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Abstract

Models of complex systems, composed of many heterogeneous
interacting components, are challenging to analyse, due to
the size and complexity of the network of interactions among
the individual entities. The analysis becomes even more chal-
lenging when the spatio-temporal aspects of the system are to
be taken into account. In this thesis, we propose a framework
of efficient techniques to validate and analyse the behaviour
of complex systems with spatio-temporal dynamics, both in
the stochastic and deterministic cases. In particular, we define
Signal Spatio-Temporal Logic (SSTL), a spatial extension of Sig-
nal Temporal Logic (STL). SSTL presents two new operators:
the bounded somewhere and the bounded surround, that can be
used to specify metric and topological properties in a discrete
space. Given an SSTL formula, we design efficient monitor-
ing algorithms to check its validity and compute its satisfaction
(robustness) score over a spatio-temporal trace. To deal with
stochastic systems, we define a stochastic version of the quan-
titative semantics of STL that we extended later to SSTL. We
then combine it with machine learning techniques to define ef-
ficient parameter estimation and system design procedures. The
specification and validation of SSTL formulae have been im-
plemented in a Java tool, jSSTL. Finally, the expressivity of
SSTL and the efficiency of the algorithms developed in this
work are showed on interested and challenging case studies,
including an epidemic spreading model of a waterborne dis-
ease, a pattern formation example for reaction-diffusion systems
and a french flag model of the morphogen Bicoid.
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Chapter 1

Introduction

1.1 Motivation

There is an increasing interest in the introduction of smart solutions in
the world around us. A huge number of computational devices is inter-
acting in an open and changing environment, with humans and nature
in the loop that form an intrinsic part of the system. For many of these
systems, the spatial and temporal dimensions are strictly correlated and
influence each other. This is the case of many Collective Adaptive Systems
(CAS), like the guidance of crowd movement in emergency situations or
the improvement of the performance of bike sharing systems in smart
cities (FGM12), and of many Cyber-Physical Systems, like pacemaker de-
vices controlling the rhythm of heart beat. Others interesting scenarios
where the space plays a crucial role can be found in the biological world,
e.g., the formation of patterns from biochemical processes acting at the
cellular level, a process known as morphogenesis. Some evident examples
of these patterns can be observed in the stripes of a zebra, the spots on
a leopard, the filament structure of the cyanobacteria Anabaena or the
square pattern of the sulfur bacteria T. rosea.

All these examples can captured under the general umbrella of Com-
plex systems (FS11). Complex systems are systems that comprise a large
number of heterogeneous components forming a complex interaction
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network. As we have seen from the examples, they are studied in many
different disciplines and their efficiency and functionality is becoming
increasingly relevant in our society. In the literature, there does not exist
a unique, clear and widely acknowledged definition of them (LLW12), in
the following we discuss their main characteristics.

They usually consist of a large number of different entities. Hence, we
are considering big systems. The interactions between the components
are non-linear, which reflects in emergent behaviours, not directly derivable
from the knowledge of the individual parts. A complex system can ex-
hibit a hierarchical self-organisation under selective pressure, meaning that
it can autonomously show emergent behaviour without an external con-
trol. Many of the scientific and technological challenges we are currently
facing deal with the complexity arising from the non-linear interactions
between a large number of heterogeneous components. Examples span
from biological systems (from bacteria up in the ladder of life), to ecolog-
ical interactions, to socio-technical systems (in which digital sensors and
devices interact with the natural and social environment).

They are rarely completely deterministic. Often they show stochastic
or hybrid dynamics. For example, molecules inside cells perform ran-
dom movements (random walk) and the reactions among them may occur
when the probability of collision is high enough. Hence, the number of
molecules of each species at each time instant is therefore a random pro-
cess. When the number of molecules of each species involved is large,
so that many reactions happen in any small interval of time, stochastic
effects tend to average out and can be neglected. However, if the concen-
tration of the molecules (of at least some of the species) is low the stochas-
ticity plays an important role and must be taken into account (ESS02).

Complex systems often show an in-homogenous spatial distribution. Many
complex systems involve a large number of heterogeneous spatial enti-
ties that are located and can move in a physical space. Hence, the spatial
information is crucial to properly understand their emerging dynamics.
For instance, in some eukaryotic cells, the motility is realised by the spa-
tial polarisation of small-G-protease signalling proteins (JMEK07). Epi-
demic spreading at the national or worldwide scale depends crucially
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on the asymmetric /inhomogenuous population distribution and on the
mobility patterns and available travel routes (TBP+12).

1.2 Approach

Our ability to understand, control and design complex systems requires
refined mathematical and computational tools.

This thesis focuses on the design and control models of such systems,
described mathematically by formalisms, such as Ordinary Differential
Equations (ODE), Partial Differential Equations (PDE), Continuous Time
Markov Chain (CTMC) (Dur12), patch-CTMC, and Stochastic Hybrid Sys-
tem (SHA) (BLB05). Controlling a system requires us to be able to anal-
yse its dynamics and in particular to verify if it satisfies or not specific
behaviours. Hence, we have to be able to describe such behaviours, and
to monitor whether, to which extent and how robustly, they are satisfied
by a system. With the design of a system, known also as the system design
problem, we mean the capacity to drive the dynamics of the model. This
often leads to the study of the parameter space of those models, with the
aim of finding the values needed to show specific desired behaviours; for
this reason it is also called parameter synthesis.

A possible way to tackle the problem is to use formal methods and in
particular logic-based languages like temporal logic (TL) (Pnu77). Temporal
logic is a modal logic with a well-defined syntax and semantics to specify
in a precise and concise way emergent behaviours. It has specific oper-
ators, called temporal operators, to describe properties of time-dependent
events. This means that the specific behaviour is described by a logic
formula, that we call property. There are many kind of temporal log-
ics, depending on the type of system that has to be analysed, e.g., with
continuous or discrete state space, and on the model of time, e.g., contin-
uous or discrete time, linear or branching time, and so on. Our systems
are principally described by mathematical models for which, usually, we
do not have exact result but just numerical traces derived by simulations
of the model. The type of behaviours that we want to described then
are well specified by logics with future linear temporal modalities (Hen98)
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as STL, MTL and LTL (BHHK03; CDKM11); it means that the logics can
encode properties about the future of paths/trajectories.

