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Abstract

The mucosa of the gastrointestinal tract represents the main
barrier between the inner body and the external world. A
layer of cells runs from the esophagus to the rectum, play-
ing a key role in preventing access to environmental hostile
factors that could cause inflammation. Alterations in such
mucosa are caused or can cause severe problems to patients,
among others celiac disease, irritable bowel disease, Crohn’s
disease, ulcerative colitis and Barrett’s esophagus. The gold
standard for evaluating such diseases requires biopsies to be
performed on the patient, often following the random four-
quadrant protocol, other than positive serology. Quantitative
methods for evaluating in-vivo these diseases, by exploiting
distinctive image features that vary according to the grade of
the disease, would improve the way clinical examinations are
performed. This could in the long run lead to virtual biopsies
with a single endoscopy examination. We propose a Com-
puter Aided Decision Support System for endoscopic exami-
nations performed using Confocal Laser Endomicroscopy for
celiac disease and irritable bowel syndrome that, exploiting
image features extracted in an automatic way, can assist the
physician in its diagnosis and help him in selecting and iden-
tifying the areas that most require attention during an exam-
ination. Exploiting image features that are well-investigated
in the literature, our tool outputs valuable information about
the mucosa under examination with a friendly user interface.
We hope with such solution to increase the attention towards
the need of quantitative methods in this medical field.
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Chapter 1

Introduction

1.1 Clinical importance of quantitative tools in
endoscopy

Medical endoscopy is a minimally invasive and relatively painless pro-
cedure, that allows experts to inspect inner cavities of the human body.
One important field in medical endoscopy is the inspection of the gas-
trointestinal (GI) tract, which is the main focus of this corpus of works.
The gastrointestinal tract can be affected by severe forms of cancers with
high mortality rates, and its mucosa can develop premalignant condi-
tions such as Barrett’s esophagus, adenomas, Crohn’s disease and celiac
disease. To diagnose with certainty such diseases, biopsy specimens
analysis is required, on top of a positive serology of the patient under
analysis. For flexible endoscopy, biopsies often do not correspond to the
image under analysis, due to slight movement of the endoscope tip as a
result of the preparation for taking a biopsy, especially in the case of mag-
nified endoscopy. Digital imaging endoscopes, allowing the acquisition
of images and videos, created a new field of computer aided decision
support systems (CADSS) in medical endoscopy. Such systems are de-
signed to detect and/or classify abnormalities in digital images, assisting
the medical expert and actively improving the accuracy of medical diag-
nosis. Such systems usually follow the steps depicted in Fig. 1.
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Figure 1: Pipeline of a general decision support system.

When images or videos are acquired, they are fed as input images to
the system. A preprocessing step is usually performed to enhance the
quality of the input images. After this step, suitable features must be
selected, based on the purpose of the support system and on each im-
age appearance. Based on these features, an automatic classification of
the image is performed, using either a previously trained classifier or the
features’ values themselves, without resorting to classifiers. The classifi-
cation results are given to the physician, providing him with additional
information that could be useful to reach a better diagnosis. This addi-
tional information can be variegate, real time or on demand, based on
the expert’s will. Typically, the physician will have additional informa-
tion about the content of the image under analysis, either with image
segmentation-derived hints, or with feature-based classification meth-
ods on the whole image under analysis. Quantitative measures can be
expressed and derived from the features extracted during this step, pro-
viding invaluable information to the expert. In fact, some premalignant
diseases modify the appearance of the gastrointestinal mucosa (each dis-
ease on a specific sector of the GI tract). If such alterations could be
measured and identified by using image features, diagnosis on certain
premalignant diseases could be then done in vivo and in real time. It is
already demonstrated [1; 2; 3] that confocal laser endomicroscopy (CLE),
a recent technique that permits on site in vivo microscopic examination
of the gastrointestinal mucosa, has a diagnostic accuracy comparable to
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histology due to its high level of magnification. To successfully carry out
in vivo histologies, quantitative methods are needed to establish with
certainty if a patient shows problematic symptoms.

1.2 Problem statement

At the moment, no computer aided decision support system has been
proposed for confocal laser endomicroscopy images. CLE is still a rela-
tively novel technique, with quantitative methods exploiting its unique
characteristics still missing from the literature. Although this technique
is still under investigation and not widely adopted, it has all the fea-
tures to produce a ground breaking impact on medical endoscopy, since
virtual biopsy will be feasible using such technique. Computer-assisted
diagnosis is not an easy goal in the very challenging setting that is the
gastrointestinal tract. With flexible endoscopy, data-sets are constrained,
images can show degradation and artifacts, and the appearance of the
duodenal tissue is itself highly dependant on camera parameters. Angle
and distance from the mucosa can cause blurred, underexposed or noisy
areas of the image [4; 5]. Current gold standard might suffer from patchy
distribution of intestinal mucosa areas among normal mucosa [6; 7]: if
biopsies are taken only from the healthy mucosa due to alignment and
sampling errors, the proper diagnosis will be missed. The air insufflation
and suction and the instillation of water into the lumen cause bubbles in
the walls, reflections of the light sensor installed in the endoscope, that
both sensibly affect the feature extraction process and the performances
of CAD systems, blur and noise especially [8]. Existing CADs for flexible
endoscopy (not for CLE) are tailored toward specific applications, there-
fore are hardly adaptable for the tasks that we are interested in (diagnos-
ing and staging CD and IBS). On top of this, during flexible endoscopy,
the endoscope ofter travels through stomach and duodenum multiple
times: these two different sectors of the GI tract have similar visual ap-
pearance. This can be a problem for a CAD system tailored for CD di-
agnosis with normal endoscopy: in fact, esophageal and gastric mucosa
could be mistakenly labeled as CD-positive duodenal mucosa [5; 9] (see
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Figure 2: Visual appearance of different GI regions with white light en-
doscopy: esophagus, stomach and CD duodenal mucosa.

Fig. 2), given that they are almost impossible to distinguish with a clas-
sification approach purely based on image features.

1.3 Thesis organization

In this work,quantitative methods exploiting the unique characteristics
of images obtained through CLE have been devised and implemented:
these methods will help physician and, in the long run, will make virtual
biopsies possible.

In Chapter 2, the reader will be introduced to the necessary back-
ground information and perform a literature review of the state of the
art methods in medical endoscopy. In detail, computer aided decision
support system will be introduced and reviewed, and details about how
they work and why they exist will be presented. Then, the reader will be
introduced to the most critical clinical problems of the gastrointestinal
tract that have been taken into account in this work: celiac disease and
irritable bowel syndrome. Then, a comparison among different meth-
ods of imaging the GI tract will be performed, by comparing and an-
alyzing the differences among white light endoscopy imaging, narrow
band imaging, confocal laser endomicroscopy and wireless capsule en-
doscopy. Then, to conclude the background chapter, a quick review of
existing state of the art CADSS in medical endoscopy will be presented:
most of the existing methods are used for polyp detection and for image
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enhancement.
In Chapter 3, the main scientific contributions will be presented. First,

another brief introduction to the level of details and to the clinically rele-
vant information that can be extracted from a CLE image will be given to
the reader. Then, a fully automatic method for detecting and segmenting
villi in CLE images will be proposed. This step is the basis from which all
the quantitative analysis have been built upon. From this information,
then, an algorithm to detect, segment and highlight goblet cells within
villi is presented and detailed: goblet cells’ density is, in fact, among the
clinically relevant features that physicians look into for staging celiac dis-
ease. Then, an algorithm devised to detect crypts in CLE images is pre-
sented, since crypt hyperplasia is another features that correlates with se-
vere cases of celiac disease, along with villous atrophy. Automatic ways
of detecting fluorescein leakage and cell dropout in CLE images from the
mucosa folds are then presented and detailed. These features are clini-
cally established features that physicians evaluate when diagnosing pa-
tients with irritable bowel syndrome. Finally, all these algorithms are put
together to give quantitative metrics to the physician (goblet cells’ den-
sity, crypt density, fluorescein leakage and/or cell dropout) to support
him in his diagnosis. For this, an easy-to-use software with a graphical
user interface (GUI) has been developed in MATLAB, to give the medical
expert access to the proposed tools at a high level. This software will be
shown in Chapter 4.
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Chapter 2

Background and Literature
Review

2.1 The gastrointestinal tract

The large, muscular tube that extends from the mouth to the anus is
called the gastrointestinal tract (GI tract). The movement of muscles
(peristalsis), along with the release of hormones and enzymes, allows for
the digestion of food. Its main sectors are the esophagus, the stomach,
the small intestine and the large intestine. Each of these serve a different
purpose, and therefore present different anatomy and structures in their
mucosa.

2.1.1 Esophagus

Usually 18-25 centimeters long, the esophagus (or oesophagus) is an
organ consisting of a fibromuscular tube connecting the mouth to the
stomach, from which the food passes aided by peristaltic contractions.
The wall of the esophagus (from the lumen outwards) consists of mu-
cosa, connective tissue (submucosa), muscle fibers between layers of fi-
brous tissue and connective tissue. The mucosa is formed by three lay-
ers of squamous cells (stratified squamous epithelium), in contrast to
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the single-layer columnar epithelium that is found in the stomach. The
transition among these two types of epithelium is known as the gas-
troesophageal junction (GEJ), and is a visible zig-zag line (called z-line).
Two muscular sphincters prevent reflux. The typical pink color of the
esophageal mucosa contrasts to a deeper red of the gastric mucosa. Usu-
ally, the z-line corresponds with the upper limit of the gastric folds of
the cardia, but the anatomy of the mucosa can be distorted (as in Bar-
rett’s Esophagus). The mucosa has no keratin and has a smooth lamina
propria. Its epithelium serves as protection against the abrasive effect of
food, while glands secrete mucus (esophageal glands in the submucosa
and esophageal cardiac glands in the lamina propria).

2.1.2 Stomach

The stomach’s main function is to secrete protein-digesting enzymes (pro-
teases) and gastric acid to aid in food digestion following chewing. The
chyme (partially digested food) is then transferred to the small intes-
tine. Two sphincters keep the content of the stomach contained. Its
near-empty volume in adult humans is of about 75 milliliters. Being a
distensible organ, it normally expands to a volume in which it can hold
one litre of food. Anatomically, it is divided in four sections:

• the first (cardia) is the region following the z-line;

• the fundus, formed by the upper curvature of the organ;

• the body, composed by the main central region;

• the pylorus, the lower section of the organ facilitating the emptying
process towards the small intestine and the duodenum.

Gastric epithelium consists of simple columnar tissue, organized into
gastric pits and glands to deal with secretion. The submucosa consists
of fibrous connective tissue.
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2.1.3 Small bowel

Divided in duodenum, jejunum and ileum, the small bowel (also, small
intestine) is where most of the digestion and absorption of food take
place. The surface area of the small bowel mucosa averages 30 m2, given
its length on average of about 7 m and its diameter of 2.5 − 3 centime-
ters. The duodenum is continuous with the stomach and C-shaped. It
mixes the gastric chyme and the digestive juices from the pancreas and
the liver (digestive enzymes and bile) which break proteins and emulsify
fats. A mucus-rich alkaline secretion containing bicarbonate is produced
and mixed with chyme in the duodenum, neutralizing the gastric acids.
The jejunum is about 2.5 m long. It contains plicae circulares and villi,
that drastically increase its surface area. Here all the products of the di-
gestion process (sugars, amino acids and fatty acids) are absorbed into
the bloodstream. The ileum is about 3 meters long and contains villi as
does the jejunum. It is specialized on absorption of vitamin B12 and bile
acids, as well as other remaining nutrients. At the ileocecal junction, it
joins the large intestine. Intestinal epithelium contains goblet cells (in
charge of secreting mucin). Thanks to the villi (and microvilli, finger-like
projections of epithelial cells) nutrients are transported from the intesti-
nal lumen into capillaries and lacteals, absorbed, and transported via
those blood vessels to different organs of the body.

2.1.4 Large bowel

Large bowel (also called colon or large intestine) is the last part of the di-
gestive system, whose main purpose is water and salt absorption. Over-
all, it is about 1.5 m long, about one fifth of the whole gastrointestinal
tract. It is composed of, starting from the small intestine, the cecum, the
colon (ascending, transverse, descending and sigmoid), the rectum and
the anal canal. In the ascending colon, the unwanted waste material is
moved upwards through peristalsis. Here, the process of absorption of
the water starts. The colon shows simple columnar epithelium with in-
vaginations, called intestinal glands or colonic crypts. In the 16 hours
that the large intestine needs to finish the digestion process, water and
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salt are removed from the food before storing the indigestible matter to
the rectum. Colon absorbs vitamins that are created from the colonic bac-
teria, such as vitamin K, vitamin B12, riboflavin and thiamine. Feces are
compacted and stored in the sigmoid colon, which has muscular walls,
that can contract to increase colon’s pressure, pushing the stool towards
the rectum. No digestive enzymes are produced in the large intestine:
chemical digestion is in fact completed in the small intestine, before the
chyme reaches the large intestine. The pH is slightly acidic to neutral
(5.5-7).

