
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

Wire delay e�ects reduction techniques and

topology optimization in NUCA based CMP

systems

PhD Program in Computer Science and Engineering

XXI Cycle

Francesco Panicucci

2009

The dissertation of Francesco Panicucci is approved.

Programme Coordinator: Prof. Ugo Montanari, Università di Pisa

Supervisor: Prof. Cosimo Antonio Prete, Università di Pisa

Tutor: Prof. Pierfrancesco Foglia, Università di Pisa

The dissertation of Francesco Panicucci has been reviewed by:

Prof. Stefanos Kaxiras, University of Patras, Greece

Prof. Ben Juurlink, Delft University of Technology, Netherlands

IMT Institute for Advanced Studies, Lucca

2009

Contents

List of Fiugures . vii
List of Table . xii
Acknowledgements . xiv
Vita . xv
Publications . xvi
Abstract . xviii

1 Introduction 1

1.1 Overview . 1
1.2 Wire delay problem and NUCA paradigm 2
1.3 Coherence protocols in CMP systems 4
1.4 Thesis structure . 6

2 Related Works 7

2.1 CMP systems . 8
2.1.1 Stanford Hydra CMP 8
2.1.2 Piranha CMP 10
2.1.3 Intel Core Duo 13

2.2 NUCA cache architecture 16
2.2.1 Single core NUCA architecture 16
2.2.2 NuRapid . 20
2.2.3 Triangular D-NUCA 24
2.2.4 Flexible Cache Sharing in CMP systems . . . 25
2.2.5 NuRapid for CMP 26
2.2.6 The �Tetris� CMP architecture 29

2.3 Coherence protocols 32
2.3.1 DASH multiprocessor 32
2.3.2 SGI Origin 36

CONTENTS Contents

2.3.3 Token Coherence 37

3 The coherence protocols implementation 41

3.1 MESI and MOESI features 41
3.2 MESI coherence protocol 43

3.2.1 Protocol actions 44
3.3 MOESI coherence protocol 48

3.3.1 Protocol actions 49
3.4 Non-blocking directory 52
3.5 Main di�erences . 53

4 Design tradeo� in S-NUCA CMP systems 55

4.1 Introduction . 55
4.2 Methodology . 58
4.3 Topology issue . 58
4.4 Results . 62

5 CMP D-NUCA migration mechanism 71

5.1 Introduction . 72
5.1.1 The false miss problem 72
5.1.2 The multiple miss problem 73

5.2 The Collector solution for multiple miss 74
5.2.1 Basic assumptions 74
5.2.2 Operations 75

5.3 The FMA protocol to avoid the false miss 80
5.3.1 Basic assumption 80
5.3.2 Operations 81

5.4 Results . 85

6 Power Consumption Model 95

6.1 Description . 95
6.2 Tools . 97

vi

Contents CONTENTS

6.2.1 Simics and GEMS 97
6.2.2 Orion . 97
6.2.3 CACTI 5.1 98
6.2.4 PTM . 98

6.3 Model . 99
6.3.1 Static energy 99
6.3.2 Dynamic energy in D-NUCA cache 99
6.3.3 Dynamic energy in S-NUCA cache for MESI

and MOESI coherence protocol 100
6.4 Results . 101

7 Conclusion and future works 107

7.1 Conclusions . 107
7.2 Future works . 108

Bibliography 111

vii

List of Figures

2.1 An overview of the Hydra CMP 9

2.2 Block diagram of a single-chip Piranha processing node 11

2.3 Piranha system with six processing (8 CPUs each)
and two I/O chip . 12

2.4 Intel Core Duo processor �oor plan 14

2.5 The NUCA cache architectures proposed by Kecler,
Burger and Kim compared to classical memory systems 17

2.6 The three mapping solutions proposed for the D-NUCA 18

2.7 The NuRAPID cache architecture 22

2.8 The simple mapping (left) policy and the fair (right)
mapping policy for an increasing TD-NUCA cache . 24

2.9 The �exible CMP cache architecture 25

2.10 The CMP NuRAPID architecture 27

2.11 The Tetris shaped NUCA-based CMP system 31

2.12 DASH architecture 34

2.13 SGI diagram . 38

3.1 Sequence of messages in case of Load Miss, when
there is one remote copy. Contiguous lines represent
request messages travelling on vn0; non-contiguous
lines depict response messages on vn1; dotted lines
represent messages travelling on vn2. 44

3.2 Sequence of message in case of Store Hit (a) when the
block is shared by two remote L1s, and Store Miss (b)
when there is one remote copy 45

LIST OF FIGURES List of Figures

3.3 Sequence of messages in case of Load Miss, when the
block is modi�ed in one remote L1. The remote copy
is not invalidated; instead, when the WriteBack Ack
is received by the remote L1, it is marked ad Owned 49

3.4 Sequence of messages in case of Store Miss when the
copy is Owned by a remote L1 51

4.1 The two considered S-NUCA CMP topologies 57
4.2 Di�erent topologies may take advantage from either

MESI or MOESI . 60
4.3 The same application in two di�erent con�gurations 61
4.4 Normalized CPI. The CPI is normalized with respect

to the maximum CPI value for each benchmark . . . 62
4.5 (# L1-to-L1 transfers)/(# L1-to-L2 requests) Ratio . 63
4.6 Breackdown of Average L1 miss latency (Normalized) 64
4.7 L1 (I$+D$) miss rate (user+kernel) 66
4.8 Impact of di�erent classes of messages on total NoC

tra�c . 66
4.9 Coordinates of accesses baricentres for the considered

SPLASH-2 applications, in a 16x16 S-NUCA cache . 67
4.10 Normalized CPI for the 8p con�guration, direct vs

inverse mapping . 68
4.11 Breakdown of Average L1 Miss Latency (Normalized)

for the 8p con�guration, direct vs inverse mapping . 69
4.12 Impact of di�erent classes of messages on total NoC

Bandwidth Link Utilization (%) 70

5.1 The Multiple Miss problem 73
5.2 The False Miss problem 74
5.3 Managing o�-chip accesses due to an L2 miss through

the Collector . 76

x

List of Figures LIST OF FIGURES

5.4 The collector mechanism in case of Hit 77

5.5 Multiple request in case of an actual L2 miss 78

5.6 Multiple requests and L2 HIT 79

5.7 Migration without demotion 81

5.8 Migration with duplicates management 83

5.9 Promotion and Demotion 85

5.10 Hit distribution for D-NUCA 8p, D-NUCA 4+4p and
S-NUCA . 87

5.11 Normalized CPI: S-NUCA vs D-NUCA, 8p vs 4+4p 88

5.12 Normalized L1 miss latency, in case of L2 hit with
L2-to-L1 transfer . 89

5.13 Breakdown of Average L1 miss latency (Normalized) 90

5.14 L2 miss rate . 91

5.15 L1 miss rate . 91

5.16 Total NoC Link Bandwidth Utilization 92

6.1 Total energy consumption of S-NUCA cache memory
in a system adopting MESI and MOESI protocols
and running Ocean and Barnes benchmarks 101

6.2 Staic energy consumption of S-NUCA cache memory
in a system adopting MESI and MOESI protocols
and running Ocean and Barnes for di�erent temper-
ature, 100Â◦C, 80Â◦C and 60Â◦C 103

6.3 Dynamic energy consumption of S-NUCA cache mem-
ory in a system adopting MESI and MOESI protocols
and running Ocean and Barnes benchmarks 103

6.4 IPC and miss rate of S-NUCA cache memory in a sys-
tem adopting MESI and MOESI protocols and run-
ning Ocean and Barnes benchmarks 104

xi

LIST OF FIGURES List of Figures

6.5 Dynamic energy consumption of D-NUCA cache mem-
ory in a system running Barnes benchmark in 8p
and 4+4p con�guration and dynamic energy consup-
tion of S-NUCA cache memory in a system adopting
MESI protocol and running Barnes benchmark in 8p
and 4+4p con�guration 105

xii

List of Tables

4.1 S-NUCA simulation parameters 59

5.1 D-NUCA simulation parameters 86

Acknowledgments

The activities performed for this thesis work are supported by the
HiPEAC and SARC projects.
HiPEAC (High Performance Embedded Architectures and
Compilation) is an European Network of excellence
(www.hipeac.net).
SARC (Scalable Architecture) is an European integrated project
concerned with long term research in advanced computer
architecture (www.sarc-ip.org).

xiv

Vita

March 12, 1980

Born, Cecina(LI), Italy

November 14, 2002

Bachelor of Science in Computer Science Engineering
Final marks: 101/110
Università di Pisa
Pisa, Italy

October 26, 2005

Master Degree in Computer Science Engineering
Final marks: 105/110
Università di Pisa
Pisa, Italy

xv

Publications

1. P. Foglia, F. Panicucci, C. A. Prete, M. Solinas, An evaluation of be-

haviors of S-NUCA CMPs running scienti�c workload. In Proceedings of

the 12th EUROMICRO Conference on Digital System Design (DSD09),

Patras, Greece, 27-29 July 2009. to appear

2. P. Foglia, F. Panicucci, C. A. Prete, M. Solinas, Investigating Design

Trade-O� in S-NUCA baseb CMP Systems. In Proceedings of the Work-

shop on UNIQUE CHIPS and SYSTEMS (UCAS-5), Boston, MA, April

26, 2009.

3. P. Foglia, G. Gabrielli, F. Panicucci, C. A. Prete, M. Solinas, Reducing

Sensitivity to NoC Latency in NUCA Caches. 3rd Workshop on Intercon-

nection Network Architectures: On-Chip, Multi-Chip (INA-OCMC'09),

Paphos, Cyprus, January 25, 2009.

4. P. Foglia, F. Panicucci, C. A. Prete, M. Solinas, Investigating Design

Trade-O� in CMP Systems. Proceedings of the Poster Session of the 4th

International Summer School on Advanced Computer Architecture and

Compilation for Embedded Systems (ACACES2008), L'Aquila, Italy,

July 2008.

5. P. Foglia, F. Panicucci, C. A. Prete, M. Solinas, Facing the False Miss

Problem in D-NUCA based CMP Systems. Proceedings of the Poster

Session of the 4th International Summer School on Advanced Computer

Architecture and Compilation for Embedded Systems (ACACES2008),

L'Aquila, Italy, July 2008.

6. P. Foglia, F. Panicucci, C. A. Prete, M. Solinas, CMP L2 NUCA Cache

Energy Consumption Model. Proceedings of the Poster Session of the 4th

International Summer School on Advanced Computer Architecture and

Compilation for Embedded Systems (ACACES2008), L'Aquila, Italy,

July 2008.

7. P. Foglia, F. Panicucci, C. A. Prete, M. Solinas, CMP L2 NUCA Cache

Power Consumption Reduction Technique. Proceedings of IEEE Sympo-

sium on Low Power and High-Speed Chips (COOLChips XI),Yokohama,

Japan, pp. 163, April 16-18 2008.

xvi

8. P. Foglia, F. Panicucci, C. A. Prete, M. Solinas, Techniques for Reducing

Power Consumption in CMP NUCA caches. Proceedings of the Poster

Session of the 3nd International Summer School on Advanced Computer

Architecture and Compilation for Embedded Systems (ACACES2007),

L'Aquila, Italy, July 2007.

xvii

Abstract

One of the most important issues designing large last level cache in
a CMP system is the increasing e�ect of wire delay problem which
a�ects the banks access time and reduces the performances. Some
CMP systems adopt a shared L2 cache to maximize cache capac-
ity, instead other architectures use private L2 caches, replicating
data to limit the delay from slow on-chip wires and minimize cache
access time. Ideally, to improve performance for a wide variety of
workloads, CMPs prefer both the capacity of a shared cache and
the access latency of private caches. In this context, NUCA caches
have been proved to be able to tolerate wire delay e�ects while main-
taining a huge on-chip storage capacity. In this thesis we analyze
the in�uence on system's behaviour of di�erent coherence protocols
(MESI and MOESI) and the e�ect of topology changes as design
tradeo�s for S-NUCA based CMP system. Our results show that
CMP topology has a great in�uence on performances, instead, in
this scenario, the protocol has not. Then we propose and evalu-
ate a novel block migration scheme to reduce access latency in a
shared cache for D-NUCA based systems, in which are addressed
two speci�c problems that can arise due to the presence of multiple
tra�c sources. Finally, we present a power consumption model we
used to evaluate the energy behaviour of both static and dynamic
NUCA systems. We observe the most important element of power
consumption is always the static component, but the in�uence of
the dynamic consumption is increasing.

Keywords: cache, NUCA, wire delay, latency, topology

xviii

Chapter 1

Introduction

Contents

1.1 Overview . 1

1.2 Wire delay problem and NUCA paradigm . 2

1.3 Coherence protocols in CMP systems 4

1.4 Thesis structure 6

1.1 Overview

Increasing performance of microprocessor systems is a major con-
strain in the design process. Improvements in semiconductor nan-
otechnology have continuously provided a crescent number of per-
chip transistors [1]. In such a context, the e�orts historically per-
formed for improving performance focused on the increase of clock
frequency and the amount of work performed at each clock cycle.
With the increasing number of transistors available on a chip per
process generation, multiprocessor systems have shifted from multi-
chip systems to single-chip implementations. Spec�cally, chip mul-
tiprocessors (CMPs) containing 2-8 processors have recently became
commercially available [37, 42, 51]. In order to improve CMP per-
formance, these CMPs require high-bandwidth low-latency commu-
nication between processors and their associated instructions and

Chapter 1. Introduction

data. By quickly providing processors with instructions and data,
on-chip caches can sign�cantly improve CMP performance. Small
private high-level caches integrated closely with the processor cores
provide each processor quick access to their most recently requested
instructions and data. However, these �nite-sized caches satisfy only
a portion of requests, and many other requests must access larger
lower-level caches. These large on-chip caches should both store
a lot of data, thus minimizing o�-chip miss latency's impact on
performance, and quickly retrieve requested data to reduce global
wire delay's e�ect on performance. Low-level cache management
presents a key challenge, especially in the face of the con�icting
requirements of reducing o�-chip misses and managing slow global
on-chip wires. Current CMP systems, such as the IBM Power 5
[51] and Sun Niagara [36], employ shared caches to maximize the
on-chip cache capacity by storing only unique cache block copies.
While shared caches usually minimize o�-chip misses, they have
high access latencies since many requests must cross global wires
to reach distant cache banks. In contrast, private caches [37, 43]
reduce average access latency by migrating and replicating blocks
close to the requesting processor, but sacri�ce e�ective on-chip ca-
pacity and incur more misses. Another important point related to
cache management policies is the coherence strategy to be adopted
in order to coordinate the many private caches distributed through-
out the system as part of providing a consistent view of memory to
the processors.

1.2 Wire delay problem and NUCA paradigm

Current trends in silicon fabrication technology cause a continuous
transistor size decreasing. This provide two bene�ts: �rst, since
transistors are smaller, more of them can be placed on a single die,

2

1.2. Wire delay problem and NUCA paradigm

providing area for more complex micro architectures. Second, tech-
nology scaling reduces transistor gate length and hence transistor
switching time. Thus if microprocessor cycle time are dominated by
gate delay, greater quantities of faster transistors means the possi-
bility of achieving higher clock rates contributing directly to higher
performance. Furthermore, the availability of a such large num-
ber of transistors, will permit the integration on the same die of
multiple elaboration cores together with large memory hierarchies.
However, reducing the feature sizes, has caused on chip wires width
and height to decrease, resulting in larger wires resistance due their
smaller cross-sectional area. Unfortunately the wire capacitance has
not decreased proportionally. As the signals propagation delay in a
wire is proportional to the resistance*capacitance product, the re-
sult is that in modern and future chip there will be present slower
wires that, in conjunction with the faster achievable clock rates,
will limit the number of transistor reachable in a single cycle to be
a small fraction of those present on a chip 1. As a consequence, the
long wire delays will result in pipeline stalls to allow the signal prop-
agations among the functional units and inside the units themselves.
Also for the on chip memories the wire delay will have catastrophic
e�ects. If we think to a large, monolithic memory, its access time
will be dominated by wire delays. As a result the access time for
such memories will be equal to the time needed to reach data that
physically resides in the farthest part of the memory with respect
to the requesting unit. The bulk of access time will involve routing
to and from banks and not the bank accesses themselves. The ef-
fects of wire delay on achieving better performance for future cpu
are quite clear: performance grow will not be reachable exclusively
throughout the increase of the frequency. Thus, to obtain perfor-
mance growth, there is the need of increasing the IPC thorough new
architectural designs both for cpu than for memory architectures.

3

Chapter 1. Introduction

New trends for cpus cover both designs in which the large number of
available transistors is used to implement homogeneous and hetero-
geneous multicore systems (in order to exploit parallels execution)
than designs based on clustered architectures (in order to localize
communications to a limited set of functional units thus reducing
the e�ects of wires delay). The importance of memory hierarchies,
and in particular of cache memories, for system overall performances
is obvious. However, in the past and in the present, almost all re-
search works have been focused on the improvement of the hit rate
of the cache memory, while the proposals for designs which can mit-
igate the e�ect of wire delays are still rare and, at our knowledge,
all related to NUCA architectures. The basic idea of Non Uniform
Cache Architectures is to substitute a large and monolithic cache
with an array of banks, each of which physically resides at a dif-
ferent distance from the controller. While the access latency of the
monolithic cache is dominated by the slowest of its sub-banks, in a
NUCA there is a di�erent access latency for each bank so that the
banks closest to the controllers can be accessed faster. By moving
the most accessed data in the banks that are closer to the controller
it is possible to obtain an overall latency time that is considerably
lesser than the one o�ered by the monolithic cache.