Given a model and a property, we can use then automatic techniques
as Model Checking (BK08; CJGP99) (MC) to verify whether the property is
satisfied. In case of model checking for linear temporal formulae the ver-
ification is done iteratively checking all possible trajectories/behaviours
of the model. To deal with stochastic systems Probabilistic Model Check-
ing (KNP04; BHHK03; BCHG+97) (PMC) is a well-established verifica-
tion technique that can be used to compute the probability that a prop-
erty, expressed in temporal logic, may be satisfied by a given stochastic
process. In this case, the verification is done computing the probabil-
ity measure of behaviours that satisfy the property. This methodology
produces the exact solution, up to a prescribed numerical error, as it op-
erates directly on the structure of the stochastic model. Despite the suc-
cess and the importance of PMC, this technique suffers serious compu-
tational limitations, either due to state space explosion of the systems (an
exponential blow up of the state-space) or to the difficulty in analytically
checking formulae expressed in specific logics, like Metric Temporal Logic
(MTL) (BHHK03; CDKM11).

The type of systems that we are considering are very large and com-
plex, hence the standard model checking procedures are not feasible. In
this case, simulation and testing are the preferred validation methods.
This is the area of the run-time verification (BP09), where an individual
simulation trace of the system is checked against a formula, using an
automatic verification procedure, called monitoring. This permits to di-
rectly verify properties over deterministic models, for which we have a
unique solution (usually the numerical integration of the ODE system),
but it is not sufficient to deal with stochastic dynamics. In this latter case,
statistical model checking (SMC) (JCL+09b; YKNP04; YS06) can be used to
estimate the satisfiability distribution of a given temporal logic formula
in a stochastic model, with usually a guarantee of asymptotic correctness.
This technique consists of three main steps. First, the model is simulated
for finitely many runs. Second, the satisfaction of the property is verified
for each run (trajectory) with a monitoring procedure. Finally, statistical
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analysis are used to approximate the probability distributions of the sat-
isfaction or to test whether the simulations provide a statistical evidence
for the satisfaction of the property. The idea is that the simulations of a
stochastic system are produced according to the distribution defined by
the system, and then they can be used to get estimates of the probabil-
ity measure on executions. Another interesting consideration about the
monitoring approach is that it does not necessarily need a mathematical
model but just observable traces of some process, even real observations.
So this procedure can be applied also to the analysis of black box sys-
tems for which we do not have a model but only information about their
behaviour.

All these described techniques provide only qualitative measures of
the satisfiability (yes/no answer). However, this notion of satisfiability
may be not enough to determine the capacity of a system to maintain
a particular emergent behaviour. For example, the model can be unaf-
fected by the uncertainty of the perturbations due to its stochastic na-
ture. A similar issue can also arise in deterministic dynamical systems,
which may be subject to extrinsic noise or uncertainty in the parameters.
To address this question in the deterministic case, researchers in the ver-
ification community have proposed several notions of robustness (DM10;
FP09; RBFS08), providing suitable definitions of distance between a tra-
jectory of a system and the behavioural property of interest, expressed
in terms of a temporal logic formula. These effectively endow the logic
of interest with a quantitative semantics, allowing us to capture not only
whether a property is satisfied but also how much it is satisfied. A simi-
lar notion of robustness for stochastic models would clearly be desirable
but, to our knowledge, was not formalised before our work. An inter-
esting logic that comes with a quantitative semantics is Signal Temporal
Logic (STL) (MN04; DFM13). STL is a temporal logic very suitable to
specify behaviours of real-valued time series generated during the sim-
ulation of a dynamical system. It extends the dense-time semantics of
Metric Interval Temporal Logic (AFH96) (MITL), parameterising it with a
set of numerical predicates playing the role of atomic propositions.

The literature of applications of formal methods (temporal logic in
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particular) to complex systems has been mainly focused on well-mixed
systems, where the spatial nature of interactions is abstracted for the sake
of simplicity. However, we have seen that there are many examples of
complex systems where the spatial aspect is crucial to properly under-
stand their emerging dynamics. From the point of view of modelling
languages and simulation, some relevant work in spatial modelling has
been done in recent years (BHMU11; FH14). Some work has been done
also in the area of spatial logic (APHvB07), yet focussing more on theo-
retically investigation, expressivity and decidability, often in continuous
space. Less attention has been placed on more practical aspects, espe-
cially in the validation procedure. In particular, model checking routines
have a much more recent history. Relevant works are those on spatial
logics for process algebra with locations as (NKL+07; CG00), or spatial
logic for rewrite theories (BM12). In (CLLM14), Spatial Logic for Closure
Spaces (SLCS) is proposed for a discrete and topological notion of space,
based on closure spaces (Gal99). An extension of the SLCS with temporal
aspects, as “snapshot” models, can be found in (CGG+15). It extends the
logic with the temporal modality of the branching logic Computation Tree
Logic, CTL. However, the algorithms to check snapshot models have high
computational cost and are susceptible to state-space explosion problems
because the spatial formulae have to be recomputed at every state. Fur-
thermore, the logic does not have a stochastic and a quantitative seman-
tics.

The only linear-time spatio-temporal logic with monitoring proce-
dure for checking spatio-temporal properties of spatially located differ-
ential equations that we are aware of is Spatial-Temporal Logic (SpaTeL)
(GBB14; GSC+09; HJK+15), in which spatial properties are expressed us-
ing ideas from image processing, namely quad trees (FB74). This allows
one to capture very complex spatial structures, but at the price of a com-
plex formulation of spatial properties, which are in practice only learned
from some template image. They also use a measure of robustness as a
fitness function to guide the parameter synthesis process for a determin-
istic reaction diffusion system using Particle Swarm Optimisation (PSO) al-
gorithms. However, the authors do not consider stochastic systems and
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their optimisation algorithms for parameter synthesis generally do not
provide any asymptotically guarantee for reaching the global optimum.

The design of a spatial logic is strictly related to the description of
space in which the dynamics takes place. Space can be logical, i.e., a set of
locations, it can be discrete, i.e., a grid or a more general graph, or it can
be continuous, for instance the Euclidian space. The first type of systems
that we investigate in this thesis have a discrete space, structured as a
weighted graph. These models describe the number of entities/agents
in each node. The agents can move from one node to a connected one.
The reason why we focus our attention on discrete space is that many ap-
plications, like bike sharing systems or metapopulation epidemic mod-
els (MBR+12), are naturally framed in a discrete spatial structure. More-
over, in many circumstances continuous space is abstracted as a grid or
as a mesh. This is the case, for instance, of many numerical methods that
simulate the spatio-temporal dynamics using Partial Differential Equations
(PDE). Hence, this class of models can be dealt checking properties on
such discretisation.

1.3 Contributions

In this thesis, we design an original formal framework that offers suitable
techniques to analyse the behaviour of both deterministic and stochastic
complex systems, verifying their spatio-temporal properties.

