to solve the stochastic mo-
del predictive control problem for a linear discrete-time system with
additive and parametric uncertainty. We consider a system ofm aligned
interconnected masses by m − 1 linear spring-dampers of stiffness
constant κ = 1 and damping ratio β = 0.1. The manipulated vari-
ables are the forces we may exercise on each spring along their prin-
cipal axes and the state variables are the positions and speeds of the
masses. We assume that the system dynamics is obtained by discretis-
ing the continuous-time dynamics with sampling time Ts = 0.5 and
is written as in (6.1) with nx = 2m, and nu = m − 1. On the system
state and input variables we impose the constraints −5 ≤ xik ≤ 5 and
−1 ≤ uik ≤ 1 for all k ∈ N[0,1] and i ∈ N[1,µ(k)]. The stage cost was
chosen to be `(x, u, ξ) = x′Qx+ u′Ru with Q = Inx and R = Inu .
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Figure 30: Convergence of the proposed algorithm.
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The dependence of iterations on size of scenario; the trees is con-
sidered in this experiment had a fixed horizonN = 10 and in their first
stages were binary, i.e., had branching factor 2 and eventually evolved
without branching until the end of the horizon and for theN = 10, we
have 1024 scenarios. The algorithm terminates when the fixed-point
residual satisfies the condition ‖Rλ(yν)‖ ≤ 5.10−4×min(1, ‖Rλ(y0)‖).
The simulations were performed on a 4 × 2.60 GHz Intel i5 machine
with 8 GB RAM running 64-bit Ubuntu 14.04.

As a rule of thumb, the L-BFGS memory is chosen in the range 3
and 20. We considered two buffer sizes — 5 and 10. We observed no
significant difference in the convergence rate in these choice of buffer
sizes which is also shown in Figure 31. It can be observed that using
L-BFGS direction reduces dramatically the number of iterations com-
pared to APG. We can also observe that the convergence with L-BFGS
method is faster and leads faster to higher precision solutions com-
pared to APG.

6.5 Conclusions
In this chapter, we constructed the smooth forward-backward enve-
lope function for the stochastic optimal control problem and solve it
using L-BFGS method. The main characteristics of this algorithm is
fast convergence and high parallelisability. The computation of the
gradient at every iteration of the algorithm can be parallelized to of-
fer a significant benefit in terms of speed-up. In particular compu-
tations are executed in parallel across all nodes at every stage of the
scenario tree. Future work include implementing the L-BFGS-FBE
algorithm in hardware like GPU that can perform parallel computa-
tions. Also implement the global-FBE and accelerated global-FBE al-
gorithms (STP16) that have simpler line-search compared to L-BFGS-
FBE.
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Chapter 7

Conclusions and future
work

Drinking Water Networks are critical infrastructures and an integral
part of the urban life. Managing these networks is crucial to counter
water security problem and over-exhaustion of the water resources.
This network is complex in dynamics, large-scale in topology and an
energy-intensive system that is subjected to uncertainty demand. An
optimal management policy should reduce the energy consumption
of pumping and cater the water demands of the consumers uninter-
rupted. In this thesis we achieve this objective by proposing a model
predictive control based technique for management of these networks.

In this chapter, we provide a summary of the thesis highlighting
the main contribution of the work. Then we propose some research
direction to extend the work.

7.1 Main contributions of the thesis

This thesis addresses several open problem in the control of drinking
water networks and in stochastic optimal control in general. In partic-
ular

148



1. We demonstrated the effectiveness of MPC in Chapter 2 com-
bining forecasting models for the upcoming water demands and
accounting for the worst-case prediction errors by shrinking the
system constraints. This work lead to the publication (SGS+14).

2. In Chapter 3 we proposed a dual accelerated proximal gradi-
ent method for multistage stochastic optimal control problems
which can be massively parallelised across all nodes at each
stage of the scenario tree and solved on general purpose GPUs.
Simulations demonstrate high speed-ups and fast convergence.
These results appeared in (SSBP15).

3. The proposed parallelisable algorithm was tailored to the solu-
tion of stochastic optimal control problems related to the con-
trol of drinking water networks. In Chapter 4 we provide evi-
dence of computational tractability showing that the proposed
method is suitable for the control of DWNs and we further close
the loop with the proposed stochastic MPC controller and report
on the performance of the controlled system. These results have
been provisionally accepted for publication in IEEE Control Sys-
tems Technology and a preprint is available on arXiv (SSBP16).

4. In Chapter 5 we presented a framework for multi-time-scale hi-
erarchical and decentralised control where a lower control layer
stabilises the local systems and an upper control layer commands
set-points at a lower rate in such a way that the state-input con-
straints are not violated. These results appeared in (SSB16).

5. In Chapter 6 we present a methodology which we developed
recently and leads to further acceleration for the fast solution of
stochastic optimal control problems applying the LBFGS algo-
rithm on a smooth merit function of dual optimisation problem
— the forward-backward envelope. We show

7.2 Future research directions
In this thesis we proposed stochastic MPC based controller integrated
with demand forecasts for management of drinking water networks.
We also proposed a parallelisable algorithm to solve the large-scale
optimisation problem that is associated with this formulation. There
are many open issues which could be a future direction for research:
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• Quasi-Newton method applied for the control of DWN. In
Chapter 6 we proposed a quasi-Newton method to solve the
stochastic optimisation problem and demonstrated faster con-
vergence than APG. This method also exploit the structure and
amenable to parallelisation. The next step is to implement this
algorithm on a GPU and subsequently apply it to solve the scenario-
based stochastic MPC problem for DWNs.

