
IMT School for Advanced Studies, Lucca

Lucca, Italy

A Formal Approach to Decision Support on
Mobile Cloud Computing Applications

PhD Program in Computer, Decision, and Systems Science

XXVIII Cycle

By

Andrea Morichetta

2016

http://www.imtlucca.it
mailto:andrea.morichetta@imtlucca.it




The dissertation of Andrea Morichetta is approved.

Program Coordinator: Prof. Rocco De Nicola, IMT School for advanced
studies, Lucca

Supervisor: Prof. Rocco De Nicola, IMT School for advanced studies,
Lucca

Supervisor: Prof. Francesco Tiezzi, University of Camerino

Tutor: Prof. Francesco Tiezzi, University of Camerino

The dissertation of Andrea Morichetta has been reviewed by:

Dan Grigoras, University College Cork

Ivona Brandic, University of Wien

IMT School for Advanced Studies, Lucca

2016

http://www.imtlucca.it




Acknowledgements

In writing this thesis I closed a fantastic chapter of my life,
full of challenges and hard work. It has been a great privilege
to spend three years in a prestigious school like the IMT in
the amazing city of Lucca.

I would like to express my sincere gratitude to my co-supervisor
Francesco Tiezzi. He continually and convincingly supported
me. Without his guidance and persistent help this disserta-
tion would not have been possible. I would also like to thank
my supervisor Rocco De Nicola, for his support through all
these years.

I would like to thank many other people like Kim G. Larsen
that hosted me for six months in the CISS Group at the Aal-
borg University and all my co-authors with whom I had the
pleasure to work, special thanks are due to Luca Aceto for his
tireless work and unfailing readiness.

A special thank is due to my family and Elisa for helping me
to survive all the stress of these years and not letting me to
give up.



Contents

List of Figures ix

List of Tables xi

Declaration xii

Vita, Publications and Presentations xiv

Abstract xvii

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 11

2 Background Notions 13
2.1 Timed Atomata . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Timed Automata in UPPAAL . . . . . . . . . . . . . 17
2.1.2 UPPAAL query language . . . . . . . . . . . . . . . 20
2.1.3 The UPPAAL tool . . . . . . . . . . . . . . . . . . . . 21

2.2 Domain Specific Languages . . . . . . . . . . . . . . . . . . 24
2.2.1 The Xtext tool . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Grammar language . . . . . . . . . . . . . . . . . . . 29

3 Domain Specific Language MobiCa 31
3.1 Language syntax . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 TA-based semantics . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Global declaration . . . . . . . . . . . . . . . . . . . 37

vi



3.2.2 Fragments . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Resources . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Optimal scheduler . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 MobiCa implementation . . . . . . . . . . . . . . . . . . . . 43

3.4.1 MobiCa editor . . . . . . . . . . . . . . . . . . . . . . 46

4 Scheduling Analysis 50
4.1 Design time approach . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Cost/reward horizon method . . . . . . . . . . . . . 51

4.1.2 The horizon method at work . . . . . . . . . . . . . 54

4.1.3 Evaluation of custom schedulers via SMC . . . . . . 55

4.1.4 Application to the navigator case study . . . . . . . 58

4.2 Run-Time analysis . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Minimization of reachability properties . . . . . . . 63

4.2.2 Runtime framework . . . . . . . . . . . . . . . . . . 66

4.2.3 Invocation interval . . . . . . . . . . . . . . . . . . . 68

4.3 Generation offloading strategies via UPPAAL Stratego . . 71

4.3.1 Navigator case study on Stratego . . . . . . . . . . . 72

5 Parallelized MCC Scheduling Algorithms 77
5.1 Parallel Dijkstra implementation . . . . . . . . . . . . . . . 78

5.1.1 Properties of shortest paths . . . . . . . . . . . . . . 78

5.2 Parallel Depth First Search . . . . . . . . . . . . . . . . . . . 85

5.3 Analysis of the proposed algorithms . . . . . . . . . . . . . 86

6 Related Work 92
6.1 Optimization metrics . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Partitioning methods . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Offloading strategies . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Scheduling via Timed Automata . . . . . . . . . . . . . . . 100

7 Concluding Remarks 103
7.1 Challenges and Future Work . . . . . . . . . . . . . . . . . . 104

vii



A UPPAAL Syntax 107
A.1 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2 Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.3 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.4 Espression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.5 Query language . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.6 Stratego query language . . . . . . . . . . . . . . . . . . . . 110

B UPPAAL case study 111

References 122

viii



List of Figures

1 Offloading problem . . . . . . . . . . . . . . . . . . . . . . . 5
2 Navigation case study: sequence diagram . . . . . . . . . . 10

3 The door example . . . . . . . . . . . . . . . . . . . . . . . . 18
4 UPPAAL editor . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 UPPAAL simulator . . . . . . . . . . . . . . . . . . . . . . . 23
6 UPPAAL verifier . . . . . . . . . . . . . . . . . . . . . . . . 24

7 A simple example of a MobiCa application . . . . . . . . . 35
8 Schedules for the simple application . . . . . . . . . . . . . 37
9 Fragment translation . . . . . . . . . . . . . . . . . . . . . . 39
10 Mobile resource translation . . . . . . . . . . . . . . . . . . 40
11 MobiCa Editor: Navigator application . . . . . . . . . . . . 47

12 Cost/reward horizon method . . . . . . . . . . . . . . . . . 53
13 Reset TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
14 Manager TA . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
15 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 59
16 Navigator case study: graphical representation of the Mo-

biCa specification . . . . . . . . . . . . . . . . . . . . . . . . 60
17 Navigator case study: optimal schedules . . . . . . . . . . 61
18 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 62
19 UPPAAL verification . . . . . . . . . . . . . . . . . . . . . . 66
20 Runtime framework . . . . . . . . . . . . . . . . . . . . . . 67
21 Fragment example . . . . . . . . . . . . . . . . . . . . . . . 72

ix



22 Manager example . . . . . . . . . . . . . . . . . . . . . . . . 73
23 The resources’ models . . . . . . . . . . . . . . . . . . . . . 74
24 Strategy simulation . . . . . . . . . . . . . . . . . . . . . . . 76

25 State space exploration . . . . . . . . . . . . . . . . . . . . . 80
26 Graphical representation of results in Table 8 . . . . . . . . 87
27 Another example of a MobiCa application . . . . . . . . . . 88
28 Graphical representation of results in Table 9 . . . . . . . . 89
29 Execution seconds for the P. Djkstra algorithm on Example 1 90

x



List of Tables

1 MobiCa syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2 Operators translation . . . . . . . . . . . . . . . . . . . . . . 38
3 Time and energy costs of the schedules for the simple ap-

plication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Query syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Verification response time . . . . . . . . . . . . . . . . . . . 63
6 UPPAAL verification results . . . . . . . . . . . . . . . . . . 64

7 Unfolding heuristics . . . . . . . . . . . . . . . . . . . . . . 82
8 Performance results in seconds for Example 1 . . . . . . . . 87
9 Performance results in seconds for the example in Figure 27 89

xi



Declaration

In this thesis we focus on the main field of my research, so we
include only part of the publications achieved during my Phd
program. Part of the material presented has been previously
published in two co-authored papers. Chapter 3 is based on
(AMT15) a joint work with Luca Aceto, Reykjavik Univer-
sity and Francesco Tiezzi, University of Camerino. Chapter 4
is based on (AMT15) and (ALMT15) a joint work with Luca
Aceto, Reykjavik University, Kim G. Larsen, Aalborg Univer-
sity and Francesco Tiezzi, University of Camerino.

xii



xiii



Vita

February 3, 1987 Born, Macerata, Italy.

2006-2009 Bachelor degree in Computer science,
Final mark: 107/110,
University of Camerino.

March 2011 - June2011 Erasmus period,
University of Iceland.

2009-2011 Master Degree in Computer Science,
Final mark: 110/110 cum laude,
University of Camerino.

March 2012- February 2013 Research Fellow in the Software E. group,
I.S.T.I. A. Faedo CNR,
Pisa, Italy.

February 2013 Present Phd Candidate,
IMT Lucca, Italy.

November 2014 - April 2015 Visiting Professor Kim G. Larsen,
University of Aalborg, Denmark.

June/July 2015 External Examiner in Computer Science,
ITC ”A Gentili”,
Macerata, Italy.

xiv



Publications

1. Programming and Verifying Component Ensembles. Rocco De Nicola,
Alberto Lluch-Lafuente, Michele Loreti, Andrea Morichetta, Rosario
Pugliese, Valerio Senni, Francesco Tiezzi: FPS@ETAPS 2014: 69-83

2. The SCEL Language: Design, Implementation, Verification. Rocco
De Nicola, Diego Latella, Alberto Lluch-Lafuente, Michele Loreti,
Andrea Margheri, Mieke Massink, Andrea Morichetta, Rosario Pugliese,
Francesco Tiezzi, Andrea Vandin: The ASCENS Approach 2015: 3-
71

3. Decision Support for Mobile Cloud Computing Applications via
Model Checking. Luca Aceto, Andrea Morichetta, Francesco Tiezzi:
MobileCloud 2015: 199-204

4. A Cost/Reward Method for Optimal Infinite Scheduling in Mobile
Cloud Computing. Luca Aceto, Kim G. Larsen, Andrea Morichetta,
Francesco Tiezzi: FACS 2015: 66-85

Authors are listed in alphabetical order.

xv



Presentations

Conference talks:

1. Decision Support for Mobile Cloud Computing Applications via
Model Checking in the IEEE Mobile Cloud Conerence (San Fran-
cisco, US)

2. A cost/reward method for optimal infinite scheduling in Mobile
Cloud Computing in the FACS Conference (Rio de Janeiro, BR)

Other talks:

1. Specifying and Verifying SCEL programs with SPIN in the ASCENS
Project (Modena, IT).

2. Decision Support for Mobile Cloud Computing Applications via
Model Checking, Aalborg University

3. Optimal Scheduling for Mobile Cloud Computing Applications via
Model Check- ing in the CINA Project (Civitnova Marche, IT)

xvi



Abstract

Mobile Cloud Computing (MCC) is an emergent topic growths
with the explosion of the mobile applications. In MCC sys-
tems, application functionalities are dynamically partitioned
between the mobile devices and cloud infrastructures. The
main research direction in this field aims at optimizing dif-
ferent metrics, like performance, energy efficiency, reliability
and security, in a dynamic environment in which the MCC
application is located. Optimization in MCC refers to tak-
ing advantages from the offloading process, that consists in
moving the computation from the local device to a remote
one. The biggest challenge in this aspect is to define a strat-
egy that is able to decide when offloading and which part of
the application to move. This technique, in general, improves
the efficiency of a system, although sometimes it can lead to
a performance degradation.
To decide when and what to offload, in this thesis we pro-
pose a new general framework supporting the design and the
runtime execution of applications on their own MCC scenar-
ios. In particular the framework provides a new specification
language, called MobiCa, equipped with a formal semantics
that permits to capture all characteristics of a MCC system.
Besides the strategy optimization achieved by exploiting the
potentiality of the model checker UPPAAL, we propose a set
of methods for determining optimal finite/infinite schedules.
They are able to manage the resource assignment of com-
ponents with the aim of improving the system efficiency in
terms of battery consumption and time. Furthermore, we
propose two optimized scheduling algorithms, developed in
Java, based on the exploitation of parallel computation in or-
der to improve the system performance.

xvii



Chapter 1

Introduction

In the last decade, portable devices have increasingly pervaded our daily
lives. Innovation in hardware has continuously provided powerful com-
putational resources in lighter and smaller electronic handsets. This hard-
ware evolution has triggered a tremendous amount of new mobile appli-
cations; in a few years the mobile application market has exploded (EXP).
The success of this market is strictly related to the ubiquitous access to
data and computation that should satisfy the needs of users everywhere
and at any time.

The majority of mobile applications that run on a portable device are
strongly connected to the network for accessing data, but maintain the
computational load locally. This characteristic requires a large amount
of energy in battery-limited devices. For this reason there exist wired
infrastructures, such as workstations, servers and, in particular, cloud
systems, that provide more computational resources without being lim-
ited by stringent size, weight and energy consumption. A combination
of mobile devices and cloud infrastructures can provide computational
resources everywhere and at any time in mobile devices. This is at the
basis of an emerging paradigm, called Mobile Cloud Computing (MCC)
(FLR13; DLNW13; Fli12), for developing mobile applications. It relies
on the offloading concept, i.e. the capability of moving the computational
power and data storage away from mobile devices into the cloud.

1



There are many reasons (BKMS13) for executing part of the computa-
tion on remote infrastructures in addition to the mobile device on which
it is currently carried out. The first obvious potential benefit is improving
storage capacity and performance. Indeed, even if the computational re-
sources available to a mobile device have increased rapidly over the past
few years, this computing power is still smaller than that of the station-
ary counterparts. This is because smartphones and tablets must be much
smaller and lighter than servers and desktop computers. Due to this gap
between mobile and cloud processing power, CPU intensive applications
can be executed much faster on remote than on mobile devices. On the
other hand, interactive applications that require few computational re-
sources may be executed on mobile devices as fast as on servers. Perfor-
mance does not depend only on processor speed, but also on memory,
storage, the ability of parallelizing across multiple cores and servers, and
better connections. All of these characteristics can be simply provided by
a common cloud infrastructure with a very small investment.

The second benefit is reducing energy consumption. According to
(KL10), mobile device users found longer battery life to be more impor-
tant than all other features. A mobile device should budget its finite
source of energy wisely in order to arrive at the end of the day with-
out exhausting all its available energy before. Designers are involved in
the arduous challenge to make devices that are as energy efficient as pos-
sible, for example using hardware power-saving modes or reducing the
speed and quality of activities performed by mobile applications. While
these measures are essential for extending battery lifetime, they also no-
ticeably degrade the mobile users’ experience due to the slowing down
of the execution of applications. Computation offloading is clearly an at-
tractive alternative, because using remote computation and storage im-
proves performance and, at the same time, saves battery power giving a
better user experience.

Unfortunately the use of a remote infrastructure does not always come
without a cost. Sometimes computation offloading may degrade the ap-
plication’s performance. A possible way for measuring performance is
to asses if the time saved by performing the computation remotely is

2



greater than the time spent communicating inputs and outputs over the
network against the total computation executed locally. This measure,
of course, could be highly influenced by network latency, bandwidth
or computational power requirements of the offloaded code. For ex-
ample, with high latency, low bandwidth and a consistent amount of
offloaded code with a very low computational power requirement, exe-
cuting the computation locally can improve the performance rate. The
issues discussed above for improving the performance apply also to en-
ergy saving. Indeed, code offloading through a power hungry wireless
network may require more energy than performing the same activity lo-
cally. According to the study proposed in (MN10), a critical aspect in
energy saving is the necessity of finding at runtime, from time to time,
the best trade-off between energy consumed by computation and energy
consumed by communication.

It is therefore natural to ask how one should best build systems that
combine all the introduced concepts. Current solutions tend to move
from one extreme to the other; from one side it is given most function-
ality to the cloud focusing the computation remotely and permitting its
access to a thin-client; from the other side it is given most functionality
to the mobile focusing the computation in a client architecture that runs
usually in a portable device. In both of the cases we are in front of a
static partition of the application. This client-server approach is known
to be poorly suited for mobile environments, in which resource availabil-
ity changes rapidly. MCC with respect to this old approach, introduces
an important innovation: the dynamism of the application. In this way,
the mobile applications are able to adapt to the continuous changing of
the resources availability, by reallocating data and computation in order
to improve performance, reduce energy usage and satisfy the final user
goal.
Applications that benefit from MCC are both interactive and resource-
intensive. Non-interactive applications can be executed easily on the
cloud, since such applications can tolerate the communication latency
between mobile and cloud. Application non resource-intensive instead
can be executed entirely on mobile. The application that are currently

3



most popular with mobile users like web-browsing and e-mail require
often few resources to the mobile device. Consequently MCC provides
some benefit that cannot be perceived by the final user. On the other
hand, the list of application supported by MCC includes more demand-
ing applications, like speech recognition, face recognition, speaker iden-
tification and image identification. The challenge is to find a method that
attempts to perceive the maximum benefit from the MCC paradigm for
all applications where there is not a pronounced convenience to execute
them in a hybrid computation with respect to the cloud or the mobile.

Here below we describe a concrete offloading problem and all the fac-
tors that can influence negatively the MCC achievements. One concrete
problem consists in executing a number of interdependent fragments of
code into a number of heterogeneous resources like mobile devices and
cloud infrastructures. Usually a fragment cannot be executed before all
its predecessors have terminated, unless it is in parallel. Furthermore,
each fragment can be execute in only one resource at the same time. An
example of offloading of fragments is depicted in Figure 1. In detail,
there are three fragments (A, B, C) that should be executed in a MCC sys-
tem. In the first case (1) the computation is local on the mobile device for
the fragments A and C and remote on cloud for the fragment B. How it is
possible to notice in the figure, with respect to the second case (2) where
the computation is maintained local for all fragments, the hybrid com-
putation leads to an improvement of performance outlined by a shorter
processing phase. Of course we cannot take this example as a general
rule, the offloading is not always convenient. Indeed if we consider the
last case (3), the hybrid computation degrade the final performance of
the system, behaving worst than the second case. These negative perfor-
mances are generated by a congested network, that slows down the pro-
cessing of data synchronization, thus degrading the total performance of
the system. In other words, the system is not able to compensate the syn-
chronization time with the speed up obtained by executing the fragment
B on a more powerful processor.

4



C
om

pu
te

 A
C

om
pu

te
 C

C
om

pu
te

 A
C

om
pu

te
 C

C
om

pu
te

 B

Offlo
ad B

Return B

C
om

pu
te

 A
C

om
pu

te
 C

Offl
oa

d B
Ret

urn
 B

C
l
o
u
d

C
l
o
u
d

H
yb

rid
 

C
om

pu
ta

tio
n

F
in

is
he

d

H
yb

rid
 

C
om

pu
ta

tio
n

F
in

is
he

d

M
ob

ile
 

C
om

pu
ta

tio
n

F
in

is
he

d

tim
e

1
) 2)1
) 3)

Fi
gu

re
1:

O
ffl

oa
di

ng
pr

ob
le

m

5



This thesis will focus on the MCC paradigm, and aims at support-
ing the development of mobile applications whereby the data processing
and storage are moved from the mobile devices to powerful and cen-
tralized computing platforms located in the cloud. Creating applications
for MCC environments requires computing and communication capa-
bilities, that should be gracefully integrated between local and remote
devices. This integration can give a rich user experience under the bat-
tery life concern, data/storage capacity and computational power. The
user experience as mentioned in (OG13a) is the key concept of a MCC
contest. Only integrating new functionalities with a new model of inter-
action, computation intensive works can have a positive impact on the
final user experience. For achieving this goal and make the interactions
between the mobile and the cloud as seamless as possible, the developer
should consider and take under control a set of parameters like the qual-
ity and coverage of the network, the time and the energy cost required
for the communication of data over the network and possibly disconnec-
tions that inhibit the regular application usage. All these features make
the MCC a very attractive and cutting-edge topic in research.

1.1 Contributions

What we want to do in this thesis is to exactly provide a new formal-
based methodology, useful in MCC, for the offloading decision support
and strategy assessment. The main novelty with respect to the related
work in the literature, which mainly uses linear programming methods,
is the introduction of a formal verification. This provides an exhaustive
system configuration evaluation, by using well-established model check-
ing techniques.
In other words, we imagine to have a MCC scenario where there is an
application running on a mobile device that performs code offloading
according to some strategies defined by the developer in terms of poli-
cies. The duty of these policies is to manage the computation offloading
according to the resources usage of the mobile device and the cloud. So,
at this point, to achieve a good result in terms of performance and en-

6



ergy saved the main role is played by the policies setting, and so, by the
developer decisions made at design time. Of course, at design time, for
the policies configuration, the developer can follow his experience, re-
sults of other applications or adjust values according some preliminary
tests, but for sure he is not able to foresee all possible situations. For this
reason we provide a framework that relies on a formal analysis, based on
a model checking technique, to explore automatically and exhaustively
all possible situations of the system, and give the right suggestions to the
developer for properly tuning the policies configuration.
To achieve the mentioned goals, we need an application model to be
used as input in an existing model checker. Indeed, the effort of creat-
ing a compatible model with an existing tool is given by the fact that
proposing a novel ad-hoc model would require to develop a related soft-
ware tool for the verification, with all problems connected. Furthermore
a framework based on well established tool is more reliable and efficient.
To make a fast prevision, our model should contain all information re-
garding the application behavior and the application surrounding en-
vironment. Some possible examples could be: information about the
structure of the application, resources usage, offloading strategies, ex-
ecution traces and so on. At this point it is simple enough to imagine
the final complexity of this model and we are also conscious that mobile
applications developer will not inclined to invest their time in generate
a low-level model during the design of an application. However, we are
confident that the developers can provide a more high-level specification
of their systems. Therefore, in our framework we provide a high-level
language that developers can use for the application specification. The
framework, starting from this specification and by exploiting the formal
semantics of the language, will generate automatically the input model
for the incorporated verification tool. This tool, by means of some spe-
cific techniques, is able to generate an optimal scheduler that will man-
age the offloading strategy in order to improve the performance, while
minimizing the energy consumption by devices. These concepts are im-
perative for the applicability and satisfiability of prefixed service level
agreement for computation-hungry applications in small devices.

7



Below we summarize the contributions presented in this thesis.

MobiCa: a Domain Specific Language for MCC MobiCa is a domain-
specific language for designing MCC systems in terms of installed ap-
plications, code partitioning, and device characteristics (computational
power, memory, network bandwidth, etc.). The main advantage of a
domain-specific language, with respect to general-purpose modelling lan-
guages, is to allow system designers to focus on those aspects of the mo-
bile applications that are relevant for the MCC paradigm and, in partic-
ular, for taking offloading decisions. These aspects are indeed first-class
citizens of MobiCa, thus providing a high-level modelling perspective
that abstracts from low-level details (e.g., the specific computations per-
formed by the application components) that are not necessary for the
offloading decision support.
The developer designs the system using MobiCa, by focusing on the
MCC characteristics of the application(s) of interest, choosing the right
partitioning, the typology and the time of the analysis.

Automatic translation into UPPAAL1. At the developer will be required
only to provide the application specification defined with the MobiCa
language. The framework, starting from this specification and by exploit-
ing the formal semantics of the language, will generate automatically the
input model for the verification tool. We have defined and implemented
a semantics for MobiCa via translation into timed automata (AD94), which
automatically associates an UPPAAL model to each MobiCa specifica-
tion. Timed automata are a formal language, that can be used to model
and analyse the timing behavior of computer systems, and can be veri-
fied using the well know model checker UPPAAL (see Chapter 2). This
takes a weight off the developer, who does not have to take care of the
details specified in the timed automata model. To simplify these steps
we rely on the Xtext tool, an Eclipse open-source framework that allows
one to generate editors equipped with auto-complete mechanisms, syn-
tax highlighting, code completion and static error highlighting.

1UPPAAL, is an acronym based on a combination of UPPsala and AALborg universities.

8



Design-time decision support. A design-time technique is provided to
synthesize schedulers that produce infinite schedules ensuring the sat-
isfaction of a property for infinite runs of the application. This is par-
ticularly useful for MCC, where applications are supposed to provide
permanent services, or at least to be available for a long period. In par-
ticular, considering that our model is equipped with constraints on du-
ration, costs and rewards, we are interested in identifying the optimal
schedulers that permit the achievement of the best result in terms of en-
ergy consumption and execution time. In fact, over infinite behaviors, it
is possible to recognize a cyclic execution of components that is optimal
and is determined by means of the limit ratio between accumulated costs
and rewards. Consequently, an optimal scheduler is given by maximiz-
ing or minimizing the cost/reward ratio.

Run-time decision support. The main objective of our run-time decision
support is to attempt to maximize or minimize a chosen metric while
achieving the expected system behaviour at run-time. Different metrics
can be adopted; energy saving and time saving are probably the most
important. In our approach we try to identify the best execution strategy
for a finite amount of time/energy/fragments, basing this method on
cost minimization for reachability properties. To mark this methodology
usable in practice, we present also a dedicated framework able to incor-
porate in the application the decision support and to collect important
data for the verification phase. Furthermore, the framework is in charge
to manage the analysis phase and take care of the reconfiguration of the
system according to the environment variations.