1.3 Coherence protocols in CMP systems

When moving from single processor to multi processors systems,
applications have to be parallelized in order to achieve performance
gain. As the most part of common parallel applications use the
Shared Memory paradigm, processes running on di�erent proces-
sors share the same address space. As cache memories are needed
for reducing the average latency of memory accesses, each processor
has to store a copy of the most accessed memory blocks in its pri-

4

1.3. Coherence protocols in CMP systems

vate cache; when such blocks are stored in more than one cache, it is
important to provide a consistent view of the shared memory. The
coherence protocol is a central point of design for multicore systems,
since it is responsible for guarantee correctness of memory accesses:
in particular, it must assure that every access to a memory block
receives the most up-to-date value of the referred location. As a
consequence, the coherence protocol is also a performance-sensitive
characteristic of multicore systems since it introduces an overhead
on the overall communication, and this overhead directly impacts
on the system behaviors: in fact, it describes how the communi-
cation between processors and shared memory has to be managed,
but also how block transfer among processors, memory and caches
is performed. Di�erent types of coherence strategies have been pro-
posed in literature. They can be divided in two di�erent classes:
write update and write invalidate. An update protocol, when a
write operation on a block is performed, propagates it to all the
other copies present in remote caches, while an invalidate protocol,
in case of write, invalidates all the remote copies of the modi�ed
block. Examples of update protocols are Dragon [41], Fire�y [54],
RST [48] and PSCR [27]; examples of invalidate protocols are Berke-
ley [33], Synapse [24], MESI (Illinois) [47] and MOESI [53]. Cache
coherence schemes are tightly coupled to the type of the intercon-
nection infrastructure and its properties. Most of the commercially
successful multiprocessors used buses to interconnect the unipro-
cessors and memory: a bus-based coherence protocol relays on the
broadcast nature of the communication, so cache controllers have to
snoop on the bus, and take the appropriate coherence action when
needed. However, with the increasing numbers of cores, a bus suf-
fers scalability limits, as it doesn't have the bandwidth to support
a large number of processors. Prior solutions for more scalable mul-
tiprocessors implement packet-switched interconnects topologies in

5

Chapter 1. Introduction

classical Distributed Shared Memory systems [38, 39]: in such sys-
tems, the communication infrastructure has not an implicit broad-
cast communication paradigm. For this reason, it is necessary to
adopt a directory-based scheme, in which nodes are able to access
to a home node, typically called directory, that holds the informa-
tion of which of the nodes has a copy of any memory block, together
with some state information, and takes the appropriate coherence
actions. In such scenario, the communication paradigm is based on
message passing among the nodes in the system. As future CMP
systems are expected to put hundreds of cores on a single chip, a
bus-based solution would be undesirable, while more scalable in-
terconnection infrastructures have to be adopted: for example, a
Network-on-chip (NoC) [16, 15]. As a result, the coherence proto-
col in such large-scale CMP systems is a directory- based protocol,
similar to those proposed in the past for classical DSM systems.

1.4 Thesis structure

This thesis is organized in seven chapters. The �rst is the introduc-
tion to our work and the the second chapter presents the related
works. The third section shows our implementaion of MESI and
MOESI protocol and in the fourth chapter we discuss the design
tradeo� in S-NUCA based CMP systems. The subsequent section
describes the the FMA protocol implemented in a D-NUCA system
and the results we obtained exploring this architecture. At last, the
seventh chapter discusses the conclusion and presents the future
works.

6

Chapter 2

Related Works

Contents

2.1 CMP systems 8

2.1.1 Stanford Hydra CMP 8

2.1.2 Piranha CMP 10

2.1.3 Intel Core Duo 13

2.2 NUCA cache architecture 16

2.2.1 Single core NUCA architecture 16

2.2.2 NuRapid . 20

2.2.3 Triangular D-NUCA 24

2.2.4 Flexible Cache Sharing in CMP systems . . . 25

2.2.5 NuRapid for CMP 26

2.2.6 The �Tetris� CMP architecture 29

2.3 Coherence protocols 32

2.3.1 DASH multiprocessor 32

2.3.2 SGI Origin 36

2.3.3 Token Coherence 37

In this section we present an overview of the state of the art
about CMP systems, NUCA architecture and cache coherence.

Chapter 2. Related Works

2.1 CMP systems

2.1.1 Stanford Hydra CMP

Hydra [29] is a CMP architecture that has been designed at Stanford
University,USA. This architecture is built using four MIPS-based
cores as its individual processors. Each core has its own pair of pri-
mary instruction and data caches, while all processors share a single,
large on-chip secondary cache. The processors support normal loads
and stores plus the MIPS load locked (LL) and store conditional
(SC) instructions for implementing synchronization primitives. Fig-
ure 2.1 shows the logical architecture of Hydra CMP. Connecting the
processors and the secondary cache together are the read and write
buses, along with a small number of address and control buses. In
the chip implementation, almost all buses are virtual buses. While
they logically act like buses, the physical wires are divided into mul-
tiple segment using repeaters and pipeline bu�ers, where necessary,
to avoid slowing down the core clock frequencies. The read bus acts
as a general-purpose system bus for moving data between the pro-
cessors, secondary cache, and external interface to o�-chip memory.
It is wide enough to handle an entire cache line on clock cycle. This
is an advantage possible with an on-chip bus that all but the most
expensive multichip systems cannot match due to the large number
of pins that would be required on all chip packages. The narrower
write bus is devoted to writing all writes made by the four codes
directly to the secondary cache. This allows the permanent machine
state to be maintained in the secondary cache. The bus is pipelined
to allow single-cycle occupancy by each write, preventing it from
becoming a system bottleneck. The write bus also permits Hydra
to use a simple, invalidation only coherence protocol to maintain
coherent primary caches. Writes broadcast over the bus invalidate

8

2.1. CMP systems

copies of the same line in primary caches of the other processors.
No data is ever permanently lost due to these invalidations because
the permanent machine state is always maintained in the secondary
cache. The write bus also enforces memory consistency in Hydra.
Since all writes must pass over the bus to become visible to the
other processors, the order in which they pass is globally acknowl-
edged to be the order in which they update shared memory. It

Figure 2.1: An overview of the Hydra CMP

is important to concern with minimizing two measurements of the
design: the complexity of high-speed logic and the latency of inter-
processor communication. Since decreasing one tends to increase
the other, a CMP design must strive to �nd a reasonable balance.
Any architecture that allows interprocessor communication between
registers or the primary caches of di�erent processors will add com-
plex logic and long wires path that are critical to the cycle time of
the individual processor cores; this complexity results in excellent
interprocessor communication latency. Because it is now possible
to integrate reasonable-size secondary caches on processor dies and

9

Chapter 2. Related Works

since these caches are typically not tightly connected to the core
logic, it is possible to use that as the point of communication. In
the Hydra architecture, this results in interprocessor communication
latencies of 10 to 20 cycles, which are fast enough to minimize the
performance impact from communication delays. After considering
the bandwidth required by four single- issue MIPS processors shar-
ing a secondary cache, a simple bus architecture would be su�cient
to handle the bandwidth requirements for a four. This is accept-
able for a four- to eight-processor Hydra implementation. However,
designs with more cores or faster individual processors may need to
use either more buses, crossbar interconnections, or a hierarchy of
connections.

2.1.2 Piranha CMP

Piranha [9] is a research prototype developed at Compaq to ex-
plore chip multiprocessing architectures targeted at parallel com-
mercial workloads. The centerpiece of the Piranha architecture is
a highly-integrated processing node with eight simple Alpha pro-
cessor cores, separate instruction and data caches for each core, a
shared second-level cache, eight memory controllers, two coherence
protocol engines, and a network router all on a single die. Multiple
such processing nodes can be used to build a glueless multiproces-
sor in a modular and scalable fashion. In addition to exploring
chip multiprocessing, the Piranha architecture presents some char-
acteristics. First, the design of the shared second-level cache uses a
sophisticated protocol that does not enforce inclusion in �rst level
instruction and data cache in order to maximize the utilization of
on-chip caches. Second, the cache coherence protocol among nodes
incorporates a number of unique features that result in a fewer pro-
tocol messages and a lower protocol engine occupancies compared

10

2.1. CMP systems

to previous protocol design. Finally, Piranha has a unique I/O
architecture, with an I/O node that is a full-�edged member of
the interconnect and the global shared-memory coherence protocol.
Figure 2.2 shows the block diagram of a single Piranha processing
chip. Each Alpha CPU core (CPU) is directly connected to ded-
icated instruction (iL1) and data (dL1) modules. These �rst-level
caches interface to other modules through the Intra-Chip Switch
(ICS). On the other side of the ICS is a logically shared second
level cache (L2) that is interleaved into eight separate modules, each
with its own controller, on-chip tag, and data storage. Attached to
each L2 module is a memory controller (MC) which directly inter-
faces to one bank of up to 32 direct Rambus DRAM chips. Also
connected to the ICS are two protocol engines, the Home Engine
(HE) and the Remote Engine (RE), which support shared memory
across multiple Piranha chips. The interconnect subsystem that

Figure 2.2: Block diagram of a single-chip Piranha processing node

11

Chapter 2. Related Works

links multiple Piranha chips consists of a Router (RT), an Input
Queue (IQ), an Output Queue (OQ) and a Packet Switch (PS). The
total interconnect bandwidth (in/out) for each Piranha processing
chip is 32 GB/sec. Finally, the System Control (SC) modules takes
care of miscellaneous maintenance-related functions, (e.g., system
con�guration, initialization, interrupt distribution, exception han-
dling, performance monitoring). It should be noted that the various
modules communicate exclusively through the connections shown in
Figure 2.2, which also represent the actual signal connection. This
modular approach leads to a strict hierarchical decomposition of
the Piranha chip which allows for the development of each module
in relative isolation along with well de�ned transactional interfaces
and clock domains. While Piranha processing chip is a complete
multiprocessor system on a chip, it does not have any I/O capabil-
ity. The actual I/O is performed by the Piranha I/O chip which is
relatively small in area compared to the processing chip. Each I/O
chip is a stripped-down version of the Piranha processing chip with
only one CPU and one L2/MC module. The router on the I/O chip

Figure 2.3: Piranha system with six processing (8 CPUs each) and two
I/O chip

12

2.1. CMP systems

fully participates in the global cache coherence scheme. The pres-
ence of a processor core on the I/O chip provides several bene�ts: it
enables optimization such as scheduling device drivers on this pro-
cessor for lower latency access to I/O, or it can be used to virtualize
the interface to various I/O devices (e.g., by having the Alpha core
interpret accesses to virtual control registers). Figure 2.3 shows an
example con�guration of a Piranha system with both processing
and I/O chips. The Piranha design allows for glueless scaling up
to 1024 nodes, with an arbitrary ratio of I/O to processing nodes
(which can be adjusted for a particular workload). Furthermore, the
Piranha router supports arbitrary network topologies and allows for
dynamic recon�gurability. One of the underlying design decisions
in Piranha is to treat I/O in an uniform manner as a full-�edged
member of the interconnect. In part, this decision is based on the
observation that available inter-chip bandwidth is best invested in
a single switching fabric that forms a global resource which can be
dynamically utilized for both memory and I/O tra�c.

2.1.3 Intel Core Duo

Intel Core Duo [28, 44] is based on Pentium M processor 755/745
core microarchitecture with few performance improvements at the
level of each single core. The major performance boost is achieved
from the integration of dual cores on the die (CMP architecture).
As Figure 2.4 shows, Intel Core Duo technology is based on two
enhanced Pentium M cores that were integrated and use a shared
L2 cache. The way we integrated the dual core in the system had a
major impact on our design and implementation process. In order
to meet the performance and power targets we aimed to do the
following:

• Keep the performance similar to or better than that of single

13

Chapter 2. Related Works

thread performance processors in the previous generation of
the Pentium M family (that use the same-size L2 cache);

• Signi�cantly improve the performance for multithreaded and
multi-processes software environments;

• Keep the average power consumption of the dual core the same
as previous generations of mobile processors (that use a single
core);

• Ensure that this processor �ts in all the di�erent thermal en-
velopes the processor is targeted to.

Figure 2.4: Intel Core Duo processor �oor plan

CMP general structure. Intel Core Duo processor-based tech-
nology implements shared cache-based CMP microarchitecture in

14

2.1. CMP systems

order to maximize the performance of both ST and MT applica-
tions (assuming the same L2 cache size). The main characteristics
of the Core Duo can be summarized as following:

• Each core is assumed to have an independent APIC unit to
be presented to the OS as a separate logical processor;

• From an external point of view the system behaves like a Dual
Processor (DP) system;

• From the software point of view, it is fully compatible with
Intel Pentium 4 processors;

• Each core has an independent thermal control unit;

• The system combines per-core power state together with package-
level power state.

The coherence protocol. From the external observer, the behavior
of a CMP system should be looked at as the behavior of a dual
package (DP) system. For that purpose, Intel Core Duo processor
implements the same MESI protocol as in all other Pentium M
processors [44]. In order to improve performance, the protocol is
optimized for faster communication between the cores, particularly
when the data exist in the L2 cache. A noticeable example of such
a modi�cation was done in order to allow the system to distinguish
between a situation in which data are shared by the two CMP cores,
but not with the rest of the world, and a situation in which the data
are shared by one or more caches on the die as well as by an agent on
the external bus (can be another processor). When a core issues an
RFO, if the line is shared only by the other cache within the CMP
die, we can resolve the RFO internally very fast, without going to
the external bus at all. Only if the line is shared with another agent

15

Chapter 2. Related Works

on the external bus do we need to issue the RFO externally. For
most Intel Core Duo systems, when only one package exists, this
is a very important optimization. In the case of a multi-package
system, the number of coherence messages over the external bus
is smaller than in similar DP or MP systems, since much of the
communication is being resolved internally. The number of required
coherency messages is also much smaller than in the case of using a
split cache which requires all the communication between the cores
and split L2 caches to be done over the external bus.

2.2 NUCA cache architecture

This section describes the state of the art in Non-Uniform-Cache-
Architectures (NUCA) cache designs. It is a recent design proposal
to reduce the e�ects of the wire delays that will dominate the la-
tencies of future large sized memory hierarchies. The �rst idea of
NUCA is to replace a large and monolithic cache with an array of
banks; each bank is physically placed at di�erent distances from the
cache controller. While the response latency of a monolithic cache is
dominated by the slowest of its subbanks, a NUCA presents di�erent
latencies for di�erent banks, so that banks closest to the controllers
can be accessed with a smaller latency.

2.2.1 Single core NUCA architecture

The �rst NUCA architeture was proposed by Keckler, Burger and
Kim [34] for a single core system. They based their considerations
on the fact that huge, monolithic caches are strongly wire-delay
dominated, due to the need of reaching the most far line of the
cache at each access. By avoiding this need, they proposed various
sub-banked organization for the cache, and the common charac-

16

2.2. NUCA cache architecture

teristic was that the access time changes with the distance from
the cache controller. Figure 2.5 shows the proposed NUCA orga-
nizations, compared to classical monolithic solution, named UCA
(Uniform Cache Access); the numbers over each cache or NUCA
banks represent the access latency in terms of clock cycles, for the
con�guration and nanotechnology considered in the papers. The

Figure 2.5: The NUCA cache architectures proposed by Kecler, Burger
and Kim compared to classical memory systems

�rst and the second represent two classical caches at uniform access
time; the second is multilevel. Instead, the third and the fourth
scheme represent two di�erent types of Static-NUCA (S-NUCA);
in particular, in the con�guration shown in �gure 2.5c present an
aggressive subbanked organization in which each bank uses a pri-
vate, two-way, pipelined transmission channel and the mapping of
data into banks is predetermined based on the memory address and
the bank index (S-NUCA-1), while the con�guration shown in �g-
ure 2.5d the private channels are substituted by a two-dimensional
switched network allowing a consistent space saving and a further
aggressive bank partitioning (S-NUCA-2). In the last scheme is
shown the idea of Dynamic-NUCA (D-NUCA), in which the sub-
banked organization is similar to S-NUCA-2, and memory blocks are
able to dynamically migrate toward the banks that exhibit lower la-

17

Chapter 2. Related Works

tencies with respect to the cache controller. D-NUCA exploits the

Figure 2.6: The three mapping solutions proposed for the D-NUCA

banks access latencies non uniformity by placing frequently accessed
data in closer (and faster) banks and less important data in farther
banks. Some solutions are identi�ed and proposed for the three
main topics in NUCA designs:

• Mapping: how maps data to the banks? In which bank a
datum can reside?

• Search: how the possible locations for a datum are searches
to �nd a line?

• Movement and replacement: how and when the data should
migrate from a bank to another? Where a new datum should
be placed?

For the mapping problem the proposal is the use of the multi-
banked D-Nuca cache as a set-associative structure, in which each
set is spread over multiple banks and each bank hold one way of
the set. Three methods are proposed for the allocation between
banks and sets: the simple mapping (Figure 2.6a), the fair mapping
(Figure 2.6b) and the shared mapping (Figure 2.5c). In the sim-
ple mapping each column in the cache is a set while each row is a

18

2.2. NUCA cache architecture

way. A search is performed by �rst selecting the column and then
searching among the banks of the chosen column for the datum.
This solution is characterized by low architectural complexity but
the access latencies to the various sets are not uniformly distributed.
Because of the fact that the latencies are wire delay dominated, the
banks belonging to the external sets will be always a�ected by higher
latencies than those belonging to the central ones. In the fair map-
ping, this is solved at the cost of additional complexity: the banks
are allocated to the various sets so that the average access times of
each set are equalized. In the shared mapping the sets share the
bank closest to the controller so that a fast bank-access is provided
to all the sets. For the search problem two solutions are proposed:
the incremental search and the multicast search. In the incremental
search the banks of a set are searched in order starting from the
closest one until the request line is found or a miss occurs in the
farthest bank meaning a global cache miss. In the multicast search
the request for a line is sent in parallel to all the banks of a set. This
o�er higher performances at the cost of increased energy consump-
tion and networks contentions. To reduce the miss resolution time
a partial tag comparison is also proposed for both the solutions: a
smart search array is located in the cache controller and stores some
bits of each tag. The array can be searched in parallel to the banks
so that, if no matches occur, the miss processing is start early. In
order to maximize the number of hits in the closest banks a gener-
ational promotion movement policy is proposed: when a hit occurs
to a cache line it is swapped with the line in the bank that is next
closest to the cache controller. Thus, the heavily used lines will mi-
grate toward close and fast banks while the infrequently used lines
will be demoted into farther, slower banks. The new line insertion
policies evaluated are: tail insertion in which the new line is inserted
in the farthest bank, head insertion in which the new line is inserted

19

Chapter 2. Related Works

in the closest bank and middle insertion in which the new line in
inserted in the middle banks. The replacement policies evaluated
are: zero-copy in which the victim line of the insertion is evicted
from the cache and the one-copy in which the victim is moved to a
lower-priority bank replacing a less important line farther from the
controller.

