
Algorithms for Metric Properties
of Large Real-World Networks

From Theory to Practice and Back

Ph.D. Program: Computer, Decision, and System Science
Curriculum: Computer Science

Cycle: XXIX

Ph.D. Student
Michele Borassi

Advisor
Prof. Pierluigi Crescenzi

Università di Firenze

Co-advisor
Prof. Rocco De Nicola

IMT School for Advanced Studies
Lucca

October 29, 2016

The dissertation of Michele Borassi is approved.

Program Coordinator: Prof. Rocco De Nicola
IMT School for Advanced Studies Lucca

Advisor: Prof. Pierluigi Crescenzi
Università di Firenze

Co-advisor: Prof. Rocco De Nicola
IMT School for Advanced Studies Lucca

The dissertation of Michele Borassi has been reviewed by:

First reviewer: Prof. Tim Roughgarden
Stanford University

Second reviewer: Prof. Ulrik Brandes
University of Konstanz

Third reviewer: Prof. Kurt Mehlhorn
Max Planck Institute for Informatics (Saarbrücken)

IMT School for Advanced Studies Lucca

October 29, 2016

http://www.imtlucca.it

To my family:
especially, the one

that my fiancée and I
will start with our wedding!

Contents

Contents vii

Vita xi

Publications xiii

List of Figures xv

List of Tables xvii

List of Notations xxi

Acknowledgments xxvii

Abstract xxix

1 Introduction 1
1.1 Foundations and Related Work . 3

1.1.1 Worst-Case Polynomial Reductions . 3
1.1.2 Efficient Algorithms on Complex Networks 4
1.1.3 Random Graphs and Probabilistic Analyses 4

2 Preliminaries 7
2.1 Basic Graph Definitions . 7
2.2 Metric Properties of Graphs . 9
2.3 Problems Studied in This Thesis . 11
2.4 Complexity of Computing Metric Quantities 13

3 Lower Bounds in the Worst-Case 17
3.1 Our Contribution . 18
3.2 Problem Definitions . 21
3.3 The Orthogonal Vector Conjecture and the Hitting Set Conjecture 23

3.3.1 The Orthogonal Vector Conjecture . 23
3.3.2 The Hitting Set Conjecture . 25
3.3.3 Implications Between Conjectures (∗) 26

3.4 Proof of the Other Reductions (∗) . 27
3.5 Bibliographic Notes . 39

4 Computing Diameter and Radius: the SumSweep Algorithm 41
4.1 Our Contribution . 42
4.2 Notations and Preliminary Definitions . 42
4.3 The SumSweepHeuristic . 44
4.4 The ExactSumSweep Algorithm . 45

viii Contents

4.4.1 StepForward and StepBackward 46
4.4.2 AllCCUpperBound (∗) . 46
4.4.3 SingleCCUpperBound (∗) . 48
4.4.4 Running Time Analysis . 50
4.4.5 Particular Cases . 51
4.4.6 Choosing the Technique to Use . 52

4.5 Experimental Results . 53
4.5.1 Lower Bounding the Diameter . 53
4.5.2 Computing the Radius and the Diameter 54

4.6 Detailed Experimental Results . 56
4.6.1 Dataset . 56
4.6.2 The SumSweep Heuristic . 59
4.6.3 Computing Radius and Diameter . 61

4.7 Internet Movies Database Case Study . 63
4.7.1 Analysis of the Graph Stretch . 64
4.7.2 Analysis of the Eccentricity of Actors 64
4.7.3 The Six Degrees of Separation Game 65

4.8 Wikipedia Case Study . 65
4.9 Bibliographic Notes . 66

5 Computing Closeness Centrality: the BCM Algorithm 67
5.1 Related Work . 68
5.2 Overview of the Algorithm . 69
5.3 The computeBoundsNB Function . 71
5.4 The updateBoundsBFSCut Function . 74
5.5 The updateBoundsLB Function . 76
5.6 The Directed Disconnected Case (∗) . 78

5.6.1 The computeBoundsNB Function (∗) 79
5.6.2 The updateBoundsBFSCut Function (∗) 79
5.6.3 The updateBoundsLB Function (∗) . 80
5.6.4 Computing α(s) and ω(s) . 80

5.7 Experimental Results . 80
5.7.1 Comparison with the State of the Art 81
5.7.2 Real-World Large Networks . 83
5.7.3 Detailed Experimental Results . 84

5.8 Internet Movies Database Case Study . 89
5.9 Wikipedia Case Study . 90
5.10 Bibliographic Notes . 92

6 Computing Betweenness Centrality: the KADABRA Algorithm 93
6.1 Our Contribution . 94
6.2 Related Work . 95

6.2.1 Computing Betweenness Centrality . 95
6.2.2 Approximating the Top-k Betweenness Centrality Set 95
6.2.3 Adaptive Sampling . 95
6.2.4 Balanced Bidirectional Breadth-First Search 96

6.3 Algorithm Overview . 96
6.4 Correctness of the Algorithm (∗) . 99
6.5 Balanced Bidirectional BFS . 101
6.6 How to Choose ηL(v), ηU (v) . 102
6.7 Computing the k Most Central Nodes (∗) . 103
6.8 Experimental Results . 105

6.8.1 Comparison with the State of the Art 105
6.8.2 Detailed Experimental Results . 107

Contents ix

6.9 Internet Movies Database Case Study . 111
6.10 Wikipedia Case Study . 121
6.11 Bibliographic Notes . 121

7 Computing Hyperbolicity: the hyp Algorithm 123
7.1 The Currently Best Available Algorithm: ccl 125
7.2 The New Algorithm: hyp . 126

7.2.1 Overview . 127
7.2.2 Acceptable and Valuable Nodes . 128

7.3 Experimental Results . 130
7.4 Hyperbolicity of Real-World Graphs . 132

7.4.1 Using the Classical Definition . 133
7.4.2 Average Hyperbolicity and Democracy 134
7.4.3 Hyperbolicity of Neighborhoods . 137

7.5 Synthetic Graphs . 140
7.6 Bibliographic Notes . 141

8 Probabilistic Analysis of Algorithms 143
8.1 The Model . 147
8.2 The Axioms . 148
8.3 Consequences of the Axioms . 150
8.4 The Sampling Algorithm to Lower Bound the Diameter 155

8.4.1 Probabilistic Analysis (∗) . 155
8.5 The 2-Sweep Heuristic . 156

8.5.1 Experimental Results . 156
8.5.2 Probabilistic Analysis (∗) . 157

8.6 The 4-Sweep Heuristic . 158
8.6.1 Experimental Results . 158
8.6.2 Probabilistic Analysis . 158

8.7 The RW Algorithm . 159
8.7.1 Worst-Case Analysis (∗) . 159
8.7.2 Probabilistic Analysis (∗) . 161

8.8 The SumSweepHeuristic . 162
8.8.1 Probabilistic Analysis (∗) . 162

8.9 The iFub Algorithm . 163
8.9.1 Experimental Results . 164
8.9.2 Probabilistic Analysis (∗) . 165

8.10 The ExactSumSweep Algorithm . 166
8.10.1 Probabilistic Analysis (∗) . 166

8.11 The BCM Algorithm . 169
8.11.1 Probabilistic Analysis (∗) . 169

8.12 The AIY Distance Oracle . 172
8.12.1 Experimental Results . 173
8.12.2 Probabilistic Analysis (∗) . 174

8.13 BBBFS . 179
8.13.1 Experimental Results . 179
8.13.2 Probabilistic Analysis . 181

8.14 Validity of the Axioms in Real-World Graphs: Experimental Evaluation . . . 182
8.15 Validity of the Axioms in Random Graphs: Proof Sketch 185
8.16 Bibliographic Notes . 187

9 Conclusions and Open Problems 189

x Contents

A Proof of the Validity of the Axioms in Real-World Graphs 191
A.1 Probabilistic Preliminaries . 191
A.2 Big Neighborhoods . 193

A.2.1 Configuration Model . 193
A.2.2 Inhomogeneous Random Graphs . 196

A.3 Small Neighborhoods . 198
A.3.1 Proof for the Configuration Model . 199
A.3.2 Proof for Rank-1 Inhomogeneous Random Graphs 200
A.3.3 Bounds for Branching Processes . 203
A.3.4 Bounds on Neighborhood Sizes . 205

A.4 The Case 1 < β < 2 . 208
A.5 Applying the Probabilistic Bounds . 212
A.6 Proof of Theorem 8.32 . 212
A.7 Other Results . 215

Bibliography 217

Index 229

Technical sections are marked with (∗).

Vita

May 18, 1989 Born in Milan

2008-2011 Bachelor degree in Mathematics
University of Pisa
110/110 cum laude

2008-2011 First Level Diploma
Scuola Normale Superiore

2011-2013 Master degree in Mathematics
University of Pisa
110/110 cum laude

2011-2013 Second Level Diploma
Scuola Normale Superiore
70/70 cum laude

2013-2016 Ph.D. Student
IMT School for Advanced Studies Lucca

Publications

Michele Borassi, Pierluigi Crescenzi, Michel Habib, Walter A. Kosters, Andrea Marino, and
Frank W. Takes. On the solvability of the Six Degrees of Kevin Bacon game - A faster graph
diameter and radius computation method. In Proceedings of the 7th International Conference
on Fun with Algorithms (FUN), pages 57–68, 2014

Michele Borassi, Pierluigi Crescenzi, Michel Habib, Walter A. Kosters, Andrea Marino, and
Frank W. Takes. Fast diameter and radius BFS-based computation in (weakly connected)
real-world graphs - With an application to the Six Degrees of Separation games. Theoretical
Computer Science, 586:59–80, 2014

Michele Borassi, David Coudert, Pierluigi Crescenzi, and Andrea Marino. On computing
the hyperbolicity of real-world graphs. In Proceedings of the 23rd European Symposium on
Algorithms (ESA), pages 215–226. Springer, 2015

Michele Borassi, Alessandro Chessa, and Guido Caldarelli. Hyperbolicity measures democracy
in real-world networks. Physical Review E, 92(3):032812, 2015

Michele Borassi, Pierluigi Crescenzi, and Andrea Marino. Fast and simple computation of
top-k closeness centralities. arXiv preprint 1507.01490, 2015

Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the square - On the complexity
of some quadratic-time solvable problems. Electronic Notes in Computer Science, 322:51–67,
2016

Michele Borassi and Emanuele Natale. KADABRA is an adaptive algorithm for betweenness
via random approximation. In Proceedings of the 24th European Symposium on Algorithms,
2016

Michele Borassi. A Note on the Complexity of Computing the Number of Reachable Vertices
in a Digraph. Information Processing Letters, 116(10):628–630, 2016

Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea Marino, and Henning
Meyerhenke. Computing top-k closeness centrality faster in unweighted graphs. In Proceedings
of the Meeting on Algorithm Engineering and Experiments (ALENEX), pages 68–80, 2016

Michele Borassi, Pierluigi Crescenzi, and Luca Trevisan. An axiomatic and an average-case
analysis of algorithms and heuristics for metric properties of graphs. In Proceedings of the
27th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017. Accepted

List of Figures

2.1 An example of undirected graph, where n = 5 and m = 5. 8
2.2 An example of directed graph, where n = 5 and m = 6. 8
2.3 The strong component graph corresponding to the graph in Figure 2.2. 8
2.4 A heat map that highlights central vertices according to betweenness and close-

ness centrality. 11

3.1 Reductions for hardness results. 19
3.2 The reduction used to prove the hardness of the MaximumClosenessCen-

trality problem. 28
3.3 The reduction used to prove the hardness of the Radius problem. 29
3.4 The reduction used to prove the hardness of the BetweennessCentrali-

tyNode problem. 30
3.5 The reduction used to prove the hardness of the NumReachableNodes prob-

lem. 31
3.6 The reduction used to prove the hardness of the LinIndexMaximum problem. 33
3.7 The reduction used to prove the hardness of the ClosenessCentralityMin-

imum problem. 35
3.8 The reduction used to prove the hardness of the Bipartite3DominatingSet

and the BipartiteSubset2DominatingSet problems. 37
3.9 The reduction used to prove the hardness of the DominatedNode problems. 37
3.10 The reduction used to prove the hardness of the DiameterSplitGraph2Or3

problem. 38
3.11 The reduction used to prove the hardness of the Hyperbolicity problems. . 39

4.1 An example of weakly connected graph, with the corresponding strong compo-
nent graph. 43

4.2 Actor graph evolution in terms of radius, diameter, and actor eccentricity. . . 64

5.1 Visualization of the Neighborhood-based lower bound on trees (used in the
BCM algorithm). 72

5.2 Improvement factor of the algorithm BCM for closeness centrality, in increasing
snapshots of the actor graph. 89

6.1 Comparison of betweenness centrality algorithms (running time). 106
6.2 Efficiency of the balanced bidirectional BFS. 106
6.3 Comparison of betweenness centrality algorithms (number of paths sampled). 107
6.4 Running time of the KADABRA algorithm for betweenness centrality in the

actor collaboration network. 112

7.1 Definition of hyperbolicity: intuition. 124
7.2 Comparison of hyperbolicity algorithms. 131
7.3 Hyperbolicity of various real-world graphs. 134

xvi List of Figures

7.4 Average hyperbolicity of a quadruple of nodes, in various real-world graphs. . 136
7.5 Hyperbolicity of neighborhoods of the node with largest degree, in various

networks. 137
7.6 Hyperbolicity of neighborhoods of a random node, in various networks. 138
7.7 Discrete derivative of the hyperbolicity of neighborhoods of a node, in various

networks. 138
7.8 First neighborhood with large hyperbolicity. 139
7.9 Hyperbolicity of random graphs. 140

8.1 Results of our probabilistic analyses. 145
8.2 Visualization of the definition of τ s (nx). 149
8.3 A visualization of the analysis of the RW algorithm. 160
8.4 An intuition of the proof of the correctness of the iFub algorithm. 164
8.5 Label size obtained by the AIY distance oracle. 174
8.6 A probabilistic upper bound on the average query time of the AIY distance

oracle. 178
8.7 Experimental verification of Axiom 1. 184
8.8 Experimental verification of Axiom 2. 184
8.9 Experimental verification of Axiom 3. 185

List of Tables

2.1 A summary of the results in this thesis. 14
2.2 Implementations of the algorithms in this thesis. 14

4.1 Example of eccentricity bounds obtained through the SumSweepHeuristic 47
4.2 Example of eccentricity bounds computed by the SumSweep algorithm

(AllCCUpperBound technique). 48
4.3 Example of eccentricity bounds computed by the SumSweep algorithm

(SingleCCUpperBound technique). 49
4.4 Comparison of diameter heuristics (undirected graphs). 54
4.5 Comparison of diameter heuristics (directed graphs). 54
4.6 The improvement factor of different diameter and radius algorithms, with re-

spect to the textbook algorithm . 55
4.7 Radius and diameter: dataset (undirected graphs). 57
4.8 Radius and diameter: dataset (directed graphs). 58
4.9 Detailed comparison of diameter heuristics (undirected graphs). 59
4.10 Detailed comparison of diameter heuristics (directed graphs). 60
4.11 Detailed comparison of diameter and radius algorithms (undirected graphs). . 61
4.12 Detailed comparison of diameter and radius algorithms (directed, strongly con-

nected graphs). 62
4.13 Detailed comparison of diameter and radius algorithms (directed graphs). . . 63

5.1 Comparison of closeness centrality algorithms (complex networks). 82
5.2 Comparison of closeness centrality algorithms (street networks). 83
5.3 Results of the BCM algorithm for closeness centrality on large complex and

street networks. 84
5.4 Detailed comparison of closeness centrality algorithms, in the computation of

the most central node. 85
5.5 Detailed comparison of closeness centrality algorithms, in the computation of

the 10 most central nodes. 86
5.6 Detailed comparison of closeness centrality algorithms, in the computation of

the 100 most central nodes. 87
5.7 Detailed results of the BCM algorithm for closeness centrality on large networks. 88
5.8 Detailed improvement factors of the algorithm BCM for closeness centrality,

in increasing snapshots of the actor graph. 90
5.9 Detailed ranking of the IMDB actor graph. 91
5.10 Top-10 central pages in the Wikipedia citation network, according to closeness

centrality. 92

6.1 Detailed comparison of betweenness centrality algorithms (undirected graphs,
high precision). 108

6.2 Detailed comparison of betweenness centrality algorithms (undirected graphs,
low precision). 109

xviii List of Tables

6.3 Detailed comparison of betweenness centrality algorithms (directed graphs,
high precision). 110

6.4 Detailed comparison of betweenness centrality algorithms (directed graphs, low
precision). 111

6.5 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 1939 (69011 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 113

6.6 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 1944 (83068 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 113

6.7 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 1949 (97824 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 113

6.8 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 1954 (120430 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 114

6.9 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 1959 (146253 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 114

6.10 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 1964 (174826 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 115

6.11 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 1969 (210527 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 115

6.12 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 1974 (257896 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 116

6.13 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 1979 (310278 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 116

6.14 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 1984 (375322 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 117

6.15 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 1989 (463078 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 117

6.16 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 1994 (557373 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 118

6.17 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 1999 (681358 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 118

6.18 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 2004 (880032 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 119

6.19 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken at the end of 2009 (1237879 nodes), computed by KADABRA
with η = 0.1 and λ = 0.0002. 119

6.20 The top-k betweenness centralities of a snapshot of the IMDB collaboration
network taken in 2014 (1797446 nodes), computed by KADABRA with η = 0.1
and λ = 0.0002. 120

List of Notations xix

6.21 The top-k betweenness centralities of the Wikipedia graph computed by
KADABRA with η = 0.1 and λ = 0.0002. 121

7.1 Detailed comparison of hyperbolicity algorithms. 132

8.1 Results of our probabilistic analyses. 145
8.2 Values of constants appearing in the axioms, in various graph models. 150
8.3 The 2-Sweep heuristic: experimental results. 157
8.4 Comparison between the 2-Sweep and the 4-Sweep heuristic. 159
8.5 The iFub algorithm: experimental results. 165
8.6 The AIY distance oracle: experimental results. 173
8.7 The balanced bidirectional BFS: experimental results. 180
8.8 Experimental verification of Axiom 1. 183

List of Notations

Symbols

E[X] The expected value of the random variable X.

P(E) The probability of the event E.

t Disjoint union.

Greek uppercase

Γ(s) Set of neighbors of s, that is Γ1(s).

Γ`(s) The set of nodes at distance exactly ` from s.

∆`(s) A set whose cardinality should be close to the number of nodes at distance `+ 1 from
s.

Θ`(s) ∪`i=0∆
i(s).

Θ For two functions f, g, f = Θ(g) if f = O(g) and g = O(f).

Ω For two functions f, g, f = ω(g) if g = O(f).

Greek lowercase

α An integer.

α(s) Lower bound on the number r(s) of nodes reachable from a given node s (see Sec-
tion 5.6.4).

β The exponent of a power law degree distribution (that is, the probability that a node
has degree d is proportional to d−β).

γ`(s) The number of nodes at distance exactly ` from s.

γ̃`(s) Upper bound on γ`(s) (see Section 5.3).

δ The hyperbolicity of a graph, that is, the maximum of δ(s, t, u, v) over all quadruples
of nodes (s, t, u, v).

δ(s, t, u, v) The hyperbolicity of the quadruple of nodes (s, t, u, v), that is, half the dif-
ference between the two biggest sums among dist(s, t) + dist(u, v),dist(s, u) +
dist(t, v),dist(s, v) + dist(t, u).

δavg The average hyperbolicity of a quadruple of nodes

δL A lower bound on the hyperbolicity.

δ`(s) The cardinality of ∆`(s).

xxii List of Notations

ε A (small) constant, which usually does not depend on the number of nodes n in the
graph.

η The distribution of a branching process conditioned on survival.

η(1) The probability that the distribution η assigns to the outcome 1 (see [76]).

ηL(v) The probability of error in a probabilistic lower bound on the betweenness of the node
v.

ηU (v) The probability of error in a probabilistic upper bound on the betweenness of the
node v.

ϑ`(s)
∑`
i=0 δ

i(s).

λ The additive error in the betweenness centrality approximation.

λ The degree distribution of the graph.

µ The residual distribution (see Definition 8.2).

π A shortest path.

ρv The weight of the node v (which should be close to the degree of v in random graphs).

σst The number of shortest paths from s to t.

σst(v) The number of shortest paths from s to t passing through v.

τ A fixed time (usually used in a martingale).

τ A stopping time for a martingale.

τ s (nx) min{` ∈ N : γ`(s) > nx}.

ω For two functions f, g, f = ω(g) if g = o(f).

ω The minimum real number such that it is possible to multiply two n× n matrices in
time O(nω) (currently, it is known that 2 ≤ ω < 2.3728639 [81]).

ω(s) Upper bound on the number r(s) of nodes reachable from a given node s (see Sec-
tion 5.6.4).

Roman uppercase

C A collection of subsets of a ground set X.

C A strongly connected component.

D̃ An approximation of the diameter D of a graph.

D The diameter of a graph.

DL A lower bound on the diameter of a graph.

E The set of edges in the strong component graph.

E The set of edges.

F A σ-algebra, used for martingales.

F (d→ S) The function defined in Definition A.8.

G The strong component graph.

List of Notations xxiii

G A graph.

L Lower bound on some quantity.

L(s, r) Generic lower bound on f(s), if r(s) = r.

LB(t) A lower bound on the backward eccentricity eccB(t) of the node t.

LCUT
` (s, r) Lower bound on f(s), if r(s) = r, defined as (n− 1)

SCUT` (s,r)
(r−1)2 .

LF (s) A lower bound on the forward eccentricity eccF (s) of the node s.

LLB
v (s, r) Lower bound on f(s), if r(s) = r, defined as (n− 1)

SLBv (s,r)
(r−1)2 .

LNB(s, r) Lower bound on f(s), if r(s) = r, defined as (n− 1)S
NB(s,r)
(r−1)2 .

M The sum of the weights of all nodes in the graph.

Mi(λ) The ith moment of a distribution λ, that is, the expected value of Xi, where X is a
λ-distributed random variable.

Nh(s) The set made by the h nodes closest to s (including s).

N `(s) The set of nodes at distance at most ` from s.

R(s) Set of nodes reachable from s (by definition, s ∈ R(s)).

RB(t) The set of nodes from which it is possible to reach a given node t.

RF (s) The set of nodes reachable from a given node s.

RU An upper bound on the radius of a graph.

S A random variable (usually, a sum of other random variables).

S(s) Total distance of node s, that is
∑
t∈R(s) dist(s, t).

SCUT
` (s, r) Lower bound on S(s) if r(s) = r, used in the updateBoundsBFSCut function (see

Lemma 5.4).

SLB
v (s, r) Lower bound on S(s) if r(s) = r, used in the updateBoundsLB function (see Equa-

tions (5.3) and (5.4)).

SNB(s, r) Lower bound on S(s) if r(s) = r, used in the computeBoundsNB function (see
Proposition 5.1).

T (d→ nx) The average number of steps for a node of degree d to obtain a neighborhood of
nx nodes.

U Upper bound on some quantity.

UB(t) An upper bound on the backward eccentricity eccB(t) of the node t.

UF (s) An upper bound on the forward eccentricity eccF (s) of the node s.

V The set of nodes in the strong component graph.

V The set of nodes.

V ′ A set of “canditate nodes” to be radial nodes (in Chapter 4, V ′ = V ′1 ∪ V ′2 , where V ′1
is the set of nodes in a component of maximum size, and V ′2 is the set of nodes that
are able to reach a node in V ′1).

xxiv List of Notations

Var(X) The variance of the random variable X.

VD The vertex diameter of a graph, that is, the maximum number of nodes in a shortest
path (on unweigthed graphs, VD = D + 1).

X A random variable.

X A set (usually, a ground set of some collection C).

Y A random variable.

Z̃
`

A branching process conditioned on survival.

Z` A branching process.

Zτ A martingale.

Roman lowercase

a.a.s. Asymptotically almost surely (that is, with probability 1− o(1)).

bc(v) The betweenness centrality of a node v.

c The constant appearing in Axiom 1 (the letter c is also used to denote other constants
throughout the thesis).

c A node which is usually assumed to be central.

c(s) The closeness centrality of the node s, that is, (r(s)−1)2

(n−1)
∑
t∈R(s) dist(s,t) .

d An integer (usually, the degree of a node).

deg(s) The degree of a node s.

dist(s, t) The distance between two nodes s and t (unless explicitly stated, every edge has
length 1).

distavg The average distance between two nodes.

distavg (n) A function of the number n of nodes and of the degree distribution of a random
graph, which should be close to the average distance (see Axiom 1).

ecc(s) The eccentricity of a node s, that is, maxt∈V dist(s, t) (see Definition 8.7).

eccB(t) The backward eccentricity of a node t.

eccBscc(t) The backward eccentricity of a node t on the graph induced by the strongly con-
nected component of t.

eccF (s) The forward eccentricity of a node s.

eccFscc(s) The forward eccentricity of a node s on the graph induced by the strongly connected
component of s.

f A function; the probability that there is an edge (v, w) in a random graph is denoted
by f(ρvρwM)).

f(b̃(v), ηL(v), ω, τ) A function used to provide a probabilistic lower bound in betweenness
centrality approximation (see Theorem 6.5).

f(s) Farness of node s, that is,
(n−1)

∑
t∈R(s) dist(s,t)

(r(s)−1)2 .

List of Notations xxv

g(b̃(v), ηU (v), ω, τ) A function used to provide a probabilistic upper bound in betweenness
centrality approximation (see Theorem 6.5).

h An integer.

k An integer.

` An integer, usually used to denote levels of a BFS tree, or distances.

m The number of edges in the graph.

mavg The average number of edges visited by an algorithm.

mvis The number of edges visited by an algorithm

n The number of nodes in the graph.

n`(s) The number of nodes at distance at most ` from s.

o,O The standard asymptotic notations.

outdeg(v) Out-degree of a node in a directed graph.

p A polynomial.

r(s) Number of nodes reachable from s, including s (in other words,
∣∣R(s)

∣∣).
s A node (usually, the starting node of a BFS, or of a path).

t A node (usually, the last node of a path).

u A node.

v A node.

w A node.

w.h.p. With high probability (that is, with probability 1− o
(
n−k

)
for each k ∈ N).

x A real number, usually between 0 and 1.

y A real number, usually between 0 and 1.

Acknowledgments

In this section, I would like to thank everyone who helped me writing this thesis: without
them, I would never be able to complete this work!

First and foremost, my supervisor Pierluigi Crescenzi: even before starting my PhD, he
taught me how to program, we worked together on my Master thesis, and on two papers.
Shortly after I started my PhD, he pointed me to interesting and challenging problems,
where theory and practice interact with each other. Even during my PhD, he was more than
a supervisor: he really cared for my results, he introduced me to several people who helped
me in this work, and he listened to me mumbling about probabilistic stuff for hours and hours!
Thank you very much!

A special thanks goes to IMT, the institution that hosted me for these three fantastic
years: in particular, many thanks to my internal advisor Rocco De Nicola. I would really
have liked to write a paper together, and during my first year I tried to work with him, but
unfortunately our research interests are very far. I hope that, in the future, we will be able
to find a common ground!

In IMT, I would also like to thank Guido Caldarelli and Alessandro Chessa, with whom
I collaborated in writing a paper: this paper dealt more with physics than computer science,
and it opened me a whole new research area. It was a great adventure, but unfortunately I
did not have time to continue in this direction: I hope that, in the future, we will be able to
continue working together on these topics!

Furthermore, during my PhD, I spent four months as a guest of the Simons Institute
for the Theory of Computing, UC Berkeley. I would like to thank the institute, and in
particular Luca Trevisan, who invited me and helped me a lot in writing the paper presented
in Chapter 8. I also thank him for suggesting me to publish this work at the SODA conference:
I am really, really happy that this paper got accepted!

Many thanks also to all my co-authors, which I list here in the order in which I met them.
First, Andrea Marino: we published seven papers together, five of which are in this thesis!
In terms of number of papers, he is only after my supervisor Pierluigi (ten papers, eight of
which are in this thesis).

Furthermore, I would like to thank Frank Takes and Walter Kosters, with whom I pub-
lished the first two papers of this PhD!

Then, many thanks to Michel Habib, who invited me to Paris on my first year (I spent an
awesome week there), who helped me a lot with the paper from which Chapter 3 is taken, and
for continuing working with me for my whole PhD (we were co-authors of two more papers).

Among my other co-authors, a special thanks goes to David Coudert and Nathann Cohen,
with whom I worked in Google Summer of Code 2015 - a project financed by Google, in which
I was asked to implement new algorithms and speed-up existing algorithms in the SageMath
graph library. I am really grateful to them: if Pierluigi taught me how to program, David
and Nathann taught me how to write good code, and how to cooperate in an open-source
project. Furthermore, I collaborated with David on our paper on the hyperbolicity. Thank
you very much!

And thanks to Elisabetta Bergamini and Henning Meyerhenke, for teaching me how to
work with NetworKit and for the nice and funny story of the conference ALENEX 2016:

xxviii Acknowledgments

we submitted two very similar papers, but luckily we realized the problem shortly after the
deadline. We merged the two papers, and we started a collaboration!

I also want to thank Paolo Boldi and Sebastiano Vigna: even if we did not publish a
paper together, we worked together on the implementation of my algorithms in the great
WebGraph library. Furthermore, thank you very much for referencing my application for a
Google internship, which might now be transformed in a full-time position: you don’t know
how much this means to me!

Among my co-workers, I also want to thank the reviewers of this thesis: Tim Roughgarden,
Ulrik Brandes, and Kurt Mehlhorn. Their thorough reviews and their suggestions helped me
improving significantly the quality of this thesis! Thank you very much!

However, the acknowledgments section is not only for co-workers: at the beginning, I said
that “I would like to thank everyone who helped me writing this thesis”. By this, of course, I
also meant my family and friends!

First and foremost, I would really like to thank my fiancée Sara, who always supported
me when I had problems, and who partied with me when I received good news! Thanks to
her, I have spent three wonderful years of PhD: not only I had a lot of fun with my work, but
I was even happier when I could spend some time at home! And thank you for preventing
me from focusing only on the work, for always being there, and for sharing everything during
these years! From a practical point of view, thank you for teaching me English, by forcing me
to watch movies in the original language, thank you for teaching me how to cook and keep
a house, thank you for dancing with me every Friday, thank you for always taking me out
when I was lazy, and for a thousand other things! I love you!

During these three years, I also received a lot of support from my family: my mum and
dad were always there when I needed them, and they helped me a lot with my work! Thank
you very much! Many thanks also the rest of my family: even if we did not meet very often,
I believe that we spent some quality time together!

Moreover, I would like to thank the only person in the intersection between the set of my
co-authors and the set of my friends: Emanuele Natale. I decided to thank him among my
friends, because spending four great months in Berkeley in a 15 squared meters room beats a
paper together! Anyway, I am very happy that we shared this adventure, and that we received
the Best Student Paper Award together at ESA! And thanks to all the other people who shared
this adventure with us: among many others, thanks to Marc Roth, Cornelius Brand, Holger
Dell, Judith Abecassis, John Lapinskas, Heng Guo, Marylou Gabrié, and Marine Le Morvan.

Furthermore, many thanks to all my friends in the Nineteenth Century Dance School,
with whom I spent wonderful evenings!

Last, but not least, I would like to thank all my friends from Scuola Normale Superiore
(Pisa), who are now spread all over the world. Thank you for our dinners, for the holidays in
Ravascletto, for running together, for playing nerd games with me, and for the nights spent
playing Age of Empires II! In particular, many thanks to Fabrizio Bianchi (who will soon
be my best man), Marco Marengon, Giovanni Mascellani, Irene Regini, Giovanni Paolini,
Aleksandra Baranova, Davide Lombardo, Alessandra Caraceni, Gennady Uraltsev, Davide
Orsucci, Francesco Guatieri, Marco Fantini, Enrico Pracucci, Alice Leone, Sara Boezio, and
all the other people that, unfortunately, I cannot mention for space constraints!

Abstract

Motivated by complex networks analysis, we study algorithms that compute metric properties
of real-world graphs. In the worst-case, we prove that, under reasonable assumptions, the
trivial algorithms based on computing the distance between all pairs of nodes are almost
optimal.

Then, we try to overcome these bottlenecks by designing new algorithms that work sur-
prisingly well in practice, even if they are not efficient in the worst-case. We propose new
algorithms for the computation of the diameter, the radius, the closeness centrality, the
betweenness centrality, and and the hyperbolicity: these algorithms are much faster than
the textbook algorithms, when tested on real-world complex networks, and they also outper-
form similar approaches that were published in the literature. For example, to solve several
problems, our algorithms are thousands, and even billions of times faster than the textbook
algorithm, on standard inputs.

However, the experimental results are not completely satisfactory from a theoretical point
of view. In order to fill this gap, we develop an axiomatic framework where these algorithms
can be evaluated and compared: we define some axioms, we show that real-world networks
satisfy these axioms, and we prove that our algorithms are efficient if the input satisfies these
axioms. This way, we obtain results that do not depend on the specific dataset used, and we
highlight the main properties of the input that are exploited. A further confirmation of the
validity of this approach is that the results obtained mirror very well the empirical results.

Finally, we prove that the axioms are verified on realistic models of random graphs, such
as the Configuration Model, the Chung-Lu model, and the Norros-Reittu model. This way,
our axiomatic analyses can be turned into average-case analyses on these models, with no
modification. This modular approach to average-case complexity has two advantages: we
can prove results in several models with a single worst-case analysis, and we can validate the
choice of the model by showing that the axioms used are verified in practice.

Chapter 1

Introduction

In many different areas of science, scientists use graphs to model several phenomena, such as
interactions between individuals, protein reactions in a cell, links between electronic devices,
citations between papers, co-occurrences of words in texts, etc. Recently, thanks to the
development of social networks, to the overwhelming power of modern computers, and to
several other factors, the size of the data available to scientists has drastically increased:
now, it is quite common to deal with graphs of millions, and even billions of nodes and edges.

On the one hand, thanks to the availability of these data, we can perform new and more
precise analyses, that were unthinkable in the past. On the other hand, we have to face new
challenges, because it is quite hard to process all these data, even with modern computers:
polynomial-time algorithms, and even quadratic-time algorithms, might not terminate in a
reasonable amount of time on these large inputs. For this reason, several works have tried to
develop faster and faster algorithms.

Among the properties of interest, a significant role is played by metric properties: basically,
we turn the graph into a metric space by defining the distance between two nodes s and t as
the number of edges in a shortest path from s to t. Then, we can analyze the properties of
this metric space: the diameter, the radius, the average distance, the hyperbolicity, and so
on. Furthermore, we can use this metric to define centrality measures, such as eccentricity,
closeness centrality, and betweenness centrality. All these quantities are precisely defined in
Chapter 2, where we also provide some basic terminology and we state the most important
problems considered in this thesis.

Unfortunately, in the worst-case, the best way to address these problems is through trivial
approaches, based on computing the distance between all pairs of nodes: indeed, the existence
of significantly faster algorithms would falsify widely believed conjectures, such as the Strong
Exponential Time Hypothesis [92], the Orthogonal Vector conjecture [3], and the Hitting Set
conjecture [3]. These hardness results are the topic of Chapter 3, where we collect the main
existing hardness results, and we prove new ones.

Knowing these results, people tried to find a way to overcome them. A first possibility
is to use approximation algorithms [138, 47], or parametrized algorithms [3]. However, in
practice, these approaches are not widespread: indeed, these algorithms are quite complicated,
and there is no implementation available. For these reasons, the most common approach
used is empirical: in some cases, researchers use heuristics with no guarantee at all on the
quality of the solution obtained, while in other cases they use exact algorithms that have
the same performances as the trivial approach, in the worst-case. However, despite the lack
of theoretical guarantees of these algorithms, they are surprisingly very good when they are
tested on real-world inputs.

In this thesis, we develop new such algorithms, and we experimentally show that they
improve over existing ones, by testing them on large datasets of real-world networks. These
algorithms are not only theoretical: their implementation is publicly available in the Web-
graph library [23], in the Sagemath graph library [152], or in the NetworKit library [151].

2 1 - Introduction

More specifically, in Chapter 4, we study the computation of the diameter, defined as the
maximum distance between two nodes, and the radius, defined as mins∈V maxt∈V dist(s, t).
We provide a new heuristic to lower bound the diameter and upper bound the radius, which
improves over the existing heuristics, and we turn this heuristic into an exact algorithm, by
adding a verification phase. The latter algorithm outperforms the best existing algorithms,
and it makes it possible to compute the radius and the diameter of several graphs with millions
of nodes and hundreds of millions of edges.

In Chapter 5, we provide a new algorithm for computing the k most central nodes accord-
ing to closeness centrality. The new algorithm outperforms both the trivial algorithm and
previous approaches, making it possible to compute the 100 most central nodes in very large
networks.

In Chapter 6, we provide a new algorithm that approximates the betweenness centrality of
a node. This algorithm exploits a new adaptive sampling technique, which works on general
graphs, and the concept of balanced bidirectional breadth-first search, which has extremely
good performances on real-world graphs. Indeed, in several networks, the time needed to
compute a shortest path with this technique is sublinear in the input size, and in some cases
it is even close to

√
m, where m is the number of edges in the graph.

In Chapter 7, we consider the problem of computing the hyperbolicity of a graph. This
problem is quite different from the other problems considered in this work: indeed, it is much
harder than the previous ones in the worst-case, because the textbook algorithm needs time
O(n4). We describe a new algorithm that outperforms the fastest existing algorithm, when
tested on practical inputs, and it makes it possible to compute the hyperbolicity of graphs
with up to 70 000 nodes.

However, these results are not completely satisfactory from a theoretical point of view,
because the validation of the efficiency of these algorithms has always been empirical: by run-
ning them on practical instances, one can show that they outperform the textbook algorithm,
or similar heuristic approaches [23, 83, 141, 50, 114, 62, 154, 165, 63, 155, 57, 61, 66, 67, 8,
129, 58]. This kind of analysis has significant disadvantages: it might be biased by the choice
of the specific dataset used for the evaluation, and it provides no insight into the reasons why
these algorithms are so efficient.

Obviously, the efficiency of these algorithms is linked to some properties of the typical
input [155, 153, 116]: indeed, although the networks analyzed come from different research
fields, they have some characteristics in common. For example, they are all quite sparse, their
degree distribution is power law, they show high clustering coefficient, and the distances are
usually very small (small-world phenomenon). Usually, networks showing these properties
are called complex networks.

However, little is known about the link between the properties of complex networks and
the efficiency of these heuristics and algorithms: the major result of this thesis is to fill this
gap, by developing a theoretical framework in which these algorithms can be evaluated and
compared. Our framework is axiomatic: we define some axioms, we experimentally show
that these axioms hold in many complex networks, and we perform a worst-case analysis on
the class of graphs satisfying these axioms (Chapter 8). This analysis improves the standard
empirical analysis for three main reasons: we formally validate the efficiency of the algorithms
considered, we highlight the properties exploited, and we perform a comparison that does not
depend on the specific dataset used for the evaluation. A further confirmation of the validity
of this approach comes from the results obtained, that are very similar to existing empirical
results.

Furthermore, we show that these axioms are satisfied by some models of random graphs,
asymptotically almost surely (a.a.s.), that is, with probability that tends to 1 as the number
of nodes n goes to infinity: as a consequence, all these results can be turned into average-
case analyses on these models, with no modification. This modular approach to average-case
complexity has two advantages: since our axioms are satisfied by different models, we can
prove results in all these models with a single worst-case analysis. Furthermore, we clearly

1.1 - Foundations and Related Work 3

highlight which properties of random graphs we are using: this way, we can experimentally
validate the choice of the probabilistic model, by showing that these properties are reflected
by real-world networks. Since the proof is rather technical, Chapter 8 only contains a sketch,
and the full proof is available in Appendix A.

Most of the work presented has already been published in [33, 32, 30, 29, 34, 31, 35, 36,
28, 20]. For more information, at the beginning of each chapter, we cite all the papers that
contributed to the chapter itself; moreover, in a small literature review at the end of each
chapter, we explain in detail the contributions of the single papers, and we acknowledge other
people’s contributions.

All the chapters are almost independent and self-contained, assuming the reader knows the
content of Chapter 2, which defines the basic notions used in this thesis. To help the reader,
we have also collected all notations used throughout the thesis in the Table of Notations at
the beginning.

Finally, in order to improve readability, we marked all technical sections with (∗) in the
Table of Contents.

1.1 Foundations and Related Work

This thesis combines results in several research fields: worst-case polynomial reductions, the
design of heuristics and algorithms that are efficient on real-world graphs, metric properties
of real-world and random graphs, probabilistic analysis of algorithms. Since it is impossible
to provide a comprehensive account of the state of the art in all these areas, we just point
the reader to the most recent and comprehensive surveys.

1.1.1 Worst-Case Polynomial Reductions

In the first chapter of this thesis, we prove that, under reasonable complexity assumptions, the
problems considered in this thesis are hard in the worst-case. This chapter takes inspiration
from a large amount of research on reductions between polynomial-time solvable problems:
usually, these reductions show that a problem does not admit a fast algorithm, unless widely
believed conjectures prove to be false.

One of the most famous conjectures considered in the literature is the 3Sum conjecture
given three sets A, B, and C of n integers, it is not possible to decide whether there exists
a ∈ A, b ∈ B, and c ∈ C such that a + b + c = 0, in time O(n2−ε). This problem has been
widely studied, but the best algorithms so far are only mildly subquadratic, that is, their
time complexity is o(n2), but not O(n2−ε) for any ε > 0 . The first 3Sum-based reductions
appear in [80], and since then several problems were proved to be 3Sum-hard, especially in
computational geometry (for a comprehensive account, we refer to the surveys [99, 91]).

In the context of graph theory, very different results hold if we consider dense graphs
(where m = O(n2), where n is the number of nodes and m is the number of edges), and
sparse graphs (where m = O(n)). Let us first consider dense graphs: some works have proved
hardness results if the graph is weighted, assuming that the All Pairs Shortest Paths problem
is not solvable in O(n3−ε) [171, 1]. In the case of unweighted graph, few results are available,
because, in this setting, several problems are linked to matrix multiplication, a problem whose
complexity is not completely understood [170, 81].

Another line of research has considered sparse graphs, where m = O(n), which should
better model real-world complex networks [125]. In this setting, many hardness results follow
from the Strong Exponential Time Hypothesis (SETH), which says that there is no algorithm
for solving the k-Sat problem in time O((2−ε)n), where ε > 0 does not depend on k [92]. The
first reduction dealing with this hypothesis was proved in [168], and it shows the hardness of
finding two disjoint sets in a collection of n sets. Following the same line, many other papers
proved similar results for specific problems [131, 138, 47, 169, 44, 4, 2]. Finally, in [3], the
authors prove results based on two new conjectures: the Orthogonal Vector conjecture and

4 1 - Introduction

the Hitting Set conjecture. The Orthogonal Vector conjecture simply says that the problem of
finding two disjoint sets in a collection of n sets is hard, and it implies SETH, as already shown
in [168]. The Hitting Set conjecture is a sort of dual of the Orthogonal Vector conjecture,
and it says that it is hard to find a hitting set in a collection of n sets. Until now, very little
is known on the latter conjecture, apart from the fact that it implies the Orthogonal Vector
conjecture [3].

Our contribution in this field is a collection of all the results on sparse graphs in a unified
work, and the proof of some new reductions, dealing with the problems considered in this
thesis. These results further confirm the interest in the probabilistic analyses performed in
previous chapters: indeed, they show a clear separation between what can be proved in the
worst-case and what can be obtained in our setting.

1.1.2 Efficient Algorithms on Complex Networks

In the past, researchers published several algorithms that achieve good performances in prac-
tice, even if there is no guarantee in the worst-case [23, 83, 141, 50, 114, 62, 154, 165, 63,
155, 57, 61, 66, 67, 8, 129, 58]. All these works follow the same principle: they describe an
algorithm, they prove that the result of the algorithm is correct, but they do not provide
theoretical guarantees on the efficiency of the algorithm. Then, they collect a dataset of
practical instances, and they show that the running time of the algorithm on these instances
improves a baseline, that can be the textbook algorithm, or other similar approaches. The
underlying assumption is that the dataset considered encompasses all kinds of inputs that
arise in practice.

This approach was very successful in two cases: road networks and complex networks.
For the former setting, we refer the interested reader to [5] and the references therein; for
the latter setting, we refer the reader to the literature reviews at the end of Chapters 4 to 7,
which contain a complete account of the state of the art in the computation of the quantities
considered in each single chapter.

Our contribution in this field is the design of new algorithms that outperform all existing
approaches, both in our experiments and in the probabilistic analyses in our framework, and
the implementation of these new algorithms in well-known graph libraries: WebGraph [23],
and Sagemath [152].

1.1.3 Random Graphs and Probabilistic Analyses

In the literature, there are several paper that study metric properties of random graphs: most
of these results are summarized in [160, 159]. Furthermore, the proofs of our main theorems
are generalizations and adaptations of the proofs in [76, 127, 27], if the average degree is
finite. Our main contribution in this area is a unified analysis of the different models, and
the generalization to infinite mean degrees. As far as we know, the only work that addresses
the latter case is [158], which only computes the typical distance between two nodes

Furthermore, our work relies on several works that outline the main properties of complex
networks, and that develop models that satisfy such properties: for example, the choice of
the power law degree distribution is validated by extensive empirical work (for a survey, we
refer to [126]).

Despite this large amount of research on models of real-world graphs, few works have
tried to address the problem of evaluating heuristics and algorithms on realistic models.
Among these works, one of the most successful approaches deals with heuristic approaches
in the computation of shortest paths in road networks [83, 141, 67, 66]. In [5], the authors
provide an explanation of the efficiency of these approaches, based on the concept of highway
dimension. Another algorithm achieving very good performances in practice is the graph
compression technique in [23], implemented in the WebGraph library. In [53], the authors
prove that in most existing models no algorithm can achieve good compression ratio, and
they provide a new model where the algorithm in [23] works well.

1.1 - Foundations and Related Work 5

Another similar approach is provided in [38]: assuming only that the degree distribution is
power law, the authors manage to analyze some algorithms, and to prove that the axiomatic
analysis improves the worst-case analysis. However, their axioms apply to local properties,
such as patterns in subgraphs, but not to the metric properties that we study in this thesis.

Moreover, in [85], the authors define the notion of triangle dense graphs, that captures the
high number of triangles present in most complex networks (intuitively, a friend of my friend
is likely to be my friend). Under this assumption, they prove that it is possible to find dense
subgraphs with small radius, in a way that they contain many of the triangles in the graph.
In the future, this decomposition might be used to speed-up algorithms on triangle dense
graphs, as suggested by one of the open problems in the conclusion. This work sets forth
the research agenda of defining worst-case conditions on graphs, that are meant to generalize
all of the popular generative models for complex networks: it discusses the main features
of this approach, and it provides a practical application. This thesis belongs to the same
research area: indeed, most of the advantages and disadvantages of our approach are already
described in [85]. However, with respect to [85], our assumptions are more specific, and they
are tailored to the computation of metric properties. On the one hand, this restricts the
domain of application to metric algorithms, and it makes it harder to prove these properties
on many graph models: for this reason, we restrict our attention to simple models, that can
be analyzed mathematically (probably, our assumptions hold in many other models, but it
might be very difficult to prove it). On the other hand, thanks to our tailored assumptions,
we can carry on the analysis of practical algorithms, used all over the world, concluding the
bridge between theory and practice that was mentioned in [85] as an open problem.

Other papers have tried to follow a similar approach with metric properties: the most
notable attempt [50] deals with the Gromov hyperbolicity of the input graph [84]. For example,
the 2-Sweep heuristic [114] provides good approximations of the diameter of hyperbolic
graphs. However, this approach cannot be applied to some algorithms, like the iFub, and
when it can be applied, the theoretical guarantees are still far from the empirical results,
because real-world graphs are usually not hyperbolic according to Gromov’s definition [29].
Another attempt was to consider the correlation between the efficiency of the algorithm and
specific characteristics of the input graph [153]: however, also in this case, no definitive
explanation of the efficiency of these algorithm was found.

In this work, we give the first fullproof argument that shows the efficiency of algorithm
for metric properties on complex networks. Differently from previous attempts, this analysis
works with several different algorithms, and the results are in line with practical experiments.
Furthermore, as a side result of this analysis, we obtain a new point of view in the analysis of
random graphs, that provides simpler proofs of existing results, and some new results, such as
the asymptotic value of the diameter of a random power law graph where the average degree
is infinite.

Chapter 2

Preliminaries

Abstract

In this chapter, we introduce some basic terminology that is repeatedly used through-
out this work, and we define the main problems addressed. Then, we briefly sketch the
results obtained.

2.1 Basic Graph Definitions

In this section, we define the graph quantities that we study in this thesis, together with
some basic terminology. For a more detailed treatment, we refer to any introductory book on
graph theory, such as [59].

First of all, a graph G is a pair (V,E), where V is the set of nodes, and E ⊆ V 2 is a
set of edges (which can also be seen as a binary relation on V). If two nodes v, w are linked
by an edge, we say that E(v, w) holds, using a relational notation. We denote n = |V | and
m = |E|; furthermore, many times, we use integers from 0 to n − 1 to denote the nodes,
and consequently pairs of integers to denote the edges. Finally, for each node v ∈ V in an
undirected (resp., directed) graph, we denote by neighbors of v the set of nodes w ∈ V such
that E(v, w) holds.

If the edge relation E is symmetric (that is, E(u, v) holds if and only if E(v, u) holds),
then we say that the graph is undirected, and with abuse of notation we define m as the
number of undirected edges (that is, we count the pair (u, v) and the pair (v, u) only once).
Otherwise, we say that the graph is directed (we often use the term digraph to abbreviate
directed graph). In undirected graphs, we draw edges as lines, while, in directed graphs, we
use arrows to keep track of the direction of an edge. Examples are provided in Figures 2.1
and 2.2.

In general, we say that a node t is reachable from a node s if there is a path from s to t,
that is, a sequence s = v0, . . . , vk = t of nodes such that E(vi, vi+ 1) holds for each i between
0 and k − 1. The set of nodes reachable from a given node s is denoted by RF (s), and the
set of nodes from which it is possible to reach a node t is denoted by RB(t). Note that, if G
is undirected, then RF (s) = RB(s) for any node s: hence, we drop the superscript and we
simply use R(s)). We also use the notation r(s) to denote |R(s)|.

An undirected (resp., directed) graph is connected (resp., strongly connected) if, for any
node s, RF (s) = V (equivalently, RB(s) = V). A digraph is said to be weakly connected if
the undirected graph resulting from removing the orientation of the edges is connected.

A connected component (resp., strongly connected component or SCC) of an undirected
(resp., directed) graph is a subgraph that is connected (resp., strongly connected), and is
maximal with respect to this property. The strong component graph of a digraph G is the
directed acyclic graph G = (V, E), where V = {C1, . . . , Ck} is the set of SCCs of G and an

8 2 - Preliminaries

0

2

1

3 4

Figure 2.1. An example of undirected graph, where n = 5 and m = 5.

0

2

1

3 4

Figure 2.2. An example of directed graph, where n = 5 and m = 6.

{0, 2}

{1}

{3} {4}

Figure 2.3. The strong component graph corresponding to the graph in Figure 2.2.

edge (Ci, Cj) exists if there is at least one edge in G from a node in the component Ci to
a node in the component Cj . Observe that G is an acyclic digraph: hence, we may assume
that a topological order is specified for its nodes, that is, V is ordered such that, for each
(Ci, Cj) ∈ E , i < j. For more background on these concepts, we refer to [14].

For example, the graph in Figure 2.1 is connected, and consequently it has one connected
component, while the graph in Figure 2.2 is not connected, and its strongly connected compo-
nents are the sets of vertices {0, 2}, {1}, {3}, {4}. The corresponding strong component graph
is plotted in Figure 2.3.

To conclude this section, let us make some assumptions that simplify our notations, with-

2.2 - Metric Properties of Graphs 9

out affecting the generality of our results. First of all, a graph might have isolated nodes, that
is, nodes that do not belong to any edge. Since these nodes have no effect on distances, and
since they can be easily removed from a graph, we assume that they do not exist. Further-
more, in some cases, researchers have studied multigraphs, where two nodes can be connected
by multiple edges, and graphs with self-loops, where there can be an edge (s, s), for the same
vertex s. However, removing multiple edges and self loops has no effect on distances: for this
reason, from now on we assume that all our graphs have no multiple edge and no self-loop.

2.2 Metric Properties of Graphs

This thesis is focused on metric properties: basically, we transform the graph into a metric
space by defining the distance dist(s, t) between two nodes s, t as the minimum number of
edges in a path from s to t, or +∞ if there is no such path (that is, s and t are not connected).
In other words, a node s is at distance 1 from all its neighbors, at distance 2 from the neighbors
of its neighbors, and so on. For example, both in Figure 2.1 and in Figure 2.2, dist(0, 1) = 1,
dist(0, 3) = 2 (there are two different shortest paths of length 2, namely (0, 1, 3) and (0, 2, 3)),
and dist(0, 4) = 3. Furthermore, in Figure 2.2, dist(1, 0) = +∞, because there is no path
from 1 to 0.1

It is easy to prove that this definition satisfies the following properties:

• non-negativity, that is, dist(s, t) ≥ 0;

• identity of indiscernibles, that is, dist(s, t) = 0 if and only if s = t;

• triangle inequality, that is, dist(s, u) ≤ dist(s, t) + dist(t, u).

In order to prove that the quantity dist is a distance in the mathematical sense, we also need
the symmetric property, that is, dist(s, t) = dist(t, s): however, this property is satisfied only
if the graph is undirected (for example, in Figure 2.2, dist(0, 1) = 1 and dist(1, 0) = +∞). In
any case, following the standard convention, we improperly use the term distance even in the
directed case.

In the following, we denote by Γ`(s) the set of nodes at distance exactly ` from s, by
N `(s) the set of nodes at distance at most ` from s. Furthermore, we let γ`(s) = |Γ`(s)|,
and n`(s) = |N `(s)|. For example, in the graph in Figure 2.1, Γ0(0) = {0}, Γ1(0) = {1, 2},
Γ2(0) = {3}, and Γ3(0) = {4}; N0(0) = {0}, N1(0) = {0, 1, 2}, N2(0) = {0, 1, 2, 3}, and
N3(0) = V .

The diameter of a graph is the maximum distance between two connected nodes, that is,

D = max
s,t∈V,dist(s,t)<+∞

dist(s, t).

In other works, D is simply defined as maxs,t∈V dist(s, t), so that each disconnected graph
has diameter +∞: however, since most real-world graphs are not (strongly) connected, in this
thesis we focus on the former definition, which is also more informative (for more information,
we refer to Chapter 4).

The eccentricity of a node s is

ecc(s) = max
t∈V,dist(s,t)<+∞

dist(s, t).

By definition, D = maxs∈V ecc(s). Moreover, the radius of a (strongly) connected graph is

1In general, one might be interested in giving a weight to edges and define the distance based on the sum
of the weights of all the edges in a shortest path. For simplicity, this thesis only deals with unweighted graphs,
but most of the ideas can be applied to the weighted case, as well.

10 2 - Preliminaries

defined as2

R = min
s∈V

ecc(s).

For example, in Figure 2.1, ecc(0) = ecc(4) = 3, and ecc(1) = ecc(2) = ecc(3) = 2: the radius
is 2.

Diameter, radius, and eccentricities are very important measures in graphs, and they
are widely used to describe real-world data. For example, a very large amount of research
has focused on the analysis of small-world networks, by observing that in most real-world
networks the diameter is much smaller than one would expect. In many networks with millions
of nodes, the diameter can be as small as 10!

Other approaches have considered the average distance instead of the maximum distance.
For example, it is possible to define the average distance in a graph as

distavg = avgs,t∈V,0<dist(s,t)<+∞ dist(s, t).

Moreover, the farness of a node s is

f(s) = avgt∈R(s)−{s} dist(s, t).

In a (strongly) connected graph, from the farness, it is possible to define the closeness cen-
trality measure as

c(s) =
1

f(s)
.

The intuitive idea is to consider a node s central (that is, c(s) is large) if it can reach all the
other nodes in a small number of steps. The closeness centrality is a widely used centrality
measure, with several applications across different areas of science.

In the literature, in order to generalize the closeness centrality to disconnected graphs,
researchers have proposed various approaches. The simplest approach is simply to keep 1

f(s) ,
but this would lead to weird behaviors: for example, in Figure 2.2, the closeness of 4 would
be undefined, and 3 would be very central, because its closeness is 1, the maximum value
achievable by any vertex, in any graph. However, intuitively, 3 should not be central, because
it can only reach a single node. For this reason, a different generalization was proposed in
the literature [110, 166, 24, 25, 129], named Lin’s index (in this work, for simplicity, we refer
to Lin’s index as closeness centrality):

f(s) =

∑
t∈R(s) dist(s, t)

r(s)− 1
· n− 1

r(s)− 1
c(s) =

1

f(s)

If a node s has (out)degree 0, the previous fraction becomes 0
0 : in this case, the closeness

of s is arbitrarily set to 0.
In the example in Figure 2.2, with this definition, c(4) = 0, c(3) = 1

4 , c(1) = 1
3 , c(0) = 4

7 ,
and c(2) = 2

3 , so that the nodes that reach the largest amount of other nodes are more central.
Other similar alternatives are the harmonic centrality, defined by

c(s) =
∑
t∈V

1

dist(s, t)

, and the exponential centrality, defined by

c(s) =
∑
t∈V

Cdist(s,t)

2Currently, there is no widely accepted definition of radius of a graph which is not connected: for instance,
a node with no outgoing edge has eccentricity 0, but it does not make much sense to define the radius of
the corresponding graph to be 0. In Chapter 4, we propose a more sensible definition of radius of a directed
graph.

2.3 - Problems Studied in This Thesis 11

Figure 2.4. A heat map that highlights central vertices according to betweenness and closeness centrality.

for some constant C < 1 (the convention is that, if dist(s, t) = +∞, 1
dist(s,t) = Cdist(s,t) = 0).

A different approach in centrality measures considers the number of shortest paths passing
through a node, instead of the distance needed to travel from a note to any other node. The
resulting measure is called betweenness centrality : a probabilistic way to define it is the
following. Consider two randomly chosen nodes s, t, and choose a random shortest path
between s and t. The betweenness centrality bc(v) of a node v is the probability that the
shortest path chosen passes through v. Note that the generalization to disconnected graphs
is very natural: indeed, if s and t are not connected, we simply do not choose any shortest
path.

If the closeness centrality selects as central the nodes that are “close to many other nodes”,
the betweenness centrality select “bridges”, from which many shortest paths should pass. For
example, if the graph has some communities containing most edges, and few edges across
different communities, we expect that the closeness central nodes are in the largest community,
while the betweenness central nodes are close to many edges across different communities. A
visualization of this feature is provided in Figure 2.4.

Finally, this thesis studies the hyperbolicity of a graph. In the literature, there are evi-
dences that it is possible to embed real-world graphs in hyperbolic spaces, preserving inter-
esting properties: following this evidence, one might be interested in trying to prove that the
metric underlying most real-world graphs is hyperbolic, in some sense. The most widespread
definition of hyperbolicity of a metric space is provided by Gromov [84] and, intuitively,
it measures how far the graph is from a tree (since trees have hyperbolicity 0). Since the
definition is quite complicated, we refer to Chapter 7 for more information.

2.3 Problems Studied in This Thesis

The goal of this thesis is to provide fast, practical algorithms that compute metric quantities
(in particular, the metric quantities defined in the previous section). First, one might be
interested in simply deciding if a graph is connected or computing its connected components:
however, we ignore these two problems because they can be solved in subquadratic time in
the worst case (actually, in time O(m)).

Then, one might be interested in computing the distance between two nodes: for a single
distance, again there are subquadratic algorithms, but if one is interested in computing many
distances, this might not be the case. This problem can be formalized as the design of a
distance oracle: such oracle has a preprocessing phase, where auxiliary data structures are
computed, and a query phase, where the oracle tries to answer distance queries as fast as
possible. The goal is to obtain a good tradeoff between preprocessing time and query time.

Other problems deal with the computation of the radius, of the diameter, of the eccentricity
of all the nodes, and the hyperbolicity of a graph. For centrality measures such as betweenness

12 2 - Preliminaries

and closeness centrality, we are interested in computing the k most central nodes, along with
their centrality, and in the case of betweenness centrality also in approximating the centrality
of single nodes (note that the closeness centrality of a node can be computed in linear time).

More formally, we are interested in studying all the problems in the following list.

Problem: AllEccentricities.
Input: a graph G = (V,E).
Output: the eccentricity of each node s ∈ V , that is, maxt∈V,dist(s,t)<+∞ dist(s, t).

Problem: BetweennessCentrality.
Input: a graph G = (V,E).
Output: the betweenness centrality of each node v of G, that is,

1

n(n− 1)

∑
v 6=s 6=t∈V

σst(v)

σst
.

where σst is the number of shortest paths from s to t, and σst(v) is the number
of shortest paths from s to t passing through v.

Problem: BetweennessCentralityTopK.
Input: a graph G and an integer k < n.
Output: the k nodes with highest closeness centrality in the graph G. The betweenness

centrality of a node v is defined as

1

n(n− 1)

∑
v 6=s 6=t∈V

σst(v)

σst
,

where σst is the number of shortest paths from s to t, and σst(v) is the number
of shortest paths from s to t passing through v (if σst = 0, we just sum 0).

Problem: ClosenessCentralityTopK.
Input: a graph G and an integer k < n.
Output: the k nodes with highest closeness centrality in the graph G. The closeness

centrality of a node s in a connected graph is defined as

c(s) =
n− 1∑

t∈V dist(s, t)
.

Problem: Diameter.
Input: a graph G.
Output: the diameter of G, that is, maxs,t∈V,dist(s,t)<+∞ dist(s, t).

Problem: DistanceOracle.
Input: a graph G.
Output: a distance oracle, that is, an algorithm that performs a preprocessing phase

after which it can answer distance queries of the form “compute dist(s, t)”.

Problem: Hyperbolicity.

2.4 - Complexity of Computing Metric Quantities 13

Input: a graph G = (V,E).
Output: the maximum over each quadruple of nodes s, t, u, v of δ(s, t, u, v).

Problem: NumReachableNodes.
Input: a directed graph G = (V,E).
Output: for each node v ∈ V , the number r(v) of nodes reachable from v.

Problem: Radius.
Input: a graph G = (V,E).
Output: the radius of G, which, in a (strongly) connected graph, is defined as

max
s∈V

min
t∈V

dist(s, t).

2.4 Complexity of Computing Metric Quantities

First of all, all the problems defined in the previous section can be solved in time and space
polynomial in the input size: an approach that almost always works starts by computing the
distance matrix, which contains dist(s, t) in position (s, t), and it uses this matrix to compute
the value we are interested in. For example, if we want to compute the diameter, we simply
output the maximum finite value in this matrix, if we want the average distance we compute
the average of the entries, and so on.

The running-time of these algorithms is the time to compute the distance matrix, plus
(usually) O(n2) to compute the quantity we are interested in. The main bottleneck of this
approach is the computation of the distance matrix, which can be done in the following ways.

• We repeatedly multiply the adjacency matrix by itself: this approach takes time
O(nω log n), where ω is the minimum value such that matrix multiplication can be
performed in nω. Currently, we know that 2 ≤ ω ≤ 2.3728639 [81]. More refined
bounds that work also for small edge weights are proved in [174].

• We perform a breadth-first search (BFS) from each node: this approach takes time
O(mn).

Asymptotically, the first approach is faster if m > nω−1; however, in practice, the second
approach is almost always preferred, because most real-world networks are sparse (that is, m
is not much bigger than n), and because the first approach contains large constants hidden in
the O notation. For this reason, in this thesis, we consider the BFS approach as the textbook
approach, which has O(mn) running-time.

There are two notable exceptions to this framework, namely betweenness centrality and
hyperbolicity: in both cases, it is not easy to compute these quantities starting from the
distance matrix. For betweenness centrality, the problem can be solved by adapting the
BFS approach: in a seminal paper [39], Brandes shows that the betweenness centrality of all
the nodes in a graph can be computed in O(mn) time (assuming all arithmetic operations
can be performed in O(1) time). For uniformity with the previous cases, we consider this
algorithm as the baseline, even if it is much harder and more interesting than the other
textbook approaches. The hyperbolicity problem is even harder: the direct approach takes
time O(n4), and our goal is to improve over this (even if there are faster, but not practical,
algorithms based on fast matrix multiplication).

Although polynomial, the O(mn) running time can be unfeasible on large real-world
networks. For example, in standard networks, n might be 1 million and m might be 100
millions: assuming we perform mn operations and our processor performs 1 billion operation

14 2 - Preliminaries

Table 2.1. A summary of the results in this thesis. White pieces indicate results already found before
this thesis, while black pieces indicate new results. Kings denote complete results, such as hardness results
matching the running time of the best algorithms, practical algorithms that guarantee the correctness of the
result, complete probabilistic analyses. Pawns indicate partial results, such as hardness results not matching
existing bounds, practical algorithms that do not guarantee the correctness of the results, probabilistic analyses
of only some parts of the algorithm.

Hardness Practical Probabilistic
Problem Result Algorithm Analysis

AllEccentricities K p p
BetweennessCentrality (approx) k p
BetweennessCentrality (exact) k
BetweennessCentralityTopK (approx) k p
BetweennessCentralityTopK (exact) k
ClosenessCentralityTopK Kp k k
Diameter K k k
DistanceOracle P K k
Hyperbolicity p k
NumReachableNodes k
Radius K k k

Table 2.2. Implementations of the algorithms in this thesis.

Algorithm Quantity Library Class
SumSweep Diameter, radius, eccentricities (undirected) WebGraph algo.SumSweepUndirectedDiameterRadius
SumSweep Diameter, radius, eccentricities (directed) WebGraph algo.SumSweepDirectedDiameterRadius
BCM Top-k closeness / harmonic / exponential NetworKit centrality.ClosenessTopK
BCM (simplified) Top-k closeness / harmonic / exponential WebGraph algo.TopKGeometricCentrality
BCM (simplified) Top-k closeness SageMath graphs.centrality.centrality_closeness_top_k
KADABRA Betweenness (all/top-k) - Available online
KADABRA Distance between two nodes - Available online
KADABRA (in preparation) Betweenness (all/top-k) SageMath
KADABRA (in preparation) Distance between two nodes SageMath
hyp Hyperbolicity SageMath graphs.hyperbolicity
hyp (in preparation) Hyperbolicity WebGraph algo.Hyperbolicity

per second, we would still need more than 1 day to conclude the computation (note that, in
reality, the constant in the O is much larger than 1, making this estimate very optimistic,
even considering faster processors and parallelization). For this reason, the main goal of this
thesis is to improve over this baseline.

First, since we aim to practical applications, we ignore all logarithmic factors: indeed, in
practice, the (constant) overhead due to a more complicated algorithm can be comparable,
or even higher than the gain. Our goal becomes to improve over the O(mn) running-time by
a polynomial factor.

Furthermore, since our focus in on real-world graphs, where m is not much bigger than
n, we only use m to parametrize our algorithms: for this reason, we say that an algorithm is
subquadratic if it runs in time O(m2−ε) (we recall that m is at least n

2 , because we removed

2.4 - Complexity of Computing Metric Quantities 15

all isolated nodes).3 Our goal is to find subquadratic algorithms for all the aforementioned
problems.

In the first part of the thesis (Chapter 3), we show that, in the worst-case, it is probably
impossible to achieve such goal. More formally, we restrict our attention to sparse graphs,
where m = O(n), and we prove that the existence of an algorithm that runs in O(n2−ε) on
such graphs would falsify widely believed assumptions, such as the Strong Exponential Time
Hypothesis, the Orthogonal Vector conjecture, and the Hitting Set conjecture. Note that this
statement is stronger than simply saying that subquadratic algorithms cannot exist, or that
the O(mn) running-time cannot be improved: indeed, any algorithm running in O(m1−εn),
O(mn1−ε), O(m2−ε) on general graphs would be subquadratic when restricted to sparse
graphs. This means that, in the worst-case, there is very little room to improve over existing
algorithms.

In the second part of the thesis (Chapters 4 to 7), we provide new algorithms that outper-
form the textbook algorithm on real-world networks, and we define the improvement factor
as the ratio between mn, which is the number of edges visited by the textbook algorithm,
and the number of edges actually visited by our newly designed algorithm. The improvement
factors obtained with our new algorithms are usually surprisingly large, achieving speed-ups
of several orders of magnitude.

In the last part of the thesis (Chapter 8), we develop a theoretical framework in which
these algorithms can be evaluated and compared: we prove that they are efficient in the
worst under certain conditions, and we show that some widely used graph models satisfy
these conditions. All the models we consider in this thesis generate sparse graphs, or graphs
where m = O(n log n): for this reason, in that chapter we can ignore the issue of m vs n,
because all running time bounds have the form O(nc−o(1)) for some c: this way, we can simply
switch between m and n by incorporating the logarithmic factor in the o(1) part.

A summary of all the results available in this thesis is available in Table 2.1. Furthermore,
in Table 2.2, we provide a list of all the publicly available implementations of our algorithms.

3Classically, the term subquadratic denotes o(m2), and truly subquadratic denotes O(m2−ε). However,
in the field of polynomial reductions, our definition is becoming more and more popular, because it is more
natural [3].

Chapter 3

Lower Bounds in the Worst-Case

Abstract

For all the problems defined in the previous chapter, it is unlikely that subquadratic
algorithms exist: indeed, such algorithms would falsify widely believed conjectures, such
as the Strong Exponential Time Hypothesis, the Orthogonal Vector conjecture, and the
Hitting Set conjecture.

In this chapter, we survey existing hardness results for these problems, and we collect
them in a web of reduction. Then, we prove some new reductions, dealing with the
computation of the number of reachable nodes, of closeness centrality, of betweenness
centrality, of Lin’s index, and of the subset graph of a given collection of sets.

As we already said in the first two chapter, despite a long line of research, for most of the
problems considered in this thesis the trivial approaches are still optimal, or almost optimal
in the worst case. In other words, there is no subquadratic algorithm which is able to solve
them.

This lack of improvement is probably due to intrinsic theoretic bottlenecks: indeed, it was
proved that a faster solution for any of these problems would imply unexpected breakthrough
for other important problems. In the literature, the main tool used to prove this kind of
results is a particular kind of Karp reduction. Usually, a Karp reduction from a problem Π
to a problem Π′ is a function Φ that maps instances of Π to instances of Π′, such that the
result is preserved, and the size of Φ(I) is polynomial in the size of I, for each instance I of
Π. In our framework, since all our problems are polynomial-time solvable, we need a more
refined definition: instead of asking that the size of Φ(I) is polynomial in the size of I, we
ask that the size of Φ(I) satisfies |Φ(I)| ≤ |I|p(log(|I|)) for some polynomial p. This way, if
we have a subquadratic algorithm that solves Π′ and a Karp reduction from Π to Π′, we can
easily design a subquadratic algorithm for Π.

However, this tool is only able to prove that a problem is harder than another, and it
does not say anything on the absolute complexity of a problem. For this reason, we need
a “starting point”, that is, a problem that is assumed to be hard. Unfortunately, in this
context, the standard approach of using complete problems does not work, because there is
no notion of completeness linked to the class of quadratic-time solvable problem. For this
reason, researchers have simply started from specific problems, that have been widely studied,
relying on the assumption that if an algorithm existed, then it would have been found before.

In the literature, the first such problem considered is the 3Sum problem [80, 99, 91], from
which it is possible to prove the hardness of several problems in computational geometry,
and some problems dealing with graphs [2]. In the context of dense, weighted graphs, other
results are based on the hardness of computing the All Pairs Shortest Paths, assuming that
this task cannot be performed in time O(n3−ε) for any ε > 0 [171, 1].

18 3 - Lower Bounds in the Worst-Case

However, as discussed in Chapter 2, in this chapter we focus on sparse graphs, where
m = O(n): indeed, if we prove that a problem is hard on sparse graphs, we obtain “for free”
that there is no algorithm running in O(m2−ε), O(mn1−ε), O(m1−εn) on general graphs.

In this context, the most used assumption is the Strong Exponential Time Hypothesis
(SETH), that says that there is no algorithm that solves the k-Sat problem in time O((2−
ε)n), where ε > 0 does not depend on k [92]. The first SETH-based reduction was proved
in [168]: the authors show that it is impossible to find two disjoint sets in a given collection
of sets, unless SETH is false (we name this problem TwoDisjointSets). Starting from
this result, dozens of reductions were proved in the literature, for several different problems
[131, 138, 47, 44, 4, 2].

A further step was performed in [169, 31, 3]: almost all the reductions proved until now
can be rephrased as reductions that start from the TwoDisjointSets problem. Hence, we
can start from a stronger conjecture, assuming that the TwoDisjointSets is not solvable
in subquadratic time. This conjecture was named Orthogonal Vector conjecture, because it
can be restated in terms of finding two orthogonal vectors in a collection [3].

Finally, in [31, 3], the authors observe that most of the problems that are proved to
be hard assuming the Orthogonal Vector conjecture have the form ∃x,∃y, ϕ(x, y) for some
formula ϕ: for example, the TwoDisjointSets problem asks whether there exist two sets
x, y which are disjoint (note that, by the contrapositive, we can restate these problem using
∀ instead of ∃). However, almost no hardness result was proved for problems in the form
∃x, ∀y, even if several problems can be easily stated in this form, such as computing the
radius of a graph, that is, mins∈V maxt∈V dist(s, t) (note that the radius is smaller than r if
∃s ∈ V,∀t ∈ V,dist(s, t) ≤ r).

For this reason, in [3], the authors state another conjecture, named Hitting Set conjecture,
which is a “dual” of the Orthogonal Vector conjecture, because it is based on the hardness of
the HittingSet problem, that is, given a collection C of subsets of a given ground set X,
finding whether there is a set C ∈ C that has nonempty intersection to all other sets in C
(hence, we start from a problem of the form ∃C,∀C ′, C ∩ C ′ 6= ∅).1 Unfortunately, there is
no evidence of the hardness of the latter problem, apart from the fact that no subquadratic
algorithm is known, and the similarity to the Orthogonal Vector conjecture. However, it
is possible to prove that the Orthogonal Vector conjecture is implied by the Hitting Set
conjecture, and the HittingSet problem can be reduced to some problems that have the
form ∃∀, such as computing the radius of a graph or the maximum closeness centrality.

3.1 Our Contribution

In this chapter, we collect the most important reductions proved until now, with a specific
focus on the problems defined in Chapter 2, we put them into a single web of reductions, and,
most importantly, we use this web in order to prove some new reductions (see Figure 3.1).
The new reductions deal with the following problems.

BetweennessCentrality: despite numerous works, such as [39, 13], no truly sub-
quadratic algorithm computing the betweenness centrality is known, even of a sin-
gle node (BetweennessCentralityNode), or for finding the most central node
(BetweennessCentralityTopK with k = 1). Moreover, in [13], it is said that
finding better results for approximating the betweenness centrality of all nodes is a
“challenging open problem”. The only hardness result was proved in the weighted case
[1]: computing the betweenness centrality is at least as hard as computing the All Pairs
Shortest Paths, and providing a relative-error approximation is at least as hard as com-
puting the diameter. Conversely, our result deals with the sparse, unweighted case,
and it does not only show that computing the betweenness centrality of all nodes in

1In the original version of the Hitting Set conjecture [3], the authors use an equivalent form where C and
C′ are taken from two different collections of sets.

3.1 - Our Contribution 19

SETH

k-Sat*

Hitting Set
Conjecture

(Section 3.3.2)

k-Hitting Set

k-Orthogonal
Binary Vectors

Double set
versions

Orthogonal
Vector

Conjecture
(Section 3.3.1)
k-Orthogonal
Binary Vectors

Zeros In
k-Rect. Matrix
Multiplication

k-Two
Disjoint Sets

k-Two
Covering

k-Sperner
Family

Double set
versions

Subset
Graph

Minimum
Closeness
Centrality

Maximum
Lin’s Index

Number of
Reachable
Nodes

Bipartite
Subset

2-Dominating
Set

Bipartite
3-Dominating

Set

3-Dominating
Set

Graph
Dominated

Node

Betweenness
Centrality of v

Betweenness
Centrality
Top-k

Betweenness
Centrality

Split Graph
Diameter 2 or 3

Diameter

All
eccentricities

Hyperbolicity
with a

Fixed Node

Hyperbolicity

Hyperbolicity
with Two

Fixed Nodes

Maximum
Closeness
Centrality

Radius

3.6

3.
7

3.8

3.9

3.
13

3.
15

3.21

3.
10

3.1
6

3.18

3.18

3.22

3.17

3.11

3.12

3.19

3.23

3.23

3.
23

3.20

3.26

3
.2
6

Figure 3.1. The web of reductions proved in this chapter. Gray problems indicate original results, white
problems indicate known results, and light-gray problems indicate intermediate steps, which nevertheless can
be interesting in their own rights, such as the DiameterSplitGraph2Or3 problem. By “double set versions”,
we mean equivalent versions of the problems considered, where instead of having one collection C of sets, we
have two collections C1, C2, and we ask whether there are sets C1 ∈ C1, C2 ∈ C2 with specific properties. The
boxes corresponding to the conjectures collect all the problems whose hardness is equivalent to the conjecture
itself.

subquadratic time is against SETH or the Orthogonal Vector conjecture, but it also
presents the same result for computing the betweenness of a single node. We can also
suppose without loss of generality that this node is the most central node in the graph.

ClosenessCentralityMinimum: another fundamental quantity in graph analysis is close-
ness centrality, defined for the first time in 1950 [17] and recently reconsidered when
analyzing real-world networks (for the interested reader, we refer to [105] and the refer-
ences therein). This parameter has also raised algorithmic interest, and the most recent
result is a very fast algorithm to approximate the closeness centrality of all nodes [55].

20 3 - Lower Bounds in the Worst-Case

There are also hardness results: computing the most central node in subquadratic time
falsifies the Hitting Set conjecture. In this chapter, use the Orthogonal Vector con-
jecture to prove the hardness of finding the “least central” node with respect to this
measure. Simple consequences of this results are the hardness of computing the close-
ness centrality of all nodes, or of extracting a “small enough” set containing all peripheral
nodes.

LinIndexMaximum: efficient algorithms for computing Lin’s index were developed in the
literature [129, 20], but none of them is subquadratic in the worst-case. Here, we show
that it is hard to compute the most central node according to Lin’s index, assuming the
Orthogonal Vector conjecture. A similar result was deduced in [3], because that paper
proves that computing the node with maximum closeness centrality in subquadratic
time refutes the Hitting Set conjecture (and in connected graphs Lin’s index coincides
with closeness centrality). However, our reduction starts from the stronger Orthogonal
Vector conjecture, which is much more established than the Hitting Set conjecture.

NumReachableNodes: a very basic quantity in the analysis of a graph is the number of
nodes reachable from a given node s. In undirected graphs, this quantity can be com-
puted in linear time, and one might be tempted to assert the same result for directed
graphs, since strongly connected components are computable in linear time. A sub-
quadratic algorithm to perform this task could have many applications: to name a few,
there are algorithms that need to compute (or estimate) these values [32], the num-
ber of reachable nodes is used in the definition of other measures, such as Lin’s index
[110, 166, 129], and it can be useful in the analysis of the transitive closure of a graph
(indeed, the out-degree of a node v in the transitive closure is the number of nodes
reachable from v). Here, we prove that this quantity is hard to compute: indeed, an
algorithm that computes the number of reachable nodes in subquadratic time would
falsify the Orthogonal Vector conjecture, and the same result holds if we restrict our
attention to acyclic graphs with small diameter.

Hyperbolicity: the Gromov hyperbolicity of a graph [84] recently got the attention of
researchers in the field of network analysis [50, 75, 172, 58] (see Chapter 7. The trivial
algorithm to compute the hyperbolicity needs timeO(n4); however, this trivial approach
can be improved, as shown in [77]. In particular, the authors describe an algorithm with
time complexity O(n3.69), which is a consequence of an algorithm that computes in time
O(n2.69) the maximum hyperbolicity of a quadruple where one of the nodes is fixed. The
latter work also provides a hardness result for this problem, namely, that an algorithm
running in time smaller than O(n3.05) would imply faster algorithms for (max,min)
matrix product. Here, we use another approach: we prove that recognizing graphs of
hyperbolicity at most 1 is not solvable in subquadratic time, unless the Orthogonal
Vector conjecture is false. Furthermore, the same result holds if we fix one node s, and
even if we fix two nodes s, t in the quadruple (note that the latter problem is quadratic-
time solvable). Although this bound is quite far from the O(n3.69) upper bound, it
might be useful in the design of new algorithms, especially in the case where there are
fixed nodes.

SubsetGraph: given a collection C of subsets of a given ground set X, this problem asks
to compute the subset graph of C, which is defined as a graph whose nodes are the
elements of C, and which contains an edge (C,C ′) if C ⊆ C ′. For this problem, there
are algorithms running in o(n2) [173], but only by small logarithmic factors. In [135, 71],
the authors prove matching lower bounds, based on the number of edges in the subset
graph, which might be quadratic with respect to the input size. Our results show that
the complexity of computing the subset graph is not due to the output size only, but
it is intrinsic: in particular, we prove that even deciding whether the subset graph has

3.2 - Problem Definitions 21

no edge is hard. This excludes the existence of a subquadratic algorithm to check if a
solution is correct, or a subquadratic algorithm for instances where the output is sparse.

Moreover, we include in our web of reductions several “intermediate” problems. Among
them, we have some variations of finding dominating sets in a graph (which is one of the
21 Karp’s NP-complete problems [97]), detecting subsets with particular characteristics in a
given collection, and distinguishing split graphs of diameter 2 and 3. The latter result uses a
different reduction from the one in [138, 47], and it is significant because it implies the hardness
of computing the diameter of graphs in a class that contains split graphs: for instance, chordal
graphs, where it is possible to approximate the diameter with an additive error of at most
1 [50]. The hardness proof of these results are already known, either as “hidden” steps in
proofs already appeared in the literature, or as simple corollaries of previous work. However,
we think that it is important to highlight these intermediate results, both because they might
be interesting in their own right, and because they might be useful in the simplification of
existing proofs and in the design of new proofs.

In Section 3.2, we define all the problems considered in this chapter, while in Section 3.3
we precisely define SETH, the Orthogonal Vector conjecture, and the Hitting Set conjecture,
we prove that several definitions are equivalent, and we show that the Orthogonal Vector con-
jecture is implied by the other two conjectures (no other implication among these conjectures
is known). Then, in Section 3.4 we prove all the reductions in Figure 3.1.

3.2 Problem Definitions

Although some of the problems analyzed were already defined in Chapter 2, here we define
many other problems, used as “intermediate steps” in the reductions.

Problem: Bipartite3DominatingSet.
Input: a bipartite graph G = (V,E).
Output: a triple u, v, w such that V = N(u) ∪N(v) ∪N(w) ∪ {u, v, w}, if it exists (we

denote by N(u) the set of neighborx of u).

Problem: BipartiteSubset2DominatingSet.
Input: a graph G = (V,E) and a subset V ′ ⊆ V .
Output: a pair v, w such that V ′ = N(v) ∪ N(w) ∪ {v, w}, if it exists (we denote by

N(u) the set of neighborx of u).

Problem: ClosenessCentralityMaximum.
Input: a graph G = (V,E) and a threshold σ.
Output: True if there exists a node with closeness centrality larger than σ, False

otherwise. The closeness centrality of a node s is defined as

c(s) =
n− 1∑

t∈V dist(s, t)
.

Problem: DiameterSplitGraph2Or3.
Input: a split graph G.
Output: True if G has diameter 2, False otherwise.

Problem: DominatedNode.
Input: a graph (V,E).

22 3 - Lower Bounds in the Worst-Case

Output: True if there are nodes v, w such that N(v) ⊇ N(w), False otherwise.

Problem: DominatingSet3.
Input: a graph G = (V,E).
Output: a triple v, w, x such that V = N(v) ∪N(w) ∪N(x) ∪ {v, w, x}, if it exists.

Problem: HyperWith1FixedNode.
Input: a graph G = (V,E) and a node s.
Output: the maximum over each triple of nodes t, u, v of δ(s, t, u, v) = S1 − S2, where

S1 is the maximum sum among dist(s, t) + dist(u, v), dist(s, u) + dist(t, v),
dist(s, v) + dist(t, u), and S2 the second maximum sum.

Problem: HyperWith2FixedNodes.
Input: a graph G = (V,E) and two nodes s, t.
Output: the maximum over each pair of nodes u, v of δ(s, t, u, v) = S1 − S2, where

S1 is the maximum sum among dist(s, t) + dist(u, v), dist(s, u) + dist(t, v),
dist(s, v) + dist(t, u), and S2 the second maximum sum.

Problem: k-HittingSet.
Input: a set X and a collection C of subsets of X such that |X| < k log(|C|).
Output: True if there is a hitting set C, that is, C ∩ C ′ 6= ∅ for each C ′ ∈ C, False

otherwise.

Problem: k-OrthogonalBinaryVectors.
Input: a collection C of binary vectors on a space of size at most k log(|C|).
Output: True, if there are two orthogonal vectors, False otherwise.

Problem: k-OrthogonalToAllVectors.
Input: a collection C of binary vectors on a space of size at most k log(|C|).
Output: True, if there is a vector which is not orthogonal to any other vector, False

otherwise.

Problem: k-Sat*.
Input: two sets of variables {xi}, {yj} of the same size, a set C of clauses over these

variables, such that each clause has at most size k, the set of possible evalua-
tions of {xi} and the set of possible evaluations of {yj}.

Output: True if there is an evaluation of all variables that satisfies all clauses, False
otherwise.

Problem: k-SpernerFamily.
Input: a set X and a collection C of subsets of X such that |X| < k log(|C|).
Output: True if there are two sets C,C ′ ∈ C such that C ⊆ C ′, False otherwise.

Problem: k-TwoCovering.

3.3 - The Orthogonal Vector Conjecture and the Hitting Set Conjecture 23

Input: a set X and a collection C of subsets of X such that |X| < k log(|C|).
Output: True if there are two sets C,C ′ ∈ C such that X = C ∪ C ′, False otherwise.

Problem: k-TwoDisjointSets.
Input: a set X and a collection C of subsets of X such that |X| < k log(|C|).
Output: True if there are two disjoint sets C,C ′ ∈ C, False otherwise.

Problem: k-ZerosMatrixMultiplication.
Input: a (0− 1)-matrix M of size (k log n)× n.
Output: True if MTM contains a 0, False otherwise.

Problem: LinIndexMaximum.
Input: a graph G = (V,E) and a threshold σ.
Output: True if there exists a node with Lin’s index bigger than σ, False otherwise.

The Lin’s index of a node s is defined as

(r(v)− 1)2

(n− 1)
∑
t∈R(v) dist(s, t)

,

where R(v) is the set of nodes reachable from v, r(v) = |R(v)|.

Problem: SubsetGraph.
Input: a set X and a collection C of subsets of X.
Output: the graph G = (C, E), where, for each C,C ′ ∈ C, (C,C ′) ∈ E if and only if

C ⊆ C ′.

3.3 The Orthogonal Vector Conjecture and the Hitting
Set Conjecture

In this section, we prove the equivalence of the different versions of the Orthogonal Vector
conjecture and the Hitting Set conjecture, and we show the implications between these two,
and SETH. We decided to distinguish theorems, that correspond to technical reductions, and
remarks, that correspond to simple reductions, or sometimes to restatement of the original
problem.

3.3.1 The Orthogonal Vector Conjecture

Let us first define the Orthogonal Vector conjecture as follows: there is no ε > 0 such
that, for all k ≥ 1, there is an algorithm that can determine in O(n2−ε) time if there is an
orthogonal pair in a list of n vectors C ⊆ {0, 1}k logn.2 In other words, we are saying that the
k-OrthogonalBinaryVectors problem cannot be solved in subquadratic time.

First, we can restate this problem in terms of the existence of zeros in MTM , where M
is a rectangular matrix k log n× n whose lines are the vectors in C.
Remark 3.1. If there is a subquadratic algorithm for k-OrthogonalBinaryVectors, then
there is a subquadratic algorithm for k-ZerosMatrixMultiplication, and viceversa.

2All the proofs would still work if we redefine the k-OrthogonalBinaryVectors problem by setting the
dimension of the ground space as (logn)k instead of k logn. In this case, also the proof that SETH implies
the Orthogonal Vector conjecture would be simpler. However, we chose to use k logn because it is more
established in the literature (see for instance [3]).

24 3 - Lower Bounds in the Worst-Case

Proof. Each instance of the k-OrthogonalBinaryVectors problem can be associated to
an instance of the k-ZerosMatrixMultiplication problem, by mapping the vectors of the
k-OrthogonalBinaryVectors problem to the columns of the input matrix M of the k-
ZerosMatrixMultiplication problem. Clearly, there are two orthogonal vectors if and
only if M has two orthogonal columns, if and only if the matrix MTM contains a zero.

Moreover, the k-OrthogonalBinaryVectors problem can be easily linked to the hard-
ness of various set problems: the simplest one is the k-TwoDisjointSets problem (also
named CooperativeSubsetQuery in [168]), which asks to find two disjoint sets in a col-
lection C of subsets of a given ground set X, assuming |X| < k log(|C|).
Remark 3.2 ([168]). If there is a subquadratic algorithm for k-TwoDisjointSets, then there
is a subquadratic algorithm for k-OrthogonalBinaryVectors, and viceversa.

Sketch of proof. Each instance of the k-OrthogonalBinaryVectors problem can be as-
sociated to an instance of the k-TwoDisjointSets problem, and viceversa: the ground set
corresponds to the set of dimensions of the space, and a value 1 in a vector corresponds to
an element in the set. In this construction, two disjoint sets correspond to two orthogonal
vectors.

An equivalent formulation can be obtained by taking the complement of the two sets in
the k-TwoDisjointSets problem: we obtain the k-TwoCovering problem. This problem
has as input a collection C of subsets of a ground set X, and it asks whether there are two
sets C1, C2 ∈ C such that C1 ∪ C2 = X.

Remark 3.3. If there is a subquadratic algorithm for k-TwoDisjointSets, then there is a
subquadratic algorithm for k-TwoCovering, and viceversa.

Sketch of proof. We use the fact that two sets C1, C2 ∈ C are disjoint if and only ifX−C1, X−
C2 cover X (indeed, C1 ∩C2 = ∅ if and only if X − (C1 ∩C2) = X, if and only if (X −C1)∪
(X −C2) = X). Following this idea, given an instance of the k-TwoDisjointSets problem,
we obtain a corresponding instance of the k-TwoCovering problem by complementing all
sets. Note that this operation cannot increase the input size by more than a logarithmic
factor, because the size of X is at most k log(|C|).

A more complicated result links the complexity of the k-TwoDisjointSets to the com-
plexity of the k-SpernerFamily, which, given a collection C of sets, asks whether there are
C1, C2 ∈ C such that C1 ⊆ C2.

Theorem 3.4. If there is a subquadratic algorithm for k-TwoDisjointSets, then there is
a subquadratic algorithm for k-SpernerFamily, and viceversa.