First, we extend the robustness degree of STL formulae in a proba-
bilistic setting (BBNS13; BBNS15). In particular, we provide a simulation-
based method to formally define a notion of robust satisfiability distribu-
tion. This distribution is an important measure to understand how the
behaviour specified by the temporal formula is affected by the stochas-
ticity of the system. In particular, we consider two indicators of this dis-
tribution: the average robustness and the conditional average robustness of a
formula being true or false. We present then three examples: the Schlögl
system (GCPDI05), a simple set of biochemical reactions exhibiting a
bistable behaviour, the Incoherent type 1 Feed-forward loops (I1-FFL) (Alo07),
a frequent motif in gene regulatory systems, and the Repressilator (EL00;
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BP08; BP10), a synthetic biological clock implemented as a gene regula-
tory network. With this examples we illustrate how to approximate the
distribution of the robustness degree and its indicators, and we show
that they provide valuable informations that are not captured by the sat-
isfaction probability alone.

Secondly, we exploit the average robustness to address the system de-
sign problem (BBNS13; BBNS15). Given a stochastic model and a specific
desired behaviour, described as a STL formula φ, the goal is to optimise
(few) control parameters of such model in order to maximise the average
robustness of φ. In this way, the model with the optimise parameters cor-
responds to the model that ”better” (more robustly) shows the required
specification. The methodology combines the formal method approach
with a machine learning optimisation technique. Such optimisation is car-
ried out using the Gaussian Process Upper Confidence Bound (GP-UCB) al-
gorithm (SKKS12), coming from active learning. This state-of-the-art op-
timisation algorithm emulates the true function from just few samples
and performs very well in a simulation based scenario with noisy evalu-
ations. We consider then three different system design problems on the
three case studies used to study the average robustness.

Third, we introduce Signal Spatio-Temporal Logic, SSTL, (NB14; NBC+15),
a spatial extension of STL. We consider a discrete representation of space,
modelled as a weighted graph, with populations of interacting compo-
nents evolving in each location (node) and with entities migrating from
one location to another one (via edges).

SSTL integrates the temporal modalities of STL with two new spa-
tial operators: the bounded somewhere �[d1,d2] and the bounded surround
S[d1,d2]. A third modality, the everywhere operator �[d1,d2], can be de-
rived; �[d1,d2]ϕ holds when there exists a location at a distance between
d1 and d2 from the current location where the property ϕ is satisfied,
�[d1,d2]ϕ holds if all the locations with a distance between d1 and d2

from the current one satisfy ϕ. They permit to describe properties such
as “ from a bike sharing station, in a radius of 100 meters, there are more
than 30 bikes”, or “in all the positions around my location, at a distance
less the 1 km there are no infected individuals”. The surround operator
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ϕ1S[d1,d2]ϕ2, inspired by the spatial until modality defined in (CLLM14),
expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region. This means that there exists a region A such
that all its elements satisfy ϕ1 and all the locations that surround A, i.e.,
that are directly connected with a location in A, satisfy ϕ2. Furthermore,
the locations have to satisfy the metric constraints. It permits for example
to identify regions in space with high concentration of a certain protein
surrounded by an high concentration of another one.

We provide a Boolean and a quantitative semantics for SSTL, extend-
ing the monitoring procedure of STL to compute the satisfaction over
Boolean and real-valued spatio-temporal signals, and designing efficient
algorithms for the new spatial operators. The major challenge is to mon-
itor the surround operator for the quantitative semantics, for which we
propose a novel fixed point algorithm, discussing its correctness and
computational cost. This spatial monitoring requires a different algo-
rithm from those developed for timed modalities, as space is bi-directional,
thus it makes sense to observe both reaching and being reached; classical
path-based model checking does not coincide with spatial model check-
ing also because loops in space are not relevant in the definition of sur-
rounded operators. We provide also a stochastic version of SSTL, leverag-
ing the monitoring algorithms within a stochastic model checking rou-
tine. Then, we test the logic on two case studies: a model of the spreading
of cholera, a waterborne disease, considering the effect of rivers in the
diffusion of the epidemics (BAM+08; MBR+12) and a pattern formation
in a Turing reaction-diffusion system modelling a process of morphogene-
sis (Tur52b).

Finally, we integrate SSTL within the statistical machine learning frame-
work previously described to perform system design of spatio-temporal
properties (BBM+15). Furthermore, we extend, in a similar way, the
smoothed model checking technique developed in (BMS16), that consid-
ers the problem of computing the satisfaction probability of a property
for stochastic models with uncertainty parameters. Hence, we present a
detailed spatio-temporal analysis of a developmental model of segmen-
tation in Drosophila, known as the French Flag pattern. This analysis per-
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mits novel insights as to how the various model parameters interact to
give rise to the patterning behaviour.

To support qualitative and quantitative monitoring of SSTL proper-
ties, we have developed a Java tool, jSSTL. A Java library and an Eclipse
plugin are available on-line at http://quanticol.sourceforge.net/.
The source codes can be found at https://bitbucket.org/LauraNenzi/
jsstl. The system design methodology, instead, for temporal models
has been first implemented in a pseudo tool in MATLAB for the optimi-
sation part and in Java for the modelling and simulation part, then it
has been integrated in the tool U-check (BMS15), available at https:
//github.com/dmilios/U-check. U-check is a Java toolbox for for-
mal analysis of stochastic systems, and it can be used also to estimate
parameters from qualitative observations and to perform the smoothed
model checking. The system design analysis for spatio-temporal models
integrates jSSTL within U-check.

1.4 Structure of The Thesis

After this introduction (Chapter 1), the thesis is divided in two parts.

Part I presents the background material and contains a literature review.
It is structured in three chapters.

In Chapter 2, we summarise the modelling approach of complex sys-
tems. First, we consider temporal modelling, without a characterisa-
tion of the space, in particular we illustrate stochastic, deterministic and
hybrid dynamics for population models. Then, we examine systems
with a discrete space described as a weighted graph, defining the patch-
population models and their spatio-temporal dynamics.

In Chapter 3, we present the logic-based approach to specify the be-
haviour of complex systems. In particular, we describe Signal Temporal
Logic (MN04; MNP08), STL, and its monitoring algorithms. Then, we
give an overview of the existing spatial and spatio-temporal logics.

Chapter 4 summarises a number of statistical methods that we ex-
ploit in our work: Statistical Model Checking, (JCL+09b; YKNP04; YS06),
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Gaussian Processes - Upper Confidence Bound Optimisation (RW06; SKKS12)
and Smoothed Model Checking (BMS16).

Part II discusses our contribution and is organised in 4 chapters.
In Chapter 5, we define a novel notion of robustness for temporal

properties of stochastic models and its application in the context of the
system design problem (BBNS13; BBNS15), then we apply the new frame-
work to a number of case studies.

