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Abstract

The thesis focuses on the modeling of information diffusion
and opinion dynamics on online social networks, using a data-
driven approach accounting for the presence of social conta-
gion and cognitive effects such as confirmation bias, cognitive
dissonance, and backfire effect.

We a) analyze data from a sample of 1.2M of users on the Ital-
ian Facebook pages, focused of scientific and conspiracy con-
tents, by means of quantitative methods, statistical analysis,
and sentiment analysis; b) develop a data-driven percolation
model of signed edges to mimic the information spreading
and a theoretical model of opinions formation.

We provide evidences that the diffusion of information, ei-
ther substantiated or not, is promoted by confirmation bias
and homophily. This process in turn generates and fosters
the formation of homogeneous polarized clusters, the echo
chambers. Users’ emotional behavior seems to be affected
by their engagement within the community. An higher in-
volvement in the echo chamber, resolves in a more negative
emotional state.

Lastly, we develop a model of opinions formation that takes
into account both confirmation bias and social influence as
triggering factors for the group polarization on social net-
works. Our model is able to reproduce the dynamics we ob-
served on Facebook.
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Chapter 1

Introduction

People perceptions, knowledge, beliefs, and opinions about the world
and its evolution get (in)formed and modulated through the information
they can access, most of which coming from newspapers, television (18),
and, more recently, the Internet. However, the web, social networks, and
micro-blogging platforms have changed the way we can produce and
consume information. In particular, large social networks, with their
user-provided contents, facilitate the study of social phenomena related
to the emergence, production, and consumption of information (16; [19).
The relationship between the information and its effect on individual
opinions is central if we consider that on the web users tend to consume
and modulate their opinion upon unverified, unsubstantiated (and even
false) information in the same way (20; 21} 22).

The diffusion of social media caused a shift of paradigm in the cre-
ation and consumption of information. We passed from a mediated (e.g.,
by journalists) to a more disintermediated selection process. Such a dis-
intermediation elicits the tendencies of the users to first select informa-
tion adhering to their system of beliefs — i.e., confirmation bias — and
second, form groups of like-minded people where they polarize their
opinion —i.e. echo chamber.

One of the most analyzed social phenomena is the social contagion (11}
17), that may be defined as the set of social phenomena that can and
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do spread though social networks. The study of the portion of social
contagion that is observed on Online Social Networks (OSN) is taking a
great advantage from the shift to data-driven models, as the accessibil-
ity to OSN data makes it possible to observe social phenomena on mil-
lions of individuals. Recent approaches to the study of social contagion
and other relevant social topics such as information diffusion, or commu-
nities evolution dynamics, have been carried on both by theoretical mod-
els (3; 14;15; 16} [7; 8) and data-driven analysis (9; [10} [11} 12} [13; 145 [15; [16).
The models used to describe such diverse social phenomena can be ei-
ther explanatory, aiming at inferring the underlying process given a com-
plete realization of it, or predictive with the final purpose of anticipate
the process by learning from past realizations of it. Theoretical models
usually assume simple dynamical rules for the description of micro-level
interactions, paying the cost of an unavoidable reductionism in favor of
simplicity of representation. This problem can be overcome by devel-
oping data-driven models as a combination of the increasingly interdis-
ciplinary collaborations and the unprecedented availability of detailed
online data. Interesting and sometimes unexpected behaviors emerge
from this new modeling approach, opening the challenge towards their
theoretical understanding.

There are various forces that lead to social contagion and make prod-
ucts, rumors, and social movements spread from person to person. All
these mechanisms can be treated as influence. In addition, there are some
other mechanisms such as homophilﬂ and environmental factors, that cre-
ate effects apparently resembling the diffusion of social contagion, but
having distinct underlying causes. Therefore, distinguishing influence
from homophily or environmental factors is of primary importance when
talking about social contagion.

Among the most common cognitive phenomena influencing the opin-
ion formation and diffusion we recall the confirmation bias, cognitive dis-
sonance, and backfire effect (23;24; 25)). Confirmation bias is defined as the
tendency to acquire or process new information in a way that confirms

THomophily is defined as the tendency of one individual to establish social relationships
with individuals similar to herself.



one’s preconceptions and avoids contradiction with prior beliefs (23),
and it usually refers to an unconscious act of selection. Cognitive dis-
sonance (24) was first theorized by Festinger in the mid-50s and refers to
a state of discomfort generated by the coexistence of conflicting beliefs
about one cognition. He defined this unpleasant state as dissonance and
theorized its degree in relation to a cognition to be D/(D+C), where D is
the sum of dissonant beliefs to a particular cognition and C'is the sum of
consonant ones. Conversely, the backfire effect (25) refers to the empiri-
cal observation that in some particular cases the response to persuasion
is to move further distant to the persuader’s opinion. It is important to
take into account such cognitive mechanisms, together with the social in-
fluence and homophily, when studying the diffusion of information and
opinions since it is widely acknowledged that people shape their opin-
ions on the basis of both internal and external forces (26).

The diffusion of information and rumors has been enhanced by the
structure of the web and by the disintermediation that it promotes. On
the Internet every user can produce and easily access all the online knowl-
edge and news instantly and without any intermediaries. Specifically,
the quality of the online information could be damaged by this environ-
ment while at the same time the spreading of digital misinformation could
be promoted. Digital misinformation refers to the diffusion of false or
misleading information online. The risk of misinformation spreading
have been underlined by the global risk reports of the World Economic
Forum (WEF) (27;28). Characterizing the diffusion of information online
and predicting the potential Viralityﬂ of either official news or rumors, is
becoming a particularly compelling problem.

Given an online social system, it can be modeled as a graph where
each individual is a vertex and an edge exists between two vertices if
there is a social relationship between the corresponding individuals in
the OSN. When dealing with social phenomena, it is important to take
into account the effect of social and psychological mechanisms trigger-

2Virality is here intended as the rapid and wide diffusion of a phenomenon, e.g., online
information is considered to be viral if consumed and shared by millions of users in a
relatively short time.



ing the formation of opinions and beliefs. Moreover, the collection of
observables is a crucial preliminary step: given a phenomenon it is nec-
essary to get the right observables that will characterize it properly. In
order to build models suited for the explanation and prediction of pro-
cesses on social systems, it is necessary to take into account social traces
and their temporal order. The relationship between the individuals and
the information sources should also be considered, e.g., how information
is produced, how people get informed, how information sources inter-
act among themselves (in terms of content selection). In addition, we
should always bear in mind that individuals” actions are not necessarily
an expression of linear relation between what is rational and their own
opinions.

Thesis Advances

The present thesis is mainly concerned in the modeling of information
diffusion and opinion dynamics on OSN, using a data-driven approach
accounting for the presence of social contagion and cognitive effects such
as confirmation bias, cognitive dissonance, and backfire effect. Also, we
aim to uncover the underlying process of digital misinformation spread-
ing by building models that can mimic real world phenomena starting
from observable data.

The works collected in this thesis address different aspects of the on-
line social dynamics, from the spreading of misinformation to the emer-
gence of echo chambers and group polarization. We analyze data from a
sample of 1.2M of users on the Italian Facebook pages focused of scien-
tific and conspiracy-like contents.

We provide, through quantitative methods, evidences that the diffu-
sion of information, either substantiated or not, is promoted by confirma-
tion bias and homophily. This process in turn generates and fosters the
formation of homogeneous polarized clusters, the echo chambers. We
also reproduce this mechanism by means of a data-driven percolation
model that accounts for the observed polarization and homophily.

Once observed the existence of group polarization on our sample
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data, we analyze the community behavior by accounting for the engage-
ment and the emotional dynamics of users. Users’ emotional behavior
seems to be affected by their engagement within the community. An
higher involvement in the echo chamber, resolves in a more negative
emotional state. Such a phenomenon appears in both users categories.

Lastly, we develop a model of opinion formation that takes into ac-
count both confirmation bias and social influence as triggering factors for
the group polarization on social networks. Our model is able to repro-
duce the dynamics we observed on Facebook.

The thesis is structured as follows. In Chapter 2| we provide a review
of the literature in the filed of modeling and data-driven analysis of so-
cial dynamics, in particular those related to information diffusion and
digital misinformation. In Chapter [3|we report results already published
in (29) on the spreading of misinformation. In Chapter i we analyze
the community evolution and the emotional contagion relatively to two
groups of Facebook users. In Chapter[5|we develop two new opinion dy-
namics models and provide simulation results and a mean field approx-
imation. All the results in Chapters i/ and [5| come from the submitted
papers (30; 31). Lastly in the Appendix|A} results from other works are
sketched.



Chapter 2

Background and Literature
Review

The thesis focuses on the modeling of information diffusion and opin-
ion dynamics on OSN, using a data-driven approach accounting for the
presence of social contagion and cognitive effects such as confirmation
bias, cognitive dissonance, and backfire effect. In this chapter we first in-
troduce the idea of modeling social systems and present a review of the
literature in the field. Then we give an overview of the literature in the
field of data-driven analysis, with a specific attention to research works
concerning information diffusion and digital misinformation.

Modeling Social Systems

Modeling social systems and the dynamics of opinion on them involves
two levels of difficulties: inference and consistence. The former is the
possibility to infer macroscopic phenomenology out of the microscopic
dynamics. The latter is the possibility of defining families of models that
capture the right aspects of phenomena, while being realistic at the same
time. Social dynamics can not be modeled by means of the interaction of
a large number of simple elements, as in the atoms and molecules case. A
human behavior is already the complex outcome of many physiological
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and psychological processes. Data-driven models offer the possibility to
compare theoretical results with empirical ones, and hence determinate
whether the trends seen in real data are compatible with models. Agent-
based models represent another fundamental family of models in social
dynamics. They are classes of computational devices able to simulate in
parallel the interactions of many agents resembling real world phenom-
ena.

The first attempts to model macroscopic social phenomena and opin-
ion dynamics started off with simple assumptions and rules for the dy-
namics (32} 33). Early studies were generally carried on by social sci-
entists, while in recent years the field also attracted the interest of sta-
tistical physicists (3). The simpler and more general class of models is
represented by behavioral models where the attributes of agents are binary
variables, as in the case of the voter model, the majority-rule model, and
the Sznajd model (34;35;36; 37 38; 39).

In the Voter Model (34; [35) there is a set of IV agents each of which
has a binary variable s = +1 assigned at the beginning of the process. At
each step arandom agent: € {1, ..., N} is picked together with one of its
neighbors j € Neigh(i), s; will then be put equal to s;, meaning that the
agents imitate their neighbors. It is shown that starting from a disorder
condition the voter model tends to an order state. The main question is
whether full consensus is reached in a system of infinite size. Authors
in (36) considered a d-dimensional hypercubic lattice and showed that,
for infinite systems, consensus is reached only if d < 2, while consensus
is invariably reached asymptotically if the system is finite (for any d),
with convergence time Ty depending on the size N of the system.

The Majority Rule Model (37; [38) assumes the same framework of
the voter model, N agents provided with a binary opinion function, with
the difference that at the beginning there is a fixed fraction p; (p_) of
agent with opinion +1 (—1). At each step a group of r agents is selected
at random and all the agents switch to the majority’s opinion, with r
depending on a given distribution. If r is even, a tie may happen, in this
case one of the two opinions is chosen to prevail a priori. Let p} be the
initial fraction of agents with opinion +1, it has been shown that exists a
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threshold p. such that, if p > p. (p}. < p.), all agents will have opinion
+1 (—1) in the long run, the time to reach consensus scales as log V.

Along the path opened by Axelrod (33), new models in which opin-
ions or cultures are represented by vectors of cultural traits have intro-
duced the notion of bounded confidence: an agent will not interact with
any other agent unless their opinions are close enough. Axelrod’s model
played a central role in the investigation of cultural dynamics. The Dis-
semination of Culture Model may be seen as a vectorial generalization
of previous opinion dynamics models:

- Individuals are located on the vertices of a square grid each of them
having an initial vector of culture made up of F' features each of
which can assume ¢ traits. The culture is defined by Axelrod as
a set of "beliefs, attitudes, and behaviors”.

- An active site is picked at random along with one of its neighbors:
with probability proportional to their similarity (the number of cul-
tural features in common) they interact; as a result, one of the fea-
tures on which they differ is chosen at random and the correspond-
ing feature of the active site is put equal to that of its neighbor,
hence augmenting their similarity and their chance to further in-
teract in the future.

Two really important mechanisms are embodied in this model: social
influence, in changing the active site cultural traits, and homophily, two
sites only interact if they are similar to each other. While the combination
of these two aspects is generally regarded as a source of social reinforce-
ment by social scientists, it is shown that under certain circumstances a
persistence of diversity appears (33).

In other instances, further realism has been introduced by the use of
continuous opinion variables. In the Bounded Confidence Model (5} 40)
the initial state includes a population of N agents, arranged on a com-
plex network G, each of which holds an initial opinion z;, ¢ € {1,..., N}
uniformly distributed in the interval [0, 1]. At each time step a user i is
picked at random, together with one of its neighbors (also at random), if
the difference between their opinions (at that specific time step t) exceeds
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a certain threshold e nothing happens, otherwise, if |z;(t) — x;(t)| < ¢,
they readjust their opinions according to the following rule:

zi(t + 1) = x(t) + pla;(t) — 2:(t)]
zj(t+1) = z;(t) + plzit) — 2; ()],

where p is the convergence rate, generally taken in the interval [0, 1/2]
for the simulations. Its evolution was initially studied through Monte
Carlo simulations (5). The number of peaks of opinions depends on the
value of the threshold ¢, while 1 and N only account for the speed of
convergence.

Successive studies (41;42) analytically showed that for ¢ big enough
consensus is reached. When ¢ > 1 the final state is characterized by
a single opinion located in the middle of the interval and, as long as
€ > 1/2, this situation persists. For smaller values of the threshold ¢, it
has been shown by numerical simulations that consensus is not reached
and the opinion evolves into clusters that are separated by a distance
larger than €. Once each cluster is isolated it evolves into a Dirac delta
function as in the case € > 1. The final distribution consists of a series of
non interacting clusters at locations z; with masses m;:

Po(z) = Zmié(ﬂc —x;),

where r is the number of evolving opinion clusters (41). All different
clusters i # j must fulfill the condition |z; — z;| > €.

A model that integrates social influence and homophily is that pro-
posed by Holme and Newmann (43). The authors developed a simple
model that considers a set of N nodes and M edges, where each node i
holds one of G possible opinions on a certain topic, g;. Both the M edges
and the opinions are initially distributed uniformly at random. Then at
each step a vertex i is chosen at random and if its degree is zero nothing
happens, otherwise with probability ¢ one of i’s edges is picked at ran-
dom, the link is broken, and rewired with one of the nodes holding the
same opinion of i’s. While, with probability 1 — ¢, a random neighbor
j (of i’s) is picked and g; is set equal to g;. The model segregates into a
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set of communities such that no individual has any acquaintances with
whom they disagree.

A different line of studies (8; 44) proposed a Non Consensus Opin-
ion Model that allowed for the stable coexistence of two opinions by
also considering the opinion of the user herself when applying the ma-
jority rule update (8), while in (44) the competition between two groups
is investigated by the introduction of a set of contrarians in one of the
two. The survival of a two-opinions state is studied in (14) from a dif-
ferent point of view, considering the emergence of spontaneous recovery
of failed nodes and the majority rule update. Both these models assume
only two opinion states (£1) and a majority rule update, with the nov-
elty of accounting for the individual opinion (8} 44) and for an external
source of influence (14).

Other models (26}/45) explored the opinion dynamics under cognitive
phenomena, e.g., confirmation bias, cognitive dissonance, and backfire
effect. All these models are based on simple assumptions that are often
far from reality. However, the availability of OSN data offers a new ap-
proach taht makes it possible to explain phenomena starting from data.

Data-Driven Analysis

Information Diffusion

Recent studies explored the evolution of social phenomena on OSN from
observable data. One of the most investigated aspects is that of structural
properties affecting social behavior (10; 11} 46).