Reduction from k-TwoDisjointSets to k-SpernerFamily. Consider an instance (X, C) of
k-TwoDisjointSets. To start, let us define the reduction as (X, C′), where C′ = C ∪ C̄ (we
denote C̄ := {X − C : C ∈ C}). This is not the correct reduction, but we see later how to
adapt it. If we find two sets C1 ∈ C, C2 ∈ C̄ such that C1 ⊆ C2, we know that C1 and X −C2

are in C and they are disjoint, so we have found a solution. However, when we solve the
k-SpernerFamily problem, we are not sure that we obtain two sets C1 ∈ C and C2 ∈ C̄. We
solve this issue by slightly modifying the set X and C′, to rule out all other possibilities. In
order to avoid the existence of C1, C2 ∈ C such that C1 ⊆ C2, we define h := dlog2(|C|)e, and
we add two sets Y = {y1, . . . , yh} and Z = {z1, . . . , zh} to X. Then, we add Y and Z to each
set in C̄ and we add to each element C ∈ C some yi and some zj , so that no element of C
can dominate another element in C (for example, we may associate each set C with a unique
binary number with h bits, and code this number using yi as zeros and zj as ones). This way,
we preserve dominations between sets in C̄ and sets in C, and we also avoid that a set in C
dominates another set. Finally, we need to avoid that two sets in C̄ dominate each other: it
is enough to make the same construction adding new sets Y ′ and Z ′ of logarithmic size, and

3.3 - The Orthogonal Vector Conjecture and the Hitting Set Conjecture 25

use them to uniquely code any element in C̄. In order to preserve dominations between C and
C̄, none of the elements in Y ′ and Z ′ is added to subsets in C.

Reduction from k-SpernerFamily to k-TwoDisjointSets. Let us consider an instance
(X, C) of k-SpernerFamily and let us map it to an instance of k-TwoDisjointSets
(X∪{x1, x2}, C′), where C′ := C1∪C2, C1 := {C∪x1 : C ∈ C} and C2 := {(X−C)∪x2 : C ∈ C}.

If C1 and C2 are disjoint sets in C′, one of them must be in C1 and the other in C2 (because
of x1 and x2). Hence, there are two disjoint sets in C′ if and only if there is a set C1 ∈ C1,
C2 ∈ C2 such that C1 ∩ C2 = ∅, if and only if there are two sets C ′1, C ′2 ∈ C such that
C ′1 ∩ (X − C ′2) = ∅, if and only if C ′1 ⊆ C ′2. We have proved that two disjoint sets in C′
correspond to two sets in C such that one set dominates the other.

Finally, we observe that all the aforementioned set problems deal with a collection C of sets.
However, in some cases, we might want to work with two collections C1 and C2: for instance,
in the k-TwoDisjointSets problem, we might want to check if there are two disjoint sets
C1 ∈ C1, C2 ∈ C2. It turns out that the two versions of the problem are equivalent: indeed,
the version with a single collection can be easily reduced to the version with two collections
by choosing C1 = C2. The converse is a bit harder: in the k-TwoDisjointSets problem it
is enough to add a new element x1 to each set in C1, and a new element x2 to each set in C2,
and define C as the union of these two collections. Then, the proofs of equivalence used in
this section can be modified in order to deal with the case with two collections C1 and C2.

3.3.2 The Hitting Set Conjecture
Let us start by defining the Hitting Set conjecture as follows: there is no ε > 0 such that,
for all k ≥ 1, there is an algorithm that can determine in O(n2−ε) time if there is a hitting
set in a collection of n subsets of a given ground set X, where |X| ≤ k log n.3 In other
words, we are saying that the k-HittingSet problem cannot be solved in subquadratic time
(differently from the Orthogonal Vector conjecture, for historical reasons, we start from the
version dealing with sets).

As we did with the Orthogonal Vector conjecture, we can prove that this conjecture is
equivalent to the hardness of several problems, that can be obtained from the k-HittingSet
by taking complements. However, since all the reductions we prove deal with the k-
HittingSet, and since the problems obtained are less natural than their counterparts, we
only consider two variation, and we refer the interested reader to [3] for more details.

In particular, let us restate this conjecture in terms of orthogonal vectors.

Remark 3.5 ([168]). If there is a subquadratic algorithm for k-HittingSet, then there is a
subquadratic algorithm for k-OrthogonalToAllVectors, and viceversa.

Sketch of proof. Each instance of the k-OrthogonalToAllVectors problem can be asso-
ciated to an instance of the k-HittingSet problem, and viceversa: the ground set corresponds
to the set of dimensions of the space, and a value 1 in a vector corresponds to an element
in the set. In this construction, two disjoint sets correspond to two orthogonal vectors, and
consequently a hitting set corresponds to a vector that is not orthogonal to any other vector
in the collection.

Finally, also in this case we can consider versions with two collections of sets C1, C2: in
this version, we are looking for a set C1 ∈ C1 that hits all sets C2 ∈ C2. Again, proving the
equivalence of this version with the version with just one collection is quite simple: clearly,
the version with one collection is easier, because we can always choose C1 = C2. To reduce
the version with two collections, we add a new element x to the set X, and we define

C = {{x}} ∪ {C ∪ {x} : C ∈ C1} ∪ C2.
3Also in this case, all the proofs would still work if we redefine the k-HittingSet problem by setting the

dimension of X to (logn)k instead of k logn.

26 3 - Lower Bounds in the Worst-Case

Then, if there is a hitting set in C, then it must be of the form C ∪ {x} with C ∈ C1,
because no set in C2 hits the set {x}, and {x} does not hit any set in C2. Hence, there is a
hitting set in C if and only if there is a set of the form C ∪ {x} with C ∈ C1 that hits all
sets in C, if and only if C hits all sets in C2. This concludes the reduction between the two
versions on the k-HittingSet.

3.3.3 Implications Between Conjectures

In this section, we show that the Orthogonal Vector conjecture is implied both by SETH and
by the Hitting Set Conjecture. Currently, no other implication between these conjectures is
known.

Theorem 3.6 ([168]). The Strong Exponential Time Hypothesis implies the Orthogonal Vec-
tor conjecture.

Proof. Let k-Sat* be the problem defined as follows: we are given a propositional formula
in conjunctive normal form on n variables, such that all clauses have length at most k, and
let us assume that we also input all possible evaluations of the variables in V1 and in V2,
where V1 and V2 are two sets of n2 variables (the latter part of the input is used to increase
the input size, so that we are able to solve k-Sat* in quadratic time by checking all possible
evaluations of the variables). Clearly, if we can solve k-Sat* in subquadratic time, then we
can solve k-Sat in time

O
((

2
n
2

)2−ε
)

= O
((

2
2−ε

2

)n)
= O

(
(2− δ)n

)
,

against SETH. So, we only need a reduction from the k-Sat* problem to a problem whose
hardness is equivalent to the Orthogonal Vector conjecture, namely the k-TwoCovering
problem, in the variation with two collections of sets. Our ground set is the set of clauses:
the set C1 (resp., C2) contains all the sets of clauses that are satisfied by a given evaluation
of the variables in V1 (resp., V2).

More formally, C = C1 ∪ C2, C1 := {{c ∈ C : v |= c} : v ∈ V1} and similarly C2 := {{c ∈
C : v |= c} : v ∈ V2} (note that v |= c means that the evaluation v is sufficient to make the
clause c true, independently on the evaluation of the remaining variables). It is easy to prove
that this construction can be performed in time 2

n
2 p(n) for some polynomial p(n), and the

number of sets is at most 2
n
2 . Furthermore, each assignment corresponds naturally to two

partial assignments in C1 and in C2, and the assignment satisfies the formula if and only if all
clauses are satisfied, if and only if the two corresponding sets C1 ∈ C1, C2 ∈ C2 cover the set
of clauses. Furthermore, since we want a covering to correspond to a set in C1 and a set in
C2, we add two more elements x1, x2, we add x1 to all sets in C1 and x2 to all sets in C2.

The only problem in this construction is that the ground set has size at most 2nk =
logk2(|C|), which in general can be bigger than log(|C|). To avoid this issue, a possibility would
be to restate all our problems considering a ground set of size logk |C| instead of k log(|C|).
However, following most of the literature, we use Corollary 1 in [92], which says that, for all
δ > 0 and positive k, there is a constant C so that any k-Sat formula Φ with n variables can
be expressed as Φ = ∨ti=1Ψi, where t ≤ 2δn and each Ψi is a k-Sat formula with at most
Cn clauses. Moreover, this disjunction can be computed by an algorithm running in time
p(n)2δn for some polynomial p(n).

This way, instead of performing the reduction starting from the original problem, we
perform the reduction for each of the t formulas Ψi. A simple computation yields that, if we
can solve the C-SpernerFamily problem in O(n2−ε) for some ε > 0, then we can solve the
k-Sat problem in O(p(n)t(2

n
2)2−ε) = O((2− δ)n) for a suitable choice of δ. The latter result

is against SETH.

Theorem 3.7 ([3]). The Hitting Set conjecture implies the Orthogonal Vector conjecture.

3.4 - Proof of the Other Reductions (∗) 27

Algorithm 1: reduction from the k-HittingSet problem to the k-TwoDisjointSets
problem.
1 h← b

√
nc;

2 for i=1,. . . ,h do
3 for j=1,. . . ,h do
4 while ∃C1 ∈ C1i, C2 ∈ C2j : C1 ∩ C2 = ∅ do
5 remove C1 from C1i;
6 end
7 end
8 if C1i 6= ∅ then return an element in C1i;
9 end

10 return "There is no hitting set."

Proof. Let us prove the contrapositive: we assume that we can solve the k-TwoDisjointSets
problem in O(n2−ε), and we prove that we can solve the k-HittingSet problem in O(n2−δ)
for δ = ε

2 (actually, we use the version of the k-TwoDisjointSets problem and the Hit-
tingSet problem with two collections of sets).

Let us consider an instance of the k-HittingSet problem: we have to find a set C1 ∈ C1
that is not disjoint to any set C2 ∈ C2, if it exists. To solve this instance, we divide C1 and
C2 into at most h = b

√
nc sets of size O(

√
n), obtaining C11, . . . , C1h, C21, . . . , C2h. Then, we

iteratively check if there are C1 ∈ C1i, C2 ∈ C2j such that C1 ∩ C2 = ∅: if this is the case, we
can safely remove C1 from C1i, because C1 is not a hitting set. Otherwise, we continue the
procedure. If, at some point, we cannot remove any element in C1i, it means that we have
found a hitting set, because C1i is not disjoint to any set in C2. Otherwise, at some point, all
sets C1i are empty, and consequently we know that there is no hitting set. The pseudocode is
available in Algorithm 1.

Let us analyze the running time of this algorithm. Every time we perform Line 5, either
we remove an element from C1i, or the value of j is increased: at most, these two actions can
be performed O(n) times, and consequently Line 5 is performed O(n) times. Since all other
operations cost O(n) at most, the total running time is O(n), multiplied by the time needed
to find if there are two disjoint sets in a collection of O(

√
n) sets. If the Orthogonal Vector

conjecture is false, then the latter task can be performed in O(
√
n

2−ε
), and consequently the

total running time is O(n2− ε2), which is truly subquadratic. Consequently, if the Orthogonal
Vector conjecture is false, then the Hitting Set conjecture is false as well.

3.4 Proof of the Other Reductions

In this section, we prove all the reductions in Figure 3.1. For simplicity, since in this thesis
we do not analyze approximation algorithms, we do not try to optimize the reductions with
respect to the approximation factor obtained, and we refer to the original papers for more
information.

Theorem 3.8 ([3]). The MaximumClosenessCentrality problem is not solvable in sub-
quadratic time unless the Hitting Set conjecture is false.

Proof. We prove this theorem through a reduction from the HittingSet problem to the
problem of computing the maximum closeness centrality. For simplicity, we consider the
farness, which is the inverse of the closeness centrality: the farness of a node s in a connected
graph is defined as f(s) = 1

n−1

∑
t∈V dist(s, t). Given an instance (X, C) of the HittingSet

problem, we construct a graph G as follows (see Figure 3.2).

• We define V = V1 ∪ V2 ∪ {u} ∪ {v} ∪ C0 ∪X1 ∪X2 ∪ C1, where V1, V2 are sets of (large)

28 3 - Lower Bounds in the Worst-Case

u

v

C0 X1

X2

C1

V1

V2

3

63

∈

Figure 3.2. The reduction used to prove the hardness of the MaximumClosenessCentrality problem.

cardinality N = 3(|C|+ |X|), C0, C1 are copies of C, X1, X2 are copies of X, and u, v are
extra nodes.

• The node u is connected to any node in C2 and any node in C0, and similarly the node
v is connected to any node in C3 and any node in C0.

• A node C ∈ C0 is connected to a node x ∈ X1 if x ∈ C, and similarly a node C ∈ C1 is
connected to a node x ∈ X1 if x ∈ C.

• Each pair of nodes in X1 is connected, and each pair of nodes in X2 is connected.

• A node x ∈ X2 is connected to a node C ∈ C0 if x /∈ C.

• No other pair of nodes is connected.

First, let us compute the farness of a node C ∈ C0:

f(C) =
∑
w∈V

dist(C,w)

=
∑

w∈V1∪V2

2 +
∑

w∈{u,v}

1 +
∑
w∈C0

dist(C,w) +
∑

w∈X1∪X2

dist(C,w) +
∑
w∈C1

dist(C,w)

= 4N + 2 + 2(|C0| − 1) + |C|+ 2|X − C|+ |X − C|+ 2|C|+
∑
w∈C1

dist(C,w)

= 4N + 2|C|+ 3|X|+ 2|C1|+ |{C1 ∈ C1 : C1 ∩ C = ∅}|
= 4N + 4|C|+ 3|X|+ |{C1 ∈ C1 : C1 ∩ C = ∅}|
= 4N + 4|C|+ 3|X|+ |{C ′ ∈ C : C ∩ C ′ = ∅}|

(we used that the distance between C and a node C1 ∈ C1 is 3 if C ∩ C1 = ∅, 2 otherwise).

3.4 - Proof of the Other Reductions (∗) 29

v

C1

X

C2

w
3 ∈

Figure 3.3. The reduction used to prove the hardness of the Radius problem.

We claim that the minimum farnessre is 4N+4|C|+3|X| if and only if there is a hitting set
C ∈ C. One direction is easy: if there is a hitting set C ∈ C, then |{C ′ ∈ C : C ∩C ′ = ∅}| = 0,
and f(C) = 4N +4|C|+3|X|. For the other direction, if there is no hitting set, then all nodes
in C0 have farness at least 4N + 4|C|+ 3|X|+ 1, because |{C ′ ∈ C : C ∩C ′ = ∅}| ≥ 1 for each
C. Let us prove that all the other nodes in the graph have bigger farness: first, f(w) ≥ 6N
for each node w ∈ X1 ∪ X2 ∪ C1, because dist(w, t) ≥ 3 for each t ∈ V1 ∪ V2. If we choose
6N > 4N + 4|C|+ 3|X| (for instance, N = 2(|C|+ |X|)), then f(w) ≥ 6N > 4N + 4|C|+ 3|X|.
It remains to prove that f(w) > 4N + 4|C|+ 3|X| for each w ∈ V1∪V2∪{u, v} (by symmetry,
we only consider w ∈ V1 ∪ {u}). If w ∈ V1, f(w) ≥ f(u), because the only neighbor of w is
u; moreover, f(u) ≥ 4N + 4|C| + 4|X| > 4N + 4|C| + 3|X|, because u is at distance 1 from
each node in V1, at distance 3 from each node in V2, at distance 1 from each node in C0, at
distance 3 from each node in C1, and at distance 2 from each node in X1∪X2. This concludes
the reduction.

Theorem 3.9 ([3]). The Radius problem is not solvable in subquadratic time unless the
Hitting Set conjecture is false.

Proof. We prove this theorem through a reduction from the HittingSet problem to the
Radius problem. Given an instance (X, C) of the HittingSet problem, we construct a
graph G as follows (see Figure 3.3).

• The set of nodes is made by five parts, and each part is only connected to the previous
or the next one:

1. the first part is made by a single node v;

2. the second part is made by a single node w;

3. the third part is a copy C1 of C;
4. the fourth part is a copy of X;

5. the fifth part is a copy C2 of C.

• There is an edge from v to w.

• There is an edge from w to each node in C1.

• For each element x ∈ C, where x ∈ X and C ∈ C, there is an edge (x,C1) and (x,C2),
where C1 and C2 are the two copies of C in C1 and C2.

• All the elements in the X are connected.

30 3 - Lower Bounds in the Worst-Case

x

Cx

X

Cy

y
3 ∈

Figure 3.4. The reduction used to prove the hardness of the BetweennessCentralityNode problem.

First, it is easy to prove that this reduction yields a graph where m,n = O(|X||C|) =
O(|C| log(|C|)). Furthermore, the radius is at least 2, because each part of the graph is only
connected to the previous and to the next one, and if the radius is 2, then the radial node
must be in C1. Moreover, all the nodes in C1 can reach v, w, all the other nodes in C1, and
all the nodes in X in at most 2 steps. Hence, the radius is 2 if and only if there is a node in
C1 that can reach every node in C2 in 2 steps, if and only if there is a hitting set, because a
node C1 ∈ C1 can reach a node C2 ∈ C2 in 2 steps if and only if the two sets C1 and C2 have
a common element. This means that, if we can find the radius in time O(m2−ε), then we can
find if there are two disjoint sets in O(|C|2−ε log2−ε(|C|)) = O(|C|2− ε2).

Theorem 3.10. The BetweennessCentralityNode problem is not solvable in sub-
quadratic time unless the Orthogonal Vector conjecture is false.

Proof. We prove the theorem by reduction from the k-TwoDisjointSets problem. Let us
consider an instance (X, C) of k-TwoDisjointSets, and let us construct a graph G = (V,E)
as follows:

• V := {x} ∪ Cx ∪X ∪ Cy ∪ {y}, where X is the ground set, and Cx, Cy are two identical
copies of C (in the graph, y, x, Cx, X, Cy somehow resemble a cycle);

• all pairs of nodes in X are connected;

• node x is connected to y and to each node in Cx;

• node y is connected to x and to each node in Cy;

• connections between Cx and X and connections between Cy and X are made according
to the ∈-relation.

The input node of our problem is x. We observe that the graph is a big “cycle” made by
five “parts”: y, x, Cx, X, Cy. Moreover, it is possible to move from one part to any node in the
next part in one step (except if we start or arrive in X, and in that case we need at most
two steps). As a consequence, no shortest path can be longer than 3. This proves that any
shortest path in the sum passing through x must be of one of the following forms:

• a path from y to Cx;

• a path from Cx to Cy;

3.4 - Proof of the Other Reductions (∗) 31

C0

X

C1

3 ∈

Figure 3.5. The reduction used to prove the hardness of the NumReachableNodes problem.

• a path from y to X

We note that the third case never occurs, because there exists a path of length 2 from y
to any node in X. The first case occurs for each node in Cx, and no other shortest path exists
from y to nodes in Cx: these nodes contribute to the sum by |C|. Finally, the second case
occurs if and only if there is a pair of nodes in Cy and Cx having no path of length 2, that is,
two disjoint sets in C. This proves that the betweenness of x is bigger than |C| if and only if
there are two disjoint sets in C.

Remark 3.11. We can also assume that x is the most central node, by adding new nodes that
are only connected to x.

Remark 3.12. The BetweennessCentrality problem is not solvable in subquadratic time
unless the Orthogonal Vector conjecture is false.

Proof. If we cannot compute in subquadratic time the centrality of a single node, clearly we
cannot compute the centrality of all nodes.

Theorem 3.13. The NumReachableNodes problem is not solvable in subquadratic time
unless the Orthogonal Vector conjecture is false.

Proof. Let us consider an instance of the TwoDisjointSets problem (X, C), and let us
construct a digraph G = (V,E) as follows. We let C0, C1 be two copies of C, and we define
V = C0 t C1 tX, where t denotes the disjoint union. Then, we add a directed edge from a
node C0 ∈ C0 to a node x ∈ X if x ∈ C0, and similarly we add a directed edge from x ∈ X
to C1 ∈ C1 if x ∈ C. A representation of the reduction is shown in Figure 3.5.

It is clear that, in the graph constructed, m,n = O(|X||C|) = O(|C| log(|C|)). Assume
that we can compute in subquadratic time the number r(C0) of nodes reachable from each
node C0 ∈ C0. From this, we can also compute in time O(1) the number of nodes in C1 that
a node C0 ∈ C0 can reach, because this number is

|{C1 ∈ C1 : C0 can reach C1}| = r(C0)− |{C0}| − |{x ∈ X : C0 can reach x}|
= r(C0)− 1− outdeg(C0).

It is easy to see that a node C0 ∈ C0 can reach a node C1 ∈ C1 if and only if the sets
corresponding to C0 and C1 have a common element: hence, we can check if there are two
disjoint sets by checking if

∀C0, |{C1 ∈ C1 : C0 can reach C1}| = |C1|.

The time needed to perform this task is O(m2−ε + n), because we assumed that we can
compute the number of reachable nodes in subquadratic time, and all the other operations

32 3 - Lower Bounds in the Worst-Case

need time O(n). Overall, the running time is

O(m2−ε) = O
(
|C|2−ε log(|C|)2−ε

)
= O

(
|C|2− ε2

)
.

We proved that a subquadratic algorithm for NumReachableNodes yields a sub-
quadratic algorithm for the TwoDisjointSets problem, which is against the Orthogonal
Vector conjecture.

Remark 3.14. This reduction still works if we assume the input graph to be acyclic, and to
have diameter at most 2.

Theorem 3.15. The LinIndexMaximum problem is not solvable in subquadratic time unless
the Orthogonal Vector conjecture is false.

Proof. As done in previous cases, we construct a reduction from the TwoDisjointSets
problem.

Given an instance (X, C) of the TwoDisjointSets problem, and given a set C ∈ C, let
RC be |{C ′ ∈ C : C ∩ C ′ 6= ∅}|. The TwoDisjointSet problem has no solutions if and only
if RC = |C| for all C ∈ C; indeed, RC = |C| means that C intersects all the sets in C. We
construct a directed graph G = (V,E), where |V |, |E| = O(|C||X|) = O(|C| log |C|), such that:

1. V contains a set of nodes C0 representing the sets in C (from now on, if C ∈ C, we
denote by C0 the corresponding node in C0);

2. the centrality of C0 is a function c(RC), depending only on RC (that is, if RC = RC′

then c(C0) = c(C ′0));

3. the function c(RC) is decreasing with respect to RC ;

4. the most central node is in C0.

In such a graph, the node with maximum closeness corresponds to the set C minimizing RC :
indeed, it is in C0 by Condition 4, and it minimizes RC by Condition 2-3. Hence, assuming
we can find C0 in time O(n2−ε), we can easily check if the closeness of C0 is c(|C|): if it is
not, it means that the corresponding TwoDisjointSet instance has a solution of the form
(C,C ′) because RC 6= C. Otherwise, for each C ′, RC′ ≥ RC = |C|, because c(C ′0) ≤ c(C0) =
c(|C|), and c() is decreasing with respect to RC . This means that RC = |C| for each C, and
there are no two disjoints sets. This way, we can solve the TwoDisjointSets problem in
O(n2−ε) = O((|C| log |C|)2−ε) = O(|C|2− ε2), against the Orthogonal Vector conjecture.

To construct this graph (see Figure 3.6), we start by the construction in the previous
proof: we add to V the copy C0 of C, another copy C1 of C and a copy X1 of X. These nodes
are connected as follows: for each element x ∈ X and set C ∈ C, we add an edge (C0, x) and
(x,C1), where C0 is the copy of C in C0, and C1 is the copy of C in C1. Moreover, we add a
copy X2 of X and we connect all pairs (C0, x) with C ∈ C, x ∈ X and x /∈ C. This way, the
Lin’s index of a node C0 ∈ C0 is (|X|+RC)2

(n−1)(|X|+2RC) (which only depends on RC).
To enforce Items 3 and 4, we add a path of length p leaving each node in C1, and q nodes

linked to each node in C0, each of which has out-degree |C|: we show that by setting p = 7
and q = 36, all required conditions are satisfied.

More formally, we have constructed the following graph G = (V,E):

• V = Z ∪ Y ∪ C0 ∪X1 ∪X2 ∪ C1 ∪ · · · ∪ Cp, where Z is a set of cardinality q|C|, Y a set
of cardinality q, the Cis are copies of C and the Xis are copies of X;

• each node in Y has |C| neighbors in Z, and these neighbors are disjoint;

• for each x ∈ C, there are edges from C0 ∈ C0 to x ∈ X1, and from x ∈ X1 to C1 ∈ C1;

• for each x /∈ C, there is an edge from C0 ∈ C0 to x ∈ X2;

3.4 - Proof of the Other Reductions (∗) 33

C0 X1

X2

C1 C2 CpYZ

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

3

63

∈

Figure 3.6. The reduction used to prove the hardness of the LinIndexMaximum problem.

• each Ci ∈ Ci, 1 ≤ i ≤ p, is connected to the same set Ci+1 ∈ Ci+1;

• no other edge is present in the graph.

Note that the number of edges in this graph is O(|C||X|) = O(|C| logl(|C|)), because |X| <
logl(|C|),

Claim 3.1. Assuming |C| > 1, all nodes outside C0 have Lin’s index at most 2|C|
n−1 , where n

is the number of nodes.

Proof of claim. If a node is in Z,X2, or Cp, its Lin’s index is not defined, because it has
out-degree 0.

A node y ∈ Y reaches |C| nodes in 1 step, and hence its Lin’s index is |C|2
|C|(n−1) = |C|

n−1 .
A node in Ci reaches p− i other nodes, and their distance is 1, . . . , p− i: consequently, its

Lin’s index is (p−i)2

(p−i)(p−i+1)
2 (n−1)

= 2(p−i)
(n−1)(p−i+1) ≤

2
n−1 .

Finally, for a node x ∈ X1 contained in Nx sets, for each 1 ≤ i ≤ p, x reaches Nx nodes
in Ci, and these nodes are at distance i. Hence, the Lin’s index of x is (pNx)2

p(p+1)
2 Nx(n−1)

=

2pNx
(n−1)(p+1) ≤

2Nx
n−1 ≤

2|C|
n−1 . This concludes the proof.

Let us now compute the Lin’s index of a node C ∈ C0. The reachable nodes are:

• all q nodes in Y , at distance 1;

• all |C|q nodes in Z, at distance 2;

• |X| nodes in X1 or X2, at distance 1;

• RC nodes in Ci for each i, at distance i+ 1 (the sum of the distances of these nodes is∑p
i=1 i+ 1 = −1 +

∑p+1
i=1 i = (p+2)(p+1)

2 − 1).

Hence, the Lin’s index of C is:

c(RC) =
(q(1 + |C|) + |X|+ pRC)2(

q(1 + 2|C|) + |X|+
(

(p+1)(p+2)
2 − 1

)
RC

)
(n− 1)

=
(q(1 + |C|) + |X|+ pRC)2(

q(1 + 2|C|) + |X|+ g(p)RC
)

(n− 1)

where g(p) = (p+1)(p+2)
2 − 1. We want to choose p and q satisfying:

34 3 - Lower Bounds in the Worst-Case

a. the Lin’s index of nodes in C0 is bigger than 2|C|
n−1 (and hence bigger than the Lin’s index

of all other nodes);

b. c(RC) is a decreasing function of RC for 0 ≤ RC ≤ |C|.

In order to satisfy Condition b., the derivative c′(RC) of c is

2p(q(1 + |C|) + |X|+ pRC)
(
q(1 + 2|C|) + |X|+ g(p)RC

)
− g(p)(q(1 + |C|) + |X|+ pRC)2(

q(1 + 2|C|) + |X|+ g(p)RC
)2

(n− 1)

= (q(1 + |C|) + |X|+ pRC)
[pg(p)Rc + 2p

(
q(1 + 2|C|) + |X|

)
− g(p)(q(1 + |C|) + |X|)](

q(1 + 2|C|) + |X|+ g(p)RC
)2

(n− 1)
.

This latter value is negative if and only if pg(p)Rc + 2p
(
q(1 + 2|C|) + |X|

)
− g(p)(q(1 +

|C|) + |X|) < 0. Assuming g(p) ≥ 5p and RC < |C|, this value is:

pg(p)RC + 2p
(
q(1 + 2|C|) + |X|

)
− g(p)(q(1 + |C|) + |X|)

≤ pg(p)|C|+ 2pq + 4pq|C|+ 2p|X| − g(p)(q − |C| − |X|)
≤ pg(p)|C|+ 4pq|C| − g(p)q|C|
≤ pg(p)|C| − pq|C|.

Assuming q > g(p), we conclude that c′(RC) < 0 for 0 ≤ RC ≤ |C|, and we satisfy Condi-
tion b.. In order to satisfy Condition a., we want c(RC) ≥ 2|C|

n+1 (since c(RC) is decreasing,
it is enough c(|C|) ≥ 2|C|

n+1). Under the assumptions q > g(p), 0 < |X| ≤ |C| (which trivially
holds for |C| big enough, because |X| ≤ logp |C|),

c(|C|) =
(q(1 + |C|) + |X|+ pRC)2(

q(1 + 2|C|) + |X|+ g(p)RC
)

(n− 1)

≥ q2|C|2

(q(3|C|) + |C|+ |C|)(n− 1)

≥ q|C|
5(n− 1)

>
2|C|
n− 1

if q > 10.
To fulfill all required conditions, it is enough to choose p = 7, g(p) = 35, and q = 36.

Theorem 3.16. The ClosenessCentralityMinimum problem is not solvable in sub-
quadratic time unless the Orthogonal Vector conjecture is false.

Proof. Instead of minimizing the closeness centrality, we try to maximize the farness, which
is the inverse of the closeness centrality, and it is defined by

f(s) =
1

n− 1

∑
t∈V

dist(s, t).

We build a graph where the nodes with biggest farness correspond to sets in C, and the
value of the farness does not depend on the corresponding set, if this set is not disjoint to
any other set. If this latter condition is not satisfied, then the farness of the node is bigger.
In particular, let us consider an instance (X, C) of the k-TwoDisjointSets problem. To
simplify the exposition, we need some simple assumptions on (X, C).

• The empty set is not in C: otherwise, we know that there are two disjoint sets.

• For each x ∈ X there is a set C ∈ C containing x: otherwise, we can simply remove x
from X.

3.4 - Proof of the Other Reductions (∗) 35

C

X

V ′

3∈

Figure 3.7. The reduction used to prove the hardness of the ClosenessCentralityMinimum problem.

• The cardinality of C is even for each C ∈ C, and the cardinality of X is even: we can
enforce this condition by considering X = X1 tX2 where X1 and X2 are two copies of
X, and by redefining each set C as the union of the copy of C in X1 and the copy of C
in X2.

Let us build a graph G = (V,E) in the following way (see Figure 3.7):

• V = X t C t V ′, where V ′ is a set of cardinality
∑
C∈C vC , and the values of vC will be

chosen later;

• the nodes in X form a clique (that is, each pair of nodes in X is connected);

• for x ∈ X and C ∈ C, x is connected to C if and only if x ∈ C;

• each node C ∈ C is connected to vC nodes in V ′, and different sets are connected to
different nodes.

Clearly, in this graph, m,n = O(|X||C|) = O(|C| log(|C|)).

Claim 3.2. The node with maximum farness is in V ′.

Proof of claim. For each node C ∈ C, consider a node v ∈ V ′ linked to C. Then, since the
only neighbor of v is C,

f(v) =
1

n− 1

∑
w∈V

dist(v, w)

=
1

n− 1

∑
w 6=v

(dist(v, C) + dist(C,w))

=
1

n− 1

n− 1 +
∑
w∈V

dist(C,w)− dist(C, v)

=
n− 2

n− 1
+ f(C).

Hence, if n > 2, f(v) > f(C).
Furthermore, for each node x ∈ X, let us consider a set C containing x, and a node

v ∈ V ′ linked to C. Clearly, for each node w 6= v, dist(v, w) = dist(v, C) + dist(C,w) =
1 + dist(C,w) ≤ dist(x,w), and consequently f(v) ≥ f(x). Moreover, since there are nodes
that are closer to x than v (for instance, all nodes in X), we conclude that f(v) > f(x).

At this point, let us compute the farness of nodes in v ∈ V ′, that are linked to a set C.
By the proof of the previous claim, it is enough to compute f(C) for each set C ∈ C. Let us
compute the nodes at distance k from C.

36 3 - Lower Bounds in the Worst-Case

• In X, there are |C| nodes at distance 1 from C, and |X| − |C| nodes at distance 2.

• In C, there are |RC | nodes at distance 2 from C, and |C| − |RC | nodes at distance 3,
where RC is the subset of C made by all sets C ′ such that C 6= C ′ and C ∩ C ′ 6= ∅.

• In V ′, there are vC nodes at distance 1 from C (the neighbors of C),
∑
C′∈RC ,C′ 6=C vC

nodes at distance 3, and
∑
C′ /∈RC vC .

Hence, the farness of C satisfies

(n− 1)f(C) = |C|+ 2(|X| − |C|) + 2RC + 3(|C| − |RC |) + vC + 3
∑

C′∈RC
C′ 6=C

vC + 4
∑

C′ /∈RC

vC

= −|C|+ 2|X|+ (|C| −RC) + 2|C| − 2vC + 3
∑
C′∈C

vC′ +
∑

C′∈C−RC

vC′

=

2|X|+ 2|C|+ 3
∑
C′∈C

vC′

+

(|C| −RC) +
∑

C′∈C−RC

vC′

− (2vC + |C|
)
.

This expression is divided into three terms: the first term is a constant, for each set C ∈ C,
the second expression is 0 if RC = |C|, otherwise it is positive. We want to choose the vCs so
that the third expression does not depend on C as well: for example, since we assumed that
|X| and |C| are even, we can choose

vC =
|X| − |C|

2
.

This way, for each v ∈ V ′,

f(v) =
1

n− 1

n− 2 + 3|X|+ 2|C|+ 3

∑
C′∈C

vC′

+

(|C| −RC) +
∑

C′∈C−RC

vC′

 ,

where C is the set connected to v. Hence, if we can compute the node v with maximum
farness in time O(n2−ε), then we can check if

f(v) >
1

n− 1

n− 2 + 3|X|+ 2|C|+ 3
∑
C′∈C

vC′

 .

If this is the case, then RC 6= C, and there are two disjoint sets; otherwise, for each C, RC =
C, and there are not two disjoint sets. This means that we can solve the TwoDisjointSets
problem in subquadratic time, against the Orthogonal Vector conjecture.

Remark 3.17. The SubsetGraph problem is not solvable in subquadratic time unless the
Orthogonal Vector conjecture is false.

Proof. A variation of the Orthogonal Vector conjecture says that it is hard to decide if a
family of sets C is a Sperner family, that is, there are not two sets C,C ′ ∈ C such that
C ⊆ C ′. This means that it is hard to decide if the subset graph is empty, and consequently
it is hard to compute the subset graph.

Theorem 3.18. The problem Bipartite3DominatingSet and the problem Bipartite-
Subset2DominatingSet are not solvable in subquadratic time unless the Orthogonal Vector
conjecture is false.

3.4 - Proof of the Other Reductions (∗) 37

C

X

v
3

Figure 3.8. The reduction used to prove the hardness of the Bipartite3DominatingSet and the Bipartite-
Subset2DominatingSet problems.

C

X X ′

v
3

Figure 3.9. The reduction used to prove the hardness of the DominatedNode problems.

Proof. Let (X, C) be an instance of k-TwoCovering, and let us construct a bipartite graph
G = (X t C, E), where the bipartition is {X, C} (Figure 3.8). Then, each 2-covering of X
with sets in C corresponds to a pair of nodes of C that covers X.

This way, we have proved that TwoCovering ≤ql BipartiteSubset2DominatingSet,
by choosing X as the subset to cover.

In order to prove that TwoCovering ≤ql Bipartite3DominatingSet, we add another
node v connected to any C ∈ C: clearly, if there is a 2-covering of X, there is a dominating
triple in G, which is the 2-covering and v.

Viceversa, if there is a dominating triple, one of the nodes of the triple must be in C
because the graph is bipartite: hence, the other two nodes form a dominating pair (if only
one of these nodes is in C, the corresponding set is the whole X, and there is clearly a
dominating pair).

Corollary 3.19. The problem DominatingSet3 is not solvable in subquadratic time unless
the Orthogonal Vector conjecture is false.

Remark 3.20. The problem DominatedNode is not solvable in subquadratic time unless the
Orthogonal Vector conjecture is false.

Proof. We start from the k-SpernerFamily problem, and we start from the classic construc-
tion of a bipartite graph in which V = CtX and edges are created according to the ∈-relation.
Clearly, a node C ∈ C dominates another node C ′ ∈ C if and only if C ⊇ C ′. However, we
need to avoid that two nodes in X dominate each other: to this purpose, if we find two nodes
x, y ∈ X such that x dominates y, it is enough to add another copy X ′ of X and connect
each node x ∈ X to the same node x ∈ X ′: this way, nodes in X cannot dominate each other,
and nodes in X ′ cannot dominate each other. Finally, to avoid that a node in C dominates a
node in X ′, we add a further node v which is connected to all the nodes in X ′ (Figure 3.9).

38 3 - Lower Bounds in the Worst-Case

C

X

3

Figure 3.10. The reduction used to prove the hardness of the DiameterSplitGraph2Or3 problem.

Assuming that all sets have at least 2 nodes, there is no domination in the graph con-
structed.

Theorem 3.21 ([138]). The DiameterSplitGraph2Or3 problem is not solvable in sub-
quadratic time unless the Orthogonal Vector conjecture is false.

Proof. Given an input (X, C) of k-TwoDisjointSets, we construct a split graph G = (X t
C, E), where each pair in X is connected, and for each set C ∈ C we add an edge from C to
its element, so that the number of edges is O(|X||C|) (see Figure 3.10).

Since each node is at distance 1 from X, the diameter is 2 or 3: it is 3 if and only if there
exist two different nodes C,C ′ ∈ C with no common neighbor, if and only if C and C ′ are
disjoint.

Corollary 3.22. The Diameter problem is not solvable in subquadratic time unless the
Orthogonal Vector conjecture is false.

Theorem 3.23. The three problems Hyperbolicity, HyperWith1FixedNode, Hyper-
With2FixedNodes are not solvable in subquadratic time unless the Orthogonal Vector con-
jecture is false.

In order to prove this theorem, we need to anticipate two lemmas, that we will prove in
Chapter 7.

Lemma 3.24 (see Lemma 7.1). For any quadruple (s, t, u, v) of nodes, if the maximum
pairwise sum is dist(s, t) + dist(u, v), δ(s, t, u, v) ≤ 1

2 min(dist(s, t),dist(u, v)).

Lemma 3.25 (see Lemma 7.6). For each quadruple of nodes (s, t, u, v),

δ(s, t, u, v) ≤ min
w,w′∈{s,t,u,v},w 6=w′

dist(w,w′).

Proof of Theorem 3.23. The construction used in the proof of the hardness of all hyperbol-
icity problems is the same. Given an input graph G = (V,E) for the Diameter problem,
the corresponding graph for the hyperbolicity problem is H = (V ′, E′), defined as follows
(Figure 3.11). The set V ′ is {s} ∪ Vs ∪ Ṽ ∪ {u} ∪ Vt ∪ {t}, where Vs, Ṽ and Vt are disjoint
copies of V , s, t, and u are new nodes. The set E′ is defined as follows:

• s is connected to every node in Vs, t is connected to every node in Vt, and u is connected
to every node in Vs and to every node in Vt;

• corresponding nodes in Vs and Ṽ and corresponding nodes in Ṽ and Vt are connected;

• if (v, w) is an edge of G, then the copies of v and w in Ṽ are linked.

3.5 - Bibliographic Notes 39

x

Vx

V ′

Vy

y

z

Figure 3.11. The reduction used to prove the hardness of the Hyperbolicity problems. Some edges are
dashed to improve readability.

By this construction, if s, t are the aforementioned nodes and v, w is a pair of nodes in Ṽ ,
then 2δ(s, t, v, w) = dist(s, t)+dist(v, w)−max(dist(x, v)+dist(t, w),dist(s, w)+dist(t, v)) =
4 + dist(v, w)− 4 = dist(v, w), and dist(x, y) + dist(v, w) is the biggest sum. Furthermore, by
construction, the shortest paths between two nodes in Ṽ remain in Ṽ , or they have length at
least 4. This means that maxv,w∈Ṽ δ(s, t, v, w) = maxv,w∈Ṽ

dist(s,t)
2 is at most 1 if and only if

the maximum distance between two nodes in Ṽ is at most 2, if and only if the diameter of G
is at most 2. In order to conclude our reduction, we prove that other quadruples in H have
smaller hyperbolicity, so that the hyperbolicity of H is exactly half the diameter of G.

Indeed, let us consider a quadruple v, w, v′, w′ having hyperbolicity bigger than 1, and let
us first prove that s and t belong to this 4-tuple. This happens because, by Lemma 3.25,
the distance between any pair of these nodes is at least 2, and consequently 2δ(v, w, v′, w′) ≤
S1−4. If we want the hyperbolicity to be bigger than 1, we need S1 to be strictly bigger then
6, and a distance in S1 must be at least 4. Since the only such distance in H is dist(s, t), s
and t must be in the quadruple v, w, v′, w′, as we wanted to prove. We conclude the proof by
showing that the hyperbolicity of a quadruple s, t, v, w with v /∈ Ṽ is at most 1. If v = z, this
holds because dist(u,w) ≤ 2 for each w, and hence δ(s, t, u, w) ≤ 1 by Lemma 3.24. If v ∈ Vx
(resp. v ∈ Vy), then δ(s, t, v, w) ≤ 1 because dist(s, v) = 1 (resp. dist(s, v) = 1), and we may
use Lemma 3.25.

As a consequence, we may conclude our reductions, because the hyperbolicity of H is
bigger than 1 if and only if the diameter of G is bigger than 2. Since we know that s and
t belong to the quadruple with maximum hyperbolicity, the hardness of all hyperbolicity
problems follows from the hardness of the diameter computation.

Remark 3.26. The problem AllEccentricities is not solvable in subquadratic time unless
the Orthogonal Vector conjecture or the Hitting Set conjecture is false.

Proof. From all the eccentricities, one can find the minimum (radius) or the maximum (di-
ameter) in time O(n).

3.5 Bibliographic Notes

This chapter surveys several existing results in the field of polynomial-time reductions. The
first reduction that appears in the literature link the complexity of the k-Sat* problem

40 3 - Lower Bounds in the Worst-Case

to the k-TwoDisjointSets problem, and it was proved in [168] (later, this reduction was
restated by saying that SETH implies the Orthogonal Vector conjecture). The other existing
reductions are taken from [171, 131, 138, 4, 2, 44, 1, 3], with some modifications in some
constructions, used to simplify the proofs (due to the large number of reductions, we refer to
the specific theorems for more information).

The equivalence of different formulations of the Orthogonal Vector conjecture and the
Hitting Set conjecture is mainly folklore, but some of the versions were collected in [3].

The reductions dealing with minimum closeness centrality, betweenness centrality, and
hyperbolicity are original, and they were published in [31], which also surveys many of the
reductions available in this chapter. Finally, the hardness of the NumReachableNodes
problem is original, and it was published in [28]; also the hardness of the LinIndexMaximum
problem is original, and it was published in [20].

Chapter 4

Computing Diameter and Radius:
the SumSweep Algorithm

Abstract

We study the computation of the diameter and the radius of graphs. In the directed,
not strongly connected case, since the definition of radius is not well-established, we
propose a new definition that generalizes all existing attempts.

Then, we present a new heuristic that lower bounds the diameter and upper bounds
the radius of a graph, and a new algorithm that computes these quantities exactly (the
source code is publicly available in the WebGraph library).

The new algorithms work on undirected and directed graphs, even if they are not
necessarily (strongly) connected: as far as we know, this is the first nontrivial algorithm
that is able to handle the directed, not strongly connected case.

In the particular case of undirected, or strongly connected graphs, we experimentally
show that our algorithm outperforms all previous approaches.

Finally, as a case study, we apply the new algorithm to the computation of the
diameter and the radius of the Wikipedia graph, and of several snapshots of the actor
graph.

The diameter and the radius of a network are relevant measures (whose meaning depends
on the semantics of the network itself), which have been almost always considered while
analyzing real-world networks such as biological, collaboration, communication, road, social,
and web networks (see, for example, [41]). Many algorithmic results have been presented in
the last few decades concerning the computation of these quantities.

However, it is unlikely that we significantly improve the textbook approach, based on
computing the distance between all pairs of nodes. Indeed, the complexity of computing
radius and diameter is strictly linked to the complexity of many other hard problems: in
the dense, weighted case, it is possible to prove that computing the diameter is at least as
hard as computing betweenness or reach centrality, and computing the radius is even harder,
since it is equivalent to computing the All Pairs Shortest Paths [1]. In both cases, there
is no subcubic algorithm, where an algorithm is said to be subcubic if its running time is
O(n3−ε) for some ε > 0 (clearly, there is a cubic algorithm based on computing the All Pairs
Shortest Paths). Also in the sparse (unweighted) case, there are several results that link
the complexity of computing the diameter and the radius to important conjectures, as we
saw in Chapter 3. Overall, we can say that, very likely, the textbook algorithms cannot be
significantly outperformed.

Unfortunately, such algorithms are not feasible whenever we deal with real-world networks,
that are usually sparse, and that contain millions, and even billions of nodes and edges. In
order to overcome this issue, three different approaches have been proposed in the literature:

42 4 - Computing Diameter and Radius: the SumSweep Algorithm

approximation algorithms [47, 138, 3], restrictions to specific classes of graphs [60, 18], and
heuristic approaches. Since our work is inscribed in the latter line of research, let us discuss
it in more details.

The first attempts used the sampling algorithm [118, 108], which performs some BFSs
from random nodes, and returns the maximum and minimum eccentricities found (we recall
that, for a node s, the eccentricity ecc(s) is defined as maxt∈V dist(s, t)). In order to improve
this approach, researchers tried to use better choice strategies for the nodes from which the
BFSs have to be performed. For example, the so-called 2-Sweep heuristic picks one of the
farthest nodes t from a random node s and returns the eccentricity of t [114], while the 4-
Sweep picks the node in the middle of the longest path computed by a 2-Sweep execution
and performs another 2-Sweep from that node [61]. Both methods work quite well, and
they provide tight bounds very often. Furthermore, in the case of special classes of graphs,
they can even be (almost) exact: for example, the 2-Sweep method gives the exact value of
the diameter for trees [88], yields an approximation with additive error 1 for chordal graphs
and interval graphs, and within 2 for AT-free graphs and hole-free graphs (see [60] for the
proof and for the definitions of these graph classes). Adaptations of these methods to directed
graphs have been proposed in [45, 63], and, even in this case, these techniques are very efficient
and provide very good bounds on real-world networks.

However, in general, these heuristics cannot guarantee the correctness of the results ob-
tained. For this reason, a major further step in the diameter computation was the design
of bound-refinement algorithms. These methods apply a heuristic and try to validate the
result found or improve it until they successfully validate it. Even if in the worst-case their
time complexity is O(mn), they turn out to be almost linear in practice. The main algo-
rithms developed until now are the BoundingDiameters algorithm [155] and the iFub
algorithm [62, 61]. While the first works only on undirected graphs, the second is also able
to deal with the directed strongly connected case (the adaptation is called diFub [63]). For
the radius computation, the current best algorithm for undirected graphs is a modification of
the BoundingDiameters algorithm [155] while for directed graphs it is possible to use the
method in [116]. However, all these bound-refinement algorithms cannot deal with directed
graphs that are not strongly connected.

4.1 Our Contribution

In this chapter, we propose the first bound-refinement algorithm that is able to find diameter
and radius in directed, not necessarily strongly connected graphs (in the case of the radius,
since there is no well-established definition, we propose a definition that generalizes all existing
definitions). We also show that, when restricted to undirected or strongly connected graphs,
our algorithm outperforms previous counterparts. The new algorithms are publicly available
in the WebGraph library [23].

As a case study, we use our new algorithm in order to analyze the actors collaboration
network and the Wikipedia citation network.

4.2 Notations and Preliminary Definitions

We have already defined the eccentricity of nodes, the diameter, and the radius of a graph
in Chapter 2. However, in this section, we discuss a bit more thoroughly these concepts, and
we motivate our choices when dealing with definitions that are not completely established in
the literature.

In particular, the forward and backward eccentricities of a node s are usually defined as:

eccF1 (s) := max
t∈V

dist(s, t),

eccB1 (t) := max
s∈V

dist(s, t),

4.2 - Notations and Preliminary Definitions 43

0

12

3 4

5

6 7

8

9 10

11

C1

C2

C3

C4

C5

(1, 5)

(1, 4)

(3, 11)

(4, 9)

(5, 9)

Figure 4.1. A weakly connected graph and the corresponding strong component graph. Each edge (Ci, Cj) ∈ E
is labeled with one of the edges from the component Ci to the component Cj .

where dist(s, t) can be +∞ if t is not reachable from s. However, since most of the real-world
graphs are not (strongly) connected, these definitions would lead to infinite eccentricities in
almost all cases. For this reason, we prefer to ignore infinite distances and we define the
forward and backward eccentricities as:

eccF (s) := max
t∈RF (s)

dist(s, t),

eccB(t) := max
s∈RB(t)

dist(s, t),

where we recall that RF (s) is the set of nodes reachable from s, and RB(t) is the set of nodes
that can reach t. The diameter is the maximum eccentricity of a node, that is, D =
maxs∈V eccF (s) = maxt∈V eccB(t): in other words, this is the length of “a longest shortest
path” [89]. Note that in [14, 167] the diameter is defined through the original definition
of eccentricity: however, this implies that the diameter of any disconnected graph is +∞,
leading to trivial behaviors.

The radius is usually defined as the minimum forward eccentricity of a node [14, 167]: in
most real-world networks, using the old definition of eccentricity, we have that the radius is
+∞, while, by using the new definition of eccentricity, the radius is 0. Both these definitions
are just related to reachability: in particular, the first is affected by nodes that cannot be
reached, while the second is affected by the existence of nodes with out-degree 0. In order
to be able to exclude such nodes, we consider a set V ′ of “meaningful” nodes, and define
the radius as the minimum eccentricity of a node in V ′: if we choose V ′ to be the set of
nodes s such that eccF (s) < +∞, or the set of all nodes, we simulate the two aforementioned
definitions. In this work, if n1 is the maximum size of a strongly connected component, we
choose V ′ = V ′1 ∪ V ′2 , where V ′1 is the set of nodes in a component of size n1, and V ′2 is the
set of nodes that are able to reach a node in V ′1 (in almost all real-world networks there is
only a component of size n1, the so-called giant component [125]). For example, by referring
to the graph in Figure 4.1, we have that V ′ = {0, 1, 2, 5, 6, 7, 8}. In any case, our algorithms
work for any choice of V ′: in particular, they are also able to compute the radius according
to the aforementioned definitions.

44 4 - Computing Diameter and Radius: the SumSweep Algorithm

Algorithm 2: The SumSweepHeuristic.
Input: a graph G = (V,E), a set V ′ ⊆ V , a node s, and an integer k
Output: an upper bound of the radius RU and a lower bound of the diameter DL of G

1 for i ∈ V do SF (i)← 0; SB(i)← 0;
2 F ← {s}; B ← ∅;
3 FBFS(s);
4 DL ← eccF (s);
5 for v ∈ V do
6 if dist(s, v) < +∞ then SB(v)← dist(s, v);
7 end
8 for i ∈ {2, . . . , k − 1} do
9 if i is odd then

10 s← argmaxv∈V−F S
F (v);

11 F ← F ∪ {s};
12 FBFS(s);
13 DL ← max(DL, eccF (s));
14 for v ∈ V do
15 if dist(s, v) < +∞ then SB(v)← SB(v) + dist(s, v);
16 end
17 else
18 s← argmaxv∈V−BS

B(v);
19 B ← B ∪ {s};
20 BBFS(s);
21 DL ← max(DL, eccB(s));
22 for v ∈ V do
23 if dist(v, s) < +∞ then SF (v)← SF (v) + dist(v, s);
24 end
25 end
26 end
27 s← argminv∈V ′ S

F (v);
28 FBFS(s);
29 RU ← eccF (s);
30 return DL and RU

4.3 The SumSweepHeuristic

The SumSweepHeuristic finds a lower bound on the eccentricity of all nodes, a lower bound
DL on the diameter, and an upper bound RU on the radius. Intuitively, it is based on finding
several “peripheral” nodes t1, . . . , tk, and estimating ecc(s) = maxi=1,...,k dist(s, ti) for each
node s. Then, the heuristic finds a very “central” node and sets RU as the eccentricity of this
node (the directed case is slightly more complicated, because we have to consider forward and
backward eccentricities). The pseudo-code is shown in Algorithm 2.

Like other heuristics [45, 114, 63, 61], the SumSweepHeuristic is based on perform-
ing alternatively forward and backward BFSs from some nodes. By forward BFS or FBFS
(resp., backward BFS or BBFS) we mean a visit in BFS order in which a directed edge (v, w)
is traversed from v to w (resp., from w to v). The new feature with respect to the previous
heuristics is the choice of the starting nodes of the BFSs, which is based on the two following
quantities, that try to distinguish “central” and “peripheral” nodes:

SF (v) :=
∑

s∈B∩RF (v)

dist(v, s)

4.4 - The ExactSumSweep Algorithm 45

SB(v) :=
∑

s∈F∩RB(v)

dist(s, v)

where F (resp. B) is the set of starting nodes of the forward (resp. backward) BFSs already
performed. These quantities resemble the farness f(v) = 1

n−1

∑
w∈V dist(v, w) of the node v:

this means that we are performing BFSs from nodes with high farness, and consequently low
closeness centrality. In this case, since a high closeness centrality value means that a node is
central, if SF (s) or SB(s) is big, it means that s is “peripheral” and hence a good candidate
to have a big eccentricity.

It is worth observing that the starting node of the first BFS plays a slightly different role:
it should not be a node with high forward eccentricity, but a node which helps us finding
high-eccentricity nodes in the next steps. To do so, for instance, we suggest to choose the
maximum out-degree node.

At the end of the procedure, we approximate the diameter with the maximum eccentricity
found, and the radius with the eccentricity of the node v ∈ V ′ minimizing SF (v), which
should be rather central, according to the aforementioned intuition. Observe that if the
graph is undirected, the forward and backward eccentricities coincide: this means that a
single BFS is enough to perform a forward and backward step of the SumSweepHeuristic.

As an example, let us show the results of a SumSweepHeuristic on the graph in Figure
4.1 with k = 4, V ′ = {0, 1, 2, 5, 6, 7, 8}, and s = 1 (which is the maximum out-degree node).
The first forward BFS visits the whole graph and finds a lower bound DL = 4 and an upper
bound RU = 4. The second step performs a backward BFS from node 8 (the only node at
distance 4 from 1) and sets DL = 6, since the distance from 2 to 8 is 6. This BFS is followed
by a forward BFS from node 2, which has eccentricity 6 and consequently does not improve
the previous bounds. Finally, a BFS from 8 is performed: since 8 has forward eccentricity 3,
RU is set to 3. Then, SumSweepHeuristic returns DL = 6 and RU = 3 (note that these
are the correct values of radius and diameter).

4.4 The ExactSumSweep Algorithm

In this section, we show how to compute the exact values of the diameter and the radius of a
graph, by validating the bounds given by the SumSweepHeuristic. The general framework
has been proposed in [154, 155] for undirected graphs: in this chapter, we adapt it to handle
any directed graph. The general schema of our algorithm is shown in Algorithm 3.

Algorithm 3: The ExactSumSweep algorithm.
Input: a graph G = (V,E), a set V ′ ⊆ V , a node s, and an integer k
Output: the radius R and the diameter D of G

1 for i ∈ {1, . . . , |V |} do LF (i)← 0; LB(i)← 0; UF (i)← |V |; UB(i)← |V |;
2 DL, RU ← SumSweepHeuristic(G,V ′, s, k);

3 while (DL < maxi∈V {UF (i)} ∧DL < maxi∈V {UB(i)}) ∨RU > mini∈V ′{LF (i)} do
4 Choose a technique from {StepForward, StepBackward,

SingleCCUpperBound};
5 Use it to update DL, RU , L

F , LB , UF , UB ;
6 end
7 return DL, RU ;

After performing the SumSweepHeuristic, the algorithm tries to prove that the com-
puted bounds are the exact values of the radius and of the diameter, or to improve them. This
can be done by bounding the eccentricities of all the nodes in the graph. More specifically,
for each node v, we store these values:

• LF (v) is a lower bound on the forward eccentricity of v;

46 4 - Computing Diameter and Radius: the SumSweep Algorithm

• UF (v) is an upper bound on the forward eccentricity of v;

• LB(v) is a lower bound on the backward eccentricity of v;

• UB(v) is an upper bound on the backward eccentricity of v.

As soon as, for a node v, LF (v) = UF (v) (resp. LB(v) = UB(v)), the forward (resp. backward)
eccentricity of v is exactly computed: in this case, the algorithm might improve the values
of DL and RU . The value of D is established as soon as DL ≥ maxv∈V U

F (v) or DL ≥
maxv∈V U

B(v), and the value of R is established as soon as RU ≤ maxv∈V ′ L
F (v). This

is because if DL ≥ maxv∈V U
F (v) or DL ≥ maxv∈V U

B(v), then this lower bound cannot
be improved anymore, since the forward eccentricity of each other node is smaller than DL.
Symmetrically, when RU ≤ minv∈V ′ L

F (v), this upper bound cannot be improved anymore,
and we can conclude that it is the actual value of the radius. Note that these inequalities
are satisfied when all the eccentricities are known: since we ensure that at each iteration a
forward or a backward eccentricity is exactly computed, we need at most O(n) iterations, so
that the worst-case running time is O(mn) as in the naive algorithm.

The computation of new lower bounds is based on performing a BFS from a node s and
bounding the eccentricity of a visited node v with dist(v, s) or dist(s, v) (the techniques are
named StepForward and StepBackward, depending on the direction of the BFS). The
upper bound techniques are a bit more complicated: they choose a pivot node for each strongly
connected component, they bound the eccentricities of pivot nodes, and they propagate these
bounds within each strongly connected component. The hardest part is bounding the ec-
centricities of pivot nodes: the simplest technique, AllCCUpperBound, uses a dynamic
programming approach, based on the topological ordering of the SCCs. This technique is not
used on its own, but it is a significant part of SingleCCUpperBound, a more sophisticated
technique, which is more time consuming and provides better bounds. In particular, this
technique performs a further forward and backward BFS from a given pivot q, allowing to
improve the previous bounds when analyzing nodes reachable “by passing through q”, while all
other nodes are processed using the AllCCUpperBound technique. In the following three
subsections, we describe each technique and we prove their correctness. In Sections 4.4.1
to 4.4.3, we define precisely these techniques, and in Section 4.4.4 we prove bounds on the
running time of each technique, in Section 4.4.5 we show how these techniques apply to the
special cases of strongly connected digraphs and of undirected graphs, and, finally, in Section
4.4.6 we discuss how to select the technique to use at each step.

4.4.1 StepForward and StepBackward

This technique performs a forward BFS from a “cleverly chosen” node s, setting UF (s) =
LF (s) = eccF (s) and, for each visited node v, setting LB(v) = max(LB(v),dist(s, v))
(StepForward). A similar technique can be applied by performing a backward BFS
(StepBackward). Note that, since the algorithm starts by running the SumSweepHeuris-
tic, these bounds can also be computed during the BFSs performed by the heuristic. For
example, after the aforementioned SumSweepHeuristic heuristic performed on the graph
in Figure 4.1, the algorithm has already obtained the bounds in Table 4.1.

4.4.2 AllCCUpperBound

In order to compute upper bounds on the eccentricity of all nodes, we have to use more
complicated techniques, based on the strong component graph (see Chapter 2). In particular,
the AllCCUpperBound technique chooses a “pivot node” pi for each SCC Ci of G and
bounds the eccentricities of these nodes. Finally, it propagates these bounds by making use
of the following inequalities, which are a simple consequence of the triangular inequality:

eccF (v) ≤ dist(v, pi) + eccF (pi) (4.1)

4.4 - The ExactSumSweep Algorithm 47

Table 4.1. Bounds obtained after the initial SumSweepHeuristic, with k = 4. The sum of nodes whose
eccentricity has already been computed exactly is set to −1 (in order to avoid these nodes to be chosen in
subsequent BFSs).

Node LF LB UF UB SF SB

0 5 2 ∞ ∞ 5 3
1 4 2 4 ∞ -1 2
2 6 1 6 ∞ -1 1
3 0 2 ∞ ∞ 0 3
4 0 2 ∞ ∞ 0 3
5 3 3 ∞ ∞ 3 5
6 2 4 ∞ ∞ 2 8
7 1 5 ∞ ∞ 1 11
8 3 6 3 6 -1 -1
9 0 3 ∞ ∞ 0 7
10 0 4 ∞ ∞ 0 8
11 0 3 ∞ ∞ 0 5

eccB(v) ≤ dist(pi, v) + eccB(pi), (4.2)

where v belongs to the SCC Ci having pivot pi. In order to apply these inequalities, we need
to compute upper bounds on the forward and backward eccentricity of each pivot in the graph
(eccF (pi) and eccB(pi)): before explaining this in full detail, we show the main ideas of these
bounds through an example, based on the graph in Figure 4.1.

Suppose we have chosen the pivots in Table 4.2 (actually this is the choice performed by
the algorithm after the execution of the initial SumSweepHeuristic): we start to bound
forward eccentricities in reverse topological order, that is, p5, p4, p3, p2, and p1.

• Since no edge exits the SCC C5, we set UF (p5) = UF (9) = eccFscc(9) = dist(9, 10) = 1,
where eccFscc(9) denotes the eccentricity of 9 if restricted to C5.

• In order to bound the forward eccentricity of p4 = 5, we observe that either the longest
path stays in C4, having length eccFscc(5), or it passes through the SCC C5, reachable in
one step from C4 through edge (C4, C5) ∈ E , which corresponds (for example) to the edge
(5, 9) ∈ E, according to Figure 4.1. We bound the eccentricity of 5 with the maximum
between eccFscc(5) and the length of a path from 5 to 9 passing through edge (5, 9), plus
UF (9) (this latter bound has already been computed thanks to the topological order).
We obtain UF (5) = max(eccFscc(5),dist(5, 5) + 1 + dist(9, 9) + UF (9)) = max(3, 2) = 3.

• UF (11) = eccFscc(11) = 0.

• There are two outgoing edges from C2: (C2, C3) ∈ E , which corresponds (for example)
to (3, 11) ∈ E, and (C2, C5) ∈ E , which corresponds (for example) to (4, 9) ∈ E.
We bound UF (3) by considering the maximum among these possibilities: UF (3) =
max(eccFscc(3),dist(3, 3)+1+dist(11, 11)+eccF (11),dist(3, 4)+1+dist(9, 9)+eccF (9)) =
max(1, 1, 3) = 3.

• Finally, UF (0) = max(eccFscc(0),dist(0, 1) + 1 + dist(4, 3) + UF (3),dist(0, 1) + 1 +
dist(5, 5) + UF (5)) = max(2, 6, 5) = 6.

The backward eccentricities are bounded similarly, considering SCCs in topological order.
The forward and backward bounds computed in this way are summarized in Table 4.2.

Finally, we extend these bounds using inequalities (4.1) and (4.2): for instance, UF (1) =
dist(1, 0) + UF (0) = 2 + 6 = 8.

After showing the main ideas through this example, we may now formalize this intuition.

48 4 - Computing Diameter and Radius: the SumSweep Algorithm

Table 4.2. The bounds computed on the pivots of the different SCCs.

Pivot SCC UF UB

p1 = 0 C1 6 2
p2 = 3 C2 3 5
p3 = 11 C3 0 6
p4 = 5 C4 3 4
p5 = 9 C5 1 7

Lemma 4.1. Given a SCC Ci with corresponding pivot pi, for any j such that (Ci, Cj) ∈ E
and for each edge eij = (vij , wij) from Ci to Cj, the following formulas hold:

eccF (pi) ≤ max(eccFscc(pi), max
(Ci,Cj)∈E

(dist(pi, vij) + 1 + dist(wij , pj) + eccF (pj))) (4.3)

eccB(pi) ≤ max(eccBscc(pi), max
(Cj ,Ci)∈E

(dist(wji, pi) + 1 + dist(pj , vji) + eccB(pj))) (4.4)

Proof. We prove the first formula, since the second is symmetric. Let t be one of the farthest
nodes from pi, so that eccF (pi) = dist(pi, t). If t ∈ Ci, eccF (pi) = dist(pi, t) = eccFscc(pi) and
the first formula holds. Otherwise, the shortest path from pi to t passes through a component
Cj such that (Ci, Cj) ∈ E . Then, eccF (pi) = dist(pi, t) ≤ dist(pi, vij) + 1 + dist(wij , pj) +
dist(pj , t) ≤ dist(pi, vij) + 1 + dist(wij , pj) + eccF (pj), and the first formula holds again.

At this point, we may observe that the inequalities in Equations (4.3) and (4.4) can be
“solved” recursively by analyzing strongly connected components with their corresponding
pivot nodes in topological (resp. reverse topological) order, as we did in the previous example
(the choice of the edges eij is performed at the beginning of the algorithm). The pseudo-code
for the computation of the pivot upper bounds and for the update of the upper bounds for
each node is shown in Algorithm 4.

Before running these procedures, we just need to perform a forward and a backward BFS
starting from pi and restricted to Ci, for each i. This way, we compute the following values:

1. dist(pi, v),dist(v, pi) for each SCC Ci and each node v ∈ Ci;

2. eccFscc(pi), eccBscc(pi) for each pivot node pi.

4.4.3 SingleCCUpperBound
In order to further improve the upper bounds defined by Lemma 4.1, we introduce the Sin-
gleCCUpperBound technique. It requires a further forward and a further backward BFS
from a pivot node q, that we call “main pivot”: the technique works for any pivot, but a suit-
able choice provides better bounds. As in the previous section, we first provide an example,
then we explain the technique and in Section 4.4.6 we provide more details about the choice
of the main pivot.

Our example deals again with the graph in Figure 4.1, choosing as main pivot node q = 5.
We perform a forward and backward BFS from node 5, computing exactly its forward and
backward eccentricities, thus setting UF (5) = 3, and UB(5) = 3. We now analyze how to
improve the previous forward bounds (the backward case is completely analogous). First of
all, we use the previous technique to bound the forward eccentricities of all pivot nodes not
visited in the backward BFS from 5, namely UF (3) = 5, UF (9) = 1, UF (11) = 0. Then,
we want to upper bound the eccentricity of 0, reached in the backward BFS from 5. We
observe that eccF (0) = dist(0, t), for some node t: if t is reachable from the main pivot
5, dist(0, t) ≤ dist(0, 5) + dist(5, t) ≤ dist(0, 5) + eccF (5). Otherwise, t is reachable from
0 by remaining in the graph G′ obtained from G by removing all nodes in RF (5), that is,
by removing all nodes visited in the forward BFS. We then set UF (0) = max(dist(0, 5) +

4.4 - The ExactSumSweep Algorithm 49

Algorithm 4: Computing upper bounds for all nodes. Note that the graph G can
be precomputed in linear time as well as a topological order at the beginning of the
ExactSumSweep algorithm.
1 Let G = (V, E) be the graph of the SCCs in G.
2 UFP ← computePivotBoundsF (G);
3 UBP ← computePivotBoundsB (G);
4 for i = 0 to |V| do
5 for v ∈ Ci do
6 UF (v)← min(UF (v),dist(v, pi) + UFP (pi));
7 UB(v)← min(UB(v),dist(pi, v) + UBP (pi));
8 end
9 end

10 Procedure computePivotBoundsF(G)
11 for i = |V| to 1 do
12 UFP (pi)← min(UF (pi),max(eccFscc(pi),max(Ci,Cj)∈E(dist(pi, vij) + 1 +

dist(wij , pj) + UFP (pj)));
13 end
14 return UFP ;
15 Procedure computePivotBoundsB(G)
16 for j = 1 to |V| do
17 UBP (pj)← min(UB(pj),max(eccBscc(pj),max(Ci,Cj)∈E(dist(wij , pj) + 1 +

dist(pi, vij) + UBP (pi)));
18 end
19 return UBP ;

UF (5), UFG′(0)), where UFG′ is the bound on the forward eccentricity of 0 obtained by running
Procedure computePivotBoundsF(G′) in Algorithm 4, and G′ is the strong component digraph
of G′ (note that G′ can be computed without computing explicitly G′). We finally obtain
UF (0) = max(dist(0, 5) +UF (5), UFG′(0)) = max(5, 3) = 5. Forward and backward results are
summarized in Table 4.3. Note that better forward bounds have been found for pivot 0, and
better backward bounds have been found for pivot 9.

Table 4.3. The bounds computed on the pivots of the different SCCs by the SingleCCUpperBound tech-
nique.

Pivot SCC UF UB

0 C1 5 2
3 C2 3 5
11 C3 0 6
5 C4 3 3
9 C5 1 4

More formally, the SingleCCUpperBound technique is based on the following lemma.

Lemma 4.2. Let pi be a pivot, q be the main pivot, and suppose pi ∈ RB(q). If G′ is the
subgraph induced on G by removing RF (q), the following inequality holds:

eccF (pi) ≤ max(dist(pi, q) + eccF (q), eccFG′(pi))

Proof. Let t be the farthest node from pi: if t ∈ RF (q), eccF (pi) = dist(pi, t) ≤ dist(pi, q) +
dist(q, t) ≤ dist(pi, q)+eccF (q). Otherwise, all paths from pi to t are paths inG′, so eccF (pi) =
dist(pi, t) = distG′(pi, t) ≤ eccFG′(pi), where by distG′ we mean distances in the graph G′. In
both cases, the lemma holds.

50 4 - Computing Diameter and Radius: the SumSweep Algorithm

Algorithm 5: Computing better upper bounds for some nodes.
1 Procedure computeImprovedPivotBoundsF(G)
2 Let q be the main pivot.
3 Let G′ = (V ′, E ′) be the subgraph of G induced by nodes not reachable from the

SCC of q.
4 UFG′ ← computePivotBoundsF(G′);
5 UFP ← computePivotBoundsF(G);
6 for pi ∈ RB(q) do
7 UFP (pi)← min(UF (pi),max(dist(pi, q) + eccF (q), UFG′(pi)));
8 end
9 return UFP ;

10 Procedure computeImprovedPivotBoundsB(G)
11 Let q be the main pivot.
12 Let G′ = (V ′, E ′) be the subgraph of G induced by nodes not reachable from the

SCC of q.
13 UFG′ ← computePivotBoundsB(G′);
14 UFP ← computePivotBoundsB(G);
15 for pi ∈ RF (q) do
16 UBP (pi)← min(UB(pi),max(dist(pi, q) + eccB(q), UBG′(pi)));
17 end
18 return UBP ;

The pseudo-code for the computation of the improved forward bounds is provided by Algo-
rithm 5: it is enough to replace functions computePivotBoundsF and computePivotBoundsB
in Algorithm 4 with the improved versions, named computeImprovedPivotBoundsF and
computeImprovedPivotBoundsB. Note that, in order to compute forward and backward
bounds, we need to perform a forward and a backward BFS from the main pivot, and a
forward and backward BFS inside each SCC not containing the main pivot (for the SCC of
the main pivot, the results of the first two BFSs can be used).

4.4.4 Running Time Analysis

In all previous papers dealing with bound-refinement methods [62, 63, 61, 154, 155, 116], the
efficiency of an algorithm was defined in terms of the total number of BFSs needed before
the values of D and R are found. However, if the graph is not strongly connected, the
time needed to perform a BFS highly depends on the starting node: for instance, a forward
BFS from a node with outdegree 0 takes very little time. As a consequence, we consider
as baseline the time needed to perform a BFS of the corresponding undirected graph, that
is, the graph obtained by converting all directed edges into undirected edges. Since we deal
with weakly connected graphs, this latter graph is connected, and the running time of a BFS
on this graph does not depend on the starting node. The cost of the StepForward and
StepBackward techniques is at most the cost of a BFS, because these techniques visit at
most the same number of edges as a BFS of the corresponding undirected graph, and the
operations performed when an edge is visited are the same. We then consider the cost of
these operations as 1 BFS. For the SingleCCUpperBound technique, we need to perform
the following operations:

1. a forward and a backward BFS from q and a BFS inside each SCC not containing q;

2. Algorithm 5, which does the following operations:

(a) compute G′;

4.4 - The ExactSumSweep Algorithm 51

Algorithm 6: Computing upper bounds for all nodes.
1 for v ∈ V do
2 UF (v)← min(UF (v),dist(v, p) + UF (p));
3 UB(v)← min(UB(v),dist(p, v) + UB(p));
4 end

(b) perform twice computePivotBoundsF and computePivotBoundsB in Algorithm 4;

(c) improve the bounds for each pivot node.

3. update all bounds using the inequalities (4.1), and (4.2), as in Algorithm 4.

It is clear that steps 2(a), 2(b) and 2(c) can be performed in time O(|G|), and that
step 3 can be performed in time O(|V |). Step 1 performs, for each visited edge, the same
operations as a standard BFS, and each edge is visited at most three times in the whole
operation. Then, we consider the cost of running the SingleCCUpperBound technique
as the cost of three BFSs, and we ignore operations that are performed in O(|V | + |G|)
time, similarly to what has been done in previous papers for operations needing O(|V |) time
[62, 63, 61, 116, 155, 154]. This choice is justifiable also because, on average, in the dataset
of our experiments, |V | ≈ 0.20 · |E| and |G| ≈ 0.17 · |E|.

4.4.5 Particular Cases
The Strongly Connected Case.In the strongly connected case, the aforementioned upper
bound techniques AllCCUpperBound and SingleCCUpperBound collapse to a sim-
pler technique, that performs a forward and backward BFS from the unique pivot node
p, and bounds the eccentricity of any other node with eccF (v) ≤ dist(v, p) + eccF (p) and
eccB(v) ≤ dist(p, v)+eccB(p). This technique costs two BFSs, differently from the SingleC-
CUpperBound technique that costs three BFSs. More specifically, Algorithm 4 becomes
Algorithm 6.

The Undirected Case.In the undirected case, since we can deal with each connected com-
ponent separately, again the two techniques are the same, and the cost reduces to one BFS,
since the forward and backward BFSs coincide. Furthermore, we might improve the previous
bounds by analyzing separately the first branch of the BFS tree and the other branches, as
shown in the following lemma.

Lemma 4.3. Suppose we have performed a BFS from p, and we have obtained a tree T ; let
p′ be the first node in T having more than one child. Let Φ be the set of nodes on the (only)
path from p to p′, let Ψ be the set of nodes in the subtree of T rooted at the first child of
p′, and let h be the maximum distance from p′ to a node outside Ψ. Then, for each v ∈ V ,
ε(v) ≤ Up(v), where

Up(v) :=

max(dist(p, v), ecc(p)− dist(p, v)) v ∈ Φ

max(dist(p′, v) + ecc(p′)− 2,dist(p′, v) + h) v ∈ Ψ

dist(p′, v) + ecc(p′) otherwise

Proof. If v ∈ Φ or v /∈ Φ ∪ Ψ, the conclusion follows easily by the triangle inequality. If
v ∈ Ψ, let t be the farthest node from v: if t /∈ Ψ, then dist(t, v) ≤ dist(t, p′) + dist(p′, v) ≤
h + dist(p′, v). If t ∈ Ψ and r is the root of the subtree of T consisting of nodes in Ψ,
dist(v, t) ≤ dist(v, r) + dist(r, t) = dist(v, p′) + dist(p′, t)− 2 ≤ dist(v, p′) + ε(p′)− 2.

In order to apply this lemma, after performing a BFS of an undirected graph, instead of
bounding ecc(v) with dist(v, p)+ecc(p), we may bound ecc(v) with Up(v) (which is smaller or

52 4 - Computing Diameter and Radius: the SumSweep Algorithm

Algorithm 7: Computing upper bounds for all nodes.
1 for v ∈ V do
2 U(v)← Up(v);
3 end

equal than dist(v, p) + ecc(p)). This bound can be used everytime a BFS is performed, that
is, not only during the SingleCCUpperBound technique, but also during a StepForward
or a StepBackward. The pseudo-code of this procedure is provided in Algorithm 7, which
replaces Algorithm 4.

4.4.6 Choosing the Technique to Use

In the previous subsections, several bound techniques have been defined. Here, we explain
how to put them together to be effective: in all previous papers, different techniques were
alternated according to a fixed schema [154, 155]. In this paper, we provide a different
approach: we run at each step a heuristic, that proposes a technique. The choice performed
by this heuristic is based on the following definition, that quantifies how “close” we are to the
solution.

Definition 4.4. Let VU be the smallest set among {v ∈ V : UF (v) > DL}, and {v ∈ V :
UB(v) > DL}, and let VL be {v ∈ V ′ : LF (v) < RU}. A node v is open if v ∈ VU ∪ VL.

At any point of the algorithm, the values of DL and RU can only be improved by the
eccentricities of open nodes. For this reason, we consider N = |VU | + |VL| as a measure of
the distance from the final solution. Thanks to this definition, we may now state how we are
going to use the bounding techniques. In particular, this can be done as follows (see Section
4.3, for the definition of SF (v) and SB(v)).

• StepForward from a node maximizing UF (maximizing SF is used to break ties);

• StepBackward from a node maximizing UB (maximizing SB is used to break ties);

• StepForward from a node in V ′ minimizing LF (minimizing SF is used to break ties);

• StepBackward from a node maximizing SB (maximizing UB is used to break ties);

• SingleCCUpperBound: the pivot of a SCC is chosen by minimizing LF (v) + LB(v)
among all nodes whose exact eccentricity has not been determined, yet; the main pivot
is chosen as the pivot of the component C having more open nodes.

The last problem to address is which of these techniques should be chosen at any step,
filling the gap in Algorithm 3.

Definition 4.5. The utility U of a step is the difference between the value of N before the
step and after the step.

In order to speed up the computation, we want to perform steps with high utility. For this
reason, for each technique, we keep an “expected utility” value UE and at each step we choose
the technique with the biggest expected utility. After a technique is applied, UE is updated
as follows: the expected utility of the technique used is set to U , while the expected utility
of all other techniques is increased by 2

i , where i is the number of BFSs already performed.
This is done in order to alternate different techniques at the beginning, and to focus on a
single technique when the best one becomes clear (even if, in the long run, every technique is
applied).

4.5 - Experimental Results 53

4.5 Experimental Results

This section experimentally shows the effectiveness of the aforementioned techniques, by test-
ing them on several real-world networks taken from the well-known datasets SNAP [108] and
KONECT [103], which cover a large set of network types. In Section 4.5.1, we show the effec-
tiveness of the SumSweepHeuristic compared to other similar heuristics. In Section 4.5.2,
we compare the ExactSumSweep algorithm with existing algorithms in the particular cases
of undirected and directed strongly connected graphs. Then, we apply our algorithm to com-
pute for the first time the diameter and radius of directed, not strongly connected graphs:
even in this case, our algorithm has very good performances, even better than the strongly
connected case (however, no comparison is possible, since this is the first such algorithm).
More detailed results are available in Section 4.6.

4.5.1 Lower Bounding the Diameter

In this section, we compare the SumSweepHeuristic with the current most effective heuris-
tics to compute lower bounds on the diameter [114, 63, 61], whose effectiveness has already
been shown in [114, 63, 61]. In the case of undirected graphs, we have compared the following
heuristics:

k-SumSweepHeuristic: performs a SumSweepHeuristic from a random node, stopping
after k BFSs;

4-Sampling: returns the maximum eccentricity among four random-chosen nodes;

4-Sweep: the technique explained in [61];

2×2-Sweep performs twice a 2-Sweep [114] starting from two random nodes.

In the case of directed graphs, we have compared the following heuristics:

k-SumSweepHeuristic: performs a SumSweepHeuristic from a random node, stopping
after k BFSs;

4-Sampling: returns the maximum eccentricity among four random-chosen nodes;

2-dSweep: the technique explained in [63].

All the competitors above perform four BFSs, so they should be compared to the 4-
SumSweepHeuristic in order to obtain a fair comparison. We have run each heuristic ten
times1 for each graph, and we have considered the mean ratio r between the value returned
and the diameter, among all ten experiments. In Tables 4.4 and 4.5 we have reported the
average r among all the graphs in the dataset, with the corresponding standard error. In
4.6.2, the average r for each graph is provided.

We observe that the lower bounds provided by the 4-Sweep and 2-dSweep heuristics
are usually tight, drastically outperforming the simple approach based on sampling, namely
4-Sampling. Tables 4.4 and 4.5 shows that the SumSweepHeuristic approaches are even
improving these lower bounds. Moreover, it allows us to further improve the bounds found
by performing some more BFSs. This is very useful on directed graphs, while on undirected
graphs the bounds in the 4-SumSweepHeuristic are so good that they offer very little room
for improvement.

1Very low variance has been observed: even increasing the number of experiments does not change the
results.

54 4 - Computing Diameter and Radius: the SumSweep Algorithm

Table 4.4. The average ratio r between the lower bound on the diameter returned by each heuristic and the
diameter, in undirected graphs.

Method r Std Error
4-SumSweepHeuristic 99.9830 % 0.0315 %
3-SumSweepHeuristic 99.9671 % 0.0582 %
4-Sweep 99.9353 % 0.1194 %
2×2-Sweep 99.9295 % 0.1095 %
4-Sampling 76.9842 % 5.2841 %

Table 4.5. The average ratio r between the lower bound on the diameter returned by each heuristic and the
diameter, in directed graphs.

Method r Std rror
8-SumSweepHeuristic 97.2835 % 4.9030 %
7-SumSweepHeuristic 97.2733 % 4.9010 %
6-SumSweepHeuristic 97.2733 % 4.9010 %
5-SumSweepHeuristic 96.8308 % 5.4324 %
4-SumSweepHeuristic 96.6091 % 5.6564 %
3-SumSweepHeuristic 95.5399 % 6.1901 %
2-dSweep 94.7607 % 6.5877 %
4RandomSamples 61.2688 % 15.1797 %

4.5.2 Computing the Radius and the Diameter

The following set of experiments aims to show that the ExactSumSweep algorithm improves
the time bounds, the robustness, and the generality of all the existing methods, since they
are outperformed for both radius and diameter computation, both in the directed and in the
undirected case. Note that in the case of directed weakly connected graphs, there are no com-
petitors (except the textbook algorithm), since ExactSumSweep is the first algorithm able
to deal with this case. Since any (weakly) connected component can be analyzed separately,
we have restricted our attention to the biggest one, which usually contains most of the nodes
in the graph (see Tables 4.7 and 4.8).

Undirected Graphs.In the undirected case, we compared our method with the state of the
art: the iFub algorithm for the diameter and the BoundingDiameters algorithm both for
the radius and for the diameter.

Indeed, this latter algorithm, used in [154] just to compute the diameter, can be easily
adjusted to also compute the radius [155], using the same node selection strategy and up-
dating rules for the eccentricity bounds. In particular, it bounds the eccentricity of nodes
similarly to our method, by using the fact that, after a visit from a node s is performed,
dist(s, t) ≤ ecc(t) ≤ dist(s, t) + ecc(s). It does not perform the initial SumSweepHeuristic
and simply alternates between nodes v with the largest eccentricity upper bound and the
smallest eccentricity lower bound.

For the diameter computation, we compared ExactSumSweep not only with Bound-
ingDiameters, but also with two variations of iFub: iFubHd, starting from the node of
highest degree, and iFub4S, starting by performing a 4-Sweep and choosing the central node
of the second iteration (see [61] for more details).

The results of the comparison are summarized in Table 4.6: for each method and for
each graph in our dataset, we have computed the performance ratio, that is the percentage
of the number of visits performed by the algorithm with respect to the number of nodes of

4.5 - Experimental Results 55

the network (i.e., the number of visits in the worstcase). In Table 4.6, we report the average
of these values on the whole dataset, together with the corresponding standard error (more
detailed results are available in Section 4.6).

Table 4.6. The average performance ratio p, i.e., percentage of the number of BFSs used by the different
methods, with respect to the number of nodes (number of visits using the textbook algorithm).

Undirected Connected Graphs
Method p Std Error

ExactSumSweep 0.0572 % 0.0567 %
BoundingDiameters 0.2097 % 0.2509 %
iFub4S 1.6937 % 2.5603 %
iFubHd 3.2550 % 5.4185 %

(a) Diameter
Method p Std Error

ExactSumSweep 0.0279 % 0.0276 %
BoundingDiameters 0.0427 % 0.0486 %

(b) Radius

Directed Strongly Connected Graphs
Method p Std Error

ExactSumSweep 0.1990 % 0.2245 %
diFub2In 0.8429 % 1.1937 %
diFub2Out 0.8458 % 1.2026 %
diFubHdOut 1.7454 % 2.6369 %
diFubHdIn 2.3249 % 3.3871 %

(c) Diameter
Method p Std Error

ExactSumSweep 0.1935 % 0.2203 %
HR 6.0136 % 8.0915 %

(d) Radius

Directed Weakly Connected Graphs
Method p Std Error

ExactSumSweep 0.1220 % 0.0969 %
(e) Diameter

Method p Std Error
ExactSumSweep 0.1367 % 0.1045 %

(f) Radius

In the diameter computation, the improvement is shown in Table 4.6 (a). The new method
is not only better than the previous ones on average, but it is even much more robust: the
computation of the diameter for ExactSumSweep always ends in less than 180 BFSs, while
the old methods need up to 1200 BFSs, as shown by Table 4.11.

In the radius computation, the ExactSumSweep method is slightly more effective than
the BoundingDiameters algorithm on average, as shown in Table 4.6 (b). Again, we outline
that the new method is much more robust: in our dataset, it never needs more than 18 BFSs,
while the BoundingDiameters algorithm needs at most 156 BFSs. Moreover, in all the
graphs in which the BoundingDiameters algorithm beats the ExactSumSweep algorithm,
this happens always because of just one BFS. On the converse, when the ExactSumSweep
algorithm beats the BoundingDiameters algorithm, the difference between the number of
visits required can be much higher than 1: see Table 4.11 for the detailed results.

Directed Strongly Connected Graphs.For the computation of the diameter of directed,
strongly connected graphs, the best previous algorithms are four variations of the diFub
method [63]:

56 4 - Computing Diameter and Radius: the SumSweep Algorithm

diFubHdIn: starts from the node with highest in-degree;
diFubHdOut: starts from the node with highest out-degree;
diFub2In: starts from the central node of a 2-Sweep performed from the node with

highest in-degree;
diFub2Out: starts from the central node of a 2-Sweep performed from the node with

highest out-degree.

The results of the comparison with the new algorithm are shown in Table 4.6 (c).
For the radius computation, the only efficient known method is explained in [116],

which we refer to as HR. Basically, it works as follows: given the farthest pair of nodes
s and t found by the directed version of 2-Sweep, order the nodes v according to g(v) =
max{dist(v, s),dist(v, t)}; scan the eccentricities of the nodes in this order and stop when the
next node w has a value of g(w) which is greater than the minimum eccentricity found. The
results are shown in Table 4.6 (d).

In the diameter computation, the best previous method is diFub2In: the new Exact-
SumSweep method performs more than 4 times better. We note again the robustness: the
maximum number of BFSs is 59, against the maximum number for diFub2Out which is 482
(note that the maximum for the best competitor of ExactSumSweep, diFub2In, is 510).

In the radius computation, the ExactSumSweep algorithm performs about 31 times
better than the old method. We also remark that the robustness of ExactSumSweep
applies also to the directed case: at most 36 BFSs are needed to find the radius of any graph
of our dataset.

The Directed General Case.Finally, we have analyzed the performances of ExactSum-
Sweep in computing diameter and radius of directed, not strongly connected graphs. Due to
the lack of similar algorithms, it is possible to compare the new method only with the text-
book one, namely, performing a BFS from each node. The performances of the new method
are on average about 1000 times better than the textbook algorithm, allowing us to compute
the diameter and radius of several real-world networks for the first time. Moreover, it is worth
observing that in the case of weakly connected directed graphs, ExactSumSweep seems to
perform even better with respect to strongly connected graphs, if the performance ratio is
considered. However, this is mainly not due to a smaller number of BFSs needed, but to the
increased number of nodes, that damage the performance in the worst-case (the biggest SCC,
on average, has about half the nodes of the whole graph).

Overall, we conclude that the new method is more general: it is the only method which is
able to deal with both directed strongly connected and undirected graphs, both for the radius
and the diameter computation, with very small variations. Moreover, it is the only existing
algorithm able to deal with weakly connected directed graphs, apart from the textbook one.
Despite its generality, it is also faster than every existing algorithm, both on average running
time and on robustness.

4.6 Detailed Experimental Results

4.6.1 Dataset
The following tables provide the graphs included in our dataset, showing for each network the
number of nodes (n) and the number of edges (m). Moreover for each undirected network,
we report the number of nodes (ncc), the number of edges (mcc), the diameter (D), and the
radius (R) of the biggest connected component. Furthermore, for each directed network, we
report the number of nodes (nwcc), the number of edges (mwcc), the diameter (D), and the
radius (R) of the largest weakly connected component together with the number of nodes
(nscc), the number of edges (mscc), the diameter (Dscc), and the radius (Rscc) of the biggest
strongly connected component.

4.6 - Detailed Experimental Results 57

Table 4.7. Undirected graphs: n and m indicate respectively the number of nodes and the number of edges,
D and R indicate diameter and radius, and the subscript cc refers to the largest connected component.

Network n m ncc mcc D R
as20000102 6474 12572 6474 12572 5 9
CA-AstroPh 18772 198050 17903 196972 8 14
CA-CondMat 23133 93439 21363 91286 8 15
ca-GrQc 5241 14484 4158 13422 9 17
ca-HepPh 12006 118489 11204 117619 7 13
ca-HepTh 9875 25973 8638 24806 10 18
com-amazon.all.cmty 134386 99433 7011 8955 20 39
com-amazon.ungraph 334863 925872 334863 925872 24 47
com-dblp.ungraph 317080 1049866 317080 1049866 12 23
com-lj.all.cmty 477998 530872 303526 427701 16 32
com-youtube.ungraph 1134890 2987624 1134890 2987624 12 24
email-Enron 36692 183831 33696 180811 7 13
facebook_combined 4039 88234 4039 88234 4 8
flickrEdges 105938 2316948 105722 2316668 5 9
gowalla_edges 196591 950327 196591 950327 8 16
loc-brightkite_edges 58228 214078 56739 212945 9 18
oregon1_010519 11051 22724 11051 22724 6 11
oregon1_010526 11174 23409 11174 23409 5 10
oregon2_010519 11375 32287 11375 32287 5 9
oregon2_010526 11461 32730 11461 32730 5 9
orkut-links 3072441 117185083 3072441 117185083 5 10
p2pGnutella09 8114 26013 8104 26008 6 10
roadNet-CA 1965206 2766607 1957027 2760388 494 865
roadNet-PA 1088092 1541898 1087562 1541514 402 794
roadNet-TX 1379917 1921660 1351137 1879201 540 1064
soc-pokec-relationships 1632803 44603928 1632803 44603928 14 7
youtube-u-growth 3223585 9375374 3216075 9369874 16 31

58 4 - Computing Diameter and Radius: the SumSweep Algorithm

Table 4.8. Directed graphs: n and m indicate the number of nodes and the number of edges, respectively,
D and R indicate diameter and radius, and subscripts wcc and scc refer respectively to the biggest weakly
connected component and the biggest strongly connected component.

