
IMT - I, M, TC
S  E

P.D. T

Designing and Experimenting
Coordination Primitives for Service

Oriented Computing

Daniele Strollo

P.D. T
M 13, 2009

S
Prof. Gianluigi Ferrari

C-S
Emilio Tuosto

Via San Micheletto 3, 55100 Lucca, Italy.
Tel: +39 0583 4339561, Fax: +39 0583 4339564

Email: daniele.strollo@imtlucca.it. URL: http://www.di.unipi.it/∼strollo.

... al mio cuscino che spero si ricordi ancora di me ...
(... to my pillow, with the hope that it still remembers me ...)

Abstract

Service Oriented Architecture (SOA) and Web Services (WS) are becoming a
widely accepted device for designing and implementing distributed systems.

SOAs have given an important contribution to software engineering providing
a model where applications are defined by assembling together certain function-
alities, called services, possibly provided by remote suppliers.

The characterizing issue of SOAs consists of defining common principles to
make services accessible and usable regardless their execution context. Never-
theless, the architectural specification is far from giving a complete reference
application model on which systems should rely on. The specification just in-
cludes principles for achieving interoperability and reusability of services; other
aspects are left to the implementing platforms.

As a consequence, it is understood how services are specified in isolation
and how their functionalities are made available to the requesters, but the defi-
nition of languages for describing service composition are far from being widely
accepted and reveals to be an impelling challenge.

In the last years, several solutions have been proposed for describing aggre-
gated services. However, they often lack a formally defined semantics. Moreover,
these solutions are often specific for a platform (e.g. WSs) and are difficult to
adapt to other platforms since they rely on low level assumptions that are out of
the SOA specifications.

This thesis aims at providing new methodologies for implementing the coor-
dination of services. Our framework proposes to be flexible enough to support
high level languages and to provide reliable tools for testing correctness of im-
plementation.

Our approach relies on a formal model that takes the form of a process cal-
culus specifically designed to deal with services and their coordination.

The process calculus has been the main tool driving the specification issues
as well the implementation issues.

Indeed, it acts as a bridge between the high level specification language and
the run-time environment.

A distinguished feature of our proposal is that our formal model, i.e. the
process calculus, describes distributed processes relying on an event notification
mechanism as machinery for interactions. Services are represented by certain
components that embody local computations and react to changes of the overall
environment in which they are involved. The adoption of event notification results
particularly fashionable for tackling service coordination. The principles studied
at specification level are from one side understood within a theoretical framework
that provides instruments for checking correctness of interaction policies and
from the other side offers the core model for implementing and experimenting a
programming middleware.

Table of Contents

List of Figures v

1 Introduction 1
1.1 Service Oriented Computing 2
1.2 Service Oriented Architectures 3
1.3 Beyond Message Based Coordination 4
1.4 Contributions of the Thesis . 5
1.5 Structure of the thesis . 7
1.6 Origin of Chapters . 8
1.7 Acknowledgments . 8

2 Preliminaries 9
2.1 Service Oriented Architectures 9
2.2 Web Services as instance of SOAs 13
2.3 Event Notification . 16

2.3.1 A walk through events 17
2.3.2 Some Considerations 20

2.4 π-Calculus . 24
2.5 Long Running Transactions . 28

2.5.1 Business Process Modeling Notation 30
2.5.2 Naïve Sagas . 32

3 Signal Calculus 37
3.1 Introduction . 38
3.2 Alarm system: a running example 38

3.2.1 Modeling the alarm controller in π-calculus 40
3.2.1.1 Alarm system revisited 42

i

3.2.1.2 A few remarks: π-calculus and Event Notifica-
tion . 44

3.3 Signal Calculus . 45
3.4 A few remarks: basic SC and CCS 52
3.5 Managing sessions in Signal Calculus 53

3.5.1 Some useful patterns in SC 57
3.5.1.1 Joining events 58
3.5.1.2 Rendez-vous in SC 59
3.5.1.3 Flow removal and reaction hiding 60

3.5.2 Modeling the alarm controller in SC 61
3.6 Concluding remarks . 64

4 Java Signal Core Layer 67
4.1 Introduction . 68
4.2 Architecture . 69

4.2.1 Inter Object Communication Layer 70
4.2.2 Signal Based Layer . 75

4.2.2.1 Message Delivering Protocol 77
4.3 A running example: the alarm system 78
4.4 Illustrating the network flexibility 80

4.4.1 Gateways . 81
4.4.2 Implementation Overview 82
4.4.3 X-Mixed-Replace SOAP Binding 83
4.4.4 JSCL implementation outline 84

4.5 Additional programming facilities 86
4.5.1 Logical Ports . 86

4.5.1.1 A sketch of logical ports 87
4.5.1.2 Logical ports: API 87

4.5.2 Guarded Flows . 91
4.5.3 The dark side of serializers 92

4.6 Concluding remarks on J 93

5 Programming Environment 95
5.1 Event based Service Coordination 95

5.1.1 JSCL Graphical Notation 96
5.1.2 Signal Core Language 97
5.1.3 Basic Facilities . 99
5.1.4 Synchronizing behaviors 102
5.1.5 Logical Ports in SCL 104

5.2 A case study . 105

ii

5.2.1 The car repair scenario 105
5.2.2 Designing the Car Repair Scenario 106

6 Experimenting Long Running Transactions 109
6.1 From  to SC (informally) 109

6.1.1 Compensable activity 110
6.1.2 Sequence . 111
6.1.3 Parallel composition 112
6.1.4 Transactional enclosure 113

6.2  to SModel transformation 114
6.2.1  atomic process 115
6.2.2 Parallel composition 116
6.2.3  sub-transaction 117

6.3 Scl Model refactoring . 119
6.4 Concluding remarks . 120
Bibliography . 122

iii

List of Figures

2.1 SOA: actors and interactions. 11
2.2 Event notification: core elements 20
2.3 Event notification overview . 21
2.4 Event notification: brokered 22
2.5 BPMNtr: composition of compensable activities 31
2.6 BPMNtr: transactional boundaries 31

3.1 Alarm system automaton . 39
3.2 Abstract graphical notation of join 58
3.3 Alarm system in SC: overall system 62
3.4 Alarm system in SC: the door sub network 63

4.1 JSCL Architecture . 70
4.2 IOCL metamodel: «iocl_core» profile 72
4.3 IOCL metamodel: «iocl_comm» profile 74
4.4 Signal Based Layer metamodel: «sbl_data» profile 75
4.5 Signal Based Layer metamodel: «sbl_core» profile 76
4.6 Signal delivery protocol . 78
4.7 Registration and signal emission protocol 84
4.8 Joining two components . 86
4.9 Profile «sbl_ext»: logical ports 88
4.10 Search and buy books overview 89
4.11 Profile «sbl_ext»: guarded flows 91

5.1 JSCL diagram of the example 97
5.2  design: the join pattern . 100
5.3 Synchronizing reactions installation 104
5.4 Car repair scenario: the  model 106

v

5.5 Car repair scenario the graphical J representation 107

6.1 Internal view of SC compensable activities 110
6.2 SC sequential composition . 112
6.3 SC parallel composition . 113
6.4 SC transactional enclosure . 113
6.5 The generated S network . 114
6.6 S refactoring: merging parallel collector 119

vi

List of Codes

3.1 Event subscription in π-calculus 40
3.2 Alarm system in π-calculus . 41
3.3 Alarm system revisited . 43
3.4 Alarm System Interfaces: Reactions 63
3.5 Alarm System Interfaces: Flows 64
3.6 Alarm System: Network . 64

4.1 Alarm system in J: local names 79
4.2 Alarm system in J: adding flows 79
4.3 J alarm coding: adding a reaction 80
4.4 Logical Ports: A behavior 87
4.5 Search & Buy Books: O port 90

5.1 Synchronizing behaviors in S: queue 102
5.2 Synchronizing behaviors in S: sync 103
5.3 Synchronizing behaviors in S: consumer 103
5.4 Binary A port in SCL . 104

6.1 SC coding of tr: compensable activity 111
6.2  to S transformation: compensable activity 115
6.3  to S transformation: parallel dispatcher 116
6.4  to S transformation: parallel collector 117
6.5  to S transformation: saga dispatcher 118
6.6  to S transformation: saga not 118
6.7  to S transformation: saga collector 119

vii

Chapter 1

Introduction

The enormous expansion of the Internet has recently brought to a new vision of
the development of distributed software. In fact, modern digital networks yield
great possibilities for individuals and institutions to cooperate through sophisti-
cated communication mechanisms. Arguably, the evolution of communication
networks and the middleware for their programming let modern distributed ap-
plications to be envisaged as the composition of units of computations. Such
units are often called services as they are supposed to be available, invokable,
and possibly substitutable without affecting invokers. To give a metaphor, soft-
ware services can be very much thought of as ’real’ services; namely, they can
be discovered (by looking on the yellow pages), selected (according to some cri-
teria) and used as long as they suit the user needs. In particular, on different
occasions different services may be invoked without this requiring to change the
application.

In a sense, services are computational units no longer relegated on the specific
machines, or in restricted domains, but replicated and distributed so to be acces-
sible to invokers and provide an open and dynamic computational environment.
Services consist of interactive building blocks which, once published, become
reusable by other components making applications more adaptable and flexible
as they can more easily adapt to local and global changes. As [ibma, All98] puts
it, the component based architecture is extended with the notion of service. More
precisely, a component can be characterized by the following features:

“ it is an executable unit of code that provides physical black-box
encapsulation of related services; its services can only be accessed
through a consistent, published interface that includes an interaction

1

standard; it must be capable of being connected to other components
(through a communications interface) to form a larger group. ”

Albeit attractive, the vision of distributed applications as consisting of inter-
active and loosely coupled services, yields several complexities at many different
levels. Remarkably, it is necessary to radically change the way applications are
designed so to focus, not only on the development of the so-called business logic
(namely, the domain-specific functionalities), but also consider the distributed
coordination issues. This is in fact a rather important research topic that has re-
cently been tackled by both academia and industry with the introduction of the
so-called service oriented computing paradigm.

1.1 S O C
The basic idea of service oriented computing (SOC) is to exploit the possibil-
ity of building applications by “gluing” together element of computation called
services. The ultimate principles of this paradigm are that:

• services can published with an interface that is amenable to be searched,
bound, and invoked by other services;

• applications can dynamically replace the services they use with other ser-
vices.

Typically, it is also assumed that services are executed on heterogeneous host
machines and no assumptions can be taken on their running platforms.

The main challenge of SOC consists in the ability to permit services
to be accessed in a uniform and platform independent manner,
adopting communication mechanisms suitable for coordination of
distributed services.

One of the key features of SOC is therefore to make it possible the coexistence
of services offered by different providers, possibly deployed on heterogeneous
platforms.

Despite the potential offered by SOC, it is still in its infancy. Many tools
related to SOC have been released in the last decade, but their level of maturity
is still far from the maturity reached by their counterparts in conventional mid-
dleware for distributed systems. In addition, existing tools lack of a full-fledged
foundational basis.

2

Also, rigorous mechanisms for automatically designing and controlling their
work-flows are indeed required. As a matter of fact, it is still a challenging is-
sue consists to define mechanisms for describing how these components can be
aggregated. Finally, SOC lacks standards for defining behavioral properties (e.g.
transactional requirements) related to services.

1.2 S O A
In order to make the SOC paradigm concretely realizable, Service Oriented Ar-
chitectures (SOAs) have been proposed [CKM+03, AACP04, Pap03]. Basically,
SOAs yield the middleware that allow services to comply with a common strat-
egy so that they can interact in a reliable way abstracting from low level details.

The initial attempts of designing rudimentary SOAs can be traced back to
DCOM [Mica], Corba [Tea] and Java Remote Method Invocation (RMI) [SUNb],
to cite a few. Unfortunately all these approaches fall short to meet all the require-
ments of SOAs for SOC. These solutions rely on run-time environments strictly
dependant on the operating system (it is the case of DCOM) or on the network
infrastructure adopted (e.g. Corba) or on the host language (as for Java RMI).
Comparative evaluations among these approaches can be found in [TW97, PS98].

These first attempts have given impulse to the raising of a new strategy for
implementing SOAs, the Web Services (WS) [W3Cb].

The Web Service core specifications provide mechanisms for
describing, publishing, retrieving and accessing services. These
specifications characterize the wire level of the SOA architectural
model.

WSs better adhere to the SOC paradigm since they do not impose constraints
on the run-time of services. Moreover, the communications of WSs are imple-
mented by exchanging messages declared in an open format like XML (eXten-
sible Markup Language) [BPS97]. The adoption of XML has opened a new
perspective for developers and service providers enabling language and platform
independence (a.k.a. interoperability).

While the wire level has reached an appreciable level of maturity, method-
ologies for describing service work-flows and service aggregations are still at an
early stage. Moreover, the extensional features for coordinating service activ-
ities are strictly tailored to WS platform and introduce additional constructs to
the basic structure of messages to give control on their flows so they cannot be
considered a fully general solution for SOC.

3

1.3 BM B C
The majority of the proposals for SOAs, including WSs, adopt interaction mech-
anisms based on message exchange. Namely, the coordination of services is
modeled by describing the flow of messages that should exchanged among par-
ties. The intuition behind this choice is that the network infrastructure is di-
rectly reflected in the architectural model of languages for service aggregation
so that messages represent the core constructs for implementing coordination of
services.

Alternatively, coordination of services can be regulated by specifying how
they react to the evolution of their execution environment. The system undergoes
modifications that are represented by suitable events that are promptly notified to
the interested partners. Components passively observe changes that are applied
to the environment and trigger handling routines at their occurrences. Moreover,
they actively concur to modify the system state. Basically, distributed pieces of
functionalities access a common virtual global state that acts as a bridge for the
involved parties hiding to them the underlying network structure. This paradigm
is commonly referred to as event notification ().

The adoption of event notification yields to model services in terms
of reactive entities that, autonomously, declare the set of events they
are interested in and the behavior that they perform upon their
occurrence. The coordination of services is obtained by regulating
the flows of events issued during the computation.

The  paradigm allows programmers/designers to focus on how each com-
putational entity behaves upon occurrences of environmental stimuli instead of
considering complex interactions among several agents.

In the first instance, components are designed in “isolation”, focusing on how:

• components act upon occurrence of an event of interest and

• notifications of events issued by components take place.

Once deployed, such components are “injected” in a particular network and suit-
ably “linked” together by exploiting the subscription mechanism. This two-phase
design relaxes the inter-dependencies among components achieving an high de-
gree of loosely coupling and, consequently, reveals to be particularly suitable for
SOAs.

4

1.4 C   T
Although the  paradigm is receiving the attention of the scientific community
investigating distributed systems, its potential to model SOC is still not fully
exploited. Also, the existing middleware based on  mechanisms are typically
built without a precise semantics.

This thesis promotes a framework based on  mechanisms as a model for
SOC and as the basis for a middleware suitable for SOAs. The main contributions
of this dissertation can be summarized as follows:

• formalization of an  programming model in terms of a process calculus
called Signal Calculus (SC);

• development of the J middleware (after Java Signal Core Layer) based
on SC primitives;

• advanced features of J not present in SC;

• definition of a programming framework for J to design and program
coordination of distributed services;

• application of the SC/J framework to design, program, and reasoning
about Long Running Transactions.

Our approach relies on a process calculus called Signal Calculus (SC) featur-
ing on event notification as basic interaction mechanism. The Signal Calculus
(SC) is a process calculus enriched with a concept of component locality and
suitable primitives (such as multi-cast mechanisms) for dealing with event notifi-
cation. A key feature of SC consists of multi-cast asynchronous communications
and yielding an high degree of loosely coupled components.

We shall illustrate the effectiveness of event notification approach embedded
in SC to tackle service coordination issues. This thesis shows how the SC/J
programming abstractions can be exploited to facilitate the design and the de-
velopment of SOA applications. Moreover, we shall compare the programming
model of SC with the one of other formalisms outlining how, some of the native
primitives of  require more efforts (e.g. the reconfiguration of the processes)
and cumbersome coding when not featured directly.

One of the key aspects of J is that it has been designed and implemented
by a two-level architecture in order to achieve interoperability and modularity.
The lower architectural layer is the Inter Object Communication Layer (iocl)
consisting of several instances called network adapters that abstract the actual
networking level. The iocl hides the network complexity to the higher layer

5

called Signal Based Layer (sbl). The basic idea is that each iocl network
adapter acts as a bridge among several network infrastructures supporting dis-
tribution of services and the notification/delivery of messages to the distributed
components. The sbl layer provides all the facilities to declare services that
interact in an event notification style. Additionally, sbl declares a set of high
level mechanisms tailored to define complex coordination patterns with the aim
to reduce the development efforts.

We shall discuss how the network model of SC is reflected into the J so to
provide the run-time support for the coordination of distributed SC components.
As said, an important aspect of our approach is that the design and the implemen-
tation of the J middleware are grounded on solid formal basis. Indeed, J
design and the related development methodology are characterized by a close
interplay between formal semantics modeling, implementation pragmatics and
application.

As a matter of fact, all the notions of SC are paralleled in the J API. Hence,
SC and J can be regarded as a foundational framework and its programming
counterpart for specifying, verifying and programming coordination policies of
distributed services.

It is important to remark, however, that J has been extended with features
that are not present in SC. In particular, J features, among others, more sophis-
ticated mechanisms for subscribing and notifying events than SC. This makes J
rather expressive and flexible as illustrated by the encoding in J of transac-
tional behaviors. In fact, the Jmiddleware architecture results flexible enough
to adequately implement Long Running Transactions on top of J. For in-
stance, the J programming environment introduced in this dissertation allows
designers to easily map  designs into a graphical notation for J programs
(that has been implemented as an Eclipse plug-in). Besides being a handy tool
for practitioners, this enables to effectively apply some results on refactoring of
long running transactions that have been defined on top of SC. Remarkably, this
approach hides the underlying theory from designers and programmers.

We envisage the impact of our approach on the service oriented computing
technologies as follows. Conceptually, the SC/J framework adds a further
layer to the basic SOC, like web services protocol stack (SOAP, UDDI, WSDL).
The SC/J layer provides the formal and programming mechanisms to design,
verify and program web service coordination policies (e.g. a  orchestrator or
a - choreography) on top of the basic service protocols.

This thesis provides a complete description of J from its formal modelling
(the SC process calculus) to the middleware implementation and applications.
The experimental results of the thesis reinforced our idea that a framework for
service coordination based on formal ground, such as J, can be an effective

6

software engineering tool for the SOC paradigm.
We shall limit the technical presentation of SC to the minimum required to

illustrate the J middleware. For a more comprehensive presentation of the SC
framework the reader is referred to [Gua09].

1.5 S   
The thesis is organized as follows.

Chapter 2 provides a reviews the main concepts and notations that will be
used in the thesis. We start by introducing the idea of SOA and its technological
background. A survey of event based systems is also given (mainly by suitable
examples) in order to gain confidence with aspects that are peculiar in SOA and
to give a flavor of many existing variants of this paradigm. We outline the effec-
tiveness of  to tackle with SOA relevant aspects. We conclude by supplying
an overview of the π-calculus and of long running transactions as specified by
Naïve Sagas.

In Chapter 3 we introduce the Signal Calculus. We argue the adequacy of
the event notification to model a wide range of computational scenarios where
systems involve dynamic rearrangements of the surrounding environment. We
also motivate why the Signal Calculus provides suitable foundational machiner-
ies for SOAs. A comparative evaluation of message style interactions (e.g. the
π-calculus-like approaches) with respect to the event notification interactions (as
adopted in SC) is given.

Chapter 4 describes the design and implementation of the J middleware
acting as run-time support of sbl the actual programming counterpart of SC.
Moreover, we argue the flexibility of the middleware to adapt to different network
overlays and to support actual SOA platforms. Through some examples, we
point out the strict interplay between the actual programming primitives and the
theoretical constructs. This Chapter ends by reviewing a set of high level facilities
introduced to make more flexible the development of J networks via suitable
lightweight synchronization facilities.

Chapter 5 presents the Event based Service Coordination () programming
environment that provides the programming supports for designing and imple-
menting J services from a higher level of abstraction. The framework is con-
stituted by different Eclipse plug-ins that offer different levels of design facilities.
From the one hand, a graphical toolkit is used to design the components and their
interconnections. On the other hand, a textual representation can be used to spec-
ify how components are internally implemented by declaring their behavioral
properties. We also illustrate the usage of  through a case study borrowed by

7

the SENSORIA Project.
Chapter 6 exploits Sagas to give a formal semantics to the  transactional

constructs via a semantic-based mapping to SC. We end by outlining how the
results presented in [Gua09] on the refactoring of SC coordination patterns ef-
fectively simplify the development of  transactions. Indeed, the refactoring
rules of [Gua09] are proved sound by a correctness result stating that they pre-
serve conformance of the specifications (via weak bisimilarity).

1.6 O  C
Many chapters of this thesis are based on already published papers.

• The formal specification of the SC calculus described in Chapter 3 appears
in [FGS06b, FGST07].

• The design and the implementation of the J middleware described
in Chapter 4 has been originally presented [FGS06b, BFM+05, FGS06a].

• A preliminary version of the  environment presented in Chapter 5 ap-
pears in [FGST08]. The semantic-based debugger for J has been pre-
sented [FGSTa].

• The case study presented in Chapter 6 extends results given in [CFGS08,
FGSTb, CFSG08].

Notice that the above list points out the papers where the results of this thesis
have been introduced and described for the first time. However, there are some
results which are contained in this thesis and have never written before. Most
of these are contained in Chapter 3 and in Chapter 4 which provides significant
extensions of the published papers. Finally, a presentation of some of the results
of this thesis targeted for IT professionals has been published in [BCF+08].

1.7 A
This research is supported by the EU FET-GC2 IST-2004-16004 Integrated
Project Sensoria.

8

Chapter 2

Preliminaries

2.1 S O A

The use of Internet access as a way of computing opened new prospectives. In
the past, applications were usually intended as software solutions residing and
executed on the end-user machine. Tangible scenarios of such applications in-
clude graphical manipulation, word processing and so on. In the last decade,
we assisted to a gradual migration from stand-alone applications, to distributed
solutions capable of taking advantage of functionalities exposed on the network.
Such applications are able to exploit the network to retrieve the functional capa-
bilities they are interested in and to access data remotely stored in a promiscuous
modality involving interactions with both local and remotely available software
components.

Initially, the Internet was intended as the vehicle for exposing document cen-
tric contents (e.g. HMTL pages, images, etc.) through the Web; web pages and
applications were playing distinct roles and the interactions occurring among
them were obtained through platform dependent protocols or requiring the ex-
plicit interaction with the user. A new challenge consists in making these worlds
to coexist. Consider a site offering the possibility to look up contacts from Yel-
low Pages. Clients can access, through a Web page, some useful information,
(e.g. the e-mail contact) and further reuse them in other applications (e.g. a mail
client). Instead of demanding the user to perform these tasks, the application
(mail client) can be equipped with the facility for automatically retrieving from
the site the desired data (mail contact) and performing the remaining task (send-
ing the message). The client application performs a sequence of operations that

9

involve remote functionalities. All the steps involved in issuing the proper ser-
vice will be hidden to the user, promoting a service obtained by composition of
remotely exported functionality. Such a service exhibits adaptability to respond
to configuration changes (e.g. the remote service is moved to another address) or
to changes of plans (e.g. the support of additional functionalities).

The idea of providing a standard solution for defining software modules and
their compositionality is not new. If we take into account the well known Object
Oriented Programming (OOP) paradigm, applications are built up on modular
functionalities that can be provided by third parties and assembled together to
implement more complex functionalities. At the basis of OOP there is the idea
of code reuse. Modules are declared in a standard manner in order to be eas-
ily integrated. Yet, the integration was allowed under certain constraints as the
compiled code was strictly tied to the executing machine. Modern object ori-
ented languages, such as Java and C#, have evolved to be machine independent
adopting an intermediate virtual machine that interprets instructions defined in a
meta-language and acts in behalf of the real machine. The machine abstraction
achieves a first level of interoperability. Nevertheless, these languages remain
enclosed into local boundaries so that communications with remote components
have to be explicitly programmed. The linking among modules happens statically
and all the pieces of code referred have to be provided on the running machine at
compile time.

In order to design applications by composition of software modules made
available on the network a new model has been defined.

The Service Oriented Architecture is an architectural style whose
goal is to achieve loose coupling among interacting software
agents. A service is a unit of work exposed by a service provider to
achieve desired functionalities for a service consumer.

Services are functional units exported to the world through a standard and
well known “contract”. Once invoked, services serve a request coming from the
customer and return the results, so that the computation is remotely performed.

We now recall the main characteristics of services.
Service interfaces and the exchanged data are defined in a neutral manner in-

dependent from platforms and programming languages and communication hap-
pen over standard Internet protocols. This constraint allows services to interact
with each other in an uniform manner and is often referred as interoperability.

10

Services can be dynamically searched and retrieved. For this purpose, so
called registries are defined. Registries act as Yellow Pages and allow service
providers to declare their published services. Subsequently requesters are ca-
pable to find and retrieve the services from registries according to the interface
description (or to other constraints). In this way the client can access a published
service at run-time. This solution offers a strong separation among providers
and requesters, since no one needs to be conscious of the counterpart. Besides,
services can be directly accessed by customers avoiding the interaction with reg-
istries. The usage of registries increases the dynamicity and the adaptability of
services. In fact, the requester just requires to the registry to find a service able
to provide a given functionality. It can happen that several services match the
requirements and they can be interchangeably replaced with no acknowledgment
of the requester (adaptability). For instance, the registry can balance the machine
loading by properly scheduling the access to different services matching the same
request (e.g. to achieve scalability). Remarkably, in all these cases, the linking
to services happens in a dynamic fashion.

Figure 2.1: SOA: actors and interactions.

A typical interaction pattern for publishing and accessing services is shown
in Figure 2.1. The main actors involved in such interaction are:

i) Service Provider: the entity which defines a service which will be published
in order to be used by a service requester. Usually this role is played by an
application or by another service.

ii) Service Broker: is responsible for maintaining the registrations of service
providers and for making these services available to the requesters.

iii) Service Contract: defines the structure of the messages which can be ex-
changed among the actors, both requests and responses.

11

iv) Service Requester: corresponds to the client entity which wants to access
some functionalities exported by the services. This actor is, however, a
software module, meaning that in the SOAs the interactions are modeled
always among software agents, not among human and software agents.

Services must be self-contained meaning that they have to be independent
from the environmental state. Their computations simply depend on the parame-
ters provided by the request and are independent from the internal state. A more
restrictive clause suggests to use stateless services. Depending on the coordi-
nation pattern adopted, this constraints may be relaxed, since often the state is
needed e.g. for keeping track of the network topology in which a computation is
taking place (it happens for the choreography discussed later).

Services must be loosely coupled. The coupling is referred to inter-modules
dependencies. Components loosely coupled have a minimal number (possible
nothing) of dependencies among them. This constraint is essential, since each
service must be isolated from the execution context to be reusable.

Depending on the purpose for which a service has been designed, it can ex-
pose a single logical functionality or a group of them; the terms course-grained
and fine-grained are used, respectively, to represent these two different situa-
tions. Coarse-grained services offer a set of related functions rather than a single
function. For example, a coarse-grained service might handle the processing of
a complete purchase order. By comparison, a fine-grained service might handle
only one operation in the purchase order process. A fine-grained approach is pre-
ferred when the same functionality have to be reused in several contexts while
course-grained one permits to reduce the communications between the service
and the requester.

Asynchronous interactions among services are preferred since a long period
of times can elapse between the request of the customer and the availability of a
response from the service. As a consequence, the interactions with services are
usually described in a message passing fashion.

The transport protocol adopted between requester and provider is out the
specifications of the architecture, and so strictly related to the choices made by
the particular implementation adopted. Usually, in order to give more flexibility
to the framework, overlay networks are introduced allowing multi-layered/multi-
protocol support.

Another important aspect, not directly covered by SOA specifications, is the
possibility to compose services. Even if externally a service is seen as a single
entity, it can be the result of aggregation of several previously defined services
and, on its turn can be reused for a new service composition. Since the main
focus when developing services must be put on reuse and composition, the proper

12

design of their interface is crucial in order to reach these objectives. The loosely
coupling of services is determinant to enable compositionality.

2.2 W S    SOA
Web Services (WSs) [W3Cb] are often confused with SOAs, hence a clarification
is needed. Web services constitute an implementing platform for SOAs that uses
specific standards and language protocols. Nevertheless, due to the choices made
by many vendors, WSs are often equated with SOAs and the term “business
processes” is used on behalf of “services” (or “composition of services”) and,
accordingly, the services implementation referred to as “business logics” (the
terminology is detailed in [ibma]).