Weak ties proved to be fundamental for the information diffusion.
However, in (46), the strength of weak ties is debated arguing that, while
long ties are helpful in the spreading of innovation and social move-
ments, they are not enough for spreading the social reinforcement neces-
sary to act on that information. In (11) the effect of network structure on
users’ personal decision is studied within an artificial social framework
built for the experiment. Authors found evidence of an effect of rein-
forcement in the adoption of the investigated behavior for clustered net-
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works, where many redundant ties are present. A more recent work (10),
again concerned on the effect of network topology on individuals” deci-
sions, analyzes the response to friends’ invitations to join Facebook and
the subsequent engagement in the platform. One of the main results is
that a user is more likely to join Facebook if the friends inviting her form
a large number of connected components. The number of different con-
nected components, representing separate social contexts for the user,
proved to be more influential than the number of friends itself.

The influential hypothesis (47; |48} [49) was first formalized through
the two-step flow (47) and it is based on the idea that a minority of individ-
uals is able to influence an exceptional number of their peers. In the mo-
del a small minority of “opinion leaders” acts as intermediary between
the mass media and the majority of society. In (49) authors challenge
the influential hypothesis role in diffusion processes. They performed a
series of simulations on diffusion models: influencers appear to be only
modestly more important than average individuals. Most social change
is driven by easily influenced individuals influencing other easily influenced
individuals (49).

Another interesting problem is the possibility to distinguish influ-
ence from homophily (50; 51; [52). In (50), authors studied the global
network of instant messaging traffic among about 30 millions users on
Yahoo.com, with complete data on the adoption of a mobile service ap-
plication and precise dynamic behavioral data on users. The effect of
homophily proved to explain more than 50% of the phenomena per-
ceived as contagion. The methodologies used to isolate influence and
homophily are based on a dynamic matched sample of treated and un-
treated users, where a user is treated if exposed to the news of adoption
of the application by friends. In (51) the role of social network and expo-
sure to friends’ activities in information re-sharing on Facebook is ana-
lyzed. Through controlled experiments in which the users were divided
into exposed and not exposed to friends’ re-sharing, authors were able
to isolate contagion from other confounding effects like homophily. They
claimed that in the exposed case there is a considerably higher chance to
share contents. Moreover, a surprising result is that new information of-
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ten spreads through weak ties, although stronger ties are individually
more influential.

A fundamental class of observable phenomena is that of Cascade @as;
16} [53} 54), taking place in many environments: cultural fads, collective
actions, diffusion of informations, norms, and innovations. Cascades
represent rare phenomena and it is necessary to be careful in order to
avoid any kind of bias in the sample, — e.g., only considering large cas-
cades.

In (53) a binary-decision model is specified for the prediction of real
system cascades. Two different distributions are found: power-law and
bimodal. Both distributions satisfy the condition of infrequent large
events; nevertheless, they appear to be very different under many other
aspects. Author found that the density of the network of interpersonal
influences could be one explanation for these differences: if the network
is sufficiently sparse the propagation of cascades is limited by the global
connectivity of the network and cascades size exhibits a power-law dis-
tribution; on the contrary, when the network is sufficiently dense the
propagation is limited by the stability of individual nodes and a bimodal
distribution is observed.

In two different studies (15;16), authors found that a small but signif-
icant fraction of posts forms wide and deep cascades and that different
cascades may evolve in different ways (16)), while in (15) authors pre-
sented a novel approach that examines the evolution of cascades over
time and that is not limited to the prediction of the final size (and shape)
from the initial conditions.

A fundamental aspect, yet to be explored, is that concerning the drivers
of contents diffusion, both in the case of big cascades and single pieces
of information. We will provide results on this problem in Chapter

Misinformation

The misinformation effect was first exposed in an experimental work (55)
that used neuroimaging to reveal its underling mechanisms. Memory

A cascade is a chain of repeated action of the same kind - e.g., the chain of re-shares of
a post.
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distortions can result in pieces of misinformation, even without explicit
external influence (56} 57). However, emotional states and beliefs affect
human interpretation of the facts, often leading to the misinformation
effect (58).

In the last years, the spreading of unsubstantiated and false claims
through OSN (such as Facebook), that often reverberate in the online
community, led to mass digital misinformation. Recent studies focused
on how to stop misinformation diffusion by means of fact checking (59;
60) or algorithmic driven solutions (61; 62} [63) aimed at fighting misin-
formation. However, empirical results pointed out the inefficacy of such
approaches on online social networks (21} 64).

Authors in (20) presented a detailed analysis of the information con-
sumption by Facebook users on different categories of pages: alterna-
tive information sources, political activism, and main stream media. Au-
thors pointed out evidences that main stream media information rever-
berate as long as unsubstantiated one, and that the exposition to the lat-
ter makes users more likely to interact with intentionally injected false
information.

A similar study (65), based on scientific and conspiracy-like pages, re-
ported the attitude of the users to split in separate communities each re-
ferring to one of the two categories of pages. While the consumption pat-
terns for the information are similar, the conspiracy-like users are more
prone to interact with posts and pages of their category and are especially
prone to share the information, while scientific users tend to interact also
with conspiracy posts. Moreover it is confirmed that conspiracy users
are the ones more subject to interact with unverified information.
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Chapter 3

The Spreading of
Misinformation Online

A Data-Driven Model of Echo Chambers
Formation

All the results shown in this chapter refer to the article (29ﬂ Our main in-
terest lies in understanding the role of confirmation bias and homophily
in shaping information cascades, and we investigate this aspect by means
of a data-driven analysis of contents diffusion.

We address the information diffusion on Facebook focusing on two
sets of distinct contents: (i) conspiracy theories and (ii) scientific informa-
tion. Conspiracy theories simplify causation, reduce the complexity of
reality, and contain uncertainty; scientific information disseminates sci-
entific advances and exhibits the process of scientific thinking. The main
difference between the two is content verifiability, while for scientific in-

IThe results shown in this Chapter are all part of the paper (29), published in the Pro-
ceedings of the National Academy of Sciences. It is a joint work with Alessandro Bessi,
Fabiana Zollo, Fabio Petroni, Dr. Antonio Scala, Prof. Guido Caldarelli, Prof. H. Eugene
Stanley, and Dr. Walter Quattrociocchi. MDV, WQ, and AS outlined the research question.
MDYV performed the simulations. FP downloaded the data. MDV, WQ, and AS interpreted
the results. MDV, AB, FZ, FP, AS, GC, HES, and WQ contributed equally to the writing and
reviewing of the manuscript.
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formation a reference to peer-reviewed articles or institutional sources is
usually available, the origins of conspiracy theories are often unknown
and the content of the theories is strongly disengaged from mainstream
society. The concept of content verifiability, and the attitude of users to-
wards not verified information, is a topic of primary importance due to
the massive diffusion of digital misinformation in online social media.
As a matter of fact, the World Economic Forum (WEF) listed online mis-
information as one of the main threats to our society (27;28).

We analyze the cascades of information from the two separate sam-
ples and we find that homogeneity is the primary driver of the content
diffusion and generates the formation of homogeneous, polarized clus-
ters, i.e., echo chambers (20;165; 66; 67), each of which has its own cascade
dynamics. We also find that although consumers of scientific informa-
tion and conspiracy theories exhibit similar consumption patterns with
respect to the content, the cascade patterns of the two differ. Then we re-
produce the dynamics of real data cascades through a percolation model
of rumor spreading accounting for homogeneity and polarization.

3.1 Materials and Methods

3.1.1 Data Description

Using the approach described in Ref. (65), we define the space of our in-
vestigation with the support of diverse Facebook groups that are active
in the debunking of misinformationE] We identify three main pages’ cat-
egories according to the topics they promote: conspiracy-like theories, sci-
ence news, and trolling messages. Conspiracy-like pages promote contents
neglected by main stream media, science news pages diffuse scientific
news and research advances for which it is easy to check the sources,
while trolling messages pages include those pages that intentionally dis-
seminate sarcastic false information on the Web. We download all the
posts (and their respective user interactions) across a five-year timespan

2Protesi di Complotto, Che vuol dire reale, La menzogna diventa verita e passa alla
storia.
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(2010 to 2014) from a set of 69 public Facebook Italian pages divided ac-
cording to our pages classification. In particular, information from troll
pages are used as a benchmark to fit our data-driven model. We perform
the data collection process by using the Facebook Graph API (68), which
is publicly available and accessible through any personal Facebook user
account. We get a total of 9,642 news divided across the three informa-
tion categories that can then be considered as sharing trees. For each
news we download the successive sharing users’ ids and sharing times
by using a crawler for Facebook post trees through web browser automa-
tion (85). The crawler is able to download the complete sharing tree for
each post in input and returns a file storing the edge list of the sharing
tree and the respective sharing times. The exact breakdown of the data
is presented in Tab.

Total | Science | Conspiracy | Troll

Pages 69 35 32 2

News 9,642 5,032 3,538 1,072
Labeled Users | 73,379 | 14,613 58, 766 —

Shares 266,211 | 59,059 181,914 | 25,238

Table 1: Data Description.

3.1.2 Basic Definitions

The best way to represent our news data is by considering them as trees
of information sharers, that are otherwise connected by an underlying net-
work structure. In our particular case, the underlying network structure
is the Italian subset of the Facebook friendship network that we repre-
sent as a scale-free network. We introduce some notations that we will
extensively use throughout the chapter.

Sharing Tree. A tree is an undirected simple graph that is connected
and has no simple cycles. An oriented tree is a directed acyclic graph
whose underlying undirected graph is a tree. A sharing tree in the con-
text of our research is an oriented tree made up of the successive sharing

16



occurrences of a news item through the Facebook system. The root of
the sharing tree is the node that performs the first temporal share. We
define the size of the sharing tree as the number of nodes (and hence the
number of news sharers) in the tree and the height of the sharing tree as
the maximum path length starting from the root.

User Polarization. We define the user polarization o; = 2p; — 1, where
0 < p; < 1is the fraction of likes a user ¢ made on conspiracy related
contentand i € {1,..., N}. Notice that —1 < g; < 1. User i is said to be
polarized in science (resp. conspiracy) if o; < —0.95 (reps. if o; > 0.95).

Edge Homogeneity. From the user polarization o;, we define the edge
homogeneity for any edge e;; between nodes ¢ and j, as

Oij = 0i0j,

with —1 < g;; < 1. Edge homogeneity reflects the similarity level be-
tween the polarization of the two sharing nodes. A link in the sharing
tree is homogeneous if its edge homogeneity is positive, otherwise it is
non homogeneous. We then define a sharing path to be any path from
the root to one of the leaves of the sharing tree. A homogeneous path is a
sharing path for which the edge homogeneity of each edge is positive,
i.e., a sharing path whose edges are all homogeneous links.

Wald Test. We use the Wald test to compare the scaling parameters of
two power law distributions. We define it as

Hy:ayp = ay

Hy :dy # ds
where c; and o’ are the estimated scaling parameters. The Wald statistic:

(a1 —dy)?

W= Var(ay) ’

follows a x? distribution with one degree of freedom. We reject the null
hypothesis Hj and conclude that there is a significant difference between
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the two scaling parameters if the p-value of W is below a given signifi-
cance level a.

Kolmogorov-Smirnov Test. We use the Kolmogorov-Smirnov test to
compare the empirical distribution functions of two samples.

The Kolmogorov-Smirnov statistic for two given cumulative distri-
bution functions Fi (z) and Fy(z) is

D = sup |Fi(z) — Fa(z)|,
xT

which measures the maximum punctual distance between the two
sample distributions. If D is bigger than a given critical value DQE] we
reject the null hypothesis Hy : Fi(x) = Fz(x) and conclude that there is
a significant difference between the two sample distributions.

3.2 Analysis of Observable Data

In this section we analyze the sharing trees data in order to characterize
the news sharing patterns of Facebook. We first study the basic prop-
erties (size, height, max degree, and mean degree) of sharing trees for
the three categories —i.e., science news, conspiracy theories, and trolling
messages. In Fig.|l| we report the complementary cumulative distribu-
tion function (CCDF) of size (Fig. a)), the cumulative distribution func-
tion (CDF) of height (Fig.[I(b)), the CCDF of maximum degree (Fig.[I[c)),
and the CCDF of mean degree (Fig. [I(d)) for all categories. The distri-
bution of the size of the sharing trees and that of their maximum degree
are power low. The estimated exponents for the distribution of size are
2.21, 2.47, 2.44 and those for the distribution of the maximum degree

3The critical value D, depends on the sample sizes and on the considered significance

level o, it can be computed as
ni + n2
Dy = c(a)y | ——,
ning

where n1 and ng are the respective sample sizes and c(c) is a fixed value associated with
the significance level a.
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are 2.16, 2.45, 2.41, respectively for science news, conspiracy-like theo-
ries, and trolling messages. We note a similar behavior, both for size and
maximum degree, for all categories. From Fig. [T|c), we can see that the
maximum height reached is 5 for science news and conspiracy-like the-
ories, and 4 for trolling messages, while for all categories there is a high
probability that the height of the sharing tree remains below 3. The mean
degree instead is with high probability smaller than 10, for all categories.

Cascade lifetime is defined as the number of hours between the first
user and the last user sharing a post. We compare the lifetime of sci-
ence and conspiracy information cascades and we report their probabil-
ity density functions (PDFs) in Fig.[2| For both categories we find a first,
high, peak of probability in the first two hours after the first sharing of
the post and a second one after ~ 20 hours. We deduce that the temporal
sharing patterns are similar irrespective of the difference in topic. There
is an high probability that a post won’t last more that few hours, indeed,
we find that a significant percentage of the information diffuses rapidly
(24.42% of the science news and 20.76% of the conspiracy-like theories
diffuse in less than two hours, and 39.45% of science news and 40.78% of
conspiracy-like theories in less than five hours). Only 26.82% of the dif-
fusion of science news and 17.79% of conspiracy-like theories lasts more
than one day. Kolmogorov-Smirnov test makes us reject the hypothesis
H) that the two distributions are equal.

One measure that might influence the cascade’s lifetime is its size.
For both science news and conspiracy-like theories, we show the cas-
cade’s lifetime as a function of its size in Fig.[3(a). We note that the news
assimilation is content-driven. In the specific, for science news we have
a peak in the lifetime corresponding to a cascade size value of ~ 200,
and higher cascade size values correspond to high lifetime variability.
For conspiracy related content the lifetime increases with cascade size.
While for science news a longer lifetime does not correspond to a higher
level of interest, conspiracy rumors show a positive relation between life-
time and size. As a control we also compute the cascade’s size as a func-
tion of its lifetime (Fig. [B(b)). We confirm the existence of a differentia-
tion in the sharing patterns that is content-driven. We also confirm that
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Figure 1: CCDF of Size (a), CDF of Height (b), CCDF of Maximum Degree
(c), and CCDF of Mean Degree (d). Size and max degree show power law
distributions, where the estimated exponents for the power law distribution
of size are 2.21, 2.47, 2.44 and those of max degree are 2.16, 2.45, 2.41, re-
spectively for science news, conspiracy-like theories, and trolling messages.
Height is generally low, with the maximum level being 5 for science news
and conspiracy-like theories, and 4 for trolling messages.

for conspiracy-like theories there is a positive relation between cascade’s

size and lifetime.
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Figure 2: Probability density functions (PDFs) of cascades lifetime for sci-
ence (solid orange) and conspiracy (dashed blue). The lifetime is here com-
puted as the difference of hours between the first and last share of a post.