2.2.2 NuRapid

Chisti, Powell and Vijaykumar in [13], describe some limitations
of the NUCA cache architecture. The problems they describe are
classi�ed in four topics:

1. Tag Search. In NUCA caches, tags and data of a bank are al-
ways accessed in parallel; some times all the banks belonging
to the same set are also accessed in parallel. Both those be-
haviours result in considerably high energy requirements that
could be avoided throughout the sequential tag-data access
used in many large L2 and L3 caches. Furthermore NUCA's
tag array is distributed in throughout the cache along with
the data array. As a consequence, searching for the matching
block requires traversing a switched network which consumes
energy and internal bandwidth.

2. Placement. NUCA (as in conventional caches) couples data
placement with tag placement: the position in the tag array
implies the position in the data array. This means that each
set has a statically assigned group of banks in cache and that
only a small number of ways (typically 1 or 2) of each set can
be placed in the fastest banks. To mitigate this limitation,
NUCA promotes the frequently accessed lines from slower to
faster banks but these promotions are energy-hungry and also

20

2.2. NUCA cache architecture

consume internal bandwidth. Furthermore there are cases in
which some sets are heavily accessed resulting in a big number
of lines switching while at the same time some other sets are
slightly used resulting in unused spaces in the fast banks that
could be conveniently used to accommodate lines from the
heavily used sets.

3. Data Array Layout. Usually the bits of am individual cache
block are spread over many subarrays for area e�ciency and
error tolerance. To obtain the same latency for all the bits
of a block, the NUCA design constrains them to be spread
only over a few small subarrays compromising both the area
e�ciency than the error tolerance.

4. Bandwidth. NUCA uses an high bandwidth switched network
to support parallel tag searches and line swaps; however these
mechanism introduce an arti�cial bandwidth need while the
real demand from the CPU is �ltered by L1 caches and is
usually low and does not justify the complexity of the switched
network.

As a solution to the outlined problems, a �Non-Uniform access with
Replacement And Placement usIng Distance associativity� cache
architecture is proposed (brie�y NuRAPID in the following). In
NuRAPID the tags are decoupled from the data and they are con-
tained in a centralized array which is located near the controller.
The tag array is accessed before the data array (using a sequential
tag-data access) and, upon an hit in the tag array, a pointer is used
to identify which block contains the data. As shown in Figure 2.7,
the tags array is accessed using conventional set associativity while
�distance associativity� is introduced to manage the data array. The
data array is divided in some �distance groups� (named d-group in

21

Chapter 2. Related Works

the �gure), each characterized by a constant latency. In contrast to
NUCA in which each block is statically assigned to a set, each d-
group can accommodate lines coming from any set. This is obtained
by the use of the tag-to-data pointer and by the use of large sized
d-group (each group can be up to 2-Mbyte). It turns out that, if
the running application require it, all the ways of a single set could
be accommodated in the faster d-group. So, while the sequential
tag-data access solves problem 1, the use of distance associativity
allow to solve the placement related limitations. NuRAPID ben-

Figure 2.7: The NuRAPID cache architecture

e�ts from distance-associativity also for replacement and for pro-

22

2.2. NUCA cache architecture

motion/demotion policies. Upon a L2 cache miss, the new line is
always inserted in fastest d-group. To achieve this, the victim tag
is chosen in the array using an LRU policy, such tag will generi-
cally point to a data line, contained in the kth d-group, that will
be liberated throughout write back to the main memory. After this
a line is randomly demoted into the d-group k from the d-group
k-1, freeing a slot in such bank. This is repeated for the subsequent
d-groups until a slot is liberated in the d-group 0 to accommodate
the new line taken from the memory. Two promotion policies are
also proposed: in the next-fastest when a line in any d-group other
than the fastest is accessed it is promoted to the next d-group, de-
moting, if needed, a randomly chosen line; in the fastest policy the
line is promoted to the fastest d-group, gradually demoting a ran-
domly chosen line a described for the data replacement. It is worth
noting that in NuRAPID the lines to be evicted from the cache or
demoted to slower d-groups must not necessarily belong to the same
set of the newly inserted/promoted one. Obviously each demotion
requires the updating of the pointer in the tag array; as the lines
to be demoted are randomly chosen, a further back-pointer (from
data array to tag array) is needed to identify the tag to be updated.
NuRAPID architecture requirements of bandwidth are quite smaller
than the ones of NUCA and, as a result, NuRAPID uses single port
caches (where NUCA use multiported ones) and the architecture is
not banked being su�cient the execution of a single operation at
time. The use of few and large d-groups, as opposite to the big
number of banks used in NUCA, allows the spreading of the bits
belonging to the same data block widely over the cache area �xing
the Data Array Layout problem.

23

Chapter 2. Related Works

2.2.3 Triangular D-NUCA

An optimization to the original NUCA design is proposed in [18]
based on the key observation that the hits in a NUCA are not uni-
formly distributed over the banks of the cache. As a consequence
of the data migration mechanism the most frequently accessed data
are near the controller. Starting from such distribution, a triangu-
lar shaped NUCA cache (brie�y named TD-NUCA in the follow-
ing) is proposed. TD-NUCA aims to reduce the cache area and
consequently the cache energy consumption with low performances
degradation. TD-NUCA are proposed in two di�erent organiza-
tion: increasing TD-NUCA in which the number of banks for each
way increases when moving far from the controller and decreasing
TD-NUCA in which the number of banks decreases when moving
far from the controller. Figure 2.8 show the two di�erent mapping

Figure 2.8: The simple mapping (left) policy and the fair (right) mapping
policy for an increasing TD-NUCA cache

policies that are considered for the TD-NUCA; similarly to the orig-

24

2.2. NUCA cache architecture

inal D-NUCA the simple mapping is a�ected by latencies distribu-
tion unfairness among di�erent sets while fair mapping correct this.
The considered search policies are the incremental search in which
each bank, starting from the controller, is sequentially accessed only
when the previous one has reported a miss and the multicast search
in which the cache request is propagated to all the banks.

2.2.4 Flexible Cache Sharing in CMP systems

A �rst CMP system adopting a NUCA cache as the shared last-
level-cache was proposed in [32]. They proposed a CMP architec-
ture in which 16 processors are placed on two opposite sides of a
shared L2 NUCA cache. Such cache is organized as a 256 bank
matrix, and a centralized directory is placed in he middle of the
banks for managing the coherence of private L1 copies. Figure 2.9
shows the considered CMP architecture. This paper proposed an

Figure 2.9: The �exible CMP cache architecture

25

Chapter 2. Related Works

evaluation of di�erent sharing-degree, that make the shared cache
being completely shared (sharing degree = 16), completely private
of each CPU (sharing degree = 1), or partially shared. This aspect
are not relevant for the scope of this dissertation. Di�erences be-
tween static and dynamic mapping and use of data migration are
topics that have been previously discussed [34, 35]. However in this
paper the attention goes to how CMPs pose new challenges to such
topics. While in single core NUCA the migration moves data in
a single direction (and in particular towards the core), in CMPs
the migration can happen in multiple directions (as cores occupy
di�erent places in the chip) and this can cause con�icts with, as
an extreme consequence, shared blocks ping-ponging between two
processors; technically, this phenomenon is called con�ict hit. Re-
sults highlight that there are some parallel applications that don't
take advantage from the adoption of a dynamic migration mecha-
nism, due to the con�ict hit problem. A �rst attempt of facing such
problem has been proposed in [6], in which a �ag-based strategy is
proposed for limiting the phenomenon. Particularly, a �ag is used
to mark just demoted blocks; blocks marked by this �ag will not be
promoted upon a hit, instead their �ag will be reset, and the block
will migrate upon the next hit. In this way, cache blocks are less
prone to con�ict hits.

2.2.5 NuRapid for CMP

In [14] the NuRAPID architecture is extended to the CMPs case
(naming it CMP-NuRAPID). A trade-o� between private and shared
L2 caches is proposed with a private-tag and a shared data architec-
ture (Figure 2.10). Each core (P0, P1, P2, and P3) has a private tag
array while the data array is shared among all the cores through-
out a crossbar or a network. Like private caches, tag arrays snoop

26

2.2. NUCA cache architecture

on a bus to maintain coherence and cores use it to access external
memory. Like NuRAPID, CMP-NuRAPID uses sequential tag-data
access, uses forward and reverse pointers, divides the data array into
several distance groups (d-group) and employs distance associativ-
ity. In CMP-NuRAPID the distance of a d-group from each core is
di�erent, so each core has a di�erent access latency for each d-group
and, to exploit non-uniform access, each core will rank the d-groups
in terms of preference to place its own lines of data. To boost the

Figure 2.10: The CMP NuRAPID architecture

performance of CMP-NuRAPID three novel ideas are proposed:

• Controlled replication for read-only shared data

• In-situ communication for inter processor communications in-
duced by read-write sharing

• Capacity stealing to optimize the use of cache space

Controlled replication uses private tag arrays and shared data ar-
ray to achieve fast access to shared data by keeping separate copies

27

Chapter 2. Related Works

of the shared line close to each processor without wasting precious
on-chip capacity with uncontrolled full replication. When a reader
�rst misses on a line which is already present in the shared data
array, the reader obtains the data from the already-existing on-chip
copy: the reader makes a tag copy but not a data copy. Statistical
measurements have shown that a cache line either is not reused or is
reused two or more times. Therefore, on the second use, a data copy
is made in the reader's closest d-group to avoid slow accesses for fu-
ture reuses. The coherence among replicated tag is guaranteed by
invalidation messages that are sent on the snoopy bus when a core
decides to replace a data block which is shared and thus pointed
by two or more tags. In-situ communication utilizes the hybrid
structure of the cache to provide fast access to read-write shared
data without incurring in coherence misses and in updates tra�c
overheads. For a read-write shared line only one copy is forced to
be present in cache. The writer and the readers have their private
tag copies which point to the same single data copy. As statistical
measurements have show that each write is read more than once
by each reader, the data copy is placed close to one of the readers.
To support in situ communication, a coherence protocol has been
developed starting from MESI with a �communication state� which
substitute the shared state for those blocks containing read-write
shared data. Capacity stealing uses the shared data array of the
CMP-NuRAPID to guarantee L2 space to the cores proportionally
to their capacity demands. Unlike a private cache in which bring-
ing a new block to the cache means evicting another block even if
space is left unused in an other core cache, in CMP-NuRAPID the
cores with more capacity demand can denote their less-frequently-
used data to unused frames in the d-groups closer to the cores with
less capacity demands. Statistical measurements have shown that
the capacity stealing is less important for multithreaded workload,

28

2.2. NUCA cache architecture

because core usually have uniform capacity demands, but it is espe-
cially bene�cial for multi-programmed workloads which usually have
non-uniform capacity demands. As for the other proposed designs,
the placement, replacement and promotion policies are discussed.
Placement and promotion policies evaluated are very similar to the
one evaluated for NuRAPID: all the private lines are initially placed
in the data d-group closest to the initiating core, on a hit the next-
fastest or the fastest promotion policy is used; shared blocks don't
move around in the cache to avoid updating to many reverse point-
ers. Data replacement choose the tag to be replaced applying LRU
policy and starting from invalid tag and then going to private and
shared. If the data line pointed from the evicted pointer is private
then it is evicted from the cache and then some distance replace-
ment could be needed to clear space in the closest d-group. If data
line pointed from the evicted pointer is shared, then it is not evicted
from the cache and it is left for the others sharers. One or more
distance replacement are need to clear space for the new line.

2.2.6 The �Tetris� CMP architecture

Beckmann and Wood in [10] propose an 8 CPUs CMP system, in
which the L2 cache is shared among all cores and organized with the
NUCA paradigm. In this paper the authors introduce and evaluate
some techniques to a NUCA-based CMP system, projected in a 45
nm technology:

• The use of hardware-directed stride-based prefetching (both
L1 and L2 prefetching are evaluated), that utilize the predic-
tion of repeating memory access patterns to tolerate cache
miss latency;

• The migration of the frequently accessed blocks to cache banks

29

Chapter 2. Related Works

closer to the requesting processor, with the purpose of reduc-
ing global wire delay from L2 hit latency by moving frequently
accessed cache blocks closer to the requesting processor;

• The use of on-chip transmission lines to provide fast access to
all cache banks.

Figure 2.11 shows the baseline design is based on a 16MB L2
CACHE with the 8 cores, each with private L1 data and instruc-
tion caches, plugged to the four sides of the shared cache. Similarly
to the original proposal, this CMP system statically partitions the
address space across cache banks, which are connected via a 2D
mesh interconnection networks. The 16 MB L2 storage array is
partitioned into 256 banks. The width of links connecting switches,
banks, and other entities is of 32 bytes. The block migration re-
duces global wire delay from L2 hit latency by moving frequently
accessed cache blocks closer to the requesting processor. The de-
sign that uses the block migration is referred as CMP-DNUCA.
CMP-DNUCA physically separates the cache banks into 16 di�er-
ent bankcluster, shown as the shaded �tetris� pieces in �gure 2.11,
furthermore CMP-DNUCA logically separates the L2 cache banks
into 16 unique banksets. Each bankcluster contains one bank from
every bankset. The bank cluster are grouped into three distinct re-
gion: the local region, the central region and the inter region. In
�gure 2.11 they are shown using di�erent grey tones shading. The
CMP-DNUCA implements a simple static allocation policy for the
new line insertions based on the low-order bits of the cache tags to
select a bank within the block's bankset. The migration policy of
CMP-DNUCA moves blocks along a six bankcluster chain:

OtherLocal → OtherInter → OtherCentral →MyCentral →MyInter →MyLocal

The search for a line is based on a two-phase multicast policy:
in a �rst step the request is broadcasted to the appropriate banks

30

2.2. NUCA cache architecture

Figure 2.11: The Tetris shaped NUCA-based CMP system

within the six previously listed bankclusters then, if all of them re-
port a miss, the request is broadcasted to the remaining 10 banks of
the bankset. On-chip transmission line technology reduces L2 cache
access latency be replacing slow conventional wires with ultra-fast
transmission lines. The delay in conventional wires is dominated by
a wire's resistance-capacitance product, or RC delay. The RC delay
increases with improving technology as wires becomes thinner to
match the smaller feature sizes below. Speci�cally, wire resistance
increases due to the smaller cross-sectional area and sidewall capac-
itance increases due to the greater surface area exposed to adjacent
wires. On the other hand, transmission lines attain signi�cant per-
formance bene�t by increasing wire dimensions to the point where
the inductance-capacitance product (LC delay) determines delay.
While on-chip transmission lines achieve signi�cant latency reduc-

31

Chapter 2. Related Works

tion, they sacri�ce substantial bandwidth and require considerable
manufacturing costs.

2.3 Coherence protocols

2.3.1 DASH multiprocessor

Directory Architecture for SHared memory (DASH) [38, 39] is a scal-
able shared- memory multiprocessor currently being developed at
Stanford's Computer Systems Laboratory. A key feature of DASH
is its distributed directory-based cache coherence protocol. Unlike
traditional snoopy coherence protocols, the DASH protocol does not
rely on broadcast; instead it uses point-to-point messages sent be-
tween the processors and memories to keep caches consistent. Fur-
thermore, the DASH system does not contain any single serialization
or control point.

The architecture. The architecture consists of powerful process-
ing nodes, each with a portion of the shared-memory, connected to a
scalable, high-bandwidth low- latency interconnection network. The
physical memory in the machine is distributed among the nodes of
the multiprocessor, with all memory accessible to each node. Each
processing node, or cluster, consists of a small number of high-
performance processors with their individual caches, a portion of
the shared-memory, a common cache for pending remote accesses,
and a directory controller - corresponding to its portion of the shared
physical memory - interfacing the cluster to the network; the direc-
tory memory stores the identities of all remote nodes caching that
block. A bus-based snoopy scheme is used to keep caches coherent
within a cluster, while inter-node cache consistency is maintained
using a distributed directory-based coherence protocol. The high-
level organization of the protocol is shown in Figure 2.12.

32

2.3. Coherence protocols

The coherence protocol. The DASH coherence protocol is an
invalidation-based ownership protocol. A memory block can be in
one of three states as indicated by the associated directory entry:
i) uncached-remote, that is not cached by any remote cluster; ii)
shared-remote, that is cached in an unmodi�ed state by one or more
remote clusters; or iii) dirty-remote, that is cached in a modi�ed
state by a single remote cluster. The directory does not maintain
information concerning whether the home cluster itself is caching a
memory block because all transactions that change the state of a
memory block are issued on the bus of the home cluster, and the
snoopy bus protocol keeps the home cluster coherent. The protocol
maintains the notion of an owning cluster for each memory block.
The owning cluster is nominally the home cluster. However, in
the case that a memory block is present in the dirty state in a
remote cluster, that cluster is the owner. Only the owning cluster
can complete a remote reference for a given block and update the
directory state.