2.2 Celiac Disease and CLE

Celiac disease (CD) is one of the most frequent immune-mediated en-
teropathies that affects genetically susceptible persons triggered by ex-
posure to gluten (a protein found in wheat, rye, barley, vitamin and nu-
trient supplements and certain medications) and similar proteins [10; 11;
12]. CD has a prevalence ranging from 1:80 to 1:300 in Europe and in
North America [13; 14; 15; 16], even though this disease is considered
a hidden epidemic. It is estimated in fact that most of the celiac pa-
tients (seven out of eight patients suffering CD) will remain undiagnosed
during their life [17], since most CD cases only have minor gastroin-
testinal symptoms [18]. Celiac disease is more common in Caucasians
and females, and among people with Down syndrome and Turner syn-
drome. CD causes a wide spectrum of clinical manifestations: gastroin-
testinal symptoms such as abdominal pain, chronic diarrhea, bloating,
nausea, constipation and vomiting, and other general symptoms such as
weight loss, fatigue, failure to thrive, slowed growth, short stature, der-
matitis [19], alopecia areata, cerebellar ataxia [20], iron deficiency [21],
anemia, seizures, and premature osteopenia, among others. Signs and
symptoms vary this much since they depend on numerous factors. These
include the age a person started eating gluten and in what amount, age of
the person and small intestine damage degree. Long term complications
include, as said, malnutrition along with liver diseases, intestinal cancer
and lymphoma. Exposure to gluten causes variable damage to the small
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bowel mucosa: mild damages include cases with increased number of in-
traepithelial lymphocytes and the presence of Crypt Hyperplasia (CH),
while severe forms of the lesions involve various degrees of endoscopi-
cally relevant lesions such as villous atrophy (VA) [22], in which finger-
like structures are projected outside the mucosa. Villi normally absorb
nutrients from foods and pass the nutrients through the small intestine
into the bloodstream. Without healthy villi, people risk malnourishment,
no matter how much food they eat. If a patient is inappropriately treated
for CD, the inflammation caused by the deregulated immune response
can therefore disrupt the intestinal mucosa. This disruption process pre-
vents the ability of the mucosa to absorb nutrients. Sometimes, some
of the symptoms are similar to those of other diseases, therefore CD
might mistakenly be diagnoses as irritable bowel syndrome, lactose in-
tolerance, diverticulitis or chronic fatigue syndrome. The patients need
at first to adopt a strict gluten free diet (GFD) as the first choice treat-
ment modality, to suppress inflammations allowing therefore a healing
process of the mucosa. Patients need to maintain a strict GFD diet for
the remaining of their life, if they want to avoid acute or chronic compli-
cations of CD [23]. CD-induced alterations of the mucosa are not easily
recognized during normal flexible endoscopy. Thus, in everyday prac-
tice, the identification of CD is made on the basis of a positive diagnos-
tic intestinal biopsy and of the concomitant presence of a positive celiac
serology [24]. The gold standard in the diagnosis of CD is the demon-
stration of VA in duodenal biopsies [25]. VA is investigated extensively
in the medical community [26; 27; 28], and image processing methods
as well as quantitative computational methods are highly needed, re-
quired and recommended from the community for the characterization
of the small intestinal mucosa in suspected and known CD patients [29].
A blood test can be performed on a patient to test for the presence of
antibodies typical of CD, but if a patient stops eating foods with gluten
before being tested, the results may be negative for CD even if the dis-
ease is present. Therefore, the gold standard requires intestinal biopsy
(it is performed after a positive blood test, too, to confirm the prelim-
inary diagnosis). Mucosal alterations caused by CD are classified into
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different stages of severity [30; 31], even though the histological staging
of biopsies is subject to significant degrees of intra- and inter-observer
variability [32; 33; 34; 35]. For this reason, observer independent di-
agnostic methods (such as CADSS) are needed [9]. On top of this, the
whole process is time consuming, cost intensive and invasive. Diagnos-
tic methods are observer-dependent, and require significant knowledge,
expertise and time [36; 37].

2.3 Intestinal permeability-related diseases

The mucosa of the gastrointestinal tract represents the main barrier be-
tween the inner body and the external world. A layer of cells runs from
the esophagus to the rectum, playing a key role in preventing access
to environmental hostile factors that could cause inflammation. In par-
ticular, the intestinal epithelium is the largest mucosal surface, regulat-
ing the transit of macromolecules [38; 39]. This barrier is formed by a
double layer of lipid cells, offering strong resistance to water soluble
constituents. The junction between epithelial cells is a region in which
inter-cellular junctions (tight junctions) are formed, to regulate the con-
stituents’ flow. This junction’s permeability is dynamic, varying accord-
ing to dietary state, humoral or neural signals and inflammatory media-
tors, among others. If pathological conditions ensue, the permeability is
increased and a loss of epithelial integrity is suffered. Impaired epithelial
barrier function is present in both typical inflammatory bowel diseases
(Crohn’s disease and ulcerative colitis [40; 41]) and in irritable bowel dis-
ease (IBS), a somehow still mysterious functional disorder.

2.3.1 Inflammatory bowel diseases

The most common inflammatory bowel diseases are ulcerative colitis
and Crohn’s disease, and both involve chronic inflammation of part of
the digestive tract. Both diseases involve severe diarrhea, pain, fatigue
and weight loss, and can be debilitating and lead to life-threatening com-
plications. Crohn’s disease usually affects the small intestine and the
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initial part of the large intestine, though it can affect any part of the GI
tract (from the mouth to the anus). Its causes are still unknown, but it
is believed that autoimmune reaction, along with environmental (antibi-
otics, oral contraceptives [42], high-fat diet [43]) and genetic factors may
play a role in causing it. Briefly, bacteria or virus might mistakenly trig-
ger the immune system to attack the inner lining of the intestines, which
causes inflammation, leading to symptoms. The disease is more likely to
develop in young smokers (especially 20-29 year-olds [44]) with a fam-
ily member with IBD. It is diagnosed with blood and stool tests, and
with an intestinal endoscopy with biopsy samples analysis. This disease
can be treated with medications, bowel rest or surgery, but each person
will experience Crohn’s disease differently. Usually, immunomodula-
tors and/or corticosteroids are used to alleviate symptoms, bowel rest
(with intravenous nutrition) is suggested for the intestines to heal, but
about one person every five will need surgery [45] to treat complica-
tions and improve symptoms, while not curing Crohn’s disease. Small
bowel resection, subtotal colectomy or proctocolectomy and ileostomy
are the general available choices for the surgery path. Eating, diet and
nutrition don’t cause Crohn’s disease, but a good nutrition plan is im-
portant in its management, though. Generally, carbonated drinks need
to be avoided, along with high fiber foods. Liquid intake is very impor-
tant, and eating smaller meals more often is suggested to ease the symp-
toms. Typical complication of the disease, if left untreated, are bowel
obstruction, fistulas (abnormal passages between two organs or an or-
gan or the outside world), ulcers, malnutrition or general inflammation
in joints, eyes or skin. A correlation between Crohn’s disease and colon
cancer has been proved, too [46; 47]. Ulcerative colitis, instead, causes
sores called ulcers on the inner lining of the large intestine. Usually, this
disease become worse over time, with symptoms ranging from mild to
severe, although remissions are typical, lasting for weeks or years. The
goal of healthcare is to keep patients in remission for as much as pos-
sible. Again, specific causes for ulcerative colitis are unknown, but it
is supposed that an overactive intestinal immune system (along, again,
with genetic and environmental factors) is the main factor inducing UC.
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This disease is more likely to develop in people of Jewish descent, with
family history of IBDs, with an age either of more than 60 years old or
between 15 and 30 years old [48]. The most common symptoms are di-
arrhea with blood or pus, and abdominal discomfort. Of all the affected
patients, about 10% can have severe symptoms [48] and complications
(rectal bleeding, dehydration and malabsorption). As is the case with
Crohn’s disease, endoscopy is the main method for diagnosing ulcera-
tive colitis, and medications can only reduce its symptoms. Surgeries
are often performed only if the patient shows colon cancer, precancerous
cells in the colon (dysplasia), life threatening complications (megacolon
or bleeding), no symptom improvement despite treatment, dependency
on steroids or side effects from the medications. Sometimes, a removal
of the entire colon is required, with a full recovery that takes 4 to 6 weeks
with using an ostomy pouch for the rest of the patient’s life to collect in-
testinal contents. The patient should follow the same dietary suggestions
that are given for Crohn’s disease.

2.3.2 Irritable bowel syndrome

Irritable bowel syndrome is not an inflammatory disease, but it is a func-
tional disorder. Its typical symptoms are abdominal pain, constipation
(mostly in women) and diarrhea (mostly in men). Some people lament
feeling very full, flatulence of mucous discharge, along with cramps.
This disease is known with other names too, such as irritable colon, mu-
cous colitis, spastic colon, spastic colitis and nervous stomach. IBS in it-
self is not dangerous, but its symptoms are painful and bothersome, and
can affect people’s everyday activities, causing distress and actively af-
fecting the standard of living of the patients suffering from it. Most peo-
ple have a mild form of IBS, that can go untreated with acceptable symp-
toms. Mostly, IBS affects people between 35 and 50 years old, with about
14% of women and 9% of men affected. It is suspected that IBS is caused
by oversensitive nerves in the intestine, intestinal muscle disorders, bac-
terial flora imbalance and/or inflammations of the intestinal wall, pos-
sibly along with genetic predisposition. All of these causes, since IBS
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mostly affects the large intestine, alter the speed in which the food mass
transverses the intestine: if it goes through too quickly, the food mass
does not lose enough water. On the other hand, with a slow passage,
people might suffer from constipation and abdominal cramps. As of to-
day, there is no cure for IBS. Though, by experimenting and paying atten-
tion to lifestyle and food habits, most people find out what makes them
feel better or worse. The criteria that should lead to a positive diagnosis
are debated, but generally a person is considered to have IBS if:

• symptoms as stomach ache or flatulence have lasted for more than
three months, caused by the bowel with changes in the stool;

• a person is significantly impacted on its quality of life due to the
symptoms;

• symptoms are certainly not caused by another disease.

Symptoms, though, can be caused by other diseases such as lactose intol-
erance, gluten intolerance and celiac disease, and a patient could suffer
from more than one diseases at the same time.

2.4 Imaging the Gastrointestinal tract

It is clear that multiple different modalities exist to image the gastroin-
testinal mucosa. Each image modality has its own strength and weak
spots: in this section each of the most used modalities (MR and CT imag-
ing, white light endoscopy, narrow band imaging, chromoendoscopy,
autofluorescence imaging, wireless capsule endoscopy and confocal laser
endomicroscopy) will be analyzed.

2.4.1 MR and CT imaging

MRI can be used in the gastrointestinal tract for imaging and for measur-
ing interesting markers, such as intestinal motility indexes, small bowel
water content and whole gut transit time [49]. As of today, though, these
MRI bio-markers are not included in the clinical routine, because of the
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expensiveness of the technique, and because they are still not proved re-
liable by enough trials in the clinical practice. Regarding imaging, bowel
examinations can be performed by combining the use of T2-weighted
single-shot and breath hold T1-weighter gradient echo, with or without
fat suppression, and gadolinium-enhanced 3D gradient echo. True-FISP
sequences can detect bowel wall pathology and overall bowel anatomy,
with robustness to motion, if combined with water-based intraluminal
distending and contrast agents. This technique, though, suffers from ar-
tifacts (due to the extreme sensitivity to field inhomogeneities), and can
not image well with the presence of retained bowel gas, in fact impair-
ing bowel wall assessment [50]. CT, instead, has been used for virtual
endoscopy for the large bowel, but since it is less cost-effective than con-
ventional endoscopy it has not been adopted widely in the medical prac-
tice. On top of this, the irradiation exposure is relatively high during
these examinations [51].

2.4.2 Common flexible endoscopy modalities

Historically, the first endoscopic image modalities has been white light
endoscopy. In the 1960s, flexible endoscopy was introduced using fiber
optics and a lens to visualize the inner cavities of the human body. Mod-
ern endoscopies are compact devices that are able to record and store
digital high resolution images thanks to a light source and a CCD/CMOS
sensor. Using an accessory channel allows physician to use medical in-
strument to sample tissue specimens (for biopsies), to clean and pre-
pare areas under analysis and perform polypectomies without invasive
surgery. In Fig. 3 the typical setting of a normal WLE exam is shown:
the mucosa is imaged by the endoscope, with an optional zoom (zoom-
endoscopy) available for certain endoscopes.

In common flexible endoscopy modalities, the physician has the con-
trol on the endoscope, and moves it according to the feedback from the
video feed. Typical field of view is of about 170 degrees, and no post-
processing is performed on the images acquired by the sensor. A typical
image acquired via WLE is shown in Fig. 4. Chromoendoscopy requires a
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Figure 3: Typical setting of a WLE exam. The endoscope images the mucosa
within a certain field of view, at a certain distance from the mucosa.
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Figure 4: Typical image resulting from WLE, from a patient suffering from
Barrett’s Esophagus, a premalignant disease of the lower esophagus.
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Figure 5: Typical image resulting from chromoendoscopy, from a patient
suffering from suspect gastric cancer, stained with methylene blue.

normal WLE endoscope, but uses dyes at the time of visualization. Dyes
enhance tissue characterization, uncovering texture pattern details that
would not be otherwise clear without their use. Different stains can be
used, according to the mucosa under investigation. Absorptive stains
are useful for characterizing squamous epithelium, therefore highlight-
ing dysplasias or metaplasia. Contrast stains are not absorbed and pro-
vide a contrast enhancement, while reactive stains test some functionali-
ties of the GI tract, due to chemical reactions at certain pHs. This image
modality, though, is time consuming and not easy to use as WLE. A typ-
ical image acquired via CHR is shown in Fig. 5.

To compensate for this, virtual chromoendoscopy saw an increase in
its adoption in the latest years. Fuji Intelligent Chromoendoscopy (FICE)
and, more generally, narrow band imaging (NBI) exploit physical prop-
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Figure 6: Typical image resulting from NBI, from a patient suffering from
Barrett’s Esophagus.

erties of the mucosa to enhance differences among different tissues. In-
stead of using white light, NBI uses light of specific blue and green wave-
lengths. This special image filter is activated by a switch in the endo-
scope, leading to the usage of light with wavelength between 440 and
460 nm and one of wavelength between 540 and 560 nm. The chosen
wavelengths are the ones in which hemoglobin has its peak light absorp-
tion, therefore rendering blood vessels very dark, improving at the same
time identification of different tissues. A typical image acquired via NBI
is shown in Fig. 6.

A relatively novel technique is autofluorescence imaging (AFI), that
has gained traction in the last few years in the medical endoscopy field.
This image modality is based on the detection of natural tissue fluo-
rescence emitted by endogenous molecules (fluorophores) such as col-

20



Figure 7: Typical image resulting from AFI, from a patient exhibiting a
polyp in the mucosa (not showing the green autofluorescence in this im-
age).

lagen [52]. The fluorescence emission differs among various tissue types
due to corresponding differences in fluorophore concentration, metabolic
state and/or spatial distribution. These differences can be captured in
real time and used for lesion detection or characterization [53].

AFI is used as a part of a trimodal imaging video endoscopes us-
ing the RGB sequential illumination platform. Two CCD sensors are lo-
cated at the tip of these endoscopes: one is dedicated to high definition
WLE and NBI, while the other is assigned to AFI. A switch on the endo-
scope gives the medical expert easy possibility of switching among the
three different image modalities (Olympus EVIS LUCERA SPECTRUM,
Tokyo, Japan). AFI implements a special rotating color filter wheel in
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Figure 8: Typical setting of a WCE exam. The capsule travels through the
GI tract, without any motion control.

front of the light source (xenon), that sequentially generates blue and
green light (390-470 nm and 540-560 nm, respectively) for tissue illumi-
nation. Then, a filter in front of the AFI CCD blocks blue light excita-
tion but enables autofluorescence (500-630 nm) and green light to filter
through. The processor encodes a real time pseudo-color image in which
normal mucosa appears green, while dysplastic tissue usually appears
dark purple (as shown as example in Fig. 7). AFI is a valuable tool when
used in a multi-modal imaging scheme, but lacks specificity to be used
in an useful way as a stand-alone diagnostic tool [52].

2.4.3 Wireless capsule endoscopy

Wireless video capsule endoscopy (WCE or VCE) is an imaging tech-
nique that has appeared in 2001 in the medical endoscopy field, used
mainly for investigating small bowel pathology, and to determine the
cause of obscure gastrointestinal bleeding, Crohn’s disease, polyposis
and complications of CD [54].