Both categories show a similar behavior, with a peak in the first two hours
and another one after about 20 hours.
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Figure 3: (a) Lifetime as a function of the cascade size for conspiracy-like
theories (left) and science news (right). We note a content-driven differenti-
ation in the sharing patterns. For conspiracy-like theories the lifetime grows
with the size, while for science news there is a peak in the lifetime around
a value of the size equal to 200, and a higher variability in the lifetime for
larger cascades. (b) Cascade size as a function of the lifetime for conspiracy-
like theories (left) and science news (right).
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The main focus of this study is to characterize the sharing patterns of
two specific information categories on Facebook. Identifying the drivers
of information cascades and understanding the mechanism of news re-
sharing is especially necessary when dealing with false or not verified
information, that could potentially be very harmful. Figure | shows the
PDF of the mean edge homogeneity, computed for all cascades of sci-
ence news and conspiracy-like theories. We notice a prevalence of ho-
mogeneous links between consecutively sharing users. In particular, the
average edge homogeneity value of the entire sharing cascade is always
greater than or equal to zero, indicating that either the information trans-
mission occurs inside homogeneous clusters in which all links are homo-
geneous or it occurs inside mixed neighborhoods in which the balance
between homogeneous and non homogeneous links is favorable towards
the former ones. However, the probability of close to zero mean edge ho-
mogeneity is really small.

To further characterize the role of homogeneity in shaping sharing
cascades, we compute the cascade size as a function of the mean edge ho-
mogeneity for both science news and conspiracy-like theories, see Fig.
For science news, higher levels of mean edge homogeneity in the interval
(0.5, 0.8) correspond to larger cascades, but for conspiracy-like theories
lower levels of mean edge homogeneity (~ 0.25) correspond to larger
cascades. Notice that, although viral patterns related to distinct con-
tents differ, homogeneity is clearly the driver of information diffusion. In
other words, different contents generate different echo chambers, char-
acterized by the high level of homogeneity inside them.

To completely understand the structure of the sharing trees, for each
tree we look at all its paths that start from the root. We recall that a homo-
geneous path is a path for which the edge homogeneity of all its edges is
positive, meaning that every two consecutive sharing users are polarized
towards the same category. Figure|[6|shows the complementary cumula-
tive distribution function (CCDF) of the number of homogeneous and to-
tal paths, for the three following samples: science news and conspiracy-
like theories together (left), science news (center), and conspiracy-like
theories (right). More formally, we consider, for each tree, the number of
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Figure 4: Mean edge homogeneity for science news (solid orange) and
conspiracy-like theories (dashed blue). The mean value of edge homogene-
ity on the whole sharing cascades is always greater than or equal to zero.

all sharing paths from the root to one of the leaves, and we compare it
with the number of sharing paths with positive edge homogeneity. Look-
ing at Fig. [f] we notice a high similarity for all the couples, for this rea-
son we compare them by using Wald test and Kolmogorov-Smirnov test,
with level of significance a = 0.01. The null hypothesis is the equiva-
lence of the two scaling parameters for the Wald test and the equivalence
of the whole sample distributions for the Kolmogorov-Smirnov. Table
reports the results from Wald test, while Table[3]those from Kolmogorov-

Smirnov test.
We fail to reject the null hypothesis of Wald test in the second and

third case, i.e., science news and conspiracy theories separately, while we
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Figure 5: Cascade size as a function of mean edge homogeneity for science
news (solid orange) and conspiracy-like theories (dashed blue).

reject it in the case of the whole sample. However, we fail to reject the null
hypothesis of Kolmogorov-Smirnov in all three cases, as the maximum
distance is always smaller than the critical value, we deduce that the
distributions are not significantly statistically different in all three cases,
and the same is true for the scaling parameters in the case of science news
and conspiracy theories separately. The similarity between each pair of
distributions is well captured by the Q-Q plots shown in Fig.

The temporal sharing patterns of science news and conspiracy-like
theories are similar irrespective of the contents. Indeed, for both cate-
gories, cascade’s lifetime exhibits a first peak of probability in the first
two hours, a second one around a lifetime of 20 hours, and after that the
probability rapidly decreases. Despite the similar consumption patterns,
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an Qi p
I | 2037|2089 |845x1077
II | 2.427 | 2.447 0.413
IIT | 2.054 | 2.026 0.040

Table 2: Results from Wald test, where &1 and &2 are the two estimated
scaling parameters for each couple and p is the corresponding p-value.

D D, P
I | 0.0216 | 0.0233 | 0.02047
II | 0.0199 | 0.0378 | 0.4525
IIT | 0.0262 | 0.0296 | 0.03204

Table 3: Results from Kolmogorov-Smirnov test. D is the estimated maxi-
mum distance between the two distributions under analysis, D, is the cor-
responding critical value, and p the corresponding p-value.

cascade lifetime expressed as a function of cascade size differs greatly
for the different content sets. The PDF of the mean edge homogeneity
indicates that homogeneity is pervasive in the linking step of sharing
cascades. Moreover, we observed that the distribution of the number of
total and homogeneous sharing paths are very similar for both content
categories. Viral patterns related to contents belonging to different nar-
ratives differ, but homogeneity is clearly the driver of content diffusion.

3.3 The Model

In the previous section we proved that homogeneity can be considered
the primary driver of information spreading on Facebook, when the in-
formation relates to highly polarized communities. Accounting for both
homogeneity and polarization, we now introduce a data-driven model
of rumor spreading. Let n be the number of users that are connected
by a small-world network with rewiring probability r (69), and consider
a news set of size m. Every user has an opinion w;, ¢ € {1,n}, uni-
formly distributed in [0, 1] and every news has a fitness (degree of in-
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Figure 6: Complementary cumulative distribution function (CCDF) of the
number of total and homogeneous paths on the whole science and conspir-
acy sample (left), on science news (center), and on conspiracy-like theories
(right). Results from the Kolmogorov-Smirnov test on the three distribu-
tions couples, with the null hypothesis Hy that the distributions in each
couple are equal, show the following p-values: 0.02, 0.45, 0.03, leading us
to reject the null hypothesis in all cases (o« = 0.01). On the other hand the
maximum estimated distances are respectively 0.0216, 0.0199, 0.0262 and
corresponding critical values 0.0232, 0.0377, 0.0296; the maximum distance
is smaller than the critical value in all cases, so we fail to reject the null hy-

pothesis. We can consider the distributions in each couple as equal, meaning
that homogeneous paths are pervasive.

terest) ¥;, j € {1, m}, uniformly distributed in [0, 1]. In order to mimic
the diffusion of the news among the population, at each step one of the
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Figure 7: Q-Q plots for the three couples of distributions in Fig. E} number
of total vs homogeneous links on science news and conspiracy theories to-
gether (a), on science news (b), and on conspiracy-like theories (c). In all
three cases the distributions can be considered as equal.

news items are initially shared by a group of first sharers. After the first
share, the news recursively passes to the neighbors of previous step shar-
ers, that in turn share the news only if their opinion is close enough to
the fitness of the news, i.e., user i shares news j if and only if:

‘Wi*ﬁj‘ <9,

where § is the sharing threshold.

We assume that the flow of information only passes through like
minded users; to reflect this property, also observed in the real data sam-
ple, we model the connectivity pattern as a signed network. We define
¢mr as the fraction of homogeneous links in the network, let M be the

number of total links and n;, the number of homogeneous ones, then we
have:

n
¢HL:Mh70§nh§M~

Notice that 0 < ¢y < 1 and that 1 — ¢y, the fraction of non homo-
geneous links, is complementary to ¢x. In particular, we can reduce
the parameters space to ¢, € [0.5,1] without loss of generality, as we
would restrict our attention to either one of the two complementary clus-
ters.
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The model can be seen as a branching process where the sharing
threshold ¢ and neighborhood dimension z are the key parameters. More
formally, let the fitness 6; of the j'" news and the opinion w; of a the i*"
user be uniformly i.i.d. in [0, 1]. Then the probability that a user ¢ shares
a post j is defined by a probability p = min(1, 6 + ) —max(0,60 —§) ~ 20,
since § and w are uniformly i.i.d. In general, if w and § have distributions
f(w) and f(8), then p will depend on 6,

min(1,046)
=100 [ f (@) deo
max(0,0—6)

If we assume that the distribution of the number m of the first sharers is
f (m), then the average cascade size is

S=Y pmm( -yt =

where (...), = > ... f(m) is the average with respect to f. In the
simulations we fixed a neighborhood dimension z = 8 as the branching
ratio ;x depends on the product of z and § and, without loss of generality,
we can consider the variation of just one of them.

3.4 Simulation Results

A preliminary challenge arises in the first step of the model, when we
need to specify the first sharers distribution. The natural choice would
be the data distribution, and we use it as a benchmark to compare our
choices and as a sample to fit the parameters. In turn we compare our
sample distribution with: (i) the Inverse Gaussian (/G), (ii) the Log-
normal (LN), (iii) the Poisson (Poi), (iv) and the Uniform (U) distribu-
tion. All parameters are chosen to fit the real data distribution from both
the science and conspiracy news sample, and the trolling messages sam-
ple. In Table 4 we show a summary of relevant statistics (min value,
first quantile, median, mean, third quantile, and max value) for the fitted
distributions and we compare them to the real data first sharers distribu-
tion, for both the science and conspiracy news sample, and the trolling
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messages sample, while in Figure [§ we show the PDF of the best fitting
function for the case of science news and conspiracy-like theories. The
inverse Gaussian (/G) with mean 39.34 and scale parameter 6.28 shows
the best fit with respect to all the considered statistics for the distribu-
tion of first shares of science news and conspiracy-like theories data, and
again the /G, with mean 18.73 and scale parameter 9.63, shows the best
fit for the distribution of first sharers from trolling messages category.

We perform two sets of Monte Carlo simulations of the model that
differentiate themselves in the amount of real data information they ex-
ploit. The first one only takes as data the fitted parameters for the first
shares distribution (with respect to the science news and conspiracy-like
theories sample), while the second one also assume a number of agents
and news items equal to those of the trolling messages dataset. Along
with the first sharers distribution, we vary the sharing threshold ¢ in the
interval [0.01, 0.05] and the fraction of homogeneous links ¢z, in the in-
terval [0.5,1]. To avoid biases induced by statistical fluctuations in the
stochastic process, each point of the parameter space is averaged over
100 iterations. A good estimate of real data values is provided by an al-
most even fraction of homogeneous links, ¢z, ~ 0.5. This result points
out that the network is divided in two clusters inside which the news
items remain isolated and can only be transmitted within each commu-
nity’s echo chamber.
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Science and Conspiracy

Data IG LN Poi
Min 1 0.36 0.10 20

1st Qu. 5 4.16 3.16 35

Median 10 10.45 6.99 39
Mean 39.34 | 39.28 13.04 | 39.24

3rd Qu. 27 31.59 14.85 43
Max 3033 1814 | 486.10 66

Troll
Data IG LN Poi
Min 1 0.81 0.16 7

1st Qu. 5 4.67 2.13 16
Median 8 9.71 4.66 19
Mean 18.73 | 18.73 9.99 | 18.72
3rd Qu. 16 21.76 | 11.85 22
Max 3882 | 346.60 | 183.40 32

Table 4: On the top part of the table we report a summary of relevant statis-
tics (minimum value, first quantile, median, mean, third quantile, and max-
imum value) for real data, from science news and conspiracy-like theories,
and fitted (IG(39.33,6.27), LN (2.47,1.40), Poi(39.34)) first sharers’ distri-
butions. On the bottom part we report the same statistics for real data, from
trolling messages, and fitted (IG(18.73,9.63), LN(2.21,0.93), Poi(18.73))
first sharers’ distributions.
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and conspiracy news sample (solid red) and fitted first sharers distributions:
Inverse Gaussian (dashed blue), Log Normal (dotted violet), Poisson (dot-
dashed orange), and Uniform in [0, 1] (dashed green).
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Figure [9] shows the results obtained by the first set of simulations,
for n = 5,000 users, m = 1,000 news, a varying fraction of homo-
geneous links ¢ € [0.5,1], the rewiring probability » € [0.01,0.2],
and the number of first sharers distributed in turn as /G(39.33,6.27),
LN (2.46892,1.39399), P0i(39.3385), and U (0, 1). Figure [10]shows the re-
sults for the second set of simulations, relative to the fit of the model on
the trolling messages dataset, where the number of users and the number
of messages is taken from the trolling set data (n = 16,889 is the num-
ber of users active in the trolling category and m = 1,072 is the number
of trolling messages in the dataset), the parameters ¢y and r vary in
the same intervals as before, and the number of first sharers is in turn
distributed as IG(18.73,9.63), LN(2.21,0.93), and Poi(18.73). For both
figures the different colors and shapes of the points indicate the differ-
ent distributions of first sharers used in the simulations: red square is for
the sample data distribution, blue circle for the Inverse Gaussian distri-
bution, violet triangle for the Log-Normal distribution, orange cross for
the Poisson distribution, and green x for the Uniform distribution. Com-
paring the results obtained with synthetic first sharers distribution with
those obtained using the real data one, we see that the /G distribution
provides the best fit for all parameters choices.

In order to validate our model, we also vary the parameter ¢ € [0.01,
0.05] for the second set of simulations, with first sharers distribution fit-
ted on trolling messages data, n = 16, 889 users, and m = 1,072. Fig.
shows the simulated average size (left) and average height (right) of the
sharing trees, where different colors and shapes of the points indicate the
different distributions of the number of first sharers considered, and we
vary the sharing threshold § and the fraction of homogeneous links ¢,
ie, d € [0.01,0.05] and ¢p 1 € [0.5,0.59]. In Table 5| we report the com-
bination of parameters that best reproduces the real data values and the
mean and standard deviation of cascades’ size and height for that combi-
nation of parameters. The assumptions for the simulations are the same
as in Fig. We compare the real data from trolling messages dataset
with simulated values obtained using IG or real data as first sharers dis-
tribution.
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Figure 9: Simulation results for the mean size (a,c) and the mean height (b,d)
of news sharing trees, where the network contains n = 5,000 users and
m = 1,000 news are shared in turn. We fix the sharing threshold § = 0.05
and test different combinations of fraction of homogeneous links ¢z and
rewiring probability r. In Fig.[9(a-b) r = 0.01 is fixed and ¢, varies in the
interval [0.5, 1]; while in Fig. c—d) ¢ur = 0.5 is fixed and r varies in the
interval [0.01, 0.2]. The different colors and shapes of the points indicate the
different distributions of first sharers used in the simulations: red square is
for the sample data distribution, blue circle for the 1G(39.33,6.27), violet
triangle for the LN (2.46892,1.39399), orange cross for the Poi(39.3385),
and green x for the U(0, 1).
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Figure 10: Fit of the model with trolling messages data, simulation results
for the mean size (a,c) and the mean height (b,d) of news sharing tree, where
the networks contains n = 16, 889 users and m = 1,072 news are shared.
The values of n and m are equal to the real data ones for the trolling mes-
sages data. We fix the sharing threshold § = 0.05 and test different combi-
nations of fraction of homogeneous links ¢x1. and rewiring probability r.
In Fig.[10(a-b) r = 0.01 is fixed and ¢ 1 varies in the interval [0.5, 1]; while
in Fig.(c—d) ¢nr = 0.5 is fixed and r varies in the interval [0.01,0.2].
The different colors and shapes of the points indicate the different distribu-
tions of first sharers used in the simulations: red square is for the sample
data distribution, blue circle for the 1G(18.73,9.63), violet triangle for the
LN(2.21,0.93), and orange cross for the Poi(18.73).
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Param. Size Height

(¢ur,d) | Mean | Std Dev. | Mean | Std Dev.
RD - 23.54 | 12232 1.78 0.73
S-RD | .56, .015 | 23.52 | 133.02 1.28 1.18
S-IG | .56, .015 | 23.42 33.43 1.28 0.88

Table 5: Mean cascades size and height obtained with the best parameter
combination compared to real data measures (RD). Simulation results are
reported for two cases: number of first sharers distributed as real data (S-
RD) and as inverse Gaussian (S-1G).