Stratego Analysis. Besides to standard UPPAAL models, MobiCa spec-
ification can be translated to UPPAAL Stratego models. In this case,
rather than verifying a proposed controller synthesis as usual with a Sta-
tistical model checking, we use the Stratego facilities. Stratego, by means
of an efficient on-the-fly algorithm, is able to construct at design-time
a system controller that guarantees the correctness of reachability and

9



Configuration
Panel

loop

Controller GPS Path
Calculator Maps Traffic 

Evaluator Navigator Navigation
Panel Voice Speed Trap

Indicator

destination

getCoordinates

coordinates

coordinates
coordinates

map
itineraries

trafficInfo
itinerary

itinerary

checkUpdate itinerary

itinerary

Figure 2: Navigation case study: sequence diagram

safety properties for timed and hybrid games. However, once a strat-
egy has been synthesized, Stratego permits further and deeper analysis
in terms of other additional properties that may or may not hold un-
der the strategy. Furthermore it permits to optimize a synthesized non-
deterministic safety strategy with respect to a desired performance mea-
sure.

Parallel algorithms. We also propose two optimized algorithms, devel-
oped in Java, that try to cover the performance issues observed using
the model checking techniques and in particular UPPAAL. The main ad-
vantages of the proposed algorithms with respect to the model check-
ing methods is the exploitation of parallel computation, that in high dis-
tributed systems like the cloud ones, permits to have significant benefits
in terms of performance and throughput. The two algorithms are devel-
oped on purpose for finding the optimal scheduling in MCC systems,
revisiting the well known algorithms for the shortest path and for the
depth first search in a tree.

Assesment on a case study. We show the effectiveness and feasibility
of our approach by means of a larger case study, drawn from (AMT15),
concerning a navigator application. This kind of application is one of
the most complex and used in mobile devices. This is an interesting
case study for this work from the point of view of its complexity and
its strong real-time requirements. In particular, the greatest challenge for

10



navigation system developers is to provide an application that is able to
find the right route, and recalculate it as quickly as possible in case of
changes, considering the current traffic condition. The dynamism of the
current traffic variable requires a constant evaluation of the traffic due to
the unpredictability evolution of its condition over time. This character-
istic makes the traffic a real-time parameter to consider in order to obtain
always the best navigation route.

Due to these strong computational requirements, the navigation ap-
plication is an interesting case study to analyze under the MCC paradigm.
A common behavioural schema for a navigation application is depicted
in Figure 2. The system starts when the user inserts the destination in the
configuration panel that consequently activates the controller. The controller
in turn asks the GPS for the current coordinates and forwards them to the
path calculator. The path calculator, interacting with the map and the traffic
evaluator, will provide a possible itinerary. The itinerary is processed by
the navigator, which forwards information to the navigation panel. This
latter component, with the help of the voice and speed trap indicator, pro-
vides the navigation service to the end user. The navigator is also respon-
sible for reactivating the controller in order to check possible updates of
the route.

1.2 Structure of the thesis

The rest of the thesis is organized as follows.
In Chapter 2, to accommodate readers with a cross-disciplinary back-
ground, we provide a comprehensive introduction to terminology, nota-
tion, and tools that are used extensively throughout the remainder of the
thesis. In Chapter 3 we introduce the domain specific language MobiCa,
with its syntax and semantics given by translation into Timed Automata.
In Chapter 4 we present the main techniques we used to find the optimal
scheduling at design-time for infinite behaviour, at run-time for finite be-
haviour, and using Stratego. In Chapter 5 we introduce two algorithms
developed in Java with the purpose of filling the gap of the model check-
ing technique in MCC applications. Chapter 6 provides the context for

11



our research contribution with a discussion of related work in Mobile
Cloud Computing and formal method applied to strategy techniques.
Finally, Chapter 7 summarizes the main contributions and propose pos-
sible directions for further research in Formal Methods applied to the
MCC field.

12



Chapter 2

Background Notions

The use of formal specification in software and hardware development
is a very diffused technique. In the last few years the use of formal ver-
ification, like prediction and strategy analysis, on different fields has in-
creased the interest of the researchers.

In the following we present some basic notions of timed automata,
underlying the peculiarity of UPPAAL model checker, one of the most
relevant verification environments for real time systems. The choice of
UPPAAL with respect to its competitors was driven by the high flexi-
bility of timed automata in describing dynamic environments based on
time and for its well supported range of tools that has permitted an ex-
haustive analysis of the system scenario. In our work we rely also on
the Xtext tool, that is the base IDE for developing new domain specific
languages on Eclipse. This tool allows us to specify the structure of a
MCC system in MobiCa exploiting all the supporting feature available
on a generic language.

2.1 Timed Atomata

In this section we report key concepts concerning timed automata; no-
tions and definitions are mostly borrowed from the book by Aceto et
al. (AILS07). A timed automaton is a finite state machine composed by

13



states, transitions, and real valued-clocks typically used for real-time sys-
tem analysis. The time is the main characteristic that distinguishes timed
automata from other formalisms; in particular time can elapse when the
automaton is in a state or location. The system can evolve from one state
to another one only if exists a transition that connects them; the execu-
tion of a transition is supposed to be instantaneous. A clock constraint
on a transition is called guard, and invariant when it is on a location.
Time can elapse in a location only if the invariant is satisfied, while a
transition can occur only if the guard associated is satisfied. A guard can
be a boolean expression or a condition on clock values. The time in the
system elapses at the same rate for all clocks and at any instant a clock is
equal to the time that has elapsed since the last time it was reset.

Definition 1 (Timed Automaton) A timed automaton over a finite set of clocks
C and a finite set of actions Act is a quadruple

(L, `0 , E, I),

where:

• L is a finite set of locations, ranged over by `,

• `0 ∈ L is the initial location,

• E ⊆ L×B(C)×Act× 2C× L is a finite set of edges, and

• I : L→ B(C) assigns invariants to locations.

The set of clock constraints B(C) is defined by the abstract syntax:

g, g1, g2 ::= x ./ n | g1 ∧ g2;

where x ∈ C is a clock, n ∈ N and ./∈ {≤, <,=, >,≥}
We write ` g,a,r−−−→ `′ instead of (`, g, a, r, `′) ∈ E . For such an edge, ` is called
the source location, g is the guard, a is the action, r is the set of clocks to be reset
and `′ is the target location.

Semantically, a timed automaton is modelled by a transition system de-
fined as follow:

14



Definition 2 (Timed Labeled Transition System (TLTS)) Let A = (L, `0,
E, I) be a timed automaton over a set of clocks C and a set of actions Act . We de-
fine the timed labelled transition system T(A) generated by A as T(A) = ( Proc,
Lab, { a−→ |a ∈ Lab }), where:

• Proc = {(`, v) | (`, v) ∈ L × (C → R≥0) and v |= I(`)} , i.e. states are
of the form (`,v), where ` is a location of the timed automaton and v is a
valuation that satisfies the invariant of ` ;

• Lab = Act ∪ R≥0 is the set of labels;

• −→ is defined by:

– (`, v)
a−→ (`′, v′) if there is an edge (` g,a,r−−−→ `′) ∈ E such that v |= g,

v’ = v[r] and v’ |= I(`′),

– (`, v)
d−→ (`, v + d) for all d ∈ R≥0 such that v |= I(`) and v+d |=

I(`).

Let v0 denote the valuation such that v0(x) = 0 for all x∈C . If v0 satisfies the
invariant of the initial location `0, we shall call (`0, v0) the initial state (or ini-
tial configuration ) of T(A).

We use v[r] to denote the set of clocks valuations where the values of
clocks r are reset to zero. Formally:

• for each d ∈ R≥0 the valuation v+d is defined by:

(v + d)(x) = v(x) + d for each x ∈ C

• for each r ⊆ C, the valuation v[r] is defined by:

v[r](x) =

{
0 if x ∈ r,

v(x) otherwise.

Generally a real time model is a collection of timed automata running
in parallel, called network of time automata. Timed automata in a net-
work are able to collaborate by synchronizing input/output (with tags

15



?/!) actions on transition channels. The communication is implemented
when one parallel component raises a synchronization request on a par-
ticular channel and another component accepts the request on the same
channel. Both components can then simultaneously perform the com-
munication transitions, and the common assumption is that the duration
of the synchronization action is zero time units, so, the communication
is instantaneous. This form of communication is also called hand-shake
synchronization.

Definition 3 (Network of Timed Automata) Let n be a positive integer and,
for each i ∈ {1,..., n}, let

Ai = (Li, `
i
0, Ei, Ii)

be timed automata over a set of clocks C and a set of actions Act. We call the
composition A = A1|A2| . . . |An a network of timed automata with n parallel
components.

The following definition formalizes the behaviour of a network of timed
automata.

Definition 4 (Network of Timed Automata Semantics) Let A = A1|A2|
. . . |An, whereAi = (Li, `

i
0, Ei, Ii) for each i ∈ {1, ..., n}, be a network of timed

automata over a set of clocks C and actions Act = {c! | c ∈ Chan} ∪ {c? | c ∈
Chan} ∪N . We define the TLTS T(A) generated by the network A as

T (A) = (Proc, Lab, { α−→ |α ∈ Lab}).

Here

• Proc = {(`1, `2, ..., `n, v)|(`1, `2, ..., `n, v) ∈ L1 ×L2 × ×Ln × (C →
R≥0) and v |=

∧
i∈{1,...,n} Ii(`i)} (i.e. states are of the form (`1, ..., `n, v),

where each `i is a location in the component timed automaton Ai and v
is a valuation over the set of clocks C that satisfies the invariants of all
locations i present in the state),

• Lab = N ∪ {τ} ∪ R≥0 is the set of labels, and

• the transition relation is defined as follows:

16



– (`1, ..., `i, ..., `n, v)
a−→ (`1, ..., `

′
i, ..., `n, v

′) if a ∈ N and there is an
edge

(`i
g,a,r−−−→ `′i) ∈ Ei in the ith component automaton such that

v |= g, v′ = v[r] and
v′ |= Ii(`

′
i) ∧

∧
k 6=i Ik(`k);

– (`1, ..., `i, ..., `j , ..., `n, v)
τ−→ (`1, ..., `

′
i, ..., `

′
j , ..., `n, v) if i 6= j and

there are edges (`i
gi,α,ri−−−−→ `′i) ∈ Ei and (`j

gj ,β,rj−−−−→ `′j) ∈ Ej such
that α and β are complementary,
v |= gi ∧ gj , v′ = v[ri ∪ rj ], and
v′ |= Ii(`

′
i) ∧ Ij(`′j) ∧

∧
k 6=i,j Ik(`k);

– (`1, ..., `n, v)
d−→ (`1, ..., `n, v + d) for all d ∈ R≥0 such that

v + d′ |=
∧
i∈{1,...,n} Ii(`i)

for each real number d′ in the interval [0, d].

Let v0 denote the valuation v0(x) = 0 for all x ∈ C. If v0 satisfies the
invariants of all the initial locations `i0 , we shall call (`10, `20, ..., `n0 , v0) the initial
state (or initial configuration ) of T(A).

Where N is a finite set of ordinary action names including τ formally:

Act = {c!|c ∈ Chan} ∪ {c?|c ∈ Chan} ∪N

2.1.1 Timed Automata in UPPAAL

UPPAAL is a tool for the verification of real-time system. The tool, as de-
scribed in the tutorial (BDL04), is designed to verify systems modelled
as networks of timed automata extended with additional features, such
as bounded integer variables and urgency. A current state of the system
is defined by the locations, the clock values, and the values of the vari-
ables of the automata. Every automaton may fire an edge (sometimes
misleadingly called a transition) separately or synchronise with another
automaton, which leads to a new state. Figure 3 shows a network of
timed automata describing the interaction between two automata mod-
elling an user with an automatic door. The door in Figure 3 (a) is mod-
elled with three locations: close, open, and hold open. If the user presses

17



(a) Door (b) User

Figure 3: The door example

a button, i.e., synchronises with press?, then the door is opened. If the
user presses the button again, the door is closed. However, if the user is
fast and rapidly presses the button twice, the door is opened and then
blocked in open position. The user model is shown in Figure 3 (b). The
user can press the button randomly at any time or even not press the
button at all. The clock y of the door is used to detect if the user was fast
(y < 5) or slow (y >= 5).

We present below the UPPAAL modelling language based on timed
automata and later the query language, that is a subset of TCTL, used
for specifying property to be checked. For having a more complete view
of all the UPPAAL constructs, we refer the interested reader to the Ap-
pendix A.

Templates are the skeleton of automata and are defined with a set of pa-
rameters that can be of any type (e.g., int, chan). These parameters are
substituted for a given argument in the process declaration.
Constants are declared as const followed by a name and a value. Con-
stants by definition cannot be modified at runtime.
Bounded integer variables are declared as int[min,max] name, where
min and max are the lower and upper bound, respectively. The bounds
are checked upon verification and violating a bound in guards, assign-
ments or invariants leads to an invalid state that is discarded (at run-
time). If the bounds are omitted, the default range of -32768 to 32768 is
used.
Binary synchronisation channels are declared as chan name. An edge

18



labelled with an output action c! synchronises with another labelled in-
put action c?. A synchronisation pair is chosen non-deterministically if
several combinations are enabled.
Broadcast channels are declared as broadcast chan. In a broadcast
synchronisation one sender c! can synchronise with an arbitrary num-
ber of receivers c?. Any receiver than can synchronise in the current state
must do so. The send on a broadcast channel is not a blocking action. If
there are no receivers, then the sender can still execute the c! action.
Urgent synchronisation channels are declared by prefixing the channel
declaration with the keyword urgent. Delays must not occur if a syn-
chronisation transition on an urgent channel is enabled. Edges using ur-
gent channels for synchronisation cannot have time constraints, i.e., no
clock guards. Time is not allowed to pass when the system is in an urgent
location.
Committed locations are even more restrictive on the execution than ur-
gent locations. A committed location does not permit the time elapsing
and has the priority on other executions. Usually it is used for creating
atomic sequence in the execution between more than two components.
Arrays are data structures, like in classic programming languages, where
type can be clocks, channels, constants and integer variables. They are
defined by appending a size to the variable name, e.g. chan c[4];

clock a[2]; int[3,5] u[7].
Initialisers are used to initialise integer variables and arrays of integer
variables. For instance, int i = 2; or int i[3] = {1, 2, 3}.
Record types are declared with the struct keyword and permit to cre-
ate a structure composed of different types. e.g. struct int a;

bool b; s1 = { 2, true };.
Custom types are defined with the C-like typedef construct. You can
define any custom-type from other basic types such as records.
User functions are defined either globally or locally to templates. Func-
tion are callable from the update in edges or in invariant if the return
type is bool.

19



Expressions in UPPAAL
Expressions in UPPAAL are defined on clocks and integer variables.

Expressions can be setted using the dedicated text-box contained in the
property form of edges.

• Select A select label contains a comma separated list of names:
type expressions where name is a variable name and type is a
defined type (built-in or custom). These variables are accessible
on the associated edge only and they will take a non-deterministic
value in the range of their respective types.

• Guard A guard is a particular expression side-effect free (i.e. ex-
pressions that does not change the value of variables or the state of
the system); it evaluates to a boolean and is defined only on clocks,
integer variables, and constants. Guards over clocks are essentially
conjunctions (disjunctions are allowed over integer conditions).

• Synchronisation A synchronisation label is either of the form Ex-
pression! or Expression?, or is an empty label.

• Update An update label is a comma separated list of expressions
with a side-effect; expressions must only refer to clocks, integer
variables, and constants. They may also call functions.

• Invariant An invariant is an expression bound to a state that sat-
isfies the following conditions: it is side-effect free; only clock, in-
teger variables, and constants are referenced. It is a conjunction
of conditions of the form x<e or x6e where x is a clock reference
and evaluates to an integer. An invariant may call a side-effect free
function that returns a boolean.

2.1.2 UPPAAL query language

UPPAAL uses a simplified version of the TCTL logic for verifying if the
model under analysis satisfies a set of requirements. Like in TCTL, the
UPPAAL query language consists in path formulae and state formulae.

20



State formulae describe properties on an individual state, whereas path
formulae quantify over paths or traces. The path formulae are classified
according to the quantifier and generally can express reachability, safety
and liveness properties.

State formula A state formula is an expression that describes a particular
condition on a state. It can be a boolean evaluation or the internal state of
a process, using the notation Process.location. Another important
expression on the state formula is the deadlock that is expressed with
the keyword deadlock; a system is in deadlock if there are no outgoing
action transitions for the current state and neither a delay on that state is
possible.

Path formula The path formulae are divided in three subcategories ac-
cording to the property to verify:

• The reachability is the simplest form and checks if there exists a
path that eventually satisfies a certain property. This formula is also
used for validating the basic behaviour of the model. In UPPAAL,
we write this property using the syntax E <> ϕ.

• The safety property is used for avoiding that something bad will
happen. For example in a critical domain a bad action must be
always avoided. In UPPAAL these properties are formulated posi-
tively: a formula should be true in all reachable states with the path
formula A[ ]ϕ or E[ ]ϕ.

• The liveness property expresses the willingness that something
good will eventually happen. The liveness in UPPAAL is expressed
with the path formula A <> ϕ.

2.1.3 The UPPAAL tool

UPPAAL is composed of two main parts: the interface and the model
checking engine. The graphical interface that is shown in Figure 4 is

21



Figure 4: UPPAAL editor

divided in three main parts: the editor, the simulator, and the verifier,
accessible via three tabs under the main toolbar.

The editor contains the system model, which usually is composed by a
network of timed automata that are called processes in the tool. The ed-
itor is divided in two parts: the one on the left is the tree panel where
is shown the system structure and permits to access the different tem-
plates and declarations; on the right hand side instead there is the canvas
graphical editor. Figure 4 shows a fragment template composed by seven
locations and some edges. The edges are labelled with guard conditions
(e.g. activated[id]==true), synchronisations (e.g. hurry!) and as-
signments (e.g. result[id][0]=0). In the tree panel is possible to find
the global declaration, that contains variables, clocks, channels and con-
stants. Fragment, Battery, Mobile, Cloud and Network are example of
templates and usually are equipped with a local declaration of variables
that is restricted to the template scope. The system declaration contains
the processes instantiation, that can be used to parametrize template or
directly invoked.

22



Figure 5: UPPAAL simulator

The Simulator, represented in Figure 5, is used for simulating a singular
instance of the system. There are two ways of interaction, the first one
is the manual selection of the next action to execute, or the other one is
the automatic selection performed by the tool, which randomly chooses
between the enabled actions.

The simulator view shows five sub-windows. In the window 1 there
is the enabled trasition where it is possible to choose the next transition. In
the window 2, just below, there is the simulation trace, that shows the cur-
rent state for each process after the execution of an action. The window 3
is the variable view, it shows the current values of variables and clocks dis-
tinguished between global one and local imputable to each process. The
window 4 shows the automata state in a graphical way. The window 5,
called sequence chart shows the synchronization between the processes.

The verifier is the last part of the graphical interface (Figure 6) where the
user can verify properties expressed in the query box and selectable in
the overview list. The status panel is used to visualize the results of the

23



Figure 6: UPPAAL verifier

query and the communication with the server. The green/red semaphore
near each property in the overview window indicates the result coming
out from the verification phase activated by selecting the property and
pushing the check button. The verification can be executed also with the
trace generation settable from the option menu and by selecting the di-
agnostic trace of interest. At the end of the verification with trace, the
system will ask the willingness to import the resulting trace on the sim-
ulator to allow further check to the user.

2.2 Domain Specific Languages

A Domain Specific Language (DSL), according to (Bet13), is a small lan-
guage, developed on purpose for a particular application domain. Peo-
ple find DSLs valuable because allow the programmer to increase his
productivity, improve the communication with domain experts and do
not require strong programming notions. Of course the DSL is not a sub-
stitute of a general purpose language like Java or C. But it permits solv-

24



ing problems easier and faster on a particular domain with respect to
traditional programming language. Sometimes it is not clear if it is more
convenient to use a general language or a new DSL, for example may
you want to introduce a new language for describing data of a model or
application and someone else maybe prefer XML. Of course this is up to
the developer, but the objective fact is that the XML is a good machine
readable language but not human-readable; indeed XML tends to be ver-
bose, and it fills documents with too much syntax noise.

Implementing a new DSL involves a series of procedures that allow
the machine to read the text written in that DSL, succeed in the parsing
phase, process and interpret it or generate the code in another language.
This procedure is not always the same, but most of the listed phases are
typical of all implementations. Usually a language is decomposable in
single atomic elements. These elements can be a keyword such as the
word class in Java, an identifier such as a class name, a symbol name such
as a variable name; and all other elements are literals. The process of de-
composing a sequence of characters into atomic elements is called lexical
analysis and the phase that checks for each statement that it is respect-
ing the syntax structure expected by the language is called parsing. The
duty of the parser is to check if the given program respect a grammar. A
grammar is a set of rules that describe the form of the constructs that are
valid according to the language syntax. The parsing mechanism does not
guarantee the correctness of a program, this because for example the type
checking cannot be done during the parsing but is part of the semantics
analysis.

A good success for a DSL is given also by a IDE support. A large
range of available features for the language generation permit an easier
access to the final user, increasing his opinion on the DSL use. Among
the most important features it is possible to find the syntax highlight,
that is the ability of colouring and formatting keywords in the language
for giving the right visibility and an immediate feedback on the struc-
ture of the program. The background parsing, that checks continuously
the program syntax to revel as soon as possible error; this implies less
effort for fixing the problem in terms of time and costs. Error markers

25



have the duty of showing the right point in the language where the er-
ror happened in order to stand out the right point that need to be fixed.
Content assistant is the auto complete mechanism that helps the pro-
grammer to remember commands or just the right sequence of parame-
ters. Hyperlinking permits to navigate between references in a program,
for example from a variable to its declarations or from a method call to
its declaration. Quickfixes are fixes automatically suggested by the IDE
to the programmer, for example, given a method that does not exist, two
possible quick fixes could be to create a new method or simply correct
the name generated by a typing error.

2.2.1 The Xtext tool

Xtext covers all aspects of a complete language infrastructure, from parsers,
to compiler or interpreter and other useful tools. Xtext comes with great
default solutions for all these aspects which at the same time can be easily
tailored to developer individual needs. The host environment for Xtext is
Eclipse, a free software distributed under the Eclipse public license. It is
an Integrated Development Environment(IDE) based on multi-language
and multi-platform paradigm. It offer a complete IDE for the Java lan-
guage and rely on a plug-in system. In Eclipse using the traditional Xtext
grammar language is possible to describe the syntax of a new DSL. The
specialty for JVM languages is the possibility to inherit from an abstract
grammar Xbase, which predefines the syntax for the reusable parts. It is
not needed to use all of them directly and of course is possible to change
the syntax or add new concepts, as it seems fit. Xtext can be simply in-
stalled from the Eclipse marketplace, once installed, it is possible to cre-
ate a new project just following the Eclipse wizard for the Xtext Project
creation.

Following the wizard the system will create a new project

Project name: org.xtext.example.mydsl
Language name: org.xtext.example.mydsl.MyDsl
Language Extensions: mydsl

In the workspace will compare four folders as follows

26



1. org.xtext.example.mydsl contains the grammar definition and
all runtime components (parser, lexer, linker, validator, scope, etc.);

2. org.xtext.example.mydsl.tests contains the unit tests;

3. org.xtext.example.mydsl.ui contains the eclipse editor and the
related functionalities;

4. org.xtext.example.mydsl.sdk contains the features of the project.

The wizard will automatically open the grammar file MyDsl.xtext in
the editor, that is usually contained in the org.xtext.example.mydsl

part under the src folder.

grammar org.xtext.example.mydsl.MyDsl with org.eclipse.
xtext.common.Terminals

generate myDsl "http://www.xtext.org/example/mydsl/MyDsl"

Model:
greetings+=Greeting*;

Greeting:
’Hello’ name=ID ’!’;

The first rule in the grammar is usually the start rule and coincides with
the root of the syntax three. In our example the model is composed by an
arbitrary number (any operator *) of greetings which will be added (+=)
to a feature called elements. The Greeting rule start with the keyword
Hello followed by an identifier, which is parsed by a rule called ID, and
by symbol !. The rule ID is a kind of terminal rule literal and it is in the
org.eclipse.xtext.common.Terminals package. The value returned
by the call to ID is assigned to the feature name.