Differently from other solutions, like CORBA [Tea], Java RMI [SUNb]
and Message Oriented Middlewares, such as the Java Message Service
(JMS) [SUNa], WSs meet all the SOAs requirements since they define interfaces
which can be published in the web and subsequently retrieved by client applica-
tions, using as description a W3C standard language, the Web Services Definition
Language (WSDL) [CCMW01], based upon the well-known XML (eXtensible
Markup Language) [BPS97].

Another advantage of WSs relies on the adoption of an intermediate proto-
col, the Simple Object Access Protocol (SOAP) [BEK+00], to envelop the mes-
sages exchanged among services. SOAP makes the services independent from
the transport protocol adopted (e.g. HTTP, SMTP, TCP) and provides an overlay
network which hides the low level details (e.g. the serialization and the dese-
rialization of objects exchanged through messages). Interestingly, SOAP fea-
tures RPC (Remote Procedure Call) and message driven communications. The
main advantages of the RPC strategy is the simplicity of use, since it reflects the
usual OOP interaction pattern. The alternative solution seems instead to be pre-
ferred since it features asynchronous communications, that encourage the loosely
coupling interactions. Hence, many companies deprecate RPC communications
against message driven ones, being the last one more accordant to SOA specifi-
cations. Anyway, the synchronous behavior of procedure call can be avoided by
making use of callbacks.

The Web Service platform reflects the key ingredients of SOAs in this man-
ner: the web service, the client, the Universal Description Discovery and Inte-
gration (UDDI) [W3C00] registries, and the WSDL correspond, respectively, to
the concepts of service provider, service requester, service broker and service
contract hinted in Section 2.1.

If we compare Web Services to other existing technologies for distributed

13

components, we can observe that WSs enjoy many advantages. They are plat-
form independent, meaning that components developed on heterogeneous plat-
forms can be involved in the same computation. Another important feature re-
gards the reuse of existing infrastructures that permits to take advantage from
standard transport protocols such as HTTP or SMTP providing more flexibility
and cost reduction. Finally, Web Services by design permit to define loosely
coupled components.

The characteristics of WSs recalled up till now, define the wire level of the
platform, in the means of the lower architectural layer needed to develop and
interact with services.

Moreover, the WS platform comes equipped with a large set of specifica-
tions, generally referred to as WS-* that are devoted to support transactional
capabilities (WS-Transaction [IBM05]), and to deal with security (WS-Security
[OAS06]) and reliability (WS-Reliability [OAS04]) of exchanged messages.

Regarding the specifications for implementing coordination of services, here-
after, we will review the main branches of coordination policies (orchestration
and choreography) and the two main industry standard solutions proposed for
approaching them,  and -.

Service Coordination

Regarding the coordination of services, two different approaches can be adopted:
orchestration and choreography. In the orchestration, services are thought as iso-
lated and the main focus relies on their internal behavior. The participants are not
aware of the surrounding network. An intermediate component, the orchestrator
is responsible to arrange service activities according to a planned work-flow. This
strategy provides a local view of the participants. A choreography instead speci-
fies how services should be connected and how they should interact so that each
service accomplishes its task within the given choreography. Roughly, chore-
ographies yield an abstract global view of SOA systems to be “projected” on the
distributed components.

Several work-flow languages have been proposed in order to achieve ser-
vices compositionality (a few of them are listed in [IBMb]). Among them, the
Business Process Execution Language for Web Services (- or  for
short) [AGK+03, Spe] and the Web Service Choreography Description Language
(-) [W3Cc].

BPEL4WS

 has been obtained by combining the Web Services Flow Language

14

() [IBMc] and the  [Micb] specifications. Quoting the  specifi-
cations [Spe]:

“ WS-BPEL is an XML based language enabling users to describe
business process activities as Web services and define how they can
be connected to accomplish specific tasks. WS-BPEL is designed to
specify business processes that are both composed of, and exposed
as, Web Services. WS-BPEL is an orchestration language. ”

In , orchestration relies on the  description of involved services to
build a business process, in the means of a service based application, that involves
access to the functionalities exposed by such services. The set of operations
(called ports) and the set of data types needed to interact with them are retrieved
from the  specification. On top of this information, the  designs are
built by specifying how the data have to be exchanged among partners and the
handling functions to activate in case of their failures. The invoke and reply
actions declare the role that two services are playing in a single activity (resp.
the service requester and the service provider). Additionally, activities can be
composed in sequence or in parallel (resp. sequence and flow), or can throw
and exception. The while construct permits to repeatedly execute an activity and
the switch construct permits to apply a conditional logics on flows. Variables are
explicitly managed in . The assign primitive allows to update the value of a
variable, that are accessed by services through the receive primitive.

However, the  description would not specify how a given service should
process a given task internally. A  program describes an interaction protocol
that expresses what pieces of information an activity consists of, and what ex-
ceptions may have to be handled. Only the WSs composition is described at this
layer. It is assumed that  will be combined with other languages which are
used to implement internal functionalities (also referred to as business logics).
The execution of  orchestrations is performed by  engines that interpret
and execute the  processes. The engine is responsible, at each step of the
orchestration, to make the proper decision and to engage the required tasks on
the services.

In order to give a reference guide for comparing the effectiveness and the
expressiveness of work-flow languages, a set of relevant work-flow patterns have
been isolated and proposed in [vdAtHKB00]. These patterns have been used
in [WvdADtH03b] for analyzing the  constructs and in [WvdADtH03a], for
making a comparison of  with existing alternatives, such as  [W3Ca],
 [OMG02],  [UO01] and  [WfM02].

15

WS-CDL

- is a choreography language that describes the messages exchanging
among services that participate in collaborative environment. As defined
in [W3Cc]:

“ The WS-CDL is an XML-based language that describes peer-to-
peer collaborations of parties by defining, from a global viewpoint,
their common and complementary observable behavior; where or-
dered message exchanges result in accomplishing a common busi-
ness goal. ”

The - does not supply an executable process of the collaborative defi-
nition, since there is no center of control as the participants are peers. While 
defines the coordination from the point of view of a participant, here the focus is
on a global public view. In few words, the choreography designs are specified as
sequences of interaction that involve all (or a part of) the coordinated services.
At this level it is possible to express coordination patterns in this manner: “after
service A and B communicate on channel chx, the services C and D communi-
cate on channel chy”. Additionally, the data exchanged among participants can
be bound to variables that are used during conversations.

The - language is considered more abstract than  and not directly
executable. Nevertheless, a given choreography can be projected to orchestration
views in the means of single services participating to the overall coordinated
activity. This way, to each service it is provided the local view of the business
process that can be executed through  engines as discussed in [MH05].

2.3 E N
Service oriented applications can be conveniently thought of as being event
driven, namely, they perform their work in response to events issued externally by
means of some notification mechanism. Accordingly, services are programmed
as reactive components.

The event notification paradigm embodies a possible implementation for
event based systems and is often adopted in presence of systems that integrate
heterogeneous components and thus require loosely coupled interactions. The
event notification pattern turns out to be suitable for coordinating distributed ac-
tivities; the typical situation is when a single event occurrence should be notified
to many agents.

The event based solutions mainly share common functionalities and, in the
example presented in Section 2.3.1, we give an intuition of how these systems

16

work and the basic concepts they rely on. Further practical considerations on the
possible variants of event based strategies are reported in Section 2.3.2.

2.3.1 A walk through events
In the every day life, we are surrounded by systems that react to events remotely
issued and also human behavior is often influenced by the occurrences of events.
We are familiar with event based systems that, more than having a common clear
meaning, expose an high flexibility to adapt to several contexts. In particular we
discuss how the events can be useful to implement the coordination of services.

In this section we recall the main characteristics of the event based paradigms
through the following running example.

Example 2.3.1 We model a traffic light as an event-notification system. Specifi-
cally, when the light becomes red, drivers stop their cars and wait for the green
light. Two kinds of events are possible. For the sake of simplicity we omit the
“yellow light” situation since not relevant.

From the example we isolate the main ingredients and the main features of
event notification.

The ingredients are events, notifications, publishers, subscribers, subscription
and topics. We now detail each of them, and after, in Chapter 3, we use them as
pillars of our programming model.

i) abstractly an event represents the viariation of a state. An event occurrence
can regard a change of the internal state of an agent or could be environ-
mental. Depending on the abstraction level, a state variation may be the
assignment to a variable, a clock tick, or a mouse click, etc.

The relevant events of Example 2.3.1 are those that involve changes to the
traffic lights, for example “green” or “red” lights. The events are generated
by an internal timer that associates a slot of time to each color. When the
assigned time expires a new event occurs.

ii) a wide range of events can occur, so it must be possible to classify them
offering the possibility to declare the class of events an agent is interested in.
In order to characterize domains of events, classes of homogeneous events
are grouped into topics.

The drivers of Example 2.3.1 declare to be interested to watch the traffic
lights and will ignore other events that eventually will occur (e.g. “it starts
to rain”). As consequence, the relevant topics for the drivers will be “red
light” and “green light”.

17

iii) notifications are the machinery for interactions, namely they consist of mes-
sages carrying the description of the event to be delivered. The notification
process relies on topics to appropriately deliver events. In fact, topics differ
from usual data types as they drive notification of events.

In Example 2.3.1, once the semaphore timer expires, the related event is
notified (to the drivers) by changing the lights.

iv) two typologies of actors are possible. On one hand, we have the publishers
that “actively” participate to the interactions by raising and notifying events.
On the other hand, there are the subscribers that declare their interest to re-
ceive notifications for events and “passively” wait their happening. Upon a
notification reception will correspond an action on the subscriber for trig-
gering its handling. In other terms, such agents react at the happening of an
event.

In the Example 2.3.1 the traffic lights act as publishers and, as counterpart,
the drivers act as subscribers. When the red light is notified, the driver
reacts by stopping the car.

Notice that a subscriber can act as publisher (and vice versa) with the respect
to other participants or to other events, so that there is no clear separation of
the two roles.

An intelligent semaphore may serve car once approaching a crossroad and
react accordingly. Here the roles are clearly inverted; the semaphore acts
as subscriber.

v) the act of declaring the interest to receive notifications for a class of events
is called subscription. Two kinds of subscription policies are possible. Ac-
cording to the system we are considering, subscriptions can happen anony-
mously, in the means of it is not discriminating the notifier but just the topic
(e.g. “if it starts to rain you open the umbrella”) or non anonymously, if the
notifier is relevant.

In Example 2.3.1, the driver is responsible to “subscribe” to the events re-
lated to the traffic lights, or rather he observes the light changes.
Moreover, the driver decides to observe just the traffic lights for its direc-
tion, so that the events coming from other traffic lights are not captured; the
driver applies a non anonymous subscription to a precise semaphore.

The event based systems are characterized by the following features:

i) the notification delivering usually happens in a multi-cast fashion, the noti-
fication coming from a publisher is delivered to all the subscribed agents.

18

In Example 2.3.1, when the lights become green the drivers are informed
altogether.

This is the distinguishing feature of event based systems with the respect to
message passing or method invocation paradigms. By exploiting the sub-
scription mechanism and the multi-cast notification delivering, the publish-
ers are independent from the subscribed agents and no explicit knowledge
about them is required.

ii) publishers are isolated from the subscribers.

Referring to the Example 2.3.1, the traffic lights behave always in the same
manner, regardless the drivers that are involved. The traffic lights have been
thought as isolated agents and their behavior defined independently from
any particular running situation. The drivers will be responsible to catch
the events notified by the traffic lights and to act in correspondence to their
happening.

Apparently, while for publishers it is possible to guarantee the isolation,
subscribers seem to have acknowledge of the existing publishers to which
they subscribe. Other solutions are possible. The dynamic subscription
mechanism permits to relax the dependences of subscribers from the pub-
lishers. Additionally, some event based implementations give the possibility
to decouple the responsibility of implementing subscriptions from the one
of reacting to events as clarified in Section 2.3.2.

iii) entities interested in receiving informations can be dynamically registered
with services able to produce the information. The dynamic nature of regis-
trations implies that both the publishers and the subscribers need no knowl-
edge about the presence of the counterpart.

Considering the Example 2.3.1, the driver decides to make a subscription
to a semaphore just when approaches it. This kind of subscription has not
been pre-planned and so takes place dynamically.

iv) the notification of an event and its further handling activation usually happen
asynchronously.

Suppose the driver, in Example 2.3.1, busy in a call conversation. The light
becomes green, he will hang down the conversation before leaving. The
driver agent is performing some other task and the event has been sched-
uled.

The asynchrony is a peculiar requirement of SOA, so the possibility to en-
able this feature is particularly important.

19

v) the event notification encourages one way communications. In analogy to
the method invocation, the notifications correspond to single call strategy,
namely the requester receives no response from the invoked method.

The traffic lights of Example 2.3.1 notify the events to the drivers (if any)
and does not care if they will eventually receive the corresponding notifica-
tions.

2.3.2 Some Considerations
The event based systems rely on interactions happening in a “cause-effect” way
and introduce few primitives for implementing them: subscription and notifica-
tion.

The event based style of interaction mainly differs from usual method invoca-
tion and message driven formalisms, for the adoption of the subscription mech-
anism that features an high degree of loose coupling, resulting so, particularly
adequate for SOA. This is a direct consequence of the isolation and the dynamic
subscription features discussed in Section 2.3.1. Coherently to how suggester in
SOA, agents can be discovered and, accordingly, connected at run-time.

Figure 2.2 illustrates the three agents A, B and C acting as subscribers and
P1 acting as publisher. The publisher P1 will emit events of topics evt1 and evt2;
agents A and C will react to events of topics evt1, while B to events of topic evt2.
The subscriptions are represented by solid lines and, conversely, the notification
delivering is represented by dashed lines. The architecture underlying Figure 2.2
is the one adopted in the observer pattern (see [GHJV95]), where subscribers
are observers and, conversely, the (set of events raised by the) publisher is the
observable.

A

B

C

P1

Subscribers

PublisherSubscription (evt1)

Subscription (evt2)

Subscription (evt1)

Figure 2.2: Event notification: core elements

Notice that the scenario of Figure 2.2 encompasses the situation described
in Example 2.3.1 where subscribers correspond to drivers and each semaphore

20

to a topic. However there are other possible event based solutions that, besides
keeping the same ingredients and features given in Section 2.3.1, introduce addi-
tional roles or adopt different delivery strategies as explained below. An exhaus-
tive survey of the “many faces” that event based models assume can be found
in [EFGK03]. Hereafter, we recall the main characteristics on most important
variants of such models.

Decoupling roles Some event based solutions make use of additional compo-
nents that decouple the roles of publishers and subscribers in relation to the han-
dling of the message delivering and its handling.

A more general specification considers two phases of event subscription
(resp. publication). In this optic, a subscriber (resp. publisher) is just responsible
to implement the subscription to a publisher (resp. to implement the delivering
of notifications to the subscribers). Two further component types are defined: the
notification producer and the notification consumer. Events are raised by pro-
ducers and subsequently notified through the suitable publishers, and as counter-
part they are received by subscribers and their handling demanded to the proper
consumers. Alternative solutions that mix the concepts here exposed are possi-
ble. In Figure 2.3 we report a configuration in which just the subscribers and
consumers are decoupled. On the other side instead, the producer plays also the
subscriber role.

In particular, in Figure 2.3, there is a publisher that initially declares the
topics which can be observed during its execution and two consumers, B and C,
that are responsible to handle notifications. The subscriptions are made by a third
service, A, which acts as subscriber for the consumers.

Figure 2.3: Event notification overview

21

Delivery strategies Besides the non-brokered solutions described in Figure 2.2
and in Figure 2.3, other delivery strategies are possible. Remarkably, brokered
solutions can be adopted, as shown in Figure 2.4.

The brokered interaction introduces intermediary component, called notifi-
cation broker, that decouples consumers from publishers. As depicted in Fig-
ure 2.4, the notification broker receives all the notifications from the producers
(P1 and P2). Any notification is stored by the broker and, depending on the dis-
patching strategy, dispatched to the consumers (B and C). Observe that, as in
Figure 2.3, A acts as subscriber on behalf of the consumers B and C.

In some of event based paradigms, such as the publish/subscribe, the broker
is mandatory while in the event notification specifications it is considered op-
tional. Since a notification broker is an intermediary agent, it provides additional
capabilities to the basic producer behavior:

i) it manages directly the subscriptions relieving so a publisher from having to
implement message exchanges associated with producer;

ii) it reduces the number of instances and inter-component connections;

iii) it can act as discovery service, so that publishers and subscribers can be
retrieved by simply accessing a shared broker;

iv) it permits the use of anonymous notifications, so decoupling publishers and
consumers from producers;

v) it permits also to manage persistent notifications by keeping track of all the
events happened into the system; the related notifications will be dispatched
asynchronously.

A

Service Subscriber

B

Notification Consumer

C

NotificationConsumer

Subscribe "B" to (EvType1, EvType2)

Subscribe "C" to (EvType1, EvType3)

Notification for

event "EvType1"

Notif
icatio

n fo
r

event "
EvType1"

Producer

P1

Producer

P2

Broker

Topics:

EvType1
EvType2
EvType3
EvType4

Figure 2.4: Event notification: brokered

22

The brokered solutions seems to be attractive when persistence of notifica-
tions is required and features an high degree of loosely coupling among the con-
sumers and the producers of events, with the respect to the non brokered one,
since the subscriptions happen anonymously. Yet, it brings to a centralization
point that in some situations should result disadvantageous.

Remarkably, delivery strategies constrain communication policies, because
of anonymity of the notifications. Specifically, brokered strategies imply the
adoption of broad-cast communication (notifications are sent to any consumers
who are unaware of producers), while non-brokered strategies make use of multi-
cast communication since notifications are received by the only consumers reg-
istered with a given producer.

Typical models based on brokered interactions are “Linda spaces” [CGL86,
Gel85]. Several implementations of Linda spaces or, more in general, of tuple
spaces are available, among them a Java implementation of Linda [WCC04] and
SUN Java Spaces [Mic05], to cite a few. The benefits that Linda spaces offer in
presence of reactive systems are discussed in [GZ97].

A further characteristic discriminates the notification dispatching. Two main
approaches are possible: topic-based and content-based mechanisms [CW02,
LP03]. The dispatching mechanism in topic-based (also known as subject-based)
EN systems is simpler than in content-based systems. In topic-based systems,
events are categorized into topics which subscribers register to. When an event
belonging to a topic τ is emitted, all the components subscribed for τ will even-
tually react to the event. Notice that publishers and subscribers have to know the
topics at hand. In content-based systems, component decoupling is enforced by
allowing subscribers to register for events satisfying a given property. When an
event is emitted the middleware has to dispatch it to all the subscribers whose
property holds on that event (an example of content-based is SIENA [CRW00]).
Notoriously, content-based dispatching mechanisms must be efficient because
notification sets, i.e. the set of subscribers that must be notified for the event,
can be order of magnitude larger than in topic-based EN [CW03, TAJ03]. A
main advantage of content-based EN is that publishers and subscribers do not
have to share any a priori knowledge about the topics. Subscribers use, instead,
a language for expressing properties on events that publishers must simply ac-
complish with when emitting their events.A more abstract content-based model
is the so called type-based EN [EG04] where topics are replaced by types (in a
suitable type language). Typed events are also used in commercial middleware
(see [EG04] and the references therein).

Emerging event based models introduce complex mechanisms of pattern
matching on the topics so that the discrimination of the subscription (resp. noti-
fication delivering) allows to shift part of the logic at the coordination level.

23

Although in its basic form, our formalization focuses on topic-based deliv-
ering mechanism, some recent results, available in [FGST07], have provided the
basis for extending the structure of our model to natively support type-based de-
livering strategies.

In order to take advantage of the main features of both brokered and non-
brokered strategies, we have designed an hybrid solution. Indeed, in Chapter 3
we introduce a specification language for event based systems that adopts a non-
brokered delivery strategy (in accordance to the observer design pattern) that, on
the other side, guarantees persistence of events.

2.4 π-C

The π-calculus primitives are here introduced incrementally recalling, at first, the
constructs for modeling interactive concurrent processes. The section ends by
introducing some additional aspects that are relevant for comparing our language
and the π-calculus. In particular we recall the asynchronous communication and
the operators needed for dealing with recursive and non deterministic behaviors.

The π-calculus consists of a suitable language for describing interactive con-
current processes and has been originally proposed in [MPW92]. Further in-
sights can be found in [Mil99, SW02]. The π-calculus models the communica-
tion among autonomous and concurrent processes. The emphasis of the language
is put on the concept of “named channels”, consisting of the set of active media
used to implement the process interactions. Besides, names are used to model
data conveyed on channels enabling the modeling of value passing.

The basic form of π-calculus is called monadic, since it allows only single
names to be communicated on channels. A polyadic variant enables tuples of
names to be communicated and can be encoded into the monadic form as dis-
cussed in [Mil92, QW98, Yos96]. An important aspect we will take into ac-
count is the possibility to deal with asynchronous communications as presented
in [Bou92, HT91]. Asynchrony is crucial for SOA applications since it pro-
vides a mechanism for dealing with non blocking message delivering freeing the
sender to wait until a receiver declares its availability to consume the message as
opposite to the rendez-vous behavior.

Names are the essence of the π-calculus and are both used to denote variables
and channels. A process performing an output of value (name) z through the
channel x assumes the form xz. Its counterpart, the process receiving a datum on
the channel x, will assume the form x(w).P.

24

Syntax The syntax and semantics of the π-calculus assume an infinite (count-
able) set N of names, ranged over by x, y, etc and P the infinite set of process
names ranged by P, Q, R. The process terms are built by the grammar in Ta-
ble 2.1.

P,Q ::= 0 empty process
P | Q parallel composition
xz.P output
x(w).P input
(νx)P name restriction

Table 2.1: π-calculus syntax

Processes, can be the inert process 0, composed in parallel, prefixed by input
or output action and declare local (restricted) names.

Example 2.4.1 Consider xu.P | x(v).Q | R whose first (resp. second) parallel
component sends (resp. receives) on x while R runs in parallel with the first
two; after the synchronization of the first two components the process becomes
P | Q{u/v} | R as will become clear from the semantics described in the following.

Semantics The reduction semantics of the π-calculus is the smallest binary re-
lation −→ closed under the rules in Table 2.4 and relying on the structural con-
gruence relation defined in Table 2.2.

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R
(νx)(νy)P ≡ (νy)(νx)P P | (νx)Q ≡ (νx)(P | Q) x < f n(P)

Table 2.2: Structural congruence relation

The first three rules, in Table 2.2, state that processes form a commutative
monoid with respect to the parallel composition. Namely, 0 acts as the neutral
element and that the commutative and associative properties hold on the terms.
Moreover, the name restriction is commutative. The last rule is the scope extru-
sion: the scope of the name x, restricted in Q, can be extruded to P, providing
that x does not occur free in P.

25

Scope extrusion is central since it describes how a bound name x may be
extruded, by an output action, causing the scope of x to be extended.

f n(0) = ∅ bn(0) = ∅
f n(P | Q) = f n(P) ∪ f n(Q) bn(P | Q) = bn(P) ∪ bn(Q)
f n(xz.P) = {x, z} ∪ f n(P) bn(xz.P) = bn(P)
f n(x(z).P) = {x} ∪ (f n(P) \ {z}) bn(x(z).P) = {z} ∪ bn(P)
f n((νx)P) = f n(P) \ {x} bn((νx)P) = bn(P) ∪ x

Table 2.3: Free and bound names

In Table 2.3 there are the rules for free and bound names of a process (re-
spectively denoted as f n and bn) defined on the terms of the calculus. Also, the
names of a process P are defined as n(P) def

= f n(P) ∪ bn(P). The input and the
name restriction operators apply binders, in particular, the input prefix x(z) binds
z and (νx)P binds x.

As usual, structural congruence include alpha-equivalence, meaning that two
processes are identified if they only differ by a change of bound names.

Example 2.4.2 A term (νx)P | Q can be replaced by the term (νw){w/x}P | Q on
the assumption that w < f n(P). The application of alpha renaming to the first
process implies the replacement of all the occurrences of x in P with the new
name w.

(COM)
xz.P | x(w).Q −→ P | {z/w}Q

P −→ P′
(PAR)

P | Q −→ P′ | Q

P −→ P′
(RES)

(νx)P −→ (νx)P′
P ≡ P′ −→ Q ≡ Q′

(S TRUCT)
P −→ Q′

Table 2.4: Reduction rules of synchronous π-calculus

With reference to Table 2.4, we just recall the COM rule, since the others
have the obvious meaning. In the case of x(w).Q, w represents a variable acting
as placeholder for the value z received on the channel x, and Q the process to
execute once the input has been received. Notice that, after the synchronization,
the receiver continues as Q where w is replaced with z.

26

A crucial aspect of the calculus relies on the possibility to generate a new
channel name and to communicate it to other processes. In a such way a pro-
cess can be informed about the presence of a new channel and, later on, use it.
An application of scope extrusion obtained by applying the rules in Table 2.4 is
reported in Example 2.4.3.

Example 2.4.3 The term (νy)xy.Q | x(z).zw.P represents a process that creates
a new name y and sends it to the process concurring with it. The other process
receives on the channel x the freshly generated name that is later on used to
communicate on it the name w. Having y < f n(x(z).zw.P), it is possible to extrude
the scope of y, so that:

(νy)xy.Q | x(z).zw.P ≡ (νy)(xy.Q | x(z).zw.P) −→ (νy)(Q | {y/z}zw.P) ≡
(νy)(Q | yw.P)

Asynchronous π-calculus As previously stated in Section 2.1, the possibility
to enable the treatment of asynchronous interactions is crucial for SOAs. For this
reason, our formal approach features asynchrony. Here we recall the basic princi-
ples of asynchronous π-calculus (πα for short) just discussing the syntactic mod-
ifications needed to the calculus presented in Table 2.1 to support asynchrony.

In the synchronous form, both the output and the input operations have a pre-
fixed form. Although, even if the input operation x(z).P, by its nature, is blocking
(since it needs to receive, on the channel x, the value for the bound variable z be-
fore activating the continuation P), the sender process can avoid blocking by
adopting the bare output. The output becomes so xz with no continuation. The
operational semantics remains the same under the assumption that the output is
not involved into a non-deterministic choice (described below).

The πα adopts a relaxed from of output where the sender is unaware of the
existence of the counterpart. Roughly speaking, the output operation can be
thought of as an insertion of the message in a queue associated to the channel
and respectively the input as the extraction of a message pending in the queue.
As consequence no warranties about the reception of the message are given. The
main advantage that comes from this solution is the decoupling of senders and
receivers.

Sum operator The calculus is often enriched with the choice operator P + Q
through which the language exhibits the possibility to deal with several possible
behaviors that can be non-deterministically executed. In addition the silent prefix,
τ.P is added to represent a process that, after an internal computation τ, becomes
P. To deal with the new operators, the structural congruence of Table 2.2 must be

27

extended with the monoidal rules for the choice operator that are similar to those
for the parallel (and therefore omitted).

With the respect to the reduction rules of Table 2.4, some modifications are
needed. First, the rule COM is replaced by COM′ defined in Table 2.5. In
addition, rule T AU is introduced to deal with silent prefix.

(x(y).P + ...) | (xz.Q + ...) −→ {z/y}P | Q (COM’)

τ.P + Q −→ P (TAU)

Table 2.5: Reduction rules of asynchronous π-calculus

The term 0+P always evolves in P. Additionally τ.P + τ.Q performs an
internal choice since both the prefixed can be activated. Finally, xy.P + zw.Q is
said to perform an external choice, since the evolution of the two processes is
determined by the context in which they will act. Hence, an output on channel x
will involve the activation of the term reading from channel x.

Replication Many π-calculus variants include the replication operator !P, that
allows to write processes that are indefinitely repeated.

Adding replication only requires to extend the structural congruence rules
with !P ≡ P|!P.

2.5 L R T
An important aspect that emerges in current SOAs is to ensure transactional prop-
erties related to the execution flow. Note that the problem is not just to coordinate
the updates of a distributed repository (e.g., a database), since components are
independent and each of them is responsible for maintaining the consistency on
local data.

Usually, transactions are thought of as a sequence of actions to be executed
atomically. Such kind of transactions are also referred as ACID (Atomicity, Con-
sistency, Isolation and Durability) transactions, whose virtues and limitations are
discussed in [Gra81]. ACID transactions cannot suitably model transactional as-
pects related to SOAs (for a deeper discussion see e.g. [Lit03]), since often their
execution spawns over a relatively long time. Moreover, it is often impossible to
guarantee the whole restore of initial state and often these concurrent activities
do not permit the isolation of data, meaning that it is not possible to apply lock-
ing mechanisms since the resources involved are in general distributed on a large

28

scale in distinct network domains.