It consists of an ingestible camera in a pill which passes through the
patient’s GI tract, taking 50.000-60.000 digital images in 8-12 hours. The
capsule is about 26×11 mm in size, consisting of an optical dome, a lens,
some emitting diodes, a transmitter and an antenna. The antenna trans-
mits the digital pictures to a data recorder, worn externally by the patient,
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where images are stored. After the study, the images are viewed and in-
terpreted by a specially trained gastroenterologist. The main sector of
the GI tract that is investigated with this technique is the small bowel, al-
though esophagus and colon can be investigated, too (usually with some
variations of the capsule, with two symmetric domes and cameras for the
esophageal case, for example). The capsule is physiologically propelled
through the entire GI tract, with bowel movements (an image represen-
tation of its imaging scheme is shown in Fig. 8). Being absolutely non
invasive is the main advantage of this technique: it is considered a safe
procedure since the capsule is usually expelled by the host within 24-48
hours from the exam. In case of retention not due to small bowel obstruc-
tions (if the patient experiences obstructions, WCE should obviously not
be performed in the first place), a case report confirmed that no harm
or dangerous symptoms were suffered by the patient [55]. No sedation
is needed for the procedure, which is completely painless. Other than
people with small bowel obstructions, patients with swallowing disor-
ders or carrying pacemakers or other implanted cardiac devises (other
than pregnant women) are also advised to have a careful specialist eval-
uation before undergoing capsule endoscopy. The patient undergoing
capsule endoscopy can proceed with his normal life activities. This im-
age modality is separated from flexible endoscopy (and CLE) since the
physician has no direct control over the imaging device. The process is
very time consuming, given the quantity of images that need to be ac-
curately reviewed by an expert, and CADs have been proposed in the
literature for this endoscopic modality [56].

2.4.4 Confocal laser endomicroscopy

CLE is an image modality developed to obtain in vivo very high magni-
fication and resolution images of the mucosal layer of the GI tract. While
conventional endoscopy needs biopsy for histological analysis, confocal
endomicroscopy allows for in vivo histological examinations of tissue (a
visualization scheme of how it works is shown in Fig. 9).

The advent of this new endoscopic optical technique is likely to ”change

23



Figure 9: Typical setting of a CLE exam. The confocal tip fires a low-power
laser, resulting in a high resolution picture of the chosen focal plane.
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Table 1: Specifications of eCLE and pCLE in the upper and lower GI

eCLE pCLE
Distal diameter, mm 6.3-12.8 2.6 or 2.7
Field of view, µm 475 240 or 600
Imaging depth, µm 0-250 70-130
Lateral resolution, µm 0.7 1-3.5
Axial resolution, µm 7 15
Image rate, images/s 0.8-1.6 9-12

pathologists’ role in diagnosis” [57].

CLE was developed in 2004 by Pentax, and cleared for use by FDA in
the same year. Two different systems for CLE are available: endoscope-
based CLE (eCLE, by Pentax) uses a fiber optic cable to convey blue
laser light to a miniaturized confocal microscope integrated into the 12-
mm-diameter tip of an endoscope [58], and probe-based CLE (pCLE, by
Mauna Kea Technologies [59]), which uses a fiber-optic probe bundle to
convey light from a confocal microscope situated outside the patient to a
port in a standard endoscope [60]. For a comparison among the two sys-
tems, refer to Tab. 1. Both platforms exclude light from planes above and
below the plane of interest using the pinhole aperture technique. Briefly,
as shown in Fig. 10, the laser light is focused on an area of interest and
back-scattered light is then refocused onto the detection system by the
lens. The back-scattered light passes through a pinhole aperture which
increases the resolution of the image.

This process needs a dye to provide contrast for accurate visualiza-
tion, since CLE is based on tissue exposure and fluorescence and that
in most cases tissue autofluorescence does not provide sufficient con-
trast [61]. Therefore, exogenous contrast agents need to be applied, either
intravenously or topically. The most widely used CA is five milliliters
of intravenous 10% fluorescein (Fluorescite; Alcon, Switzerland). Fluo-
rescein IV is approved by FDA for retinal angiography, but it has found
widespread use off-label in CLE. Fluorescein is chemically closely related
to eosin: they produce essentially identical staining of cytoplasm and ex-
tracellular matrix. Fluorescein also highlights the structure and phys-
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Figure 10: An explicative scheme of the inner workings of a confocal endo-
scope.
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iology of the vasculature in a manner relatively unfamiliar to pathol-
ogists: it shows vessel density and shapes, it accumulates near leaky
capillaries, and it accumulates in the lumen in areas of ulceration. Like
eosin, it provides no direct visualization of nuclei, though the relative
absence of fluorescein in the nuclei can allow some estimate of nuclear
size and position [60; 62; 63; 64]. For nuclear staining, 0.05% topical acri-
flavine hydrochloride (Sigma Aldrich, St Louis, Missouri, USA) [64; 65]
can be used. Acriflavine was originally used in the early 20th century
as an antimalarial and antibacterial drug, with little evidence of toxicity
in humans [66]. Acriflavine, though, binds to nucleic acids, and is po-
tentially mutagenic [62]. Nevertheless, several studies in humans have
documented the usefulness of topical acriflavine in GI endoscopy [64;
65; 67; 68]. Besides concerns about mutagenicity, acriflavine has limited
penetration into tissue, and gives relatively uneven staining [63]. Prac-
tically, patient preparation for CLE is the same as preparation for con-
ventional endoscopy. The procedure is then performed under moderate
sedation or general anesthesia depending of patient co-morbidities and
the type of procedure (i.e. colonoscopy, upper endoscopy, endoscopic
retrograde cholangiopancreatography or endoscopic ultrasound). In ad-
dition to the contraindications for conventional endoscopies, CLE also
has the additional contraindication of allergy to contrast agents. CLE
can be applied in GI endoscopy in Barrett’s Esophagus surveillance and
treatment, diagnosis of biliary structures (pCLE), follow-up of colonic re-
gions, differentiation of colorectal polyps, IBDs and gastric diseases. A
novel reusable probe (needle-based CLE, nCLE) that is designed to ad-
vance through a 19-gauge needle is now available and could be used for
analysis of pancreatic cysts. Typically, gray scale images are collected
from CLE analysis. Images from adjacent planes could be blended to
create 3D images [62], but commercial tools for this application do not
exist yet.
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2.5 Computer aided decision support systems
in flexible endoscopy

The advent of endoscopes with the ability to take digital pictures cre-
ated the whole new field of computer-aided decision support systems
(CADSSs) in medical endoscopy. Such systems are designed to detect
and/or classify abnormalities and thus assist a medical expert in im-
proving the accuracy of medical diagnosis. In addition, different meth-
ods have emerged which do not directly provide decision-support. In-
stead they aim, for example, at enhancing image quality, detecting de-
graded images, or provide endoscope navigation support. Throughout
this chapter, such methods are referred to as supportive systems. There is
a rising interest in this research topic, starting about one decade ago [69].

A rough overview of common steps involved in a decision support
system for medical endoscopy has already been shown in Fig.1. In many
cases the first step is a preparation of the tissue region to be investigated
(e.g., staining, treatment with fluorescent dyes). After an image has been
acquired, preprocessing may be required in order to enhance the quality
of possibly degraded images. Then, depending on the aim of the applica-
tion, suitable features have to be found and extracted. Sometimes a post-
processing of the features is also necessary (e.g., removing invalid feature
combinations in the case of high-level features). If the decision support
system is targeted at classification (e.g., polyp detection, cancer detec-
tion) the features are used for a classification of the image, using a pre-
viously trained classifier. But other systems also exist which base their
decisions directly on the features without using an intermediate classi-
fier (e.g., by using feature thresholds) [70]. Similar to classification, some
systems are targeted at content-based image retrieval (CBIR) or content-
based video retrieval (CBVR). The main difference between automated
decision support systems and CBIR/CBVR systems is the fact that, in
case of an automated decision support, the output of such a system is
a suggestion on the final diagnosis or additional information for a diag-
nosis. This output is usually generated without any intervention by a
medical expert being needed, potentially allowing, for example, a real-
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time polyp detection while the endoscope is advanced through the colon.
CBIR/CBVR systems on the other hand present an expert a number of
similar images or videos (on demand), from which the expert is able to
decide by himself on the final diagnosis. It is also quite common that
the expert is able to interact with the system, allowing a refinement of
the search query for similar images. Hence, CBIR/CBVR systems usu-
ally have an interactive nature which limits them in terms of real-time
capabilities and restricts them to offline processing usage.

As already pointed out above in Sect. 2.4, each endoscopic procedure
generates images which exhibit peculiar characteristics depending on the
technique used. Therefore, computer systems targeted at decision sup-
port must be designed accordingly. Images taken with a traditional flex-
ible endoscope don’t allow us to see details of the tissue under exami-
nation. A zoom-endoscope, on the other hand, allows one to examine
the fine structures and details of tissue too. This, however, comes along
with a rather limited field-of-view (FOV), which makes navigation more
difficult. This problem is even more apparent in the case of CLE due to
the high magnification nature of this technique, that can although pro-
duce images which contain clear and detailed structures. As it is pointed
out in Sect. 2.4, the distance between the tip of the endoscope and the
mucosa under inspection differs between these techniques. This is due
to the different focal depths inherent to the different techniques. As a
result, the FOV differs also between the devices. While standard en-
doscopes usually have FOVs between 120◦ and 170◦, zoom-endoscopes
have rather limited FOVs between 50◦ and 70◦. This naturally affects the
size of the visible mucosa regions. In case of CLE the FOV is even more
limited, resulting in a visible region of about 500 × 500 µm. Neverthe-
less, the limited FOV comes along with the advantage of higher image
resolutions. In the case of WCE, the image resolution is often consid-
erably lower compared to the aforementioned techniques. In addition,
WCE suffers from the inability to control the motion and position of the
capsule, which raises new difficulties for CADSSs. It is clear that, even
in case of the same pathology, images taken with different endoscopic
techniques will in general differ significantly. One particular difference
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between the different endoscopic modalities is the available image reso-
lution: these range from approximately 0.65 Megapixel to approximately
2 Megapixel. In addition, while some endoscopes allow us to capture
color images, there also exist endoscopes which capture grayscale im-
ages only.

Since this chapter’s main point is to present facts and figures for
CADSSs in the GI tract, the spread of the different endoscopic imaging
modalities across CADSS-related literature will be discussed next. For
this purpose an overview of the different parts of the GI tract for which
CADSSs have been developed in the past is given first. Then the different
pathologies under investigation are outlined, showing the importance of
respective detection and classification systems. Finally, different appro-
aches found in literature from the image processing and classification
perspective are shown, providing details such as used transformations,
features and classifiers. WCE has a greater need for CADSSs then WLE,
given the huge number of images it generates. Since the analysis of all
these images by a medical expert is a time consuming task, it is a logi-
cal consequence that there is a rising interest in developing CADSSs for
WCE. Because of the fact that CLE is the most recent technique, the num-
ber of respective CADSSs targeting this technique is still low. At the time
of this writing, the methods in the literature are all based on pCLE. As of
today, there exists no CADSSs related work based on eCLE in the litera-
ture.

In 2011, Liedlgruber and Uhl [69] showed the number of publica-
tions found in literature dealing with CADSSs using different endoscopic
imaging modalities. This review has shown that flexible endoscopy is
clearly the most frequently targeted endoscopic technique (about 58%),
followed by WCE (about 38%), and pCLE (about 4%). Concerning the
sector of the GI tract under analysis for CADSSs development, the vast
majority of presented CADSSs are aimed at the colon, given that colon
cancer is the third most common malignant disease in western countries.
These are based on flexible endoscopy and pCLE. 29% of all CADSSs in
the GI tract aim at a complete analysis of the whole GI tract, usually with
WCE. The most common diseases under analysis with CADSS are, in or-
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der, colon polyps, bleeding of the GI tract, normal/abnormal classifica-
tion of WCE images or colon images, ulcers, celiac disease and tumors in
the small bowel using flexible endoscopy. Regarding features, the most
commonly used are:

• Spatial domain features:

– Texture Properties: Local Binary Patterns (LBP) and its exten-
sions (uniform LBP, Opponent color LBP), Texture Spectrum
(TS);

– Pixel-based: pixel intensities or other statistics;

– Histograms: Color histograms or co-occurrence histograms
from which statistical measures are computed;

– Miscellaneous: SIFT, run-length features, MPEG-7 descriptors,
blob analysis, Bag of visual words, etc.

• Frequency domain features:

– Fourier based: FFTs are used to obtain power spectrum of an
image, from which statistical features are computed and used
for classification;

– Wavelets: DWT, Dual tree complex WT, Curvelet transform or
Gabor wavelets are applied on the image. Then, features are
extracted (such as statistical features, Haralick features in a
subband, random field parameter estimates, histograms com-
puted from LBP-transformed subband, shape parameters of
probability distributions fitted to the wavelet coefficients).

• High-level features:

– Edge-Based: Canny or SUSAN approaches, either using the
edges directly as features or calculating shape descriptors on
them;

– Region-based: relying on some previous sort of segmentation
or region growing. Features extracted from each region are
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computed. Other approaches could use the regions to deduce
relationships among them (based on distances, for example,
among region centers or similar approaches).

Ground truth can be either histologically verified or only obtained
visually, and validation can be done with cross validations (either with
leave-one-image-out or with leave-one-patient-out) or simply with dis-
tinct sets for training, validation and testing. Classification is usually
done with one of these methods (or an ensemble of them): support vec-
tor machines, k-nearest neighbors, artificial neural networks or related
classifiers, Gaussian mixture models or discriminant analysis based clas-
sifiers. For each classification method used in this work, it will be thor-
oughly described in a dedicated section.
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Chapter 3

CADSSs in Confocal Laser
Endomicroscopy

To be able to extract quantitative measurements from images, it is nec-
essary to extract meaningful features from each of the images. In the
following sections, different processes and algorithms will be described,
and each one of those will be based upon predefined features that need to
be calculated from the images. The proposed CADSS has the following
strengths:

• Villi detection and segmentation: two different methods will be
presented that aim at creating a villi segmentation binary mask
for each image in the dataset. The first process will be semiauto-
matic, and based on morphological processing. The second one is
a fully automatic process, based on SLIC superpixel segmentation
and machine learning.

• Goblet cells detection: two different algorithms will be presented:
the first is based on matched filtering, morphological processing
and Voronoi’s segmentation, while the second method is a simpler
and faster version, purely based on matched filtering.

• Crypts detection: a method to detect crypts in the images is briefly
presented in this chapter, and thoroughly analyzed in Chapter 4.
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• Leakage detection: a simple algorithm based on thresholding de-
tects regions of the image exhibiting saturated intensities. Satura-
tion is caused by leakage of the fluorescein contrast agent in the
extracellular intervillous space, due to ruptures of the cells build-
ing the villous mucosa.