Network n m nwcc mwcc nscc mscc D R Dscc Rscc
amazon0302 262111 1234877 262111 1234877 241761 1131217 88 50 88 48
amazon0312 400727 3200440 400727 3200440 380167 3069889 53 28 52 26
amazon0505 410236 3356824 410236 3356824 390304 3255816 55 27 55 27
amazon0601 403394 3387388 403364 3387224 395234 3301092 54 29 52 25
as-caida2007 26475 106762 26475 106762 26475 106762 17 9 17 9
ca-AstroPh 18771 396100 17903 393944 17903 393944 14 8 14 8
ca-CondMat 23133 186878 21363 182572 21363 182572 15 8 15 8
ca-GrQc 5241 28968 4158 26844 4158 26844 17 9 17 9
ca-HepPh 12006 236978 11204 235238 11204 235238 13 7 13 7
ca-HepTh 9875 51946 8638 49612 8638 49612 18 10 18 10
cit-HepPh 34546 421534 34401 421441 12711 139965 49 12 49 15
cit-HepTh 27769 352768 27400 352504 7464 116252 37 12 35 13
cit-Patents 3774768 16518947 3764117 16511740 1 0 24 0 0 0
email-EuAll 265009 418956 224832 394400 34203 151132 11 5 10 5
flickr-growth 2302925 33140017 2173370 32948343 1605184 30338513 27 13 27 12
p2pGnutella04 10876 39994 10876 39994 4317 18742 26 15 25 15
p2pGnutella05 8846 31839 8842 31837 3234 13453 22 14 22 14
p2pGnutella06 8717 31525 8717 31525 3226 13589 21 13 19 12
p2pGnutella08 6301 20777 6299 20776 2068 9313 20 13 19 12
p2pGnutella09 8114 26013 8104 26008 2624 10776 20 14 19 13
p2pGnutella24 26518 65369 26498 65359 6352 22928 29 16 28 15
p2pGnutella25 22687 54705 22663 54693 5153 17695 22 14 21 13
p2pGnutella30 36682 88328 36646 88303 8490 31706 24 16 23 15
p2pGnutella31 62586 147892 62561 147878 14149 50916 31 20 30 19
soc-Epinions1 75879 508837 75877 508836 32223 443506 16 8 16 8
soc-sign-ep 131828 840799 119130 833390 41441 693507 16 8 16 7
soc-sign081106 77350 516575 77350 516575 26996 337351 15 7 15 7
soc-sign090216 81867 545671 81867 545671 27222 342747 15 7 15 7
soc-sign090221 82140 549202 82140 549202 27382 346652 15 7 15 7
soc-Slash0811 77360 828161 77360 828161 70355 818310 12 7 12 7
soc-Slash0902 82168 870161 82168 870161 71307 841201 13 7 13 7
trec-wt10g 1601787 8063026 1458316 7487449 470441 3012375 351 79 130 37
web-BerkStan 685230 7600595 654782 7499425 334857 4523232 694 283 679 249
web-Google 875713 5105039 855802 5066842 434818 3419124 51 27 51 24
web-NDame 325729 1469679 325729 1469679 53968 296228 93 44 93 44
web-Stanford 281903 2312497 255265 2234572 150532 1576314 580 134 210 97
wiki-Talk 2394385 5021410 2388953 5018445 111881 1477893 11 5 10 5
wiki-Vote 7115 103689 7066 103663 1300 39456 10 4 9 3
youtube-links 1138494 4942297 1134885 4938950 509245 4269142 23 13 20 10
zhishi-baidu 2141300 17632190 2107689 17607140 609905 8300678 39 17 39 17
zhishi-hudong 1984484 14682258 1962418 14672183 365558 4689296 31 19 31 19

4.6 - Detailed Experimental Results 59

4.6.2 The SumSweep Heuristic

Table 4.9. Efficiency of different lower bound techniques on undirected graphs.

Network 3-SS 4-SS 2×2-Sweep 4-Sweep 4-Sampling
as20000102 100.00% 100.00% 100.00% 100.00% 80.00%
CA-AstroPh 100.00% 100.00% 100.00% 100.00% 76.43%
CA-CondMat 100.00% 100.00% 100.00% 100.00% 74.00%
ca-GrQc 100.00% 100.00% 100.00% 100.00% 78.24%
ca-HepPh 100.00% 100.00% 100.00% 100.00% 79.23%
ca-HepTh 100.00% 100.00% 100.00% 100.00% 76.11%
com-amazon.all.cmty 100.00% 100.00% 100.00% 100.00% 77.18%
com-amazon.ungraph 100.00% 100.00% 100.00% 100.00% 75.74%
com-dblp.ungraph 100.00% 100.00% 100.00% 100.00% 71.74%
com-lj.all.cmty 100.00% 100.00% 100.00% 99.69% 70.31%
com-youtube.ungraph 100.00% 100.00% 100.00% 100.00% 65.42%
email-Enron 100.00% 100.00% 100.00% 100.00% 70.77%
facebook_combined 100.00% 100.00% 100.00% 100.00% 87.50%
flickrEdges 100.00% 100.00% 100.00% 100.00% 86.67%
gowalla_edges 100.00% 100.00% 100.00% 100.00% 71.88%
loc-brightkite_edges 100.00% 100.00% 100.00% 100.00% 67.78%
oregon1_010519 100.00% 100.00% 100.00% 100.00% 80.00%
oregon1_010526 100.00% 100.00% 100.00% 100.00% 76.00%
oregon2_010519 100.00% 100.00% 100.00% 100.00% 77.78%
oregon2_010526 100.00% 100.00% 100.00% 100.00% 76.67%
p2p-Gnutella09 100.00% 100.00% 100.00% 100.00% 85.00%
roadNet-CA 99.64% 99.88% 99.28% 99.76% 85.36%
roadNet-PA 99.67% 99.67% 99.67% 99.60% 90.43%
roadNet-TX 99.83% 100.00% 99.92% 99.28% 85.12%
soc-pokec-relationships 100.00% 100.00% 99.29% 100.00% 67.86%
youtube-u-growth 100.00% 100.00% 100.00% 100.00% 68.39%

60 4 - Computing Diameter and Radius: the SumSweep Algorithm

Table 4.10. Efficiency of different lower bound techniques on directed graphs.

Network 3-SS 4-SS 5-SS 6-SS 7-SS 8-SS 2-dSweep 4-Sampling
amazon0302 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 79.43%
amazon0312 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 72.26%
amazon0505 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 64.36%
amazon0601 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 68.70%
as-caida20071105 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 88.82%
ca-AstroPh 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 75.00%
ca-CondMat 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 75.33%
ca-GrQc 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 76.47%
ca-HepPh 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 80.77%
ca-HepTh 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 77.22%
cit-HepPh 99.80% 100.00% 100.00% 100.00% 100.00% 100.00% 98.16% 71.02%
cit-HepTh 85.14% 86.76% 86.76% 86.76% 86.76% 86.76% 82.43% 72.97%
cit-Patents 67.08% 72.92% 72.92% 84.58% 84.58% 84.58% 59.58% 26.67%
email-EuAll 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 70.91%
flickr-growth 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 60.37%
p2pGnutella04 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 97.69% 73.08%
p2pGnutella05 94.55% 97.27% 97.27% 100.00% 100.00% 100.00% 97.73% 73.64%
p2pGnutella06 95.71% 100.00% 100.00% 100.00% 100.00% 100.00% 99.52% 50.95%
p2pGnutella08 88.00% 100.00% 100.00% 100.00% 100.00% 100.00% 95.50% 74.00%
p2pGnutella09 99.50% 100.00% 100.00% 100.00% 100.00% 100.00% 95.50% 86.50%
p2pGnutella24 94.48% 100.00% 100.00% 100.00% 100.00% 100.00% 93.79% 66.55%
p2pGnutella25 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 97.27% 32.27%
p2pGnutella30 95.83% 95.83% 95.83% 99.58% 99.58% 100.00% 95.42% 31.67%
p2pGnutella31 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 98.06% 48.06%
soc-Epinions1 98.13% 100.00% 100.00% 100.00% 100.00% 100.00% 92.50% 65.63%
soc-sign-epinions 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 90.63% 51.25%
Soc-sign081106 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 57.33%
Soc-sign090216 99.33% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 59.33%
Soc-sign090221 97.33% 100.00% 100.00% 100.00% 100.00% 100.00% 96.67% 56.00%
soc-Slashdot0811 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 75.83%
soc-Slashdot0902 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 74.62%
trec-wt10g 75.21% 75.21% 75.21% 75.21% 75.21% 75.21% 75.21% 28.35%
web-BerkStan 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 83.37%
web-Google 96.08% 100.00% 100.00% 100.00% 100.00% 100.00% 89.80% 60.39%
web-NotreDame 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 46.13%
web-Stanford 42.05% 42.07% 42.07% 42.07% 42.07% 42.07% 42.05% 24.00%
wiki-Talk 90.91% 90.91% 100.00% 100.00% 100.00% 100.00% 99.09% 0.00%
wiki-Vote 98.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 60.00%
youtube-links 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 49.13%
Zhishi-baidu 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 91.79% 49.74%
Zhishi-hudong 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 96.77% 73.87%

4.6 - Detailed Experimental Results 61

4.6.3 Computing Radius and Diameter
The following tables provide the number of iterations needed to compute diameter and radius,
using various algorithms.

Undirected Graphs

Table 4.11. Number of iterations needed by various algorithms on undirected graphs.

Network Diameter Radius
SS BD iFub4S iFubHd SS BD

as20000102 10 14 34 29 3 2
CA-AstroPh 15 18 12 12 8 9
CA-CondMat 11 13 14 6 4 3
ca-GrQc 4 24 6 11 4 10
ca-HepPh 11 20 39 10 6 9
ca-HepTh 10 14 12 9 6 6
com-amazon.all.cmty 4 16 16 10 4 7
com-amazon.ungraph 5 7 7 52 4 3
com-dblp.ungraph 9 8 34 9 4 3
com-lj.all.cmty 4 3 31 9 4 3
com-youtube.ungraph 3 2 6 2 3 2
email-Enron 6 10 14 19 4 3
facebook_combined 4 9 64 143 4 9
flickrEdges 36 1255 32178 11 3 156
gowalla_edges 6 5 6 2 6 5
loc-brightkite_edges 3 2 8 2 3 2
oregon1_010519 4 25 6 3 3 3
oregon1_010526 4 3 14 2 4 3
oregon2_010519 8 14 13 16 3 2
oregon2_010526 8 10 29 12 3 2
orkut-links 23 144 18722 103 8 13
p2pGnutella09 35 178 219 15 7 7
roadNet-CA 180 181 122817 354382 18 29
roadNet-PA 55 60 497 263606 10 11
roadNet-TX 68 84 25996 544280 6 9
soc-pokec-rel 6 3 74 2 6 3
youtube-u-growth 4 5 6 5 4 5

62 4 - Computing Diameter and Radius: the SumSweep Algorithm

Directed Strongly Connected Graphs

Table 4.12. Number of iterations needed by various algorithms on directed strongly connected graphs.

Network Diameter Radius
SS diFub2In diFub2Out diFubHdOut diFubHdIn SS HR

amazon0302 17 482 482 264 146 20 284
amazon0312 36 68 68 2553 3198 29 242
amazon0505 17 41 24 173 194 22 2820
amazon0601 26 104 104 644 78 36 1021
as-caida20071105 15 8 8 10 10 15 2
ca-AstroPh 32 24 24 24 24 26 467
ca-CondMat 19 24 24 12 12 9 21
ca-GrQc 17 8 8 22 22 17 53
ca-HepPh 33 32 32 20 20 17 135
ca-HepTh 26 16 16 18 18 17 107
cit-HepPh 9 9 9 1719 5403 10 70
cit-HepTh 9 7 7 13 361 14 96
email-EuAll 18 10 10 11 11 19 4539
flickr-growth 15 18 18 17 17 12 4488
p2pGnutella04 15 38 38 44 117 18 38
p2pGnutella05 16 39 39 36 50 18 40
p2pGnutella06 21 172 172 113 117 17 167
p2pGnutella08 12 70 64 499 51 16 237
p2pGnutella09 33 307 307 137 187 32 28
p2pGnutella24 9 22 22 13 31 16 20
p2pGnutella25 59 152 152 88 1003 18 155
p2pGnutella30 38 246 288 1281 306 25 940
p2pGnutella31 26 255 255 132 212 22 306
soc-Epinions1 15 6 6 3 5 16 168
soc-pokec-rel 9 14 14 4 4 9 163
soc-sign-epinions 15 6 6 10 3 21 23
soc-sign081106 11 22 22 9 11 9 232
soc-sign090216 11 21 21 9 11 9 98
soc-sign090221 11 22 22 9 11 9 98
soc-Slashdot0811 48 28 28 10 10 13 17326
soc-Slashdot0902 9 21 21 10 10 11 12727
trec-wt10g 9 21 21 34 39 14 165
web-BerkStan 15 7 7 244 235 21 250
web-Google 15 8 8 51 12 17 243
web-NotreDame 9 7 7 6 5 11 45
web-Stanford 15 6 6 39 4 17 13941
wiki-Talk 20 13 13 45 6 18 61379
wiki-Vote 9 17 17 9 9 20 878
youtube-links 9 13 13 4 4 7 19247
zhishi-baidu 9 7 7 6 5 7 4990
zhishi-hudong 15 510 201 29 35 15 169

4.7 - Internet Movies Database Case Study 63

Directed Weakly Connected Graphs

Table 4.13. Number of iterations needed by the new algorithm on directed graphs.

Network Diameter Radius
amazon0302 21 18
amazon0312 21 30
amazon0505 10 329
amazon0601 53 37
as-caida20071105 15 15
ca-AstroPh 33 26
ca-CondMat 19 9
ca-GrQc 17 17
ca-HepPh 34 17
ca-HepTh 26 17
cit-HepPh 10 128
cit-HepTh 327 72
cit-Patents 1510 7
email-EuAll 33 36
flickr-growth 16 7
p2pGnutella04 17 19
p2pGnutella05 27 26
p2pGnutella06 20 27
p2pGnutella08 10 21
p2pGnutella09 43 34
p2pGnutella24 10 17
p2pGnutella25 78 24
p2pGnutella30 48 28
p2pGnutella31 37 39
soc-Epinions1 13 12
soc-sign-epinions 13 10
Soc-sign-Slash081106 20 15
Soc-sign-Slash090216 16 19
Soc-sign-Slash090221 13 17
soc-Slashdot0811 52 21
soc-Slashdot0902 20 16
trec-wt10g 559 7
web-BerkStan 17 19
web-Google 24 22
web-NotreDame 10 12
web-Stanford 69 7
wiki-Talk 10 10
wiki-Vote 10 16
youtube-links 21 13
Zhishi-baidu 10 7
Zhishi-hudong 17 17

4.7 Internet Movies Database Case Study

This section applies the ExactSumSweep algorithm to the Internet Movies Database
(IMDB), in particular to the so-called actor graph, in which two actors are linked if they
played together in a movie (we ignore TV-series in this work). All data have been taken from
the website http://www.imdb.com. In line with https://oracleofbacon.org/, we decided

http://www.imdb.com
https://oracleofbacon.org/

64 4 - Computing Diameter and Radius: the SumSweep Algorithm

to exclude some genres from our database: awards-shows, documentaries, game-shows, news,
realities and talk-shows. We analyzed snapshots of the actor graph, taken every 5 years from
1940 to 2010, and 2014.

1
9
4
0

1
9
4
5

1
9
5
0

1
9
5
5

1
9
6
0

1
9
6
5

1
9
7
0

1
9
7
5

1
9
8
0

1
9
8
5

1
9
9
0

1
9
9
5

2
0
0
0

2
0
0
5

2
0
1
0

2
0
1
4

7
8
9

10
11
12
13
14
15
16
17
18
19

Year

V
al

ue

Radius

Diameter

Kevin Bacon

Bruce Willis

Carl Auen

Dasari Kotiratnam

Figure 4.2. Actor graph evolution in terms of radius, diameter, and actor eccentricity.

4.7.1 Analysis of the Graph Stretch
Figure 4.2 shows the evolution of the diameter, the radius and the eccentricity of some actors.
It shows that the stretch of the graph (in terms of radius and diameter) increased between
1940 and 1955, then it started decreasing, confirming the behavior of the diameter of real-
world graphs analyzed in [107]. The first increase might be explained by the fact that the
years between the Forties and the Sixties are known as the golden age for Asian cinema,
especially Indian and Japanese.2 Examples of popular movies of that period include Tokyo
Story and Godzilla. This trend is also confirmed by the names of the central actors during that
period. In 1940, they are all Western, usually German, like Carl Auen. The only non-western
central actor is the Birmanian Abraham Sofaer, but he worked in England and America. On
the other hand, in 1955, we find both Western actors like James Bell and Eastern actors like
Sōjin Kamiyama.

Later, in the Sixties, the increase in independent producers and growth of production
companies led to an increase of power of individual actors. This can explain the decreasing
size of the graph during those years: the number of contacts between actors from different
countries increased. An example of this trend is the first James Bond movie, Dr. No, starring
Sean Connery (from Scotland), Ursula Andress (who is Swiss-American), Joseph Wiseman
(from Canada), etc.

The decrease of the graph size halted in the Eighties, and there were little changes until
the present. Now it seems that the size is slightly increasing again, but the number of central
actors is increasing as well. It would be interesting to see if this trend will continue or there
will soon be an actor who obtains again an eccentricity of 7.

4.7.2 Analysis of the Eccentricity of Actors
All actors seem to decrease their eccentricity as time passes. Even Dasari Kotiratnam, an
Indian actress active between 1935 and 1939, is a diametral node when she is active, then
she becomes more and more central. Also Carl Auen, who started from the center in 1940,
remains quite central, having an eccentricity of 9 in the present.

Instead, the periphery is usually composed by recent actors: for example, in the last
graph, the actress Neeta Dhungana is a diametral node who played only in the Nepalese
movie Masaan. Another example is Steveanna Roose, an American actress who played only

2All other historical data in this section is taken from [156].

4.8 - Wikipedia Case Study 65

in Lost in the Woods: in 2010 she is diametral, having eccentricity 15, while in 2014 she
obtained an eccentricity of 12 (without playing any movie in that period).

4.7.3 The Six Degrees of Separation Game
These results can be directly applied to analyze the solvability of the six degrees of separa-
tion game, which is a trivia game inspired by the well-known social experiment of Stanley
Milgram [117], which was in turn a continuation of the empirical study of the structure of
social networks by Michael Gurevich [86]. The game refers to a network, such as the (movie)
actors collaboration network or the Wikipedia citation network, and can be played according
to two main different variants. In the first variant, given two nodes s, i.e. the source, and
t, i.e. the target, the player is asked to find a path of length at most six between s and t.
In the second variant of the game, the node s is fixed and only the target node t is cho-
sen during the game: for instance, in the case of the actor collaboration network, one very
popular instance of this variant is the so-called “Six Degrees of Kevin Bacon” game, where
the node s is the actor Kevin Bacon, who is considered one of the centers of the Hollywood
universe (https://oracleofbacon.org/).

From our results, the Six Degrees of Separation game is not always solvable, and it has
never been solvable, even if we fix the source. We also remark that Kevin Bacon has not
minimum eccentricity until the present, and he never gets eccentricity 6, as suggested by the
“Six Degrees of Kevin Bacon” game.

4.8 Wikipedia Case Study

The Wikipedia graph consists of all pagelinks between (English) Wikipedia articles and can
be downloaded at DBpedia (http://wiki.dbpedia.org/). In the “Six Degrees of Wikipedia”
game one is asked to connect two given Wikipedia pages, i.e., a source and a target page, by
using at most six links. In this section, we analyze the Wikipedia directed graph, trying to
understand whether the “Six Degrees of Wikipedia” game is always solvable whenever a path
from the source to the target exists. We compute for the first time the radius and diameter of
the whole Wikipedia graph, we further analyze the biggest SCC, and finally we try to avoid
the problems generated by “long paths” inside the graph.

First of all, let us compute the radius and the diameter of the whole Wikipedia graph
(which is composed by 4,229,722 nodes and 102,165,856 edges, with 452,488 strongly con-
nected components). The diameter is 377 (254 iterations needed by using ExactSumSweep
algorithm) and the radius is 42 (203 iterations). Note that these values are extremely high
if compared with diameter and radius of real-world networks: in order to explain this phe-
nomenon, it is worth analyzing the paths involved. In particular, the diameter starts from
page List of minor planets/108101–108200 and remains inside this list until page List
of minor planets/145701–145800, in order to reach the last page (145795) 1998 RA16
(which is a minor planet). Clearly the diameter only depends on this list and does not give
any information about the connectivity of the remaining part of the graph.

A similar phenomenon holds for the radius: a radial node is the page 1954 in Ireland,
and a longest path from this node reaches in 6 steps the page Papyrus Oxyrhynchus 116,
where a long path starts until the page Papyrus Oxyrhynchus 158, adding 36 steps.3

Moreover, the first step after the page 1954 in Ireland reaches the page England, but
this latter node has bigger eccentricity because of the existence of a very long path of pages
with title All-Ireland Minor Hurling Championship the reason why the page 1954 in
Ireland is central is that it stays “between” the two very long lists All-Ireland Minor
Hurling Championship and Papyrus Oxyrhynchus, not meaning that it is well connected to
the rest of the graph.

3In the path of the pages Papyrus Oxyrhynchus, a jump is done from page Papyrus Oxyrhynchus 145 to
page Papyrus Oxyrhynchus 152

https://oracleofbacon.org/
http://wiki.dbpedia.org/

66 4 - Computing Diameter and Radius: the SumSweep Algorithm

Similar results are found if we restrict ourselves to the biggest SCC of the graph, com-
posed by 3,763,632 nodes. We obtain that the diameter is 49 (9 iterations) and the radius
is 42 (14 iterations). Again, the longest path contains many pages in the All-Ireland
Minor Hurling Championship path, starting from Kickxellales (an order of fungus) and
ending into All-Ireland Minor Hurling Championship 1928. A radial node is Play it
Again Des, and again the longest path from this node reaches All-Ireland Minor Hurling
Championship 1928.

The last experiment tries to “eliminate” these long paths from the graph: to do so,
we have modified all page titles by leaving only letters (case-sensitive), and we have col-
lapsed all the pages having the same title. In this way, all numbers are deleted and
the previous long paths of pages collapse to a single node: for instance, all pages like
All-Ireland Minor Hurling Championship YYYY for years YYYY collapse to the single page
AllIrelandMinorHurlingChampionship. After this procedure, the graph has 3,939,060
nodes, the diameter becomes 23 (14 iterations) and the radius becomes 17 (16 iterations).
However, this is still not sufficient to analyze the structure of the graph, since many important
different pages collapse together: for instance the collapsed page s (a radial node) corresponds
to all pages like 1960s, 1970s, 1980s, etc. Moreover, the problem of long lists is not com-
pletely solved yet, because the diameter starts from page Advanced Diabetes Management
Certification and ends in page Osieki Lęborskie railway station (a Polish railway
station): 15 steps of this path pass from a Polish railway station to another (the list starts
from Lębork railway station). The same issues hold if only the biggest SCC is considered,
since all considered paths are contained in the biggest SCC (the iterations become 15 for
the diameter and 13 for the radius by using ExactSumSweep Algorithm). We argue that
dealing with these long paths in this graph is a difficult task that require more sophisticated
techniques exploiting the content of the pages.

More interesting results can be obtained by reversing all the edges: this way, a radial node
is an “easily reachable node” and not a node that reaches easily all the others. In this case,
the radius is very small, because “popular nodes” are cited by many other pages. Indeed,
although the diameter remains obviously 377, the radius becomes 6 (7 iterations), and a
radial node is the page United States. Intuitively, this happens because it is much easier
“to reach very popular nodes” than to reach unpopular nodes by starting from very popular
ones. This means that if we fix the target of the “Six Degrees of Wikipedia” game to be the
United States the game becomes always solvable!

4.9 Bibliographic Notes

The definition and the implementation of previous algorithms was taken from [60, 114, 154,
63, 61, 155] (for more information, we refer to the introduction, at the beginning of the
chapter, or to Section 4.5). The rest of this chapter is original, and it was published in
[33, 32]: the paper [33] deals only with the strongly connected case, while the paper [32]
explains the algorithm in full generality. In particular, Sections 4.2 to 4.8 are taken from [32].
Finally, another algorithm for the diameter of directed, not strongly connected graphs was
proposed in [7]: in this chapter, we have not considered this algorithm because the techniques
used seem to be a subset of our techniques, and the experimental results seem to be orders of
magnitude worse than ours (for instance, in the graph web-Google, we need 24 BFSs, while
the algorithm in [7] needs 12 074 BFSs).

Chapter 5

Computing Closeness Centrality:
the BCM Algorithm

Abstract

The closeness centrality is a traditional measure of the centrality of a node in a
complex network. In this chapter, we address the problem of computing the k most
central nodes, for some small k: we propose a new algorithm, and we experimentally
show that it outperforms all previous approaches.

For example, we are able to compute the top-10 or top-100 nodes in few dozens
of seconds in real-world networks with millions of nodes and edges, such as the actors
collaboration network and the Wikipedia citation network.

The problem of identifying the most central nodes is a fundamental question in network
analysis, with applications in a plethora of research areas, such as biology, computer science,
sociology, and psychology. Because of the importance of this question, dozens of centrality
measures have been introduced in the literature (for a recent survey, see [25]). Among these
measures, closeness centrality is certainly one of the oldest and of the most widely used [17]:
it is studied in almost all books dealing with network analysis (for example, [126]), and almost
all existing graph libraries implement algorithms to compute it.

Also for this measure, the textbook approach is based on computing the distance between
all pairs of nodes: from these distances, one can easily compute the closeness centrality of
every node, and output the k largest values found. As in the case of the diameter and the
radius, the main bottleneck of this approach is solving the All Pairs Shortest Paths problem,
which requires time O(mn) on sparse graphs. Again, our goal is to improve this approach.

Knowing that it is probably unlikely to achieve such result in the worst-case (see Chap-
ter 3), we develop a new algorithm that works well in practice, even if the time complexity
is still O(mn). This algorithm can also be easily adapted to the computation of similar
measures, such as the harmonic centrality and the exponential centrality.

The new approach combines the BFS-based algorithm with a pruning technique: during
the algorithm, we compute and update upper bounds on the closeness of all the nodes, and
we exclude a node s from the computation as soon as its upper bound is “small enough”,
that is, we are sure that s does not belong to the top-k nodes. We propose two different
strategies to set the initial bounds, and two different strategies to update the bounds during
the computation: this means that our algorithm comes in four different variations. The
experimental results show that different variations perform well on different kinds of networks,
and the best variation of our algorithm drastically outperforms both a probabilistic approach
[128], and the best exact algorithm available until now [129]. We have computed for the first
time the 10 most central nodes in networks with millions of nodes and hundreds of millions

68 5 - Computing Closeness Centrality: the BCM Algorithm

of edges, in very little time. A significant example is the wiki-Talk network, which was
also used in [142], where the authors propose an algorithm to update closeness centralities
after edge additions or deletions. Our performance is about 30 000 times better than the
performance of the textbook algorithm: if only the most central node is needed, we can
recompute it from scratch more than 150 times faster than the geometric average update
time in [142]. Finally, our approach is not only very efficient, but it is also very easy to code,
making it a very good candidate to be implemented in existing graph libraries. Indeed, it is
already implemented in NetworKit [151], and one of its variations is implemented in Sagemath
[64] and in WebGraph [23]. We sketch the main ideas of the algorithm in Section 5.2, we
provide all details in Sections 5.3 to 5.6. We experimentally evaluate the efficiency of the new
algorithm in Section 5.7. In the last part of this chapter (Sections 5.8 and 5.9), we consider
two case studies: the actor collaboration network (1 797 446 nodes, 72 880 156 edges) and the
Wikipedia citation network (4 229 697 nodes, 102 165 832 edges). In the actor collaboration
network, we analyze the evolution of the 10 most central nodes, considering snapshots taken
every 5 years between 1940 and 2014. The computation was performed in little more than 45
minutes. In the Wikipedia case study, we consider both the standard citation network, that
contains a directed edge (v, w) if the page v contains a link to w, and the reversed network,
that contains a directed edge (v, w) if w contains a link to v. In a few minutes, we are able to
compute the 10 most central pages of most of these graphs, making them available for future
analyses.

5.1 Related Work

Closeness is a “traditional” definition of centrality, and consequently it was not “designed
with scalability in mind”, as stated in [96]. Also in [48], it is said that closeness centrality
can “identify influential nodes”, but it is “incapable to be applied in large-scale networks due
to the computational complexity”. The simplest solution considered was to define different
measures, that might be related to closeness centrality [96].

A different line of research has tried to develop more efficient algorithms, or lower bounds
for the complexity of this problem, as we saw in Chapter 3. In particular, we have proved that
an algorithm that finds the least central node, or the most central node in directed, discon-
nected graphs, falsifies the Orthogonal Vector conjecture, and consequently the Hitting Set
conjecture, and the Strong Exponential Time Hypothesis. Furthermore, it is also impossible
to find the most central node, unless the Hitting Set conjecture is false [3]. Similar results
hold in the dense weighted context [1]: the complexity of computing the most central node
is the same as the complexity of computing the All Pairs Shortest Paths, a task that cannot
be solved in time O(n3−ε) by any existing algorithm.

Knowing these hardness results, researchers tried to find ways to overcome them. A first
possibility is to design approximation algorithms: the simplest approach samples the distance
between a node s and l other nodes t, and returns the average of all values dist(s, t) found
[72]. The time complexity is O(lm), to obtain an approximation c̃(s) of the centrality of each
node s such that

P

(∣∣∣∣ 1

c̃(s)
− 1

c(s)

∣∣∣∣ ≥ εD
)
≤ 2e−Ω(lε2)

where D is the diameter of the graph. A more refined approximation algorithm is provided in
[55], which combines the sampling approach with a 3-approximation algorithm: this algorithm
has running time O(lm), and it provides an estimate c̃(v) of the centrality of each node v
such that

P

(∣∣∣∣ 1

c̃(s)
− 1

c(s)

∣∣∣∣ ≥ ε

c(s)

)
≤ 2e−Ω(lε3)

(note that, differently from the previous algorithm, this algorithm provides a guarantee on
the relative error). However, even if these approximation algorithms work quite well, they

5.2 - Overview of the Algorithm 69

are not suited to the ranking of nodes: indeed, we work with so-called small world networks,
having a low diameter, and an even smaller average distance. Indeed, in a typical graph, the
average distance between two nodes s and t is between 1 and 10, meaning that most of the n
centrality values lie in this range. In order to obtain a ranking, we need the error to be close
to 10

n , which might be very small. Nevertheless, an approximation algorithm was proposed in
[128], where the sampling technique developed in [72] was used to actually compute the top-k
nodes: the result is not exact, but it is exact with high probability. The authors proved that
the time complexity of their algorithm is O(mn

2
3 log n), under the rather strong assumption

that closeness centralities are uniformly distributed between 0 and D (in the worst-case, the
time complexity of this algorithm is O(mn)).

Other approaches have tried to develop incremental algorithms that might be more suited
to real-world networks. For instance, in [109], the authors develop heuristics to determine the
k most central nodes in a varying environment. Furthermore, in [142], the authors consider
the problem of updating the closeness centrality of all nodes after edge insertions or deletions:
in some cases, the time needed for the update could be orders of magnitude smaller than the
time needed to recompute all centralities from scratch.

Finally, some works have tried to exploit properties of real-world networks in order to find
more efficient algorithms. In [106], the authors develop a heuristic to compute the k most
central nodes according to different measures. The basic idea is to identify central nodes
according to an “easy” centrality measure (for instance, degree of nodes), and then to inspect
a small set of central nodes according to this measure, hoping it contains the top-k nodes
according to the “hard” measure. The last approach [129], proposed by Olsen et al., tries
to exploit the properties of real-world networks in order to develop exact algorithms with
worst-case complexity O(mn), but performing much better in practice. As far as we know,
this is the only exact algorithm that is able to efficiently compute the k most central nodes
in networks with up to 1 million nodes.

However, despite this large amount of research, the major graph libraries still use the
textbook algorithm: among them, Boost Graph Library [87], Sagemath [64], igraph [152],
NetworkX [147], and NetworKit [151]. This is due to the fact that efficient available exact
algorithms for top-k closeness centrality, like [129], are relatively recent and make use of
several other non-trivial routines. Conversely, our algorithm is very simple, and it is already
implemented in some graph libraries, such as NetworKit [151], WebGraph [23], and Sagemath
[64].

5.2 Overview of the Algorithm

In this section, we describe our new approach for computing the k nodes with largest closeness
(equivalently, the k nodes with smallest farness). If we have more than one node with the
same score, we output all nodes having a centrality bigger than or equal to the centrality of
the k-th node.

The basic idea is to keep track of a lower bound on the farness of each node, and
to skip the analysis of a node s if this lower bound implies that s is not in the top-k.
More formally, let us assume that we know the farness of some nodes s1, . . . , s`, and a
lower bound L(v) on the farness of any other node v. Furthermore, assume that there
are k nodes among s1, . . . , sl satisfying f(si) < L(v) ∀v ∈ V − {s1, . . . , sl}, and hence
f(v) ≥ L(v) ≥ maxw∈V−{s1,...,sl} L(w) > f(si). Then, we can safely skip the exact com-
putation of f(v) for all remaining nodes v, because the k nodes with smallest farness are
among s1, . . . , sl.

This idea is implemented in Algorithm 8: we use a list Top containing all “analyzed”
nodes s1, . . . , sl in increasing order of farness, and a priority queue Q containing all nodes
“not analyzed, yet”, in increasing order of lower bound L (this way, the head of Q always
has the smallest value of L among all nodes in Q). At the beginning, using the function
computeBounds(), we compute a first bound L(v) for each node v, and we fill the queue Q

70 5 - Computing Closeness Centrality: the BCM Algorithm

Algorithm 8: Pseudocode of our algorithm for top-k closeness centralities.
Input : A graph G = (V,E)
Output: top-k nodes with highest closeness and their closeness values c(v)

1 global L,Q← computeBounds(G);
2 global Top← [];
3 global Farn;
4 for v ∈ V do Farn[v] = +∞;
5 while Q is not empty do
6 s← Q.extractMin();
7 if |Top| ≥ k and L[s] > Top[k] then return Top;
8 Farn[s]← updateBounds(s); // This function might also modify L
9 add s to Top, and sort Top according to Farn;

10 update Q according to the new bounds;
11 end

according to this bound. Then, at each step, we extract the first element s of Q: if L(s) is
smaller than the k-th smallest farness computed until now (that is, the farness of the k-th node
in variable Top), we can safely stop, because for each v ∈ Q, f(v) ≤ L(v) ≤ L(s) < f(Top[k]),
and v is not in the top-k. Otherwise, we run the function updateBounds(s), which performs
a BFS from s, returns the farness of s, and improves the bounds L of all the other nodes.
Finally, we insert s into Top in the right position, and we update Q if the lower bounds have
changed.

The crucial point of the algorithm is the definition of the lower bounds, that is, the
definition of the functions computeBounds and updateBounds. We propose two alternative
strategies for each of these two functions: in both cases, one strategy is conservative, that is,
it tries to perform as few operations as possible, while the other strategy is aggressive, that
is, it needs many operations, but at the same time it improves many lower bounds.

Let us analyze the possible choices of the function computeBounds. The conservative
strategy computeBoundsDeg needs time O(n): it simply sets L(v) = 0 for each v, and it fills Q
by inserting nodes in decreasing order of degree (the idea is that nodes with high degree have
small farness, and they should be analyzed as early as possible, so that the values in Top are
correct as soon as possible). Note that the nodes can be sorted in time O(n) using counting
sort.

The aggressive strategy computeBoundsNB needs time O(mD), where D is the diameter
of the graph: it computes the neighborhood-based lower bound LNB(s) for each node s (we
explain shortly afterwards how it works), it sets L(s) = LNB(s), and it fills Q by adding nodes
in decreasing order of L. The idea behind the neighborhood-based lower bound is to count
the number of paths of length ` starting from a given node s, which is also an upper bound U`
on the number of nodes at distance ` from s. From U`, it is possible to define a lower bound
on
∑
v∈V dist(s, v) by “summing U` times the distance `”, until we have summed n distances:

this bound yields the desired lower bound on the farness of s. The detailed explanation of
this function is provided in Section 5.3.

For the function updateBounds(s), the conservative strategy updateBoundsBFSCut(s)
does not improve L, and it cuts the BFS as soon as it is sure that the farness of s is smaller
than the k-th biggest farness found until now, that is, Farn[Top[k]]. If the BFS is cut, the
function returns +∞, otherwise, at the end of the BFS we have computed the farness of s,
and we can return it. The running time of this procedure is O(m) in the worst-case, but it
can be smaller in practice. It remains to define how the procedure can be sure that the farness
of s is at least Farn[Top[k]]: to this purpose, during the BFS, we update a lower bound on
the farness of s. The idea behind this bound is that, if we have already visited all nodes up
to distance `, we can upper bound the closeness centrality of s by setting distance `+ 1 to a
number of nodes equal to the number of edges “leaving” level `, and distance `+ 2 to all the
remaining nodes. The details of this procedure are provided in Section 5.4.

The aggressive strategy updateBoundsLB(s) performs a complete BFS from s, and it

5.3 - The computeBoundsNB Function 71

bounds the farness of each node v using the level-based lower bound. The running time
is O(m) for the BFS, and O(n) to compute the bounds. The idea behind the level-based
lower bound is that dist(v, w) ≥ |dist(s, w)−dist(s, v)|, and consequently

∑
w∈V dist(v, w) ≥∑

w∈V |dist(s, w) − dist(s, v)|. The latter sum can be computed in time O(n) for each v,
because it depends only on the level ` of v in the BFS tree, and because it is possible to
compute in O(1) the sum for a node at level `+ 1, if we know the sum for a node at level `.
The details are provided in Section 5.5.

Finally, in order to transform these lower bounds on
∑
w∈V dist(v, w) into bounds on f(v),

we need to know the number of nodes reachable from a given node v. In Sections 5.3 to 5.5, we
assume that these values are known: this assumption is true in undirected graphs, where we
can compute the number of reachable nodes in linear time at the beginning of the algorithm,
and in strongly connected directed graphs, where the number of reachable nodes is n. The
only remaining case is when the graph is directed and not strongly connected: in this case,
we need some additional machinery, which is presented in Section 5.6.

5.3 The computeBoundsNB Function

In this section, we define a lower bound SNB(s, r(s)) on the total distance sum S(s) =∑
v∈R(s) dist(s, v) of a node v in an undirected or strongly-connected graph. If we know

the number r(s) of nodes reachable from s, this bound translates into a lower bound on the
farness of s, simply multiplying by (n − 1)/(r(s) − 1)2. The basic idea is to find an upper
bound γ̃`(s) on the number of nodes γ`(s) at distance exactly ` from s. Then, intuitively, if
we assume that the number of nodes at distance ` is greater than its actual value and “stop
counting” when we have r(v) nodes, we get something that is smaller than the actual total
distance. This is because we are assuming that the distances of some nodes are smaller than
their actual values. This argument is formalized in Proposition 5.1.

Proposition 5.1. If γ̃`(s) is an upper bound on γ`(s), for ` = 0, ..., D, where D is the
diameter of the graph, then

SNB(s, r(s)) :=

D∑
`=1

` ·min

γ̃`(s), max

r(s)−
`−1∑
i=0

γ̃i(s), 0

is a lower bound on S(s) :=
∑
v∈R(v) dist(s, v).

Proof. Let us sort the nodes in increasing order of distance from s, obtaining v1, . . . , vr(v),
and let us define `i = 0 for i ≤ γ̃0(s) = 1, `i = 1 for γ̃0(s) < i ≤ γ̃0(s) + γ̃1(s), and in general
`i = ` for each i such that

∑`−1
l=0 γ̃

l(s) < i ≤
∑`
l=0 γ̃

l(s). We want to prove the following:

SNB(s, r(s)) =

r(s)∑
i=0

`i ≤
r(s)∑
i=0

dist(s, vi) = S(s).

The first equality follows by definition of `i and SNB((, s)), while the last equality follows
by definition of S(s). For the second inequality, let us prove that `i ≤ dist(s, vi) for each i:
by definition of the `is, i ≤ γ̃0(s)+ · · ·+ γ̃`i(s) ≤ γ0(s)+ · · ·+γ`i(s). Consequently, there are
at least i nodes at distance at most `i from s, and since the vis are sorted, dist(s, vi) ≤ `i.

In the following paragraphs, we propose upper bounds γ̃i(s) for trees, undirected graphs
and directed strongly-connected graphs. In case of trees, the bound γ̃i(s) is actually equal
to γi(v), which means that the algorithm can be used to compute closeness of all nodes in a
tree exactly.

72 5 - Computing Closeness Centrality: the BCM Algorithm

Computing closeness on trees. Let us consider a node s for which we want to compute
the total distance S(s). The number of nodes at distance 1 in the BFS tree from s is clearly
the degree of s. What about distance 2? If Γ`(s) is the set of nodes at distance ` from s, since
there are no cycles, all the neighbors of the nodes in Γ1(s) are nodes at distance 2 from s, with
the only exception of s itself. Therefore, γ2(s) =

∑
v∈Γ1(s) γ

1(v)−deg(s). In general, we can
always relate the number of nodes at each distance ` from s to the number of nodes at distance
`− 1 in the BFS trees of the neighbors of s. Let us now consider γ`(s), for ` > 2. Figure 5.1

w1 w2 w3 w1 w2 w3 w1 w2 w3

Levels

0

1

2

3

4

s s s

Figure 5.1. Relation between nodes at distance 4 for s and the neighbors of s. The red nodes represent the
nodes at distance 3 for w1 (left), for w2 (center) and for w3 (right).

shows an example where s has three neighbors w1, w2 and w3. Suppose we want to compute
Γ4(s) using information from w1, w2 and w3. Clearly, Γ4(s) ⊂ Γ3(w1) ∪ Γ3(w2) ∪ Γ3(w3);
however, there are also other nodes in the union that are not in Γ4(s). Furthermore, the
nodes in Γ3(w1) (red nodes in the leftmost tree) are of two types: nodes in Γ4(s) (the ones in
the subtree of w1) and nodes in Γ2(s) (the ones in the subtrees of w2 and w3). An analogous
behavior can be observed for w2 and w3 (central and rightmost trees). If we simply sum all
the nodes in γ3(w1), γ3(w2) and γ3(w3), we would be counting each node at level 2 twice,
i.e., once for each node in Γ1(s) minus one. Hence, for each ` > 2, we can write

γ`(s) =
∑

w∈Γ1(s)

γ`−1(w)− γ`−2(s) · (deg(s)− 1). (5.1)

From this observation, we define a new method to compute the total distance of all nodes,
described in Algorithm 9. Instead of computing the BFS tree of each node one by one, at
each step we compute the number γ`(s) of nodes at level ` for all nodes s. First (Lines 1 - 3),
we compute γ1(s) for each node (and add that to S(s)). Then (Lines 7 - 26), we consider all
the other levels ` one by one. For each `, we use γ`−1(w) of the neighbors w of s and γ`−2(s)
to compute γ`(s) (Line 10 and 13). If, for some `, γ`(s) = 0, all the nodes have been added
to S(s). Therefore, we can stop the algorithm when γ`(s) = 0 ∀s ∈ V .

Proposition 5.2. Algorithm 9 requires O(D ·m) operations to compute the closeness cen-
trality of all nodes in a tree T .

Proof. The for loop in Lines 1 - 3 of Algorithm 9 clearly takes O(n) time. For each level of
the while loop of Lines 7 - 26, each node scans its neighbors in Line 10 or Line 13. In total,
this leads to O(m) operations per level. Since the maximum number of levels that a node
can have is equal to the diameter of the tree, the algorithm requires O(D ·m) operations.

Note that closeness centrality on trees could even be computed in time O(n) in a different
manner [42]. We choose to include Algorithm 9 here nonetheless since it paves the way for
an algorithm computing a lower bound in general undirected graphs, described next.

5.3 - The computeBoundsNB Function 73

Algorithm 9: Closeness centrality in trees.
Input : a tree T = (V,E)
Output: the closeness centralities c(s) of each node s ∈ V

1 foreach s ∈ V do
2 γ`−1(s)← deg(s);
3 S(s)← deg(s);
4 end
5 `← 2;
6 nFinished← 0;
7 while nFinished < n do
8 foreach s ∈ V do
9 if ` = 2 then

10 γ`(s)←
∑
w∈N(s) γ

`−1(w)− deg(s);
11 end
12 else
13 γ`(s)←

∑
w∈N(s) γ

`−1(w)− γ`−2(s)(deg(s)− 1);
14 end
15 end
16 foreach s ∈ V do
17 γ`−2(s)← γ`−1(s);
18 γ`−1(s)← γ`(s);
19 if γ`−1(s) > 0 then
20 S(s)← S(s) + ` · γ`−1(s);
21 end
22 else
23 nFinished← nFinished + 1;
24 end
25 end
26 `← `+ 1;
27 end
28 foreach s ∈ V do
29 c(v)← (n− 1)/S(v);
30 end
31 return c

Lower bound for undirected graphs. For general undirected graphs, Eq. (5.1) is not
true anymore – but a related upper bound γ̃`(·) on γ`(·) is still useful. Let γ̃`(s) be defined
recursively as in Equation (5.1): in a tree, γ̃`(s) = γ`(s), while in this case we prove that γ̃`(s)
is an upper bound on γ`(s). Indeed, there could be nodes v for which there are multiple paths
between s and v and that are therefore contained in the subtrees of more than one neighbor of
s. This means that we would count v multiple times when considering γ̃`(s), overestimating
the number of nodes at distance `. However, we know for sure that at level ` there cannot be
more nodes than in Equation (5.1). If, for each node s, we assume that the number γ̃`(s) of
nodes at distance ` is that of Equation (5.1), we can apply Proposition 5.1 and get a lower
bound SNB(s, r(s)) on the total sum for undirected graphs. The procedure is described in
Algorithm 10. The computation of SNB(S, r(v)) works basically like Algorithm 9, with the
difference that here we keep track of the number of the nodes found in all the levels up to `
(nVisited) and stop the computation when nVisited becomes equal to r(s) (if it becomes larger,
in the last level we consider only r(s)− nVisited nodes, as in Proposition 5.1 (Lines 26 - 29).

Proposition 5.3. For an undirected graph G, computing the lower bound SNB(v, r(v)) de-
scribed in Algorithm 10 takes O(D ·m) time.

Proof. Like in Algorithm 9, the number of operations performed by Algorithm 10 at each
level of the while loop is O(m). At each level i, all the nodes at distance i are accounted for
(possibly multiple times) in Lines 12 and 15. Therefore, at each level, the variable nVisited
is always greater than or equal to the the number of nodes v at distance dist(v) ≤ i. Since
dist(v) ≤ D for all nodes v, the maximum number of levels scanned in the while loop cannot
be larger than D, therefore the total complexity is O(D ·m).

74 5 - Computing Closeness Centrality: the BCM Algorithm

Algorithm 10: Neighborhood-based lower bound for undirected graphs.
Input : A graph G = (V,E)
Output: Lower bounds LNB(v, r(v)) of each node v ∈ V

1 foreach s ∈ V do
2 γk−1(s)← deg(s);
3 S̃(un)(s)← deg(s);
4 nVisited[s]← deg(s) + 1;
5 finished[s]← false;
6 end
7 k ← 2;
8 nFinished← 0;
9 while nFinished < n do

10 foreach s ∈ V do
11 if k = 2 then
12 γk(s)←

∑
w∈N(s) γ

k−1(w)− deg(s);
13 end
14 else
15 γk(s)←

∑
w∈N(s) γ

k−1(w)− γk−2(s)(deg(s)− 1);
16 end
17 end
18 foreach s ∈ V do
19 if finished[v] then continue;;
20 γk−2(s)← γk−1(s);
21 γk−1(s)← γk(s);
22 nVisited[s]← nVisited[s] + γk−1(s);
23 if nVisited[s] < r(v) then
24 S̃(un)(s)← S̃(un)(s) + k · γk−1(s);
25 end
26 else
27 S̃(un)(s)← S̃(un)(s) + k(r(v)− (nVisited[s]− γk−1(s)));
28 nFinished← nFinished + 1;
29 finished[s]← true;
30 end
31 end
32 k ← k + 1;
33 end
34 foreach v ∈ v do

35 LNB(v, r(v))← (n−1)S̃(un)

(r(v)−1)2
;

36 end
37 return LNB(·, r(·))

Lower bound on directed graphs. In directed graphs, we can simply consider the out-
neighbors, without subtracting the number of nodes discovered in the subtrees of the other
neighbors in Equation (5.1). The lower bound (which we still refer to as SNB(v, r(v))) is
obtained by replacing Equation (5.1) with the following in Lines 12 and 15 of Algorithm 10:

γ̃`(s) =
∑

w∈Γ1(s)

γ̃`−1(w) (5.2)

5.4 The updateBoundsBFSCut Function

The updateBoundsBFSCut function is based on a simple idea: if the k-th biggest farness found
until now is x, and if we are performing a BFS from node s to compute its farness f(s), we
can stop as soon as we can guarantee that f(s) ≥ x.

5.4 - The updateBoundsBFSCut Function 75

Informally, assume that we have already visited all nodes up to distance `: we can lower
bound S(s) =

∑
v∈V dist(s, v) by setting distance ` + 1 to a number of nodes equal to the

number of edges “leaving” level `, and distance ` + 2 to all the remaining reachable nodes.
Then, this bound yields a lower bound on the farness of s. As soon as this lower bound is
bigger than x, the updateBoundsBFSCut function may stop; if this condition never occurs, at
the end of the BFS we have exactly computed the farness of s.

More formally, the following lemma defines a lower bound SCUT
` (s, r(s)) on S(s), which

is computable after we have performed a BFS from s up to level `, assuming we know the
number r(s) of nodes reachable from s (this assumption is lifted in Section 5.6).

Lemma 5.4. Given a graph G = (V,E), a node s ∈ V , and an integer ` ≥ 0, let N `(s) be
the set of nodes at distance at most ` from s, n`(s) = |N `(s)|, and let γ̃`+1(v) be an upper
bound on the number of nodes at distance `+ 1 from s. Then,

S(s) ≥ SCUT
` (s, r(s)) :=

∑
v∈N`(s)

dist(s, v)− γ̃`+1(s) + (`+ 2)(r(s)− n`(s)).

Proof. The sum of all the distances from s is lower bounded by setting the correct distance
to all nodes at distance at most ` from s, by setting distance ` + 1 to all nodes at distance
` + 1 (there are γ`+1(s) such nodes), and by setting distance ` + 2 to all other nodes (there
are r(s)− n`+1(s) such nodes). In formula,

S(s) ≥
∑

v∈N`(s)

dist(s, v) + (`+ 1)γ`+1(s) + (`+ 2)(r(s)− n`+1(s)).

Since n`+1(s) = γ`+1(s) + n`(s), we obtain that S(s) ≥
∑
v∈N`(s) dist(s, v) − γ`+1(s) +

(` + 2)(r(s) − n`(s)). We conclude because, by assumption, γ̃`+1(s) is an upper bound on
γ`+1(s).

Corollary 5.5. For each node s and for each ` ≥ 0,

f(s) ≥ LCUT
` (s, r(s)) :=

(n− 1)SCUT
` (s, r(s))

(r(s)− 1)2
.

It remains to define the upper bound γ̃`+1(s): in the directed case, this bound is simply
the sum of the out-degrees of nodes at distance ` from s. In the undirected case, since at
least an edge from each node v ∈ Γ`(s) is directed towards Γ`−1(s), we may define γ̃`+1(s) =∑
v∈Γ`(s) deg(v)− 1 (the only exception is ` = 0: in this case, γ̃1(s) = γ1(s) = deg(s)).

Remark 5.6. When we are processing nodes at level `, if we process an edge (v, w) where w
is already in the BFS tree, we can decrease γ̃`+1(s) by one, obtaining a better bound.

Assuming we know r(s), all quantities necessary to compute LCUT
` (s, r(s)) are available

as soon as all nodes inN `(s) are visited by a BFS. Hence, the updateBoundsBFSCut function
performs a BFS starting from s, continuously updating the upper bound LCUT

` (s, r(s)) ≤ f(s)

(the update is done whenever all nodes in Γ`(s) have been reached, or Remark 5.6 can be
used). As soon as LCUT

` (s, r(s)) ≥ x, we know that f(s) ≥ LCUT
` (s, r(s)) ≥ x, and we return

+∞.
Algorithm 11 is the pseudo-code of the function updateBoundsBFSCut when implemented

for directed graphs, assuming we know the number r(v) of nodes reachable from each v (for
example, if the graph is strongly connected). This code can be easily adapted to all the other
cases.

76 5 - Computing Closeness Centrality: the BCM Algorithm

Algorithm 11: The updateBoundsBFSCut(s, x) function in the case of directed graphs,
if r(s) is known for each s.
1 x← Farn(Top[k]); // Farn and Top are global variables, as in Algorithm 8.
2 Create queue Q;
3 Q.enqueue(s);
4 Mark s as visited;
5 `← 0; S ← 0; γ̃ ← outdeg(s); n`← 1;
6 while Q is not empty do
7 v ← Q.dequeue();
8 if dist(s, v) > ` then
9 `← `+ 1;

10 LCUT
` (s, r(s))← (n−1)(S−γ̃+(`+2)(r(s)−n`))

(r(s)−1)2 ;
11 if LCUT

` (s, r(s)) > x then return +∞;
12 γ̃ ← 0

13 end
14 for w in adjacency list of v do
15 if w is not visited then
16 S ← S + dist(s, w);
17 γ̃ ← γ̃ + outdeg(w);
18 n`← n`+ 1;
19 Q.enqueue(w);
20 Mark w as visited
21 end
22 else
23 // we use Remark 5.6
24 LCUT

` (s, r(s))← LCUT
` (s, r(s)) + (n−1)

(r(s)−1)2 ;
25 if LCUT

` (s, r(s)) > x then return +∞;
26 end
27 end
28 end
29 return S(n−1)

(r(s)−1)2 ;

5.5 The updateBoundsLB Function

Differently from updateBoundsBFSCut function, updateBoundsLB computes a complete BFS
traversal, but uses information acquired during the traversal to update the lower bounds.
Let us first consider an undirected graph G and let s be the source node from which we
are computing the BFS. We can see the distances dist(s, v) between s and all the nodes v
reachable from s as levels: node v is at level ` if and only if the distance between s and v is
`, and we write v ∈ Γ`(s). Let i and j be two levels, i ≤ j. Then, the distance between any
two nodes v at level i and w at level j must be at least j− i. Indeed, if dist(v, w) was smaller
than j− i, w would be at level i+dist(v, w) < j, which contradicts our assumption. It follows
directly that

∑
w∈V |dist(s, w)− dist(s, v)| is a lower bound on S(v), for all v ∈ R(s):

Lemma 5.7.
∑
w∈R(s) |dist(s, w)− dist(s, v)| ≤ S(v) ∀v ∈ R(s).

To improve the approximation, we notice that the number of nodes at distance 1 from v is
exactly the degree of v. Therefore, all the other nodes w such that |dist(s, v)−dist(s, w)| ≤ 1
must be at least at distance 2 (with the only exception of v itself, whose distance is of course
0). This way we can define the following lower bound on S(v):

5.5 - The updateBoundsLB Function 77

Algorithm 12: The updateBoundsLB function for undirected graphs.
Input : A graph G = (V,E), a source node s
Output: Lower bounds LLB

s (v, r(v)) of each node v ∈ R(s)
1 d← BFSfrom(s);
2 D← maxv∈V dist(s, v);
3 sumΓ≤0 ← 0; sumΓ≤−1 ← 0; sumΓ>D+1 ← 0;
4 for i = 1, 2, ...,D do
5 Γi(s)← {w ∈ V : dist(s, w) = i};
6 γi(s)← γi(s);
7 sumΓ≤i ← sumΓ≤i−1 + γi(s);
8 sumΓ>i ← |V | − sumΓ≤i;
9 end

10 L(1)← γ1(s) + γ2(s) + sumΓ>2 − 2;
11 for i = 2, ...,D do
12 L(i)← L(i− 1) + sumΓ≤i−3 − sumΓ>i+1;
13 end
14 for i = 1, ...,D do
15 foreach v ∈ Γi(s) do
16 LLB

s (v, r(v))← (L(i)− deg(v)) · (n−1)

(r(v)−1)2
;

17 end
18 end
19 return LLB

s (v, r(v)) ∀v ∈ V

2(|{w ∈ R(s) : |dist(s, w)− dist(s, v)| ≤ 1}| − deg(v)− 1)

+ deg(v) +
∑

w∈R(s)
| dist(s,w)−dist(s,v)|>1

|dist(s, w)− dist(s, v)|,

that is:

2 ·
∑

|j−dist(s,v)|≤1

γj(s) +
∑

|j−dist(s,v)|>1

γj(s) · |j − dist(s, v)| − deg(v)− 2, (5.3)

Multiplying the bound of Equation (5.3) by (n−1)
(r(v)−1)2 , we obtain a lower bound on the farness

f(v) of node v, named LLB
s (v, r(v)). A straightforward way to compute LLB

s (v, r(v)) would
be to first run the BFS from s and then, for each node v, to consider the level difference
between v and all the other nodes. This would require O(n2) operations, which is clearly too
expensive. However, we can notice two things: First, the bounds of two nodes at the same
level differ only by their degree. Therefore, for each level i, we can compute 2·

∑
|j−i|≤1 γ

j(v)+∑
|j−i|>1 γ

j(v) · |j − i| − 2 only once and then subtract deg(v) for each node at level i. We
call the quantity 2 ·

∑
|j−i|≤1 γ

j(s) +
∑
|j−i|>1 γ

j(s) · |j − i| − 2 the level-bound L(i) of level
i. Second, we can prove that L(i) can actually be written as a function of L(i− 1).

Lemma 5.8. Let L(i) := 2 ·
∑
|j−i|≤1 γ

j(s) +
∑
|j−i|>1 γ

j(s) · |j − i| − 2. Also, let γj(s) = 0

for j ≤ 0 and j > D, where D is the diameter of the graph. Then L(i) − L(i − 1) =∑
j<i−2 γ

j(s)−
∑
j>i+1 γ

j(s), ∀i ∈ {1, ..., D}.

Proof. Since γj(s) = 0 for j ≤ 0 and j > D, we can write L(i) as 2 · (γi−1(s) + γi(s) +
γi+1(s)) +

∑
|j−i|>1 γ

j(s) · |j − i| − 2, ∀i ∈ {1, ..., D}. The difference between L(i) and
L(i− 1) is: 2 · (γi−1(s) + γi(s) + γi+1(s)) +

∑
|j−i|>1 |j − i| · γj(s)− 2 · (γi−2(s) + γi−1(s) +

γi(s)) +
∑
|j−i+1|>1 |j − i + 1| · γj(s) = 2 · (γi+1(s) − γi−2(s)) + 2 · γi−2(s) − 2 · γi+1(s) +∑

j<i−2∪j>i+1(|j − i| − |j − i+ 1|) · γj(s) =
∑
j<i−2 γ

j(s)−
∑
j>i+1 γ

j(s).

Algorithm 12 describes the computation of LLB
s (v, r(v)). First, we compute all the dis-

tances between s and the nodes in R(s) with a BFS, storing the number of nodes in each

78 5 - Computing Closeness Centrality: the BCM Algorithm

level and the number of nodes in levels j ≤ i and j > i respectively (Lines 1 - 9). Then
we compute the level bound L(1) of level 1 according to its definition (Line 10) and those
of the other level according to Lemma 5.8 (Line 12). The lower bound LLB

s (v, r(v)) is then
computed for each node v by subtracting its degree to L(dist(s, v)) and normalizing (Line 16).
The complexity of Lines 1 - 9 is that of running a BFS, i.e., O(n + m). Line 12 is repeated
once for each level (which cannot be more than n) and Line 16 is repeated once for each node
in R(s). Therefore, the following proposition holds.

Proposition 5.9. Computing the lower bound LLB
s (v, r(v)) takes O(n+m) time.

For directed strongly-connected graphs, the result does not hold for nodes w whose level
is smaller than the level of v, since there might be a directed edge or a shortcut from v
to w. Yet, for nodes w such that dist(s, w) > dist(s, v), it is still true that dist(v, w) ≥
dist(s, w)− dist(s, v). For the remaining nodes (apart from the outgoing neighbors of v), we
can only say that the distance must be at least 2. The upper bound LLB

s (v, r(v)) for directed
graphs can therefore be defined as:

2 · |{w ∈ R(s) : dist(s, w)− dist(s, v) ≤ 1}|

+
∑

w∈R(s)
dist(s,w)−dist(s,v)>1

(dist(s, w)− dist(s, v))− deg(v)− 2. (5.4)

The computation of LLB
s (v, r(v)) for directed strongly-connected graphs is analogous to

the one described in Algorithm 12.

5.6 The Directed Disconnected Case

In the directed disconnected case, even if the time complexity of computing strongly connected
components is linear in the input size, the time complexity of computing the number of
reachable nodes is much larger (assuming the Strong Exponential Time Hypothesis, or the
Orthogonal Vector conjecture, we cannot solve this problem in O(n2−ε) on sparse graphs, as
we have shown in Chapter 3 and in [31]). For this reason, when computing our upper bounds,
we cannot rely on the exact value of r(s): for now, let us assume that we know a lower bound
α(s) ≤ r(s) and an upper bound ω(s) ≥ r(s). The definition of these bounds is postponed to
Section 5.6.4.

Furthermore, let us assume that we have a lower bound L(s, r(s)) on the farness of s,
depending on the number r(s) of nodes reachable from s: in order to obtain a bound not
depending on r(s), the simplest approach is f(s) ≥ L(s, r(s)) ≥ minα(s)≤r≤ω(s) L(s, r). How-
ever, during the algorithm, computing the minimum among all these values might be quite
expensive, if ω(s)−α(s) is large. In order to solve this issue, we find a small setR ⊆ [α(s), ω(s)]
such that minα(s)≤r≤ω(s) L(s, r) = minr∈R L(s, r).

More specifically, we find a condition that is satisfied by “many” values of r, and that
implies L(s, r) ≥ min

(
L(s, r − 1), L(s, r + 1)

)
: this way, we may define R as the set of values

of r that either do not satisfy this condition, or that are extremal points of the interval
[α(v), ω(v)] (indeed, all other values cannot be minima of L(s, r)). Since all our bounds
are of the form L(s, r) = (n−1)S(s,r)

(r−1)2 , where S(s, r) is a lower bound on
∑
v∈R(s) dist(s, v),

we state our condition in terms of the function S(s, r). For instance, in the case of the
updateBoundsBFSCut function, SCUT

` (s, r) =
∑
v∈Nd(s) dist(s, v)−γ̃`+1(s)+(`+2)(r−n`(s)),

as in Lemma 5.4.

Lemma 5.10. Let s be a node, and let S(s, r) be a positive function such that S(s, r(s))) ≤∑
v∈R(s) dist(s, v) (where r(s) is the number of nodes reachable from s). Assume that S(s, r+

1)− S(s, r) ≤ S(s, r)− S(s, r − 1). Then, if L(s, r) := (n−1)S(s,r)
(r−1)2 is the corresponding bound

on the farness of s, min
(
L(s, r + 1), L(s, r − 1)

)
≤ L(s, r).

5.6 - The Directed Disconnected Case (∗) 79

Proof. Let us define d = S(s, r + 1) − S(s, r). Then, L(s, r + 1) ≤ L(s, r) if and only if
(n−1)S(s,r+1)

r2 ≤ (n−1)S(s,r)
(r−1)2 if and only if S(s,r)+d

r2 ≤ S(s,r)
(r−1)2 if and only if (r−1)2(S(s, r)+d) ≤

r2S(s, r) if and only if S(s, r)(r2−(r−1)2) ≥ (r−1)2d if and only if S(s, r)(2r−1) ≥ (r−1)2d.
Similarly, if d′ = S(s, r) − S(s, r − 1), L(s, r − 1) ≤ L(s, r) if and only if (n−1)S(s,r−1)

(r−2)2 ≤
(n−1)S(s,r)

(r−1)2 if and only if S(s,r)−d′
(r−2)2 ≤ S(s,r)

(r−1)2 if and only if (r−1)2(S(s, r)−d′) ≤ (r−2)2S(s, r)

if and only if S(s, r)((r− 1)2− (r− 2)2) ≤ (r− 1)2d′ if and only if S(s, r)(2r− 3) ≤ (r− 1)2d′

if and only if S(s, r)(2r − 1) ≤ (r − 1)2d′ + 2S(s, r).
We conclude that, assuming d ≤ d′, (r− 1)2d ≤ (r− 1)2d′ ≤ (r− 1)2d+ 2S(s, r), and one

of the two previous conditions is always satisfied.

5.6.1 The computeBoundsNB Function

In the neighborhood-based lower bound, we computed upper bounds γ̃`(s) on Γ`(s), and we
defined the lower bound SNB(s, r(s)) ≤

∑
v∈R(s) dist(s, v), by

SNB(s, r(s)) :=

D∑
`=1

` ·min

γ̃`(s), r(s)−
`−1∑
i=0

γ̃i(s), 0

 .

The corresponding bound on f(v) is LNB(s, r(s)) := (n−1)SNB(s,r(s))
(r(s)−1)2 : let us apply

Lemma 5.10 with S(s, r) = SNB(s, r) and L(s, r) = LNB(s, r). We obtain that the lo-
cal minima of LNB(s, r(s)) are obtained on values r such that SNB(s, r + 1) − SNB(s, r) >

SNB(s, r) − SNB(s, r − 1), that is, when r =
∑`
i=0 γ̃

i(s) for some `. Hence, our final bound
LNB(s) becomes:

min

LNB(s, α(s)), LNB(s, ω(s)),min

LNB(s, r) : α(s) < r < ω(s), r =

∑̀
i=0

γ̃i(s)

 . (5.5)

This bound can be computed with no overhead, by modifying Lines 23 - 29 in Algorithm 10.
Indeed, when r(s) is known, we have two cases: either nVisited[s] < r(s), and we continue,
or nVisited[s] ≥ r(s), and SNB(v, r(s)) is computed. In the disconnected case, we need to
distinguish three cases:

• if nVisited[s] < α(s), we simply continue the computation;

• if α(s) ≤ nVisited[s] < ω(s), we compute LNB(s, nVisited[s]), and we update the
minimum in Equation (5.5) (if this is the first occurrence of this situation, we also have
to compute LNB(s, α(s)));

• if nVisited[s] ≥ ω(s), we compute LNB(s, ω(s)), and we update the minimum in
Equation (5.5).

Since this procedure needs time O(1), it has no impact on the running time of the com-
putation of the neighborhood-based lower bound.

5.6.2 The updateBoundsBFSCut Function
Let us apply Lemma 5.10 to the bound used in the updateBoundsBFSCut function. In this
case, by Lemma 5.4, SCUT

` (s, r) =
∑
v∈N`(s) dist(s, v) − γ̃`+1(v) + (` + 2)(r − n`(s)), and

80 5 - Computing Closeness Centrality: the BCM Algorithm

SCUT
` (s, r + 1) − SCUT

` (s, r) = d + 2, which does not depend on r. Hence, the condition
in Lemma 5.10 is always satisfied, and the only values we have to analyze are α(s) and
ω(s). Then, the lower bound becomes f(s) ≥ LCUT

` (s, r(s)) ≥ minα(s)≤r≤ω(s) L
CUT
` (s, r) =

min(LCUT
` (s, α(s)), LCUT

` (s, ω(s))) (which does not depend on r(s)).
This means that, in order to adapt the updateBoundsBFSCut function (Algorithm 11), it

is enough to replace Lines 10, 24 in order to compute both LCUT
` (s, α(s)) and LCUT

` (s, ω(s))),
and to replace Lines 11, 25 in order to stop if min(LCUT

` (s, α(s)), LCUT
` (s, ω(s))) ≥ x.

5.6.3 The updateBoundsLB Function
In this case, we do not apply Lemma 5.10 to obtain simpler bounds. Indeed, the
updateBoundsLB function improves the bounds of nodes that are quite close to the source of
the BFS, and hence are likely to be in the same component as this node. Consequently, if we
perform a BFS from a node s, we can simply compute LLB

s (v, r(v)) for all nodes in the same
strongly connected component as s, and for these nodes we know the value r(v) = r(s). The
computation of better bounds for other nodes is left as an open problem.

5.6.4 Computing α(s) and ω(s)

The computation of α(s) and ω(s) can be done during the preprocessing phase of our algo-
rithm, in linear time. To this purpose, let us consider the strong component graph G = (V, E)
of G (see Chapter 2). Furthermore, let us define the weight w(C) of a SCC C as the number
of nodes in C. Note that the weighted graph G is computable in linear time.

For each node v ∈ C, r(v) =
∑
D∈R(C) w(D), where R(C) denotes the set of SCCs that

are reachable from C in G. This means that we simply need to compute a lower (respectively,
upper) bound αSCC(C) (respectively, ωSCC(C)) on

∑
D∈R(C) w(D), for every SCC C. To

this aim, we first compute a topological sort {C1, . . . , Cl} of V (that is, if (Ci, Cj) ∈ E , then
i < j). Successively, we use a dynamic programming approach, and, by starting from Cl, we
process the SCCs in reverse topological order, and we set:

αSCC(C) = w(C) + max
(C,D)∈E

αSCC(D)

ωSCC(C) = w(C) +
∑

(C,D)∈E

ωSCC(D).

Note that processing the SCCs in reverse topological ordering ensures that the values
α(D) and ω(D) on the right hand side of these equalities are available when we process the
SCC C. Clearly, the complexity of computing α(C) and ω(C), for each SCC C, is linear in
the size of G, which in turn is smaller than G.

Observe that the bounds obtained through this simple approach can be improved by using
some “tricks”. First of all, when the biggest SCC C̃ is processed, we do not use the dynamic
programming approach and we exactly compute

∑
D∈R(C̃) w(D) by performing a BFS starting

from any node in C̃. This way, not only α(C̃) and ω(C̃) are exact, but also αSCC(C) and
ωSCC(C) are improved for each SCC C from which it is possible to reach C̃. Finally, in order
to compute the upper bounds for the SCCs that are able to reach C̃, we can run the dynamic
programming algorithm on the graph obtained from G by removing all components reachable
from C̃, and we can then add

∑
D∈R(C̃) w(D).

The pseudo-code is available in Algorithm 13.

5.7 Experimental Results

In this section, we test the four variations of our algorithm on several real-world net-
works, in order to evaluate their performances. All the networks used in our experi-
ments come from the datasets SNAP (snap.stanford.edu/), NEXUS (nexus.igraph.org),

snap.stanford.edu/
nexus.igraph.org

5.7 - Experimental Results 81

Algorithm 13: Estimating the number of reachable nodes in directed, disconnected
graphs.

Input : A graph G = (V,E)
Output: Lower and upper bounds α(v), ω(v) on the number of nodes reachable from v

1 (V, E, w)← computeSCCGraph(G);
2 C̃ ← the biggest SCC;
3 αSCC(C̃), ωSCC(C̃)← the number of nodes reachable from C̃;
4 for X ∈ V in reverse topological order do
5 if X == C̃ then continue;
6 αSCC(X), ωSCC(X), ω′SCC(X)← 0 for Y neighbor of X in G do
7 αSCC(X)← max(αSCC(X), αSCC(Y));
8 ωSCC(X)← ωSCC(X) + ωSCC(Y);
9 if W not reachable from C̃ then ω′SCC(X)← ω′SCC(X) + ωSCC(Y);

10 end
11 if X reaches C̃ then ωSCC(X)← ω′SCC(X) + ωSCC(C̃);
12 αSCC(X)← αSCC(X) + w(X);
13 ωSCC(X)← ωSCC(X) + w(X);
14 end
15 for v ∈ V do
16 α(v) = αSCC(the component of v);
17 ω(v) = ωSCC(the component of v);
18 end
19 return α, ω

LASAGNE (piluc.dsi.unifi.it/lasagne), LAW (law.di.unimi.it), KONECT (http:
//konect.uni-koblenz.de/networks/, and IMDB (www.imdb.com). The platform for our
tests is a shared-memory server with 256 GB RAM and 2x8 Intel(R) Xeon(R) E5-2680 cores
(32 threads due to hyperthreading) at 2.7 GHz. The algorithms are implemented in C++,
and they are available in the open-source NetworKit framework [151] (other implementations
are available in WebGraph [23] and Sagemath [152]).

5.7.1 Comparison with the State of the Art

In order to compare the performance of our algorithm with state of the art approaches,
we select 19 directed complex networks, 17 undirected complex networks, 6 directed road
networks, and 6 undirected road networks (the undirected versions of the previous ones). The
number of nodes of most of these networks ranges between 5 000 and 100 000. We test four
different variations of our algorithm, that provide different implementations of the functions
computeBounds and updateBounds (for more information, we refer to Section 5.2):

DegCut uses the conservative strategies computeBoundsDeg and updateBoundsBFSCut;

DegBound uses the conservative strategy computeBoundsDeg and the aggressive strategy
updateBoundsLB;

NBCut uses the aggressive strategy computeBoundsNB and the conservative strategy
updateBoundsBFSCut;

NBBound uses the aggressive strategies computeBoundsNB and updateBoundsLB.

We compare these algorithms with our implementations of the best existing algorithms
for top-k closeness centrality.1 The first one [129] is based on a pruning technique and on
∆-BFS, a method to reuse information collected during a BFS from a node to speed up a
BFS from one of its in-neighbors; we denote this algorithm as Olh. The second one, Ocl,
provides top-k closeness centralities with high probability [128]. It performs some BFSes from

1The source code of our competitors is not available.

piluc.dsi.unifi.it/lasagne
law.di.unimi.it
http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/
www.imdb.com

82 5 - Computing Closeness Centrality: the BCM Algorithm

Table 5.1. Complex networks: geometric mean and standard deviation of the improvement factors of the
algorithm in [129] (Olh), the algorithm in [128] (Ocl), and the four variations of the new algorithm (DegCut,
DegBound, NBCut, NBBound).

Directed Undirected Both
k Algorithm GMean GStdDev GMean GStdDev GMean GStdDev
1 Olh 21.24 5.68 11.11 2.91 15.64 4.46

Ocl 1.71 1.54 2.71 1.50 2.12 1.61
DegCut 104.20 6.36 171.77 6.17 131.94 6.38
DegBound 3.61 3.50 5.83 8.09 4.53 5.57
NBCut 123.46 7.94 257.81 8.54 174.79 8.49
NBBound 17.95 10.73 56.16 9.39 30.76 10.81

10 Olh 21.06 5.65 11.11 2.90 15.57 4.44
Ocl 1.31 1.31 1.47 1.11 1.38 1.24
DegCut 56.47 5.10 60.25 4.88 58.22 5.00
DegBound 2.87 3.45 2.04 1.45 2.44 2.59
NBCut 58.81 5.65 62.93 5.01 60.72 5.34
NBBound 9.28 6.29 10.95 3.76 10.03 5.05

100 Olh 20.94 5.63 11.11 2.90 15.52 4.43
Ocl 1.30 1.31 1.46 1.11 1.37 1.24
DegCut 22.88 4.70 15.13 3.74 18.82 4.30
DegBound 2.56 3.44 1.67 1.36 2.09 2.57
NBCut 23.93 4.83 15.98 3.89 19.78 4.44
NBBound 4.87 4.01 4.18 2.46 4.53 3.28

a random sample of nodes to estimate the closeness centrality of all the other nodes, then it
computes the exact centrality of all the nodes whose estimate is big enough. Note that this
algorithm requires the input graph to be (strongly) connected: for this reason, differently
from the other algorithms, we have run this algorithm on the largest (strongly) connected
component of the input graph. Furthermore, this algorithm offers different tradeoffs between
the time needed by the sampling phase and the second phase: in our tests, we try all possible
tradeoffs, and we choose the best alternative in each input graph (hence, our results are upper
bounds on the real performance of the Ocl algorithm).

In order to perform a fair comparison, we consider the improvement factor, which is
defined as mn

mvis
in directed graphs, 2mn

mvis
in undirected graphs, where mvis is the number of

arcs visited during the algorithm, and mn (resp., 2mn) is an estimate of the number of
arcs visited by the textbook algorithm in directed (resp., undirected) graphs (this estimate is
correct whenever the graph is connected). Note that the improvement factor does not depend
on the implementation, nor on the machine used for the algorithm, and it does not consider
parts of the code that need subquadratic time in the worst-case. These parts are negligible
in our algorithm, because their worst-case running time is O(n log n) or O(mD) where D is
the diameter of the graph, but they can be significant when considering the competitors. For
instance, in the particular case of Olh, we have just counted the arcs visited in BFS and
∆-BFS, ignoring all the operations done in the pruning phases (see [129]).

We consider the geometric mean of the improvement factors over all graphs in the dataset.
In our opinion, this quantity is more informative than the arithmetic mean, which is highly
influenced by the maximum value: for instance, in a dataset of 20 networks, if all improvement
factors are 1 apart from one, which is 10 000, the arithmetic mean is more than 500, which
makes little sense, while the geometric mean is about 1.58. Our choice is further confirmed
by the geometric standard deviation, which is always quite small.

The results are summarized in Table 5.1 for complex networks and Table 5.2 for street
networks. For the improvement factors of all graphs, we refer to Section 5.7.3.

On complex networks, the best algorithm is NBCut: when k = 1, the improvement
factors are always bigger than 100, up to 258, when k = 10 they are close to 60, and when
k = 100 they are close to 20. Another good option is DegCut, which achieves results
similar to NBCut, but it has almost no overhead at the beginning (while NBCut needs a
preprocessing phase with cost O(mD)). Furthermore, DegCut is very easy to implement,
becoming a very good candidate for state-of-the-art graph libraries. The improvement factors
of the competitors are smaller: Olh has improvement factors between 10 and 20, and Ocl
provides almost no improvement with respect to the textbook algorithm.

5.7 - Experimental Results 83

Table 5.2. Street networks: geometric mean and standard deviation of the improvement factors of the algo-
rithm in [129] (Olh), the algorithm in [128] (Ocl), and the four variations of the new algorithm (DegCut,
DegBound, NBCut, NBBound).

Directed Undirected Both
k Algorithm GMean GStdDev GMean GStdDev GMean GStdDev
1 Olh 4.11 1.83 4.36 2.18 4.23 2.01

Ocl 3.39 1.28 3.23 1.28 3.31 1.28
DegCut 4.14 2.07 4.06 2.06 4.10 2.07
DegBound 187.10 1.65 272.22 1.67 225.69 1.72
NBCut 4.12 2.07 4.00 2.07 4.06 2.07
NBBound 250.66 1.71 382.47 1.63 309.63 1.74

10 Olh 4.04 1.83 4.28 2.18 4.16 2.01
Ocl 2.93 1.24 2.81 1.24 2.87 1.24
DegCut 4.09 2.07 4.01 2.06 4.05 2.07
DegBound 172.06 1.65 245.96 1.68 205.72 1.72
NBCut 4.08 2.07 3.96 2.07 4.02 2.07
NBBound 225.26 1.71 336.47 1.68 275.31 1.76

100 Olh 4.03 1.82 4.27 2.18 4.15 2.01
Ocl 2.90 1.24 2.79 1.24 2.85 1.24
DegCut 3.91 2.07 3.84 2.07 3.87 2.07
DegBound 123.91 1.56 164.65 1.67 142.84 1.65
NBCut 3.92 2.08 3.80 2.09 3.86 2.08
NBBound 149.02 1.59 201.42 1.69 173.25 1.67

We also test our algorithm on the three complex unweighted networks analyzed in [129],
respectively called web-Google (Web in [129]), wiki-Talk (Wiki in [129]), and com-dblp (DBLP
in [129]). In the com-dblp graph (resp. web-Google), our algorithm NBCut computed the
top-10 nodes in about 17 seconds (resp., less than 2 minutes) on the whole graph, having
1 305 444 nodes (resp., 875 713), while Olh needed about 25 minutes (resp. 4 hours) on a
subgraph of 400 000 nodes. In the graph wiki-Talk, NBCut needed 8 seconds for the whole
graph having 2 394 385 nodes, instead of about 15 minutes on a subgraph with 1 million nodes.
These results are available in Table 5.7 in Section 5.7.3.

On street networks, the best option is NBBound: for k = 1, the average improvement is
about 250 in the directed case and about 382 in the undirected case, and it always remains
bigger than 150, even for k = 100. It is worth noting that also the performance of DegBound
are quite good, being at least 70% of NBBound. Even in this case, the DegBound algorithm
offers some advantages: it is very easy to be implemented, and there is no overhead in the first
part of the computation. All the competitors perform relatively poorly on street networks,
since their improvement is always smaller than 5.

Overall, we conclude that the preprocessing function computeBoundsNB always leads to
better results (in terms of visited edges) than computeBoundsDeg, but the difference is quite
small: hence, in some cases, computeBoundsDeg could be even preferred, because of its sim-
plicity. Conversely, the performance of updateBoundsBFSCut is very different from the per-
formance of updateBoundsLB: the former works much better on complex networks, while the
latter works much better on street networks. Currently, these two approaches exclude each
other: an open problem left by this work is the design of a “combination” of the two, that
works both in complex networks and in street networks. Finally, the experiments show that
the best variation of our algorithm outperforms all competitors in all frameworks considered:
both in complex and in street networks, both in directed and undirected graphs.

5.7.2 Real-World Large Networks

In this section, we run our algorithm on bigger inputs, by considering a dataset containing
23 directed networks, 15 undirected networks, and 5 road networks, with up to 3 774 768
nodes and 117 185 083 edges. On this dataset, we run the fastest variant of our algorithm
(DegBound in complex networks, NBBound in street networks), using 64 threads (however,
the server used only runs 16 threads, or 32 with hyperthreading).

Once again, we consider the improvement factor, which is defined as mn
mvis

in directed
graphs, 2mn

mvis
in undirected graphs. It is worth observing that we are able to compute for

the first time the k most central nodes of networks with millions of nodes and hundreds of

84 5 - Computing Closeness Centrality: the BCM Algorithm

Table 5.3. Large networks: geometric mean and standard deviation of the improvement factors of the best
variation of the new algorithm (DegBound in complex networks, NBBound in street networks).

Directed Undirected Both
Input k GMean GStdDev GMean GStdDev GMean GStdDev

1 742.42 2.60 1681.93 2.88 1117.46 2.97
Street 10 724.72 2.67 1673.41 2.92 1101.25 3.03

100 686.32 2.76 1566.72 3.04 1036.95 3.13
1 247.65 11.92 551.51 10.68 339.70 11.78

Complex 10 117.45 9.72 115.30 4.87 116.59 7.62
100 59.96 8.13 49.01 2.93 55.37 5.86

millions of arcs, with k = 1, k = 10, and k = 100. The detailed results are shown in Table 5.7
in Section 5.7.3, where for each network we report the running time and the improvement
factor. A summary of these results is available in Table 5.3, which contains the geometric
means of the improvement factors, with the corresponding standard deviations.

For k = 1, the geometric mean of the improvement factors is always above 200 in complex
networks, and above 700 in street networks. In undirected graphs, the improvement factors
are even bigger: close to 500 in complex networks and close to 1 600 in street networks. For
bigger values of k, the performance does not decrease significantly: on complex networks, the
improvement factors are bigger than or very close to 50, even for k = 100. In street networks,
the performance loss is even smaller, always below 10% for k = 100.

Regarding the robustness, we outline that the algorithm always achieves performance
improvements bigger than

√
n in street networks, and that in complex networks, with k = 1,

64% of the networks have improvement factors above 100, and 33% of the networks above
1 000. In some cases, the improvement factor is even bigger: in the com-Orkut network, our
algorithm for k = 1 is almost 35 000 times faster than the textbook algorithm.

In our experiments, we also report the running time of our algorithm. Even for k = 100, a
few minutes are sufficient to conclude the computation on most networks, and, in all but two
cases, the total time is smaller than 3 hours. For k = 1, the computation always terminates in
at most 1 hour and a half, apart from two street networks where it needs less than 2 hours and
a half. Overall, the total time needed to compute the most central node in all the networks
is smaller than 1 day. This is quite impressive if we consider that many input graphs have
millions of nodes, and tens of millions of edges.

5.7.3 Detailed Experimental Results
In this section, we report the detailed results of our algorithm on each graph in our dataset,
together with the results of the competitors.

5.7 - Experimental Results 85

Table 5.4. Detailed comparison of the improvement factors, with k = 1.

Directed Street
Network Olh Ocl DegCut DegBound NBCut NBBound
faroe-islands 4.080 3.742 4.125 338.011 4.086 437.986
liechtenstein 2.318 2.075 2.114 130.575 2.115 137.087
isle-of-man 2.623 3.740 2.781 224.566 2.769 314.856
malta 5.332 4.351 4.147 73.836 4.141 110.665
belize 2.691 3.969 2.606 253.866 2.595 444.849
azores 13.559 3.038 19.183 230.939 19.164 266.488

Undirected Street
Network Olh Ocl DegCut DegBound NBCut NBBound
faroe-islands 4.126 3.276 4.118 361.593 3.918 444.243
liechtenstein 2.318 2.027 2.107 171.252 2.122 183.240
isle-of-man 2.613 3.661 2.767 266.734 2.676 370.194
malta 4.770 4.164 3.977 122.729 3.958 232.622
belize 2.565 3.945 2.510 340.270 2.481 613.778
azores 22.406 2.824 18.654 589.985 18.810 727.528

Directed Complex
Network Olh Ocl DegCut DegBound NBCut NBBound
polblogs 3.201 1.131 31.776 1.852 31.974 5.165
out.opsahl-openflights 13.739 1.431 73.190 2.660 73.888 18.255
ca-GrQc 9.863 1.792 36.673 3.630 38.544 6.307
out.subelj_jung-j_jung-j 125.219 1.203 79.559 1.024 79.882 1.897
p2p-Gnutella08 5.696 1.121 66.011 4.583 81.731 6.849
out.subelj_jdk_jdk 116.601 1.167 74.300 1.023 74.527 1.740
wiki-Vote 9.817 2.760 261.242 1.479 749.428 395.278
p2p-Gnutella09 5.534 1.135 41.214 4.650 43.236 6.101
ca-HepTh 7.772 2.121 40.068 3.349 42.988 5.217
freeassoc 33.616 1.099 12.638 2.237 12.700 2.199
ca-HepPh 7.682 2.836 10.497 3.331 10.516 4.387
out.lasagne-spanishbook 13.065 2.553 1871.296 7.598 6786.506 3160.750
out.cfinder-google 16.725 1.782 38.321 2.665 25.856 3.020
ca-CondMat 7.382 3.526 409.772 5.448 517.836 29.282
out.subelj_cora_cora 14.118 1.700 14.098 1.345 14.226 2.299
out.ego-twitter 2824.713 1.000 1870.601 28.995 3269.183 278.214
out.ego-gplus 722.024 1.020 3481.943 236.280 3381.029 875.111
as-caida20071105 20.974 3.211 2615.115 1.737 2837.853 802.273
cit-HepTh 4.294 3.045 16.259 1.514 16.398 3.290

Undirected Complex
Network Olh Ocl DegCut DegBound NBCut NBBound
HC-BIOGRID 5.528 1.581 15.954 3.821 14.908 3.925
facebook_combined 10.456 3.726 56.284 18.786 56.517 98.512
Mus_musculus 18.246 1.743 70.301 3.253 104.008 7.935
Caenorhabditis_elegans 11.446 2.258 86.577 2.140 110.677 9.171
ca-GrQc 6.567 1.904 38.279 3.551 41.046 6.824
as20000102 19.185 2.402 1550.351 3.213 1925.916 498.000
advogato 8.520 2.018 315.024 18.181 323.163 142.654
p2p-Gnutella09 3.744 2.336 90.252 1.708 100.427 13.846
hprd_pp 6.543 2.397 392.853 2.091 407.261 63.953
ca-HepTh 7.655 2.075 42.267 3.308 46.326 5.593
Drosophila_melanogaster 5.573 2.346 69.457 1.822 75.456 6.904
oregon1_010526 20.474 3.723 1603.739 2.703 1798.822 399.071
oregon2_010526 17.330 4.748 1138.475 2.646 1227.105 520.955
Homo_sapiens 6.689 2.700 1475.113 1.898 1696.909 130.381
GoogleNw 15.591 8.389 107.902 15763.000 15763.000 15763.000
dip20090126_MAX 2.883 3.826 5.833 6.590 5.708 7.392
com-amazon.all.cmty 415.286 2.499 5471.982 3.297 8224.693 373.294

86 5 - Computing Closeness Centrality: the BCM Algorithm

Table 5.5. Detailed comparison of the improvement factors, with k = 10.

Directed Street
Network Olh Ocl DegCut DegBound NBCut NBBound
faroe-islands 3.713 2.884 4.037 290.626 4.025 361.593
liechtenstein 2.318 2.002 2.104 111.959 2.106 116.713
isle-of-man 2.623 2.933 2.711 209.904 2.720 288.123
malta 5.325 3.861 4.094 70.037 4.086 101.546
belize 2.690 3.638 2.592 244.275 2.580 416.210
azores 13.436 2.644 19.043 222.073 19.045 254.206

Undirected Street
Network Olh Ocl DegCut DegBound NBCut NBBound
faroe-islands 3.702 2.594 4.046 320.588 3.848 388.713
liechtenstein 2.316 1.965 2.097 142.047 2.114 150.608
isle-of-man 2.612 2.889 2.695 241.431 2.636 323.185
malta 4.768 3.615 3.920 115.574 3.910 208.192
belize 2.564 3.634 2.496 323.257 2.469 563.820
azores 22.392 2.559 18.541 539.032 18.712 653.372

Directed Complex
Network Olh Ocl DegCut DegBound NBCut NBBound
polblogs 3.199 1.039 13.518 1.496 13.544 2.928
out.opsahl-openflights 13.739 1.130 32.297 1.984 32.405 6.867
ca-GrQc 9.863 1.356 25.238 3.096 25.786 4.565
out.subelj_jung-j_jung-j 124.575 1.000 79.284 1.024 79.657 1.884
p2p-Gnutella08 5.684 1.064 12.670 3.241 12.763 3.599
out.subelj_jdk_jdk 116.228 1.000 74.106 1.023 74.363 1.730
wiki-Vote 9.812 1.205 166.941 1.453 174.775 25.411
p2p-Gnutella09 5.532 1.084 16.293 3.624 16.265 4.213
ca-HepTh 7.772 1.586 31.314 3.013 32.604 4.356
freeassoc 33.414 1.034 10.612 2.210 10.704 2.178
ca-HepPh 7.682 2.077 10.322 3.042 10.340 4.010
out.lasagne-spanishbook 13.063 1.483 303.044 1.067 351.262 94.351
out.cfinder-google 16.725 1.413 36.364 2.665 24.765 3.017
ca-CondMat 7.382 2.318 91.209 3.507 93.548 7.027
out.subelj_cora_cora 13.699 1.287 12.763 1.334 12.909 2.072
out.ego-twitter 2689.884 1.000 1817.032 28.157 2872.213 218.411
out.ego-gplus 722.024 1.000 951.983 201.949 1085.361 482.204
as-caida20071105 20.974 1.615 997.996 1.371 1266.443 448.729
cit-HepTh 4.030 2.179 11.361 1.486 11.423 2.832

Undirected Complex
Network Olh Ocl DegCut DegBound NBCut NBBound
HC-BIOGRID 5.528 1.240 10.714 3.102 10.036 3.058
facebook_combined 10.456 1.292 9.103 2.236 9.371 2.694
Mus_musculus 18.246 1.316 18.630 2.279 20.720 3.288
Caenorhabditis_elegans 11.445 1.405 58.729 1.904 68.905 7.605
ca-GrQc 6.567 1.340 26.050 3.052 26.769 5.011
as20000102 19.185 1.529 196.538 1.314 209.674 52.210
advogato 8.520 1.405 131.173 2.043 132.207 11.155
p2p-Gnutella09 3.744 1.632 79.093 1.623 87.357 12.941
hprd_pp 6.543 1.436 47.945 1.837 47.866 8.620
ca-HepTh 7.655 1.546 32.612 2.961 34.407 4.677
Drosophila_melanogaster 5.573 1.672 50.840 1.646 54.637 5.743
oregon1_010526 20.474 1.451 418.099 1.282 429.161 109.549
oregon2_010526 17.330 1.560 364.277 1.302 371.929 71.186
Homo_sapiens 6.689 1.599 81.496 1.620 82.250 15.228
GoogleNw 15.591 1.320 23.486 1.252 23.053 2.420
dip20090126_MAX 2.881 1.836 4.055 4.556 4.065 4.498
com-amazon.all.cmty 414.765 1.618 3407.016 3.279 3952.370 199.386

5.7 - Experimental Results 87

Table 5.6. Detailed comparison of the improvement factors, with k = 100.