Example 2.5.1 To better clarify the new problematics that arise from the appli-
cation of transactions in the SOA context consider a site offering the a service for
reserving air flights. Under the assumption that credit card payment is adopted,
and after a week the customer decides to revoke the previously reserved flight,
the usual ACID mechanisms cannot be employed. At, first the locking mecha-
nisms cannot be adopted to ensure isolation of the overall transaction. Usually
a compensation is adopted in behalf of the rollback activity. For example the air
agency can decide to send an e-mail to the customer with a coupon for using in
a further travel.

An alternative solution consists in using so called Long Running Transactions
(LRTs) instead of usual ACID transactions.

In LRTs a relaxed form of atomicity is adopted. Processes are
associated with compensations, that can recover partial executions,
in correspondence to failures that happen in the middle of a
transactional stack.

The compensation strategy has been widely accepted by the emerging mod-
els for WS coordination. In fact, most of the work-flow languages proposed in
recent years, like , ,  and 4, include primitives for handling
LRTs. Noteworthy, all those proposals lack a formal semantics. The informal
specification introduces ambiguities that can lead to different implementations
of the same language (as an example, see [WvdADtH03b] and the large list of
open issues for 4 [BPE]). Moreover, those proposals mix together many
different concepts and programming constructs. Hence, it is difficult to establish
a clear semantics for them because of the mutual interactions of such different
constructs.

Alternative solutions for describing LRTs have been proposed in the last years
giving rise to several theoretical models, such as StAC [CGV+02, BF04] and
Sagas [GMS87]. Comparisons among different LRTs approaches can be found
in [BMM05, BBF+05].

Another mainstream in transactional process calculi takes as starting point
well-known name passing calculi, like π, and adds to them transactional features
like compensable nested contexts [BLZ03], timed transactions [LZ05, MG05],
interacting compensable transactions [BMM04] and event scopes [ML04].

29

Differently from other proposals, like the Business Transaction Protocol
(BTP) [OAS02] and Web Services Transaction (WS-TX) [IBM05], that envis-
age the management of the distributed state by adopting the “two phase commit”
discipline [SS83] or similar solutions, the adoption of Sagas better fits our inten-
tion, since it allows to adopt a non centralized solution in a choreography fashion
requiring no intermediate coordinator.

2.5.1 Business Process Modeling Notation
The Business Process Modeling Notation () [Gro02] provides a graphical
notation for specifying the work-flow of business processes. The model keeps
abstraction from any implementation platform and provides a common set of
primitives for describing the activities performed in a coordination pattern, the
data exchanged, the events raised during the computations and the connections
among the components.

As stated in [Ste04]:

“ BPMN is also supported with appropriate graphical object prop-
erties that will enable the generation of executable BPEL. Thus,
BPMN creates a standardized bridge for the gap between the busi-
ness process design and process implementation. ”

The  notation provides the same expressiveness of usual work-flow lan-
guages. In particular, in [Ste05] the author presents an informal guideline for
mapping  designs on top of  processes.  permits to describe the
work-flow of a distributed system by a global point of view. The software ar-
chitect can abstract from the distribution of the processes, the communication
mechanisms and the technologies that will implement each process. No explicit
notion of location or of software agent is provided at this level. The core ele-
ments of computations are the activities that are artifacts of operations. They are
not directly bound to an active partner (or to a service). The concept of swim-
lanes (pool and lane) is introduced to enclose activities inside groups of work
units, thus they can be used to identify single participants or to separate the re-
sponsibilities of groups of activities. Still, this is just a possible interpretation
since no precise constraint (semantics) is given to specify these constructs.

On top of the core  specification (whose quick introduction is given
in [Ste04]), a further layer extends the meta-model to treat aspects regarding
transactional activities and introduces constructs that result fashionable for treat-
ing LRTs.

Here, we focus on the transactional set of  that in the following we indi-
cate as tr. The basic elements of tr are compensable activities, namely

30

pairs of main activities and compensations that can be composed sequentially
or in parallel. Figure 2.5 depicts the standard tr designs respectively for
sequential (a) and parallel (b) composition of compensable activities.

(a) Sequence (b) Parallel

Figure 2.5: BPMNtr: composition of compensable activities

In tr main activities and their related compensations are represented as
boxes linked by dashed arrows. Referring to Figure 2.5, the main activity Task1
has a "compensation" entry point to which its compensation Comp1 is attached.
The sequential composition is performed by linking together the main activities
(cf. Figure 2.5(a)), while the parallel composition makes use of “fork” and “join”
operators. In Figure 2.5(b) it is reported a parallel composition of two trans-
actional activities. The two circles represent the start event and the end event
of the whole process, while the diamond with the plus operation represents the
join of the two parallel activities. The fork operation is implicit in the multiple
connections on the start event.

Figure 2.6: BPMNtr: transactional boundaries

Finally, compensable activities, and their compositions, can be enclosed in-
side transactional boundaries as shown in Figure 2.6.

All the elements presented at this layer are inherited from the  core me-
ta-model and have the usual meaning of flowchart designs. Just the core activ-
ities have been reinterpreted to support transactional capabilities. In particular,

31

in tr, activities are modified to support the binding with the related com-
pensation activity. So that, at this level, activities are thought of as couples of
basic  activities. Still, the way these activities internally implement their
workings and the interactions needed to coordinate composed activities are not
formally specified.

Indeed, as a matter of fact, tr designs (i) neglect distribution aspects of
the transactional activities, (ii) does not specify if activities are atomic or consist-
ing of hidden sub-activities, (iii) do not pay attention on how compensations are
distributed (e.g. by replicating the same functionality to achieve load balancing).

2.5.2 Naïve Sagas

Saga calculi have been proposed to formalize Long Running Transactions.
Among the several existing variants, we will consider the Naïve Sagas
of [BMM05] that exhibit the basic concepts needed to model and formalize
tr. The “naïve” adjective refers to the execution of the parallel activities.
In particular, Naïve Sagas assumes a simplified execution of parallel branches
so that, once an activity fails it must wait until the other concurrent branches
terminates before continuing. Optimized executions of the parallel blocks have
been proposed and implemented in [BMM05] but are out of our scope and so
omitted.

Activities in a saga are described at the high level of abstraction, where the
elementary actions are not interpreted. Transactional flows are processes built by
composing with the standard parallel and sequential composition plus the com-
pensation pair construct. Given two actions A and B, the compensation pair A÷B
corresponds to a process that uses B as compensation for A. Intuitively, A ÷ B
yields two flows of execution: the forward flow and the backward flow. During
the forward flow, A ÷ B starts its execution by running the main activity A; when
A finishes, B is “installed” as compensation for A, and the control is forwardly
propagated to the other stages of the transactions. In case of a failure in the rest
of the transaction, the backward flow starts so that the effects of executing A have
to be compensated. This is achieved by activating the installed compensation B
and, afterward, by propagating the request to compensate to the activities that
were executed before A. Note that B is not installed if A is not executed. Hav-
ing that, with LRTs, the atomicity constraint is relaxed, in case of failure, the
compensation activities will bring to a final state that should be different from
the initial one, but, anyway, it will be consistent. When clear from context, the
compensations will be also referred to as rollback activities.

32

Syntax In reference to Table 2.6, the (S) can also be expressed as the 0
process and the single main activity A having no compensation. This last term is
a shorthand for A÷0. We assume A a set of names for atomic activities ranged
over by A, B, Moreover, 0 is considered a special empty activity 0 < A that
always completes and has no effect.

X ::= 0 | A | A÷B (S)
P ::= X | P; P | P || P (P)
S ::= {[P]} (S)

Table 2.6: Naïve Sagas syntax

Processes P are expressed as basic compensable activities and can be com-
posed either in sequence P; Q or in parallel P || Q. A Saga consists of a pro-
cess P enclosed into a transactional block ({[P]}). Sagas achieve atomicity if all
the enclosed activities (sub-transactions) reach a consistent state. Either all the
components successfully complete all their main activities, or all their installed
compensations are executed.

We consider a fragment of original Naïve Sagas where nested sagas (e.g.
{[P; {[P′]}]}) and the programmable compensations (e.g. P ÷ Q) are omitted since
their practical need is marginal for our purpose. Without loss of generality, we
assume that any activity appears at most once in any saga (resp. process), i.e.
that different instances of the same action are named differently.

Example 2.5.2 The Sagas representation of tr processes depicted in Fig-
ure 2.5 is:

(Task1÷Comp1); (Task2÷Comp2) (S)
(Task1÷Comp1)||(Task2÷Comp2) (P)

while for transactional enclosure construct, depicted in Figure 2.6, the intended
meaning in Sagas is:

{[Task÷Comp]} (S)

Big Step Semantics We now recall the big step semantics of Naïve Sagas
introduced in [BMM05]. The execution of Sagas can either evolve in a com-
mitment of the overall transaction, or no effect is externally observed when the
execution fails. Sagas are supposed to always terminate in a consistent state,

33

however compensations can internally fail, bringing to an abnormal termination.
With respect to the semantics defined in [BMM05], we omit the treatment of
failure in compensation activities.

The semantic of Saga is given up to a structural congruence over terms, which
is defined by the axioms in Table 2.7. Sequential and parallel compositions are
both associative having 0 as neutral element. Moreover, the parallel operation is
commutative.

A÷0 ≡ A 0; P ≡ P; 0 ≡ P (P; Q); R ≡ P; (Q; R)
P || 0 ≡ P P || Q ≡ Q || P P || (Q || R) ≡ (P || Q) || R

Table 2.7: Naïve Sagas structural congruence

For the sake of simplicity, in the following the semantics has been presented
with an incremental approach by presenting, the reduction rules for the basic
activities (Steps) and subsequently the semantics for composing processes in se-
quence and in parallel.

In the following, � and � represent the possible outcomes of the execution
of atomic activities (resp. commit and abort). Let R = {�,�} (ranged over by �)
be the set of the possible results of the execution of a saga and Γ ` A → R be a
function that assigns a result to atomic activities.

The semantics of Sagas is given by two relations Γ ` S
α
−→ R and Γ ` 〈P, β〉

α
−→

〈�, β′〉. The former evaluates processes to results and the latter gives the seman-
tics of processes. Both those relations use labels α that amounts to be traces of
executions of atomic actions. In the relation Γ ` 〈P, β〉

α
−→ 〈�, β′〉 β represents the

“stack” of installed compensations.
In Table 2.8 we report the reduction rules for Steps. The empty activity 0 is

assumed to successfully terminate installing no compensation (rule (Z)). The
rules (S-A) and (S-C) describe the execution of a compensable activity A÷B
in a configuration having a compensation stack β. The former regulates the cor-
rect execution of the main activity A; in fact, it evolves into a new configuration
having B on the top of the compensation stack and observes the main activity
itself. The latter, instead, considers the happening of an internal failure during
the execution of A; the activity is now considered not executed, the configuration
reaches a state �, the stack of compensations is executed (and subsequently emp-
tied) by observing α. Notice that it is assumed that compensation execution does
not fail, so that the execution of β reaches a � state.

The evaluation of processes composed in sequence is described by rules

34

(Z)
Γ ` 〈0, β〉

0
−→ 〈�, β〉

Γ(A) = �
(S-A)

Γ ` 〈A÷B, β〉
A
−→ 〈�, B; β〉

Γ(A) = � Γ ` 〈β, 0〉
α
−→ 〈�, 0〉

(S-C)
Γ ` 〈A÷B, β〉

α
−→ 〈�, 0〉

Table 2.8: Naïve Sagas semantics: step

Γ ` 〈P, β〉
α
−→
〈
�, β′′

〉
Γ `
〈
Q, β′′

〉 α′
−→
〈
�, β′
〉

(S-S)
Γ ` 〈P; Q, β〉

α;α′
−−−→

〈
�, β′
〉

Γ ` 〈P, β〉
α
−→ 〈�, 0〉

(A-S)
Γ ` 〈P; Q, β〉

α
−→ 〈�, 0〉

Table 2.9: Naïve Sagas semantics: sequence

(S-S) and (A-S) in Table 2.9. If P correctly ends, the resulting configu-
ration of the execution P; Q will be the one reached by Q executed in a context
having, as initial compensation stack, the one produced by the execution of P. On
the contrary, if P fails, Q will never be activated and a � state will be reached.

Table 2.10 reports the rules for parallel composition, for which three cases
have to be considered. If both parallel processes are successfully executed
(S-P), their main activities α and α′ are observed and their compensations are
installed. Notice that both the observed activities and the installed compensations
are composed in parallel. If any process fails, say P, its concurrent process Q
has to compensate, by executing β′ and, subsequently the stack of pre-installed
compensations β is executed and emptied. This behavior is described by rule
(S-P-1). Finally, the rule (S-P-2), states that if both activities internally fail,
no compensations will be installed for them and just the pre-installed compensa-
tions β have to be executed.

The rule for saga is reported in Table 2.11. A saga is executed as an isolated

35

Γ ` 〈P, 0〉
α
−→
〈
�, β′
〉
Γ `
〈
P′, 0
〉 α′
−→
〈
�, β′′

〉
(S-P)

Γ ` 〈P || Q, β〉
α || α′

−−−−→
〈
�, β′ || β′′; β

〉
Γ ` 〈P, 0〉

α
−→ 〈�, 0〉 Γ ` 〈Q, 0〉

α′

−→
〈
�, β′
〉
Γ `
〈
β′; β, 0

〉 α′′
−−→ 〈�, 0〉

(S-P-1)
Γ ` 〈P || Q, β〉

(α || α′);α′′
−−−−−−−−→ 〈�, 0〉

Γ ` 〈P, 0〉
α
−→ 〈�, 0〉 Γ ` 〈Q, 0〉

α′

−→ 〈�, 0〉 Γ ` 〈β, 0〉
α′′

−−→ 〈�, 0〉
(S-P-2)

Γ ` 〈P || Q, β〉
(α || α′);α′′
−−−−−−−−→ 〈�, 0〉

Table 2.10: Naïve Sagas semantics: parallel

Γ ` 〈P, 0〉
α
−→ 〈�, β〉

(S-S)
Γ ` {[P]}

α
−→ �

Table 2.11: Naïve Sagas semantics: saga

transaction, hence its enclosed process P is evaluated in a context having the
compensation stack empty.

At this level the compensation stack is not considered since if P internally
fails, the compensations are executed and the stack emptied otherwise the whole
transaction is considered consistently ended and the stack explicitly removed.

36

Chapter 3

Signal Calculus

An important aspect strictly related to Service Oriented Architectures is the pos-
sibility to aggregate functionalities exposed by several services to build more
complex ones. The compositionality of services can be achieved by coordinating
their interactions through suitable work-flow languages.

In the last decade, several languages tailored to coordinate services have
been proposed. Most of such languages adopt message oriented mechanisms,
so that the interactions are modeled by describing the flow of messages that are
exchanged among parties. The idea is that the network infrastructure is directly
reflected in the architectural model of such languages so that the messages rep-
resent the core constructs for implementing communications among services.

Nevertheless, the coordination of services can be regulated by describing
their work-flow in terms of “how they react” to the evolution of their execution
environment. The system undergoes modifications that are represented by suit-
able events that are promptly notified to the interested partners. Components pas-
sively observe changes that are applied to the environment and trigger handling
routines at their occurrences, while, actively they concur to modify the system
state. Essentially, distributed pieces of functionalities access a common global
state that acts as a bridge for the involved parties hiding to them the underlying
network structure.

The adoption of the event notification paradigm yields several benefits since it
features high level coordination mechanisms that allow programmers/designers
to decouple components and rely entirely on event handling. Specifically for
SOAs, this strategy enforces the loosely coupling among services and enables
multi-cast asynchronous communications.

This chapter describes the Signal Calculus, a variant of the π-calculus with

37

explicit primitives to deal with event notification and component distribution.
Through a running example, we provide a comparison of the our program-

ming model and the π-calculus formalism.

3.1 I

The cornerstone of our approach is the adoption of an event notification ()
paradigm as a modeling and programming abstraction for SOAs. In fact, we
propose an event based language to model and orchestrate services in a SOA
scenario. The  paradigm allows programmers/designers to focus on how each
computational entity behaves upon occurrences of environmental stimuli instead
of considering complex interactions among several agents.

In the first instance, components are designed in “isolation”, focusing on the
way they act once an event of a certain kind occurs and on how they raise notifi-
cations for events internally occurred during their computations. Once deployed,
such components are injected in a particular network and “linked” together by
exploiting the subscription mechanism. This two-phase design relaxes the inter-
dependencies among components achieving an high degree of loosely coupling
and, consequently, reveals to be particularly suitable for SOAs.

The event notification paradigm, whose main characters and features have
been widely discussed in Section 2.3, is here recalled through an example that is
used to analyze the effectiveness of the π-calculus to deal in presence of situations
typically event based. Through this analysis will emerge some problematics that
evidence how some primitives, native in , comport some efforts or cumbersome
code to be expressed with π-calculus formalism.

The chapter concludes with the definition of a process calculus, the Signal
Calculus, that represents the starting point of our work and has been adopted as
specification language for the service coordination. The principles treated at this
level bring to the definition of a “network model” which entirely relies on event
notification and has been adapted to better fit the programmers needs in a SOA
environment.

3.2 A :   

To gain confidence with events, we start from the description of a typical scenario
we are used to, the alarm controller system, whose behavior can be simplified as
follows:

38

“when a door is forced, the alarm is activated and, in the meanwhile, both
the apartment owner and the police office telephones are contacted to inform that
a theft is possibly taking place”.

Door
Locked

Door
Unlocked

Door
Safely
Open

Door
Forced

Activate
Signal
Bell

Make
Phone
Calls

Wait
Unlock

Deact.
Signal
Bell

Code inserted

Code inserted

Door opened

Door closed

Door opened

Theft in course

Code inserted

Figure 3.1: Alarm system automaton

In Figure 3.1 it is depicted a sketch of the automaton for the alarm system
controller. As usual, in the automata notation, nodes represent the states, or
the configurations, that are reachable by the system, while the arcs are labeled
with the “conditions” (corresponding to events in our formalism) under which
transitions among states are possible. Namely, a transition from a state to another
is only possible if there is an arc connecting the two states and it happens once
the event on that arc has been discovered. The arcs having no label represent the
ε transitions in the automaton definition. Namely the transitions on those arcs
occur regardless the events happened in the system. For the sake of simplicity,
we have drawn a flat form of the real configuration, since several components are
involved in the real situation (e.g. the bell ring, the phone caller and the door
controller agents). The whole schema will be presented and formally described
in the following sections.

We assume to start from a situation where the door is closed and the alarm
engaged. Two possible events can occur. Either the code is inserted, and as
consequence the alarm deactivated, or the door is opened and then a probable
theft is discovered. In the former case, the configuration is considered “safe”,
namely the door can be further closed and the alarm reactivated. In the latter
case, instead, the alarm agent must notify the signal bell and the phone caller of
the happening of the “event” theft in course. In the meanwhile, the controller

39

enters a state “wait unlock” allowing the apartment’s owner to insert the code to
deactivate the alarm. Once the code is inserted the alarm system reaches again
the initial state (this is a simplified assumption) and the signal bell is informed
that the alarm has reentered.

3.2.1 Modeling the alarm controller in π-calculus
Now we discuss how the π-calculus primitives may be used to model, in an event
notification style, the example introduced in Section 3.2. The protocol can be
viewed as composition of two distinct phases: i) an initial phase where agents
perform their subscriptions and ii) a “running” phase that describes the life-cycle
of the overall system in terms of flow of events.

As notation, in this section we will use the terms event notifications for values
passed through channels and publishers and subscribers for the π processes that
access channels for sending (resp. receiving) notifications through such channels.

Phase 1: subscriptions The name passing capability exposed by π-calculus
allows to implement in a natural way the subscription of agents to topics of in-
terest. The channels adopted for receiving notifications are private to the sub-
scribers. The subscription is implemented by communicating the private chan-
nels to the publishers so that they can suitably deliver notifications on them. We
just present a short example for implementing the subscription of the Phone agent
to topics alarm. In the code reported in Code 3.1, the Phone agent accesses the
subscribealarm channel of Alarm to require the subscription on its occurrences of
events alarm. The channel chalarm, through which the Phone will receive notifi-
cations, is so passed to the Alarm agent.

Alarm = subscribealarm(chalarm)
Phone = subscribealarm chalarm

Code 3.1: Event subscription in π-calculus

We assume that, before activating the second phase of the protocol, all the
subscriptions have been suitably performed, similarly to Code 3.1. Moreover,
in the following, we start from a configuration in which agents Phone and Bell
share the channel chalarm to model they subscribe on the same event.

Phase 2: notifying events In Code 3.2, we report a preliminary sketch of the
π-calculus coding of the alarm system presented before.

40

At this phase of the protocol, π channels are intended as the vehicle for de-
livering, to other participants, notifications of raised events. As consequence,
channel names are assigned according to the events they notify. For example, an
output on the channel code stands for a delivering of a notification for the event
representing the situation “the user has inserted the code”. Analogously the trig-
gering of an event is represented by the respective input action on the respective
channel.

We provide a compact representation of this part of the protocol, in terms
of the Calculus of Communicating Systems (CCS) [Mil80] by omitting name
communication that is indeed useful for implementing the event subscription ca-
pability. The reading and writing operations on channels are to be intended as
notifications for events so that writing alarm | alarm will be intended as a short-
hand for chalarmevt | chalarm(x) where evt is the instance of the event notified on
the channel chalarm. That is because the instance of the event itself is not relevant
for this example and so is omitted for better readability.

Alarm = code.unlocked.code.locked
+ f orced.alarm.alarm.code.disableBell.locked

Door = opened.closed
+ locked.(unlocked + opened. f orced)

Bell = alarm.Ring.disableBell
Phone = alarm.MakeCalls
System = locked | !Alarm | !Door | !Bell | !Phone

Code 3.2: Alarm system in π-calculus

The π agents are defined in Code 3.2. The Alarm consists of a process that,
non deterministically, is activated by a code insertion and continues by notifying
that the door has been unlocked. Next, the process waits for the reinserting of
the code and notifies that the door has been locked again. The other possible
behavior expected by the Alarm consists in receiving, from the Door controller, a
notification of a door forced detection. In this case, a notification is sent twice on
channel alarm, one will be triggered by the Bell and the other one by the Phone
devices. The activation order of the two alarm handlers in not relevant. Once
notified the alarm, the controller becomes idle waiting for the code insertion
in order to deactivate the alarm. The deactivation is finally notified to the Bell
system. The system now reaches its initial state by notifying that the door is
locked again.

The Door agent interacts with both the “environment” (the User), to catch if

41

the door has been opened or closed, and with the Alarm system to be informed
about the state of the alarm engine. We assume that the alarm can be activated
only once the door is closed, so that, once the user “safely” opens the door, he
is assumed to close the door before inserting the code again. Three traces are
possible. The door is unlocked and the user is able to open and close the door
several times. But, once the user inserts the code, the alarm control notifies that
the door is in a locked state. Now, two possible behaviors are caught. Either the
door is unlocked or the door is opened and a forced event is thrown.

The Bell and Phone processes are simple to understand. The internal logic
used to implement the activation of the ringing bell and of the phone calling are
not described since out of our scope. We refer to these two behaviors as generic
processes Ring and MakeCalls, respectively. With the respect to the π-calculus,
these instructions correspond to the silent prefix τ.

The interactions with the human are represented by processes built as combi-
nation of actions in the set:

UserActs = {opened, closed, code}

under the assumption that user cannot perform actions of the form closed.closed
for obvious reasons. The System is obtained by composition of the agents defined
in Code 3.2. In its initial configuration the alarm is active.

3.2.1.1 Alarm system revisited

The sketch of the alarm system, reported in Code 3.2, hides an ambiguous be-
havior due to the choice construct. Referring to the Door agent, two input pre-
fixes opened are involved in different branches of execution. Since it holds that
!P ≡ P|!P, it is not possible to distinguish when the sending of a message on
channel opened should trigger which one between the two possible read opera-
tions. In a situation in which the door has been locked the Door agent reaches a
state of the form:

unlocked + opened. f orced | Door

Once an opened situation occurs, the process can continue by signaling a
forced event or the “reinstalled” process can consume it by reactivating the be-
havior previously described. The disambiguation is obtained by introducing an
ad hoc internal communication start (a guard on the recursion) that states when
the process has terminated the whole behavior and can be executed again. In
Code 3.3, the Door has been fixed to solve the ambiguous behavior.

The start name is restricted to the scope of Door agent and internally used
to ensure the proper application of replicated process. The replicated process has

42

Alarm = code.unlocked.code.locked.start
+ f orced.alarm.code.disableBell.locked.start

Door = opened.closed.start
+ locked.(unlocked.start + opened. f orced.start)

Bell = alarm.Ring.disableBell.alarmPhone
Phone = alarmPhone.MakeCalls
System = (νstart)(start | !start.Alarm) | (νstart)(start | !start.Door)

| !Bell | !Phone

Code 3.3: Alarm system revisited

to wait that the previous work-flow instance has been completely finished before
starting a new handling of communications coming from the system.

It is easy to see that, after some steps, the initial configuration of the process
Door reaches a state:

(unlocked.start + opened. f orced.start) | start.Door

so that the Door agent is able to respond only to two situations: the code is
reinserted and the alarm deactivated or the door is forced.

Analogous considerations hold for the Alarm agent since the code input pre-
fix is present at beginning of a branch and inside the other one. Notice that the
two start names have to be considered distinct since restricted.

Other conflicts can arise from Code 3.2 because of the usage of the channel
alarm for implementing the multiple delivering (multi-cast) of events to both Bell
and Phone agents. In fact, there are no warranties that the two instances of the
event alarm are distinctly caught by these processes. In particular, due to the
recursive behavior of processes, it can happen that a single process (e.g. Bell)
consumes the same notification twice. In Code 3.3 is shown a possible solution
that involves sequential delivering of notification firstly to Bell and secondly to
Phone. In this case the channels are distinct and so the conflicts on access to
the notification channel avoided. Alternatively the multi-cast can be ensured by
applying guards to the recursive behaviors of conflicting agents in analogy to the
solution previously discussed for the agent Alarm.

43

3.2.1.2 A few remarks: π-calculus and Event Notification

In reference to the concepts exposed in Section 2.3, we now characterize how the
 structure is reflected in π-calculus.

The usage of channels as core mechanism for both implementing the sub-
scriptions and for conveying notifications to subscribed agents seems to be ade-
quate for decoupling publishers from subscribers. The connections among pro-
cesses are created and acceded according to subscription policies. As conse-
quence, the system becomes more adaptable to the changes of the environment
lying around. To support the subscription in the π-calculus, the subscriber (the
notification consumer) has to communicate the channel used for receiving noti-
fications to the process acting as publisher (the notification producer). Conse-
quently, publishers and subscribers access a shared channel for delivering (resp.
consuming) notifications for raised events. This way, processes can be oppor-
tunely replaced by keeping the access to the same channel invisibly to their coun-
terparts. For example, in reference to the alarm system, the Phone process can be
substituted by a different process that respond to a change of the initial config-
uration (e.g. the user phone number changes) or to code modifications (e.g. the
process involves additional tasks). The Alarm agent will not be affected by these
modifications.

Nevertheless, the illusion of loosely coupling is just offered to subscribers.
In fact, the absence of multi-cast primitives requires the notifier itself to be re-
configured to support new subscriptions. In reference to the example described
above, the further addition of a process interested in receiving notifications for
the alarm events requires the modification of the Alarm controller that must be
conscious of the reconfiguration of the system (the notification must be sent three
times).

As a matter of fact, the π-calculus results more suitable when multi-to-one
message delivering policy is needed, while more complex becomes to encode
multi-cast (which turns out to be central in event based systems).

The adoption of event notification paradigm will drive the specification of
the Signal Calculus, that directly relies on events as machinery of interactions
enabling multi-cast asynchronous communications.

Section 3.3 reports the original contribution of Signal Calculus that relies on
topic based event notifications, while Section 3.5 recalls a subset of the typed
version of SC presented in [FGST07].

44

3.3 S C
The Signal Calculus (SC) is a process calculus in the style of the asynchronous
π-calculus [Mil93] specifically designed to describe coordination policies of ser-
vices distributed over a network.

The original contribution, presented in [FGS06b], has given the basis for de-
signing a programming framework for SOA, the Java Signal Core Layer. Fur-
thermore, the structure of SC has been reflected in a Domain Specific Language
(DSL) for which a graphical representation has been provided.