Generate Language Artifacts
Once defined the grammar of the language it is possible to execute the

code generator that will derive the various language components. To do
so, once located the file GenerateMyDsl.mwe2 next to the grammar in the

27



package explorer view. From this context menu, it is sufficient to choose
Run As→ MWE2 Workflow. This invocation triggers the Xtext language
generator, producing the parser, the serializer and some additional in-
frastructure code. The described process terminates with some logging
messages in the Console View and the keyword ”Done”.

Run the Generated IDE Plug-in
In order to test the IDE integration is necessary to select Run→ Run

Configurations from the Eclipse menu and choose Eclipse Application →
Launch Runtime Eclipse. This preconfigured launch shortcut has the ap-
propriate memory values and parameters already setted. The system,
after the click on the run button starts a new Eclipse workbench with
the newly developed plug-ins installed. In the new workbench, is pos-
sible to create a new project following the File → New → Project → Java
Project procedure and therein a new file with the file extension specified
in project creation (*.mydsl). This last step will open the adequate entity
editor, where is possible to exploit the default functionalities for code
completion, syntax highlighting, syntactic validation, linking errors, the
outline view, find references, etc.

The final DSL implemented is able to accept the language composed
by the Keyword ”Hello” followed by an identifier and closed with the
symbol ”!”.

Hello Marius!
Hello Andrew!
...

An improvement in the presented example could be the introduction of
a validator. To achieve this task in Xtext there are two ways, the first
one is going directly in the GenerateMyDsl.mwe2 file and uncomment the
NamesAreUniqueValidator line. With this new line, the system checks
if the language contains multiple rules with the same identifier, if yes, an
error alert for definition ambiguity is raised.

28



// Xtend-based API for validation
fragment = validation.ValidatorFragment auto-inject {
//composedCheck = "...validation.ImportUriValidator"
composedCheck = "org.eclipse.xtext.validation.

NamesAreUniqueValidator"
}

Of course this is the simplest validation that can be automatically done
by the tool, more advanced check can be directly implemented in the
MyDslValidator.xtend in the org.xtext.example.mydsl.validation pack-
age. Possible checks are related to Cross-link or custom syntax valida-
tion, both of them can be alerted to the user with error or warning mes-
sages.

Java Code Generation
As soon as the generation of the Xtext artifacts for a grammar, a code

generator stub will be put into the runtime project of the language. This
allows to automatically generate code rewritten in Java or any other lan-
guage derived from the DSL elements.

2.2.2 Grammar language

The grammar language in Xtext is specifically designed for developing
domain specific languages. The idea is to describe the syntax of the
DSL using the given grammar. The grammar is composed by terminal
rules, that are sequences of characters that are atomic symbols, informally
called token rules. The ID rule is the most important terminal rule, it is
usually composed by a sequence of letters or numbers in any order. In
the definition of the grammar, data type rules are preferred to terminal
one, this because using types is possible to avoid the ordering that is in-
stead mandatory in the terminal one. The return type is present in each
terminal rule and it is assumed that is of the form ecore::EString. A
different type is necessary to specify other types; for example INT for the
willingness to return an integer value.

29



The terminal rules has a cardinality that it is described using the Ex-
tended Backus-Naur Form. There are four different cardinalities:

1. exactly one (no operator)

2. zero or one (operator ?)

3. any (zero or more, operator *)

4. one or more (operator +)

A parser rule does not produce a single atomic terminal token but a
tree of non terminal tokens. These rules are also called EObject rules
because they are handled as a plan for the creation of a semantic model
(Abstract Syntax Tree AST).

Not all the expressions that are available in terminal rules can be used
in parser rules. Character ranges, wildcards, the until token and the
negation as well as the EOF token are only available for terminal rules.
For the parser rules the admitted elements are groups, alternatives, key-
words and rule calls.

30



Chapter 3

Domain Specific Language
MobiCa

In this chapter we introduce the domain-specific language MobiCa (Mobile
Cloud Computing Language), specifically devised for modelling MCC sys-
tems at a high-level of abstraction. Such abstraction allows one to focus
on those aspects of MCC systems that are relevant for taking decisions
on whether to offload a given component of a mobile application. Low-
level details, such as the precise computation performed by components,
are abstracted. In this way, we have a modeling language that permits
easily writing compact specifications, which enable an efficient analysis
for selecting the most appropriate offloading strategy. In fact, the seman-
tics of the language associates to each specification a model specifically
expressed as a network of timed automata (see Section 2.1), thus support-
ing the verification of properties through a model checking technique.

The building blocks of MCC applications expressed in MobiCa are
black-box elements called fragments. Each fragment corresponds to a
small part of an application devoted to a unique specific purpose. The
language permits to model applications partitioned in fragments with
different granularity, which depends on the level of detail required by the
considered application domain. In coarse-grained partitions, fragments
represent components offering functionalities and services to each other;

31



SYSTEMS:
N ::= (c, em, ec, eb)(b, n,m) . Ã

∣∣ c . Ã
∣∣ Sys1|Sys2

APPLICATIONS:
A ::= 〈F̃ ;S〉

FRAGMENTS:
F ::= f [i,m, s, o]

STRUCTURE:
S ::= f1 Op f̃2

∣∣ S1 ; S2

OPERATORS:
Op ::= −→

∣∣ 99K
∣∣ −�

Table 1: MobiCa syntax

instead, in the fine-grained ones, fragments correspond to single func-
tionalities, tasks or actions. Moreover, although MobiCa also permits
modelling MCC applications having a static code separation between lo-
cal and remote execution, it is designed to model more flexible and dy-
namic systems, where the computation of any fragment can in principle
be offloaded. The offloading decisions are taken according to the current
environmental conditions, e.g. network connection, bandwidth, servers’
load, battery energy, etc. In fact, due to the variability of these factors,
static partitioning leads in general to poor performance optimization.

3.1 Language syntax

The syntax of the MobiCa language is defined by the BNF grammar
given in Table 1. As a matter of notation, we use ·̃ to denote tuples of
objects, e.g. F̃ stands for the tuple of fragments F1, . . . , Fn (with n > 0).

A MobiCa specification is a system N consisting of a network of mo-
bile devices and cloud machines (composed by means of the parallel op-
erator |).

A mobile device corresponds to any portable device that is limited in
computational capabilities, and without a stable connection and a con-
stant power supply. Typical examples are smartphones, tablets, etc. Specif-

32



ically, a mobile device (c, em, ec, eb)(b, n,m).Ã can be seen as a container
of applications Ã characterized by some operational information. The
static information is: the computational power of the device c (expressed
in terms of number of instructions that can be executed per second), the
energy consumed per time unit by the mobile device when it is in use em,
when it is in idle ec and during the synchronization along the bus eb. The
information that instead may change at runtime is: the battery level b,
the network bandwidth n and the used memory m. All such operational
information is defined as integer values and indicates the status of the
device at a given instant of time. It is worth noticing that Ã represents
the MCC applications installed in the device that are subject to dynamic
offload handling. Non-MCC applications are not explicitly represented,
although their effects on resources of the device are taken into account
when the operational information is determined.

A cloud machine, differently from a mobile device, has a larger com-
putation and memory capability, and a stable connection. Thus, for what
concerns the aspects of interest for our analysis, a cloud machine c . Ã
only specifies the number c of instructions executed per second, and the
installed applications Ã.

An application is represented as a pair 〈F̃ ;S〉. The first field is a tuple
of fragments, while the second describes how they are connected to each
other in order to form the structure of the application. The first fragment
of the tuple F̃ is the initial fragment of the structure (i.e., it is the root
of the corresponding graph). A fragment f [i,m, s, o] is uniquely identi-
fied by a name f and specifies the following parameters: the number
i of instructions to execute, the amount m of memory required at run-
time, the amount s of data to be transferred for synchronization in case
of offloading, and finally a boolean o indicating whether the fragment is
offloadable or not. Notably, the first three parameters should be thought
of as average values, which could be estimated from the code or, more
practically, determined at runtime by monitoring the application execu-
tion. Notice also that, in case of offloading, it is necessary to synchronize
local and remote application instances to keep the state of the system
consistent.

33



A structure S is a graph whose nodes are fragments and whose edges
represent their interactions. A structure is specified in MobiCa by a col-
lection of terms of the form f1 Op f̃2, each one defining a set of edges
(from f1 to each fragment in f̃2). There are three kinds of edges, corre-
sponding to three different ways to proceed with the application execu-
tion from one fragment to further fragments according to three different
synchronization operators Op:

• Non-deterministic choice (−→) indicates that the execution will progress
from the source fragment to one of the target fragments, which is
non-deterministically selected. This operator allows one to abstract
from choices that are internal to fragments.

• Sequential progress (99K) permits the computation to sequentially
progress from the source fragment to the target ones (following the
order in the tuple f̃2). This operator is used to make explicit the
relationship between a fragment and the others necessary to carry
out its task. This allows one to partially ‘shed light’ on the black-
box nature of fragments.

• Parallel execution (−�) permits the execution to progress from the
source fragment to all target ones, by activating their parallel exe-
cution. This operator allows one to express applications with con-
current components.

If more groups of edges have the same source, the execution proceeds
from this source fragment by selecting a group in a non-deterministic
way, and then by activating the target fragments of this group according
to the corresponding operator. These two steps are performed atomically.
For example, given the following structure term f1−� f2, f3; f1 99K f4, f5,
it is possible to proceed from f1 either by activating f2 and f3 in parallel,
or by firstly activating f4 and then, once f1 is executed again, by activat-
ing f5. It is also worth noticing that a fragment may have more than one
incoming edge; each time an activation signal arrives from one of them,
the fragment is activated, if it is not already activated, otherwise this ac-
tivation is postponed (in other words, concurrent activations of the same
fragment are not allowed).

34



Not all applications allowed by the syntax in Table 1 are meaning-
ful. We only consider terms satisfying well-formedness conditions, i.e.
syntactic constraints that can be easily verified with a static check on the
syntax of terms.

Definition 5 (Well-formed applications) An application 〈F̃ ;S〉 is well formed
if the following conditions hold: (i) all fragment names occurring in S are de-
fined in the tuple F̃ ; and (ii) there is no term f1 Op f̃2 in S such that f1 occurs
in the tuple f̃2 (i.e., self-loops are disallowed).

Below we use MobiCa to model a simple scenario where an optimal
infinite scheduling is necessary for minimizing energy consumption and
improving system performance. A more realistic scenario will be dis-
cussed later on in section 3.4.1

Example 1 (A simple application) This scenario is inspired by one from
(GK99). It concerns a simple MCC application, whose graphical representation
is shown in Figure 7 (right-hand side). The application is composed of three
fragments, f0, f1 and f2, connected by means of the non-deterministic operator
(−→) and by the sequential operator (99K). Since the application behavior is
deterministic in this case, the unique run is composed by an initialization phase
f0 → f2, followed by an infinite loop f2 → f0 → f2 → f1 → f2. The fragment
f0 can be executed only locally, instead the fragments f1, f2 can be executed
either on the mobile or in the cloud, with the only requirement of maintaining
the data consistent. For consistency we intend that either a fragment is executed
on the same location of its predecessor or at a different location only after the
result of the predecessor has been synchronized.

Application structure:

f0 −→ f2;
f2 99K (f0, f1);
f1 −→ f2

Figure 7: A simple example of a MobiCa application

35



In the figure, the fragments are annotated with 4 parameters; in order, we
have: the execution time on the mobile device (given by the number of instruc-
tions divided by the mobile computation power, i.e. i/c), the execution time
on the cloud, the synchronization time of the results on the bus (given by s/n)
and a boolean value representing the offloadability of the fragment (a false value
indicates that only the local execution is admitted, as in the case of f0). The
graphical notation in Figure 7 is formalized in terms of the so-called System
Graph in Definition 6. Notably, the memory parameters of MobiCa systems are
not considered in this specific formalization.

A schedule for the simple application shown in Figure 7 should provide a
sequence of execution choices (i.e. local vs remote) for each of the three fragments
between the available resources. A schedule is optimal if the total execution time
or energy cost is minimum, considering that the energy consumption per time
unit for the mobile device is 5 when it is in use, 1 in the idle state, and 2 for the
synchronization.

The Gantt chart in Figure 8 depicts three possible schedules for the proposed
example application. For each of them, we indicate the location of execution be-
tween mobile(M) and cloud(C), and the use of the bus(B). The values of T and
E at the end of the sequence are the time and the energy required by the schedule
for computing a complete loop cycle. In the first schedule, the computation is
maintained locally for all fragments; this behavior is reasonable when the net-
work is not available. Another approach might be to maintain the computation
locally only for the non-offloadable fragments (in our case only f0) and try to
move the computation remotely as soon as possible; this allows one to manage
the task congestions in the mobile device. The third schedule instead takes into
consideration the sequence of offloadable fragments and executes the computa-
tion remotely only when the synchronization of data is minimal.

3.2 TA-based semantics

We describe here the semantics of MobiCa, given in terms of a translation
to networks of Timed Automata (TA). Such a semantics can indeed be
used to solve the previously described scheduling problem, by resorting
to the analysis facilities provided by the UPPAAL model checker.

The translation is divided in two parts: the passive part, which fo-
cusses on resources, and the active one, which focusses on the applica-
tions. Thus, the TA corresponding to a given MobiCa system is the com-
position of the results of the passive and active translations merged to-

36



Schedule
1

Schedule
2

Schedule
3

M

M

B

C

M

B

C

T=41
E=83

T=39
E=195

T=28
E=90T=0

E=0

LOOP

Figure 8: Schedules for the simple application

gether by means of a global declaration. Below we describe the details of
the translation in terms of UPPAAL models.

3.2.1 Global declaration

The global declaration consists of all the shared variables used for the
synchronization of fragments, clocks for keeping track of time, and vari-
ables stating the internal state of the resources. In the global declaration
we find also the structure S of the application declared as an adjacency
matrix. A structure consists of three n × n matrices, one for each tran-
sition operator, where n is the length of the tuple F̃ . Let mij be the (i,j)
entry of a matrix, we have mij > 1 if the ith and jth fragments are con-
nected, and 0 otherwise. Notably, the diagonal of each matrix is always
zero, as self-loops are not admitted. Table 2 shows the corresponding
three adjacency matrices, related to the Example 1 shown in Figure 7. In
particular, we have:

(−→): the non-deterministic transition for fragment fi is activated if the
ith row has non-zero cells, and the next fragment to be activated is
non-deterministically selected in {fj | mij = 1};

37



−→ f0 f1 f2
f0 0 0 1
f1 0 0 1
f2 0 0 0

−� f0 f1 f2
f0 0 0 0
f1 0 0 0
f2 0 0 0

99K f0 f1 f2
f0 0 0 0
f1 0 0 0
f2 1 2 0

Table 2: Operators translation

(−�): the parallel transition is similar to the non-deterministic one, with
the difference that the fragment fi activates all the fragments fj
with mij = 1;

(99K): the sequential operator matrix is slightly different from the pre-
vious ones, as the values are not only 0 or 1. These values must
be interpreted as a sequence defining the order in which the target
fragments are activated for each execution of the source fragment.
The activation of the sequential operator on a fragment excludes
the other operators until the sequence of activation is terminated.
In our example, fragment f2 activates first the execution of f0 and
then the execution of f1 (see the last row of the matrix at the right-
hand side in Table 2).

3.2.2 Fragments

The TA for a generic fragment is depicted in Figure 9; the template is
parametric, so that it is a valid representation for each fragment of the
application. The execution of the fragment starts from the initial loca-
tion where it is waiting for the activation. The activation is managed by
the array activated[] as follows: whenever the element in the array cor-
responding to the fragment index becomes true, the corresponding frag-
ment can move to the ready location. In this latter location, it can continue
its execution on the mobile device or the cloud, depending on the evalu-
ation of the guards on the transitions. They state that the fragment can be
executed locally only if the results of the previous fragment are updated
locally (result[previous[id]][0]==1), or remotely only if they are updated
remotely and the fragment is offloadable (result[previous[id]][1]==1 and

38



Figure 9: Fragment translation

Info[id].isOffloadable==true). In case of both the invariants are false, the
model will move in the error state. When the execution of the frag-
ment is completed, it can proceed towards either the network location,
in order to synchronize the results locally and remotely (result[id][0]=1,
result[id][1]=1), or the initial location, by following one operator in the
structure. Indeed, the use of each operator is rendered as an outgoing
transition from the completed location to the init one; these transitions are
concurrent and enabled according to the corresponding adjacency ma-
trix, defined in the global declaration.

3.2.3 Resources

Each kind of resource (i.e., mobile device, cloud and bus) is translated
into a specific TA; since these TA are similar, we show here just the one

39



for the mobile device (Figure 10) and, for the sake of presentation, we
describe it in terms of a general resource. A resource can be in the idle
state, waiting for some fragment, or inUse, processing the current frag-
ment. When the resource synchronizes with a fragment, it resets the lo-

Figure 10: Mobile resource translation

cal clock and remains in the inUse state until the clock reaches the value
corresponding to the occupation time for the current fragment. Before
releasing the resource, the battery level of the mobile device is updated
according to the permanence time and the energy consumed by the re-
source. In this model, we assume that no energy is consumed if there is
nothing to compute, and the energy power consumed by the cloud dur-
ing its execution corresponds to the energy used by the mobile in the idle
state waiting for the results.

3.3 Optimal scheduler

In this section, we formalize the notion of optimal scheduler in terms of
two cost functions on a System Graph (SG). A SG, like the one in Figure 7,
provides a graphical representation of a MobiCa application. Besides
this, it is also useful as an intermediate model between the specification
and the resulting network of TA generated by the translation.

Definition 6 (System Graph) Given an application 〈F̃ ;S〉 installed in a sys-
tem with a mobile device defined by information (c, em, ec, eb) and a cloud ma-
chine defined by c′, its system graph SG is a tuple 〈N,−→, 99K,−�, T, E,O〉
where:
• N = {f | f [i,m, s, o] ∈ F̃} is a set of fragment names.

40



• −→, 99K, −�⊆ N ×N are three transition relations defined as f−→ f ′

(resp. f 99K f ′, f−� f ′) iff f ′ ∈ f̃ for some f̃ such that f−→ f̃ ∈ S
(resp. f 99K f̃ ∈ S, f−� f̃ ∈ S). We use f � f ′ to denote either f−→
f ′ or f 99K f ′ or f−� f ′.

• T : N × {M,C,B} → N gives the execution time of a fragment on
a resource (where M is the mobile device, C the cloud, and B the bus);
given f [i,m, s, o] ∈ F̃ , we have: T (f,M) = bi/cc, T (f, C) = bi/c′c,
and T (f,B) = bs/nc.

• E : {M,C,B} → N is the energy, expressed as a natural number, con-
sumed per time unit by the mobile device when a given resource is in use
(E(M)=em, E(C)=ec, E(B)=eb).

• O : N → {false, true} represents the possibility of offloading a frag-
ment (value 1) or not (value 0); given f [i,m, s, o] ∈ F̃ , we haveO(f) = o.

Notably, an SG is completely derived from the information specified in
the corresponding MobiCa system.

A path on SG is a finite sequence η = f0 � f1 � ... � fk (k ≥ 0).
Notably, in a path, parallel activations of fragments are interleaved.

Definition 7 (Scheduler) Given a system graph SG, a scheduler is a partial
function Θ : N × Op × N → {0, 1}2 that, given a transition f � f ′ in SG,
returns a pair of values πs, πt ∈ {0, 1} which indicate the execution location
of the source fragment f and of the target fragment f ′, respectively, where 0
denotes a local execution and 1 a remote one.

When a scheduler is applied to a transition of the corresponding SG,
it returns information about offloading decisions for the involved frag-
ments. By applying a scheduler Θ to each transition of a sequence of tran-
sitions, i.e. a path η, we obtain a schedule δ, written Θ · η = δ. A schedule
consists of a sequence of triples of the form (f, π, β), each one denoting a
fragment f , belonging to the considered path, equipped with its execu-
tion location π and the synchronization flag β. Parameters π, β ∈ {0, 1}
indicate the local (π = 0) and remote (π = 1) execution and the need
(β = 1) or not (β = 0) of data synchronization for f . The value of π
should respect the offloadability declared by the variable O in the frag-
ment declaration. Formally, Θ · η = δ is defined as follows: let f and

41



f ′ being two consecutive fragments in the path η, there exist in δ two
consecutive triples (f, π, β) � (f ′, π′, β′) iff Θ(f,�, f ′) = (πs, πt) s.t.
π = πs, π′ = πt and β = |πs − πt|. Notice that, as Θ is a partial function,
there may be transitions in η that are not in δ; for such transitions the
schedule does not provide any information about the offloading strategy
to apply, because they are not considered by the scheduler.

Taking inspiration from the approach in (CBC+10a), we define two
cost functions. In particular, we consider the cost of executing a given
path in the considered SG using the scheduler, i.e. the cost functions are
defined on schedules. We describe our approach for determining such
optimal schedulers in Chapter 4

Definition 8 (Time and energy costs) The time and energy costs of a sched-
ule δ for a given SG = 〈N,−→, 99K,−�, T, E,O〉 are defined as follows:

Time(δ) =
∑

(f,π,β)∈δ ( (1− π)× T (f,M) + π × T (f, C) + β × T (f,B) )

Energy(δ) =
∑

(f,π,β)∈δ ( (1− π)× T (f,M)× E(M) + π × T (f, C)× E(C)

+ β × T (f,B)× E(B) )

The function Time(δ) calculates the total time required by the schedule
δ, i.e. the time for executing a path of SG according to the scheduler that
generates δ. For each fragment f in the system, we add the time T (f,M)

if the fragment is executed locally (π = 0), or the time T (f, C) if the
fragment is executed remotely (π = 1). The function considers also the
synchronization time T (f,B) if two consecutive fragments are executed
at different locations (β = 1).

The function Energy(δ) calculates the total energy required to com-
plete the scheduled path. The difference with respect to the previous
function is that here the time of permanence of a fragment in a resource
is multiplied by the corresponding energy required per time unit.

Relying on the cost functions introduced above, we can have the time-
optimal scheduler ΘT and the energy-optimal scheduler ΘE for a given
SG, which determine the sequence of actions that generates the less costly
combination of resources, in terms of Time(δ) and Energy(δ) respec-
tively, for a path in SG.

42



Sch. Time Energy

1 T1 =(3 + 10 + 16 + 10) = 39 E1 =(3 + 10 + 16 + 10) × 5 = 195
2 T2 =(3 + 25 + 3 + 2 + 3 + 5) = 41 E2 =(3 × 5 + 25 × 2 + 3 × 1 + 2 × 1 + 3 × 1 + 5 × 2)=83
3 T3 =(3 + 10 + 5 + 2 + 3 + 5) = 28 E3 =(3 × 5 + 10 × 5 + 5 × 2 + 2 × 1 + 3 × 1 + 5 × 2)=90

Table 3: Time and energy costs of the schedules for the simple application

Example 2 (Time and battery costs for the small application) We evalu-
ate here the schedules proposed in Example 1 (Figure 8) using the cost func-
tions introduced above. Notice that in the calculation we consider only the
cyclic part of the application omitting the initialization that is not relevant in
terms of an infinite scheduler. Table 3 reports the time and energy consumed
for the three schedules calculated according to Definition 8. Evaluating the
results, the time-optimal scheduling for the application is achieved in Sched-
ule 3, that is (f0, 0, 0) � (f2, 0, 1) � (f1, 1, 0) � (f2, 1, 1), with a total
time cost T3 = 28. The offloading choices for achieving such result are formal-
ized in terms of the scheduler (written here using a notation based on triples)
ΘT={(f0−→ f2,0,0),(f2 99K f1,0,1),(f1−→ f2,1,1),(f2 99K f0,1,0)}. On
the other hand, Schedule 2, that is (f0, 0, 1) � (f2, 1, 0) � (f1, 1, 0) �
(f2, 1, 1), is the energy optimal one, with a total energy consumption E2 = 83.
The corresponding scheduler is ΘE={(f0−→ f2,0,1),(f2 99K f1,1,1),(f1−→
f2,1,1),(f2 99K f0,1,0)}. From this example it is clear that there may not be a
correspondence between energy and time consumption, since we have different
cost results. Hence, defining a scheduler optimized for more resources in general
is not a simple task.