All of this will be implemented in a user-friendly GUI, presented in Chap-
ter 4.
In the literature [71; 72; 73; 74; 75; 76; 77] several features have been
proposed, that highly correlates with pathological conditions of the gas-
trointestinal mucosa. Among them, for celiac disease, there are archi-
tectural changes of villi and/or crypts, increased intraepithelial lympho-
cytes (IEL), increase in lamina propria cell density, reduced goblet cells’
density. For increased intestinal permeability, instead, three features have
been defined: Cell Drop-out (CDO), shedding of an enterocyte into the
luminal space; Cell Junction Enhancement (CJE), a fluorescein build-up
between two epithelial cells representing impaired tight-junction pro-
teins before breakage of the final basal junction, and FL: a fluorescein
plume entering the lumen representing loss of apposition between two
adjacent cells. Images originating from CLE, as Fig. 11 shows, are very in-
formative about the status of small bowel mucosa: villi, crypts and gob-
let cells can be clearly discerned, depending on the region of the mucosa
under analysis and the staging of the patient. Experienced endoscopists
can diagnose villous atrophy, crypt hyperplasia, fluorescein leakage or
cell drop-out and stage intraephitelial lymphocytes with high accuracy
using this imaging modality. As such, automatic methods for the detec-
tion and segmentation of informative patches of the images, for estab-
lishing goblet cells’ and crypt’s density, for understanding the severity
of villous atrophy, for checking for fluorescein leakage or other problems
in epithelial tight junctions are clinically very important, and a path that
is still unexplored. With this thesis’ work, a first analysis of this setting
is performed, and some automatic algorithms are proposed to start tack-
ling this field of medical imaging.

To our knowledge, in fact, no previous work has been published on
image processing methods with the purpose of automatically classify
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Figure 11: Three images from the dataset.

and stage celiac disease and other diseases from CLE images. This is
not a trivial process: villi are highly textured and present high variability
in appearance, shape and dimension. In CLE images, they can exhibit
smooth and fuzzy borders among (and between) villi and inter-villous
space. Among villi, vessels can be found in inter-villous space, with gob-
let cells. In severe CD stages, a possible collapse of all villi into a uniform
mucosa that is depleted of villi can be observed. Other than this, pos-
sible presence of crypts and fluorescine leakage in the lumen (possibly
caused by alterations in intestinal permeability) can prevent accurate de-
tection with standard image processing methods. Normally (Fig. 11, left),
villi are distinguishable one from the other. If Villous Atrophy is present
(Fig. 11, center), the mucosa is flattened, resulting in villi disappearing
in the focal plane. When Crypt Hypertrophy is present, the mucosa flat-
tens on the top of the villi and cells’ volume increase, resulting in bridges
among different villi and more visible crypts (Fig. 11, right). Automatic
grading of such problems could result in in-vivo virtual biopsies or in
targeted biopsies (instead of using the four-quadrant protocol), decreas-
ing the need for potentially dangerous multiple biopsies to grade the
disease.
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3.1 Semiautomatic villi detection via morpho-
logical processing

3.1.1 Materials

In this study, 166 confocal images were obtained from previous clini-
cal trials conducted at the Gastroenterology and Liver Services of the
Bankstown-Lidcombe Hospital (Sydney, Australia) [78]. Each patient
underwent a confocal gastroscopy (Pentax EC-3870FK, Pentax, Tokyo,
Japan) under conscious sedation and with a intra-venous aliquots of fluo-
rescein sodium and topical acriflavine hydrochloride to enhance images.
Each image represents a mucosal region of 0.5×0.5 mm, with an in-plane
resolution of 2 pixel /µm, resulting in images of 1024 × 1024 pixels. As
Fig. 12 and 13 show, images conveying very heterogeneous information
have been selected for the study presented in this section, for generaliza-
tion purposes. 100 images have been used for parameter selection, and
the remaining 66 images have been used to test the performances of the
proposed method. In order to provide a ground truth, all images have
been manually analysed by an expert, providing both an outline of each
visible villus in the image, and and a seed point for each identified vil-
lus. In the 66 test images, an average of 4.86 (standard deviation: 4.49,
median: 3.50) villi are shown in each image.

The first step in the proposed method aims at the construction of a
rough segmentation identifying a candidate region of the image with the
highest possibility of being part of a villous fold for each of the manual
seeds. This is performed by filtering the image using a pipeline of mor-
phological operations, designed to smooth the internal textured region
of each villus. The segmentation is then obtained applying a quadtree
decomposition (a simple and fast method that provides a first rough seg-
mentation) of the resulting smoothed image. The resulting detection of
candidate villi may result in multiple seeds belonging to the same seg-
mented region (two separate villi may be merged by this step). In order
to tackle this, a splitting procedure is applied to any candidate region
where multiple different seeds are present. The split is based on both
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Figure 12: Two images from the dataset, showing very heterogeneous struc-
tures and illumination.
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Figure 13: Two different images from the dataset.
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local characteristics and shape of each candidate region hosting multi-
ple seeds. After this process, each seed originates a different candidate
region, and each of the regions hosts only one seed. The final process-
ing step performs a refinement of the borders of each detected villus, so
to obtain a final and accurate shape for each villus exploiting the local
grayscale intensities of the original image.

3.1.2 Illumination correction

In order to correct for heterogeneous illumination in the images, a top-
hat filtering has been applied to each image I as first step in a morpho-
logical processing pipeline of four different steps. In this process, a mor-
phological opening (an erosion followed by a dilation) using as struc-
tural element a disk of radius of R1 is applied to the input image I . The
image Io computed as such carries the information of the background il-
lumination. The illumination-corrected image Iill is simply calculated by
subtracting the estimated Io from the original image: Iill(x, y) = I(x, y)−
Io(x, y) with x ∈ {1, 2, . . . , 1024} and y ∈ {1, 2, . . . , 1024} being the coor-
dinates of each pixel within the image.

3.1.3 Villi de-texture

As shown in Figs. 12 and 13 the shape and the appearance of the mucosa
in each region of the image is very heterogeneous:

• goblet cells can be either clearly visible (Fig. 13, top) or out of focus
(Fig. 12, top) in distinguishable villi;

• crypts can be the largest objects shown (Fig. 13, bottom);

• no sign of goblet cells and no clear border of the villus (Fig. 12,
bottom).

Villi de-texture is performed through a three steps pipeline, composed by
a series of morphological reconstructions with the purpose of reducing
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the internal part of each villus of each image to a connected homoge-
neous set of pixels. Morphological reconstruction [79] among two im-
ages, the marker and the mask, consists of repeated operations of dila-
tion of the marker image, until its contours fit the ones of the mask. The
main result of this process is that the peaks of the marker image are di-
lated, creating homogeneous regions that originate from them. As the
goal is to create smooth regions inside the villi (where the seeds lie), the
first morphological reconstruction is performed using as the marker a
rescaled version of the image, Is, with its grayscale intensities reduced
by an image-adaptive value c, and Iill as mask, to obtain I1. In order
to provide a reconstruction whose behaviour adapts to the specific ap-
pearance of the villi in each image, the gray level intensity range ri in a
neighborhood of each seed si(x, y) is computed, with the position of the
ith seed si(x, y), i = . . . , N , andN the number of seeds of the image. The
average value among all seeds is retained as c = 1/n

∑
i ri. The second

and third morphological reconstructions are performed in series, to ob-
tain I2 and I3, in which regions are progressively smoothed. They use as
markers an eroded version of I1 and a dilated version of I2 respectively,
and I1 and I2 as masks. The markers are obtained using disk shaped
structural elements of radius R2 and R3 respectively. As Figs. 14 and 15
show, each of these steps ensures to smooth the image in the proximity
of each seed.

3.1.4 Quadtree decomposition

Quadtree decomposition [80] is a well-known technique that is used in
image processing to subdivide square images into four blocks, when a
certain condition is met. Usually the condition involves the definition of
a homogeneity criterion: as such, the decomposition adapts to the struc-
ture that each image is carrying. The final result can be a set of blocks of
different size. In this work, the criterion is a threshold T for the range of
the intensity values for each block. For each seed, the average grayscale
intensity µi is computed in a circular neighborhood of si(x, y) of radius
R4. Starting from the block B containing the seed, the connected set of
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Figure 14: Processed images visually explaining the morphological process-
ing pipeline steps: (Top) Iill (Bottom) I1
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Figure 15: (Top) I2 (Bottom) I3
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blocks resulting from the quadtree decomposition with average intensity
µB for which the condition |µB−µi| ≤ θµi is satisfied are assigned to the
region Vi belonging to the ith seed.

3.1.5 Splitting process

Since two seeds can collapse into the same region after the quadtree de-
composition, a splitting process is required to ensure that each seed orig-
inates only one villus, and that one villus is defined by only one seed.
If a region V contains S different seeds si(x, y)|(x, y) ∈ V , the possible
splits are first detected considering every combination of possible differ-
ent pairs of seeds [Si, Sj ] : i 6= ji, j ≤ S. A segment lk, k = 1...i · j is
traced between [Si, Sj ], and the pixel Pk ∈ lij is selected as the pixels
among those in lk with the minimum Euclidean distance to ∂V , where
∂V is the border of the region V. The region V is then iteratively split con-
sidering all Pk splitting points ordered with increasing distance from ∂V .
The split is obtained by cutting the region V with a line normal to lk and
passing through Pk. At the end of this process, only regions containing
one seed are kept, and the selection of candidate villi {Vi, i = 1, . . . , N}
concludes.

3.1.6 Final border refinement

Since the output of morphological processing and the splitting process
only represents a rough estimation of villi’s shape (see Fig. 16), a refine-
ment process is needed for a reliable estimate of the borders of each vil-
lus. An operation of morphological closing with a disk shaped structural
element of radius R5 is performed to smooth the borders. Given a region
Vi, and a point Q(x, y) ∈ ∂Vi, a line of length L = 80 pixels considered
fromQ(x, y) and normal to ∂Vi. A new border pointQ′(x, y) is estimated
as the point with minimum intensity along the line to define the new bor-
der ∂V ′. Finally, third-order Savitzky-Golay smoothing filter [81] with
window size f = min(25,l), where l is the length of ∂V ′i contour. Over-
lap among different regions is avoided by imposing a minimum distance
among each smoothed contour.
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Figure 16: The first-step rough segmentation results superimposed on two
images.
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3.1.7 Results and conclusions

To quantify the performance of the proposed method, the Dice coeffi-
cient for each villus is computed by comparing the segmentation results
with the respective manual ground truth. The values of R1 = 200, R2 =

60, R3 = 25, R4 = 2, R5 = 19, T = 0.08, θ = 0.05 have been heuristically
set after analyzing the performance on 100 images among the 166 of the
database. The proposed method has been tested on 290 villi, and reached
an average accuracy of 81%. The median value of the accuracy among all
290 villi is 88%. Only in 22 cases the single accuracy scored below 50%.
Figs. 17, 18, 19, 20, show four images from the dataset and the true and
detected villi for visual comparison.

3.2 Automatic villi detection via superpixel seg-
mentation

3.2.1 Materials

In this subsection, a different approach to the same problem is proposed.
Here, the process is aimed at full automatic detection by using superpixel
segmentation. For this, 155 confocal images were obtained from a previ-
ous clinical trial conducted at the Gastroenterology and Liver Services of
the Bankstown-Lidcombe Hospital (Sydney, Australia) [73]. These image
maintain the resolution of the image already presented (0.5×0.5 mm per
image, in-plane resolution of 2 pixel/ µm, 1024×1024 pixel dimensions).
Again, as shown in Fig. 21, images convey very heterogeneous informa-
tion. Among the three CLE features (fluorescein leakage, cell drop-out
and cell junction enhancement), each image of the dataset exhibit only
one feature. In total, the dataset is composed by 29 CDO images, 65 CJE
images and 61 FL images. A random selection of 70 images has been
used for populating the training set. Another random selection of 15
of the remaining images was used to tune the post-processing analysis,
a step that will be detailed in the following subsection. The remaining
70 images were used for testing the method’s performance. All images
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Figure 17: (top) ground truth labeling and (bottom) villi estimated area su-
perimposed on an image from the dataset. The algorithm performs almost
perfectly on this image (mean Dice coefficient is 94%).
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Figure 18: (left) ground truth labeling and (right) villi estimated area su-
perimposed on an image from the dataset. The algorithm performs almost
perfectly on this image (mean Dice coefficient is 98%).

Figure 19: (left) ground truth labeling and (right) villi estimated area su-
perimposed on an image from the dataset. The algorithm performs almost
perfectly on this image (mean Dice coefficient is 99%).
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Figure 20: (left) ground truth labeling and (right) villi estimated area super-
imposed on an image from the dataset. The algorithm encounters difficul-
ties with this image (mean Dice coefficients is 83%).

have been manually analyzed by an expert, providing an outline of each
visible villus in the image as a ground truth.

The first step in the proposed method aims again at the construction
of a rough segmentation identifying a candidate region of the image with
the highest possibility of being part of a villous fold. This is performed by
processing the image with a computer vision technique called superpixel
segmentation, in particular using the SLIC implementation [82]. The pur-
pose of this process is to create clusters of spatially connected pixels ex-
hibiting similar texture. Each of the superpixels is then analyzed, and 37
features are extracted from each of them, to be fed to a classifier. A multi-
scale analysis is performed, by computing and analyzing three versions
of the original image (original size, plus two rescaled versions by a factor
of 1/2 and 1/4 respectively), bringing the total size of the feature vector
for each superpixel to 111. The classification step is performed with an
ensemble of 50 decision trees, trained on 70 random images from the
dataset. A post-processing refinement step of the computed prediction is
performed to improve the accuracy, tuned on a sub-sample of the image
dataset (15 images, referred to as ”tuning set”) to maximize ground truth
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Figure 21: Two images from the dataset.

49



adherence and prediction accuracy. The algorithm is then tested on the
remaining 70 images.

3.2.2 Superpixel segmentation

As a pre-processing step for each image, all greyscale values were nor-
malized between 0 and 256, and a median filter (of size 3 × 3) was then
applied to reduce noise. Segmentation via superpixel is then performed
by grouping pixels into perceptually meaningful atomic regions, used
to replace the rigid structure of the pixel grid. Many computer vision
algorithms use superpixels as their building blocks [83; 84], given their
straightforwardness and the ease of their implementation. A commonly
used superpixel implementation is the Simple Linear Iterative Clustering
(SLIC) [82]: this implementation, based on k-means clustering, is fast to
compute, memory efficient, simple to use, and outputs superpixels that
adhere well to image boundaries. SLIC was designed with the following
properties in mind:

• Superpixels should adhere well to image boundaries;

• Superpixels should be fast to compute, memory efficient and sim-
ple to use;

• Superpixels should both increase the speed of segmentation and
improve the quality of the results.