Taking into account the results in Fig. [IT|and in Tab. @5, we perform
a last simulation of the model dynamics with the first sharers distributed
as IG(18.73,9.63), n = 16,889, m = 1,072, and the best observed com-
bination of the other model parameters (¢ 1,7, ) = (0.56,0.01,0.015).
The CDF of sharing trees height and the CCDF of size is reported in
Fig.[T2} Both measures show a good fit with data. Table[f]shows a sum-
mary of relevant statistics (min value, first quantile, median, mean, third
quantile, and max value) to compare the real data size and height dis-
tributions with the fitted ones, for the same distribution of first sharers
and the same parameters combination. We notice that the fit is good for
all the statistics, with the exception of min and max value of size. For
the min value, the presence of a zero is due to the fact that the Inverse
Gaussian is a real valued distribution function and in the simulations we
considered the integer part of the number of first sharers, thus producing
a number of never shared pieces of information. On the other hand, the
high difference in the max value is probably due to the long tail of the
data size distribution.
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Figure 11: Fit of the model with trolling messages data, simulation re-
sults for the mean size (left) and the mean height (right) of the shar-
ing trees, with n = 16,889 users, m = 1,072 news, fixed rewiring
probability » = 0.01, fraction of homogeneous links ¢, varying in
the interval [0.5, 0.59], and sharing threshold § varying in [0.01, 0.05].
The different colors and shapes of the points indicate the different
distributions of first sharers used in the simulations.

Size Height
Data | Simulated | Data | Simulated
Min 2 0 1 1
1st Qu. 7 6.19 1 2
Median | 10 11.93 2 2
Mean | 23.54 23.84 1.78 2.18

3rd Qu. | 19.25 27.17 2 3

Max 3845 541.80 4 5

Table 6: Summary of relevant statistics for size and height distributions.
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Figure 12: Complementary cumulative distribution function (CCDF) of
size (left) and cumulative distribution function (CDF) of height (right) for
the best parameters combination that fits troll data values, (¢xr,7,d) =
(0.56,0.01,0.015), and first sharers distributed as /G(18.73,9.63). We note
that it is indeed a good fit of trolling data.
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3.5 Concluding Remarks

Whether a news item, either substantiated or not, is accepted as true by a
user may be strongly affected by social norms or by how much it coheres
with the user’s system of beliefs (58} [70). Despite enthusiastic claims
that social media is generating a vast “collective intelligence” available
to all (71), many mechanisms cause false information to gain acceptance,
which in turn generate false beliefs that, once adopted by an individual,
are highly resistant to correction (72} [73; [74; [75). Using extensive quan-
titative analysis we show that social homogeneity is the primary driver
of content diffusion, and one frequent result is the formation of homo-
geneous, polarized clusters (often called “echo chambers”). We also find
that although consumers of science news and conspiracy-like theories
show similar consumption patterns with respect to content, their cas-
cades differ. Social homogeneity appears to be the primary driver of
content diffusion, and each echo chamber has its own cascade dynamics.
To mimic these dynamics, we introduce a data-driven percolation model
of signed networks, i.e., networks composed of signed edges. Our analy-
sis shows that for science news and conspiracy-like theories the cascade
lifetime has a probability peak in the first two hours followed by a rapid
decrease. Although the consumption patterns are similar, cascade life-
time as a function of the size differs greatly. The PDF of the mean edge
homogeneity indicates that homogeneity is present in the linking step of
sharing cascades. The distribution of the number of total sharing paths
and homogeneous sharing paths are similar in both content categories.
Viral patterns related to distinct contents are different but homogeneity
drives content diffusion. We simulate our data-driven percolation mo-
del by fixing the number of users and news items downloaded from troll
pages and varying the other parameters. We compare the simulated re-
sults with the data and find a high level of similarity.

39



Chapter 4

Echo Chambers: Emotional
Contagion and Group
Polarization on Facebook

All the results shown in this chapter refer to the submitted paper (30
We address the relationship between group polarization and confirma-
tion bias by quantitatively analyzing the temporal evolution of two on-
line communities in the Italian Facebook, linked to either scientific or
conspiracy-like contents. Moreover we link the group polarization to the
emotional contagion inside the echo chambers by means of statistical and
sentiment analysis techniques.

Misinformation has traditionally represented a political, social, and
economic risk. The digital age, in which new ways of communication
arose, has exacerbated its extent, and mitigation strategies are even more
uncertain. However, according to the World Economic Forum, mas-
sive digital misinformation remains one of the main threats to our so-

I The results shown in this Chapter are all part of the paper (30), available as a pre-print
at arXiv:1607.01032. It is a joint work with Dr. Gianna Vivaldo, Alessandro Bessi, Fabiana
Zollo, Dr. Antonio Scala, Prof. Guido Caldarelli, and Dr. Walter Quattrociocchi. MDV, GV
and WQ outlined the research question. MDV and GV provided the analysis tools. MDYV,
GV, and WQ performed the analysis and interpreted the results. MDV, GV, AB, FZ, AS, GC,
and WQ contributed equally to the writing and reviewing of the manuscript.
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ciety (28).

The diffusion of social media caused a shift of paradigm in the cre-
ation and consumption of information. We passed from a mediated (e.g.,
by journalists) to a more disintermediated selection process. Such a dis-
intermediation elicits the tendencies of the users to a) select information
adhering to their system of beliefs — i.e., confirmation bias — and b) to
form groups of like-minded people where they polarize their opinion —
i.e. echo chamber (76} 77; 78} 79; 80; [81).

Under these settings, discussion within like-minded people seems
to negatively influence users’ emotions and to enforce group polariza-
tion (82; 83). What’s more, experimental evidence shows that confir-
matory information gets accepted even if containing deliberately false
claims (22} 29}165}[84; 85), while dissenting information is mainly ignored
or might even increase group polarization (64). Current solutions, such
as debunking efforts or algorithmic driven solutions based on the repu-
tation of the source, seem to be ineffective. To make things more compli-
cated, users on social media aim at maximizing the number of likes and
often information, concepts, and debate get flattened and oversimplified.

In such a disintermediated environment, indeed, the public opinion
deals with a large amount of misleading information generated by na-
tionalists, populists, and conspirators, that is corrupting reliable sources
at the heart. Computational social science (1)) seems to be a powerful
tool for a better understanding of the cognitive and social dynamics be-
hind misinformation spreading (28). Along this path, in the (30) we ad-
dress the evolution of online echo chambers by performing a compara-
tive analysis of two distinct polarized communities on the Italian Face-
book, i.e., science and conspiracy.

This work aims to study, quantitatively characterize, and model both
the process of spreading news and the consumption of news for the early
detection of trends in public opinion. The sizes of both the communities
are firstly analyzed in terms of their temporal evolution and fitted by
classical population growth models deriving from biology and medicine
fields. The behavior of users turns out to be similar for both categories,
irrespective of the contents: both science and conspiracy communities
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reach a thresholding value in their sizes, after an almost exponential
growth, in agreement with classical growth models.

Moreover, we analyze the community behavior by accounting for the
engagement and the emotional dynamics of users. Indeed, whether a
news item, either substantiated or not, is accepted as true by a user may
be strongly affected by social norms or by how much it coheres with the
community shared system of beliefs.

Users’ emotional behavior seems to be affected by their engagement
within the community. An higher involvement in the echo chamber, re-
solves in a more negative emotional state. Such a phenomenon appears
in both users categories. Moreover, we observe that, on average, more
active users show a faster shift towards the negativity than less active
ones.

The chapter is structured as it follows. In section[4.1] we describe the
data collection and give an account of the methodologies used. In sec-
tion[4.2] we analyze the structural evolution of both science and conspir-
acy communities on the Italian Facebook. Then, in section[4.3|we explore
the sentiment behavior of users as single units, and subsequently we ex-
plore the sentiment contagion inside each of the two communities from
a macroscopic point of view.

4.1 Materials and Methods

Data Collection and Description

Using the approach described in (65), with the support of diverse Face-
book groups very active in the debunking of misinformation (Protesi di
Complotto, Che vuol dire reale, La menzogna diventa verita e passa alla
storia), we identified two main categories of pages: conspiracy-like theo-
ries, i.e., pages promoting contents neglected by main stream media, and
science information, i.e., pages diffusing scientific news and research ad-
vances for which it is easy to check the sources. Starting from this basic
differentiation, we categorized Facebook pages according to their con-
tents and their self description. The resulting dataset is composed of 73
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public Italian Facebook pages, 34 of which were diffusing scientific infor-
mation and 39 conspiracy-like theories, and covers a timespan of 5 years,
from 2010 to 2014. Table[7]summarizes the details of our data collection.

‘ Total Science  Conspiracy
Pages 73 34 39
Posts 271,296 62,705 208,591
Likes 9,164,781 2,505,399 6,659,382

Comments | 1,017,509 180,918 836,591

Table 7: Dataset description.

The data collection process has been carried out using the Facebook
Graph application program interface (API) (68), which is publicly avail-
able. For the analysis (according to the specification settings of the API)
we only used publicly available data (thus users with privacy restrictions
are not included in the dataset). The pages from which we download
data are public Facebook entities and can be accessed by anyone. User
content contributing to these pages is also public unless the users privacy
settings specify otherwise, and in that case it is not available to us.

Growth Models

We fit the temporal evolution of the size of the two communities un-
der analysis by means of the three classical growth models: the Gompertz
Growth model, the Logistic Growth model, and the Log-Logistic Growth mo-
del.

The Gompertz Growth Model is often used to model growth phe-
nomena which are typically characterized by an asymptotic behavior
rather than by a linear increase. In that sense, a Gompertz function
has to be intended as a special case of the most general logistic func-
tion, and it is nowadays applied in various research fields, such as biol-
ogy, ecology, economics, marketing, and medicine. In oncology, in par-
ticular, the Gompertz sigmoid function has been used to model tumor
growth (86;[87), which are interpreted as an expansion of cellular popu-
lations developing in a confined space, where the availability of nutrients
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is limited in a certain sense. As a consequence, the model considers two
parameters, a first one, a, for the tumor intrinsic growth related to the
mitosis rate and a second one, b, for the growth deceleration, due to the
antiangiogenic processes. Let (t) be the size of the tumor at time ¢, then

we have:
dz(t)

dt
For a given initial condition z(0) = z(, and known parameters ¢ and b,
the solution (86) is:

= ax(t) — bx(t) lnz(t).

£(t) = eo/PHInGeo) /e (1)

The most general Logistic Growth Model is defined as:

d—c

z(t) =c+ 7(1 )

(4.2)
In that case, the first stage of the growth is approximately exponential,
then the growth rate decreases till an asymptotic value is reached. The
right-hand asymptote is reached less gradually than the left-hand one
compared to the behavior of the Gompertz function. We used two vari-
ants of the Logistic model to fit our data: L3 that considers only param-
eters (b, d, f) in @#.2), and L5 that is exactly {@.2).
Finally, the Log-Logistic Growth Model is defined as:

d—c
(1 + eb(Int—In f))g :

z(t) = c+ (4.3)

Nonlinear Least Square Fitting and Goodness of Fit

We use the Nonlinear Least Squares (NLS) (87) to estimate the parameters
of the various models while fitting them with our data. Consider a set of
n observations (t1,1),. .., (tn, ) and a model function depending on
m parameters y = f(z, 3), where 8 = (51,...,0n) and n > m. We want
to find the vector 3 that minimizes the sum of squares:



where the residuals errors r; are given by

Ty =Yi — f(i%ﬂ),

fori=1,2,...,m.
We tested the goodness of our fit by means of the Kolmogorov-Smirnov
Test (KS) and Maximum Likelihood Estimate (MLE).

Advanced spectral analysis and trend extraction procedure

Singular-spectrum analysis (SSA) is a not-conventional spectral analy-
sis method which provides insight into the unknown and/or partially
known dynamics of a dynamical system (88; [89). More in detail, SSA
aims at decomposing the signal as a linear combination of variability
modes, which are data-adaptive functions of time. Thus, with respect
to more traditional spectral approaches such as the classical Fourier de-
composition, SSA doesn’t ground on variability modes which have to
be necessarily harmonic components. As a consequence, SSA provides a
powerful de-noising filter, to identify the different components of the an-
alyzed signal, such as trends, oscillatory patterns, harmonic and/or an-
harmonic oscillations, quasi-periodic phenomena, without making any
assumption about the underlying generating of the observed signal (90).
Moreover, SSA doesn’t require the assumption of any particular station-
arity or ergodicity conditions.

In order to distinguish between significant signal and random fluctu-
ations (i.e. background noise), Monte-Carlo (MCSSA) is applied. MC-
SSA grounds on a particular Monte Carlo approach to the signal-to-noise
separation issue, suited to overcome the limitations of classical signal ex-
traction procedure, i.e. the identification of simply a gap in the eigen-
values spectrum (91). Recent fine-tunings of the method have been pro-
posed to further improve results robustness and reliability in short time
series (92). In the present work, MCSSA is applied to science and con-
spiracy community size time series, to establish whether our time series
are linearly distinguishable from the linear stochastic processes, usually
considered as noise. Both white and red noise null-hypotheses are taken

45



into account, since the choice of the most suitable kind of noise in social
sciences, when dealing with advanced spectral methodologies, is still un-
der debate.

Sentiment Classification

The sentiment classification is carried out as in (83) and refers to the same
dataset. We consider three values for the sentiment of each comment:
negative (-1), neutral (0), and positive (+1). We perform an automatic sen-
timent classification based on supervised machine learning that consists
of the following four steps: (i) a sample of texts is manually annotated
with sentiment (in our case 20K randomly selected comments are manu-
ally annotated by 22 native Italian speakers), (ii) the labeled set is used to
train and tune a classifier, (iii) the classifier is evaluated on an indepen-
dent test set or by cross-validation, and (iv) the classifier is applied to the
whole set of texts. For more details on the classifier or on its performance
refer to (83).

4.2 Community Evolution

Online social networks might elicit the aggregation of individuals in com-
munities of interest. For the particular case of science and conspiracy
users on the Italian Facebook, the emergence of two separate echo cham-
bers has already been shown in a previous study (29). However little is
known about the structural evolution of the two communities and the
role of users’ engagement in shaping them. To shade light on the de-
terminants of group formation, as a first step, we analyze and compare
the temporal evolution of science and conspiracy communities size by
considering users commenting activity.
More in details, we divide users in three categories :

e U the set of all active users —i.e. of all those users that commented
at least once,

e U the set of all users that commented at least twice, and

46



e Us the set of all users that commented at least five times.

For each set of users we look at the temporal evolution of the science and
conspiracy communities, defined as:

Si(t) = {u eU;: Su > 0.95} and C;(t) = {u el : Cu > 0.95},
Ny, Ny,

where i € {1, 2, 5}, n, is the total number of comments made by user
u, Sy is the number of comments that user v made on science posts, ¢,
is the number of comments that user v made on conspiracy posts, and
te{l,... 7T}H We consider the threshold of 0.95 for the membership
inside one community in accordance with previous studies (22} 65).

Figure [13| shows the temporal evolution of the size of the commu-
nities resulting from the previous classification. The dataset has been
sampled by daily resolution, over the period January 2010-April 2012,
for a total of 835-days observations. A similar global behavior emerges
in all cases, and significant quantitative differences arise between C (or
C5) and C5, as well as between C (or C3) and S;, ¢ € {1,2,5}. This
phenomenon may be linked to the abundance of low-activity users in-
side the conspiracy communities, and for this reason in the next sections
we will restrict our attention to the respective most active communities,
S5 and Cs. We also pairwise compared the six sample distributions by
means of the Kolmogorov-Smirnov test (see Tab. [8|for the tests’ results).
For each users typology, we reject the null hypothesis of equivalence be-
tween science and conspiracy distributions, at the 99% confidence level.