In case of a read request coming from the processor, if the loca-
tion is present in the processor's �rst-level cache, the cache simply
supplies the data. If not present, then a cache �ll operation must
bring the required block into the �rst level cache. A �ll operation
�rst attempts to �nd the cache line in the processor's second-level
cache, and if unsuccessful, the processor issues a read request on
the bus. This read request either completes locally or is signaled to
retry while the directory board interacts with the other clusters to
retrieve the required cache line. The check for a local copy is initi-
ated by the normal snooping when the read is issued on the bus. If
the cache line is present in the shared state then the data is simply
transferred over the bus to the requesting processor and no access
to the remote home cluster is needed. If the cache line is held in
a dirty state by a local processor, the directory controller takes the

33

Chapter 2. Related Works

Figure 2.12: DASH architecture

34

2.3. Coherence protocols

ownership of that block. If a read request cannot be satis�ed by the
local cluster, the processor is forced to retry the bus operation, and
a request message is sent to the home cluster; at the same time, an
entry is allocated in the Remote Access Cache (RAC). When the
read request reaches the home cluster, it is issued on that cluster's
bus. This causes the directory to look up the status of that memory
block. If the block is in an uncached remote or shared-remote state
the directory controller sends the data over the reply network to
the requesting cluster. It also records the fact that the requesting
cluster now has a copy of the memory block. If the block is in the
dirty-remote state, however, the read request is forwarded to the
owning, dirty cluster. The owning cluster sends out two messages
in response to the read. A message containing the data is sent di-
rectly to the requesting cluster, and a sharing writeback request is
sent to the home cluster. The sharing writeback request writes the
cache block back to memory and also updates the directory. In case
of write operations initiated by a store from the processor, a read-
exclusive request transaction begins. In case of miss in both �rst
and second level cache, a read exclusive request is issued to the bus
to acquire sole ownership of the line and retrieve the other words
in the cache block. Once the request is issued on the bus, it checks
other caches at the local cluster level. If one of those caches has
that memory block in the dirty state (it is the owner), then that
cache supplies the data and ownership and invalidates its own copy.
If the memory block is not owned by the local cluster, a request
for ownership is sent to the home cluster. As in the case of read
requests, a RAC entry is allocated to receive the ownership and
data. At the home cluster, the read-exclusive request is echoed on
the bus. If the memory block is in an uncached-remote or shared-
remote state the data and ownership are immediately sent back
over the reply network. In addition, if the block is in the shared-

35

Chapter 2. Related Works

remote state, each cluster caching the block is sent an invalidation
request. The requesting cluster receives the data as before, and is
also informed of the number of invalidation acknowledge messages to
expect. Remote clusters send invalidation acknowledge messages to
the requesting cluster after completing their invalidation. Instead,
if the directory indicates a dirty-remote state, then the request is
forwarded to the owning cluster as in a read request. At the dirty
cluster, the read-exclusive request is issued on the bus. This causes
the owning processor to invalidate that block from its cache and
to send a message to the requesting cluster granting ownership and
supplying the data. In parallel, a request is sent to the home cluster
to update ownership of the block. On receiving this message, the
home sends an acknowledgment to the new owning cluster.

2.3.2 SGI Origin

The SGI Origin 2000 [39] is a cache-coherent non-uniform mem-
ory access (ccNUMA) multiprocessor designed and manufactured
by Silicon Graphics, Inc. The Origin system was designed from
the ground up as a multiprocessor capable of scaling to both small
and large processor counts without any bandwidth, latency, or cost
cli�s. The Origin system consists of up to 512 nodes interconnected
by a scalable Craylink network. Each node consists of one or two
processors, up to 4 GB of coherent memory, and a connection to
a portion of the X I 0 10 subsystem. This systems employs dis-
tributed shared memory (DSM), with cache coherence maintained
via a directory-based protocol.

The architecture. A block diagram of the SGI Origin architec-
ture is shown in Figure 2.13. The basic building block of the Origin
system is the dual-processor node. In addition to the processors,
a node contains up to 4 GB of main memory and its correspond-

36

2.3. Coherence protocols

ing directory memory, and has a connection to a portion of the IO
subsystem. The nodes can be connected together via any scalable
interconnection network. The cache coherence protocol employed
by the Origin system does not require in-order delivery of point-to-
point messages to allow the maximum �exibility in implementing
the interconnect network. The DSM architecture provides global
addressability of all memory. While the two processors share the
same bus connected to the Hub, they do not function as a snoopy
cluster. Instead they operate as two separate processors multiplexed
over the single physical bus.

The coherence protocol. Like the DASH [38] protocol, the Origin
cache coherence protocol is non-blocking. Memory can satisfy any
incoming request immediately; it never bu�ers requests while wait-
ing for another message to arrive. The Origin protocol also employs
the request forwarding of the DASH protocol for three party trans-
actions. Request forwarding reduces the latency of requests which
target a cache line that is owned by another processor. In order to
prevent deadlock, two separate networks are provided for requests
and replies.

2.3.3 Token Coherence

A technique proposed in 2003, token coherence, directly enforces
the coherence invariant through a simple technique of counting and
exchanging tokens. Token coherence [40] associates a �xed number
of tokens with each block. In order to write a block, a processor
must acquire all the tokens. To read a block, only a single token
is needed. In this way, the coherence invariant is directly enforced
by counting and exchanging tokens. Cache tags and messages en-
code the number of tokens using Log2N bits, where N is the �xed
number of tokens for each block. Token coherence allows processors

37

Chapter 2. Related Works

Figure 2.13: SGI diagram

to aggressively seek tokens without regard to order. A performance
policy is used to acquire tokens in the common case. For example,
a processor in a multiprocessor could predict which processor pos-
sesses the tokens and only send a message directly to it. However
prediction can be incorrect and a processor's request may fail to ac-
quire the needed tokens. Thus while a performance policy seeks to
maximize performance, token coherence also provides a correctness
substrate to ensure coherence and liveness. There are two parts
to the correctness substrate: safety and liveness. Coherence safety
ensures the coherence invariant at all times by counting tokens.
Ensuring liveness means that a processor must eventually satisfy
its coherence request. Since the requests used by the performance
policy, transient requests, may fail, the correctness substrate pro-
vides a stronger type of request that always succeeds once invoked.
These persistent requests, when invoked, ensure liveness by leaving

38

2.3. Coherence protocols

state at all processors so that in-�ight tokens forward to the starv-
ing processor. Di�erent mechanisms ensure that only one persistent
request for a given block is active, and that starving processors
eventually get to issue a persistent request. With a correctness
substrate in place, a performance policy uses transient requests to
locate tokens and data in the common case. The TokenB perfor-
mance policy targets small-scale glueless multiprocessors. TokenB
broadcasts a requestor's GETM and GETS message to every node
in the system. Nodes respond to GETS and GETM requests with
tokens and possibly data. An owner token designates which sharer
should send data to the requestor. Since TokenB operates on an
unordered interconnect and does not establish an ordering point,
races may cause requests to fail. For example, P1 and P5 may both
issue GETM requests for a cache line. Sharer P2 might respond to
P1's request with a subset of tokens and sharer P6 might respond to
P5's request with another subset of tokens. Since both requests re-
quire all tokens, both requests fail to acquire the needed permission.
TokenB detects the possible failure of a request by using a timeout.
After the timer expires, TokenB may issue a �xed number of retries
before it activates a persistent request (to establish the order of rac-
ing requests). Replacements in token coherence are straightforward.
The replacing processor simply sends a message with the tokens to
the memory controller without additional control messages. Token
counting ensures coherence safety regardless of requests that race
with writeback messages. However, completely silent replacement
of unmodi�ed shared data is not possible and tokens must replace
to memory. Token coherence enables a broadcast protocol on an
unordered interconnect. Due to this aspect, it doesn't scale with
the number of processors: when the correctness substrate starts to
operate, it strongly relays on broadcast communication to all the
processors nodes that can have a private copy of a given block.

39

Chapter 2. Related Works

When the number of possible sharers grows, then the number of
broadcast messages that has to be sent grows with it. As future
CMP are expected to have thousands of core per chip, broadcast
communication represents a bottleneck from the scalability point of
view.

40

Chapter 3

The coherence protocols

implementation

Contents

3.1 MESI and MOESI features 41

3.2 MESI coherence protocol 43

3.2.1 Protocol actions 44

3.3 MOESI coherence protocol 48

3.3.1 Protocol actions 49

3.4 Non-blocking directory 52

3.5 Main di�erences 53

3.1 MESI and MOESI features

This section introduces directory-based version of both MESI and
MOESI. Such kind of protocols have had a renewed relevance in the
context of CMP systems, but it is di�cult to �nd a detailed descrip-
tion of their characteristic in recent CMP papers. In the considered
version, both the protocols relay on a shared L2 cache: the pro-
cessors of the CMP systems have private L1 caches, and have to
access a shared L2 cache when a referred block misses in the private

Chapter 3. The coherence protocols implementation

cache; the on-chip cache hierarchy is supposed to be inclusive, and
this property has to be enforced when a block is evicted from the
L2 caches. The directory information is held in the shared cache:
in this way, it is possible to avoid the need of holding a full direc-
tory of all memory blocks; instead, only for actually cached blocks
the corresponding state and directory information is managed by
the L2 directory. Of course, if the shared L2 cache is sub-banked
(i.e., it is a NUCA cache), then the directory is held in the L2 bank
each block is mapped to, according to any mapping policy. When
a block is missed in the private L1 cache, an appropriate request
message is built and sent to the shared L2 directory, that works in
order to provide the L1 requestor with the most up-to-date copy of
the block. An important characteristic of the directory is that it is
non-blocking (with the exception of a new request received for a L2
block that is involved in a L2 replacement). A non-blocking direc-
tory is able to serve a subsequent request for a given block even if
this is still undergoing on a previous transaction, without the need
of stalling the request or nacking it [26]. Both the protocols relay on
three virtual networks [16, 15, 52]: the �rst one (called vn0) is ded-
icated to requests that the L1s send to the interested L2 directory;
the second one (called vn1) is used by the L2 directory to provide
the requesting L1 with the needed block (L2-to-L1 transfer), but
also by the L1 that has the unique copy of the block to send it to
the requesting L1 (L1-to-L1 transfer); the last one (called vn2) is
used by the L2 directory to forward the request received by an L1
requestor to the L1 cache that holds the unique copy of the block
(L2-to-L1 request forwarding). The protocols were design with-
out requiring total ordering of messages. In particular, vn0 e vn1
were developed without any ordering assumption, while vn2 only
requires point-to-point ordering. The reason of such choice is that
the performance of NUCA cache are strongly in�uenced by the per-

42

3.2. MESI coherence protocol

formance (and thus by the circuital complexity) of network switches
[3, 4, 5, 17]. By utilizing wormhole �ow control and static routing
it is possible to design high-performance switches [15], particularly
suited for NUCA caches.

3.2 MESI coherence protocol

The base version of our MESI protocol is similar to the one described
in [26]. A block stored in L1 can be in one of the four states M
(Modi�ed: this is the unique copy among all the L1s, and the datum
is dirty with respect to the L2 copy), E (Exclusive: this is the unique
copy among all the L1s, and the datum is clean with respect to the
L2 copy), S (Shared: this is one of the copies stored in the L1s,
and the datum is clean with respect to the L2 copy) and I (Invalid:
the block is not stored in the local L1). The L1 controller receives
LOAD, IFETCH and STORE from the processor; in case of hit, the
block is provided to the processor, and the corresponding coherence
actions are taken; in case of miss, the corresponding request is build
as a network message and is sent to the L2 directory through the
vn0 (LOAD and IFETCH requests generate the same sequence of
actions in any case, so from this moment on we consider only LOAD
and STORE operations). When the L2 directory receives a request
coming from any of the L1s, it can result in a hit or in a miss. In
case of hit, the corresponding sequence of coherence actions is taken;
in case of miss, a GET message is sent to the Memory Controller,
a block is allocated to the datum, and the copy goes in a transient
state [52] while waiting for the block; when the block is received
from the o�-chip memory, it is stored in the L2 cache, and a copy is
sent to the L1 requestor. In the following are discussed the actions
taken by the L1 controller when a LOAD or a STORE is received,
assuming that a L1-to-L2 request always hits in the L2 bank.

43

Chapter 3. The coherence protocols implementation

Figure 3.1: Sequence of messages in case of Load Miss, when there is
one remote copy. Contiguous lines represent request messages travelling
on vn0; non-contiguous lines depict response messages on vn1; dotted lines
represent messages travelling on vn2.

3.2.1 Protocol actions

• Load hit. The L1 controller simply provides the processor
with the referred datum, and no coherence action is taken.

• Load miss. The block has to be fetched from the L2 cache:
a GETS (GET SHARED) request message is sent to the L2
home directory on the vn0, a block in the L1 is allocated to
the datum, and the copy goes in a transient state while wait-
ing for the block. When the L2 directory receives the GETS,
if the copy is already shared by other L1s, the requestor is
added to the sharers list, and the block is provided, marked
as shared, directly by the L2 cache; if the block is present in
exactly one L1, the L2 directory assumes the copy might be
dirty, and the request is forwarded to the remote L1 on vn2,
then the L2 copy goes in a transient state while waiting for a
response. When the remote L1 receives the forwarded GETS,

44

3.2. MESI coherence protocol

Figure 3.2: Sequence of message in case of Store Hit (a) when the
block is shared by two remote L1s, and Store Miss (b) when there
is one remote copy

provides the L1 requestor with the block, then issues toward
the L2 directory -on vn0- a PUTS message (PUT SHARED:
it carries the latest version of the block to be sent to the
bank -the L2 copy has to be updated) if the local copy was
in M, or an ACCEPT message (a control message that noti-
�es that the L2 copy is still valid) if the local copy was in E;
once the L2 directory receives the response from the remote
L1, updates directory information, a WriteBack Acknowledg-
ment is sent to the remote L1, and the block is marked as
Shared. Figure 3.1 shows this sequence of actions. Of course,
if the block is not present in any of the L1s, the L2 directory
directly sends an exclusive copy of the block to the L1 re-
questor. When the block is received by the original requestor
on vn1, if it is marked as shared the copy goes in the S state,
otherwise it goes in E.

• Store hit. If the block is in M, the L1 controller provides the
processor with the datum, and the transaction terminates.

45

Chapter 3. The coherence protocols implementation

If the block is in E, the L1 controller provides the processor
with the datum, the state of the copy changes to M and the
transaction terminates. If the copy is in S, the L1 controller
sends a message to the L2 directory, on vn0, in order to notify
it that the local copy is going to be modi�ed, and the other
shares have to be invalidated, then the copy goes in a transient
state waiting for the response from the L2 directory. When
the L2 directory receives the message from the L1, sends an
Invalidation message to all the sharers (except the current
requestor) on vn2, then clears all the sharers in the block's
directory, and sends on vn1 to the current requestor a message
containing the number of Invalidation Ack to be waited for.
When a remote L1 receives a Invalidation for an S block,
sends on vn1 an Invalidation Ack to the L1 requestor, then
the copy is invalidated. Once the L1 requestor has received
all the Invalidation Acks, the controller provides the processor
with the requested block, the block is modi�ed, then the state
changes to M and the transaction terminates. Figure 3.2a
shows this situation.

• Store miss. A GETX (GET EXCLUSIVE) message is sent
to the L2 directory on vn0, a cache block is allocated to the
datum and the copy goes in a transient state, waiting for the
response. When the L2 cache receives the GETX, if there are
two or more L1 sharers for that block, the L2 directory sends
the Invalidation messages to all the sharers on vn2, then sends
the block, togetherr with the number of Invalidation Acks to
be received, to the current L1 requestor, on vn1; from this
moment on, everything works as in the case of Store Hit of a
block in the S state. If there are no sharers for that block, the
L2 directory simply stores the ID of the L1 requestor in the

46

3.2. MESI coherence protocol

block's directory information and sends on vn1 the datum to
the L1 requestor. If there is just one copy stored in one L1, the
L2 assumes it is potentially dirty, and forwards the request on
vn2 to the L1 that holds the unique copy, then updates the
block's directory information clearing the old L1 owner and
setting the new owner to the current requestor. When the
remote L1 receives the GETX in forwards, sends the block
to the L1 requestor on vn1, then invalidates its copy. At the
end, the L1 requestor receives the block, then the controller
provides the processor with the datum, the state of the copy is
set to M and the transaction terminates. Figure 3.2b depicts
this sequence of actions.

• Replacement from L1 cache. In case of con�ict, the L1 con-
troller chooses a block to be evicted from the cache, adopting
a pseudo-LRU replacement policy. If the block is in the S
state, the copy is simply invalidated, without notifying the
L2 directory that the copy is no longer locally cached (as a
consequence, the L1 has to reply to invalidations received for
blocks that are no longer cached). If the block is either in the
M or in the E state, the L1 Controller sends a PUTX (PUT
EXCLUSIVE, in case of M copy: this message contains the
last version of the block to be stored in the L2 cache) or
an EJECT (in case of E copy: this is a very small control
message that simply noti�es the L2 directory that the block
has been evicted by the L1, but the old value is still valid).
When the L2 cache receives one of those messages, updates
the directoryinformation by removing the L1 sender, updates
the block value in case of PUTX, then issues a WriteBack
Acknowledgment to the L1 sender; once this receives the ac-
knowledgment, invalidates the copy.

47

Chapter 3. The coherence protocols implementation

• Replacement from L2 cache. As the cache hierarchy is sup-
posed to be inclusive, when a block has been selected for
eviction and is going to be replaced, the L2 directory must
invalidate all the private L1 copies of that block, if any. If
the copy was present in L2 but not in any L1 cache, then it
can be directly evicted (it is invalidated if it was clean with
respect to the main memory copy, otherwise a copy is sent
to the memory). If the copy was present in exactly one L1
cache, an invalidation message is sent to the current owner,
that will respond with either the copy (in case it was locally
modi�ed) or a simple acknowledgment to the directory. If the
copy was shared by more L1 caches, the directory assumes its
copy is up-to-date, so invalidates the L1 copies, waits for all
the acknowledgments, then evicts its copy.

3.3 MOESI coherence protocol

The MOESI coherence protocol adopts the same four states M, E,
S, and I that characterize MESI, with the same semantic meaning;
the di�erence is that MOESI adds the state O for the L1 copies
(Owned: the copy is shared, but the value of the block is dirty with
respect to the copy stored in the L2 cache). The L1 that holds its
copy in the O state is called the owner of the block, while all the
other sharers have their copies stored in the classical S state, and
are not aware that the value of the block is dirty with respect to
the copy of the L2 cache. For this reason the owner has to maintain
the information of dirty copy, and update the L2 value of that block
in case of L1 Replacement. Also this MOESI coherence protocol is
designed with the L2 directory that is a non-blocking directory. In
the following are presented only the di�erences with MESI, referring
to the Owner state.

48

3.3. MOESI coherence protocol

Figure 3.3: Sequence of messages in case of Load Miss, when
the block is modi�ed in one remote L1. The remote copy is not
invalidated; instead, when the WriteBack Ack is received by the
remote L1, it is marked ad Owned

3.3.1 Protocol actions

• Load hit. The L1 controller simply provides the processor
with the referred datum, and no other coherence action is
taken.