In Chapter 6, we present Signal Spatio-Temporal Logic, SSTL, (NB14;
NBC+15), a spatial extension of Signal Temporal Logic with two spatial
modalities: the bounded somewhere operator �[d1,d2] and the bounded sur-
round operator S[d1,d2]. We introduce the type of signals that the logic
specifies, we define the syntax and the semantics of SSTL and we de-
scribe its monitoring procedure. In particular, we illustrate in detail the
monitoring algorithms for the surround operator for the Boolean and the
quantitative semantics and we prove their correctness. We, then, present
a number of case studies to show the logic at work.

In Chapter 7, we extend the methodology presented in Chapter 5 to
SSTL (BBM+15). Furthermore, we extend, in a similar way, the smoothed
model checking technique developed in (BMS16), and described in Chap-
ter 4. The entire framework can then be used to analyse and design sys-
tems with stochastic spatio-temporal dynamics. In particular, we apply
the techniques to study a french-flag model of the Drosophila’s Bicoid
morphogen.

Chapter 8 describes jSSTL, a Java tool that we implemented, which
makes possible to specify and verify SSTL properties over spatio-temporal
traces. Furthermore, in this chapter, we briefly introduce U-check, a
Java-tool for the analysis of stochastic complex systems with paramet-
ric uncertanty.

In the last chapter, Chapter 9, we report the concluding remarks and
discuss future directions.
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Part I

Background and literature
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Chapter 2

Modelling Approaches

Modelling complex systems dynamics requires us to commit to some
choices: time can be continuous or discrete, we can analyse the states
of each individual agent or we can count the number of agents in each
state, we can have a stochastic, a deterministic or an hybrid dynamics,
and, we can examine or not the physical space of the system, again in a
continuous or a discrete way. Different choices need different modelling
approaches. Here, we report a selection of these possibilities and the con-
nected modelling approaches that we will use later, in the next chapters,
to construct our models. In this thesis, we considered only models with
continuous time and aggregate states, i.e., we are interested in studying
the behaviour of populations; in particular, we are interested in com-
puting the number/density of agents in each state at each time. In the
first section, we consider temporal modelling: we illustrate stochastic,
deterministic and hybrid dynamics for population models and we intro-
duce the Skorokhod metric. In the second section, instead, we discuss
spatio-temporal modelling. In particular, we describe how to represent
the space and the models related to this description.
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2.1 Temporal Modelling

In this section, first we define a language to formally described popula-
tion models, then we present three different dynamics: stochastic, deter-
ministic, and hybrid, briefly introducing the simulation algorithms used
to sample traces of stochastic processes. Finally, we define the Skorokhod
metric, which endows the space of trajectories with a natural topology.

Population Model. A population model intuitively is a system in which
a large number of different agents or components interact together and
take, through local transitions, a number of different states. The transi-
tions can be seen as descriptions of events changing the global state of the
system. There are many example of population processes, like social sys-
tems, biochemical networks, ecological systems and computer networks.

Definition 2.1 (Population model) A population modelM is a tupleM =
(S,X,T ), where:
− S = {1, ..., n} is the set of states of the agents in the population.
− X = (X1,⋯,Xn) is the state vector, describing the state of the population
model. The variable Xi ∈ R≥0 represents the density, concentration, or number
(in which case it takes integer values) of components in the ith state. The domain
of X, i.e., the state space of the system, is a subset of Rn and is denoted by D.
− T = {τ1, ..., τm} is the set of global transitions of the form τ = (a,v, f) where
● a is the label of the transition,
● v ∈ Rn is the update vector, giving the net change of each counting variable

due to the transition,
● f ∶ D→ R⩾0 is the rate function, giving the rate of the transition as a func-

tion of the global state of the system.

Each transition τ can be seen as a rule of the form

q1si1 +⋯ + qksik → r1sj1 +⋯ + rhsih

where sia , sjb ∈ S are states of the system, and qi, rj are the stoichiometric
coefficients, i.e., the amount of components/entities consumed or pro-
duced by the transition. The update vector v condenses the stoichiomet-
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ric information as v = ∑b≤h rbejb −∑a≤k qaeia , where ej is a vector equal
to one in position j and zero elsewhere.

The dynamical evolution of these models can be described in differ-
ent ways: we can interpret them stochastically as a Markov chains or de-
terministically as a system of Ordinary Differential Equations (ODEs) or
hybrid as a Stochastic Hybrid Automata (SHA).

2.1.1 Stochastic Dynamics

Stochastic processes are useful mathematical constructs to describe the
random evolution of a system in time. The following definition for-
malises the intuitive concept of random evolution.

Definition 1 Let (Ω,A, P ) be a probability space1 and D ⊆ Rn. A continu-
ous time stochastic process with values in D is a collection of D-valued random
variables X(t), indexed by t ∈ [0,∞) and defined on the same probability space
(Ω,A, P ).

In this thesis, we will restrict our attention to the case where the sam-
ple space D is a subset of the m dimensional Euclidean space Rm. We
will be particularly concerned with the trajectory-based view of stochas-
tic processes, restricting to those processes whose trajectories are cadlag
functions. A cadlag function g ∶ [0,∞) → D is a right continuous function
having left limits for any t ∈ [0,∞), i.e., g(t) = g(t+) and g(t−) exists for
all t. Call D([0,∞),D) the space of cadlag functions with values in D.

We adopt the following notational conventions: by x we denote an el-
ement of D([0,∞),D), with x(t) representing the value of the cadlag
function at time t. The stochastic process can be represented as a family
of vectors:

(X(t))t∈[0,∞) = (X1(t), ...,Xn(t))t∈[0,∞)

where X(t) denotes the D-valued random variable at time t, the state of
the system at time t. In the case of population processes, each variable
Xi counts the number of entities in the ith state at time t. We denote by
X the stochastic process seen as a random variable over D([0,∞),D).

1Here Ω is the sample space, A is a sigma-algebra, and P a probability measure. See
(Bil12) for an introduction of measure and probability theory.
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The most important class of stochastic processes we will consider are
Continuous Time Markov Chains (CTMCs) (Dur12) that describe popula-
tion processes (PCTMCs). A Continuous Time Markov Chain is a stochastic
process with a countable state space D that evolves in continuous time 2

(T = R⩾0) and that has the memoryless property:

P (X(tn+1) = dn+1∣X(t0) = d0, .....,X(tn) = dn) = P (X(tn+1) = dn+1∣X(tn) = dn)

where d0, ...dn+1 ∈ D and t0 < t1 < ... < tn+1 is a increasing sequence of
times. This means that the system has no memory of where it was in the
past, hence the evolution of the system depends only on its present state.

Given a population model M = (S,X,T ), the set of transitions T =
{τ1, ..., τm} specifies the dynamics of the system; they can be seen as the
description of events changing the state of the system.