Similarly to the π-calculus and other analogous process algebra, SC describes
interactions happening among distributed concurrent components. Differently
from the π-calculus, where interactions happen in a point-to-point manner, in
SC a broadcasting approach is preferred to adhere to the event notification ideas.
Additionally, SC lays on locations as key rule for modeling where actual com-
putations are taking place. The adoption of locations is close to the approach
of the Ambient calculus, devised by Cardelli and Gordon in [CG98], that, in-
troduces the notion of locality of components in terms of membranes in which
computations take place. Albeit the Ambient calculus envisages the modeling
of concurrent systems in presence of code mobility, our main goal is to model
coordination of distributed computations, so SC does not feature code mobility.

Moreover, the adoption of the event notification tailors broadcast service acti-
vations and features a more natural description of the work-flow. The attention is
shifted on how the activities are involved in response to events raised in the sys-
tem. This level of abstraction increases the loosely coupled interactions among
components since the caller has no longer to know which component is able to
service a type of request. The kind of functionalities exported by components is
retrieved from its declared reactions that can be added or modified at run-time.

Standard EN paradigms rely on brokered communication (c.f. Section 2.3);
SC, instead, adopts a non-brokered notification mechanism where subscription
and emission are explicitly tagged with naming information, e.g. the name of the
target components. This avoids any centralization point by distributing the con-
nection managing to each involved participant. Brokered EN paradigms are more
appropriate when coordination is handled by an orchestrator, while non-brokered
approaches fit much better when choreography is adopted. For a detailed compar-
ison among brokered and non-brokered EN see [HG06]. Additionally, SC imple-
ments a subscription strategy that differs from usual event notification approach.
No explicit request of the subscriber is required, the publisher itself can decide
during its life-cycle which agents have to be involved into the coordination. This
approach is closer to the method invocation style since the caller (correspond-
ing to the publisher) is capable of deciding, for each object (corresponding to

45

the subscriber), which methods (the reactions) have to be invoked. Informally,
in relation to the OOP paradigm, the SC model allows to deal with distributed
objects with a dynamic type (reactions can be dynamically installed) and enables
multi-cast asynchronous method invocations. This interpretation considers flows
corresponding to references to methods.

Hereinafter, we recall the main ingredients of the calculus by presenting its
original proposal, with few examples, concluding with some variants and the
motivations standing behind. The chapter ends with the coding of the alarm
controller with the SC calculus.

Syntax

The Signal Calculus model is centered around the notion of component. A com-
ponent a[B]R

F is a service identified by a unique name a, the public address of the
service. The active computations, called behaviors (B), are confined inside com-
ponents. The expressions R and F, after reactions and flows, respectively, have
to be thought of as the service interface. Notifications of events are encapsu-
lated inside signals consisting of messages containing information regarding the
managed resources and the events raised during internal computations. Signals
are classified by topics; specifically, each component specifies (i) the reaction
to be activated upon reception of signals of a certain topic and (ii) the set of
event flows, namely the collection of component names the emitted signals will
be delivered to. Hence, while reactions define the interacting behavior of the
component, flows define the component view of the coordination policies. The
SC primitives allow one to dynamically modify the topology of the coordination
policies by adding new flows and reactions to components. New signals can be
sent either by autonomous components or as reaction to other signals. SC focuses
only on the primitives needed to design coordination protocols. Hence, the data
conveyed inside signals is not explicitly modeled. At implementation level, in-
stead, this aspect has been treated providing to the developer the constructs to
attach data to signals and to manage it.

We now introduce the main syntactic categories of our calculus together with
some notational machineries. We assume an infinite set T of topic names ranged
by τ1, ..., τk, a infinite set A of component names ranged by a, b, c.... We use ~a
to denote a set of names a1, ..., an. Finally, with names N,M, ... ∈ N we denote
networks.

The syntax of reactions (R) is reported in Table 3.1. A reaction is a multi-set
(possibly empty) of unit reactions. A unit reaction τ m B triggers the execution
of the behavior B upon reception of a signal tagged by the topic τ. Informally,
we say that τ corresponds to the “signature” of reactions, while B declares its

46

“body”.

(R) R ::= ∅R (Nil)
τ m B (Unit reaction)
R ⊗ R (Composition)

Table 3.1: SC reactions

Flows (F) are described by the grammar in Table 3.2. A flow is a set (possibly
empty) of unit flows. A unit flow τ ~a implements the subscription of a set of
component names ~a for the topic τ. Since flows are defined on the component
interface, their configuration is locally maintained by each component. SC clearly
inverts the subscription policy since the subscription is assumed to be required by
notification producers in behalf of consumers. For convenience, in the following
we denote with τ a the flows having just an end point connected, instead of
using the set notation τ {a}. Moreover, in the following we refer to R1 and R2
as subreactions of the reaction composition R1 ⊗ R2.

(F) F ::= ∅F (Nil)
τ ~a (Unit flow)
F ⊕ F (Composition)

Table 3.2: SC flows

Reactions and flows are defined up-to a structural congruence (≡). Indeed,
we assume that parallel composition of flows and reactions are associative, com-
mutative and with ∅F (resp. ∅R) behaving as identity. Furthermore, we let:

(τ ~a) ⊕ (τ ~b) ≡ τ ~a ∪ ~b (3.3.1)

Now, we report the flow projection (F)↓τ, consisting of an auxiliary function
defined on flow terms that is used to retrieve, given a topic name τ, the set of
subscribed components.

(∅F)↓τ= ∅ (τ ~a)↓τ′=
{
~a if τ′ = τ
∅ otherwise (F ⊕ F′)↓τ= (F)↓τ ∪(F′)↓τ

47

The syntax of component behaviors is reported in Table 3.3. The first two
productions represent, respectively, the empty and the internal actions; ε.B cor-
responds the silent prefix of the π-calculus, reported in Section 2.4. The rule
reaction update offers the possibility to extend the reaction part of the compo-
nent interface by appending to it a new reaction. In presence of conflicts, for
already defined reactions predicating on the same topic, at activation phase, one
of them will be executed non deterministically. In a similar way, the flow update
rule modifies the component flows. The flow composition operator, instead, acts
as the union, so that, once a flow of the form τ ~a is added to the current in-
terface, the conflicting names ai already defined on that flow are removed. This
constraints naturally comes from the definition of ~a as set of names and is guaran-
teed by Equation (3.3.1). An asynchronous signal emission, out(τ), spawns into
the network a set of envelopes containing the signal, one for each component
name declared in the flow for topic τ. If we compare the treatment of asynchrony
in SC with pi-calculus we observe that, in our formalism, the output operation
(emission) is not presented as bare output. Still, as will be clarified by the se-
mantic rules (O) and (I) in Table 3.7, the continuation of output operation is
activated without waiting the consumption of the message from the receiver. SC
in fact, explicitly introduce a sort of queue notion. The output consists in spawn-
ing, immediately, a message on the network that will be responsible to deliver, in
a second moment, the message to the proper consumer.

Behaviors can be composed in parallel. The bang replication !B represents a
behavior that can always activate a new copy of the behavior B. Notice that all
the actions have been presented in a prefixed form act.B, with act representing
an atomic action in the set {ε, rupd(R), f upd(F), out(τ)}. Once the atomic step
act ends, its continuation B is activated. When it is clear from the context, we
will omit the Nil behavior, writing act instead of act.0.

(B) B ::= 0 (Nil)
ε.B (Internal step)
rupd(R).B (Reaction update)
fupd(F).B (Flow update)
out(τ).B (Asynchronous signal emission)
B|B′ (Parallel composition)
!B (Bang)

Table 3.3: SC behaviors

48

Components are structured to build a network of services. In addition, net-
work provides the facility to transport envelopes containing the signals exchanged
among components. This feature is the core of the asynchronous communication
in SC. Envelopes 〈τ〉@a yield the signal emitted for notifying the event τ, associ-
ated with its addressee, the subscribed component a. The grammar for networks
is reported in Table 3.4.

(N) N ::= ∅N (Empty net)
a[B]R

F (Component)
〈τ〉@a (Signal envelope)
N ||N (Parallel composition)

Table 3.4: SC networks

The SC components describe locations on which the current computations,
the behaviors, are taking place. As consequence, networks are flat, namely there
is no hierarchy of components and are considered well formed when component
names are not replicated.

Non-deterministic and recursive behaviors

Even though SC does not explicitly provides constructs for describing the non-
deterministic application of behaviors, it is possible to exploit the reactions to
code this construct. In fact, while for the flow interface a constraint guarantees
that the flow compositionality is idempotent (c.f. Equation (3.3.1)), for reac-
tion interface, instead, it is given the possibility to compose reactions having
the same signature. This way, conflicting reactions are non-deterministically ac-
tivable. Yet, since reactions are bound to behaviors, the reaction activation can
be used to model the non-deterministic activation of their internal behavior. As
consequence, B1+B2 can be coded according to the following schema:

a[B1+B2]R
F , a[out(τ+)]R⊗ τ+mB1 ⊗ τ+mB2

F ⊕ τ+ a

where we assume the topic name τ+ local to component a (the name restriction
on names will be formalized in Section 3.5). The behaviors are declared inside
reactions having τ+ as activating topic. Such reactions are added to the reaction
interface of a and, accordingly, the flows are connected to the component a so

49

that it will receive the signal (out(τ+)) that will trigger the non-deterministic
activation of one of two behaviors B1 or B2.

Remarkably, analogous considerations hold for the replication of behaviors.
In fact, though SC presents the bang operator (!B), it can be simulated by exploit-
ing the persistence of reactions in the following manner:

a[!B]R
F , a[out(τ!)]

R⊗τ!mout(τ!)|B
F⊕τ! a

Operational Semantics

SC semantics is defined in a reduction style [BB92]. We first introduce a struc-
tural congruence over behaviors and networks. We assume (N, ||, ∅N) and (B, |, 0)
commutative monoids. The structural congruence for component behaviors (≡B)
is defined in Table 3.5. As usual the bang operator allows us to express recursive
behaviors.

B1|B2 ≡B B2|B1 (B1|B2)|B3 ≡B B1|(B2|B3) 0|B ≡B B !B ≡B B|!B

Table 3.5: Structural congruence on behaviors

Structural congruence for networks ≡N is the smallest relation satisfying ax-
ioms in Table 3.6. A component having nil behavior and empty reaction can be
considered as the empty network since it has no internal active behavior and can-
not activate any behavior upon reception of a signal. Two components, having
the same name a, are considered structurally congruent if their internal behaviors,
reactions and flows are structurally congruent. When it is clear from the context,
we will use the symbol ≡ for both ≡B and ≡N .

N||M ≡N M||N (M||N)||O ≡N M||(N||O) ∅N ||N ≡N N

a[0]∅R
F ≡N ∅N

F ≡ F′ R ≡ R′ B ≡B B′

a[B]R
F ≡N a[B′]R′

F′

Table 3.6: Structural congruence on networks

The reduction relation of networks (→) is defined by the rules in Table 3.7.
The rule (S) states that the silent prefix ε is executed regardless the context
in which the component is acting. The rule (R) appends to the component

50

reactions a further reaction R′ built on the grammar defined in Table 3.1. As
stated before, the appending of a new reaction acting on a topic τ, for which there
were already installed reactions, is allowed and brings to a non deterministic
activation of "‘conflicting"’ reactions. The rule (F) extends the component
flows by appending to it F′. We remark that, flows are defined by a relation
between a topic name and a set of component names, so that, for the same topic,
no replication of target names is allowed. The duplicates will be removed. The
notification of an event is delivered according to the rule (O). The set ~b of
components subscribed on a for notifications of topic τ is obtained by applying
the flow projection. For each name bi defined in the set, a message is spawned
into the network that is demanded to asynchronously deliver the message to the
target component. We often refer to this action with the term signal emission.
Signals spawned into the network are enriched with information needed by the
network to retrieve the target component and are called signal envelopes or, more
simply, envelopes. Once a component a is ready to consume a signal envelope
targeted to it, the rule (I) is applied. Notice that signal emission rule (O) and
signal receiving rule (I) do not consume, respectively, the flow and the reaction
of the component. This feature provides SC with a further form of recursion. The
rules (S) and (P) are standard rules. In the following, we use N →+ N′ to
represent a network N that is reduced to N′ after a finite number of steps.

To illustrate the expressiveness of SC, we consider an example of a producer
P and a consumer C accessing a shared resource in mutual exclusion where C
can consume the resource only after P has produced it.

Example 3.3.1 The SC code for P and C is

P = p[ε.out(produced)]consumedmε.out(produced)
produced c

C = c[0]producedmε.out(consumed)
consumed p

where, to improve the readability, topics are named after the events they represent
(produced and consumed) instead of using τ’s.

Initially, P performs some internal steps to produce the proper message (ε)
and afterward notifies that the resource is available (out(produced)). Upon no-
tification, C executes the behavior of the corresponding reaction installed so that
it accesses the shared resource (ε) and sends a notification (out(consumed)) to
inform P that the resource has been consumed.

51

(S)
a[ε.B|B′]R

F −→ a[B|B′]R
F

R′′ = R ⊗ R′
(R)

a[rupd(R′)|B]R
F −→ a[B]R′′

F

F′′ = F ⊕ F′
(F)

a[fupd(F′)|B]R
F −→ a[B]R

F′′

(F)↓τ= ~b
(O)

a[out(τ).B|B′]R
F −→ a[B|B′]R

F ||
∏
bi∈~b

〈τ〉@bi

R = R′ ⊗ τ m B′
(I)

〈τ〉@a||a[B]R
F −→ a[B|B′]R

F

N ≡ M → M′ ≡ N′
(S)

N → N′
N → N′

(P)
N ||M → N′||M

Table 3.7: SC reduction rules

3.4 A  :  SC  CCS

SC reveals the adequacy of event notification to model the coordination aspect in
a service oriented architecture. The adoption of the EN paradigm, for managing
coordination policies brings in two main advantages. On the one hand, it is a well
known programming model and, on the other hand, it permits the distribution of
coordination activities and of the underlying computational infrastructure. The
dynamic flavor of the SC permits to model a wide range of coordination poli-
cies for service-oriented applications (e.g. in [FGS06a] the primitives have been
used to deal with dynamic and heterogeneous networks). However, other primi-
tives providing high-level programming abstractions are desirable. In particular,
information associated to signals is not structured and topics cannot be created
dynamically. Furthermore, the notion of session abstraction is missing: com-
ponents cannot keep track of concurrent event notifications. Such features were
not initially considered in SC as it was intended to give the minimal structure for
dealing with events. As a matter of fact, this makes calculus very similar to the

52

CCS [Mil80] (where no communication of names is possible). Notice that the
absence of constructs for restricting topics makes SC less expressive than CCS.

All the other constructs present in CCS can be found in SC. More precisely,
SC presents constructs for implementing asynchronous communications, recur-
sive and non-deterministic behaviors, and internal computations (ε corresponds
to the silent action), channels correspond to flows, while input and output actions
correspond to reactions and signal emission, respectively.

Nevertheless, in SC, inputs on channels are intended in terms of entry points
of the components. Consequently, once activated, reactions are not removed from
the component interface. This aspect better adheres to the constructs adopted in
the SOAs, but on its turn involves some drawbacks. The persistence of reactions
makes impossible to code the alarm system previously presented. For example,
referring to the example of Section 3.2, it is not so easy to faithfully represent the
agents since sometimes it is necessary to disable some reactions. (For instance,
in relation to the Door agent, two possible readings on the channel opened are
possible.)

If reactions may trigger many instances of a work-flow, it may be useful to
be able to decide which of them should be activated.

In Section 3.5, we start from the extension of the SC calculus, presented in
[FGST07], that permits managing of sessions and the handling structured topics
via suitable types. This extension will provide mechanisms to deal with both
persistent and “one time” reactions as direct implication of the introduction of
session tracking mechanisms to the model.

3.5 M   S C
We now extend the structure of SC by introducing the notion of signal type for
supporting the session labeling on topics of conveyed signals. The SC dialect
supporting sessions is in the following referred to as SCσ, still, when clear from
the context, we will indicate this variant with the standard notation SC.

The definition of a signal type, has a twofold role. In the first instance, the
signals come equipped with a session thus allowing to distinguish the work-flow
instance in which the events of a certain topic has occurred. Secondly, the ses-
sions determine a sort of “virtual communication link” among publishers and
subscribers that can be established despite they do not need to know each other’s
names. Intuitively, a session identifies the scope within which an event is sig-
nificant: partners that are not in this scope cannot react to events of the session.
Additionally sessions make possible to implement name passing among compo-
nents. In fact, depending on how a signal type is engaged, the session part can

53

be used to convey topics. The introduction of sessions impacts the structure of
both reactions and of networks. Two kinds of reactions are defined: the lambda
reaction, triggered by signals independently from their session, and the check
reaction, that reacts only to signals acting in a specific session.

For instance, a publisher can emit an event with topic τ and session τ′ that
should be received by subscribers that can react to events of type τ and τ′. Hence,
typing allows subscribers to filter their events of interest (as usual in type-based
EN). Conversely, publishers exploit type information to specify which (kind of)
subscribers should react to events.

Furthermore, the session handling mechanisms provided by SCσ can deal
with multi-party sessions in a natural way. Sessions can be communicated to
other components that can participate in a restricted work-flow instance.

In [FGST07], we argued that the introduction of structured topics comple-
ments these approaches by providing higher-level constructs on sessions that al-
low a closer formalization of more abstract protocols where multi-party sessions
are relevant. To demonstrate the adequacy of our approach, we have applied
SCσ to specify the OpenID protocol [RF], a complex protocol for managing dis-
tributed identities whose behavior requires many parties to participate to the same
session. In the following the sessioning mechanism is adopted to model the alarm
system example described in Section 3.2.

Syntax

The introduction of sessions requires some changes to the structure of signals
that becomes a pair of topics τ�τ′, in the following referred as signal type, with
τ the event topic and τ′ the related session. Consequently, the structure on reac-
tions, behaviors and networks is adapted to support the new changes. The flows,
instead, remain unaltered.

Since sessions are used to enclose the scope of the work-flow in which events
are significant, the reactions should be equipped with mechanisms for discover-
ing this information. The rules for reactions are reported in Table 3.8. Two kinds
of unit reactions have been defined. The lambda reaction that acts as previously
defined reactions, without considering the session in which the caught event has
been raised, and the check reactions that discriminate the notification triggering
depending on their session. In the former case, the session τ′ acts as a binder for
the reaction so that, once received a signal, the parameter is instantiated with the
formal parameter representing the session, and B is executed in the new scope of
τ′. In the latter case, instead, τ′ is considered a free name. Additionally, lambda
reactions are considered persistent, while, check reactions, once activated, are
removed from the component interface. Check reactions represent reactions that

54

are “specialized” for a precise session.

(R) R ::= ∅R | R ⊗ R
| τλτ′ m B (Lambda reaction)
| τ�τ′ m B (Check reaction)

Table 3.8: SCσ reactions

The syntax of behaviors is given in Table 3.9. The signal emission
out(τ�τ′).B′ describes the emission of a signal having topic τ over the session
identified by the topic τ′. Finally, topics can be freshly generated by using the
topic creation primitive. The other rules are the same presented in Section 3.3.

(B) B ::= 0 | ε.B | rupd(R).B | fupd(F).B | B|B′ | !B
| out(τ�τ′).B′ (Signal emission)
| (ντ)B′ (Topic creation)

Table 3.9: SCσ behaviors

Network syntax is defined in Table 3.10. A network can be empty ∅N , a
single component a[B]F

R , or the parallel composition of networks N||N′. Networks
carry signals exchanged among components. The signal emission spawns into
the network, for each target component, an “envelope” 〈τ�τ′〉@a containing the
signal and the name a of the target component. Finally, the last production allows
to extend, over networks, the scope of freshly generated names n ranged over by
T ∪ A. Networks can restrict both component and topic names, thus allowing
to hide behavior of a part of the network. Remarkably, only topic names can
be communicated among components. For multiple application of restriction
operator we use the notation (νa, b, ...) in behalf of (νa)(νb)(ν...).

Free and bound names for networks, reactions, behaviors and flows are de-
fined by structural induction in the usual way. We summarize the main rules in
the following:

f n(τ�τ′ m B) = f n(B) ∪ {τ, τ′} bn(τ�τ′ m B) = bn(B) \ {τ, τ′}
f n(τλτ′ m B) = f n(B) ∪ {τ} \ {τ′} bn(τλτ′ m B) = bn(B) ∪ {τ′} \ {τ}
f n((ντ)B) = f n(B) \ {τ} bn((ντ)B) = bn(B) ∪ {τ}
f n((ντ)N) = f n(B) \ {τ} bn((ντ)N) = bn(B) ∪ {τ}

55

(N) N ::= ∅N | a[B]F
R | N||N

| 〈τ�τ′〉@a (Signal envelope)
| (νn)N (New)

Table 3.10: SCσ networks

The structural congruence over reactions, flows and behaviors is the smallest
congruence relation that satisfies the commutative monoidal laws for (R,⊗, ∅R),
(F,⊕, ∅F) and (B, |, 0). Also, for the structural congruence over behaviors, the
following laws hold:

(ντ)0 ≡B 0, (ντ)B|B′ ≡B (ντ)(B|B′), if τ < f n(B′)

and, whenever B ≡B B′:

rupd
(
τλτ′ m B

)
.B′′ ≡B rupd

(
τλτ′ m B′

)
.B′′

rupd
(
τ�τ′ m B

)
.B′′ ≡B rupd

(
τ�τ′ m B′

)
.B′′

If B ≡B B′, the following rules hold for structural congruence over reactions:

τλτ′ m B ≡R τλτ
′ m B′

τ�τ′ m B ≡R τ�τ
′ m B′

Similarly, ≡N is the smallest equivalence relation that respects the commutative
monoidal laws for (N, ||, ∅N) and the following ones:

a[0]F
∅R
≡N ∅N , (ντ)∅N ≡N ∅N , (ντ)N||N′ ≡N (ντ)(N||N′), if τ < f n(N′)

F1 ≡F F2 B1 ≡B B2 R1 ≡R R2

a[B1]F1
R1
≡N a[B2]F2

R2

,
τ < f n(R) ∪ f n(F) ∪ {a}

a[(ντ)B]F
R ≡N (ντ)a[B]F

R

.

Reduction Rules

With the introduction of sessions in SC, the structure of signal envelopes and re-
actions has been modified to treat signals equipped with the session information
and reactions that can be, as usual, either defined in persistent manner with no dis-
crimination on the session conveyed (lambda), or specialized (check) for a well
defined session and consumed after reacting to an event. Moreover, in [FGST07],
the activation of reaction is disciplined by a type system on topics so that check

56

reactions are prioritized with the respect of lambda reactions, if both of them are
present on the same topic. In Table 3.11 we report a simplification of the orig-
inal contribution with the explicit prioritized activation of check reactions. For
further details on the structured topics see [FGST07].

(F)↓τ= ~b
(O)

a[out(τ�τ′).B|B′]R
F −→ a[B|B′]R

F ||
∏
bi∈~b

〈τ�τ′〉@bi

R = R′ ⊗ τλτ′′ m B′ ∧ @(R′′, B′′) R′ = R′′ ⊗ τ�τ′ m B′′
(L)

〈τ�τ′〉@a||a[B]R
F −→ a[B|{τ′/τ′′}B′]R

F

R = R′ ⊗ τ�τ′ m B′
(C)

〈τ�τ′〉@a||a[B]R
F −→ a[B|B′]R′

F

N −→ N′
(N)

(νn)N −→ (νn)N′

Table 3.11: SCσ reduction rules

The (O) rule is adapted to deal with signals related to a session. The flow
projection auxiliary function remains the same presented before. Given a topic τ
and a flow set F it returns the set of component names subscribed on that topic.
The (L) and (C) describe, respectively the activation of lambda and
check reactions. In the former case, the reaction activated remains in the interface
of the component and a substitution is applied in the scope of the behavior for the
bound name τ′ corresponding to the session. In the latter case, no substitution is
needed, since both names are free, and the activated reaction is removed from the
interface of the component. The meaning of the (N) rule is obvious.

3.5.1 Some useful patterns in SC

In order to provide an overview on the possibilities offered by the SCσ language,
here we discuss on some useful patterns and constructs can be formalized by
extending the structure of the language or by simply presenting the ideas for
explicitly coding them.

57

3.5.1.1 Joining events

Since SC components are autonomous entities communicating through asyn-
chronous primitives, it could be useful to introduce a lightweight mechanism
for synchronizing the execution of concurrent tasks (join). In this scenario we
show how to encode a form of join synchronization among concurrent tasks.

Figure 3.2 shows an emitter E, two intermediate components C1 and C2, and
the join service J. The emitter E starts the communications raising two events of
different topics toward C1 and C2 that perform an internal computation and then
notify their termination by issuing an event to the join service. The component
J waits that both the intermediate services have completed their tasks and then
executes its internal behavior B. The signals sent to C1 and C2 are both related to
the same session τ that is later used by J to apply the synchronization on the same
work-flow. Clearly, the two intermediate services C1 and C2 can concurrently
perform their tasks, while the execution of the service J can be triggered only
after the completion of their execution.

Briefly, J must perform its computation BJ only after both C1 and C2, that
are running concurrently, have completed their tasks.

out
1 s

out
s

out
1

out

B1

B2

Bj

Figure 3.2: Abstract graphical notation of join

This example can be modeled by the SC network E||C1||C2||J, where:

E = e[(ντ)
(
out(τ1�τ)|out(τ2�τ)

)
]∅R
τ1 C1⊕τ2 C2

Ci = ci[0]τiλτsmε.out(τi�τs)
τi j i = 1, 2

J = j[0]τ1λτsmrupd(τ2�τsmB j)
∅F

58

and the internal behaviors of Ci are represented by the silent actions (ε).
To provide an intuition of the network configuration described here, in Fig-

ure 3.2, we adopt an abstract graphical notation that depicts the components
defined into the network and details their interfaces, in terms of flows and re-
actions, and their actual computation, the behavior. In particular, reactions are
boxed placed at the upper-left corner, flows boxes placed at the upper right and
the behavior is a box at the bottom of each component figure. Reactions are la-
beled with their signature. Behaviors are given (reading from top to bottom) by
circles (the restriction), nested reactions or links that regulate the sequence (the
activation) of steps (e.g. from the restriction in E two outgoing arcs represent
the parallel execution of the output operations on which the restriction has been
applied). The nesting of reaction boxes in J states that once the lambda reaction
τ1λτs is activated, the contained check reaction τ2�τs m B j is installed. Finally,
the arrows connecting components correspond to flows (e.g. E has two flows
τ1 C1 and τ2 C2) .

The join component has only one active reaction installed for signals having
topic τ1. When the two intermediary services forward their signals, the envelope
containing the τ2 event cannot be consumed by the join, and remains pending
over the network. The reception of the τ1 envelope triggers the activation of the
join generic reaction. The reaction reads the session of the signal τ1 and creates
a new specialized reaction for the signal topic τ2. This reaction can be triggered
only by signals that refer to the session received by the τ1 signal. When such kind
of signal is received, the proper behavior B is executed. Notice that the creation
of the specialized reaction for the τ2 implies that a possible pendent envelope is
consumed.

3.5.1.2 Rendez-vous in SC

We now give an intuition of how the synchronous output primitive (E) may
be programmed in SC. For this purpose we use the notation out(τa�τs); B for
representing a situation where the behavior B has to wait the consumption of
the message from the receiver before being actived. We start from a network
configuration:

(ντs)a[out(τa�τs); B]R
F ||b[B′]τaλsmB′′

F

Notice that how the session τs has been defined is not strictly relevant. For
the sake f simplicity, here we assume it to be a fresh name. Under the assumption
that b is the only process subscribed to topics τa of component a, the network can

59

be defined by the following SC code:

(ντs, τack)
(
a[out(τa�τs).rupd(τack�τs m B)]R

F ||b[B′]τaλsmout(τack�s).B′′

F

)
It becomes clear that the rendez-vous application to SC components requires

arrangements to the structure of both parties (publishers and subscribers), that
must adhere a common strategy and explicitly support the needed message ex-
changing for allowing the publisher to be notified of the correct reception of the
message from the subscriber.

3.5.1.3 Flow removal and reaction hiding

A pragmatic feature of the event notification paradigm relies on the possibility
to obtain dynamic subscriptions to revoke the previously defined ones. The ser-
vice oriented applications can benefit from the dynamic subscription feature to
naturally reflect the reconfigurations of the network topology. The possibility to
revoke previously defined subscriptions has not been formulated in the specifica-
tion of SC language.