3.4 MobiCa implementation

In this section we present the implementation of the MobiCa syntax in
terms of Xtext grammar. The proposed grammar looks like the following:

1 grammar org . x t e x t . MobiCa with org . e c l i p s e . x t e x t . common . Terminals
2
3 generate MobiCa ” http ://www. x t e x t . org/MobiCa”
4
5 Model :
6 ( devices+=Device | a p p l i c a t i o n s +=Application | systems = System )∗ ;
7
8 Device :
9 Mobile | Cloud ;

10
11 Cloud :
12 ’ Cloud ’ name=ID ’ [ ’ a p p l i c a t i o n s +=[ Application ] ’ , ’
13 c p u I n s t r u c t i o n s =INT ’ ] ’ ’ ; ’ ;
14
15 Mobile :

43



16 ’ Mobile ’ name=ID ’ [ ’ a p p l i c a t i o n s +=[ Application ] ’ , ’ b a t t e r y =INT
17 ’ , ’ network=INT ’ , ’ memory=INT ’ ] ’ ’ [ ’ c p u I n s t r u c t i o n s =INT ’ , ’
18 energyMobile=INT ’ , ’ energyCloud=INT ’ , ’ energyBus=INT ’ ] ’ ’ ; ’ ;
19
20 Application :
21 ’ Application ’ name=ID ’{ ’ fragments+=Fragment+ s t r u c t u r e =Structure ’} ’ ’ ; ’ ;
22
23 Structure :
24 ’ Structure ’ name=ID ’ [ ’ edges+=Edge + ’ ] ’ ’ ; ’ ;
25
26 Edge :
27 s t a r t =[ Fragment ] operator=Operator stop +=[Fragment ] ( ’ , ’ stop +=[Fragment ] ) ∗
28 ’ ; ’
29
30 enum Operator :
31 NDC = ’−−>’ | PAR = ’−−|’ | SEQ = ’−−:: ’ ;
32
33
34 Fragment :
35 ’ Fragment ’ name=ID ’ [ ’ i n s t r u c t i o n s =INT ’ , ’ memory=INT ’ , ’ sync=INT ’ , ’
36 i s O f f l o d a b l e =( ’ true ’ | ’ f a l s e ’ ) ’ ] ’ ( i n i t = ’ i n i t ’ ) ? ’ ; ’ ;
37
38
39 System :
40 ’ System ’ name=ID ’ : = ’ devices +=[ Device ] ( ’ | ’ devices +=[ Device ] ) ∗ ’ ; ’
41 ;
42
43 Query :
44 ’Query ’ name=ID ’ : ’ (
45 ’E [ ] ’ costType =( ’ Energy ’ | ’ Time ’ ) ’ , ’ c o s t =INT ’ , ’ reward=INT
46 ( ’ , ’ c o n s t r a i n t =INT ) ? ’ ; ’ |
47 ’E<>’ fragments=INT ’ ; ’ |
48 ’E<>’ f rag +=[Fragment ] ’ , ’ time=INT ’ , ’ b a t t e r y =INT ’ , ’memory=INT
49 ( l o c a t i o n =( ’ remote ’ | ’ l o c a l ’ ) ? ) ’ ; ’
50 )∗
51 ;

The first line declares the name of the language and of the grammar
that corresponds to the fully qualified name of the .xtext file. The dec-
laration of the grammar also states the use of the grammar Terminals,
which is part of the Xtext library and defines the grammar rules for com-
mon things like quoted strings, numbers, and comments; so that in our
language we will not have to define such rules.

The first rule (line 5) defines the root element of the Abstract Syn-
tax Tree. In this example we declare that a MCC Model is a collection
of devices and applications that are joined together in a unique system.
The fact that they are collections is implied by the operator +=. The star
operator * after the brackets states that the elements can be an arbitrary
number >= 0, this means that we can have more applications and de-

44



vices but only one system (notice the = after systems).

The shape of each component in the grammar is expressed with its
own rule. Starting from the beginning, the first rule we encounter after
Model is Device (line 8). This rule defines a general devices that belongs
to the MCC system. We can have two types of device: mobile device and
cloud system.

The cloud system is described by its own rule (line 11) called Cloud.
In this rule are present four keywords, namely "Cloud", ",", "[",

and "]". Keywords of a DSL are defined by string literals (which in Xtext
can be expressed with either single or double quotes). Therefore, a valid
cloud declaration statement starts with the keyword ’Cloud’ followed
by an ID; there is no rule defining ID in the grammar because that is one
of the rules inherited from the grammar Terminals. Then, the squared
brackets ’[’ ’]’ are expected and within them cpuInstructions and
applications are specified. Notice, after the applications+= list
we do not want just a name, but the name of an existing Application.
This can be expressed in the grammar using square brackets and the type
we want to refer to. This mechanism is one of the powerful features of
Xtext, that is, cross-references. Xtext will automatically resolve the cross-
reference by searching in the program for an element of that type with
the given name. If it cannot find this element, it will automatically raise
an error. The automatic code completion mechanism will also take into
consideration cross-references, thus proposing elements to refer to.

The rule for the Mobile (line 15) is similar to the Cloud, but with
some extra elements like battery, network, memory, etc. The Application
rule (line 20) is composed by a collection of fragments and a structure.
The symbol + after Fragment force the user to define an Application
with at least one fragment. A Structure (line 23) is a collection of
edges, and each Edge (line 26) is composed by three elements, a start
element that contains a Fragment, an operator and a stop element that
can contain one or more comma separated destination fragments. The
Operator (line 30) is not a real rule but just an enumeration of elements:
the non-deterministic operator (NDC), the parallel execution (PAR) and
the sequential progress (SEQ).

45



A Fragment (line 34) is defined by the keyword Fragment followed by a
name and some integer parameters. The offloadability of the fragment is
expressed with the boolean variable isOffloadable that can assume
only true/false values. The root fragment of the application is indicated
with the optional symbol (?) keyword init. The rule System (line 41),
defines the components involved in a particular instantiation of the sys-
tem. This rule is composed by a name and a collection of devices. The
devices can be instantiated one after the other just using the operator ”|”.
The last rule is dedicated to the verification Query. The MobiCa im-
plementation provides three preconfigured queries, that will be trans-
lated following the revisited UPPAAL syntax described in Table 4 (cus-
tom queries can be specified by the user directly in UPPAAL). Where f
is a fragment name, var is a placeholder for the variable ”GlobalTime,
battery, memory, etc.” defined in UPPAAL and φ1[φ2] is a concatenation
of formulae. Since we are interested in reachability property we restrict
the language to one path quantifier and two temporal operators. The
quantifier is used in a particular state to specify that at least one path
starting from that state satisfies a given property. The temporal opera-
tors, instead, describe properties of a path through the generated tree.
In particular the quantifier E (Exists) with the operator <> (Eventually),
followed by an expression, define the common query that describes the
possibility to find a path along which a certain property is eventually
satisfied; this query is usually used at runtime. With the operator [ ]

(Globally) instead the query describes the possibility to find a path along
which a certain property is globally satisfied; this query is used for de-
termining the infinite scheduling. The MobiCa language does not cover
all possible queries that can be expressed in UPPAAL; in fact the aim of
the query language incorporate in the MobiCa tool is to just speed up the
verification procedure on the technique that we propose.

3.4.1 MobiCa editor

Figure 11 shows the MobiCa Eclipse environment generated using the
Xtext framework. Using the described grammar, we are able to write

46



QUERIES Q ::= EF φ
∣∣ EG φ

STATE FROMULAS Ex ::= f
∣∣ true

∣∣ false
∣∣ var

∣∣ φ1[φ2]
∣∣ Uopφ

∣∣
φ1Bopφ2

UNARY OPERATORS Uop ::= not

BINARY OPERATORS Bop ::= <
∣∣ <=

∣∣ ==
∣∣ ! =

∣∣ or
∣∣ and

∣∣ imply
∣∣ ....

Table 4: Query syntax

our specifications of MCC systems using the MobiCa DSL. In the Eclipse
editor, it is possible to see the MobiCa specification of the navigator case
study introduced in Chapter 1.

Figure 11: MobiCa Editor: Navigator application

For the sake of readability we, also report the code in the Listing 3.1.
Looking into detail, a system (line 28) is composed by a network of a
Cloud machine (line 25) and a Mobile device (line 26) that collabo-

47



rate for providing the navigator system. In the proposed configuration,
the cloud machine has twice the computational power than the mobile
device (32 vs. 16 instructions per second). The battery of the mobile
device is completely charged (the level is expressed in percentage), the
network bandwidth is low (2 Mb/s), and all memory dedicated to apps
execution is available (the used one is 0). The values 5, 1, 2 in the sec-
ond group of parameters are the energy consumed per time unit by the
mobile device when is in use, when is in idle and during the synchro-
nization along the bus, respectively. The navigator application (line 1)
is defined using the keyword Application, and it is composed of a set
of Fragments (lines 2-11) that are connected according to the transitions
defined inside the structure block. As example of fragment the CONFIG-
URATION PANEL (line 2), consists of 11 instructions, requires 1 MB of
memory at runtime and 15 MB to be synchronized. Moreover, it is not of-
floadable and it is the root fragment of the application. The Structure
(lines 13-22) contains the relations between fragments. For example the
first transition (line 14) claims that the computation can move from the
CONFIGURATION PANEL to the CONTROLLER in non-deterministic
way. Notice that in a system it is possible to have more devices and dif-
ferent applications, but to exploit the benefit of MCC at least we should
have one mobile, one cloud and an application shared between them.
The definition of the Query is the last step. In MobiCa we permit to
define a query just introducing the relevant parameters, as the tool will
automatically generate the preconfigured query, defined according to the
low-level information within the generated TA model of the system. For
example, the query generated from the query3 (line 32) specification
will be

E[]VOICE.id36 and globalTime<300 and battery>50 and

memory<100.

Practically, from the Navigator implementation our tool automati-
cally create an XML file that can be taken in input by UPPAAL. For the
sake of readability the XML file is omitted here, we refer the interested
reader to the Appendix B.

48



1 Application Navigator {
2 Fragment CONFIGURATION_PANEL [11,1,15, false] init;
3 Fragment CONTROLLER [15,20,55, true];
4 Fragment PATH_CALCULATOR [90,50,30, true];
5 Fragment TRAFFIC_EVALUATOR [99,22,22, true];
6 Fragment MAP [25,200,100, true];
7 Fragment NAVIGATOR [110,10,15, true];
8 Fragment NAVIGATION_PANEL [11,30,45, true];
9 Fragment VOICE [5,40,90, true];

10 Fragment SPEED_TRAP_INDICATOR [5,60,100, true];
11 Fragment GPS [5,20,10, false];
12
13 Structure Connectins [
14 CONFIGURATION_PANEL --> CONTROLLER;
15 CONTROLLER --:: GPS, PATH_CALCULATOR, NAVIGATOR;
16 GPS --> CONTROLLER;
17 PATH_CALCULATOR --:: MAP, TRAFFIC_EVALUATOR, CONTROLLER;
18 TRAFFIC_EVALUATOR --> PATH_CALCULATOR;
19 MAP --> PATH_CALCULATOR;
20 NAVIGATOR --|NAVIGATION_PANEL, CONTROLLER;
21 NAVIGATION_PANEL --|VOICE, SPEED_TRAP_INDICATOR;
22 ];
23 };
24
25 Cloud Cloud_machine [Navigator, 32];
26 Mobile Mobile_device[Navigator, 100, 2, 0][16, 5, 1, 2];
27
28 System Network := Cloud_machine | Mobile_device;
29
30 Query query1: E[], Time, 300,41;
31 Query query2: E<>, 20;
32 Query query3: E<> VOICE, 300, 50, 100;

Listing 3.1: Navigator MobiCa code

49



Chapter 4

Scheduling Analysis

In this chapter we introduce the main techniques we use to find the
optimal scheduling in a MCC application. The main distinction in the
scheduling analysis is on the time the analysis is carried out: the first one
is at design-time and the other one at run-time. These approaches are
similar, but with different characteristics and effort.
The design time approach is the more straightforward method to imple-
ment, it only requires the application model and we do not have con-
straints on the response time. At design time is possible to perform an
accurate analysis, but it is not simple to consider all possible scenarios
that can happen during the application runtime.
Therefore, we propose also a runtime technique that is able to adapt to
the evolution of the application, but this requires a dedicated infrastruc-
ture, like a framework equipped with a monitor. This has to follow the
application current state and, at the same time, to calculate the strategy
to follow for the next states. The main drawback in this technique is re-
lated to the response time of the verifier that should be almost in real
time. For improving the performance, we adopted some shrewdness
that simplify the problem to a smaller one and permit to have a faster
answer. Another issue to face is related to the necessity of an ad-hoc
infrastructure for runtime analysis and this implies that also the appli-
cation should be developed with the possibility to extend its behaviour

50



with a decision support.
In Section 4.1 we present the design time analysis for an optimal

infinite scheduling based on the cost/reward horizon method. In Sec-
tion 4.2 we present the runtime decision support based on the reacha-
bility technique. The cost optimal reachability is the problem of finding
the minimum cost (e.g. time, energy, fragments) for reaching a given
goal location. Finally, in Section 4.3 we present a technique based on
Stratego(DJL+15), an UPPAAL version that is a dedicated tool for syn-
thesize strategy on timed automata model.

4.1 Design time approach

In this section, we take into consideration schedulers that produce infi-
nite schedules ensuring the satisfaction of a property for infinite runs of
the application. This is particularly useful for MCC, where applications
are supposed to provide permanent services, or at least to be available for
a long period. In particular, considering that our model is equipped with
constraints on duration, costs and rewards, we are interested in identify-
ing the optimal schedulers that permit the achievement of the best result
in terms of energy consumption and execution time. In fact, over infinite
behaviours, it is possible to recognize a cyclic execution of components
that is optimal and is determined by means of the limit ratio between
accumulated costs and rewards. Consequently, an optimal scheduler is
given by maximizing or minimizing the cost/reward ratio.

4.1.1 Cost/reward horizon method

In order to find the optimal scheduler for an application with infinite be-
havior, as discussed above, we propose a cost/reward horizon method.
From the literature (BBL08; RLS06), we know that the optimal ratio is
computable for diverging and non-negative reward systems.
In what follows we first present the basic concepts behind our cost/re-
ward method and then we show how the optimal infinite scheduling
problem can be solved using timed automata models and the UPPAAL

51



model checker.
The behavior of the application is the starting point for defining an opti-
mal infinite scheduler. It can be described as a set of paths of the consid-
ered system graph SG. For each path UPPAAL will generate all possible
schedules and will choose the best one according to a specific ratio (clari-
fied below). The chosen schedule is indeed the less costly one and, hence,
it can be used to synthesize the rules that compose the optimal scheduler.

Let’s start by defining the ratio of a finite path η of a SG as follows:

Ratio(η) = Cost(η)/Rewards(η)

where Cost() and Rewards() are two functions keeping track of the ac-
cumulated cost/reward along the path η. Now, we extend this ratio to
an infinite path γ=f0 � ... � fn � ..., with γn=f0 � ... � fn, the
finite prefix of length n; the ratio of γ is:

Ratio(γ) = limn→∞(Cost(γn)/Rewards(γn))

The optimal infinite path is the one with the smallest Ratio(γ) among all
possible schedules.

Finding the smallest ratio is not always a tractable problem, but it
is possible to improve its tractability reducing the problem to a given
horizon. From this new point of view, we want to maximize the reward
in a fixed cost window. Notice that the cost window should be of an
appropriate length, in order to complete the execution of at least one
application cycle.
This technique can be implemented in UPPAAL considering the query:

E[] not(f1.Err, ..., fn.Err) and (Cost≥C imply Reward≥R)
(4.1)

This query asks if there exists a trace where the system keeps running
without errors (identified by fi.Err) and whenever the predefined cost C
is reached, the accumulated reward should be at least R (see Figure 12).

For verifying the satisfaction of the above formula, the TA model in-
cludes an additional template (Figure 13) implementing the cost window
using the reset mechanisms. It consists of one state and a self-loop tran-
sition, where each time the simulation reaches the cost C the transition

52



Figure 12: Cost/reward horizon method

will reset the accumulated Costs and Rewards.
In this way, the behavior of the application is split in cost windows and
in each of them the accumulated rewards should satisfy the formula
Reward≥R.

Since we are looking for the maximum reward given a predefined
cost, for finding the optimal scheduler it is necessary to discover the
maximum value of R for which the formula (4.1) holds. The resulting
trace generated by a satisfiable formula has the structure depicted in Fig-
ure 12. The trace starts with some initial actions corresponding to the
application start-up and leads to its cyclic behavior. As shown in the fig-
ure, the approach does not consider all possible traces, but only the ones
that satisfy the constraints of the query. The candidate schedule is the
piece of trace that is highlighted in red in the figure, which means that
UPPAAL has found a cyclic behavior in the application whose execution
satisfies the formula forever. This means that we have found an optimal
schedule from which it is possible to derive the set of rules that will gen-

Figure 13: Reset TA

53



erate the optimal scheduler. Until now the derivation is done by hand,
but can be simply automatized just constructing a parser able to read the
textual results generated by UPPAAL.

4.1.2 The horizon method at work

In this section we show how the cost/reward horizon method can be
applied to MCC systems and, in particular, to the Example 1 presented
in Figure 7.

We are interested in finding a time-optimal and/or battery-optimal
scheduler. By applying the method presented in Section 4.1.1 to a MCC
system, given an infinite path γ, the time- and energy-based ratios be-
come:

rT = limn→∞(Time(γn)/Fragments(γn));
rE = limn→∞(Energy(γn)/Fragments(γn)),

respectively.
Thus, the accumulated costs are calculated by the functions Time()

and Energy() given in Definition 8. The rewards are instead defined by
a function Fragments() : η → N which counts the number of fragments
executable in the fixed window. The more fragments we are able to exe-
cute with the same amount of time or energy, the better the resources are
used.

To find the minimum time-based ratio using the UPPAAL model checker
we can ask the system to verify a query of the following form:

E[] forall(i:pid t) not(Fragment(i).Err)
and (GlobalTime≥300 imply (fragments>41))

In this specific case we want to know if, in a fixed window of 300 units of
time, it is always possible to execute 41 fragments. To find the minimum
ratio we have to iterate on the number of fragments in the denomina-
tor in order to find the maximum number for which the query holds. In
our running example, the maximum value that satisfies the query is 41,
giving a ratio 300/41 = 7.31. The resulting trace generated by the pre-
sented query results in an execution sequence that can be synthesized as
the Schedule 3 shown in Figure 8.

54



The query for determining the energy-based ratio is defined as:

E[] forall(i:pid t) not(Fragment(i).Err)
and (battery≥900 imply (fragments>43 and battery≤930))

In this case, the resulting ratio is 900/43 = 20.93. Thus, the system re-
quires 20.93 units of battery per fragment. Notice that in this query there
is an extra constraint defined as an upper bound on the right side of the
imply keyword. This is because we can have different schedules satis-
fying the formula, but we consider only the ones that exceed the battery
threshold as little as possible. The resulting trace from the energy query
gives us the energy optimal schedule, that in this case can be synthesized
as the Schedule 2 in Figure 8.

To assess the truthfulness of the cost/horizon method, we can com-
pare the obtained results with the ones calculated directly in the Gantt
chart in Figure 8. The energy ratio for Schedule 2 on one loop is given
by 83/4 = 20.75. The slight difference in the results is due to the size of
the cost window. In the Gantt chart we are considering a window that
fits perfectly four fragments and, hence, we do not have any incomplete
fragment that affects the final result as in the case of the horizon method,
but the approximation is really close to the best case.

4.1.3 Evaluation of custom schedulers via SMC

In this section, we present a technique for evaluating the performance of
a custom scheduler using the Statistical Model Checking facilities (BDL+12;
DLL+11) provided by UPPAAL (the model checker is called UPPAAL-
SMC, or SMC for short).

Let us suppose now that a developer wants to define his own sched-
uler for an application and to know how much the resulting custom
scheduler is close to the optimal one or to calculate some statistics. Possi-
ble reasons for customizing a scheduler could be problems in the devel-
opment phase related to hardware cost or less quantitative issue, such as
security and privacy that force the developer to introduce a static sched-
uler.

55



The new personalized scheduler in UPPAAL is modeled as a TA tem-
plate called Manager. The duty of this manager is to decide on which
resource each fragment should be executed. Considering the model pre-
sented in Figure 9, here we do not have anymore the decision in the ready
location between mobile and cloud transition, but just a transition that is
synchronized with the manager. The manager operates as a mediator,
between the fragments and the resources. Once the manager receives
notice of a new fragment to execute, it decides according to some rules
in which resource’s waiting list to move it. The resources are modeled
following a busy waiting paradigm, where every time the queue is not
empty, a new fragment is consumed. Before executing the assigned frag-
ment, the resource checks the execution location of its predecessor; if data
synchronization is not required, it just executes the fragment, otherwise
it synchronizes the data and then processes it. Once the computation is
completed, the resource returns the control back to the executed frag-
ment and passes to the next one.

The manager can contain different kinds of rules. One possibility is to
define a rule for each fragment or to specify a more general rule that can
be applied to the whole application. For example, to execute a fragment
remotely when it is offloadable is a very simple rule that a developer can
consider to implement in a MCC system. Figure 14 depicts the TA model

Figure 14: Manager TA

of the manager implementing this custom strategy. In detail, after a frag-
ment is synchronized with the manager, the latter decides to enqueue
the fragment on the corresponding waiting list according to the guard
Info[x].isOffloadable. In this way, if the fragment x is offloadable

56



it is queued locally, otherwise remotely.
Looking more closely at the custom scheduler implemented in the

manager, we notice it realises the same behavior of Schedule 2 in Fig-
ure 8, which we already know to be energy-optimal.

As previously said, usually a customized scheduler is defined for
reasons related to particular conditions of the environment. Now, we
perform some statistical analysis to quantify how much the customized
scheduler above is far from the optimal one, in order to have a quanti-
tative measure of any performance loss. In particular, below we present
some verification activities and compare the obtained results with the
time/energy-optimal scheduling we found in Section 4.1.2.

By evaluating the following queries using the SMC tool, we can de-
termine the expected maximum value for the number of fragments that
can be executed in a given temporal window:

E[time<=300;2000](max:fragments)
E[battery<=900;2000](max:fragments)

These two queries aim at finding the expected value over 2000 runs in a
window of 300 units of time and 900 units of battery, respectively. The
results are: 29 fragments for the first query and 41 for the other one.
Comparing these results with those of optimal ones, we can clearly see
that the scheduler defined by the developer is almost as efficient as the
energy-optimal one. Indeed, they differ only for 2 fragments in the en-
ergy case. Instead, the performance of the custom scheduler is very far
from that of the time-optimal scheduler, as they differ for 14 fragments.

The proposed strategy can be also evaluated to see if it is closer either
to the energy-optimal scheduler or to the time-optimal one. This can be
achieved by checking if the probability to reach the time-optimal sched-
uler is greater than the probability to reach the energy-optimal scheduler.

Pr[time<=300](<> fragments>=43)>=
Pr[battery<=900](<> fragments>=41)

The result of this query is false with probability 0.9, meaning that the
probability of reaching the energy-optimal scheduler is greater than the
one for the time-optimal scheduler.

57



We can also simulate the system behavior by executing the following
commands:

simulate 1[time<=300]{battery,fragments}

simulate 1[battery<=900]{time,fragments}

Their results are shown in Figure 15. On the top graph, we have the
number of fragments compared with the consumed battery using a time
scale. On the bottom graph, instead, we have the ratio of executed frag-
ments and required time using a battery scale. The graphs simply show
the ratio between costs and rewards according to the elapsing of time
or battery usage. It can be simply defined drawing a vertical line and
divide the obtained time/battery value for the number of fragments exe-
cuted. Furthermore the figures summarize the consumption of resources
according to the progress of the application.