From the set of transitions T , we can easily derive (BHLM13) the for-
mal representation of a CTMC in terms of its infinitesimal generator ma-
trix as:

Q(di,dj) = ∑
τ∈T ∣vτ=dj−di

fτ(di), i ≠ j (2.1)

For each di,dj ∈ D, with i ≠ j, λi,j = Q(di,dj) represents the rate of
an exponential distribution Ti,j ∼ Exp(λi,j) , namely the distribution
of a random variable modelling the time needed to go from state di to
state dj . The diagonal elements of the matrix are equal to Q(di,dj) =
−∑i≠jQ(di,dj) and represent the opposite of the exit rate from the state
di. For all i, j s.t. ∄vτ = di − dj , Q(di,dj) = 0. The state space of the
PCTMC is Nn (or a proper subset, if any conservation law is in force).
For more details about PCTMC, see for instance (BHLM13).

Such PCTMC can be simulated with standard algorithms, like Stochas-
tic Simulation Alghorithm (SSA) (Gil77), or Gibson-Bruck method (GB00),
or τ -leaping (CGP06). We briefly describe these algorithms bellow.

2Furthermore, we are assuming that the probability of the transition is independent of
n (thus considering a time-homogeneous Markov Chain).
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SSA. The SSA exploits the decomposition of a CTMC into the jump
chain and the holding time. The jump chain specifies the probability of
choosing a certain transition which is equal to P (τ ∣x) = fτ (x)

f(x)
, where

f(x) = ∑τ∈T fτ(x) is the sum of all rates; f(x) is the rate of an exponen-
tial distribution, independent from the jump chain, modelling the time
spent in state x, and called holding time.

Let x be the current state at the current time t. At each time step, the
algorithm first computes the rates fτ(x) and f(x), then it chooses the
next transition τ̂ , according to the jump chain distribution, and the time
used for the transition tτ̂ , according to an exponential distribution with
parameter f(x), Exp(f(x)). Finally, it updates the current state to x+vτ̂
and the current time to t + tτ , and terminates typically when a final time
is reached.

Gibson-Bruck This algorithm improves the previous method by stor-
ing not only the rates but also the firing time of each transition. An
exponential distribution with rate λ, indeed, can be seen as the firing
time of an event with probability to happen in a time between [t, t + dt]
equal to λdt. The idea is that, at each time step, a single transition hap-
pens during a time t ∈ [0, s] and this information is used to update
the firing time of the other transitions with a rule that we explain now.
The rates fτ(x(t)), seen as functions of a trajectory of the system, are
time-dependent. We can see the race condition between transitions as a
race condition between independent time-inhomogeneuous exponential
random variable, coupled through the history x(t). Now, the cumula-
tive rate of an exponential random variable with inhomogeneuous rate
fτ(X(s)) is Λτ(s) = ∫

s
0 fτ(X(t))dt. At time 0, let λ0 be the rate of τ . We

suppose that it does not change in time (until other transitions happens),
then Λτ(s) = ∫

s
0 λ0dt = sλ0 and the firing time is s0 = 1

λ0
ξ ∼ Exp(λ0)

where ξ is an exponential random variable with rate 1. Now, suppose
that, at time t0, an event τ ′ happens and this changes the rate of τ in
λ1, then the firing time of τ can be found solving ∫

t0
0 λ0dt + ∫

s1
t0
λ1dt =

s1λ1 − t0λ1 + t0λ0 = ξ = λ0s0, i.e.,
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s1 =
λ0

λ1
(s0 − t0) + t0.

The rule can easily been generalised by induction to n intermediate jumps.
Let us describe now the algorithm. Let xi be the state at time ti. The

algorithm is initialised by computing the rates λτ0 = fτ(x(0)) and the fir-
ing time sτ0 according to an exponential distribution with parameter the
rate λτ0 , Exp(λτ0), for each τ ∈ T . Then, at each time step ti the algorithm
executes the fastest transition τ̂ = arg minτ∈T s

τ
i . It updates the current

state to xi+1 = xi + vτ̂ and the current time to ti+1 = ti + sτ̂i . Then, it up-
dates the firing times sτi+1 of all the transitions except τ̂ , following the
described rule

sτi+1 =
λτn
λτn+1

(sτ̂i − ti) + ti.

For τ̂ , instead, it samples a new firing time sτ̂i+1 = ti + ρ, where ρ is gen-
erated according to an exponential distribution with parameter λτ̂i , i.e.,
the rate of τ̂ . Furthermore, to speed up the execution, the algorithm uses
also a dependency graph for the states and a priority queue for the firing
times.

τ -leaping. Another way to simple describe a PCTMC is in terms of
Poisson processes. The process that counts how many times a transi-
tion η has fired up to time t is a time-inhomogeneuous Poisson pro-
cess with cumulative rate ∫

τ
0 fη(X(s))ds, where fη(X(s)) is the inho-

mogeneuous rate of the transition η. Let us call these processes Yη(t). It
can be proved (Kur81) that the processes Yη(t) are independent and that
the PCTMC can be described by the following equation in terms of Yη :

X(t) =X(0) + ∑
η∈T

vηYη(t) =X(0) + ∑
η∈T

vηyη(∫
τ

0
fη(X(s))ds)

where vη is the update vector of the transition η and yη are the in-
dependent Poisson random variable associated with the Poisson process
Yη .
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If τ is sufficiently small, we can assume the rate fη(X(τ)) to be con-
stant in [0, τ], which implies ∫

τ
0 fη(X(s))ds = τλη , hence

X(t) =X(0) + ∑
η∈T

vηyη(τλη)

This is at the heart of the τ -leaping talgorithm. Let x be the current
state at the current time t. At each time step, the algorithm, first, chooses
τ ; then, for each transition, it samples a value mη from the Poisson r.v.
yη(τλη). Finally, it updates the current state to x + ∑η∈T vηmη and the
current time to t + τ .

The challenge in this method is the choice of τ : if it is too small the
computational cost to sample yη(τλη) become very high, if it too large
the rate will not be constant in [t, t + τ].

2.1.2 Deterministic Dynamics

The deterministic dynamics is such that, given the initial conditions and
the environment influencing the model (external signals), the response
is uniquely determined: given the same input, the model always pro-
duces the same output. This class of models describes well systems that
involve large numbers of agents so that the fluctuations of their number
are (relatively) negligible. This dynamics is described by a set of (usually
non-linear) Ordinary Differential Equations (ODEs).

From a Population model M = (S,X,T ), we can construct a set of
ODEs, assuming variables X to be continuous and interpreting each rate
as a flow, thus obtaining the vector field

F (X) = ∑
τ∈T

vτ fτ(X), (2.2)

defining the ODEs dX
dt

= F (X).
It is possible to prove that, with a suitable rescaling of the variables

(i.e., dividing then by the system size), the dynamics of the CTMC for
large populations converge to the solution of this ODE. A formal proof
of this statement, known as mean-field or fluid approximation, can be
found in (Kur70; BHLM13).
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We give now a simple example of a population model and its stochas-
tic and deterministic semantics.