Directed Street
Network Olh Ocl DegCut DegBound NBCut NBBound
faroe-islands 3.713 2.823 3.694 150.956 3.691 168.092
liechtenstein 2.318 1.998 2.078 84.184 2.086 86.028
isle-of-man 2.620 2.902 2.551 139.139 2.567 167.808
malta 5.282 3.850 3.933 56.921 3.942 76.372
belize 2.688 3.617 2.526 184.718 2.516 268.634
azores 13.334 2.628 18.380 194.724 18.605 220.013

Undirected Street
Network Olh Ocl DegCut DegBound NBCut NBBound
faroe-islands 3.702 2.548 3.693 159.472 3.523 171.807
liechtenstein 2.311 1.959 2.072 96.782 2.095 99.768
isle-of-man 2.607 2.847 2.533 153.859 2.468 183.982
malta 4.758 3.605 3.745 89.929 3.730 137.538
belize 2.562 3.629 2.428 226.582 2.406 323.257
azores 22.345 2.548 18.092 411.760 18.384 476.253

Directed Complex
Network Olh Ocl DegCut DegBound NBCut NBBound
polblogs 3.198 1.037 3.951 1.245 3.961 1.731
out.opsahl-openflights 13.739 1.124 5.524 1.456 5.553 1.740
ca-GrQc 9.863 1.339 11.147 2.353 10.407 2.926
out.subelj_jung-j_jung-j 123.393 1.000 78.473 1.021 78.798 1.787
p2p-Gnutella08 5.684 1.063 6.611 2.935 7.750 3.278
out.subelj_jdk_jdk 114.210 1.000 73.522 1.020 73.755 1.669
wiki-Vote 9.812 1.186 61.375 1.236 60.475 9.436
p2p-Gnutella09 5.531 1.083 6.370 3.109 7.650 3.508
ca-HepTh 7.772 1.570 16.135 2.477 16.747 3.135
freeassoc 33.266 1.032 6.314 2.154 6.428 2.138
ca-HepPh 7.682 2.032 9.605 2.549 9.619 3.340
out.lasagne-spanishbook 13.063 1.467 56.689 1.043 80.069 33.271
out.cfinder-google 16.725 1.392 13.521 2.655 12.298 2.722
ca-CondMat 7.382 2.288 16.884 2.602 16.950 2.824
out.subelj_cora_cora 13.231 1.280 11.171 1.315 11.350 1.870
out.ego-twitter 2621.659 1.000 1574.836 26.893 1908.731 110.236
out.ego-gplus 722.024 1.000 522.333 181.754 522.576 236.280
as-caida20071105 20.974 1.606 17.971 1.216 18.694 5.479
cit-HepTh 3.969 2.143 8.867 1.466 9.068 2.662

Undirected Complex
Network Olh Ocl DegCut DegBound NBCut NBBound
HC-BIOGRID 5.528 1.236 4.452 2.154 4.345 1.999
facebook_combined 10.456 1.292 3.083 1.470 3.074 1.472
Mus_musculus 18.245 1.305 7.940 1.944 9.518 2.631
Caenorhabditis_elegans 11.445 1.391 11.643 1.463 12.296 3.766
ca-GrQc 6.567 1.331 11.311 2.346 10.389 3.105
as20000102 19.185 1.512 7.318 1.174 7.956 3.593
advogato 8.520 1.398 32.629 1.706 33.166 7.784
p2p-Gnutella09 3.744 1.625 11.378 1.374 11.867 3.695
hprd_pp 6.543 1.422 21.053 1.547 22.191 3.468
ca-HepTh 7.655 1.539 16.406 2.454 17.030 3.301
Drosophila_melanogaster 5.573 1.655 29.115 1.487 30.979 4.614
oregon1_010526 20.474 1.443 13.300 1.163 14.611 6.569
oregon2_010526 17.330 1.530 18.203 1.173 21.758 7.258
Homo_sapiens 6.689 1.577 19.350 1.445 20.182 3.080
GoogleNw 15.591 1.320 16.224 1.172 16.506 2.010
dip20090126_MAX 2.880 1.815 2.789 2.602 2.784 2.546
com-amazon.all.cmty 414.765 1.605 1368.675 3.236 1654.150 97.735

88 5 - Computing Closeness Centrality: the BCM Algorithm

Table 5.7. Detailed comparison of the improvement factors of the new algorithm, in a dataset made of big
networks.

Directed Street
k = 1 k = 10 k = 100

Input Nodes Edges Impr. Time Impr. Time Impr. Time
egypt 1054242 2123036 144.91 0:03:55 132.86 0:04:25 116.74 0:04:48
new_zealand 2759124 5562944 447.55 0:02:34 443.95 0:02:35 427.31 0:02:38
india 16230072 33355834 1370.32 0:43:42 1369.05 0:44:17 1326.31 0:45:05
california 16905319 34303746 1273.66 0:54:56 1258.12 0:56:00 1225.73 0:56:02
north_am 35236615 70979433 1992.68 2:25:58 1967.87 2:29:25 1877.78 2:37:14

Undirected Street
k = 1 k = 10 k = 100

Input Nodes Edges Impr. Time Impr. Time Impr. Time
egypt 1054242 1159808 344.86 0:01:54 340.30 0:01:54 291.71 0:02:11
new_zealand 2759124 2822257 811.75 0:02:47 786.52 0:03:02 734.20 0:03:02
india 16230072 17004400 2455.38 0:44:21 2484.70 0:44:38 2422.40 0:44:21
california 16905319 17600566 2648.08 0:39:15 2620.17 0:42:04 2504.86 0:44:19
north_am 35236615 36611653 7394.88 1:13:37 7530.80 1:15:01 7263.78 1:10:28

Directed Complex
k = 1 k = 10 k = 100

Input Nodes Edges Impr. Time Impr. Time Impr. Time
cit-HepTh 27769 352768 16.34 0:00:01 11.41 0:00:01 9.06 0:00:02
cit-HepPh 34546 421534 23.68 0:00:01 19.88 0:00:01 14.41 0:00:02
p2p-Gnut31 62586 147892 194.19 0:00:01 44.24 0:00:01 19.34 0:00:04
soc-Eps1 75879 508837 243.14 0:00:01 43.75 0:00:01 33.60 0:00:05
soc-Slash0811 77360 828161 1007.70 0:00:00 187.46 0:00:00 21.09 0:00:18
twitter_comb 81306 2684592 1024.32 0:00:01 692.96 0:00:01 145.68 0:00:05
Slash090221 82140 549202 177.82 0:00:02 162.30 0:00:02 108.53 0:00:03
gplus_comb 107614 24476570 1500.35 0:00:04 235.17 0:00:04 62.54 0:02:19
soc-sign-eps 131828 840799 225.91 0:00:03 161.58 0:00:03 39.26 0:00:16
email-EuAll 265009 418956 4724.80 0:00:00 3699.48 0:00:00 1320.22 0:00:01
web-Stanford 281903 2312497 13.59 0:04:00 8.70 0:04:00 7.47 0:07:15
web-NotreD 325729 1469679 1690.08 0:00:02 132.83 0:00:02 66.88 0:00:49
amazon0601 403394 3387388 10.81 0:14:54 8.87 0:14:54 6.84 0:22:04
web-BerkStan 685230 7600595 3.95 1:36:21 3.67 1:36:21 3.47 1:49:12
web-Google 875713 5105039 228.61 0:01:51 96.63 0:01:51 38.69 0:10:29
youtube-links 1138494 4942297 662.78 0:01:33 200.68 0:01:33 125.72 0:07:02
in-2004 1382870 16539643 43.68 0:41:45 29.89 0:41:45 16.68 1:48:42
trec-wt10g 1601787 8063026 33.86 0:36:01 20.39 0:36:01 16.73 1:10:54
soc-pokec 1632803 22301964 21956.64 0:00:17 2580.43 0:06:14 1106.90 0:12:35
zhishi-hudong 1984484 14682258 30.37 1:25:38 27.71 1:25:38 24.95 1:53:27
zhishi-baidu 2141300 17632190 44.05 1:17:52 38.61 1:17:52 23.17 3:08:05
wiki-Talk 2394385 5021410 34863.42 0:00:08 28905.76 0:00:08 9887.18 0:00:18
cit-Patents 3774768 16518947 9454.04 0:02:07 8756.77 0:02:07 8340.18 0:02:13

Undirected Complex
k = 1 k = 10 k = 100

Input Nodes Edges Impr. Time Impr. Time Impr. Time
ca-HepPh 12008 118489 10.37 0:00:00 10.20 0:00:00 9.57 0:00:01
CA-AstroPh 18772 198050 62.47 0:00:00 28.87 0:00:01 14.54 0:00:01
CA-CondMat 23133 93439 247.35 0:00:00 84.48 0:00:00 17.06 0:00:01
email-Enron 36692 183831 365.92 0:00:00 269.80 0:00:00 41.95 0:00:01
loc-brightkite 58228 214078 308.03 0:00:00 93.85 0:00:01 53.49 0:00:02
flickrEdges 105938 2316948 39.61 0:00:23 17.89 0:00:55 15.39 0:01:16
gowalla 196591 950327 2412.26 0:00:01 33.40 0:01:18 28.13 0:01:33
com-dblp 317080 1049866 500.83 0:00:10 300.61 0:00:17 99.64 0:00:52
com-amazon 334863 925872 37.76 0:02:21 31.33 0:02:43 18.68 0:04:34
com-lj.all 477998 530872 849.57 0:00:07 430.72 0:00:13 135.14 0:00:45
com-youtube 1134890 2987624 2025.32 0:00:32 167.45 0:06:44 110.39 0:09:16
soc-pokec 1632803 30622564 46725.71 0:00:18 8664.33 0:02:16 581.52 0:18:12
as-skitter 1696415 11095298 185.91 0:19:06 164.24 0:21:53 132.38 0:27:06
com-orkut 3072441 117185083 23736.30 0:02:32 255.17 2:54:58 69.23 15:02:06
youtube-u-g 3223585 9375374 11473.14 0:01:07 91.17 2:07:23 66.23 2:54:12

5.8 - Internet Movies Database Case Study 89

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

1 000

2 000

3 000

Millions of nodes

Im
pr
ov
em

en
t
fa
ct
or

Figure 5.2. Improvement factor of the new closeness centrality algorithm, in increasing snapshots of the actor
graph (k = 1).

5.8 Internet Movies Database Case Study

In this section, we apply the new algorithm NBBound to analyze the actors collaboration
network, where nodes are actors, and two actors are linked if they played together in a movie
(see Section 4.7). The performances of the algorithm are reported in Table 5.8, and the
results obtained are reported in Table 5.9.

The Algorithm. Thanks to this experiment, we can evaluate the performance of our algo-
rithm on increasing snapshots of the same graph. This way, we can have an informal idea on
the asymptotic behavior of its complexity. In Figure 5.2, we have plotted the improvement
factor with respect to the number of nodes: if the improvement factor is I, the running time
is O(mnI). Hence, assuming that I = cn for some constant c (which is approximately verified
in the actor graph, as shown by Figure 5.2), the running time is linear in the input size.
Indeed, the total time needed to perform the computation on all snapshots is little more than
30 minutes for k = 1, and little more than 45 minutes for k = 10.

The Results. In 2014, the most central actor is Michael Madsen, whose career spans 25
years and more than 170 films. Among his most famous appearances, he played as Jimmy
Lennox in Thelma & Louise (Ridley Scott, 1991), as Glen Greenwood in Free Willy (Simon
Wincer, 1993), as Bob in Sin City (Frank Miller, Robert Rodriguez, Quentin Tarantino), and
as Deadly Viper Budd in Kill Bill (Quentin Tarantino, 2003-2004). The second is Danny
Trejo, whose most famous movies are Heat (Michael Mann, 1995), where he played as Trejo,
Machete (Ethan Maniquis, Robert Rodriguez, 2010) and Machete Kills (Robert Rodriguez,
2013), where he played as Machete. The third “actor” is not really an actor: he is the German
dictator Adolf Hitler: he was also the most central actor in 2005 and 2010, and he was in the
top-10 since 1990. This a consequence of his appearances in several archive footages, that were
re-used in several movies (he counts 775 credits, even if most of them are in documentaries or
TV-shows, that were eliminated). Among the movies where Adolf Hitler is credited, we find
Zelig (Woody Allen, 1983), and The Imitation Game (Morten Tyldum, 2014). Among the
other most central actors, we find many people who played a lot of movies, and most of them
are quite important actors. However, this ranking does not discriminate between important
roles and marginal roles: for instance, the actress Bess Flowers is not widely known, because
she rarely played significant roles, but she appeared in over 700 movies in her 41 years career,
and for this reason she was the most central for 30 years, between 1950 and 1980. Finally,
it is worth noting that we never find Kevin Bacon in the top-10, even if he became famous
for the “Six Degrees of Kevin Bacon” game (http://oracleofbacon.org), where the player

http://oracleofbacon.org

90 5 - Computing Closeness Centrality: the BCM Algorithm

Table 5.8. Detailed results of the new improvement factors on the actor graph.

Year 1940 1945 1950 1955
Nodes 69 011 83 068 97 824 120 430
Edges 3 417 144 5 160 584 6 793 184 8 674 159
Impr (k = 1) 51.74 61.46 67.50 91.46
Impr (k = 10) 32.95 40.73 44.72 61.52
Year 1960 1965 1970 1975
Nodes 146 253 174 826 210 527 257 896
Edges 11 197 509 12 649 114 14 209 908 16 080 065
Impr (k = 1) 122.63 162.06 211.05 285.57
Impr (k = 10) 80.50 111.51 159.32 221.07
Year 1980 1985 1990 1995
Nodes 310 278 375 322 463 078 557 373
Edges 18 252 462 20 970 510 24 573 288 28 542 684
Impr (k = 1) 380.52 513.40 719.21 971.11
Impr (k = 10) 296.24 416.27 546.77 694.72
Year 2000 2005 2010 2014
Nodes 681 358 880 032 1 237 879 1 797 446
Edges 33 564 142 41 079 259 53 625 608 72 880 156
Impr (k = 1) 1326.53 1897.31 2869.14 2601.52
Impr (k = 10) 838.53 991.89 976.63 1390.32

receives an actor s, and he has to find a path of length at most 6 from s to Kevin Bacon in
the actor graph (see Section 4.7.3 for more information). Kevin Bacon was chosen as the goal
because he played in several movies, and he was thought to be one of the most central actors:
this work shows that, actually, he is quite far from the top. Indeed, his closeness centrality is
0.336, while the most central actor has centrality 0.354, the 10th actor has centrality 0.350,
and the 100th actor (Rip Torn) has centrality 0.341.

5.9 Wikipedia Case Study

In this section, we apply the new algorithm NBBound to analyze the Wikipedia citation
network (for more information, see Section 4.8). We analyze both the standard graph and
the reversed graph (where all edges are inverted). The 10 most central pages are available in
Table 5.10.

The Algorithm. In the standard graph, the improvement factor is 1 784 for k = 1, 1 509
for k = 10, and 870 for k = 100. The total running time is about 39 minutes for k = 1, 45
minutes for k = 10, and less than 1 hour and 20 minutes for k = 100. In the reversed graph,
the algorithm performs even better: the improvement factor is 87 918 for k = 1, 71 923 for
k = 10, and 21 989 for k = 100. The total running times are less than 3 minutes for both
k = 1 and k = 10, and less than 10 minutes for k = 100.

The Results. If we consider the standard graph, the results are quite unexpected: indeed,
all the most central pages are years (the first is 1989). However, this is less surprising if
we consider that these pages contain a lot of links to events that happened in that year:
for instance, the out-degree of 1989 is 1 560, and the links contain pages from very different
topics: historical events, like the fall of Berlin wall, days of the year, different countries
where particular events happened, and so on. A similar argument also works for other years:
indeed, the second page is 1967 (with out-degree 1 438), and the third is 1979 (with out-degree

5.9 - Wikipedia Case Study 91

Table 5.9. Detailed ranking of the IMDB actor graph.

1940 1945 1950 1955
1 Semels, Harry (I) Corrado, Gino Flowers, Bess Flowers, Bess
2 Corrado, Gino Steers, Larry Steers, Larry Harris, Sam (II)
3 Steers, Larry Flowers, Bess Corrado, Gino Steers, Larry
4 Bracey, Sidney Semels, Harry (I) Harris, Sam (II) Corrado, Gino
5 Lucas, Wilfred White, Leo (I) Semels, Harry (I) Miller, Harold (I)
6 White, Leo (I) Mortimer, Edmund Davis, George (I) Farnum, Franklyn
7 Martell, Alphonse Boteler, Wade Magrill, George Magrill, George
8 Conti, Albert (I) Phelps, Lee (I) Phelps, Lee (I) Conaty, James
9 Flowers, Bess Ring, Cyril Ring, Cyril Davis, George (I)
10 Sedan, Rolfe Bracey, Sidney Moorhouse, Bert Cording, Harry

1960 1965 1970 1975
1 Flowers, Bess Flowers, Bess Flowers, Bess Flowers, Bess
2 Harris, Sam (II) Harris, Sam (II) Harris, Sam (II) Harris, Sam (II)
3 Farnum, Franklyn Farnum, Franklyn Tamiroff, Akim Tamiroff, Akim
4 Miller, Harold (I) Miller, Harold (I) Farnum, Franklyn Welles, Orson
5 Chefe, Jack Holmes, Stuart Miller, Harold (I) Sayre, Jeffrey
6 Holmes, Stuart Sayre, Jeffrey Sayre, Jeffrey Miller, Harold (I)
7 Steers, Larry Chefe, Jack Quinn, Anthony (I) Farnum, Franklyn
8 Parìs, Manuel Parìs, Manuel O’Brien, William H. Kemp, Kenner G.
9 O’Brien, William H. O’Brien, William H. Holmes, Stuart Quinn, Anthony (I)
10 Sayre, Jeffrey Stevens, Bert (I) Stevens, Bert (I) O’Brien, William H.

1980 1985 1990 1995
1 Flowers, Bess Welles, Orson Welles, Orson Lee, Christopher (I)
2 Harris, Sam (II) Flowers, Bess Carradine, John Welles, Orson
3 Welles, Orson Harris, Sam (II) Flowers, Bess Quinn, Anthony (I)
4 Sayre, Jeffrey Quinn, Anthony (I) Lee, Christopher (I) Pleasence, Donald
5 Quinn, Anthony (I) Sayre, Jeffrey Harris, Sam (II) Hitler, Adolf
6 Tamiroff, Akim Carradine, John Quinn, Anthony (I) Carradine, John
7 Miller, Harold (I) Kemp, Kenner G. Pleasence, Donald Flowers, Bess
8 Kemp, Kenner G. Miller, Harold (I) Sayre, Jeffrey Mitchum, Robert
9 Farnum, Franklyn Niven, David (I) Tovey, Arthur Harris, Sam (II)
10 Niven, David (I) Tamiroff, Akim Hitler, Adolf Sayre, Jeffrey

2000 2005 2010 2014
1 Lee, Christopher (I) Hitler, Adolf Hitler, Adolf Madsen, Michael (I)
2 Hitler, Adolf Lee, Christopher (I) Lee, Christopher (I) Trejo, Danny
3 Pleasence, Donald Steiger, Rod Hopper, Dennis Hitler, Adolf
4 Welles, Orson Sutherland, Donald (I) Keitel, Harvey (I) Roberts, Eric (I)
5 Quinn, Anthony (I) Pleasence, Donald Carradine, David De Niro, Robert
6 Steiger, Rod Hopper, Dennis Sutherland, Donald (I) Dafoe, Willem
7 Carradine, John Keitel, Harvey (I) Dafoe, Willem Jackson, Samuel L.
8 Sutherland, Donald (I) von Sydow, Max (I) Caine, Michael (I) Keitel, Harvey (I)
9 Mitchum, Robert Caine, Michael (I) Sheen, Martin Carradine, David
10 Connery, Sean Sheen, Martin Kier, Udo Lee, Christopher (I)

1 452). Furthermore, all the 10 most central pages have out-degree at least 1 269. Overall,
we conclude that the central page in the Wikipedia standard graph are not the “intuitively
important” pages, but they are the pages that have a biggest number of links to pages with
different topics, and this maximum is achieved by pages related to years.

Conversely, if we consider the reversed graph, the most central page is United States,
confirming a common conjecture. Indeed, in http://wikirank.di.unimi.it/, it is shown
that the United States are the center according to harmonic centrality, and many other

http://wikirank.di.unimi.it/

92 5 - Computing Closeness Centrality: the BCM Algorithm

Table 5.10. Top-10 pages in Wikipedia directed graph, both in the standard graph and in the reversed graph.

Position Standard Graph Reversed Graph
1st 1989 United States
2nd 1967 World War II
3rd 1979 United Kingdom
4th 1990 France
5th 1970 Germany
6th 1991 English language
7th 1971 Association football
8th 1976 China
9th 1945 World War I

10th 1965 Latin

measures (however, in that work, the ranking is only approximated). A further evidence
for this conjecture comes from the Six Degree of Wikipedia game (http://thewikigame.
com/6-degrees-of-wikipedia), where a player is asked to go from one page to the other
following the smallest possible number of link: a hard variant of this game forces the player
not to pass from the United States page, which is considered to be central. In this work,
we show that this conjecture is true. The second page is World War II, and the third is
United Kingdom, in line with the results obtained by other centrality measures (see http:
//wikirank.di.unimi.it/), especially for the first two pages.

Overall, we conclude that most of the central pages in the reversed graph are nations, and
that the results capture our intuitive notion of “important” pages in Wikipedia. Thanks to
this new algorithm, we can compute these pages in a bit more than 1 hour for the original
graph, and less than 10 minutes for the reversed one.

5.10 Bibliographic Notes

In [34], P. Crescenzi, A. Marino, we have developed the functions computeBoundsDeg,
updateBoundsBFSCut, and we have defined the first and simplest variation of the BCM al-
gorithm. Independently, E. Bergamini and H. Meyerhenke developed the computeBoundsNB
and the updateBoundsLB functions, only in the (strongly) connected case, defining the other
three variations of the BCM algorithm (see [20]). The two approaches were combined in [20],
in the case of (strongly) connected graphs. The generalization to disconnected graphs is a
collaboration between all the aforementioned authors, but it is not published, yet.

http://thewikigame.com/6-degrees-of-wikipedia
http://thewikigame.com/6-degrees-of-wikipedia
http://wikirank.di.unimi.it/
http://wikirank.di.unimi.it/

Chapter 6

Computing Betweenness
Centrality: the KADABRA
Algorithm

Abstract
We present KADABRA, a new algorithm to approximate betweenness centrality in

directed and undirected graphs, which significantly outperforms all previous approaches
on real-world complex networks.

The new algorithm has two significant improvements with respect to previous coun-
terparts: first, we adopt for the first time the balanced bidirectional BFS, in order sample
shortest paths faster. Furthermore, we provide a new rigorous application of the adap-
tive sampling technique. This approach decreases the total number of shortest paths
that need to be sampled to compute all betweenness centralities with a given absolute
error, and it also handles more general problems, such as computing the k most central
nodes.

In this chapter, we focus on estimating the betweenness centrality, which is one of the most
famous measures of centrality for nodes and edges of real-world complex networks [70, 126].
The rigorous definition of betweenness centrality has its roots in sociology, dating back to
the Seventies [78], when Freeman formalized the informal concept discussed in the previous
decades in different scientific communities [16, 146, 145, 37], although the definition already
appeared in [11]. Since then, this notion has been very successful in network science [166,
122, 82, 126].

A probabilistic way to define the betweenness centrality1 bc(v) of a node v in a graph
G = (V,E) is the following. We choose two nodes s and t, and we go from s to t through a
shortest path π; if the choices of s, t and π are made uniformly at random, the betweenness
centrality of v is the probability that we pass through v.

In a seminal paper [39], Brandes showed that it is possible to exactly compute the be-
tweenness centrality of all the nodes in a graph in time O(mn), where n is the number of
nodes and m is the number of edges. We have already proved a corresponding lower bound
in Chapter 3 (see also [30]): if we are able to compute the betweenness centrality of a single
node in time O(mn1−ε) for some ε > 0, then the Strong Exponential Time Hypothesis [92],
the Orthogonal Vector conjecture [3], and the Hitting Set conjecture [3], are false. A similar
result is available in the context of dense weighted graphs [1]: computing the betweenness
centrality exactly is equivalent to computing the All Pairs Shortest Paths, and providing a
relative approximation is equivalent to computing the diameter.

1As explained in Section 6.3, to simplify notation we consider the normalized betweenness centrality.

94 6 - Computing Betweenness Centrality: the KADABRA Algorithm

This result further motivates the rich line of research on computing absolute approxima-
tions of betweenness centrality, with the goal of trading precision with efficiency. The main
idea is to define a probability distribution over the set of all paths, by choosing two uniformly
random nodes s, t, and then a uniformly distributed st-path π, so that P(v ∈ π) = bc(v).
As a consequence, we can approximate bc(v) by sampling paths π1, . . . ,πτ according to this
distribution, and estimating b̃(v) := 1

τ

∑τ
i=1Xi(v), where Xi(v) = 1 if v ∈ πi (and v 6= s, t),

0 otherwise.
The tricky part of this approach is to provide probabilistic guarantees on the quality of this

approximation: the goal is to obtain a 1− η confidence interval I(v) = [b̃(v)− λL, b̃(v) + λU]
for bc(v), which means that P(∀v ∈ V,bc(v) ∈ I(v)) ≥ 1 − η. Thus, the research for
approximating betweenness centrality has been focusing on obtaining, as fast as possible, the
smallest possible I.

6.1 Our Contribution

In this chapter, we propose a new and faster algorithm to perform this task, named
KADABRA. In the standard task of approximating betweenness centralities with absolute
error at most λ, we show that, on average, the new algorithm is more than 100 times faster
than the previous ones, on graphs with approximately 10 000 nodes. Moreover, differently
from previous approaches, our algorithm can perform more general tasks, since it does not
need all confidence intervals to be equal. As an example, we consider the computation of
the k most central nodes: all previous approaches compute all centralities with an error λ,
and use this approximation to obtain the ranking. Conversely, our approach allows us to use
small confidence interval only when they are needed, and allows bigger confidence intervals
for nodes whose centrality values are “well separated”. This way, we can compute for the
first time an approximation of the k most central nodes in networks with millions of nodes
and hundreds of millions of edges, such as the IMDB actors collaboration network and the
Wikipedia citation network.

Our results rely on two main theoretical contributions, which are interesting in their own
right, since their generality naturally extends to other applications.

Balanced bidirectional breadth-first search.Differently from previous approaches, in
order to sample a uniformly random shortest path, we use a balanced bidirectional BFS. We
show that this technique heavily improves with respect to the standard BFS performed by
existing approaches, yielding a factor-50 improvement on graphs with tens of thousands of
nodes. Furthermore, in Chapter 8, we show that this technique has running time O(n

1
2 +ε)

on realistic random graph models.

Adaptive sampling made rigorous.To speed up the estimation of the betweenness central-
ity, previous work make use of the technique of adaptive sampling, which consists in testing
during the execution of the algorithm whether some condition on the sample obtained so far
has been met, and terminating the execution of the algorithm as soon as this happens. How-
ever, this technique introduces a subtle stochastic dependence between the time in which the
algorithm terminates and the correctness of the given output, which previous papers claim-
ing a formal analysis of the technique did not realize (see Section 6.4 for details). With an
argument based on martingale theory, we provide a general analysis of such useful technique.
Through this result, we do not only improve previous estimators, but we also make it possible
to define more general stopping conditions, that can be decided “on the fly”: this way, with
little modifications, we can adapt our algorithm to perform more general tasks than previous
ones.

To better illustrate the power of our techniques, we focus on the unweighted, static graphs,
and to the centrality of nodes. However, our algorithm can be easily adapted to compute
the centrality of edges, to handle weighted graphs and, since its core part consists merely in
sampling paths, we conjecture that it may be coupled with the existing techniques in [21] to

6.2 - Related Work 95

handle dynamic graphs.

6.2 Related Work

6.2.1 Computing Betweenness Centrality
With the recent event of big data, the major shortcoming of betweenness centrality has been
the lack of efficient methods to compute it [39]. In the worst-case, the best exact algorithm
to compute the centrality of all the nodes is due to Brandes [39], and its time complexity
is O(mn): the basic idea of the algorithm is to define the dependency δs(v) =

∑
t∈V

σst(v)
σst

,
where σst(v) is the number of st-shortest paths passing through v, and σst is the number
of st-shortest paths. The idea of the algorithm is to prove that the dependencies δs(v) can
be computed in time O(m) for each v ∈ V . In Chapter 3 (see also [30]), we also show that
Brandes algorithm is almost optimal, assuming the Orthogonal Vector conjecture [3].

The latter result further motivates the already rich line of research on approaches that
overcome this barrier. A first possibility is to use heuristics, that do not provide analytical
guarantees on their performance [143, 73, 163]. Another line of research has defined variants
of betweenness centrality, that might be easier to compute [40, 132, 68]. Finally, a third
line of research has investigated approximation algorithms, which trade accuracy for speed
[93, 43, 82, 109, 136, 137]. Our work follows the latter approach.

The first approximation algorithm proposed in the literature [93] adapts Eppstein and
Wang’s approach for computing closeness centrality [72], using Hoeffding inequality and the
union bound technique. This way, it is possible to obtain an estimate of the betweenness
centrality of every node that is correct up to an additive error λ with probability 1 − η, by
sampling O(D

2

λ2 log n
η) nodes, where D is the diameter of the graph. In [82], it is shown that

this can lead to an overestimation. Riondato and Kornaropoulos improve this sampling-based
approach by sampling single shortest paths instead of the whole dependency of a node [136],
introducing the use of the VC-dimension. As a result, the number of samples is decreased
to c

λ2 (blog2(VD−2)c + 1 + log(1
η)), where VD is the vertex diameter, that is, the minimum

number of nodes in a shortest path inG (it can be different fromD+1 if the graph is weighted).
This use of the VC-dimension is further developed and generalized in [137]. Finally, many of
these results were adapted to handle dynamic networks [21, 137].

6.2.2 Approximating the Top-k Betweenness Centrality Set
Let us order the nodes v1, ..., vn such that bc(v1) ≥ ... ≥ bc(vn) and define TOP (k) =
{(vi,bc(vi)) : i ≤ k}. In [136] and [137], the authors provide an algorithm that, for any given
η, ε, with probability 1− η outputs a set T̃OP (k) = {(vi, b̃(vi))} such that: i) If v ∈ TOP (k)

then v ∈ T̃OP (k) and |bc(v) − b̃(v)| ≤ εbc(v); ii) If v ∈ T̃OP (k) but v 6∈ TOP (k) then
b̃(v) ≤ (bk − ε)(1 + ε) where bk is the k-th largest betweenness given by a preliminary phase
of the algorithm.

6.2.3 Adaptive Sampling
In [13, 137], the number of samples required is substantially reduced using the adaptive
sampling technique introduced by Lipton and Naughton in [111, 112]. Let us clarify that,
by adaptive sampling, we mean that the termination of the sampling process depends on
the sample observed so far (in other cases, the same expression refers to the fact that the
distribution of the new samples is a function of the previous ones [6], while the sample size
is fixed in advance). Except for [133], previous approaches tacitly assume that there is little
dependency between the stopping time and the correctness of the output: indeed, they prove
that, for each fixed τ , the probability that the estimate is wrong at time τ is below η. However,
the stopping time τ is a random variable, and in principle there might be dependency between

96 6 - Computing Betweenness Centrality: the KADABRA Algorithm

the event τ = τ and the event that the estimate is correct at time τ . As for [133], they
consider a specific stopping condition and their proof technique does not seem to extend to
other settings. For a more thorough discussion of this issue, we defer the reader to Section 6.4.

6.2.4 Balanced Bidirectional Breadth-First Search

The possibility of speeding up a breadth-first search for the shortest-path problem by per-
forming, at the same time, a BFS from the final end-point, has been considered since the
Seventies [134]. Unfortunately, because of the lack of theoretical results dealing with its ef-
ficiency, the bidirectional BFS has apparently not been considered a fundamental heuristic
improvement [95], at least in the context of complex networks (there are some applications of
bidirectional searches in route planning). However, in [136] (and in some public talks by M.
Riondato), the bidirectional BFS was proposed as a possible way to improve the performance
of betweenness centrality approximation algorithms.

6.3 Algorithm Overview

To simplify notation, we always consider the normalized betweenness centrality of a node v,
which is defined by:

bc(v) =
1

n(n− 1)

∑
s6=v 6=t

σst(v)

σst

where σst is the number of shortest paths between s and t, and σst(v) is the number of
shortest paths between s and t that pass through v. Furthermore, to simplify the exposition,
we use bold symbols to denote random variables, and light symbols to denote deterministic
quantities.

On the same line of previous work, our algorithm samples random paths π1, . . . ,πτ , where
πi is chosen by selecting uniformly at random two nodes s, t, and then selecting uniformly at
random one of the shortest paths from s to t. Then, it estimates bc(v) with

b̃(v) :=
1

τ

τ∑
i=1

Xi(v),

where Xi(v) = 1 if v ∈ πi, 0 otherwise. By definition of πi, E[b̃(v)] = bc(v).
The tricky part is to bound the distance between b̃(v) and its expected value. The simplest

technique uses Hoeffding inequality.

Lemma 6.1 (Hoeffding inequality, for a proof see [54]). Let X1, . . . ,Xk be independent
random variables such that ai <Xi < bi almost surely, and let S =

∑k
i=1Xi. Then,

P
(
|S − E[S]| > λ

)
≤ 2e

− 2λ2∑k
i=1
|bi−ai|2

Using this inequality, it is possible to prove that

P
(∣∣∣b̃(v)− bc(v)

∣∣∣ ≥ λ) ≤ 2e−2τλ2

.

Consequently, if we consider a union bound on all possible nodes v, we obtain P(∀v ∈
V, |b̃(v)− bc(v)| ≥ λ) ≤ 2ne−2τλ2

. This means that the algorithm can safely stop as soon as
2ne−2τλ2 ≤ η, that is, after τ = 2

λ2 log(2n
η) steps.

In order to improve this idea, we can start from the Chernoff bound, instead of Hoeffding’s
inequality.

6.3 - Algorithm Overview 97

Lemma 6.2 (Chernoff bound, for a proof see [54]). Let X1, . . . ,Xk be independent random
variables such that Xi ≤M for each 1 ≤ i ≤ n, and let X = 1

k

∑k
i=1Xi. Then,

Pr
(
X ≥ E[X] + λ

)
≤ exp

{
− λ2

2(
∑n
i=1 E[X2

i] +Mλ/3)

}
.

We obtain that

P
(∣∣∣b̃(v)− bc(v)

∣∣∣ ≥ λ) ≤ 2e−
τλ2

2(bc(v)+λ/3) .

If we assume the error λ to be small, this inequality is stronger than the previous one for
all values of bc(v) < 1

4 (a condition which holds for almost all nodes, in almost all graphs
considered). However, in order to apply this inequality, we have to deal with the fact that we
do not know bc(v) in advance, and hence we do not know when to stop. Intuitively, to solve
this problem, we make a “change of variable”, and we rewrite the previous inequality as

P
(

bc(v) ≤ b̃(v)− f
)
≤ ηL(v) and P

(
bc(v) ≥ b̃(v) + g

)
≤ ηU (v), (6.1)

for some functions f = f(b̃(v), ηL(v), τ), g = g(b̃(v), ηU (v), τ). Our algorithm fixes at the
beginning the values ηL(v), ηU (v) for each node v, and, at each step, it tests if f(b̃(v), ηL(v), τ)
and g(b̃(v), ηU (v), τ) are small enough. If this condition is satisfied, the algorithm stops. Note
that this approach lets us define very general stopping conditions, that might depend on the
centralities computed until now, on the single nodes, and so on.

Remark 6.3. Instead of fixing the values ηL(v), ηU (v) at the beginning, one might want to
decide them during the algorithm, depending on the outcome. However, this is not formally
correct, because of dependency issues (for example, Equation (6.1) does not even make sense,
if ηL(v), ηU (v) are random). Finding a way to overcome this issue is left as a challenging open
problem (more details are provided in Section 6.4).

In order to implement this idea, we still need to solve an issue: Equation (6.1) holds for
each fixed time τ , but the stopping time of our algorithm is a random variable τ , and there
might be dependency between the value of τ and the probability in Equation (6.1). To this
purpose, we use (a strenghtened version of) Azuma’s inequality, which is a stronger version
of Chernoff bound, that holds even if τ is a random variable.

Lemma 6.4 (strengthened version of Azuma inequality; for the definition of supermartingale
and for a proof see [54]). Let Xk be a supermartingale associated with a filter F , and assume
that Var(Xk|Fk−1) ≤ σ2, and Xk − E(Xk|Fk−1) ≤M . Then,

P (Xk ≥X0 + λ) ≤ e
−λ2

2kσ2+Mλ/3 .

However, to use this inequality, we need to assume that τ < ω for some deterministic ω:
in our algorithm, we choose

ω =
0.5

λ2

(
blog2(VD−2)c+ 1 + log

(
2

η

))
,

because, by the results in [136], after ω samples, the maximum error is at most λ, with
probability 1− η

2 . Furthermore, also f and g should be modified, since they now depend on
the value of ω. The pseudocode of the algorithm obtained is available in Algorithm 14 (as
was done previous approaches, we can easily parallelize the while loop in Line 5).

The correctness of the algorithm follows from the following theorem, which is the base of
our adaptive sampling, and which we prove in Section 6.4 (where we also define the functions
f and g).

98 6 - Computing Betweenness Centrality: the KADABRA Algorithm

Algorithm 14: Our algorithm for approximating betweenness centrality.
Input : a graph G = (V,E)

Output: for each v ∈ V , an approximation b̃(v) of bc(v) such that P
(
∀v, |b̃(v)− bc(v)| ≤ λ

)
≥ 1− η

1 ω ← c
λ2

(
blog2(VD−2)c+ 1 + log

(
2
η

))
;

2 (ηL(v), ηU (v))← computeEta();
3 τ ← 0;
4 foreach v ∈ V do b̃(v)← 0;
5 while τ < ω and not haveToStop (b̃, ηL, ηU , ω, τ) do
6 π = samplePath();
7 foreach v ∈ π do b̃(v)← b̃(v) + 1;
8 τ ← τ + 1;
9 end

10 foreach v ∈ V do b̃(v)← b̃(v)/τ ;
11 return b̃

Theorem 6.5. Let b̃(v) be the output of Algorithm 14, let τ be the number of samples at the
end of the algorithm, and let

f
(
b̃(v), ηL, ω, τ

)
=

1

τ
log

1

ηL

1

3
− ω

τ
+

√√√√(1

3
− ω

τ

)2

+
2b̃(v)ω

log 1
ηL

 , (6.2)

g
(
b̃(v), ηU , ω, τ

)
=

1

τ
log

1

ηU

1

3
+
ω

τ
+

√√√√(1

3
+
ω

τ

)2

+
2b̃(v)ω

log 1
ηU

 . (6.3)

Then, with probability 1− η, the following conditions hold:

• if τ = ω, |b̃(v)− bc(v)| < λ for all v;

• if τ < ω, −f(τ , b̃(v), ηL(v), ω) ≤ bc(v)− b̃(v) ≤ g(τ , b̃(v), ηU (v), ω) for all v.

Remark 6.6. This theorem says that, at the beginning of the algorithm, we know that, with
probability 1−η, one of the two conditions will hold when the algorithm stops, independently
on the final value of τ . This is essential to avoid the stochastic dependence that we discuss
in Section 6.4.

In order to apply this theorem, we choose λ such that our goal is reached if all centralities
are known with error at most λ. Then, we choose the function haveToStop in a way that
our goal is reached if the stopping condition is satisfied. This way, our algorithm is correct,
both if τ = ω and if τ < ω. For example, if we want to compute all centralities with
bounded absolute error, we simply choose λ as the bound we want to achieve, and we plug
the stopping condition f, g ≤ λ in the function haveToStop. Instead, if we want to compute
an approximation of the k most central nodes, we need a different definition of f and g, which
is provided in Section 6.7.

To complete the description of this algorithm, we need to specify the following functions.

samplePath In order to sample a path between two random nodes s and t, we use a balanced
bidirectional BFS, which is defined in Section 6.5.

computeEta The algorithm works for any choice of the ηL(v), ηU (v)s, but a good choice
yields better running times. We propose a heuristic way to choose them in Section 6.6.

6.4 - Correctness of the Algorithm (∗) 99

6.4 Correctness of the Algorithm

The algorithm explained in the previous section relies on the notion of adaptive sampling,
that is, the stopping time depends on the results obtained. The goal of this section is to
prove the correctness of the algorithm: first, we highlight the main technical difficulty in the
formalization of adaptive sampling, which previous works claiming analogous results did not
address. Then, we prove that our algorithm is correct, that is, we prove Theorem 6.5. Our
argument is quite general, and it could be easily adapted to formalize claims by previous
papers.

As already said, the problem is the stochastic dependence between the time τ in which
the algorithm terminates and the event Eτ = “at time τ , the estimate is within the required
distance from the true value”, since both τ and Eτ are functions of the same random sample.
Since it is typically possible to prove that P(¬Eτ) ≤ η for every fixed τ , one may be tempted
to argue that also P(¬Eτ) ≤ η, by applying these inequalities at time τ . However, this is not
correct: indeed, if we have no assumptions on τ , τ could even be defined as the smallest τ
such that Eτ does not hold!

More formally, if we want to link P(¬Eτ) to P(¬Eτ), we have to use the law of total
probability, that says that:

P(¬Eτ) =

∞∑
τ=1

P(¬Eτ | τ = τ)P(τ = τ) (6.4)

= P(¬Eτ | τ ≤ τ)P(τ ≤ τ) + P(¬Eτ | τ ≥ τ)P(τ ≥ τ). (6.5)

Then, if we want to bound P(¬Eτ), we need to assume that

P(¬Aτ | τ = τ) ≤ P(¬Aτ) or that P(¬Aτ | τ ≥ τ) ≤ P(¬Aτ), (6.6)

which would allow to bound Equation (6.4) or Equation (6.5) from above. Equation (6.6)
is implicitly assumed to be true in previous works adopting adaptive sampling techniques.
Unfortunately, because of the stochastic dependence, it is quite difficult to prove such in-
equalities, even if some approaches managed to overcome these difficulties [133].

In our case, we use a different technique, based on martingale theory. More specifically,
we assume that the stopping time τ is smaller than a given (fixed) integer ω, and we apply
our inequalities at time ω. Then, we consider two possible cases.

• If the algorithm stops at time ω, our algorithm yields the correct bounds with probability
1− η

2 , by Equation (3) in [136].

• Otherwise, we can use inequalities that hold at time ω to bound probabilities that hold
at time τ .

These items can be formalized in the following.

Definition 6.7. Given a graph G = (V,E), the vertex diameter VD of G is the maximum
number of nodes in a shortest path in G.

Remark 6.8. If the graph G is unweighted, the vertex diameter is always equal to D + 1,
where D is the diameter of the graph.

Lemma 6.9 ([136], Equation (3)). For some universal positive constant c ≈ 0.5 (see [113]),
for each η, λ > 0, and for

ω =
c

λ2

(
blog2(VD−2)c+ 1 + log

(
2

η

))
,

it holds
P(∃v ∈ V, |b̃ω(v)− bc(v)| ≥ λ) ≤ η

2
.

100 6 - Computing Betweenness Centrality: the KADABRA Algorithm

Lemma 6.10. For each node v, for every fixed real numbers ηL, ηU , and for every stopping
time τ < ω,

P
(

bc(v) ≤ b̃(v)− f
(
b̃(v), ηL, ω, τ

))
≤ ηL

P
(

bc(v) ≥ b̃(v) + g
(
b̃(v), ηU , ω, τ

))
≤ ηU .

It remains to prove Lemma 6.10 and to show that these lemmas imply Theorem 6.5. Let
us start with the latter implication: to simplify notation, we often omit the arguments of the
function f and g.

Proof of Theorem 6.5 assuming Lemmas 6.9 and 6.10. Let E1 be the event (τ = ω ∧ ∃v ∈
V, |b̃(v)−bc(v)| > λ), and let E2 be the event (τ < ω ∧ (∃v ∈ V,−f ≥ bc(v)− b̃(v)∨bc(v)−
b̃(v) ≥ g)). Let us also denote b̃τ (v) = 1

τ

∑τ
i=1Xi(v) (note that b̃τ (v) = b̃(v)).

By our choice of ω and by Equation (3) in [136],

P(E1) ≤ P(∃v ∈ V, |b̃ω(v)− bc(v)| > λ) ≤ η

2

where b̃ω(v) is the approximate betweenness of v after ω samples. Furthermore, by
Lemma 6.10,

P(E2) ≤
∑
v∈V

P(τ < ω ∧ −f ≥ bc(v)− b̃(v)) + P(τ < ω ∧ bc(v)− b̃(v) ≤ g)

≤
∑
v∈V

ηL(v) + ηU (v) ≤ η

2
.

By a union bound, P(E1∨E2) ≤ P(E1)+P(E1) ≤ η, concluding the proof of Theorem 6.5.

It only remains to prove Lemma 6.10

Proof of Lemma 6.10. Since Lemma 6.10 deals with a single node v, let us simply write
bc = bc(v), b̃ = b̃(v),Xi = Xi(v). Let us consider Y τ =

∑τ
i=1 (Xi − bc) (we recall that

Xi = 1 if v is in the i-th path sampled, Xi = 0 otherwise). Clearly, Y τ is a martingale, and
τ is a stopping time for Y τ : this means that also Zτ = Y min(τ ,τ) is a martingale.

Let us apply Lemma 6.4 to the martingales Z and −Z: for each fixed λL, λU > 0 we have

P (Zω ≥ λL) = P
(
τ b̃− τ bc ≥ λL

)
≤ exp

(
− λ2

L

2
(
ω bc +λL/3

)) = ηL, (6.7)

P (−Zω ≥ λU) = P
(
τ b̃− τ bc ≤ −λU

)
≤ exp

(
− λ2

U

2
(
ω bc +λU/3

)) = ηU . (6.8)

We now show how to prove Equation (6.2) from Equation (6.7). The way to derive Equa-
tion (6.3) from Equation (6.8) is analogous.

If we express λL as a function of ηL we get

λ2
L = 2 log

1

ηL

(
ω bc +

λL
3

)
⇐⇒ λ2

L −
2

3
λL log

1

ηL
− 2ω bc log

1

ηL
= 0,

which implies that

λL =
1

3
log

1

ηL
±

√
1

9

(
log

1

ηL

)2

+ 2ω bc log
1

ηL
.

6.5 - Balanced Bidirectional BFS 101

Since Equation (6.7) holds for any positive value λL, it also holds for the value corresponding
to the positive solution of this equation, that is,

λL =
1

3
log

1

ηL
+

√
1

9

(
log

1

ηL

)2

+ 2ω bc log
1

ηL
.

Plugging this value into Equation (6.7), we obtain

P

τ b̃− τ bc ≥ 1

3
log

1

ηL
+

√
1

9

(
log

1

ηL

)2

+ 2ω bc log
1

ηL

 ≤ ηL. (6.9)

By assuming b̃− bc ≥ 1
3τ log(1

ηL
), the event in Equation (6.9) can be rewritten as

(τ bc)
2 − 2 bc

(
τ 2b̃+ ω log

1

ηL
− 1

3
τ log

1

ηL

)
− 2

3
log

1

ηL
τ b̃+

(
τ b̃
)2

≥ 0.

By solving the previous quadratic equation w.r.t. bc we get

bc ≤ b̃ + log
1

ηL

 ω

τ 2
− 1

3τ
−

√√√√(b̃

log 1
ηL

+
ω

τ 2
− 1

3τ

)2

−

(
b̃

log 1
ηL

)2

+
2

3τ

b̃

log 1
ηL

 ,

where we only considered the solution which upper bounds bc, since we assumed b̃ − bc ≥
1
3τ log(1

ηL
). After simplifying the terms under the square root in the previous expression, we

get

bc ≤ b̃+ log
1

ηL

 ω

τ 2
− 1

3τ
−

√√√√(ω

τ 2
− 1

3τ

)2

+
2b̃ω

τ 2 log 1
ηL

 ,

which means that
P
(

bc ≤ b̃− f
(
b̃, ηL, ω, τ

))
≤ ηL,

concluding the proof.

6.5 Balanced Bidirectional BFS

The main routine of our algorithm, like in many previous algorithms, is to sample a random
path between two nodes s and t. The textbook algorithm performs a BFS from s, until
it hits t, needing time O(m). In the literature, researchers proposed various techniques to
improve this bound [148, 65, 95, 83]: one of several possibilities is to use the bidirectional
approach [148, 65, 95], which performs at the same time a BFS from s and a BFS from t.
Although bidirectional heuristic searches are common in route planning, this approach is not
established in the context of complex networks, probably because it is not clear if and why it
outperforms the standard BFS approach. As far as we know, bidirectional heuristic searches
are only implemented in NetworkX [87] and Sagemath [152], and there are very few references
in the literature. Here, we define a bidirectional BFS where we “grow the smallest ball”, and
we show that this heuristic can yield very good improvements in practice: indeed, in many
cases, it achieves a speedup close to

√
m.

Our procedure starts by setting `s = 0 and `t = 0, where `s is the current level in the
BFS from s and `t is the current level in the BFS from t. Assume that we have visited some
levels from s and t, and we choose to proceed in the visit from s (we define below how this
choice is made). If Γ`(s) is the set of nodes at distance ` from s, for each node v ∈ Γ`s(s),
and for each (out-)neighbor w of v we do the following:

102 6 - Computing Betweenness Centrality: the KADABRA Algorithm

• if w was never visited, we add w to Γ`s+1(s);

• if w was already visited in the BFS from s, we do not do anything;

• if w was visited in the BFS from t, we know that the distance between s and t is
dist(s, v) + 1 + dist(w, t), and consequently we can conclude the visit as soon as the
current level is finished.

If we choose to proceed in the visit from t, we follow the same procedure (apart from the fact
that, in the directed case, w is an in-neighbor of v instead of an out-neighbor).

The algorithm stops as soon as Γ`s(s) or Γ`t(t) is empty (in this case, s and t are not
connected), or as soon as we have visited a node v from both s and t, and we have concluded
the visit of the level of v (since we have to sample a random path, we need to compute all
the possible nodes v that are in the middle of a shortest path from s to t).

In order to extract the path, we compute all edges (v, w) such that v has been visited
from s, and w has been visited from t, and we choose at random one of these edges, where the
probability of choosing (v, w) is proportional to the number of σsv of shortest paths from s to
v, times the number σwt of shortest paths from w to t (note that σsv, σwt can be computed
during the BFS as in [43]).

Then, the path is selected by considering the concatenation of a random path from s to
v, the edge (v, w), and a random path from w to t (these random paths can be easily chosen
by backtracking, as shown in [136]).
Remark 6.11. Note that an aspect often neglected in previous work when it comes to com-
puting shortest paths is the fact that the number of shortest paths between a pair of nodes
may be exponential, thus requiring to work with a linear number of bits. While real-world
complex networks are typically sparse with logarithmic diameter, in order to avoid such issue
it is sufficient to assume that addition and comparison require constant time.

It remains to define which level should be visited at each step. To this purpose, since the
time needed to process all nodes at distance `s from s is proportional to

∑
v∈Γ`s (s) deg(v), we

decide to proceed in the visit from s if
∑
v∈Γ`s (s) deg(v) ≤

∑
w∈Γ`t (t) deg(w), from t otherwise.

6.6 How to Choose ηL(v), ηU(v)

In Section 6.4, we proved that our algorithm works for any choice of the values ηL(v), ηU (v).
In this section, we show how we can heuristically compute such values, in order to obtain the
best performances.

For each node v, let λL(v), λU (v) be the lower and the upper maximum error that we
want to obtain on the betweenness of v: if we simply want all errors to be smaller than λ, we
choose λL(v), λU (v) = λ, but for other purposes different values might be needed. We want
to minimize the time τ such that the approximation of the betweenness at time τ is in the
confidence interval required. In formula, we want to minimize

min

{
τ ∈ N : ∀v ∈ V,

(
f
(
b̃τ (v), ηL(v), ω, τ

)
≤ λL(v)∧

g
(
b̃τ (v), ηU (v), ω, τ

)
≤ λU (v)

)}
(6.10)

where b̃τ (v) is the approximation of bc(v) obtained at time τ , and

f
(
τ, b̃τ , ηL, ω

)
=

1

τ
log

1

ηL

1

3
− ω

τ
+

√√√√(1

3
− ω

τ

)2

+
2b̃τω

log 1
ηL

 and

6.7 - Computing the k Most Central Nodes (∗) 103

g
(
τ, b̃τ , ηU , ω

)
=

1

τ
log

1

ηU

1

3
+
ω

τ
+

√√√√(1

3
+
ω

τ

)2

+
2b̃τω

log 1
ηU

 .

The goal of this section is to provide deterministic values of ηL(v), ηU (v) that minimize
the value in Equation (6.10), and such that

∑
v∈V ηL(v)+ηU (v) < η

2 . To obtain our estimate,
we replace b̃τ (v) with an approximation b̃(v), that we compute by sampling α paths, before
starting the algorithm (in our code, α = ω

100). Furthermore, we consider a simplified version
of Equation (6.10): in most cases, λL is much smaller than all other quantities in play, and
since ω is proportional to 1

λ2
L
, we can safely assume

f(τ, b̃(v), ηL(v), ω) ≈

√
2b̃(v)ω

τ2
log

1

ηL
,

g(τ, b̃(v), ηU (v), ω) ≈

√
2b̃(v)ω

τ2
log

1

ηU
.

Hence, in place of the value in Equation (6.10), our heuristic tries to minimize

min

τ ∈ N : ∀v ∈ V,

√
2b̃(v)ω

τ2
log

1

ηL(v)
≤ λL(v) ∧

√
2b̃(v)ω

τ2
log

1

ηU (v)
≤ λU (v)

 .

Solving with respect to τ , we are trying to minimize

max
v∈V

max

√√√√ 2b̃(v)ω(

λL(v)
)2 log

1

ηL(v)
,

√√√√ 2b̃(v)ω(
λU (v)

)2 log
1

ηU (v)

 .

which is the same as minimizing

max
v∈V

max

(
cL(v) log

1

ηL(v)
, cU (v) log

1

ηU (v)

)
for some constants cL(v), cU (v), conditioned on

∑
v∈V ηL(v) + ηU (v) < η

2 . We claim that,
among the possible choices of ηL(v), ηU (v), the best choice makes all the terms in the
maximum equal: otherwise, if two terms were different, we would be able to slightly in-
crease and decrease the corresponding values, in order to decrease the maximum. This
means that, for some constant C, for each v, cL(v) log 1

ηL(v) = cU (v) log 1
ηL(v) = C, that

is, ηL(v) = exp(− C
cL(v)), ηU (v) = exp(− C

cU (v)). In order to find the largest constant C such
that

∑
v∈V ηL(v) + ηU (v) ≤ η

2 , we use a binary search procedure on all possible constants C.
Finally, if cL(v) = 0 or cU (v) = 0, this procedure chooses ηL(v) = 0: to avoid this

problem, we impose
∑
v∈V ηL(v) + ηU (v) ≤ η

2 − εη, and we add εη
2n to all the ηL(v)s and all

the ηU (v)s (in our code, we choose ε = 0.001). The pseudocode of the algorithm is available
in Algorithm 15.

6.7 Computing the k Most Central Nodes

Differently from previous approaches, our algorithm is more flexible, making it possible to
compute the betweenness centrality of different nodes with different precision. This feature
can be exploited if we only want to rank the nodes: for instance, if v is much more central
than all the other nodes, we do not need a very precise estimation on the centrality of v to
say that it is the top node. Following this idea, in this section we adapt our approach to

104 6 - Computing Betweenness Centrality: the KADABRA Algorithm

Algorithm 15: The function computeEta.
Input : a graph G = (V,E), and two values λL(v), λU (v) for each v ∈ V
Output: for each v ∈ V , two values ηL(v), ηU (v)

1 α← ω
100

;
2 ε← 0.0001;
3 foreach i ∈ [1, α] do
4 π = samplePath();
5 foreach v ∈ π do b̃(v)← b̃(v) + 1;
6 end
7 foreach v ∈ V do
8 b̃(v)← b̃(v)/α;

9 cL(v)← 2b̃(v)ω

(λL(v))2
;

10 cU (v)← 2b̃(v)ω

(λU (v))2
;

11 end

12 Binary search to find C such that
∑
v∈V exp

(
− C
cL(v)

)
+ exp

(
− C
cU (v)

)
= η

2
− εη;

13 foreach v ∈ V do
14 ηL(v)← exp

(
− C
cL(v)

)
+ εη

2n
;

15 ηU (v)← exp
(
− C
cU (v)

)
+ εη

2n
;

16 end
17 return b;

the approximation of the ranking of the k most central nodes: as far as we know, this is
the first approach which computes the ranking without computing a λ-approximation of all
betweenness centralities, allowing significant speedups. Clearly, we cannot expect our ranking
to be always correct, otherwise the algorithm does not terminate if two of the k most central
nodes have the same centrality. For this reason, the user fixes a parameter λ, and, for each
node v, the algorithm does one of the following:

• it provides the exact position of v in the ranking;

• it guarantees that v is not in the top-k;

• it provides a value b̃(v) such that |bc(v)− b̃(v)| ≤ λ.

In other words, similarly to what is done in [136], the algorithm provides a set of k′ ≥ k
nodes containing the top-k nodes, and for each pair of nodes v, w in this subset, either we
can rank correctly v and w, or v and w are almost even, that is, |bc(v) − bc(w)| ≤ 2λ. In
order to obtain this result, we plug into Algorithm 14 the aforementioned conditions in the
function haveToStop (see Algorithm 16).

Then, we have to adapt the function computeEta to optimize the ηL(v)s and the ηU (v)s
to the new stopping condition: in other words, we have to choose the values of λL(v) and
λU (v) that should be plugged into the function computeEta (we recall that the heuristic
computeEta chooses the ηL(v)s so that we can guarantee as fast as possible that b̃(v)−λL(v) ≤
bc(v) ≤ b̃(v) + λU (v)). To this purpose, we estimate the betweenness of all nodes with
few samples and we sort all nodes according to these approximate values b̃(v), obtaining
v1, . . . , vn. The basic idea is that, for the first k nodes, we set λU (vi) = b̃(vi−1)−b̃(vi)

2 , and

λL(vi) = b̃(vi)−b̃(vi+1)
2 (the goal is to find confidence intervals that separate the betweenness

of vi from the betweenness of vi+1 and vi−1). For nodes that are not in the top-k, we choose
λL(v) = 1 and λU (v) = b̃(vk)−λL(vk)− b̃(vi) (the goal is to prove that vi is not in the top-k).
Finally, if b̃(vi)− b̃(vi+1) is small, we simply set λL(vi) = λU (vi) = λL(vi+1) = λU (vi+1) = λ,
because we do not know if bc(vi+1) > bc(vi), or viceversa.

6.8 - Experimental Results 105

Algorithm 16: The function haveToStop to compute the top-k nodes.
Input : for each node v, the values of b̃(v), ηL(v), ηU (v), and the values of ω and τ
Output: True if the algorithm should stop, False otherwise

1 Sort nodes in decreasing order of b̃(v), obtaining v1, . . . , vn;
2 for i ∈ [1, . . . , k] do
3 if f(b̃(vi), ηL(vi), ω, τ) > λ or g(b̃(vi), ηU (vi), ω, τ) > λ then
4 if b̃(vi−1)− f(b̃(vi−1), ηL(vi−1), ω, τ) < b̃(vi) + g(b̃(vi), ηU (vi), ω, τ) or

b̃(vi)− f(b̃(vi), ηL(vi), ω, τ) < b̃(vi+1) + g(b̃(vi+1), ηU (vi+1), ω, τ) then
5 return False;
6 end
7 end
8 end
9 for i ∈ [k + 1, . . . , n] do

10 if f(b̃(vi), ηL(vi), ω, τ) > λ or g(b̃(vi), ηU (vi), ω, τ) > λ then
11 if b̃(vk)− f(b̃(vk), ηL(vk), ω, τ) < b̃(vi) + g(b̃(vi), ηU (vi), ω, τ) then
12 return False;
13 end
14 end
15 end
16 return True;

6.8 Experimental Results

In this section, we test our algorithm on several real-world networks, in order to evaluate its
performances. The platform for our tests is a server with 1515 GB RAM and 48 Intel(R)
Xeon(R) CPU E7-8857 v2 cores at 3.00GHz, running Debian GNU Linux 8. The algorithms
are implemented in C++, and they are compiled using gcc 5.3.1. The source code of our algo-
rithm is available at https://sites.google.com/a/imtlucca.it/borassi/publications.

6.8.1 Comparison with the State of the Art

The first experiment compares the performances of our algorithm KADABRA with the state
of the art. First, we compare our algorithm with the RK algorithm [136], available in the
open-source NetworKit framework [151]. This algorithm uses the same estimator as our
algorithm, but the stopping condition is different: it simply stops after sampling

k =
c

ε2

(⌊
log2(VD−2)

⌋
+ 1 + log

(
1

η

))
,

and it uses a heuristic to upper bound the vertex diameter. Following suggestions by the
author of the NetworKit implementation, we set to 20 the number of samples used in the
latter heuristic [19].

The other algorithm we compare with is the ABRA algorithm [137], available at http:
//matteo.rionda.to/software/ABRA-radebetw.tbz2. This algorithm samples pairs of
nodes (s, t), and it adds the fraction of st-paths passing from v to the approximation of
the betweenness of v, for each node v. The stopping condition is based on a key result in
statistical learning theory, and there is a scheduler that decides when it should be tested.
Following the suggestions by the authors, we use both the automatic scheduler ABRA-Aut,
which uses a heuristic approach to decide when the stopping condition should be tested, and
the geometric scheduler ABRA-1.2, which tests the stopping condition after (1.2)ik iterations,
for each integer i.

The test is performed on a dataset made by 15 undirected and 15 directed real-world
networks, taken from the datasets SNAP (snap.stanford.edu/), LASAGNE (piluc.dsi.
unifi.it/lasagne), and KONECT (http://konect.uni-koblenz.de/networks/). As in
[137], we have considered all values of λ ∈ {0.03, 0.025, 0.02, 0.015, 0.01, 0.005}, and η = 0.1.

https://sites.google.com/a/imtlucca.it/borassi/publications
http://matteo.rionda.to/software/ABRA-radebetw. tbz2
http://matteo.rionda.to/software/ABRA-radebetw. tbz2
snap.stanford.edu/
piluc.dsi.unifi.it/lasagne
piluc.dsi.unifi.it/lasagne
http://konect.uni-koblenz.de/networks/

106 6 - Computing Betweenness Centrality: the KADABRA Algorithm

a
d
v
o
g
a
to

a
s2
0
0
0
0
1
0
2

ca
-G

rQ
c

ca
-H

ep
T
h

C
_
el
eg
a
n
s

co
m
-a
m
a
zo
n
.a
ll

d
ip
2
0
0
9
0
1
2
6
_
M
A
X

D
_
m
el
a
n
o
g
a
st
er

em
a
il
-E

n
ro
n

H
C
-B

IO
G
R
ID

H
o
m
o
_
sa
p
ie
n
s

h
p
rd
_
p
p

M
u
s_

m
u
sc
u
lu
s

o
re
g
o
n
1
_
0
1
0
5
2
6

o
re
g
o
n
2
_
0
1
0
5
2
6

0.1 sec
1 sec

1 min

1 hour

Network

T
im

e

Undirected

a
s-
ca
id
a
2
0
0
7
1
1
0
5

cfi
n
d
er
-g
o
o
g
le

ci
t-
H
ep

T
h

eg
o
-g
p
lu
s

eg
o
-t
w
it
te
r

fr
ee
a
ss
o
c

la
sa
g
n
e-
sp
a
n
is
h
b
o
o
k

o
p
sa
h
l-
o
p
en

fl
ig
h
ts

p
2
p
-G

n
u
te
ll
a
3
1

p
o
lb
lo
g
s

so
c-
E
p
in
io
n
s1

su
b
el
j-
co
ra
-c
o
ra

su
b
el
j-
jd
k
-j
d
k

su
b
el
j-
ju
n
g
-j
-j
u
n
g
-j

w
ik
i-
V
o
te

Network

Directed KADABRA
RK

ABRA-Aut
ABRA-1.2

Figure 6.1. The time needed by the different algorithms, on all the graphs of our dataset.

a
d
v
o
g
a
to

a
s2
0
0
0
0
1
0
2

ca
-G

rQ
c

ca
-H

ep
T
h

C
_
el
eg
a
n
s

co
m
-a
m
a
zo
n
.a
ll

d
ip
2
0
0
9
0
1
2
6
_
M
A
X

D
_
m
el
a
n
o
g
a
st
er

em
a
il
-E

n
ro
n

H
C
-B

IO
G
R
ID

H
o
m
o
_
sa
p
ie
n
s

h
p
rd
_
p
p

M
u
s_

m
u
sc
u
lu
s

o
re
g
o
n
1
_
0
1
0
5
2
6

o
re
g
o
n
2
_
0
1
0
5
2
6

0

0.2

0.4

0.6

0.8

1

Network

α

Undirected Networks

a
s-
ca
id
a
2
0
0
7
1
1
0
5

cfi
n
d
er
-g
o
o
g
le

ci
t-
H
ep
T
h

eg
o
-g
p
lu
s

eg
o
-t
w
it
te
r

fr
ee
a
ss
o
c

la
sa
g
n
e-
sp
a
n
is
h
b
o
o
k

o
p
sa
h
l-
o
p
en
fl
ig
h
ts

p
2
p
-G

n
u
te
ll
a
3
1

p
o
lb
lo
g
s

so
c-
E
p
in
io
n
s1

su
b
el
j-
co
ra
-c
o
ra

su
b
el
j-
jd
k
-j
d
k

su
b
el
j-
ju
n
g
-j
-j
u
n
g
-j

w
ik
i-
V
o
te

Network

Directed Networks

Figure 6.2. The exponent α such that the average number of edges visited during a bidirectional BFS is nα.

All the algorithms have to provide an approximation b̃(v) of bc(v) for each v such that

P
(
∀v,
∣∣∣b̃(v)− bc(v)

∣∣∣ ≤ λ) ≥ 1− η.

In Figure 6.1, we report the time needed by the different algorithms on every graph for
λ = 0.005 (the behavior with different values of λ is very similar). More detailed results are
reported in Section 6.8.2.

From the figure, we see that KADABRA is much faster than all the other algorithms, on
all graphs: on average, our algorithm is about 100 times faster than RK in undirected graphs,
and about 70 times faster in directed graphs; it is also more than 1 000 times faster than
ABRA. The latter value is due to the fact that the ABRA algorithm has large running times
on few networks: in some cases, it did not even conclude its computation within one hour.
The authors confirmed that this behavior might be due to some bug in the code, which seems
to affect it only on specific graphs: indeed, in many networks, the performances of ABRA are
better than those of the RK algorithm (but, still, not better than KADABRA).

In order to explain these data, we take a closer look at the improvements obtained through
the bidirectional BFS, by considering the average number of edges mavg that the algorithm
visits in order to sample a shortest path (for all existing approaches, mavg = m, since they

6.8 - Experimental Results 107

0.01 0.02 0.03

104

105

106

λ

It
er
at
io
ns

Undirected Networks

0.01 0.02 0.03

λ

Directed Networks KADABRA
RK

ABRA-Aut
ABRA-1.2

Figure 6.3. The average number of samples needed by the different algorithms.

perform a full BFS). In Figure 6.2, for each graph in our dataset, we plot α =
log(mavg)

log(m)

(intuitively, this means that the average number of edges visited is mα).
The figure shows that, apart from few cases, the number of edges visited is close to

n
1
2 , confirming the results in Section 6.5. This means that, since many of our networks have

approximately 10 000 edges, the bidirectional BFS is about 100 times faster than the standard
BFS. Finally, for each value of λ, we report in Figure 6.3 the number of samples needed by
all the algorithms, averaged over all the graphs in the dataset.

From the figure, KADABRA needs to sample the smallest amount of shortest paths, and
the average improvement over RK grows when λ tends to 0, from a factor 1.14 (resp., 1.14) if
λ = 0.03, to a factor 1.79 (resp., 2.05) if λ = 0.005 in the case of undirected (resp., directed)
networks. Again, the behavior of ABRA is highly influenced by the behavior on few networks,
and as a consequence the average number of samples is higher. In any case, also in the graphs
where ABRA has good performances, KADABRA still needs a smaller number of samples.

6.8.2 Detailed Experimental Results
In this section, we provide detailed results of the running time and the number of itera-
tion performed by the different algorithms, and the average number of edges visited by the
KADABRA algorithm (for all the other algorithm, this number is m, because they perform
a whole BFS to compute a shortest path).

108 6 - Computing Betweenness Centrality: the KADABRA Algorithm

Table 6.1. Detailed experimental results (undirected graphs). Empty values correspond to graphs on which
the algorithm needed more than 1 hour.

Number of iterations Time (s) Edges
Graph KADABRA RK ABRA-Aut ABRA-1.2 KADABRA RK ABRA-Aut ABRA-1.2 KADABRA
λ = 0.005
advogato 64427 126052 174728 185998 0.193 11.450 9.557 10.498 261.2
as20000102 115797 126052 18329844 4126626 0.231 6.990 611.584 136.764 377.6
ca-GrQc 61611 146052 142982 129165 0.126 5.574 3.500 2.839 353.4
ca-HepTh 31735 146052 121587 129165 0.222 14.921 7.389 8.168 9.9
C_elegans 69729 146052 204634 185998 0.132 6.876 5.693 5.261 270.7
com-amazon.all 40711 166052 69708 74747 0.340 122.020 12.011 11.849 21.9
dip20090126_MAX 156552 166052 1.374 34.595 15354.9
D_melanogaster 51227 126052 144680 154998 0.123 19.253 15.061 16.882 520.8
email-Enron 74745 146052 257989 267838 0.280 79.296 101.529 106.278 1408.0
HC-BIOGRID 78804 146052 245780 223198 0.177 7.751 7.534 6.951 713.2
Homo_sapiens 60060 146052 156973 154998 0.151 32.078 23.716 24.449 643.8
hprd_pp 59125 146052 151499 154998 0.127 18.323 13.425 13.458 456.4
Mus_musculus 92081 146052 504669 385688 0.168 4.058 7.723 6.083 226.6
oregon1_010526 114829 126052 6798931 2865712 0.228 13.281 442.370 185.711 681.6
oregon2_010526 115764 126052 5714183 2865712 0.236 15.823 452.554 229.234 822.2
λ = 0.010
advogato 19811 31513 47076 48243 0.081 2.804 2.576 2.788 258.2
as20000102 29062 31513 2688614 1070372 0.071 1.777 88.886 35.049 377.3
ca-GrQc 18535 36513 37529 33501 0.049 1.417 0.987 0.753 350.6
ca-HepTh 13761 36513 31721 33501 0.188 3.771 2.078 2.275 10.0
C_elegans 19888 36513 54327 48243 0.048 1.803 1.586 1.483 269.4
com-amazon.all 14641 41513 18007 19386 0.312 31.004 5.196 7.623 21.5
dip20090126_MAX 39314 41513 0.395 8.578 15301.7
D_melanogaster 15136 31513 37219 40202 0.063 4.983 3.891 4.715 519.9
email-Enron 21637 36513 65392 69471 0.198 19.877 24.997 27.296 1387.2
HC-BIOGRID 22924 36513 62413 57892 0.052 1.979 1.989 1.906 712.5
Homo_sapiens 20273 36513 41006 40202 0.085 7.876 6.442 6.636 642.7
hprd_pp 18403 36513 39994 40202 0.074 4.348 4.097 3.714 456.4
Mus_musculus 25146 36513 130384 100040 0.061 1.055 1.965 1.718 223.9
oregon1_010526 30514 31513 1104167 743313 0.087 3.254 70.383 47.740 683.3
oregon2_010526 29117 31513 954515 743313 0.088 3.983 73.942 59.103 822.1
λ = 0.015
advogato 9570 14006 21027 22204 0.050 1.428 1.227 1.299 261.0
as20000102 13035 14006 705483 492651 0.047 0.776 22.939 16.136 377.6
ca-GrQc 8668 16228 17419 15419 0.031 0.637 0.493 0.361 345.8
ca-HepTh 7524 16228 15002 15419 0.167 1.641 0.939 1.050 11.5
C_elegans 10956 16228 25233 22204 0.034 0.782 0.740 0.732 267.6
com-amazon.all 8228 18451 15419 0.301 13.814 7.785 21.9
dip20090126_MAX 17578 18451 0.203 3.851 15197.2
D_melanogaster 9350 14006 17229 18503 0.053 2.216 1.904 2.182 519.3
email-Enron 11209 16228 29134 31974 0.170 8.845 10.510 12.423 1367.4
HC-BIOGRID 12694 16228 28805 26645 0.043 0.858 0.946 0.947 708.6
Homo_sapiens 10142 16228 18491 18503 0.072 3.717 3.076 3.061 640.4
hprd_pp 10659 16228 17969 18503 0.056 1.919 1.719 1.752 451.5
Mus_musculus 11825 16228 59756 46043 0.033 0.458 0.906 0.812 222.8
oregon1_010526 13662 14006 426845 342118 0.056 1.522 26.420 21.871 681.4
oregon2_010526 13024 14006 333638 342118 0.060 1.773 26.070 27.298 833.6

6.8 - Experimental Results 109

Table 6.2. Detailed experimental results (undirected graphs). Empty values correspond to graphs on which
the algorithm needed more than 1 hour.

Number of iterations Time (s) Edges
Graph KADABRA RK ABRA-Aut ABRA-1.2 KADABRA RK ABRA-Aut ABRA-1.2 KADABRA
λ = 0.020
advogato 5874 7879 11993 12915 0.054 0.710 0.665 0.765 260.3
as20000102 7436 7879 312581 238814 0.037 0.441 10.066 7.819 376.2
ca-GrQc 5313 9129 9939 10762 0.032 0.356 0.293 0.268 347.9
ca-HepTh 5115 9129 8708 8968 0.191 0.891 0.694 0.611 10.5
C_elegans 7172 9129 14871 12915 0.030 0.439 0.436 0.439 263.5
com-amazon.all 5467 10379 12232 10762 0.331 7.683 4.338 5.459 17.9
dip20090126_MAX 9966 10379 0.148 2.165 15188.3
D_melanogaster 5610 7879 10201 10762 0.056 1.236 1.265 1.306 520.9
email-Enron 7458 9129 16443 15498 0.174 4.916 6.102 6.034 1371.7
HC-BIOGRID 8459 9129 17406 15498 0.026 0.505 0.602 0.582 716.6
Homo_sapiens 6292 9129 10481 10762 0.064 1.944 1.672 1.814 644.8
hprd_pp 6611 9129 10501 10762 0.050 1.089 0.930 1.050 449.8
Mus_musculus 7227 9129 31634 26782 0.026 0.255 0.507 0.532 221.0
oregon1_010526 7733 7879 220948 199011 0.051 0.863 13.584 12.989 679.2
oregon2_010526 7381 7879 152242 165842 0.059 1.031 11.676 13.290 836.0
λ = 0.025
advogato 3883 5043 7439 7110 0.052 0.450 0.421 0.468 263.4
as20000102 4829 5043 130506 157779 0.033 0.285 4.097 5.108 373.5
ca-GrQc 3982 5843 6427 5925 0.028 0.242 0.180 0.162 342.1
ca-HepTh 3773 5843 6016 5925 0.176 0.573 0.374 0.416 11.8
C_elegans 4477 5843 9557 8532 0.025 0.292 0.293 0.293 266.6
com-amazon.all 4059 6643 58995 14745 0.338 4.744 9.644 7.217 21.3
dip20090126_MAX 6457 6643 0.125 1.397 15193.8
D_melanogaster 3993 5043 6279 7110 0.056 0.793 0.827 0.870 522.6
email-Enron 4576 5843 11001 12287 0.574 3.289 3.888 4.705 1381.5
HC-BIOGRID 5940 5843 11109 10239 0.029 0.321 0.414 0.404 714.0
Homo_sapiens 4796 5843 7109 7110 0.077 1.245 1.154 1.215 647.2
hprd_pp 5071 5843 6772 7110 0.052 0.687 0.579 0.647 446.3
Mus_musculus 4477 5843 18626 17694 0.026 0.168 0.302 0.385 219.8
oregon1_010526 5027 5043 92520 109568 0.058 0.516 5.762 7.014 681.0
oregon2_010526 4763 5043 86287 91306 0.050 0.638 7.140 7.420 847.5
λ = 0.030
advogato 3256 3502 5521 5090 0.048 0.361 0.335 0.322 260.6
as20000102 3388 3502 122988 94140 0.029 0.199 3.899 3.182 378.7
ca-GrQc 2981 4057 4686 4241 0.025 0.169 0.145 0.175 344.7
ca-HepTh 2992 4057 4022 4241 0.190 0.435 0.286 0.341 7.9
C_elegans 3707 4057 6905 6108 0.026 0.198 0.218 0.217 265.9
com-amazon.all 3157 4613 39917 12668 0.330 3.631 8.491 6.852 17.5
dip20090126_MAX 4499 4613 12373086 0.300 0.972 1958.083 15199.0
D_melanogaster 2893 3502 4883 5090 0.052 0.562 0.620 0.807 510.4
email-Enron 3619 4057 7321 7330 0.172 2.735 2.724 2.806 1399.7
HC-BIOGRID 3883 4057 7499 7330 0.024 0.367 0.316 0.307 720.8
Homo_sapiens 3322 4057 4982 5090 0.066 0.897 0.842 0.877 654.2
hprd_pp 3355 4057 5028 5090 0.048 0.478 0.458 0.503 448.8
Mus_musculus 3806 4057 14290 10556 0.033 0.127 0.237 0.233 221.4
oregon1_010526 3542 3502 85854 78450 0.052 0.366 5.402 5.039 675.7
oregon2_010526 3355 3502 61841 65375 0.048 0.509 4.972 5.302 822.8

110 6 - Computing Betweenness Centrality: the KADABRA Algorithm

Table 6.3. Detailed experimental results (directed graphs). Empty values correspond to graphs on which the
algorithm needed more than 1 hour.

Number of iterations Time (s) Edges
Graph KADABRA RK ABRA-Aut ABRA-1.2 KADABRA RK ABRA-Aut ABRA-1.2 KADABRA
λ = 0.005
as-caida20071105 103488 146052 546951 462826 0.253 35.652 96.312 85.201 1066.4
cfinder-google 137313 146052 0.820 14.190 554.4
cit-HepTh 98054 166052 481476 462826 0.579 22.651 38.339 37.720 5773.1
ego-gplus 37862 66052 2388093 0.136 6.266 11.912 1.9
ego-twitter 37125 66052 154998 0.178 6.181 4.804 2.3
freeassoc 41602 166052 89424 89697 0.116 9.384 1.036 0.997 223.5
lasagne-spanishbook 112266 146052 8918751 4126626 0.250 17.374 687.815 318.784 552.8
opsahl-openflights 73744 146052 200164 185998 0.179 6.191 5.165 4.849 431.1
p2p-Gnutella31 39193 166052 81335 89697 0.254 50.542 10.213 10.662 162.1
polblogs 71423 126052 387278 321406 0.174 1.165 3.522 3.017 190.3
soc-Epinions1 58223 146052 109607 107637 0.671 100.516 62.524 62.167 671.9
subelj-cora-cora 68112 186052 180740 185998 0.185 19.012 8.464 8.873 440.4
subelj-jdk-jdk 42361 146052 84549 89697 0.110 2.955 0.230 0.257 51.5
subelj-jung-j-jung-j 43637 126052 84225 89697 0.216 2.397 0.238 0.211 45.9
wiki-Vote 47003 126052 100153 107637 0.131 5.916 2.990 3.219 162.4
λ = 0.010
as-caida20071105 30382 36513 132997 120048 0.135 8.902 22.251 20.315 1066.1
cfinder-google 34452 36513 0.156 3.664 553.2
cit-HepTh 27203 41513 117633 120048 0.255 5.654 8.803 9.677 5798.8
ego-gplus 13123 16513 4602412 0.085 1.584 22.510 2.3
ego-twitter 13310 16513 83366 0.086 1.518 3.500 2.2
freeassoc 13222 41513 23586 23264 0.080 2.335 0.238 0.227 220.7
lasagne-spanishbook 32527 36513 1366576 1070372 0.101 4.339 104.916 83.610 553.4
opsahl-openflights 22473 36513 52196 48243 0.059 1.475 1.348 1.339 432.0
p2p-Gnutella31 13101 41513 21567 23264 0.192 12.950 2.677 2.831 162.1
polblogs 22286 31513 101466 83366 0.046 0.298 1.078 0.834 190.6
soc-Epinions1 17061 36513 28493 27917 0.320 27.194 16.516 15.974 659.5
subelj-cora-cora 23078 46513 47936 48243 0.128 4.797 1.988 2.101 432.4
subelj-jdk-jdk 14047 36513 22038 23264 0.066 0.734 0.099 0.075 52.2
subelj-jung-j-jung-j 14894 36513 22266 23264 0.064 0.696 0.113 0.083 46.4
wiki-Vote 17380 31513 26352 27917 0.088 1.446 0.792 0.870 155.7
λ = 0.015
as-caida20071105 14157 16228 55049 55252 0.477 3.963 8.518 8.914 1059.6
cfinder-google 15400 16228 0.123 1.666 558.1
cit-HepTh 13002 18451 47035 46043 0.232 2.529 3.807 3.766 5883.0
ego-gplus 7205 7340 2118317 0.080 0.710 12.808 2.2
ego-twitter 7403 7340 1958981 114573 0.082 0.704 14.021 5.304 2.3
freeassoc 7095 18451 10956 10707 0.297 1.072 0.115 0.110 222.0
lasagne-spanishbook 14542 16228 437041 410542 0.068 1.936 34.098 33.153 552.8
opsahl-openflights 11550 16228 24433 22204 0.034 0.649 0.643 0.648 433.9
p2p-Gnutella31 7227 18451 10002 10707 0.190 5.732 1.317 1.444 157.1
polblogs 10296 14006 46648 38369 0.029 0.136 0.516 0.435 189.5
soc-Epinions1 9273 16228 13571 12849 0.450 12.115 7.661 7.629 662.0
subelj-cora-cora 11297 20673 20940 22204 0.502 2.135 0.937 1.073 445.6
subelj-jdk-jdk 8360 14006 10045 10707 0.052 0.288 0.080 0.049 51.6
subelj-jung-j-jung-j 8712 16228 10319 10707 0.046 0.312 0.068 0.042 45.6
wiki-Vote 8668 14006 12406 12849 0.408 0.659 0.380 0.429 152.6

6.9 - Internet Movies Database Case Study 111

Table 6.4. Detailed experimental results (directed graphs). Empty values correspond to graphs on which the
algorithm needed more than 1 hour.

Number of iterations Time (s) Edges
Graph KADABRA RK ABRA-Aut ABRA-1.2 KADABRA RK ABRA-Aut ABRA-1.2 KADABRA
λ = 0.020
as-caida20071105 9086 9129 31242 32139 0.104 2.226 4.954 5.087 1064.2
cfinder-google 8745 9129 0.353 0.946 551.9
cit-HepTh 8679 10379 27755 32139 1.249 1.442 2.225 2.684 5758.0
ego-gplus 4785 4129 1478684 0.081 0.395 9.234 2.6
ego-twitter 4950 7879 138201 0.083 0.743 5.079 2.4
freeassoc 4268 10379 6509 6227 0.065 0.609 0.078 0.073 216.4
lasagne-spanishbook 8338 9129 294793 286577 0.058 1.074 22.405 22.468 555.0
opsahl-openflights 7392 9129 14202 12915 0.029 0.364 0.390 0.391 432.3
p2p-Gnutella31 4697 10379 5700 6227 0.190 3.162 0.695 0.816 156.7
polblogs 6325 7879 25593 22318 0.023 0.076 0.283 0.252 188.4
soc-Epinions1 5489 9129 7686 7473 0.457 6.738 4.506 4.335 651.8
subelj-cora-cora 6325 11629 12437 12915 0.500 1.203 0.571 0.520 450.8
subelj-jdk-jdk 5456 9129 6070 6227 0.191 0.192 0.062 0.044 52.3
subelj-jung-j-jung-j 5643 9129 6227 0.217 0.176 0.045 46.6
wiki-Vote 4939 7879 7125 7473 0.075 0.368 0.221 0.259 152.2
λ = 0.025
as-caida20071105 5723 5843 21020 21233 0.022 1.465 3.129 3.340 1093.4
cfinder-google 6275 5843 0.019 0.648 758.0
cit-HepTh 5206 6643 15915 21233 0.034 0.940 1.351 1.891 6130.5
ego-gplus 2989 5043 4200646 0.013 0.485 20.309 2.6
ego-twitter 2958 2643 157779 0.012 0.248 6.291 2.4
freeassoc 2804 6643 4285 4114 0.009 0.399 0.061 0.058 261.5
lasagne-spanishbook 5409 5043 129999 131482 0.013 0.592 10.040 10.221 626.1
opsahl-openflights 4557 5843 10116 8532 0.009 0.236 0.290 0.267 561.3
p2p-Gnutella31 3069 6643 3931 4114 0.043 2.149 0.590 0.663 176.8
polblogs 3880 5043 15986 14745 0.007 0.049 0.185 0.176 241.9
soc-Epinions1 3689 5843 5060 4937 0.188 4.158 2.798 2.791 888.1
subelj-cora-cora 5264 7443 7699 8532 0.020 0.781 0.360 0.408 436.5
subelj-jdk-jdk 3201 5843 9428 4937 0.008 0.122 0.065 0.036 57.2
subelj-jung-j-jung-j 3168 5043 13471 5925 0.007 0.098 0.057 0.045 57.7
wiki-Vote 3265 5043 4566 4937 0.009 0.241 0.137 0.178 174.7
λ = 0.030
as-caida20071105 3956 4057 12696 15202 0.017 1.029 1.973 2.434 1285.2
cfinder-google 4419 4057 0.013 0.412 770.5
cit-HepTh 4062 4613 13172 12668 0.033 0.672 1.195 1.059 6131.6
ego-gplus 2434 1835 4330990 0.009 0.188 21.395 3.1
ego-twitter 2270 1835 98839 135562 0.008 0.174 4.909 5.510 2.2
freeassoc 2105 4613 3008 3534 0.006 0.285 0.101 0.091 250.7
lasagne-spanishbook 3820 4057 158028 94140 0.010 0.487 12.564 7.855 656.8
opsahl-openflights 3450 4057 6556 6108 0.007 0.165 0.184 0.195 481.4
p2p-Gnutella31 2367 4613 2874 2945 0.036 1.412 0.422 0.445 166.5
polblogs 3567 3502 11357 8796 0.007 0.036 0.151 0.122 207.9
soc-Epinions1 2659 4057 3585 3534 0.312 3.211 2.186 2.046 918.3
subelj-cora-cora 3790 5169 5681 5090 0.016 0.564 0.272 0.265 422.6
subelj-jdk-jdk 2425 4057 25575 5090 0.006 0.097 0.100 0.064 57.4
subelj-jung-j-jung-j 2436 3502 43584 5090 0.006 0.079 0.140 0.059 57.0
wiki-Vote 2633 3502 3467 3534 0.006 0.188 0.148 0.149 188.2

6.9 Internet Movies Database Case Study

After showing that KADABRA outperforms all previous approaches, we use the new algo-
rithm to compute the top-k betweenness centralities of large graphs, which were unfeasible
to handle with the previous algorithms.

The first set of graph is a series of temporal snapshots of the IMDB actor collaboration
network, in which two actors are connected if they played together in a movie (for more
information on the graph, we refer to Section 4.7).

We have run our algorithm with λ = 0.0002 and η = 0.1: as discussed in Section 6.7, this
means that either two nodes are ranked correctly, or their centrality is known with precision
at most λ. As a consequence, if two nodes are not ranked correctly, the difference between
their real betweenness is at most 2λ. In the latter case, in the results, we report a lower and
an upper bound on the ranking of the node. The running time of the algorithm is plotted in
Figure 6.4, while full results are available in Tables 6.5 to 6.20.2

2We remark that, as for the IMDB database, the top-k betweenness centralities of a single snapshot of a

112 6 - Computing Betweenness Centrality: the KADABRA Algorithm

0 0.5 1 1.5

15 min

30 min

45 min

Millions of nodes

T
im

e

0 50 100 150

Millions of edges

Figure 6.4. The total time of computation of KADABRA on increasing snapshots of the IMDB graph.

The Algorithm.From Figure 6.4, we see that all the graphs were processed in less than
one hour, and it seems that the time needed by our algorithm scales slightly sublinearly with
respect to the size of the graph. This result respects the analytical results in Section 8.13.2, be-
cause the degrees in the actor collaboration network are power law distributed with exponent
β ≈ 2.13 (http://konect.uni-koblenz.de/networks/actor-collaboration). Finally, we
observe that the ranking is quite precise: indeed, most of the times, there are very few nodes
in the top-5 with the same ranking, and the ranking rarely contains significantly more than
10 nodes.