4.1.4 Application to the navigator case study

We present now the results obtained using the cost/reward horizon method
applied to the navigator case study. The complexity of this example,
shown in Figure 16, makes it a good test bed for our method. Notice
that the values of the parameters used in the example are generated ad-
hoc as a proof of concept. From real life we expect that the developer
can determine information about fragment instructions by performing
experimentation, relying on statistics or simply studying the complex-
ity in the code. The diagram in Figure 17 shows the resulting schedules
synthesized from the verification of the following queries:

E[] forall(i:pid t) not(Fragment(i).Err)
and (time≥100 imply (fragments>16 and time<120))

E[] forall(i:pid t) not(Fragment(i).Err)
and (battery≥400 imply (fragments>21 and battery<419))

The first query defines the time-optimal schedule with respect to a time
window of 100 units and with a maximum number of executed frag-
ments equal to 16. The ratio rT = 100/16 = 6.25 was reached keeping
the execution local for almost all fragments except for f8 and f9, which
are executed in parallel remotely.

58



Figure 15: Simulation results

The opposite behavior is identified in the verification of the second
query for the energy-optimal case, where only three fragments are exe-
cuted locally and all the others remotely. Since the fragments f7 and f2

are not offloadable, they are maintained locally together with the frag-
ment f1. The choice to execute f1 locally is given by the necessity of the
scheduler to wait for a suitable moment to move the computation re-
motely. Clearly, moving the computation between two non-offloadable
fragments is not convenient; furthermore, sometimes it is better to antic-
ipate or postpone the offloading when the data synchronization is mini-
mal or less costly. The ratio of this scheduler is rE = 400/21 = 19.05 with
a final energy consumption equal to 272 units per cycle.

59



Figure 16: Navigator case study: graphical representation of the MobiCa
specification

The cost/reward horizon method fits MCC systems perfectly. In par-
ticular, during the sequential behavior of the application it tries to find
the best moment for moving the computation remotely, defining also dif-
ferent strategies according to the role of the fragment. Instead, during
parallel behavior, where there are no direct relations between fragments,
it tries to exploit the benefit derived by allocating the computation both
on the mobile and on the cloud.

As a final evaluation we present the results obtained verifying the
custom scheduler described in Section 4.1.3 on the navigator case study
using SMC. Verifying the expected maximum reward using the query

E[battery<=400;2000](max: fragments)

we obtain a cost energy ratio rE = 400/16 = 25. Even worse is the score
obtained by trying to optimize the performance using the query

E[time<=100; 2000](max: fragments)

which achieves a ratio rT = 100/5 = 20. Thus, comparing the obtained
values, it is possible to notice a substantial growth of the ratio for the

60



Time-optimal
Schedule

Energy-optimal
Schedule

M

B

C

M

B

C

T=95
E=419

T=136
E=272

T=0
E=0

LOOP

Figure 17: Navigator case study: optimal schedules

custom scheduler. Since a higher ratio means a decrease in performance,
we can claim that the strategy defined by the developer is not a good
approximation of the optimal one. Furthermore, analyzing the results
in more detail, we notice that the custom scheduler is very far from the
time optimal, with a ratio that is four time larger than the one achieved
by the optimal scheduler. Considering instead the energy case, it is pos-
sible to reach a ratio of 25 against the 19.05 of the optimal one. Looking at
these results, the developer is aware that using his custom scheduler, he
can achieve a good performance if he is interested in energy optimiza-
tion, although this is not optimal. By performing a simulation, we can
see a significant gap between the number of executed fragments and the
elapsing of time according to the consumed battery power; there is in-
deed a symmetric increase of values generated by the cyclic behavior of
the application.

The plot in Figure 18, instead, represents a scheduler synthesized us-
ing a histogram. Using an appropriate simulation query, which takes
into account the fragments in execution on the resources, it is possible to
represent each fragment as a column of the same height of its identifier
in the specific resource. For the sake of readability, columns referring to
cloud (red lines) and mobile (green lines) are depicted on the same level
of the graph, while the network columns (blue lines) are reported just
below. A peak in the blue line means that the corresponding fragment
above requires the synchronization on the bus before its execution.

61



Figure 18: Simulation results

4.2 Run-Time analysis

The analysis at design time presented before can be improved using the
runtime approach. This methodology has the ability of suggesting the
offloading strategy for future fragments of the system starting from the
current state. By means of an ad-hoc framework, this approach has the
capacity to identify the best execution strategy of k steps ahead. Here,
we propose the runtime optimization based on the cost minimization
for reachability property. The idea is to use the diagnostic trace, which
is automatically generated by the UPPAAL tool during the verification,
as a schedule for taking decisions during the application execution. The
schedule is a trace enriched with the execution location for each fragment
and a flag that indicates the necessity of synchronizing data in case of
different execution location for the consecutive fragment.

62



X seconds
10 0,17
11 0,29
12 0,49
13 0,71
14 1,38
15 3,19
16 7,88

Table 5: Verification response time

4.2.1 Minimization of reachability properties

UPPAAL can provide three kinds of traces according to the diagnostic
trace set-up: some trace, the shortest one, or the fastest one. The queries
we present here, are not related only to a specific application, but they
have parameters, such as fragments, battery, memory and elapsing of
time, that are relevant to MCC at large and not only for this specific ex-
ample.

The first approach is using the window optimization technique. These
analysis can be achieved using the query of the form:

E<>fragment>=x

Which means ”it is possible to find a path with a number of fragments
greater than x”. In particular, fixed a number x of fragments to explore,
starting from the current state and verifying for the fastest trace, the re-
sult can be identified as the time-optimal schedule for the proposed ap-
plication.

Table 5 contains the execution time expressed in seconds used by UP-
PAAL to provide the resulting schedule for the navigator example ac-
cording to a given number of fragments x to predict.

There is an exponential growth of seconds according to the increasing
of the value x. This criticality produces issues related to the right setting
of the parameter x. Since the complexity is exponential, a good compro-
mise could be to set up a small x that guarantees a fast result and then,

63



using an iterative deepening approach, to increase the value step by step
until the application execution reaches the depth of x.

The presented query is specific for time optimization. On the same
way it is possible to verify other parameters, like battery or memory,
implementing this new measure as clocks values.

Query Trace Time Battery Memory

E<>VOICE

and globalTime<300

and battery>50

and memory<100

Shortest 299 87 21

Fastest 255 72 41

E<>VOICE

and globalTime<299

and battery>72

and memory<41

Fastest 267 80 21

E<>VOICE

and globalTime<400

and battery>50

and memory<100

and fragmentStateRemote[3]==0

Some 325 84 43

Fastest 281 69 63

Table 6: UPPAAL verification results

In Table 6, we present some others relevant queries for the navigator
case study of the form:

E<> FragmentID and Time<x and Energy>y and Memory<z

The query presented belongs to the reachability property set, but the dif-
ference with respect to the previous one is on the frontier, in this case we
want to reach a precise point in the application using a certain amount of
time and memory while guaranteeing a certain amount of residual bat-
tery. The first query in the table can be read as: “It is possible to find a
trace where VOICE is activated in at most 300 units of time, with at least
50% of residual battery and with memory usage that is smaller than 100

64



Mb”. By verifying this property in the UPPAAL tool using the shortest-
diagnostic-trace option, we obtain as result the shortest system trace that
satisfies the mentioned query. The trace is shown in Figure 19 where,
for the sake of presentation, we consider only the execution of one of
the three iterations of the fragment CONTROLLER. The fragment is ac-
tivated with a synchronization on channel F [1] and proceeds by calling
the manager. Note that, before its execution, the fragment checks if a data
synchronization is needed, and then starts the execution remotely. After
the execution of all instructions, the CONTROLLER will pass the execu-
tion to the GPS and so on. The given trace proceeds until the activation of
the fragment VOICE, displaying step by step if the fragment is executed
locally or remotely. The final resource usage for the mentioned query is
shown in Table 6. The time consumed is equal to 299, the residual bat-
tery is equal to 87 and the used memory is equal to 21. These results are
obtained executing the fragments CONTROLLER, PATH CALCULATOR,
TRAFFIC EVALUATOR, MAP, NAVIGATOR, and NAVIGATION PANEL
remotely, whereas CONFIGURATION PANEL and GPS are executed lo-
cally. Performing the same query, but setting the diagnostic-trace option
to fastest trace, we have an improvement in time performance, but with
a higher usage of battery energy and memory. Unlike in the previous
scenario, the resulting trace suggests that one executes the first two iter-
ations of the CONTROLLER fragment locally and all the other fragments
as before. Of course, we can also check if there exists a good compromise
between performance and resource usage. For example, as depicted in
the second row in Table 6, we can then check a query using the results of
the previous queries as constraints. In this case, using again the fastest-
trace option, we obtain a result with a minimal consumption of memory
and a good compromise in time and battery usage. In order to achieve
this result, the trace suggests that we execute the CONTROLLER frag-
ment locally at the first iteration and remotely in the others. This result
is possible thanks to a dispose action that is executed by the manager at
the beginning of the second iteration. Using UPPAAL, it is also possible
to verify more complex queries, like the one in the third row of Table 6.
In addition to the previous constraints, there we want to force the system

65



Figure 19: UPPAAL verification

to terminate the TRAFFIC EVALUATOR fragment locally. The result, us-
ing the fastest-trace option, shows a decrease in performance and in both
battery and memory consumption, but guarantees the best trace in per-
formance while ensuring that the given fragment terminates locally. No-
tably, the best solution is to execute this fragment locally only at the last
iteration, in order to satisfy the constraints and to take advantage of the
remote execution power for the first two iterations.

4.2.2 Runtime framework

The runtime approach can be supported by a software framework able
to include all the features and characteristics useful for the correct usage
of the decision support. The framework will be a middleware shared
between the mobile device and the remote cloud in order to provide a
common base for the implemented services.

66



Figure 20: Runtime framework

Figure 20 shows the framework structure. It consists in a series of
modules that permit to create the right environment for the system. The
Manager is the main component of the framework and it is divided in
local component and remote one. It is able to coordinate and take de-
cisions regarding the execution location of the fragments to transfer to
the other modules. The profiler maintains information regarding the
execution time of the fragments, the progress of the application execu-
tion, the network bandwidth, the remaining battery, the free memory
and the CPU loads. All this information collected by the profiler will be
exchanged like control messages between local and remote manager, and
forwarded to the remote solver by necessity. The solver is the heart of
the framework where the decision support is located. In the solver re-
sides the application model and the UPPAAL engine that has the duty
of calculating the best schedule for the application. The schedule gener-
ated by the solver is maintained both on the local and remote manager
and is used to coordinate the synchronization and execution of the frag-
ments in the respective modules. The executor has the duty of execut-
ing the fragments of the application and the synchronizer module is
used to maintain consistent the state of the system between two consec-
utive fragments executed in different locations. Another role of the man-

67



ager is to monitor the variation of the resources’ parameters collected by
the solver in order to avoid wrong schedule executions. A typical vari-
ation in the resources conditions can be generated by the fluctuation of
the network bandwidth due to connection instability. During this situ-
ation the proposed schedule might be not anymore optimal and so the
manager should require a new estimation to the solver. Another situa-
tion to manage is the disconnection of the device from the network. So,
for guaranteeing reliability, the manager should bring back the applica-
tion to the last consistent state (checkpoints) and restart the computation
locally (rollback). This permits to guarantee continuity in the usage of
the application without loss of information. The concepts of roll-back,
consistent state and checkpoints are considered out of the scope for this
thesis, we refer the interested reader to the following standard works on
these topics (KT87; EAWJ02; Ran75).

4.2.3 Invocation interval

The decision support based on model checking suffers from the com-
mon problem, as highlighted from Table 5 of state space explosion. For
this reason in order to exploit the computation power and the large quan-
tity of available resources, the UPPAAL engine is deployed in the cloud
part. Of course this expedient is not enough for providing fast results
at runtime, especially for optimization problems being part of the NP-
Hard problems. It is worth noticing that the main purpose of this work
is not focused on the performance, as we want to show a new methodol-
ogy where the model checking is able to solve a different problem with
respect to what we are used to think. For this reason the verification is
based on an iterative deepening method, where the query are bounded
in the number of fragments, permitting a faster answer and more flexi-
bility to the problem adaptation. This technique, exploring gradually the
state space, allows fast answers using a small exploration depth, bypass-
ing the main issue imputable to the model checking and permitting its
application to run-time contexts. At the same time we want to have a
prediction optimized for long runs.

68



Algorithm 1 Decision support algorithm
1: resources=getResources();
2: depth=10;
3: k=depth;
4: schedule==null;
5: while (!applicationStop) do
6: if (schedule==null) then
7: schedule=solver(getCurrentState(), resources,
8: depth);
9: else if (resources==getResources()) then

10: schedule=solver(getCurrentState(), resources,
11: k++);
12: else if (resources!=getResources()) then
13: newInst=solver(getCurrentState(),
14: getResources(),depth);
15: if (newInst!=schedule) then
16: schedule=newInst;
17: k=depth
18: end if
19: else if connectionLost then
20: schedule=null;
21: end if
22: if (currentFragmet==k-x) then
23: k=depth
24: end if
25: return schedule;
26: end while

69



The pseudo-code Algorithm 1 describes the behaviour of the frame-
work according to different conditions that can show up. At the applica-
tion initialization, the remote manager requires the parameters regard-
ing the resources, using the method getResoruces() and setting the
global variables needed for the system.

The first step, when the scheduler is still null, the solver calculates the
first schedule with a prefixed number of fragments given by the variable
depth. The prefixed depth guarantees a fast solution, given by a small
look ahead. After that, the manager shares the results with the client and
starts the execution coordination.

After this first initialization, the prediction can continue gradually in-
creasing the depth of exploration in order to obtain a longer schedule.
The new discovered schedule will replace the old one without interrup-
tion for the application. Notice that getCurrentState() is used for
keeping the starting point of the prediction consistent with the current
state of the application execution.

Notably, the above procedures are valid only in conditions where the
resources are stable over time, for example when the system is connected
to the wireless network. But this is not always the case, because unstable
network can lead to continuous variation of the surrounding environ-
ment parameters. At this point the manager will ask the solver to run a
new instance of UPPAAL with the most recent parameters and, in case
of difference in the results, the old instance will be interrupted and the
new schedule will be synchronized. Of course each time that a difference
in the parameters is revealed, a new instance in the solver is opened and
only the best one will be kept.

The last scenario is the complete disconnection of the mobile device
with the remote part. In this case all the fragments are redirected locally,
restarting the computation from a consistent state. This until the connec-
tion is restored and a new schedule is provided.

In case the application is faster than the solver to predict an extra
step (if(currentFragment==k-x)), the manager requires again the
information to the profiler and restarts the solver with the updated infor-
mation. The x is necessary to restart the computation of the scheduling

70



in time, before that the application reach the prefixed depth and remain
without the prediction. In this circumstance the solver will recalculate
the optimal schedule decreasing the depth to the constant depth. This
mechanism guarantees always the longest optimized schedule, until the
instant in which the computation of a new schedule is longer than the ex-
ecution of all predicted fragments. The proposed algorithm is devised on
purpose for running on the cloud infrastructure in order to save mobile
resources and avoiding the system overhead. Define a precise execution
cost is really a complex task, because the algorithm is in loop until the
application is stopped and for each iteration an instance of the solver
is executed. The solver module is highly influenced by the prediction
depth and the dimension of the current explored graph and its complex-
ity is synthesised in Table 5 at page 63.

4.3 Generation offloading strategies via UPPAAL
Stratego

In this section we give an intuition of how it is possible to define a strat-
egy using the UPPAAL Stratego. The tool integrates other two branches
of UPPAAL: SMC (BDL+12) and Tiga (BCD+07) specifically devised for
synthesis for time games.

Stratego is a novel tool which facilitates the generation, optimiza-
tion, comparison and performance exploration of strategies for stochas-
tic priced timed games in a user-friendly manner. The tool allows an
efficient and flexible strategy-space exploration before the adaptation in
a final implementation.

UPPAAL Stratego comes with an extended query language where
strategies may be constructed, compared, optimized and used in statisti-
cal model checking for game under the constraints of a given synthesized
strategy. The tool can operate on three different kinds of strategies, all of
them memoryless. Non-deterministic strategies give a set of actions in
each state, with the most permissive strategy ”when it exists”, offering
the largest set of choices. In the case of timed games, most permissive
strategies exist for safety and time-bounded reachability properties. De-

71



Figure 21: Fragment example

terministic strategies give one action in each state. Stochastic strategies
give a distribution over a set of actions in each state.

4.3.1 Navigator case study on Stratego

We describe here how it is possible to generate a schedule for a vari-
ation of the navigator case study using the Stratego tool. Thanks to a
friendly user interface, Stratego permits to construct the problem in a
graphical way, simply drawing the model in the dedicated editor. Doing
a comparison with other versions of UPPAAL, in Stratego we have the
possibility to define two types of transitions. The solid arrows are transi-
tions managed by the controller and the dashed arrows are managed by
the stochastic environment. The translation from MobiCa to the timed
automata model for Stratego is hence similar to the statistical case.

Figure 21 depicts the template for fragments implemented in Strat-
ego. In the null location the TA has only one output transition, which has
the duty to synchronize the computation with the manager in Figure 22
for providing the offloading decision. The manager duty is to divide
fragments between local and remote execution; after the reception of a
new task, the manager does not force anymore the execution, but restrict
only the local execution for non offloadable fragments. This behaviour is
managed by the dashed arrows for the execution decision that are now

72



Figure 22: Manager example

uncontrollable. The same variation is applied to the resources’ models
(Figure 23), where all transitions except the first one on the reception of
a task are uncontrollable.
Once defined the model, the last step is to use the appropriate verifi-
cation query for defining a strategy. The query syntax for the Stratego
version is a bit more complex, because it includes all the model checking
functions plus the strategy derivation. For a more complete view, the
reader can refer to the Appendix A.6.

Here below we try to define a strategy on the navigator case study
using Stratego. As first step it is necessary to define a safety property.
The scope of this property is to guarantee to respect of a determined
condition for the strategy. Using the query in Listings 4.1, we state that a
safe strategy should always reach a determined point in the application,
that in our case is the complete execution reaching the fragments 8 and
9. The completion of such fragments is underlined by a true flag on the
result array.

strategy safe=control: A<> ((result[9][0]!=0 || result
[9][1]!=0) && (result[8][0]!=0 || result[8][1]!=0))

Listing 4.1: Safe query

Once defined the precondition safe, it is possible to define the fast/fastE
strategies (Listing 4.2). Using the fast/fatsE properties we require the sys-
tem to find the strategy that minimizes the time or battery for reaching a
point in the application respecting the safe condition. If the system is able

73



(a) Mobile

(b) Cloud

(c) Network

Figure 23: The resources’ models

to find a strategy, after the verification procedure will return a message
containing: the number of runs, the number of iterations for each run,
the number of reset and the total number of iterations.

74



strategy fast=minE(time)[<=100]:<>((result[9][0]!=0 ||
result[9][1]!=0) && (result[8][0]!=0 || result
[8][1]!=0)) under safe

strategy fastE=minE(battery)[<=50]:<>((result[9][0]!=0 ||
result[9][1]!=0) && (result[8][0]!=0 || result
[8][1]!=0)) under safe

Listing 4.2: Fast/FastE query

The found strategy is maintained in memory and accessible for further
analysis.
Listing 4.3 shows two queries that try to elaborate the obtained strategy
for discovering additional relevant information and drawing the sug-
gested behavior.
The first query provides the expected maximum time for the defined
strategy to reach the prefixed point after 200 simulations.
The second query instead is a simulation of the obtained strategy in the
application model. The simulation can be personalized according to the
user needs and, in this case, we focus on the consumed battery, the execu-
tion location for each fragment identified by the ID, and the availability
of the network. For graphical reason, we inserted in the query mathe-
matical operations like division and subtraction for avoiding overlap in
the results. Using the simulation query for a time period of 60 units of
time on the fastE strategy, we obtain the chart in Figure 24. The sky blue
line sketches the executed fragments, where the height of the columns
corresponds to the ID of the fragments and the width corresponds to the
permanence time on a resource. The blue line denote the usage of the
network (the synchronization along the bus), and the green one the lo-
cation execution for the fragment. For example, if we consider a vertical
line at time 5, the current fragment in execution is Fragment1, the pick in
the blue line means the usage of the network for data synchronization of
the previous fragment and the green line without the pick means that the
execution is remote.

The last line in red defines the battery consumption trend according
to the operation executed by the mobile device. The variation of the
climb degree indicates different usages of energy according to the action

75



Figure 24: Strategy simulation

executed by the mobile device.

E[<=100; 200] (max: time) under fastE

simulate 1[<=60] {battery/10, Manager.isLocal-4, Manager.
fragmentID, !netAvailable-2} under fastE

Listing 4.3: Results queries

76



Chapter 5

Parallelized MCC
Scheduling Algorithms

In this chapter we describe further experiments based on algorithms de-
veloped ad-hoc for defining scheduling on MCC applications using par-
allel computation in Java language.
The definition of the optimal scheduling at run-time has many challenges
related to response time and resource usage. In order to improve the
performance of the system described in Section 4.2.2 we substitute the
model checking engine in the solver module, with a smart and parallel
algorithm developed on purpose. The issues related to the proposed al-
gorithms are similar to the limitations of the model checking technique,
like the state space explosion and so memory overflow. Here we try to
improve the performance using parallel computation and some heuris-
tics for pruning the tree, avoiding the exploration of unreachable and
unsafe states. These algorithms have been applied to a simplified ver-
sion of MobiCa without parallel computation, so reducing the operators
only to non-deterministic and sequential ones.

77



5.1 Parallel Dijkstra implementation

In this section we describe the parallel Dijkstra implementation, that is a
variation of the Dijkstra algorithm (Dij59) for the shortest path. The idea
is to take in input a MobiCa specification and transform its behaviour
in a edge-weight graph. An edge-weighted structure is a graph model,
where we associate weights (or costs) to each edge. Such graphs are nat-
ural models for many applications. Perhaps the shortest path is the most
intuitive graph-processing problem that we encounter regularly in sys-
tems, as e.g. when we use a map application or a navigation system to
get directions from one place to another. In fact, if the weighted naviga-
tor graph represent a road network, each edge represents one direction
of a road between two intersections, and the weight of an edge could
represent the road’s length, the time required to travel the road, or the
toll a vehicle pays to use a road. The weight of a path is the sum of
the weights of the edges on the path, so, if the edge weight represents
the travel time, the weight of a path indicates the total distance time to
travel along that road. The shortest path from vertex u to vertex v is a
path whose sum of edge weights is minimum over all paths from u to
v. To convert a MCC context into a edge-weight graph, we can model
fragments as vertices and dependences between fragments as weighted
edges. The weight of each edge is a generic cost that in a MCC context
can be identified as the time or energy for executing the source fragment
of the edge in a resource (mobile/cloud). In the weighted graph that we
derive from MobiCa, we want a shortest path containing the lowest-cost
way to get from the source fragment, which we call s to a target fragment
t at depth greater than k. The k value indicates a threshold in the explo-
ration of the graph, generally contains the number of levels to explore,
but can also states cost variables like time and energy.

5.1.1 Properties of shortest paths

The shortest path problem requires some properties that should be re-
spected for the formulation of the algorithm.

78



Paths are directed. A shortest path must respect the direction of its edges.

The weights are not necessarily distances. The weights might represent
time, cost or an entirely different kind of variable.

Not all vertices need to be reachable. If t is not reachable from s, there
is no path at all, and therefore there is no shortest path from s to t.

Negative weights introduce complications. We assume that edge weights
are positive.

Shortest paths are not necessarily unique. There may be multiple paths
of the lowest weight from s to t; we choose the first one found.

The runtime optimal scheduling we introduce in Chapter 4 can be
reformulated as the single source shortest paths, where the source of
the graph corresponds to the current state of our application. The re-
sult of the unfolding for the MobiCa specification is a tree, known as the
shortest-paths tree (SPT), which gives a shortest path from the current
state of the application s to a vertex t after k steps. Such path always
exists and in general there may be two or more paths of the same length
connecting s to a vertex t.
From here on, since our graph is a tree, we use node instead of vertex.