Example 2.1 (SIR model) We illustrate the definition of population models
by a simple epidemic scenario involving N individuals. Each individual can be
in three different states: susceptible to infection (S), infected (I), and recovered
and immune to infection (R). The set of agent’s states is then S = {S, I,R} and
the variables are X = (XS ,XI ,XR), where Xi ∈ {0,⋯,N}. The state space D
of the system is a subset of [0,N]3. There are 3 different transitions:

• a susceptible individual can be infected by getting in contact with an in-
fected individual,

inf ∶ I + S Ð→ 2I

with vinf = (−1,1,0) and rate function finf(X) = kinf ⋅XS ⋅XI ,

• an infected individual can recover,

rec ∶ I Ð→ R

with vrec = (0,−1,1) and rate function frec(X) = krec ⋅XI ,

• a recovered individual can lose its immunity,

loss ∶ R Ð→ S

with vloss = (1,0,−1) and rate function floss(X) = kloss ⋅XR.

The population model is thenM = ({S, I,R},X,T ) with

T = {(inf, vinf , finf), (rec, vrec, frec), (loss, vloss, floc)}.

The stochastic process for this model can be represented by the family of vectors
(X(t))t∈R⩾0 = (XS(t),XI(t),XR(t))t∈R⩾0 where each Xi(t) ∈ N counts the
number of entities in the state i at time t. We can derive the infinitesimal gener-
ator matrix Q from (2.1). For example, if we have 2 individuals, the state space
D has six different elements, equal to the number of combinations to have the
individuals in one of the three states. For instance, di = (1,1,0) corresponds
to the state of the system where an individual is susceptible and the other one is
infected and dj = (0,2,0) corresponds to the state of the system where both the
individuals are infected, then dj − di = (−1,1,0) = vinf and

Q(i, j) = finf(di) = kinf ⋅XS ⋅XI = kinf .
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The fluid approximation of this model, instead, is obtained applying (2.2)
and assuming X ∈ R3, and it corresponds to the system of ODEs:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dXS
dt

= −XI ⋅Xs ⋅ kinf +XRkloss,
dXI
dt

=XI ⋅Xs ⋅ kinf −XIkrec,
dXR
dt

=XIkrec −XR ⋅ kloss.

2.1.3 Hybrid Dynamics

Hybrid dynamics are dynamics where a part of its processes are treated
as stochastically and a part deterministically. Deterministic dynamics
are justified when all classes of agents are present at high concentrations,
stochastic dynamics, instead, well describes systems with small popula-
tions. However, there are situation where some class of agents are large
and others are very small. For example, genetic networks in a single cell:
genes are normally present at very low copy numbers in cells, and their
state can be usefully described as small finite state machines (BP13), i.e.,
as entities with a small number of internal states (e.g., free state, bound
by a repressor molecule, etc). On the other hand, gene products (mRNAs
and proteins) can have very high counts, so that modelling the genetic
network as a PCTMC may incur significant computational costs. In these
cases, a better strategy is to approximate only some variables as contin-
uous, keeping discrete the others. This reflects in the hybrid dynamics:
some transitions will be converted into flows (generally those modifying
only continuous variables), while the others will remain stochastic dis-
crete events. This gives rise to a model that can be expressed in terms of a
class of Stochastic Hybrid Automata (SHA, (BP13)) known as Piecewise-
Deterministic Markov Processes (Dav93).

More specifically, from a Population modelM = (S,X,T ), we design
the SHA, keeping some variables of X discrete and assuming the others
to be continuous, interpreting the rates of these second as flows. The
SHA so obtained have discrete modes identified by the value of discrete
variables. In between discrete transitions, the system evolves following
the solution of a set of differential equations, whose vector field is mode-
dependent (via the value of discrete variables). Discrete jumps happen at

21



exponentially distributed random times, at a non-constant rate that can
depend on the continuous variables. After each jump, the value of the
discrete variables can change. Also continuous variables can be updated,
see (BP13) for further details.

SHA can also be defined by assuming a stochastic continuous dynam-
ics within each mode (OMS13; ORS10). In this case, the system evolves
in mode q by following a trajectory which is a solution of a stochastic dif-
ferential equation (SDE) (Øks03) of the form

dX

dt
= Fq(X)dt + σ(X)dW,

where σ(X) is a mode and state dependent Lipschitz continuous n × r
diffusion matrix, Fq(X) is the mode dependent drift (the deterministic
part), and dW is an r × 1 vector of uncorrelated Wiener processes (white
noise). The dynamics then can be seen as a sequence of discrete jumps
(the mode), interleaved by periods of continuous evolution along a tra-
jectory of the SDE. Solutions of SDE can be approximately simulated us-
ing the standard Euler-Maruyama algorithm (RR08; Øks03). This method
fixes a time step h and iteratively computes x(t + h) = x(t) +Fq(x(t))h +
σ(x(t))N (0, hIr), whereN (0, hIr) is a r−dimensional Gaussian random
variable with mean 0 and covariance matrix hIr.

2.1.4 Topology of The Space of Trajectories

The space D([0,∞),D) can be given the structure of a metric space by
the Skorokhod metric. The Skorokhod metric is first defined on compact
time intervals [0, T ] and then extended over the whole positive time
axis [0,∞). Consider the uniform metric on the space D([0, T ],D), i.e.,
dU(x′,x) = sup0≤t≤T ∥x′(t)−x(t)∥. The uniform metric endows the space
of cadlag functions with a topology, however it is easy to see that this is
too restrictive for most purposes. Consider, for example, the cadlag func-
tion x defined to be 0 for t < t0, t0 > 0 and 1 for t ≥ t0, and the sequence of
cadlag functions xn defined to be 0 for t < t0 + 1

n
and 1 otherwise. Then,

for every t ≠ 0, it is possible to find an N s.t. x(t) = xn(t) ∀n > N , i.e., the
sequence converges point-wise almost everywhere. However, under the
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uniform topology dU(x,xn) = 1 ∀n, so the sequence does not converge
as a sequence of functions. This is a general fact: if we have a sequence
xn of cadlag functions, then they will converge to x in the uniform norm
if and only if the discontinuous jumps of xn happen precisely at the same
times as those of x (for n ≥ n0).