For this reason, we now introduce a modification to the original SC structure
in order to enable the subscription removal. Since flows and reactions are our
linguistic device for implementing  subscription mechanism, the revocation of
subscriptions, from the publisher side, can be achieved by applying the flow re-
moval primitive. The syntax of SC is extended by adding the following operator:

fdel(τ ~a).B (Flow remove)

whose semantics is given by the following rule:

F = F′ ⊕ τ ~b ∧ (F′)↓τ ∩~b = ∅
(FD)

a[fdel(τ ~b).B|B′]R
F −→ a[B|B′]R

F′

The (FD) rule isolates, from the flow interface F, a subset F′ for which
holds that (F′)↓τ ∩~b = ∅. This constraint ensures that the flows with topic τ
starting from a will never be targeted with names in ~b and is needed since flow
composition is idempotent.

Moreover, equally useful may result the possibility to remove a reaction from
the component interface, to allow, for example, subscribers to revoke their han-
dling task for a given topic of events. However, the reaction removal results more
complex to code in SC. That is because it is not always possible to uniquely re-

60

trieve, from a given signature, the corresponding reaction. In fact, SC gives the
possibility to enter several reactions triggering on the same signature in order to
feature their non-deterministic activation. As consequence, the reaction removal
primitive cannot be directly coded.

Nevertheless, the flow removal primitive can help to solve this issue. Suppose
to have the following component:

a[B′]τλsmB
F

it can be converted into a (sub-)network of the form:

(ντh, la)
(
a[B′]τλsmout(τh�s)

F⊕τh la
||la[0]τhλsmB

F

)
Initially a new component la, whose restricted name known in a, is intro-

duced. The reaction previously present on a is moved on the la interface and a
link connecting a to la on the restricted topic τh is established. Finally, the flows
of a are replicated on the la interface so that, if its internal behavior B involves
emissions, the delivering is applied according to the a subscriptions.

This coding respects the intended meaning of original component a under the
assumption that further alteration to the flows on a for topic τ are reported to the
flow interface of la.

Now that the reaction has been delegated to the restricted component, it is
trivial to implement the reaction hiding on component a. It suffices that the link
τh la is removed from a to “hide” the reaction installed on la, conversely for
“un-hiding” the reaction, the flow must be reinstalled.

From the outside, a remains the only visible component and represents so the
unique entry point of the process composition. For this reason in the following
we will use the term “sub-network” to represent a configuration where part of the
network is hidden.

3.5.2 Modeling the alarm controller in SC

Now we discuss how the alarm system example presented in Section 3.2 can be
modeled in SC. Hereafter we will use the same structure (in terms of agents and
events) of the solution reported in Code 3.2.

The SC extension with sessions allows to directly handle work-flow sessions
by exploiting the session information related to signals. Here we make use of
check reactions and reaction handling for coding the alarm running example.
Under the assumption that the whole chain of steps performed by the User are

61

τcodeλτs

out (τunlocked τ s) |
τcode τs
out (τlocked τ s)

τcode τ s

τ f orcedλτs

out (τdisableBell τs)|
out (τ locked τs)

out (τalarm τ s) |

Alarm

Phone

τalarmλτs

Bell

τalarmλτs

τdisableBell τs

0

DoorSubNet

τalarm
τ locked
τunlocked
τdisableBell

User

Figure 3.3: Alarm system in SC: overall system

enclosed into the same session1, the system is coded by applying the reactions
shown in Code 3.4 and the flows of Code 3.5 to the network configuration re-
ported in Code 3.6.

In order to give a more intuitive representation of the SC network we adopt
the abstract graphical representation introduced in Section 3.5.1.1. In particular,
Figure 3.3 depicts the overall network with the exclusion of the Door component,
since, as will be shown in Figure 3.4, it involves the adoption of reaction hiding
accordingly to the concepts previously exposed.

Referring to Figure 3.3, the Alarm interface consists of two reactions. Such
component is able to handle notifications of code insertions (coming from User)
and notifications of forced events (coming from Door). Once a code notification
is caught by Alarm, it signals (to Door) that the alarm has been unlocked and
installs a check reaction for capturing the next occurrence of code event. Con-
sequently, the reception of a further code notification will be captured by the
specialized (check) reaction that will signal that the alarm is again locked. The

1This constraint is not a limitation, it states that each time the user starts a new connection to the
system, a new session will be created to distinguish the work-flow instance.

62

Door

τ locked λτs
fupd (τlopened Df orced)

τopenedλτs
out (τlopened τs)

τclosedλτs
out (τ lclosed τ s)

fdel (τlopened Df orced)

τunlockedλτs

τ lopenedλτs
τlclosed τs

0

dopen

dforced

τ lopenedλτs
out(τf orced τs)

τopened

τclosed

τforced AlarmAlarm

 User

Figure 3.4: Alarm system in SC: the door sub network

Ralarm = τcodeλτs m

 out(τunlocked�τs) |
rupd

(
τcode�τs m out(τlocked�τs)

)  ⊗
τ f orcedλτs m

 out(τalarm�τs) |
rupd

(
τcode�τs m out(τdisableBell�τs) | out(τlocked�τs)

) 
Rdoor = τopenedλτs m out(τlopened�τs) ⊗

τclosedλτs m out(τlclosed�τs) ⊗
τlockedλτs m fupd(τlopened D f orced) ⊗
τunlockedλτs m fdel(τlopened D f orced)

Rdopen = τlopenedλτs m rupd(τlclosed�τs m 0)
Rd f orced = τlopenedλτs m out(τ f orced�τs)
Rbell = τalarmλτs m ε.rupd(τdisableBell�τs m 0)
Rphone = τalarmλτs m ε

Code 3.4: Alarm System Interfaces: Reactions

reception of a forced event is handled in Alarm by sending an alarm notification
(to Phone and Bell components) and installing a reactions that, consuming the
further code insertion, requires the deactivation of the signal bell and notifies that
the door is locked again.

The reading of the Phone agent is trivial while the Bell contains a reaction

63

that, after received an alarm notification, installs a check reaction for capturing
the further request of bell deactivation.

Notice that the usage of check reaction has here solved the non deterministic
activation of code branches arisen in π coding.

Moreover, in Figure 3.4 we give a closer look of a part of the sub-network
involving the door agent and the two hidden components Dopened and D f orced. A
further restricted name lopened is defined to implement local communications
among the components in the sub-network. The Door agent receives from the
User notifications for opened and closed events and acts as a proxy for the hidden
components. The opened notification is forwarded to the dopened component
and, depending on the configuration reached, to the d f orced one. The connection
to this last component is removed once an unlocked signal has been received and
restored once the τlocked arrives.

FUser = τcode alarm ⊕ τopened door ⊕ τclosed door
FAlarm = τunlocked door ⊕ τlocked door ⊕

τalarm {phone, bell} ⊕ τdisableBell bell
FDoor = τlopened dopened ⊕ τlclosed d f orced
FDforced = τ f orced alarm

Code 3.5: Alarm System Interfaces: Flows

DoorS ubNet = ν(dopened, d f orced, τlopened, τlclosed)(
door[0]Rdoor

Fdoor
|| dopened[0]

Rdopened
∅F

|| d f orced[0]
Rd f orced
Fd f orced

)
Network = user[...]∅RFuser

||alarm[0]Ralarm
Falarm
||bell[0]Rbell

∅F
||phone[0]

Rphone
∅F
||DoorS ubNet

Code 3.6: Alarm System: Network

3.6 C 
The adoption of sessions in the SC language has given the possibility to support
the name passing facilities present in the π-calculus.

The key differences between π-calculus and SC rely on the message delivering
and on the input operation.

The policies for implementing the message delivering are kept from basic
SC formulation so the considerations remain the same given when comparing SC

64

with CCS.
Reactions correspond to the π input operations on channels. Besides, SC

declares two kinds of reactions.
The lambda reactions τλτ′ m B can be thought of as π processes of the form

τ(τ′)B where τ corresponds to the channel, τ′ to the formal parameter and B to
the continuing process. Nevertheless, the activation of an input in π removes the
operation while in SC the corresponding reaction remains installed.

The check reactions τ�τ′ m B instead, are non persistent like π channels,
still such reactions do not activate bindings. The session parameter τ′ is here
used to inhibit the activation of the reaction itself. Analogous results can be
obtained by exploiting matching mechanisms on the formal parameter of inputs
and reintroducing the message once the matching fails.

The sessioning mechanism reveals to be so relevant for SOAs that recent
formal specifications, such as Muse [BLMT08] and SCC [BBC+06], to cite a
few, use the session as center point of the interaction.

The introduction of sessions in the SC formalism, opens the possibility to deal
with coordination patterns usual in the work-flow languages (e.g. the join) and
furthermore to distinguish several running instances of the same work-flow in
response to several activations.

However the calculus SC can be enriched by considering signals as tagged
nested lists [AB05, HP03], which represent XML documents, and conversation
schemata as abstractions for XML Schema types [xml04]. This extension of
conversation schemata lead to a more general notion of reaction based on pattern
matching or unification in the style of [BBM05]. A further extension can provide
component and schema name passing, modelling a more dynamic scenario.
SC can describe dynamic orchestrations through reaction and flow update

primitives. These primitives have effects only on the component view of the
choreography, namely a component cannot update the reaction or the flow of an-
other component. Flow management can be enriched providing a primitive to
update remote flows. This primitive should spawn a flow update envelope into
the network. The update of remote reaction is more difficult, since a reaction
contains code and than is necessary to formalize and implement the code migra-
tion.

Moreover, enabling the transmission of component names, through signals,
should improve the dynamicity of networks, since new components can be dis-
covered at run-time and involved into existing network topologies.

65

Chapter 4

Java Signal Core Layer

The structure of the network model defined in the Signal Calculus has been re-
flected in a prototypical middleware, called Java Signal Core Layer (J), con-
sisting of a set of Java API for programming distributed components interacting
by notifying events.

Mainly, J offers the run-time support for executing SC networks in a dis-
tributed and open environment where components assume the meaning of ser-
vices in the more general context of SOAs.

In order to separate the concepts related to the network infrastructure from
the ones strictly related to the service coordination, J has been structured as
multi layered architecture.

The lower architectural layer exhibits network adapters that allows compo-
nents to interact in an uniform manner by adhering to the SC network specifica-
tions, independently from the underlying network infrastructure.

Additionally, J declares a set of high level mechanisms tailored to define
complex coordination patterns with the aim to reduce the development efforts.

Notably, the middleware features data encapsulation inside exchanged notifi-
cations so that components can communicate the information needed to properly
handle the raised events and features constructs for synchronizing concurrent
flows of executions and enforces the concept of sessions to inhibit the delivering
to components that are out of the scope of a work-flow session.

The coordination primitives presented in J can be mixed with the internal
instructions of components, hiding anyway the topology of the environmental
network in which services are acting. Analogously to the exception handling
mechanism, the components have the possibility to notify events that happens
during their computations.

67

4.1 I
Most of the proposed SOA solutions, present services in terms of computational
units interacting by exchanging documents. The observational behavior of com-
ponents involved in a coordination comes through flow of messages.

J adopts an event-driven solution, against the data-driven one by shifting
the attention on what happens inside components instead of on which messages
they exchange with the environment. This way, it becomes necessary to explicitly
supply primitives to treat those events raised by the components.

As usual in event notification paradigm, components can subscribe their in-
terest for externally raised events or notify their internal events to interested part-
ners. The artifacts for event notifications are signals. According to the SC specifi-
cation, signals are tagged by topics according to the class of events they represent.
Additionally, signals are able to encapsulate data.

Components participate to a coordination as reactive agents. Reactions im-
plement the business logic of subscribers and declare which behavior activate
according to the topic they are related to. Each component can declare the set of
event topics it is interested in, and the reaction to activate once the related notifi-
cation has been received. Reactions supply to the subscribers the machinery for
implementing subscriptions.

Conversely, flows are the linguistic device for implementing subscriptions
from the publishers side and for the notification dispatching to the subscribed
components (publication). Publishers and subscribers are here denoted as emit-
ters and handlers.

Abstractly, in an analogy with OOP paradigm, reactions are intended as meth-
ods, whose signature is given by the handled topic, while flows correspond to ref-
erences to methods declared on a component interface. Moreover, in our model,
reactions and flows can be declared and modified at runtime and method invo-
cations are implemented as asynchronous single calls. In this metaphor, object
types are dynamic, in the means of dynamic reconfiguration of their interfaces.
Flows act similarly to the “delegate” mechanism introduced in modern program-
ming languages (e.g. C#) but, here, components are considered in an open and
distributed environment. Finally, the flow removal capability, introduced in Sec-
tion 3.5.1.3, allows components to retreat their previously declared reactions and
modify their connectivity.

The OOP metaphor can be interpreted as: services adopt the subscription
mechanism to “provide” functionalities and the publication mechanism to “re-
quire” a functionality to subscribed services. This strategy introduces a high level
of independence and adaptability of the services involved into the coordination.
First, each service has no acknowledge about the other services, thus achieving

68

loosely coupling. Furthermore, if several services are able to offer the same func-
tionality, they can be freely rearranged (adaptability) by exploiting the basic 
capabilities (e.g. one service can remove its subscription and be replaced by the
subscription of a new service acting in behalf of it).

J has been proposed with the aim to furnish a concrete support for the de-
velopment of services. Further details that were not captured by SC specification
are now taken into account. In the first instance, J, differently from SC, adopts
a non anonymous publication mechanism so that it is possible to retrieve, from
each signal, the component that raised the event (the sender). This property is
useful, for example, to avoid erroneous replications of the same notification to a
single handler. The subscription policies instead keeps the same characteristics
of SC specifications, namely it is implemented in non anonymous way.

Flows can be specialized for a session, analogously to SC check reactions.
This capability allows to express customizations of the network topology accord-
ing to a work-flow session. This characteristic is not presented in SC since, at
abstract level, the possibility to trace multiple instances of the same component
running in concurrent work-flows is not considered.

Moreover, J permits to mark flows with logical expressions that are eval-
uated on the actual parameters of the outgoing signals and are used to enable the
conditional delivering.

This chapter is structured as follows. The J architecture is presented in
Section 4.2. Once provided the minimal infrastructure from implementing the
concepts exposed in SC, an overview of the J coding of the alarm system
example, described above, is exposed in Section 4.3. The network infrastructure
exposed by J middleware is adapted, in Section 4.4, to handle services acting
in an heterogeneous networks where the visibility of service addresses is not
always guaranteed.

4.2 A
In order to achieve independence from the network infrastructure, and to sepa-
rate the aspects regarding the communication primitives from the ones needed to
deal with events, J has been designed and implemented with a multi-layered
architecture as shown in Figure 4.1.

The lower level, called Inter Object Communication Layer (iocl), acts as a
bridge among the underlying networking infrastructure and the higher architec-
tural levels. The iocl specifies a set of requirements the network must expose,
namely the naming facilities for identifying components and the capabilities for
data serialization and for asynchronous message delivering. On top of this spec-

69

ification networks adapters, in the means of artifacts for SC networks, can be
defined and plugged at iocl level.

The Signal Based Layer (sbl) layer provides all the facilities to deal with SC
components, signals, reactions and flows by introducing suitable Java API.

Figure 4.1: JSCL Architecture

Further insights regarding the iocl and sbl architectures can be found in
Section 4.2.1 and Section 4.2.2, respectively.

4.2.1 Inter Object Communication Layer
To abstract from the particular underlying network, J introduces a lower ar-
chitectural layer, the Inter Object Communication Layer (iocl) that defines the
minimal structure a network must expose to allow the distribution and the in-
teraction of components. The primitives for creating, publishing and retrieving
distributed components are defined at this layer. The iocl acts in behalf of the
network hiding to the programmer the mechanism used to exchange messages
among components. Moreover, the middleware allows several instances of iocl
to coexist, using the addressing mechanism to identify the network infrastruc-
tures.

The iocl is demanded to provide message serialization facilities according
to the adopted network. For example, if components are implemented as web
services, signals will be serialized as XML documents using SOAP bindings.
Handling of signals and their transformations, in accordance with the network
overlay in use, comports several benefits.

The iocl networks advocate an high degree of interoperability. Not only
services running on different platforms can access the same facilities offered by
the underlying network structure, as promised by usual SOA based infrastruc-
tures (e.g. Web Services, CORBA, etc.), but also solutions coming from het-

70

erogeneous networks (e.g. mobile phones, sensor networks, etc.) can coexist
and inter-operate, under the assumption that these systems adhere to a common
network model.

For this purpose, it is important to establish how components are addressed,
in the network overlay they are acting in, and to furnish registry facilities that
give the possibility to retrieve and publish services.

Hence, the iocls have been developed as plug-ins that provide a common
structure to the upper standing layers offering transparency. Ad-hoc proxy arti-
facts are defined at this level by offering the developer the usual object oriented
facilities. The lower level treats aspects regarding the communication among
components, while, at upper level, these aspect are hidden and the focus is put
on what happens during a computation and on how other components react upon
the reception of notifications.

The clear separation among the aspects related to the network infrastructure
and the logic of components brings two main benefits: code reusing and scala-
bility. The components can, in fact, migrate on different iocls without compro-
mising their internal design. Besides, ad-hoc iocl implementations can benefit
of the facilities offered by the underlying network and exploit them to advantage
load-balancing, component distribution and message buffering depending on the
infrastructure their are acting.

The iocl layer covers two main aspects: i) how components are reflected
on the actual network infrastructure and ii) how messages are exchanged among
components.

To separately treat these aspects two distinct profiles have been defined. In
Figure 4.2 is reported the «iocl_core» profile that presents the interface for im-
plementing iocl plug-ins and the concepts needed to address components. In
Figure 4.3 we report the «iocl_comm» profile consisting of the API needed for
implementing the message serialization.

We now briefly recall the main features exposed by the iocl layer that adhere
to SC specifications. Additional constructs have been defined and further insights
will be given in the following sections to provide an overall view of the J
middleware.

I 

We now summarize the meta-model of the APIs of iocl core layer, reported in
Figure 4.2.

Since the addressing of components strictly depends on the nature of the un-
derstanding network overlay, a ComponentAddress definition must be provided.

71

Figure 4.2: IOCL metamodel: «iocl_core» profile

Components are identified by their address, usually an URL, in conjunc-
tion with the address of the iocl on which they have been published. The
method getInstanceAddress provides a canonical representation of component
addresses in the form iocl@〈compAddr〉. The iocl identifier is in the follow-
ing called address prefix. Valid examples of iocl prefixes are socket to indicate
components interacting via usual socket connections, as well as mem or xsoap to
indicate plug-ins implemented as “in memory” or with xsoap [oCSIU] (an im-
plementation of SOAP Web Services), respectively. Furthermore, on component
addresses it is possible to singularly retrieve the iocl address (getIOCLAddress)
or the local address representation of the component (getAddress) or to make a
comparison with another address (equals).

Each iocl plug-in is deployed and distributed in a Java ARchive (JAR) file.

72

By convention, an header file, ., is utilized for declaring which pack-
age the class implementing the iocl plug-in interface is located in. The IOCLAd-
dress keeps the association between the plug-in prefix identifier and the related
implementing class. Given the address of an iocl, the IOCLLoader is able to
instantiate it (getIOCL) by exploiting the reflection features.

In the following we make use of an intermediate class IOCLRegistry, consist-
ing of a support utility that simplifies the translation from iocl aliases to their
related instances (getIOCLByName). The binding among iocl names and their
implementing plug-ins are directly retrieved from a configuration file coming
with J projects. Here we report a fragment of a the configuration file where
are declared the iocl prefixes adopted and the binding with the implementing
classes.

iocl.prefixes = xsoap, mem, socket
iocl.xsoap.classname = net.tao4ws.jscl.IOCL.XSoap.IOCLImpl

Consequently the access to the iocl plug-in can be obtained as follows.

IOCLRegistry.loadConfiguration("jscl.properties");
IOCLPlugin factory = IOCLRegistry.getIOCLByName ("xsoap");

The iocl plug-ins are built by implementing the IOCLPluginI interface. To
the iocl is demanded the responsibility to properly build addresses (createAd-
dress), using the prefixed form previously described, and to implement registry
facilities for publishing (publish) or for revoking the publication of a compo-
nent (unpublish) and for retrieving (getComponent) published components. The
method createComponent is used when some code must be executed at initial-
ization phase or when additional information, out of the scope of the middle-
ware, must be attached to components (e.g. components must implement a par-
ticular interface defined elsewhere), though it is not mandatory. The startup
and shutdown methods have the obvious meaning. Finally, the spawn method
is invoked at emission of signals from the higher layers and corresponds to the
S  primitive of SC networks discussed in Section 3.5. This method
is demanded to implement the asynchronous message delivering transparently to
the sbl layer as previously discussed. Conversely, the method handle represents
the entry point of the remote iocl on which is located the subscriber and is con-
tacted during the spawn of the publisher’s iocl. An overview of the message
delivering protocol is given in Section 4.2.2.1.

The PublishableObject interface declares the way components are addressed
on iocl registries (getAddress) and, when required, the triggers to fire on publi-
cation activation (onPublish) and on publication removal (onUnpublish) of com-
ponents.

73

I 

The «iocl_comm» profile, reported in Figure 4.3, comprises the APIs needed to
implement the communications among components. Once a signal is spawned
into the network, the message delivering and the proper message transformations
for serializing data are applied accordingly to the iocl prefix of the target com-
ponent.

Figure 4.3: IOCL metamodel: «iocl_comm» profile

The interface Message declares the structure of exchanged signals. At this
level two parameters are considered: the address of the target component (get-
Target) and the payload (getData) containing, over than the information to re-
trieve the notified event, the actual carried data. The topic and the session of the
spawned signal are stored under reserved keys of the data dictionary.

The iocl can decide to adopt proxy artifacts for remote components. In this
case, the iocl plug-in is equipped with a class implementing the Component-
Proxy interface. Proxies are usually employed when the iocl needs to move
part of the message handling, for example for keeping a connection alive, or for
caching the outgoing messages. The activation of a proxy is done by invoking its
method spawn.

Each iocl plug-in comes equipped with default Serializer and Deserializer
implementations, nevertheless they can customized to fit the developer needs.
The serialization of a message is performed during the spawn of a message on
the local iocl. This functionalities are invisibly accessed by the local iocl (or
by the component proxy) in according to the target component. Conversely, at
the reception of the message, the receiving iocl activates its deserialization and
pass it to the higher architectural stacks.

74

4.2.2 Signal Based Layer
The Signal Based Layer (sbl) is here presented as composition of two profiles:
the i) «sbl_data» profile, defining signals as high level representation of iocl
messages, and ii) the «sbl_core» exhibiting the SC primitives for implementing
components, flows and reactions.

S 

As shown in Figure 4.4, signals are special kinds of iocl messages character-
ized by the notion of signal type coherently to the structured topics discussed in
Section 3.5. A Signal, more than having a type, for supporting the SC notification
delivering, are able to convey data. Data are accessed with the usual getValue
and setValue methods. Moreover, on each signal, it is possible to retrieve the
owner (getOwner), by means of the component that initially notified the event,
and the source (getSource), consisting of the last sender of the notification (the
last hop in a chain of successive forwards).

Figure 4.4: Signal Based Layer metamodel: «sbl_data» profile

The SignalType contains a topic and a session identifier that are accessible
through the usual getter and setter mechanisms. The method isSubTypeOf has
been introduced to enable the support of structured topics for signal types in
accordance to the extensions provided in [FGST07]. More complex structures on
topics, like hierarchical types, can be easily supported by re-defining this method.
Reaction activation and message delivering are implemented on top of the notion
of sub typing on topic structures. Signal types having the empty (null) session
can be declared (e.g. to deal with basic SC formalism) by omitting the session
parameter at instantiation phase. Besides giving the possibility to emit signals
among components, we can also associate some useful parameters to them. The

75

iocl will be responsible to properly serialize the information attached to signals
and to offer to the higher level the usual getter setter mechanisms (through get-
Value and setValue).

S 

A Component, whose structure is reported in Figure 4.5, consists of a publishable
object defined in terms of handler and emitter parts.

The Handler characterizes the ability of components to declare the reactions
(addReaction), while the Emitter exhibits the primitives to create links to other
components (addFlow) and to emit signals to them (emit). The emission will
happen regardless of the component (if any) that will actually receive the emitted
signals. There might even be no target component connected; the middleware
will correctly deliver signals transparently to the signal emitter. Moreover, sig-
nals addressed to components that have not yet been published, become pending
on the network until they become reachable.

Figure 4.5: Signal Based Layer metamodel: «sbl_core» profile

A Flow is defined as a relation between two components on a signal type.
Even though the SC specification considers only the topic part of the signal type,
this generalized form allows to support coordination policies that relies on types
differently structured (e.g. by enabling the subscriptions related to sessions).
Additionally, components support the removal of flows (delFlow) inherently to
the ideas exposed in Section 3.5.1.3. Signals pending on the network targeted to

76

components, for which the subscription has been revoked, are not affected by the
flow removal operation, namely they remain pending on the network.

A Reaction is built by specifying the signal type, triggering its activation, and
the Task to activate upon the reception of a signal. Reactions are classified into
check or lambda depending on the signal type parameter. Signal types having
no session parameter specified are considered to have an empty session. In ac-
cordance to the SC specification, reactions having an unbound (null) session are
considered lambda and the session binding will happen at activation phase. As
usual they will be activated regardless of the session carried with signals and
are persistent. Conversely, check reactions trigger on a well defined session and,
once activated, are removed from the component interface.

The handler exposes the handle functionality for implementing the counter-
part of the message spawning that is used by the middleware to activate the task
responsible to handle the received signal. The iocl is responsible to retrieve,
at the reception of a signal, the component reaction to activate and to run, in a
thread space, its handling method by passing to it the signal instance. The han-
dling task may act on the internal state of the components and on the parameters
carried with the received signal. Having reactions encapsulated into components,
the related tasks can access all the capabilities offered by their containers (signal
emission, reaction update, etc.).

4.2.2.1 Message Delivering Protocol

In order to give a flavor of how the network abstraction has been implemented in
our middleware, we present a sketch of the signal delivery protocol. This protocol
is displayed in Figure 4.6.

We can identify two network partitions and group their interactions in three
distinct phases. The two network partitions, Host1 and Host2, symmetrically
define three main actors: (i) a component S 1 (resp. S 2), that acts as publisher
(resp. subscriber), (ii) the sbl architectural stack, that implements the primitives
of components, and, finally, (iii) the underlying iocl plug-in acting as network
artifact.

Once a component S 1 raises a new event, the sbl retrieves the set of targets
trg subscribed for the topic of the outgoing signal, analogously to the flow pro-
jection operation defined in the Signal Calculus. Suppose trg to be composed by
the only component named S 2. The iocl identifier is extracted from the target
address (S 1). The respective local instance of iocl is informed of the request
of implementing a message spawning to the remote iocl. As a consequence, the
serialization of the message will be performed in conformance with the remote
data representation. The message delivering is demanded to ioclL and the control

77

1

2
3

HOST1 HOST2

emit(sig)
fo

r a
ll

trg
 in

S
1.

ge
tT

ar
ge

ts
(s

ig
.g

et
Ty

pe
()

)

spawn(sig)

iocl = trg.getAddress().
 getIOCL()

L

serialize and enqueue signal

locate remote iocl

handleSpawn(sig)

deserialize and enqueue signal
locate target component

handleSignal(sig)

retrieve the reaction
handle(sig)

S1 S2iocl ioclRL

Figure 4.6: Signal delivery protocol

flow returned to the emitter.
Asynchronously, the iocl contacts the remote counterpart informing it that

a new signal is present in the network (S 2). Once the message has been re-
ceived, the remote iocl service ioclR performs the data deserialization and for-
wards the signal to the component S 2 (S 3).

The actions presented in Figure 4.6 give an outline of the protocol adopted
for implementing the communications among distributed components. The set
of steps in (S 2) can be (partially) demanded to the ComponentProxy provided
by the ioclL. For example, here, the proxy can be adopted to keep a reference
to the remote iocl and can be demanded to retrieve the remote component (the
handler) and, in the case it is temporary busy or not available, to locally store the
signals.

4.3 A  :   
We take into account the alarm system example presented in Chapter 3 to clarify
how networks are implemented in J providing some snippets of code providing
an outline of how the SC ideas have been reflected at implementation level. We
just focus on the core of the language in the spirit of the formalism defined in the
calculus. Additional primitives declared inside J will be presented in further
sections.

78

The example may also result useful to give a mere intuition of how SC prin-
ciples are reflected in the programming API. Some fragments of the J coding
for the Door agent are reported here and analogous considerations can be done
for the other components. The initial interface configuration for components is
boxed inside the jscl_init method, invoked at construction phase. We intro-
duce, for simplicity, two dictionaries, Global and Local that store the component
addresses and the topic names declared globally in the choreography or locally
to each component, respectively. The values are accessed in the usual manner.
The Local class is defined inside the same file of the component and assumed
statically initialized at design time, as reported in Code 4.1. In particular, 
6-7 show the pattern for creating addresses and  8 the one for creating new
topics.