Example 3 Taking in consideration the example presented in Figure 7 we can
image to unfold the SG behaviour and generate the infinite tree graph presented
in Figure 25. The fragments are nodes and the dependence between fragments
are edges. A single edge (u, v) inherits the weight (time/energy) of the execution
of the fragment u in a specific resource.

Notice that we have four possible combinations of execution: fragment can
be executed locally on mobile (M) remotely on cloud (C), locally plus the bus
(M+B) or remotely plus the bus (C+B). The use of the bus is necessary after
the execution for the synchronization of the results. By convention, a fragment
when is started in a resource should terminate in the same location. In reality,
this is not always the case; it can happen that the remote execution is stopped for
continuing locally due to connection lost.

The execution representation for the Example 1 at page 35 starts with an
empty root that connects the fragment f0, followed by fragment f2, an proceed
by an infinite loop f2 → f0 → f2 → f1 → f2. In the unfolding we find at

79



Figure 25: State space exploration

80



the first level only two instances of f0 reached by two transitions labeled with M
and M+B. This because the fragment f0 is not offloadable and so can be executed
only in the mobile with or without synchronization on the bus.

The tree from f0 continues towards f2, that appear at the second level. Since
f2 is offloadable, potentially we have four possible execution location, indeed, if
f0 was on M, f2 can be executed in M or M+B, else if it was on M+B, f2 can
be executed in C or C+B.

Going ahead with the third level in the tree of our example, we encounter
again f0; here, from f2 M we move towards f0 M and M+B, from f2 C+B we
have f0 M and M+B. Instead from f2 M+B and C we finish in a illegal state
f0 C denoted with a red cross, because a non-offloadable fragment cannot be
executed remotely. The construction of the tree continues towards f2 and f1 for
then proceed the cycle restarting from the coloured f2 at level 2 and so on.

Looking carefully the Figure 25 we can recognise some standard pat-
terns on the construction of the tree, that are generated by some rules
introduced in the algorithms in order to reduce the state space.

These rules can be formalized as a set of heuristics: if a fragment is
executed in M, the successor can be executed only in M or M+B, this be-
cause the system cannot execute two consecutive fragments in a different
resource without the synchronization on the bus. For the same reason if
a fragment is executed in cloud the successor can be executed only in C
or C+B.

The second heuristics instead is related to the data synchronization.
If a fragment after its execution synchronizes the data on the bus, so we
are in the case M+B or C+B, the successor can be only C and C+B in the
first case and M and M+B in the second case. This because it has not
sense to synchronize the data on the bus and maintaining the execution
on the same resource, we are loosing time for useless actions.

The last heuristic states that, if a fragment is not offloadable, so exe-
cutable only in M and M+B, its predecessor can be executed only on C+B
or M for not lead in illegal states.

The presented heuristics, resumed in Table 7, are very useful in MCC
applications in order to simplify the tree and reduce the state space. Of
course this solution does not avoid the explosion of the graph state space,
but it permits a deeper analysis using less resources in terms of time

81



Heuristic Predecessor
Successor

offloadable not offloadable

1
M M / M+B M / M+B

C C / C+B illegal

2
M+B C / C+B not convenient/illegal

C+B M / M+B M / M+B

Table 7: Unfolding heuristics

and memory. In the Figure 25, for the sake of readability, we limit our
exploration at level 6; of course is possible to proceed the exploration
by simply applying the defined heuristics. The cyclic behaviour of the
Example 1 is reflected in the tree exploration, indeed we can find cir-
cular behaviour every four levels of the generated graph. For having a
more clear idea of the graph continuation we can imagine to append to
each leaf f2 the corresponding subgraph delineated by a coloured root
f2 starting at level 2. The correspondence of the colours are important
for guaranteeing the respect of the graph construction according to the
formulated heuristics.

After having presented the state space exploration, we try to merge
this concept with our parallel Dijkstra implementation. Since the explo-
ration of the tree can be infinite, in the algorithm we consider always a
bound k imposed by the developer, that limit the exploration to reach a
given level in the tree from the current state. This permits to have a good
scheduling prediction in relative short time. The tree in the algorithm is
constructed on-the-fly for keeping the memory usage under control and
avoiding memory overflow.

Before describing the parallel algorithm that we propose, here below
we recall the Dijkstra algorithm customized ad-hoc for the shortest path
in a MCC tree. By convention, we will name s the source node and t the
target one. In our Dijkstra implementation we want to compute three
things for each node t. First the weight of a shortest path from s to t

82



which we denote as total cost totalcost(t). Second, the predecessor of t on
a shortest path from s to t, which we call pred(t), and the depth of the
node t from s, that we call depth(t). To compute the shortest path from
a source node to the target one we apply a set of relaxation steps to the
edges of the tree.

Definition 9 Relax(u, v)

• Inputs: u, v nodes such that there is and edge (u,v).

• Output: If totalcost(u) + weight(u, v)<totalcost(v), then
totalcost(v)=totalcost(u) + weight(u, v) and pred(v)=u

The Dijkstra algorithm maintains a set Q of unvisited nodes for which
the totalcost, pred and depth values are not yet known, instead, all nodes
not in Q have their final totalcost, pred and depth values. In the algorithm
we implement the set Q of the unvisited nodes as a priority queue. No-
tice, since we are using this algorithm at runtime, with an infinite state
space, we do not know all future nodes of our tree. For this reason the
unvisited set is constructed on-the-fly and contain only all neighbour-
hoods of the visited nodes that are possible candidates for being the next
to be relaxed and added to the visited queue.

The algorithm, after initializing totalcost(v) to∞, pred(v) and depth(v)
to null for all nodes except the source s, it repeatedly finds the vertex
u in set Q with the lowest totalcost value, removes that node from Q,
adds all the successors to the set Q with depth equal depth(u)+1 and then
relaxes all the edge leaving u. The cycle continues until the set Q is empty
or until the depth is equal to the threshold k setted by the developer.
In Listing 5.1, we list the details of the presented Dijkstra(G, s) algorithm
using the pseudocode.

We now show, how the revisited Dijkstra algorithm for MCC appli-
cation can be implemented in a arbitrary number of threads/processors.
The parallel Dijkstra at its initialization requires three parameters, and in
particular the number of threads, the number of starting nodes and the
depth that we want to reach in computing the shortest path.

83



1 f o r each node v ∈ G: t o t a l c o s t ( v ) ←∞ , pred ( v ) , depth ( v )←n u l l ;
2 add s to Q;
3 while Q not empty or depth ( v )<=threshold
4 u←ExtractMin (Q) ;
5 f o r each nodes v such t h a t u→v
6 depth ( v ) =depth ( u ) +1;
7 prec ( v )←u ;
8 add v to Q
9 Relax ( u , v )

Listing 5.1: Dijkstra algorithm

The algorithm starts the state space exploration with a breath first
search (BFS) algorithm until it is reached a level in the tree where the
number of discovered nodes are greater than or equal to the number of
the starting nodes setted by the user. Referring to the unfolding in Fig-
ure 25, if the user sets the number of starting nodes equal to 2, the system
stops the BFS after discovering the first two nodes f0 at level one, if he
sets the starting node equal to 3 the system will find four nodes f0 at level
3, instead if he sets the number to 5 the system will explore the tree until
the nodes f2 at level 4. This happens because the BFS should discover a
level in the tree with a number of nodes greater than or equal the num-
ber of starting nodes required by the user. During the BFS exploration
the algorithm keeps track of the totalcost, pred and depth values for each
visited node. When the BFS reaches a depth level sufficient to cover the
starting nodes, for each node present in the last level visited, it instanti-
ates a new Dijkstra implementations explained in Listing 5.1 passing the
corresponding node. So if we return to the example with starting node
equal to, 2 the system will explore until level one and it will execute
two instantiations of Dijkstra in parallel, one with f0 M, and one with f0
M+B as source nodes. Once a Dijkstra instantiation reaches the imposed
depth it will send back the target nodes achieved to the caller. The caller
maintains in memory only the target node t with the minimum totalcost(t)
arrived until that moment, and each time it receives a new performing
node t it substitutes the node and notifies in broadcast the total cost to all
the Dijkstra instantiations still running. This notification permits to inter-
rupt the computation of threads that have not yet reached the threshold
but with a total cost greater than that of the candidate node notified by

84



the caller.
The caller, once collected all the target nodes from all instantiations,

selects the node t with the lowest totalcost(t). At this point starting from
the selected node and looking the pred(v) for each node v from t to s, it is
able to construct backwards the shortest path. This shortest path is the
candidate optimal schedule for the MCC application analyzed.

The proposed algorithm, thanks to the parallel computation and us-
ing the unfolding heuristics, has permitted to achieve the same results
of the model checking approach presented in Section 4.2.1, but with less
time and permitting the exploration to a longer horizon. This guarantees
a better prediction strategy for the MCC applications.

The main problem related to this algorithm is connected to the mem-
ory usage during the analysis. Indeed in the Dijkstra implementation we
have all visited vertex maintained in memory. In some case we run into
memory overflow, despite we do not create all the state space but only
what is required.

The solution to such problem could be to prune the priority queue,
eliminating nodes that are old and with high cost, but we did not find yet
a good rule for being sure to of not loosing part of our tree that potentially
can lead to an optimal solution.

5.2 Parallel Depth First Search

In this section we propose a different algorithm that tries to save memory,
but giving always good performance. The new algorithm is based on
the same concepts of the previous one, but with the difference that each
tread instead of starting to compute a Dijkstra shortest path applies a
depth first search (DFS) in the depth of the tree. Of course the algorithm
will construct only the necessary sequence of vertices until the threshold,
respecting the same construction heuristics presented in Table 7.

When the algorithm reaches the threshold for the first path, it saves
the sequence of vertices with the accumulated cost as candidate opti-
mal scheduling and proceed looking the next one. The system continues
its exploration and each time it reaches the end of the tree with a cost

85



lower than the optimal candidate, it replaces the old sequence with the
newest one and frees the memory occupied by the rejected path. Once
the thread has covered all the committed subgraphs, it sends back the
partial optimal result for that portion of the tree. As before, the global
optimal path is the one with the lowest cost between all partially optimal
paths achieved by each thread.

5.3 Analysis of the proposed algorithms

In this section we asses the performance of the two parallelized algo-
rithms with respect to the UPPAAL method for the minimization of reach-
ability properties described in Section 4.2.1.

The results presented, were executed on a Intel Core i7 Q740 1.73GHz
with 4 cores (8 threads) processor, and with a fixed amount of RAM in
the JVM equal to 2 Gb.

Table 8 depicts the performance of the three algorithms at work for
finding the optimal scheduling on the Example 1 at page 35. The results
are divided according to the depth of the schedule. Notice in the first
column we report the number of the starting nodes, that corresponds to
the number of instantiations for the parallel algorithms and the depth
(i.e the pattern 2-10 indicates two starting nodes at depth ten). Com-
paring the results, we can state that the UPPAAL approach is the less
performant. Using 2 Gb of memory it is able to reach a depth of 40 with
221.23 seconds. Forty is the maximum depth achieved by UPPAAL on
the presented example before running into memory overflow. Passing to
the parallel algorithms we have that the parallel DFS is the best perfor-
mant, reaching greater depth, with a reasonable amount of spent time.
The parallel Dijkstra algorithm instead performs well with low depth,
but suffers the state space explosion like in the UPPAAL case; despite
this issue it is able to compute the optimal schedule with a depth of 45 in
28.859 seconds.

The presented results give a clear idea of how the proposed algo-
rithms scale with respect to the increasing of the depth. But to assess
more concretely the scalability of the proposed algorithms, in Figure 27

86



StartingNodes-

Depth
UPPAAL P. Dijkstra P. DFS

2-10 0.855 0.017 0.024

2-20 9.071 0.127 0.122

2-30 70.930 0.304 0.300

2-40 221.230 11.766 0.915

2-45 out 28.859 2.500

2-50 out out 13.475

2-55 out out 99.685

Table 8: Performance results in seconds for Example 1

0 10 20 30 40 50 60 70

0

50

100

150

200

10 30 50 70

Tree depth

se
co

nd
s

UPPAAL
P. Dijkstra

P. DFS

Figure 26: Graphical representation of results in Table 8

we propose a new example, where we increased the number of frag-
ments and iterations. In this example all the fragments are intentionally
offloadable in order to grow the complexity of the state space and limit
the advantages brought by the usage of the heuristics in the parallel algo-

87



Figure 27: Another example of a MobiCa application

rithms. The results shown in Table 9 reconfirms the global performance
obtained in the previous case, with an evident decreasing of performance
for all the algorithms, especially for the UPPAAL one. In this case UP-
PAAL stops for out of memory at depth 30; it is clear that the model
checking is penalized by the dimension of the model. For the other two
algorithms we do not have sensible performance degradation. What we
notice in Dijkstra implementation is the maximum depth reached, that
is 40 instead of 45, with an amount of second that is doubled with re-
spect to the previous case. Also the parallel DFS algorithm has shown
a degradation in performance with the expanded model; despite of this
inconvenient, it is always able to generate an optimal schedule without
arising in errors for lacking of memory until much greater depth.

We present now further experiments on the Example 1 using the Dijk-
stra implementation but with different input parameters. Figure 29 rep-
resents an histogram containing on the y-axis the starting nodes and on
the x-axis the elapsing of time in seconds. From the histogram it is possi-
ble to see that increasing the starting node from 2 to 4 with a depth of 45
we improve the performance from 28.859 of Table 8 to 12.89. Increasing
more the number of the starting nodes to 80 the algorithm improves its
performance by concluding the computation in 6.72 seconds. Of course
we cannot exaggerate in increasing the number of starting nodes, indeed
in the 200-45 case, the algorithm lost a bit of performance getting a result

88



StartingNodes-

Depth
UPPAAL P. Dijkstra P. DFS

2-10 0.720 0.029 0.029

2-20 31.44 0.144 0.090

2-30 out 0.584 0.348

2-40 out 23.550 6.128

2-45 out out 46.275

2-50 out out 49.170

2-55 out out 1089.988

2-60 out out 2562.436

Table 9: Performance results in seconds for the example in Figure 27

0 10 20 30 40 50 60 70

0

20

40

60

80

100

10 30 45 50 55 70

Tree depth

se
co

nd
s

UPPAAL
P. Dijkstra

P. DFS

Figure 28: Graphical representation of results in Table 9

89



0 50 100 150 200

4-45

80-45

200-45

1000-55

10.000-55

12.89

6.72

7.76

156.35

138.92

Seconds

Figure 29: Execution seconds for the P. Djkstra algorithm on Example 1

of 7.76 seconds. In the setting of the parameters we should find the right
compromise between exploration and exploitation of the state space in
order to obtain the best results. With the increasing of the starting nodes
parameter, the algorithm explores more tree using the BFS, reducing the
computation assigned to the Dijkstra algorithm for reaching the target
node.

Adjusting these settings, we improved the performance also for the
1000-55 and 10.000-55 configurations. Arranging this new value for the
starting node, the algorithm reaches a depth of 55 with respect to the
45 achieved in Table 8 with the 2-45 configuration. The better result ob-
tained in the 10.000-55 configuration is due to the good performance of
the Dijkstra algorithm in exploring less levels of the state space.

To sum up, the UPPAAL method is less efficient with respect to the
algorithms implemented in Java, but at the same time it is more flexible
and adaptable to any kind of user necessity. In fact, the analysis is para-
metric with respect to the verified property, easily expressed as a logical
formula. Furthermore, the model checking approach is able to deal with
parallel operators in MobiCa, not straightforward to implement in the
Java algorithms.

90



From the other side we have two parallel algorithms developed ad-
hoc for defining optimal scheduling in MCC applications, that are able to
benefit of construction heuristics defined on purpose for MCC systems.
Comparing the two algorithms we found that the Parallel DFS is faster
than the Dijkstra implementation. This result is due to a more slim im-
plementation and less demanding data structure. Another advantage is
related to the memory use: the DFS algorithms requires very low quan-
tity of memory, each thread can contain in memory at most a number of
nodes present in one path. It usually computes better than the Dijkstra
implementation because it does not require the ordering of vertices in the
priority queue, that for big state space is a real bottleneck. The usage of
parallel algorithms have increased the performance for both the Dijkstra
and the DFS methodology. Quantify the total benefit it is a really difficult
task strongly related to the execution environment and the computation
power of the infrastructure. Just to mention the cost/benefit impact of
the algorithms, we can consider the results of the P. Dijkstra in Table 8
considering the 2-45 case, the time required for computing the schedule
is 28.859 seconds using two threads, comparing this result with the 4-45
case in Figure 29, we have a reduction of time to 12.89 using 4 threads. So
the parallel computation generates an improving of performance equal
to the execution time on a single processor divided for the number of
threads. Notice, in our case since we have a processor with 4 cores the
best performance can be achieved with 4 threads. Increasing the number
of threads the performance in some cases remains stable or can be de-
creased due to a more complex management of the context switching for
the processor. We register the same result also for the parallel DFS case
in the worst case. In the other cases it is not simple to define the ratio be-
tween cost/benefit, because the results are influenced also by the random
choice of the algorithm that can lead to exploit mainly the optimization
on the best result introduced in the algorithm, improving considerably
the global system performance.

For the sake of readability the source code of the implemented al-
gorithms is omitted here, we refer the interested reader to the MobiCa
website (Mob15).

91



Chapter 6

Related Work

MCC has been already presented as a promising solution in the mobile
application field. In particular, we have shown that it allows both data
processing and data storage to happen outside the mobile device at run-
time. This new solution can be confused with the cloud computing; the
main difference is that the latter aims at providing rich elastic comput-
ing resources that are defined at design time, instead the MCC permits
to expand the functionality on the go and on demand according the en-
vironment parameters.

According the (FLR13) survey the MCC methods are based on three
offloading technique that consists in: Client-Server, Virtualization, and
Mobile Agent. The former techniques relies on the communication be-
tween mobile devices and a remote server/cloud via protocols such as
Remote Procedure Calls (RPC). This methodology is largely used in web
development, but required a pre-installed system between the partici-
pants. This constraint is a clear disadvantage in a MCC scenario because
limits the dynamic nature of mobile applications. Spectra (FPS02) and
Chroma (BSPO03) are typical example of a Client-Server architecture.
Virtualization is a technique that permits to transfer the memory image
of a virtual machine from a source device to a destination server. The
advantages of this method is the migration of applications and OS with-
out stopping their functionalities. The main works that rely on virtual-

92



ization are MAUI (CBC+10b) and CloneCloud (CIM+11). Mobile Agent
is another methodology that uses a mobile code approach to partition
and distribute jobs; under this paradigm we found also the Cloud Per-
sonal Assistant (CPA) introduced in by O’Sullivan et all. (OG13b). The
authors assign at the CPA the responsibility for discovering an appropri-
ate service searching on a repository, invoke it with the corresponding
parameters and notify the results back from the cloud to the mobile.

MCC has many advantages, but at the same time has to face with
many issues due to the integration of different architectures. Thus, it
inherits also all the challenges behind the cloud computing and the ap-
plication mobility. The main issues in MCC are related to:

• Low bandwidth: It is the most important parameter for the success
of the code offloading and for taking advantages from the MCC
techniques.

• Availability: Service availability can compromise the computation
executed until that moment and sometimes this can cause loss of
data.

• Heterogeneity: MCC will be used in heterogeneous network, like
3G and wi-fi, and the application should support different commu-
nication protocol. Furthermore the heterogeneity of networks with
different power consumption will require different analysis for de-
cide if to offload or not.

• Computation offloading: This is the key concept in MCC. However
it is a very delicate phase in the application life and it is influenced
by the external environment. The offloading can be applied in a
static environment where the connection is stable and so it is pos-
sible to have also a static application partition. Moreover it can
also be applied in a dynamic environment, where the connection is
fluctuating and, for taking advantage from the offloading the sys-
tem should decide the granularity of the partitioning and which
components to offload.

93



• Security: It is another important issue in MCC. The MCC paradigm
inherits advantages from cloud computing and mobile device, but
of course has a drawback in data and user security. Among the
security risks for mobile users we found all the possible attacks that
can be done to a mobile phone like trojan, virus, etc. For the data,
instead, we have problems of privacy connected to the reliability of
cloud that can be due also to the integrity of the data.

• Quality of services: It is a concept that acquires importance with
the cloud computing. Quality of services is regulated by means of
contracts that guarantee no limitation in congestions, bandwidth
reduction and disconnections.

• Pricing: In MCC there are two players on which a mobile phone
can rely: mobile service provider and cloud service provider. Of
course they have different characteristics, method and price.

In the literature we found many of mobile frameworks that use a
range of approaches to achieve these points. To better explain how the
existing frameworks approach them, we structure the rest of the section
as follow: first in Section 6.1 we examine the different optimization met-
rics to consider and the resources used to quantify these choices; in Sec-
tion 6.2 we describe the different partitioning methods used and in Sec-
tion 6.3 we discuss the proposed offloading strategies proposed in the
literature.

6.1 Optimization metrics

The main objective of MCC is to attempt to maximize or minimize a
chosen metric while achieving the expected system behaviour. Differ-
ent metrics can be adopted; energy saving and time saving are probably
the most important. However, there is no agreement on which metrics to
employ and most frameworks only consider a subset of them at design
time.

The Remote Processing Framework (RPF) from (RRPK99), which is
one of the earliest systems to support dynamic application partition, at-

94



tempts to improve battery lifetime by migrating large tasks on server
machines. On the other hand, more innovative frameworks like Odessa
(RSM+11) try to improve system performance using a greedy algorithm
to manage data parallelism, stage offloading and pipeline parallelism.
CloneCloud (CIM+11) can minimize both execution time and energy
used for a target computation. MAUI (CBC+10b) and Cuckoo (KPKB12)
consider both energy and execution time. Chroma (BSPO03) weighs
both execution time and fidelity when making decisions. Instead Spec-
tra (FPS02) balances execution time, energy and application quality.

Sometimes having more than one optimization metric generates ad-
ditional challenges, mainly due to the different measurement units (sec-
ond, joule, etc.) and moreover because optimization metrics may be con-
flicting. For example, consider energy saving and time saving together:
the faster the execution, the more energy is required. The same situa-
tion occurs when considering time saved and network delay: a longer
computation requires offloading to speed up the execution but, at the
same time, usually more network transmission is needed for data syn-
chronization. The literature proposes different approaches to deal with
these issues. For example, MAUI treats the combination of multiple op-
timization metrics using a linear programming model and maximizing a
given function. Instead, Odessa executes a computation remotely only if
all the considered metrics are improved by offloading or bases offloading
decisions on a priority measure over metrics.

The choice of an ‘optimal’ optimization metric is closely related to the
type of application, the input provided by the users and the preferences
that they have in system optimization. Hence the selection of optimiza-
tion metrics in the above-mentioned frameworks is not always profitable:
it may or may not match the preferences of the users of an application.
So a bad choice in terms of metric may degrade the users’ experience.
For this reason, in MobiCa we consider multiple optimization metrics
using verification queries. These queries are expressed in a temporal
logic, and can be directly verified using model checking techniques. The
expressiveness of the logic allows one to freely combine different opti-
mization metrics. This technique also gives the developer the possibility

95



to analyze different metrics at the same time and to use the one that fits
the given constraints best. Another interesting advantage is the possi-
bility for the end user to interact with the system and to define his own
threshold-constraint preference, in order to customize the optimization
query.

6.2 Partitioning methods

The partitioning is the step after the optimization of the metrics, where
the developer should decide a method for splitting the application be-
tween offloadable and not offloadable parts. Theoretically, the number
of possible application partitions is very large since partitioning could
employ granularities as fine as single instructions. However, from a prac-
tical point of view, very fine-grained partition are very ineffective.

In partitioning methods research area there is a considerable differ-
ence of opinion about how best divide the applications. There are some
approaches like Chroma that ask to the developer to specify a given ap-
plication partition. These approaches are based on the assumption that
the number of fragments in which the application is split is small and,
as consequence, the granularity of the application is typically larger. The
authors of Chroma created a little language called Vivendi (BGSH07) that
allows the developers to specify compact static partitions of the applica-
tion. Using Vivendi, developers specify code components called “remo-
teops” that may benefit from remote execution given the right circum-
stances. Developers also specify “tactics”, each of which represents a
different way of combining remote procedure calls that are selected at
runtime by the Chroma system.