The idea behind the Skorokhod metric is to relax the uniform metric
by allowing a small difference in these jump times by resynchronising
them. Informally, if the uniform metric allows one to wiggle space a
bit, the Skorokhod metric allows us also to wiggle time. To formalise
this statement, let ω(t) ∶ [0, T ] → [0, T ] be a time-wiggle function, i.e., a
strictly increasing continuous function. Call IT the set of such functions.
Then, the Skorokhod distance between x,y ∈ D([0, T ],D) is

dT (x,y) = inf
ω∈IT

max{ sup
t∈[0,T ]

∥ω(t) − t∥, sup
t∈[0,T ]

∥x(t) − y(ω(t))∥}. (2.3)

In our example above, one can simply choose the time wiggle function
ω(t) = t+ 1

n
, so that the second term in the r.h.s. of equation (2.3) is always

zero. The Skorokhod distance therefore evaluates to 1
n

, and the sequence
is seen to converge. The metric dT is extended to a metric onD([0,∞),D)
by discounting large times as follows:

d(x,y) = ∑
K∈N

2−K min{1, dK(x,y)}.

The Skorokhod metric defines a topology for which D([0,∞),D) is com-
plete and separable, i.e., it is a Polish space3. See (Bil99) for a detailed
introduction to the metric and its properties.

2.2 Spatio-Temporal Modelling

In this section, we consider spatially distributed systems. The main issue
in the context of spatial modelling is the representation of space. It can
be continuous or discrete, we can consider a metric in the space or not

3In fact, completeness requires one to work with an equivalent metric, but this is not
relevant for this thesis (Bil99).
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and we can have one, two or a three dimensional space. For an exhaus-
tive classification of space and movement modelling techniques, we refer
the reader to (ea31). Since most of our case studies naturally framed in a
discrete spatial structure, we decided to consider a discrete space, taking
into account discretisations of continuous spaces as a grid or as a mesh.
This is the case, for instance, in many numerical methods to simulate the
spatio-temporal dynamics of Partial Differential Equations (PDE). First,
we formally describe how to represent the space then we define the mod-
els related to this description and their dynamics.

2.2.1 Discrete Space

If the space is discrete, it consists of a countable (often finite) number of
locations that are linked in some way. We can think to it as a graph with
the locations as nodes and the links as edges. The regular discrete space
is a special case of the irregular one. For example, a 2D-grid can be seen
as an undirected graph where each node has a fixed vertex degree equal
to four.

In particular, we will consider discrete models of space that can be
represented as a finite weighted undirected graph.

Definition 2.2 A (positive) weighted undirected graph is a tuple G =
(L,E,w), where:

• L is the finite set of locations (nodes), L /= ∅

• E ⊆ L ×L is a symmetric relation, namely the set of connections (edges),

• w ∶ E → R>0 is the function that returns the cost/weight of each edge.

The space is also equipped with a metrics.

Definition 2.3 The weighted distance is defined as

d(`, `′) ∶= min{∑
e∈S

w(e)∣S is a path between ` and `′}.

This means that the weighted distance is a metrics that returns the cost of
the shortest path, for each pair of nodes of the graph; where the shortest
path is the path that minimises the sum of costs.
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Remark 2.1 If we give an order to the locations, L = {`1, ..., `i, ...}, then the
weighted distance can be seen as a matrix (d)i,j∈E∗ , where di,j is the distance
from `i to `j .

Furthermore, we denote by E∗ the set containing all the pairs of con-
nected locations, i.e., the transitive closure of E, and by L`

[d1,d2]
the set of

locations `′ at a distance between d1 and d2 from `, formally

L`[d1,d2] ∶= {∀`′ ∈ L ∣ d1 ≤ d(`, `′) ≤ d2, with d1, d2 ≥ 0}.

This means that edges of the graph are equipped with a positive
weight, giving a metric structure to the space, in terms of shortest path
distances. The weight will often represent the distance between two
nodes. This is the case, for instance, when the graph is a discretisation of
continuous space. However, the notion of weight is more general, and
may be used to encode different kinds of information. As an example, in
a model where nodes are locations in the city and edges represent streets,
the weight could represent the average travelling time, which can be dif-
ferent between two paths with the same physical length but different
levels of congestion or different number of traffic lights.

Finally, another relevant notion for this work is that of external bound-
ary of a set of nodes A, i.e., the set of nodes directly connected with an
element of A but not part of it.

Definition 2.4 Given a subset of locations A ⊆ L, we define the boundary of A
as:

B+(A) ∶= {` ∈ L ∣ ` ∉ A ∧ ∃`′ ∈ A s.t. (`′, `) ∈ E}.

All these terms naturally extend from graphs to directed graphs.

2.2.2 Pacth-Based Population model

In this subsection, we adapt the definition and the dynamics of popula-
tion models, described in the previous section, to systems embedded in a
discrete space. The definition of a spatial population model is strictly re-
lated to the choice of the space in which the model is embedded. As said
in the previous subsection, we will mainly work with discrete spaces, in
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particular with weighted graphs. Each node represents a different spatial
location (patch), each patch contains a population of agents, described by
indicating the number/density of individuals in each state as a classic
population process, as explained in Section 2.1.

Definition 2.5 (Patch-based population model. ) A Patch-based population
model is a tuple (M,G,V) where:

• M = (S,X,T ) is a population model, satisfying Definition 2.1,

• G = (L,E,w) is a weighted graph,

• V = {ν1, ..., νk} is the set of inter-patch transitions, i.e., the transitions
that describe the migration of entities between patches, each transition is
of the form νl = (al, s, gl), where:
● al is the label of the transition,
● s ∈ S is the state of the entity that migrates
● gl ∶ D × L × L → R⩾0 is the rate function, where D is the state space

of the system; gl(X, `i, `j) is the rate for the migration of a component in
state s from location `i to location `j when the global state of the system
is X.

We can then refer to the description of such a process by a family of
vectors

X(t, `)t∈T,`∈L = (X1(t, `),X2(t, `), ...,Xn(t, `))t∈T,`∈L,

indexed by time and space.
In Figure 2.1, taken from (ea31), we can see a graphical representation

of discrete space models. The graphs consider two classes of agents A
and B, the first with two states A1 and A2 and the second with three,
B1, B2, and B3. Figure 2.1(a) describes a model with discrete state space;
indeed, we can see that individual tokens are grouped into stacks over
the locations/nodes. Figure 2.1(b), instead, considers continuous state
space, i.e., it describes the states by concentrations. This is represented
in the graph by a column with a real-valued height for each state in each
location.
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Figure 3: Discrete space: (1) no aggregation, discrete state; (2) no aggregation, continuous state; (3)
aggregation of state, possible aggregation of space, discrete state (4) aggregation of state, possible
aggregation of space, continuous state

top of the token. Note that the four diagrams in Figure 3 represent four single points in time and do
not show change over time (and similarly for subsequent diagrams). For two-dimensional and three-
dimensional space, the best visualisation method for change over time is video. For one-dimensional
space, a graph with two axes can be used.