This superpixel generation algorithm is distinct from k-means clustering
in two important ways:

• the number of distance calculations in the optimization step is dra-
matically reduced by limiting the search space to a region propor-
tional to the superpixel size. This reduces complexity to be linear
in the number of pixels N (and independent of the number of su-
perpixels k);

• A weighted distance measure combines color and spatial proxim-
ity, while providing control over the size and compactness of the
superpixels.
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SLIC clusters pixels and efficiently generate compact and nearly uni-
form superpixels, imposing a degree of spatial regularization to extracted
regions. This technique only requires two parameters to set: the desired
size of each superpixel N and a regularization parameter λ, that tweaks
the smoothness of their contours. The entire algorithm is summarized in
Algorithm 1.

/* Initialization*/;
Initialize cluster centers Ck = [lk, ak, bk, xk, yk]

T by sampling pixels
at regular grid steps S.;
Move cluster centers to the lowest gradient position in a 3× 3
neighborhood.;
Set label l(i) = −1 for each pixel i.;
Set distance d(i) = inf for each pixel i.;
repeat

for each cluster center Ck do
for each pixel i in a 2S × 2S region around Ck do

Compute the distance D between Ck and i.;
if D < d(i) then

set d(i) = D;
set l(i) = k;

end
end

end
/* Update */;
Compute new cluster centers;
Compute residual error E.

until E ≤ threshold;
Algorithm 1: SLIC Superpixel segmentation.

SLIC superpixels generally correspond to clusters in the labxy color-
image plane space. While in this explanation LAB color space will be the
reference, remember that all the images used in this work are monochro-
matic. The measure D defines the distance between a pixel i and a clus-
ter center Ck, as defined in Algorithm 1. Color proximity and spatial
proximity are normalized to their respective maximum distances within
a cluster, Ns and Nc. While the maximum spatial distance within a
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given cluster should correspond to the sampling interval, color distances
can vary significantly from cluster to cluster, and from image to image.
Therefore, the maximum color expected is fixed to a constant, that allows
to weigh the relative importance between color similarity and spatial
proximity. When the constant is small, the superpixels adhere tightly to
image boundaries, but have less regular size and shape. About its com-
plexity, by localizing the search in the clustering procedure, SLIC avoids
performing thousands of redundant distance calculations. In practice, in
fact, one pixel falls in the neighborhood of less than eight cluster centers,
meaning that SLIC isO(N) complex (while the upper bound for classical
k-means clustering is O(kN ).

Two typical images from the dataset, with superpixels superimposed,
are shown in Fig. 22. This step has been implemented with MATLAB
R2015b, using a third-party implementation of SLIC superpixels bun-
dled in vlfeat [85]. Once the superpixel segmentation is obtained, the
manual ground truth is transformed in superpixel space, as Fig. 23 illus-
trates. Each region of this image (corresponding to each computed super-
pixel) is labeled as part of a villous fold if, for that superpixel, the ratio
among villous-labeled pixels and background-labeled pixels is greater
than a threshold R, whose value is computed as explained in Sec. 3.2.5.

3.2.3 Feature extraction

For each image in the dataset, three different scales are analyzed for fea-
ture extraction: the image at the original scale, and two rescaled versions
of it by factor of 1/2 and 1/4, respectively. In this way, a multiscale anal-
ysis of each image is performed, to improve robustness of the classifica-
tion and to avoid possible errors due to texture similarities at the original
scale. A total of 111 features are extracted for the multiscale analysis of
each superpixel S, 37 for each image scale:

• Mean intensity µS and standard deviation σS : greyscale intensity
variations can be useful features to differentiate among villous folds
(i.e., foreground) and mucus (i.e., background);

• Contrast CS , EnergyES and HomogeneityHS from the Gray Level
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Figure 22: Two images with SLIC Superpixels superimposed.
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Co-Occurrence Matrix (GLCM): GLCM is a statistical method of
examining texture considering the spatial relationship of pixels. It
calculates how often pairs of pixels with specified values and spa-
tial locations occur in an image, building a 8 × 8 occurrence ma-
trix. Extracting statistical measures from this matrix provides in-
formation about the specific texture. From this analysis, contrast
(local variations in the GLCM), energy (sum of squared elements
in GLCM) and homogeneity (how close the distribution of the ele-
ments in the GLCM is to its diagonal values) measures have been
included in the feature set;

• Histogram of Local Binary Patterns [86] with 32 bins, hLBPS . Lo-
cal Binary Patterns (LBP) are one of the most descriptive features in
the field of texture classification, and are commonly used in com-
puter vision. They permit the creation of features able to identify
different textures in an image. In this work, for each pixel of the
image, an 8-bit word is created by comparing its greyscale intensity
value with the ones in its 8-neighborhood. Iteratively, starting from
a fixed direction, if the central pixel has a grayscale value greater
than its neighbor a 1 is encoded in the 8-bit word, a 0 otherwise.
When a word has been assigned to each pixel, each word is trans-
lated to decimal (0-256). A histogram (32 bins) is then computed
for the LBP of pixels in each superpixel, expressing in such way the
spectrum of the texture of the selected portion of the image. This is
finally added to the feature vector.

3.2.4 Classification with random forests

For each superpixel, the probability of it being part of a villus fold is
computed as the score of a binary random forest classifier using 50 clas-
sification trees. The training process has been performed using 30870
superpixels belonging to the 70 images from the training set.
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Figure 23: From manual ground truth (top) to superpixel-based ground
truth (bottom).
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3.2.5 Final refinement and results

After the classification step, binary prediction masks have been created
according to the score assigned to each superpixel by the classifier. To
discard isolated superpixels selected as villi, all connected regions smaller
than P pixels have been excluded from the prediction masks, and holes
in the binary masks were filled, to compensate for obvious false nega-
tives in the classification step. The tuning of this final refinement process
was based on the tuning set, composed by images excluded from both
the training and the testing phase of the classifier. Accuracy, sensitiv-
ity and specificity of the classification step have been computed, both in
superpixel and in pixel space, along with the Dice scores between the
prediction masks and the superpixel based ground truth.

Superpixel parameters were set as N = 50, λ = 0.05 to obtain a num-
ber of about 440 superpixels per image, each of them resulting well ad-
herent to image borders. The value of P = 15742 was tuned by selecting
the maximum area (smaller than Plim = 16900 pixels, as a hard-coded
safety value based on villi’s sizes from the tuning set, corresponding to
a patch of 130× 130 pixels) among all false positive villi identified in the
tuning set. The value of R = 0.5 was set by maximizing Dice correla-
tion among the labeled ground truth in pixel space and the one in super-
pixel space in the images of the training set (Dice score between pixel-
space GT and superpixel-space GT at R = 0.5 is 96.3%). To quantify the
performance of the proposed method, the Dice coefficient for each im-
age is computed by comparing the prediction masks with the respective
ground truth both in superpixel space and pixel space. The proposed
method has been tested on 70 images (a total of 336 villi), and reached an
average general accuracy of 85.9%. Sensitivity (True Positive Rate, TPR)
is 92.9%, while specificity (True Negative Rate, TNR) is 77.0%. Mean Dice
values between each prediction mask and its ground truth in superpixel
space is of 87.4%, and the pixel-wise total classification accuracy in pixel
space is 86.4%. Sensitivity and specificity referring to the pixel domain
are, respectively, 93.50% and 71.59%. Fig. 24 shows two images from the
dataset and the true (a-c) and detected (b-d) villi for visual comparison,
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in superpixel space.

3.3 Goblet cells detection and density estima-
tion - Morphological processing

Briefly, the motivation of highlighting goblet cells in CLE images is strong:
goblet cells density in the duodenal epithelium is used as a complemen-
tary measure of CD severity together with villi appearance and crypt
presence. In fact, a reduction of goblet cells density is among the archi-
tectural changes that occur in the pathological mucosa of an individual
affected by celiac disease, along with VA and CH. With an automatic tool
to measure such density, experts will be able to better score the severity
of CH and VA exploiting this new information, with a significant impact
in the medical practice. Hence, along with the evaluation of VA and CH,
goblet cell density is an important marker of mucosa damage: the ulti-
mate goal of this part of this thesis is to provide a system that, exploiting
the correlation among the density of goblet cells in the columnar epithe-
lium and the severity of VA and CH, can help the medical expert in accu-
rately staging the disease, potentially reducing the number of performed
biopsies.

The first step in the proposed method is cell detection: starting from
the ROIs, this is obtained by matched filtering and regional maxima trans-
form. A cell segmentation step via Voronoi diagrams defined an approx-
imate shape for each cell; the mean intensity value in each of those was
computed. The mean µb and standard deviation σb of the (mean) inten-
sity of the cells whose centers has been obtained by the bright matched
filter have then been evaluated. An images-specific threshold θ, used as
a discriminative threshold to label the dark cells as goblet cells or other
dark area, is then estimated as θ = µb − Aσb, where A is to be intended
as a reinforcing factor to exclude from the computation all the candidate
cells that might be bright outliers. After estimating an image-specific
threshold to distinguish between goblet cells and other dark areas, a bor-
der refinement method based on region growing is then applied to each
identified goblet cell, so to improve the final segmentation results. From

57



Figure 24: (a-c) ground truth labeling and (b-d) villi estimated area super-
imposed on two different images from the dataset.
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Figure 25: The process of selecting a ROI (right) from a full image (left), to
lower computational complexity and to avoid inclusions of blood vessels,
crypts or villi. Note how the ROI shows a majority of bright cells and a few
dark goblet cells.

Figure 26: A ROI (right) from a full image (left).
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the dataset, 45 images have been selected with the same characteristics
as the ones already presented in the sections above, this time including
only images showing goblet cells. As Figs. 25 and 26 show, a selection of
the region of interests was needed because of the information contained
in the full images: structures like blood vessels, crypts, artifacts, villi or
intracellular dark tissue as well as epithelium not exhibiting goblet cells
might cause misclassifications and penalize the automatic analysis. This
step, in the work presented in this section, has been performed manually.

3.3.1 Preprocessing and matched filtering

In order to reduce the noise in the ROIs, a Wiener filtering [87] was ap-
plied to all the ROIs. All images were then normalized to have zero mean
and a standard deviation of 1. As shown in Figs. 25 and 26, each ROI
exhibits a majority of bright cells (from the duodenal columnar epithe-
lium) and a minority of slightly bigger, darker cells (mucin-rich goblet
cells). Two complementary circular matched filters (with radius of size
comparable to the size of one cell, r = 12 pixels) have been designed
with the purpose of enhancing all the cells in each ROI. To detect all the
bright cells, a multiscale circular template has been used to define a fil-
ter bank, whose maximum response across the different scales enhances
the bright cells (Fig. 27, middle) via convolution with each treated ROI.
The regional maxima transform, which selects 8-connected component
of pixels whose external boundary pixels all have a lower value, was
then applied to the result of the convolution, to select the square regions
of size N ×N having altogether an intensity value greater than all their
neighbors. These sets of pixels were selected as the centroids of the bright
cells. In the same way, a second bi-dimensional filter was implemented,
complementary to the first one (with negative values in its circular part),
to isolate all the potential dark cells. As a second step, after the convolu-
tion (Fig. 27, bottom), the same regional maxima transform isolated and
selected candidate centroids for goblet cells.
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Figure 27: A ROI (top) and the images obtained through matched filtering
using the bright (middle) and the dark (bottom) template.
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3.3.2 Candidate cells detection

In all these N × N regions, mean, entropy and range were calculated.
Given the particular heterogeneity in cell appearance within the epithe-
lium (even within a selected ROI), not all dark spots are goblet cells, as
can be appreciated in Fig. 27: in some of the ROIs, dark spots in the im-
age represent intracellular space or thick structural borders, which need
not to be erroneously labeled as goblet cells. To reduce the dark candi-
dates and to minimize false detections, a selection process was applied
to confirm as centroids only the N ×N regions exhibiting mean intensity
value µd < θµ, entropy Ed < θE and intensity range rd < θr.

3.3.3 Voronoi diagram and mucin-cell selection

After the detection of the candidate bright and dark cells, the aim is iden-
tifying the cellular pattern, so to refine the cells’ description correspond-
ing to each centroid.
Using as centroids all the regional maxima obtained by the matched fil-
tering processes, a Voronoi diagram [88] (using as a metric of closeness
the Euclidean distance) was computed for each ROI, obtaining a parti-
tion of the image into regions, using a distance metric as a criterion to
assign each pixel to a region or another. Using the centroids obtained
by the matching filtering as the subset of points belonging to different
regions, a rough cell segmentation of each image is obtained.
Each of the cells identified by the Voronoi diagram has then been eroded
to exclude borders and possible interfering surrounding structures and
has been characterized by means of its grey-scale mean value. Mean µb
and standard deviation σb of all the average values of the cell originating
from the bright matched filter computations were calculated. To identify
the goblet cells among the candidates originating from the dark matched
filtering computation, a thresholding process based on the mean inten-
sity of each candidate cell has been performed: only the candidate cells
with mean intensity value below the threshold θ = µb −Aσb were classi-
fied as goblet cells (i.e., only the significantly dark ones).
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3.3.4 Refinement and classification

Since Voronoi’s diagram is only a rough estimate of the real borders of
each cell, it is sensitive to the presence of double positives, meaning mul-
tiple candidates resulting from multiple local maxima response from the
matched filters that are close to each other, effectively belonging to one
single cell. To tackle this problem, and in order to better segment each
identified goblet cell, a region growing approach has been applied. For
each detected goblet cell, a circular region centered on its centroid with
radius equal to Rmin is selected, and on this region the mean intensity
value is computed. Then, the external border of the circular region is
computed, and its average intensity value µi is calculated. If µi < θ,
the pixel within the border whose value is lower than θ are added to the
original region. The procedure is then iterated by increasing the value of
the radius by one. When µi > θ the procedure ends, and the final cell is
computed as the convex hull of the resulting region. As final step, goblet
density is estimated for each ROI, along with the percentage error and
the correlation between real and estimated densities.

3.3.5 Results

True positives (TP) and false positives (FP) were computed for each im-
age, comparing the detection and segmentation results to the ground
truth. The value of θ was optimized by varying the variable A in θ =

µb−Aσb. The optimum value of A was found by using a receiver operat-
ing characteristics (ROC) analysis (Fig. 28) considering the true positive
ratio (TPR, average on all images of the ratio among TP and the amount
of real positives, according to the ground truth) and the number of FP
per image. The optimal value of θ was found by selecting the farthest
point of the ROI from the line drawn in the ROC space between its first
and last points, in a similar manner to Youden index [89]. Results have
been computed using a Leave-One-Image-Out technique, iteratively se-
lecting θ̂ on 44 images and testing its value on the remaining one. The
other parameters, after performing parameter tuning on a subset of the
image database, were set using these values: N = 2, θµ = 0, θE = 0.1,
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Figure 28: A ROC curve for the optimization of θ. The farthest point from
the red line is selected as optimal value.

Rmin = 3, and θr = 1.