1 class Locals extends HashMap {
2 static Locals instance = new Locals();
3 static{
4 instance.putAddress(
5 "dopened",
6 IOCLRegistry.getIOCLByName("xsoap").
7 createAddress("http://www.tao4ws.net/slocal/dopened"));
8 instance.putTopic("lopened", new Topic("local_opened"));
9 }

10 }

Code 4.1: Alarm system in J: local names

The initialization consists on the definition of flows and reactions on the com-
ponent interface. Flows are initialized by using the code shown in Code 4.2. Two

1 this.addFlow (
2 new Flow (
3 this.getAddress(),
4 new SignalType(Locals.getTopic("lopened")),
5 Locals.getAddress("dopened")));

Code 4.2: Alarm system in J: adding flows

parameters are passed to the addFlow method. The signal type ( 4) having
topic lopened and no session. In  5, the address of the dopened component is
retrieved by the local dictionary and passed as parameter. Notice that both names
are “restricted” to the scope of the current component as previously discussed in
Section 3.5.2.

79

The code reported in Code 4.3 appends a reaction for the topic opened to
the component instance ( 3). The related task that must be executed at its
activation is defined in  5-9. Essentially, once received a signal, the affected
component delivers a new signal with the locally defined topic lopened ( 7)
and the same session of the entering signal ( 8).

1 this.addReaction(
2 new Reaction (
3 new SignalType (Globals.getTopic("opened")),
4 new Task (){
5 public void handle (Signal s){
6 emit (new Signal(new SignalType(
7 Locals.getTopic("lopened"),
8 s.getType().getSession())));
9 }

10 }
11)
12);

Code 4.3: J alarm coding: adding a reaction

Finally, components are bound to networks by requiring a publication on
the iocl registries. Each J project comes equipped with a configuration file
that contains information useful to retrieve from the iocl meta-name the related
plug-in to activate. All the information regarding the configuration are accessed
through apposite utilities. For example, the class IOCLRegistry encapsulates the
iocl name bindings offering the facilities from registering components. The
code for publishing a component becomes:

IOCLRegistry.getIOCLByName("xsoap").publish (component);

4.4 I   
Modern distributed systems demand not only heterogeneity but also a higher de-
gree of adaptability and the Service Oriented Architectures provide evidence of
this issue. In the SOA approach, applications are developed by coordinating the
behavior of autonomous components distributed over an overlay network. At the
best of our knowledge, current research and implementation efforts devoted to
design and to implement middleware for coordinating distributed services (see
ORC [Mis04], BPEL [Spe], WS-CDL [W3Cc] and SIENA [CRW98] to cite a
few), have focused on overlay networks based on a public addressing schema,

80

namely the address of each service is directly visible and reachable from any part
of the network. Indeed, very few approaches address coordination of services
over overlay networks where services reside on host without a public address
or are hosted behind a firewall hiding their addresses. Other modern distributed
systems raise similar demands with respect to the visibility of addresses. Illus-
trative examples are peer-to-peer networks. Coping with these issues is therefore
a challenging task for the SOA paradigm.

We attempt to explore the features of the SOA approach within computing
environments without a public addressing schema where visibility of service ad-
dresses is not always guaranteed. Here, we describe the adaptation of iocl archi-
tectural layer and its implementation for supporting service coordination where
identification of services endpoints is more structured while preserving, at the
same time, independence from the underlying network technologies. Hence, the
assumption on public visibility of all services is relaxed. We discuss design and
implementation issues analyzing the impact of our proposal over current tech-
nologies and network solutions. The experimental results and the formal model
that as driven our implementation choices have been reported in [FGS06a].

4.4.1 Gateways
To offer the possibility to handle interactions among components that may re-
side on networks that do not guarantee public addressing, a special version of
iocl networks has been defined, based on a two addressing schema methodol-
ogy. Such iocl network exploits the concept of gateways. The registering facil-
ities are demanded to gateways that act as bridges among several network infras-
tructures. Gateways, on their turn, can be published on the local machine, by in-
voking, as usual, the method iocl.publish , allowing each component to deliver
messages to them using the iocl specific protocol. In order to simplify the devel-
opment, the iocl extends the notion of proxies to gateways. Hence, internally,
the sub-layer can access a remote gateway by using the method iocl.getGateway
that instantiates a proxy that locally exposes the gateway remote interface.

A Gateway intermediates the message passing among component giving to
them public visibility. The component registration to a gateway is obtained by
invoking the method register. Internally, this operation involves the creation
of a virtual channel between the gateway and the component. Incoming signals
are delivered to the owned components through the method handle of the proxy
supplied by the iocl that involves the communication on the virtual channel
previously created.

Two kinds of addresses are defined. The gateways are identified by public
addressing schema in accordance to the standard iocl addressing mechanisms.

81

Hence, they are bound to an iocl address. Components, instead, become visible
to the outside through intermediate gateways. Their addresses are declared as
couples, in the following represented in the form G[a], to assert that the compo-
nent addressed a is registered on gateway G. The publication of services hap-
pens, as usual, by specifying the address to which the component will be bound,
regardless the knowledge of the existence of gateways. The registration to the
gateway, under the assumption it has already been published and made visible,
will be automatically performed during the publication of the component.

A sample code for binding a component address to a gateway for a further
publication on an iocl registry is the following:

GWAddress g_addr =
IOCLRegistry.getIOCLByName("xsoap").
createGWAddress(
"http://www.tao4ws.net/gateways/G"));

ComponentAddress c_addr =
IOCLRegistry.getIOCLByName("rhttp").
createCAddress(g_addr,
"http://www.tao4ws.net/services/G/a"));

// publish the service
IOCLRegistry.getIOCLByName("rhttp").publish(component)

Two kinds of address types are defined: the GWAddress and the Component-
Address. The structure of public addressing schema previously described is re-
flected in the former class definition. The latter instead, is obtained by binding
a component address defined on the rhttp iocl, to a public visible gateway ad-
dress (g_addr). When publishing a component, the iocl itself, is responsible
to internally implement the registration on a gateway according to the informa-
tion retrieved by the ComponentAddress structure. The publish and register fa-
cilities, and the addressing schemata, are internally implemented by an ad-hoc
iocl plug-in called rhttp, whose implementation details are reported in Sec-
tion 4.4.4.

4.4.2 Implementation Overview

In this section, we outline the implementation strategies adopted for the J ex-
tension supporting the two level addressing. Services are supposed to be always
private implying that, to be visible to the outside, they need to make a registration
to, at least, a gateway. Gateways become the unique public visible entities in the
global network. Having several iocl plugins, one for each network overlay, gate-
ways need to make available on the iocls they are interested to operate in. In the
following we only deal with two kinds of overlay networks: SOAP with standard

82

HTTP binding and SOAP with the binding proposed in 4.4.3. Depending on the
protocol used to identify a component or a gateway, J instantiate the proper
iocl (e.g. to rhttp corresponds the iocl with multipart, etc.). Communication
from a gateway to a public service hosted on the same "domain" can be obtained
through HTTP binding or through more scalable and efficient ad-hoc solutions
(e.g. JMS [SUNa]). Each iocl defines its gateway and component proxy struc-
tures that map the local invocation to communication primitives according to the
related network.

4.4.3 X-Mixed-Replace SOAP Binding

We propose an alternative SOAP binding for HTTP 1.1 to supply an envelope
transport mechanism for services that cannot open local tcp ports (e.g. firewalled
applications), or that are executed on machines without public address (e.g. in-
ternet applications) or that are hosted in an environment that disallows socket
management (e.g. Ajax and Comet applications inside a Web Browser). The
proposed binding is based on the x-mixed-replace [Net99] mimetype and is
structured as follows.

1. The service opens a HTTP 1.1 connection to a potential requester and per-
forms a GET request specifying the information needed for the publication.

2. The requester sends back a response having mimetype x-mixed-replace.
Usually, this mimetype informs a client that the server will send a stream
of multiple versions of the same document. The client and the server must
keep opened the HTTP connection, until the server terminates to deliver
the stream.

3. When the requester wants to send a SOAP request to a previously published
service, it sends a SOAP envelope over the active HTTP connection, as a
new version of the multipart document.

4. When a new version of the multipart document is received, the SOAP en-
velope is extracted and the local service is invoked.

As we will see in section 4.4.4, the first and second steps are performed by the
gateway.register method, which creates the virtual channel between the gateway
and the component, and the third and forth steps are performed for routing signals
from the gateway to the component.

83

4.4.4 JSCL implementation outline
Here, we outline the implementation strategies adopted for implementing the J
extension supporting orchestration with a two level addressing schema.
By using a UML-like sequence diagram notation, in Figure 4.7, are shown the
steps performed by J to implement the component registration to a gateway
(block 1) and the signal exchanging between two components (blocks 2, 3 and
4). In the following we will use the notation PS

X to represent proxies for an entity
S (a component or a gateway) communicating through the network via protocol
X. Analogously, AS

X represents an address of the entity S over the network via
protocol X.

S1 iocl P iocl ioclG S2G
X PS1

X PG
H

getGateway()

return

publish(S1)
GET / ? S1.id

new SProxyX(S1.id, socket)

register()

RESPONSE
MIMETYPE=
XMULTIPART

MIXED

H[.id ->]

return

new GWProxyX()

return
PG

X

POST signal, S1_id

spawn(signal, S1_id)

MULTIPART STREAM

spawn(signal, S1_id)

SP.handle(signal)
SP = H[S1_id]

new GWProxyH()

return

handle(signal)

getGateway()

return

AG
X

AG
X

PG
X

AG
X

PS1
X

PS1
X PS1

X

PS1
X

AG
H

PG
H

AG
H

PG
H

A
GH

1

2

4

foreach (, S
1_id)

in getH
andlersForS

ignal(sigT)

3

HOST1 HOST2 HOST3

Figure 4.7: Registration and signal emission protocol

The block 1, defined in Figure 4.7, describes the steps performed by the com-
ponent S 1, hosted on Host1, to activate a registration on the gateway G, located
on Host2. S 1 demands to the iocl to create a proxy PG

X for the gateway G, having
address AG

X , which will be encapsulated into the proxy instance. The registration
method is invoked on the proxy which makes an HTTP request, specifying the
encapsulated gateway address and the component identifier (see Step 1 in sec-

84

tion 4.4.3). The request is received by the iocl on the Host2 that creates the
local proxy PS 1

X for the component requester. Notice that the connection (socket)
established with PG

X and the component identifier S 1.id are stored into the com-
ponent proxy. The gateway stores, into the table H, the association between the
component identifier and the proxy bound to it. Finally, the iocl sends back an
HTTP response to declare that further messages will be send on that stream (see
Step 2 of section 4.4.3).

As result of a signal emission, the component S 2 retrieves the set of compo-
nent link descriptors of the form (AG

H , S 1id). For each component, S 2 requests a
proxy for the intermediate gateway (PG

H), then invokes its method spawn (block
2). The gateway proxy sends a HTTP Post request, containing the signal and the
target component identifier, using standard SOAP HTTP binding. At the recep-
tion of the message, the iocl on Host2 retrieves the proper gateway and invokes
its method spawn. The gateway retrieves, from the table H, the proxy for the
target component that has been created at the registration phase (block 3). The
component proxy forwards the signal through the multipart stream using the pre-
viously encapsulated connection with PG

X (see Step 3 of section 4.4.3). Finally,
in block 4, the gateway proxy retrieves the locally registered component and de-
mands to it the signal handling (see Step 4 of section 4.4.3).

85

4.5 A  
Besides the basic mechanisms for implementing SC, the J middleware offers
some additional features which are described in this section. In order to sim-
plify the designing and the development of complex coordination patterns, we
introduce special kinds of “pre-coded” components called logical ports. Such
artifacts permit to define first-order logic based applications offering, moreover,
immediate support for work-flow diagrams, as discussed in Section 4.5.1.

Additionally, we discuss the possibility to inhibit the delivering of signals
through flows by annotating them with constraints that are evaluated before per-
forming the emission to the corresponding subscribers. These constructs, called
flow guards, trigger the emission of signals through a flow. If the logical condi-
tion expressed on the guard is not satisfied, the notification will be ignored and
not externally visible. Flow guards are reported in Section 4.5.2.

4.5.1 Logical Ports
A value-added of J is constituted by the introduction of logical ports which
permit to define first-order logic based applications offering, moreover, a direct
correspondence with flow-chart diagrams. The logical ports represent a general-
ized form of components with a pre-built behavior. They receive as input param-
eters corresponding to the signal topics to associate to the boolean representation.
J provides A, O and N logical ports.

A simple, yet illustrative, example is in Figure 4.8, where the A gate syn-
chronizes the flows originating from components b and c. Namely, when both b
and c emit an Ok signal, the A gate propagates an Ok signal to component d,
otherwise an Err is emitted for e.

Figure 4.8: Joining two components

The strategy adopted here mainly differs from the synchronization mecha-
nism, whose SC coding has been presented in Section 3.5.1.1, for the multiple
exit flows of the A component. In the first instance, at implementation level,

86

J takes advantage from the host language to express the internal logics of
the logical port differently from the SC formalism where the state configurations
were coded through the proper usage of specialized reactions. An intuition of the
logical port coding is given in Section 4.5.1.1.

4.5.1.1 A sketch of logical ports

In Code 4.4 we report an sketch of how an A port can be programmed in J.

1 protected class AndPort extends Task {
2 public void handle (Signal s){
3 Topic session = s.getType().getSession();
4 syncronized(session) {
5 if (!state.containsKey(session.getValue()))
6 state.set(session.getValue(), s.getTopic());
7 else if (state.get(session).equals(sigTrue) &&
8 s.getTopic().equals(sigTrue)) {
9 emit(s);

10 state.remove(session);
11 }
12 else {
13 s.setTopic(sigFalse);
14 emit(s);
15 state.remove(session);
16 }
17 }
18 }
19 }

Code 4.4: Logical Ports: A behavior

We focus on the internal logics of component to implement the required func-
tionality. A special kind of dictionary state is internally used to store the re-
ceived signals, grouping them by sessions, and is demanded to implement the
boolean evaluation on topics. The reported sketch considers the simple case that
just two components can be connected in input. The first insertion for a session
is simply stored into the dictionary ( 5-6). The state will be  if and only
if all the connected components have sent signals having the  topic ( 7-
11), otherwise the state will be considered false ( 12-16).

4.5.1.2 Logical ports: API

Logical ports (whose API are in Figure 4.9) are instantiated by declaring two
kinds of topics corresponding to the boolean  and  values and are able

87

to handle only signals corresponding to signal topics associated to the boolean
values. They come equipped with predefined behaviors (and reactions) special-
ized for the accepted topics. The installation of additional reactions is forbidden.
Analogously the addFlow method has been overloaded to force link creation to
the only boolean corresponding topics. This modification implicitly restricts the
use of primitives for signals firing, so that the signals fired for different topics
will be ignored.

To apply the boolean relations to the outgoing signals of several components
it is sufficient to invoke the method filter, meaning that on the output links
of notifiers will be applied a filtering. The ports can have several components
connected both in input and in output.

Figure 4.9: Profile «sbl_ext»: logical ports

Basically, the logical ports have been introduced for simplifying the design of
service composition. These components permit the developer to easily program
connections and, furthermore, they can be used in conjunction with the other
primitives in order to express more complex patterns. For example, referring to
the workflow patterns presented in [WvdADtH03b], we can describe the parallel
split and the synchronization between two components a and b by adding an and
port filtering their outgoings. In the same manner the or port can be adopted for
implementing the exclusive choice.

The following example outlines the flexibility of logical ports to model dis-
tributed work-flows.

Example 4.5.1 Consider a service for searching into several on-line book shops
an item and to buy it by accessing to some payment service. The participants
involved in the interactions are a buyer, search engines, a basket handler (shared
by all the services), a bank service and a credit card manager. Figure 4.10 shows
a control flow diagram for the application (the data flow is omitted for simplicity).

88

Commit

Figure 4.10: Search and buy books overview

Let us now illustrate the protocol of the Example 4.5.1. Initially the user
specify the search query which is forwarded to the search engines dislocated on
several nodes of the network. Each service makes a local search for the book
specified by the user and responds by emitting a signal containing the results of
its search. The O port collects the results coming from the search engines and
signals to the chosen book store to make the reservation for it1. The last step of
the application is the payment, it consists of a charging operation from the credit
card account of the user to the bank account of the chosen book store. The bank
and credit card manager services execute their operations in parallel and, if and
only if both of them reach a positive result the whole transaction is considered
completed and so can commit, otherwise the A port will forward a signal to the

1 In order to make as simple as possible the example, we suppose that the user makes only one
search each time he uses the service.

89

previous stages in order to communicate a failure.
The signals which are exchanged among the services are respectively:
SearchReq, containing the parameters useful for making the search (e.g. the book
title), SearchResp sent by the search engines to communicate they have found the
requested book. The book identifier will be conveyed through the signal data. If
during its execution a search engine fails (e.g. book not found), it will emit a
SearchErr signal. The O port collects the signals coming from the search en-
gines and, if at least one of them sends a SearchResp signal, the computation
can continue otherwise the whole transaction is terminated and a SearchErr is
forwarded to the Search & Buy Books service in order to inform the user that
the book has not been found. Once the Reserve Book service receives the search
response, it signals to the chosen book store to make a reservation on the item
specified in the request and forward a payment request to the next two services.
The bank and credit card manager services receive all the needed informations to
retrieve respectively the book store bank account and the buyer credit card num-
ber. Once received these informations, they can start their executions making the
proper payment. The signals they emit are Commit or Compensate. If both of
them emit a Commit signal the whole transaction can be considered successful
executed, otherwise a rollback signal is forwarded backward to inform the previ-
ous stages to undo their modifications. A snippet of the J code for the O port
is given in Code 4.5. In  4-6 there is the declaration of the filtered compo-
nents and the remaining blocks ( 7-10 and  11-14) connect the outputs
for the  and  corresponding topics, respectively.

1 public SearchOrPort extends OrPort {
2 // ...
3 protected void jscl_init(){
4 this.filter (Globals.getAddress("search1"));
5 this.filter (Globals.getAddress("search2"));
6 this.filter (Globals.getAddress("search3"));
7 this.addFlow (
8 new Flow (this.getAddress(),
9 this.sigTrue,

10 Globals.getAddress("reserveBook")));
11 this.addFlow (
12 new Flow (this.getAddress(),
13 this.sigFalse,
14 Globals.getAddress("entry")));
15 }
16 }

Code 4.5: Search & Buy Books: O port

90

4.5.2 Guarded Flows
The guards give the possibility to attach, during the creation of a flow, a con-
straint that must be evaluated before sending the signal on it. The signal is sent
through the flows providing that the evaluation of the guard is true, otherwise it
is removed from the system leaving no trace. Guards are built by extending the
abstract class Guard and implementing the method processSignal. The API of
guarded flows are given in Figure 4.11.

Figure 4.11: Profile «sbl_ext»: guarded flows

Example 4.5.2 The code below, attaches on a flow a guard that checks that no
"creditCard" parameter is present in the data part of the signal before sending it.

flow.addGuard (
new Guard() {
public boolean processSignal (Signal s){
if (s.getValue("creditCard") == null)
return true;

return false;
}

};
);

Often, this construct results useful when the delivering to a particular sub-
scriber must be inhibited by the occurrence of a particular configuration of the
raised event or of the internal state of the component itself. Notice that the guards
discriminate the emission on a flow declared for a well defined topic and targeted
to a single subscriber so that, for the same topic, the other subscriptions are not
affected. Similar results can be obtained by applying the flow removal primitive
and implementing the logics internally to components.

91

4.5.3 The dark side of serializers

An distinguishing feature of WSs stack relies in its modularity. Due to the adop-
tion of open and platform independent specification languages for defining all
the stacks of the architecture, the WSs can be easily extended to support func-
tionalities. For example by introducing higher architectural levels that extend the
structure of the messages to support additional features. A typical example is the
WS-Security [OAS06] that states:

“ This specification is intended to provide a flexible set of mecha-
nisms that can be used to construct a range of security protocols; in
other words this specification intentionally does not describe explicit
fixed security protocols. ”

Namely the specification establishes a policy on the structure of SOAP mes-
sages declaring a common understandable way to exchange encrypted messages
among services. Briefly, it suggests a pattern for storing secure messages and
conversely for retrieving them, by declaring the path they are located (e.g. in the
header). This strategy does not impacts the lower layers of the WSs platform.
Services that does not support this feature will simply ignore the encrypted part
and access the remaining data.

Similarly, the adoption of J serializers allows to increment the flexibility of
the framework to support new capabilities. For example, proper serializers (resp.
deserializers) can be equipped with an iocl plug-in so that they will encrypt
(resp. decrypt) the messages before sending them on the network (resp. to the
handler component).

Other fields of applications is the coexistence with services non J com-
pliant. For example the activation of a SOAP based web services that is not
implemented on J based networks can be achieved by applying XSLT trans-
lating rules that translate signals in SOAP messages. Actually this goal can be
achieved by adopting intermediate wrappers that exploit the iocl serialization
features and act as proxy in behalf of other J components. So that the request
to an external service is implemented by transforming the signals in the proper
message and once received the response (if any) it is converted into a signal so
that can be communicated to other participants. In the future we are investigating
for giving an intermediate structure on signals that allows the automatic transla-
tion into different domains (e.g. for retrieving the direct encoding from  to
signals).

92

4.6 C   J
J proposes a framework which provides the minimal primitives for creating
components which interact by notifying event occurrences.

The event notification pattern has been reinterpreted in order to build a fully
distributed solution differently from great part of analogous tools proposed (e.g.
SIENA [Sof05, CRW98]). The approach proposed in J differs from them
since it does not rely on an engine that rules the execution of a composed pro-
cess. Instead the conversational primitives are translated into coordination pat-
terns among services over a middleware establishing a sort of choreography (as
defined in - [W3Cc]) among involved services.

J primitives combine aspects related to the service definition and the ones
strictly related to their composition and communication, presenting a complete
framework useful for describing all the aspect relevant for defining business pro-
cesses.

More complex scenarios can be built upon J to treat more complex aspects.
In [BFM+05] it was presented a specialization of J focused on describing the
transactional aspects related to the long running transactions (LRTs) in the spirit
of Naïve Sagas [BMM05], a specialization of Sagas [GMS87]. This example
better remarks the flexibility of J proposed as generic middleware for describ-
ing patterns which for their nature can be described in a signal passing style.

The middleware proposed, in fact, do not want to replace existing tools and
languages for business processes but, instead, it suggests a general purpose signal
based framework. As an example, J can be adopted for developing a BPEL
engine or moreover for mapping Coloured Petri Nets [BRR87] constructs.

As counterpart, J uses statefull services to keep tracks of inter-services
connections and force the developing of several copies of the same service if
used in different instances of the transaction. This constraint is essential if we
want to avoid centralized orchestration.

93

Chapter 5

Programming Environment

The initial version of J was intended to provide a run-time support for SC
networks; later, it has been extended with a set of facilities oriented to yield
a complete and easy-to-use programming environment. In fact, J has been
equipped with a user-friendly interface in the form of a set of Eclipse plug-ins
that offer a graphical and a textual representation of SC networks.

These functionalities offer two different perspectives of the network. The
graphical representation presents a global view of the choreography by consid-
ering the components and their interconnections, without detailing their internal
logics. The textual notation offers a closer view of components allowing design-
ers to focus on the behavioral aspects.

In a model driven metaphor, the aspects treated at these different levels of
abstraction share a common meta-model so that it is easy to pass from a level
to another and to use the resulting target model to automatically generate the
runnable J code.

The implementation choices and the capabilities offered by our programming
framework are exposed in this chapter.

5.1 E  S C
In Chapter 4 we have presented J as a run-time support for SC networks.
Now we present the event based service coordination () framework that pro-
vides programming facilities for designing and implementing J services from
a higher level of abstraction. The framework is constituted by different plug-ins
that, from several perspectives, offer to the designer all the constructs present in

95

the J middleware. The main advantages of this approach stands in its simplic-
ity of use and in the separation of the concepts at different levels of design.

From the one hand, a graphical toolkit is used to design the components and
their interconnections. At this level components expose their interfaces in terms
of flows and reactions without detailing their internal behaviors. On the other
hand, a textual representation can be used to specify how components are inter-
nally implemented by declaring their behavioral properties. Finally, the resulting
model can be compiled and executed on top of J middleware.

5.1.1 JSCL Graphical Notation
The J graphical notation captures the sequence of activities via the description
of the network topology of involved components.

The J graphical notation mainly differs from  on the way interactions
are modeled.  directly defines the flow of messages exchanged among com-
ponents using a flow mechanism. J, instead, defines the correlation among
services so that the message sequences depend of the component internal behav-
iors and are not directly caught at design time.

In J, components are implemented as services and can represent 
pools on the assumption that services are used to implement the participants.
J reactions can be interpreted as  activities, because they are the handlers
of messages and implement atomic business logics. Similarly to  activities,
which can be depicted into  pools, reactions must be encapsulated inside
J components. Links in  define the activity sequence, while they define
publishers/subscribers relationships in J. Notice that a J diagram cannot
contain events that are raised inside components. Moreover, links are artifacts
for SC flows and specify to which components deliver events according to their
topics. Even though flows are machinery for subscriptions and do not have a
channel correspondence, abstractly they represent the communication strategies
of ; for this reason we will refer to flows as links or channels.

The graphical editor gives the possibility to directly use logical ports (defined
in Section 4.5.1) that are here exposed as components with a pre-defined internal
logic and a fixed set of reactions. This constructs are similar to the notion of 
gateways.

In Figure 5.1 we show a simple protocol with three components a, b, c. In
our notation, the outermost boxes (labelled with components’ names) represent
components. Inside each components, at the bottom, we find a circle that repre-
sents the anchor point for outgoing flows, represented, in turn, as arrows tagged
with the conveyed topic (t1, t2, etc.). Finally, the yellow boxes nested inside com-
ponents represent the reactions installed on a component at initialization phase.

96

Figure 5.1: JSCL diagram of the example

The signature of reactions is given accordingly to the SC specification so that
reactions labeled as t1@s represent check reactions, conversely the ones simply
labeled with the topic name (e.g. t2) represent lambda reactions.

Notice that, since reactions can be installed and modified at run-time, just
the initial state is depicted. The initial configuration of the example shown in
Figure 5.1, is the following: component b is subscribed for events of topic t1
notified by a, while c is subscribed on topic t2 notified by a and on topic t1
notified by b.

Notice that some relevant details can be derived by the scenario depicted in
the example. Initially, the component a has an installed lambda reaction for topic
t1 that is apparently unused. Since flows, akin reactions, can be dynamically
programmed, links could be attached at run-time to such reaction, so that no
assumptions can be derived from the initial definition of the network.

Moreover, the network can be thought of as a sub-network acting in the re-
gards of a more structured network, as a single service hiding its internal structure
and exposing, for example, the only entry points of a to the outside. This idea is
at the base of the concept of compositionality of services.

Additionally, high level constructs, like the logical ports, are presented as
generic components for which the designer is demanded to generate the suitable
S coding and to install the proper constraints.

The plug-in has been implemented using GMF [Ecla], that provides a gener-
ative infrastructure for developing editors based on EMF [Eclb], as model repre-
sentation, and on GEF [Eclc], as graphical support.

5.1.2 Signal Core Language
The graphical editor plug-in is paired with the textual representation given as a
Domain Specific Language (), called S after Signal Core Language. S
provides a compact view of components distribution and enables to implement

97

components by detailing their reactions. The language has been implemented as
a textual plug-in for the Eclipse environment supporting code completion, error
checking and code generation (some of which are described in Section 5.1.3).

The main elements are the components, described in terms of “reactive” soft-
ware modules declaring the class of events they are interested to and the way they
react at the occurrence of events. Components are defined inside a network.

A typical network is represented as follows:

1 restricted: s1,s2;
2 global: t1, t2, t3;
3 component a {
4 local: lt1, lt2;
5 flows: [t1->a], [lt1->b];
6 knows: s1,b;
7 reaction lambda (t1@ws){
8 addFlow ([ws->b]);
9 addReaction (

10 reaction check (lt1@lt2){
11 emit (t1@lt1);
12 }
13);
14 nop;
15 do {/*behavior*/} or {/*behavior*/}
16 split {/*behavior*/} || {/*behavior*/}
17 with (nlt1){/*behavior*/}
18 skip;
19 }
20 }
21 protected component b {
22 knows: s1;
23 main {
24 // behavior
25 }
26 }

The example shows a network composed by two components a and b, de-
fined in the  3-20 and 21-26, respectively. Topic names can be declared as
global and shared among components as defined in  2. Moreover, topics can
be declared in a private scope of a component using the primitive local ( 4)
or during the computation through the primitive with ( 17). However topic
names can be declared restricted to more than one component so that the prim-
itive restricted ( 1) is used. Similarly, component names can be declared
restricted by tagging components with the protected clause ( 21). Compo-
nents can insert restricted names inside their scope (with the exception of the
names declared with local and with clauses) by using the knows primitive ( 6
and 22).