• Load miss. The GETS message is sent to the L2 cache on
vn0. When the L2 directory receives the request, if the copy
is private of a remote L1 cache, the L2 cache assumes it is
potentially dirty and forwards the GETS to the remote L1
through the vn2, then goes in a transient state while waiting
for a response. When the remote L1 receives the forwarded
GETS, if the block is dirty (i.e. in the M state) then a PUTO
(PUT OWNER: this control message noti�es the L2 directory
that the block is dirty and is going to be owned) is sent to
the L2 cache, otherwise if the block is clean (i.e. in the E
state) then an ACCEPT message is sent to the L2 directory

49

Chapter 3. The coherence protocols implementation

in order to notify it that the copy was not dirty, and the
copy has to be considered as Shared and not Owned; in both
cases, the remote L1 sends a copy of the block to the current
requestor on vn1, and the L2 directory responds to the remote
L1 owner with a WriteBack Acknowledgment, then updates
the directory information by storing that the block is either
owned, in case of PUTO, by the remote L1 or shared, in
case of ACCEPT. Once the L1 requestor receives the block,
the controller provides the processor with the referred datum,
then the copy is stored in the S state. Figure 3.3 illustrates
this sequence of actions. If the copy was already Owned, when
the L2 directory receives the GETS request, simply adds the
L1 requestor to the sharers list and forwards the request to
the owner, that will provide the L1 requestor with the last
version of the block.

• Store hit. When a store hit occurs for an O copy, the sequence
of steps is the same as in the case of a store hit for an S copy
in MESI.

• Store miss. The GETX message is sent to the L2 directory
through the vn0. If the block is tagged as Owned by a remote
L1, the GETX is forwarded through the vn1 to the current
owner (together with the number of Invalidation Acknowledg-
ment to be waited by the L1 requestor) and an Invalidation
is sent to the other sharers in the list, then the sharers list
is empty and the L1 requestor is set as the new owner of
the block. When the current owner receives the forwarded
GETX, sends the block to the L1 requestor together with the
number of Invalidation Acknowledgment that it has to wait,
then the local copy is invalidated. Once the L1 requestor has
received the block and all the Invalidation Acknowledgment,

50

3.3. MOESI coherence protocol

Figure 3.4: Sequence of messages in case of Store Miss when the
copy is Owned by a remote L1

the cache controller provides the processor with the referred
datum, then the block is modi�ed and stored in the local
cache in the M state. Figure 3.4 shows this case.

• Replacement from L1 cache. When the L1 controller wants to
replace a copy in O, sends a PUTX message to the L2 direc-
tory. Once this message has been received, the L2 cache up-
dates the directory information by clearing the current owner,
then stores the new value of the block in its cache line, and
sends a WriteBack Acknowledgment to the old owner (from
this moment on, the block is supposed to be Shared as in
the case of MESI). When the owner receives the WriteBack
Acknowledgment, invalidates its local copy.

• Replacement from L2 cache. When the L2 controller wants to
replace an Owned copy, knows that copy is potentially dirty in
the L1 that holds the ownership, and that all the other copies
are coherent with that value. So, the invalidation message

51

Chapter 3. The coherence protocols implementation

is sent to all the sharers and to the owner. The sharers will
respond with a simple acknowledgment, while the owner sends
either the modi�ed copy of another acknowledgment. Once
the L2 cache has collected all the response, the block is evicted
(invalidated if the memory copy is up-to-date, updated if the
memory copy was stall).

3.4 Non-blocking directory

A directory coherence protocol may relay on some mechanism, such
as the adoption of NACK/retry messages or requests bu�ering, in
order to prevent race and deadlock conditions that could a�ect the
system correctness. For example, if a subsequent request is received
by the directory when it is in some �busy� state, such request might
be NACKed or bu�ered while waiting for the previous transaction to
complete; the use of NAKs is the case of the SGI Origin coherence
strategy [39]. Such kind of behavior is known as blocking direc-
tory. A non-blocking scheme adopts a directory node that is always
able to serve an incoming request, even if for the requested mem-
ory block it is still undergoing on a previous transaction. Typically,
such schemes are able to immediately update the directory state of
a memory block when a message arrives at the home node, without
the need of waiting any response; for those cases that do need a re-
sponse to the directory (i.e. passing through one or more transient
states can't be avoided), the home node has to be able to satisfy sub-
sequent requests even if that response message has not been received
yet. The directory versions of the MESI and MOESI protocols con-
sidered in this dissertation adopt a non-blocking scheme for the L2
home directory, except in the case of a new request received when
it is engaged in a L2 replacement. In fact, when a block is going
to be evicted from the L2 cache, all the L1 copies have to be inval-

52

3.5. Main di�erences

idated; for this reason, if another L1 requestor accesses that block,
the request can't be served until the replacement terminates (and
the con�icting block can be loaded). During this period, the new re-
quest is not popped by the incoming queue (on the vn0); in order to
prevent subsequent requests for di�erent blocks to be stalled, the L2
controller reads from the incoming queue the messages that arrives
after the blocked request, and serves them as usually. The adopted
non-blocking strategy strongly relays on the ordering property of
vn2: such virtual network is used by the L2 cache to forward the
request toward an owner, but also to send Writeback acknowledg-
ments and Invalidation messages. By ensuring that the point-to-
point ordering property for such classes of messages is guaranteed,
the L2 can assume that directory information stored in the L2 TAG
�eld is always up-to-date and consistent with the �nal status of all
the L1 nodes.

3.5 Main di�erences

From a design point of view, MESI has four base L1 states that can
be represented with 2 bits. Instead, MOESI introduces an extra
state, and thus L1 base states need an extra bit to be represented.
However, a key feature of MOESI is that it privileges L1-to-L1 block
transfers, while MESI presents a higher number of L2-to- L1 block
transfers. In fact, in case of MESI the L2 directory forwards a new
request to the �owner �only when there is just one copy in a remote
L1 cache. Instead, MOESI has a wider concept of ownership with
respect to MESI, because an L1 copy can be tagged as Owned,
meaning the block is shared but the value of the L2 copy is to
be updated; when the L2 directory receives a new request for an
Owned copy, the request must be forwarded to the owner, because
only the owner has the latest value of the block. MESI doesn't

53

Chapter 3. The coherence protocols implementation

have this feature, because when a GETS is forwarded on vn2 to the
L1 remote cache that holds the unique L1 copy, if the block was
previously modi�ed (e.g., due to a previous Store Hit that caused a
transition from E to M in the local L1 copy) the L2 copy is updated
with a PUTS message. In this dissertation, this di�erent behaviors
have been highlighted as they are expected to be responsible for
di�erences in performance and total amount of tra�c in future CMP
systems. Choosing between MESI and MOESI may be not so easy
as one might expect, as the relative position of L1 requestor, L2
directory and the L1 owner in�uences the average L1 miss latency
in di�erent ways, depending on how long the miss transaction takes
to be completed. In a NUCA environment, such di�erence is not
obvious, as the access time to the shared L2 cache is not uniform,
thus each L2 access exhibit a di�erent latency. Moreover, if the
request has to be forwarded to a remote L1-owner, the distance
between the L2 bank and L1 owner, together with the distance
between the L1 owner and L1 requestor, make the L1 miss latency
more application dependent.

54

Chapter 4

Design tradeo� in S-NUCA

CMP systems

Contents

4.1 Introduction 55

4.2 Methodology 58

4.3 Topology issue 58

4.4 Results . 62

This chapter presents our analysis of performances variations
changing the topology and adopting di�erent coherence protocols in
a CMP system with large L2 shared NUCA cache as we proposed
in [20]

4.1 Introduction

In the past, Distributed Shared Memory (DSM) systems with co-
herent caches were proposed as an high-scalable architectural solu-
tion, as they were characterized by powerful processing nodes, each
with a portion of the shared memory, connected through a scalable
interconnection network [38, 39]. In order to maintain high level
of scalability with respect to the number of cores, the coherence

Chapter 4. Design tradeo� in S-NUCA CMP systems

protocol usually adopted in such system was a directory coherence
protocol, where directory information was held at each node. Di-
rectory coherence protocols rely on message exchange between the
nodes that need a copy of a given cache block, and the home node
(i.e. the node in the system that has to manage directory infor-
mation for the block). With the increasing number of transistors
available on-chip due to technology scaling [1], multiprocessor sys-
tems have shifted from multi-chip systems to single-chip systems
(Chip Multiprocessors, CMP) [45, 30], in which two or more pro-
cessors exist on the same die. Each processor of a CMP system has
its own private caches, and the last level cache (LLC) can be either
private [37, 42] or shared among all cores [51, 36, 10, 43]; hybrid de-
signs have been also proposed [14, 12, 56]. CMPs are characterized
by low communication latencies with respect to classical many-core
and DSM systems, as the signal propagation delay in on-chip lines
is lower than in o�-chip wires [31]. However, as clock frequencies
increase as well as the delay in communication lines, signals need
more clock cycles to be propagated on the chip, thus resulting in
higher wire delay, and this delay signi�cantly a�ects performance
[30, 39]. In order to face the wire delay problem, Non-Uniform
Cache Access (NUCA) architecture [34, 32, 10] has been proposed:
a NUCA is a bank-partitioned cache in which the banks are con-
nected by means of a communication infrastructure (typically, a
Network-on-chip, NoC [16, 15]), and it is characterized by a non-
uniform access time. NUCAs have been proved to be e�ective in
hiding the e�ects of wire delay. When adopted in CMP systems,
a NUCA typically represents the LLC shared among all the cores
[10, 32], and all the private, lower cache levels have to be kept co-
herent by means of a coherence protocol; the cores in the system
are able to communicate both among themselves and with NUCA
banks. As NoCs are characterized by a message-passing communi-

56

4.1. Introduction

cation paradigm, the communication among all kind of nodes in the
system (i.e. shared cache banks and processor with private caches)
is based on the exchange of many types of messages. In this context,
the coherence protocol is implemented as a directory-based proto-
col, similar to those designed for DSM systems, in order to meet the
same high degree of scalability. By exploiting the fact that the LLC
is shared among all cores, our proposal is to adopt a non-blocking
directory [26], that is distributed in NUCA banks: NUCA banks
can be adopted as home nodes for cache blocks, and the directory
information is stored in the TAG �eld of each block present in the
NUCA. Previous works proposed various CMP architectures based
on NUCA cache, each adopting as the base coherence protocol ei-
ther MESI [14, 32] or MOESI [10]. However, to the best of our
knowledge, none of them motivated the choice of neither the coher-
ence protocol nor the system topology; instead, we believe that the
behavior of a NUCA-based CMP is heavily in�uenced by both these
aspects.

Figure 4.1: The two considered S-NUCA CMP topologies

57

Chapter 4. Design tradeo� in S-NUCA CMP systems

4.2 Methodology

We considered two di�erent con�gurations of a Shared L2 S-NUCA
based CMP system with 8 processors, shown in Figure 4.1. We re-
fer to each con�guration as 8p (a) and 4+4p (b). We performed
full-system simulation using Simics [50]. We simulated an 8-cpu Ul-
traSparc II CMP system, each cpu using in-order issue, running at 5
GHz. We used GEMS [25] in order to simulate the cache hierarchy
and coherence protocols: private L1s have 64 KB of storage capac-
ity, 2 ways set associate Instructions and Data caches (32 KB each),
while the shared S-NUCA L2 cache is composed by 256 banks (each
of 64 KB, 4 ways set associative), for a total storage capacity of 16
MB; we assumed Simple Mapping, with the low-order bits of index
determining the bank [34]. We assumed 2 GB of main memory with
a 300-cycle latency. Cache latencies to access TAG and TAG+Data
have been obtained by CACTI 5.1 [11] for the speci�ed nanotechnol-
ogy (65 nm). The NoC is organized as a partial 2D mesh network,
with 256 wormhole [16, 15] switches (one for each NUCA bank);
NoC link latency has been calculated using the Berkeley Predictive
Model.

Table 4.1 summarizes the con�guration parameters for the con-
sidered CMP. Our simulated system runs the Sun Solaris 10 oper-
ating system. We run applications from the SPLASH-2 [55] bench-
mark suite, compiled with the gcc provided with the Sun Studio 10
suite. Our simulations run until run completion, with a warm-up
phase of 50 Million instructions.

4.3 Topology issue

Figure 4.2 shows four di�erent cases in which two of them (a and
b) represent the behavior of MESI, and in the others (c and d) is

58

4.3. Topology issue

Number of CPUs 8
CPU type UltraSparcII
Clock Frequency 5 GHz (16 FO4 @ 65 nm)
L2NUCA Cache 16 MB, 256 x 64KB, 16 ways s.a.

L1 cache
Private 32 Kbytes I + 32
Kbytes D, 2 way s.a., 3 cycles
to TAG, 5 cycles to TAG+Data

L2 cache
16 Mbytes, 256 banks (64
Kbyte banks, 4 way s.a., 4 cycles
to TAG, 6 cycles to TAG+Data

NoC con�guration
Partial 2D Mesh Network;
NoC switch latency: 1 cycle;
NoC link latency: 1 cycle

Main Memory 2 GByte, 300 cycles latency

Table 4.1: S-NUCA simulation parameters

depicted the behavior of MOESI. If the L2 home is placed close to
the L1 requestor (a and c), then MESI should perform better than
MOESI, because the data packets have to travel along a shortest
path, thus resulting in lower latency and bandwidth occupancy; on
the other hand, if the L2 home is far from the L1 requestor (b and
d), than MOESI should outperform MESI, when the L1 requestor
and owner are close (the big data packet has to traverse a shortest
path) (d); otherwise (L1 owner and requestor are not close) the
behavior of MOESI should be similar to the situation reported in
Figure 4.2c. Of course, it is important to consider how much such
L1-to-L1 transf-ers impact on performance. In particular, whether
they represent a signi�cant part of the total block transfers toward
the L1 caches (i.e. how many L1-to-L1 transfers satisfy the total

59

Chapter 4. Design tradeo� in S-NUCA CMP systems

L1-to-L2 requests), in the considered class of applications.

Figure 4.2: Di�erent topologies may take advantage from either MESI
or MOESI

How the topologies previously introduced can contribute in in-
vestigating such tradeo�? Figure 4.3 4 shows the 8p and the 4+4p
con�gurations, for an S-NUCA cache composed by 16x16 banks,
in which two L1 caches (green and yellow) issue a request mes-
sage. The request issued by the green cpu (light green line) reaches
the home bank (red), then it is forwarded (light green line) to an
L1 owner (light blue L1), that will provide the requestor with the
block (blue line). The request issued by the yellow cpu (pink line)
reaches the home bank (blue) that directly provides the requestor
with the block (orange line). As the application is the same, when
moving from 8p to 4+4p topology, the mapping between blocks and
S-NUCA banks doesn't change.

If the CPUs involved in the considered transactions are moved,

60

4.3. Topology issue

Figure 4.3: The same application in two di�erent con�gurations

the network distance that each message has to traverse increases,
and consequently the response latency is augmented. In particular,
in the considered two hops transaction, with the 8p topology the
data packet needs just one hop to reach the L1 requestor. When the
requestor is moved to the other side of the cache, the data packet
has to traverse 29 hops. Similar considerations can be done for
the considered three hops transaction. This aspect a�ects not just
the L2 response time, but also the NoC bandwidth utilization, and
consequently the dynamic power consumption. In fact, if we assume
a cache block of 64 bytes and a control message of 8 bytes, then a
data packet is composed by 72 bytes. If such a large data packet
has to traverse a lot of NoC links, then the bandwidth utilization
increases as well as the response time.

61

Chapter 4. Design tradeo� in S-NUCA CMP systems

4.4 Results

We simulated the execution of di�erent benchmarks from the SPLASH-
2 suite, running on the two di�erent topologies (8p, 4+4p) we in-
troduced before. We chose the Cycles-per-Instruction (CPI) as the
reference performance indicator. Figure 4.4 shows the Normalized

Figure 4.4: Normalized CPI. The CPI is normalized with respect to the
maximum CPI value for each benchmark

CPI for the considered benchmarks. We notice that there is not a
signi�cant performance variation when the topology is �xed and the
coherence protocols varies between MESI and MOESI (less than 1%
in all the considered cases, except for Cholesky in the 4+4p con�g-
uration). To explain the little performance impact of the choice of
the coherence protocol, we should consider that the main character-
istic of MOESI is the wider concept of ownership it introduces with
respect to MESI, leading to an increase of L1-to-L1 block transfer.
Such block transfer may be faster or slower than L2-to-L1 transfer,
depending on i) the bank access time, ii) network distance between
L1 requestor and L2 directory, and iii) network distance between

62

4.4. Results

Figure 4.5: (# L1-to-L1 transfers)/(# L1-to-L2 requests) Ratio

L1 requestor and L1 Owner (the network distance is given by the
number and length of links and number of switches that must be tra-
versed in a L2-to-L1 or L1-to-L1 message transfer). Figure 4.5 shows
the percentage of L1-to-L2 requests that are satis�ed by L1-to-L1
transfers for the considered benchmarks. As the �gure depicts, the
number of L1-to-L1 block transfers increases for each topology when
moving from MESI to MOESI, but the percentage of such three-hop
transitions over all block transfers is, in the worst case, less than 6%
(except for Cholesky). As a consequence, for the considered appli-
cations and protocol implementations, the CPI (Figure 4.4) and the
miss latency (Figure 4.6) are not strongly in�uenced by the coher-
ence protocol. The Cholesky exception in the 4+4p con�guration is
a consequence of the higher number of L1-to-L1 transfer (more than
14% for MESI, about 20% for MOESI). Figure 4.6 shows the aver-
age L1 miss latency. Such latency, when moving from 8p to 4+4p,
can increase, decrease or stay constant depending on the running
application. This is mainly due to the variation of the L2-to-L1 con-
tribution to the L1 miss latency. The dependency may be explained

63

Chapter 4. Design tradeo� in S-NUCA CMP systems

Figure 4.6: Breackdown of Average L1 miss latency (Normalized)

by considering how data are mapped in the NUCA cache, and how
such data are accessed. In fact, in NUCA caches, the cache access
time depends on the physical position of data (i.e., of the bank the
data is mapped to) with respect to the CPUs. In particular, banks
that are closer to CPUs exhibit lower access time as a consequence
of the reduced number of switches and number and length of links
to be traversed. In the considered topologies, the CPUs position
varies with respect to NUCA banks, so the CPUs see a di�erent
access time. The variation shown in Figure 4.6, together with the
fact that neither the L1 miss rate (Figure 4.7) nor the number and
type of messages issued in the NoC (Figure 4.8) change with the
topology, indicate that the access pattern to NUCA banks is not
uniform. This has a direct impact on performance di�erence. In
order to verify this aspect, we calculated the baricentre of the ac-
cess frequency to each bank of the NUCA cache. We consider the
NUCA cache as an ideal plane in which column indexes represent
the abscissas while row indexes represent the ordinates. As the con-
sidered S-NUCA cache is organi-zed as a matrix of 16x16 banks, we

64

4.4. Results

numbered the rows and the columns from 1 to 16. We de�ne the
NUCA's Baricentre as:

B =

[
X =

∑N
i=1

(
i ∗
∑N

j=1 Ai,j

)
∑N

i=1

(∑N
j=1 Ai,j

) ,Y =

∑N
j=1

(
j ∗
∑N

i=1 Ai,j

)
∑N

j=1

(∑N
i=1 Ai,j

)]

where Ai,j is the number of accesses to the bank of row i and
column j. In the ideal case (all the banks present exactly the same
access number) the Baricentre of the NUCA is (8.5;8.5). Figure 4.9
shows the baricentres of the NUCA of all the considered con�gura-
tions. According to the Figure, we individuate three classes of ap-
plications, having the baricentre i) very close to the ideal case (e.g.,
ocean and lu), ii) in the lowest part of the S-NUCA (e.g., radix and
barnes), or iii) in the highest part of the shared cache (e.g., raytrace
and waterspatial). We observe three di�erent behaviors: the �ocean
class� of the applications don't present a signi�cant performance
variation when moving from 8p to 4+4p; cholesky presents a lit-
tle performance degradation also for 4+4p, even if its baricentre is
very close to the ideal case: this phenomenon is due to the great im-
pact of L1-to-L1 transfers, that have to travel along longest paths.
The �radix class� has a performance degradation when moving to
4+4p, as the most part of the accesses are in the bottom of the
shared NUCA, so moving half (or more) of the cpus to distant sides
of the NUCA leads to an increase of the NUCA's response time.
In particular, radix is strongly unbalanced as its baricentre is near
the bottom of the cache, leading to a performance degradation in
the 4+4p con�guration of about 10%. Finally, the �raytrace class�
performs better with the 4+4p topology, as the most part of the
accesses are in the top of the shared NUCA.