The proposed method reached 90.3% sensitivity with an average of
0.44 FP per image (0.22±0.13s per image on a Intel i7-3630QM @ 2.40GHz,
8GB DDR3 RAM with an average image size is 130× 94). Accepting one
false detection per image (i.e., FP = 1), the sensitivity reaches 95.5%.
The detection and segmentation of goblet cells in regions of interest is
accurate and precise, as Fig. 29 shows.

The average estimated and average real goblet densities are compa-
rable: the percentage error w.r.t. the real density is 9.7 ± 16.9%, while
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Figure 29: Results on a ROI (bottom) and superimposed on a full image
(top)
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the correlation is 87.2%. In Fig. 30, a scatter plot of the correlation among
estimated and true densities is shown. The R squared coefficient of the
regression line is R2 = 0.761, meaning that 76.1% of the variance of the
data is predicted by the linear fit.

3.4 Goblet cells detection and density estima-
tion - Fast alternative method

A faster alternative way for goblet cells’ and crypts detection has been
implemented. The aim, in this implementation, is to achieve faster re-
sults by bypassing both the Voronoi step and the bright cells analysis.
Based on the results of the matched filtering obtained by convolving the
image with the filter designed to respond to dark patches (response de-
picted in Fig. 31), an absolute thresholding step has been devised to iso-
late only the regions with the highest response to the filter. Those regions
have then been filtered by area, and labeled as goblet cells. This step does
not use superpixels or the slow Voronoi cell detection, reaching an accu-
rate estimation in a small amount of time if compared to the previously
detailed method. This step will be better explained in the next chapter,
dedicated to presenting the GUI.

3.5 Crypt detection

A fast algorithm, inspired by the fast goblet cells detection method de-
scribed above, has been implemented to detect crypts in confocal images.
Given the estimated villi segmentation, the darkest regions in the villous
folds are selected as estimated crypts. First, an image is normalized to
zero mean and unitary variance (Fig. 32).

Then, all grayscale intensities are normalized again to the intensity
range exhibited by all pixels included in the villi segmentation mask.
The edited rescaled image is then transformed to a binary mask, and a
morphological operation is performed on this to select only the biggest
dark areas in the binary image. The binary mask and the final crypt
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Figure 30: Estimated densities (y-axis) versus true densities (x-axis). The
regression lines has m = 0.8035 and q = 0.0001, the value of R2 is 0.761.
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Figure 31: An image (top) and the response of the matched filtering among
the image and a bi-dimensional filter, built to cause maximum response in
correspondence of dark small regions of the given image.
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Figure 32: (top) An image exhibiting goblet cells. (bottom) A normalized
version of the image.
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segmentation of an image of the dataset is shown in Fig. 33.

3.6 Fluorescein leakage and cell dropout

As this chapter’s introduction presented, defects in intestinal barrier func-
tion have been associated with various inflammatory intestinal diseases
such as Crohn’s disease, ulcerative colitis and irritable bowel syndrome.
It is therefore essential that an intact intestinal barrier separates the host
from the intestinal contents. It is estimated [75] that epithelial cell shred-
ding in mice leaves a gap or discontinuity in the epithelium that in most
cases resolves in 8-12 minutes, potentially challenging the epithelial bar-
rier [90]. With acriflavine (or fluorescein) and CLE, these gaps can be de-
tected in humans [67; 75]. Cell shedding is increased by high concentra-
tion of tumour necrosis factor (TNF), suggesting that this process might
be increased in IBDs [91]. In fact, direct visualization of barrier defects
is possible with CLE, and these parameter predict relapse of IBD [75].
Quantitative ways of measuring in real time gaps, micro-erosions and
fluorescein leakage would improve the clinical practice. In the proposed
CADSS, a hyper-fluorescence detector is built-in into the GUI. Along
with all other quantitative measurements proposed and introduced in
this Chapter, it highlights and contours the regions in each image that
show almost white-saturated intensities (over 95% into the image do-
main scale space), provided that their areas are significantly big (more
than 200 pixels). A simple thresholding is done on the input image, ob-
taining a binary mask highlighting the almost-saturated regions. On this,
a simple morphological closing operation is performed to join close uni-
form leakage regions, and all regions with an area bigger than 200 pixels
are kept. An example of this is shown in the images in Fig. 34. Along
with all other methods implemented in the GUI, it will be presented in
the next Chapter.
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Figure 33: (top) unprocessed binary transformation of the edited image
shown in the previous Figure. (bottom) The final binary segmentation
mask.
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Figure 34: (top) An image with fluorescein leakage in the intervillous space.
(bottom) Regions most affected by leakage according to the proposed detec-
tion scheme.
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Chapter 4

Graphical User Interface

4.1 Overview and system requirements

To better showcase the results, and to be the most useful to medical ex-
perts, a graphical user interface (GUI) has been implemented in MAT-
LAB, using GUIDE. The GUI starts by asking the user to load the image
requiring analysis (Fig. 35), displaying then the main interface (Fig. 36).

The GUI does not need external toolboxes to work correctly: to run
properly, it only requires an Internet connection to download the MAT-
LAB runtime with all the necessary packages. An offline version is avail-
able, bundled with MATLAB runtime.
Along with the main executable, CLE Inspector comes with five demo
images to showcase the software’s capabilities. To keep the size of the
package small, the multiscale analysis has been discarded, in favor of a
faster (and more lightweight) single-scale analysis, based on the half-size
scale of the original images (512×512). The GUI is itself split in two parts:
on the left, the space is reserved for visualization purposes. Once loaded,
the image is shown in this space. On the right, as it’s visible in Fig. 36, the
options to customize the desired quantitative measures to compute are
presented to the user. The top part of the options panel highlights the in-
put toggles needed before starting the analysis. The bottom part, instead,
offers the user the tools to visually represent the computed metrics, and
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Figure 35: The user is asked to select an image to load.
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Figure 36: The main User interface of CLE Inspector.
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present the (eventually) computed goblet cells density. In particular, all
the features presented in Chapter 3 are computed (goblet cells density,
leakage and hyperfluorescence, villi segmentation and eventual detected
crypts). In the next sections inputs, outputs and the whole workflow of
the process (along with the details) will be presented, with visual exam-
ples (screenshots of the GUI) concluding this Chapter.

4.2 Inputs

According to the very nature of the image under analysis, the user se-
lects if such image exhibits a background that is darker or brighter with
respect to the villi. This choice is required (on default, Darker Background
is selected, since it’s the class with the highest number of elements on the
training set): according to this input, the algorithm selects the best clas-
sifier for the villi segmentation process. More details will be presented
in the next paragraph. The other inputs required are the selection of the
image features on which the computation should be based upon. Three
different optional processes are offered to the user, that needs to select the
checkboxes of the processes that he wants CLE Inspector to run. When all
the input parameters have been set, the user clicks the Analyze button,
and the computation starts.

4.3 Processing and workflow

When the Analyze button is pressed, the first step is the loading of the
correct random forest for the learning-based villi detection step. In fact,
two different random forests have been trained (on two different training
sets) and included in CLE Inspector for the purpose of generalization. The
two different datasets were build by labeling each image to a darker or
brighter background class according to the difference between the mean
intensity in the villi and outside of the villi, based on the manual seg-
mentation binary mask given by medical experts. A brief presentation of
the two classifiers is shown in Table 2.
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Darker RF Brighter RF
#Trees 50 50

#Trained Superpixels 77262 54125
#Trained Images 181 127

#Superpixels - Villi 63880 34947
% of SP-Villi 82.7 64.6

Table 2: Information about the training process of the two classifiers that
are bundled in CLE Inspector.

Three different measures have been computed for analyzing the dif-
ferent random forests. The first two are dependent on the number of
trees included in each random forest, and the last one is reflective of the
features chosen. Both of the first two measures are an indication of the
robustness of the training process: these are the Out-of-bag error and the
mean margin. The OOB error is a measure of the misclassification prob-
ability for the out-of-bag observations in the training data. The plots
in Figs. 37 and 38 show the cumulative error obtained while predicting
the class of the out-of-bag observations using only the number of trees
shown in the horizontal axis. Apart from an unexpected spike corre-
sponding to the first trees in the OOB Error graph for the darker back-
ground RF, both graphs show as expected a decreasing trend for the error
as long as more trees are included in the classification process. Moreover,
there is a difference in the performance of the algorithms: the final aver-
age error for the brighter-background RF is 13.03%, while the one for the
darker-background RF performs better, at 10.52%.

The same comparison has been done to each classifier’s mean mar-
gin. Margin, in the binary classification field, is a measure of the distance
between the predicted probability for the positive class and the predicted
probability of the negative class. Obviously, the higher the margin, the
better the classification results. As shown in Figs. 39 and 40, the conclu-
sion from the previous analysis is confirmed. In the bright background
case the random forest reaches a stable margin (of about 0.553) when
only 10 to 15 trees are included in the classification process.

In the darker background case the situation is similar, but the mar-
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Figure 37: How error in the out-of-bag observations evolves, as more trees
are included in the random forest ensemble for the darker background im-
ages.
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Figure 38: How error in the out-of-bag observations evolves, as more trees
are included in the random forest ensemble for the bright background im-
ages.
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Figure 39: How the mean margin in the out-of-bag observations evolves,
as more trees are included in the random forest ensemble for the darker
background images.
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Figure 40: How the mean margin in the out-of-bag observations evolves, as
more trees are included in the random forest ensemble for the bright back-
ground images.
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gin is higher (at about 0.648), as it is expected given the previous point
made about the OOB error. Given the combined information from these
analyses, all 50 trees were kept for both the random forests.

Once one classifier is loaded, the input image is processed for features
extraction. First, superpixels are computed from the image. For this step,
the already introduced vlfeat has been discarded in favor of a new native
MATLAB’s image processing toolbox method to compute superpixels,
introduced in the latest release (R2016a). This method comes with three
positive points: it permits faster computation times; the GUI has no ex-
ternal dependencies; SLIC can be updated to SLIC0. With SLIC0, in fact,
the only parameter to set is the desired number of superpixels to com-
pute (that has been set to 441 for continuity reasons), a number that is not
guaranteed to be the exact number of different superpixels computed by
the end of the process, since the algorithm self-adapts to the image un-
der analysis. The algorithm will vary the size of each superpixel, not
forcing it to be close to a given value, using more degrees of freedom
if compared to the simple SLIC version implemented by vlfeat. Because
of all these reasons, this new native algorithm has been adopted in this
GUI. For each of the 441 (on average) superpixels of each image, 37 fea-
tures are extracted: 32 of those are the bins of the histogram done on the
Local Binary Patterns extracted from the superpixel, using an adapted
version of efficientLBP. Two other features are mean intensity and stan-
dard deviation of intensities in the superpixel. The last three features are
contrast, homogeneity and energy, that have been computed via grey-
level co-occurrence matrix statistical analysis. All these features are well
known and widely used in the computer vision field, have already been
presented in the previous Chapter and convey information about the tex-
ture of the region in which they are computed. To study and rank all
37 features, the so called Permuted Predictor Delta Error has been com-
puted as a third measure for analyzing the correctness of the selected
random forest. This measure expresses each feature’s importance. For
each of the 37 variables, the measure is the increase in the prediction error
if the values of that features are permuted, in all the out-of-bag observa-
tions. Since a random forest is an ensemble of decision trees, the measure
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Figure 41: A bar plot highlighting each feature’s importance in the darker-
background RF bundled in CLE Inspector.

is computed for each of the 50 trees, then averaged on the entire ensem-
ble and divided by the standard deviation over the entire forest. The two
different rank plots are shown respectively in Fig. 41 and Fig. 42. For
the random forest used for brighter-background villi segmentation, it is
clear that the most important feature is the first one, that corresponds to
each superpixel’s mean intensity. Although some bins are clearly less in-
formative than others, each feature if permuted increases the prediction
error, as expected. For the second random forest, the one trained on the
darker background images, the results are different. The mean intensity
of the superpixel, in this situation, is not among the first 5 most informa-
tive features. This time, the most important features are among some of
the bins from the LBP histogram. From this, it can be inferred that for
images in which the two classes possess both mean intensities (darker
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Figure 42: A bar plot highlighting each feature’s importance in the brighter-
background RF bundled in CLE Inspector.
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villi, brighter background) and texture (more textured villus, smoother
background) that are different enough, both classifiers should be able to
distinguish well enough villi from the background. An example of this
will be shown in a comparison in the demo examples.

After feature extraction, the labeling is performed on the input image
by feeding the extracted feature matrix to the selected classifier (one row
for each superpixel), that predicts if each of them is part of the villous
fold or not. Given the prediction, a superpixel-based binary mask for
villi detection is reconstructed, labeling the villi. A post-processing step
is computed, that keeps in the mask only the connected regions with a
pixel area of at least 65 × 65 pixels (4225-pixel area, correspondent to
the hard threshold of 130 × 130 pixels put on the method presented in
Chapter 3 that was dealing with images 4 times bigger (1024×1024 w.r.t.
512× 512 in this case), to exclude isolated false positives.

Then, if the user checked the Find Goblet Cells checkbox, a goblet cells
detection algorithm is run, to calculate both the goblet cells density and
a binary mask for visualization purposes. First, the image is normalized
(zero mean, unitary variance). Then, a filter for matched filtering is de-
vised, such that the filter response is maximal in correspondence to small
dark round structures (the filter size has been set to 11× 11 pixels). After
this, the matched filtering is performed by convolving the input image
with the filter. This response is generalizable, and always conveys the
same information: in fact, the regions in which small dark structures are
located in the input image corresponds to the regional maxima in the fil-
ter response. Because of this, a simple hard threshold process, coupled
with a filtering on area size, gives us a reasonably accurate estimation
of the location of the goblet cells in the input image. Obviously, this in-
formation is coupled with the villi detection results, so that goblet cells
are only selected in the area that the random forest has labeled as villous
mucosa. The only downside of this sub-process is due to the image nor-
malization, that inserts artifacts close to the image boundaries, therefore
sacrificing a bit the accuracy of the detection in those regions.

If selected, then, a crypt detection algorithm is applied. This method
is based on simple thresholding on a normalized version (as above, based
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Figure 43: A waitbar informs the user about the state of the processing step.

on local standard deviation filtering) of the input image. The image, this
time, is normalized according to the minimum and the maximum values
of the regions of the image that have been selected as parts of the villous
folds. By doing so, the darkest areas of the image (supposedly, crypts and
goblet cells) are easily highlightable with a simple binarization process.
Then, a filtering is done on the binary mask to keep only areas larger
than 1024 pixels (32× 32 patches).

The process concludes with a leakage detection mechanism, that sim-
ply creates a binary mask that highlights the regions that are saturated in
the input image (over 95% of the grayscale permitted range in the non-
normalized input image).

During all of the steps above, the user is given a waitbar (that is up-
dated linearly with time as the analysis is performed) to convey a sense
of the status of the processing. This is shown in Fig. 43. Its update is lin-
ear with the feature extraction process (the update step size corresponds
to a computed superpixel), since this is the computational bottleneck of
the whole procedure.