Other frameworks like Spectra ask the developer to specify candi-
date partitions explicitly. The same for MAUI that considers candidate
partitions specified at methods granularity. However, MAUI asks to the
developers to specify which methods it should consider executable re-
motely by annotating those methods with the custom attribute feature
provided by Microsoft Common Language Runtime. Then, at runtime,
the system according to a solver decides if to offload or not the candi-

96



date method selected by the developer. A more extreme variant of this
approach is presented in RPF, which considers only two candidate parti-
tions, one performed locally and another remotely.

Other more innovative methods instead choose the partitions granu-
larity without requiring any programmer assistance. These approaches
takes advantage of modern virtual machine runtime language to identify
application components that can be remotely executed and the data on
which these components operate. CloneCloud offers the best example of
this approach; it identifies candidate partitions through static analysis of
code compiled to run in Android’s Dalvik virtual machine. The static
analysis in this framework distinguishes three kinds of situations: 1)
tasks that access device hardware must execute on the platform that has
those features; 2) tasks that access the same location of memory should
be executed on the same device; 3) if a task is offloaded also the methods
that it invokes should be offloaded. As another example, Odessa models
the application as a data low level graph in which the nodes are compu-
tational components called stages; it dynamically decides where stages
should be placed and when to employ a parallel computation. Cuckoo
is a Java based framework relying on the programming activity/service
model existing in Android, it makes a distinction between compute in-
tensive part (services) and interactive parts of the application (activities).
Cuckoo requires the programmer a local implementation and then gen-
erates code for the same implementation on a remote server. Generally,
remote and local methods are the same but may also be different, since
the remote implementation can run in a different architecture.

Summing up, the above-mentioned frameworks assume that the num-
ber of partitions in an application is usually small. One reason could be
that only one or two components in an application contain substantial
computation, and so only these computationally heavy tasks are candi-
dates for offloading.

Also in MobiCa a developer can describe the partitioning of an appli-
cation. We recall that an application is given by a set of fragments, which
interact with each other following a given structure. The model provided
for describing the application is similar to the one proposed in Odessa,

97



but it gives a developer more freedom in selecting the granularity of a
partition.

6.3 Offloading strategies

The last way for categorizing the MCC frameworks is according to the
offloading strategy. Given a set of candidate partitions produced during
the partition methods, the MCC system selects the one that it believes
will best achieve its goals. This should be the partition that maximizes
the system’s chosen metric or utility function. For achieving the offload-
ing strategy, the mentioned frameworks should rely on some mobile en-
vironment conditions like: network bandwidth, latency and server load
but also application behavior like amount of required computation.

RPF relies on direct observation. In particular it requires that the ap-
plication alternatively executes each partition and, by using an interface,
is able to directly measure the drain of mobile device battery. After it
has gathered sufficient measurements, RPF uses the partition with the
lowest estimated energy cost most of the time, and occasionally executes
the other partitions for seeing if the costs are changed. The drawback
in this approach is that the system is not scalable, moreover the strategy
requires sufficient measurements for all partitions before that RPF can
start to choose the best one. Other problems in this approaches are that
the prediction is application domain, and sometimes the prediction can
be wrong due to the fact that the system has learned the cost of a par-
tition on the same input for a period of time or because the data of the
interesting partition are stale due to a not frequently usage by the user.

These problem in the direct observation have led to other approach
that separately predict resource supply (resource available) and resource de-
mand (resource required by the partition). Under this kind of approaches,
it is possible to find MAUI. The demand in this case is the amount of
bytes required to send the input for the computation to the remote cloud
plus the amount of bytes required to deliver the result of the computa-
tion back to the mobile device. For the resources supply MAUI estimates
network according to the direct observation, sending in regular interval

98



of time an amount of bytes and collecting the time used. Based on this
data, MAUI predicts how much time will be spent for transferring an
application state if it chooses to execute the method remotely. While the
approach used by MAUI can adapt quickly to changes of network con-
ditions, it is less agile to adapt to the changes of the application states.
Often, the amount of states that must be transferred between the mo-
bile and remote computers is input-dependent. When inputs vary, the
size of the state transferred will change in response. MAUI suffers this
limitation, like RPF that recognizes the state size only with the direct ob-
servation.

Other approaches that use the supply-demand method (NFS00) over-
come this limitation with a history-based technique, which has been used
in other MCC systems such as Spectra and Chroma. When history-based
prediction is used, the application is sampled to explore its behavior un-
der different inputs during its computation. Based on the profile data,
machine learning algorithms are used to predict how application resource
usage varies with fidelity and inputs. History-based prediction also re-
quires some hints from the application developer. In particular, the de-
veloper must specify the inputs and other information related to the com-
plexity of the partition, in order to have a final evaluation of the cost in
terms of memory and CPU.

A similar approach is used by Cuckoo. The framework intercepts
a method invocation using a proxy and then it will decide if invoking
the method locally or remotely, using heuristics, context information and
history.

A novel approach is proposed in Odessa, in which the system tries
to identify first the performance bottleneck using an application profiler.
Its decision engine uses simple predictors based on processor frequencies
and recent network measurement to estimate whether offloading a com-
ponent from the mobile computer to a remote server or increasing the
level of parallelism for processing the component would improve the
performance. This greedy incremental approach is also used in MARS
(CLK+11) for deciding which component to run remotely. It sorts tasks
by the ratio of predicted local execution time to predict remote execution

99



time. It offloads components with the highest such ratio first, subject to
an energy constraint. This strategy is particular indicated for applica-
tions that exhibit high degree of parallelism.

Compared to above-mentioned works, the MobiCa approach takes
decisions basing the offloading strategies on real resource usage, data
and device application congestion. This methodology allows for more
accurate results with each configuration metric and system configura-
tions.

6.4 Scheduling via Timed Automata

The standard state-of-the-art approach to solve scheduling problems is
to first represent the process graphically as a state task network or a re-
source task network and then to transform it into an optimization prob-
lem. The mathematical model of the optimization problem results nor-
mally in a Mixed Integer Nonlinear Programming (MINLP or MILP)
since the corresponding mathematical models involve both discrete and
continuous variables that must satisfy a set of linear or non-linear equal-
ity and inequality constraints. Few cases exist that can be modeled as
linear problems (LP) or as integer problems (IP) with only real valued
variables and discrete variables, respectively. The quality of the solution
of the optimization problem strongly depends on the formulation of the
model and a crucial role is played by the representation of time in the
models. Based on the representation of time the mathematical programs
can be generally classified into discrete time and continuous time mod-
els. The discrete time models are defined by dividing the scheduling
horizon into finite number of time intervals with equal time durations
and restricting the events that represent starting and finishing of opera-
tions to take place only at the margins of the intervals. The main disad-
vantages of discrete time models are the unnecessary increased number
of binary variables which leads to an increased model size and the in-
troduction of model inaccuracies due to the approximation of time. The
inherent limitations of mathematical models with discrete time led to the
development of models with continuous time representations. Due to

100



the representation of time by continuous variables the models are more
accurate compared to the discrete time models and also lead to the elim-
ination of inactive event-time assignments.

An alternative method that has been discussed to model schedul-
ing problems is to model the problem by sets of TA and to solve them
by reachability analysis. Initially the purpose of TA was to model dis-
crete event timed systems and to qualitatively analyze them. Reachabil-
ity analysis is a verification technique to determine the reachable subset
of states of the system modeled as TA, and evaluating whether formal
properties such as safety or liveness are satisfied for the reachable states.
The strength of the modeling approach is its graphical representation and
modularity that helps in modeling complex systems with ease and clar-
ity. Efficient and user-friendly tools such as Uppaal ((BLR05)) and Kro-
nos ((Yov97)) have been developed for modeling and analysis of TA. In
the context of scheduling, the modular nature of the modeling approach
is exploited by modeling the resources and timing constraints as individ-
ual and independent timed automata and representing the interaction
between the individual TA by synchronization labels. The individual
automata modeled can then be composed automatically to represent the
complete model of the scheduling problem. The composed automaton
(i.e. the complete model of the scheduling problem) is represented by the
reachability graph that includes an initial location where no operations
have been started and at least one target location in which all operations
are finished. The reachability analysis is performed to find a path from
the initial state to the target state that fulfils an optimization criterion. In
the context of scheduling, each path from the initial state to the target
state represents a valid schedule and the path that fulfils an optimization
criterion represents the optimal schedule.
The extension of timed automata to priced timed automata ((BFH+01))
which include costs for transitions and cost rates for period of stay in
locations, further motivated us to use the approach for scheduling prob-
lems as it allows to formulate more complex objective functions. Cost-
optimal reachability analysis for priced TA aims at finding a path from
the initial state to a target state with optimal cost. Specialized software

101



tools like Uppaal-CORA ((BLR05)) and TAOpt ((SE05)) were developed
for cost-optimal reachability analysis of priced TA. Similar to many other
approaches that solve scheduling problems, the TA-based approach also
suffers from the problem of combinatorics thus demanding for efficient
pruning procedures to reduce the search space. Reduction techniques to
reduce the state-space were proposed in (SE05) for pure job-shops. In
this work the authors introduced the idea of computing lower bounds
for makespan minimization problems in job-shops by embedding linear
programming (LP) into the cost-optimal reachability analysis to reduce
the search space. This technique improved the overall performance to
a great extent particularly for large scale problems as a huge part of the
search tree was pruned due to the lower bounds computed by the LP.

Despite TA are able to describe very complex system, it is very com-
plex and annoying to represent a MCC systems with such formalism.
Furthermore the TA have to face with a really dynamic environment,
composed by simple and structured constraints. For this reason, we de-
velop a high-level language able to capture all these aspects, but at the
same time to inherit all the advantages related to the expressiveness and
the construction modularity of TA. Reachability is a very powerful prop-
erty for defining optimal scheduling, and it gives the best results at run-
time, because only at runtime it is able to foresee all the possible con-
figurations that can start from a high dynamic environment like MCC
systems. In our work we use reachability properties inside an ad-hoc
framework, able to create the right environment for defining the optimal
scheduling in every situation.

102



Chapter 7

Concluding Remarks

In this thesis we have presented a formal methodology useful for defin-
ing offloading strategies for MCC applications, to be used at design or
run time. We have engaged the topic merely from the point of view of
the developer interested in optimizing the system configuration. In par-
ticular we propose a framework able to improve the system performance,
reduce the energy usage and so give a rich user experience.
As explained in this thesis, we have based our framework on the defini-
tion of a new language, MobiCa, able to express a MCC system in each of
its relevant aspects. With this language, equipped with a formal seman-
tics, we are able to automatically generate a global model that represents
the entire MCC scenario under consideration. This model, created ad-
hoc for being used as input in the UPPAAL model checker, will give the
possibility to generate scheduling at run-time and design time and as-
sess the results using quantitative analysis on the designed system. The
developer both at design-time and at run-time, can rely on the results
provided by the model checking technique, in order to perform the best
offloading strategy for the designed application.
MCC is still a research field where many open challenges have not yet
addressed. However, the need of MCC appears fundamental. This new
technology connects two strong trends in the modern IT community: ev-
ery day more people access data and run computations from their mobile

103



devices; data and computation is increasingly distributed among cloud
infrastructures. Thus in this period where desktop computers and work-
stations are replaced by mobile and cloud infrastructures there is the ne-
cessity to move towards a more dynamic environment that is able to mit-
igate the set of limitations related to mobile devices.

7.1 Challenges and Future Work

This thesis faces a series of challenges in the MCC field, however there
are many topics related to this work that are considered out of the scope
for now and that will be integrated in this work in the future.
Security and privacy: Aspects that we have not touched are about se-
curity and privacy during the offloading mechanism. MCC users are
naturally uncomfortable with the concept of storing personal data or per-
forming sensitive computation on computer systems outside of their im-
mediate control. Existing approaches for providing security and privacy
are incomplete or unrealisable. The security depends on the manner in
which MCC infrastructures are deployed. If the offloading is done to-
wards a cloud provider, whom the mobile user already has a trust re-
lationship, then the user may be more prone to send sensitive data or
computations. However the user may be unwilling to send data to re-
mote services without security and privacy guarantees. One possible so-
lution for deploying data and computation in a secure infrastructure is to
initially limit the functionalities provided by the cloud and then expand
services gradually always controlled by means of a policy language or
with some kind of contracts such as service level agreements.
Expand the benefit to more applications: as discussed, it is currently dif-
ficult to earn benefit for applications that do not require large amount of
computation. If the computation of a fragment is small, the time and en-
ergy saved by performing the computation remotely is less than the time
and energy used to synchronously communicate inputs to the cloud and
receive back the results. This, unfortunately, often precludes many pop-
ular applications from taking substantial advantages in MCC. A promis-
ing idea is to develop new models for executing computation remotely

104



removing the need for synchronous communication. So, a possible fu-
ture work could be to predict what inputs will be needed before the ex-
ecution of a computation and send those inputs to the remote part in
advance. Static analysis and code profiling potentially can help to make
such prediction more accurate.
Failure handling: MCC systems have rudimentary support for handling
failures and performance degradation. In this thesis we address the prob-
lem providing a reasonable solution in the run-time decision support
using roll-back system. Another promising research direction could be
replication. A mobile application can improve performance by executing
the same computation in multiple location. The application can proceed
its execution with the first result generated. Lateness executions can be
aborted and their results discarded. This methodology of executing mul-
tiple instances of the same application consumes extra resources, so a
MCC system should be able to judge when is fruitful to employ redun-
dancy. In this direction we can consider to investigate smart procedures
able to predict possible disconnections in order to minimize inconsistent
situations and so avoid costly and heavy procedures of roll-back.
Towards the technology: The services provided by cloud infrastructures
are still not widespread. Without MCC applications, there is little de-
mand of remote services and viceversa; without services, there is a little
incentive to develop MCC systems. For this reason, it is necessary that
the development of MCC applications and the deployment on cloud in-
frastructures should be done simultaneously. The most likely motivation
is the need to deliver better performance for existing applications than
statically partition their functionality between mobile and cloud. A pos-
sibility should be a formal language like MobiCa, where once defined the
system using the model specification, it automatically derived the global
structure of the system, providing the skeleton of the implementation
for both mobile and cloud part and, just leaving the developer to fill up
the already optimized implementation templates. A promising work for
the future is to extend the MobiCa implementation in Xtext introducing
a language semantics that permit the code generation starting from the
syntax presented here. This future work is very demanding in terms of

105



architecture knowledges, because the generated code should be multi-
platform and self-adaptive to the environment.
Run-time Middleware: The framework integration is undoubtedly the
next step that has to be taken in consideration for the future. The deci-
sion support algorithm presented in Section 4.2.3 should be integrated in
a multi platform middleware able to include the runtime decision sup-
port developed using UPPAAL and the parallel algorithms presented in
Chapter 5, that have been proved being faster than the model checking
analysis. Under this optimization view, our intention is to investigate
more on the algorithms analysis in order to verify, if the good results ob-
tained for the MCC field can be broaden to a large area of scheduling
optimization and strategy synthesis.
Aware Monitor The framework could be extend with a monitor accessi-
ble on the web where the final user can check the resource usage trend
and define personalised policies in order to help the system to foresee
possible disconnection, availability of a stable connection or the possi-
bility to recharge the battery. Under this assumption the scheduler can
optimize the system relying on information provided and so postpone or
anticipate actions according to the received information.

106



Appendix A

UPPAAL Syntax

A.1 Declaration

1 Declarations ::= (VariableDecl | TypeDecl | Function
2 |ChanPriority)*
3 VariableDecl ::= Type VariableID (’,’ VariableID)* ’;’
4 VariableID ::= ID ArrayDecl* [ ’=’ Initialiser ]
5 Initialiser ::= Expression|
6 ’{’ Initialiser (’,’ Initialiser)* ’}’
7 TypeDecls ::= ’typedef’ Type ID ArrayDecl* (’,’ ID
8 ArrayDecl*)* ’;’

A.2 Type

1 Type ::= Prefix TypeId
2 Prefix ::= ’urgent’ | ’broadcast’ | ’meta’ | ’const’
3 TypeId ::= ID | ’int’ | ’clock’ | ’chan’ | ’bool’
4 | ’int’ ’[’ Expression ’,’ Expression ’]’
5 | ’scalar’ ’[’ Expression ’]’
6 | ’struct’ ’{’ FieldDecl (FieldDecl)* ’}’
7 FieldDecl ::= Type ID ArrayDecl* (’,’ ID ArrayDecl*)* ’;’
8 ArrayDecl ::= ’[’ Expression ’]’| ’[’ Type ’]’

107



A.3 Function

1 Function ::= Type ID ’(’ Parameters ’)’ Block
2 Block ::= ’{’ Declarations Statement* ’}’
3 Statement ::= Block
4 | ’;’
5 | Expression ’;’
6 | ForLoop
7 | Iteration
8 | WhileLoop
9 | DoWhileLoop

10 | IfStatement
11 | ReturnStatement
12 ForLoop ::= ’for’ ’(’ Expression ’;’ Expression ’;’
13 Expression ’)’ Statement
14 Iteration ::= ’for’ ’(’ ID ’:’ Type ’)’ Statement
15 WhileLoop ::= ’while’ ’(’ Expression ’)’ Statement
16 DoWhile ::= ’do’ Statement ’while’ ’
17 (’ Expression ’)’’;’
18 IfStatment ::= ’if’ ’(’ Expression ’)’ Statement [
19 ’else’ Statement ]
20 ReturnStatement ::= ’return’ [ Expression ] ’;’

A.4 Espression

1 Expression ::= ID
2 | NAT
3 | Expression ’[’ Expression ’]’
4 | Expression ’’’
5 | ’(’ Expression ’)’
6 | Expression ’++’ | ’++’ Expression
7 | Expression ’--’ | ’--’ Expression
8 | Expression Assign Expression
9 | Unary Expression

10 | Expression Binary Expression
11 | Expression ’?’ Expression ’:’ Expression
12 | Expression ’.’ ID
13 | Expression ’(’ Arguments ’)’
14 | ’forall’ ’(’ ID ’:’ Type ’)’ Expression
15 | ’exists’ ’(’ ID ’:’ Type ’)’ Expression

108



16 | ’sum’ ’(’ ID ’:’ Type ’)’ Expression
17 | ’deadlock’ | ’true’ | ’false’
18
19 Arguments ::= [ Expression ( ’,’ Expression )* ]
20
21 Assign ::= ’=’ | ’:=’ | ’+=’ | ’-=’ | ’*=’ | ’/=’
22 | ’|=’ | ’&=’ | ’ˆ=’ | ’<<=’ | ’>>=’
23 Unary ::= ’+’ | ’-’ | ’!’ | ’not’
24 Binary ::= ’<’ | ’<=’ | ’==’ | ’!=’ | ’>=’ | ’>’
25 | ’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’&’
26 | ’|’ | ’ˆ’ | ’<<’ | ’>>’ | ’&&’ | ’||’
27 | ’<?’ | ’>?’ | ’or’ | ’and’ | ’imply’

A.5 Query language

1 Prop ::= ’A[]’ Expression
2 | ’E<>’ Expression
3 | ’E[]’ Expression
4 | ’A<>’ Expression
5 | Expression --> Expression
6 | ’sup’ ’:’ List
7 | ’sup’ ’{’ Expression ’}’ ’:’ List
8 | ’inf’ ’:’ List
9 | ’inf’ ’{’ Expression ’}’ ’:’ List

10 | Probability
11 | ProbUntil
12 | Probability ( ’<=’ | ’>=’ ) PROB
13 | Probability ( ’<=’ | ’>=’ ) Probability
14 | Estimate
15
16 List ::= Expression | Expression ’,’ List
17 Probability ::= ’Pr[’ ( Clock | ’#’ ) ’<=’ CONST ’]’ ’(’
18 (’<>’|’[]’) Expression ’)’
19 ProbUntil ::= ’Pr[’ ( Clock | ’#’ ) ’<=’ CONST ’]’ ’(’
20 Expression ’U’ Expression ’)’
21 Estimate ::= ’E[’ ( Clock | ’#’ ) ’<=’ CONST ’;’ CONST
22 ’]’’(’(’min:’ | ’max:’) Expression ’)’

109



A.6 Stratego query language

1 //Strategy generators using Uppaal Opt
2 Minimize objective ::= strategy DS = minE (expr) [bound]:
3 <> prop under NS
4 Maximize objective ::= strategy DS = maxE (expr) [bound]:
5 <> prop under NS
6
7 //Strategy generators using Uppaal Tiga
8 Guarantee objective ::= strategy NS = control: A<> prop
9 Guarantee objective ::= strategy NS = control: A[] prop

10
11 //Statistical Model Checking Queries
12 Hypothesis testing ::= Pr[bound](<> prop)>=0.1 under SS
13 Evaluation ::= Pr[bound](<> prop) under SS
14 Comparison ::= Pr[bound](<> prop1) under SS1 >=
15 Pr[<=20](<> prop2) under SS2
16 Expected value ::= E[bound;int](min: prop) under SS
17 Simulations ::= simulate int [bound]{expr1,expr2}
18 under S
19
20 //Model checking queries
21 Safety ::= A[] prop under NS
22 Liveness ::= A<> prop under NS

110



Appendix B

UPPAAL case study

1 <?xml version="1.0" encoding="utf-8"?>
2 <!DOCTYPE nta PUBLIC ’-//UppaalTeam//DTDFlatSystem1.1
3 EN’’http://www.it.uu.se/research/group/darts/
4 uppaal/flat-1_2.dtd’>
5 <nta>
6 <declaration>// Place global declarations here.
7 const int N = 10; // Number of fragments.
8 typedef int[0,N-1] pid_t;
9

10 urgent broadcast chan hurry;
11 int battery=0;
12
13 int fragments=0;
14
15 const int P = 3; // Number of fragments.
16 typedef int[0,P-1] pid_p;
17
18 urgent chan mobile, cloud,bus;
19 chan mobileR, cloudR, busR;
20
21 //const int costIdle[pid_p]={2,0,1};
22 const int costInUse[pid_p]={5,1,2};
23
24 typedef struct
25 { int[0,150] execTL;
26 int[0,150] execTR;
27 int[0,200] memory;

111



28 int[0,100] syncT;
29 bool isOfflodable;
30 } Fragments;
31 const Fragments Info[N]={
32 {3,1,2,4,false},
33 {5,3,2,4,true},
34 {3,1,2,4,true},
35 {3,1,2,4,true},
36 {3,1,2,4,true},
37 {3,1,2,4,true},
38 {3,1,2,4,true},
39 {3,1,2,4,true},
40 {3,1,2,4,true},
41 {3,1,2,4,true}
42 };
43
44 bool activated[N]={true, false, false, false,false,false,
45 false, false,false,false};
46 //0 never act., 1 act. local, 2 act. remotely
47 pid_t previous[pid_t];
48 int busyB;
49 pid_t mobileID, cloudID;
50 int result[pid_t][2];
51 clock time;
52 int[0,100] memory=0;
53 bool loadM[pid_t];
54
55 const bool nd[pid_t][pid_t]={
56 {0,1,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0},
57 {0,1,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0},
58 {0,0,0,1,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0},
59 {0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0},
60 {0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0}};
61 const bool par[pid_t][pid_t]={
62 {0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0},
63 {0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0},
64 {0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0},
65 {0,1,0,0,0,0,0,1,0,0},{0,0,0,0,0,0,0,0,1,1},
66 {0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0}};
67 const int seq[pid_t][pid_t]={
68 {0,0,0,0,0,0,0,0,0,0},{0,0,1,2,0,0,3,0,0,0},
69 {0,0,0,0,0,0,0,0,0,0},{0,3,0,0,1,2,0,0,0,0},
70 {0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0},

112



71 {0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0},
72 {0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0}};
73
74
75 </declaration>
76 <template>
77 < breaklinesname x="5" y="5">Fragment</ breaklinesname>
78 <parameter>pid_t id</parameter>
79 <declaration>// Place local declarations here.
80 bool sequentialEnabled=false;
81 int counter=1;
82 clock t;
83
84 void parallel(){
85 for(k:pid_t){
86 if(par[id][k]){
87 activated[k]=true;
88 previous[k]=id;
89 }
90 }
91 }
92
93 void sequential(){
94 sequentialEnabled=true;
95 for(k:pid_t){
96 if(seq[id][k]==counter){
97 activated[k]=true;
98 previous[k]=id;
99 }