The Results.In 2014, the most central actor is Ron Jeremy, who is listed in the Guinness
Book of World Records for “Most Appearances in Adult Films”, with more than 2000 appear-
ances. Among his non-adult ones, we mention The Godfather Part III, Ghostbusters, Crank:
High Voltage and Family Guy3. His topmost centrality in the actor collaboration network
has been previously observed by similar experiments on betweenness centrality [164]. Indeed,
around 3 actors out of 100 in the IMDB database played in adult movies, which explains why
the high number of appearances of Ron Jeremy both in the adult and non-adult film industry
rises his betweenness to the top.

The second most-central actor is Lloyd Kaufman, which is best known as a co-founder of
Troma Entertainment Film Studio and as the director of many of their feature films, including
the cult movie The Toxic Avenger. His high betweenness score is likely due to his central role
in the low-budget independent film industry.

The third “actor” is the historical German dictator Adolf Hitler, since his appearances in
several historical footages, that were re-used in several movies (e.g. in The Imitation Game),
are credited by IMDB as cameo role. Indeed, he appears among the topmost actors since the
1984 snapshot, being the first one in the 1989 and 1994 ones, and during those years many
movies about the World War II were produced. .

Observe that the betweenness centrality measure on our graph does not discriminate
between important and marginal roles. For example, the actress Bess Flowers, who appears
among the top actors in the snapshots from 1959 to 1979, rarely played major roles, but she
appeared in over 700 movies in her 41 years career.

similar graph (hollywood-2009 in http://law.di.unimi.it/datasets.php) have been previously computed
exactly, with one week of computation on a 40-core machine [164]

3The latter is a TV-series, which are not taken into account in our data.

http://konect.uni-koblenz.de/networks/actor-collaboration
http://law.di.unimi.it/datasets.php

6.9 - Internet Movies Database Case Study 113

Table 6.5. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 1939 (69011 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1) Meyer, Torben 0.022331 0.022702 0.023049
2) Roulien, Raul 0.021361 0.021703 0.022071
3) Myzet, Rudolf 0.014229 0.014525 0.014747
4) Sten, Anna 0.013245 0.013460 0.013723
5) Negri, Pola 0.012509 0.012768 0.012943
6-7) Jung, Shia 0.012250 0.012379 0.012509
6-7) Ho, Tai-Hau 0.012195 0.012324 0.012454
8) Goetzke, Bernhard 0.010721 0.010978 0.011201
9-10) Yamamoto, Togo 0.010095 0.010224 0.010354
9-10) Kamiyama, Sōjin 0.010087 0.010215 0.010344

Table 6.6. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 1944 (83068 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1) Meyer, Torben 0.018320 0.018724 0.019136
2) Kamiyama, Sōjin 0.012629 0.012964 0.013308
3-4) Jung, Shia 0.010751 0.010901 0.011053
3-4) Ho, Tai-Hau 0.010704 0.010854 0.011005
5) Myzet, Rudolf 0.010365 0.010514 0.010666
6-7) Sten, Anna 0.009778 0.009928 0.010080
6-7) Goetzke, Bernhard 0.009766 0.009915 0.010066
8) Yamamoto, Togo 0.009108 0.009327 0.009539
9) Parìs, Manuel 0.008649 0.008859 0.009108
10) Hayakawa, Sessue 0.007916 0.008158 0.008369

Table 6.7. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 1949 (97824 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1) Meyer, Torben 0.016139 0.016679 0.017236
2) Kamiyama, Sōjin 0.012351 0.012822 0.013312
3) Parìs, Manuel 0.011104 0.011552 0.011861
4) Yamamoto, Togo 0.010342 0.010639 0.011086
5-6) Jung, Shia 0.008926 0.009120 0.009318
5-6) Goetzke, Bernhard 0.008567 0.008762 0.008962
7-9) Paananen, Tuulikki 0.008147 0.008341 0.008539
7-9) Sten, Anna 0.007969 0.008164 0.008363
7-9) Mayer, Ruby 0.007967 0.008162 0.008362
10-12) Ho, Tai-Hau 0.007538 0.007732 0.007930
10-12) Hayakawa, Sessue 0.007399 0.007593 0.007792
10-12) Haas, Hugo (I) 0.007158 0.007352 0.007552

114 6 - Computing Betweenness Centrality: the KADABRA Algorithm

Table 6.8. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 1954 (120430 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1) Meyer, Torben 0.013418 0.013868 0.014334
2) Kamiyama, Sōjin 0.010331 0.010726 0.011089
3-4) Ertugrul, Muhsin 0.009956 0.010141 0.010331
3-4) Jung, Shia 0.009643 0.009826 0.010013
5-6) Singh, Ram (I) 0.008657 0.008841 0.009030
5-6) Paananen, Tuulikki 0.008383 0.008567 0.008755
7-9) Parìs, Manuel 0.007886 0.008070 0.008257
7-10) Goetzke, Bernhard 0.007802 0.007987 0.008176
7-10) Yamaguchi, Shirley 0.007531 0.007716 0.007905
8-10) Hayakawa, Sessue 0.007473 0.007657 0.007845

Table 6.9. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 1959 (146253 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1-2) Singh, Ram (I) 0.010683 0.010877 0.011075
1-2) Frees, Paul 0.010372 0.010566 0.010763
3) Meyer, Torben 0.009478 0.009821 0.010235
4-5) Jung, Shia 0.008623 0.008816 0.009013
4-5) Ghosh, Sachin 0.008459 0.008651 0.008847
6-7) Myzet, Rudolf 0.007085 0.007278 0.007476
6-7) Yamaguchi, Shirley 0.006908 0.007101 0.007299
8) de Còrdova, Arturo 0.006391 0.006582 0.006778
9-11) Kamiyama, Sōjin 0.005861 0.006054 0.006254
9-12) Paananen, Tuulikki 0.005810 0.006003 0.006202
9-12) Flowers, Bess 0.005620 0.005813 0.006012
10-12) Parìs, Manuel 0.005442 0.005635 0.005835

6.9 - Internet Movies Database Case Study 115

Table 6.10. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 1964 (174826 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1) Frees, Paul 0.013140 0.013596 0.014067
2) Meyer, Torben 0.007279 0.007617 0.007856
3-4) Harris, Sam (II) 0.006813 0.006967 0.007124
3-5) Myzet, Rudolf 0.006696 0.006849 0.007005
4-5) Flowers, Bess 0.006422 0.006572 0.006726
6) Kong, King (I) 0.005909 0.006104 0.006422
7) Yuen, Siu Tin 0.005114 0.005264 0.005420
8) Miller, Marvin (I) 0.004708 0.004859 0.005015
9-12) de Còrdova, Arturo 0.004147 0.004299 0.004457
9-18) Haas, Hugo (I) 0.003888 0.004039 0.004197
9-18) Singh, Ram (I) 0.003854 0.004004 0.004160
9-18) Kamiyama, Sōjin 0.003848 0.003999 0.004155
10-18) Sauli, Anneli 0.003827 0.003978 0.004135
10-18) King, Walter Woolf 0.003774 0.003923 0.004078
10-18) Vanel, Charles 0.003716 0.003867 0.004024
10-18) Kowall, Mitchell 0.003684 0.003834 0.003990
10-18) Holmes, Stuart 0.003603 0.003752 0.003907
10-18) Sten, Anna 0.003582 0.003733 0.003890

Table 6.11. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 1969 (210527 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1) Frees, Paul 0.010913 0.011446 0.012005
2-3) Yuen, Siu Tin 0.006157 0.006349 0.006547
2-3) Tamiroff, Akim 0.006097 0.006291 0.006490
4-6) Meyer, Torben 0.005675 0.005869 0.006069
4-7) Harris, Sam (II) 0.005639 0.005830 0.006027
4-8) Rubener, Sujata 0.005427 0.005618 0.005815
5-8) Myzet, Rudolf 0.005253 0.005444 0.005641
6-8) Flowers, Bess 0.005136 0.005328 0.005526
9-10) Kong, King (I) 0.004354 0.004544 0.004741
9-10) Sullivan, Elliott 0.004208 0.004398 0.004596

116 6 - Computing Betweenness Centrality: the KADABRA Algorithm

Table 6.12. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 1974 (257896 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1) Frees, Paul 0.008507 0.008958 0.009295
2) Chen, Sing 0.007734 0.008056 0.008507
3) Welles, Orson 0.006115 0.006497 0.006903
4-5) Loren, Sophia 0.005056 0.005221 0.005392
4-7) Rubener, Sujata 0.004767 0.004933 0.005106
5-8) Harris, Sam (II) 0.004628 0.004795 0.004967
5-8) Tamiroff, Akim 0.004625 0.004790 0.004962
6-10) Meyer, Torben 0.004382 0.004548 0.004720
8-12) Flowers, Bess 0.004259 0.004425 0.004598
8-12) Yuen, Siu Tin 0.004229 0.004397 0.004571
9-12) Carradine, John 0.004026 0.004192 0.004364
9-12) Myzet, Rudolf 0.003984 0.004151 0.004325

Table 6.13. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 1979 (310278 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1) Chen, Sing 0.007737 0.008220 0.008647
2) Frees, Paul 0.006852 0.007255 0.007737
3-5) Welles, Orson 0.004894 0.005075 0.005263
3-6) Carradine, John 0.004623 0.004803 0.004989
3-6) Loren, Sophia 0.004614 0.004796 0.004985
4-6) Rubener, Sujata 0.004284 0.004464 0.004651
7-17) Tamiroff, Akim 0.003516 0.003696 0.003885
7-17) Meyer, Torben 0.003479 0.003657 0.003844
7-17) Quinn, Anthony (I) 0.003447 0.003626 0.003815
7-17) Flowers, Bess 0.003446 0.003625 0.003815
7-17) Mitchell, Gordon (I) 0.003417 0.003596 0.003785
7-17) Sullivan, Elliott 0.003371 0.003551 0.003740
7-17) Rietty, Robert 0.003368 0.003547 0.003735
7-17) Tanba, Tetsurō 0.003360 0.003537 0.003724
7-17) Harris, Sam (II) 0.003331 0.003510 0.003699
7-17) Lewgoy, Josè 0.003223 0.003402 0.003590
7-17) Dalio, Marcel 0.003185 0.003364 0.003553

6.9 - Internet Movies Database Case Study 117

Table 6.14. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 1984 (375322 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1) Chen, Sing 0.007245 0.007716 0.008218
2-4) Welles, Orson 0.005202 0.005391 0.005587
2-4) Frees, Paul 0.005174 0.005363 0.005559
2-5) Hitler, Adolf 0.004906 0.005094 0.005290
4-6) Carradine, John 0.004744 0.004932 0.005127
5-7) Mitchell, Gordon (I) 0.004418 0.004606 0.004802
6-8) Jürgens, Curd 0.004169 0.004356 0.004551
7-8) Kinski, Klaus 0.003938 0.004123 0.004318
9-12) Rubener, Sujata 0.003396 0.003585 0.003785
9-12) Lee, Christopher (I) 0.003391 0.003576 0.003771
9-12) Loren, Sophia 0.003357 0.003542 0.003738
9-12) Harrison, Richard (II) 0.003230 0.003417 0.003614

Table 6.15. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 1989 (463078 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1-2) Hitler, Adolf 0.005282 0.005467 0.005658
1-3) Chen, Sing 0.005008 0.005192 0.005382
2-4) Carradine, John 0.004648 0.004834 0.005027
3-4) Harrison, Richard (II) 0.004515 0.004697 0.004887
5-6) Welles, Orson 0.004088 0.004271 0.004462
5-9) Mitchell, Gordon (I) 0.003766 0.003948 0.004139
6-9) Kinski, Klaus 0.003691 0.003874 0.004065
6-11) Lee, Christopher (I) 0.003610 0.003793 0.003984
6-11) Frees, Paul 0.003582 0.003766 0.003960
8-13) Jürgens, Curd 0.003306 0.003486 0.003676
8-13) Pleasence, Donald 0.003299 0.003479 0.003670
10-13) Mitchell, Cameron (I) 0.003105 0.003285 0.003476
10-13) von Sydow, Max (I) 0.002982 0.003161 0.003350

118 6 - Computing Betweenness Centrality: the KADABRA Algorithm

Table 6.16. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 1994 (557373 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1) Hitler, Adolf 0.005227 0.005676 0.006164
2-6) Harrison, Richard (II) 0.003978 0.004165 0.004362
2-6) von Sydow, Max (I) 0.003884 0.004069 0.004264
2-7) Lee, Christopher (I) 0.003718 0.003907 0.004106
2-7) Carradine, John 0.003696 0.003883 0.004079
2-7) Chen, Sing 0.003683 0.003871 0.004068
4-10) Jeremy, Ron 0.003336 0.003524 0.003722
7-11) Pleasence, Donald 0.003253 0.003439 0.003637
7-11) Rey, Fernando (I) 0.003234 0.003420 0.003617
7-15) Smith, William (I) 0.003012 0.003199 0.003397
8-15) Welles, Orson 0.002885 0.003072 0.003271
10-15) Mitchell, Gordon (I) 0.002851 0.003036 0.003232
10-15) Kinski, Klaus 0.002705 0.002890 0.003087
10-15) Mitchell, Cameron (I) 0.002671 0.002858 0.003058
10-15) Quinn, Anthony (I) 0.002640 0.002826 0.003026

Table 6.17. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 1999 (681358 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1) Jeremy, Ron 0.007380 0.007913 0.008484
2) Hitler, Adolf 0.004601 0.005021 0.005480
3-4) Lee, Christopher (I) 0.003679 0.003849 0.004028
3-4) von Sydow, Max (I) 0.003604 0.003775 0.003953
5-6) Harrison, Richard (II) 0.003041 0.003211 0.003390
5-7) Carradine, John 0.002943 0.003114 0.003296
6-11) Chen, Sing 0.002662 0.002834 0.003018
7-14) Rey, Fernando (I) 0.002569 0.002740 0.002922
7-14) Smith, William (I) 0.002559 0.002729 0.002910
7-14) Pleasence, Donald 0.002556 0.002725 0.002906
7-14) Sutherland, Donald (I) 0.002449 0.002617 0.002796
8-14) Quinn, Anthony (I) 0.002307 0.002476 0.002658
8-14) Mastroianni, Marcello 0.002271 0.002440 0.002621
8-14) Saxon, John 0.002251 0.002420 0.002602

6.9 - Internet Movies Database Case Study 119

Table 6.18. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 2004 (880032 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1) Jeremy, Ron 0.010653 0.011370 0.012136
2) Hitler, Adolf 0.005333 0.005840 0.006396
3-4) von Sydow, Max (I) 0.003424 0.003608 0.003802
3-4) Lee, Christopher (I) 0.003403 0.003587 0.003781
5-6) Kier, Udo 0.002898 0.003081 0.003275
5-8) Keitel, Harvey (I) 0.002646 0.002828 0.003023
6-12) Hopper, Dennis 0.002424 0.002607 0.002804
6-16) Smith, William (I) 0.002322 0.002504 0.002700
7-17) Sutherland, Donald (I) 0.002241 0.002422 0.002617
7-23) Carradine, David 0.002149 0.002329 0.002526
7-23) Carradine, John 0.002147 0.002328 0.002524
7-23) Harrison, Richard (II) 0.002054 0.002234 0.002430
8-23) Sharif, Omar 0.002043 0.002222 0.002418
8-23) Steiger, Rod 0.001988 0.002165 0.002358
8-23) Quinn, Anthony (I) 0.001974 0.002151 0.002344
8-23) Depardieu, Gèrard 0.001966 0.002148 0.002346
9-23) Sheen, Martin 0.001913 0.002093 0.002291
10-23) Rey, Fernando (I) 0.001866 0.002044 0.002238
10-23) Kane, Sharon 0.001857 0.002038 0.002237
10-23) Pleasence, Donald 0.001859 0.002037 0.002232
10-23) Skarsgȧrd, Stellan 0.001848 0.002026 0.002221
10-23) Mueller-Stahl, Armin 0.001789 0.001969 0.002166
10-23) Hong, James (I) 0.001780 0.001957 0.002152

Table 6.19. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken at the
end of 2009 (1237879 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1) Jeremy, Ron 0.010531 0.011237 0.011991
2) Hitler, Adolf 0.005500 0.006011 0.006568
3-4) Kaufman, Lloyd 0.003620 0.003804 0.003997
3-4) Kier, Udo 0.003472 0.003654 0.003845
5-6) Lee, Christopher (I) 0.003056 0.003240 0.003435
5-8) Carradine, David 0.002866 0.003050 0.003245
6-8) Keitel, Harvey (I) 0.002659 0.002840 0.003034
6-9) von Sydow, Max (I) 0.002532 0.002713 0.002907
8-13) Hopper, Dennis 0.002237 0.002419 0.002616
9-15) Skarsgȧrd, Stellan 0.002153 0.002333 0.002529
9-15) Depardieu, Gèrard 0.002001 0.002181 0.002377
9-15) Hauer, Rutger 0.001894 0.002074 0.002271
9-15) Sutherland, Donald (I) 0.001875 0.002054 0.002250
10-15) Smith, William (I) 0.001811 0.001990 0.002186
10-15) Dafoe, Willem 0.001805 0.001986 0.002186

120 6 - Computing Betweenness Centrality: the KADABRA Algorithm

Table 6.20. The top-k betweenness centralities of a snapshot of the IMDB collaboration network taken in
2014 (1797446 nodes), computed by KADABRA with η = 0.1 and λ = 0.0002.

Ranking Actor Lower bound Est. betweenness Upper bound
1) Jeremy, Ron 0.009360 0.010058 0.010808
2) Kaufman, Lloyd 0.005936 0.006492 0.007100
3) Hitler, Adolf 0.004368 0.004844 0.005373
4-6) Kier, Udo 0.003250 0.003435 0.003631
4-6) Roberts, Eric (I) 0.003178 0.003362 0.003557
4-6) Madsen, Michael (I) 0.003120 0.003305 0.003501
7-9) Trejo, Danny 0.002652 0.002835 0.003030
7-9) Lee, Christopher (I) 0.002551 0.002734 0.002931
7-12) Estevez, Joe 0.002350 0.002534 0.002732
9-17) Carradine, David 0.002116 0.002296 0.002492
9-17) von Sydow, Max (I) 0.002023 0.002206 0.002405
9-17) Keitel, Harvey (I) 0.001974 0.002154 0.002352
10-17) Skarsgȧrd, Stellan 0.001945 0.002125 0.002323
10-17) Dafoe, Willem 0.001899 0.002080 0.002279
10-17) Hauer, Rutger 0.001891 0.002071 0.002269
10-17) Depardieu, Gèrard 0.001763 0.001943 0.002142
10-17) Rochon, Debbie 0.001745 0.001926 0.002126

6.10 - Wikipedia Case Study 121

6.10 Wikipedia Case Study

The other large graph considered is the Wikipedia citation network, whose nodes are
Wikipedia pages, and which contains an edge from page p1 to page p2 if the text of page
p1 contains a link to page p2 (for more information, see Section 4.8).

The time needed to compute an approximation of the 10 most central actors was approx-
imately 1 hour and 38 minutes, and the results are available in Table 6.21.

All topmost pages in the betweenness centrality ranking, except for the World War II,
are countries. This is not surprising if we consider that, for most topics (such as important
people or events), the corresponding Wikipedia page refers to their geographical context (since
it mentions the country of origin of the given person or where a given event took place). It is
also worth noting the correlation between the high centrality of the World War II Wikipedia
page and that of Adolf Hitler in the IMDB graph.

Interestingly, a similar ranking is obtained by considering the closeness centrality measure
in the inverse graph, where a link from page p1 to page p2 exists if a link to page p1 appears
in page p2 (see Section 5.9). However, in contrast with the results in Section 5.9 when edges
are oriented in the usual way, the pages about specific years do not appear in the top ranking.
We note that the betweenness centrality of a node in a directed graph does not change if the
orientation of all edges is flipped.

Finally, the most important page is the United States, confirming a common conjecture.
Indeed, in http://wikirank.di.unimi.it/, it is shown that the United States page is the
center according to harmonic centrality, and many other measures. Further evidence for
this conjecture comes from the Six Degree of Wikipedia game (http://thewikigame.com/
6-degrees-of-wikipedia), where a player is asked to go from one page to the other following
the smallest possible number of links: a hard variant of this game forces the player not to pass
from the United States page, which is considered to be central. Our results thus confirm
that the conjecture is indeed true for the betweenness centrality measure.

Table 6.21. The top-k betweenness centralities of the Wikipedia graph computed by KADABRA with η = 0.1
and λ = 0.0002.

Ranking Wikipedia page Lower bound Estimated betweenness Upper bound
1) United States 0.046278 0.047173 0.048084
2) France 0.019522 0.020103 0.020701
3) United Kingdom 0.017983 0.018540 0.019115
4) England 0.016348 0.016879 0.017428
5-6) Poland 0.012092 0.012287 0.012486
5-6) Germany 0.011930 0.012124 0.012321
7) India 0.009683 0.010092 0.010518
8-12) World War II 0.008870 0.009065 0.009265
8-12) Russia 0.008660 0.008854 0.009053
8-12) Italy 0.008650 0.008845 0.009045
8-12) Canada 0.008624 0.008819 0.009018
8-12) Australia 0.008620 0.008814 0.009013

6.11 Bibliographic Notes

This chapter builds on a large amount of research on approximation algorithms for be-
tweenness centrality [93, 43, 82, 109, 136, 137]. The code used in the experimental results
is taken from these papers. Furthermore, our new algorithm is a rigorous application of
the technique of adaptive sampling: although this technique was widely used in the past
[111, 112, 13, 133, 137], as far as we know, the only rigorous application is [133], because all
the other works ignored the stochastic dependency discussed in Section 6.4. The definition of

http://wikirank.di.unimi.it/
http://thewikigame.com/6-degrees-of-wikipedia
http://thewikigame.com/6-degrees-of-wikipedia

122 6 - Computing Betweenness Centrality: the KADABRA Algorithm

the new algorithm and the techniques used to formalize the adaptive sampling are original,
and they are published in [36].

Chapter 7

Computing Hyperbolicity: the hyp
Algorithm

Abstract

The (Gromov) hyperbolicity is a metric property of a graph, which has been recently
applied in different contexts, such as the design of routing schemes, network security,
computational biology, the analysis of graph algorithms, and the classification of complex
networks.

Computing the hyperbolicity of a graph can be very time consuming: indeed, the
best available algorithm has running time O(n3.69) in the worst-case, which is clearly
prohibitive for big graphs. In this chapter, we provide a new and more efficient algorithm:
although its worst-case complexity is O(n4), in practice it is much faster, allowing, for the
first time, the computation of the hyperbolicity of graphs with up to 200 000 nodes. We
experimentally show that our new algorithm drastically outperforms the best previously
available algorithms, by analyzing a big dataset of real-world networks.

Using the new algorithm, we experimentally show that real-world networks are usu-
ally not hyperbolic, at least using the Gromov definition, shading further light on a
long-standing discussion. Furthermore, we provide a new definition of hyperbolicity, and
we provide evidences that this definition is more suited to the analysis of real-world
graphs. Finally, we apply the new algorithm to compute the hyperbolicity of random
graphs generated with the Erdös-Renyi model, the Chung-Lu model, and the Configu-
ration Model.

The analysis of complex networks has provided several significant results, with a huge amount
of applications in sociology, biology, economics, statistical physics, electrical engineering, and
so on. These results are based on the analysis of large real-world networks, now made available
by improvements in computer technology and by the pervasive presence of the Internet. One of
the major challenges in this field is to understand which properties distinguish these networks
from other kinds of graphs, such as random graphs [125], and which properties distinguish
networks of different kinds [90], in order to classify general and particular behavior.

In this context, a significant role is played by the hyperbolic structure underlying a complex
network, that is usually not present in random graphs [121, 49]. For instance, if we draw points
from a hyperbolic space and we connect nearby points, we obtain a graph that shares many
properties with real-world networks [102]. Furthermore, the Internet graph can be embedded
in the hyperbolic space, preserving some metric properties [101, 22].

From these evidences, one might be tempted to say that hyperbolicity is a characteristic
of many real-world complex networks: for this reason, several works have tried to measure
this phenomenon. One of the most successful attempts is based on Gromov’s definitions of
hyperbolicity [84], which works in any metric space, and does not rely on complicated struc-

124 7 - Computing Hyperbolicity: the hyp Algorithm

s

t

u v

s′

t′

u′ v′

Figure 7.1. An intuition of the definition of δ. In both quadruples, assuming the lines are shortest paths,
the biggest sum is dist(s, t) + dist(u, v) (straight lines), and the other two sums are equal (dashed and dotted
lines). However, δ(s, t, u, v) > δ(s′, t′, u′, v′), because in the second case the two small sums are closer to the
two big sums, since the underlying space is hyperbolic.

tures not available in graphs (geodesics, connections, and so on). Intuitively, this quantity
reflects how the metric space of a graph is close to the metric space of a tree.

More formally, given an undirected graph G = (V,E) (in this chapter, all graphs are
undirected), the Gromov hyperbolicity of a quadruple of nodes δ(s, t, u, v) is defined as half
the difference between the biggest two of the three sums

dist(s, t) + dist(u, v) dist(s, u) + dist(t, v) dist(s, v) + dist(t, u).

The hyperbolicity of G is δ(G) = maxs,t,u,v∈V δ(s, t, u, v). A small value of δ corresponds to
an hyperbolic metric space, according to the intuition in Figure 7.1.

Several network properties are connected to the value of the hyperbolicity: here we just
recall some of them. In [51], it is shown that a small hyperbolicity implies the existence of
efficient distance and routing labeling schemes. In [120], the authors observe that a small
hyperbolicity, that is, a negative curvature of an interconnection network, implies a faster
congestion within the core of the network itself, and in [94] it is suggested that this property
is significant in the context of network security and can, for example, mitigate the effect of
distributed denial of service attacks. Instead, in [69], the hyperbolicity is used to implement
a distance between trees, successively applied to the estimation of phylogenetic trees. From a
more algorithmic point of view, it has been shown that several approximation algorithms for
problems related to distances in graphs (such as diameter and radius computation [50], and
minimum ball covering [52]) have an approximation ratio which depends on the hyperbolicity
of the input graph. Moreover, some approximation algorithms with constant approximation
factor rely on a data-structure whose size is proportional to the hyperbolicity of the input
graph [100]. More in general, the hyperbolicity is connected to other important graph quanti-
ties, like treelength [50] and chordality [172]. In the field of the analysis of complex networks,
the hyperbolicity and its connection with the size and the diameter of a network has been used
in [10] in order to classify networks into three different classes, that is, strongly hyperbolic,
hyperbolic, and non-hyperbolic, and to apply this classification to a small dataset of small
biological networks. Finally, the hyperbolicity of random graphs has been analyzed in the
case of several random graph models, such as the Erdös-Renyi model [121] and the Kleinberg
model [49]. Moreover, in the latter paper, it is stated that the design of more efficient exact
algorithms for the computation of the hyperbolicity would be of interest.

However, despite this large amount of work, there is no definitive proof that real-world
graphs are indeed Gromov hyperbolic: some papers claim that they are [98, 10], but some
other papers claim that they are not [9]. This is due to the fact that existing analyses are
performed on very small graphs, because there is no algorithm that can handle large instances.

7.1 - The Currently Best Available Algorithm: ccl 125

Indeed, even if the hyperbolicity computation problem is polynomial-time solvable by the
trivial algorithm that computes δ(s, t, u, v) for each quadruple of nodes, the running time is
O(n4), which is prohibitive for most real-world networks. The best known algorithm uses
fast max-min matrix multiplication algorithm to obtain a running time O(n3.69) [77], and it
has been shown that hyperbolicity cannot be computed in O(n3.05) time, unless there exists
a faster algorithm for max-min matrix multiplication than currently known. Such running
times are prohibitive for analyzing large-scale graphs with more than 10 000 nodes.

Recently, new algorithms have been developed [56, 58]. Although these algorithms have
worst-case running time O(n4), they perform well in practice, making it possible to compute
the hyperbolicity of graphs with up to 50 000 nodes.

Following this line of research, we propose a new algorithm to compute the hyperbolicity
of a graph, taking some ideas from the algorithm in [58]. The new algorithm is available
in the Sagemath graph library [64]. We heavily improve the performances of the algorithm
in [58] through significant speed-ups in the most time consuming part: we obtain that the
running time of the new algorithm is dominated by the preprocessing part, which needs time
O(mn). This way, the O(n4) bottleneck is almost removed, at least in practical instances. For
this reason, we are able for the first time to compute the hyperbolicity of graphs with up to
200 000 nodes. We experimentally show these claims by analyzing a big dataset of real-world
networks of different kinds.

As a case study, we apply the new algorithm to study the hyperbolicity of real-world
graphs. First, our experiments show that real-world graphs are usually not hyperbolic in
the Gromov sense, and we can quantify this phenomenon by showing that the hyperbolicity
values are approximately normally distributed, between 0 and D

2 , where D is the diameter
of the graph (it is possible to analytically prove that 0 ≤ δ ≤ D

2 on all graphs). This result
closes a long-standing discussion in real-world network analysis.

However, there are evidences that real-world graphs have an underlying hyperbolic struc-
ture, as shown in [101, 102, 22]. For this reason, we propose another approach to study
the hyperbolicity of real-world graphs: considering the average of δ(s, t, u, v) instead of the
maximum. We show that, in this sense, real-world networks are hyperbolic, and we provide
an interpretation of this behavior in terms of “democracy”, by proving results that link a low
hyperbolicity to the existence of few nodes that “control” all shortest paths in the graph, and
consequently to an aristocratic network. Conversely, if the graph is not hyperbolic, there is
no “lobby” that controls all shortest paths, and the network is democratic. Then, we use the
average hyperbolicity to define the “influence area” of a node in a complex network. This
result lets us classify networks into two different categories: distributed and centralized net-
works. The former class contains all networks where every node tries to reach a specific goal,
such as social networks and peer-to-peer networks, while the latter class contains networks
that try to reach global goals, such as biological networks and power grid networks. We show
that, in distributed networks, the influence area of a node is much smaller than in centralized
networks, confirming again our interpretation of hyperbolicity, and our definition of influence
area.

Finally, we apply our algorithm to the computation of the hyperbolicity of random graphs.
For example, in the Chung-Lu model, we compute the hyperbolicity of graphs with up to
200 000 nodes, improving previous experiments that stop at 1 100 nodes [75].

7.1 The Currently Best Available Algorithm: ccl

In this section, we sketch the algorithm proposed in [58], whose main ideas and lemmas are
the base of our new algorithm. The main idea is to improve the trivial algorithm by analyzing
quadruples in a specific order, and by cutting the exploration of the quadruples as soon as
some conditions are satisfied. We name this algorithm ccl, from the initials of the surnames
of the authors. In particular, for each quadruple (s, t, u, v) of nodes, ccl computes τ(s, t;u, v)

126 7 - Computing Hyperbolicity: the hyp Algorithm

as defined below, instead of computing δ(s, t, u, v).

τ(s, t;u, v) =
1

2
(dist(s, t) + dist(u, v)−max{dist(s, u) + dist(t, v),dist(s, v) + dist(t, u)}).

Note that δ(G) = maxs,t,u,v∈V τ(s, t;u, v), because if dist(s, t) + dist(u, v) is the maximum
sum, then τ(s, t;u, v) = δ(s, t, u, v), otherwise τ(s, t;u, v) ≤ 0.

Lemma 7.1 (Lemma 3.2 of [58]). For any quadruple (s, t, u, v) of nodes, τ(s, t;u, v) ≤
1
2 min(dist(s, t),dist(u, v)).

Proof. The following inequalities hold:

2τ(s, t;u, v) = dist(s, t) + dist(u, v)−max{dist(s, u) + dist(t, v),dist(s, v) + dist(t, u)}

≤ dist(s, t) + dist(u, v)− 1

2
(dist(s, u) + dist(t, v) + dist(s, v) + dist(t, u))

≤ dist(s, t) + dist(u, v)− 1

2

(
2 dist(u, v)

)
≤ dist(s, t).

In a very similar way, one can prove that 2τ(s, t;u, v) ≤ dist(u, v).

In order to exploit this lemma, ccl stores all the N = n(n−1)
2 pairs of nodes inside a

sequence P = ({s1, t1}, . . . , {sN , tN}), in decreasing order of distance (that is, if dist(si, ti) >
dist(sj , tj), then i < j). For each i, ccl iterates over all pairs {sj , tj} with j < i, and
computes τ(si, ti; sj , tj), storing the maximum value found in a variable δL (clearly, δL is a
lower bound for δ(G)). Even if iterating over the whole sequence P would lead us to the trivial
algorithm, by applying Lemma 7.1 we may cut the exploration as soon as dist(si, ti) ≤ 2δL,
because the τ value of all remaining quadruples is at most dist(si, ti).

A further improvement is provided by the following lemma.

Lemma 7.2 ([150]). Let s, t, u, v be four nodes, and let us assume that there exists an edge
(s, s′) such that dist(s′, t) = dist(s, t) + 1. Then, τ(s, t;u, v) ≤ τ(s′, t;u, v).

Proof. The following inequalities hold:

2τ(s′, t;u, v) = dist(s′, t) + dist(u, v)−max{
dist(s′, u) + dist(t, v),dist(s′, v) + dist(t, u)}
≥ 1 + dist(s, t) + dist(u, v)−max{

dist(s, u) + dist(t, v) + 1,dist(s, v) + dist(t, u) + 1}
= 2τ(s, t;u, v).

Definition 7.3. A pair {s, t} is far apart if there is no edge (s, s′) such that dist(s′, t) =
dist(s, t) + 1 and no edge (t, t′) such that dist(s, t′) = dist(s, t) + 1.

By Lemma 7.2, ccl only needs to analyze far apart pairs, and, hence, in the following
we denote by P the list of far apart pairs, and by N its cardinality. The pseudo-code of the
algorithm ccl is provided in Algorithm 17.

Other improvements of this algorithm involve pre-processing the graph: first of all, we may
analyze each biconnected component separately [58, Section 2], then, we may decompose the
graph by modular decomposition, split decomposition [150], and clique decomposition [56].

7.2 The New Algorithm: hyp

In this section, we propose a new algorithm, named hyp, that improves upon ccl by further
reducing the number of quadruples to consider.

7.2 - The New Algorithm: hyp 127

Algorithm 17: Hyperbolicity algorithm proposed in [58], ccl.
1 Let P = ({s1, t1}, . . . , {sN , tN}) be the list of far apart pairs, in decreasing order of

distance.
2 δL ← 0;
3 for i ∈ [1, N] do
4 if dist(si, ti) ≤ 2δL then
5 return δL;
6 end
7 for j ∈ [1, i− 1] do
8 δL ← max(δL, τ(si, ti; sj , tj));
9 end

10 end
11 return δL;

7.2.1 Overview

The new algorithm hyp speeds-up the inner for loop in Algorithm 17, by decreasing the
number of pairs to be analyzed. In particular, let us fix a pair (si, ti) in the outer for
loop and a lower bound δL: a node u is (i, δL)-skippable or simply skippable if, for any v,
τ(si, ti;u, v) ≤ δL. It is clear that if a node u is skippable, the algorithm could skip the
analysis of all quadruples containing si, ti, and u. Even if it is not easy to compute the set of
skippable nodes, we can define easy-to-verify conditions that imply that a node u is skippable
(Section 7.2.2): a node not satisfying any of these conditions is named (i, δL)-acceptable or
acceptable. Then, our algorithm discards all quadruples (si, ti, u, v) where either u or v is not
acceptable.

Furthermore, we define another condition such that if τ(si, ti;u, v) > δL, then either u or v
must satisfy this condition (an acceptable node also satisfying this condition is defined (i, δL)-
valuable or valuable). Hence, our algorithm does not only discard all quadruples (si, ti, u.v)
where either u or v is not acceptable, but also all quadruples where both u and v are not
valuable.

In order to apply these conditions, when analyzing a pair (si, ti), hyp computes the set of
acceptable and valuable nodes in time O(n) (actually, several nodes are skipped, thanks to
implementation tricks, so that the time might be even smaller). Then, for each valuable node
u, it analyzes pairs (u, v) preceding (si, ti) such that u is acceptable. For this latter loop, we
record for each node u the list mate[u] of previously seen pairs (u, v), and then test each time
if v is acceptable. The pseudo-code for hyp is provided by Algorithm 18.

Lemma 7.4. The algorithm is correct.

Proof. First of all, δL ≤ δ(G) during the whole algorithm, so we only have to rule out the
possibility that the output is strictly smaller than δ(G). Let s, t, u, v be a quadruple such
that τ(s, t;u, v) = δ(G). We may assume without loss of generality that {s, t} and {u, v} are
far-apart (otherwise, we change the pairs using Lemma 7.2), and that {u, v} is before {s, t} in
the ordering of pairs (otherwise, we swap the pairs). By Lemma 7.1, dist(s, t) ≥ 2δ(G) ≥ 2δL
at any step of the algorithm: if 2δL = dist(s, t) ≥ 2δ(G) at some step, the algorithm is
correct because δL never decreases. Otherwise, the pair {s, t} is analyzed at some step
i, u and v are (i, δL)-acceptable, and either u or v is be (i, δL)-valuable (by definition of
acceptable and valuable). Hence, in the inner loop, τ(s, t;u, v) is computed, and afterwards
δL = τ(s, t;u, v) = δ(G).

It remains to define how we compute an approximation of the set of acceptable and
valuable nodes.

128 7 - Computing Hyperbolicity: the hyp Algorithm

Algorithm 18: The new algorithm, hyp.
1 Let P = ({s1, t1}, . . . , {sN , tN}) be the ordered list of far apart pairs.
2 δL ← 0;
3 mate[u]← ∅ for each u;
4 for i ∈ [1, N] do
5 if dist(si, ti) ≤ 2δL then
6 return δL;
7 end
8 (acceptable, valuable) ← computeAccVal ();
9 for u ∈ valuable do

10 for v ∈ mate[v] do
11 if v ∈ acceptable then
12 δL ← max(δL, τ(si, ti;u, v));
13 end
14 end
15 end
16 add ti to mate[si];
17 add si to mate[ti];
18 end
19 return δL

7.2.2 Acceptable and Valuable Nodes
First of all, let us fix i and δL, since in this section they play the role of parameters. Moreover,
for the sake of clarity, we denote si and ti simply by s and t. The following lemmas provide
conditions implying that u is skippable, that is, there is no pair {u, v} appearing in P before
{s, t} such that τ(s, t;u, v) > δL. An acceptable node must not satisfy these conditions. The
first lemma holds by definition of skippable.

Lemma 7.5. If u does not belong to any far-apart pair {u, v} before {s, t} in P, then u is
skippable.

A second possibility to prove that a node is skippable is given by a simple corollary of the
following lemma.

Lemma 7.6 ([58]). For each quadruple of nodes (s, t, u, v),

τ(s, t;u, v) ≤ min
w,w′∈{s,t,u,v},w 6=w′

dist(w,w′).

Proof. Let us assume that dist(s, t)+dist(u, v) is the biggest sum (otherwise, τ(s, t;u, v) ≤ 0,
and the result follows directly). We already know by Lemma 7.1 that 2τ(s, t;u, v) ≤ dist(s, t)
and 2τ(s, t;u, v) ≤ dist(u, v). Let us prove that τ(s, t;u, v) ≤ dist(s, u):

2τ(s, t;u, v) = dist(s, t) + dist(u, v)−max{dist(s, u) + dist(t, v),dist(s, v) + dist(t, u)}
≤ dist(s, t) + dist(u, v)− dist(s, v)− dist(t, u)

≤ dist(s, u) + dist(u, t) + dist(u, s) + dist(s, v)− dist(s, v)− dist(t, u)

≤ 2 dist(s, u).

The proof of the remaining inequalities is very similar: it is enough to swap the roles of the
nodes s, t, u, v.

Corollary 7.7. If dist(s, u) ≤ δL or dist(t, u) ≤ δL, then u is skippable.

Proof. If the assumptions are satisfied, for each v, either τ(s, t;u, v) ≤ dist(s, u) ≤ δL, or
τ(s, t;u, v) ≤ dist(t, u) ≤ δL.

7.2 - The New Algorithm: hyp 129

The next lemmas make use of the notion of the eccentricity of a node u, defined as
ecc(u) = maxv∈V dist(u, v).

Lemma 7.8. If 2 ecc(u)− dist(s, u)− dist(t, u) < 4δL + 2− dist(s, t), then u is skippable.

Proof. By contradiction, let us suppose that there exists a node v such that δL < τ(s, t;u, v).
Then,

δL + 1 ≤ 2τ(s, t;u, v)

= dist(s, t) + dist(u, v)−max(dist(s, u) + dist(t, v),dist(s, v) + dist(t, u))

≤ dist(s, t) + dist(u, v)− 1

2
(dist(s, u) + dist(t, v) + dist(s, v) + dist(t, u))

≤ dist(s, t) + ecc(u)− 1

2
(dist(s, u) + dist(t, u))− 1

2
dist(s, t).

By rearranging this inequality, we would contradict the hypothesis.

Lemma 7.9. If ecc(u) + dist(s, t)− 3δL− 3
2 < max{dist(s, u),dist(t, u)}, then u is skippable.

Proof. By contradiction, let us suppose that there exists a node v such that δL < τ(s, t;u, v).
By Corollary 7.7, dist(t, v) > δL, that is, dist(t, v) ≥ δL + 1

2 . Consequently,

2δL + 1 ≤ 2τ(s, t;u, v)

= dist(s, t) + dist(u, v)−max(dist(s, u) + dist(t, v),dist(s, v) + dist(t, u))

≤ dist(s, t) + dist(u, v)− dist(s, u)− dist(t, v)

≤ dist(s, t) + ecc(u)− dist(s, u)− δL − 1/2.

By exchanging the roles of s and t, we obtain

2δL + 1 ≤ dist(s, t) + ecc(u)− dist(t, u)− δL −
1

2
.

These two inequalities contradict the hypothesis.

Definition 7.10. A node is acceptable if it does not satisfy the assumptions of Lemmas 7.5,
7.8 and 7.9 and Corollary 7.7.

Remark 7.11. Lemma 7.5 can be verified “on the fly”, by keeping track of already-seen nodes.
The other items are clearly verifiable in timeO(1) for each node, and consequently the running
time of this operation is O

(
|{u ∈ V : ∃{u, v} < {s, t}}|

)
, which is less than or equal to O(n).

Remark 7.12. A variation of hyp verifies on the fly Lemma 7.9 and not Lemma 7.5. At the
beginning of the algorithm, for each node s, we pre-compute a list of all nodes u in decreasing
order of ecc(u) − dist(s, u) (in time O(n2 log n)). Then, when computing acceptable nodes,
we scan the list corresponding to s, and we stop as soon as we find a node u such that
ecc(u) + dist(s, t) − 3δL − 3

2 < dist(s, u). In this case, the running time of this operation
is O

(
|{u ∈ V : ecc(u) + dist(s, t)− 3δL − 3

2 ≥ dist(s, u)}|
)
. Since we may swap the roles of s

and t, at each step, our algorithm chooses between s and t the less central node, according
to closeness centrality measure [17].

The two remarks above correspond to two versions of our algorithm hyp, that we call
hyp1 and hyp2, respectively. Now we need to define valuable nodes, using the following
lemma, which involves a given node c (formally, we would need to write c-valuable instead of
valuable). All choices of c are feasible, but if c is “central”, the running time improves. We
decided to set c as the most central node according to closeness centrality measure [17].

Lemma 7.13. Let c be any fixed node, and, for any node w, let fc(w) := 1
2 (dist(s, t) −

dist(s, c)− dist(w, t)) + dist(w, c). Then, for any two nodes u and v, we have 2τ(s, t;u, v) ≤
fc(u) + fc(v).

130 7 - Computing Hyperbolicity: the hyp Algorithm

Proof. We have that

2τ(s, t;u, v) = dist(s, t) + dist(u, v)−max(

dist(s, u) + dist(t, v),dist(s, v) + dist(t, u))

≤ dist(s, t) + dist(u, c) + dist(c, v)− 1

2
(

dist(s, u) + dist(t, v) + dist(s, v) + dist(t, u))

= fc(v) + fc(w).

The lemma is thus proved.

As a consequence, if 2τ(s, t;u, v) > 2δL, either fc(u) > δL or fc(v) > δL. This justifies
the following definition.

Definition 7.14. An acceptable node u is c-valuable or valuable if fc(u) > δL.

We conclude that, if τ(s, t;u, v) > δL, then at least one of u and v must be valuable.

Remark 7.15. It is possible to compute if an acceptable node is valuable in time O(1), so
there is no time overhead for the computation of valuable nodes.

7.3 Experimental Results

In this section, we compare the best algorithm available until now [58] (ccl, whose pseudo-
code is Algorithm 17), with the two versions of our new algorithm, denoted as hyp1 and hyp2
(using Remark 7.11 and Remark 7.12, respectively). Other available algorithms are the trivial
algorithm, which is significantly outperformed by ccl in [58], and the algorithm in [77]. The
latter is not practical, because it is based on fast matrix multiplication: indeed, using O(n3)
matrix multiplication implementation, we get the same running time of the trivial algorithm.
As far as we know, no other competitors are available.

Both ccl and our algorithm, in both versions hyp1 and hyp2, share the following pre-
processing (see [58]):

• compute biconnected components to treat them separately;

• computing the distances between all pairs of nodes;

• computing and sorting the list P of all far-apart pairs.

All the operations above need time O(mn) and they are ignored in the comparison since they
are common to all three algorithms. Our tests were performed on an AMD Opteron(TM)
Processor 6276, running Fedora release 21. Our source code has been written in C and
compiled with gcc 4.9.2 with optimization level 3. The code is available at piluc.dsi.
unifi.it/lasagne, and another implementation is available in the Sagemath library [64].

We have collected a dataset composed by 62 graphs (available with the code) of different
kinds: social, peer-to-peer, autonomous systems, citation networks, and so on. The networks
were selected from the well-known SNAP dataset (http://snap.stanford.edu/), and from
CAIDA (http://www.caida.org). The number of nodes varies between 4 039 and 265 009
(1 396 and 50 219 after the preprocessing).

Number of quadruples. The first comparison analyzes how many quadruples are processed
before the hyperbolicity is computed - note that hyp1 and hyp2 analyze the same number of
quadruples, since the only difference between them is how acceptable and valuable nodes are
computed. The results are summarized in Figure 7.2a, which plots the number of quadruples
processed by the new algorithms with respect to ccl. More precisely, for each graph G,
we draw a point in position (x, y) if ccl analyzed x quadruples and both hyp1 and hyp2

piluc.dsi.unifi.it/lasagne
piluc.dsi.unifi.it/lasagne
http://snap.stanford.edu/
http://www.caida.org

7.3 - Experimental Results 131

103 105 107 109 1011 1013

105

1010

Quadruples (ccl)
Q
ua

dr
up

le
s
(h

y
p)

(a) Quadruples analyzed by hyp1 and hyp2 with respect to ccl.

10−2 10−1 100 101 102 103 104 105 106
10−2

102

106

Seconds (ccl)

Se
co
nd

s
(h

y
p1

)

(b) Time used by hyp1 with respect to ccl.

10−2 10−1 100 101 102 103 104 105 106
10−2

102

106

Seconds (ccl)

Se
co
nd

s
(h

y
p2

)

(c) Time used by hyp2 with respect to ccl.

Figure 7.2. Comparisons of quadruples analyzed and running time of hyp1, hyp2, and ccl. The line y = x
separates the region where ccl is better (above) from the region where hyp1 and hyp2 are better (below).

analyzed y quadruples to compute the hyperbolicity of G. More detailed results are available
in Table 7.1. The results show that the new algorithm analyzes a much smaller number of
quadruples, ranging from one hundred to few millions, drastically outperforming ccl, which
often analyzes millions of millions of quadruples, and even billions of millions. Of course, the
new algorithm is never outperformed, because the quadruples analyzed by hyp1 and hyp2
are a subset of the quadruples analyzed by ccl by definition.

Running time. Since the computation of acceptable and valuable nodes has a non-negligible
impact on the total running time, for a more fair comparison, we have also considered the
running time of the algorithms. In Figures 7.2b and 7.2c we report the time used by hyp1
and hyp2 with respect to the time used by ccl (again, more detailed results are available in
Table 7.1). Also in this experiment, both hyp1 and hyp2 drastically outperform ccl: the
running time is lower in most of the graphs, and the only cases where ccl is faster need a
very small amount of time (a few seconds at most). On the other hand, the new algorithms
are much faster when the total time is big: for instance, on input as-20120601.caida, ccl
needs at least one week (this lower bound was computed from the actual hyperbolicity and
all the distances between the nodes), while hyp1 is 367 times faster, needing less than half
an hour, and hyp2 is more than 5 000 times faster, needing less than two minutes. Similar

132 7 - Computing Hyperbolicity: the hyp Algorithm

Table 7.1. Summary of the results of our experiments. For the graphs marked with ∗, ccl did not finish after
two hours. The number of quadruples reported is the lower bound k(k−1)

2
, where k is the number of pairs

(s, t) such that dist(s, t) > 2δ; the time reported is T
1 000 000 000

k(k−1)
2

where T is the time needed to process
1 000 000 000 quadruples (in two cases, we reported > 7200, because the lower bound was not tight, and the
estimate was smaller than 2 hours). We also report our improvement with respect to ccl, that is, the ratio
between the quadruples (resp. time) of ccl and the quadruples (resp. time) of our algorithms.

Quadruples Analyzed Quadruple Time (seconds) Time Improv.
Graph Nodes Edges δ ccl hyp1-hyp2 Improv. ccl hyp1 hyp2 hyp1 hyp2
ca-GrQc 1396 10382 3.5 10953540 12180 899.31 0.05 0.02 0.03 2.51 1.53
com-amazon.all.cmty 2617 7682 8 82272378 298472 275.65 0.41 0.12 0.18 3.38 2.33
as20000102 2680 14468 2.5 174555270 25868 6747.92 0.84 0.14 0.13 5.96 6.28
facebook-combined* 3421 169874 1.5 4349543592331 86614009902 50.22 21314.60 1733.66 1713.63 12.29 12.44
ca-HepTh 3702 28784 4 3428271 4990 687.03 0.02 0.02 0.17 0.80 0.11
oregon1-010331 4218 24972 2.5 1284966165 1617 794660.58 6.32 0.49 0.27 12.93 23.11
oregon1-010407 4279 25086 2.5 1195433856 810 1475844.27 5.89 0.49 0.27 12.00 21.62
oregon1-010414 4290 25712 2.5 1049667471 243033 4319.03 5.22 1.02 0.69 5.09 7.56
oregon1-010421 4336 26202 2.5 780855921 373 2093447.51 3.86 0.36 0.27 10.86 14.49
oregon1-010428 4392 25772 2.5 1192062378 220894 5396.54 5.96 1.11 0.72 5.35 8.31
oregon1-010512 4399 25756 2.5 1240194306 289910 4277.86 6.21 0.69 0.33 8.96 18.77
oregon1-010505 4435 25928 2.5 1504562940 5362 280597.34 7.54 0.75 0.35 10.04 21.70
oregon1-010519 4442 25886 2.5 1539653286 60315 25526.87 7.81 0.88 0.33 8.85 23.87
oregon1-010526 4487 26982 3 407982029 23417 17422.47 2.11 0.38 0.30 5.57 7.04
p2p-Gnutella08 4527 37992 3 1007490 324 3109.54 0.01 0.02 0.24 0.31 0.03
wiki-Vote 4583 196064 2 16293337 149456 109.02 0.09 0.11 0.36 0.81 0.25
oregon2-010331 4667 42910 2 400262386560 3663772 109248.72 2995.00 22.04 4.26 135.88 703.60
oregon2-010407 4729 42376 2 410741958903 7857070 52276.73 3092.18 23.02 4.90 134.30 630.55
oregon2-010414 4766 44138 2.5 1245329371 1845137 674.93 6.29 0.93 0.55 6.77 11.39
oregon2-010421 4811 43600 2.5 1105698825 733049 1508.36 5.61 0.78 0.46 7.15 12.24
oregon2-010428 4870 43452 2.5 1865841328 5878928 317.38 9.52 1.63 0.99 5.83 9.61
oregon2-010505 4895 42412 2.5 1687311186 42131 40049.16 8.64 1.00 0.39 8.63 22.05
ca-HepPh 4950 128620 3 394622371 42674 9247.37 2.16 0.51 0.36 4.26 5.93
oregon2-010512 4955 42980 2.5 1710978753 46489 36803.95 8.77 1.01 0.41 8.68 21.29
oregon2-010519 5010 44726 2.5 1482537378 18041 82176.01 7.53 0.86 0.40 8.72 18.66
oregon2-010526 5030 45338 2.5 2258222410 4934010 457.69 11.57 1.74 0.98 6.66 11.82
p2p-Gnutella09 5590 46956 3 9419970 821 11473.78 0.07 0.06 0.34 1.04 0.19
p2p-Gnutella06 6708 58994 3 1292028 172 7511.79 0.01 0.03 0.46 0.31 0.02
p2p-Gnutella05 6813 59578 3 3163870 1411 2242.29 0.03 0.05 0.46 0.57 0.06
as-20040105.caida 7332 41046 2.5 21234792321 540599 39280.12 140.82 6.95 1.42 20.25 99.21
as-20040607.caida* 7776 44582 2 3370014286246 39712688 84859.89 21005.11 135.43 29.59 155.09 709.97
p2p-Gnutella04 8362 74926 3 10513405 1190 8834.79 0.08 0.09 0.71 0.93 0.11
ca-CondMat 8773 100384 3.5 488609430 29851 16368.28 2.89 0.84 0.94 3.44 3.07
as-20050905.caida 8895 50020 3 7525743270 15991110 470.62 49.17 5.26 3.79 9.34 12.98
ca-AstroPh 9577 286950 3 109423150 51097 2141.48 0.66 0.37 1.10 1.79 0.60
ASEdges10-2011 9710 95858 2 18861383976 3042167 6199.98 136.15 8.47 2.51 16.07 54.28
ASEdges4-2012 9795 98222 2 70723160371 424079 166768.83 538.81 20.96 1.89 25.70 284.87
ASEdges12-2010 10708 128922 2 3060396657 28895395 105.91 19.91 6.37 7.62 3.12 2.61
email-Enron 10969 262726 2.5 16069135356 2148540 7479.10 99.27 9.23 2.25 10.76 44.08
as-caida20071105 11935 68132 2.5 73495671315 5671011 12959.89 545.03 24.16 6.98 22.55 78.08
p2p-Gnutella25 13301 90562 3 300322187578 1081 277818859.92 2672.52 62.40 5.00 42.83 534.51
p2p-Gnutella24 15455 108504 3 209384412126 781 268097838.83 1852.04 55.95 5.46 33.10 339.33
as-20100120.caida* 15549 101900 2 43782839513031 113921805 384323.61 333184.15 1038.52 136.42 320.83 2442.29
as-20110116.caida* 17030 152576 2 35387143423885 248996963 142118.78 198417.40 997.34 162.05 198.95 1224.44
as-20120101.caida* 18543 186746 2 74744549775451 513362824 145597.90 476614.17 1641.20 321.31 290.41 1483.33
as-20120601.caida* 19068 181882 2 82852372357930 35436735 2338036.29 576275.86 1567.35 114.38 367.68 5038.13
as-20130101.caida 20045 216338 2.5 333864201231 1399456972 238.57 2656.53 150.39 80.02 17.66 33.20
p2p-Gnutella30 20095 143304 3.5 59825391 1147 52158.14 0.58 0.50 3.82 1.16 0.15
as-20130601.caida* 20908 236708 2.5 320649529266 6249608655 51.31 > 7200.00 2678.17 940.84 0.77 2.20
as-20131101.caida* 21476 250960 2.5 338186916990 9772268809 34.61 > 7200.00 2889.48 1087.69 0.67 1.77
email-EuAll 22153 240734 3 9309369475 610516 15248.36 62.77 12.09 6.44 5.19 9.74
cit-HepTh 24982 696474 4 92854378 74784 1241.63 0.84 0.59 6.30 1.41 0.13
loc-brightkite-edges* 29136 358092 3 1232144653915 55546114 22182.37 10496.85 329.02 45.93 31.90 228.55
soc-Epinions1 30935 706214 2.5 276357092628 7425184 37218.89 2336.56 170.16 29.79 13.73 78.44
cit-HepPh 32233 834586 3.5 17804316753 83828 212391.05 151.08 31.75 14.86 4.76 10.17
p2p-Gnutella31 33645 237584 3.5 5916272253 2318 2552317.62 51.64 13.98 12.02 3.69 4.30
sign-Slashdot081106 45414 868420 2.5 205817260078 71550147 2876.55 1883.35 259.44 92.76 7.26 20.30
soc-Slashdot0811 45425 869602 2.5 205827525606 71589472 2875.11 1824.68 255.67 89.57 7.14 20.37
sign-Slashdot090216* 49148 924130 2.5 1127364491100 666496152 1691.48 10638.72 829.71 268.45 12.82 39.63
sign-Slashdot090221* 49313 929482 2.5 1126754933865 673410974 1673.21 10629.82 830.22 250.08 12.80 42.51
soc-Slashdot0902* 49384 937030 2.5 1156307585356 672901135 1718.39 10464.75 831.93 249.52 12.58 41.94
soc-sign-epinions* 50219 1246832 2.5 1060615290790 38110649 27829.89 10277.35 687.49 140.81 14.95 72.99

results hold in all graphs where the total running time is large. This does not only mean
that we have improved upon ccl, but also that the improvement is concentrated on inputs
where the running time is high. Furthermore, we observe that on all graphs the total running
time of hyp2 is less than half an hour: this means that, even if the worst-case complexity of
this algorithm is O(n4), in practice, the time used by the second part is comparable to the
preprocessing time, which is O(mn). Hence, from a practical point of view, since real-world
graphs are usually sparse, the algorithm may be considered quadratic.

7.4 Hyperbolicity of Real-World Graphs

In this section, we apply the new algorithm to the analysis of the hyperbolicity of real-world
graphs. First, we study the standard definition of hyperbolicity, that is, the maximum of
δ(s, t, u, v) where s, t, u, v range over all nodes in the graph. Since this analysis deals with

7.4 - Hyperbolicity of Real-World Graphs 133

many more graphs than previous ones, our results are able to outline that real-world graphs
are usually not hyperbolic, because δ ≈ D

4 , and by analytical results we already know that
0 ≤ δ ≤ D

2 . Furthermore, we show that the hyperbolicity does not capture specific properties
of graphs of different kinds: indeed, the ratio 2δ

D follows approximately a normal distribution,
with average value 1

2 , even if we restrict our attention to specific classes of graphs. This
suggests that the value of δ is highly influenced by “random events”.

As an alternative, we propose to use the average hyperbolicity, that is simply defined
as δavg = avgs,t,u,v∈V δ(s, t, u, v) (in other words, we have replaced the maximum with an
average). We show that, using this definition, real-world graphs are usually hyperbolic,
because the ratio δavg

2 distavg
is usually quite small, where distavg is the average distance between

two nodes. Building on this definition, we consider an interpretation of hyperbolicity as
“lack of democracy”: if a graph is hyperbolic, it means that few nodes are on many shortest
paths, and consequently the graph is aristocratic; conversely, if a graph is not hyperbolic,
then shortest paths are “spread around the graph”, and consequently the graph is democratic.
As far as we know, this is the first measure of democracy in a complex network, apart from
assortativity [123, 124]. In any case, our measure is quite different from the latter one, because
it is based on shortest paths and not on neighbors: consequently, the new measure is global.
Moreover, it is more robust: for instance, if we “break” all edges by “adding a node in the
middle”, the hyperbolicity of the graph does not change much, but the assortativity decreases
drastically. Our experiments show that the value of δavg is much more robust than the
standard hyperbolicity with respect to random events, allowing us to effectively distinguish
networks of different kind. Our classification is different from the classification provided by
assortativity [123, 124]: for instance, a network with few influential hubs not connected to
each other is democratic if we consider assortativity, while it is aristocratic in our framework.

Finally, we introduce for the first time the average hyperbolicity of neighborhoods of a
given node, which measures the “importance” of a node (the k-neighborhood of a node s is
the subgraph induced by the k nodes closest to s). Applications include the classification
of complex networks (hyperbolic networks have interesting properties, as outlined in the
literature), the analysis of nodes in a given network, and possibly the detection of communities
using hyperbolicity.

7.4.1 Using the Classical Definition

Our first experiment computes the ratio 2δ
D in all the networks in our dataset (Figure 7.3).

These results show that the distribution of the ratio 2δ
D is approximately Gaussian, both

in the whole dataset and in each single kind of network. The average ratio is 0.521, and
the standard deviation is 0.085. Moreover, a Chi-square goodness of fit test applied to the
previous data does not reject the hypothesis that the distribution is Gaussian with mean 0.5
and variance 0.085, with a very high confidence level [139]. This result confirms that the
value of δ in real-world networks is not much “smaller than expected”. In other words, real-
world networks are not hyperbolic, at least in the Gromov sense: this is the first main result
of our analysis. However, we are able to perform a further step: the Gaussian probability
distribution makes us think that δ is influenced by random events. Indeed it does not reflect
particular characteristics of the network, since the same distribution arises from networks of
different kinds.

Social networks show a slightly different behavior, since many of them have a larger value
of 2δ

D , between 0.65 and 0.75. However, this is due to the presence of several financial networks
(e-MID, a platform for interbank lending), where the ratio is often 2

3 or 3
4 since the diameter

is 3 or 4.
Despite this particular case, we may conclude that the ratio 2δ

D is not a characteristic
of the network, but it mainly depends on “random events” that have a deep impact on this
value. This conclusion is further confirmed by the particular case of the e-MID networks: this
parameter changed from 0.750 in 2011 to 0.286 in 2012, only because a simple path of length

134 7 - Computing Hyperbolicity: the hyp Algorithm

0

10

20

30

N
um

be
r
of

ne
tw

or
ks

All networks

0

5

10

N
um

be
r
of

ne
tw

or
ks

Social networks

0 0.2 0.4 0.6 0.8 1
0

5

10

Value of 2δ
D

N
um

be
r
of

ne
tw

or
ks

Biological networks

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Value of 2δ
D

N
um

be
r
of

ne
tw

or
ks

Technological networks

Figure 7.3. The distribution of 2δ
D

in the graphs in our dataset. The bar corresponding to the value p contains
all networks where p− 0.5 < 2δ

D
≤ p+ 0.5.

3 increased the diameter from 4 to 7.

7.4.2 Average Hyperbolicity and Democracy

In the past, the average hyperbolicity δavg of a quadruple of nodes was rarely analyzed: the
only known result is that it is usually significantly smaller than δ [9]. In order to fill this gap,
we have computed the ratio 2δavg

distavg
, where distavg denotes the average distance in the network

(also this quantity lies in the interval [0, 1] by Lemma 7.1).
Although the exact computation of δavg is quite hard, the value 2δavg

distavg
can be easily

approximated through sampling, as shown by the following lemma.

Lemma 7.16. Let G be a graph with hyperbolicity δ = 2.5, and let us sample the hyperbolicity
of N = 10 000 000 quadruples of nodes, obtaining δ1, . . . , δN . Let hi := 2δi

distavg
, and let t = 0.01

be the tolerance. Then,

P

∣∣∣∣∣
∑N
i=1 hi
N

− 2δavg
distavg

∣∣∣∣∣ ≥ t
 ≤ 2e−

Nt2

2δ2 = 0.07%.

Proof. By Hoeffding inequality (see Lemma 6.1 in Chapter 6) applied with ai = 0 ≤ hi ≤
2δ

distavg
= bi, we obtain:

P

∣∣∣∣∣
∑N
i=1 hi
N

− 2δavg

distavg

∣∣∣∣∣ ≥ t
 ≤ 2e

−2N2t2∑N
i=1

(bi−ai)2 ≤

7.4 - Hyperbolicity of Real-World Graphs 135

≤ 2e−
Nt2 dist2avg

2δ2

≤ 2e−
Nt2

2δ2

because distavg ≥ 1. The previous inequality applied with N = 10 000 000, t = 0.01, and
δ = 2.5 yields:

P

∣∣∣∣∣
∑10 000 000
i=1 δi

10 000 000
− δavg

∣∣∣∣∣ ≥ 0.01

 ≤ 0.07%.

Detailed results containing the average hyperbolicity of each single network are plotted in
Figure 7.4.

From the figure, we outline that the average hyperbolicity is usually an order of mag-
nitude smaller than the average distance: in this sense, real-world networks are hyperbolic.
This result suggests that this quantity can be meaningful in the analysis and classification of
complex networks. Following this line, we propose an interpretation of the average hyperbol-
icity in terms of democracy, through the following two lemmas. The first one shows that, if
for some nodes s, t, maxu,v δ(s, t, u, v) is not high, then there is a set of small diameter that
“controls” all approximately shortest paths from u to v. Consequently, a hyperbolic network
is not democratic, because δ is small, and shortest paths are controlled by small sets.

Lemma 7.17 ([56], Lemma 2). Let s, t be two nodes in a network G = (V,E), let N `(s)

be the `-neighborhood of s (that is, the set {v ∈ V : dist(s, v) ≤ `}), and let N `′(t) be
the `′-neighborhood of t. Then, the diameter of the set X = N `(s) ∩ N `′(t) is at most
2 maxu,v δ(s, t, u, v) + `+ `′ − dist(s, t).

Proof. Let u, v be two nodes in N `(s) ∩ N `′(t): 2δ(s, t, u, v) ≥ dist(s, t) + dist(u, v) −
max(dist(s, u)+dist(t, v),dist(s, v)+dist(t, u)) ≥ dist(s, t)+dist(u, v)−`−`′, and consequently
dist(u, v) ≤ 2δ(s, t, u, v) + `+ `′ − dist(s, t) ≤ 2 maxu,v∈V δ(s, t, u, v) + `+ `′ − dist(s, t).

The second lemma is a sort of converse: if there is a set of nodes controlling the shortest
paths of a given quadruple (s, t, u, v), δ(s, t, u, v) is low. Consequently, if δ is high, then there
is not a small set of nodes controlling many shortest paths, and the network is democratic.

Lemma 7.18 ([55], Lemma 2). Let s, t, u, v be a quadruple of nodes, and let us assume that
there exists a set V ′ ⊆ V of diameter ∆ such that all shortest paths between s, t, u, v pass
through V ′. Then, δ(s, t, u, v) ≤ ∆.

Proof. We can assume without loss of generality that

2δ(s, t, u, v) = dist(s, t) + dist(u, v)− dist(s, u)− dist(t, v). (7.1)

Since all the shortest paths pass through V ′, we can say that dist(s, V ′) + dist(V ′, t) ≤
dist(s, t) = dist(s, V ′) + ∆ + dist(V ′, t), where dist(s, V ′) = minw∈V ′ dist(s, w). Plugging this
inequality into Equation (7.1) (and all similar inequalities), we obtain that

2δ(s, t, u, v) = dist(s, t) + dist(u, v)− dist(s, u)− dist(t, v)

≤ dist(s, V ′) + ∆ + dist(V ′, t) + dist(u, V ′) + ∆ + dist(V ′, v)

− dist(s, V ′)− dist(V ′, u)− dist(t, V ′)− dist(V ′, v)

≤ 2∆.

136 7 - Computing Hyperbolicity: the hyp Algorithm

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

BIOBrady
BIOBrady2
BIOBurk

BIOCaenorhabditisElegans
BIOcelegansneural

BIOChla2
BIODrosophilamelanogaster

BIOecoli.interaction
BIOecoli.metabolic

BIOelegans
BIOEsche2
BIOEsche3
BIOhelico

BIOHomosapiens
BIOppidipswiss

BIOpsimap
BIORattusnorvegicus

BIOstring
BIOyeast

SOCAstrocollab
SOCca-AstroPh

SOCca-GrQc
SOCcondmatcollab

SOCcondmatcollab2003
SOCcondmatcollab2005

SOCe-MID1999
SOCe-MID2000
SOCe-MID2001
SOCe-MID2002
SOCe-MID2003
SOCe-MID2004
SOCe-MID2005
SOCe-MID2006
SOCe-MID2007
SOCe-MID2008
SOCe-MID2009
SOCe-MID2010
SOCe-MID2011

SOCe-MID2012uptoSept
SOCemail-Enron

SOCeva
SOCfacebookcombined

SOCfreeassoc
SOCgeom

SOCGoogleNw
SOChepcollab

SOCInformationpolblogs
SOCnetscience

SOCPGPgiantcompo
SOCwiki-Vote

TECAS-19971108
TECAS-19980402
TECAS-19980703
TECAS-19981002
TECAS-19990114
TECAS-19990402
TECAS-19990702
TECAS-19991002
TECAS-20000102
TECAS-20000403
TECAS-20000702
TECAS-20001002
TECAS-20010102
TECAS-20010316

TECoregon1010331
TECoregon1010407
TECoregon1010414
TECoregon1010421
TECoregon1010428
TECoregon1010505
TECoregon1010512
TECoregon1010519
TECoregon1010526
TECoregon2010331
TECoregon2010407
TECoregon2010414
TECoregon2010421
TECoregon2010428
TECoregon2010505
TECoregon2010512
TECoregon2010519
TECoregon2010526
TECp2p-Gnutella04
TECp2p-Gnutella05
TECp2p-Gnutella06
TECp2p-Gnutella08
TECp2p-Gnutella09
TECp2p-Gnutella24
TECp2p-Gnutella25
TECp2p-Gnutella30
TECp2p-Gnutella31
TECTechpowergrid

2δavg
distavg

N
et
w
or
k

Figure 7.4. The value δavg
distavg

in all the networks in our dataset.

7.4 - Hyperbolicity of Real-World Graphs 137

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

Percentage of nodes in the neighborhood

V
al
ue

of
2
δ
a
v
g

d
is

t a
v
g

Synthetic network

Figure 7.5. The value of 2δavg
distavg

for neighborhoods of the maximum degree node in a synthetic network
generated with the techniques in [104].

7.4.3 Hyperbolicity of Neighborhoods

As an application of the results in the previous subsection, we consider the average hyper-
bolicity of k-neighborhoods of a given node s, where the k-neighborhood of a node s is the
subgraph induced by the k nodes closest to s (in case of tie, we use a random tie-break). The
intuitive idea is that, since the hyperbolicity of a graph is closely related to the existence of
a small part of the graph controlling most shortest paths, neighborhoods of a given node s
should be “less democratic” than the whole graph, in the sense that they are contained in the
“influence area” of s, and most shortest paths should pass through s.

To highlight this quantity, we let k range from the degree of s to the number n of nodes in
the graph, with steps of 10 nodes, and we measure 2δavg

distavg
in all these k-neighborhoods of s.

In order to prove the effectiveness of this approach, we first test a synthetic power-law graph
[104] made by three communities of 1 000 nodes each (see Figure 7.5). We have computed
the hyperbolicity of neighborhoods of the node s with highest degree: we can see a local
minimum close to the size of a community. In our opinion, this minimum appears because
the neighborhood is “dominated by the community”, and consequently by the center s of the
community. This result confirms the link between the value of 2δavg

distavg
and the influence area

of a node.
Then, we analyzed neighborhoods in real-world networks. The upper plots in Figure 7.6

show the same results for one network of each kind:

• a social network, the General Relativity and Quantum Cosmology collaboration net-
work;

• a biological network, the yeast metabolic network;

• a technological network, the peer-to-peer Gnutella network in 2004.

As a benchmark of comparison, we have also considered the hyperbolicity of neighborhoods
of a random node.

The plots show that the value of δavg
distavg

in increasing-size neighborhoods of the maximum
degree node grows almost linearly with the neighborhood size, until it converges to the value
of δavg

distavg
in the whole graph. Convergence time differs from graph to graph. In biological net-

works, convergence was reached at size close to n
2 , while in the social and in the technological

networks convergence is reached before. For neighborhoods of a random node, we outline a
different behavior: at the beginning, the growth is not monotone, like in the previous case,
and it is much more irregular. In our opinion, these results are due to the fact that, when the
neighborhood grows, it reaches more and more “influential” nodes, and the first neighborhood

138 7 - Computing Hyperbolicity: the hyp Algorithm

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

Percentage of nodes

V
al
ue

of
2
δ
a
v
g

d
is

t a
v
g

Maximum degree vertex

Social
Biological

Technological

0 0.2 0.4 0.6 0.8 1

Percentage of nodes

Random vertex

Social
Biological

Technological

Figure 7.6. The value of 2δavg
distavg

for neighbours of a randomly chosen node (up left), or the maximum degree
node (up right). Results are shown for a social network, a biological network, and a technological network.

0 0.05 0.1 0.15 0.2

0

20

Percentage of nodes

V
al
ue

of
2
δ
a
v
g

d
is

t a
v
g

Maximum degree vertex

Social
Biological

Technological

0 0.05 0.1 0.15 0.2

Percentage of nodes

Random vertex

Social
Biological

Technological

Figure 7.7. The derivative with respect to the neighborhoods size of the value of 2δavg
distavg

, in neighborhoods of
the maximum degree node and of random nodes.

that touches such a node corresponds to a local maximum in the plot. This issue is further
confirmed by Figure 7.7, where the discrete derivative of 2δavg

distavg
is shown.

For this reason, we have focused on the maximum degree node, and, in order to have more
general results, we have analyzed all graphs in the dataset. Figure 7.8 shows the size of the
maximum neighborhood having ratio 2δavg

distavg
at least half than the same ratio in the whole

graph. Actually, we have plotted the fourth neighborhood where this condition is satisfied,
in order to avoid random deviations.

We outline that the influence area of an individual is small in social and peer-to-peer net-
works, compared to biological or autonomous system network. This standard behavior has few
exceptions: first of all, protein-protein interaction networks (string, ecoli.interaction)
are different from other biological networks, and the influence area is smaller. Furthermore,
the social network GoogleNW contains a node with an enormous influence area: this network
is the set of Google pages, and the central node s considered is the page www.google.com,
which clearly dominates all the others. Another particular case is the social network
facebook_combined: this network is a collection of ego-networks from Facebook, and links
are made if common interests are retrieved. We think that this network is different from the
others because it is a small subgraph of a bigger graph (where all Facebook users are consid-
ered), and the choice of the subgraph has a strong impact on the topology of the network,
which does not reflect the standard behavior.

In our opinion, this is due to the fact that the networks with small influence areas are
“distributed”, in the sense that each node has a goal (downloading in peer-to-peer networks,
and creating relationships in social networks), and edges are created locally by nodes that

7.4 - Hyperbolicity of Real-World Graphs 139

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BIOBrady
BIOBrady2
BIOBurk

BIOCaenorhabditisElegans
BIOcelegansneural

BIOChla2
BIODrosophilamelanogaster

BIOecoli.interaction
BIOecoli.metabolic

BIOelegans
BIOEsche2
BIOEsche3
BIOhelico

BIOHomosapiens
BIOppidipswiss

BIOpsimap
BIORattusnorvegicus

BIOstring
BIOyeast

SOCAstrocollab
SOCca-AstroPh

SOCca-GrQc
SOCcondmatcollab

SOCcondmatcollab2003
SOCcondmatcollab2005

SOCe-MID1999
SOCe-MID2000
SOCe-MID2001
SOCe-MID2002
SOCe-MID2003
SOCe-MID2004
SOCe-MID2005
SOCe-MID2006
SOCe-MID2007
SOCe-MID2008
SOCe-MID2009
SOCe-MID2010
SOCe-MID2011

SOCe-MID2012uptoSept
SOCemail-Enron

SOCeva
SOCfacebookcombined

SOCfreeassoc
SOCgeom

SOCGoogleNw
SOChepcollab

SOCInformationpolblogs
SOCnetscience

SOCPGPgiantcompo
SOCwiki-Vote

TECAS-19971108
TECAS-19980402
TECAS-19980703
TECAS-19981002
TECAS-19990114
TECAS-19990402
TECAS-19990702
TECAS-19991002
TECAS-20000102
TECAS-20000403
TECAS-20000702
TECAS-20001002
TECAS-20010102
TECAS-20010316

TECoregon1010331
TECoregon1010407
TECoregon1010414
TECoregon1010421
TECoregon1010428
TECoregon1010505
TECoregon1010512
TECoregon1010519
TECoregon1010526
TECoregon2010331
TECoregon2010407
TECoregon2010414
TECoregon2010421
TECoregon2010428
TECoregon2010505
TECoregon2010512
TECoregon2010519
TECoregon2010526
TECp2p-Gnutella04
TECp2p-Gnutella05
TECp2p-Gnutella06
TECp2p-Gnutella08
TECp2p-Gnutella09
TECp2p-Gnutella24
TECp2p-Gnutella25
TECp2p-Gnutella30
TECp2p-Gnutella31
TECTechpowergrid

Percentage size of the minimum neighbour with high value of 2δavg
distavg

N
et
w
or
k

Figure 7.8. The fourth neighborhood of the maximum degree node whose ratio 2δavg
distavg

is half this value in
the whole graph.

140 7 - Computing Hyperbolicity: the hyp Algorithm

0

0.5

1

2
δ D

Erdös-Renyi (average degree 3) Erdös-Renyi (average degree 5)

102 103 104 105
0

0.5

1

Number of nodes n

2
δ D

Configuration Model
(power law degrees)

102 103 104 105

Number of nodes n

Chung-Lu model
(power law degrees)

Figure 7.9. For each of the models considered, the ratio 2δ
D

in 10 random graphs of each size.

try to reach the goal. On the other hand, the latter networks have global goals (connecting
everyone in the network, or making a cell live), and the creation of edges is “centralized”.

As far as we know, this is the first work that provides this interpretation of the average
hyperbolicity. Possible applications include not only the classification of networks according
to this parameter, but also the classifications of nodes in a network, or the classification of
different communities. These communities might be democratic, if everyone has “the same
role” and δavg is high, or not democratic, if there is a group of few nodes that keeps the
community together, making δavg small.

7.5 Synthetic Graphs

Recently, some works have tried to compute asymptotic values for the hyperbolicity of random
graphs, when the number of nodes n tends to infinity. The simplest model considered is the
Erdös-Renyi random graph Gn,m, that is, we choose a graph with n nodes and m edges
uniformly at random. In this model, it has been proved that the hyperbolicity tends to
infinity [121], and, ifm > n log5 n, exact asymptotics for δ have been computed [119]. Instead,
the hyperbolicity of sparse Erdös-Renyi graphs is not known, and it is mentioned as an
open problem in [119]. Among the other possible models, the Chung-Lu model and the
Configuration Model stand out for their simplicity: basically, they generalize Erdös-Renyi
random graphs by defining weights ρv for each node v, and trying to give approximately ρv
random neighbors to each node v (for a precise definition, see Section 8.1). On these models,
as far as we know, it was only proved [144] that the hyperbolicity of a graph generated through
the Chung-Lu model tends to infinity if the maximum and minimum degree are “close to each
other” (meaning that their ratio is smaller than 2

1
3). Other models were analyzed in [49]:

also in that paper, the estimation of the hyperbolicity of random graphs of different kind is
mentioned as an open problem.

7.6 - Bibliographic Notes 141

Following suggestions in [49], we use our algorithm to shed some light on the behavior of
these random graphs, at least experimentally, in order to help formulating sensible conjectures
on possible asymptotics. In particular, we have restricted our attention to four examples, cho-
sen among the models where exact asymptotics have not been proved: Erdös-Renyi random
graphs with m = 3n and m = 5n, and graphs generated through the Chung-Lu and the
Configuration Model, with power-law degree distribution with exponent 2.5 (similar to the
degree distribution of several real-world networks [125]). For each number of nodes n = k ·10i

where k < 10 and i ≥ 2, we have generated 10 graphs and we have computed their hyper-
bolicity. More precisely, we have computed the value 2δ

D , where D is the diameter, which is
always between 0 and 1 because of Lemma 7.1: this value might be more interesting than the
plain hyperbolicity value, since, for all these models, asymptotics for the diameter are known.
Figure 7.9 shows the average value of 2δ

D and the corresponding standard error over the 10
measures performed.

We have been able to compute the hyperbolicity of Erdös-Renyi graphs with up to 60 000
nodes, and graphs generated with the Configuration Model or the Chung-Lu model with up
to 200 000 nodes. In all models considered, it is quite evident that the ratio 2δ

D does not
tend to 0, and consequently δ = Θ(D). Furthermore, the ratio in Erdös-Renyi graphs is not
very far from 1, even if the results are not precise enough to discriminate between δ = D

2 or
δ = cD for some c < 1

2 . Instead, in graphs generated through the Configuration Model or the
Chung-Lu model, this ratio seems to tend to a value between 0.5 and 0.7.

7.6 Bibliographic Notes

The algorithm described in this chapter is original, and it was published in [30], but it is
strongly based on the existing algorithm in [58] (Section 7.1 is based on [58]). The analysis
of the hyperbolicity of real-world graph is original, as well, and it was published in [29].

Chapter 8

Probabilistic Analysis of
Algorithms

Abstract

In this thesis, we proposed several algorithms that compute metric quantities of real-
world complex networks, and that are very efficient in practice, although there is no
worst-case guarantee.

In this chapter, we propose an axiomatic framework to analyze the performances
of these algorithms, by proving that they are efficient on the class of graphs satisfying
certain axioms. Furthermore, we prove that the axioms are satisfied asymptotically
almost surely by several probabilistic models that generate power law random graphs,
such as the Configuration Model, the Chung-Lu model, and the Norros-Reittu model.
Thus, our results imply average-case analyses in these models.

For example, in our framework, our algorithms can compute the diameter and the
radius of a graph in subquadratic time, and sometimes even in time n1+o(1). Moreover, in
some regimes, it is possible to compute the k most central nodes according to closeness
centrality in subquadratic time, and to design a distance oracle with sublinear query
time and subquadratic space occupancy.

As we saw in the first chapter, comparable results cannot be obtained in the worst-
case, unless widely-believed conjectures are false.

In this thesis, we have developed several algorithms that achieve surprisingly good results in
practice, despite they provide no worst-case guarantee (note that, probably, it is impossible
to design algorithms with better worst-case guarantees, as we saw in Chapter 3).

Following the standard approach [23, 83, 141, 50, 114, 62, 154, 165, 63, 155, 57, 61, 66, 67,
8, 129, 58], we have validated our algorithms empirically, by showing that they achieve good
performances on large datasets of real-world networks. However, this kind of analysis might
be biased by the choice of the specific dataset used for the evaluation, and it might not be
satisfactory from a theoretical point of view: indeed, it provides no insight into the reasons
why these algorithms are so efficient.

In this chapter, we provide a more theoretical framework where the performances of these
algorithms can be evaluated and compared. Our framework is axiomatic: we define some
axioms, we experimentally show that these axioms hold in most real-world graphs, and we
perform a worst-case analysis on the class of graphs satisfying these axioms. This axiomatic
approach to the analysis of complex networks follows the research agenda proposed in [85],
where a similar analysis was performed for a different property, related to the number of
triangles in a graph. Similarly to [85], our approach offers three main advantages: we validate
the efficiency of the algorithms considered, we highlight the properties of the input graphs
that are exploited, and we perform a comparison that does not depend on the specific dataset

144 8 - Probabilistic Analysis of Algorithms

used for the evaluation. A further confirmation of the validity of this approach comes from
the results obtained, that are very similar to existing empirical results.

Furthermore, again following [85], we show that these axioms are satisfied on some models
of random graphs, asymptotically almost surely (a.a.s.), that is, with probability that tends
to 1 as the number of nodes n goes to infinity: as a consequence, all results can be turned
into average-case analyses on these models, with no modification. This modular approach to
average-case complexity has two advantages: since our axioms are satisfied by different mod-
els, we can prove results in all these models with a single worst-case analysis. Furthermore,
we clearly highlight which properties of random graphs we are using: this way, we can exper-
imentally validate the choice of the probabilistic model, by showing that these properties are
reflected by real-world graphs.

In the past, most average-case analyses were performed on the Erdös-Renyi model, which
is defined by fixing the number n of nodes, and connecting each pair of nodes with probability
p [79, 140, 165, 115]. However many algorithms that work well in practice have poor average-
case running time on this model.1 Indeed, these algorithms are efficient if there are some nodes
with very high degree, and such nodes are not present in Erdös-Renyi graphs. Conversely,
most real-world graphs contain such nodes, because their degree distribution is power law
[15], that is, the number of nodes with degree d is proportional to n

dβ
for some β > 1. For

this reason, we only consider models that generate power law random graphs. Our framework
encompasses almost all values of β, and many of these models: the Configuration Model [26],
and Rank-1 Inhomogeneous Random Graph models ([159], Chapter 3), such as the Chung-Lu
[54] and the Norros-Reittu model [127].

This approach is based on three axioms that study the behavior of τ s (nx), which is
defined as the smallest integer ` such that the number of nodes at distance ` from s is at
least nx. The first axiom describes the typical and extremal behavior of τ s (nx), where s
ranges over all nodes in the graph. The other two axioms link the distance between two
nodes s and t with τ s (nx) + τ t (ny): informally, for each x between 0 and 1, dist(s, t) is
close to τ s (nx) + τ t

(
n1−x). Then, we need a fourth axiom, that simply says that the degree

distribution is power law (however, we can easily generalize the results to any distribution
with finite mean, by changing this axiom). We prove that these axioms are satisfied in the
aforementioned graph models.

Using these axioms, we analyze the distance distribution of a graph G = (V,E): we
start by estimating the eccentricity of a given node s, and consequently the diameter D =
maxs∈V ecc(s). Similarly, we estimate the farness f(s) of s, and consequently the closeness
centrality of s and the average distance between two nodes. By specializing these results to
the random graph models considered, we retrieve known asymptotics for these quantities, and
we prove some new asymptotics in the regime 1 < β < 2.

After proving these results, we turn our attention to the analysis of many heuristics
and algorithms, by proving all the results in Table 8.1 (a plot of the results is available
in Figure 8.1).2 For approximation algorithms, we usually know the running time and we
analyze the error; conversely, for exact algorithms, we bound the running time. All algorithms
analyzed are exactly the algorithms published in the original papers or in this thesis, apart
from the SumSweepHeuristic and the SumSweep, where we need a small variation to
make the analysis work.

In many regimes, our results improve the corresponding worst-case bounds that we proved
in Chapter 3: for example, there is no algorithm that computes a (3

2−ε)-approximation of the
diameter or the radius in O

(
n2−ε) (see also [138, 31, 3]), and the complexity of computing

1The poor performances of some of these algorithms in the Erdös-Renyi model were empirically shown in
[61], and they can be proved with a simple adaptation of the analysis in this chapter.

2Some of the results contain a value o(1): this value comes from the axioms, which depend on a parameter
ε. In random graphs, this notation is formally correct: indeed, we can let ε tend to 0, since the axioms are
satisfied a.a.s. for each ε. In real-world graphs, we experimentally show that these axioms are satisfied for
small values of ε, and with abuse of notation we write o(1) to denote a function bounded by cε, for some
constant c.

8 - Probabilistic Analysis of Algorithms 145

Table 8.1. A summary of the results of our probabilistic analyses. The constant C is an abbreviation of
− log η(1)
logM1(µ)

, where η(1) and M1(µ) are defined in Section 8.1; in the paper, we also prove that C ≈ 2 distavg
D−distavg

,
where D is the diameter of the graph, distavg is the average distance. The values marked with (∗) are proved
using further characteristics of the probabilistic models.

Quantity Algorithm Proof Running time
β > 3 2 < β < 3 1 < β < 2,

Diameter BFS from nγ Section 8.4.1 Θ(n1+γ) Θ(n1+γ) Θ(mnγ)

(lower bound) random nodes εrel = 1−γ+o(1)
2+C εrel = 1−γ+o(1)

2 εabs =
⌊

2(β−1)
2−β

⌋
−
⌊

(γ+1)(β−1)
2−β

⌋
Diameter 2-Sweep [114] Section 8.5.2 Θ(n) Θ(n) Θ(m)

(lower bound) εrel = o(1) εrel = o(1) εabs ≤

{
1 D even
2 D odd

Diameter RW [138] Section 8.7.2 Θ(n
3
2 log n) Θ(n

3
2 log n) Θ(m

√
n log n)

(lower bound) εrel = o(1) εrel = o(1) εabs ≤

{
1 D even
2 D odd

All eccentricities SS [33] Section 8.8.1 n1+o(1) n1+o(1) ≤ mn
1− 2−β

β−1

(⌊
β−1
2−β−

3
2

⌋
− 1

2

)
(lower bound) εabs = 0 εabs = 0 εabs = 0

Diameter iFub [61] Section 8.9.2 ≤ n1+
(

1
2−

1
β−1

)
C+o(1)

n1+o(1) ≤ mn1− 2−β
β−1

⌊
β−1
2−β−

1
2

⌋
+o(1)

Diameter ESS [33, 32] Section 8.10.1 ≤ n
1+ C

C+
β−1
β−3 (∗) n1+o(1) ≤ mn

1− 2−β
β−1

(⌊
β−1
2−β−

3
2

⌋
− 1

2

)

Radius ESS [33, 32] Section 8.10.1 n1+o(1) n1+o(1) ≤ mn
1− 2−β

β−1

(⌊
β−1
2−β−

3
2

⌋
− 1

2

)
Top-k closeness BCM [20] Section 8.11 n2− 1

β−1 (∗) n2−o(1) m1+o(1)

Distance oracle AIY [8] Section 8.12.2 n1−o(1) ≤ nf(β) (*) ≤ n 1
2 +o(1)

(query time) (no closed form)
(space needed) n2−o(1) ≤ n1+f(β) (*) ≤ n 3

2 +o(1)

Distance between BBBFS [36] Section 8.13.2 n
1
2 +o(1) (*) n

4−β
2 (*) n1−o(1)

two nodes (folklore)

the most closeness central node is Ω
(
n2−ε) (see also [3]). Furthermore, there are hardness

results on the possible tradeoffs between space needed and query time in distance oracles
[157, 149].

Furthermore, we observe that our results strongly depend on the exponent β: in particular,
there are two phase transitions corresponding to β = 2 and β = 3. This is due to the fact
that, if 1 < β < 2, the average degree is unbounded, if 2 < β < 3, the average degree is finite,
but the variance is unbounded, while if β > 3 also the variance is finite. Furthermore, all the
results with β > 3 can be easily generalized to any degree distribution with finite variance,
but the results become more cumbersome and dependent on specific characteristics of the
distribution, such as the maximum degree of a node in the graph: for this reason, we focus
on the power law case. Conversely, in the case β < 3, our results strongly depend on the
degree distribution to be power law, because random graphs generated with different degree
distributions can have very different behaviors. The only open cases are β = 2 and β = 3,

1 2 3 4 5
0

0.5

1

β

R
el
at
iv
e
er
ro
r

Diameter (εrel) Sampl

2-Sweep

SSH

RW

1 2 3 4 5

β

Diameter (running time)

SSH

iFub

ESS

1 2 3 4 5
0

1

2

β

E
xp

on
en
t

Other alg. (time, space)

BCM

ESS (rad)

AIY (t)

AIY (sp)

BBBFS

Figure 8.1. Plot of the running time and relative errors of the heuristics and algorithms considered. The
constant C was set to 3, and the o(1) were ignored.

146 8 - Probabilistic Analysis of Algorithms

which are left for future work (note that, if β ≤ 1, the degree distribution is not well defined).
Let us discuss a bit more the results obtained.