All the steps in the pipeline, from the press of the Analyze button to
the graphical refresh of CLE Inspector main window after the analysis,
are computed in a relatively fast time, as shown by Table 3 (average
times computed on the 5 demo images in 5 different runs). The lap-
top that has been used for calculating computation times is a Intel i7-
3630QM@2.40GHz CPU, 8 GB DDR3 RAM, Windows 10 Pro OS with a
Samsung 840 EVO SSD of 1TB.
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Time (s)
Random Forest Loading 0.84
Superpixel computation 1.33

Feature extraction 14.22
Prediction + Villous Mask 0.44

Goblet Cells 0.28
Crypts 0.26

Leakage 0.02
Total (5-runs average) 17.39

Table 3: Computation times for 5 average runs on all demo images in a
medium-tier laptop.

4.4 Output

When the processes described above conclude, CLE Inspector outputs one
textual result and, according to the user’s choices, several user-friendly
visual options. The textual result is the goblet cell density: it is estimated
by counting the goblet cells in the field of view. Quantitative measures
are very dependent to the image under analysis: images with heteroge-
neous structures in their field of view can bring to erroneous calculations,
and report therefore biased results. On top of this, for this calculation it
has been supposed that the image under analysis is an image with in-
plane resolution of 0.5 × 0.5 mm and dimensions 1024 × 1024 pixels. If
the Find Goblet Cells checkbox has not been selected, a message (Goblet
Density: Not computed) is shown to the user.

Visual results, instead, are managed through a series of push buttons,
that possess these properties:

• Show Villi: as the name says, this button creates a green trans-
parency overlay of the villi binary mask on top of the original im-
age. This item is always clickable, once the process has finished
computing.

• Show Superpixels: a new overlay is done on the input image, show-
ing the borders of the superpixel’s analysis. Again, this item is al-
ways clickable, too.
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• Show Goblet Cells: if the user did check Find Goblet Cells, this button
will be enabled, and will show an overlay of the binary goblet cells
segmentation mask in orange on the original image.

• Show Crypts: this button is available only if Detect Crypts has been
checked before clicking the Analyze button. This overlays a cyan
transparency layer on top of the original image showing the esti-
mated crypts.

• Show Leakage: again, the button is clickable only if Identify Leakage
was checked, and by clicking it a red overlay on the saturated re-
gions is shown on top of the original image.

• Clean Image: a fast way to restore the original image in the fig-
ure space, that lets the user start a new series of overlays using
the already-performed computations if an undesired operation was
performed inadvertently.

• Reset Image: this button lets the user clean the image and choose the
parameters to perform a new analysis of the image already loaded.

• New Image: pushing this button will open a windows prompting
the user to choose a new image to be loaded.

4.5 Demo examples

The software comes with five demo images, anonymized and reflective
of the heterogeneous nature that a CLE-aimed algorithm needs to be able
to treat (and possibly exploit). In the rest of this chapter, figures illus-
trating the performances on all five demo images and the GUI itself, its
features, characteristics and behavior will be shown.

The first figures (Figs. 44, 45, 46, 47, 48) show how the UI behaves,
according to the checkboxes the user selected before the analysis began.
In this case, since the user selected Darker Background and Find Goblet
Cells, only the Show Goblet Cells button is clickable (along with Show Villi,
Show Superpixels and Clean/Reset/New Image, that are always clickable).
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Figure 44: The main results interface: the computed goblet cells density
is given to the user, and the different buttons give the user the chance to
visually present the results.

The output can be seen in the text box between the Analyze and the Show
Villi buttons, and the buttons can be clicked accordingly to combine the
results, as shown in the images. Pushing a button adding an overlay
on top of the image will hide previously drawn features: clicking Show
Goblet Cells and then clicking Show Villi, for example, will hide the goblet
cells. It’s enough to click Show Goblet Cells again to overlay the goblet
binary mask on top of the villi.

The second batch of images show how the algorithm behave on two
different images from a patient suffering from Crypt Hyperplasia. The
user instructs the software to detect crypts (Fig. 49), and after the pro-
cessing it can be seen that the text output regarding goblet cells (Fig. 50)
outputs a ”Not Computed” message, and the buttons updates (enabling
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Figure 45: The result of the villous segmentation.
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Figure 46: Computed superpixels of the input image.
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Figure 47: Goblet cells detection, based on the fast matched filtering algo-
rithm.
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Figure 48: All the results combined from this image.
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Figure 49: The main User interface of CLE Inspector, with an image exhibit-
ing crypts.

and disabling themselves) accordingly. Again, the user can combine the
visual outputs as he wishes (Figs. 50, 51, 52, 53, 54, 55).

When leakage detection is needed, instead, the user needs to select
Identify Leakage in the corrispective checkbox, after having chosen the cor-
rect property of the image (darker or brighter background). Again, the
buttons update accordingly (Figs. 56, 57). In these situations in which the
background is fairly dark and smooth with highly textured villi, the two
random forests behave similarly: this can be seen in Figs. 58 and 59.
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Figure 50: Villi segmentation.
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Figure 51: Computed superpixels.
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Figure 52: Detected crypts.
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Figure 53: Another image showing crypt hypertrophy.
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Figure 54: Cumulative results from this never before seen image.
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Figure 55: Cumulative computed results.
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Figure 56: Computed superpixels.
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Figure 57: Regions with hyperfluorescence have been detected by CLE In-
spector.
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Figure 58: Cumulative results on this image using the leak-based random
forest.

Again, a comparison among the two random forests on another im-
age showing smooth background against textured (albeit darker in most
superpixels) villus is shown in Figs. 60 and 61.
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Figure 59: Results on the same image, using the darker background-based
random forest. The results are worse, but comparable.
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Figure 60: All results computed using the leak-based RF.

105



Figure 61: All results computed using the darker background-based RF. A
false positive has been included in the villi segmentation.
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Chapter 5

Conclusions

In this thesis, the first methods for quantitative analysis and salient fea-
tures detection for confocal laser endomicroscopy images have been pre-
sented. All methods have been presented singularly in Chapter 3, while
a comprehensive software (CLE Inspector) has been developed and pre-
sented in Chapter 4. All these methods have the aim of solving a difficult
problem, that is salient features detection in medical images originat-
ing from CLE. In Chapter 2, the state of the art of this field has been
reviewed: the state of the art is improvable by a lot, since no quanti-
tative methods have been proposed to solve the problems affecting the
medical experts in the field. Extreme heterogeneity of structures, alter-
ations and reactions to contrast agents all have impeded the successful
application of image processing techniques in CLE images. It has been
explained why a future has been envisioned in which, thanks to quanti-
tative analysis of CLE images, virtual biopsies will be possible without
the need to recur to histopathology. In Chapter 3, all the algorithms en-
visioned, implemented and tested during this doctorate have been pro-
posed. Two different algorithms for detecting villi in CLE images have
been presented: the first relies on morphological processing and suffers
from unforeseen heterogeneity of the images, while the second relies on
learning and the application of SLIC superpixel segmentation, a com-
puter vision technique based on K-means clustering used to compute a

107



rough first-step segmentation of the images in multiple uniform regions
to classify according to texture-based features computed on the pixels be-
longing to them. Two algorithms for detecting goblet cells in the villous
folds have been presented: an algorithm based on matched filtering and
Voronoi’s segmentation, and a faster one only based on matched filter-
ing and hard thresholding, that offers results comparable (if not better)
with the first one. On top of this, a crypt detection algorithm has been
implemented for images from patients suffering from crypt hyperplasia
(one of the main alterations of celiac disease, among the others), and a
leakage detection for images originating from patients with altered in-
testinal permeability. In Chapter 4 a software has been proposed that
implements the methods presented in the previous chapter, that requires
an image in input and computes quantitative analysis of such image. The
user can visually see the results of all the different part of the algorithm
overlaid on the original image, as long as a quantitative measure (if re-
quired and toggled) of the goblet cells density in the input image. The
algorithms implemented in CLE Inspector are faster versions of the ones
shown in Chapter 3, with reactivity and speed in mind. If the user has
a multi-core system, the process takes advantage of that to speed up the
process, too. In the GUI, in fact, a smaller number of features is used for
villi detection (only one scale of the image is used, instead of the three
presented in Chapter 3), and the main problem of heterogeneity among
images has been tackled by letting the user choosing which features to
compute, according to the nature of the image under analysis. On top of
this, two different random forests have been trained to classify images
showing either darker or brighter background with respect to villi (i.e.,
if leakage is occurring outside the villi’s mucosa or not). In such a way, a
more focused detection is possible, due to the a priori information given
by the user.

The GUI (CLE Inspector) could be improved in various ways in the fu-
ture (lose the need to download MATLAB’s runtime to work, nicer GUI
with C/C++ or Java, better trained random forests). A flag conveying
information about the certainty of the output could be implemented, to
tell the user if the input image differs too much from the images used for
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training the classifier. In such case, in fact, the predictions could not be
sound or informative enough, and false positives / false negatives might
affect the accuracy of the model in unforeseen ways. Additional algo-
rithms can be devised and included effortlessly in the framework (lam-
ina analysis, different features on which to base the detection processes,
different learning algorithms and so on), given its modular nature and
programming easiness. A total reimplementation of this MATLAB GUI
as a front-end web-app could be done in the future, to lose the depen-
dency to MATLAB (or its runtime) for a successful run. For this, the se-
curity and anonimity of the images under analysis will need to be taken
into serious account too, given that personal information and sensitive
data need to be treated with precautions in the digital age.
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Appendix A

CADSS for the detection of
precancerous lesions in NBI
endoscopy

A.1 Summary

Barrett’s esophagus (BE) is a precancerous complication of gastroesophageal
reflux disease in which normal stratified squamous epithelium lining
the esophagus is replaced by intestinal metaplastic columnar epithelium.
Repeated endoscopies and multiple biopsies are often necessary to estab-
lish the presence of intestinal metaplasia. Narrow Band Imaging (NBI)
is an imaging technique commonly used with endoscopies that enhances
the contrast of vascular pattern on the mucosa. A computer-based method
for the automatic normal/metaplastic classification of endoscopic NBI
images is presented in this Chapter. Superpixel segmentation is used
to identify and cluster pixels belonging to uniform regions. From each
uniform clustered region of pixels, eight features maximizing differences
among normal and metaplastic epithelium are extracted for the classi-
fication step. For each superpixel, the three mean intensities of each
color channel are firstly selected as features. Three added features are
the mean intensities for each superpixel after separately applying to the
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red-channel image three different morphological filters (top-hat filtering,
entropy filtering and range filtering). The last two features require the
computation of the Grey-Level Co-Occurrence Matrix (GLCM), and are
reflective of the contrast and the homogeneity of each superpixel. The
classification step is performed using an ensemble of 50 classification
trees, with a 10-fold cross-validation scheme by training the classifier at
each step on a random 70% of the images and testing on the remaining
30% of the dataset. Sensitivity and Specificity are respectively of 79.2%
and 87.3%, with an overall accuracy of 83.9%.

A.2 Introduction

Gastroesophageal tumor is one of the most common cause of death among
industrialized countries, with a high mortality rate due to the difficulties
of early discovery and treatment. The main precancerous lesion is known
as Barrett’s Esophagus [92], a condition in which any extent of metaplas-
tic columnar epithelium that predisposes to cancer development replaces
the stratified squamous epithelium that normally lines the distal esopha-
gus above the gastroesophageal junction (GEJ). In the last decades, there
have been various controversies and debates about the pathogenesis, the
management and the definition of this common disorder, and a clear
consensus is still missing [93; 94; 95; 96; 97; 98]. BE develops as a con-
sequence of gastroesophageal reflux disease, which damages the distal
esophagus epithelium and stimulates healing through columnar meta-
plasia rather than through the regeneration of more squamous cells [99].
Endoscopically, the columnar epithelium and the squamous epithelium
are distinguishable: the former has a pink color with a coarse texture,
while the latter exhibits pale colour and glossy appearance. An exam-
ple of this difference can be seen in Fig. 62. Repeated endoscopies and
multiple biopsies are often necessary to establish the presence of intesti-
nal metaplasia, since the visual confirmation of the presence of colum-
nar epithelium above the GEJ is not enough to diagnose BE in a patient.
Generally, in addition to that, a histological confirmation of columnar
metaplasia in esophageal biopsy specimens is necessary, although there
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is discussion about which kind of metaplasia should lead to the final BE
diagnosis (namely, if goblet cells are required or not to diagnose BE with
certainty) [100].

Various imaging techniques can be used to screen the status of the
gastrointestinal tract, but the most used are conventional white light en-
doscopy (WLE) and narrow band imaging (NBI). WLE uses a conven-
tional RGB filter, a light source and a sensor to record high resolution im-
ages. Narrow Band Imaging, instead, uses an additional filter that splits
white light into two specific lights with narrowed bandwidths (blue and
green, at 400-430nm and 530-550nm respectively), canceling the contri-
bution of the red light. In this way, since blue and green lights possess
more superficial penetration than the red light, pit patterns and vascu-
lature texture are enhanced in the resulting images. Automatic classi-
fication of endoscopic images can be used by experts as a support sys-
tem, narrowing down the critical regions in the images, where abnor-
malities are most likely to be discovered, giving the experts a chance to
perform targeted biopsies, instead of performing potentially damaging
and not targeted biopsies using the four-quadrant protocol. This work
presents a novel local feature extraction method, by first performing a
rough clustering-based segmentation using superpixels, and classifying
each superpixel according to the calculated features in each of them us-
ing random forests, a well-established classification method. The main
aim of the method is the classification of each superpixel as normal or
metaplastic, to be used as first step in a CADSS with the purpose of help-
ing experts grading the severity of the patients.

A.3 Materials

In this study, 116 NBI images were obtained from clinical checkups con-
ducted at Istituto Oncologico Veneto (IOV) in Padova, Italy, in which
each patient underwent a surveillance endoscopy (Olympus CV-180).
Each image’s resolution is 720× 480 pixels. In order to provide a ground
truth, all images have been manually analyzed, providing an outline of
the eventual lesion in each of the images. Typical images from the dataset
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Figure 62: Four images from the dataset, showing pale squamous epithe-
lium and pink metaplasia, masked to remove personal information.
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and its manually defined ground truth are shown in Fig. 62 and Fig. 63,
respectively.

A.4 Methods

This method aims at the construction of a segmentation mask identify-
ing a candidate region of the image with the highest possibility of being
premalignant, according to its texture and color. This is performed by
processing the image with a computer vision technique called super-
pixel segmentation, in particular using the SLIC implementation [82].
The purpose of this process is to create clusters of spatially connected
pixels exhibiting similar color and texture. Each cluster is then analyzed,
and 8 features are extracted from each of them, to be fed to an ensemble
of 50 decision trees, trained using 10-fold cross validation, with a ran-
domly selected 70% of the dataset as training set and the remaining 30%
as testing set at each step of the cross-validation procedure.