This feature is also con�rmed by analyzing the CPI of Fig-

65

Chapter 4. Design tradeo� in S-NUCA CMP systems

Figure 4.7: L1 (I$+D$) miss rate (user+kernel)

Figure 4.8: Impact of di�erent classes of messages on total NoC tra�c

66

4.4. Results

ure 4.10 and the L1 miss latency of Figure 4.11, that compare, in
the case of 8p con�guration, architectures based on direct and in-
verse mapping policy. The 8p with inverted mapping has the CPUs
connected to the opposite cache side with respect to the direct map-
ping. As the access pattern to L2 NUCA banks doesn't change, the
baricentres in the two cases are the same, so moving all the CPUs
to the other side of the chip leads to a di�erent number of hops to
reach the directory bank. As a result, we observe a performance
degradation for applications of the �radix class�, as a consequence
of an increase in the average path length needed to reach the di-
rectory bank. For the �ocean class� of applications, there is not a
signi�cant performance variation, as a consequence of the central
position of the baricentres. At the end, the �raytrace class� improve
performance with the inverse mapping con�guration.

Figure 4.9: Coordinates of accesses baricentres for the considered
SPLASH-2 applications, in a 16x16 S-NUCA cache

Another consequence of the imbalance of accesses is the varia-
tion of the bandwidth utilization in the NoC. Figure 4.12 shows how

67

Chapter 4. Design tradeo� in S-NUCA CMP systems

Figure 4.10: Normalized CPI for the 8p con�guration, direct vs inverse
mapping

each class of messages impacts on the bandwidth utilization. For the
applications we considered, L2-to-L1 block transfers represent the
higher component of total bandwidth utilization. In our implemen-
tation, control messages (L1-to-L2 Req and Others in the Figure)
are composed by 8 bytes, while data messages are composed by 72
bytes (8 of control and the 64 bytes of the carried block): when the
L2 directly provides the L1 requestor with the block, the 72 bytes of
the message have to travel along the whole path toward the desti-
nation. As the number of L2-to-L1 transfers dominates the number
of total block transfers, the relative component of the percentage
of NoC bandwidth utilization is also dominant. When moving from
8p to 4+4p, the components of the bandwidth utilization varies de-
pending on the position of the baricentre of each application: in
fact, for those applications whose accesses are imbalanced toward
the bottom (top) of the cache, when moving the CPUs to di�erent
sides of the chip, the higher (lower) number of hops to be passed
to reach the directory bank and the L1 owner leads the NoC us-

68

4.4. Results

age to increase (decrease). On the other hand, if the baricentre is
very close to the ideal case, bandwidth utilization doesn't change.
In conclusion, our evaluation shows that, while the choice of the
coherence protocol doesn't have a signi�cant impact on the whole
system performance, the chip topology does have, in terms of both
CPI and NoC bandwidth occupancy.

Figure 4.11: Breakdown of Average L1 Miss Latency (Normalized) for
the 8p con�guration, direct vs inverse mapping

For the considered benchmarks and designed coherence proto-
cols, the 8p con�guration presents the best performance with respect
to 4+4p, for those application whose accesses are unbalanced in the
bottom part of the S-NUCA. The 8p con�guration performs worst
then the 4+4p for applications that have the baricentre in the top
part of the S-NUCA, or there is not a signi�cant di�erence if the
baricentre is close to the ideal case. We show that while choosing
between MESI and MOESI is not a strict design issue, the CMP
topology, and in particular the relative position of each CPU with

69

Chapter 4. Design tradeo� in S-NUCA CMP systems

Figure 4.12: Impact of di�erent classes of messages on total NoC Band-
width Link Utilization (%)

respect to both the L2 directory bank and the other CPUs, is a key
feature that designers have to take into account when designing an
S-NUCA CMP. We observed the same behaviors for the total band-
width utilization. This is also a central design point, as the dynamic
component of the overall energy consumption is directly connected
to NoC tra�c, and thus to bandwidth utilization. Another impor-
tant feature to be considered is the mapping policy: performance in
static mapping case can be improved by placing most frequently ac-
cessed blocks in L2 banks closer to the CPUs. This can be achieved
if the memory layout is properly managed by the compiler.

70

Chapter 5

CMP D-NUCA migration

mechanism

Contents

5.1 Introduction 72

5.1.1 The false miss problem 72

5.1.2 The multiple miss problem 73

5.2 The Collector solution for multiple miss . . . 74

5.2.1 Basic assumptions 74

5.2.2 Operations 75

5.3 The FMA protocol to avoid the false miss . 80

5.3.1 Basic assumption 80

5.3.2 Operations 81

5.4 Results . 85

This chapter presents our implementation of migration mecha-
nism in D-NUCA architecture based on a MESI coherence protocol
and the solutions we adopted to resolve the �multiple miss� and the
�false miss� problems which are connected to this scenario.

Chapter 5. CMP D-NUCA migration mechanism

5.1 Introduction

When designing a block migration protocol for NUCA caches, many
race conditions have to be solved in order to guarantee correctness
and prevent deadlock. While the most part of such race conditions
can be easily managed with simple additional message exchange,
both the false miss and the multiple miss require deep protocol
modi�cations, and relay on strong network assumptions.

5.1.1 The false miss problem

A Multiple Miss occurs when two o more processors simultaneously
send a request for the same block, and this block is not in cache;
this generates multiple L2 misses and multiple requests to the main
memory for the same line. Without managing properly this o�-chip
accesses, the o�-chip memory could send the same line to di�erent
L2 banks of the same bankset. In a D-NUCA a physical address
can be mapped in any bank of the bankset; consider a protocol in
which:

• each L2 bank sends MISS to the L1 requestor if it doesn't have
a valid copy of the data;

• when the L1 detects an L2 miss, it sends a request to the
o�-chip memory;

• the L2 bank located farther to the L1 requestor is the L2 entry
point for the data;

If two processors located at the opposite sides of the DNUCA
send simultaneously a request for the same data, both the requests
will result in a miss, and the resulting o�-chip accesses lead to have
multiple copies of the same data. Figure 5.1 shows this particular
race condition.

72

5.1. Introduction

Figure 5.1: The Multiple Miss problem

5.1.2 The multiple miss problem

The false miss problem was �rst presented by Beckmann and Wood
[49]. As a consequence of the migration mechanism, there could a
be time interval in which none of the banks of the bankset is able to
provide the requestor with the referred block, thus resulting on a L2
miss in spite of the actual on-chip presence of the block. To better
understand this phenomenon, let's consider the sequence diagram
shown in Figure 5.2.

In the reported scenario, the request sent by L1-0 generates a
migration of the data from L2-8 to L2-4; a subsequent request sent
from L1-2 during the migration generates miss in all the banks be-
cause the data is in cache but it's moving from a bank to another,
and neither L2-8 nor L2-4 is able to satisfy the request (L2-8 doesn't
have the copy of the block, L2-4 hasn't received yet the migrating
block).

73

Chapter 5. CMP D-NUCA migration mechanism

Figure 5.2: The False Miss problem

5.2 The Collector solution for multiple miss

The Collector is the bank of the bankset which manages all the
o�-chip accesses for a given physical address and constitutes the
entry point for that address: for each address, only one bank in the
bankset can act as a Collector, so that all the o�-chip accesses pass
necessarily through this particular bank; in this way we avoid the
scenario described in Figure 5.1, in which the main memory receives
two di�erent requests for the same data and that data is sent to two
di�erent banks.

5.2.1 Basic assumptions

Collector's working bases on following hypothesis:

74

5.2. The Collector solution for multiple miss

• only the Collector can send o�-chip requests;

• the Collector is the block's entry point in L2 cache;

• when a processor sends a requests, it receives as many re-
sponses as many banks constitute a bankset; if we have N
banks in a bankset, the responses can be:

� N-1 MISS messages and a data message (Hit), or

� N MISS messages (miss): the processor has to send an
unicast request to the Collector;

• In case of Hit in a bank that's not a Collector for that ad-
dress, the bank has to send an HIT message to the Collector,
including the L1 requestor and the request type.

5.2.2 Operations

The collector has to keep trace of all the L1 requests broadcasted
through the bankset, decide if the requests are solved with an L2 hit
or with an L2 miss and, if an L2 miss occurs, send only one o�-chip
request even if multiple L1 requests are received: after the �rst one,
all other L1 request don't have to be solved with a L2 miss while
the collector is waiting for the data from the main memory.

L1 requests management. Let's consider a 4x4 DNUCA
cache; if the data is not in L2 cache, an o�-chip request has to
be sent. Let's consider the protocol shown in Figure 5.3. L2-8 is
the Collector within the bankset; when it receives a GET, it starts
acting as a Collector, goint to a particular state in which it waits
for one of the following messages:

• a second request of the same type coming from the same L1
requestor; it means that every bank of the bankset sent a MISS

75

Chapter 5. CMP D-NUCA migration mechanism

Figure 5.3: Managing o�-chip accesses due to an L2 miss through the
Collector

message to the L1 and an o�-chip request has to be issued (see
Figure 5.3);

• an HIT message coming from the bank that has a valid copy
of the data: there's no need to issue an o�-chip request so the
Collector bank stops acting as a Collector and backs to an idle
state (see Figure 5.4).

To let this protocol working, the L1 has to count how many MISS
messages have been received, and, if the data message is received
before all miss messages, the L1 can't replace the block until all the
miss messages are received correctly. Due to the NoC topology and
to routing policy, the Collector could receive the HIT message before
the related GET message; however, as the Hit messages includes

76

5.2. The Collector solution for multiple miss

Figure 5.4: The collector mechanism in case of Hit

both the L1 requestor and the request type, the Collector can wait
for the correct GET message: in fact, the MSHR mechanism avoid
the L1 to issue multiple requests for the same block, so if the HIT
is received before the GET, the Collector just waits for the request
messages that is recognized thanks to the information carried by
the HIT message.

Multiple requests management. Let's consider more than
one processor requesting simultaneously the same data; as previ-
ously discussed, without a Collector, each request would result in
an L2 MISS and issue an o�-chip access. With the Collector, the
only request which results in an o�-chip request is the �rst request
received by the Collector, while the subsequent messages will be
held in the Collector's MSHR, and won't result in an o�-chip miss.

77

Chapter 5. CMP D-NUCA migration mechanism

Figure 5.5 shows the sequence of actions in case of multiple requests
for the same memory block. As shown in �gure 5.5, both L1-0 and
L1-1 issue a request message for the same memory block. The re-
quest sent by the L1-0 is received for �rst and let the L2-8 bank
start acting as a Collector: it waits for either the second GET or
the HIT message.

Figure 5.5: Multiple request in case of an actual L2 miss

As this is the case of actual L2 miss, the Collector will receive
the second GET from the L1-0 (once the latter has collected all
the MISS messages coming from the banks of the bankset). When
the request sent by L1-1 is received, its' bu�ered in an internal
queue; when the second L1-0 GET message is received the L2 miss
is recognized, so the Collector sends an o�-chip request and starts
managing the bu�ered requests. In case of hit, if the GET request

78

5.2. The Collector solution for multiple miss

coming from L1-1 is received by the Collector before any HIT mes-
sage, the Collector has to wait both the HIT messages issued by
the L2 bank that holds the block. Figure 5.6 shows this scenario;
in order to simplify, we ignored the fact that both the hits in the
L2-12 would result in a migration of the referred block.

Figure 5.6: Multiple requests and L2 HIT

The second request (coming from L1-1) is bu�ered and not
served until the second GET message (coming from L1-0) belonging
to the �rst request arrives; when the HIT message is received, the
L1-1's request is popped by the internal bu�er and served: the cor-
responding MISS message is sent to L1-1, then the Collector waits
for the second HIT message coming from the L2 bank that hold the
block.

79

Chapter 5. CMP D-NUCA migration mechanism

5.3 The FMA protocol to avoid the false miss

The FMA protocol (False Miss Avoidance) is a block migration pro-
tocol based on Migration Hiding: during migration the DNUCA
keeps managing the requests and the migration process is transpar-
ent to the L1 caches. A preliminary version of the FMA protocol is
proposed in [19].

5.3.1 Basic assumption

The FMA protocol is based on the following hypotesis:

• the communication is point-to-point ordered: if a node of the
NoC sends one ore more messages to another node, the des-
tination node receives that messages in the same order; this
property is due to the deterministic routing policy of the con-
sidered NoC switches;

• each processor can send only one request at a time for a given
block: if an L2 bank receives two requests for the same block
from the same processors, this are related to the same tran-
sition (this is a consequence of the MSHR mechanism in the
L1 caches);

• a block can migrate through adjacent banks of the same bankset;

• routing process in each switch of the NoC have to be per-
formed for all the destination or for anyone: if the message in
a switch has to be forwarded in more than one outport, but
can't be forwarded through one or more of the outports, the
routing process is delayed for all the outports.

80

5.3. The FMA protocol to avoid the false miss

5.3.2 Operations

A block can migrate from a bank to the next bank of the bankset
towards the requesting processor. A migration occurs when there
is hit in the L2 bank. The destination bank can reject a migration
request or migration can be disabled in some cases. The migration
of a block could cause the demotion of another block if all the ways
in the destination L2 are already allocated to a cache line: one of
the lines is chosen to be demoted towards the bank which started
the migration process. In the banks at the edge of the DNUCA (i.e.
banks in the �rst bank line with respect to the requesting processor),
an Hit doesn't start a migration of the block.

Migration process. Let's consider the simple case in which
the migration is accepted by the destination bank and there's no
need to demote a block. This case is illustrate in Figure 5.7.

Figure 5.7: Migration without demotion

81

Chapter 5. CMP D-NUCA migration mechanism

The request sent by L1-0 starts the migration process from L2-8
to L2-4. L2-8 send the requested data to L1-0 and stats an hand-
shake with L2-4, that's nearer to the requesting processor. Basing
on the FMA protocol, the L2 bank that stats the migration process
behaves as follows:

• sends a migration request message (MIGRATION_START)
to destination L2, including the data block and all directory
information;

• waits for a MIGRATION_ACK message from destination L2:
during this wait, all requests coming from other processors are
forwarded to destination L2; this requests are served by the
destination bank.

• Forwarding process ends as the MIGRATION_ACK message
is received: subsequent requests are not forwarded (they will
result in a MISS) and a MIGRATION_END message is sent
to the destination bank to complete the handshake

When the MIGRATION_START message is received, the destina-
tion L2 bank acts as follows:

• allocates a line for the data block and serves all requests it
receive, checking for duplicate requests;

• It waits for the MIGRATION_END message

Note that the forwarding process of all incoming requests (from the
L2 that began the migration transaction) is e�ective in avoiding
the false miss problem: in fact a false miss can occur when the
referred block is migration and none of the banks is able to satisfy a
new request; if the sending L2 waits for an acknowledgment before

82

5.3. The FMA protocol to avoid the false miss

deallocating the cache line, any new request is not ignored, but
forwarded to the destination L2 bank. Once the acknowledgment is
received, the sender L2 assumes that the destination bank is able
to serve subsequent requests, so the line can be deallocated.

Managing duplicated requests. As a consequence of the
forwarding process of the FMA protocol, it is possible that the des-
tination L2 bank receives both the original request and the corre-
sponding copy forwarded by the other L2 bank. This scenario is
shown in Figure 5.8.

Figure 5.8: Migration with duplicates management

As we can see, L1-1 request reaches L2-4 when the migration
process is in progress; L2-4 serves the request sending the data
block to the L1, but after that it receives the same message for-
warded by L2-8; the FMA protocol detects this duplicate requests
in order to avoid a request to be served more than one time, keep-

83

Chapter 5. CMP D-NUCA migration mechanism

ing trace of already served requests: if a GET is received after a
MIGRATION_START, the following FWD_GETS will surely be
a duplicate basing on hypothesis 2 of the FMA protocol. Note that
only forwarded requests can be a duplicate: the miss message re-
lated to the L2 that started the migration process is sent by the
destination L2 as the duplicate request is received, so the L1 can't
send other requests until it receives all misses, included that one.
For this reasons, new requests can't be a duplicate and they have
to be served.

Demotion mechanism. If all ways of the set related to mi-
grating block are already allocated, one of the con�icting lines is
chosen though an LRU policy to be demoted from the bank desti-
nation of the migrating block to the one which sent the MIGRA-
TION_START message. Figure 5.9 shows the demotion mecha-
nism.