• Novel parallelisable optimisation algorithms. Several novel
optimisation algorithms have recently emerged based on the
forward-backward envelope function demonstrating high con-
vergence rates and precision (STP16; TSP16). These methods are
amenable to parallelisation and can be used to solve large-scale
scenario-based stochastic optimal control problems.

• Risk-averse stochastic optimal control. In this thesis the ran-
domness in the cost function is quantified with the expecta-
tion operator leading to a so-called risk-neutral formulation. In
a pioneering paper Artzner et al. (ADEH99) developed an ax-
iomatic framework for risk measures1 which turned out to be
suitable for the formulation of risk-averse multistage optimal
control problems (SDR09; Sha09; GR11; Sha12) and have been
used in various applications such as power systems (ZG13) and
finance (AMRU01). When these measures are introduced in sto-
chastic programming models, this lead to lead to a new class of
problems –risk-averse optimisation (Sha09; GR11; Sha12).
In two recent papers Asamov and Ruszczyński (AR15) and Col-
lado et al. (CPR12) proposed methods to solve stochastic linear
problems which however do not scale up well with the num-
ber of scenarios and the prediction horizon. Risk-averse prob-
lems, however, are significantly more complex than their risk-
neutral counterparts and there are no algorithms to solve them
fast enough for them to qualify for typical control applications
— even for medium-scale problems. Developing optimisation
methods for risk-averse optimisation problems in control appli-
cations is an interesting research direction.

1Artzner et al. postulated four regularity assumptions for risk measures
ρ : Lp(Ω,F,P) → R̄: (i) sub-additivity, (ii) positive homogeneity, (iii) mono-
tonicity and (iv) translation invariance. These turn out to be desiderata for the
formulation of a sound risk-averse optimal control problem.
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• Distributionally robust control. In practice, the actual prob-
ability distribution — the probability measure P — of the in-
volved stochastic process(es) is not known but it is rather esti-
mated from measurements. What is the same, this probability
measure may be time-varying. Then it is assumed that P is con-
tained in a set of probability measures (DY10; PDHM14). Van
Parys et al. formulated a control problem which accommodates
the worst-case probability distribution for linear stochastic sys-
tems (PKGM16). In that work as well as in the framework pre-
sented in (ZKR13) we may further include first- and second-
order information. It is an open problem though how to address
the problem of distributionally robust control in the context of
scenario-based multistage optimal control.

• Stochastic economic MPC. Often, the cost function of an MPC
problem is chosen to reflect certain economic requirements or
otherwise requirements for the operation of the problem rather
than to enforce (robust) stability or other control theoretic prop-
erties for the closed-loop system. In such cases we are interested
in (i) the performance of the closed loop — we ask: does the
closed-loop operation eventually lead to the desired economic
operation and (ii) the properties of the controlled system — are
the constraints satisfied? is the system stable? This discourse
has motivated the emergence of a branch of MPC known as eco-
nomic MPC (DAR11; AAR12; MAA13; SSE+14; EDC14). How-
ever, with the exception of (CL15), the performance of economic
MPC under uncertainty is little understood. The economic MPC
concept has been employed for the control of drinking water
networks in (GOMP+14)2, however, without considering the in-
evitable inherent uncertainty.

• Multi-rate control of DWN. In the Chapter 5 we developed the
theory for designing a multi-rate hierarchical decentralised con-
troller and tested for Johansson’s system. Now designing these
decentralised controllers for a complete DWN is another exten-
sion which would have direct industrial impact.

• Pressure model for DWN. In this thesis we considered a flow-
based model for the operation of DWN which lead to a linear

2In (GOMP+14) the authors propose an MPC formulation with a periodic
constraint and an terminal equality constraint.
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dynamical model and polyhedral (box) constraints. This model
neglects the pressure drops and including them would result
in a nonconvex problem formulation (SKN+15). The zero-FPR
algorithm (TSP16) mentioned before is suitable for nonconvex
problems and makes a possible research direction. On the other
hand, an approximation method of such nonlinear constraints
has been proposed in the literature using a separate constraints
satisfaction problem (CSP) which can be employed to deliver a
complete solution for the control of DWNs combining CSP with
GPU-accelerated scenario-based stochastic MPC (CCPC14).

• Other applications. The developments presented in this the-
sis allow the application of stochastic MPC to adjacent fields of
study such as power dispatch in micro-grids and management
of smart-grids (PTB11; ZH14; HSB+15), sewer networks (JDOMC14),
inventory control (SM16) and more. Especially in management
of smart-grids, there is uncertainty from consumer demand and
in generation from renewable sources. The response time with
smart-grids is in the order of few minutes which makes these
networks challenging. Extending the quasi-Newton based meth-
ods for SMPC to manage these systems would be an interesting
problems with a lot of industrial relevance.
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