A.4.1 Superpixel segmentation

As pre-processing steps, each RGB image of the dataset was first edited
to remove labels and personal information about each patient and exam
by applying a binary mask, as shown in Fig. 62. Then, each image was
normalized, transforming each color channel to zero mean and unitary
variance. Segmentation via superpixel is then performed by grouping
pixels into perceptually meaningful atomic regions, used to replace the
rigid structure of the pixel grid. Many computer vision algorithms use
superpixels as their building blocks [83; 84], given their straightforward-
ness and the ease of their implementation. A commonly used superpixel
implementation is the Simple Linear Iterative Clustering (SLIC) [82]: this
implementation, based on k-means clustering, is fast to compute, mem-
ory efficient, simple to use, and outputs superpixels that adhere well to
image boundaries. SLIC implementation clusters pixels of the image in
the combined five-dimensional color and image plane space to efficiently
generate compact and nearly uniform superpixels, imposing a degree
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Figure 63: Manually defined ground truth for each of the four images of the
dataset showed in the previous Figure.
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of spatial regularization to extracted regions. Briefly, the method starts
with an initialization step, where all cluster centers are sampled on a
regular grid. Centers are then moved to the lowest grayscale gradient
position in a 3 × 3 neighborhood, to avoid centering a superpixel on an
edge or on a noisy pixel. Then, a search region is defined for each center,
and each pixel belonging to each region is assigned to the closest cen-
ter. After this, an update step adjusts the clusters’ centers to be the mean
five-dimensional vector of all pixels belonging to each cluster. A post-
processing steps assigns disjoint pixels to nearby superpixels to enforce
connectivity. Two different images from the dataset, with superpixels
superimposed, are shown in Fig. 64. This step has been implemented
with MATLAB R2015b, using an implementation of SLIC superpixels by
vlfeat [85]. This technique only requires two parameters to set: the de-
sired size of each superpixel N and a regularization parameter λ, that
tweaks the smoothness of their contours.

A.4.2 Feature extraction

To be able to distinguish among normal and metaplastic superpixels,
some features needs to be defined on the basis of the meaning and ap-
pearance of normal and metaplastic regions. A total of 8 groups of fea-
tures have been identified from each superpixel as such:

• Mean intensities Ir, Ig and Ib: color is clearly among the peculiar
differences among the distinction from normal to metaplastic ep-
ithelium. Hence, the three different average intensities of the image
in RGB color space were selected as features;

• Mean intensity after Top-Hat filtering, Ith: Morphological top-hat
filtering is used to find the brightest spots in images with not uni-
form background, correcting the effects of an uneven illumination.
Top-hat filtering results in images with smoother and darker image
intensity, but with an enhancement of biological patterns of interest
as vascularization and tissue rugosity. Since this filtering can only
be performed to monochrome images, this feature was extracted
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Figure 64: Two images from the dataset, with superpixel segmentation su-
perimposed. As this figure shows, superpixels cluster together pixels ex-
hibiting similar texture and are spatially close one another.
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from the red channel, the most discriminative of the three among
normal and metaplastic tissue;

• Mean intensity after Entropy Filtering, Ien: Entropy filtering calcu-
lates, for each pixel, the entropy value of a neighborhood around
that pixel. Entropy is a measure of randomness, indicating how
much information (i.e., contrast, relative to greyscale intensity vari-
ations) is encoded in an image.

• Mean intensity after Range Filtering, Ira: Range filtering enhances
regions exhibiting sudden intensity changes among the image. Given
this, this filtering emphasizes patterns and borders of the object de-
picted in the images. Range and entropy filtering are useful, since
the two extracted features are statistical measures of the texture of
an image, providing information about the local variability of their
pixels.

• ContrastCS and HomogeneityHS from the Gray Level Co-Occurrence
Matrix (GLCM): GLCM is a statistical method of examining texture
considering the spatial relationship of pixels. It calculates how of-
ten pairs of pixels with specified values and spatial locations occur
in an image, building an 8 × 8 occurrence matrix. Extracting sta-
tistical measures from this matrix provides information about the
specific texture. From this analysis, contrast (local variations in the
GLCM) and homogeneity (how close the distribution of the ele-
ments in the GLCM is to its diagonal values) measures have been
included in the feature set.

A.4.3 Classification with random forests

For each superpixel, the probability of it being part of a villus fold is
computed as the score of a binary random forest [101] classifier using 50
classification trees. To obtain a robust estimation of the performances of
the proposed classification method, a cross-validation approach has been
chosen. For each step of the 10 folds, the random forest has been trained
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on a random sample consisting of 70% of the images in the dataset, and
tested on the remaining 30%.

A.5 Results

Using 116 RGB images, the method achieves 83.9% accuracy, with 79.2%
sensitivity and 87.3% specificity. In Fig. 65 a comparison among man-
ually obtained ground truth and automatic results is shown for one of
the images in the dataset. As shown, the detected metaplastic region
strongly correlates with the labeled metaplastic mucosa. False positives
are included in the metaplastic mucosa due to light reflectance and/or
shadowing artifacts, which are more similar in texture to metaplastic tis-
sue than to squamous epithelium.

A.6 Conclusions

In this work a fast, efficient, stable and reliable method for the automatic
detection of metaplastic regions in NBI endoscopic images has been pre-
sented, using SLIC superpixel segmentation and random forest classifi-
cation. This tool will be tested on different dataset of images, from differ-
ent fields of medical imaging having the same needs as NBI. With more
quantitative tools, experts will have a chance to perform targeted biop-
sies instead of using the four-quadrant standard protocol, improving the
accuracy of the exam and improving the examination’s accuracies.
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Figure 65: Comparison among metaplastic region according to ground truth
(top) and the proposed algorithm (bottom).

121



122



Appendix B

Classification of gastric
chromoendoscopy images

B.1 Summary

Barrett’s esophagus (BE) is a precancerous complication of gastroesophageal
reflux disease in which normal stratified squamous epithelium lining
the esophagus is replaced by intestinal metaplastic columnar epithelium.
Repeated endoscopies and multiple biopsies are often necessary to estab-
lish the presence of intestinal metaplasia. Narrow Band Imaging (NBI)
is an imaging technique commonly used with endoscopies that enhances
the contrast of vascular pattern on the mucosa. A computer-based method
for the automatic normal/metaplastic classification of endoscopic NBI
images is presented. Superpixel segmentation is used to identify and
cluster pixels belonging to uniform regions. From each uniform clus-
tered region of pixels, eight features maximizing differences among nor-
mal and metaplastic epithelium are extracted for the classification step.
For each superpixel, the three mean intensities of each color channel are
firstly selected as features. Three added features are the mean intensities
for each superpixel after separately applying to the red-channel image
three different morphological filters (top-hat filtering, entropy filtering
and range filtering). The last two features require the computation of
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the Grey-Level Co-Occurrence Matrix (GLCM), and are reflective of the
contrast and the homogeneity of each superpixel. The classification step
is performed using an ensemble of 50 classification trees, with a 10-fold
cross-validation scheme by training the classifier at each step on a ran-
dom 70% of the images and testing on the remaining 30% of the dataset.
Sensitivity and Specificity are respectively of 79.2% and 87.3%, with an
overall accuracy of 83.9%.

B.2 Introduction

Chromoendoscopy (CH) is a gastroenterology imaging modality that in-
volves the staining of tissues with methylene blue, which reacts with the
internal walls of the gastrointestinal tract, improving the visual contrast
in mucosal surfaces and thus enhancing a doctor’s ability to screen pre-
cancerous lesions or early cancer. This technique helps identify areas that
can be targeted for biopsy or treatment and the focus of this work will be
gastric cancer detection. Gastric chromoendoscopy for cancer detection
is a highly mature medical field with solid clinical taxonomies, including
the most relevant one introduced by Dinis-Ribeiro [102], which is used
in this work. According to this taxonomy, CH images are classified into
their respective classes based on color, shape and regularity of pit pat-
terns (Figure 1).

Clinical studies show that Group I images are considered normal,
Group II cases are considered metaplasia lesions and could lead to can-
cer lesions. Group III are considered dysplasia lesions. For the purposes
of this work, Group I images are considered normal, and images from
Groups II and III are considered abnormal.

The specific goal is to classify the manually segmented region of each
image as either normal or abnormal. The training and test sets have the
same size, and each of them is composed by 28 images for the normal
class, and 60 images for the abnormal class. Images from the dataset
and respective manually defined ground truth are shown in Fig. 67 and
Fig. 66, respectively.
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Figure 66: Two images labeled as normal, and their respective manual an-
notations.
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Figure 67: Two images from the dataset labeled as abnormal, and their re-
spective manual annotations.
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B.3 Materials

Group I images are considered normal, Group II cases are considered
metaplasia lesions and could lead to cancer lesions. The images were
acquired using an Olympus GIF-H180 endoscope at the Portuguese In-
stitute of Oncology (IPO) in Porto, Portugal during routine clinical work.
Optical characteristics of this endoscope include 140o field of view and
four-way angulation (210o up, 90o down and 100o right/left). Annota-
tions were performed independently by two medical experts leading to
a gold-standard final annotation which is used here [103].

B.4 Methods

The first step in the proposed method is performed by processing the
image with a computer vision technique called superpixel segmentation,
using the SLIC implementation [82]. The purpose of this process is to cre-
ate clusters of spatially connected pixels exhibiting similar texture. Each
of the superpixels is then analyzed, and 111 features are extracted from
each of them, to be fed to a classifier. The classification step is performed
with an ensemble of 50 decision trees. The classifier has been trained on
88 images, and then tested on other different 88 images (for both cases,
split in 26 normal and 60 abnormal, with a ratio of approximately 70%-
30%). Each image is labeled Normal or Abnormal based on a majority
vote among the predicted label of all its superpixels.

B.4.1 Superpixel segmentation

As a pre-processing step for each image, all greyscale values were nor-
malized between 0 and 256, and a median filter was then applied to re-
duce noise. Segmentation via superpixel is then performed by group-
ing pixels into perceptually meaningful atomic regions, used to replace
the rigid structure of the pixel grid. Many computer vision algorithms
use superpixels as their building blocks, given their straightforwardness
and the ease of their implementation. A commonly used superpixel im-

127



plementation is the Simple Linear Iterative Clustering (SLIC) [82]: this
implementation, based on k-means clustering, is fast to compute, mem-
ory efficient, simple to use, and outputs superpixels that adhere well to
image boundaries. SLIC implementation clusters pixels of the image to
efficiently generate compact and nearly uniform superpixels, imposing a
degree of spatial regularization to extracted regions. This step has been
implemented with MATLAB R2015b, using an implementation of SLIC
superpixels by vlfeat [85]. This technique only requires two parameters
to set: the desired size of each superpixel N and a regularization param-
eter λ, that tweaks the smoothness of their contours. Each region of this
image (corresponding to each computed superpixel) is then analyzed for
feature extraction.

B.4.2 Feature extraction

A total of 111 features are extracted from the analysis of each superpixel
S, 37 for each image color plane:

• Mean intensity µS and standard deviation σS : greyscale intensity
variations are the most basic difference among normal and abnor-
mal tissue;

• Contrast CS , EnergyES and HomogeneityHS from the Gray Level
Co-Occurrence Matrix (GLCM): GLCM is a statistical method of
examining texture considering the spatial relationship of pixels. It
calculates how often pairs of pixels with specified values and spa-
tial locations occur in an image, building a 8 × 8 occurrence ma-
trix. Extracting statistical measures from this matrix provide in-
formation about the specific texture. From this analysis, contrast
(local variations in the GLCM), energy (sum of squared elements
in GLCM) and homogeneity (how close the distribution of the ele-
ments in the GLCM is to its diagonal values) measures have been
included in the feature set;

• Histogram of Local Binary Patterns [86] with 32 bins, hLBPS . Lo-
cal Binary Patterns (LBP) are one of the most descriptive features in
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the field of texture classification, and are commonly used in com-
puter vision. They permit the creation of features able to identify
different textures in an image. In this work, for each pixel of the
image, an 8-bit word is created by comparing its greyscale intensity
value with the ones in its 8-neighborhood. Iteratively, starting from
a fixed direction, if the central pixel has a grayscale value greater
than its neighbor a 1 is encoded in the 8-bit word, a 0 otherwise.
When a word has been assigned to each pixel, each word is trans-
lated to decimal (0-256). A histogram (32 bins) is then computed
for the LBP of pixels in each superpixel, expressing in such way the
spectrum of the texture of the selected portion of the image. This is
finally added to the feature vector.

B.4.3 Classification with random forests

For each superpixel, the probability of it being normal or abnormal is
computed as the score of a binary random forest classifier using 50 clas-
sification trees. Accuracy, sensitivity and specificity of the classification
step have been computed, in image space.

B.5 Results and discussion

Superpixel parameters were set as N = 90, λ = 0.05 to obtain a large
training dataset and reasonable-sized superpixels, each of them result-
ing well adherent to image borders. The proposed method reached an
average general accuracy of 92.05% in the image space, 86.62% in the su-
perpixel space, respectively over 88 images and 1173 superpixels. A chart
showing how accuracy depends on superpixel size is shown in Fig. 69.
The smaller the superpixel, the longer the computation time in the fea-
ture extraction and training process. A superpixel size of 90 has been
chosen, leading reasonable results with a relatively fast training process.
As an example, Fig. 68 shows the computational times for feature extrac-
tion with some superpixel sizes (on an Intel i7-3630QM @ 2.40 GHz with
a Samsung 840 EVO SSD drive and 8 GB RAM).
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Figure 68: Average computation time for loading the two images (image
and ROI) and feature extraction, with varying superpixel size. Times in
second per image, obtained by averaging on the full computation on 88
images.

For the chosen superpixel size, detection accuracy on the normal class
is 85.71%, while detection accuracy on the abnormal class is 95%. These
two metrics in the superpixel domain are, respectively, 79.95% and 90.39%.

A variable that could be tweaked with thought is the ratio among
normal and abnormal superpixels needed to classify one image into nor-
mal or abnormal. In Fig. 71 it is shown that by requiring less than half
superpixels to classify an image as abnormal, general accuracy changes,
along with normal and abnormal class accuracies. It is clear from the im-
age that altering this ratio favours the accuracy in one of the two classes
(the favoured one), but does not help in general accuracy. The best value
is therefore 0.5, as logic suggests. The only drawback of this method is
if ROIs are small enough that no superpixels fit inside of them: in such
cases, no superpixels from that image are used either for training or test-
ing, leading to a failure in that particular image. In these dataset, this has
happened in one case only: abnormal class image number 045 from the
training set, shown in Fig. 70. Reducing the superpixels size solved the
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Figure 69: How superpixel size affect average accuracy.

problem. For all computations with superpixel size greater than 70, this
particular image gave no contribution in the training process.
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Figure 70: Image 05 and the manual mask superimposed.
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Figure 71: How the ratio between normal/abnormal superpixel used in the
final image classification affect average accuracy, once superpixel size has
been fixed.
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