In Fig. [14) we report the summarizing statistics for the users” mobility
inside one particular community by box and whiskers plots (93) (or, sim-
ply boxplots). Black horizontal lines represent the median of the number
of users entering or exiting the science and conspiracy communities, and
the colored boxes represent the interquartile ranges (i.e., the 25th-75th
percentile ranges) and they statistically measure the degree of disper-
sion and the skewness of each analyzed distribution: the users which

2The observation is carried out over the period January 2010-April 2012, by daily tem-
poral resolution. T is the number of days of observation and it is equal to 835.
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Figure 13: Temporal evolution of the size of the communities S (solid vi-
olet), S> (dotted orange), S5 (dashed pink), C1 (solid blue), C (dotted sea
green), and C's5 (dashed green). The observation is carried out in the period
January 2010-April 2012, with daily temporal resolution.

enter the science and conspiracy communities (violet and blue boxes, re-
spectively), and the users which exit from each community (green and
orange boxes for science and conspiracy, respectively). Vertical lines (i.e.,
the whiskers) are lower and upper bounded by the minimum and max-
imum values of the corresponding distribution, once both outliers and
extreme values are removed from the data. Individual points represent
the outliers of each analyzed distribution. From the left to the right, each
set of boxplots corresponds to one user’s category (i.e., U1, Uy, and Us).
In all cases we notice a significant difference between the users enter-
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D C D
S1/Cy | 0.763 | 0.079 | 2.2 x 10716
S2/Cz | 0.886 | 0.079 | 2.2 x 10716
S5/Cs | 0.970 | 0.079 | 2.2 x 10716

Table 8: Results from Kolmogorov-Smirnov tests. D is the estimated max-
imum distance between the two distributions under analysis, C' is the cor-
responding critical value, and p the resulting p-value. Considering a level
of significance ov = 0.01, we reject the null hypothesis of equivalence of the
two distributions in all the cases.

ing into and exiting from a community, favorable to the formers, indeed
more than 99% of the users’ flow is made up of those users entering one
community.

These two results underline that the behavior of users is similar for
both categories, irrespective of the contents. After an initial spike-like
growth, the communities evolve at a nearly constant rate. Moreover,
once a user enters one community the probability to get out of it is very
small.

To better characterize the temporal evolution of both communities,
we fit the Gompertz growth model (GM) in (£.I), the Logistic model
(LM3, LM5) in (#.2), and the Log-logistic model (LLM) in to our sam-
ple distributions S5 and Cs, representing the temporal profile of quite ac-
tive users, i.e. with at least 5 total comments, affiliated to science or con-
spiracy communities, respectively. The models are chosen on the basis of
the observed evolution of the communities’ size, that is characterized by
a first phase of rapid growth, approximately exponential, followed by a
more gradual one.

For each model we estimate its parameters through the Nonlinear
Least Squares NLS (see Section Methods for more details about the fit-
ting models). Fit’s results are shown in Fig. [15| for both science (panel
a) and conspiracy (panel b). Four fits are superposed to the original data
(dashed green line): GM (solid orange line), LM3 (dotted violet line),
LMS5 (dot-dashed blue line), and LLM (dashed purple line).

As it can be deduced from Fig. |15} all models show a good approxi-
mation of the temporal evolution of science and conspiracy communi-
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Figure 14: Boxplots of the mobility of users within each group. The black
horizontal lines represent the median of the number of users entering or ex-
iting the science and conspiracy communities for each temporal step. Indi-
vidual points refer to the outliers of the distributions. Colored boxes repre-
sent the interquartile range (25th-75th percentile range), where blue stands
for incoming users in conspiracy community, violet for incoming users in
science, orange for exiting users from conspiracy, and green for exiting users
from science. On the x-axis we have, from left to right, results for C1, S1,
Cs, S2,Cs,and Ss.

ties sizes. Anyway, in order to determine the quality of each fit and
eventually identify the best one, we perform a series of Kolmogorov-
Smirnov tests (KS) between the real data and each of the synthetic distri-
butions and Maximum Likelihood Estimates (MLE) of each fit. Results
of the KS tests are reported in Tab. 9] By considering a level of signif-
icance o = 0.01, we fail to reject the null hypothesis of equivalence of
the two distributions in all cases. The Logistic model maximizes the log-
likelihood for both S5 and Cs.

The particular S-shaped behavior observed on raw data, and then
characterized by growth-model fits, reminds the one observed in the
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D C P D C P
Ss/GM | 0.071 | 0.079 | 0.031 C5/GM | 0.060 | 0.079 | 0.100
Ss/LM3 | 0.061 | 0.079 | 0.089 Cs/LM3 | 0.077 | 0.079 | 0.015
S5/LM5 | 0.035 | 0.079 | 0.267 Cs/LM5 | 0.050 | 0.079 | 0.241
Ss/LLM | 0.047 | 0.079 | 0.322 Cjs/LLM | 0.053 | 0.079 | 0.197

Table 9: Results from Kolmogorov-Smirnov test. D is the estimated maxi-
mum distance between the two distributions under analysis, C'is the corre-
sponding critical value, and p the resulting p-value. Considering a level of
significance o = 0.01, we fail to reject the null hypothesis of equivalence of
the two distributions in all cases.

framework of population growth, where after a first stage of huge growth,
a saturation level is reached, and population stabilizes. Logistic and
Gompertz growth models found several fields of application, ranging
from demography and sociology, to biology and ecology.

Science and conspiracy communities reach a thresholding value in
their sizes growth, as fit results suggest. Those users which are deeply
engaged in a community are more likely to become focused on a partic-
ular topic, and their increasing involvement into highly specified topics
makes them “isolated” from the neighboring environment, which in this
case is the whole world of knowledge. What is curious is that both con-
spiracy and science communities show the same size profiles.

To better assess the reliability of model fits results, we further in-
spect the time evolution of S5 and C5 communities sizes through ad-
vanced spectral methodologies extremely useful to uncover the presence
of significant oscillatory movements, besides the huge growing trend
dominating both communities growth. More precisely, we try to iden-
tify trends, oscillatory components (both periodic and not-periodic), and
background noise in our series to finally reconstruct the embedded true
signal, by summing up the contributions of all its significant compo-
nents. We chose non-parametric methods, such as singular-spectrum
analysis and similar methodologies (88;[89), in order to analyze our records
time evolution by an alternative approach, which is not based on fitting
an assumed model to the data, with the final goal in mind to further
support model fits results by a completely different method.
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Figure 15: Fit of the temporal evolution of the size of Science (a) and Con-
spiracy (b) communities. We fitted the data (dashed green line) with four
growth models: GM (solid orange), LM3 (dotted violet), LM5 (dot-dashed
blue), and LLM (dashed purple). All model show a good fit for our data
samples.
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Indeed, the simultaneous and flexible application of more than one
spectral tool can assure a quite reliable and robust analysis of tempo-
ral dynamics, especially when the signal-to-noise ratio is low, besides
dealing with finite sample length. Moreover Monte-Carlo SSA (MC-
SSA) (91;192) test is applied to assess the significance of the revealed oscil-
latory modes with respect to both white and red noise background noise
null-hypotheses. The reader is referred to Section Methods for deeper
details about the applied methodology.

Both conspiracy and science time series behavior turn out to be de-
scribed by the first two T-PCs (temporal principal components), which
in that case correspond to the trend. More in details, the trends capture
the 96.16% and the 95.44% of S5 and Cj series total variance, respec-
tively. Besides, we extracted the pure significant reconstructed signals
from our series, and we observed that they turned out to be quite similar
to trends (exception made for some boundary effects due to the finite-
sample length). Figure [16/shows the trends (dotted violet line) and re-
constructed signals (dashed green line) superposed to S; (top) and C
(bottom) communities size evolution in time (orange lines). Boundary
effects are visible, especially at the beginning of the series, but quite neg-
ligible. Trends are able to catch both S5 and C5 temporal profile, and they
mainly coincide with the reconstructed significant signals, in both cases.

As a further check, we pre-process data, first by removing the trend,
second by standardizing-by-trends the so obtained residual time series.
Pre-processing is required since the presence of such a pervasive trend
reflects in a high peak at zero frequency dominating the shape of power
spectrum estimate, and sometimes hiding eventual higher-frequency cy-
cles. No significant cycle is detected in S5 and Cs series after trend re-
moval. Figureshows S5 and C’5 detrended time series (panel a) and S5
and C residual time series standardized by their trends (panel b). The
apparent oscillating behavior visible in raw data and in the detrended
time series (especially in Cs, Fig.[I7(a)) is not connected to significant os-
cillatory modes, according to Monte-Carlo SSA test. Besides, both com-
munities show a smoother profile after Jan 2011 (Fig. )), in the range
t > 600 in Fig. At that time, both S5 and Cs growth starts to decrease.
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Figure 16: S5 (a) and C5 (b) dominant spectral components. Original series
are shown in solid orange lines, trends in dotted violet lines, and significant
signal reconstructions in dashed green lines. A pervasive trend dominates
both Science and Conspiracy communities sizes temporal evolution.
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Figure 17: Pre-processing procedure. (a) Detrended S5 (solid pink) and C5
(solid green). (b) Standardized-by-trend Ss (solid pink) and C’s (solid green)
residual time series. In panel b, the pre-processed series are standardized to
zero mean and unit variance.
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Notice that both the pre-processed time series shown in Fig. [17(b) are
standardized to zero mean and unit variance, in order to help the vi-
sual comparison between S5 and C5. We can finally infer that the trends
determine the time evolution of our records, only. Thus, we compare
the previous described model fits (GM, LM3, LM5, LLM) to the S5 and
C5 trends, only. No particular difference emerges between science and
conspiracy communities in terms of their growth, and the linear correla-
tion between both communities trends and each fitted model turns out
to be very high for all the cases, preventing us to identify a significantly
favorite fit, in agreement with the results previously reported in Tab. 9]
Pearson correlation coefficient is computed, since no particular significant
cycle emerges from S5 and Cj sizes records spectral analysis, thus reduc-
ing the risk of underestimating the presence of an eventual correlation at
time-shifted version of the original series.

Our analysis thus suggests that communities present strong similar-
ities, and that the behavior of users inside each of them is similar. Once
they have selected their preferred group, users seem to undergo com-
munity dynamics, that are similar in both science and conspiracy case,
irrespectively of the content.

4.3 Users’ Sentiment Analysis

Now we zoom in at the level of the emotional dynamics of the polarized
groups. We approximate the emotional attitude of users towards one
piece of information that they commented by considering the sentiment
of the text. We label the sentiment of each comment as: negative (-1),
neutral (0), or positive (+1). We perform an automatic sentiment classifi-
cation based on supervised machine learning, refer to Section Materials
and Methods or to (83) for more details.

Our aim is to characterize the emotional behavior of the users as
a function of their involvement inside the community. To do this we
define three new measures, the mean user sentiment (o;), the mean nega-
tive/positive difference of comments (6 p(i)), and the user sentiment polariza-
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tion (0, (1)) as it follows:
1 &
onp(i) = 7 > (Neg;(i) = Pos;(i)), (4.4)
Crt

where T; is the number of days in which user ¢ was active, Neg;(i) the
number of i’s negative comments in day j, Pos;(i) the number of i’s
positive comments in day j;

(N; —2k; — hy)(N; — hy)
N? ’

(3

Oc (Z) = (45)

where N, ki, h; are respectively the number of all, negative, and neutral
comments left by user i, while I; = N; — k; — h; is the number of the
positive ones. Note that ¢, (i) € [—1,1] and that it is equal to 0 if and
only if I; = k; or h; = N,, itis equal to 1 if and only if k; = N;, and it
is equal to —1 if and only if /; = N;. Finally, o; is simply defined as the
mean of the sentiment of all comments left by user i.

Figure [18[shows the average sentiment o; for science users (panel a),
conspiracy users (panel b), and all users (panel c), as a function of the
user engagement — i.e., the total number of comments left by each user.
In the insets we report, for each of the three categories, the value of o;
as a function of the number of comments for the most active users, i.e.
those users with at least 100 comments. We then regress the mean user
sentiment o; w.r.t. the logarithm of the number of comments. We notice
that o; becomes more negative as the number of comments increases, in
all cases, when considering all users. However, when we restrict our
attention to the most active users, we notice that o; becomes more nega-
tive as the number of comments increases only in science case, while the
opposite is true for the other cases.

Figure [19|shows the mean negative/positive difference of comments
0np(4) of science users (panel a), conspiracy users (panel b), and all users
(panel a), as a function of the user engagement. In the insets we report,
for each of the three categories, the value of 0 p(7) as a function of the
number of comments for those users with at least 100 comments. We
regress the mean negative /positive difference é y p (i) w.r.t. the logarithm
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of the number of comments. dyp () is a measure of the mean negative
shift from a situation of neutral equilibrium for which either the user has
only neutral comments or she has the same number of positive and neg-
ative comments. A positive value of éy p(i) indicates that the user tends
to have, on average, more negative than positive comments. From Fig.[T9|
we notice that Jxp (i) tends to increase when the number of comments
increases in all cases, underlining the fact that, on average, more active
users tend to show a faster shift towards the negativity than less active
ones. The rate of this increment in the negativity is higher for users with
more than 100 comments and it is also higher for science users w.r.t con-
spiracy ones.

While Figure 20| reports the user sentiment polarization g, (¢) of sci-
ence users (panel a), conspiracy users (panel b), and all users (panel c),
as a function of the user engagement. In the insets we show, for each
of the three categories, the value of g, (%) as a function of the number of
comments for those users with at least 100 comments. We regress the
user sentiment polarization g, (i) w.r.t. the logarithm of the number of
comments. The user sentiment polarization g, (¢) ranges in [—1, 1], and it
is equal to O either if all comments are neutral or if there is the same num-
ber of negative and positive comments, while it tends to 1 (resp. -1) when
l; > k; and h; is small enough, i.e.,, when the number of positive com-
ments is much bigger than the number of negative ones, (resp. k; > [;
and h; is small enough, i.e., when the number of negative comments is
much bigger than the number of positive ones). Science users show an
higher value of g, (i), however conspiracy users with at least 100 total
comments tend to increase it w.r.t. science ones.

The engagement within the echo chamber affects users emotional dy-
namics. The more a user is active, the higher the tendency to express
negative emotion when commenting. This feature holds for both users
categories. Moreover, for both categories we observe that, on average,
more active users show a faster shift towards the negativity than less ac-
tive ones. The rate of this increment in the negativity is higher for users
with more than 100 comments and it is also higher for science users w.r.t
conspiracy ones. In terms of the users’ sentiment polarization we ob-
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serve some differences between the two categories: its value is gener-
ally higher for science users, however very active science users tend to
decrease their sentiment polarization with the increasing of the activity,
while on the contrary conspiracy ones tend to increase it.
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Figure 18: Mean final sentiment o; of science users (a), conspiracy users (b),
and all users (c), as a function of the user engagement i.e., the total number
of comments left by each user. In the insets we report, for each of the three
categories, the value of o; as a function of the number of comments for those
users with at least 100 comments. We regress the mean user sentiment o;
w.r.t. the logarithm of the number of comments.
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Figure 19: Mean negative/positive difference dxp (i) of science users (a),
conspiracy users (b), and all users (c), as a function of the user engagement.
In the insets we report, for each of the three categories, the value of dnp (%)
as a function of the number of comments for those users with at least 100

comments. We regress the mean negative/positive difference dnp (i) w.r.t.
the logarithm of the number of comments.
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Figure 20: User’s sentiment polarization g (¢) of science users (a), conspir-
acy users (b), and all users (c), as a function of the user engagement. In the
insets we report, for each of the three categories, the value of ¢, () as a func-
tion of the number of comments for those users with at least 100 comments.
We regress the user sentiment polarization g, (i) w.r.t. the logarithm of the
number of comments.
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4.4 Evolution of the Sentiment inside the Com-
munities

We now focus on the collective sentiment of the two communities, rather
than the single user’s one. Similarly to the single user case we define
the community negative/positive difference of comments (5§, p) and the mean
community sentiment polarization (05) as follows:

T

6§p = MLC ;;(Negjc — POSJC) , (4.6)
where T is the number of days of observation, Neg§ the number of nega-
tive comments from users belonging to community C during day j, PosjC
the number of positive comments from users belonging to community C
during day j, Mc¢ is the maximum daily activity of community C, and
C € {Science, Conspiracy}; While

c_ (NC —2kc — hc)(Nc — hc)
IQU - N2 bl
C

@.7)

where N¢, k¢, he are respectively the number of all, negative, and neu-
tral comments left by users of community C, while [c = N¢ — k¢ — he
is the number of positive ones. Note that ¢§ € [—1,1].