Approximating the diameter. We confirm the empirical results in [114], proving that the
2-Sweep heuristic is significantly better than the basic sampling algorithm, which returns the
maximum eccentricity of a random set of nodes. Furthermore, we prove that the SumSweep-
Heuristic that we developed in Chapter 4 outperforms the 2-Sweep heuristic, confirming
our experimental results. Finally, we analyze the well-known RW algorithm, which provides
a guaranteed 3

2 -approximation of the diameter in time Θ(m
√
n). In our framework, it does

not improve the 2-Sweep algorithm (which is much faster): this might theoretically explain
why many graph libraries implement (variations of) the 2-Sweep heuristic, but not the RW
algorithm (for instance, Sagemath [152], WebGraph [23], NetworKit [151]).

Computing the diameter. Some of the aforementioned heuristics can be turned into exact
algorithms, that always provide the correct result, but that can be inefficient in the worst-
case. We analyze two of these algorithms, proving that, for small values of β, both the
iFub and the new ExactSumSweep algorithm are very efficient; for big values of β, the
ExactSumSweep algorithm is usually better, because it is always subquadratic. These
results explain the surprisingly small running time on most graphs, and the reason why the
ExactSumSweep algorithm is usually faster on “hard” instances, as observed in Chapter 4
(see also [33, 32]). It is interesting to note that all the running times for β > 3 depend on
the same constant C, which is close to 2 distavg

D−distavg
, where D is the diameter and distavg is the

average distance in the input graph. Intuitively, if this ratio is small, it means that there are
“few far nodes”, and the algorithms are quite efficient because they only need to analyze these
nodes (the only exception is the sampling algorithm, which is not able to find these nodes,
and hence achieves better performances when C is large). For 2 < β < 3, a very similar
argument applies, but in this case C = 0, because D = O(log n) and distavg = O(log log n).

Other algorithms. Our framework lets us also analyze algorithms for computing other
quantities. For example, our ExactSumSweep algorithm is also able to compute the radius:
in Chapter 4, we experimentally showed that the algorithm is almost linear in practice, since it
needs at most 10 BFSes on all inputs but one, and on the last input it needs 18 BFSes. In this
chapter, we confirm this result through our probabilistic analysis, proving that in most regimes
it has running time O(n1+o(1)). We also analyze the BCM algorithm, defined in Chapter 5,
that computes the k most central nodes according to closeness centrality: we show significant
improvements with respect to the worst-case in the regime 1 < β < 2 and β > 3 (assuming
k is constant). We also show that the algorithm is not efficient if 2 < β < 3: this is the
only probabilistic analysis which is not reflected in practice. The problem is that our analysis
relies on the fact that distavg (n) = Θ(log log n) tends to infinity, but the experiments were
performed on graphs where n < 10 000 000, and consequently log log(n) < 4. Furthermore,
we analyze the efficiency of the distance oracle AIY: we show that, if β < 3, the expected
time needed to compute the distance between two random nodes is sublinear, and the space
occupied is subquadratic. Finally, we analyze a folklore algorithm, used to compute the
distance and/or the shortest path between two nodes [148, 65, 95]: the balanced bidirectional
BFS, which we described and formalized in Section 6.5. The idea of this algorithm is very
simple: in order to compute dist(s, t), instead of performing a BFS from s until it hits the
node t, we perform two BFSs, one from s and one from t, until they “touch each other” (at
each step, we extend the “smallest” BFS). We show that, in the regime β > 2, the time needed
by this approach to compute a shortest path is sublinear, and, if β > 3, it is O(n

1
2 +ε).

In Section 8.1, we define the random graph models considered; in Section 8.2 we precisely
define the axioms and in Section 8.3 we apply the axioms to prove known asymptotics for
metric properties of random graphs (diameter, closeness centrality, average distance, etc.).
In Sections 8.4 to 8.13, we provide the axiomatic analysis of all the algorithms considered:
for algorithms developed before this thesis, we also include a summary of the main empirical
results obtained (while, for algorithms developed in this thesis, we refer to the corresponding

8.1 - The Model 147

chapters). The remainder of this chapter analyzes the validity of the axioms: in Section 8.14
we experimentally show that they hold in most real-world graphs, with good approximation.
In Section 8.15, we sketch the main ideas of the proof of the validity of the axioms in random
graphs. Since the actual proof is rather long and technical, we moved it to Appendix A.

8.1 The Model

Before defining the model, let us start with some notation. We say that an event E holds
asymptotically almost surely or a.a.s. if, when n tends to infinity, P(E) = 1 − o(1); it holds
with high probability or w.h.p. if P(E) = 1− o

(
n−k

)
for each k ∈ N.

Since, in the literature, there is little agreement on which are the best models for directed
graphs, in this chapter we only focus on the undirected case, and we tacitly assume that all
graphs mentioned are undirected. Our proofs work on different random graph models: the
Configuration Model (CM, [26]), and Rank-1 Inhomogeneous Random Graph models (IRG,
[159], Chapter 3), such as the Chung-Lu model [54], and the Norros-Reittu model [127]. All
these models are defined by fixing in advance the number n of nodes, and n weights ρv, one
for each node. Then, edges are created at random, trying to give ρv outgoing edges to each
node v. We assume that the weights ρv are chosen according to a power law distribution λ,
which is the degree distribution of many real-world graphs [125]: more specifically, we assume
that, for each d, the number of nodes with weight bigger than d is Θ(n

dβ−1), for some constant
β.3 In any case, our results can be easily extended to any degree distribution with finite
variance.

After defining the weights, we have to define how we generate the edges:

• in the CM, we give ρv half-edges, or stubs to a node v; edges are created by pairing
these M =

∑
v∈V ρv stubs at random (we assume the number of stubs to be even, by

adding a stub to a random node if necessary).

• in IRG, an edge between a node v and node w is created independently with probability
f(ρvρwM), where M =

∑
v∈V ρv, and

– in general, we assume the following:

∗ f is derivable at least twice in 0;
∗ f is increasing;
∗ f ′(0) = 1;
∗ f(x) = 1− o(xk) for each k, when x tends to infinity.

– in the Chung-Lu model, f(x) = min(x, 1);

– in the Norros-Reittu model, f(x) = 1− e−x.

Remark 8.1. The first two assumptions in IRG are needed to exclude pathological cases. The
third assumption is just needed to simplify notation, but it can be easily lifted by modifying
the weights ρv: for instance, if f ′(0) = c, we may multiply all ρvs by

√
c, and redefine

f1(x) = f
(
x
c

)
, obtaining the same graph with a function satisfying f ′1(0) = 1. The fourth

assumption is less natural, and there are models where it is not satisfied, like the Generalized
Random Graph model ([160], Chapter 6). However, if the average degree is finite (that is,
β > 2), the proofs do not need this assumption (in this work, we have chosen to use this
assumption in order to simplify the statements).

In order to prove our results, we further need some technical assumptions, to avoid
pathological cases. In particular, we exclude from our analysis the values of β corre-
sponding to the phase transitions: β = 2, and β = 3. Furthermore, in the regime

3In some cases, a stronger definition of power law is used, that is, it is assumed that there are Θ(n
dβ

) nodes
with degree d, for each d. However, our proofs still work with the weaker definition.

148 8 - Probabilistic Analysis of Algorithms

1 < β < 2, we have other phase transitions related to the diameter of the graph, which
is
⌊
3 + β−1

2−β

⌋
: we assume that β−1

2−β is not an integer, and, with abuse of notation, we often

write
⌊
β−1
2−β − ε

⌋
=
⌊
β−1
2−β

⌋
=
⌈
β−1
2−β

⌉
− 1 =

⌈
β−1
2−β + ε

⌉
− 1, with obvious meaning.

Finally, we need a last assumption on the degree distribution λ: all our metric quantities
make sense only if the graph is connected. Hence, we need to assume that λ does not contain
“too many nodes” of small degree, so that a.a.s. there is a unique connected component of
size Θ(n), named giant component. All our results hold in the giant component of the graph
considered.

In the remainder of this section, we define precisely this assumption, and we further define
some more constants that appear in the main theorems. A reader who is not interested in
these technicalities might just skip this part, assuming that the graph is connected, and that
the main axioms hold (our probabilistic analyses do not depend on the definition of these
constants).

The first definition is the residual distribution µ [76, 159, 160]: intuitively, if we choose
a random node v, and we choose a random neighbor w of v, the degree of w is µ-distributed
(see Theorem A.21, in the case ` = 1). This distribution is defined as follows.

Definition 8.2. Given a distribution λ, its first moment M1(λ) is the expected value of a
λ-distributed random variable. The residual distribution µ of the distribution λ is:

• in the CM, µ(i) = (i+1)λ(i+1)
M1(λ) ;

• in IRG, let µ′(i) = iλ(i)
M1(λ) : µ(i) is a Poisson distribution with random parameter µ′.

In Appendix A.3, we show that the number of nodes at distance ` from a given node
v is very close to a µ-distributed branching process Z` (for more background on branching
processes, we refer to [12]). If M1(µ) < 1, this branching process dies a.a.s.: in terms
of graphs, it means that the biggest component has size O(log n), and there is no giant
component. Conversely, if M1(µ) is bigger than 1, then the branching process has an infinite
number of descendants with positive probability p: in terms of graphs, it means that there is a
connected component of size close to pn (see [160] for a proof). Hence, we assume M1(µ) > 1
and we ignore all the nodes that are not in the giant component.

Finally, given a µ-distributed branching process, we may consider only the branches that
have an infinite number of descendant (see [12], I.D.12): we obtain another branching process
with offspring distribution η depending on µ. In particular, our results depend on η(1), that
is, the probability that an η-distributed random variable has value 1 (for estimating the value
of η(1), we refer to [76]). In the following, we also assume that η(1) > 0: this is true if and
only if µ(0) 6= 0 or µ(1) 6= 0. In IRG, this is automatically implied by the definition of µ,
while in the CM this is an additional technical assumption.

8.2 The Axioms

In order to state our axioms, we need the following definitions. In Figure 8.2, we give a
visualization of the quantities appearing in these definitions.

Definition 8.3. Given a graph G = (V,E), if s ∈ V , we denote by Γ`(s) the set of nodes at
distance exactly ` from s, and we let γ`(s) = |Γ`(s)|. Similarly, we denote by N `(s) the set
of nodes at distance at most ` from s, and we let n`(s) = |N `(s)|.

Definition 8.4. Let x be a real number such that 0 < x < 1: we denote by τ s (nx) =
min{` ∈ N : γ`(s) > nx}, and by T (d→ nx) the average number of steps for a node of degree
d to obtain a neighborhood of nx nodes (more formally, T (d→ nx) is the average of τ s (nx)
over all nodes s of degree d).

8.2 - The Axioms 149

s

γ1(s)
Γ1(s)

Γ2(s)
γ2(s)

...

First time > nx

τ
s

(n
x
)

N1(s)

N2(s)

Figure 8.2. A visualization of the quantities appearing in Definitions 8.3 and 8.4. The green triangle represents
the tree obtained by performing a BFS from s, stopped as soon as we hit a neighbor with size at least nx.

Remark 8.5. In general, τ s (nx) could not be defined, if no neighborhood of s has size at
least nx. In random graphs, we solve this issue by showing that τ s (nx) is defined for each
node in the giant component, because it contains Θ(n) nodes and has diameter O(log n). In
real-world graphs, since the diameter is usually very small, τ s (nx) is defined for each value
of x considered in our experiments.

Our axioms depend on a parameter ε: for instance, the first axiom bounds the number of
nodes s such that τ s (nx) ≥ (1 + ε)T (d→ nx). Intuitively, one can think of ε as a constant
which is smaller than any other constant appearing in the proofs, but bigger than 1

n , or
any other infinitesimal function of n. Indeed, in random graphs, we prove that if we fix
ε, δ > 0, we can find nε,δ such that the axioms hold for each n > nε,δ, with probability at
least 1− δ. In real-world graphs, we experimentally show that the axioms are satisfied with
good approximation for ε = 0.2. In our analyses, the time bounds are of the form nc+O(ε),
and the constants in the O are quite small. Since, in our dataset, n0.2 is between 6 and 19,
we can safely consider nc+O(ε) close to nc.

The first axiom analyzes the typical and extremal values of τ s (nx), where s is any node.

Axiom 1. There exists a constant c such that:

• for each node s with degree d > nε, τ s (nx) ≤ (1 + ε)
(
T (d→ nx) + 1

)
;

• the number of nodes satisfying τ s (nx) ≥ (1 + ε)
(
T (d→ nx) + α

)
is O

(
ncα−x

)
;

• the number of nodes satisfying τ s (nx) ≥ (1− ε)
(
T (1→ nx) + α

)
is Ω

(
ncα−x

)
.

In random graphs, the values of T (d→ nx) depend on the exponent β (see Table 8.2). In
many of our analyses, we do not use the actual values of T (d→ nx), but we use the following
properties:

• T
(
d→ nx+ε

)
≤ T (d→ nx) (1 +O(ε));

•
∑∞
d=1 |{v ∈ V : deg(v) = d}|T (d→ nx) = (1 + o(1))nT (1→ nx);

• T (1→ nx) + T
(
1→ n1−x) − 1 = (1 + o(1)) distavg (n), where distavg (n) is a function

not depending on x (this function is very close to the average distance distavg, as we
prove in Corollary 8.16).

150 8 - Probabilistic Analysis of Algorithms

Table 8.2. The values of T (d→ nx), distavg (n) and c, depending on the value of β. All these values should
be multiplied by (1 + o(1)), which is omitted to increase readability.

Regime T (d→ nx) distavg (n) c

1 < β < 2 1 if d ≥ nx, 2 otherwise 3 n−
2−β
β−1 +o(1)

2 < β < 3 log 1
β−2

lognx

log d if nx < n
1

β−1 2 log 1
β−2

log n η(1)

log 1
β−2

lognx

log d +O(1) if nx > n
1

β−1

β > 3 logM1(µ)
nx

d logM1(µ) n η(1)

The other two axioms relate the distance between two nodes s, t with the values of τ s (nx),
τ t (ny), where x, y are two reals between 0 and 1. The idea behind these axioms is to apply
the “birthday paradox”, assuming that Γτs(n

x)(s) and Γτ t(n
y)(t) are random sets of nx and

ny nodes. In this idealized setting, if x+ y > 1, there is a node that is common to both, and
dist(s, t) ≤ τ s (nx) + τ t (ny); conversely, if x + y < 1, dist(s, t) is likely to be bigger than
τ s (nx) +τ t (ny). Let us start with the simplest axiom, which deals with the case x+ y > 1.

Axiom 2. Let us fix two real numbers 0 < x, y < 1 such that x+ y > 1 + ε. For each pair of
nodes s, t, dist(s, t) < τ s (nx) + τ t (ny).

The third axiom is a sort of converse: the main idea is that, if the product of the size of two
neighborhoods is smaller than n, then the two neighborhoods are usually not connected. The
simplest way to formalize this is to state that, for each pair of nodes s, t, dist(s, t) ≥ τ s (nx)+
τ t (ny). However, there are two problems with this statement: first, in random graphs, if we
fix s and t, dist(s, t) ≥ τ s (nx)+τ t (ny) a.a.s., not w.h.p., and hence there might be o(n) nodes
t such that dist(s, t) < τ s (nx) + τ t (ny) (for example, if s and t are neighbors, they do not
satisfy dist(s, t) ≥ τ s (nx) +τ t (ny)). To solve this, our theorem bounds the number of nodes
t satisfying dist(s, t) ≥ τ s (nx)+τ t (ny). The second problem is more subtle: for example, if s
has degree 1, and its only neighbor has degree n

1
2 , τ s

(
n

1
4

)
= τ s

(
n

1
2

)
= 2, and the previous

statement cannot hold for x = 1
4 . However, this problem does not occur if x ≥ y: the intuitive

idea is that we can “ignore” nodes with degree bigger than nx. Indeed, if a shortest path from
s to t passes through a node v with degree bigger than nx, then τ s (nx) ≤ dist(s, v) + 1,
τ t (ny) ≤ dist(t, v) + 1, and hence dist(s, t) = dist(s, v) + dist(v, t) ≥ τ s (nx) + τ t (ny)− 2.

Axiom 3. Let 0 < z ≤ y < x < 1, let x+ y ≥ 1 + ε, and let α, ω be integers. If Tα,ω,z is the
set of nodes t such that τ t (nz) is between α and ω, there are at most |Tα,ω,z|n

x+y+ε

n nodes
t ∈ T such that dist(s, t) < τ s (nx) + τ t (ny)− 2.

Finally, in some analyses, we also need to use the fact that the degree distribution is power
law. To this purpose, we add a further axiom (in random graphs, this result is well-known
[159, 160]).

Axiom 4. The number of nodes with degree bigger than d is Θ
(

n
dmax(1,β−1)

)
.

8.3 Consequences of the Axioms

Before showing the validity of the axioms, we provide some consequences of the axioms, that
describe the metric structure of the graphs considered. These results are fundamental in all
our probabilistic analyses, and they are repeatedly used in the subsequent chapters.

Furthermore, by specializing these results to random graphs, we obtain a new proof of
known asymptotics, and we prove new asymptotics in the case 1 < β < 2. In all the following
lemmas, with abuse of notation, we write O(ε) even if ε is a constant, in order to indicate a
function bounded by kε for some constant k.

8.3 - Consequences of the Axioms 151

Lemma 8.6. All nodes s with degree d satisfy

τ s (nx) ≤

⌊
(1 +O(ε))

(
T (d→ nx) +

log n

− log c
+ x

)⌋
.

Moreover, for each δ > 0, there are Ω
(
nδ
)
nodes s with degree 1 satisfying

τ s (nx) ≥

⌈
(1− ε− δ)

(
T (1→ nx) +

log n

− log c
− 1 + x

)⌉
.

Proof. By Axiom 1 applied with α = (1 + ε) logn
− log c + x, there are

O
(
ncα−x

)
= O

(
nc(1+ε) logn

− log c

)
≤ O

(
n−ε

)
< 1

nodes s such that

τ s (nx) ≥ (1 + ε)
(
T (d→ nx) + α

)
= (1 + ε)

(
T (d→ nx) + (1 + ε)

log n

− log c
+ x

)
.

By observing that τ s (nx) is an integer, we obtain the first claim.
For the other inequality, let us apply Axiom 1 with α = (1 − δ) logn

− log c − 1 + x:

we obtain that there are Ω
(
ncα+1−x) = Ω

(
nc(1−δ)

logn
− log c

)
= Ω

(
nδ
)
nodes s such that

τ s (nx) ≥ (1 − ε)
(
T (1→ nx) + α

)
= (1 − ε)

(
T (1→ nx) + (1− δ) logn

− log c − 1 + x
)
≥ (1 −

ε − δ)
(
T (1→ nx) + logn

− log c − 1 + x
)
. By observing that τ s (nx) is an integer, the second

claim is proved.

By combining the previous lemma with Axioms 2 and 3, we can estimate the eccentricity
of each node.

Definition 8.7. The eccentricity ecc(s) of a node s is maxt∈V dist(s, t).

Theorem 8.8. For each node s and for each 0 < x < 1,

ecc(s) ≤ τ s (nx) +

⌊
(1 +O(ε))

(
T
(

1→ n1−x
)

+
log n

− log c
− x
)⌋

.

Furthermore, for each s and for each x ≥ 1
2 :

ecc(s) ≥ τ s (nx) +

⌈
(1 +O(ε))

(
T
(

1→ n1−x
)

+
log n

− log c
− x
)⌉
− 2.

Proof. By Axiom 2, for each node t, dist(s, t) ≤ τ s (nx) + τ t
(
n1−x+ε

)
− 1. By Lemma 8.6,

for each t,

τ t

(
n1−x+ε

)
≤

⌊
(1 +O(ε))

(
T
(

deg(t)→ n1−x+ε
)

+
log n

− log c
+ 1− x+ ε

)⌋
,

and consequently

ecc(s) = max
t∈V

dist(s, t)

152 8 - Probabilistic Analysis of Algorithms

≤ τ s (nx) +

⌊
(1 +O(ε))

(
T
(

1→ n1−x+ε
)

+
log n

− log c
+ 1− x+ ε

)⌋
− 1

=

⌊
(1 +O(ε))

(
T
(

1→ n1−x
)

+
log n

− log c
− x
)⌋

.

For the other inequality, if x ≥ 1
2 , let y = 1 − x − ε < x, and let T be the set of nodes

t such that τ t (ny) ≥
⌈

(1− 3ε)
(
T (1→ ny) + logn

− log c − 1 + y
)⌉

(by Lemma 8.6, |T | ≥ n2ε).

By Axiom 3, there is at least a node t ∈ T satisfying

dist(s, t) ≥ τ s (nx) + τ t (ny)− 2

≥ τ s (nx) +

⌈
(1− 3ε)

(
T (1→ ny) +

log n

− log c
− 1 + y

)
− 2

⌉
.

The second claim follows.

Thanks to this lemma, we can compute the diameter of a graph as the maximum eccen-
tricity.

Definition 8.9. The diameter D of a connected graph is maxs,t∈V dist(s, t) = maxs∈V ecc(s).

Theorem 8.10. For each x, the diameter of our graph is

D =

⌊
(1 +O(ε))

(
distavg (n) +

2 log n

− log c

)⌋
.

Proof. By combining the upper bounds in Theorem 8.8 and Lemma 8.6, we can prove that

D ≤

⌊
(1 +O(ε))

(
T (1→ nx) +

log n

− log c
+ x

)⌋

+

⌊
(1 +O(ε))

(
T
(

1→ n1−x
)

+
log n

− log c
− x
)⌋

.

If we choose x such that (1 +O(ε))
(
T (1→ nx) + logn

− log c + x
)

= i− ε, we obtain that

D ≤ i− 1 +

⌊
(1 +O(ε))

(
T
(

1→ n1−x
)

+
log n

− log c
− x
)⌋

≤

⌊
i+ (1 +O(ε))

(
T
(

1→ n1−x
)

+
log n

− log c
− x− 1

)⌋

≤

⌊
(1 +O(ε))

(
distavg (n) +

2 log n

− log c

)⌋
.

Let us combine the lower bounds in Theorem 8.8 and Lemma 8.6: we obtain that

D ≥

⌈
(1−O(ε))

(
T (1→ nx) +

log n

− log c
+ x− 1

)⌉

+

⌈
(1−O(ε))

(
T
(

1→ n1−x
)

+
log n

− log c
− x− 1

)⌉
− 1.

8.3 - Consequences of the Axioms 153

For all but a constant number of values of x, we obtain that

D ≥

⌊
(1−O(ε))

(
T (1→ nx) +

log n

− log c
+ x

)⌋

+

⌊
(1−O(ε))

(
T
(

1→ n1−x
)

+
log n

− log c
− x
)⌋
− 1.

Furthermore, if (1−O(ε))
(
T (1→ nx) + logn

− log c + x
)

= i+ ε for some integer i, this value

is
⌊
i+ (1−O(ε))

(
T
(
1→ n1−x)+ logn

− log c − x
)⌋
− 1 ≥

⌊
(1−O(ε))

(
distavg (n) + 2 logn

− log c

)⌋
.

A similar argument can be applied if the second term is i+ ε: hence, it only remains to prove
that we can find a value of x between 1

2 and 1 such that one of the two parts is close to an
integer. This is true because T (1→ nx) + x is continuous and increasing with respect to x,
and T

(
1→ n1−x)− x is continuous and decreasing. Since the increase and the decrease are

at least 1
2 , the sum of the two is at least 1.

Given Theorem 8.32, and given the values in Table 8.2, Theorem 8.10 gives diameter
bounds for power law graphs generated through the models considered (since the axioms hold
for each ε, we can safely let ε tend to 0, and transform O(ε) into o(1)). As far as we know,
the bound for 1 < β < 2 is new, while the other bounds are already known [76, 27].

Corollary 8.11. If λ is a power law degree distribution with exponent β, the diameter of a
random graph with degree distribution λ is:

• if 1 < β < 2, D =
⌊
3 + β−2

β−1

⌋
;

• if 2 < β < 3, D = (1 + o(1))
(

2
− log η(1)

)
log n;

• if β > 3, D = (1 + o(1))
(

2
− log η(1) + 1

logM1(µ)

)
log n;

All the previous results deal with “extremal” properties of the distance distribution. In-
stead, the next results deal with properties that hold on average. Let us start by estimating
the farness of a node s, that is, 1

n−1

∑
t∈V dist(s, t).

Theorem 8.12. For each node s and for each 0 < x < 1, the farness f(s) of s satisfies

f(s) ≤ (1 +O(ε))
(
τ s (nx)− T (1→ nx) + distavg (n)

)
− deg(s)

n
.

Proof. By Axiom 2, for each node t, dist(s, t) ≤ τ s (nx) + τ t
(
n1−x+ε

)
− 1, and hence

∑
t∈V

dist(s, t) ≤ n
(
τ s (nx)− 1

)
+

+∞∑
d=1

∑
deg(t)=d

τ t

(
n1−x+ε

)

= n
(
τ s (nx)− 1

)
+

+∞∑
d=1

|{t ∈ V : deg(t) = d}|T
(
d→ n1−x+ε

)
− n

≤ n
(
τ s (nx)− 1

)
+ n(1 + o(1))T

(
1→ n1−x+ε

)
+ nT

(
1→ nx−ε

)
− nT

(
1→ nx−ε

)
≤ n(1 +O(ε))

(
τ s (nx)− T (1→ nx) + distavg (n)

)
.

We need to subtract deg(s)
n from this result. To this purpose, we observe that in the first esti-

mate, all neighbors of s with degree at most n1−x were given a distance τ s (nx)+τ t
(
n1−x+ε

)
−

154 8 - Probabilistic Analysis of Algorithms

1 = τ s (nx) + 2− 1 ≥ 2, and consequently the other estimates remain correct if we subtract
the number of neighbors of s with degree at most n1−x, or equivalently if we subtract deg(s)
and we sum the number of neighbors of s with degree at least n1−x. Since |E| ≤ n1+ε by
Axiom 4, the number of nodes with degree at least n1−x is at most nx+ε, and the latter
contribution is negligible.

Theorem 8.13. For each node s and for each 1
2 ≤ x < 1,

f(s) ≥ (1−O(ε))
(
τ s (nx)− T (1→ nx) + distavg (n)− 1

)
.

Proof. Let s be any node, and let us apply Axiom 3 with T = V : there are at most O
(
n1−ε)

nodes t ∈ V such that dist(s, t) < τ s (nx) + τ t
(
n1−x−2ε

)
− 2. Let T ′ := {t ∈ V : dist(s, t) ≥

τ s (nx) + τ t
(
n1−x−2ε

)
− 2}.

f(s) =
1

n− 1

∑
t∈V

dist(s, t)

≥ 1

n− 1

∑
t∈V ′

τ s (nx) + τ t

(
n1−x−2ε

)
− 2

= (1− o(1))
(
τ s (nx)− 2

)
+

1

n− 1

∑
t∈V

τ t

(
n1−x−2ε

)
− τ t

(
n1−x−2ε

)
= (1−O(ε))(τ s (nx)− T (1→ nx) + distavg (n)− 1)− |V − V

′|
n− 1

O(log n)

= (1−O(ε))(τ s (nx)− T (1→ nx) + distavg (n)− 1).

By computing the inverse of the farness, we can compute the closeness centrality of a
node.

Definition 8.14. The closeness centrality of a node s in a connected graph is 1
f(s) =

1∑
t∈V dist(s,t) .

Corollary 8.15. For each x such that 1
2 ≤ x < 1, the closeness centrality of a node s satisfies

1−O(ε)

τ s (nx)− T (1→ nx) + distavg (n)− deg(s)/n
≤ c(s)

≤ 1 +O(ε)

τ s (nx)− T (1→ nx) + distavg (n)− 1
.

Corollary 8.16. The average distance distavg is between (1−O(ε)) distavg (n)− 1 and (1 +
O(ε)) distavg (n).

Proof. The average distance is the average of the farness of all nodes. By the two previous
theorems, for each x ≥ 1

2 ,

(1 +O(ε))
(
τ s (nx)− T (1→ nx) + distavg (n)− 1

)
≤ f(s)

≤ (1 +O(ε))
(
τ s (nx)− T (1→ nx) + distavg (n)

)
.

Let us compute
∑
s∈V τ s (nx) =

∑+∞
d=1

∑
deg(s)=d τ s (nx) =

∑∞
d=1 |{s : deg(s) =

d}|T (d→ nx) = n(1+o(1))T (1→ nx). Combining this estimate with the previous equation,
we obtain:

8.4 - The Sampling Algorithm to Lower Bound the Diameter 155

(1−O(ε)) distavg (n)− 1 ≤ 1

n

∑
s∈V

f(s) ≤ (1 +O(ε)) distavg (n) .

Again, assuming Theorem 8.32, and given the values in Table 8.2, we have proved the
following asymptotics for the average distance in random graphs.

Corollary 8.17. If λ is a power law degree distribution with exponent β, the average distance
in a random graph with degree distribution λ is:

• if 1 < β < 2, 2 ≤ distavg ≤ 3;

• if 2 < β < 3, distavg = (2 + o(1))
(

log 1
β−1

log n
)
;

• if β > 3, distavg = (1 + o(1)) logn
logM1(µ) .

8.4 The Sampling Algorithm to Lower Bound the Diam-
eter

The first algorithm we analyze is very simple: it lower bounds the diameter of a graph
by performing k BFSs from random nodes s1, . . . , sk, and returning maxi=1,...,k ecc(si) =
maxi=1,...,k maxt∈V dist(si, t) ≤ D.

This algorithm was used in [118] for a large-scale analysis of social networks, it is imple-
mented in the SNAP graph library [108], where it was used to estimate the diameter of all
the graphs in the well-known dataset which is shipped with the library itself.

Clearly, the running time of this algorithm is Θ(mk): we want to analyze the error of this
method on graphs that satisfy our assumptions. The main idea behind this analysis is that
ecc(s) is strongly correlated with τ s (nx), and the number of nodes satisfying τ s (nx) > α
decreases exponentially with respect to α. This means that the number of nodes with high
eccentricity is very small, and it is difficult to find them by sampling: as a consequence, we
expect the error to be quite big. Indeed, it was proved in [62, 61] that the values computed
by this algorithm are not tight on many graphs.

8.4.1 Probabilistic Analysis

Let us formalize the aforementioned intuition. By Theorem 8.8, the eccentricity of a node s
satisfies

ecc(s) ≤ τ s (nx) +

⌊
(1 +O(ε))

(
T
(

1→ n1−x
)

+
log n

− log c
− x
)⌋

,

and consequently the output is at most

max
i=1,...,k

τ si (nx) +

⌊
(1 +O(ε))

(
T
(

1→ n1−x
)

+
log n

− log c
− x
)⌋

.

We want to estimate maxi=1,...,k τ si (nx) through Axiom 1: the number of nodes s satisfying
τ s (nx) ≥ (1 + O(ε))

(
T (1→ nx) + α

)
is at most ncα−x, and consequently a random set of

k nodes does not contain any such node, a.a.s., if k ≤ n1−ε

ncα−x �
n

ncα−x . Solving the first
inequality with respect to α, we obtain α ≥ x+ ε logn+log k

− log c .

156 8 - Probabilistic Analysis of Algorithms

We conclude that, a.a.s., if α = x+ ε logn+log k
− log c , we do not perform any BFS from a node

s such that τ s (nx) ≥ (1 + ε)
(
T (1→ nx) + α

)
= (1 +O(ε))

(
T (1→ nx) + γ logn

− log c + x
)
. This

means that, for a suitable choice of x, the output is smaller than:

max
s∈X

τ s (nx) +

⌊
(1 +O(ε))

(
T
(

1→ n1−x
)

+
log n

− log c
− x
)⌋

≤

⌊
(1 +O(ε))

(
T (1→ nx) +

γ log n

− log c
+ x

)⌋
+

+

⌊
(1 +O(ε))

(
T
(

1→ n1−x
)

+
log n

− log c
− x
)⌋

≤

⌊
(1 +O(ε))

(
T (1→ nx) +

γ log n

− log c
+ T

(
1→ n1−x

)
+

log n

− log c
− 1

)⌋

≤

⌊
(1 +O(ε))

(
distavg (n) +

(1 + γ) log n

− log c
− 1

)⌋
.

By replacing the values in Table 8.2, we obtain the desired results. In order to obtain a
lower bound on the error, it is enough to perform similar computations after replacing ε with
−ε.

8.5 The 2-Sweep Heuristic

The 2-Sweep heuristic [114] finds a lower bound on the diameter, by performing a BFS from
a node s, finding a node t that maximizes the distance from s, and returning the eccentricity
of t. The running time is linear in the input size, because the algorithm performs 2 BFSs: the
interesting part is analyzing the error obtained, both in real-world graphs and in the graphs
in our framework.

8.5.1 Experimental Results
The performances of the 2-Sweep heuristic on real-world graphs were analyzed in [114]. The
authors used four real-world networks for their experiments:

• the as-skitter network available in the SNAP dataset;

• a traffic graph (ip) obtained from MetroSec, which captured each IP packet header
routed by a given router during 24 hours, two IP addresses being linked if they appear
in a packet as sender and destination, leading to 2 250 498 nodes and 19 394 216 edges.

• a peer-to-peer graph (p2p) in which two peers are linked if one of them provided a file
to the other in a measurement conducted on a large eDonkey server for a period of 47
hours in 2004, leading to 5 792 297 nodes and 142 038 401 edges;

• the uk-2004 network available in the WebGraph dataset [23].

The graphs used in this analysis are publicly available on the webpage https://www.
complexnetworks.lip6.fr/~magnien/Diameter/, managed by Clémence Magnien, one of
the authors of [114].

In the analysis, the authors run the 2-Sweep heuristic for 2 000 iterations in the first two
graphs, 5 000 iterations in the third graph, and 10 000 iterations in the fourth graph. We
report in Table 8.3 the results obtained, together with the exact diameter, computed with
more modern approaches that were not available when the paper [114] was published.

https://www.complexnetworks.lip6.fr/~magnien/Diameter/
https://www.complexnetworks.lip6.fr/~magnien/Diameter/

8.5 - The 2-Sweep Heuristic 157

Table 8.3. For all the graphs considered, the maximum lower obtained by the 2-Sweep heuristic in all the
iterations, the percentage of starting nodes achieving that bound, and the first iteration when that bound was
obtained.

Network Diameter Lower bound Percentage First iteration
as-skitter 31 31 0.49 2
ip 9 9 0.989 1
p2p 9 9 0.7005 1
uk-2004 32 32 0.985 1

From the table, it is clear that the 2-Sweep heuristic provides the correct value of the
diameter in most cases: hence, by performing very few iterations, one can obtain a bound
which is almost always tight.

8.5.2 Probabilistic Analysis

Let us start by giving an intuition of this probabilistic analysis. First, we estimate the
eccentricity of any node s: if we ignore ε and the additive constants, by Axiom 2, ecc(s) =
maxt∈V dist(s, t) ≤ τ s

(√
n
)
+maxt∈V τ t

(√
n
)
. Furthermore, by Axiom 3, we can find a node

t maximizing τ t
(√
n
)
, such that dist(s, t) ≥ τ s

(√
n
)

+ τ t
(√
n
)
. This means that ecc(s) ≈

τ s
(√
n
)

+ maxt∈V τ t
(√
n
)
, and that the node t farthest from s maximizes τ t

(√
n
)
. Using

these results, we can prove that the diameter is D = maxs∈V ecc(s) ≈ maxs∈V τ s
(√
n
)

+

maxt∈V τ t
(√
n
)

= 2 maxt∈V τ t
(√
n
)
. Furthermore, if t is the node farthest from s, ecc(t) ≈

τ t
(√
n
)

+ maxu∈V τu
(√
n
)
≈ 2 maxt∈V τ t

(√
n
)
≈ D. This shows that, if we ignore ε and

the additive constants, we obtain that the output of the SumSweep heuristic is the exact
diameter.

Let us formalize this intuition: first of all, we need to compute the eccentricity of the node
t farthest from s.

Lemma 8.18. For each node s, let t be a node maximizing the distance from s. Then, for
each x ≥ 1

2 ,

τ t

(
n1−x

)
≥

⌈
(1−O(ε))

(
T
(

1→ n1−x
)

+
log n

− log c
− 1− x

)⌉
.

Proof. By Axiom 2 and Theorem 8.8,

τ s
(
nx+ε

)
+

⌈
(1−O(ε))

(
T
(

1→ n1−x−2ε
)

+
log n

− log c
− 2− x

)⌉
≤ ecc(s)

= dist(s, t)

≤ τ s
(
nx+ε

)
+ τ t

(
n1−x

)
− 1.

From this inequality, we obtain that

τ t

(
n1−x

)
≥

⌈
(1−O(ε))

(
T
(

1→ n1−x
)

+
log n

− log c
− 1− x

)⌉
.

By Theorems 8.8 and 8.10, if t is the node maximizing the distance from s:

158 8 - Probabilistic Analysis of Algorithms

ecc(t) ≥ τ t
(
n

1
2

)
+

⌈
(1−O(ε))

(
T
(

1→ n
1
2

)
+

log n

− log c
− 1

2

)⌉
− 2

≥

⌈
(1−O(ε))

(
T
(

1→ n
1
2

)
+

log n

− log c
− 3

2

)⌉

+

⌈
(1−O(ε))

(
T
(

1→ n
1
2

)
+

log n

− log c
− 5

2

)⌉

≥ 2

⌊
(1−O(ε))

(
T
(

1→ n
1
2

)
+

log n

− log c
− 1

2

)⌋
− 1

≥ 2

⌊
(1−O(ε))

D

2

⌋
− 1

(in this analysis, we used that T
(

1→ n
1
2

)
+ logn
− log c is not an integer, as stated in Section 8.1,

and that ε is small enough).
We conclude that the output of the 2-Sweep heuristic is 2

⌊
(1−O(ε))D2

⌋
− 1.

8.6 The 4-Sweep Heuristic

The 4-Sweep heuristic [62, 61] is a generalization of the 2-Sweep heuristic, which performs
4 BFSs instead of 2, and it should provide better approximations. It works as follows: first,
we perform a 2-Sweep heuristic starting from a node s, finding the node t farthest from s,
and the node u farthest from t. Then, it chooses a node s′ in the middle of a tu-shortest path,
and it performs another 2-Sweep heuristic from s′. At the end, it returns the maximum
eccentricity found.

8.6.1 Experimental Results

In [61], the authors perform a thorough analysis of the 4-Sweep heuristic, by testing its
performances on a dataset made by 196 real-world and synthetic graphs. They show that, on
all but three graphs, 10 rounds of the 4-Sweep heuristic provide tight values on the diameter,
and very often even a smaller number of iterations is needed. However, in [61], there is no
comparison between the 2-Sweep and the 4-Sweep. Here, we perform this comparison, and
consequently we further validate the efficiency of these heuristic. In order to perform a fair
comparison, we chose to perform the 2-Sweep heuristic twice, so that the running time is
approximately the same as the 4-Sweep heuristic (we name this procedure 2×2-Sweep).

We run 10 times each of the two heuristics, and we show in Table 8.4 the average of
the relative errors obtained, on each graph in a dataset made by 26 real-world undirected
networks taken from SNAP [108].

From the result, we see that both heuristics are very efficient: indeed, very often there
is no error, and the error is always below 1%. However, we do not find any big difference
between the behavior of the two algorithms: this seems to suggest that the choice of the
starting node for the second BFS does not yield better approximations.

8.6.2 Probabilistic Analysis

In the previous section, we saw that, in practice, it is quite difficult to distinguish the perfor-
mances of the 2-Sweep and of the 4-Sweep heuristic. Also in the probabilistic framework,

8.7 - The RW Algorithm 159

Table 8.4. Average of the relative error obtained by the 2×2-Sweep and the 4-Sweep heuristics, over 10
runs.

Network 2×2-Sweep 4-Sweep
as20000102 0.00% 0.00%
CA-AstroPh 0.00% 0.00%
CA-CondMat 0.00% 0.00%
ca-GrQc 0.00% 0.00%
ca-HepPh 0.00% 0.00%
ca-HepTh 0.00% 0.00%
com-amazon.all.cmty 0.00% 0.00%
com-amazon.ungraph 0.00% 0.00%
com-dblp.ungraph 0.00% 0.00%
com-lj.all.cmty 0.00% 0.31%
com-youtube.ungraph 0.00% 0.00%
email-Enron 0.00% 0.00%
facebook_combined 0.00% 0.00%
flickrEdges 0.00% 0.00%
gowalla_edges 0.00% 0.00%
loc-brightkite_edges 0.00% 0.00%
oregon1_010519 0.00% 0.00%
oregon1_010526 0.00% 0.00%
oregon2_010519 0.00% 0.00%
oregon2_010526 0.00% 0.00%
p2p-Gnutella09 0.00% 0.00%
roadNet-CA 0.72% 0.24%
roadNet-PA 0.33% 0.40%
roadNet-TX 0.08% 0.72%
soc-pokec-relationships 0.71% 0.00%
youtube-u-growth 0.00% 0.00%

there is little we can do to exploit the choice of the starting node: indeed, the only result
about this heuristic is that it is at least as efficient as the 2-Sweep heuristic. The proof of
lower bounds on the error obtained with this heuristic is left as a challenging open problem.

8.7 The RW Algorithm

The RW algorithm [138] is a randomized algorithm that computes a 2
3 -approximation of the

diameter of a graph, in time Θ(m
√
n log n). The algorithm works as follows: we choose a

set S = {s1, . . . , sk} made by k = c
√
n log n nodes, and we perform a BFS from each of

these nodes. Then, we compute the node t maximizing mini=1,...,k dist(si, t), and we compute
the set T made by the h =

√
n nodes closest to t. If S ∩ T 6= ∅, the algorithm terminates

and returns the approximation D̃ = maxv∈S∪T ecc(v). Otherwise, the algorithm fails, and,
for instance, we can run the algorithm again until it succeeds (we prove that the latter case
occurs with probability n1−c, which can be made small by a suitable choice of c).

8.7.1 Worst-Case Analysis
In order to provide a worst-case analysis of the RW algorithm, we need to prove the following
facts:

• the probability that the algorithm succeeds is at least 1− n1−c;

• the output of the algorithm satisfies 2
3D ≤ D̃ ≤ D.

160 8 - Probabilistic Analysis of Algorithms

s1s2 = sv

s3

v w

t s4

t′

Figure 8.3. A visualization of the analysis of the RW algorithm. The red lines denote the three paths in
Lemma 8.20.

Let us start with the first statement: the algorithm fails if S ∩ T = ∅, that is, if there is
no node in S among the h nodes closest to t. Since we do not know the node t, we prove
something stronger: we bound the probability that there exists a node v ∈ V such that there
is no node in S among the h nodes closest to v.

Lemma 8.19 ([138]). For each node v, let Nh(v) be the set containing the h nodes closest to
v. Then, the probability that a random set of k nodes s1, . . . , sk touches Nh(v) for each v is
at least 1− nehkn .

Proof. Let us fix a node v. For each node si, the probability that si is not one of the h nodes
closest to v is 1− h

n . The probability that none of the nodes si is among the h nodes closest

to v is
(

1− h
n

)k
≤ e−hkn . A union bound over all nodes v lets us conclude.

If we apply this lemma with h =
√
n, k = c

√
n log n, we obtain that the probability that

the algorithm succeeds is at least the probability that, for each v, Nh(v) contains a node in
S, which is at least 1− e−hkn = 1− ne−c logn = n1−c. This proves the first item.

For the second item, let v, w be a diametral pair (that is, v and w are nodes such that
dist(v, w) = D), let sv be the node in S closest to v, and let t′ be the last node in a shortest
path from t to w that belongs toNh(v) (see Figure 8.3). We claim that either dist(sv, w) ≥ 2D

3 ,
or dist(v, t′) ≥ 2D

3 (red paths in Figure 8.3).

Lemma 8.20 ([138]). In the previous construction, one of the following holds:

• dist(sv, w) ≥ 2D
3 ;

• dist(t, w) ≥ 2D
3 ;

• dist(v, t′) ≥ 2D
3 .

Proof. By the triangular inequality, D = dist(v, w) ≤ dist(v, sv) + dist(sv, w). Hence, either
dist(sv, w) ≥ 2D

3 , and the result follows, or we can assume that dist(v, sv) ≥ dD+1
3 e. As a

consequence, since t maximizes mini=1,...,k dist(t, si), we obtain that dist(t, si) ≥ dist(v, sv) ≥
dD+1

3 e for each i, and consequently T contains all nodes at distance at least dD+1
3 e − 1 from

t, because it contains at least a node in S by assumption (green circle in Figure 8.3). If t′ is
the last node in a tw-shortest path, either dist(t, w) ≥ 2D

3 , and we conclude, or dist(t′, w) =

dist(t, w) − dist(t, t′) ≤ b 2D−1
3 c − (dD+1

3 e − 1), and dist(t′, v) ≥ dist(v, w) − dist(t′, w) ≥
D − b 2D−1

3 c+ dD+1
3 e − 1 ≥ 2D

3 .

This lemma implies that the value D̃ = maxv∈S∪T ecc(v) returned by the algorithm is at
least max(ecc(sv), ecc(t), ecc(t′)) ≥ 2

3D.

8.7 - The RW Algorithm 161

8.7.2 Probabilistic Analysis
If we analyze the RW algorithm on the graphs in our framework, we obtain that the running
time is still Θ(m

√
n log n), since the algorithm requires Θ(

√
n log n) BFSs. Let us study the

approximation factor. Intuitively, this algorithm is quite similar to the 2-Sweep heuristic (if
k and h were 1, the algorithm would be the 2-Sweep heuristic), and we conjecture that also
its behavior should be similar.

In this section, we prove an upper bound on the error obtained which matches the upper
bound obtained with the 2-Sweep heuristic. Finding a lower bound on the behavior of this
algorithm is left as a challenging open problem. Let v be any node: since the nodes si are
random,

P
(
∀i, si ∈Nτv(nx)(v)

)
≥
(

1− nx

n

)√n logn

= en
x− 1

2
+o(1)

,

and similarly

P
(
∀i, si /∈Nτv(nx)−1(v)

)
≤
(

1− O (nx log n)

n

)√n logn

= en
x− 1

2
+o(1)

,

because nτv(nx)−1(v) ≤ nxτ v (nx) = O(nx log n). This means that

min
i=1,...,k

dist(si, v) ≤ τ v
(
n

1+ε
2

)
w.h.p.,

and
min

i=1,...,k
dist(si, v) ≥ τ v

(
n

1−ε
2

)
− 1 a.a.s..

Hence, if v is one of the nodes maximizing τ v
(
n

1
2

)
, a.a.s., by Lemma 8.6,

min
i=1,...,k

dist(si, v) ≥ τ v
(
n

1−ε
2

)
− 1

≥

⌈
(1−O(ε))

(
T
(

1→ n
1
2

)
+

log n

− log c
− 1

2

)⌉
− 1.

This means that the node t maximizing mini=1,...,k dist(si, t) satisfies

τ t

(
n

1+ε
2

)
≥ min
i=1,...,k

dist(si, t)

≥ min
i=1,...,k

dist(si, v)

≥

⌈
(1−O(ε))

(
T
(

1→ n
1
2

)
+

log n

− log c
− 1

2

)⌉
.

We conclude that

ecc(t) ≥ τ t
(
n

1
2

)
+

⌈
(1−O(ε))

(
T
(

1→ n
1
2

)
+

log n

− log c
− 1

2

)⌉
− 2

≥

⌈
(1−O(ε))

(
T
(

1→ n
1
2

)
+

log n

− log c
− 1

2

)⌉
− 1

+

⌈
(1−O(ε))

(
T
(

1→ n
1
2−ε
)

+
log n

− log c
− 1

2

)⌉
− 2

= 2

⌈
(1−O(ε))

(
T
(

1→ n
1
2

)
+

log n

− log c
− 1

2

)⌉
− 3.

This value is exactly the same value we obtained for the 2-Sweep heuristic.

162 8 - Probabilistic Analysis of Algorithms

8.8 The SumSweepHeuristic

The 2-Sweep and the 4-Sweep heuristics were further improved in this work, by defining
the SumSweepHeuristic. For the experimental results, we refer to Section 4.5, where we
showed that the SumSweepHeuristic outperforms in accuracy both the 2-Sweep and the
4-Sweep heuristics (and, of course, the sampling algorithm). In this section, we provide the
probabilistic analysis of the SumSweepHeuristic (actually, we need a small variation to
make all the proofs work).

8.8.1 Probabilistic Analysis

In order to perform our probabilistic analysis of the SumSweepHeuristic, we have to
consider a small variation in the choice of the nodes t1, . . . , tk from which the BFSs are
performed. The heuristic explained before chooses ti as the node v maximizing SF (v) :=∑
t∈{t1,...,ti−1} dist(v, t): now, we start from a random node s1, then we choose t1 as the node

v maximizing dist(v, s1). Then, we choose again s2 as a random node, and we choose t2 as the
node in V −{t1} maximizing dist(v, s1)+dist(v, s2). In general, after 2i BFSs are performed,
we choose a random node si+1, we perform a BFS from si+1, and we choose ti+1 as the node
v in V − {t1, . . . , ti} maximizing

∑i+1
j=1 dist(sj , v).

The idea behind the analysis of the 2-Sweep heuristic and the RW algorithm is to exploit
the existence of few nodes t with big values of τ t (nx): both algorithms find a single node
t such that τ t (nx) is high, and they lower bound the diameter with the eccentricity of this
node, which is peripheral (see Sections 8.5.2 and 8.7.2). Instead, the SumSweep heuristic
highlights all nodes ti having big values of τ t (nx), and it performs a BFS from each of these
nodes. Then, for each node v, if t is the node farthest from v, τ t (nx) is big, and this means
that t = ti for some small i (we recall that τ t (nx) is the first neighborhood of t having size at
least nx, as in Definition 8.4). Consequently, if we lower bound ecc(s) ≥ maxi=1,...,k ecc(ti),
the lower bounds obtained are tight after few steps. Let us formalize this intuition: first, we
need to prove that the nodes t with high value of τ t

(
n1−x) are chosen soon by this procedure.

Lemma 8.21. Let S be a random set of nodes, let τS (ny) = 1
|S|
∑
s∈S τ s (ny), and let t be

any node in the graph. Then,
∑
s∈S dist(s,t)

|S| ≤ τ t (nx) + τS
(
n1−x+ε

)
− 1. Furthermore, if

|S| > n3ε, x ≥ 1
2 ,

∑
s∈S dist(s,t)

|S| ≥ (1− o(1))
(
τ t (nx) + τS

(
n1−x−2ε

)
− 1
)
, w.h.p..

Proof. For the upper bound, by Axiom 2,
∑
s∈S dist(s, t) ≤

∑
s∈S τ t (nx)+τ s

(
n1−x+ε

)
−1 =

|S|
(
τ t (nx) + τS

(
n1−x+ε

)
− 1
)
.

For the lower bound, by Axiom 3, for each node t, the number of nodes s ∈ V satisfying
dist(s, t) < τ t (nx) + τ s

(
n1−x−2ε

)
− 2 is at most n1−ε. Let S′ ⊆ S be the set of nodes

satisfying dist(s, t) ≥ τ t (nx) + τ s
(
n1−x−2ε

)
− 2: since S is random, the probability that

a node s ∈ S does not belong to S′ is at least n−ε. From this bound, we want to prove
that |S′| ≥ (1 − O(n−ε))|S|, using Hoeffding’s inequality (Lemma A.2). For each s ∈ S,
let Xs = 1 if dist(s, t) ≥ τ t (nx) + τ s

(
n1−x−2ε

)
− 2, 0 otherwise: clearly, |S′| =

∑
s∈SXs,

the variables Xs are independent, and P(Xs = 1) ≥ 1 − n−ε. By Hoeffding’s inequality,

P
(∑

s∈SXs < E
[∑

s∈SXs

]
− λ
)
≤ e−

λ2

|S| . Since E
[∑

s∈SXs

]
≥ |S|(1−n−ε), if we choose

λ = |S|n−ε, we obtain that P
(
|S′| < (1− 2n−ε)|S|

)
≤ e−|S|n

−2ε

. We proved that, w.h.p.,
|S′| ≥ |S|(1−O(n−ε)). As a consequence:∑

s∈S
dist(s, t) ≥

∑
s∈S′

dist(s, t)

≥
∑
s∈S′

τ t (nx) + τ s

(
n1−x−2ε

)
− 2

8.9 - The iFub Algorithm 163

≥ |S′|
(
τ t (nx) + τS

(
n1−x−2ε

)
− 2

)
−

∑
s∈S−S′

O(log n)

≥ |S′|
(
τ t (nx) + τS

(
n1−x−2ε

)
− 2

)
−O

(
n−ε|S| log n

)
≥
(
1− o (1)

)
|S|
(
τ t (nx) + τS

(
n1−x−2ε

)
− 2

)
.

By Lemma 8.18, if t maximizes dist(u, t) for some u ∈ V , then for each y ≥ 1
2 ,

τ t

(
n1−y−2ε

)
≥

⌈
(1−O(ε))

(
T
(

1→ n1−y
)

+
log n

− log c
− 1− y

)⌉
.

If we choose x = y = 1
2 , the previous lemma proves that, if a node v is chosen before t in this

procedure, then

τ v

(
n

1
2 +3ε

)
+ τS

(
n

1
2−2ε

)
− 1 ≥

∑
s∈S dist(s, v)

|S|

≥
∑
s∈S dist(s, t)

|S|

≥
(
1− o (1)

)(
τ t

(
n

1
2

)
+ τS

(
n

1
2−2ε

)
− 2

)
.

Rearranging this inequality, we obtain

τ v

(
n

1
2 +3ε

)
≥ (1− o(1))

(
τ t

(
n

1
2

)
− 1

)
≥

⌈
(1−O(ε))

(
T
(

1→ n
1
2

)
+

log n

− log c
− 5

2

)⌉

=

⌊
(1−O(ε))

(
T
(

1→ n
1
2

)
+

log n

− log c
− 3

2

)⌋
.

If we apply Axiom 1 with the value of α satisfying

(1 + ε)

⌊
T
(

1→ n
1
2 +3ε

)
+ α

⌋
=

⌊
(1−O(ε))

(
T
(

1→ n
1
2

)
+

log n

− log c
− 3

2

)⌋
,

we obtain that the number of nodes v satisfying the latter equation is O(ncα−x) =

nc

(1−O(ε))

(
T

(
1→n

1
2

)
+ logn
− log c−

3
2

)−T(1→n
1
2

+3ε

)
− 1

2

. If β > 2, this value is simply O(ε), while

if 1 < β < 2, this value is n
1− 2−β

β−1

(⌊
β−1
2−β−

3
2

⌋
− 1

2

)
, if ε is small enough.

We conclude that, after n3ε+O(ncα−x) BFSes, we have performed a BFS from all nodes t
that maximize dist(u, t) for some u ∈ V : this means that the lower bounds on all eccentricities
are tight.

8.9 The iFub Algorithm

The iFub algorithm [61] is used to compute the exact value of the diameter of a graph: the
time needed is O(mn) in the worst-case, but it can be much smaller in practice.

164 8 - Probabilistic Analysis of Algorithms

v

D
2

< D

Figure 8.4. An intuition of the proof of the correctness of the iFub algorithm.

It works as follows: it performs a BFS from a node v, and it uses the fact that, if D =
dist(s, t), either dist(s, v) ≥ D

2 , or dist(v, t) ≥ D
2 (that is, in Figure 8.4, at least one of s and t

should be not be in the top yellow triangle). To exploit this fact, after the first BFS from v, the
iFub algorithm computes the eccentricity of all the other nodes, in decreasing order of distance
from v. During this process, it keeps track of the maximum eccentricity found DL, which is a
lower bound on the diameter. As soon as we are processing a node s such that dist(v, s) ≤ DL

2 ,
we know that, for each pair (s, t) of unprocessed nodes, dist(s, t) ≤ 2DL2 = DL: this means
that we have processed at least one of the nodes in a diametral pair, and DL = D.

Lemma 8.22. The running time of the iFub algorithm is

O
(
m
(
n− nb

D
2 −1c(v)

))
,

where n`(v) is the number of nodes at distance at most ` from v.

Proof. The algorithm performs a BFS from each node at distance at least D
2 from v.

This algorithm works only on undirected graphs, but similar counterparts were developed
for directed, strongly connected graphs, and weighted graphs [63, 116]. However, in this work,
we focus on the undirected case, where we can perform our probabilistic analysis.

8.9.1 Experimental Results
In [61], the authors make a very detailed analysis of the iFub algorithm, by testing it on a
dataset made by 196 real-world graphs, including several real-world graphs of different kind
and some synthetic graphs, all available in the LASAGNE dataset. Since giving a precise
account of all these experiments goes far beyond the scope of this thesis, in this section we
summarize the main results, and we refer to [61] for more details.

In order to test the iFub algorithm, Crescenzi et al. study its performance ratio, that
is defined as the number of BFSs performed by the algorithm, divided by the total number
of nodes. In Table 8.5, we provide the results obtained in [61] where the node v is chosen
by selecting the node in the middle of an st-shortest path, where s and t are chosen as an
approximate diametral pair computed using the 4-Sweep heuristic.

From the table, it is clear that the algorithm achieves very good performance ratios:
indeed, in 81 graphs on a total of 196 graphs, it is more than 1000 times faster than the
textbook algorithm, which performs a BFS from each node. Moreover, in most of the graph,
the iFub algorithm is 100 times faster than the trivial algorithm.

8.9 - The iFub Algorithm 165

Table 8.5. The performance ratio of the iFub algorithm on several real-world networks.

Number Number of networks with performance ratio p
Network type of networks p ≤ 0.001 0.001 < p ≤ 0.01 0.01 ≤ p ≤ 0.1 0.1 ≤ p ≤ 1
Autonomous system 2 2 0 0 0
Biological 48 5 31 12 0
Citation 5 3 2 0 0
Collaboration 13 5 6 1 1
Communication 38 26 8 3 1
Peer to peer 1 0 0 0 1
Meshes and circuits 34 8 7 9 10
Product co-purchasing 4 3 1 0 0
Road 3 1 0 2 0
Social 11 9 0 2 0
Synthetic 18 7 5 2 4
Web crawls 9 0 0 0 0
Words adjacency 4 2 2 0 0
Others 6 1 2 2 1
Total 196 81 64 33 18

8.9.2 Probabilistic Analysis

In order to perform a probabilistic analysis, we only need to estimate nb
D
2 −1c(v). Intuitively,

the diameter is the sum of two contributions: one is distavg (n), which is close to the average
distance between two nodes, and the other is twice the maximum deviation from this value,
that is, 2 logn

− log c . Hence, n
bD2 −1c(v) is the number of nodes at distance at most distavg(n)

2 + logn
− log c

from v: if the second term is dominant (for instance, if 2 < β < 3), this neighborhood covers
a high percentage of nodes, and the number of nodes from which a BFS is performed is
much smaller than n. Conversely, if the deviation is smaller than distavg(n)

2 , we expect that
n− nb

D
2 −1c(v) = Θ(n) (for instance, if β > 3 and η(1) is small).

Let us formalize this intuition. By Theorem 8.10,

D

2
≥ 1

2

⌊(
1 +O(ε)

)(
distavg (n) +

2 log n

− log c

)⌋
.

In order to estimate n − nb
D
2 −1c(v), we use the fact that if x + y ≥ 1 + ε, dist(v, w) ≤

τ v (nx) + τw (ny)− 1, and consequently, if dist(v, w) ≥ D
2 , then

τw (ny) ≥
⌈
D

2
+ 1− τ v (nx)

⌉
≥

⌊
1

2

(
1 +O(ε)

)(
distavg (n) +

2 log n

− log c

)⌋
+ 1− τ v (nx) .

Let us apply Axiom 1 with α chosen in a way that

(1 + ε)
(
T (d→ ny) + α

)
=

⌊
1

2

(
1 +O(ε)

)(
distavg (n) +

2 log n

− log c

)⌋
+ 1 − τ v (nx) .

We obtain that n− nb
D
2 −1c(v) is at most

ncα−y = n
1−(1+O(ε))− log c

logn

(⌊
1
2 (1+O(ε))

(
distavg(n)+ 2 logn

− log c

)⌋
+1−τv(nx)−T (d→ny)

)

≤ n
1−(1+O(ε))− log c

logn

⌊ 1
2

(
distavg(n)+ 2 logn

− log c

)⌋
−distavg(n)+T

(
1→nmax(1, 1

β−1)
)

.

166 8 - Probabilistic Analysis of Algorithms

For β > 3, this value is

n
1−(1+O(ε))− log c

logn

(
1
2 distavg(n)+ logn

− log c−distavg(n)+T

(
1→n

1
β−1

))

= n
(1+O(ε))− log c

logn

(
1
2 distavg(n)−T

(
1→n

1
β−1

))

= n
(1+O(ε))

− log η(1)
logn

(
1
2−

1
β−1

)
logn

logM1(µ)

= n

(
1
2−

1
β−1 +O(ε)

)
− log η(1)
logM1(µ) .

Hence, the running time is

O
(
m
(
n− nb

D
2 −1c(v)

))
= n

1+
(

1
2−

1
β−1 +O(ε)

)
− log η(1)
logM1(µ) .

For 2 < β < 3, the computation is similar, but M1(µ) is infinite: the running time is
n1+O(ε).

Finally, for 1 < β < 2, if v is the maximum degree node, this value is at most

n
1−(1+O(ε)) 2−β

β−1

⌊
3
2 + β−1

2−β−2
⌋

= n
1+O(ε)− 2−β

β−1

⌊
β−1
2−β−

1
2

⌋
.

The running time is mn1− 2−β
β−1

⌊
β−1
2−β−

1
2

⌋
+O(ε).

8.10 The ExactSumSweep Algorithm

In this thesis, we provided a new algorithm to compute the diameter and the radius of a
graph: the ExactSumSweep algorithm. We experimentally showed in Section 4.5 that the
ExactSumSweep algorithm outperforms the iFub algorithm, and we also observed that
the ExactSumSweep algorithm is more robust, because it performs better on the “hard”
instances. In this section, we show that this behavior can be analytically proved through our
axioms.

8.10.1 Probabilistic Analysis
Also in the analysis of the ExactSumSweep algorithm, we need two slight modifications:
first, we assume that the initial SumSweepHeuristic is performed as in Section 8.8. Fur-
thermore, only in the case β > 3, we need to assume that we perform a BFS from a node
maximizing the degree every k steps, for some constant k.

The analysis for the radius computation is very simple: after the initial SumSweep-
Heuristic, all lower bounds are tight w.h.p. by the results in Section 8.8, and consequently
it is enough to perform a further BFS from a node minimizing L to obtain the final value of
RU . Then, the running time is the same as the running time of the SumSweepHeuristic.
For the diameter, the analysis is more complicated, because we have to check when all upper
bounds are below the diameter, and the upper bounds are not tight, in general.

Intuitively, if β < 3, the radius is very close to half the diameter, and the first BFS is
performed from a radial node s: consequently, after the first BFS, the upper bound of a
node v becomes ecc(s) + dist(s, v) ≤ D if dist(s, v) ≤ D − ecc(s) = D − R ≈ R = ecc(s).
This means that, after this BFS, we have to perform a BFS from each node whose distance
from s is approximately the eccentricity of s, and there are not many such nodes, as shown by
Lemma 8.18. Hence, we obtain that, in this regime, the running time of the ExactSumSweep
algorithm is the same as the running time of the initial SumSweepHeuristic. Conversely,
if β > 3, a BFS from a node s sets upper bounds smaller than D to all nodes closer to s
than D − ecc(s), and the number of such nodes is close to M1(µ)D−ecc(s). Since D − ecc(s)
is usually O(log n), a BFS sets correct bounds to M1(µ)O(logn) = nO(1) nodes: hence, we
expect the number of BFSes needed to be subquadratic.

8.10 - The ExactSumSweep Algorithm 167

The Case β < 3

As we said before, the first BFS is performed from a radial node s: by Theorem 8.8, if s is a
node maximizing τ s (nx),

ecc(s) ≤ ecc(s) ≤ τ s (nx) +

⌊
(1 + ε)

(
T
(

1→ n1−x
)

+
log n

− log c
− x
)⌋

.

Let x := 1− ε, if 1 < β < 2, x := 1
β−1 − ε if 2 < β < 3: this value is at most⌊

(1 + 2ε)

(
2 +

log n

− log c

)⌋
.

As a consequence, after the first BFS, the algorithm sets upper bounds smaller than D to
any node closer to s than

D − ecc(s) ≥

⌊
(1−O(ε))

(
distavg (n) +

2 log n

− log c

)⌋
−

⌊
(1 + 2ε)

(
2 +

log n

− log c

)⌋

≥ (1−O(ε))

(⌊
2 log n

− log c

⌋
−
⌊

log n

− log c

⌋
+ 1

)
.

This means that we only have to analyze nodes v such that D − ecc(s) ≤ dist(s, v) ≤
τ s (nx) + τ v

(
n1−x+ε

)
− 1, that is:

τ v

(
n1−x+ε

)
≥ D − ecc(s)− τ s (nx) + 1

≥ (1−O(ε))

(⌊
2 log n

− log c

⌋
−
⌊

log n

− log c

⌋
+ 1

)
.

Let us apply Axiom 1 with α such that

(1 + ε)

(
T
(

1→ n1−x+ε
)

+ α

)
= (1−O(ε))

(⌊
2 log n

− log c

⌋
−
⌊

log n

− log c

⌋
+ 1

)
.

We obtain that the number of nodes v that do not receive bounds smaller than D is at most

ncα−1+x−ε = nc
(1−O(ε))

(⌊
2 logn
− log c

⌋
−
⌊

logn
− log c

⌋
+1

)
−T(1→n1−x+ε)−1+x−ε

= ncα−1+x−ε

= nc
(1−O(ε))

(⌊
2 logn
− log c

⌋
−
⌊

logn
− log c

⌋)
−T(1→n1−x+ε)−1

,

which is smaller than the number of iteration of the SumSweepHeuristic. Hence, the total
running time is bounded by the time needed to perform the initial SumSweepHeuristic.

The Case β > 3

In the case β > 3, the previous argument does not work, because distavg (n) can be small.
We need a different technique: we prove that, for each node v and for some x, either τ v (nx)
is quite large, or there is a node s with high degree that is “not far” from s. After O(l) steps,
we have performed a BFS from the l nodes with highest degree, and consequently all nodes
which are quite close to one of these nodes have bounds smaller than D: this means that there
are few nodes with upper bound bigger then D. Then, since every O(1) steps, the number

168 8 - Probabilistic Analysis of Algorithms

of nodes with upper bound bigger than D decreases by 1, after few more BFSes, all upper
bounds are smaller than or equal to D.

More formally, let s1, . . . , sk be all the nodes with degree bigger than nx: by Axiom 4,
k = n1±O(ε)

nx(β−1) , and after at most n1+O(ε)

nx(β−1) BFSes (apart from the initial SumSweepHeuristic),
we have performed a BFS from each of these nodes.

We start by estimating ecc(si), because, after the BFS from si, for each node v, U(v) ≤
dist(v, si) + ecc(si). By Theorem 8.8,

ecc(si) ≤ τ si (nx) +

⌊
(1 + ε)

(
T
(

1→ n1−x
)

+
log n

− log c
− x
)⌋

≤ 1 + (1 + ε)

(
(1− x)

log n

logM1(µ)
+

log n

− log c

)
≤ (1 + 2ε)

(
(1− x)

log n

logM1(µ)
+

log n

− log c

)
.

Hence, after the BFS from node si, the upper bound of any node v is smaller than
dist(v, si) + (1 + 2ε)

(
(1− x) logn

logM1(µ) + logn
− log c

)
, which is smaller than D if dist(v, si) ≤ D −

(1 + 2ε)
(

(1− x) logn
logM1(µ) + logn

− log c

)
= (1 + 4ε)

(
x logn

logM1(µ) + logn
− log c

)
by Theorem 8.10.

Now, we want to compute the number of nodes that are at distance at least (1 +

4ε)
(

x logn
logM1(µ) + logn

− log c

)
from each si. To estimate this quantity, we use Lemma A.54, which

does not follow directly from the main axioms. This lemma says that, for each node v,
mini=1,...,k dist(v, si) ≤ τ v

(
nx(β−2)+ε

)
: hence, after a BFS from each node si has been per-

formed, the upper bound of v is at most D if τ v
(
nx(β−2)+ε

)
≤ (1 + 4ε)

(
x logn

logM1(µ) + logn
− log c

)
.

We conclude that, after n1+ε−x(β−1) BFSes, only nodes satisfying τ v
(
nx(β−2)+ε

)
> (1 +

4ε)
(

x logn
logM1(µ) + logn

− log c

)
have upper bounds bigger than D.

By Axiom 1, the number of nodes that satisfy the latter inequality is at most

O
(
nc

(1−O(ε))
(

x logn
logM1(µ)

+ logn
− log c−

x(β−2) logn
logM1(µ)

))
= n

1−− log c
logn

(
logn
− log c−

x(β−3) logn
logM1(µ)

)
+O(ε)

= n
x(β−3)(− log c)

logM1(µ)
+O(ε)

Hence, by performing O
(
n
x(β−3)(− log c)

logM1(µ)
+O(ε)

)
more BFSes, the algorithm terminates.

We conclude that the total number of BFSes is at most

max

(
n
x(β−3)(− log c)

logM1(µ)
+O(ε)

, n1−x(β−1)

)
.

If we substitute
x =

1

β − 1 + (β − 3) − log c
logM1(µ)

,

we obtain

n

1

1+
β−1
β−3

logM1(µ)
log c

+O(ε)

.

Then, the running time is at most

n
1+ 1

1+
β−1
β−3

logM1(µ)
log c

+O(ε)

.

8.11 - The BCM Algorithm 169

8.11 The BCM Algorithm

In Chapter 5, we designed a new algorithm to compute the k most central nodes according
to closeness centrality. The algorithm came in four different variations: in this section, we
consider the simplest variation, that analyzes the nodes in decreasing order of degree, and,
for each node s, performs a updateBoundsBFSCut function, that is, a BFS which is stopped
as soon as we can guarantee that s is not in the top-k. In Section 5.7, we showed that this
algorithm is much more efficient than the textbook algorithm that performs a BFS from each
node. In this section, we partially confirm this result, by showing that the new algorithm is
efficient in the regimes 1 < β < 2 and β > 3. In the regime 2 < β < 3, a strange phenomenon
happens: we can prove that the algorithm is not efficient, because it needs quadratic time in
the input size. However, the proof is based on the fact that log log n tends to infinity, where
n is the number of nodes: this behavior is not reflected in practice, because n is always less
than 1 billion, and consequently log log n is less than 4.

8.11.1 Probabilistic Analysis
First, let us provide a deterministic bound on the running time. The idea behind this bound
is that a BFS from s visits all nodes at distance at most fk − 2, then it might find a lower
bound bigger than fk, where fk is the k-th smallest farness. In particular, if the number of
nodes visited at distance at most fk − 2 is much smaller than n, the bound is likely to be
sufficient to stop the visit. Otherwise, the BFS from s has already visited Θ(n) nodes: in
both cases, the number of visited nodes is close to the number of nodes at distance at most
fk − 2 from s.

Lemma 8.23. Let fk be the k-th smallest farness among the k nodes with highest degree,
and let ` ≥ (1 + α)fk − 2 be an integer. Then, the running time of the algorithm is at most

O

m+
1

α

∑
s∈V

∑
v∈N`(s)

deg(v)

 .

Proof. The first k BFSes need time O(m), because they cannot be cut. For all subsequent
BFSes, the k-th smallest farness found is at least fk. Let us consider a BFS from s, and let
us assume that we have visited all nodes up to distance `: our lower bound on the farness of
s is

f(s) ≥ 1

n− 1

 ∑
v∈N`(s)

dist(s, v) + (`+ 1)γ`U (s) + (`+ 2)
(
n− |N `(s)| − γ`U (s)

)
≥ `+ 2

n− 1

(
n− |N `(s)| − γ`U (s)

)
≥ `+ 2

n− 1

n− ∑
v∈N`(s)

deg(v)

≥ (1 + α)

fk
n

n− ∑
v∈N`(s)

deg(v)

 .

We claim that the BFS from s visits at most m
nα

∑
v∈N`(s) deg(v) edges: this is trivially true

if
∑
v∈N`(s) deg(v) > α

2 n, because the value becomes O(m), while if
∑
v∈N`(s) deg(v) < α

2 n,
the lower bound is at least (1 + α) fk

(
1− α

2

)
≥ fk, and the BFS is stopped after ` steps.

170 8 - Probabilistic Analysis of Algorithms

Lemma 8.24. Let fk be the k-th smallest farness, and let ` ≤ fk − 2. Then, the running
time of the algorithm is Ω

(∑
s∈V n

`(s)
)
.

Proof. Clearly, at any step, the k-th minimum farness found is at least fk. We want to prove
that the BFS from s reaches level `: indeed, the lower bound on the farness of s is

1

n− 1

 ∑
v∈N`(s)

dist(s, v) + (`+ 1)γ`U (v) + (`+ 2)
(
n− |N `(s)| − γ`U (s)

) ≤ `+ 2 ≤ fk.

Hence, the BFS is not cut until level `, and at least Ω
(∑

s∈V n
`(s)

)
nodes are visited.

We now need to compute these values in graphs in our framework. We analyze separately
the running time in the case 1 < β < 2, in the case 2 < β < 3, and in the case β > 3.

The Case 1 < β < 2

By Axiom 4, if s is one of the k nodes with maximum degree, then deg(s) > 2cn for some c only
depending on k, and by Theorem 8.12, the farness of s is at most (2+o(1))n−deg(s) ≤ (2−c)n
if n is big enough. By Lemma 8.23 applied with ` = 0 and α = c, the running time is at most

O

m+
1

c

∑
s∈V

∑
t∈N0(s)

deg(t)

 = O

m+
∑
s∈V

deg(s)

 = O(m).

The Case 2 < β < 3

In this case, we know by Theorem 8.13 applied with x = 1
2 that the k-th minimum farness is

at least (1 + o(1))
(
τ s (nx)− T (1→ nx) + distavg (n)− 1

)
= n

(
1
2 + o(1)

)
distavg (n) = (1 +

o(1)) log 1
β−2

log n = Θ(log log n).
We claim that all nodes with degree at least nx are at distance O(1) from each other:

indeed, if deg(s),deg(t) > nx, by Axiom 1,

τ s

(
n

2
3

)
, τ t

(
n

2
3

)
= O(1),

and by Axiom 2,
dist(s, t) < τ s

(
n

2
3

)
+ τ t

(
n

2
3

)
= O(1).

By Lemma 8.24, if `+ 2 is smaller than fk, the running time is

Ω

∑
s∈V

n`(v)

 = Ω

 ∑
deg(s)>nx

nΘ(log logn)(s)

= Ω

 ∑
deg(s)>nx

|{t : deg(t) > nx}|

≥ Ω

((
n1−x(β−1)

)2
)

= Ω
(
n2−2x(β−1)

)
.

If we choose x = ε, the running time is Ω
(
n2−O(ε)

)
.

8.11 - The BCM Algorithm 171

The Case β > 3

Let us estimate the farness of the k nodes with highest degree. By Axiom 4, the k maximum
degrees are

Θ
(
n

1
β−1

)
,

and their farness is

(1 +O(ε))

(
τ s

(
n

1
β−1

)
− T

(
1→ n

1
β−1

)
+ distavg (n)

)
≤

n(1 +O(ε)) logM1(µ)

(
n1− 1

β−1

)
.

Hence, by Lemma 8.24 applied with

` = (1 +O(ε)) logM1(µ)

(
n1− 1

β−1

)
,

we obtain that the running time is

O

∑
s∈V

∑
v∈N`(s)

deg(v)

 = O

∑
s∈V

∑
v∈N`(s)

ρv

 = O

nε∑
s∈V

n`+1(v)

 ,

because deg(v) ≤ nερv, and γ`+1(v) > ρΓ`(v) in random graphs, as shown in Lemmas A.11
and A.16. For the lower bound, we use two partial results that we obtain in the proof of the
main theorems: Corollaries A.15 and A.20. These corollaries say that τ s (ny) − τ s (nx) ≥
(1− ε)(y − x) logM1(µ) n, for each

1
β−1 < x < y < 1. Hence, for each node s,

f(s) ≥ n− n1−ε

n− 1
τ s

(
n1−ε

)
≥
(

1− 1

β − 1
−O(ε)

)
logM1(µ) n

≥ (1−O(ε)) logM1(µ)

(
n1− 1

β−1

)
.

We conclude that, by Lemmas 8.23 and 8.24, the running time of the algorithm is∑
s∈V n

`(s), where

` = (1±O(ε)) logM1(µ)

(
n1− 1

β−1

)
.

To estimate this value, we use Theorem A.9: for each node s,

τ s (ny) ≤ τ s
(
nε deg(s)

)
+ (1 + ε) logM1(µ) n

y−x ≤ (1 +O(ε)) logM1(µ)

ny

deg(s)
≤ `

if y = 1 − 1
β−1 + log deg(s)

logn + O(ε), and consequently γi(s) < ny for each i < `. Hence, the
running time is smaller than

nO(ε)
∑
s∈V

n`(s) ≤ nO(ε)
∑
s∈V

`ny ≤ n1− 1
β−1 +O(ε)

∑
s∈V

deg(s) ≤ n2− 1
β−1 +O(ε).

An analogous argument proves that the running time is at least n2− 1
β−1−O(ε).

172 8 - Probabilistic Analysis of Algorithms

8.12 The AIY Distance Oracle

In [8], Akiba et al. describe a distance oracle, that is, an algorithm to speed-up the computa-
tion of distances in a graph. The algorithm consists of two separate phases: a preprocessing
phase, where the algorithm computes additional quantities that describe distances in the
graph, and a query phase, where the user asks for a distance, and the oracle should answer
as fast as possible.

There are two trivial approaches to the design of a distance oracle: the first simply skips
the preprocessing phase, and performs a complete BFS to answer each query; the second
approach precomputes the distance between all pairs of nodes.

Both these trivial approaches have some disadvantages: the first approach does not need
any space apart from storing the graph, but the query time is O(m), which is quite high; the
second approach has O(1) query time, but it needs O(n2) space, which might be too large.
For this reason, researchers developed several distance oracles, that is, algorithms that offer
different trade-offs between query time and space occupancy.

Since it is quite hard to design an exact distance oracle, a large amount of research has
focused on designing approximate distance oracles, starting from the seminal paper [157]. In
this paper, Thorup and Zwick design a distance oracle with 2k− 1 stretch, that is, such that,
when the user asks for dist(s, t), the value ` returned satisfies dist(s, t) ≤ ` ≤ (2k−1) dist(s, t).
The preprocessing time is O(kmn

1
k), the space needed is O(kn1+ 1

k) space, and the query
time is O(k). They also prove that the space requirement is almost optimal, assuming a girth
conjecture by Erdös [74]. As a corollary, if this conjecture is true, then every distance oracle
with stretch at most 3 needs at space Ω(n2) in the worst-case (note that the trivial approach
of performing a BFS at each query needs space Ω(n2) if the graph has Ω(n2) edges). For
more worst-case results, we refer to [130] for the dense case and to [149] for the sparse case.

A different approach is to design distance oracles that work well on real-world graphs,
even if there is no guarantee in the worst-case. Among these approaches, a lot of works
have focused on the computation of shortest paths in road networks, because of practical
applications [141, 5, 67, 66]. Among these works, one of the most successful approaches is
hub-labeling: we assign a label L(s) to each node s, consisting of a set of pairs (v,dist(s, v)),
where v is a node in the graph, and dist(s, v) is the distance between s and v. The construction
of these labels enforces the so-called 2-hop cover property: for each pair of nodes s, t, there is
a node v in a shortest path between s and t that belongs both to L(s) and to L(t). Using the
2-hop cover property, it is possible to compute dist(s, t) = minv∈L(s)∩L(t) dist(s, v)+dist(v, t),

in time O(|L(s)|+ |L(t)|). The space required is Θ
(∑

s∈V |L(s)|
)
.

In this framework, the main challenge is to design a preprocessing phase that generates
small labels: in [5, 67, 66], several strategies are proposed to create small labels in road
networks. As far as we know, the only work that addresses this problem on real-world
networks is [8], which suggests a very simple but powerful strategy to generate small labels
that satisfy the 2-hop cover property: in this section, we define and analyze this algorithm.

First, we sort all nodes s obtaining s1 < s2 < · · · < sn (any order is fine), and we perform
a BFS from each node, following this order. During the BFS from si, as soon as we visit a
node t, we add (si,dist(si, t)) to the label of t (in this case, we say with abuse of notation
that si belongs to the label of t). Furthermore, we prune each BFS at each node t such that
dist(s, t) = minv∈L(s)∩L(t) dist(s, v) + dist(v, t), where L(s) and L(t) are the current labels.
The 2-hop cover property is ensured by the following lemma and its corollary.

Lemma 8.25 ([8]). Let L be the labels generated by this procedure. Then, s ∈ L(t) if and
only if there is no shortest path between s and t containing a node v < s in the initial ordering
of nodes.

Proof. Let Ls be the labels obtained when we are performing the BFS from s, in the prepro-
cessing phase. We prove by induction that, after we perform a BFS from a node s, for each
s′ < s and for each t ∈ V , s′ ∈ L(t) if and only if there is no shortest path between s and t

8.12 - The AIY Distance Oracle 173

Table 8.6. Performance comparison between the AIY algorithm and the trivial algorithm of performing a
BFS at each query.

Graph n m Preproc. Space Av. label Query BFS query
s MB µs µs

p2p-Gnutella31 63 K 148 K 54 209 660 5.2 3 200
soc-Epinions1 76 K 509 K 1.7 32 49 0.5 7 400
soc-sign-Slashdot 82 K 948 K 6.0 64 68 0.8 12 000
web-NotreDame 326 K 1.5 M 4.5 138 50 0.5 17 000
wiki-Talk 2.4 M 4.7 M 61 1 000 50 0.6 197 000
as-Skitter 1.7 M 11 M 359 2 700 187 2.3 190 000
in-2004 1.4 M 17 M 173 2 300 197 1.6 150 000
MetroSec 2.3 M 22 M 108 2 500 83 0.7 150 000
Flickr 1.8 M 23 M 866 4 000 311 2.6 361 000
holliwood2009 1.1 M 114 M 15 164 12 000 2 162 15.6 1 200 000
indochina2004 7.4 M 194 M 6 068 22 000 479 4.1 1 500 000

containing a node v < s. The base case is trivial, since there is no s′ < s. For induction step,
let us prove the two directions separately.

• If there is a shortest path from s to t containing a node v < s, we can suppose without
loss of generality that v is the smallest such node: by inductive hypothesis, v ∈ L(s) ∩
L(t), because there is no node smaller than v in a shortest path from v to s and from
v to t. Hence, since dist(s, t) = dist(s, v) + dist(v, t), s is not added to the label of t.

• Otherwise, let us assume for a contradiction that s /∈ L(t) and there is no node v < s in
an st-shortest path. Let t′ be the first node in an st-shortest path such that s /∈ L(t′).
Since s /∈ L(t′), but t′ was visited by the BFS, it means that minv∈Ls(s)∩Ls(t′) dist(s, v)+
dist(v, t′) = dist(s, t′), and consequently there is a node v < s in a shortest path from
s to t′, against the assumptions.

Corollary 8.26 ([8]). The labels generated by this procedure satisfy the 2-hop cover property.

Proof. Let us consider two nodes s and t, and let v be the smallest node in an st-shortest
path (v might also be s or t). By definition of v, all the nodes in a shortest path from s to v
and all the nodes in a shortest path from v to t are bigger than v: by Lemma 8.25, v belongs
to the labels of s and t.

It remains to define how nodes are sorted: in [8], it is suggested to sort them in order of
degree (tie-breaks are solved arbitrarily).

8.12.1 Experimental Results

In this section, we report the experimental results performed in [8]. The authors analyzed a
dataset made by 11 real-world networks, taken from the SNAP dataset [108] and from the
WebGraph dataset [23] . We report the tradeoff between query time and space occupancy in
Table 8.6, and the label size of some graphs in Figure 8.5. The data are taken from [8].

From the results, it is clear that the average label size is very small, compared to the
number of nodes, with improvements up to a factor 48 000 in the graphs wiki-Talk. Further-
more, they show that most of the labels have similar sizes, and this means that the algorithm
is quite robust.

174 8 - Probabilistic Analysis of Algorithms

Figure 8.5. Distribution of the sizes of labels for three graphs in the dataset (taken from [7]).

8.12.2 Probabilistic Analysis

First, as we did in the analysis of the iFub algorithm, we compute a deterministic bound on
the expected time of a distance query between two random nodes.

Lemma 8.27. For each si, let Nsi be the number of nodes t ∈ V such that no st-shortest
path passes from a node sj with j < i. Then, the average query time is O

(
1
n

∑
s∈V N(s)

)
,

and the space used is Θ
(∑

s∈V N(s)
)
.

Proof. If the labels are sorted, in order to intersect L(s) and L(t), the time needed is
O
(
|L(s)|+ |L(t)|

)
. Hence, the expected time of a distance query between two random nodes

is

1

n2

∑
s,t∈V

O
(
|L(s)|+ |L(t)|

)
= O

 1

n

∑
t∈V
|L(t)|

= O

 1

n

∑
s,t∈V

Xst

= O

 1

n

∑
s∈V

N(s)

 ,

where Xst = 1 if s ∈ L(t), 0 otherwise. Similarly, the space used is Θ
(

1
n

∑
t∈V |L(t)|

)
=

Θ
(∑

s∈V N(s)
)
.

The Case 1 < β < 2

In the case 1 < β < 2, let us fix ε > 0, and let us consider nodes s with small degree (at
most, n2ε): the number of nodes reachable from s at distance k passing only through nodes
of degree smaller than deg(s) is at most deg(s)k: hence, N(s) ≤ D deg(s)D ≤ Dn2εD = nO(ε)

(because the diameter D is constant).
Let us consider nodes s such that deg(s) > n2ε: by Axiom 2, all these nodes are connected

to each node with degree at least n1−ε, and no node t with degree bigger than nε can contain

8.12 - The AIY Distance Oracle 175

s in their label, unless t is a neighbor of s. Consequently, the nodes that contain s in their
label are at most deg(s) nodes at distance 1 from s, N2(s) nodes at distance 2 from s,
and at most

(
n2ε
)D

N2(s) = nO(ε)N2(s) nodes at a bigger distance. Summing these values,
we obtain that N(s) ≤ deg(s) + N2(s)nO(ε): summing over all nodes s, the average query
time is 1

nO
(
n1+ε +

∑
s∈V,deg(s)>n2ε deg(s) +N2(s)n2ε

)
= nO(ε)

(
1 + 1

n

∑
s∈V N2(s)

)
. Since

t ∈ N2(s) implies that deg(t) < n2ε, and since the number of nodes with degree bigger than
nx is n1−x+o(1) by Axiom 4,∑

s∈V
N2(s) =

∑
s∈V

∑
v∈Γ1(s),deg(v)<deg(s)

∑
t∈Γ1(v),deg(t)<n2ε

1

=
∑
v∈V

∣∣∣∣{t ∈ Γ1(v) : deg(t) < n2ε
}∣∣∣∣ ∣∣∣∣{s ∈ Γ1(v) : deg(s) > deg(v)

}∣∣∣∣
≤
∑
v∈V

deg(v) max

(
deg(v),

n1+ε

deg(v)

)

=

n∑
d=1

∣∣∣{v : deg(v) = d
}∣∣∣ dmax

(
d,
n1+ε

d

)

≤
n

1
2∑

d=1

∣∣∣{v : deg(v) = d
}∣∣∣ d2 +

n∑
d=n

1
2

∣∣∣{v : deg(v) = d
}∣∣∣n1+ε

≤ S1 + n
3
2 +ε.

Let us estimate S1 using Abel’s summation technique:

S1 =

n
1
2∑

d=1

∣∣∣{v : deg(v) = d
}∣∣∣ d2

=

n
1
2∑

d=1

∣∣∣{v : deg(v) ≥ d
}∣∣∣ d2 −

n
1
2∑

d=1

∣∣∣{v : deg(v) ≥ d+ 1
}∣∣∣ d2

≤ n+

n
1
2∑

d=1

∣∣∣{v : deg(v) ≥ d
}∣∣∣ (d2 − (d− 1)2)

≤ n+
n

1
2∑

d=1

n

d
2d

= O
(
n

3
2

)
.

Then, the average query time is nO(ε)
(

1 + 1
n

∑
s∈V N2(s)

)
= n

1
2 +O(ε). The space occupied

is n multiplied by the average query time, that is, n
3
2 +O(ε), by Lemma 8.27.

The Case 2 < β < 3

In the case 2 < β < 3, let us consider the number N`(s) of nodes t such that s ∈ L(t) and
dist(s, t) = `. For small values of `, we estimate N`(s) ≤ N`−1(s) deg(s), while for bigger
values of `, we prove that all nodes with high degree are at distance at most ` − 2 from s,
obtaining that N`(s) ≤ f(`,deg(s))Nk−1(s), for some function f .

176 8 - Probabilistic Analysis of Algorithms

More formally, let s, t be two nodes with degree at least log2 n: the distance between s
and t is at most

τ s

(
n

1+ε
2

)
+ τ t

(
n

1+ε
2

)
≤ (1 + ε)

log 1
β−2

(
log2 n

1+ε
2

log deg(s) log deg(t)

)
(our axioms say that this approximation holds for deg(s),deg(t) > nε, but it is easy to extend
the results in Appendix A.2 to the case deg(s) > log2 n). Consequently there is no node at
distance k from s with degree bigger than

max

(
log2 n, e(β−2)

k
1+ε log2 n

1+ε
2

log(deg(s))

)
.

As we said before, for

k < k0 = (1 + ε)

log 1
β−2

(
log2 n

1+ε
2

log2 deg(s)

) ,

we estimate Nk+1(s) ≤ Nk(s) deg(s), and consequently

Nk(s) ≤ deg(s)k ≤ deg(s)
(1+ε)

log 1
β−2

(
log2 n

1+ε
2

log2 deg(s)

)
.

For bigger values of k, since Γk+1(v) does not contain any node with degree bigger than

max

(
log2 n, e(β−2)

k
1+ε log2 n

1+ε
2

log(deg(s)) + log2 n

)
,

Nk+1(S) ≤ Nk(S) max

(
log2 n, e(β−2)

k−1
1+ε log2 n

1+ε
2

log(deg(s))

)
.

As a consequence, we can prove by induction that, if k = O(log log n):

Nk(s) ≤ Nk0
(s)

k∏
i=k0

e
(β−2)

i−1
1+ε log2 n

1+ε
2

log2 deg(s) log2k n

≤ Nk0
(s)nε

k∏
i=k0

e(β−2)
i−k0
1+ε (β−2)

k0−1
1+ε log2 n

1+ε
2

log(deg(s))

≤ Nk0
(s)nεe

∑k
i=k0

(β−2)
i−k0
1+ε log deg(s)

≤ Nk0(s)nε deg(s)

1

1−(β−2)
1

1+ε .

≤ n2ε deg(s)
(2+2ε)

log 1
β−2

(
logn

1+ε
2

log deg(s)

)+ 1
3−β

= f(deg(s)).

For bigger values of k, there are very few nodes at distance k from s, and their contribution
is negligible. Hence, we know that N(s) ≤ min(n, nεf(deg(s))) = g(deg(s)): we want to
compute

∑
s∈V g(deg(s)).

8.12 - The AIY Distance Oracle 177

Lemma 8.28. If G is a random graph with power law degree distribution,

∑
s∈V,deg(s)>log2 n

g(d) = O

n∫ n
1

β−1
+ε

log2 n

g(x)

xβ
dx+ n1+ε

 .