98

Components are uniquely identified by a name (e.g. a) and declared with the
component keyword. Components contain a set of local topics, a set of flows and a
set of reactions declaring the topics that can be handled and the tasks to perform.

The couple t1@t2 represents SC signal types (t1�t2), where t1 is the event topic
and t2 the work-flow session in which it has been declared. Sessions identifiers
and topics are freely interchangeable, as show in  7-8 where the session ws
received by the lambda reaction is afterwards used as topic name for connecting
the component a to the component b. Components declare their entry points by
installing reactions. Two kinds of reactions can be defined: the reaction lambda
(see  7) that is activated for a topic regardless its related session, and reaction
check (see  10) that triggers within a specific session. As consequence, the
session identifier used in lambda reactions must be a “fresh” identifier, while
the one of check reactions must be already defined. Flows and reactions can be
defined at initialization phase ( 5 and 7, respectively) or added at run-time if
required ( 8 and 9-13, respectively).

The computational steps described inside reactions, declare their behaviors.
The basic behavioral instructions are: emit ( 11), used to send out notifica-
tion for an occurred event, addFlow and addReaction previously described, and
nop ( 14) to indicate an instruction externally defined through host language
instructions that do not interfere the coordination patterns (e.g. the access to
the database). The skip ( 18) represents the empty action (the SC silent ac-
tion). Furthermore, behaviors can be composed in sequence (using, as usual the
semicolon) or with do-or ( 15) and split ( 16) constructs. The former
constructs is used to implement the non deterministic execution of two branches.
The latter construct allows the parallel composition of two behavioral activities.

Notice that component b declares a main block ( 23-25). It is used to
define the initial behavior of a component.

The textual editor has been implemented by using OpenArchitectureWare
(oAW) [OAW], a modular MDA/MDD generator framework.

5.1.3 Basic Facilities

The  platform presents a set of facilities that we group into three categories:
(i) constraint checking, (ii) code generation and (iii) model synchronization. We
now detail these aspects.

Constraint checking The graphical editor fixes some constraints on the struc-
ture of the networks and is responsible to check at designing time whether they
are respected. Syntactical checks verify that the names and the addresses of the

99

components are unique and there are no multiple instances of flows starting from
a component having the same target and topic. Logical ports are considered valid
if there are at least two components attached in input. More precisely, for the
A port it suffices that on the true corresponding topic there are the entering
links, since the synchronization is applied just for this kind of topic, while the
f alse branch is not blocking. The correct usage of names inside components and
flows are checked by the editor that evaluates the correct scope of each element.
Moreover, on logical ports the installation of new reactions is avoided and the
outgoing flows can correspond uniquely to the boolean respective topics.

Model synchronization The meta-models managed by the designer and the
textual editor are automatically synchronized so that modifications to a model
are immediately reflected in the other one. In the same way, errors (or warnings)
arisen during checking are automatically reported in both models. In Figure 5.2
are given the two different views of the join example discussed in Section 3.5.1.1.

Figure 5.2:  design: the join pattern

100

Property Description
ID An (unique) alias for the component.
Address The iocl representation of the address (URL).
Classname The class name to use for generating code.
Package The package in which the generated classes will be

stored.
Iocl plugin The iocl network adapter to use for publication.
Generate If the code must be generated (bool)
Publish If the generated component must be published(bool)

Table 5.1: S D: component properties

Code generation At the end of the modeling phase, it is possible to generate
the Java source code. The code generation creates components and a network
orchestration artifact. According with the component and network properties
given in Table 5.1 and in Table 5.2, the source code is generated as follows:

• An orchestrator class is generated. This class has a static main method
that creates the coordination. The orchestrator instantiates each compo-
nent and, if their publish property is true, it publishes them to the proper
addresses, otherwise it obtains a remote proxy for them.

• For each component having generate property enabled, a component class
is created. Component flows are declared accordingly to the designed net-
work. The component property file is generated with the local and global
names as discussed in Section 4.3.

• For each reaction a proper class is created. This class implements the han-
dler for messages of the specified type. To implement the internal business
logic, in correspondence of the nop instructions, the body of the handle
method must be filled.

Each generated class allows for each method to specify the generated an-
notation. Source code with this annotation will be overridden by further code
generations. To prevent this behavior the annotation must be disabled to make
the environment aware that the source code has been specialized. The environ-
ment supports a simple navigation mechanism: starting from the diagram view,
the contextual menu Edit code opens in the default Eclipse Java editor the corre-
sponding source file.

101

Property Description
Address The iocl representation of the address (URL).
Classname The class name to use for generating code.
Package The package in which the generated classes will be

stored.
Collector The class name to use for generating code.
Iocl plugin The iocl network adapter to use for publication.

Table 5.2: S D: network properties

5.1.4 Synchronizing behaviors
Here we present a general purpose construct that will be used in the late as syn-
chronization machinery for describing the logical port coding in S. The con-
struct is in the following referred to with the behavioral primitive synchronized
that declares a critical section that regulates the flow of messages coming from
the producer component. Moreover, with the aim to give a “non invasive” con-
struct, in the means that it does not comprises the intended behavior of the orig-
inal producer component, we make use of intermediate components that act as
proxies for the message producer. Two additional components  and  are
introduced as shown in Figure 5.3. With we represent the queue of messages
coming from the producer. The  is encapsulated inside a sub-network
and represents the only externally visible component.

The links reported in Figure 5.3 represent the flow configurations of compo-
nents.

1 restricted n,rdy,done;
2
3 protected component queue {
4 knows: rdy;
5 flows: [msg->sync],[rdy->sync];
6 reaction lambda (msg@s) {
7 emit (rdy@s);
8 emit (msg@s);
9 }

10 }

Code 5.1: Synchronizing behaviors in S: queue

As detailed in Code 5.1. The  receives from the producer the messages.
Once a message msg@s is received,  informs  that a new message in

102

the session s is ready to be consumed ( 7) and promptly forwards the message
to it ( 8).

1 protected component sync {
2 knows: n,done,rdy;
3 flows: [msg->consumer];
4 reaction lambda (rdy@s) { // from queue
5 addReaction (reaction check (done@n){ // from consumer
6 addReaction (reaction check (msg@s) {
7 emit (msg@s);
8 });
9 });

10 }
11 }

Code 5.2: Synchronizing behaviors in S: sync

As shown in Code 5.2, once  receives notification that a new message
is ready ( 4), it waits until the  is ready to receive the new mes-
sage ( 5) and consequently consumes the message sent by  ( 6) and
forward it to the  ( 7).

1 component consumer {
2 knows: queue, sync, done,n;
3 flows: [done->sync],[msg->...];
4 reaction lambda (msg@s) {
5 // Synchronized behavior
6 addReaction (reaction check (msg@s){...}
7 // End of sync
8 emit (done@n);
9 }

10 main {
11 emit (done@n);
12 }
13 }

Code 5.3: Synchronizing behaviors in S: consumer

Finally, the S representation for the  is given in Code 5.3. The
 5-7 is considered a critical section since the installation of the check reac-
tion must be installed before a new message is sent to the . Once exe-
cuted the critical section, the  agent in informed that the  is ready
to receive a new message ( 8). The topic done is internally used by 

103

to inhibit the emission of signals from the  component. At initial phase the
consumer is able to receive a message from the system as given in  10-12.

Figure 5.3: Synchronizing reactions installation

5.1.5 Logical Ports in SCL
At design level is offered the possibility to make use of J logical ports. Fur-
thermore, to keep coherence with the textual representation, once a new input
port is created, the designer converts the high level construct in concrete S
primitives. For example, the S representation of a binary A port is reported
in Code 5.4.

1 global: tt,ff;
2 component And {
3 reaction lambda (tt@s){
4 synchronized {
5 addReaction (reaction check (tt@s){
6 emit(tt@s);
7 });
8 }
9 }

10 reaction lambda (ff@s){
11 synchronized {
12 addReaction (reaction check (ff@s){
13 skip;
14 });
15 }
16 emit(ff@s);
17 }
18 }

Code 5.4: Binary A port in SCL

The boolean corresponding topics are globally declared ( 1). The A

104

component is initialized with two reactions for handling tt and ff signals (resp.
 3-9 and 10-17). The former block reinstalls a further reaction ( 5-7)
that triggers the next reception of a tt signal valid for the session s. The latter
block instead immediately forwards the ff signal since no synchronization is re-
quired in this case and installs a reaction ( 12-14) for consuming the next
occurrence of the ff signal for the same session.

5.2 A  

In this section we illustrate how the S car repair scenario [WCG+06] can
be developed by using the  framework. The formal description and the con-
siderations that lay around this coding have been exposed in [FGST08]. Here we
only use it to show a possible use of the J framework to model the following
problem:

You rented a car to visit some of the beautiful savage landscapes
you like most and you ever dreamed of visiting. Everything is fine,
but the car has a fault...in the middle of nowhere! What if the car
could arrange for a quick rescue? Probably what you would like to
have is a track towing you to a close garage and another car to
proceed your trip.

5.2.1 The car repair scenario

A car manufacturer offers a service that, once a user’s car breaks down, the sys-
tem attempts to locate a garage, a tow truck and a rental car service so that the
car is towed to the garage and repaired meanwhile the car owner may continue
his travel.

The interdependencies between the service bookings make it necessary to
have an orchestration with compensations. Before any service lookup is made,
the credit card is charged with a security amount. Before looking for a tow truck,
a garage must be found as it poses additional constraints to the candidate tow
trucks. If finding a tow truck fails, the garage appointment must be revoked. If
renting a car succeeds and finding either a tow truck or a garage appointment
fails, the car rental must be redirected to the broken down car’s actual location.
If the car rental fails, it should not affect the tow truck and garage appointment.

105

Charge
Credit Card

Revoke
Charge

Cancel Garage
Appointment

Order Garage
Appointment

Order
Tow Truck

Cancel
Tow Truck

Order
Rental Car

Redirect
Rental Car

Figure 5.4: Car repair scenario: the  model

The  model of this scenario is presented in Figure 5.4. Notice that the
model exploits the transactional and compensation facilities of tr and that
the car rental service is a sub-transaction, since it does not affect other activities.

5.2.2 Designing the Car Repair Scenario
To model the car repair scenario as a J diagram we assume that each partici-
pant is represented by a J component. We use two types of signals: forward
and rollback. The first event type is used to inform a component that all the pre-
vious activities have been completed, while the second one is used to inform a
component that an exception has been occurred, and that all following activities
have completed their compensation. Each component has two reactions: one that
handles forward signals, executing the corresponding main activity, and the other
one that handles rollback signals, executing the corresponding compensation if
the main activity has been previously completed without errors.

In Figure 5.5 the J model of the car repair scenario is presented. In the
environment, we use the black color for forward links (that are oriented from
the left to the right) and red one for the other ones (oriented in the opposite
verse). The model contains two instances of the A logical port defined in
Section 5.1.5. The two logical ports are differently instantiated. Namely, the
And1 applies a synchronization on the rollbacks (the backward flow before the
G compensation) so that it is initialized with rollback topic assigned to
the true value. Conversely, the And2 considers the forward topic corresponding
to the true topic. Moreover, the And ports have two roles: i) to synchronize
the forward flow, and ii) to execute the compensation of RC if both the
OTT fails and the RC main activity has been successfully
completed.

106

CreditCard

Forward

Rollback

Garage

Forward

Rollback

TowTrack

Forward

Rollback

RentalCar

Forward

Rollback

 And 1

Forward

Rollback

And 2

Forward

Rollback

EndPoint

Forward

Rollback

Figure 5.5: Car repair scenario the graphical J representation

Notice that, in this scenario, the OTT compensation is not exe-
cuted if the RC fails. The EP component represents the  final
state and allows to reuse the obtained composition as a sub-network inside other
designs. This component simply forwards the received signals to the components
externally connected.

107

Chapter 6

Experimenting Long Running
Transactions

In this section, in order to highlight the flexibility of the SC proposed methodology
to deal with practical aspects that are relevant in the SOA scenario, we present a
coding of tr constructs. In particular, we utilize Sagas specification trying to
establish a connection among the theoretical model presented in [BMM05] and
the SC design model. The choice falls to Sagas since it naturally abstracts away
from low level computations and communication patterns, while highlighting the
composition structure of transactional processes. We map high level transac-
tional primitives into concrete orchestration patterns by observing the events that
are raised inside Sagas activities.

The exposed ideas have been adopted in a model transformation tool that
starting from a tr construct gives the corresponding S code that is subse-
quently mapped on its paired graphical notation.

6.1 F   SC ()
The success of  consists in the possibility to describe the work-flow of
business processes and their transactional activities from a global point of view.
Hence, the resulting model abstracts from the distribution of processes, from the
communication policies and from the underlay network technologies. As coun-
terpart,  neglects distribution aspects that are instead captured in SC network
model. Notably, SC components correspond to services artifacts so that the com-
putations are enclosed inside component boundaries while for  activities it

109

can happen, at implementation level, that several activities correspond to differ-
ent stages of computations performed on the same service, or conversely, that
single work units are spawned, at run-time on several services that implements
part of the required tasks.

The Sagas offer a suitable framework for detailing the formal semantics of
tr (the transactional subset of  reported in Section 2.5.1) and we take
advantage from its specification to provide an outline of how such components
can be automatically coded in SC language.

We discuss the implementation choices in terms of topics of exchanged sig-
nals and internal communications among components.

The basic units of tr are compensable activities, namely pairs of main
activities and compensations that can be composed through sequence or parallel
blocks or can be enclosed (isolated) inside transactional boundaries. The corre-
sponding Sagas constructs are: step, sequence, parallel and saga.

Referring to the Sagas semantics, reported in Section 2.5.2, our focus is not
on the executed activities but rather on their results.

For this reason, differently from Sagas, we distinguish two groups of possible
observable events by means of i) the results obtained during the execution of
internal steps and ii) the results observed by the outstanding processes. Two
distinguished event topics f and r are globally used (after Sagas terminology
for forward and rollback flow, respectively) to signal successful termination of
processes. The observation of internal activities is instead modeled through local
topic names as clarified in the further sections.

6.1.1 Compensable activity

Compensable activities of tr can be interpreted in SC by applying the seman-
tical specification given in Sagas for . Figure 6.1 gives a pictorial intuition
of the coding.

Main
Activity

emit r
install

compensation &
emit f

ex

ok

f f

rr

Figure 6.1: Internal view of SC compensable activities

110

Initially, signals of type f trigger the execution of the main activity, hereafter
referred as Task, and install the reactions to manage its continuation. Indeed,
Task will eventually emit either an ok or an ex signal that are two distinguished
topics restricted to the transactional component depending on the whether its
termination has been successful or not. In the former case, the compensation
is installed and the f signal is propagated outside the component, otherwise a r
signal is emitted to the previous stages of the transaction. Notice that, as required
by sagas, rollback signals can be consumed only by components that successfully
executed their main activity (and therefore installed their compensations).

TC(a, A, B, prev, next) = (νok, ex)
(
a[0] fλsmA | rupd(Rres)

ok a⊕ex a⊕ f next⊕r prev

)
Rres = ok�s m

(
rupd(r�s m B)|out(f �s)

)
⊗

ex�s m out(r�s)

Code 6.1: SC coding of tr: compensable activity

A tr compensable activity is expressed by the SC component reported in
Code 6.1, where Task = ε.out(ok�s) + ε.out(ex�s) 1 and Comp = ε.out(r�s),
respectively, represent the main activity and the compensation of the transactional
component, and next and prev represent the forward and the backward flows.

To give a flavor of how SC primitives are reflected in the S meta-model
we approach the definition of compensable activities in both formalisms. The
corresponding S representation is reported in Section 6.2.1.

6.1.2 Sequence
The sequential composition of two transactional components is obtained by suit-
ably connecting the forward and rollback flows as shown in Figure 6.2.

The SC term modeling the tr sequence design of Figure 2.5(a) is graph-
ically represented in Figure 6.2 where a (resp. b) embeds Task1 and Comp1
(resp. Task2 and Comp2). We use solid (resp. dashed) arrows to represent the
forward (resp. backward) flow.

Notice that the compositionality is obtained by simply rearranging their in-
terconnections. Namely, given two transactional entities Compa and Compb of
the form:

Compa , TC(a, Aa, Ba, preva,−)
Compa , TC(b, Ab, Bb,−, nextb)

1 Notice that SC is not directly equipped with non-deterministic choice. However non-determinism
can be easily encoded exploiting the non-deterministic activation of reactions as discussed in Sec-
tion 3.3.

111

Figure 6.2: SC sequential composition

the corresponding SC sequential composition is given by:

Compa; Compb , TC(a, Aa, Ba, preva, b) | TC(b, Ab, Bb, a, nextb)

The component a on the left side of the composition is connected for forward
flows to the component b on its right and conversely for the backward flows b is
connected to a.

6.1.3 Parallel composition

Parallel composition of components requires two auxiliary components called
dispatcher and collector to model the fork and join entry points. Dispatchers
are responsible to collect notifications of the forward flow (signals of topic f)
and redirect them to the parallel components. Symmetrically, dispatchers bounce
rollback signals of topic r when the backward flow is executed. Analogously, col-
lectors propagates forward and backward flows by sending the signals of topic f
or r as appropriate. Figure 6.3 yields a pictorial representation of how the forward
and backward flows of the dispatcher d and collector c of parallel components a
and b are coordinated using the f and r signals. Notice that a and b have rollback
flows connecting each other; in fact, the semantics of saga prescribes that, when
the main activity of a parallel component fails, the other components must be
notified and start their compensations.

A further topic n is internally used for implementing the synchronization.
Abstractly, this topic is used to implement a “private channel” through which d
communicates to the collector c the new received session s to inform that a new
parallel branch is going to start. Subsequently, the signal is forwarded to the in-
ternal parallel stages to initiate their tasks. The collector is responsible to receive
through the channel n the work-flow session identifier s and to install the suitable
reactions for consuming signals sent by the parallel stages (the synchronization
protocol is implemented coherently to the ideas exposed in Section 3.5.1.1). In
Section 6.2.2 we report the respective S coding for parallel composition applied
to the case study introduced in Section 5.2.

112

Figure 6.3: SC parallel composition

When needed, the usage of name communicating capabilities can be adopted
for implementing “session nesting” technique. For example the entry point of a
composed network (e.g. d) can assign a new session name to the signals before
delivering them to the internal stages so that the exit point (e.g. the collector
c) is informed of the renamed session. The internal components (e.g. a and b)
will act on restricted work-flow session arising conflicts with any other external
concurrent components out of the actual work-flow session.

6.1.4 Transactional enclosure
The intended meaning of saga construct is that its internal failure does not affect
other activities. For this reason, regardless the outgoings of transactional activity
a the collector will receive a forward (f) signal. If from the outside c receives
a rollback, the component a must be informed and activate its compensation.
Two cases are possible: i) a has previously successful terminated, so it has a
compensation installed ii) a internally failed and no compensations are needed.

Figure 6.4: SC transactional enclosure

Under the assumption that d has to consume two instances of r signals before
activating the backward flow while c, for the same session, consumes only a f
signal (and ignores the further instances of f), the corresponding SC network is
given in Figure 6.4.

113

Figure 6.5: The generated S network

Similarly to the parallel encoding previously exposed, the topic n is used
from d to inform c that a new work-flow instance has been initiated so that the
latter component can install the proper check reactions to consume two distinct
instances of f signals coming from a.

By applying the graphical representation of SC coding for tr constructs,
the case study introduced in Section 5.2 can be pictorially defined as in Fig-
ure 6.5.

6.2   SM 

The framework permits to transform the platform independent tr model to
the platform specific S model. We describe this transformation exploiting the
case study explained section 5.2. We recall that our framework supports a subset
of the  specification, that has been formalized by the Saga process algebra.
The S implementation of transactional behaviors exploits two public names, f w
and rb, respectively for forward and rollback signals. Forward signals propagate
the successful completion from an activity to the next ones in the work-flow.
Backward signals are emitted on failures to trigger compensations. In the first
step the model transformation generates an S component for every  atomic
process (aka an activity and the corresponding compensation).

Each step can generate glue components and change the flows of the com-
ponents, however the behavior of components generated in the previous steps
cannot be altered.

This permits to transform a  process to an S network independently
by the context, and reuse it as building block just changing its connections (S
flows).

114

6.2.1  atomic process
In Code 6.2 we report the S coding of transactional activity G.

1 component garage {
2 local: ok, ex;
3 flows: [(ok->garage), (ex->garage)];
4 reaction lambda (fw@s) {
5 nop;
6 split {
7 do {emit <ok@s>;} or {emit <ex@s>;}
8 } || {
9 addReaction (reaction check (ok@s) {

10 split {
11 emit <fw@s>;
12 }||{
13 addReaction (reaction check (rb@s) {
14 nop;
15 emit <rb@s>;
16 });
17 }
18 });
19 } || {
20 addReaction (reaction check (ex@s) {
21 emit <rb@s>;
22 });
23 }
24 }

Code 6.2:  to S transformation: compensable activity

The component declares two private topics, ok and ex, ( 2) that will be
used to verify the termination of the corresponding main activity. Notice that
all event raised by the component having these topics will be delivered to the
component itself ( 3). Since these topics are restricted in the scope of the
component, we refer them as local topics. Initially the component can react only
to f w signals ( 4-23). Upon the reaction of forward signals, the component
bounds (receives) the session identifier s and execute the task prescribed by the
tr main activity ( 5). We do not implement explicitly this activities, but
assume that, if successfully terminating they issue an ok signal, otherwise they
issue an ex signal. Concurrently with the main activity the component installs the
reactions to check its termination ( 9- 18 and 20-22). A successful activity
( 6) propagates f w signal to the next stages of the work-flow ( 11) and a
check reaction for a further rollback notification is installed ( 13-16). When
a rb signal for the session s is received, the compensation is executed and the

115

rollback signal is propagated to previous stages ( 15). If the execution of
the activity fails ( 20), the handler simply starts the backward flow, raising a
rollback signal ( 21). Since the transformation of an atomic task generates
only one S component, this component is both the entry point and the exit point
of the generated network. Notice that the generated component has only flow to
itself, since it is generated independently by the context.

6.2.2 Parallel composition

The parallel composition of two tr processes is transformed by generating
the networks corresponding to the two processes and two other components, re-
ferred to dispatcher and collector. Now we report the S code for the collector
and dispatcher generated to implement the parallel composition of the TT
and RC services.

1 component dispatcherPar {
2 flows: [fw->TowTruck],[fw->RentalCar],
3 [rb->Garage],[n->collectorPar];
4 reaction lambda (fw@s) {
5 split {
6 emit (fw@s);
7 } || {
8 emit (n@s);
9 } || {

10 addReaction (reaction check (rb@s) {
11 addReaction (reaction check (rb@s) {
12 emit (rb@s);
13 });
14 });
15 }
16 }
17 }

Code 6.3:  to S transformation: parallel dispatcher

The dispatcher (c.f. Code 6.3) represents the entry point of the parallel
branch. Basically, it activates the forward flow of next components, and syn-
chronizes their backward flows. Upon reactions to forward signals ( 4), the
collector emits two events: one having topic f w ( 6) and the other one hav-
ing topic n ( 8). The former event is delivered to the components representing
the parallel activities. The latter event is delivered to the collector, informing it of
the received session that will be later used by it to implement its synchronization.

116

Concurrently, the collector activates its the synchronization mechanism by in-
stalling two nested reactions for the topic rb in the work-flow session s ( 10
and 11). When the synchronization of the backward flow takes place, the emitter
backwardly forwards the rollback signal ( 12).

1 component collectorPar {
2 flows: [rb->TowTruck],[rb->RentalCar],[fw->...];
3 reaction lambda (n@s) {
4 addReaction check (fw@s) {
5 addReaction check (fw@s) {
6 split {
7 emit <fw@s>;
8 } || {
9 addReaction check (rb@s) {

10 emit <rb@s>;
11 }
12 }
13 }
14 }
15 }
16 }

Code 6.4:  to S transformation: parallel collector

Similarly, the collector component (in Code 6.4) is responsible to implement
the synchronization mechanism for the forward flows ( 4 and 5) and to acti-
vate the backward flows of the parallel components when a rb signal is received
( 9-11). Once both the internal components have sent their forward mes-
sages, the collector sends out a f w signal ( 7). Notice that the collector ex-
ploits a n signal to get information about the session s of the work-flow ( 3).
After the generation of the new components, the flows of the two networks are
updated (the flow for f w in  2). Moreover the backward flow is suitable con-
nected to the internal parallel components as given in  2). The Figure 6.3
depicts the flows generated for two nested parallel branches of the proposed sce-
nario. The dispatcher and the collector components represent the entry and exit
point of the parallel component, respectively.

6.2.3  sub-transaction

A  sub-transaction is compiled as a S network that does not effects the
computation of tasks performed out of the sub-transaction itself. The transfor-
mation generates a dispatcher and a collector. The generated S code for the

117

sub-transaction containing the RC component is provided by three inter-
nal components according to the schema given in Figure 6.4.

1 component dispatcherTrans {
2 flows [n->collectorTrans],[fw->RentalCar];
3 reaction lambda (fw@s) {
4 emit (n@s);
5 emit (fw@s);
6 addReaction (reaction check (rb@s){
7 addReaction (reaction check (rb@s){
8 emit (rb@s);
9 });

10 });
11 }
12 }

Code 6.5:  to S transformation: saga dispatcher

The T (c.f. Code 6.5) receives from the external activities the
forward signals ( 3), informs the T that a new transactional
session has been initiated ( 4), redirects the forward signal to the RC
( 5) and installs the rollback handler for the current session ( 6-10).
Notice that, the rollback will be sent out ( 8) after the reception of two rb
notifications.

1 component Not {
2 flows [fw->c];
3 reaction lambda (rb@s) {
4 emit <fw@s>;
5 }
6 }

Code 6.6:  to S transformation: saga not

The N port has the obvious meaning, it inverts the topic from rb to f w,
without altering the session, as given in Code 6.6.

The CT (c.f. Code 6.7) waits until the dispatcher communicates
the new working session ( 3). Consequently, it installs the handler for the
f w notifications coming from the RC ( 4-9). Once received the f w
it is delivered outside ( 5) and an handler for the rollback coming from the
outside is installed ( 6-8).

118

1 component collectorTrans {
2 flows: [fw->TowTrack],[rb->RentalCar],[rb->dispatcherTrans];
3 reaction lambda (n@s) {
4 addReaction(reaction check (fw@s) {
5 emit(fw@s);
6 addReaction (reaction check (rb@s) {
7 emit (rb@s);
8 });
9 });

10 }
11 }

Code 6.7:  to S transformation: saga collector

6.3 SM 
The tr translation in S networks is given by the transformation roles dis-
cussed before. Anyway, if for example we consider the parallel branches, two
additional components are introduced, the collector and the dispatcher. The fur-
ther parallel composition with a third component produces the network in Fig-
ure 6.6(a). Sometimes, it could be useful to merge the additional components as
shown in Figure 6.6(b).

(a) Original Coding (b) Merged Collectors

Figure 6.6: S refactoring: merging parallel collector

These refactoring roles can be provided in the graphical environment under

119

the assumption that they respect the initial intended behavior. The refactoring
roles on tr coding have been studied in [Gua09] and as future work we plan
to integrate the results in our programming platform.

6.4 C 
The SC-J framework has been design to support the specification, the im-
plementation and verification of coordination policies for services oriented ap-
plications. Our main goal is to provide general facilities to implement high-
level languages for service oriented architectures (e.g. BPEL4WS [AGK+03],
BPML [OMG02],WS-CDL [W3Cc]). The strict interplay between SC and J
permits to drive and verify implementation of such languages.

A number of approaches have been introduced to provide the formal founda-
tions of standards for service orchestrations and service choreographies. The SC-
J framework differs from these approaches (COWS [LPT07], Global Calcu-
lus [CHY07], λreq [BDFZ07] ORC [Mis04], SCC [BBC+06], SOCK [GLG+06]
to cite a few), since it focus on a lower level of abstraction, merging the theoret-
ical formalization with the implementation requirements. Indeed, the emphasis
in SC-J is just on designing general facilities to program coordination patterns
on services by exploiting the notion of event notification. The  mechanism
features abstraction from the communication layer providing the capabilities for
implementing multi-cast communications.