Figure21]displays the community negative/positive difference of com-
ments 6§ p as a function of the daily community activity for science users
(left) and conspiracy users (right). The top figures show the values con-
sidering all users in the communities, while the bottom ones only con-
sider those users with at least 100 comments. We regress the community
negative /positive difference of comments §§ ,» w.r.t. the logarithm of the
number of comments inside the community at a given time. For both
communities 0§, tend to increase; while science one shows an higher
increasing rate for the most active case, conspiracy one shows an higher
increasing rate for the general case.
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Figure 21: Community negative/positive difference of comments 3§ p as a
function of the daily community activity for science users (left) and conspir-
acy users (right). The top figures show the values of S p considering all
users in the communities, while the bottom ones only consider those users
with at least 100 comments. We regress the community negative/positive
difference of comments 6 » w.r.t. the logarithm of the number of comments
inside the community at a given time.
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Figure 22 shows the mean community sentiment polarization oS as
a function of the daily community activity for science users (left) and
conspiracy users (right). The top figures display the values considering
all users in the communities, while the bottom ones only consider those
users with at least 100 comments. We regress the mean community sen-
timent polarization oS w.rt. the logarithm of the number of comments
inside the community at a given time. For the conspiracy community
we notice a decrement in the value of ¢$ as the number of comments in-
creases, moreover this decrement is higher for most active users. Science
community instead shows a decrement in the value of oS for the case of
most active users and a slight increment for the general case.

Also the community sentiment behavior is affected by the cumula-
tive users’ activity (in terms of comments). When either community is
more active, the shift towards negative comments is larger. A difference
between the two echo chambers comes upon if we restrict our attention
only to the most active users, i.e. those with at least 100 comments. In
this last case, science users show a higher rate of increment than con-
spiracy ones, contrary to the general case. Differently from the single
user case, the community sentiment polarization shows a deep decre-
ment with higher activity in the conspiracy community, the process is
slower for science community, when we consider only most active users,
and even reversed in the general case.
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Figure 22: Mean community sentiment polarization ¢S as a function of
the daily community activity for science users (left) and conspiracy users
(right). The top figures show the values of 0§ considering all users in the
communities, while the bottom ones only consider those users with at least
100 comments. We regress the community negative/positive difference of
comments 0§ w.rt. the logarithm of the number of comments inside the
community at a given time.
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4.5 Concluding Remarks

The Facebook environment is particularly suited for the emergence of
polarized communities, or echo chambers. The activity inside such echo
chambers is limited to only one type of content. In this chapter, we re-
port results on the behavior of users inside the echo chamber and on the
structural evolution of the community accounting for both users activity
and the sentiment they express (30).

We first study the evolution of the size of the two communities by
fitting daily resolution data with three growth models, i.e. the Gompertz
model, the Logistic model, and the Log-logistic model, and we observe
that both communities evolve in a similar way and the behavior of users
is similar irrespectively of the difference in contents: after a first phase
of rapid growth, approximately exponential, both the communities sizes
undergo a more gradual growth, until a thresholding value is reached.
This behavior reminds malignant cancer evolution dynamics, where af-
ter a huge proliferation of anomalous cells, the lack of a sufficient vascu-
larization inside central malignant core limits the very own growth. In
our case, the lack of communication with the environment can be sup-
posed to associate with the users extreme focusing on a precise topic,
which alienates them from the real knowledge world.

Then we notice that both the users” and the communities” emotional
behavior is affected by the users’ involvement inside the echo chamber.
To an higher involvement corresponds a more negative approach. More-
over, for both categories we observe that, on average, more active users
show a faster shift towards the negativity than less active ones. The rate
of this increment in the negativity is higher for users with more than 100
comments and it is also higher for science users w.r.t conspiracy ones.
The community sentiment polarization shows a deeper decrement with
higher activity in the conspiracy community, while the process is slower
for science community, when we consider only most active users, and
even reversed in the general case.
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Chapter 5

Modeling Opinion
Dynamics on Networks

The role of Confirmation Bias and Polarization
in Opinions Formation

All the results shown in this chapter refer to the submitted paper (31
To better understand the role of confirmation bias and social influence in
selecting the information and fostering the aggregation of online users in
polarized groups, we provide a mathematical model mimicking polar-
ization in online social dynamics.

Online users tend to select claims that adhere to their system of be-
liefs and to ignore dissenting information (64} [65} [84; 94; 95). The wide
availability of content on the web fosters the aggregation of likeminded
people where the discussion tends to enforce group polarization (82;/83).
Confirmation bias, indeed, plays a pivotal role in viral phenomena (29).
Under such conditions public debates, in particular on social relevant

IThe results shown in this Chapter are all part of the paper (31), available as a pre-print
at arXiv:1509.00189. It is a joint work with Dr. Antonio Scala, Prof. Guido Caldarelli, Prof.
H. Eugene Stanley, and Dr. Walter Quattrociocchi. MDYV, AS, and WQ outlined the research
question. MDV performed the simulations. MDV and AS interpreted the results. MDYV, AS,
GC, HES, and WQ contributed equally to the writing and reviewing of the manuscript.
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issues, tend to further fragment and polarize the public opinion (96;[97).

Opinion dynamics, have been widely investigated in recent years, us-
ing different approaches from statistical physics and network science (3).
Classical examples of opinion dynamics models include the Sznajd mo-
del (39), the voter model (34; 35} 98), the majority rule model (38;99), and
the bounded confidence model (BCM) (5} 140; [100). Besides the different
assumptions and dynamical rules, for all the cited models the consensus
state, in which all agents share the same opinion, is reached under the
right conditions.

However, consensus in far from common in real world and Internet
based opinion exchanges. A recent study showed the emergence of polar-
ized communities, i.e., echo chambers, in online social networks (29). Inside
these communities, homogeneity appears to be the primary driver for
the diffusion of contents. Both polarization and homogeneity might be
the result of the conjugate effect of confirmation bias and social influence.
Confirmation bias is the tendency to acquire or process new information
in a way that confirms one’s preconceptions and avoids contradiction
with prior belief (23). Social influence is the process under which one’s
emotions, opinions, or behaviors are affected by others. In particular,
informational influence occurs when individuals accept information from
others as evidence about reality (11} 17).

Previous studies (8} 44) proposed a non consensus opinion model
(NCO) that allowed for the stable coexistence of two opinions by also
considering the opinion of the user herself when applying the major-
ity rule update (8), while in (44) the competition between two groups
is investigated by the introduction of a set of contrarians in one of the
two. The survival of a two-opinions state is studied in (14) from a dif-
ferent point of view, considering the emergence of spontaneous recovery
of failed nodes and the majority rule update. Both these models assume
only two opinion states (£1) and a majority rule update, with the nov-
elty of accounting for the individual opinion (8} 44) and for an external
source of influence (14).

Authors in (101) investigate the emergence of extreme opinion trends
in society by employing statistical physics modeling and analysis on
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polls. By developing an activation model of opinion dynamics with in-
teraction rules based on the existence of individual stubbornness, they
discover a sharp statistical predictor of the rise of extreme opinion trends
in society in terms of a nonlinear behavior of the number of individuals
holding a certain extreme view and the number of individuals with a
moderate opinion and extreme opinion. A model grounded on the BCM
and accounting for the interconnection and complexity of the online en-
vironment as well as the competition among sources of information is
presented in (80). In a recent study(102), authors analyze the effects of
the interplay between homophily, social influence, and confirmation bias
in the emergence of segregation and echo chambers.

People shape their opinions on the basis of both confirmation bias
and social influence, a combination of these two forces generates the ob-
served polarization of communities and homogeneous links (29). Ac-
counting for this phenomenon, we build a model of opinion dynamics
and network’s evolution that considers both mechanisms and expands
itself from the classical Bounded Confidence Model (BCM) (5). We con-
sider two variations of the model: the Rewire with Bounded Confidence
Model (RBCM), in which discordant links are broken until convergence
is reached; and the Unbounded Confidence Model, under which interaction
among discordant pairs of users is allowed and a negative updating rule
is introduced, either with the rewiring step (RUCM) or without it (UCM).
As for the BCM, our models assume a continuous interval of opinions.

The chapter is structured as it follows. In the first section we provide
references to the methods employed and give a brief overview of the
BCM and its convergence results. In the Results and Discussion section,
we first present the new models and give an account of the simulation
results, then we present a mean field approximation of the newly intro-
duced models.
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Materials and Methods

Periodic Boundary Conditions

We consider N agents and a set of initial opinions z;, 7 € {1,...,N},
uniformly distributed in [0, 1]. If we compare two agents’ opinions by
the absolute value distance |z; — z;|, those agents with near boundary
opinions will have less concordant peers by definitions. We can over-
come this problem by using the Periodic Boundary Conditions (PBC) and
the alternative opinions’ distance |.|, : [0,1] x [0, 1] — [0,0.5] defined as:

|zi — x|, = |zi — x5 — pl@ — 25)],

fori,j € {1...,N}. The p(.) : [-1,1] — {-1,0,1} adjustment ensures
PBC and it is defined as:

~1, ifze|-1,-0.5)
plz) =4 0, ifze[-05,05] . (5.1)
1, ifz e (0.5,1]

5.1 The Bounded Confidence Model (BCM)

The Bounded Confidence Model (BCM) (5;[100) considers a set of IV agents
arranged on a complex network G| Each agent holds an opinion z;, i €
{1,..., N}, uniformly distributed in [0, 1]. Two agents interact if and only
if they are connected in G and their present opinions are close enough,
ie. iff j € N¢(i) and |z; — z;| < ¢, fore € [0, I]EIIf these conditions hold,
the two agents change their opinions according to Eq. (5.2), otherwise

2We consider different types of complex networks in the simulations: The Erd6s-Rényi
random network (ER) (103) characterized by a Poisson degree distribution with average
degree (2), the scale-free network (SF) (104) characterized by a power-law degree distribu-
tion P(k) ~ k7 with 2 < v < 3, and the small-world network (SW) (69) with rewiring
probability equal to 0.2 and neighborhood dimension equal to 2. We notice that the net-
work structure does not influence the simulation results, for this reason and considering
that the SF network is the one that better reproduce the structure of online social media, we
restrict our attention to SF networks.

3We apply periodic boundary conditions in the simulations and hence two users will
interact if: |z; — x| < ¢, fore € [0,0.5].
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they do not interact at all:

71 = plag - ) 52)
wj=xj+ple; —x;)

where the convergence parameter y is taken in the interval (0, 0.5).

It is known from previous studies (41} 42) that for € big enough con-
sensus is reached. The time rate change of P(z, t)dz, the fraction of agents
whose opinion at time ¢ lies in the interval [z, z + dz], is given by:

3“”;’” = — Pzt / P(z +y, t)dy

—&

1 e—2x I
A /—5—295 Pz +y,t)P(x — ﬂy, t)dy.
The first two moments are given by My = [P(z,t)dz = 1 and M; =
J aP(z,t)dz = 0, i.e. the total mass and the mean opinion, and they are
conserved (41). Let P(z,0) = 1 be a flat initial condition, with € [0, 1].
We are interested in the final state of the system P(z, c0).

When all agents interact, i.e., when ¢ > 1 the rate equation is inte-
grableﬂ The second moment obeys Ms + MM, /2 = M?, and using
M; = 0and M, = 1 we find that M(t) = M5(0)e~*/2, hence the second
moment vanishes exponentially in time, all agents approach the center
opinion and the system eventually reaches consensus (41):

Poo () = Mpd(x).

When ¢ > 1 the final state is a single peak located in the middle and,
as long as ¢ > 1/2, this situation persistsE] For smaller values of the
threshold ¢, it has been shown, by numerical simulations, that consensus
is not reached and the opinion evolves into clusters that are separated
by a distance larger than €. Once each cluster is isolated it evolves into a
Dirac delta function as in the case € > 1. The final distribution consists

4Asweuse PBC, e > 1 /2 in the simulations.
5Again, thanks to the PBC we get ¢ > 1/4 in the simulations.
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of a series of non interacting clusters at locations xz; with masses m;:

Poo(x) = Zmlé(x —x;),
i=1

where 7 is the number of evolving opinion clusters (41). All clusters must
fulfill the conservation laws > m; = My = 1, and > a;m; = M; = 0is
equal to the conserved mean opinion. All different clusters ¢ # j must
also fulfill |z; — ;| > €.

5.2 Results and Discussion

5.2.1 Models

The paper is a model study derived from the paper (29) on which we
provide evidence of the polarizing effect of different narratives and the
echo chamber structure of cascades. Hence, here we exploit the bounded
confidence proviso (i.e., interacting with an information/opinion iff this
is close enough to the agent state) that well mimics the confirmation bias
(i.e., acquiring information that adhere to a specific system of beliefs)
process.

Starting from the BCM we introduce three new models of opinion
dynamics and network evolution. The first model we consider is the
Rewire with Bounded Confidence Model (RBCM) that considers the
same framework as in BCM and involves two phases. In phase one
we run the rewiring steps in which each agent ¢ interacts with a ran-
domly chosen neighbor j and, if the distance between the two opin-
ions is above the tolerance ¢, ie. if |x; — z;|; > ¢, for e € [0,0.5]E]
then their link is broken and i is rewired to a randomly chosen agent
k € {1,...,N}/(Ng(i) U {i}). Phase one ends when all links have an
opinion distance below the tolerance ¢. In phase two we run the BCM on
the rewired network. As all the couples in the new network are agree-
ing, all the randomly chosen pairs will interact and readjust their opinion

according to Eq. (5.2).

®We restrict our attention to ¢ € [0, 0.5] after noticing that Vz,y € {1,..., N} we get
|z — y|+ € [0,0.5]. We will assume e € [0, 0.5] throughout the paper.
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The Unbounded Confidence Model (UCM) is the second of the mod-
els that we introduce and its novelty is to allow the interaction for every
randomly chosen pair of neighbors (4, j). To be specific, if two agents
agree, i.e. if |z; — z;|; < ¢, as for the previous model, we adjust z; and z;
by rule (5.2). However, if the distance between their opinions is above the
tolerance, i.e. if |z; — x|, > ¢, we use a new updating rule in Eq. that
enables us to replicate the empirically observed repulsion of disagreeing
opinions:

{xi = z; — pla; — xi — pla; — 7)) (53)

xj = xj — plr; — x5 — pli — z;)]

where the convergence parameter 4 is taken in the interval (0,0.5) and
p(.) is defined in Eq. (5.1). The adjustment p(.) ensures the PBC by main-
taining the opinions inside the interval [0,1]. The last model that we
introduce is the Rewire with Unbounded Confidence Model (RUCM)
that again allows the interaction for every randomly chosen pair of users
(4, 7) but at the same time allows for the random rewiring of disagreeing
pairs. Specifically, if |2; — x|, < ¢, then we adjust 2; and z; by rule (5.2).
If |x; — x|, > ¢, then we adjust z; and z; by rule , the link between
nodes i and j is broken, and a new link between 7 and a randomly chosen
user k € {1,..., N}\(Ng(i) U{i,7}) is created.

5.2.2 Simulation Results

We consider different types of complex networks in the simulations: The
Erdos-Rényi random network (ER) (103) characterized by a Poisson de-
gree distribution with average degree (2), the scale-free network (SF)
(104) characterized by a power-law degree distribution P(k) ~ k=7 with
2<~y< iﬂ and the small-world network (SW) (69) with rewiring prob-
ability equal to 0.2 and neighborhood dimension equal to 2. Here we
report results for the SF networks and while for those of the Erdos-Rényi
random network and the small-word network refer to Fig.