Proof. We use Abel’s summation technique twice:

∑
s∈V,deg(s)>log2 n

g(d) =

n
1+ε
β−1∑

d=log2 n

∣∣∣{s ∈ V : deg(s) = d
}∣∣∣ g(d)

=

n
1+ε
β−1∑

d=log2 n

(
∣∣∣{s ∈ V : deg(s) ≥ d

}∣∣∣
−
∣∣∣{s ∈ V : deg(s) ≥ d+ 1

}∣∣∣)g(d)

≤
n

1+ε
β−1∑

d=log2 n

n

dβ−1
(g(d)− g(d− 1)) +O(ng(log2 n))

≤ O(ng(log2 n)) +

n
1+ε
β−1∑

d=log2 n

ng(d)

(
1

dβ−1
− 1

(d+ 1)β−1

)

≤ O(ng(log2 n)) +

n
1+ε
β−1∑

d=log2 n

ng(d)

(
1

dβ−1
− 1

(d+ 1)β−1

)

= O

n1+ε +

n
1+ε
β−1∑

d=log2 n

ng(d)

dβ

 .

We have to transform this sum into an integral: to this purpose, we observe that

g(d + ε) = O(g(d)) for each d > log2 n − 1, and for each ε ≤ 1. Hence,
∑n

1+ε
β−1

d=log2 n
g(d)
dβ

=∫ n 1
β−1

+ε

log2 n−1
g(dxe)
dxeβ dx = O

(∫ n 1
β−1

+ε

log2 n−1
g(x)
xβ

dx

)
.

It remains to estimate this integral.

n

∫ n
1

β−1

log2 n

1

xβ
min

n, x(2+2ε) log 1
β−2

(
logn

1+ε
2

log x

)
+ 1

3−β

 dx =

≤ n1+O(ε)

∫ 1
β−1

0

n−βt min

n, nt(2 log 1
β−2

(1
2t)+ 1

3−β

)nt log ndt

= n1+O(ε)

∫ 1
β−1

0

n
t

(
min

(
1,2 log 1

β−2
(1

2t)+ 1
3−β

)
−β+1

)
dt

= n
1+O(ε)+max

t∈[0, 1
β−1]

t

(
min

(
1,2 log 1

β−2
(1

2t)+ 1
3−β

)
−β+1

)
.

178 8 - Probabilistic Analysis of Algorithms

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

0.5

1

β

R
el
at
iv
e
er
ro
r

Figure 8.6. An upper bound on the exponent in the average distance query time of the distance oracle for
2 < β < 3.

Then, the average query time is

n
max

t∈[0, 1
β−1]

t

(
min

(
1,2 log 1

β−2
(1

2t)+ 1
3−β

)
−β+1

)
+O(ε)

.

We are not able to find an analytic form for this function, but the result is plotted in Figure 8.6.
The exponent of the total space occupancy is this function, plus one.

The Case β > 3

In this case, we prove that the algorithm does not provide a significant improvement: indeed,
the time needed for a distance query is n1−O(ε). To prove this result, it is enough to show
that, for a set of graphs that satisfy the axioms, the algorithm is not efficient on this set of
graph. The set of graphs we choose is the set of random graphs generated through the CM,
or through IRG: for this reason, we are allowed to use theorems that are specific of these
models.

In this proof, we show that, if S is the set of nodes with degree between nα and nα+ε2 ,
then the number of pairs (s, t) ∈ S2 such that s ∈ L(t) is Ω

(
|S|2

)
, and hence the average

label size is big, because, by Axiom 4, |S| = n1−α(β−1)+o(1) = n1−o(1) if α tends to 0.
More formally, by Axioms 1 and 2, for each pair of nodes s, t ∈ S, dist(s, t) ≤ τ s

(
n

1
2 +ε
)

+

τ t

(
n

1
2 +ε
)
≤ (2 + 2ε)T

(
nα → n

1
2 +ε
)
≤ (2 + 2ε) logn

1
2

+ε−α

logM1(µ) ≤ (1 − 2α + 4ε) logn
logM1(µ) =: DS .

We want to prove that, a.a.s., if s, t ∈ S and deg(t) < deg(s), there is a high chance that
s ∈ L(t). To this purpose, we consider all nodes v with degree bigger than deg(s), and we
count the number of pairs s, t ∈ S such that dist(s, v) + dist(v, t) ≤ DS . Then, we sum this
contribution over all nodes v: if this sum is o

(
|S|
)
, it means that Ω(|S|) nodes in S have s in

their label.
More formally, we start by estimating, for each node v, the number of nodes s, t ∈ S such

that dist(s, v) + dist(v, t) ≤ DS .

Lemma 8.29 (for a proof, see Lemma A.56). Let v be a node with degree ω(1). Then, the
number of pairs of nodes s, t ∈ S such that dist(s, v) + dist(v, t) ≤ DS, and dist(s, w) +
dist(w, t) > DS for each w such that deg(w) > deg(v), is at most deg(v)2|S|2n−1+O(ε).

Let us consider the ordering of all nodes s1, . . . , sn, and let us estimate:

|{(si, sj) ∈ S2 : i < j, si /∈ L(sj)}|
≤ |{(si, sj) ∈ S2 : i < j, ∃k < i, dist(si, sj) = dist(si, sk) + dist(sk, sj)}|
≤ |{(si, sj) ∈ S2 : i < j, ∃k < i, dist(si, sk) + dist(sk, sj) ≤ DS}|

8.13 - BBBFS 179

≤
∑
k<i

deg(sk)2|S|2n−1+O(ε)

≤ n1−α(β−3)+ε|S|2n−1+O(ε)

= o(|S|2).

We used the fact that
∑
k<i deg(sk)2 ≤ n1−α(β−3)+ε: let us prove it formally, using Abel’s

summation technique and Axiom 4.

∑
k<i

deg(sk)2 =

+∞∑
d=nα

d2|{v : deg(v) = nα}|

=

+∞∑
d=nα

d2|{v : deg(v) ≥ d}| −
+∞∑

d=nα+1

(d− 1)2|{v : deg(v) ≥ d}|

≤ n2α|{v : deg(v) ≥ nα}|+
+∞∑
d=nα

2d|{v : deg(v) ≥ d}|

≤ n2α n

nα(β−1)
+

+∞∑
d=nα

2d
n

dβ−1
= O

(
n1−α(β−3)

)
.

We have proved that |{(si, sj) ∈ S2 : i < j, si ∈ L(sj)}| = Ω
(
|S|2

)
, and consequently the total

label size is at least Ω
(
|S|2

)
≥ n2−3α(β−1). We claim that this means that there are many

labels with size bigger than n1−4α(β−1), because no label has size bigger than n. Indeed, if `i
is the size of label i, n2−3α(β−1) ≤

∑n
i=1 `i ≤ n1−4α(β−1)|{i : `i ≤ n1−4α(β−1)}| + n|{i : `i >

n1−4α(β−1)}| ≤ n2−4α(β−1) + n|{i : `i > n1−4α(β−1)}|, and hence |{i : `i > n1−4α(β−1)}| ≥
n1−3α(β−1) − n1−4α(β−1) ≥ n1−4α(β−1).

We have proved that, for each α′ = 4α(β−1), there are at least n1−α′ labels of size n1−α′ :
consequently, the expected time to perform a distance query is at least n2−2α′

n2 n1−α′ , because

the probability that we hit two nodes s, t whose labels are bigger than n1−α′ is at least n
2−2α′

n2 .
If we let α′ = O(ε), the average time for a distance query becomes at least n1−O(ε). Similarly,
the space occupied is n2−O(ε).

8.13 BBBFS

In Chapter 6, we designed a new algorithm to approximate the betweenness centrality of all
the nodes in a network. The main subroutine of this algorithm was to sample a random
shortest path between two nodes s and t.

All previous approaches used simply a BFS from s, that needs time O(m), while our
approach used a BBBFS, that is, a balanced bidirectional BFS (see Section 6.5 for the
exact definition). The idea of using bidirectional search heuristics has been proposed several
years ago [134, 95], but it has never been very successful, probably because of the lack of
theoretical guarantees. In this section, we provide this kind of guarantees, using our axioms:
we prove that it improves the O(m) time needed by a standard BFS. Before, let us confirm
experimentally the efficiency of this technique.

8.13.1 Experimental Results
In this section, we experimentally show that the bidirectional BFS can yield significant
improvements in the running time. To this purpose, we have collected a dataset of 16
undirected networks and 19 directed network taken from the taken from the datasets
SNAP (snap.stanford.edu/), LASAGNE (piluc.dsi.unifi.it/lasagne), and KONECT

snap.stanford.edu/
piluc.dsi.unifi.it/lasagne

180 8 - Probabilistic Analysis of Algorithms

Table 8.7. The balanced bidirectional BFS: experimental results.

Undirected networks
Network n m mvis α := log(mvis)

logm

HC-BIOGRID 4039 20642 429.127 0.610
Mus_musculus 4696 11494 139.545 0.528
Caenorhabditis_elegans 4748 19684 105.892 0.472
ca-GrQc 5241 28968 200.369 0.516
as20000102 6474 25144 47.253 0.381
advogato 7420 90929 46.549 0.336
p2p-Gnutella09 8114 52026 162.258 0.469
hprd_pp 9617 74078 139.346 0.440
Drosophila_melanogaster 10644 81562 167.717 0.453
oregon1_010526 11174 46818 64.894 0.388
oregon2_010526 11461 65460 86.307 0.402
Homo_sapiens 13935 122260 163.974 0.435
dip20090126_MAX 19928 82404 12496.746 0.833
email-Enron 36692 367662 294.589 0.444
ca-HepTh 68746 51971 5.600 0.159
com-amazon.all.cmty 134386 198866 21.356 0.251

Directed networks
Network n m mvis α := log(mvis)

logm

polblogs 1490 19025 63.270 0.421
opsahl-openflights 2940 30501 94.562 0.441
ca-GrQc 5241 28968 200.369 0.516
subelj_jung-j_jung-j 6121 50535 42.859 0.347
subelj_jdk_jdk 6435 53892 47.935 0.355
wiki-Vote 7115 103689 43.452 0.327
ca-HepTh 9875 51946 220.181 0.497
freeassoc 10617 72176 104.390 0.415
ca-HepPh 12006 236978 344.083 0.472
lasagne-spanishbook 12644 57451 60.368 0.374
cfinder-google 15764 170335 286.943 0.470
ca-CondMat 23133 186878 363.456 0.486
subelj_cora_cora 23167 91500 377.655 0.519
ego-twitter 23371 33101 2.200 0.076
ego-gplus 23629 39242 2.003 0.066
as-caida20071105 26475 106762 109.520 0.406
cit-HepTh 27769 352768 4985.010 0.667
p2p-Gnutella31 62586 147892 110.557 0.395
soc-Epinions1 75879 508837 124.459 0.367

(http://konect.uni-koblenz.de/networks/). For each of these networks, we have com-
puted the distance of 100 000 random pairs of nodes, using the balanced bidirectional BFS.
We have evaluated the performances of the algorithm by comparing the number of visited
edges mvis with the total number of edges m (which is the number of edges visited in the
worst-case). Furthermore, we have computed the exponent α := log(mvis)

logm : this value is such
that mvis = mα. The results are available in Table 8.7, both for undirected and for directed
networks (in any case, our probabilistic analysis only holds in the undirected case).

From the table, we see that the number of visited edges is much smaller than m: indeed,
most of the times it is even smaller than

√
m, both in the undirected and in the directed case.

This yields a significant improvement in the running time, when this algorithm is applied to
very large networks.

http://konect.uni-koblenz.de/networks/

8.13 - BBBFS 181

8.13.2 Probabilistic Analysis

The Case 1 < β < 2

In this case, we prove that the time needed to compute a shortest path from s to t is n1−o(1)

for Ω(n2) pairs (s, t), on graphs that satisfy our assumptions. Indeed, let v1, v2 be the two
nodes with maximum degree: since the weights are chosen according to a power law degree
distribution ρv1

, ρv2
= O(M). Let W be the set of nodes with weight 1: for each w ∈ W ,

the probability that w has degree 1 and it is a neighbor of v1 or v2 is f
(

Θ
(
m·1
M

))
= Θ(1).

Through simple concentration inequalities, it is quite straightforward to prove there are Θ(n)
neighbors si of v1, with degree 1, and Θ(n) neighbors tj of v2, with degree 1. If a shortest
path from si to tj is required, we have to process either v1 or v2, and this takes time Θ(n).
Hence, the time needed to perform one of these queries is Θ(n).

The Case β > 2

The idea of the probabilistic analysis is that the time needed by a bidirectional BFS is
proportional to the number of visited edges, which is the sum of the degrees of the visited
nodes, which are very close to their weights. Indeed, the following lemma shows that it is
enough to analyze the weights of the processed nodes.

Lemma 8.30. For each node v and for each ε, ρvn−ε ≤ deg(v) ≤ ρvnε w.h.p..

Proof. If v is a node with weight ρw > nε, by Lemmas A.11 and A.16, deg(v) = Θ(d), and
the conclusion follows. If ρv ≤ nε, the first inequality is trivial, and the second inequality
follows from the fact that decreasing the weight can only decrease the degree, and every node
with weight nε has degree at most Θ(nε) ≤ n2ε.

Due to the importance of the weights of sets, we use the notation δ`(s) to denote the sum
of the weights of all the nodes at distance ` from s, as in Chapter 8.

Our visit proceeds by “levels” in the BFS trees from s and t: if we never process a level with
total weight at least n

1
2 +ε, since the diameter is O(log n), the volume of the set of processed

nodes is O(n
1
2 +ε log n), and the number of visited edges cannot be much bigger. Otherwise,

assume that, at some point, we process a level `s in the BFS from s with total weight n
1
2 +ε:

then, the corresponding level `t in the BFS from t has also weight n
1
2 +ε (otherwise, we would

have expanded from t, because weights and degrees are strongly correlated). By Axiom 2
and Lemmas A.11 and A.16, since dist(s, t) ≤ τ s

(
n

1
2 +ε
)

+ τ t

(
n

1
2 +ε
)
− 1, there is an edge

from level `s to level `t, and the visit terminates when level `s is visited. This means that the
time needed by the bidirectional BFS is proportional to the volume of all levels in the BFS
tree from s, until `s, plus the volume of all levels in the BFS tree from t, until `t (note that
we do not expand levels `s + 1 and `t + 1). All levels except the last one have volume at most
n

1
2 +ε, and there are O(log n) such levels because the diameter is O(log n) by Theorem 8.10:

it only remains to estimate the volume of the last level.

Lemma 8.31. With high probability, for each s ∈ V and for each ` such that
∑`−1
i=0 δ

i(s) <

n
1
2 +ε, δ`(s) < n

1
2 +3ε if β > 3, δ`(s) < n

4−β
2 +3ε if the weights are chosen to a power law

distribution with 2 < β < 3.

Proof. We consider separately nodes with weight at most n
1
2−2ε from nodes with bigger

weights: in the former case, we bound the number of such nodes that are in Γ`(s), while in
the latter case we bound the total number of nodes with weight at least n

1
2−2ε. Let us start

with the latter case.
Claim: for each ε,

∑
ρv≥n

1
2
−ε ρv is smaller than n

1
2 +3ε if λ has finite second moment, and

it is smaller than n
4−β

2 +3ε if λ is power law with 2 < β < 3.

182 8 - Probabilistic Analysis of Algorithms

Proof of claim. If λ has finite second moment, by Chebyshev inequality, for each α,

P
(
λ > n

1
2 +α

)
≤ Var(λ)

n1+2α
≤ M2(λ)

n1+2α
= O

(
M2(λ)

n1+2α

)
= O

(
n−1−2α

)
.

For α = ε, this means that no node has weight bigger than n
1
2 +ε, and for α = −ε, this

means that the number of nodes with weight bigger than n
1
2−ε is at most n2ε. We conclude

that
∑
ρv≥n

1
2
−ε ρv ≤

∑
ρv≥n

1
2
−ε n

1
2 +ε ≤ n 1

2 +3ε.
If λ is power law with 2 < β < 3, by Axiom 4 the number of nodes with weight at least d

is at most Cnd−β+1. Consequently, using Abel’s summation technique,∑
ρv≥n

1
2
−ε

ρv =

+∞∑
d=ρv

d|{v : ρv = d}|

=

+∞∑
d=n

1
2
−ε

d(|{v : ρv ≥ d}| − |{v : ρv ≥ d+ 1}|)

=

+∞∑
d=n

1
2
−ε

d|{v : ρv ≥ d}| −
+∞∑

d=n
1
2
−ε+1

(d− 1)|{v : ρv ≥ d}|

= n
1
2−ε|{v : ρv ≥ n

1
2−ε}|+

+∞∑
d=n

1
2
−ε+1

|{v : ρv ≥ d}|

≤ Cn 1
2−εn1−(1

2−ε)(β−1) +

+∞∑
d=n

1
2
−ε+1

Cnd−β+1

= O
(
n

4−β
2 +εβ + n1−(1

2−ε)(β−2)
)

= O
(
n

4−β
2 +εβ

)
.

By this claim,
∑
v∈Γl+1(s),ρv≥n

1
2
−2ε ρv is smaller than n

1
2 +6ε if λ has finite second moment,

and it is smaller than n
4−β

2 +6ε if λ is power law with 2 < β < 3. To conclude the proof, we
only have to bound

∑
v∈Γl+1(s),ρv<n

1
2
−2ε ρv.

Claim: with high probability,
∑
v∈Γl+1(s),ρv<n

1
2
−2ε ρv < n

1
2 +ε if λ has finite second mo-

ment,
∑
v∈Γl+1(s),ρv<n

1
2
−2ε ρv < n

4−β
2 +ε if λ is power law with 2 < β < 3.

Proof. By Lemma A.38, we can remove all nodes with weight at least n
1
2−2ε from the graph.

We conclude by Lemmas A.13 and A.18.

This claim lets us conclude the proof of the lemma.

All these ingredients let us conclude our probabilistic analysis: indeed, the number of
visited edges is at most the sum of the degree of all visited nodes, which is at most the sum of
their weights, multiplied by nε, by Lemma 8.30. As we argued before, all visited levels except
the last have weight at most n

1
2 +ε, and, by Lemma 8.31, the last level has weight at most

n
1
2 +O(ε) if β > 3, n

4−β
2 +O(ε) if 2 < β < 3. This result concludes our probabilistic analysis.

8.14 Validity of the Axioms in Real-World Graphs: Ex-
perimental Evaluation

In this section, we experimentally show that the axioms hold in real-world graphs, with
good approximation. To this purpose, we consider a dataset made by 18 real-world networks

8.14 - Validity of the Axioms in Real-World Graphs 183

of different kinds (social networks, citation networks, technological networks, and so on),
taken from the well-known datasets SNAP (snap.stanford.edu/) and KONECT (http:
//konect.uni-koblenz.de/networks/). Then, for each of the axioms, we compute the
quantities considered, on all graphs in the dataset, and we show that the actual behavior
reflects the predictions.

We start with Axiom 1: to verify the first claim, we consider all nodes with degree at
least n0.2, which is between 6 and 19 in our inputs. For each of these nodes, we compute
τ s

(
n

1
2

)
− T

(
deg(s)→ n

1
2

)
(in this paper, we show the results for x = 1

2 , but very similar
results hold for all values of x). The results obtained are represented in Table 8.8.

Table 8.8. The percentage of nodes with degree at least n0.2 that satisfy τ s
(
n

1
2

)
−
⌈
T
(
d→ n

1
2

)⌉
= k (the

other values are 0, for each graph in the dataset).

Network n0.2 Vert. k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 k = 4
p2p-Gnutella09 6.1 2811 0.00% 61.37% 38.63% 0.00% 0.00% 0.00% 0.00%
oregon1-010526 6.5 640 0.00% 58.75% 41.25% 0.00% 0.00% 0.00% 0.00%
ego-gplus 7.5 348 0.00% 2.87% 97.13% 0.00% 0.00% 0.00% 0.00%
oregon2-010526 6.5 1113 0.00% 55.17% 44.83% 0.00% 0.00% 0.00% 0.00%
ca-HepTh 6.1 1987 2.21% 48.97% 43.48% 4.98% 0.25% 0.00% 0.10%
ca-CondMat 7.3 6519 0.00% 45.25% 51.20% 3.27% 0.23% 0.05% 0.00%
ca-HepPh 6.5 4644 0.00% 46.32% 50.39% 2.84% 0.45% 0.00% 0.00%
email-Enron 8.0 6354 0.00% 69.00% 30.33% 0.66% 0.02% 0.00% 0.00%
loc-brightkite 8.9 9929 0.00% 69.45% 29.94% 0.42% 0.18% 0.00% 0.00%
email-EuAll 11.8 2654 0.00% 59.08% 40.66% 0.23% 0.00% 0.00% 0.04%
ca-AstroPh 7.1 9812 0.00% 58.55% 41.10% 0.18% 0.16% 0.00% 0.00%
gowalla-edges 11.5 33263 0.00% 65.69% 34.07% 0.23% 0.01% 0.00% 0.00%
munmun-twitter 13.6 6670 0.00% 70.57% 29.43% 0.00% 0.00% 0.00% 0.00%
com-dblp 12.6 33363 1.65% 63.03% 32.41% 2.57% 0.32% 0.01% 0.00%
com-lj.all.cmty 12.5 5258 0.51% 65.96% 32.98% 0.53% 0.02% 0.00% 0.00%
enron 9.7 7792 0.00% 77.71% 21.79% 0.37% 0.13% 0.00% 0.00%
com-youtube 16.3 46471 0.00% 79.01% 20.32% 0.45% 0.15% 0.04% 0.02%
wiki-Talk 18.9 27536 0.00% 62.63% 37.37% 0.00% 0.00% 0.00% 0.00%

The table shows that in all the graphs considered, the first statement of Axiom 1
is satisfied with good approximation: almost all nodes with degree at least n0.2 sat-

isfy τ s
(
n

1
2

)
−
⌈
T
(

deg(s)→ n
1
2

)⌉
≤ 2; the percentage of nodes satisfying τ s

(
n

1
2

)
−⌈

T
(

deg(s)→ n
1
2

)⌉
= 2 is always below 0.5%, and the percentage of nodes satisfying

τ s

(
n

1
2

)
−
⌈
T
(

deg(s)→ n
1
2

)⌉
= 1 is always below 5%.

For the other two points of Axiom 1, for each node s, we have computed τ s
(
n

1
2

)
−

T
(

deg(s)→ n
1
2

)
. We want to prove that the number of nodes that satisfy τ s

(
n

1
2

)
−

T
(

deg(s)→ n
1
2

)
≥ k is close to nck, for some constant c smaller than 1. For this rea-

son, we have plotted the fraction of nodes satisfying this inequality in logarithmic scale, in
Figure 8.7.

This plot confirms the last two points of Axiom 1: indeed, in logarithmic scale, the number
of nodes satisfying τ s

(
n

1
2

)
− T

(
deg(s)→ n

1
2

)
≥ k decreases almost linearly with k, when

k > 0.
Then, let us validate Axiom 2, which says that, whenever x + y > 1 + ε, for each pair

of nodes s, t, dist(s, t) < τ s (nx) + τ t (ny): we have tested this condition with (x, y) =
(0.3, 0.9), (0.4, 0.8), (0.5, 0.7), (0.6, 0.6). For each graph G = (V,E) in the dataset, and for
each of the aforementioned pairs (x, y), we have chosen a set T ⊆ V made by 10 000 random

snap.stanford.edu/
http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/

184 8 - Probabilistic Analysis of Algorithms

−2 0 2 4 6 8 10

10−6

10−4

10−2

100

k

Fr
ac
ti
on

of
no

de
s

p2p-Gnutella09

oregon1-010526

ego-gplus

oregon2-010526

ca-HepTh

ca-CondMat

ca-HepPh

email-Enron

loc-brightkite

email-EuAll

ca-AstroPh

gowalla-edges

munmun-twitter

com-dblp

com-lj.all.cmty
enron

com-youtube

wiki-Talk

Figure 8.7. The percentage of nodes satisfying τ s
(
n

1
2

)
− T

(
deg(s)→ n

1
2

)
≥ k, in all the graphs in our

dataset.

0

0.2

0.4

0.6

Fr
ac
ti
on

of
no

de
s

x = 0.6, y = 0.6 x = 0.5, y = 0.7 p2p-Gnutella09

oregon1-010526

ego-gplus

oregon2-010526

ca-HepTh

ca-CondMat

ca-HepPh

email-Enron

loc-brightkite

email-EuAll

ca-AstroPh

gowalla-edges

munmun-twitter

com-dblp

com-lj.all.cmty
enron

com-youtube

wiki-Talk

−2 0 2 4 6
0

0.2

0.4

0.6

τ v (n
x) + τw (ny)− d(v, w)

Fr
ac
ti
on

of
no

de
s

x = 0.4, y = 0.8

−2 0 2 4 6

τ v (n
x) + τw (ny)− d(v, w)

x = 0.3, y = 0.9

Figure 8.8. The values of τ s (nx) + τ t (ny)− dist(s, t) for 10 000 pairs of nodes in each graph.

nodes (or the whole V if |V | < 10 000), and for each i we have plotted the percentages of pairs
(s, t) ∈ T 2 such that τ s (nx) + τ t (ny)− dist(s, t) = i. The plots are shown in Figure 8.8.

From the figure, it is clear that τ s (nx) + τ t (ny) is almost always at least dist(s, t), as
predicted by Axiom 2. However, in some cases, dist(s, t) = τ s (nx) + τ t (ny): we think that
this is due to the fact that, in our random graph models, the guarantee is O

(
e−n

ε
)
, and for

ε = 0.2, this value is not very small (for instance, if n = 10 000, e−n
ε

= 0.012). However,
this value tends to 0 when n tends to infinity, and this is reflected in practice: indeed, the
fit is better when the number of nodes is larger. Overall, we conclude that Axiom 2 is
valid with good approximation on the networks in the dataset, and we conjecture that the
correspondance is even stronger for bigger values of n.

Finally, we need to validate Axiom 3, which says that, given a node s, for “many” sets of
nodes T , |{t ∈ T : τ s (nx) + τ t (ny) < dist(s, t) + 2}| ≤ |T |n1−x−y+ε. Hence, we have chosen

8.15 - Validity of the Axioms in Random Graphs: Proof Sketch 185

0

0.2

0.4

0.6

0.8
1

+
lo

g
N
z
−

lo
g
T

n
All vertices

τ t

(
n

1
2

)
< D

6

Baseline

p2p-Gnutella09

oregon1-010526

ego-gplus

oregon2-010526

ca-HepTh

ca-CondMat

ca-HepPh

email-Enron

loc-brightkite

email-EuAll

ca-AstroPh

gowalla-edges

munmun-twitter

com-dblp

com-lj.all.cmty
enron

com-youtube

wiki-Talk

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

z

1
+

lo
g
N
z
−

lo
g
T

n

D
6 ≤ τ t

(
n

1
2

)
< D

3

0 0.5 1 1.5
z

τ t

(
n

1
2

)
≥ D

3

Figure 8.9. The values of 1 +
log Nz|T |
logn

, as a function of z.

a random node s and a random set T made by 10 000 nodes, and for each t ∈ T , we have
computed zt = min{x + y : x > y, τ s (nx) + τ t (ny) < dist(s, t) + 2}. If the number Nz of
nodes t such that zt < z is at most |W |n−1+z+ε, then we can guarantee that the theorem
holds for each x and y. Solving with respect to z, we want that Nz ≤ |T |n−1+z+ε, that is,

log Nz
|T | ≤ (−1 + z + ε) log n, that is, z ≥ 1 − ε +

log Nz
|T |

logn . Hence, Figure 8.9 shows the values

of the function 1 +
log Nz
|T |

logn , for each graph in our dataset. Furthermore, since Axiom 3 also
deals with sets T defined depending on τ t (nx), we have also repeated the experiment on sets
T containing only nodes t satisfying 0 ≤ τ t

(
n

1
2

)
< D

6 ,
D
6 ≤ τ t

(
n

1
2

)
< D

3 , τ t
(
n

1
2

)
> D

3 ,
where D is the diameter of the graph.

From the plot, it is clear the claim is satisfied even with ε = 0, by all but one case. Also
the latter case is satisfied with a very small value of ε.

For the validation of Axiom 4, we rely on extensive studies that show that the degree
distribution of many real-world graphs is power law (for more information, we refer to [125]
and the references therein).

8.15 Validity of the Axioms in Random Graphs: Proof
Sketch

In order to transform the axiomatic worst-case analyses into average-case analyses on random
graphs, we use the following theorem, which is proved in Appendix A.

Theorem 8.32. For each fixed ε > 0, Axioms 1 to 4 are satisfied in the random graphs
defined in Section 8.1, a.a.s..

In other words, for each ε, δ > 0, there exists nε,δ such that the probability that a random
graph with n > nε,δ nodes does not satisfy the axioms is at most 1 − δ. The remainder of
this section sketches the proof of Theorem 8.32. It is quite easy to prove that Axiom 4 holds:
indeed, it is enough to show that the degree of a node v is close to its weight ρv. For the other
axioms, we study the size of neighbors of a given node s. We use three different techniques.

1. When γ`(s) = |Γ`(s)| is small (say, smaller than nε), we show that the behavior of
γ`(s) is well approximated by a µ-distributed branching process, where µ is the residual

186 8 - Probabilistic Analysis of Algorithms

distribution of λ (see Definition 8.2). Furthermore, if s and t are two different nodes,
and if γ`(s) and γ`

′
(t) are small, the behavior of Γ`(s) and the behavior of Γ`

′
(t) are

“almost” independent.

2. When γ`(s) is large, the branching process approximation and the independence do not
hold anymore. We need a different technique: since γ`(s) > nε, a Chernoff-type proba-
bility bound gives guarantees of the form e−n

ε

, which is bigger than any polynomial in
n. This way, we can prove very precise bounds on the size of γ`+1(s) given the size of
γ`(s), and through a union bound we can show that these bounds hold for any node s.

3. When λ is a power law distribution with 1 < β < 2, none of the previous results
hold anymore (indeed, the residual distribution µ is not even defined). In this case,
we directly prove that almost all shortest paths pass through a small set of nodes with
degree Θ(n), and we only have to analyze the minimum ` such that γ`(s) contains one
of these nodes.

We provide some more details of the case β > 2. For small neighborhoods, we start by
considering the residual distribution µ of λ (Definition 8.2), and by defining a µ-distributed
branching process δ`(s) coupled with γ`(s) (that is, γ`(s) and δ`(s) are defined on the
same probability space, and the probability that they are equal is high). Then, we an-
alyze the size of δ`(s): if M1(µ) is finite (or, equivalently, if M2(λ) is finite), it is well
known [12] that the expected size of δ`(s) is δ1(s)M1(µ)`−1 = deg(s)M1(µ)`−1. If λ is a
power law distribution with 2 < β < 3, and consequently µ is a power law distribution
with 1 < β < 2, the expected size of δ`(s) is infinite, but the typical size of δ`(s) is close

to δ1(s)

(
1

β−2

)`−1

= deg(s)

(
1

β−2

)`−1

(by typical size, we mean that size of δ`(s) is close to

deg(s)

(
1

β−2

)`−1

a.a.s.). Hence, heuristically, we can estimate τ s (nx), that is, the smallest `
such that δ`(s) > nx, by setting deg(s)M1(µ)`−1 = nx if M1(µ) is finite and strictly big-

ger than 1, and deg(s)

(
1

β−2

)`−1

= nx if µ is power law with exponent 1 < β < 2. Solving
with respect to `, τ s (nx) ≈ logM1(µ)

(
nx

deg(s)

)
+ 1 ≈ logM1(µ)

(
nx

deg(s)

)
in the first case, and

τ s (nx) ≈ log 1
β−2

(
logdeg(s) n

x
)

+1 ≈ log 1
β−2

(
lognx

log(deg(s))

)
, in line with the values in Table 8.2.

The branching process approximation lets us also approximate the deviations from these
value. First of all, the probability that τ s (nx) is much smaller than expected is not very
interesting: for example, a node of degree 1 can be a neighbor of the maximum degree node,
and in this case τ s (nx) = 2, if x < 1

β−1 (in any case, we do not need a result in this direction
for our analysis). Conversely, the probability that τ s (nx) is bigger than expected is very
interesting (Axiom 1): to bound it, we show that the “worst” that can happen is that δ`(s)
is 1 for a long time, and then it grows as expected: under this assumption, the probability
that τ s (nx) > T

(
deg(s)→ nx

)
+ k should be close to µ(1)k, that is, the probability that for

k steps we find a node of degree 1. However, the probability we obtain is slightly different:
for instance, in the first k steps, we can find with positive probability a node v with degree 2,
such that the first child of v has degree 0 (hence, we still have one branch that “continues”).
The probability of this event is µ(2)µ(0), and consequently the probability that τ s (nx) >
T
(
deg(s)→ nx

)
+k should be at least (µ(1)+µ(2)µ(0))k. To take this possibility into account,

we use the decomposition of the supercritical branching process [12, 1.D.12]: basically, we
remove from the branching process all nodes that have a finite number of descendants. If the
whole branching process is finite, then the starting node is not in the giant component of the
graph, and we ignore it. Otherwise, after eliminating all finite branches, we obtain another
branching process, with distribution η that depends on µ, and such that η(0) = 0. In this
new process, we prove that the probability that τ s (nx) > T

(
deg(s)→ nx

)
+ k is close to

η(1)k, and we transfer this result to the µ distributed process.

8.16 - Bibliographic Notes 187

Summarizing, we sketched the proof that the values appearing in Table 8.2 are correct,
and that Axiom 1 holds, at least when x is small. For big values of x, the branching process
approximation does not hold anymore: however, as soon as γ`(s) is large enough, we can
prove directly that γ`+1(s) ≈ γ`(s)M1(µ) if M1(µ) is finite, and γ`+1(s) ≈ γ`(s)

1
β−2 if λ is

power law with exponent 2 < β < 3, w.h.p.. This way, we can prove results on τ s (nx) by
proving the same results for τ s (ny) for some small y, and extending the result to τ s (nx)
using this argument. This concludes the proof that the values appearing in Table 8.2 are
correct, and that Axiom 1 holds.

Then, we need to prove that Axioms 2 and 3 hold: these axioms bound dist(s, t) with
τ s (nx)+τ t (ny). Let us assume that γ`(s) = nx, and γ`

′
(t) = ny: if all nodes are in Γ`(s) with

the same probability, Γ`(s) will be a random subset of the set of nodes, and the probability

that a node in Γ`(s) is also in Γ`
′
(t) is close to γ`

′
(t)
n = 1

n1−y . Hence, the probability that
dist(s, t) ≥ ` + `′ is related to the probability that Γ`(s) does not intersect Γ`

′
(t), which is

close to
(
1− 1

n1−y

)nx ≈ e−n
x+y−1

. For x + y > 1, this means that dist(s, t) ≤ ` + `′ w.h.p.,
and this is very close to the statement of Axiom 2. For x + y < 1, Γ`(s) does not intersect
Γ`
′
(t) with probability e−n

x+y−1 ≈ 1− nx+y−1, and hence dist(s, t) ≤ `+ `′ with probability
close to nx+y−1. The proof that Axiom 3 holds is then concluded by applying concentration
inequalities, exploiting the fact that T is “enough random”. Finally, Axiom 4 is well-known,
and we follow existing proof techniques, based on concentration inequalities.

8.16 Bibliographic Notes

All the results in this section are published in our paper [35]. The models considered are
well-known, and the definitions used in Section 8.1 are taken from [159]. The axioms in
Section 8.2 are original, but similar results are available in previous papers (see e.g., Theorem
3.4 and Lemma 5.2 in [76] for the CM, [127] for the Norros-Reittu model, and [27] for similar
related results). The results in Section 8.3 are collect and generalize to our framework several
existing results on random graphs [158, 161, 127, 54, 162, 76, 27, 159, 160], and they prove
some original results. Finally, in Section 8.15, we sketch the proof that the axioms are
satisfied by the random graph models considered (full proof is available in Appendix A). The
proof techniques take inspiration from existing results: for “big neighborhoods”, we follow
the approach in [54, 127] (see also [159, 160]), while the branching process approximation for
“small neighborhoods” was already used in [127, 27] in IRG; similar techniques were used in
[76] for the CM. The statement of the main theorem about branching processes is original
(Theorem A.21), and it formalizes ideas that previously were only considered as intuitions
[159, 160]. The techniques used and the results obtained in the case 1 < β < 2 are original:
the only known result is the average distance between two nodes [158].

Chapter 9

Conclusions and Open Problems

In this thesis, we have addressed the problem of designing subquadratic algorithms to compute
metric quantities in graphs.

In the first part, we have proved that such problems do not admit subquadratic solu-
tions, unless widely believed conjectures are false. In other words, we cannot significantly
outperform trivial approaches in the worst-case.

In order to overcome these difficulties, at least in practice, we have developed several
algorithms that are very efficient when tested on real-world networks, even if they provide
no guarantee on the time-complexity. We have implemented these algorithms in widely-used
graph libraries, and we have experimentally validated their performances.

In the last part of the thesis, we have provided a probabilistic framework where many
of these algorithms can be evaluated and compared in a rigorous way. This framework does
not only allow us to validate the performances of the new algorithms: it also shows the main
properties of the input graph that we are using, and it can be used to prove average-case
results on realistic graph models.

All these results open the way to a number of new research directions. In the field of
worst-case reductions, an open problem is to find new relations between the Strong Exponen-
tial Time Hypothesis, the Orthogonal Vector conjecture, and the Hitting Set conjecture: in
particular, it would be very interesting to find more evidences for the validity of the Hitting
Set conjecture. However, obtaining such results might be very difficult: the problem is widely
studied, and there are even some irreducibility results [46]. Among simpler open problem,
one might be interested in adding new problem to the reduction network in Figure 3.1: for
example, it would be very interesting to prove stronger bounds on the hardness of computing
the hyperbolicity. Finally, in this work we have only considered exact algorithms, even if there
are also several inapproximability results: it could also be interesting to extend our results in
terms of hardness of approximations, especially the ones dealing with betweenness centrality.

In the field of designing practical algorithms, a standard open problem is to refine the ex-
isting algorithms, or design new algorithms that outperform the existing ones. In particular,
for closeness centrality, it would be very interesting to try probabilistic algorithms: currently,
all such algorithms are not suited to the ranking of nodes, because the number of iterations
needed to obtain sensible guarantees is very large. However, with adaptive approaches, one
might obtain good guarantees much faster, similarly to what we have done with between-
ness centrality. Conversely, in the case of betweenness centrality, one might be interested
in designing exact algorithms to rank the k most central nodes. The main difficulty of this
task is that computing the betweenness of a single node is already hard, meaning that we
have both to find upper bounds on the betweenness of all nodes, and lower bounds on the
betweenness of single nodes (conversely, for closeness centrality, we only had to find lower
bounds). Furthermore, it would be interesting to overcome the O(n2) space needed by the
hyp algorithm to compute the hyperbolicity (in practice, this is the main bottleneck of this
algorithm). Finally, it would be interesting to extend the techniques developed in this thesis

190 9 - Conclusions and Open Problems

to address the computation of other metric quantities: other variations of closeness and be-
tweenness centrality, new centrality measures, computation or approximation of the distance
distribution, and so on.

Several problems remain open also in the field of probabilistic analyses, which is very
recent. One of the possible research directions is to prove the axioms for more models, so
that all our probabilistic analyses are valid in these new models, as well. A first and simple
extension would be to lift some of the technical assumptions in Section 8.1: we believe that
this task should not be difficult, since we already know what happens in more general cases
[159, 160], and our proofs should be easily adaptable.

A more complicated task is to prove the axioms for new models. For example, we conjec-
ture that our axioms hold in all Inhomogeneous Random Graphs [27], and not only Rank-1
Inhomogeneous Random Graphs: this is a much larger class of graphs, including, among other,
all stochastic block models. We believe that this extension should be possible, by combining
arguments in [27] with our proof techniques, also because the asymptotics for various graph
quantities in Inhomogeneous Random Graphs are very similar to the asymptotics obtained in
our framework. For the extension to other models, we believe that the task could be harder,
because, in most existing models, the asymptotics for the metric quantities studied in this
thesis are not known with enough precision, yet, despite a large amount of research. This
means that, probably, the existing techniques are not sufficient to prove our axioms, and new
techniques are needed.

Furthermore, one might be interested in extending this kind of analysis to directed graphs.
We believe that, with few modifications, it is possible to adapt the axioms, and to analyze
many of the algorithms discussed in this thesis. We also believe that it is not very difficult
to generalize the current models to the directed case, in order to prove the new axioms. The
main difficulty is that, currently, the generalizations of the models we have considered are
not well-established in the literature: in particular, there is no standard way to choose the
distribution of the in-degrees and the out-degrees (for example, it is not known whether only
one of the two is usually power law, or they both are; also the dependency of in-degrees
and out-degrees is not established). This means that, in order to extend this work, one has
to propose new models, and show that the graphs generated by these models represent well
real-world directed networks.

Another possible extension of our work is to provide new probabilistic analyses. A very
interesting result would be to analyze our hyperbolicity algorithm, which seems to be harder
to analyze than the other ones, because the current asymptotics for the hyperbolicity of
random graphs are not precise enough. However, we believe that these asymptotics can be
obtained by combining our axioms with known results on the “local” structure of the random
graphs considered, which resembles a tree [159].

Building on this idea, one might be interested in improving the set of axioms, for example
by adding an axiom saying that the number of edges in a (small enough) neighborhood is not
much larger than the number of nodes. This would not only help us with the hyperbolicity,
but it would also allow us to perform more probabilistic analyses only using the axioms,
without relying on specific properties of the models considered (in other words, we would be
able to remove some asterisks from Table 8.1).

Finally, an interesting open problem is to try different axioms, and study the differences:
for example, we could use different neighborhood growth functions, in order to study the
behavior of our algorithms on other kinds of networks, such as road networks. In this case,
the neighborhood growth is not exponential, and we believe that we could make it linear.
Furthermore, two neighborhoods are likely to touch each other only if they have size O(n),
and not O(

√
n) as in the case of complex networks.

In conclusion, this thesis opens several possible research directions, and we believe that,
in the future, more light will be shed on the validity of these conjectures, and maybe some of
them will be proved!

Appendix A

Proof of the Validity of the Axioms
in Real-World Graphs

In this appendix, we prove Theorem 8.32, that states that the four axioms in Section 8.2 are
a.a.s. satisfied if a graph is generated with the Configuration Model, or with Rank-1 Inho-
mogeneous Random Graph models. We follow the sketch in Section 8.15. In Appendix A.1
we state some basic lemmas that are used throughout this section, while in Appendix A.2 we
analyze the size of γ`(s) when γ`(s) is “big” (at least nε). Then, Appendix A.3 completes
Appendix A.2 by analyzing the size of γ`(s) when γ`(s) is small, using branching process
approximation. Then, in Appendix A.4 we analyze separately the case 1 < β < 2, which
has a different behavior. Appendix A.5 develop tools to convert probabilistic results into
results on the number of nodes satisfying a certain property. Finally, Appendix A.6 proves
Theorem 8.32, relying on the results of all previous sections, and Appendix A.7 proves other
results that are used in some analyses.

A.1 Probabilistic Preliminaries

In this section, we state some basic probabilistic theorems that are used in the proof of our
main results. For a more thorough discussion and for their proof, we refer to [54].

Lemma A.1 (Multiplicative form of Chernoff bound). Let X1, . . . ,Xk be independent
Bernoulli random variables, and let S =

∑k
i=1Xi. Then,

P
(
S < (1− ε)E[S]

)
≤

(
e−ε

(1− ε)1−ε

)E[S]

P
(
S > (1 + ε)E[S]

)
≤
(

eε

(1 + ε)1+ε

)E[S]

.

Lemma A.2 (Hoeffding inequality). Let X1, . . . ,Xk be independent random variables such
that ai <Xi < bi almost surely, and let S =

∑k
i=1Xi. Then,

P
(
|S − E[S]| > λ

)
≤ 2e

− 2λ2∑k
i=1
|bi−ai|2

The next lemmas deal with supermartingales and submartingales, which are defined as
follows.

Definition A.3. Let X1, . . . ,Xk be a sequence of random variables, let F1, . . . ,Fk be a
sequence of σ-fields such that X1, . . . ,Xi are Fi-measurable. The sequence is a martingale if

192 A - Proof of the Validity of the Axioms in Real-World Graphs

the conditional expectation E[Xi+1|Fi] is equal toXi, it is a supermartingale if E[Xi+1|Fi] ≤
Xi, and it is a submartingale if E[Xi+1|Fi] ≥Xi.

The terms “submartingale” and “supermartingale” have not been used consistently in the
literature, since in some works a supermartingale satisfies E[Xi+1|Fi] ≥Xi, and a submartin-
gale satisfies E[Xi+1|Fi] ≤Xi [54]. In this work, we use the most common definition.

Lemma A.4 (Azuma inequality for supermartingales). Let Xk be a supermartingale, and

let us assume that |Xk −Xk+1| < M almost surely. Then, P(Xn −X0 ≥ λ) ≤ e−
λ2

2nM2 .

Lemma A.5 (Azuma inequality for submartingales). Let Xk be a submartingale, and let us

assume that |Xk −Xk+1| < M almost surely. Then, P(Xn −X0 ≤ −λ) ≤ e−
λ2

2nM2 .

Lemma A.6 (strengthened version of Azuma inequality). Let Xk be a supermartingale
associated with a filter F , and assume that Var(Xk|Fk−1) ≤ σ2, and Xk−E(Xk|Fk−1) ≤M .
Then,

P (Xk ≥X0 + λ) ≤ e
−λ2

2kσ2+Mλ
3 .

Finally, we need a technical lemma on the sum of power law random variables.

Lemma A.7. Let X =
∑k
i=1Xi, where k tends to infinity and the Xis are power law

random variables with exponent 1 < β < 2. Then, for each c > 0, P
(
X > k

1+c
β−1

)
= O(k−c).

Proof. For each i, P
(
Xi > k

1+c
β−1

)
= O

((
k−

1+c
β−1

)β−1
)

= O
(

1
k1+c

)
, and consequently the

probability that there exists i such that Xi > k
1+c
β−1 is O

(
k−c

)
.

Conditioned on Xi ≤ k
1+c
β−1 for each i,

E [X] = E

 ∞∑
`=1

|{i : Xi > `}|

= E

k
1+c
β−1∑
`=1

|{i : Xi > `}|

=

k
1+c
β−1∑
`=1

E
[
|{i : Xi > `}|

]

=

k
1+c
β−1∑
`=1

O(k`−β+1)

= O
(
k1+

(1+c)(2−β)
β−1

)
= k

1+c(2−β)
β−1 .

We conclude that

P
(
X > k

1+c
β−1

)
= P

(
X > k

1+c
β−1

∣∣∣∃i,Xi > k
1+c
β−1

)
P
(
∃i,Xi > k

1+c
β−1

)
+ P

(
X > k

1+c
β−1

∣∣∣∀i,Xi < k
1+c
β−1

)
P
(
∀i,Xi < k

1+c
β−1

)
≤ O

(
k−c

)
+

1

k
1+c
β−1

E
(
X > k

1+c
β−1

∣∣∣∀i,Xi < k
1+c
β−1

)

A.2 - Big Neighborhoods 193

= O
(
k−c + k

1+c(2−β)
β−1 − 1+c

β−1

)
= O

(
k−c + k−c

)
= O

(
k−c

)
by Markov inequality.

A.2 Big Neighborhoods

First of all, let us define precisely the typical time needed by a node of degree d to reach size
nx. In Section 8.2, we defined T (d→ nx) as the smallest ` such that γ`(s) > nx, and then
we stated which are the typical values of T (d→ nx) in different regimes. In this section, we
do the converse: we define F (d→ S) as a function of the degree distributions, and we show
that there is a high chance that γ(1−ε)F (d→S)(s) < S < γ(1+ε)F (d→S)(s), if s is a node of
degree d in the giant component.

Definition A.8. In the following for any 0 < d < S, we denote by

F (d→ S) =

logM1(µ)

(
S
d

)
if M1(µ) is finite.

log 1
β−2

(
logS
log d

)
if λ is power law with 2 < β < 3.

Following the intuitive proof, in this section we fix x, y bigger than ε, and we bound
τ s (ny) − τ s (nx). The main technique used is to prove that, w.h.p., each neighbor which is
big enough satisfies some constraints, and these constraints imply bounds on τ s (ny)−τ s (nx).
More formally, we prove the following theorem.

Theorem A.9. For each 0 < x < y < 1, τ s (ny)− τ s (nx) ≥ (1− ε)F (nx → ny) a.a.s., and
τ s (ny)− τ s (nx) ≤ (1 + ε)F (nx → ny) w.h.p..

The proof of this theorem is different for the CM and for IRG. In particular, the main
tool used to prove this theorem is an estimate on γ`+1(s) knowing γ`(s): intuitively, in the
CM, for each node in Γ`(s) we count how many neighbors it has in Γ`+1(s), while in IRG we
count how many nodes outside N `(s) have a neighbor in Γ`(s).

A.2.1 Configuration Model

Let us assume that we know the structure of N `(s) (that is, we consider all possible events
Ei that describe the structure of N `(s), and we prove bounds conditioned on Ei; finally,
though a union bound, we remove the conditioning). Let us define a random variable ∆`(s),
which measures “how big a neighbor is”.

Definition A.10. Given a graph G = (V,E) generated through the CM, we denote by
∆`(s) the set of stubs of nodes in Γ`(s), not paired with stubs of nodes in Γ`−1(s). We
denote δ`(s) = |∆`(s)|.

In order to make this analysis work, we need to assume that ρN`(s) < n1−ε and ∆`(s) > nε.
Let us consider the following process: we sort all the stubs in ∆`(s), obtaining

a1, . . . , aδ`(s), and, starting from a1, we choose uniformly at random the “companion” of
ai among all free stubs (if ai is already paired with a stub aj for some j < i, we do not do
anything). The companion of ai can be one of the following:

1. a stub of a node v that already belongs to Γ`+1(s) (because another stub of v was
already paired with a stub in γ`(s));

2. a stub of a “new” node;

3. another unpaired stub in ∆`(s).

194 A - Proof of the Validity of the Axioms in Real-World Graphs

Let us prove that the number of stubs in ∆`(s) that are paired with other stubs in ∆`(s)
is small (Item 3): at each step, the probability that we choose one of these stubs is the ratio
between the number of unpaired stubs in ∆`(s) with respect to the total number of unpaired
stubs. Since ρN`(s) < n1−ε, the number of unpaired stubs in ∆`(s) is at most n1−ε, and the
total number of unpaired stubs is at least M − n1−ε = M(1 − o(1)). Hence, the probability
that we choose one of these stubs is at most n1−ε

M < n−ε. Let Xa be a Bernoulli random
variable which is 1 if we pair a with another stub inside ∆`(s), 0 if a is already paired when
we process it, or if it is paired outside ∆`(s) (observe that the number of nodes paired inside
∆`(s) is 2

∑
a∈∆`(s)Xa). We want to apply Azuma’s inequality: first, we sort the stubs

in ∆`(s), obtaining a1, . . . , aδ`(s). By the previous argument, Sk =
∑k
i=1Xai − kn−ε is a

supermartingale, and hence P(Xk > εk) ≤ e− ε
2k2

2k : for k = ∆`(s), this probability is at most
e−ε

3nε . In conclusion, w.h.p., at most 2ε∆`(s) stubs in ∆`(s) are paired to other stubs in
∆`(s).

Let us consider a stub a paired outside ∆`(s) with a random stub a′: if the number of
stubs that are already in ∆`+1(s) is at most n1−ε2 , then the probability that a′ is already
in ∆`+1(s) is at most n−ε

2

. In order to solve the case where ρΓ`+1(s) > n1−ε2 , let us assume
that ∆`(s) < n1−ε: in this case, since the number of elements in ∆`+1(s) decreases at most
by 1 at each step, ∆`+1(s) ≥ n1−ε2 − n1−ε ≥ n1−ε.

Hence, the case that “almost always” occurs is that the new stub a′ belongs to a “new”
node. Relying on this, we can lower bound γ`+1(s): by definition, γ`+1(s) ≤ δ`(s), and
we want to prove that γ`+1(s) ≥ (1 − ε)δ`(s). Since the number of stubs in ∆`(s) paired
with other stubs in ∆`(s) is negligible w.h.p., we can write γ`+1(s) =

∑(1−ε)δ`(s)
i=1 Xi, where

Xi = 1 with probability at least 1−n−ε2 , 0 otherwise (note that theXis are not independent,
but if ∆`+1(s) < n1−ε, then P(Xi = 1) ≥ 1 − n−ε2 , as before). We want to apply Azuma’s
inequality: Sk =

∑k
i=1Xi−k(1−n−ε2) is a submartingale, and hence P(Sk < −εk) ≤ e− ε

2k2

2k :
for k = δ`(s), this probability is at most e−ε

3nε . Hence, w.h.p., Xi ≥ k(1 − n−ε2) − εk ≥
(1− 2ε)k, and for k = δ`(s) we have proved the following lemma.

Lemma A.11. Given a random graph G = (V,E) generated through the CM and a node
s ∈ V , if δ`(s) > nε and ρN`(s) < n1−ε, then (1− 2ε)δ`(s) ≤ γ`+1(s) ≤ δ`(s) w.h.p..

Corollary A.12. For each node s, let τ ′s (S) be the smallest integer such that δ`(s) > S.
Then, for each 0 < x < 1, τ ′s (nx) + 1 ≤ τ s (nx) ≤ τ ′s

(
nx

1−ε

)
+ 1 w.h.p..

Proof. For the first inequality, if ` = τ s (nx), δ`−1(x) ≥ γ`(s) ≥ nx. For the second inequality,
for each i < ` − 1, nx > γi+1(s) ≥ (1 − ε)δi(s) by the previous lemma. Hence, τ ′s

(
nx

1−ε

)
cannot be smaller than `− 1.

Hence, in order to understand τ s (nx) − τ s (ny), we may as well understand τ ′s (nx) −
τ ′s (ny), and we do it by estimating δ`+1(s) from δ`(s). As before, δ`+1(s) =

∑
a∈∆`(s) Y a,

where Y a is 0 if the stub a paired with a is in ∆`(s), −1 if a is in Γ`+1(s), otherwise it the
number of stubs of the node of a, minus one (because a is not in ∆`+1(s)). By definition,
the distribution of Y a is very close to µ (more specifically,

∑∞
k=0 |µ(k)− P(Y a = k)| < 1

nε).
It remains to estimate this sum: we need to do it differently for upper and lower bounds,

and for different regimes of β.

Lower bound, 2 < β < 3.The probability that at least one of the Y a is at least δ`(s)
1−ε
β−2

is close to P
(
µ > δ`(s)

1−ε
β−2

)
, because, w.h.p., no visited node can have weight bigger than

δ`(s)
1−ε
β−2 (otherwise, there would be a `′ < ` such that δ`

′
(s) ≥ δ`(s)

1−ε
β−2). Hence, the proba-

bility that one of the Y as is at least δ`(s)
1−ε
β−2 is Θ

(
1

δ`(s)
1−ε
β−2

(β−2)

)
= Θ

(
δ`(s)−1+ε

)
. We want

A.2 - Big Neighborhoods 195

to apply Azuma’s inequality to prove that at least one of Y as is bigger than δ`(s)
1−ε
β−2 . Let us

number the stubs in ∆`(s), obtaining a1, . . . , aδ`(s), and let Sk =
∑k
i=0 Y

′
ai − ckδ

`(s)−1+ε,

where Y ′ai = 1 if Y ai > δ`(s)
1−ε
β−2 , 0 otherwise, and c is a small enough constant, so that

Sk is a submartingale. Furthermore, Var(Y ′ai) ≤ E[(Y ′ai)
2] = E[Y ′ai]) = O

(
δ`(s)

1−ε
β−2

)
.

Then, by the strengthened version of Azuma’s inequality (Lemma A.6), if k = δ`(s),

P
(
Sk ≤ c

2kδ
`(s)−1+ε

)
≤ e
−Ω

(
k2δ`(s)2

2kδ`(s)+kδ`(s)

)
≤ e−Ω(δ`(s)ε) ≤ e−n

ε3

. Hence, w.h.p., Sδ`(s) ≥
c
2kδ

`(s)−1+ε > 0, and consequently there is i such that Y ′ai 6= 0. This means that, for each

i, δ`+i(s) ≥ δ`(s)
(

1−ε
β−2

)i
.

Upper bound, 2 < β < 3.By Lemma A.7, since µ is a power law with exponent β − 1,
and 2 < β < 3, the probability that

∑
a∈∆`(s) Y a is bigger than k

1+ε
β−2 is at most O(k−ε) =

O
(
n−ε

2
)
. Consequently, by a union bound, δ`+i(s) ≤ δ`(s)

(
1+ε
β−2

)i
for each i < nε

3

, with
probability 1− o(1).

Lower bound, β > 3.We cannot apply directly Azuma’s inequality to say that δ`+1(s)
is close to E[δ`+1(s)] = (1 + o(1))M1(µ)δ`(s), because Y a can assume very large values.
However, we can “cut the distribution”, by defining Y ′a = Y a if Y a < N , 0 otherwise. If N
is big enough, E[Y ′a] > M1(µ) − ε. By a straightforward application of Azuma’s inequality
(Lemma A.5), δ`+1(s) ≥

∑
a∈∆`(s) Y a ≥ (1 − ε)(M1(µ) − ε)δ`(s) w.h.p.. Consequently,

δ`+i(s) ≥ (M1(µ)−O(ε))iδ`(s), w.h.p..

Upper bound, β > 3.The expected value of δ`+i(s) is at most (M1(µ) + ε)iδ`(s): by a
straightforward application of Markov inequality, we conclude that

P
(
δ`+i(s) > (M1(µ) + ε)iδ`(s)nε

)
≤ n−ε.

Proof of Theorem A.9, CM. By Corollary A.12, τ ′s (nx) + 1 ≤ τ s (nx) ≤ τ ′s
(
(1 + ε)nx

)
+ 1.

Hence, τ ′s (ny)− τ ′s
(
(1 + ε)nx

)
≤ τ s (ny)− τ s (nx) ≤ τ ′s

(
ny(1 + ε)

)
− τ ′s (nx).

If we apply the lower bounds with i = F
(
Z0 → S

)
(1 + ε′), ` = τ ′s (nx), we obtain the

following.

• If 2 < β < 3, either n`+j(s) > n1−ε for some j < i, or, w.h.p., δ`+i(s) ≥

δ`(s)

(
1−ε
β−2

)i
≥ n

x
(

1−ε
β−2

)(1+ε′) log 1
β−2

y
x

= nxe
log(yx)(1+ε′)

log 1−ε
β−2

log 1
β−2 ≥ (1 + ε)ny if ε is small

enough with respect to ε′. In both cases, τ s (ny) − τ s (nx) ≤ τ ′s
(
(1 + ε)ny

)
−

τ ′x (nx) ≤ F
(
Z0 → S

)
(1 + ε′). With a very similar computation, one can conclude

that τ s (ny) − τ s (nx) ≥ F
(
Z0 → S

)
(1 − ε′) a.a.s. (the only difference is how to han-

dle the case where n`+j(s) > n1−ε: to this purpose, it is enough to observe that if
nx < ny < n1−ε, for the whole process n`+j(s) < ny < n1−ε).

• If β > 3, as before, either n`+j(s) > n1−ε for some j < i, or, w.h.p., δ`+i(s) ≥
δ`(s)(M1(µ) − ε)i ≥ δ`(s)(M1(µ) − ε)(1+ε) logM1(µ) n

y−x
= nxe

log(ny−x)(1+ε′)
M1(µ)−ε
M1(µ) ≥

ny(1 + ε) if ε is small enough with respect to ε′. We conclude that τ s (ny)− τ s (nx) ≤
τ ′s
(
(1 + ε)ny

)
− τ ′x (nx) ≤ F

(
Z0 → S

)
(1 + ε′) w.h.p.. A similar computation yields

τ s (ny)− τ s (nx) ≥ τ ′s (ny)− τ ′x
(
(1 + ε)nx

)
≤ F

(
Z0 → S

)
(1− ε′) a.a.s..

To conclude this section, we prove a stronger upper bound in the case β > 3, which is
used in three of our probabilistic analyses.

196 A - Proof of the Validity of the Axioms in Real-World Graphs

Lemma A.13. Assume that δ`(s) > dmaxn
ε, where dmax is the maximum degree in the graph,

and that M1(µ) is finite. Then, w.h.p., δ`+1(s) ≤ δ`(s)(M1(µ) + ε).

Proof. We want to apply Azuma’s inequality as in the lower bound. More precisely, δ`+1(s) ≤∑δ`(s)
i=1 Y ai , where E [Y ai] is at most M1(µ) + ε, conditioned on the values of Y aj for each

j < i. Hence,
∑k
i=1 Y ai − k(M1(µ) + ε) is a supermartingale, and Y ai < n

1
β−1 < n

1
2−ε for

ε small enough. By Azuma’s inequality (Lemma A.4), P (Y k ≤ εk) ≤ e−
ε2k2

2kdmax ≤ e−ε
3nε for

k = δ`(s) > dmaxn
ε. We proved that, w.h.p., δ`+1(s) − δ`(s)(M1(µ) + ε) =

∑δ`(s)
i=1 Y ai −

δ`(s)(M1(µ) + ε) ≤ εδ`(s), and consequently δ`+1(s) ≤ δ`(s)(M1(µ) + 2ε).

Combining this lemma with Lemma A.11, we obtain the following corollary.

Corollary A.14. Assume that dmaxn
ε < γ`(s) < n1−ε, where dmax is the maximum degree

in the graph, and that M1(µ) is finite. Then, w.h.p., γ`+1(s) ≤ γ`(s)(M1(µ) + ε).

Corollary A.15. For each node v, and for each 0 < x < y < 1 such that dmax < nx−ε,
τ v (ny)− τ v (nx) ≥ (1− ε) logM1(µ) n

y−x, w.h.p..

A.2.2 Inhomogeneous Random Graphs

Let us assume that we know the structure of N `(s). Following the proof for the CM, we
define the auxiliary quantity δ`(s) = ργ`(s). Again, we need to assume that ρN`(s) < n1−ε

and that δ`(s) > nε.
Let w be a node with weight at most n1−ε

δ`(s)
, outside N `(s):

P
(
w /∈ γ`+1(s)

)
=

∏
v∈γ`(s)

(
1− f

(
ρvρw
M

))

=
∏

v∈γ`(s)

(
1− (1 + o(1))

(
ρvρw
M

))

= e−
∑
v∈γ`(s)(1+o(1))(ρvρwM)

= e
−(1+o(1))

(
δ`(s)ρw
M

)

= 1− (1 + o(1))

(
δ`(s)ρw
M

)
.

Hence, P
(
w ∈ γ`+1(s)

)
= (1 + o(1))

(
δ`(s)ρw
M

)
, and γ`+1(s) =

∑
w/∈N`(s)Xw, where the

Xws are independent Bernoulli random variables with success probability (1+o(1))
(
δ`(s)ρw
M

)
if this quantity is much smaller than 1, otherwise O(1). We want to compute the number of
nodes in Γ`+1(s), knowing δ`(s): first, we observe that the number of nodes with weight at

least n1−ε

δ`(s)
is O

(
n
(
δ`(s)
n1−ε

)β−1
)

= O
(
δ`(s)n

ε(β−1)δ`(s)β−2

nβ−2

)
= O

(
δ`(s)nε(β−1)−

√
ε(β−2)

)
=

o(δ`(s)), assuming δ`(s) < n1−
√
ε, and we can safely ignore these nodes. By the multiplicative

form of Chernoff bound (Lemma A.1), if S =
∑
w/∈N`(s),ρw<

n1−ε
δ`(s)

Xw:

P
(
S < (1− ε)E[S]

)
≤

(
e−ε

(1− ε)1−ε

)E[S]

≤ e(−ε−(1−ε) log(1−ε))nε

A.2 - Big Neighborhoods 197

≤ e−ε
3nε

P
(
S > (1 + ε)E[S]

)
≤
(

eε

(1 + ε)1+ε

)E[S]

≤ e(ε+(1+ε) log(1+ε))nε

≤ e−ε
3nε

if ε is small enough. By changing the value of ε with
√
ε, we have proved the following lemma.

Lemma A.16. Assume that ρN`(s) < n1−ε and that δ`(s) > nε. Then, (1 − ε)δ`(s) ≤
γ`+1(s) ≤ (1 + ε)δ`(s) w.h.p..

Corollary A.17. For each node s, let τ ′s (S) be the smallest integer such that δ`(s) > S.
Then, for each 0 < x < 1, τ ′s

(
(1− ε)nx

)
+ 1 ≤ τ s (nx) ≤ τ ′s

(
(1 + ε)nx

)
+ 1.

As in the CM, we need to estimate τ ′s (nx)−τ ′s (ny). To this purpose, we compute ρΓ`+1(s)

knowing δ`(s). Using the previous notations, ρΓ`+1(s) =
∑
w/∈N`(s) ρwXw, and we estimate

this sum by considering separately upper and lower bounds, and the different possible values
of β.

Lower bound, 2 < β < 3.Let us consider all nodes with weight at least δ`(s)
1−ε
β−2 . The

probability that one of these nodes is connected to a node in Γ`(s) is Θ
(
δ`(s)

1−ε
β−2 +1n−1

)
=

Θ
(
δ`(s)

β−1−ε
β−2 n−1

)
. Through a straigthforward application of the multiplicative for of Cher-

noff bound (Lemma A.1), since there are Θ
(
nδ`(s)−

1−ε
β−2

)
such nodes, we can prove that there

is at least one node with weight at least δ`(s)
1−ε
β−2 which is connected to Γ`(s), w.h.p.. This

means that ργ`+1(s) ≥ δ`(s)
1−ε
β−2 , and consequently, by a union bound, ρΓ`+i(s) ≥ ρ

(
1−ε
β−2

)i
Γ`(s)

for
each i such that ρΓ`+i(s) < n1−ε.

Upper bound, 2 < β < 3.Let us consider all nodes with weight at least δ`(s)
1+ε
β−2 . The

probability that one of these nodes is connected to a node in Γ`(s) is

Θ
(
δ`(s)

1+ε
β−2 +1n−1

)
= Θ

(
δ`(s)

β−1+ε
β−2 n−1

)
.

Since there are Θ

(
nδ`(s)−

(1+ε)(β−1)
β−2

)
such nodes, by a union bound, the probability that

none of these nodes is connected to a node in Γ`(s) is 1 − Θ

(
δ`(s)−

β−1+ε−(1+ε)(β−1)
β−2

)
=

1−Θ
(
n−ε

2
)
. Conditioned on this event, the expected value of ρΓ`+1(s) is at most

δ`(s)
∑

ρv<δ`(s)
1+ε
β−2

ρ2
v

n
= Θ

(
δ`(s)1+

(1+ε)(3−β)
β−2

)
= Θ

(
δ`(s)

1+ε(3−β)
β−2

)
.

By Markov inequality, with probability at least 1 − n−ε
3

, ρΓ`+1(s) ≤ δ`(s)
1+ε(3−β)
β−2 +ε =

δ`(s)
1

β−2 +ε. As a consequence, ρΓ`+i(s) ≤ δ
`(s)

(
1

β−2

)i
for each i < nε

4

, a.a.s..

Lower bound, β > 3.We want to apply Hoeffding’s inequality to prove that, if δ`(s) > nε,
δ`+1(s) ≥ (1− ε)E[δ`+1(s)] ≥ (1− 2ε)M1(µ)δ`(s). To this purpose, let N be a big constant
(to be chosen later): δ`+1(s) = (1 + o(1))

∑
w∈V ρwXw ≥ (1 + o(1))

∑
ρw<N

ρwXw. By Ho-

effding’s inequality (Lemma A.2), w.h.p.,
∑
ρw<N

ρwXw is at least (1−ε)E
[∑

ρw<N
ρwXw

]
:

if we choose N big enough, the latter value is at least (1 − 2ε)M1(µ). This means that
δ`+1(s) ≥ (1− 2ε)M1(µ)δ`(s) w.h.p., and by a union bound δ`+i(s) ≥ (1− 2ε)iM1(µ)iδ`(s).

198 A - Proof of the Validity of the Axioms in Real-World Graphs

Upper bound, β > 3.Conditioned on δ`(s), the expected value of δ`+1(s) is at most∑
w/∈N`(s)

ρwE[Xw] = (1 + o(1))
∑
w∈V

ρw
δ`(s)ρw
M

= (1 + o(1))δ`(s)
M2(λ)

M1(λ)

= (1 + o(1))δ`(s)M1(µ) ≤ (M1(µ) + ε)δ`(s).

By Markov inequality, P
(
δ`+i(s) > (M1(µ) + ε)iδ`(s)nε

)
≤ n−ε.

Proof of Theorem A.9, IRG. By Corollary A.17,

τ ′s
(
(1− ε)nx

)
+ 1 ≤ τ s (nx) ≤ τ ′s

(
(1 + ε)nx

)
+ 1.

Hence, τ ′s
(
(1− ε)ny

)
−τ ′s

(
(1 + ε)nx

)
≤ τ s (ny)−τ s (nx) ≤ τ ′s

(
ny(1 + ε)

)
−τ ′s

(
nx(1− ε)

)
.

By the aforementioned lower bounds on δd+i(s), the conclusion follows.

As before, we conclude this section by proving a stronger upper bound in the case β > 3,
which is used in two of our probabilistic analyses.

Lemma A.18. Assume that δ`(s) > dmaxn
ε, where dmax is the maximum degree in the graph,

and assume that β > 3. Then, w.h.p., δ`+1(s) ≤ δ`(s)(M1(µ) + ε).

Proof. As in the lower bound, we write δ`+1(s) = ρΓ`+1(s) ≤
∑
w∈V ρwXw, where Xw

is a Bernoulli random variable with success probability 1 −
∏
v∈Γ`(s)

(
1− f

(
ρvρw
n

))
=

1 −
∏
v∈Γ`(s) e

−(1+o(1)) ρvρwn = 1 − e−(1+o(1))
ρ
Γ`(s)

ρw

n = (1 + o(1))
(
ρ
Γ`(s)

ρw

n

)
. Hence,

E
[∑

w∈V ρwXw

]
= (1 + o(1))

(∑
w∈V

ρ2
wρΓ`(s)
n

)
≤
(
M1(µ) + ε

)
δ`(s). A simple application

of Hoeffding’s inequality (Lemma A.2) lets us conclude, since ρw < dmax for each w.

Combining this lemma with Lemma A.11, we obtain the following corollary.

Corollary A.19. Assume that dmaxn
ε < Γ`(s) < n1−ε, where dmax is the maximum degree

in the graph, and that M1(µ) is finite. Then, w.h.p., γ`+1(s) ≤ γ`(s)(M1(µ) + ε).

Corollary A.20. For each node v, and for each 0 < x < y < 1 such that dmax < nx−ε,
τ v (ny)− τ v (nx) ≥ (1− ε) logM1(µ) n

y−x, w.h.p..

A.3 Small Neighborhoods

Using Theorem A.9, we reduced ourselves to prove Axiom 1 and the bounds in Table 8.2 for
some small values of x. We start the proof by formalizing Item 1 in Section 8.15: the main
tool is the relationship between the size γ`(s) of a neighbor of a node s and a µ-distributed
branching process δ`(s).

Theorem A.21. Let G = (V,E) be a random graph with degree distribution λ, let µ be the
corresponding residual distribution, and let s ∈ V . There are multisets ∆`(s) of nodes such
that:

1. the cardinality δ`(s) of ∆`(s) is a µ-distributed branching process;

2. if Θ`(s) = ∪`i=0∆
i(s), then

P
(
Γ`+1(s) = ∆`+1(s)

∣∣∣Θ`(s) = N `(s)
)

= O
(
ρ2
Θ`(s)

M2(λ)

n

)
.

A.3 - Small Neighborhoods 199

A.3.1 Proof for the Configuration Model
For each node v, let us fix a set of stubs av,1, av,ρv attached to v (let A the set of all stubs).

We define a procedure that generates a random pairing of stubs (and, hence, a graph), by
fixing a node s and pairing stubs “in increasing order of distance from s”, obtaining something
similar to a breadth-first search (BFS). This way, in order to understand the structure of n`(s),
we only have to consider the first ` levels of this BFS, and we may ignore how all other stubs
are paired.

The procedure keeps the following information:

• a partial function α : A→ A, that represent a partial pairing of stubs;

• for each `, a set I` of all stubs at distance ` from s;

• for each `, a set ∆`(s) of all nodes at distance ` from s.

The random part of our procedure is given by a set of random variables {ba,i}a∈A,i∈N,
whose range is the set of stubs. Informally, stub a “wants to be paired” with stub ba,0, if
available, otherwise ba,1, and so on. We assume that, for each a, A = {b ∈ A : ba,i =
b for some i} is infinite (this event occurs with probability 1).

Definition A.22. The procedure P1 starts with α1 as the empty function, ∆0
1(s) = {s},

∆`
1(s) = ∅, I0

1 = {as,1, . . . , as,ρs}, I
`
1 = ∅ for each ` > 0. Then, for increasing values of `, for

each stub a in I`1 (any order is fine):

1. it sets b as the first ba,i such that α1(ba,i) is undefined;

2. it defines α1(a) = b, α1(b) = a;

3. if b is not in I`1 for any `:

(a) it adds to I`+1
1 all stubs of V (b) except b;

(b) it adds V (b) to ∆`+1
1 (s), and it sets V (a) as the father of V (b);

4. else:

(a) it removes b from I`1.

The procedure ends when I`1 is empty, and all remaining stubs are paired uniformly at random
(so that α1 becomes a total function).

At the end, the pairing α1 is uniformly distributed, because, at each step, we choose the
“companion” of a stub uniformly among all unpaired stubs. Furthermore, if we consider the
graph obtained with the pairing α1, the set ∆`

1(s) is the set of nodes at distance ` from s.
Now, we define another similar, simplified procedure. This time, we let b be any stub,

and we do not test if b is not in I`2 for some `, and we add it anyway to I`+1
2 . This way, I`2

and ∆`(s) become multisets (that is, repetitions are allowed).

Definition A.23. The procedure P2 starts with ∆0(s) = {s}, ∆`(s) = ∅ for each d > 0,
I0

2 = {as,1, . . . , as,ρs}, I
`
2 = ∅ for each d > 0. Then, for increasing values of `, for each stub a

in I`2 (any order is fine):

1. it sets b = ba,0, and it shifts the ba,is by one;

2. it defines α2(a) = b, α2(b) = a (in case, it replaces its value);

3. in any case:

(a) it adds to I`+1
2 all stubs of V (b) except b;

(b) it adds V (b) to ∆`+1(s), and it sets V (a) as the father of V (b);

200 A - Proof of the Validity of the Axioms in Real-World Graphs

The procedure ends when I`2 is empty, or continues indefinitely.

Thanks to these simplifications, we are able to prove that, in procedure P2, the cardinality
δ`(s) of ∆`(s) is a branching process, starting from δ1(s) = ρs.

Lemma A.24. In procedure P2, the stochastic process δ`(s) is a µ-distributed branching
process, starting from δ1(s) = ρs.

Proof. First of all, we observe that δ`+1(s) = |I`2|, so it is enough to prove that I`2 is a
branching process. It is clear that I0

2s = ρs. Moreover, I`+1
2 =

∑
a∈I`2

ρV (ba,0) − 1. Let
Xi : ρV (ba,0)− 1: since the ba,0s are independent, also the Xis are independent, and P(Xi =

k) = P(ρV (bi)) = k + 1 = (k+1)nλ(k+1)∑∞
j=0 jnλ(j) = µ(k).

With this choice of δ`(s), we have proved the first part of Theorem A.21. Now, we have
to bound the probability that ∆`+1(s) 6= Γ`+1(s), assuming Θ`(s) = N `(s): the next lemma
gives a bound which is stronger than the bound in Theorem A.21, and it concludes the proof.

Lemma A.25. Let N `(s) =
⊔`
i=0 Γ`(s), Θ`(s) =

⊔`
i=0 ∆`(s), where

⊔
denotes the disjoint

union, and let n`(s) = |N `(s)|,ϑ`(s) = |Θ`(s)|. Assuming Θ`(s) = N `(s), the probability
that ∆`+1(s) 6= Γ`+1(s) is at most 1

n2ρ2
Θ`(s)

.

Proof. Let us pair the stubs in ∆`(s) one by one, and try to bound the probability that a
stub is paired “differently”. More formally, for each stub a paired by the procedures P1, P2,
we bound the probability that a is the first stub that was paired differently (so that we can
assume that the pairing of all other stubs was the same). In particular, both procedures
choose the companion b of a as ba,0, if ba,0 is not already in Θ`(s), and it is not already
paired with a stub in Θ`(s). Hence, the probability that the companion of a is the same in
the two procedures is at most the probability that ba,0 is not in Θ`(s), and it is not already
paired with a stub in Θ`(s). This probability is at most

2ρ
Θ`(s)

M . By a union bound, we can
estimate that the probability that at least a stub is paired differently in the two procedures

is at most ρ∆`(s)

2ρ
Θ`(s)

M ≤
2ρ2

Θ`(s)

M ≤
2ρ2

Θ`(s)

n .

A.3.2 Proof for Rank-1 Inhomogeneous Random Graphs

In this section, we prove Theorem A.21 in IRG. Let us fix a set V of nodes, let us fix the
expected degree ρv of each node v ∈ V , and let us fix M =

∑
v∈V ρv.

Let s be any node, and let us define a procedure that considers edges “in increasing order
of distance from s”, obtaining something similar to a BFS. This way, in order to understand
the structure of n`(s), we only have to consider the first d levels of this BFS, and we may
ignore all other edges.

We denote by {Xv,w} a random variable that has value 1 if the edge (v, w) exists, 0
otherwise. Note that the Xv,ws are independent Bernoulli random variables with success
probability f

(
ρvρw
M

)
.

Definition A.26. The procedure P1 starts with ∆0
1(s) = {s}, ∆`

1(s) = ∅. Then, for increas-
ing values of d, for each node v ∈∆`

1(s):

1. for each node w such that Xv,w = 1:

(a) if w is not in
⋃∞
i=0 ∆i

1(s):

i. add w to ∆`+1
1 (s).

The procedure ends when ∆`
1(s) is empty.

A.3 - Small Neighborhoods 201

There are two reasons why this procedure is not a branching process. The first and simplest
problem, that occurred also in the CM, is that we need to check that w is “a new node”, and
hence there is dependance between the number of children of different nodes. However, there
is also a more subtle problem: if we assume that there is no dependency, we can informally
write δ`+1

1 (s) =
∑
v∈∆`

1(s)

∑
w∈V Xv,w. To turn this into a branching process, we have to

link δ`1(s) with δ`+1
1 (s), but the previous formula also depends on which nodes are in ∆`

1(s).
If we condition on which nodes we find in ∆`

1(s), then the random variables
∑
w∈V Xv,w

are not identically distributed. So, we have to fix δ`1(s), write ∆`
1(s) = {v1, . . . ,vk}, where

vi is a random variable taking values in V , and then set δ`+1
1 (s) =

∑∆`
1(s)

i=1

∑
w∈V Xvi,w.

Now, the random variables
∑
w∈V Xvi,w are i.i.d., but the distribution of the weight of vi

(and hence the distribution of the sum) depends on γ`(s) in general, so we do not obtain
a branching process. Summarizing, the second problem is that we need somehow to choose
δ`(s) before choosing which nodes are in ∆`(s), then choose vi in a way that is independent
from δ`(s). It turns out that, if the random variables Xv,w are Poisson-distributed, actually
the two choices can be made independent. So, in the second procedure we define, we do not
only ignore already visited nodes, but we also define new Poisson random variables Y v,w such
that Y v,w = Xv,w with probability 1−O

((
ρvρw
M

)2), and we work with Y v,w.

Lemma A.27. Given a Bernoulli random variable X with success probability f(p), it is
possible to define a random variable Y = Poisson(p) such that X = Y with probability
1−O

(
p2
)
.

Proof. Let E0,E1 be the events X = 0, X = 1. Let E′0 be an event such that E′0 ⊆ E0 or
E′0 ⊇ E0, and P(E′0) = P(Poisson(p) = 0): we define Y = 0 in E′0. Similarly, let E′1 be an
event such that E′1 ⊆ E1 or E′1 ⊇ E1, E′1 ∩ E

′
0 = ∅, and P(E′1) = P(Poisson(p) = 1). We

define Y = 1 in E′1. Then, we cover the rest of the space as we wish.
We know that Y = X on E0 ∩ E′0 and on E1 ∩ E′1: let us prove that the probability

of these events is 1 − O
(
p2
)
. Indeed, the probability of E0 is 1 − f(p) = 1 − p + O(p2),

the probability of E1 is p + O(p2), the probability of E′0 is e−p = 1 − p + O(p2), and
the probability of E′1 is pe−p = p + O(p2). In any case, P((E0 ∩ E′0) ∪ (E1 ∩ E′1)) =
min(P(E0),P(E′0)) + min(P(E1),P(E′1)) = 1− p+O(p2) + p+O(p2) = 1 +O(p2).

Definition A.28. The procedure P2 starts with ∆0(s) = {s}, ∆`(s) = ∅. Then, for increas-
ing values of `, for each node v ∈∆`(s):

1. for each node w:

(a) in any case:
i. add Y v,w times w to ∆`+1(s);
ii. replace Y v,w with another Poisson

(
ρvρw
M

)
random variable, independent from

all previous events.

The procedure ends when ∆`(s) is empty, or it continues forever.

Theorem A.29. The cardinality δ`(s) of ∆`(s) is a µ-distributed branching process, starting
from ∆1(s) = deg(s).

Proof. In this procedure, we got rid of the dependencies between different zones of the branch-
ing tree. Hence, if ∆`(s) = {v1, . . . , vδ`(s)}, we formalize the previous computation by saying

that δ`+1(s) =
∑δ`(s)
i=1

∑
w∈V Y vi,w =

∑δ`(s)
i=1

∑
w∈V Poisson

(
ρviρw
M

)
=
∑δ`(s)
i=1 Poisson (ρvi).

It only remains to prove that the probability that P (ρvi = k) = kλ(k)
M1(λ) , independently

from ∆`(s). We need the following facts:

• δ`(s) =
∑
v∈δ`−1(s)

∑
w∈V Poisson

(
ρvρw
M

)
= Poisson

(
ρδ`−1(s)

)
(in the following, we

denote η = ρδ`−1(s));

202 A - Proof of the Validity of the Axioms in Real-World Graphs

• if T u is the number of times that node u appears in ∆`(s), and ϑ =
ρuρ∆`−1(s)

M ,

T u =
∑

v∈δ`−1(s)

Poisson

(
ρuρv
M

)

= Poisson

(
ρuρ∆`−1(s)

M

)
= Poisson(ϑ);

• conditioned on T u = k,

δ`(s)− k =
∑

v∈∆`−1(s)

∑
w∈V−{u}

Poisson

(
ρvρw
M

)

= Poisson

(
ρ∆`−1(s)

M − ρu
M

)
= Poisson(η − ϑ).

Using these three results, we can prove that:

P
(
T u = k|δ`(s) = h

)
=

P(δ`(s) = h|T u = k)P(T u = k)

P(δ`(s) = h)

=
P(Poisson(η − ϑ) = h− k)P(Poisson(ϑ) = k)

Poisson(η) = h

=
e−(η−ϑ) (η−ϑ)h−k

(h−k)! e−ϑ ϑ
k

k!

e−η η
h

h!

=
h!

k!(h− k)!

(
ϑ

η

)k (
1− ϑ

η

)h−k
=

(
h

k

)(
ρu
M

)k (
1− ρu

M

)h−k
Hence, the probability that u appears k times in our process is exactly the probability that
u appears k times if we select δ`(s) nodes, by picking u with probability ρu

M . Summing
over all nodes u with weight k, P (ρvi = k) = nλ(k) kM = kλ(k)

M1(λ) . This concludes the proof:

indeed, δ`+1(s) =
∑δ`(s)
i=1 Poisson(ρvi), and P (ρvi = k) = kλ(k)

M1(λ) : hence, Poisson(ρvi) is µ-
distributed.

With this choice of ∆`(s), we have proved the first part of Theorem A.21. Now, we have
to bound the probability that ∆`+1(s) 6= Γ`+1(s), assuming ∆`(s) = Γ`(s): the next lemma
gives a bound which is stronger than the bound in Theorem A.21, and it concludes the proof.

Lemma A.30. Let Θ`(s) =
⊔`
i=0 ∆i(s), where

⊔
denotes the disjoint union, and let ϑ`(s) =

|Θ`(s)|. Assuming Θ`(s) = N `(s), P
(
∆`+1(s) 6= Γ`+1(s)

)
≤ 1

n2ρ2
Θ`(s)

.

Proof. The procedures P1 and P2 behave differently only if one of the following holds:

1. Y v,w > 0 for some v ∈∆`(s), w ∈ Θ`(s);

2. Y v,w 6= Xv,w for some v ∈∆`(s), w ∈ V

A.3 - Small Neighborhoods 203

The probability that the first case occurs is
∑
v∈∆`(s)

∑
w∈Θ`(s)

ρvρw
M ≤

ρ2

Θ`(s)

n . The proba-
bility that the second case occurs is

∑
v∈∆`(s)

∑
w∈V
O

(
ρ2
vρ

2
w

M2

)
= O

(
ρ2
∆`(s)

nM2(λ)

n2M1(λ)2

)
= O

(
ρ2
∆`(s)

M2(λ)

n

)
.

A.3.3 Bounds for Branching Processes
In order to analyze the neighborhood sizes, we need to better understand the behavior of
branching processes. For this reason, we need the following lemmas.

Lemma A.31. Let Z be a µ-distributed branching process, let `, S be integers such that
S ≤ log2 `. Then, for ` tending to infinity, P

(
0 < Z` < S

)
≤ (η(1) + o(1))`.

Proof. We divide the proof in two different cases: in the first case, we condition on the
fact that Z` eventually dies (for more background on branching processes conditioned on
death/survival, we refer to [12]). Conditioned on death, the expected number of descendants
after ` steps is Z0η(1)` ≤ e−`(− log η(1)): by Markov inequality, the probability that Z` ≥ 1 is
at most E[Z`] = e−`(− log η(1)).

In the second case, let Z̃
`
be the process Z` conditioned on survival: since Z` ≥ Z̃`, it is

enough to prove the claim for Z̃. We name “bad” a step of this process in which Z̃
`+1

= Z̃
`

(note that Z̃
`+1 ≥ Z̃`): let us perform h = ` − S steps, trying to find S good steps. A step

is bad with probability η(1), and the probability that at least `− S steps are bad is

∑̀
i=`−S

(
`

i

)
η(1)i(1− η(1))`−i ≤ S`Sη(1)`−S = e−(1+o(1))`(− log η(1)).

If i is a good step, Z̃
i ≥ Z̃i−1

+ 1, otherwise Z̃
i ≥ Zi−1: hence, if there are at least S good

steps, Z̃
` ≥ S.

Lemma A.32. Let Z be a µ-distributed branching process with Z0 = ω(1), and let S > Z0.
Then, for each ` > (1 + ε)F

(
Z0 → S

)
, P
(
Z` < S

)
≤ e−Ω(Z0) + o(1)`−F(Z0→S). If µ(0) = 0,

P
(
Z` < S

)
≤ o(1)`−F(Z0→S).

Proof. We can view the branching process as the sum of Z0 different branching processes.
A standard theorem in the theory of branching processes [12, 1.A.5, Theorem 1] says that
the probability that one of this branching processes dies is zµ, where zµ is the only integer
between 0 and 1 such that zµ =

∑
i∈N µ(i)ziµ. Since the different processes are independent,

by Chernoff bound, the probability that at least Z0µ
2 processes survive is at least e−

Z0zµ
8 =

e−Ω(Z0). Hence, if Z̃ is the process Z conditioned on survival, Z̃
0

= Ω(Z0) with probability
e−Ω(Z0). Furthermore, if µ(0) = 0, Z̃

0
= Z0 by definition.

Then, let us perform ` steps, and let us estimate Z̃
`
: a step is “bad” if Z̃

i+1 ≤ Z̃iM1(µ)1−ε,

if M1(µ) is finite, or Z̃
i+1 ≤

(
Z̃
i
) 1−ε
β−1

if µ is a power law with exponent β: it is simple to

prove that a step is bad with probability at most o(1), if Z̃
` ≥ Z̃0

= Ω(Z0) tends to infinity.
If the number of good steps is at least (1 + 3ε)F

(
Z0 → S

)
:

• if M1(µ) is finite, Z̃
` ≥ Z̃0

M1(µ)(1−ε)(1+3ε)F(Z0→S) ≥ Z̃0 S
Z0ω(1) ≥ S;

204 A - Proof of the Validity of the Axioms in Real-World Graphs

• if µ is power law with 1 < β < 2,

Z̃
` ≥

(
Z̃

0
)(1−ε

β−1

)(1+3ε)F(Z0→S)

≥
(
Z̃

0
)(1

β−1

)(1+ε)F(Z0→S)

≥ e
log
(
Z̃

0
)

log(S)

log(Z0)
Ω(1)

≥ S.

Let `′ = `− (1 + 3ε)F
(
Z0 → S

)
be the maximum number of bad steps: by changing the

value of ε in the statement, we can assume that `(1 − ε) ≥ (1 + 3ε)F
(
Z0 → S

)
, and hence

`′ = ` − (1 + 3ε)F
(
Z0 → S

)
≥ ε`. We need to bind the probability that at least `′ steps

are bad: this is equal to the probability that the sum of ` Bernoulli variables with success
probability o(1) is at least `′. This probability is

∑̀
i=`′

(
`

i

)
(o(1))i(1− o(1))n−i ≤ `2`(o(1))`

′
≤ 2O(`′)(o(1))`

′
= o(1)`

′
.

Corollary A.33. Let Z be a µ-distributed branching process, and let S be an integer. If
` = ω(1), and ` > (1 + ε)F

(
Z0 → S

)
, then P

(
0 < Z(1+ε)` < S

)
≤ η(1)`−F(Z0→S).

Proof. If the process dies, by Lemma A.31 it dies before performing ` steps with probability

smaller than η(1)`. Otherwise, by Lemma A.31, Z̃
(1+ε)`−F(Z0→S) ≥ log ` = ω(1) with

probability 1− η(1)
`−F(Z0→S)

2 , if ` is big enough. Conditioned on this event, by Lemma A.32,

Z̃
(1+ε)`−F(Z0→S)+(1+2ε)F(Z0→S)+ε` ≥ S with probability at least 1 − o(1)ε`+2εF (log `→S)) ≥

1 − o(1)ε` ≥ 1 − η(1)`

2 . Summing the two probabilities, we obtain P
(

0 < Z(1+2ε)` < S
)
≤

η(1)`−F(Z0→S).

Now, let us prove upper bounds on neighborhood sizes, that correspond to lower bounds
on τ s (nx).

Lemma A.34. Let us fix ε > 0, and a µ-distributed branching process Z`. Given a value
S = ω(1), P

(
∀` < (1− ε)F

(
Z0 → S

)
,Z` < S

)
≥ 1− o(1).