100 }
101 counter++;
102 if(not exists(j:pid_t) seq[id][j]==counter){
103 sequentialEnabled=false;
104 counter=1;
105 }
106 }
107
108 bool isLeaf(){
109 return forall (i : pid_t) nd[id][i]==0 &amp;&amp;
110 forall (i : pid_t) par[id][i]==0 &amp;&amp;
111 forall (i : pid_t) seq[id][i]==0;
112 }
113

113



114 void fragmentUP(){
115 fragments++;
116 }</declaration>
117 <location id="id0" x="-357" y="-136">
118 < breaklinesname x="-367" y="-170">Err</ breaklinesname>
119 </location>
120 <location id="id1" x="416" y="-192">
121 </location>
122 <location id="id2" x="416" y="48">
123 < breaklinesname x="406" y="18">completed</ breaklinesname>
124 <urgent/>
125 </location>
126 <location id="id3" x="112" y="160">
127 < breaklinesname x="102" y="130">runningR</ breaklinesname>
128 </location>
129 <location id="id4" x="112" y="-40">
130 < breaklinesname x="102" y="-70">runningL</ breaklinesname>
131 </location>
132 <location id="id5" x="-200" y="48">
133 < breaklinesname x="-210" y="18">ready</ breaklinesname>
134 <label kind="invariant" x="-178" y="42">t&lt;=100</label>
135 </location>
136 <location id="id6" x="-408" y="48">
137 < breaklinesname x="-418" y="18">null</ breaklinesname>
138 </location>
139 <init ref="id6"/>
140 <transition>
141 <source ref="id5"/>
142 <target ref="id0"/>
143 <label kind="guard" x="-339" y="-78">t==100</label>
144 </transition>
145 <transition>
146 <source ref="id2"/>
147 <target ref="id6"/>
148 <label kind="guard" x="-390" y="272">isLeaf()</label>
149 <label kind="assignment" x="-212" y="280">
150 activated[id]=false</label>
151 <nail x="416" y="306"/>
152 <nail x="-408" y="306"/>
153 </transition>
154 <transition>
155 <source ref="id2"/>
156 <target ref="id6"/>

114



157 <label kind="guard" x="-391" y="476">exists(j:pid_t)
158 seq[id][j]!=0</label>
159 <label kind="assignment" x="-127" y="476">sequential(),
160 activated[id]=false</label>
161 <nail x="416" y="510"/>
162 <nail x="-408" y="510"/>
163 </transition>
164 <transition>
165 <source ref="id2"/>
166 <target ref="id6"/>
167 <label kind="guard" x="-399" y="416">exists(j:pid_t)
168 par[id][j]==1 and sequentialEnabled==false</label>
169 <label kind="assignment" x="144" y="416">parallel(),
170 activated[id]=false</label>
171 <nail x="416" y="442"/>
172 <nail x="-408" y="442"/>
173 </transition>
174 <transition>
175 <source ref="id1"/>
176 <target ref="id2"/>
177 <label kind="synchronisation"x="288" y="-216">busR?</label>
178 <label kind="assignment" x="208" y="-232">result[id][0]=1,
179 result[id][1]=1</label>
180 <nail x="184" y="-192"/>
181 <nail x="264" y="-112"/>
182 </transition>
183 <transition>
184 <source ref="id2"/>
185 <target ref="id1"/>
186 <label kind="guard" x="416" y="-136">result[id][0]==0 or
187 result[id][1]==0</label>
188 <label kind="synchronisation" x="416" y="-120">bus!</label>
189 <label kind="assignment" x="416" y="-105">
190 busyB=Info[id].syncT</label>
191 </transition>
192 <transition>
193 <source ref="id2"/>
194 <target ref="id6"/>
195 <label kind="select" x="-390" y="317">e:pid_t</label>
196 <label kind="guard" x="-390" y="334">nd[id][e]==1and
197 sequentialEnabled==false</label>
198 <label kind="assignment"x="-8" y="331">activated[id]=false,
199 previous[e]=id, activated[e]=true</label>

115



200 <nail x="416" y="368"/>
201 <nail x="-408" y="368"/>
202 </transition>
203 <transition>
204 <source ref="id4"/>
205 <target ref="id2"/>
206 <label kind="synchronisation"x="200" y="0">mobileR?</label>
207 <label kind="assignment" x="208" y="-32">result[id][0]=1,
208 fragmentUP()</label>
209 </transition>
210 <transition>
211 <source ref="id3"/>
212 <target ref="id2"/>
213 <label kind="synchronisation" x="236" y="112">cloudR?
214 </label>
215 <label kind="assignment" x="224" y="128">result[id][1]=1,
216 fragmentUP()</label>
217 </transition>
218 <transition>
219 <source ref="id5"/>
220 <target ref="id3"/>
221 <label kind="guard" x="-328" y="144">Info[id].isOfflodable
222 ==true and result[previous[id]][1]==1</label>
223 <label kind="synchronisation" x="-184" y="160">cloud!
224 </label>
225 <label kind="assignment"x="-272" y="176">cloudID=id</label>
226 </transition>
227 <transition>
228 <source ref="id5"/>
229 <target ref="id4"/>
230 <label kind="guard" x="-152" y="-64">
231 result[previous[id]][0]==1 or id==0</label>
232 <label kind="synchronisation" x="-120" y="-40">mobile!
233 </label>
234 <label kind="assignment" x="-176" y="-24">mobileID=id
235 </label>
236 </transition>
237 <transition>
238 <source ref="id6"/>
239 <target ref="id5"/>
240 <label kind="guard" x="-376" y="32">activated[id]==true
241 </label>
242 <label kind="synchronisation" x="-331" y="51">hurry!

116



243 </label>
244 <label kind="assignment" x="-399" y="85">result[id][0]=0,
245 result[id][1]=0, t=0</label>
246 </transition>
247 </template>
248 <template>
249 < breaklinesname>reset</ breaklinesname>
250 <location id="id7" x="0" y="0">
251 <label kind="invariant" x="-10" y="17">time&lt;=300</label>
252 </location>
253 <init ref="id7"/>
254 <transition>
255 <source ref="id7"/>
256 <target ref="id7"/>
257 <label kind="guard" x="-126" y="-93">time&gt;=300</label>
258 <label kind="assignment" x="-126" y="-59">battery=0,
259 time=0, fragments=0</label>
260 <nail x="-144" y="-119"/>
261 <nail x="68" y="-144"/>
262 </transition>
263 </template>
264 <template>
265 < breaklinesname>Mobile</ breaklinesname>
266 <parameter> pid_p id</parameter>
267 <declaration>clock c;
268 void memoryUp(int i){
269 if(loadM[i]==0){
270 memory+=Info[i].memory;
271 loadM[i]=1;
272 }
273 }</declaration>
274 <location id="id8" x="-80" y="40">
275 < breaklinesname x="-104" y="56">inUse</ breaklinesname>
276 <label kind="invariant" x="-208" y="80">c&lt;=
277 Info[mobileID].execTL</label>
278 </location>
279 <location id="id9" x="-80" y="-64">
280 < breaklinesname x="-90" y="-94">idle</ breaklinesname>
281 </location>
282 <init ref="id9"/>
283 <transition>
284 <source ref="id8"/>
285 <target ref="id9"/>

117



286 <label kind="guard" x="-496" y="8">c==Info[mobileID].execTL
287 </label>
288 <label kind="synchronisation" x="-424" y="-16">mobileR!
289 </label>
290 <label kind="assignment" x="-697" y="25">battery
291 +=costInUse[id]*Info[mobileID].execTR
292 </label>
293 <nail x="-352" y="40"/>
294 <nail x="-352" y="-64"/>
295 </transition>
296 <transition>
297 <source ref="id9"/>
298 <target ref="id8"/>
299 <label kind="synchronisation" x="-68" y="-34">mobile?
300 </label>
301 <label kind="assignment" x="-68" y="-51">c=0</label>
302 </transition>
303 </template>
304 <template>
305 < breaklinesname>Cloud</ breaklinesname>
306 <parameter>pid_p id</parameter>
307 <declaration>clock c;</declaration>
308 <location id="id10" x="-112" y="0">
309 < breaklinesname x="-122" y="-30">inUse</ breaklinesname>
310 <label kind="invariant" x="-122" y="15">c&lt;=
311 Info[cloudID].execTR</label>
312 </location>
313 <location id="id11" x="-112" y="-128">
314 < breaklinesname x="-122" y="-158">idle</ breaklinesname>
315 </location>
316 <init ref="id11"/>
317 <transition>
318 <source ref="id10"/>
319 <target ref="id11"/>
320 <label kind="guard" x="-320" y="-104">c==
321 Info[cloudID].execTR</label>
322 <label kind="synchronisation" x="-312" y="-87">cloudR!
323 </label>
324 <label kind="assignment" x="-206" y="0">battery+=
325 costInUse[id]*Info[mobileID].execTL</label>
326 <nail x="-224" y="0"/>
327 <nail x="-224" y="-128"/>
328 </transition>

118



329 <transition>
330 <source ref="id11"/>
331 <target ref="id10"/>
332 <label kind="synchronisation" x="-104" y="-87">cloud?
333 </label>
334 <label kind="assignment" x="-104" y="-72">c=0</label>
335 </transition>
336 </template>
337 <template>
338 < breaklinesname>Network</ breaklinesname>
339 <parameter>pid_p id</parameter>
340 <declaration>clock c;
341 </declaration>
342 <location id="id12" x="-232" y="48">
343 < breaklinesname x="-212" y="42">inUse</ breaklinesname>
344 <label kind="invariant" x="-242" y="63">c&lt;=busyB</label>
345 </location>
346 <location id="id13" x="-232" y="-168">
347 < breaklinesname x="-242" y="-198">idle</ breaklinesname>
348 </location>
349 <init ref="id13"/>
350 <transition>
351 <source ref="id12"/>
352 <target ref="id13"/>
353 <label kind="guard" x="-496" y="-80">c==busyB</label>
354 <label kind="synchronisation" x="-496" y="-65">busR!
355 </label>
356 <label kind="assignment" x="-646" y="-42">battery+=
357 costInUse[id]*busyB</label>
358 <nail x="-416" y="48"/>
359 <nail x="-416" y="-168"/>
360 </transition>
361 <transition>
362 <source ref="id13"/>
363 <target ref="id12"/>
364 <label kind="synchronisation" x="-216" y="-80">bus?</label>
365 <label kind="assignment" x="-216" y="-65">c=0</label>
366 </transition>
367 </template>
368 <template>
369 < breaklinesname>Battery</ breaklinesname>
370 <location id="id14" x="-56" y="-32">
371 <label kind="invariant" x="-96" y="0">battery&gt;=0

119



372 and memory&lt;70</label>
373 </location>
374 <init ref="id14"/>
375 </template>
376 <system>// Place template instantiations here.
377 Mobile_dev=Mobile(0);
378 Cloud_dev=Cloud(1);
379 Net=Network(2);
380 // List one or more processes to be composed into a system.
381 system Fragment, Mobile_dev, Cloud_dev, Net, Battery,reset;
382 }</system>
383 <queries>
384 <query>
385 <formula>A[]not deadlock
386 </formula>
387 <comment>
388 </comment>
389 </query>
390 <query>
391 <formula>A[]1==1
392 </formula>
393 <comment>
394 </comment>
395 </query>
396 <query>
397 <formula>E&lt;&gt;cycle&gt;=0 and Fragment(9).completed
398 </formula>
399 <comment>
400 </comment>
401 </query>
402 <query>
403 <formula>E[]forall(i:pid_t) not(Fragment(i).Err) and
404 (time&gt;=300 imply (battery&lt;500
405 and fragments&gt;10))
406 </formula>
407 <comment>
408 </comment>
409 </query>
410 <query>
411 <formula>E[](time==100 imply (battery&lt;250
412 and fragments&gt;39))
413 </formula>
414 <comment>

120



415 </comment>
416 </query>
417 <query>
418 <formula>E[] forall(i:pid_t) not(Fragment(i).Err) and
419 (battery&gt;=1000 imply time&gt;=1000)
420 </formula>
421 <comment>
422 </comment>
423 </query>
424 </queries>
425 </nta>

121



References

[AD94] Rajeev Alur and David L Dill. A theory of timed automata. Theoret-
ical computer science, 126(2):183–235, 1994. 8

[AILS07] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri
Srba. Reactive systems: modelling, specification and verification. Cam-
bridge University Press, 2007. 13

[ALMT15] Luca Aceto, Kim G. Larsen, Andrea Morichetta, and Francesco
Tiezzi. A cost/reward method for optimal infinite scheduling in
mobile cloud computing. In Formal Aspects of Component Software -
12th International Conference, FACS 2015, Niterói, Brazil, October 14-16,
2015, Revised Selected Papers, pages 66–85, 2015. xii

[AMT15] L Aceto, A. Morichetta, and F. Tiezzi. Decision support for mobile
cloud computing applications via model checking. In MobileCloud,
volume 1, pages 296–302. IEEE, 2015. xii, 10

[BBL08] Patricia Bouyer, Ed Brinksma, and Kim G Larsen. Optimal infinite
scheduling for multi-priced timed automata. Formal Methods in Sys-
tem Design, 32(1):3–23, 2008. 51

[BCD+07] Gerd Behrmann, Agnes Cougnard, Alexandre David, Emmanuel
Fleury, Kim G Larsen, and Didier Lime. Uppaal-tiga: Time for play-
ing games! In Computer Aided Verification, pages 121–125. Springer,
2007. 71

[BDL04] Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial
on uppaal. In Formal methods for the design of real-time systems, pages
200–236. Springer, 2004. 17

[BDL+12] Peter Bulychev, Alexandre David, Kim Gulstrand Larsen, Marius
Mikučionis, Danny Bøgsted Poulsen, Axel Legay, and Zheng Wang.
Uppaal-smc: Statistical model checking for priced timed automata.
arXiv preprint arXiv:1207.1272, 2012. 55, 71

122



[Bet13] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext
and Xtend. Packt Publishing Ltd, 2013. 24

[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Larsen, Paul
Pettersson, and Judi Romijn. Efficient guiding towards cost-optimality
in uppaal. Springer, 2001. 101

[BGSH07] Rajesh Krishna Balan, Darren Gergle, Mahadev Satyanarayanan,
and James Herbsleb. Simplifying cyber foraging for mobile devices.
In Proceedings of the 5th International Conference on Mobile Systems, Ap-
plications and Services, MobiSys ’07, pages 272–285, 2007. 96

[BKMS13] Marco V Barbera, Sokol Kosta, Alessandro Mei, and Julinda Stefa. To
offload or not to offload? the bandwidth and energy costs of mobile
cloud computing. In Proc. of IEEE INFOCOM, 2013. 2

[BLR05] Gerd Behrmann, Kim G Larsen, and Jacob I Rasmussen. Optimal
scheduling using priced timed automata. ACM SIGMETRICS Per-
formance Evaluation Review, 32(4):34–40, 2005. 101, 102

[BSPO03] Rajesh Krishna Balan, Mahadev Satyanarayanan, So Young Park,
and Tadashi Okoshi. Tactics-based remote execution for mobile com-
puting. In Proceedings of the 1st International Conference on Mobile Sys-
tems, Applications and Services, MobiSys ’03, pages 273–286, 2003. 92,
95

[CBC+10a] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wol-
man, Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. MAUI:
Making smartphones last longer with code offload. In MobiSys,
pages 49–62. ACM, 2010. 42

[CBC+10b] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wol-
man, Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui:
Making smartphones last longer with code offload. In Proceedings
of the 8th International Conference on Mobile Systems, Applications, and
Services, MobiSys ’10, pages 49–62, 2010. 93, 95

[CIM+11] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik,
and Ashwin Patti. Clonecloud: Elastic execution between mobile
device and cloud. In Proceedings of the Sixth Conference on Computer
Systems, EuroSys ’11, pages 301–314, 2011. 93, 95

[CLK+11] Asaf Cidon, Tomer M. London, Sachin Katti, Christos Kozyrakis,
and Mendel Rosenblum. Mars: Adaptive remote execution for
multi-threaded mobile devices. In Proceedings of the 3rd ACM SOSP
Workshop on Networking, Systems, and Applications on Mobile Hand-
helds, MobiHeld ’11, pages 1:1–1:6, 2011. 99

123



[Dij59] Edsger W Dijkstra. A note on two problems in connexion with
graphs. Numerische mathematik, 1(1):269–271, 1959. 78

[DJL+15] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Mar-
ius Mikučionis, and Jakob Haahr Taankvist. Uppaal stratego. In
Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 9035 of Lecture Notes in
Computer Science, pages 206–211. Springer Berlin Heidelberg, 2015.
51

[DLL+11] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis,
Danny Bøgsted Poulsen, Jonas Van Vliet, and Zheng Wang. Statisti-
cal model checking for networks of priced timed automata. In Formal
Modeling and Analysis of Timed Systems, pages 80–96. Springer, 2011.
55

[DLNW13] Hoang T. Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A
survey of mobile cloud computing: architecture, applications,
and approaches. Wireless Communications and Mobile Computing,
13(18):1587–1611, 2013. 1

[EAWJ02] Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min Wang,
and David B Johnson. A survey of rollback-recovery protocols
in message-passing systems. ACM Computing Surveys (CSUR),
34(3):375–408, 2002. 68

[EXP] The mobile app economy is exploding. http://
venturebeat.com/2013/01/18/the-mobile-app-\
economy-is-exploding-so-what-else-is-new/. 1

[Fli12] Jason Flinn. Cyber foraging: Bridging mobile and cloud computing.
Synthesis Lectures on Mobile and Pervasive Computing, 7(2):1–103, 2012.
1

[FLR13] Niroshinie Fernando, Seng W. Loke, and Wenny Rahayu. Mobile
cloud computing: A survey. Future Generation Computer Systems,
29(1):84 – 106, 2013. Including Special section: AIRCC-NetCoM 2009
and Special section: Clouds and Service-Oriented Architectures. 1,
92

[FPS02] Jason Flinn, SoYoung Park, and M. Satyanarayanan. Balancing per-
formance, energy, and quality in pervasive computing. In Distributed
Computing Systems, 2002., pages 217–226, 2002. 92, 95

[GK99] Flavius Gruian and Krzysztof Kuchcinski. Low-energy directed ar-
chitecture selection and task scheduling for system-level design. In
EUROMICRO, pages 1296–1302. IEEE, 1999. 35

124

http://venturebeat.com/2013/01/18/the-mobile-app-\ economy-is-exploding-so-what-else-is-new/
http://venturebeat.com/2013/01/18/the-mobile-app-\ economy-is-exploding-so-what-else-is-new/
http://venturebeat.com/2013/01/18/the-mobile-app-\ economy-is-exploding-so-what-else-is-new/


[KL10] K. Kumar and Yung-Hsiang Lu. Cloud computing for mobile users:
Can offloading computation save energy? Computer, 43(4):51–56,
2010. 2

[KPKB12] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal.
Cuckoo: A computation offloading framework for smartphones. In
Martin Gris and Guang Yang, editors, Mobile Computing, Applica-
tions, and Services, volume 76 of Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering,
pages 59–79. Springer, 2012. 95

[KT87] Richard Koo and Sam Toueg. Checkpointing and rollback-recovery
for distributed systems. Software Engineering, IEEE Transactions on,
(1):23–31, 1987. 68

[MN10] Antti P Miettinen and Jukka K Nurminen. Energy efficiency of mo-
bile clients in cloud computing. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, pages 4–4. USENIX Asso-
ciation, 2010. 3

[Mob15] MobiCa. Mobica web page. http://sysma.imtlucca.it/
mobica/, 2015. 91

[NFS00] D. Narayanan, Jason Flinn, and M. Satyanarayanan. Using history to
improve mobile application adaptation. In Mobile Computing Systems
and Applications, 2000 Third IEEE Workshop on., pages 31–40, 2000. 99

[OG13a] Michael J. O’Sullivan and Dan Grigoras. User experience of mobile
cloud applications - current state and future directions. In IEEE 12th
International Symposium on Parallel and Distributed Computing, ISPDC
2013, Bucharest, Romania, June 27-30, 2013, pages 85–92, 2013. 6

[OG13b] Michael Joseph O’Sullivan and Dan Grigoras. The cloud personal
assistant for providing services to mobile clients. In Service Oriented
System Engineering (SOSE), 2013 IEEE 7th International Symposium on,
pages 478–485. IEEE, 2013. 93

[Ran75] Brian Randell. System structure for software fault tolerance. In ACM
SIGPLAN Notices, volume 10, pages 437–449. ACM, 1975. 68

[RLS06] Jacob Illum Rasmussen, Kim Guldstrand Larsen, and K Subramani.
On using priced timed automata to achieve optimal scheduling. For-
mal Methods in Syst. Design, 29(1):97–114, 2006. 51

[RRPK99] Alexey Rudenko, Peter Reiher, Gerald J. Popek, and Geoffrey H.
Kuenning. The remote processing framework for portable computer

125

http://sysma.imtlucca.it/mobica/
http://sysma.imtlucca.it/mobica/


power saving. In Proceedings of the 1999 ACM Symposium on Applied
Computing, SAC ’99, pages 365–372, 1999. 94

[RSM+11] Moo-Ryong Ra, Anmol Sheth, Lily Mummert, Padmanabhan Pillai,
David Wetherall, and Ramesh Govindan. Odessa: Enabling interac-
tive perception applications on mobile devices. In Proceedings of the
9th International Conference on Mobile Systems, Applications, and Ser-
vices, MobiSys ’11, pages 43–56, 2011. 95

[SE05] Sebastian Panek Olaf Stursberg and Sebastian Engell. Job-shop
scheduling by combining reachability analysis with linear program-
ming. In Discrete Event Systems 2004 (WODES’04): A Proceedings Vol-
ume from the 7th IFAC Workshop, Reims, France, 22-24 September 2004,
page 195. Elsevier, 2005. 102

[Yov97] Sergio Yovine. Kronos: A verification tool for real-time systems.
International Journal on Software Tools for Technology Transfer (STTT),
1(1):123–133, 1997. 101





Unless otherwise expressly stated, all original material of whatever
nature created by Andrea Morichetta and included in this thesis,
is licensed under a Creative Commons Attribution Noncommercial
Share Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:andrea.morichetta@imtlucca.it

	List of Figures
	List of Tables
	Declaration
	Vita, Publications and Presentations
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Structure of the thesis

	2 Background Notions
	2.1 Timed Atomata
	2.1.1 Timed Automata in UPPAAL
	2.1.2 UPPAAL query language
	2.1.3 The UPPAAL tool

	2.2 Domain Specific Languages
	2.2.1 The Xtext tool
	2.2.2 Grammar language


	3 Domain Specific Language MobiCa
	3.1 Language syntax
	3.2 TA-based semantics
	3.2.1 Global declaration
	3.2.2 Fragments
	3.2.3 Resources

	3.3 Optimal scheduler
	3.4 MobiCa implementation
	3.4.1 MobiCa editor


	4 Scheduling Analysis
	4.1 Design time approach
	4.1.1 Cost/reward horizon method
	4.1.2 The horizon method at work
	4.1.3 Evaluation of custom schedulers via SMC
	4.1.4 Application to the navigator case study

	4.2 Run-Time analysis
	4.2.1 Minimization of reachability properties
	4.2.2 Runtime framework
	4.2.3 Invocation interval

	4.3 Generation offloading strategies via UPPAAL Stratego
	4.3.1 Navigator case study on Stratego


	5 Parallelized MCC Scheduling Algorithms
	5.1 Parallel Dijkstra implementation
	5.1.1 Properties of shortest paths

	5.2 Parallel Depth First Search
	5.3 Analysis of the proposed algorithms

	6 Related Work
	6.1 Optimization metrics
	6.2 Partitioning methods
	6.3 Offloading strategies
	6.4 Scheduling via Timed Automata

	7 Concluding Remarks
	7.1 Challenges and Future Work

	A UPPAAL Syntax
	A.1 Declaration
	A.2 Type
	A.3 Function
	A.4 Espression
	A.5 Query language
	A.6 Stratego query language

	B UPPAAL case study
	References