"The scale-free networks are created by using the classic implementation of the Barabdsi
and Albert model.
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Hence, we show the results of Monte Carlo simulations of the BCM

and the three new models on a SF network of 2000 nodes with the param-
eters (e, ) varying in the parameter space [0, 0.5] x [0,0.5], for T = 10°
time steps and we averaged our results over 5 repetitions. Note that
the final state, under the different parameters combinations, is always
reached before T' = 10°. Refer to Fig [27| for further details. Figure
shows the probability density functions (PDFs) of final opinion, after a
maximum of 10° time steps, for four different combinations of the pair
of parameters (¢, u): (g, 1) € {(0,0.05), (0,0.1), (0.2,0.05),
(0.2,0.1)}. The blue solid and the green dot-dashed curves refer to the
newly introduced RUCM and UCM respectively, while the violet dotted
curve is for BCM and the orange dashed for RBCM. For all the param-
eter choices we observe a bimodal opinion distribution in the cases of
RUCM and UCM (note that we assume periodic boundary conditions).
It is interesting to note that for UCM and RUCM there are two polarized
opinions also for ¢ = 0, while in that case BCM and RBCM show no
changes with respect to the initial uniform distribution.

Figure 24| reports a collection of summary statistics (mean, standard
deviation, 1st quantile, and 3rd quantile) of the final opinion distribu-
tions for varying ¢ and three different values of u (violet is for y = 0.05,
blue for ;1 = 0.25, and orange for = 0.5). The left column is for BCM,
the central one for UCM, and the right one for RUCM. We omit the results
for RBCM as we observe from the simulations that, after the rewiring
steps, the dynamics are similar to the BCM case but with a faster con-
vergence, refer to the Supplementary Information online for an in depth
analysis of the RBCM model. We observe different mechanisms for the
two newly introduced models, such as a faster convergence to the con-
sensus state for RUCM. However, we need to study the final number of
peaks to better characterize the differences between UCM and RUCM,
and to relate them with the results for the classical BCM.
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Figure 23: Probability density functions (PDFs) of final opinion, after a
maximum of 10° time steps or until convergence is reached, for four dif-
ferent combinations of the parameters (e, i1). In panel (a) we have (e, 1) =
(0,0.05), in panel (b) (¢, x) = (0,0.1), in panel (c) (&, u) = (0.2,0.05), and in
panel (d) (¢, #) = (0.2,0.1). In all panels the blue solid curve is for RUCM,
the green dot-dashed one for UCM, the violet dotted one for BCM, and the
pale orange dashed one for RBCM. We observe a bimodal distribution for
RUCM and UCM, representing the coexistence of two polarized stable opin-
ions.
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Figure 24: Summary statistics (mean, standard deviation, 1st quantile, and
3rd quantile) of the final opinion distributions for varying € and three differ-
ent values of p: violet denotes p = 0.05, blue denotes y1 = 0.25, and orange
denotes i = 0.5. The left column is for BCM, the central one for UCM, and

the right one for RUCM.
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5.2.3 Final Distribution of Peaks

We perform Monte Carlo simulations of the BCM, UCM, and RUCM on a
scale-free network of 2000 nodes with (¢, 1) € [0,0.5]x[0,0.5], for T’ = 10°
time steps, that are sufficient to reach the final state of the system under
the different parameters combinations (the results are averaged over 5
repetitions). Given the final distributions of opinions obtained by the
simulations, we compute the number of peaks of opinions as the local
maxima in the distribution of frequencies of opinions. To be specific,
we divide the interval [0,1] in 100 bins of length 0.01 and consider the
frequencies of values falling in each interval. We regard two peaks to be
separate if the distance between the middle points of the respective bins
is smaller than 0.1. All the results are averaged over 5 repetitions.

Figure 25[shows the final distribution of peaks for the BCM for vary-
ing (e,1) € [0,0.5] x [0,0.5]. The corresponding result for the RBCM
model is shown in Fig. The final peaks distribution complies with
theoretical (41} 42) and simulation (5) results from previous work. Fig-
ure [26| shows the final peaks distribution of UCM (panel a) and RUCM
(panel b) for varying (e, ) € [0,0.5] x [0,0.5]. For both models we ob-
serve a large area of the parameter space for which two final opinions
coexist. We register a faster convergence to the consensus state for the
RUCM (w.r.t UCM), that is due to the rewiring rule. Also, we observe
that for the RUCM there is a direct transition from many opinions to two
opinions, as well as from two opinions to consensus, while for the UCM
there is an intermediate area where 3 or 4 opinions emerge, respectively
shown in yellow and pale orange.

Comparing Figs. 25| and |26, we see that the new models, unlike the
BCM, are able to explain the coexistence of two stable final opinions,
often observed in reality. Another important difference with respect to
the BCM is that the ;s parameter assumes an important role in tuning the
number of final opinions peaks. The dependence of the number of final
peaks on the ;1 parameter is stronger for the RUCM, where we observe a
clear transition from many opinions to exactly two on the diagonal.
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Figure 25: Final peaks distribution for the BCM, with varying (e, ) €
[0,0.5] x [0,0.5]. The Monte Carlo simulations are carried on a scale-free
network with 2000 nodes for T = 10° time steps, that are sufficient to reach
the final state of the system under the different parameters combinations
(all results are averaged over 5 repetitions).



UCM (SF)

0.5-

0.45-

0.4-

0.35-
Num. Peaks

0.3- R

w 0.25-

0.2-

N o s eN

0.15-

0.1-

0.05-

0.05 0.10.15 0.20.25 0.30.35 0.40.45 0.5

(@)

RUCM (SF)

0.5-
0.45-
0.4-
0.35-
Num. Peaks
0.3-

w 0.25-

0.2-

N e oo s e N e

0.15-

0.1-

0.05-

0.05 0.10.15 0.20.25 0.30.35 0.40.45 0.5

(b)

Figure 26: Final peaks distributions for the UCM (a) and RUCM (b), with
varying (e, u) € [0,0.5] x [0,0.5]. The simulations are carried on a SF net-
work with 2000 nodes for 7' = 10° time steps, that are sufficient to reach the
final state of the system under the different parameters combinations.
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Figure 27/shows the summarizing statistics for the time steps needed
to reach the final state (under the different parameters combinations) by
boxplots. Black horizontal lines represent the median of the number of
steps needed, and the colored boxes represent the interquartile ranges
(i.e., the 25th-75th percentile ranges) and they statistically measure the
degree of dispersion and the skewness of each analyzed distribution.
Vertical lines (i.e., the whiskers) are lower and upper bounded by the
minimum and maximum values of the corresponding distribution, once
both outliers and extreme values are removed from the data. Individual
points represent the outliers of each analyzed distribution. From the left
to the right the boxplots refer ot the BCM, RBCM, and UCM.

10,000
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100

time steps

BCM RBCM ucMm
model

Figure 27: Boxplots of the time steps needed to reach the final state under
different combinations of the parameters (e, 1) € [0,0.5] x [0, 0.5]. From left
to right, results for BCM, RBCM, and UCM.
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5.24 Mean Field Approximation

For the RBCM, after the rewiring steps, all connected agents have an
opinion distance below ¢, meaning that they will always interact. The
time rate of change of P(x, t) is equal to:

1
W@t _ _ pap) / Pz +y, t)dy
ot B
1 172I u
o P(z + y, )P(x — ——y, t)dy.

Considerations analogous to the BCM case hold (see the Section Material
and Methods). A faster convergence scale is also observed in the simula-
tions.

In the UCM and RUCM case we consider two updating rules: rule
if the opinions (z;, z;) of the agents are close enough (|z; — z;|, < ¢) and
rule if they are not (|z; — x| > ¢). Thus the opinions will change
according to (z;, ;) — (24, ;)

Ts _ 1—ep+ (1 - 195)“ Vepp — (1 - 196),“ L
z; Vep— (1= e)p L=Dep+ (1 —=De)p Zj

+ (-9 <"(f”j _f”i)>,

o(zi — ;)

where 9. = ¥(¢ — |z; — xj|,)) is the Heaviside theta function that
equals 1 if ¢ — |z; — z;|; < 0, 0 otherwise, and g is defined in Eq. .
There are two ways in which the density of opinion x changes at every
time step t: either an agent moves away from x after an interaction (/7)
or she arrives in z after an interaction (I ). Let P(z, t)dz be the fraction
of agents whose opinion at time ¢ lies in the interval [z, z 4 dx], then its
time rate of change is:

OP(z,t)
ot

=TI (z,t)+ I (x,t).
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The negative part is defined as in the BCM case but for a wider interval:
1
I~ (z,t) = —]P’(:I:,t)/ P(z +y,t)dy,

-1

as I~ (z,t) is simply the probability that an agent with opinion x interacts
with some other agent and thus moves away from z. For I (z,t) we have
two terms depending on the distance of the initial opinions:

I't(z,t) = I (z,t) + I (z,1),

for the first term we get the same expression as in the BCM case:

1 e—2x L
I (z,t) = m/ , P(z +y,t)P(z — my’t)d:%
—e—2zx

For I (z,t) we have to consider the negative update in Eq. (5.3), and the
integrals are over the interval for which |z — z2|, > e:

Ht) = [ [P 0B + pn — (14 p)oe ~ po)doady
1

- _ @t pa = po
= (1—|—M) /dxl]P’(xl,t)/]P(xg,t)é(xg 1+/,l, )dl’g

1 _
_ 444,/ MmiW(m+Mym>M1
(1+p) |z1—x2|r 26 L+p

1 / n
= Pm+y,t)P<x+(y—Q)>dy7
(1 + M) [-1,—e—2z]U[e—2z,1] ( 1+p

where ¢ = 0,,_.,. Hence we obtain:

1
OP(z,t) _ _ ]P’(x,t)/ P(z +y, t)dy
ot )

1 /621 u
4+ — Pz +y, t)P(x — ——y, t)dy
(1 - :u’) —e—2x 1- 2

1 / "
+ P(x + y,t)P (a:+ —(y — Q)) dy.
(1 + 1u‘) [-1,—e—2z]U[e—2z,1] I+p

When all agents interact positively, i.e. when ¢ > 1/2, the third term of
the rate equation disappears and we are again in the BCM case, where
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consensus is reached asymptotically and:
P (x) = Myd(z).

From simulations results, we notice that the final state is a single peak as
long as € € (0.45,0.5) for the UCM, or ¢ € (0.3,0.5) for the RUCM (with
the exception of those points for which  is near to zero).

Unlike the BCM, in the new models the parameter p plays an impor-
tant role in the evolution of the distribution of opinions. For both UCM
and RUCM we have the coexistence of two opinions in the final state for
a wide region of the (e, ;1)-plane, this region varies for the two models,
in particular the faster convergence to the consensus state for the RUCM
is due to the rewiring rule. For smaller values of ¢, and outside the two
opinions region, we show by numerical simulations that consensus is not
reached, and many opinions at distance larger than ¢ coexist.

5.2.5 Simulation Results for RBCM

The RBCM differs from the standard BCM in the first phase, where a
series of random rewiring steps is performed until all couples in the net-
work agree meaning that the difference between the opinions of the two
endpoints of each link is smaller than e. Through this procedure we ob-
tain a network in which all randomly chosen pairs of users interact and
hence the consensus is reached also for smaller values of . In Fig.
we show the estimated mean number of steps needed to get the fully
concordant network as a function of ¢, where the results are averaged
over 50 realizations. The decay of the estimated mean number of steps is
best fitted by the power law az ", where the parameters a = 5.105 and
b = 1.072 are obtained through Nonlinear Least Square (NLS) fitting.

Figure[29shows the final distribution of peaks for the RBCM for vary-
ing (e,p) € [0,0.5] x [0,0.5]. We notice that consensus is reached for
smaller values of € w.r.t the BCM. Indeed, while for BCM consensus is
reached for € > 0.25, for RBCM we get it for € > 0.15.
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Figure 28: Estimated mean number of steps needed to get the fully agree-
ing network as a function of € (dashed blue curve). The results are averaged
over 50 realizations. The decay of the estimated mean number of steps is
best fitted by the power law az " (solid orange curve), where the parame-
ters a = 5.105 and b = 1.072 are obtained through (NLS) fitting.
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Figure 29: Final peaks distribution for the RBCM, with varying (e, ) €
[0,0.5] x [0,0.5]. The Monte Carlo simulations are carried on a scale-free
network with 2000 nodes for 7' = 10° time steps, that are sufficient to reach
the final state of the system under the different parameters combinations
(all results are averaged over 5 repetitions).

5.2.6 Simulation Results for ER and SW

In this section we report the simulation results for the Erd6s-Rényi ran-
dom network (ER) and the small-word network (SW). We perform Monte
Carlo simulations of the BCM, RBCM, UCM, and RUCM on both ER
and SW networks, considering N = 2000 nodes and the parameters
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(e,pu) € [0,0.5] x [0,0.5] (the results are averaged over 5 repetitions).
Given the final distributions of opinions obtained by the simulations,
we compute the number of peaks of opinions as the local maxima in
the distribution of frequencies of opinions. To be specific, we divide the
interval [0, 1] in 100 bins of length 0.01 and consider the frequencies of
values falling in each interval. We regard two peaks to be separate if the
distance between the middle points of the respective bins is smaller than
0.1. All the results are averaged over 5 repetitions.

Figure [30| shows the final distribution of peaks of BCM, respectively
for ER (a) and SW (b), and RBCM, respectively for ER (c) and SW (d).
While, Fig. [31{ shows the final peaks distribution of UCM, respectively
for ER (a) and SW (b), and RUCM, respectively for ER (c) and SW (d). In
all cases we observe a behavior that is qualitatively similar to the SF case.

For both networks RBCM ensures a faster convergence wrt the BCM.
Also, UCM and RUCM present a wide area of the parameters space in
which two separate opinions coexist. For the newly introduced models
we observe a similar behavior on the two different networks and on the
scale-free one, in Fig.
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Figure 30: Final distribution of peaks for the BCM, respectively for ER (a)
and SW (b), and RBCM, respectively for ER (c) and SW (d), with varying
(e,p) € [0,0.5] x [0,0.5]. The Monte Carlo simulations are carried on a
Scale-Free network with 2000 nodes for 7' = 10° time steps, that are suf-
ficient to reach the final state of the system under the different parameters
combinations (all results are averaged over 5 repetitions).
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Figure 31: Final distribution of peaks for the UCM, respectively for ER (a)
and SW (b), and RUCM, respectively for ER (c) and SW (d), with varying
(e,p) € [0,0.5] x [0,0.5]. The Monte Carlo simulations are carried on a
Scale-Free network with 2000 nodes for 7' = 10° time steps, that are suf-
ficient to reach the final state of the system under the different parameters
combinations (all results are averaged over 5 repetitions).
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5.3 Concluding Remarks

In recent years opinion dynamics has attracted much interest from the
fields of both statistical physics and social science. In classical mod-
els such as the Sznajd model, the voter model, the majority rule model,
and the bounded confidence model, consensus is eventually reached,for
values of the tolerance parameter big enough. However, in face-to-face
and online opinion exchanges, consensus is not commonly achieved, and
classical models fail to explain this empirically observed fact.

We propose a model of opinion dynamics capable of reproducing the
empirically observed coexistence of two stable opinions. We assume the
basic updating rule of the BCM and we develop two variations of the
model: the Rewire with Bounded Confidence Model (RBCM), in which dis-
cordant links are broken until convergence is reached; and the Unbounded
Confidence Model, under which the interaction among discordant pairs of
users is allowed and a negative updating rule is introduced, either with
the rewiring step (RUCM) or without it (UCM).

From numerical simulations we find that the new models (UCM and
RUCM), unlike the BCM, are able to explain the coexistence of two stable
final opinions, often observed in reality. Another important difference
with respect to the BCM is that the convergence parameter ; assumes
an important role in tuning the number of final opinions peaks; hence,
in our model the speed at which opinions converge/diverge allows to
change the final opinion landscape. Lastly, we derive a mean field ap-
proximation of all the three new models.
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Chapter 6

Conclusions and Future
Works

In this chapter we outline the main contributions of the thesis and we
sketch some possible future works in the same direction.