Proof. Assume that M1(µ) is finite:

E
[
Z`
]
≤ E

[
Z(1−ε)F(Z0→S)

]
= Z0M1(µ)(1−ε)F(Z0→S)

= Z0M1(µ)(1−ε) logM1(µ)
S
Z0

= Z0

(
S

Z0

)1−ε

= S1−εZε0

= S

(
Z0

S

)ε
.

We conclude by Markov inequality.

A.3 - Small Neighborhoods 205

Let us consider the case where µ is a power law distribution with 1 < β < 2. By

Lemma A.7 applied with k = Zi, with probability at least
(

1
Zi

)ε
, Zi+1 <

(
Zi
) 1+ε
β−1

. Let us

assume Zi > logS for each i (increasing the number of elements, we can only increase the

number of descendants). Consequently, the probability that Z` is bigger than
(
Z0
)(1+ε

β−1

)`
is

at most
∑`
i=1

(
1
Zi

)ε
≥ `

(
1

logS

)ε
= o(1) if ` = (1−ε)F

(
Z0 → S

)
. With probability 1−o(1),

Zk <
(
Z0
)(1+ε

β−1

)`
: since ` < (1− ε′)F

(
Z0 → S

)
, the claim follows.

Now, we need to prove a corresponding bound for tail probabilities.

Lemma A.35. Let us fix ε > 0, and a µ-distributed branching process Z` such that Z0 = 1.
Given integers ` = ω(1), S such that F

(
1→ `2

)
≤ εF

(
`2 → S

)
,

P
(
∀i < (1− ε)(F

(
Z0 → S

)
+ `), 0 < Zi < S

)
≥ η(1)`.

Proof. First of all, let Z̃
`
be the corresponding branching process conditioned on survival

(Z̃
0

= 1 with probability Ω(1)). Assuming Z̃
0

= 1, the probability that Z̃
`
starts with a path

of length ` is η(1)`. Now, let us estimate P
(
Z` = k ∧ Z̃` = 1

)
≤ P

(
Z̃
`

= 1

∣∣∣∣Z` = k

)
≤ kzkµ,

where zµ is the probability that a µ-distributed branching process has an infinite number of

descendants. Hence, P(Z̃
`

= 1 ∧ Z` < k) ≥ η(1)` −
∑∞
i=k iz

i−1
µ = η(1)` − kzk−1

µ (1−zµ)+zkµ
(1−zµ)2 =

η(1)` −O
(
kzk−1
µ

)
.

For k = `2,

P(Z` < `2) ≥ P
(
Z` < `2 ∧ Z̃` = 1

)
= η(1)` −O

(
`2z`

2−1
µ

)
= η(1)`(1− o(1))

. Then, let us consider the process Z1 defined by Zk1 = Z`+k: since Z0
1 < `2, we know by

Lemma A.34 that P
(
∀k < (1− ε)F

(
`2 → S

)
+ `,Zk1 < S

)
≥ 1− o(1). Since the behavior of

Z1 is independent from the behavior of Z, and since F
(
`2 → S

)
= F (1→ S)−F

(
1→ `2

)
≥

(1− ε)F (1→ S),

P
(
∀k < (1− 2ε)F (1→ S) + `,Zk < S

)
= Ω

(
η(1)`(1− o(1))

)
= Ω

(
η(1)`

)
.

We conclude by replacing ` with (1− ε)`.

A.3.4 Bounds on Neighborhood Sizes
Now, we need to translate the results in the previous section from the realm of branching
processes to the realm of random graphs, using Theorem A.21. First of all, the following
corollary of Theorem A.21 gives us a simpler bound to decide when the branching process
approximation works.

Corollary A.36. Let G be a random graph, s ∈ G. There exists a constant cλ only depending
on λ such that, for each ` < ncλ P

(
Θ`(v) 6= N `(v)

)
= O

(
n−cλ

)
, assuming ρ∆i(s) < ncλ for

each i < `. The same is true if we condition on the size of ∆`(v).

206 A - Proof of the Validity of the Axioms in Real-World Graphs

Proof. By Theorem A.21,

P
(
Θ`(v) 6= N `(v)

)
=
∑̀
i=1

P
(
Θi(v) 6= N i(v) ∧Θi−1(v) = N i−1(v)

)
=
∑̀
i=1

P
(
∆i(v) 6= Γi(v) ∧Θi−1(v) = N i−1(v)

)
≤
∑̀
i=1

P
(
∆i(v) 6= Γi(v)

∣∣∣Θi−1(v) = N i−1(v)
)

= O

∑̀
i=1

ρ2
Θi(s)

M2(λ)

n

= O

(
`3n2cλ

M2(λ)

n

)
= O

(
M2(λ)

n1−5cλ

)
.

We conclude because M2(λ) = O(1) if λ has finite variance, M2(λ) = n3−β if λ is power
law with exponent 2 < β < 3: this means that it is enough to choose cλ such that
nmax(0,3−β)−1+5cλ < n−cλ , that is, cλ <

1−max(0,3−β)
6 .

From this corollary, it is easy to translate Lemmas A.34 and A.35 in terms of random
graphs, at least for values of x smaller than cλ.

Corollary A.37. Let G = (V,E) be a random graph, let s ∈ V be in the giant component, and
let x < cλ be a fixed, small enough constant. Then, P

(
τ s (nx) > (1− ε)F

(
deg(s)→ nx

))
≥

1 − o(1). Furthermore, if s has degree 1, P
(
τ s (nx) > (1− ε)(F (1→ nx) + α)

)
≥ η(1)α for

α = ω(1).

Proof. By Corollary A.36, assuming x < cλ, ∆`(s) = γ`(s) with probability 1 − o(1); fur-
thermore, by Lemma A.34, ∆`(s) < nx for each ` < (1− ε)F

(
deg(s)→ nx

)
with probability

1− o(1).
Similarly, by Lemma A.35, P(∀i < (1 − ε)(F

(
deg(s)→ nx

)
+ α), δi(s) < nx) ≥ η(1)α

, and since γi(s) = δi(s) with probability 1 − o(1) for each i < τ s (nx), we conclude that
P
(
τ s (nx) > (1− ε)(F (1→ nx) + α)

)
≥ (1− o(1))η(1)α.

The translation of the lower bounds is more complicated: the main problem is that, when
Θ`(s) 6= N `(s), we know very little on the size of Θ`(s). In order to deal also with this case,
as soon as Θ`(s) 6= N `(s), we remove the whole N `(s) from the graph, and we consider the
neighborhood growth of a new node s′ which was in Γ`+1(s) in the previous graph. We prove
that the behavior of the neighbors of s′ in the new graph is “very similar” to the behavior of
the neighbors of s in the old graph: basically, the only difference is that we re-start from size
1 instead of δ`(s). However, this difference is compensated by the fact that the probability
that Θ`(s) 6= N `(s) is small. In other words, it is more likely that δ`(s) remains 1 for ` steps,
rather than that Θ`(s) 6= N `(s).

Let us formalize this intuitive proof. First of all, we need to understand what happens
when we remove a neighbor from the graph.

Lemma A.38. Let G = (V,E) be a random graph, let s ∈ V , let ` ∈ N, and let us assume
that ρN`(s) < n1−ε. Then, conditioned on the structure of N `(s), the subgraph induced by
V −N `(s) is again a random graph, and the values of η(1), M1(µ) change by O

(
1
nε

)
.

A.3 - Small Neighborhoods 207

Proof for the CM. Let us consider the graph obtained from G by removing all the stubs in
N `(s), and all the stubs paired with stubs in N `(s). The pairing on the remaining stubs is
clearly a random pairing, and the number of stubs removed is at most n1−ε, and if λ′ is the
degree distribution of G−N `(s),

∑
i∈N |λ(i)− λ′(i)| < 1

nε . From this condition, it is easy to
prove that η(1) and M1(µ) cannot change by more than O(nε), if n is big enough.

Proof for IRG. In this case, let us removeN `(s), and let us consider the probability that two

nodes outside N `(s) are connected: P(E(v, w)) = f
(
ρvρw
M

)
= f

(
ρvρw

M−ρ
N`(s)

M−ρ
N`(s)

M

)
. Let

ρ′v = ρv

√
M−ρ

N`(s)

M : clearly, ρ′v = ρv(1+o(1)), and G−N `(s) is a random graph with weights
ρ′v. Furthermore, if λ′ is the degree distribution of G −N `(s), it is clear that the required
conditions are satisfied, because the dependency between λ, µ, and η is continuous.

Using this lemma, we may translate Corollary A.33 to the context of random graphs.

Lemma A.39. Let G be a graph with a power law degree distribution λ with exponent β,
let µ, η be as before. There exists a positive constant cλ only depending on λ such that,
for each `, S such that ` = O(log n), nε < S < ncλ , P

(
∀`′ < `(1 + ε), 0 < γ`

′
(s) < S

)
=

O
(
η(1)`−F(Z0→S)

)
.

Proof. First of all, we may assume that ` − F
(
Z0 → S

)
= ω(1), otherwise the probabilistic

bound is trivial. By Corollary A.36, the three following cases are possible:

• N `(s) = Θ`(s);

• ρΓi(s) ≥ 4Snε for some i < `;

• none of the two cases above applies.

In the first case, the result follows directly by Corollary A.33. In the second case, let i be the
smallest integer such that ρΓi(s) ≥ 4Snε: in IRG, by Lemma A.16, Γi+1(s) ≥ (1 − ε)ρΓi(s)
w.h.p., and τ s (nx) < i + 1 < `. In the CM, δi−1(s) + δi(s) ≥ 4Snε, and as a consequence
either δi−1(s) ≥ 2Snε or δi(s) ≥ 2Snε: by Lemma A.11, τ s (nx) < i+ 1 < `.

It only remains to solve the third case. The probability that this case occurs is O
(
n−cλ

)
by Corollary A.36. However, n−cλ is not sufficient for our purposes, because η(1)`−F(Z0→S)

can be much smaller. Let us consider the following process: we explore neighbors of v of
increasing size, until we hit a neighbor i satisfying ∆i(s) 6= Γi(s). If ∆i(s) 6= Γi(s), either all
nodes in Γi(s) have all edges directed inside Γi(s), and Γi+1(s) is empty, or there is at least
a node v with an edge directed outside Γi(s). In the former case, we know that γi+1(s) = 0,
and the conclusion follows. In the latter case, we remove Γi(s) from the graph: the size of
Γi+j(s) is at least the size of Γj(v′), where v′ is the neighbor of v outside Γi(s). Furthermore,
by Lemma A.38, G − Γi(s) is a random graph, with degree distribution very similar to the
degree distribution of G: indeed, i < ` = O(log n), and the volume of nodes removed is at
most S log n ≤ n1−ε. Moreover, the size of the neighbors of v′ is independent from all previous
events, because all we knew about v′ has been removed from the graph. Then, we can restart
the exploration from v′, in the new graph: if ∆j(v′) 6= Γj(v′), we proceed again as before.

More formally, let us fix `, and let P (`, h) be the probability that Γ`(s) < S, and that
∆j(s) 6= Γj(s) happened h times in the aforementioned process. We prove by induction
on h that P (`, h) ≤ e−(1+ε)(`−F(Z0→S))(− log η(1)). The base case follows by our initial ar-
gument. For inductive step, let `′ be the smallest integer such that Γ`

′
(s) 6= ∆`′(s): note

that P
(
`′ = i

)
≤ P

(
`′ < `

)
≤ n−k

` ≤ n
−k+ε, and that, by inductive hypothesis, P (`−`′, h) ≤

e−(− log η(1)+ε)(`−`′) if `−`′ ≥ logS, and consequently P (`−`′, h) ≤ e−(− log η(1)+ε)(`−`′−logS).

P(`, h+ 1) ≤
∑̀
i=0

P(`′ = i)P (i, 0)P (`− i, S, h)

208 A - Proof of the Validity of the Axioms in Real-World Graphs

≤
∑̀
i=0

n−k+εe−(− log η(1)+ε)(i−F(Z0→S))e
−(− log η(1)+ε)

(
`−i−logS−F(Z0→S)

)

≤ n−k+εe−(− log η(1)+ε)(`−2F(Z0→S)−logS)

≤ e−(− log η(1)+ε)(`−F(Z0→S))e−(k−ε) logn+F(Z0→S)+logS .

The inductive step is proved, if e−(k−ε) logn+F(Z0→S)+logS < 1, that is, (min(1, β − 2) −
2 logn S − 2ε) log n > F

(
Z0 → S

)
+ logS, which is implied by (min(1, β − 2) − 2ε) log n >

logM1(µ) S+ 3 logS, that is, S
(

3 + 1
logM1(µ)

)
< nmin(1,β−2)−2ε. The lemma follows by choos-

ing the right value of cλ.

By combining this lemma with Theorem A.9, we have proved the following theorem.

Theorem A.40. Let G = (V,E) be a random graph, let λ be the degree distribution of G, let
µ, η be as before, and let 0 < x < 1. Then, if s ∈ V , deg(v) = d, the following hold:

• τ s (nx) ≥ (1− ε)F (d→ nx) a.a.s.;

• P
(
τ s (nx) ≥ (1 + ε)

(
α+ F (d→ nx)

))
= O

(
η(1)α

)
;

• P
(
τ s (nx) ≥ (1− ε)

(
α+ F (d→ nx)

))
= Ω

(
η(1)α

)
.

A.4 The Case 1 < β < 2

In the case 1 < β < 2, the branching process approximation does not work: indeed, the
distribution µ is not even defined, because M1(λ) is infinite. For this reason, we need a
different analysis, which looks similar to the “big neighbors” analysis in the case β > 2. We
prove that the graph which is generated from this distribution has a very dense core, which is
made by all nodes whose degree is big enough: almost all the other nodes are either connected
to the core, or isolated, so that the average distance between two nodes is 2 or 3. There are
also some paths of length O(1) leaving the core, whose length depends on the value β of the
distribution.

In our analysis, in order to avoid pathological cases, we have to assume that ρv < (1−ε)M
for each v in the Chung-Lu model (otherwise, all nodes with weight at least 1 + ε would be
connected to the maximum degree node). Note that this event holds with probability O(1).

Before entering the details of our analysis, we need some probabilistic lemmas that describe
the relationship between the weight and the degree of a node.

Lemma A.41 ([158], Equation A.1.7). For each ε > 0, there exists Nε and Cε not depending
on n such that the following hold a.a.s.:

• M = (1 + ε)
∑Nε
i=1 ρi;

• ρ1 ≤ CερNε .

Corollary A.42. The node with maximum weight has weight Θ
(
n

1
β−1

)
a.a.s., and M =

Θ
(
n

1
β−1

)
.

In this regime, we still need the definitions of ∆`(s) as in the case β > 2, but in this
case we will not prove that γ`+1(s) is close to δ`(s) w.h.p.: for example, let s be a node
with weight M = Θ

(
n

1
β−1

)
: clearly, γ`+1(s) cannot be M , which is bigger than n. Indeed,

we prove that γ`+1(s) is close to ∆`(s)β−1: this way, the number of neighbors of a node s
with weight Θ(M) is close to n, which makes sense. In order to prove this result, we need a
technical lemma on the volume of some nodes.

A.4 - The Case 1 < β < 2 209

Lemma A.43. Given a random graph with a degree distribution λ which is power law with
exponent 1 < β < 2,

∑
ρw≤d ρw = O

(
nd2−β).

Proof. This result is a simple application of Abel’s trick to estimate a sum:
∑
ρw≤d ρw =∑d

i=1 i(|{w : ρw ≥ i}| − |{w : ρw ≥ i+ 1}|) =
∑d
i=1 i|{w : ρw ≥ i}| −

∑d+1
i=2 |(i− 1){w : ρw ≥

i}|) ≤
∑d
i=1 |{w : ρw ≥ i}| =

∑d
i=1O

(
n

iβ−1

)
= O

(
n
∫ d

1
2
x1−βdx

)
= O

(
nd2−β).

Using this lemma, we can formally prove the relation between δ`(s) and γ`+1(s).

Lemma A.44. For each ε > 0, and for each ` such that n`(s) < δ`(s)β−1n−ε, and δ`(s) >
nε, γ`+1(s) = Θ

(
δ`(s)β−1

)
.

Proof. Let us fix ε > 0, and let us prove that δ`+1(v) ≥ γ`(v)β−1. Let us consider the set W

made by all nodes with weight at least M
δ`(s)

, not in N `(s): there are Θ

(
n
(
δ`(s)
M

)β−1
)

=

Θ
(
δ`(s)β−1

)
such nodes, because n`(s) < δ`(s)β−1. We want to apply concentration in-

equalities to prove that there are O(|W |) nodes in W that are in ∆`+1(s). First of all, let us
assume without loss of generality that δ`(s) > nε, otherwise this inequality is empty. In the
Configuration Model, let us sort the nodes in W , obtaining w1, . . . , wk, and let us consider a
procedure where we pair stubs of wi until we find a connection to ∆`(s). Since, at each step,
the number of stubs in ∆`(s) that are not paired with a node in W is O(∆`(s)), and wi has
Mnε

∆`(s)
stubs, at each step there is probability O(1) that wi is connected to a node in Γ`(s).

A simple application of Azuma’s inequality lets us conclude. In IRG, the probability that a
node w ∈ W is linked to a node in Γ`+1(s) is at least

∑
v∈Γ`(s) f

(
ρv
δ`(s)

)
= O(1): a simple

application of the multiplicative form of Chernoff bound (Lemma A.1) lets us conclude.
For an upper bound, we can divide the nodes in Γ`+1(s) in two sets W,W ′, where W is

the set of nodes with weight at most Mρv ,W
′ = WC . ForW ′, the number of nodes with weight

at least M
ρv

is O
(
n
(
ρv
M

)β−1
)

= O
(
ρβ−1
v

)
, and hence the number of neighbors of v in W ′ is

at most ρβ−1
v . For the set W , we have to consider separately IRG and the CM. In the first

case, let Xw = 1 if w ∈ Γ`+1(s), 0 otherwise: we want to estimate
∑
w∈W Xw. Through the

previous lemma, the expected value of this sum is:

E

∑
w∈W

Xw

 =
∑
w∈W

∑
v∈Γ`(s)

f

(
ρvρw
M

)
=
∑
w∈W

∑
v∈Γ`(s)

(1 + o(1))
ρvρw
M

= (1 + o(1))
δ`(s)

M

∑
w∈W

ρw

= O

δ`(s)
M

n

(
M

δ`(s)

)2−β

≤ δ`(s)β−1.

Since these random variables are independent, we can apply Chernoff bound to prove that∑
w∈W Xw ≤ E

[∑
w∈W Xw

]
.

In the CM, let a1, . . . , aδ`(s) be the stubs in ∆`(s). By the previous lemma, the number of

stubs inW is
∑
w∈W ρw = O

(
nM2−β

δ`(s)2−β

)
= O

(
M

δ`(s)2−β

)
. The number of nodes inW ∩γ`+1(s)

is at most the number of stubs in δ`(s) which are paired with stubs in W : let us pair stubs

210 A - Proof of the Validity of the Axioms in Real-World Graphs

in δ`(s) in order: at each step, the probability that we hit a stub in W is O
(

1
M

M
δ`(s)2−β

)
,

because there are still O(M) stubs outside W . A simple application of Azuma’s inequality
proves that γ`+1(s) ≤ O

(
δ`(s)

δ`(s)2−β

)
= O

(
δ`(s)β−1

)
.

Corollary A.45. For each node s with degree at least nε, the number of neighbors of s is
Θ
(
ρβ−1
s

)
.

Proof. Apply the previous lemma with ` = 0.

Using the last two results, we can transform statements dealing with the number of nodes
to statements dealing with weights. For this reason, we can analyze the weights, which are
much simpler.

Lemma A.46. The probability that a node v with weight ρv is connected to a node with
weight at most ρ is O

(
nρvρ

2−β

M

)
.

Proof. First, we can assume that ρv � M
nρ2−β , otherwise the thesis of the lemma is trivially

true.
In the CM, let us pair all the stubs of v in order. At each step, the probability that we hit

a stub whose node has weight at most ρ is O
(

1
M

∑
w:ρw<ρ

ρw

)
, because we have paired at

most ρv �M nodes. Summing over all stubs of v, we obtain ρv
M

∑
w:ρw<ρ

ρw = O
(
nρvρ

2−β

M

)
by Lemma A.43.

In IRG, this probability is
∑
w:ρw<ρ

f
(
ρvρw
M

)
= (1 + o(1))ρvM

∑
w:ρw<ρ

ρw = O
(
nρvρ

2−β

M

)
by Lemma A.43.

Lemma A.47. A node v with degree at least log2 n is w.h.p. connected to all nodes with
weight at least εM .

Proof. In IRG, this lemma follows from our assumptions on f . In the CM, let v be a node
with degree at least log2 n, let w be a node with degree at least εM , and let a1, . . . , ak be the
stubs of v. Let us pair the stubs ai in order: at each step, the probability that ai is connected
to a stub in w is at least ε. Hence, by Azuma’s inequality (Lemma A.5), at least one of the
stubs ai is connected to a stub in W .

Lemma A.48. For each node s with degree at most n1−ε, P
(
τ s
(
n1−ε) = 2

)
= 1− 1

nO(ε) .

Proof. Since deg(s) < n1−ε, τ s
(
n1−ε) ≥ 2. For the lower bound, if s is connected to a node

with weight M1− ε2 , then τ s
(
n1−ε) ≤ 2 by Corollary A.45. By Lemma A.47, this happens

w.h.p. if deg(v) > log2 n: for this reason, the only remaining case is when deg(v) < log2 n,
and v is not connected to any node with weight n1− ε2 . In this case, we prove that v is likely
to be isolated: indeed, let us bind the probability that v is connected to a node w with
degree at most n1− ε2 (hence, with weight at most M1−ε′). By Lemma A.46, this probability

is O

(
nρvM

(2−β)(1−ε′)
M

)
= O

(
n log nM1−βM−ε

′(2−β)
)

= O
(
n−ε

′′
)
. This means that, by

Markov inequality, the number of nodes that are not isolated and not connected to a node
with degree n1−ε is at most n1−ε′′ , a.a.s.. We conclude that T

(
d→ n1−ε) ≥ 2+O

(
n−ε

′′
)
.

Let us now estimate the deviations from this probability.

Lemma A.49. For each node s, P
(
τ s (nx) = `

)
≤ n1− 2−β

β−1 (`−2−x)+o(1).

A.4 - The Case 1 < β < 2 211

Proof. If deg(s) > log2 n, τ s (nx) ≤ 2 w.h.p.. Otherwise, since all nodes with degree at least
log2 n are connected to the node with maximum degree, τ s (nx) = ` implies that all nodes at
distance at most `− 3 from s have degree at most log2 n. Hence, γi(v) ≤ log2` n = no(1) for
each i ≤ `− 3. This means that, for each i ≤ `− 4, there is a node in γi(v) with weight no(1)

connected to another node with weight no(1). The probability that this happens is at most
n−

2−β
β−1 +o(1), because there are no(1) such nodes, and we may apply Lemma A.46 to each of

them.
Since these events are independent, if we multiply the probabilities for each i be-

tween 0 and ` − 4, the probability becomes n−(`−3) 2−β
β−1 +o(1). Finally, all nodes in γ`−3(s)

should be connected to nodes with degree at most nx, and hence to nodes with weight
at most O

(
n

x
β−1

)
. Again by Lemma A.46, the probability that this event happens is

no(1) nno(1)n
x(2−β)
β−1

M = n1− 1
β−1 +

x(2−β)
β−1 +o(1) = n−

2−β
β−1 (1−x)+o(1). Overall, the probability that

τ s (nx) = ` is at most n−
2−β
β−1 (`−2−x)+o(1).

Lemma A.50. For each node s with degree 1,

P
(
τ s (nx) = `

)
≥ n1− 2−β

β−1 (`−2−x)+o(1).

Proof. Let s be a node of weight 1: we want to estimate the probability that s is connected to
a node of weight 2 in the CM, with weight 1 in IRG. This probability is 2nλ(2)

M = n−
2−β
β−1 +o(1) in

the CM, 1−
(

1− f
(

1
M

))n
= 1−

(
1− 1+o(1)

M

)n
= 1− e

−n(1+o(1))
M = n(1+o(1))

M = n−
2−β
β−1 +o(1).

Assuming this event holds, the probability that s is not connected to any other node is
1 in the CM, and it is O(1) in IRG, assuming the maximum weight is smaller than (1 −
ε)M . This means that, with probability O(1)n−

2−β
β−1 +o(1) = n−

2−β
β−1 +o(1), s is connected to a

single node s1 with weight 1 in IRG, 2 in the CM. We may re-iterate the process with s1,
finding a new node s2, and so on, for ` − 3 steps. The probability that we find a path of
length `− 3 is n−(`−3) 2−β

β−1 +o(1). Then, let us estimate the probability that s`−3 is connected
only to a node with degree at most nx. In the CM, the number of stubs of nodes with
degree at most nx is

∑
ρw<n

x
β−1

ρw = O
(
n1+x 2−β

β−1

)
, and hence the probability that we

hit a stub of a node with degree at most nx is O
(
n

1+x
2−β
β−1

M

)
= n−(1−x) 2−β

β−1 +o(1). In IRG,

the probability is 1 −
∏
ρw<n

x+o(1)
β−1

(
1− f

(
ρw
M

))
= 1 −

∏
ρw<n

x+o(1)
β−1

(
1− ρw(1+o(1))

M

)
= 1 −

∏
ρw<n

x+o(1)
β−1

e−
ρw(1+o(1))

M = 1− e−n
1+x

2−β
β−1

+o(1)

M = 1− e−n
−(1−x)

2−β
β−1

+o(1)

= n−(1−x) 2−β
β−1 +o(1).

In both cases, we proved that the probability of having a path of length ` − 2 followed
by a node with degree at most nx is at most n−(`−2−x) 2−β

β−1 +o(1). It is clear that in this case
τ s (nx) ≥ `.

Summarizing the results obtained in this section, we have proved the following theorem.

Theorem A.51. Let G = (V,E) be a random graph with degree distribution λ, which is
power law with 1 < β < 2. Then, if s ∈ V , deg(v) = d, for each x between 0 and 1, the
following hold:

• τ s (nx) ≤ 2 a.a.s.;

• P
(
τ s (nx) ≥ α+ 2

)
≤ ncα−x+o(1);

• P
(
τ s (nx) ≥ α+ 2

)
≥ ncα+1−x+o(1).

212 A - Proof of the Validity of the Axioms in Real-World Graphs

A.5 Applying the Probabilistic Bounds

Until now, we have proved bounds on the probability that τ s (nx) has certain values. In this
section, we turn these probabilistic bounds into bounds on the number of nodes that satisfy
a given constraint, concluding the proof of the main theorems, and of the values in Table 8.2.
The main tool used in the following lemma.

Lemma A.52. For each node t, let E`(t) be an event that only depends on the structure of
N `(t). Then, for each set T ⊆ V , 0 < x < 1, if E(t) is the event ∀` < τ t (nx)− 1,E`(t)

|{t ∈ T : E(t)}| =
(
1± o(1)

)∑
t∈T

P
(
E(t)

∣∣t ∈ T)± |T | M2x

M1−o(1)
.

If we condition on the structure of a neighbor with volume at most ny, a very similar result
holds:

|{t ∈ T : E(t)}| =
(
1± o(1)

)∑
t∈T

P
(
E(t)

∣∣t ∈ T)± |T |(Mx+y +M2x

M1−o(1)

)
.

Proof. First of all, we assume without loss of generality that |T | < n2ε, by dividing T in
several sets if this is not the case. Let us sort the nodes in T , obtaining t1, . . . , tk, let Xi be
1 if E(ti) holds, 0 otherwise, and let us assume that we know the structure of Nτ tj (nx)−2(tj)
for each j < i (in other words, let Ai be the σ-field generated by all possible structures of
Nτ tj (nx)−2(tj) for each j < i, and of the neighbor with volume at most ny). Then, the
probability that Nτ ti (n

x)−2(ti) touches Nτ tj (nx)−2(tj) is at most∑
`,`′<O(logn)

P
(
` ≤ τ tj (nx)− 2 ∧ `′ ≤ τ ti (nx)− 2 ∧ Γ`(ti) ∩ Γ`

′
(tj) 6= ∅

)
≤

∑
`,`′<O(logn)

P
(
Γ`(ti) ∩ Γ`

′
(tj) 6= ∅

∣∣∣` ≤ τ tj (nx)− 2 ∧ `′ ≤ τ ti (nx)− 2
)

≤ O(log2 n)
M2x +Mx+y

M1−ε ,

because γτ ti (n
x)−1(ti) < nx for each i, and consequently δτ ti (n

x)−2(ti) < Mx+ε w.h.p., by
Lemmas A.11, A.16 and A.44. As a consequence pi = P

(
E(ti)

)
− M2x+2ε

M ≤ P(E(ti)|Ai) ≤
P
(
E(ti)

)
+ M2x+2ε

M = qi.
We have proved that Sk =

∑k
i=1Xi − pi,S

′
k =

∑k
i=1 qi − Xi are submartin-

gales. If p =
∑k
i=1 pi, by the strengthened version of Azuma’s inequality (Lemma A.6),

P (Sk > εkp) ≤ e
−O

(
ε2k2p2

kp+εkp

)
≤ e−ε

3kp ≤ e−ε
3nε . This proves that |{t ∈ T : E(t)}| ≥

(1− ε)
∑
t∈V P

(
E`(t)

∣∣` < τ t (nx)− 1, t ∈ T
)

+ |T |M
2x+Mx+y

M1−ε , w.h.p.. The other inequality
follows from a very similar argument applied to S′

k.

Corollary A.53. Let p = P(τ t (nx)) ≤ `|deg(t) = d), and let us assume that p > M2x+ε−1.
Then, (1− ε)p|T | ≤ |{t ∈ T : τ s (nx)) ≤ `} ≤ (1 + ε)p|T |.

Proof. We apply Lemma A.52 with T as the set of nodes of degree d, E`(t) as the event that
` ≤ 2+(1−ε)F (k → nx). We obtain that |{t ∈ T : τ s (ny) ≤ (1−ε)F (d→ nx)}| = |{t ∈ T :

∀` < τ s (ny)−1, ` ≤ (1−ε)F (d→ nx)−2}| = (1±o(1))p|T |±|T |M
2x+o(1)

M = (1±o(1))p|T |.

A.6 Proof of Theorem 8.32

Proof that Axiom 1 holds. For the first statement, if deg(s) = nα with α > ε, in the case
β > 2, we know by Theorem A.9 that τ s (ny) ≤ τ s (nα) + (1 + ε)F (nα → ny) ≤ 1 + (1 +

A.6 - Proof of Theorem 8.32 213

ε)T (nα → ny) ≤ (1 + 2ε)T (nα → ny). In the case 1 < β < 2, we know by A.47 that s
is connected to the maximum degree node, which has degree Θ(n): hence, τ s (nx) ≤ 2 =
T (nα → nx).

For the other statements, if x is small enough, this result follows by Corollary A.53
and Theorems A.40 and A.51. For bigger values of x, we can extend it with Theorem A.9.

Proof that Axiom 2 holds, CM. Let us recall the definition of ∆`(s) as the set of stubs
of nodes at distance ` from s, not paired with stubs at distance ` − 1. We know that

∆`(s) ≥ Γ`+1(s)
max

(
1

β−1

)
by Lemmas A.11 and A.44. For `s = τ s (nx)− 1, `t = τ t (ny)− 1,

δ`s(s) ≥ γ`s+1(s)
max

(
1, 1
β−1

)
n−ε ≥ n

xmax
(

1, 1
β−1

)
−ε ≥ Mx−ε, and similarly δ`t(t) ≥ My−ε.

Consequently, ∆`s(s)∆`t(t) ≥Mx+y−2ε ≥M1+ε′ . We claim that, w.h.p., a stub in ∆`s(s) is
paired with a stub in ∆`t(t), and consequently dist(s, t) ≤ `s + `t + 1 = τ s (nx) + τ t (ny)− 1,
proving the theorem. To prove this claim, let us first observe that ifN `s(s) andN `t(t) touch
each other, then dist(s, t) ≤ `s+`t < τ s (nx)+τ t (ny)−1, and the result follows. Otherwise, let
us assume without loss of generality that x < y (if x > y, we swap the roles of s and t, if x = y,
we can decrease x by a small amount, and we change the value of ε). Let us consider theMx−ε

unpaired stubs a1, . . . , aMx−ε in ∆`t(s), and let us pair these stubs one by one, by defining
Xi = 1 if the stub is paired to a stub in ∆`t(t), 0 otherwise. Note that, conditioned on all pos-
sible pairings of aj with j < i, E[Xi] ≥ My−ε−Mx−ε

M ≥ My−2ε

M . Hence, Sk = kMy−2ε

M −
∑k
i=1Xi

is a supermartingale, and Var [Xi] ≤ E
[
X2
i

]
≤ E [Xi] ≤ My−2ε

M . By a strengthened version of

Azuma’s inequality (Lemma A.6), P
(∑k

i=1Xi = 0
)
≤ P

(
kM

y−2ε

M −
∑k
i=1Xi < εiM

y−2ε

M

)
≤

e

−ε2k2M2(y−2ε)

Ω(kMy−2εM) = e
−Ω
(
ε2kMy−2ε

M

)
. For k = Mx−ε, we have proved that, w.h.p., the number

of stubs in ∆`s(s) that are paired with stubs in ∆`t(t) is at least (1 − ε)M
x+y−3ε

M ≥ 1, and
consequently dist(s, t) ≤ `s + `t < τ s (nx) + τ t (ny)− 1.

Proof that Axiom 2 holds, IRG. As in Appendix A.2, let ∆`(s) be the volume of Γ`(s), and
let `s = τ s (nx) − 1, `t = τ t (ny) − 1. If β > 2, by Lemma A.16, δ`s(s) > (1 − ε)Mx, and
δ`t(t) > (1 − ε)My. The probability that a node v ∈ Γ`s(s) is not connected to any node
w ∈ Γ`t(t) is

∏
w∈Γ`t (t) 1− f

(
ρvρw
M

)
. We have to consider different cases separately.

• If
∑
v∈Γ`s (s),ρv<

M
My

ρv >
Mnε

My , by removing some nodes we can assume that all nodes
in Γ`s(s) have weight at most M

My . In this case, the number of nodes v ∈ Γ`s(s)

having a connection to Γ`t(t) is
∑
v∈Γ`s (s)Xv, where the Xvs are independent random

variables with success probability 1−
∏
w∈Γ`t (t) 1−f

(
ρvρw
M

)
= 1−

∏
w∈Γ`t (t) e

−Ω(ρvρwM) =

1 − e
−Ω
(
ρvM

y

M

)
= Ω

(
ρvM

y

M

)
. We conclude by a straightforward application of the

multiplicative form of Chernoff bound (Lemma A.1).

• If we do not fall into the previous case,
∑
v∈Γ`s (s),ρv<

M
My

ρv <
Mnε

My , and by slightly
decreasing x we can assume without loss of generality that all nodes in Γ`s(s) have
weight at least M

My . By changing the roles of s and t, we can also assume that all nodes
in Γ`t(t) have weight at least M

Mx . Assuming this, we still have to divide the analysis
in two possible cases.

– if γ`s(s)γ`t(t) > nε, the number of connections between Γ`s(s) and Γ`t(t) is at
least

∑
v∈Γ`s (s),w∈Γ`t (t)Xv,w, where the Xv,ws are independent random variables

with success probability f
(
ρvρw
M

)
= Θ(1). Since the sum is made by at least nε

terms, we can conclude by a straightforward application of the multiplicative form
of Chernoff bound (Lemma A.1).

214 A - Proof of the Validity of the Axioms in Real-World Graphs

– If γ`s(s)γ`t(t) < nε, there is at least a node v ∈ Γ`s(s) with weight nx−ε, and a
node w ∈ Γ`t(t) with weight ny−ε. Then, P(E(v, w)) = f

(
ρvρw
M

)
= f

(
Mx+y−2ε

M

)
≥

f (Mε) ≥ 1−o(Mεk) for each k (we recall that, in our assumptions, f(x) = 1−o(xk)
for each k, if x tends to infinity). We conclude because this means that v is
connected to w w.h.p..

Proof that Axiom 3 holds. Let us fix x ≥ 1
2 , let s be any node, and let us fix an integer `s

such that δ`s(s) < Mx+ε.
Let us consider a node t ∈ W , and let `t be an integer such that δ`t(t) < My+ε:

if E
(
δ`s(s), δ`t(t)

)
is the event that there is an edge between ∆`s(s) and ∆`t(t),

P
(
E
(
δ`s(s), δ`t(t)

)∣∣∣∣δ`s(s) < Mx+ε, δ`(t) < My+ε

)
< Mx+y+3ε

M . Hence,

P

(
∃`s, `t : δ`s(s) < Mx+ε ∧ δ`t(t) < My+ε ∧E

(
δ`s(s), δ`t(t)

))

≤
O(logn)∑
`s,`t=0

P
(
δ`s(s) < Mx+ε ∧ δ`t(t) < My+ε ∧E

(
δ`s(s), δ`t(t)

))

≤
O(logn)∑
`s,`t=0

P
(
E
(
δ`s(s), δ`t(t)

)∣∣∣∣δ`s(s) < Mx+ε, δ`t(t) < My+ε

)

≤ Mx+y+4ε

M
.

This means that, with probability 1 − Mx+y+4ε

M , dist(s, t) ≥ `s + `t + 2, where `s (resp., `t)
is the maximum integer such that δ`s(s) < Mx+ε (resp., δ`t(t) < My+ε). By definition of
`s, `t, δ`s+1(s) > nx+ε, and by Lemmas A.11, A.16 and A.44, γ`s+2(s) > nx, meaning that
τ s (nx) ≤ `s+2, w.h.p.. Since the same holds for t, dist(s, t) ≥ `s+`t+2 ≥ τ s (nx)+τ t (ny)−2,
with probability 1− Mx+y+4ε

M .
We have to translate this probabilistic result into a result on the number of nodes t

such that dist(s, t) < τ s (nx) + τ t (ny) − 2. To this purpose, we apply Lemma A.52, by
fixing s, conditioning on Nτs(n

x)−2(s) (which has volume at most nx), and defining E(t) as
dist(s, t) < τ s (nx) + τ t (ny)− 2. Since y < x, and x+ y < 1, |{t ∈ T : dist(s, t) < τ s (nx)} ≤
(1 + o(1))|T |M

x+y+4ε−1

M ± |T |M
x+y+M2x

M1−o(1) ≤ |T |Mx+y+5ε−1.

Proof that Axiom 4 holds. For values of d bigger than nε, by Lemmas A.11, A.16 and A.44,

a node with weight d has degree Θ

(
dmax(1,n

1
β−1)

)
. Hence, since the number of nodes with

weight at least d is Θ
(

n
dβ−1

)
, the conclusion follows.

For smaller values of d, a node with weight d has degree bigger than 1
2d

max
(

1, 1
β−1

)
with

probability p = O(1): through simple concentration inequalities it is possible to prove that the

degree number of nodes with degree at least 1
2d

max
(

1, 1
β−1

)
isO(|{v ∈ V : ρv ≥ d}|) = O(n

dβ−1).

By defining d′ = d
max

(
1, 1
β−1

)
, we conclude.

A.7 - Other Results 215

A.7 Other Results

Before concluding, we need to prove some lemmas that are used in some probabilistic analyses,
even if they do not follow from the main theorems.

Lemma A.54. Assume that β > 2, and let T be the set of nodes with degree at least nx.
Then, dist(s, T) := mint∈T dist(s, t) ≤ τ s

(
nx(β−2)+ε

)
+ 1 w.h.p..

Proof. By removing some nodes from T , we can redefine T as the set of nodes with weight
at least nx+ε (because each node with weight at least nx+ε has degree at least nx by
Lemmas A.11, A.16 and A.44). After this modification, the number of nodes in T is
Θ
(

n
n(x+ε)(β−1)

)
= Θ

(
n1−(x+ε)(β−1)

)
, and the volume of T is Ω

(
n1−(x+ε)(β−1)+x+ε

)
=

Ω
(
n1−(x+ε)(β−2)

)
. We recall the definition of δ`(s): in the CM, it is the number of stubs at

distance ` from s, not paired with stubs at distance `−1, while in IRG it is the volume of the set
of nodes at distance ` from s. By Lemmas A.11, A.16 and A.44, if ` = τ s

(
n(x+3ε)(β−2)

)
− 1,

δ`(s) ≥ n(x+2ε)(β−2). In the CM, since the pairing of stubs is random, there is w.h.p. a stub
in ∆`(s) which is paired with a stub of a node in T . In IRG, the probability that a node in
Γ`(s) is paired with a node in T is at least

∑
v∈Γ`(s)

∑
t∈T Xvt, where the Xvts are Bernoulli

random variables with success probability f
(
ρvρt
M

)
. We conclude by a straightforward appli-

cation of Chernoff bound (Lemma A.1).

Lemma A.55. Given a node v and an integer `, assume that nε < γ`(v) < n1−ε, and let
S = {s ∈ V : nα < deg(s) < nα+ε}, for some α > 0. Then, |S ∩ Γ`(v)| ≤ γ`(v)|S|n−1+α+ε

w.h.p..

Proof for the CM. By Lemma A.11, we can assume that nε ≤ δ`−1(v) ≤ n1−ε. Let us sort
the stubs in ∆`−1(v), and let Xi be 1 if the i-th stub is paired with a stub of a node in S, 0

otherwise. Clearly, |S ∩Γ`(v)| ≤
∑δ`−1(v)
i=1 Xi. Since δ`−1(v) < n1−ε, conditioned on the out-

come of the previous variables Xj , P (Xi = 1) = O
(

1
n

∑
v∈S ρv

)
≤ |S|n−1+α+ε (because we

have already paired at most o(n) stubs). Hence, Sk = k|S|n−1+α+ε−
∑k
i=0Xi is a submartin-

gale, and if k = δ`−1(v), by the strenghtened version of Azuma’s inequality (Lemma A.6),
w.h.p., Sk ≥ −k|S|n−1+α+ε, that is, k|S|n−1+α+ε −

∑k
i=0Xi ≥ −k|S|n−1+α+ε, and

|S ∩ Γ`(v)| ≤
∑k
i=0Xi ≤ 2k|S|n−1+α+ε. The result follows.

Proof for IRG. By Lemma A.16, we can assume that nε ≤ δ`−1(v) ≤ n1−ε. The probability
that a node s ∈ S is not linked to any node in Γ`−1(v) is

prodw∈Γ`−1(v)

(
1− f

(
ρwρs
n

))
=

∏
w∈Γ`−1(v)

(
1−O

(
ρwρs
n

))

≤
∏

w∈Γ`−1(v)

e−O(ρwρsn)

= e
−O

(
δ`−1(v)ρs

n

)

= e
−O

(
δ`−1(v)nα+ε

n

)
.

If δ`−1(v) > n1−α−2ε, the result of the lemma is trivial, if we change the value of ε. If
δ`−1(v) < n1−α−2ε, the probability that a node in S is not linked to any node in δ`−1(s) is

e
−O

(
δ`−1(s)nα+ε

n

)
= 1−O

(
δ`−1(s)nα+ε

n

)
, and hence the probability that it is connected to a

216 A - Proof of the Validity of the Axioms in Real-World Graphs

node in δ`−1(s) is O
(
δ`−1(s)nα+ε

n

)
. By a straightforward application of Chernoff bound, the

number of nodes in S that belong to Γ`(s) is O
(
|S|δ`−1(s)nα+ε

n

)
, w.h.p..

Lemma A.56. Assume that β > 3, and let v a node with degree ω(1). Let S be the set of
nodes with degree between nα and nα+ε. Then, the number of pairs of nodes s, t ∈ S such
that dist(s, v) + dist(v, t) ≤ c logM1(µ) n, and dist(s, w) + dist(w, t) > c logM1(µ) n for each w
such that deg(w) > deg(v) is at most deg(v)2|S|2n−2+c+2α+ε.

Proof. First of all, we want to assume without loss of generality that v is the node with
maximum degree. To this purpose, we remove from the graph all nodes with degree bigger
than deg(v): by Lemma A.38, we obtain a new random graph G′, and the value of M1(µ)
changes by o(1). Furthermore, v is the node with maximum degree in the new graph, and
the shortest paths not passing from nodes with degree bigger than deg(v) are conserved.

Consequently, let us assume that v is the node with highest degree. By Corollar-
ies A.14 and A.19, γi(v) ≤ nε deg(v)(M1(µ) + ε)i, and by Lemma A.55, |S ∩ Γi(v)| ≤
γi(v)|S|n−1+α+ε ≤ deg(v)|S|(M1(µ) + ε)in−1+α+2ε. We conclude that the number of pairs
(s, t) ∈ S2 such that dist(s, v) + dist(v, t) ≤ c logM1(µ) n is at most:∑

i+j=c logM1(µ) n

|{s : dist(s, v) ≤ i}||{t : dist(t, v) ≤ c logM1(µ) n− i}|

≤
∑

i+j=c logM1(µ) n

i deg(v)|S|(M1(µ) + ε)i · j deg(v)|S|(M1(µ) + ε)jn−2+2α+4ε

≤
∑

i+j=c logM1(µ) n

deg(v)2|S|2(M1(µ) + ε)i+jn−2+2α+5ε

≤ deg(v)2|S|2n−2+c+2α+ε′ .

Bibliography

[1] Amir Abboud, Fabrizio Grandoni, and Virginia V. Williams. Subcubic equivalences
between graph centrality problems, APSP and diameter. In Proceedings of the 26th
ACM-SIAM Symposium on Discrete Algorithms, pages 1681–1697, 2015.

[2] Amir Abboud and Virginia V. Williams. Popular conjectures imply strong lower bounds
for dynamic problems. In Proceedings of the 55th Annual Symposium on Foundations
of Computer Science (FOCS), pages 434–443, 2014.

[3] Amir Abboud, Virginia V. Williams, and Joshua Wang. Approximation and fixed
parameter subquadratic algorithms for radius and diameter. In Proceedings of the 26th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 377–391, 2016.

[4] Amir Abboud, Virginia V. Williams, and Oren Weimann. Consequences of faster align-
ment of sequences. In Proceedings of the 41st International Colloquium on Automata,
Languages, and Programming (ICALP), pages 39–51, 2014.

[5] Ittai Abraham and Amos Fiat. Highway dimension, shortest paths, and provably effi-
cient algorithms. In Proceedings of the 21st ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 782–793, 2010.

[6] Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means
clustering. Proceedings of the 12th International Workshop on Approximation, Ran-
domization, and Combinatorial Optimization Algorithms and Techniques (APPROX),
pages 15–28, 2009.

[7] Takuya Akiba, Yoichi Iwata, and Yuki Kawata. An exact algorithm for diameters
of large real directed graphs. In Proceedings of the 14th International Symposium on
Experimental Algorithms (SEA), pages 56–67, 2015.

[8] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-path distance
queries on large networks by pruned landmark labeling. In Proceedings of the 2013 ACM-
SIGMOD International Conference on Management of Data, pages 349–360, 2013.

[9] Réka Albert, Bhaskar DasGupta, and Nasim Mobasheri. Topological implications of
negative curvature for biological and social networks. Physical Review E, 89(3):032811,
2014.

[10] Hend Alrasheed and Feodor F. Dragan. Core-periphery models for graphs based on their
δ-hyperbolicity: an example using biological networks. Proceedings of the 6th Workshop
on Complex Networks (CompleNet), pages 65–77, 2015.

[11] Jacob M. Anthonisse. The Rush in a Directed Graph. Stichting Mathematisch Centrum.
Mathematische Besliskunde, 1971.

[12] Krishna B. Athreya and Peter Ney. Branching processes. Dover Books on Mathematics
Series. Springer-Verlag Berlin Heidelberg New York, 1972.

218 Bibliography

[13] David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail. Approximating
betweenness centrality. In Proceedings of the 5th international conference on Algorithms
and models for the web-graph (WAW), pages 124–137, 2007.

[14] Jorgen Bang-Jensen and Gregory Gutin. Digraphs Theory, Algorithms and Applications.
Springer, 2008.

[15] Albert L. Barabási and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[16] Alex Bavelas. A Mathematical Model for Group Structures. Human Organization,
7(3):16–30, 1948.

[17] Alex Bavelas. Communication patterns in task-oriented groups. Journal of the Acous-
tical Society of America, 22:725–730, 1950.

[18] Boaz Ben-Moshe, Binay Bhattacharya, Qiaosheng Shi, and Arie Tamir. Efficient
algorithms for center problems in cactus networks. Theoretical Computer Science,
378(3):237–252, 2007.

[19] Elisabetta Bergamini. Personal communication, 2016.

[20] Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea Marino, and Hen-
ning Meyerhenke. Computing top-k closeness centrality faster in unweighted graphs.
In Proceedings of the Meeting on Algorithm Engineering and Experiments (ALENEX),
pages 68–80, 2016.

[21] Elisabetta Bergamini and Henning Meyerhenke. Fully-dinamic approximation of be-
tweenness centrality. In Proceedings of the 23rd European Symposium on Algorithms
(ESA), 2015.

[22] Marián Boguná, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the inter-
net with hyperbolic mapping. Nature Communications, 1(62):1–8, 2010.

[23] Paolo Boldi and Sebastiano Vigna. The webgraph framework I: compression techniques.
In Proceedings of the 13th international conference on World Wide Web (WWW), pages
595–602, 2004.

[24] Paolo Boldi and Sebastiano Vigna. In-core computation of geometric centralities with
hyperball: A hundred billion nodes and beyond. In Proceedings of the 2013 IEEE 13th
International Conference on Data Mining Workshops, pages 621–628, 2013.

[25] Paolo Boldi and Sebastiano Vigna. Axioms for centrality. Internet Mathematics, 10(3-
4):222–262, 2014.

[26] Béla Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs. European Journal of Combinatorics, 1(4):311–316, 1980.

[27] Béla Bollobás, Svante Janson, and Oliver Riordan. The phase transition in inhomoge-
neous random graphs. Random Structures and Algorithms, 31(1):3–122, 2007.

[28] Michele Borassi. A Note on the Complexity of Computing the Number of Reachable
Vertices in a Digraph. Information Processing Letters, 116(10):628–630, 2016.

[29] Michele Borassi, Alessandro Chessa, and Guido Caldarelli. Hyperbolicity measures
democracy in real-world networks. Physical Review E, 92(3):032812, 2015.

[30] Michele Borassi, David Coudert, Pierluigi Crescenzi, and Andrea Marino. On computing
the hyperbolicity of real-world graphs. In Proceedings of the 23rd European Symposium
on Algorithms (ESA), pages 215–226. Springer, 2015.

Bibliography 219

[31] Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the square - On the com-
plexity of some quadratic-time solvable problems. Electronic Notes in Computer Sci-
ence, 322:51–67, 2016.

[32] Michele Borassi, Pierluigi Crescenzi, Michel Habib, Walter A. Kosters, Andrea Marino,
and Frank W. Takes. Fast diameter and radius BFS-based computation in (weakly
connected) real-world graphs - With an application to the Six Degrees of Separation
games. Theoretical Computer Science, 586:59–80, 2014.

[33] Michele Borassi, Pierluigi Crescenzi, Michel Habib, Walter A. Kosters, Andrea Marino,
and Frank W. Takes. On the solvability of the Six Degrees of Kevin Bacon game -
A faster graph diameter and radius computation method. In Proceedings of the 7th
International Conference on Fun with Algorithms (FUN), pages 57–68, 2014.

[34] Michele Borassi, Pierluigi Crescenzi, and Andrea Marino. Fast and simple computation
of top-k closeness centralities. arXiv preprint 1507.01490, 2015.

[35] Michele Borassi, Pierluigi Crescenzi, and Luca Trevisan. An axiomatic and an average-
case analysis of algorithms and heuristics for metric properties of graphs. In Proceedings
of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017. Accepted.

[36] Michele Borassi and Emanuele Natale. KADABRA is an adaptive algorithm for be-
tweenness via random approximation. In Proceedings of the 24th European Symposium
on Algorithms, 2016.

[37] Stephen P. Borgatti and Martin G. Everett. A graph-theoretic perspective on centrality.
Social Networks, 28(4):466–484, 2006.

[38] Pawel Brach, Marek Cygan, Jakub Lacki, and Piotr Sankowski. Algorithmic complexity
of power law networks. In Proceedings of the 26th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1306–1325, 2016.

[39] Ulrik Brandes. A faster algorithm for betweenness centrality. The Journal of Mathe-
matical Sociology, 25(2):163–177, 2001.

[40] Ulrik Brandes. On variants of shortest-path betweenness centrality and their generic
computation. Social Networks, 30(2):136–145, 2008.

[41] Ulrik Brandes and Thomas Erlebach, editors. Network Analysis: Methodological Foun-
dations, volume 3418. Springer, 2005.

[42] Ulrik Brandes and Daniel Fleischer. Centrality Measures Based on Current Flow. In
Proceedings of the 22nd annual conference on Theoretical Aspects of Computer Science
(STACS), pages 533–544, 2005.

[43] Ulrik Brandes and Christian Pich. Centrality Estimation in Large Networks. Interna-
tional Journal of Bifurcation and Chaos, 17(7):2303–2318, 2007.

[44] Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In Proceedings of the 55th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 661–670, 2014.

[45] Andrei Z. Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-
jagopalan, Raymie Stata, Andrew Tomkins, and Janet L. Wiener. Graph Structure in
the Web. Computer Networks, 33(1-6):309–320, 2000.

220 Bibliography

[46] Marco L. Carmosino, Gao Jiawei, Russell Impagliazzo, Ivan Mihajlin, Ramamohan
Paturi, and Stefan Schneider. Nondeterministic Extensions of the Strong Exponential
Time Hypothesis and Consequences for Non-reducibility. In Proceedings of the ACM
Conference on Innovations in Theoretical Computer Science (ITCS), pages 261–270,
2016.

[47] Shiri Chechik, Daniel H. Larkin, Liam Roditty, Grant Schoenebeck, Robert E. Tarjan,
and Virginia V. Williams. Better Approximation Algorithms for the Graph Diameter.
In Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1041–1052, 2014.

[48] Duanbing Chen, Linyuan Lü, Ming-Sheng Shang, Yi-Cheng Zhang, and Tao Zhou.
Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and
its Applications, 391(4):1777–1787, 2012.

[49] Wei Chen, Wenjie Fang, Guangda Hu, and Michael W. Mahoney. On the hyperbolicity
of small-world and treelike random graphs. Internet Mathematics, 9(4):434–491, 2013.

[50] Victor Chepoi, Fedor F. Dragan, Bertrand Estellon, Michel Habib, and Yann Vaxès.
Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs.
In Proceedings of the 24th Annual Symposium on Computational Geometry, pages 59–
68, 2008.

[51] Victor Chepoi, Feodor F. Dragan, Bertrand Estellon, Michel Habib, Yann Vaxès, and
Yang Xiang. Additive spanners and distance and routing labeling schemes for hyperbolic
graphs. Algorithmica, 62(3):713–732, 2012.

[52] Victor Chepoi and Bertrand Estellon. Packing and covering δ-hyperbolic spaces by
balls. In Proceedings of the 10th International Workshop on Approximation and the
11th International Workshop on Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques (APPROX-RANDOM), Lecture Notes in Computer Science,
pages 59–73. Springer, 2007.

[53] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Alessandro Panconesi, and Prabhakar
Raghavan. Models for the compressible web. In Proceedings of the 50th IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 331–340, 2009.

[54] Fan Chung and Linyuan Lu. Complex graphs and networks. American Mathematical
Society, Boston, MA, USA, 2006.

[55] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck. Computing classic
closeness centrality, at scale. In Proceedings of the second ACM conference on Online
social networks (COSN), pages 37–50. ACM, 2014.

[56] Nathann Cohen, David Coudert, Guillaume Ducoffe, and Aurélien Lancin. Applying
clique-decomposition for computing Gromov hyperbolicity. Technical report, HAL,
2014.

[57] Nathann Cohen, David Coudert, and Aurélien Lancin. Exact and approximate algo-
rithms for computing the hyperbolicity of large-scale graphs. Technical report, HAL,
2013.

[58] Nathann Cohen, David Coudert, and Aurélien Lancin. On computing the Gromov
hyperbolicity. Journal of Experimental Algorithms, 20:1.6, 2015.

[59] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to algorithms (3rd edition). MIT Press, 2009.

Bibliography 221

[60] Derek G. Corneil, Feodor F. Dragan, and Ekkehard Köhler. On the power of BFS to
determine a graph’s diameter. Networks, 42(4):209–222, 2003.

[61] Pierluigi Crescenzi, Roberto Grossi, Michel Habib, Leonardo Lanzi, and Andrea Marino.
On computing the diameter of real-world undirected graphs. Theoretical Computer
Science, 514:84–95, 2013.

[62] Pierluigi Crescenzi, Roberto Grossi, Claudio Imbrenda, Leonardo Lanzi, and Andrea
Marino. Finding the diameter in real-world graphs experimentally turning a lower bound
into an upper bound. In Proceedings of the 18th European Symposium on Algorithms
(ESA), pages 302–313, Berlin, Heidelberg, 2010. Springer-Verlag.

[63] Pierluigi Crescenzi, Roberto Grossi, Leonardo Lanzi, and Andrea Marino. On comput-
ing the diameter of real-world directed (weighted) graphs. In Proceedings of the 11th
International Symposium on Experimental Algorithms (SEA), pages 99–110, 2012.

[64] Gábor Csárdi and Tamás Nepusz. The igraph software package for complex network
research. InterJournal, Complex Systems, page 1695, 2006.

[65] Dennis De Champeaux. Bidirectional heuristic search again. Journal of the ACM
(JACM), 30(1):22–32, 1983.

[66] Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Hub label compression.
In Proceedings of the 12th International Symposium on Experimental Algorithms (SEA),
pages 18–29, 2013.

[67] Daniel Delling and Renato F. Werneck. Faster customization of road networks. In
Proceedings of the 12th International Symposium on Experimental Algorithms (SEA),
pages 30–42, 2013.

[68] Shlomi Dolev, Yuval Elovici, and Rami Puzis. Routing betweenness centrality. Journal
of the ACM, 57(4):1–27, 2010.

[69] Andreas Dress, Katharina T. Huber, Jacobus Koolen, Vincent Moulton, and Andreas
Spillner. Basic phylogenetic combinatorics. Cambridge University Press, Cambridge,
UK, 2012.

[70] David Easley and Jon M. Kleinberg. Networks, Crowds, and Markets: Reasoning About
a Highly Connected World. Cambridge University Press, New York, 2010.

[71] Amr Elmasry. The Subset Partial Order: Computing and Combinatorics. In Proceedings
of the Meeting on Algorithm Engineering and Expermiments, pages 27–33, 2010.

[72] David Eppstein and Joseph Wang. Fast Approximation of Centrality. Journal of Graph
Algorithms and Applications, 8(1):39–45, 2004.

[73] Dóra Erdös, Vatche Ishakian, Azer Bestavros, and Evimaria Terzi. A Divide-and-
Conquer Algorithm for Betweenness Centrality. arXiv preprint 1406.4173, pages 433–
441, 2015.

[74] Paul Erdös. Extremal problems in graph theory. Theory of Graphs and Its Applications:
Proceedings of the Symposium Held in Smolenice in June 1963. Pub. House of the
Czechoslovak Academy of Sciences, 1964.

[75] Wenjie Fang. On hyperbolic geometry structure of complex networks. Internship Report,
Microsoft Research Asia, 2011.

[76] Daniel Fernholz and Vijaya Ramachandran. The diameter of sparse random graphs.
Random Structures and Algorithms, 31(4):482–516, 2007.

222 Bibliography

[77] Hervé Fournier, Anas Ismail, and Antoine Vigneron. Computing the Gromov hyper-
bolicity of a discrete metric space. Information Processing Letters, 115(6):576–579,
2015.

[78] Linton C. Freeman. A Set of Measures of Centrality Based on Betweenness. Sociometry,
40(1):35–41, 1977.

[79] Alan Frieze and Colin McDiarmid. Algorithmic theory of random graphs. Random
Structures and Algorithms, 10(1-2):5–42, 1997.

[80] Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational
geometry. Computational Geometry, 5(3):165–185, 1995.

[81] François Le Gall. Powers of Tensors and Fast Matrix Multiplication. In Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC),
pages 296–303, 2014.

[82] Robert Geisberger, Peter Sanders, and Dominik Schultes. Better Approximation of
Betweenness Centrality. In Proceedings of the 10th Workshop on Algorithm Engineering
and Experiments (ALENEX), pages 90–100, 2008.

[83] Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A* search
meets graph theory. In Proceedings of the 16th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 156–165, 2005.

[84] Mikhael Gromov. Hyperbolic groups. Essays in Group Theory, 8:75–265, 1987.

[85] Rishi Gupta, Tim Roughgarden, and Comandur Seshadhri. Decompositions of Triangle-
Dense Graphs. SIAM Journal on Computing, 45(2):197–215, 2016.

[86] Michael Gurevich. The Social Structure of Acquaintanceship Networks. PhD thesis,
Massachusetts Institute of Technology, 1961.

[87] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science
Conference (SciPy), pages 11–15, 2008.

[88] Gabriel Y. Handler. Minimax Location of a Facility in an Undirected Tree Graph.
Transportation Science, 7(3):287–293, 1973.

[89] Frank Harary. Graph Theory. Addison-Wesley series in mathematics. Perseus Books,
1994.

[90] Shlomo Havlin and Reuven Cohen. Complex networks: structure, robustness and func-
tion. Cambridge University Press, Cambridge, 2010.

[91] Kaave Hosseini. 3SUM. Online book, available at http://cseweb.ucsd.edu/
~skhossei/3sum.pdf, 2015.

[92] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have
Strongly Exponential Complexity? Journal of Computer and System Sciences,
63(4):512–530, 2001.

[93] Riko Jacob, Dirk Kosch, Katharina Anna Lehmann, and Leon Peeters. Algorithms
for centrality indices. In Network Analysis - Methodological Foundations, pages 62–82.
Springer, 2005.

[94] Edmond A. Jonckheere and Poonsuk Lohsoonthorn. Geometry of network security.
In Proceedings of the American Control Conference, volume 2, pages 976–981, Boston,
MA, USA, 2004. IEEE.

http://cseweb.ucsd.edu/~skhossei/3sum.pdf
http://cseweb.ucsd.edu/~skhossei/3sum.pdf

Bibliography 223

[95] H. Kaindl and G. Kainz. Bidirectional Heuristic Search Reconsidered. Journal of
Artificial Intelligence Research, 7:283–317, 1997.

[96] U Kang, Spiros Papadimitriou, Jimeng Sun, and Tong Hanghang. Centralities in large
networks: Algorithms and observations. In Proceedings of the 2011 SIAM International
Conference on Data Mining (SDM), pages 119–130, 2011.

[97] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations, pages 85–103. Springer, 1972.

[98] W. Sean Kennedy, Onuttom Narayan, and Iraj Saniee. On the Hyperbolicity of Large-
Scale Networks. arXiv preprint 1307.0031, pages 1–22, 2013.

[99] James King. A survey of 3SUM-hard problems. Available at http://www.ccs.neu.
edu/home/viola/classes/papers/King04Survey3sum.pdf, 2004.

[100] Robert Krauthgamer and James R. Lee. Algorithms on negatively curved spaces. In
Proceedings of the 47th Symposium on Foundations of Computer Science (FOCS), pages
119–132, 2006.

[101] Dmitri Krioukov, Fragkiskos Papadopoulos, Marián Boguñá, and Amin Vahdat. Greedy
forwarding in scale-free networks embedded in hyperbolic metric spaces. Proceedings
of the 29th conference on Information communications (INFOCOM), pages 2973–2981,
2010.

[102] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, and Amin Vahdat. Hyper-
bolic geometry of complex networks. Physical Review E, 82(3):036106, 2010.

[103] Jérôme Kunegis. KONECT – the Koblenz network collection. In Proceedings of the 22nd
International Conference on World Wide Web Companion, pages 1343–1350, 2013.

[104] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community detec-
tion algorithms on directed and weighted graphs with overlapping communities. Physical
Review E, 80(1):016118, 2009.

[105] Vito Latora and Massimo Marchiori. A measure of centrality based on network effi-
ciency. New Journal of Physics, 9:188, 2007.

[106] Erwan Le Merrer, Nicolas Le Scouarnec, and Gilles Trédan. Heuristical Top-k: Fast
Estimation of Centralities in Complex Networks. Information Processing Letters,
114(8):432–436, 2014.

[107] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph Evolution: Densifica-
tion and Shrinking Diameters. ACM Transactions on Knowledge Discovery from Data
(TKDD), 1(1):1–41, 2007.

[108] Jure Leskovec and Rok Sosič. SNAP: A general purpose network analysis and graph
mining library in C++. http://snap.stanford.edu/snap, 2014.

[109] Yeon-sup Lim, Daniel S. Menasché, Bruno Ribeiro, Don Towsley, and Prithwish Basu.
Online estimating the k central nodes of a network. In Proceedings of the 2011 IEEE
Network Science Workshop (NSW), pages 118–122, 2011.

[110] Nan Lin. Foundations of social research. McGraw-Hill, 1976.

[111] Richard J. Lipton and Jeffrey F. Naughton. Estimating the size of generalized transitive
closure. In Proceedings of the 15th international conference on Very large data bases
(VLDB), pages 165–171, 1989.

http://www.ccs.neu.edu/home/viola/classes/papers/King04Survey3sum.pdf
http://www.ccs.neu.edu/home/viola/classes/papers/King04Survey3sum.pdf
http://snap.stanford.edu/snap

224 Bibliography

[112] Richard J. Lipton and Jeffrey F. Naughton. Query size estimation by adaptive sampling.
Journal of Computer and System Sciences, 51:18–25, 1995.

[113] Maarten Löffler and Jeff M. Phillips. Shape fitting on point sets with probability distri-
butions. In Proceedings of the 17th European Symposium on Algorithms (ESA), pages
313–324, 2009.

[114] Clémence Magnien, Matthieu Latapy, and Michel Habib. Fast computation of em-
pirically tight bounds for the diameter of massive graphs. Journal of Experimental
Algorithmics (JEA), 13:1.10:1–1.10:9, 2009.

[115] Zoltan A. Mann and Anikò Szajkó. Average-case complexity of backtrack search for
coloring sparse random graphs. Journal of Computer and System Sciences, 79(8):1287–
1301, 2013.

[116] Andrea Marino. Algorithms for biological graphs - analysis and enumeration. Atlantis
Press, 2015.

[117] Stanley Milgram. The Small World Problem. Psychology Today, 2:60–67, 1967.

[118] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and Bobby
Bhattacharjee. Measurement and Analysis of Online Social Networks. In Proceedings
of the 7th ACM SIGCOMM Conference on Internet Measurement (MC), pages 29–42,
2007.

[119] Dieter Mitsche and Pawel Pralat. On the hyperbolicity of random graphs. The Electronic
Journal of Combinatorics, 21(2):P2.39, 2014.

[120] Onuttom Narayan and Iraj Saniee. The Large Scale Curvature of Networks. Physical
Review E, 84:066108, 2011.

[121] Onuttom Narayan, Iraj Saniee, and Gabriel H. Tucci. Lack of hyperbolicity in asymp-
totic Erdös–Renyi sparse random graphs. Internet Mathematics, 11(3):277–288, 2015.

[122] Mark E. J. Newman. Scientific collaboration networks. II. Shortest paths, weighted
networks, and centrality. Physical Review E, 64:016132, 2001.

[123] Mark E. J. Newman. Assortative mixing in networks. Physical Review Letters,
89(20):208701, 2002.

[124] Mark E. J. Newman. Mixing patterns in networks. Physical Review E, 67(2):026126,
2003.

[125] Mark E. J. Newman. The structure and function of complex networks. SIAM Review,
45(2):167–256, 2003.

[126] Mark E. J. Newman. Networks: an introduction. OUP Oxford, 2010.

[127] Ilkka Norros and Hannu Reittu. On a conditionally Poissonian graph process. Advances
in Applied Probability, 38(1):59–75, 2006.

[128] Kazuya Okamoto, Wei Chen, and Xiang-Yang Li. Ranking of closeness centrality for
large-scale social networks. Frontiers in Algorithmics, 5059:186–195, 2008.

[129] Paul W. Olsen, Alan G. Labouseur, and Jeong-Hyon Hwang. Efficient top-k closeness
centrality search. In Proceedings of the 30th IEEE International Conference on Data
Engineering (ICDE), pages 196–207, 2014.

[130] Mihai Patrascu and Liam Roditty. Distance Oracles Beyond the Thorup–Zwick Bound.
SIAM Journal on Computing, 43(1):300–311, 2014.

Bibliography 225

[131] Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. Pro-
ceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1065–1075, 2010.

[132] Jürgen Pfeffer and Kathleen M. Carley. K-centralities: local approximations of global
measures based on shortest paths. In Proceedings of the 21st Annual Conference on
World Wide Web (WWW), pages 1043–1050, 2012.

[133] Andrea Pietracaprina, Matteo Riondato, Eli Upfal, and Fabio Vandin. Mining top-k
frequent itemsets through progressive sampling. Data Mining and Knowledge Discovery,
21(2):310–326, 2010.

[134] Ira Pohl. Bi-directional and heuristic search in path problems. PhD thesis, Stanford
University, 1969.

[135] Paul Pritchard. On computing the subset graph of a collection of sets. Journal of
Algorithms, 33(2):187–203, 1999.

[136] Matteo Riondato and Evgenios M. Kornaropoulos. Fast approximation of betweenness
centrality through sampling. Data Mining and Knowledge Discovery, 30(2):438–475,
2015.

[137] Matteo Riondato and Eli Upfal. ABRA: Approximating Betweenness Centrality in
Static and Dynamic Graphs with Rademacher Averages. arXiv preprint 1602.05866,
pages 1–27, 2016.

[138] Liam Roditty and Virginia V. Williams. Fast approximation algorithms for the diameter
and radius of sparse graphs. In Proceedings of the 45th ACM Symposium on Theory of
Computing (STOC), pages 515–524, New York, New York, USA, 2013. ACM Press.

[139] Sheldon M. Ross. Introductory Statistics. Elsevier, Canada, third edit edition, 2010.

[140] Benjamin Rossman. Average-case complexity of detecting cliques. PhD thesis, Mas-
sachussets Institute of Technology, 2010.

[141] Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest path
queries. In Proceedings of the 13th European Symposium on Algorithms (ESA), pages
568–579, 2005.

[142] Ahmet E. Sarıyüce, Kamer Kaya, Erik Saule, and Umit V. Catalyurek. Incremental
algorithms for closeness centrality. In IEEE International Conference on Big Data,
pages 118–122, 2013.

[143] Ahmet Erdem Sarıyüce, Erik Saule, Kamer Kaya, and Ümit V. Çatalyürek. Shatter-
ing and Compressing Networks for Centrality Analysis. In Proceedings of the SIAM
International Conference on Data Mining (SDM), pages 686–694, 2012.

[144] Yilun Shang. Non-Hyperbolicity of Random Graphs with Given Expected Degrees.
Stochastic Models, 29(4):451–462, 2013.

[145] Marvin E. Shaw. Group Structure and the Behavior of Individuals in Small Groups.
The Journal of Psychology, 38(1):139–149, 1954.

[146] Alfonso Shimbel. Structural parameters of communication networks. The Bulletin of
Mathematical Biophysics, 15(4):501–507, 1953.

[147] Jeremy G. Siek, Lie Quan Lee, and Andrew Lumsdaine. The Boost Graph Library:
User Guide and Reference Manual. Addison-Wesley Longman Publishing Co., 2001.

226 Bibliography

[148] Lenie Sint and Dennis de Champeaux. An Improved Bidirectional Heuristic Search
Algorithm. Journal of the ACM, 24(2):177–191, 1977.

[149] Christian Sommer, Elad Verbin, and Wei Yu. Distance oracles for sparse graphs. In
Proceedings of the 50th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 703–712, 2009.

[150] Mauricio A. Soto Gómez. Quelques propriétés topologiques des graphes et applications
à internet et aux réseaux. PhD thesis, Université Paris Diderot (Paris 7), 2011.

[151] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: an in-
teractive tool suite for high-performance network analysis. arXiv preprint 1403.3005,
pages 1–25, 2014.

[152] William Stein and David Joyner. Sage: system for algebra and geometry experimenta-
tion. SIGSAM Bulletin, 39(2):61–64, 2005.

[153] Frank W. Takes. Algorithms for Analyzing and Mining Real-World Graphs. PhD thesis,
Universiteit Leiden, 2014.

[154] Frank W. Takes and Walter A. Kosters. Determining the diameter of small world
networks. In Proceedings of the 20th ACM International Conference on Information
and Knowledge Management (CIKM), pages 1191–1196, New York, New York, USA,
2011. ACM Press.

[155] Frank W. Takes and Walter A. Kosters. Computing the eccentricity distribution of
large graphs. Algorithms, 6(1):100–118, 2013.

[156] Kristin Thompson and David Bordwell. Film History: an Introduction. McGraw-Hill
Higher Education, 2009.

[157] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM,
52(1):1–24, 2005.

[158] Henri van den Esker, Remco van der Hofstad, Gerard Hooghiemstra, and Dmitri Zna-
menski. Distances in random graphs with infinite mean degrees. Extremes, 8(3):111–141,
2005.

[159] Remco van der Hofstad. Random graphs and complex networks, volume II. Online book,
available at http://www.win.tue.nl/~rhofstad/NotesRGCNII.pdf, 2014.

[160] Remco van der Hofstad. Random graphs and complex networks, volume I. Online book,
available at http://www.win.tue.nl/~rhofstad/NotesRGCNII.pdf, 2016.

[161] Remco van der Hofstad, Gerard Hooghiemstra, and Piet Van Mieghem. Distances
in random graphs with finite variance degrees. Random Structures and Algorithms,
27(1):76–123, 2005.

[162] Remco van der Hofstad, Gerard Hooghiemstra, and Dmitri Znamenski. Distances in
random graphs with finite mean and infinite variance degrees. Electronic Journal of
Probability, 12:703–766, 2007.

[163] Flavio Vella, Giancarlo Carbone, and Massimo Bernaschi. Algorithms and Heuristics for
Scalable Betweenness Centrality Computation on Multi-GPU Systems. arXiv preprint
1602.00963, pages 1–26, 2016.

[164] Sebastiano Vigna. Personal communication, 2016.

[165] Aravindan Vijayaraghavan. Beyond worst-case analysis in approximation algorithms.
PhD thesis, Princeton, 2012.

http://www.win.tue.nl/~rhofstad/NotesRGCNII.pdf
http://www.win.tue.nl/~rhofstad/NotesRGCNII.pdf

Bibliography 227

[166] Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and Appli-
cations. Structural Analysis in the Social Sciences. Cambridge University Press, 1994.

[167] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, 2000.

[168] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implica-
tions. Theoretical Computer Science, 348(2-3):357–365, 2005.

[169] Ryan Williams and Huacheng Yu. Finding orthogonal vectors in discrete structures. In
Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1867–1877, 2014.

[170] Virginia V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In
Howard J Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on
Theory of Computing (STOC), pages 887–898. ACM, 2012.

[171] Virginia V. Williams and Ryan Williams. Subcubic Equivalences between Path, Matrix
and Triangle Problems. In Proceedings of the 51st Annual Symposium on Foundations
of Computer Science, pages 645–654, 2010.

[172] Yaokun Wu and Chengpeng Zhang. Hyperbolicity and chordality of a graph. The
Electronic Journal of Combinatorics, 18(1):P43, 2011.

[173] Daniel M. Yellin and Charanjit S. Jutla. Finding Extremal Sets in Less Than Quadratic
Time. Information Processing Letters, 48(1):29–34, 1993.

[174] Uri Zwick. All Pairs Shortest Paths using Bridging Sets and Rectangular Matrix Mul-
tiplication. Journal of the ACM, 49(3):289–317, 2002.

Index

Italic page numbers indicate definitions, while bold page numbers indicate whole chapters or
sections.

2-Sweep heuristic, 42, 53, 146, 156–158
2-hop cover property, 172–173
3SUM conjecture, 3
3Sum, 17
4-Sweep heuristic, 42, 53, 146, 158–159,

164

Actor graph, see Actors collaboration
network

Actors and actresses
Adolf Hitler, 89, 112, 121
Bess Flowers, 89, 112
Carl Auen, 64
Danny Trejo, 89
Dasari Kotiratnam, 64
Kevin Bacon, 65, 89
Lloyd Kaufman, 112
Michael Madsen, 89
Neeta Dhungana, 64
Rip Torn, 90
Ron Jeremy, 112
Steveanna Roose, 64
Various, 90, 112–120

Actors collaboration network, 42, 63–65,
89–90, 94, 111

Adaptive sampling, 94, 95
AIY distance oracle, 146, 172–179
All Pairs Shortest Paths, 3, 13, 17, 18, 41,

67, 68, 172
AllCCUpperBound, 46–48
Approximation algorithms, 42
Assortativity, 133
AT-free graph, 42
Average case analysis, see Probabilistic

analysis
Average distance, 10, 133, 145, 146,

154–155, 165
Average hyperbolicity, 133, 134

Axiomatic analysis, see Probabilistic
analysis

Axioms, 143, 148–150, 212–214
Azuma inequality, 192

Backward BFS, 44
Backward eccentricity, 43
Balanced bidirectional BFS, see BBBFS
BBBFS, 94, 96, 101–102, 146, 179–182
BCM algorithm, 67, 146
Betweenness centrality, 11, 18, 41, 93, 96
BFSCut procedure, 74–75, 79
Bidirectional, 146
BoundingDiameters algorithm, 42
Branching process, 148, 186, 203–205

Conditioned on survival, 148
Decomposition, 186
Neighborhood growth in random

graphs, 198–203
Brandes algorithm for betweenness

centrality, 13, 93, 95

ccl algorithm, 125
Centrality measures, 67, 68

Betweenness centrality, see
Betweenness centrality

Closeness, see Closeness centrality
Eccentricity, see Eccentricity
Lin’s index, see Lin’s index

Chernoff bound
Additive form, 96
Multiplicative form, 191

Chordal graph, 42
Chordality, 124
Chung-Lu model, see Random graph

models, Chung-Lu, 185
Closeness centrality, 10, 19, 45, 67, 129,

146, 154
Complex networks, 2, 41, 93

230 Index

computeEta, 97, 98, 102
Configuration Model, see Random graph

models, Configuration Model
Congestion, 124
Connected component, 7, 148
Connected graph, 7
Cooperative subset query, see Disjoint set

problem

Dataset, see Graph dataset
DBpedia, 65
∆-BFS, 81
Democracy, 125, 133, 134
Diameter, 9, 41, 43, 95, 124, 133, 152–153

Approximation, 146
Disconnected graph, 43
Exact, 146, 163–166
Lower bound, 155–161

Diametral pair, 160, 164
diFub algorithm, 42
Directed 2-Sweep, 53
Directed graph, 7
Disjoint set problem, 3
Distance matrix, 13
Distance oracle, 11, 146, 172–179
Dynamic graph, 95
Dynamic programming, 46

Eccentricity, 10, 42, 43, 129, 151–152, 155
Empirical analysis, 53–63, 80–88,

105–111, 130–132, 143, 146,
156–158, 164, 173, 179–180

Empirical results, see Empirical analysis
Erdös girth conjecture, 172
Erdös-Renyi model, see Random graph

models, Erdös-Renyi
ExactSumSweep algorithm, 41, 45–52,

146, 166–168
Experimental results, see Empirical

analysis
Exponential centrality, 11

Farness, 10, 45, 153–154
Forward BFS, 44
Forward eccentricity, 43

Galton-Watson process, see Branching
process

General Relativity and Quantum
Cosmology collaboration
network, 137

Giant component, 43, 148, 149
Graph compression, 4
Graph dataset

KONECT, 53, 81, 105, 180
LASAGNE, 81, 105, 164, 179
LAW, 81
NEXUS, 80
SNAP, 53, 80, 105, 155, 156, 158,

173, 179
WebGraph, 156, 173

Graph library
Boost, 69
igraph, 69
NetworKit, 14, 68, 69, 81, 105, 146
NetworkX, 69, 101
SageMath, 14
Sagemath, 1, 4, 68, 81, 101, 125, 146
SNAP, 155
WebGraph, 1, 4, 42, 68, 81, 146
Webgraph, 14

Graph models
Chung-Lu, 125

Gromov hyperbolicity, 5, 122, 123

Harmonic centrality, 11
haveToStop, 97, 104
Highway dimension, 4
Hitting Set conjecture, 1, 4, 18, 25–26, 93
Hoeffding inequality, 95, 96, 191
Hole-free graph, 42
HR algorithm, 42
Hub-labeling, 172
hyp algorithm, 122
Hyperbolicity, 11, 20, 122

iFub algorithm, 42, 146, 163–166
Incremental algorithms, 69
Infinite mean degrees, 208–211
Influence area, 125
Inhomogeneous Random Graph, see

Random graph models, Rank-1
Inhomogeneous Random Graph

Internet Movies Database (IMDB), see
Actors collaboration network

Interval graph, 42
Isolated nodes, 9

KADABRA, 93
Karp reduction, 17
Kleinberg model, see Random graph

models, Kleinberg
KONECT, see Graph dataset

LASAGNE, see Graph dataset
Level-based lower bound, 76–78, 80
Lin’s index, 10, 20

Martingale, 191

Index 231

Matrix multiplication, 3, 13, 23
Max-min matrix multiplication, 125
Milgram’s experiment, 65
Minimum ball covering, 124
Multigraph, 9
Multiple edges, 9

Neighborhood growth, 193–198, 205–208,
211

Neighborhood-based lower bound, 71–74,
79

Network security, 124
NetworKit, see Graph library
NetworkX, see Graph library
Norros-Reittu model, see Random graph

models, Norros-Reittu, 185

Orthogonal Vector conjecture, 1, 3, 18,
23–25, 26, 93, 95

Peer-to-peer Gnutella network, 137
Phase transition, 146
Phylogenetic trees, 124
Polynomial reductions, 17
Power law, 150
Power law degree distribution, 144, 147
Preprocessing, 172
Probabilistic analysis, 143, 145, 155–159,

161–163, 165–171, 174–179,
181–182

Problem
AllEccentricities, 12
BetweennessCentrality, 12, 18,

31, 93
BetweennessCentralityNode,

18, 30
BetweennessCentralityTopK,

12
Bipartite3DominatingSet, 21, 36
BipartiteSub-

set2DominatingSet, 21,
36

ClosenessCentralityMaximum,
21, 67

ClosenessCentralityMinimum,
19, 34

ClosenessCentralityTopK, 12
CooperativeSubsetQuery, see

k-TwoDisjointSets
Diameter, 12
Diameter, 38, 41
DiameterSplitGraph2Or3, 21, 38
DistanceOracle, 12
Bipartite3DominatingSet, 37

DominatedNode, 21
Bipartite3DominatingSet, 37
DominatingSet3, 22
HittingSet, 18
Hyperbolicity, 12, 38, 122
HyperWith1FixedNode, 38
HyperWith2FixedNodes, 38
HyperWith1FixedNode, 22
HyperWith2FixedNodes, 22
k-SpernerFamily, 24
k-HittingSet, 22
k-HittingSet, 25
k-OrthogonalBinaryVectors,

22, 23
k-OrthogonalToAllVectors,

22, 25
k-Sat*, 22
k-SpernerFamily, 22
k-TwoCovering, 22, 24
k-TwoDisjointSets, 18, 23, 24
k-ZerosMatrixMultiplication,

23
LinIndexMaximum, 20, 23, 32, 93
MaximumClosenessCentrality,

27
NumReachableNodes, 13, 20, 31
Radius, 13, 29, 41
SubsetGraph, 20, 23
Various, 19

Radius, 10, 41, 43, 124, 146
Disconnected graph, 43

Random graph models
Chung-Lu, 140, 147
Configuration Model, 140, 147, 185
Erdös-Renyi, 124, 140, 144
Inhomogeneous Random Graph, see

Random graph models, Rank-1
Inhomogeneous Random Graph

Kleinberg, 124
Norros-Reittu, 147
Rank-1 Inhomogeneous Random

Graph, 147
Randomized algorithm, 159
Rank-1 Inhomogeneous Random Graph,

see Random graph models,
Rank-1 Inhomogeneous Random
Graph, 185

Reach centrality, 41
Real-world graphs, see Real-world

networks
Real-world networks, 41, 42, 123, 182–185
Residual distribution, 148, 186
Reverse topological order, 48

232 Index

Routing labeling scheme, 124
RW algorithm, 146, 159–161

Sagemath, see Graph library
samplePath, 97, 98
Sampling algorithm (diameter), 42, 53,

146, 155–156
Self-loops, 9
SingleCCUpperBound, 48–50
Six Degrees of Kevin Bacon game, 65, 89
Six Degrees of Separation game, 65, 89,

121
Six Degrees of Wikipedia game, 65, 121
Small world network, 10
SNAP

Graph dataset, see Graph dataset
Graph library, see Graph library

Social network, 65, 155
StepBackward, 46, 50
StepForward, 46, 50
Stretch, 172
Strong component graph, 7
Strong Exponential Time Hypothesis, 1,

3, 18, 26, 93
Strongly connected component, 7, 20, 48
Strongly connected graph, 7
Subcubic algorithm, 41
Submartingale, 191
Subquadratic algorithm, 15
SumSweep, see SumSweepHeuristic,

ExactSumSweep algorithm
SumSweepHeuristic, 41, 43–45, 53,

146, 162–163
Supermartingale, 191

Textbook algorithm, 13
Topological order, 8, 48
Topological sort, see Topological order
Transitive closure, 20
Tree, 42

Treelength, 124

Undirected graph, 7

VC-dimension, 95
Vertex diameter, 95, 97, 99, 105

Weakly connected graph, 7
WebGraph

Graph dataset, see Graph dataset
Graph library, see Graph library

Wikipedia citation network, 42, 65–66,
90–92, 94, 121

Wikipedia graph, see Wikipedia citation
network

Wikipedia page
(145795) 1998 RA16, 65
1954 in Ireland, 65
1967, 90
1979, 90
1989, 90
Advanced Diabetes Management

Certification, 66
All-Ireland Minor Hurling

Championship, 65
England, 65
France, 121
Kickxellales, 66
Lębork railway station, 66
List of minor planets, 65
Osieki Lęborskie railway station, 66
Papyrus Oxyrhynchus, 65
Play it Again Des, 66
United Kingdom, 90, 121
United States, 66, 90, 121
Various, 90, 121
World War II, 90

Worst-case analysis, 17, 159–160

Yeast metabolic network, 137

	Contents
	Vita
	Publications
	List of Figures
	List of Tables
	List of Notations
	Acknowledgments
	Abstract
	Introduction
	Foundations and Related Work
	Worst-Case Polynomial Reductions
	Efficient Algorithms on Complex Networks
	Random Graphs and Probabilistic Analyses

	Preliminaries
	Basic Graph Definitions
	Metric Properties of Graphs
	Problems Studied in This Thesis
	Complexity of Computing Metric Quantities

	Lower Bounds in the Worst-Case
	Our Contribution
	Problem Definitions
	The Orthogonal Vector Conjecture and the Hitting Set Conjecture
	The Orthogonal Vector Conjecture
	The Hitting Set Conjecture
	Implications Between Conjectures (*)

	Proof of the Other Reductions (*)
	Bibliographic Notes

	Computing Diameter and Radius: the SumSweep Algorithm
	Our Contribution
	Notations and Preliminary Definitions
	The SumSweep heuristic
	The ExactSumSweep Algorithm
	StepForward and StepBackward
	AllCCUpperBound (*)
	SingleCCUpperBound (*)
	Running Time Analysis
	Particular Cases
	Choosing the Technique to Use

	Experimental Results
	Lower Bounding the Diameter
	Computing the Radius and the Diameter

	Detailed Experimental Results
	Dataset
	The SumSweep Heuristic
	Computing Radius and Diameter

	Internet Movies Database Case Study
	Analysis of the Graph Stretch
	Analysis of the Eccentricity of Actors
	The Six Degrees of Separation Game

	Wikipedia Case Study
	Bibliographic Notes

	Computing Closeness Centrality: the BCM Algorithm
	Related Work
	Overview of the Algorithm
	The computeBoundsNB Function
	The updateBoundsBFSCut Function
	The updateBoundsLB Function
	The Directed Disconnected Case (*)
	The computeBoundsNB Function (*)
	The updateBoundsBFSCut Function (*)
	The updateBoundsLB Function (*)
	Computing alpha(s) and omega(s)

	Experimental Results
	Comparison with the State of the Art
	Real-World Large Networks
	Detailed Experimental Results

	Internet Movies Database Case Study
	Wikipedia Case Study
	Bibliographic Notes

	Computing Betweenness Centrality: the KADABRA Algorithm
	Our Contribution
	Related Work
	Computing Betweenness Centrality
	Approximating the Top-k Betweenness Centrality Set
	Adaptive Sampling
	Balanced Bidirectional Breadth-First Search

	Algorithm Overview
	Correctness of the Algorithm (*)
	Balanced Bidirectional BFS
	How to Choose eta(v)
	Computing the k Most Central Nodes (*)
	Experimental Results
	Comparison with the State of the Art
	Detailed Experimental Results

	Internet Movies Database Case Study
	Wikipedia Case Study
	Bibliographic Notes

	Computing Hyperbolicity: the hyp Algorithm
	The Currently Best Available Algorithm: CCL
	The New Algorithm: HYP
	Overview
	Acceptable and Valuable Nodes

	Experimental Results
	Hyperbolicity of Real-World Graphs
	Using the Classical Definition
	Average Hyperbolicity and Democracy
	Hyperbolicity of Neighborhoods

	Synthetic Graphs
	Bibliographic Notes

	Probabilistic Analysis of Algorithms
	The Model
	The Axioms
	Consequences of the Axioms
	The Sampling Algorithm to Lower Bound the Diameter
	Probabilistic Analysis (*)

	The 2-Sweep Heuristic
	Experimental Results
	Probabilistic Analysis (*)

	The 4-Sweep Heuristic
	Experimental Results
	Probabilistic Analysis

	The RW Algorithm
	Worst-Case Analysis (*)
	Probabilistic Analysis (*)

	The SumSweepHeuristic
	Probabilistic Analysis (*)

	The iFub Algorithm
	Experimental Results
	Probabilistic Analysis (*)

	The ExactSumSweep Algorithm
	Probabilistic Analysis (*)

	The BCM Algorithm
	Probabilistic Analysis (*)

	The AIY Distance Oracle
	Experimental Results
	Probabilistic Analysis (*)

	Balanced Bidirectional BFS
	Experimental Results
	Probabilistic Analysis

	Validity of the Axioms in Real-World Graphs: Experimental Evaluation
	Validity of the Axioms in Random Graphs: Proof Sketch
	Bibliographic Notes

	Conclusions and Open Problems
	Proof of the Validity of the Axioms in Real-World Graphs
	Probabilistic Preliminaries
	Big Neighborhoods
	Configuration Model
	Inhomogeneous Random Graphs

	Small Neighborhoods
	Proof for the Configuration Model
	Proof for Rank-1 Inhomogeneous Random Graphs
	Bounds for Branching Processes
	Bounds on Neighborhood Sizes

	The Case 1<beta<2
	Applying the Probabilistic Bounds
	Proof of Theorem 8.32
	Other Results

	Bibliography
	Index