There are a number of directions that we are pursuing for the future devel-
opment of our framework. In [FGST07], we introduced an algebraic structure
over topics. This allows us to implement complex coordination logics directly
inside the signal type. Moreover, this provides the foundational description of
-like gateways. We intend to investigate this issue in order to design a 
work-flow engine based on the SC/J framework. Furthermore, we plan to ex-
tend the SC/J framework with facilities for reasoning and proving properties
of coordination policies. On the one hand, we are extending the compilation
facilities so to generate both the source J code and the SC specification out
of the J graphical notation. On the other hand, we plan to integrate in our
environment toolkits that provide verification and analysis capabilities for Java
programs and other semantic checker (e.g. bisimulation and model checkers) for
the SC specification.

Unless otherwise expressly stated, all original material of whatever nature
created by author and included in this thesis, is licensed under a Creative
Commons Attribution Noncommercial Share Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal code of
the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:daniele.strollo@gmail.com

B
[AACP04] Marco Aiello, Mikio Aoyama, Francisco Curbera, and Mike P.

Papazoglou, editors. Service-Oriented Computing - ICSOC
2004, Second International Conference, New York, NY, USA,
November 15-19, 2004, Proceedings. ACM, 2004.

[AB05] Lucia Acciai and Michele Boreale. Xpi: A typed process cal-
culus for xml messaging. In Martin Steffen and Gianluigi Za-
vattaro, editors, FMOODS, volume 3535 of Lecture Notes in
Computer Science, pages 47–66. Springer, 2005.

[AGK+03] Tony Andrews, Yaron Goland, Johannes Klein, Frank Ley-
mann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte,
Ivana Trickovic, and Sanjiva Weerawarana. Business process
execution language for web services. Version 1.1. BEA, IBM,
Microsoft, SAP AG and Siebel Systems, May 2003.

[All98] Paul Allen. A practical framework for applying uml. In Jean
Bézivin and Pierre-Alain Muller, editors, UML, volume 1618 of
Lecture Notes in Computer Science, pages 419–433. Springer,
1998.

[BB92] Gérard Berry and Gérard Boudol. The chemical abstract ma-
chine. Theoretical Computer Science, 96(1):217–248, April
1992.

[BBC+06] Michele Boreale, Roberto Bruni, Luís Caires, Rocco De
Nicola, Ivan Lanese, Michele Loreti, Francisco Martins, Ugo
Montanari, António Ravara, Davide Sangiorgi, Vasco Thu-
dichum Vasconcelos, and Gianluigi Zavattaro. Scc: A service
centered calculus. In WS-FM, volume 4184 of Lecture Notes in
Computer Science, pages 38–57. Springer, 2006.

[BBF+05] Roberto Bruni, Michael J. Butler, Carla Ferreira, C. A. R.
Hoare, Hernán C. Melgratti, and Ugo Montanari. Comparing
two approaches to compensable flow composition. In Martín
Abadi and Luca de Alfaro, editors, CONCUR, volume 3653 of
Lecture Notes in Computer Science, pages 383–397. Springer,
2005.

[BBM05] Michele Boreale, Maria Grazia Buscemi, and Ugo Montanari.
A general name binding mechanism. In Rocco De Nicola and

Davide Sangiorgi, editors, TGC, volume 3705 of Lecture Notes
in Computer Science, pages 61–74. Springer, 2005.

[BCF+08] Massimo Bartoletti, Vincenzo Ciancia, Gianluigi Ferrari,
Roberto Guanciale, Daniele Strollo, and Roberto Zunino.
LâĂŹorientamento ai servizi. Mondo Digitale, March 2008.

[BDFZ07] M. Bartoletti, P. Degano, G. Ferrari, and R. Zunino. Secure ser-
vice orchestration. In FOSAD, volume 4667 of Lecture Notes
in Computer Science. Springer, 2007.

[BEK+00] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Lay-
man, Noah Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte,
and Dave Winer. Simple Object Access Protocol (SOAP) 1.1.
W3C Recommendation, http://www.w3.org/TR/2000/NOTE-
SOAP-2000058/, 2000.

[BF04] Michael Butler and Carla Ferreira. An Operational Semantics
for StAC, a Language for Modelling Long-Running Business
Transactions. In Rocco De Nicola, Gianluigi Ferrari, and Greg
Meredith, editors, International Conference on Coordination
Models and Languages, volume 2949 of Lecture Notes in Com-
puter Science, pages 87–104. Springer-Verlag, 2004.

[BFM+05] Roberto Bruni, Gian Luigi Ferrari, Hernán C. Melgratti, Ugo
Montanari, Daniele Strollo, and Emilio Tuosto. From Theory
to Practice in Transactional Composition of Web Services. In
Mario Bravetti, Leïla Kloul, and Gianluigi Zavattaro, editors,
EPEW/WS-FM, volume 3670 of Lecture Notes in Computer
Science, pages 272–286. Springer, 2005.

[BLMT08] Roberto Bruni, Ivan Lanese, Hernán C. Melgratti, and Emilio
Tuosto. Multiparty sessions in soc. In Doug Lea and Gianluigi
Zavattaro, editors, COORDINATION, volume 5052 of Lecture
Notes in Computer Science, pages 67–82. Springer, 2008.

[BLZ03] Laura Bocchi, Cosimo Laneve, and Gianluigi Zavattaro. A cal-
culus for long-running transactions. In Elie Najm, Uwe Nest-
mann, and Perdita Stevens, editors, FMOODS, volume 2884 of
Lecture Notes in Computer Science, pages 124–138. Springer,
2003.

[BMM04] Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari.
Nested commits for mobile calculi: Extending join. In Jean-
Jacques Lévy, Ernst W. Mayr, and John C. Mitchell, editors,
IFIP TCS, pages 563–576. Kluwer, 2004.

[BMM05] Roberto Bruni, Hernán Melgratti, and Ugo Montanari. The-
oretical foundations for compensations in flow composition
languages. In POPL ’05: Proceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 209–220, New York, NY, USA, 2005. ACM
Press.

[Bou92] Gerard Boudol. Asynchrony and the pi-calculus. Technical
Report RR-1702, INRIA Sofia-Antipolis, May 1992.

[BPE] BPEL open issues. http://www.choreology.com/
external/WS_BPEL_issues_list.html.

[BPS97] Tim Bray, Jean Paoli, and Chris M. Sperberg-McQueen. Exten-
sible Markup Language (XML). The World Wide Web Journal,
2(4):29–66, 1997.

[BRR87] Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg,
editors. Petri Nets: Central Models and Their Properties, Ad-
vances in Petri Nets 1986, Part I, Proceedings of an Advanced
Course, Bad Honnef, 8.-19. September 1986, volume 254 of
Lecture Notes in Computer Science. Springer, 1987.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and San-
jiva Weerawarana. Web services description language (wsdl)
1.1. http://www.w3.org/TR/wsdl.html, March 2001. W3C
Note.

[CFGS08] Vincenzo Ciancia, Gian Luigi Ferrari, Roberto Guanciale, and
Daniele Strollo. Checking correctness of transactional behav-
iors. In Kenji Suzuki, Teruo Higashino, Keiichi Yasumoto,
and Khaled El-Fakih, editors, FORTE, volume 5048 of Lecture
Notes in Computer Science, pages 134–148. Springer, 2008.

[CFSG08] Vincenzo Ciancia, Gianluigi Ferrari, Daniele Strollo, and
Roberto Guanciale. Global coordination policies for services.
In FACS08 International Workshop on Formal Aspects of Com-
ponent Software, ENTCS. Elsevier, 2008. In print.

http://www.choreology.com/external/WS_BPEL_issues_list.html
http://www.choreology.com/external/WS_BPEL_issues_list.html

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In
Maurice Nivat, editor, FoSSaCS, volume 1378 of Lecture Notes
in Computer Science, pages 140–155. Springer, 1998.

[CGL86] Nicholas Carriero, David Gelernter, and Jerrold Leichter. Dis-
tributed data structures in linda. In POPL, pages 236–242,
1986.

[CGV+02] Mandy Chessell, Catherine Griffin, David Vines, Michael But-
ler, Carla Ferreira, and Peter Henderson. Extending the con-
cept of transaction compensation. IBM Syst. J., 41(4):743–758,
2002.

[CHY07] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Struc-
tured communication-centred programming for web services.
In ESOP 2007, volume 4421 of Lecture Notes in Computer Sci-
ence, pages 2–17. Springer, 2007.

[CKM+03] Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai,
and Sanjiva Weerawarana. The Next Step in Web Services.
Communications of the ACM, 46(10):29–34, 2003.

[CRW98] Antonio Carzaniga, David S. Rosenblum, and Alexander L.
Wolf. Design of a scalable event notification service: Interface
and architecture. Technical Report CU-CS-863-98, Department
of Computer Science, University of Colorado, August 1998.

[CRW00] Antonio Carzaniga, David S. Rosenblum, and Alexander L.
Wolf. Achieving scalability and expressiveness in an internet-
scale event notification service. In Annual Symposium on Prin-
ciples of Distributed Computing PODC, pages 219–227, 2000.

[CW02] Antonio Carzaniga and Alexander L. Wolf. Content-based net-
working: A new communication infrastructure. In IMWS ’01:
Revised Papers from the NSF Workshop on Developing an In-
frastructure for Mobile and Wireless Systems, volume 2538 of
Lecture Notes in Computer Science, pages 59–68, London, UK,
2002.

[CW03] Antonio Carzaniga and Alexander L. Wolf. Forwarding in a
content-based network. In Anja Feldmann, Martina Zitterbart,
Jon Crowcroft, and David Wetherall, editors, Proceedings of

the ACM SIGCOMM 2003 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Commu-
nication, August 25-29, 2003, Karlsruhe, Germany, pages 163–
174. ACM Press, 2003.

[Ecla] Eclipse Foundation. Eclipse Graphical Modeling Framework.
Technical report. http://www.eclipse.org/gmf/.

[Eclb] Eclipse Foundation. Eclipse Modeling Framework. Technical
report. http://www.eclipse.org/modeling/emf/.

[Eclc] Eclipse Foundation. Graphical Editing Framework. Technical
report. http://www.eclipse.org/modeling/gef/.

[EFGK03] Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui, and
Anne-Marie Kermarrec. The many faces of publish/subscribe.
ACM Comput. Surv., 35(2):114–131, 2003.

[EG04] Patrick Th. Eugster and Rachid Guerraoui. Distributed pro-
gramming with typed events. IEEE Software, 21(2):56–64,
March/April 2004.

[FGS06a] Gian Luigi Ferrari, Roberto Guanciale, and Daniele Strollo.
Event based service coordination over dynamic and heteroge-
neous networks. In Asit Dan and Winfried Lamersdorf, editors,
ICSOC, volume 4294 of Lecture Notes in Computer Science,
pages 453–458. Springer, 2006.

[FGS06b] Gian Luigi Ferrari, Roberto Guanciale, and Daniele Strollo.
Jscl: A middleware for service coordination. In Elie Najm,
Jean-François Pradat-Peyre, and Véronique Donzeau-Gouge,
editors, FORTE, volume 4229 of Lecture Notes in Computer
Science, pages 46–60. Springer, 2006.

[FGSTa] Gianluigi Ferrari, Roberto Guanciale, Daniele Strollo, and
Emilio Tuosto. Debugging distributed systems with causal nets.
In PNGT 2008.

[FGSTb] Gianluigi Ferrari, Roberto Guanciale, Daniele Strollo, and
Emilio Tuosto. Refactoring long running transactions. In
WSFM 2008.

http://www.eclipse.org/gmf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/gef/

[FGST07] GianLuigi Ferrari, Roberto Guanciale, Daniele Strollo, and
Emilio Tuosto. Coordination via types in an event-based frame-
work. In John Derrick and Jüri Vain, editors, FORTE, vol-
ume 4574 of Lecture Notes in Computer Science, pages 66–80.
Springer, 2007.

[FGST08] Gian Luigi Ferrari, Roberto Guanciale, Daniele Strollo, and
Emilio Tuosto. Event-based service coordination. In Pierpaolo
Degano, Rocco De Nicola, and José Meseguer, editors, Con-
currency, Graphs and Models, volume 5065 of Lecture Notes
in Computer Science, pages 312–329. Springer, 2008.

[Gel85] David Gelernter. Generative communications in Linda.
ACM Transactions on Programming Languages and Systems,
7(1):80–112, January 1985.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software, volume ISBN 0-201-63361-2. Addison-Wesley,
1995.

[GLG+06] Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi,
and Gianluigi Zavattaro. A calculus for service oriented com-
puting. In ICSOC, volume 4294 of Lecture Notes in Computer
Science, pages 327–338. Springer, 2006.

[GMS87] Hector Garcia-Molina and Kenneth Salem. Sagas. In Umesh-
war Dayal and Irving L. Traiger, editors, SIGMOD Conference,
pages 249–259. ACM Press, 1987.

[Gra81] Jim Gray. The transaction concept: virtues and limitations (in-
vited paper). In VLDB ’1981: Proceedings of the seventh inter-
national conference on Very Large Data Bases, pages 144–154.
VLDB Endowment, 1981.

[Gro02] OMG Group. Business Process Modeling Notation. http:
//www.bpmn.org, 2002.

[Gua09] Roberto Guanciale. The Signal Calculus: beyond message
based coordination for services. PhD thesis, IMT Institute for
Advanced Studies, Lucca, 2008/09.

http://www.bpmn.org
http://www.bpmn.org

[GZ97] David Gelernter and Lenore D. Zuck. On what linda is: Formal
description of linda as a reactive system. In David Garlan and
Daniel Le Métayer, editors, COORDINATION, volume 1282 of
Lecture Notes in Computer Science, pages 187–204. Springer,
1997.

[HG06] Yi Huang and Dennis Gannon. A comparative study of web
services-based event notification specifications. In ICPP Work-
shops, pages 7–14. IEEE Computer Society, 2006.

[HP03] Haruo Hosoya and Benjamin C. Pierce. Xduce: A statically
typed xml processing language. ACM Trans. Internet Techn.,
3(2):117–148, 2003.

[HT91] Kohei Honda and Mario Tokoro. On asynchronous communi-
cation semantics. In Mario Tokoro, Oscar Nierstrasz, and Pe-
ter Wegner, editors, Object-Based Concurrent Computing, vol-
ume 612 of Lecture Notes in Computer Science, pages 21–51.
Springer, 1991.

[ibma] IBM Redbooks. Patterns: Service-Oriented Architecture
and Web Services. http://www.redbooks.ibm.com/
abstracts/sg246303.html.

[IBMb] IBM. Business processes and workflow in the Web ser-
vices world. http://www-128.ibm.com/developerworks/
webservices/library/ws-work.html.

[IBMc] IBM. Web Services Flow Language (WSFL) Specifi-
cation. http://www-3.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf.

[IBM05] IBM. Web services transactions specifications.
http://www.ibm.com/developerworks/library/
specification/ws-tx/, 2005. Technical Report.

[Lit03] Mark Little. Transactions and web services. Commun. ACM,
46(10):49–54, 2003.

[LP03] Ying Liu and Beth Plale. Survey of publish subscribe event sys-
tems. Technical Report TR574, Computer Science Department,
Indiana University, 2003.

http://www.redbooks.ibm.com/abstracts/sg246303.html
http://www.redbooks.ibm.com/abstracts/sg246303.html
http://www-128.ibm.com/developerworks/webservices/library/ws-work.html
http://www-128.ibm.com/developerworks/webservices/library/ws-work.html
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/

[LPT07] Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi.
A calculus for orchestration of web services. In ESOP, vol-
ume 4421 of Lecture Notes in Computer Science, pages 33–47.
Springer, 2007.

[LZ05] Cosimo Laneve and Gianluigi Zavattaro. Foundations of web
transactions. In Vladimiro Sassone, editor, FoSSaCS, volume
3441 of Lecture Notes in Computer Science, pages 282–298.
Springer, 2005.

[MG05] Manuel Mazzara and Sergio Govoni. A case study of web ser-
vices orchestration. In Jean-Marie Jacquet and Gian Pietro
Picco, editors, COORDINATION, volume 3454 of Lecture
Notes in Computer Science, pages 1–16. Springer, 2005.

[MH05] Jan Mendling and Michael Hafner. From inter-organizational
workflows to process execution: Generating bpel from ws-cdl.
In Robert Meersman, Zahir Tari, Pilar Herrero, Gonzalo Mén-
dez, Lawrence Cavedon, David Martin, Annika Hinze, George
Buchanan, María S. Pérez, Víctor Robles, Jan Humble, Antonia
Albani, Jan L. G. Dietz, Hervé Panetto, Monica Scannapieco,
Terry A. Halpin, Peter Spyns, Johannes Maria Zaha, Esteban
Zimányi, Emmanuel Stefanakis, Tharam S. Dillon, Ling Feng,
Mustafa Jarrar, Jos Lehmann, Aldo de Moor, Erik Duval, and
Lora Aroyo, editors, OTM Workshops, volume 3762 of Lecture
Notes in Computer Science, pages 506–515. Springer, 2005.

[Mica] Microsoft. Distributed Component Object Model (DCOM).
http://msdn.microsoft.com/en-us/library/
ms878122.aspx. Technical Specifications.

[Micb] Microsoft. Web Services for Business Process De-
sign, XLANG. http://www.gotdotnet.com/team/xml_
wsspecs/xlang-c/default.htm.

[Mic05] SUN Microsystems. JavaSpaces Service Specification.
http://java.sun.com/products/jini/2.0/doc/
specs/html/js-spec.html, 2005. Part of Jini Specifi-
cations.

[Mil80] Robin Milner. A Calculus of Communicating Systems, vol-
ume 92 of Lecture Notes in Computer Science. Springer, 1980.

http://msdn.microsoft.com/en-us/library/ms878122.aspx
http://msdn.microsoft.com/en-us/library/ms878122.aspx
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://java.sun.com/products/jini/2.0/doc/specs/html/js-spec.html
http://java.sun.com/products/jini/2.0/doc/specs/html/js-spec.html

[Mil92] Robin Milner. The polyadic pi-calculus (abstract). In Rance
Cleaveland, editor, CONCUR, volume 630 of Lecture Notes in
Computer Science, page 1. Springer, 1992.

[Mil93] Robin Milner. The polyadic π-calculus: A tutorial. In
Friedrich L. Bauer, Wilfried Brauer, and Helmut Schwichten-
berg, editors, Logic and Algebra of Specification, Proceedings
of International NATO Summer School (Marktoberdorf, Ger-
many, 1991), volume 94 of Series F. NATO ASI, Springer-
Verlag, 1993. Available as Technical Report ECS-LFCS-91-
180, University of Edinburgh, October 1991.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-
calculus. Cambridge University Press, 1999.

[Mis04] Jayadev Misra. A programming model for the orchestration of
web services. In SEFM, pages 2–11. IEEE Computer Society,
2004.

[ML04] Manuel Mazzara and Roberto Lucchi. A framework for generic
error handling in business processes. Electr. Notes Theor. Com-
put. Sci., 105:133–145, 2004.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus
of mobile processes, parts I and II. Information and Computa-
tion, 100(1):1–77, 1992.

[Net99] Netscape. An Exploration of Dynamic Documents. http://
wp.netscape.com/assist/net_sites/pushpull.html,
1999.

[OAS02] OASIS. Business transaction protocol. http:
//www.oasis-open.org/committees/download.php/
1184/2002-06-03.BTP_cttee_spec_1.0.pdf, June 2002.
Technical Report v1.1.

[OAS04] OASIS. Web services reliable messaging. http:
//docs.oasis-open.org/wsrm/ws-reliability/v1.
1/wsrm-ws_reliability-1.1-spec-os.pdf, November
2004. Technical Report v1.1.

[OAS06] OASIS. Web services security. http://www.oasis-open.
org/committees/download.php/16790/wss-v1.

http://wp.netscape.com/assist/net_sites/pushpull.html
http://wp.netscape.com/assist/net_sites/pushpull.html
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

1-spec-os-SOAPMessageSecurity.pdf, February 2006.
Technical Report v1.1.

[OAW] OAW. OpenArchitectureWare MDA/MDD generator frame-
work. http://www.openarchitectureware.org/.

[oCSIU] Department of Computer Science. Indiana University. XSoap.
www.extreme.indiana.edu/xgws/xsoap/.

[OMG02] OMG. Business Process Modeling Language. http://www.
bpmi.org, 2002.

[Pap03] Mike P. Papazoglou. Service-Oriented Computing: Concepts,
Characteristics and Directions. In Web Information Systems
Engineering (WISE’03), Lecture Notes in Computer Science,
pages 3–12. Springer-Verlag, 2003.

[PS98] Frantisek Plasil and Michael Stal. An architectural view of dis-
tributed objects and components in corba, java rmi and com/d-
com. Software - Concepts and Tools, 19(1):14–28, 1998.

[QW98] Paola Quaglia and David Walker. On encoding pπ in mπ. In
Foundations of Software Technology and Theoretical Computer
Science, pages 42–53, 1998.

[RF] David Recordon and Brad Fitzpatrick. OpenID Authen-
tication 1.1. Available at http://openid.net/specs/
openid-authentication-1_1.html.

[Sof05] Software Engineering Research Laboratory. Siena (Scalable
Internet Event Notification Architectures). http://serl.cs.
colorado.edu/~serl/dot/siena.html, 2005.

[Spe] OASIS Bpel Specifications. OASIS - BPEL. http://www.
oasis-open.org/cover/bpel4ws.html.

[SS83] Dale Skeen and Michael Stonebraker. A formal model of crash
recovery in a distributed system. IEEE Transactions on Soft-
ware Engineering, 9(3):219–228, 1983.

[Ste04] Stephen A. White - IBM. Introduction to BPMN.
http://www.bpmn.org/Documents/Introduction%
20to%20BPMN.pdf, May 2004.

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.openarchitectureware.org/
www.extreme.indiana.edu/xgws/xsoap/
http://www.bpmi.org
http://www.bpmi.org
http://openid.net/specs/openid-authentication-1_1.html
http://openid.net/specs/openid-authentication-1_1.html
http://serl.cs.colorado.edu/~serl/dot/siena.html
http://serl.cs.colorado.edu/~serl/dot/siena.html
http://www.oasis-open.org/cover/bpel4ws.html
http://www.oasis-open.org/cover/bpel4ws.html
http://www.bpmn.org/Documents/Introduction%20to%20BPMN.pdf
http://www.bpmn.org/Documents/Introduction%20to%20BPMN.pdf

[Ste05] Stephen A. White - IBM. Mapping BPMN to BPEL
Example. http://www.bpmn.org/Documents/Mapping%
20BPMN%20to%20BPEL%20Example.pdf, February 2005.

[SUNa] SUN. Java Message Service (JMS). http://java.sun.com/
products/jms/.

[SUNb] SUN. Java Remote Method Invocation (Java RMI). http:
//java.sun.com/products/jdk/rmi/.

[SW02] Davide Sangiorgi and David Walker. The π-Calculus: a Theory
of Mobile Processes. Cambridge University Press, 2002.

[TAJ03] David Tam, Reza Azimi, and Hans-Arno Jacobsen. Build-
ing content-based publish/subscribe systems with distributed
hash tables. In Karl Aberer, Vana Kalogeraki, and Mano-
lis Koubarakis, editors, Databases, Information Systems, and
Peer-to-Peer Computing, volume 2944 of Lecture Notes in
Computer Science, pages 138–152, 2003.

[Tea] OMG Team. CORBA (Common Object Request Broker Archi-
tecture). http://www.omg.org.

[TW97] D. Thompson and D. Watkins. Comparisons between corba
and dcom: Architectures for distributed computing. In TOOLS
(24), pages 278–283. IEEE Computer Society, 1997.

[UO01] UN/CEFACT and OASIS. ebXML Business Process Specifica-
tion Schema. http://www.ebxml.org/specs/ebBPSS.pdf,
2001.

[vdAtHKB00] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski,
and A.P. Barros. Workflow Patterns. Web Page, 2000.

[W3Ca] W3C. Web Service Choreography Interface (WSCI). http:
//www.w3c.org/TR/wsci.

[W3Cb] W3C. Web Services. http://www.w3.org/2002/ws/.

[W3Cc] W3C. Web Services Choreography Description Language
(v.1.0). Technical report.

[W3C00] W3C. Universal Description, Discovery and Integration
(UDDI). Technical report, 2000.

http://www.bpmn.org/Documents/Mapping%20BPMN%20to%20BPEL%20Example.pdf
http://www.bpmn.org/Documents/Mapping%20BPMN%20to%20BPEL%20Example.pdf
http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
http://java.sun.com/products/jdk/rmi/
http://java.sun.com/products/jdk/rmi/
http://www.omg.org
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.w3c.org/TR/wsci
http://www.w3c.org/TR/wsci
http://www.w3.org/2002/ws/

[WCC04] G.C. Wells, Alan Chalmers, and P.G. Clayton. Linda imple-
mentations in Java for concurrent systems. Concurrency and
Computation: Practice and Experience, 16(10):1005–1022,
August 2004.

[WCG+06] Martin Wirsing, Allan Clark, Stephen Gilmore, Matthias M.
Hölzl, Alexander Knapp, Nora Koch, and Andreas Schroeder.
Semantic-based development of service-oriented systems. In
FORTE 2006, volume 4229 of Lecture Notes in Computer Sci-
ence, pages 24–45. Springer, 2006.

[WfM02] WfMC. Workflow process definition interface - XML Process
Definition Language. http://www.wfmc.org/standards/
docs/TC-1025_10_beta_xpdl_073002.pdf, 2002.

[WvdADtH03a] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, and
Arthur H. M. ter Hofstede. Analysis of Web Services Com-
position Languages: The Case of BPEL4WS. In Il-Yeol Song,
Stephen W. Liddle, Tok Wang Ling, and Peter Scheuermann,
editors, ER, volume 2813 of Lecture Notes in Computer Sci-
ence, pages 200–215. Springer, 2003.

[WvdADtH03b] Petia Wohed, Wil M.P. van der Aalst, Marlon Dumas, and
Arthur H.M. ter Hofstede. Pattern Based Analysis of
BPEL4WS. Technical report, Department of Computer and
Systems Sciences Stockholm University/The Royal Institute of
Technology, Sweden, nov 2003.

[xml04] Xml schema. Technical report, W3C, 2004.

[Yos96] Nobuko Yoshida. Graph types for monadic mobile processes.
In Foundations of Software Technology and Theoretical Com-
puter Science, pages 371–386, 1996.

http://www.wfmc.org/standards/docs/TC-1025_10_beta_xpdl_073002.pdf
http://www.wfmc.org/standards/docs/TC-1025_10_beta_xpdl_073002.pdf

	List of Figures
	Introduction
	Service Oriented Computing
	Service Oriented Architectures
	Beyond Message Based Coordination
	Contributions of the Thesis
	Structure of the thesis
	Origin of Chapters
	Acknowledgments

	Preliminaries
	Service Oriented Architectures
	Web Services as instance of SOAs
	Event Notification
	A walk through events
	Some Considerations

	-Calculus
	Long Running Transactions
	Business Process Modeling Notation
	Naïve Sagas

	Signal Calculus
	Introduction
	Alarm system: a running example
	Modeling the alarm controller in -calculus
	Alarm system revisited
	A few remarks: -calculus and Event Notification

	Signal Calculus
	A few remarks: basic SC and CCS
	Managing sessions in Signal Calculus
	Some useful patterns in SC
	Joining events
	Rendez-vous in SC
	Flow removal and reaction hiding

	Modeling the alarm controller in SC

	Concluding remarks

	Java Signal Core Layer
	Introduction
	Architecture
	Inter Object Communication Layer
	Signal Based Layer
	Message Delivering Protocol

	A running example: the alarm system
	Illustrating the network flexibility
	Gateways
	Implementation Overview
	X-Mixed-Replace SOAP Binding
	JSCL implementation outline

	Additional programming facilities
	Logical Ports
	A sketch of logical ports
	Logical ports: API

	Guarded Flows
	The dark side of serializers

	Concluding remarks on Jscl

	Programming Environment
	Event based Service Coordination
	JSCL Graphical Notation
	Signal Core Language
	Basic Facilities
	Synchronizing behaviors
	Logical Ports in SCL

	A case study
	The car repair scenario
	Designing the Car Repair Scenario

	Experimenting Long Running Transactions
	From bpmn to SC (informally)
	Compensable activity
	Sequence
	Parallel composition
	Transactional enclosure

	bpmn to Scl Model transformation
	bpmn atomic process
	Parallel composition
	bpmn sub-transaction

	Scl Model refactoring
	Concluding remarks
	Bibliography