The migration of the A block from L2-15 to L2-11 determines
the demotion of the B block from L2-11 to l2-15; the demotion pro-
cess starts only when migration process is complete. As we can see,
as the MIGRATION_START (A) message is received, a line is allo-
cated to A in the destination L2 by deallocating the B block. B goes
to a transient state in which all requests will be normally served
because it's allocated in the MSHR. As the MIGRATION_END
message is receive, the migration of the A block is complete and the
demotion of B can start. Note that in the L2 that started the migra-
tion process the line that was allocated to A has to be allocated to
B; for this reason, when the MIGRATION_ACK is received the line
is not deallocated: it goes in a particular state in which keeps the
location busy until the DEMOTION_START message for the block
B is received. For this reason, the MIGRATION_ACK message has
to specify that the migration of A is accepted but it causes the de-
motion of B: as a consequence, both the banks are aware of the fact

84

5.4. Results

Figure 5.9: Promotion and Demotion

that the line B will be sent to L2-15 when the MIGRATION_END
message reaches L2-11.

5.4 Results

For the D-NUCA evaluation, we considered an 8 CPUs CMP sys-
tem, in two di�erent topologies: 8p and 4+4p, similar to those
showed in �gure 4.1 for S-NUCA case. The shared cache is a NUCA
composed by 64 banks, each of 256 KB and 4 way set-associative,
for a total storage capacity of 16 MB. Table 5.1 summarizes the
simulation parameters of our simulations. As running benchmarks,
we considered some applications from the SPLASH-2 suite.

Dynamic block migration strives to reduce the NUCA cache hit

85

Chapter 5. CMP D-NUCA migration mechanism

Number of CPUs 8
CPU type UltraSparcII
Clock Frequency 5 GHz (16 FO4 @ 65 nm)
L2NUCA Cache 16 MB, 256 x 64KB, 16 ways s.a.

L1 cache
Private 32 Kbytes I + 32
Kbytes D, 2 way s.a., 3 cycles
to TAG, 5 cycles to TAG+Data

L2 cache
16 Mbytes, 256 banks (64
Kbyte banks, 4 way s.a., 4 cycles
to TAG, 6 cycles to TAG+Data

NoC con�guration
Partial 2D Mesh Network;
NoC switch latency: 1 cycle;
NoC link latency: 1 cycle

Main Memory 2 GByte, 300 cycles latency

Table 5.1: D-NUCA simulation parameters

latency by moving frequently-accessed blocks. Figure 5.10 shows
a comparison of the hit distribution of the considered SPLASH-2
applications; in particular, the hit distribution for D- NUCA 8p
and 4+4p, and S-NUCA are reported. There is no di�erence in the
hit distribution between S-NUCA 8p and 4+4p, due to the static
mapping policy.

The reported hit distributions show that the migration mech-
anism succeeds in bring the most frequently accessed block in the
banks characterized by the lowest latencies with respect to the re-
ferring processor. As a result, in the 8p con�guration we can see
that the most part of the 2 hits occur in the �rst row of banks
(except for Ocean that uses both the �rst and the second line). In
the 4+4p con�guration, instead, the blocks migrate to the two sides

86

5.4. Results

Figure 5.10: Hit distribution for D-NUCA 8p, D-NUCA 4+4p and S-
NUCA

87

Chapter 5. CMP D-NUCA migration mechanism

of the shared D-NUCA, as the processors are attached to two dif-
ferent sides; Barnes and Waterspatial can't succeed in bring such
blocks near the referring CPUs as the shared blocks are accessed by
threads running in processors placed at di�erent sides, thus resulting
in the con�ict-hit phenomenon [6]. Again, Barnes and Waterspa-
tial concentrate the most part of the hits in one bankset: this is
a consequence of the mapping policy of the applications' data to
the bankset (the same phenomenon can be observed for both the
application in the S-NUCA distribution, in which the hits mostly
occur in one bank Barnes or two banks Waterspatial). If we com-
pare the D-NUCA and S-NUCA hit distribution, we can see that
the distributed accesses to L2 banks in S-NUCA are avoided and
concentrated in low-latency ways in the D- NUCA.

Figure 5.11: Normalized CPI: S-NUCA vs D-NUCA, 8p vs 4+4p

In order to evaluate the e�ectiveness of the adopted mechanisms
with respect to a S-NUCA con�guration, we considered the CPI for
each con�guration and considered application; the CPI is shown in
�gure 5.11. As Figure 5.11 demonstrates, for all the considered ap-

88

5.4. Results

plications, excepts for Ocean, the migration mechanism introduces a
little performance improvement with respect to the S-NUCA. How-
ever, such improvement is, in the best case, of about 4.5% with
respect to the corresponding S-NUCA con�guration. However, if
we consider the L1 miss latency shown in Figure 5.12, in case of
L2-to- L2 block transfer (i.e., this is the case of L1 miss requests
that hit in the L2 cache, and the L2 cache directly provides the L1
requestor with the block, without the need of forward it to an L1
owner) we can observe a signi�cant improvement in all the consid-
ered cases. Figure 5.12 demonstrates that the migration mechanism
is e�ective in reducing the L2 hit time: for example, Barnes in the 8p
con�guration save about 30% of the time, on average, with respect
to the corresponding S-NUCA system, and Waterspatial about 35%
in the same case. However, both Barnes and Waterspatial present
a very little improvement in L2 hit latency when the con�guration
is 4+4p, due to the con�ict-hit phenomenon we discussed above.

Figure 5.12: Normalized L1 miss latency, in case of L2 hit with L2-to-L1
transfer

89

Chapter 5. CMP D-NUCA migration mechanism

Figure 5.13: Breakdown of Average L1 miss latency (Normalized)

To better evaluate D-NUCA behaviors, we considered the total
average L1 miss latency shown in �gure 5.13. We observe an increase
in the L2 miss component of the L1 miss latency; in particular, for
Ocean the advantage of the L2-to-L1 latency reduction in the D-
NUCA is invalidated by the higher L2 miss component. In order to
understand this aspect, we show the L2 miss rate in �gure 5.14.

Ocean doubles the L2 miss rate in the D-NUCA with respect to
the S-NUCA, moving from about 1% of the S-NUCA to the 2% of
the D-NUCA. This could be explained with an increase of con�icts
that occur in the case of D-NUCA, as a consequence of the reduced
number of banks that act as entry point (the Collector). In fact, in
the case of S-NUCA each of the 64 banks acts as an entry point,
and can replace its blocks when needed; in the case of D-NUCA,
we just have one Collector for each of the 8 banksets, that have
to manage the same amount of data, thus resulting in a higher
number of con�ict misses. Such e�ect in Ocean is due to the access
pattern to the shared blocks: each thread works on a separated

90

5.4. Results

Figure 5.14: L2 miss rate

Figure 5.15: L1 miss rate

91

Chapter 5. CMP D-NUCA migration mechanism

portion of the total shared space, thus making its blocks to compete
with the others for the storage capacity in the Collectors. This
problem has to be still faced, and will be the subject of my future
research e�orts. Due to the very low L1 miss rate (see �gure 5.15),
the high advantage of L1 miss latency reduction of D-NUCA with
respect to the S-NUCA (about 15% on average, more than 30% in
the best case) has not a great impact on performance (about 4.5%
of performance improvement in the best case). Future works will
also focus on a deeper evaluation of such aspect, in order to let the
latency reduction bene�ts to have a greater impact on the overall
performance.

Figure 5.16: Total NoC Link Bandwidth Utilization

Another aspect that is interesting to evaluate is the NoC band-
width utilization, that is shown in Figure 5.16. As one might expect,
the percentage of the total bandwidth demand of D-NUCA is much
higher than S-NUCA; in some cases, the NoC bandwidth occupancy
doubles in D-NUCA with respect to S-NUCA (Ocean and Waterspa-
tial). This is a consequence of the higher number of messages issued

92

5.4. Results

in the NoC as a consequence of the migration mechanism, and due
to the broadcast search policy adopted in our D-NUCA scheme. In
Barnes, the D-NUCA in the 8p con�guration is more bandwidth
demanding than in the 4+4p con�guration: in fact, as we can see
in the accesses' distribution shown in Figure 5.10, in the 4+4p con-
�guration Barnes doesn't succeed in bringing the most frequently
accessed block near the CPUs, as a consequence of the access pat-
tern to shared blocks; Raytrace and Waterspatial behave similarly
to Barnes. Instead, Ocean reduces the D-NUCA bandwidth demand
in the 4+4p case as the most accessed blocks have successfully mi-
grated to low-latency NUCA banks. The bandwidth utilization is
directly connected to dynamic energy consumption of the system.
D-NUCA caches are expected to be more power consuming than
S- NUCA. But the accesses' distribution suggests that some power-
saving techniques can be adopted in CMP D-NUCA as in the case
of uniprocessor system [23, 7, 21, 22].

93

Chapter 6

Power Consumption Model

Contents

6.1 Description . 95

6.2 Tools . 97

6.2.1 Simics and GEMS 97

6.2.2 Orion . 97

6.2.3 CACTI 5.1 98

6.2.4 PTM . 98

6.3 Model . 99

6.3.1 Static energy 99

6.3.2 Dynamic energy in D-NUCA cache 99

6.3.3 Dynamic energy in S-NUCA cache for MESI

and MOESI coherence protocol 100

6.4 Results . 101

6.1 Description

We de�ned a power consumption model to analyse the energy be-
haviour of cache memory systems, then we performed an analysis
about the energy consumption in L2 NUCA cache using it. This

Chapter 6. Power Consumption Model

model can be applied to serveral memory architectures and it is cu-
tomized on the di�erent coherence protocols. We considered both
dynamic and static NUCA architecture and we adapted the model
to MESI and MOESI because the data search algorithm changes
depending on the system we use. The study concerns static and
dynamic energy and it has been realized through the combination
of several simulation tools. We considered the static energy has
two components: switch leakage and cache banks leakage. The dy-
namic energy instead concerns also the wires and the o�-chip access
consumption. Therefore we included switches, caches, wires and o�-
chip access energy in the evaluation of dynamic consumption. The
scenario within we moved is a CMP system with 8 CPUs which share
a NUCA 16 MB L2 cache, 16-way associative, divided in 256 banks
with 64KB per bank (Figure 4.1). The switch used into our NoC
is 8x8, 256 bits �it and contains both input and output bu�er. We
obtained the network tra�c data using the Simics [50] full sistem
simulator with the addition of the Gems [25] module. This tool per-
mits to have vary detailed statistics which show the activity of each
switch and the number of messagges travelling the network. Then to
study the energetic features of the network switches we exploited the
Orion [46] simulator we con�gured to emulate our network element.
Both dynamic and static cache consumption has been estimated
through CACTI 5.1 [11]; it is a tool which permits to obtain several
parameters about cache consumption, latency and dimensions for
each con�guration and architecture of memory. Instead, to calcu-
late the wires features we analysed the physical con�guration of the
entire system because we had to calculate exactly the wires lenght.
Then we used the RC model and the PTM tool [49] to obtain the
energetic values. At last we evaluated the o�-chip consumption
for RAM accesses. We got the values from the Micron datasheets
[2]. We used our model to study the system using both MESI and

96

6.2. Tools

MOESI coherence protocols for static and dynamic NUCA archi-
tecture. The results show the main important component of the
total energy consumption is always the static power, but we noted
the dynamic component is not insigni�cant and it gets more impor-
tance decreasing the temperature. In details, we observed the static
component is dominated by cache consumption, whereas the switch
leakage is very low. In dynamic consumption the most important
componets are the switches activity and the o�-chip accesses for S-
NUCA, whereas in D-NUCA systems also the contribution of cache
accesses becomes important.

6.2 Tools

6.2.1 Simics and GEMS

It is a full system simulator. GEMS (General Execution-driven Mul-
tiprocessor Simulator) is a set of modules for Virtutech Simics that
enables detailed simulation of multiprocessor systems, including
Chip-Multiprocessors (CMPs). It has been developed by the Wis-
consin Multifacet Project. Most Multifacet and external Publica-
tions use GEMS (http://www.cs.wisc.edu/gems/publications.html)

6.2.2 Orion

It is a power-performance simulator for interconnection networks,
developed by Peh and Malik at Princeton University and built atop
the Liberty Simulation Environment. It is cited in more than �fty
papers and it is integrated in GEMS.

97

Chapter 6. Power Consumption Model

6.2.3 CACTI 5.1

It is a tool for modeling the dynamic power, access time, area,
and leakage power of caches and other memories, developed by
HP Advanced Architecture Laboratory. It is used in hundreds of
Computer Architectures studies, e.g. Kim, Keckler and Burger in
NUCA paper [34] (http://www.hpl.hp.com/techreports/2007/HPL-
2007-167.html)

6.2.4 PTM

Predictive Tecnology Model (PTM) permits to obtain the features
of transistor and interconnect technologies. It is useful to calcu-
late the values of resistence and capacitance for di�erent kinds of
wires. It is developed by NIMO Group at Arizona University. With
the previous generation of PTM, i.e., BPTM, more than 350 papers
have been published by research teams all over the world. As an evo-
lution of previous Berkeley Predictive Technology Model (BPTM),
PTM will provide the following novel features for robust design ex-
ploration toward the 10nm regime:

• Predictions of various transistor structures, such as bulk, Fin-
FET (double-gate) and ultra-thin-body SOI, for sub-45nm
technology nodes.

• New methodology of prediction, which is more physical, scal-
able, and continuous over technology generations.

• Predictive models for emerging variability and reliability is-
sues, such as NBTI.

98

6.3. Model

6.3 Model

6.3.1 Static energy

SimulationT ime(ST) = #ClockCycles ∗ ClockPeriod

Estatic = EsSwitch + EsCache

EsSwitch = StaticSwitchEnergy/Cycle ∗#ClockCycles

EsCache = StaticCachePower/Second ∗ ST

Static Switch Energy/Cycle obtained from Orion
Static Cache Power/Second obtained from Cacti 5.1

6.3.2 Dynamic energy in D-NUCA cache

Rhit = #read

Rmiss = 15 ∗#read + 16 ∗#miss

W = 16 ∗#write + #promotion + #demotion

• ReadHit: Each set is composed by 16 banks and it needs to
access them all because the data can migrate.

• Miss: If the data is not present into the cache the search
performs always sixteen accesses

• Write: To write a data it needs to know where the data is.
So it performs a read.

Edynamic = EdSwitch + EdCache + EdWire + EdOff − Chip

EdSwitch = #ClockCycle ∗DynanicSwitchEnergy/Cycle

EdCache = ReadHitEnergy/Op∗Rhit+ReadMissEnergy/Op∗
Rmiss + WriteEnergy/Op ∗W

EdWire = DynamicWiresEnergy/F lit ∗#Flits

99

Chapter 6. Power Consumption Model

EdOff −Chip = RAMAccess&BusEnergy/access ∗#Off −
ChipAccesses

Dynanic Switch Energy/Cycle obtained from Orion
Read Hit Energy/op obtained from Cacti 5.1
Read Miss Energy/op obtained from Cacti 5.1
Write Energy/op obtained from Cacti 5.1
Dynamic Wires Energy/�it obtained from RC model and PTM
RAM Access & Bus Energy/access obtained from Micron datasheet

6.3.3 Dynamic energy in S-NUCA cache for MESI

and MOESI coherence protocol

Rhit = #read

Rmiss = #miss

W = 16 ∗#write

Edynamic = EdSwitch + EdCache + EdWire + EdOff − Chip

EdSwitch = #ClockCycle ∗DynanicSwitchEnergy/Cycle

EdCache = ReadHitEnergy/Op∗Rhit+ReadMissEnergy/Op∗
Rmiss + WriteEnergy/Op ∗W

EdWire = DynamicWiresEnergy/F lit ∗#Flits

EdOff −Chip = RAMAccess&BusEnergy/access ∗#Off −
ChipAccesses

Dynanic Switch Energy/Cycle obtained from Orion
Read Hit Energy/op obtained from Cacti 5.1
Read Miss Energy/op obtained from Cacti 5.1
Write Energy/op obtained from Cacti 5.1
Dynamic Wires Energy/�it obtained from RC model and PTM

100

6.4. Results

RAM Access & Bus Energy/access obtained from Micron datasheet

6.4 Results

We discuss the results obtained by applying the model to a 8 cores
CMP systems with L2 S-NUCA shared 16MB cache where the co-
herence is managed with MESI and MOESI protocols. The banch-
marks we used are Ocean and Barnes which are part of the Splash2
suite and we considered 800 milion of executed instructions for each
run. Figure 6.1 shows the total energy consumption in a single

Figure 6.1: Total energy consumption of S-NUCA cache memory in
a system adopting MESI and MOESI protocols and running Ocean and
Barnes benchmarks

run for both the protocols and the benchmarks and for three dif-
ferent value of temperature, because varying the temperature the

101

Chapter 6. Power Consumption Model

consumption changes considerably. First we notice that for every ar-
chitecture the most importat component is the leakage power (static
energy) and his value always grows with the temperature. Instead,
the dynamic consumption rappresent about �ve percent af total en-
ergy and it is quite constant. Then, we observe that the choice
of coherence protocol doesn't in�uence the power consumption and
the energy value for MESI and MOESI is the same for each con-
�guration. Finally, the benchmark a�ects the results; as shown in
Figure 6.4 the Barnes IPC is higher than the Ocean one, so to com-
mit 800 milion of instructions the system need more cycles running
Ocean respect to Barnes. The power consumption increases because
the leakage component grows for every Ocean runs. In Figure 6.2
we show the staic consumption breakdown changing the benchmark,
the protocol and the temperature. The most important component
of leakage power comes from cache banks consumption, whereas the
contribution of switches is very low, about �ve percent at 100Â◦C
As we have already observed before for total consumption, there
aren't important di�erences still for leakege power using MESI and
MOESI protocols. Instead, the choice of benchmark is signi�cant
because varying the execution time (Figure 6.4) both the compo-
nents increase for Ocean which need higher time to complete. At
last, the temperature in�uences the power consumption directly, i.e.
when the system runs at higher temperature the energy grows. Fig-
ure 6.3 shows the dynamic consumption breakdown changing proto-
cols and architecture. The temperature in this case isn't in�uential
on energy. The dominant components are the switches activity and
the consumption of o�-chip accesses, whereas the energy spent to
access the cache banks and to travers the network is quite negligible.
The protocol does not a�ect the consumption, whereas the choice
of benchmark does it. In fact, Ocean shows higher miss rate (Fig-
ure 6.4) which causes the increment of o�-chip accesses and dynamic

102

6.4. Results

Figure 6.2: Staic energy consumption of S-NUCA cache memory in
a system adopting MESI and MOESI protocols and running Ocean and
Barnes for di�erent temperature, 100Â◦C, 80Â◦C and 60Â◦C

Figure 6.3: Dynamic energy consumption of S-NUCA cache memory in
a system adopting MESI and MOESI protocols and running Ocean and
Barnes benchmarks

103

Chapter 6. Power Consumption Model

energy consumption.