The works collected in this thesis address different aspects of the on-
line social dynamics, from the spreading of misinformation to the emer-
gence of echo chambers and group polarization. We provide evidences
that the diffusion of information, either substantiated or not, is promoted
by confirmation bias and homophily. This process in turn generates and
fosters the formation of homogeneous polarized clusters, the echo cham-
bers (29). Users’ emotional behavior seems to be affected by their en-
gagement within the community. An higher involvement in the echo
chamber resolves in a more negative emotional state (29). Putting all
results together, we are able to well characterize online information dif-
fusion and the dynamics of polarized groups, inside which users are only
reached by information confirming their previous beliefs while they ig-
nore dissenting ones (64). We validate our observations by developing
a model of opinions formation that takes into account both confirmation
bias and social influence as triggering factors for the group polarization
on social networks (31). Our model is able to reproduce the dynamics we
observe on Facebook.
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However many aspects of opinion formation remain unexplored.
Among these we are interested in the dynamics of non consensus under
which many (more often two) conflicting opinions coexist. In particular,
we want to investigate under which conditions minority opinions sur-
vive. The problem has been widely explored, a non consensus opinion
model (NCO) proposed in (8}/44) allows for the stable coexistence of two
opinions by also considering the opinion of the user herself when apply-
ing the majority rule update. The model was further refined by investi-
gating the competition between two groups holding dissenting opinions.
To this end, authors introduce a set contrarians in one of the two and ob-
serve the survival of minorities under this new condition. The survival
of a two-opinions state is studied in (14) from a different point of view,
considering the emergence of spontaneous recovery of failed nodes and
the majority rule update. Both these models assume only two opinion
states (1) and a majority rule update, with the novelty of accounting
for the individual opinion and for an external source of influence.

Conversely, we are interested in exploring the non consensus dynam-
ics in a continuous range of opinions, e.g., with opinions uniformly dis-
tributed in the interval [—1, 1], where the opinion indicates a degree of
acceptance of a certain topic. We would allow agents to change their
opinions under the conjugate influence of the social contacts and some
form of mainstream advertising of the topic. Moreover, the opinion up-
date would be either positive, if the distance between two agents” opin-
ions is below a certain threshold, or negative if it is not. The relevance
and novelty of this approach lies mainly in the fact that agents may up-
date their opinion of the topic on the basis of both internal (their current
opinion) and external (friends, advertising) forces. The dual nature of
external forces also embodies two different kinds of influence: social in-
fluence and persuasion.

In addition, we are interested in developing new metrics able to cap-
ture the criticality of online information, both in terms of their potential
virality and their degree of trustworthiness. In the specific, one way to
proceed is by characterizing the user response to different information
types, and under different environments, i.e., echo chambers. Along this
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path, we are interested in exploring the users’ response to a wider range
of information, that includes informations coming from accredited news
sources. A particular emphasis has to be devoted to those topics that can
be considered as controversial, e.g., the danger of vaccination, the Brexit.
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Appendix A

Other Works

In this section we will report a summary of the main findings produced
by our research activity (21} 164} [83} 85} [105; [106; [107), other than those
presented in Chapters[3} 4, and 5} at the time of the thesis submission.

The free accessibility of online information, and the possibility for ev-
eryone to produce and diffuse personal interpretations of it, is a distinc-
tive feature of our age. Moreover, in the majority of cases online alter-
native information channels offer unsubstantiated and unverified news.
In this hyperconnected and multiple information source environment,
getting lost and eventually consume unsubstantiated news is extremely
easy. For instance, the World Economic Forum listed massive digital mis-
information as one of the main risks for the modern society (27; 28).

Recent works (20} [65) analyzed the users’ approach toward unsub-
stantiated claims, underlying the differences between users’ systems of
believes. Individuals that are prone to consume unverified informations
are also more likely to consume in the same way intentionally injected
false claims. Our research originates by these previous work and en-
hances the knowledge about the topic under analysis in terms of find-
ing the driving forces behind viral processes as well as their measurable
socio-cognitive determinants, e.g., attention, polarization toward a given
content, and testing users’ response to debunking campaigns.
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A.1 Social Determinants of Content Selection
in the Age of (Mis) Information

In this workﬂ we perform a quantitative analysis of the information con-
sumption patterns relative to different contents: conspiracy-like theories
and scientific news. Our dataset includes about 1.2 millions users on
the Italian Facebook and the data collection covers a time period of five
years (2010-2014). Conspiracy-like theories tend to reduce the complex-
ity of reality by explaining significant social or political aspects as plots
conceived by powerful individuals or organizations. On the other hand
science news promote the diffusion of scientific advances, their sources
are usually referenced and the contents peer-reviewed. Our analysis tar-
gets the quantitative understanding of the social determinants related to
content selection, information consumption, and beliefs formation and
revision.

We first show the existence of similar consumption patterns of infor-
mation supporting different (and opposite) worldviews. Then, we mea-
sure the social response of polarized users of alternative news to 4502
debunking memes (information aiming at correcting the diffusion of un-
substantiated claims) for increasing level of user engagement, i.e., the
number of likes of a user in the category which she belongs to, on the
preferred category of information (scientific news and conspiracy-like
theories).

Figure[B2|shows the quantile discretization of the survival probability
distribution for increasing level of users engagement of usual consumers
of conspiracy-like theories exposed (panel a) and not exposed (panel b)
to debunking memes. We find that polarized users| of conspiracy-like
claims interacting with debunking are more likely to interact again with
conspiracy rumors.

1The content in this section is part of the paper (21), published in the proceeding of the
International Conference on Social Informatics, 2014. It is a joint work with Alessandro
Bessi, Prof. Guido Caldarelli, Dr. Antonio Scala, and Dr. Walter Quattrociocchi.

2We say a user to be polarized on science (respectively, on conspiracy) if she left more
than 95% of her likes on science (respectively, on conspiracy) posts.
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Figure 32: Quantile discretization of the survival probability distribution of
conspiracy users against their level of engagement ¢ exposed (panel a) and
not exposed (panel b) to posts debunking conspiracy theses.

A.2 Homophily and Polarization in the Age of
Misinformation

In this worlﬂ we analyze a sample of 1.2M Facebook Italian users con-
suming scientific news and conspiracy-like theories. Our findings show
that users’” engagement on a specific content correlates with the number
of friends having similar consumption patterns (homophily). We then
test the relationship between the usual exposure (polarization) to undoc-
umented rumors (conspiracy stories) with respect to the permeability to
deliberate false information (4,709 intentional satirical false claims).

Our work provides important insights about the understanding of
the diffusion of unverified rumors. Figure [33|shows the log-linear plot
of the average fraction y(u) of friends with the same polarization of user
u, for users polarized in science (left panel) and conspiracy (right panel).
Figure[B3|suggests in both cases a linear correlation among the variables;

3The content in this section is part of the paper (85), to appear in European Journal
of Physics, Special Topics. It is a joint work with Alessandro Bessi, Fabio Petroni, Fabiana
Zollo, Dr. Aris Anagnostopoulos, Dr. Antonio Scala, Prof. Guido Caldarelli, and Dr. Walter
Quattrociocchi.
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Figure 33: Left panel: scientific polarized users. Right panel: conspiracy
polarized users. In both panels, for a polarized user u, we plot the fraction
of polarized friends with the same polarization (full red circles for scientific,
full blue triangles for conspiracy) with respect to the logarithm of the num-
ber of likes In(?(u)) of user u. Full lines are the results of a linear regression
model y(u) = Bo + f11In(¥(u)). Coefficients are estimated using ordinary
least squares; in both cases, all the p-values are close to zero.

thus, we check whether for a polarized user u, the fraction of polarized
friends in its category y(u) can be predicted by means of a linear regres-
sion model where the explanatory variable is a logarithmic transforma-
tion of the number of likes ¥(u), i.e.

y(u) = Bo + S In(d(w)).

Coefficients are estimated using ordinary least squares, all the p-values
are close to zero.

We show that through polarization, we can detect homophily clus-
ters where misleading rumors are more likely to spread. Conversely,
such social patterns might represent serious warnings about the effects
of current algorithmic specifications for content provisioning. Indeed,
the tendency to aggregate in homophile clusters might foster social rein-
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forcement and confirmation bias, and thus polarization.

A.3 Modeling Networks with a Growing Feature-
Structure

We present a new network modeﬁ accounting for homophily and triadic
closure in the evolution of social networks. In particular, in our model,
each node is characterized by a number of features and the probability
of a link between two nodes depends on common features. We do not fix
a priori the total number of possible features (avoiding a model selection
problem for the dimension of the feature-space). The bipartite network
of the actors and features evolves according to a stochastic dynamics that
depends on three parameters that respectively regulate the preferential
attachment in the transmission of the features to the nodes, the number
of new features per node, and the power-law behavior of the total num-
ber of observed features. We provide theoretical results and statistical
estimators for the parameters of the model. We validate our approach by
means of simulations and an empirical analysis of a network of scientific
collaborations.

A.4 Trend of Narratives in the Age of Misinfor-
mation

In this workﬂ we analyze a collection of conspiracy-like theories sources
in the Italian Facebook over a time span of 4 years. Through a semiauto-
matic topic extraction strategy, we find that the most discussed contents
refer to four well specified semantic categories (or topics): environment,
diet, health, and geopolitics. Contents belonging to the different cate-

4The content in this section is part of the paper (I05), available as pre-print at
arXiv:1504.07101. It is a joint work with Prof. Irene Crimaldi, Dr. Greg Morrison, Dr.
Walter Quattrociocchi, and Prof. Massimo Riccaboni.

5The content in this section is part of the paper (106), published in PloS ONE. It is a joint
work with Alessandro Bessi, Fabiana Zollo, Dr. Antonio Scala, Prof. Guido Caldarelli, and
Dr. Walter Quattrociocchi.
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gories (or topics) are consumed in a very similar way by their respective
audience, i.e, users activity in terms of likes and comments on posts be-
longing to different categories are similar and resolves in comparable in-
formation consumption patterns. Conversely, if we focus on the lifetime,
i.e., the distance in time between the first and the last comment for each
user, we notice a remarkable difference within topics. Users polarized
on geopolitics subjects are the most persistent in commenting, whereas
the less persistent users are those focused on diet narratives. Finally, by
analyzing mobility of users across topics, we find that users can jump in-
dependently from one topic to another, and such a probability increases
with the user engagement. Users once inside the conspiracy corpus tend
to join the overall corpus. This work provides important insights about
the fruition of conspiracy-like rumors in online social media and more
generally about the mechanisms behind misinformation diffusion.

A.5 Emotional Dynamics in the Age of Misin-
formation

In this papelﬂ we analyze a collection of conspiracy and scientific news
sources in the Italian Facebook over a time span of four years (2010 to
2014). We target emotional dynamics inside and across the two polar-
ized communities. In particular, we apply sentiment analysis techniques
to the comments of the Facebook posts, and study the aggregated sen-
timent with respect to scientific and conspiracy-like information. The
sentiment analysis is based on a supervised machine learning approach,
where we first annotated a substantial sample of comments, and then
build a Support Vector Machine classification model.

We focus on the emotional behavior of about 280k Facebook Italian
users and perform a quantitative analysis showing that the sentiment on
conspiracy pages tends to be more negative than that on science pages.
Figure 34| (top) shows the proportions of negative, neutral, and posi-

6The content in this section is part of the paper (83), published in PloS ONE. It is a joint
work with Fabiana Zollo, Dr. Petra Kralj Novak, Alessandro Bessi, Prof. Igor Mozetic, Dr.
Antonio Scala, Prof. Guido Caldarelli, and Dr. Walter Quattrociocchi.
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tive comments, posts, and users, both on science and conspiracy pages.
When considering polarized users we capture an overall increase of the
negativity of the sentiment. In Figure 34| (bottom) we show the mean sen-
timent of polarized users as a function of their number of comments.
According to our results, the more active polarized users are, the more
they tend to be negative, both on science and conspiracy.

A.6 Debunking in a World of Tribes

In this papelﬂ we examine the effectiveness of debunking through a quan-
titative analysis of 54 million users over a time span of five years (Jan
2010, Dec 2014). In particular, we compare how users interact with proven
(scientific) and unsubstantiated (conspiracy-like) information on Face-
book in the US. As a first step we characterize how distinct types of in-
formation — belonging to the two different narratives — get consumed
on Facebook. We define the user polarization p € [—1, 1] as the ratio of
likes (or comments) on conspiracy posts. In Figure 35| we show that the
probability density function (PDF) for the polarization of all the users is
a sharply peaked bimodal. The vast majority of users is polarized either
towards science (p(u) ~ —1) or conspiracy (p(u) ~ 1). Findings confirm
the existence of echo chambers where users interact primarily with either
conspiracy-like or scientific pages.

To understand whether online debunking campaigns against false ru-
mors are effective, we measure the response of usual consumers of con-
spiracy stories to 47,713 debunking posts. A first interesting result con-
sists in finding that only a very small fraction of users interacts with de-
bunking posts, i.e., they have commented a debunking post at least once.
In Figure 36| we show the survival functions of conspiracy users exposed
and not exposed to debunking posts. Notice that the persistence of usersﬂ

"The content in this section is part of the paper (64), available as a pre-print at
arXiv:1509.00189. It is a joint work with Fabiana Zollo, Alessandro Bessi, Dr. Antonio
Scala, Prof. Guido Caldarelli, Louis Shekhtman, Prof. Shlomo Havlin, and Dr. Walter
Quattrociocchi.

8The persistence of a user is defined as the number of days between her first and last
like (resp., comment) on a conspiracy post.
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Figure 34: Top: Sentiment on science and conspiracy pages. Proportions
of negative, neutral and positive comments (left), posts (center), and users
(right) both on science and conspiracy pages. Bottom: Sentiment and com-
menting activity. Average sentiment of polarized users as a function of their
number of comments. Negative (respectively, neutral, positive) sentiment
is denoted by red (respectively, yellow, blue) color. The sentiment has been
regressed w.r.t. the logarithm of the number of comments.
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Figure 35: Users polarization. Probability density functions (PDFs) of the
polarization of all users computed on likes (left) and comments (right).

exposed to debunking is clearly greater than that of not exposed users.

Those few conspiracy users interacting with debunking, rather than
internalizing debunking information, often react to it negatively. Indeed,
after interacting with debunking posts, users retain, or even increase,
their engagement within their echo chamber. According to our results,
current debunking campaigns do not seem to be the best options. Our
findings suggest that the main problem behind misinformation is conser-
vatism rather than gullibility. When users are faced in online discussion
with untrusted opponents the discussion resolves in a major commit-
ment with respect to their own echo chamber.

A.7 UserPolarization on Facebook and Youtube

In this paperﬂ using a quantitative analysis on a massive dataset (12M
of users), we compare consumption patterns of videos supporting sci-
entific and conspiracy-like news on Facebook and Youtube. We extend
our analysis by investigating the polarization dynamics, i.e. how users

9The content in this section is part of the paper (107), to appear in PloS ONE. It is a joint
work with Alessandro Bessi, Fabiana Zollo, Dr. Michelangelo Puliga, Dr. Antonio Scala,
Prof. Guido Caldarelli, Dr. Brian Uzzi, and Dr. Walter Quattrociocchi.
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Figure 36: Exposure to debunking. Kaplan-Meier estimates of survival
functions of users exposed and not exposed to debunking. Users lifetime
is computed both on their likes (left) and comments (right).

become polarized comment after comment. On both platforms, we ob-
serve that some users interact only with a specific kind of content since
the beginning, whereas others start their commenting activity by switch-
ing between contents supporting different narratives.

Figure 37| shows the Probability Density Functions (PDFs) of how
users distribute their comments on science news and conspiracy-like the-
ories posts (polarization) on both Facebook and YouTube. We observe
sharply peaked bimodal distributions. Users concentrate their activity
on one of the two narratives. To quantify the degree of polarization we
use the Bimodality Coefficient (BC), and we find that the BC is very high
for both Facebook and YouTube. Two well separated communities sup-
port competing narratives in both online social networks. Content has a
polarizing effect, indeed, users focus on specific types of content and ag-
gregate in separated groups independently of the platform and content
promotion algorithm.
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Figure 37: Polarization on Facebook and YouTube. The PDFs of the polar-
ization g show that the vast majority of users is polarized towards one of
the two conflicting narratives, i.e. science and conspiracy, on both Facebook
and YouTube.
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