Figure 6.4: IPC and miss rate of S-NUCA cache memory in a sys-
tem adopting MESI and MOESI protocols and running Ocean and Barnes
benchmarks

After this analysis we applied our model to dynamic NUCA
memory and we compared it to S-NUCA cache with MESI protocol
we showed before. We studied two con�gurations 4.1 moving four
cores on the other side of the memory and we performed an analy-
sis on a 16MB L2 shared cache using the Barnes benchmark. The
results for static energy consumption are similar to those we got
for S-NUCA only, in fact, the leakage depends to simulation time.
Instead, the dynamic component of power consumption behaves dif-
ferently, as shown in �gure 6.5. The total dynamic consumption is
higher for D-NUCA than for S-NUCA and this is due to migration
mechanism which increases the number of cache accesses and the
tra�c on the NoC. Then we observe that moving from 8p to 4+4p

104

6.4. Results

con�guration the switch component increases for both S-NUCA and
D-NUCA because the NoC tra�c grows. So, for D-NUCA archi-
tecture the switch component is dominant, but the cache accesses
contribution becomes quite important.

Figure 6.5: Dynamic energy consumption of D-NUCA cache memory
in a system running Barnes benchmark in 8p and 4+4p con�guration
and dynamic energy consuption of S-NUCA cache memory in a system
adopting MESI protocol and running Barnes benchmark in 8p and 4+4p
con�guration

105

Chapter 7

Conclusion and future

works

Contents

7.1 Conclusions . 107

7.2 Future works 108

7.1 Conclusions

In modern CMP system the cache memory implementation rapre-
sents one of the most important issues to consider. In fact, the miss
rate and the access time play a main role in performances increase
and power consumption reduction. It is possible to adopt shared or
private LLCs memory i CMP systems, but it is fundamental to op-
timize both latency and data rate. In order to improve CMP cache
performance, this dissertation focused on the design of cache hier-
archy adopting a Non-Uniform Cache Access (NUCA) architecture
as the shared Last-Level-Cache of a CMP system. NUCA were pro-
posed by Kim et al. as a solution to the wire-delay problem; studies
performed so far demonstrate that NUCA caches are able to hide
the wire-delay e�ects on the overall system performance. We showed
three di�erent analysis, the �rst about design tradeo� in S-NUCA

Chapter 7. Conclusion and future works

based CMP system, the second on latency reduction adopting D-
NUCA system and the third on power consumption analysis of these
architecture. We presented an evaluation for two di�erent coherence
strategy, MESI and MOESI, in a 8-cpus CMP system with a large
shared S-NUCA cache where the topology vary across two di�erent
con�gurations (i.e. 8p and 4+4p). Our experiment show that CMP
topology has a great in�uence on performances, instead the protocol
has not. We also show that bandwidth utilization depends on the
topology: this is a central design point, as bandwidth utilization
is tired to dynamic energy consumption. Then we show our im-
plementation of the migration mechanism in D-NUCA architecture
realized avoiding the e�ects of �false miss� and �multiple misses�
phenomena. We resolved the �multiple miss� using the Collector
mechanism, which delegate just one bank of each bankset to be the
manager for o�-chip accesses. Instead, the �false miss� has been
resolved adopting the FMA protocol, that guarantees that during
migration there is at least one bank that knows that the block is
actually on-chip. Our evaluation for D-NUCA architecture shows
the migration mechanism is able to move the most accessed data
toward the CPUs and it redeuces considerably the access latency to
cache banks. Finally, we present a power consumption model which
is adaptable to both S-NUCA and D-NUCA architecture. The re-
sults shows that the static energy is the dominant component of
power consumption and the dynamic component rapresents a not
negligible element which grows when we consider D-NUCA scheme.

7.2 Future works

The aim is to �nd an architecture which is mapping independent for
general purpose applications and to exploit the di�erent mappings
strategy to increase performances in the case of speci�c applications,

108

7.2. Future works

however there are several directions we can exploit to improve our
work.

• Mapping strategy: we want to implement a compiler level
mapping strategy to optimize the distrubution of data inside
the cache memory to increase the performances and to reduce
the wire-delay e�etcs.

• Tiled architecture: we work on a new tiled architecture
where single tile is rappresented by a CMP system

• D-NUCA insertion policy: di�erent insertion policies of
memory blocks could be designed and evaluated in the D-
NUCA scheme. In particular, such policies would aim to re-
duce the con�ict probability that a�ect a class of application.

• Way adaptable mechanism: it si possible to adopt the
way adapting technique [8] to CMP system in order to switch
o� the unused NUCA banks and to reduce both static and
dynamic power consumption as we proposed in [23]

109

Bibliography

[1] International technology roadmap for semiconductors. semi-
conductor industrial association, 2005. 1, 56

[2] Micron datasheet. http://www.micron.com/. 96

[3] A. Bardine, M. Comparetti, P. Foglia, G. Gabrielli, and C. A.
Prete. Nuca caches: Analysis of performance sensitivity to noc
parameters. Proc. of the Poster Session of the 4th Int.Â Sum-
mer School on Advanced Computer Architecture and Compila-
tion for Embedded Systems, 2008. 43

[4] A. Bardine, M. Comparetti, P. Foglia, G. Gabrielli, and C. A.
Prete. On-chip networks: Impact on the performances of nuca
caches. Proceedings of the 11th EUROMICRO Conference on
Digital System Design, 2008. 43

[5] A. Bardine, M. Comparetti, P. Foglia, G. Gabrielli, and C. A.
Prete. Performance sensitivity of nuca caches to on-chip net-
work parameters. Proceedings of the 20th International Sympo-
sium on Computer Architecture and High Performance Com-
puting, 2008. 43

[6] A Bardine, M Comparetti, P Foglia, G Gabrielli, and C A
Prete. A power-e�cient migration mechanism for d-nuca
caches. In Proceedings of the Design, Automation and Test
in Europe 2009 (DATE 09), 2009. 26, 88

[7] A. Bardine, M. Comparetti, P. Foglia, G. Gabrielli, C. A. Prete,
and P. Stenstrom. Leveraging data promotion for low power d-
nuca caches. In Proceedings of the 11th EUROMICRO Confer-

Bibliography

ence on Digital System Design, September 2008,Parma, Italy.
93

[8] A Bardine, P Foglia, G Gabrielli, C A Prete, and P. Stenstrom.
Improving power e�ciency of d-nuca caches. ACM SIGARCH
Computer Architecture News, 35:53�58, September 2007. 109

[9] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sanoand C. Smith, R. Stets, and B. Verghese.
Piranha: A scalable architecture based on single-chip multipro-
cesing. Proceedings of the 27th annual International Symposium
on Computer Architecture, ISCA 00, 28:282�293, 200. 10

[10] B.M. Beckmann and D.A. Wood. Managing wire delay in large
chip-multiprocessor caches. IEEE Micro, Dec. 2004. 29, 56, 57

[11] Cacti 5.1: cache memory model.
http://quid.hpl.hp.com:9082/cacti/. 58, 96

[12] J. Chang and G.S. Sohi. Cooperative caching for chip multi-
processors. Proceedings of the 33rd annual international sym-
posium on Computer Architecture, pages 264�276, 2006. 56

[13] Z. Chishti, M. Powell, and T.N. Vijaykumar. Distance associa-
tivity for high-performance energy-e�cient non-uniform cache
architectures. Proc. 36th Annual International Symposium on
Microarchitecture (MICRO-36), pages 55�66, 2003. 20

[14] Z. Chishti, M.D. Powell, and T.N. Vijaykumar. Optimizing
replication, communication, and capacity allocation in cmps.
Proceedings of the 32nd annual international symposium on
Computer Architecture, pages 357�368, 2005. 26, 56, 57

[15] Dally and Towels. Principles and Practices of Interconnection
Networks. Morgan Kau�mann,Elsevier, 2004. 6, 42, 43, 56, 58

112

Bibliography

[16] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks
an Engineering Approach. Morgan Kau�mann,Elsevier, 2003.
6, 42, 56, 58

[17] P. Foglia, G. Gabrielli, F. Panicucci, C. A. Prete, and M. Soli-
nas. Reducing sensitivity to noc latency in nuca caches. 3rd
Workshop on Interconnection Network Architectures: On-Chip,
Multi-Chip (INA-OCMC'09), January 25, 2009. 43

[18] P. Foglia, D. Manganoa, and C.A. Prete. A nuca model for em-
bedded systems cache design. Proceedings of the 3rd Workshop
on Embedded Systems for Real-Time Multimedia, 2005. 24

[19] P. Foglia, F. Panicucci, C.A. Prete, and M. Solinas. Facing the
false miss problem in d-nuca based cmp systems. Proceedings
of the Poster Session of the 4th International Summer School
on Advanced Computer Architecture and Compilation for Em-
bedded Systems (ACACES08), 1:99�102, 2008. 80

[20] P. Foglia, F. Panicucci, C.A. Prete, and M. Solinas. Investi-
gating design trade-o� in s-nuca baseb cmp systems. In Pro-
ceedings of the Workshop on UNIQUE CHIPS and SYSTEMS
(UCAS-5), Boston, 26 April 2009, to appear. 55

[21] P. Foglia, F. Panicucci, C.A. Prete, and M. Solinas. Techniques
for reducing power consumption in cmp nuca caches. In Pro-
ceedings of the ACACES 2007, 1:5�8, July 2007. 93

[22] P. Foglia, F. Panicucci, C.A. Prete, and M. Solinas. Cmp
l2 nuca cache energy consumption model. Proceedings of the
ACACES 2008, 1:111�114, July 2008. 93

[23] P. Foglia, F. Panicucci, C.A. Prete, and M. Solinas. Cmp l2
nuca cache power consumption reduction technique. Proceed-

113

Bibliography

ings of IEEE Symposium on Low Power and High-Speed Chips
(COOLChips XI), page 163, Yokohama, Japan, April 16-18
2008. 93, 109

[24] S.J. Frank. Tightly coupled multiprocessor system speeds mem-
ory access times. Electronics, 57(1):164�169, Jan. 1984. 5

[25] Winsconsin multifacet gems simulator.
http://www.cs.wisc.edu/gems/. 58, 96

[26] K. Gharachorloo, M. Sharma, S. Steely, and S. Van Doren.
Architecture and design of alphaserver gs320. Proc. of the 9th
int. conf. ASPLOS, pages 13�24, 2000. 42, 43, 57

[27] R. Giorgi and C.A. Prete. Pscr: a coherence protocol for elimi-
nating passive sharing in shared-bus shared-memory multipro-
cessors. IEEE Transaction on Parallel and Distributed Systems,
10(7):742�763, July 1999. 5

[28] S. Gochman, A. Mendelson, A. Naveh, and E. Rotem. Introduc-
tion to intel core duo processor architecture. Intel Technology
Journal, 10(2):89�98, 2006. 13

[29] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen,
and Olukotun K. The stanford hydra cmp. IEEE Micro,
20(2):71�84, 2000. 8

[30] L. Hammond, B.A. Nayfeh, and K. Olukotun. A single-chip
multiprocessor. IEEE Computer, 30(9), 1997. 56

[31] Mai Ho and Horowitz. The future of wires. Proc. of the IEEE,
89:490�504, 2001. 56

[32] J. Huh, C. Kim, H. Sha�, L. Zhang, D. Burger, and S. W.
Keckler. A nuca substrate for �exible cmp cache sharing. Proc.

114

Bibliography

of the 19th annual int. conf. on Supercomputing, pages 31�40,
2005. 25, 56, 57

[33] R.H. Katz, S.J. Eggers, D.A. Wood, C.L. Perkins, and R.G.
Sheldon. Implementing a cache consistency protocol. Proc.
12th Int'l Symp. Computer Architecture, pages 276�283, June
1985. 5

[34] C. Kim, D. Burger, and S. W. Keckler. Nonuniform cache
architectures for wire-delay dominated on-chip caches. IEEE
Micro, Nov./Dec. 2003. 16, 26, 56, 58, 98

[35] C. Kim, D. Burger, and S.W. Keckler. An adaptive, non-
uniform cache structure for wire-delay dominated on-chip
caches. In Proceedings of the 10th international conference on
Architectural support for Programming Languages and Operat-
ing System, 2002. 26

[36] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-
way multithreaded sparc processor. IEEE Micro, 25(2):21�29,
2005. 2, 56

[37] K. Krewell. Ultrasparc iv mirrors predecessors. Microprocessor
report, November 1997. 1, 2, 56

[38] J. Laudon and D. Lenoski. The sgi origin:Â a ccnuma highly
scalable server. Proceedings of the 24th international sympo-
sium on Computer architecture, pages 241�251, 1997. 6, 32,
37, 55

[39] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hen-
nessy. The directory-based cache coherence protocol for the

115

Bibliography

dash multiprocessor. Proceedings of the 17th international sym-
posium on Computer Architecture, page 148, 1997. 6, 32, 36,
52, 55, 56

[40] Milo M. K. Martin, Mark D. Hill, and David A. Wood. Token
coherence: decoupling performance and correctness. In Pro-
ceedings of the 30th annual international symposium on Com-
puter architecture, 2003. 37

[41] E.M. McCreight. The dragon computer system: An early
overview. NATO Advanced Study Institute on Microarchitec-
ture of VLSI Computer, July 1984. 5

[42] C. McNairy and R. Bhatia. Montecito: A dual-core dual-thread
itanium processor. IEEE Micro, 25(2):10�20, 1997. 1, 56

[43] Mendelson, Mandelblat, Gochman, Shemer, Chabukswar,
Niemeyer, and Kumar. Cmp implementation in systems based
on the intel core duo processor. Intel Technology Journal, 10,
2006. 2, 56

[44] A. Mendelson, J. Mandelblat, S. Gochman, A. Shemer,
R. Chabukswar, E.Niemeyer, and A. Kumar. Cmp implemen-
tation in systems based on the intel core duo processor. Intel
Technology Journal, 10(2):99�108, 2006. 13, 15

[45] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, KenWil-
son, and Kunyung Chang. The case for a single-chip multipro-
cessor. pages 2�11, 1996. 56

[46] Orion: Power-performance simulator for interconnection net-
works. http://www.princeton.edu/ peh/orion.html. 96

116

Bibliography

[47] M. Papamarcos and J. Patel. A low overhead coherence so-
lution for multiprocessors with private cache memories. In
Proceedings of the 11th International Symposium on Computer
Architecture, pages 348�354, June 1984. 5

[48] C.A. Prete. Rst cache memory design for a tightly coupled
multiprocessor system. IEEE Micro, 11(2):16�19, 40�52, Apr.
1991. 5

[49] Predictive technology model. http://www.eas.asu.edu/ ptm/.
96

[50] Simics: full system simulation platform.
http://www.simics.net/. 58, 96

[51] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and J. Joyner.
Power5 system architecture. IBM Journal of Research and De-
velopment, 49(4), 2005. 1, 2, 56

[52] D.J. Sorin, M. Plakal, A.E. Condon, M.D. Hill, M.M.K. Martin,
and David A. Wood. Specifying and verifying a broadcast and
multicast snooping cache coherence protocol. IEEE Transac-
tion on Parallel and Distributed Systems, 13(6):556�578, 2002.
42, 43

[53] P. Sweazey and A.J. Smith. A class of compatible cache con-
sistency protocols and their support by the ieee futurebus. In
Proceedings of the 13rd International Symposium on Computer
Architecture, pages 414�423, June 1986. 5

[54] C. Thacker, L. Stewart, and E. Satterthwaite. Fire�y: A multi-
processor workstation. IEEE Trans. Computers, 37(8):909�920,
Aug. 1988. 5

117

Bibliography

[55] Woo, Ohara, Torrie, Singh, and Gupta. The splash-2 programs:
characterization and methodological considerations. roceedings
of the 22th Internationl Symposium on Computer Architecture,
pages 24�36, 1995. 58

[56] M. Zhang and K. Asanovic. Victim replication:Â maximiz-
ing capacity while hiding wire delay in tiled chip multiproces-
sors. Proceedings of the 32nd annual international symposium
on Computer Architecture, pages 336�345, 2005. 56

118

	List of Fiugures
	List of Table
	Acknowledgements
	Vita
	Publications
	Abstract
	Introduction
	Overview
	Wire delay problem and NUCA paradigm
	Coherence protocols in CMP systems
	Thesis structure

	Related Works
	CMP systems
	Stanford Hydra CMP
	Piranha CMP
	Intel Core Duo

	NUCA cache architecture
	Single core NUCA architecture
	NuRapid
	Triangular D-NUCA
	Flexible Cache Sharing in CMP systems
	NuRapid for CMP
	The ''Tetris`` CMP architecture

	Coherence protocols
	DASH multiprocessor
	SGI Origin
	Token Coherence

	The coherence protocols implementation
	MESI and MOESI features
	MESI coherence protocol
	Protocol actions

	MOESI coherence protocol
	Protocol actions

	Non-blocking directory
	Main differences

	Design tradeoff in S-NUCA CMP systems
	Introduction
	Methodology
	Topology issue
	Results

	CMP D-NUCA migration mechanism
	Introduction
	The false miss problem
	The multiple miss problem

	The Collector solution for multiple miss
	Basic assumptions
	Operations

	The FMA protocol to avoid the false miss
	Basic assumption
	Operations

	Results

	Power Consumption Model
	Description
	Tools
	Simics and GEMS
	Orion
	CACTI 5.1
	PTM

	Model
	Static energy
	Dynamic energy in D-NUCA cache
	Dynamic energy in S-NUCA cache for MESI and MOESI coherence protocol

	Results

	Conclusion and future works
	Conclusions
	Future works

	Bibliography