Regular space models in this category have a regular pattern of locations [DL94a, DL94b]. For
example, the locations could be laid out in the rectangular grid, or a hexagonal tiling. The locations
that represent space can be placed at the nodes of the regular graphs or in the spaces (faces) created
by the regular graph as shown in Figure 4(1). Some models only allow one individual in each location,
such as interacting particle systems (IPSs) [DL94b] and cellular automata (CA) [Ila01], but others
may allow multiple individuals. There is no aggregation of individuals. In Section 3, regular space
will be formally defined.

Discrete space, no aggregation, continuous state: These techniques di↵er from those above
in the fact that the state is continuous. This is indicated by a solid token where the height indicates
the value of a single continuous state. This is an inherently continuous value rather than the notion
of approximation by continuous values described earlier in this section. This could be viewed as
a measurement such as strength of radio signal or length of battery life. In Figure 3(2), there is
an assumption of at most one individual per node, and two values associated with that individual.
Di↵erent colours have been used in the diagram to make it clear that the values are continuous.

The major di↵erence between this category and the previous one when regular space is considered is
the fact that instead of having discrete states, there is one or more non-negative real values associated
with each individual as shown in Figure 4(1).

Discrete space, aggregation, discrete state: These techniques di↵er from those in the first
category above in the fact that there is aggregation [MP12]. This means that instead of each individual
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(b)

Figure 2.1: Representation of discrete space models with discrete (a) and
continuous (b) state variables. The figure is taken from (ea31).

We treat the dynamics of these systems by considering one (time-
dependent) variable Xi,` for each state-location pair, i.e., the variables
represent the number/density of each agent state in each location. The
dynamics then, given by intra-patch interactions and inter-patch migra-
tion of agents, results in a PCTMC for the discrete state space and in a
ODE system for the continuos one. However, the number of variables is
the product between the number of locations and the number of states,
hence, the computational cost becomes quickly very high, especially for
the simulation of stochastic systems. In case of the deterministic dynam-
ics, the ODEs system is often the result of the discretisation of a Partial
Differential Equation (PDEs) system, used to treat continuous spaces, ac-
cording to a Finite Difference scheme. For example, a square, seen as con-
tinuous 2-dimensional space can be discretised in a K × Krectangular
grid, where each cell represents a location (node), we will have then a
ODE for each variable and each location of the system.

To see a nice and simple example of patch-based population models
we refer to the first case study present in Section 6.5, a model of cholera
outbreak.

We remark that, the fact that the space is finite permits, as in the tem-
poral case, to see the stochastic spatio-temporal trajectories as a random
variable over the space of cadlag functions D([0,∞],D), where in this
case D = D1⊕⋯⊕Dm, with m = ∣L∣, the number of locations.
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Chapter 3

Logics and Monitoring

In the first part of this chapter, we present a brief introduction on tempo-
ral logics and verification techniques for complex systems. In the second
part, we introduce the Signal Temporal Logic (MN04; MNP08), STL, a suit-
able logic to specify and verify temporal dynamics of complex systems.
In particular, we describe the STL syntax and semantics and monitoring
algorithms to verify STL properties. Finally, in the last section, we give
an overview of the existing spatial and spatio-temporal logics.

3.1 How to Specify and Verify Behaviours of Com-
plex Systems

As described in Chapter 2, the dynamics of our systems is given, usually,
by PCTMC or patch PCTM (stochastic dynamics) or by a set of ODEs (de-
terministic dynamics). We will analyse these models by means of simula-
tion. For ODEs models, we have a single trajectory of the system, usually
given by the approximate solution of the equation’s (by numerical inte-
gration). With the PCTMC, methods as Gillespie’s Stochastic Simulation
Algorithm (Gil77), SSA, are used to compute a number of samples/tra-
jectories of the systems. The behaviour that we want to specify then has
to be related to these trajectories/simulations of the models.

Formally, given a population modelM = (S,X,T ), with state vector
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X = (X1, ...Xn) ∈ D (defined in Chapter 2), a trace/trajectory/path of the
system is a function ξ ∶ T → D from the time domain T ⊆ R≥0, to the state
space D = D1 × ⋯ ×Dn. If we call D the set of all possible path (the tra-
jectory space) over D, we can define a linear-time property ϕ as a subset
Lϕ of D. The subsets Lϕ can be defined syntactically using different for-
malisms such as logical formulae, regular expressions or automata that
accept them.

One of these formalisms is temporal logic (Pnu77); It provides a very
elegant framework to specify in a compact and formal way temporal be-
haviours. It is a modal logic that has specific operators (temporal op-
erators) to describe properties of time-dependent events. There are many
kinds of temporal logics, we focus on linear dense-time temporal logics
because we analyse the trajectories space (i.e., sequence of observations)
and we model systems with a continuous dynamics.

Given a model and a property, we then need then automatic tech-
niques to check whether the property is satisfied. For the type of systems
that we want to analyse (very large and complex), we can use a monitor-
ing approach. A monitoring procedure is a technique to verify if a single
trajectory ξ, satisfies or not a given property φ 1, i.e., ξ ⊧ φ.

Usually, a monitoring algorithm produces a Boolean answer, yes/no,
depending if the observed trace satisfies or not the property. This means
that different trajectories can all satisfy the same property. For example,
let us consider the trace ξ ∶ T → R, and the property (ξ(0) > k), i.e., we
want to verify if the trace at time zero is larger than a constant k, ξ ⊧
(ξ(0) > k); a Boolean monitoring will produce the same answer if ξ(0) =
k + ε or if ξ(0) >> k. To address this problem, recently some researchers
have proposed several notions of robustness (DM10; FP09; RBFS08), pro-
viding suitable definitions of distance between a trajectory of a system
and the behavioural property of interest. These new notions can be used
to endow the logic with a quantitative semantics, allowing to give a mea-
sure of the satisfaction of the desired specification. This value can be a
key indicator and add important informations about the dynamics of our

1Note that this means also that it does not need a mathematical model but just observ-
able traces of some process, even real observations.
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complex systems.

To deal with stochastic dynamics, where we have a trajectory space
and not just a single trace, as in the deterministic case, we can use tech-
niques such as statistical model checking (SMC) (YKNP04). This method
will be explained in detail in the next chapter where we summarise some
statistical methods exploited in this thesis.

3.2 Signal Temporal Logic

Among the myriads of temporal logics available, we decided to work
with Signal Temporal Logic (STL) (MN04; DM10). STL is a temporal logic
suitable to characterise behavioural patterns in real-valued time series,
generated during the simulation of dynamical systems. It extends the
dense-time semantics of the Metric Interval Temporal Logic (MITL) (AFH96)
with a set of parametrised numerical predicates playing the role of atomic
propositions and it is interpreted on real-valued signals. It comes with
a Boolean and a quantitative semantics and efficient monitoring algo-
rithms (MN04; DFM13) to check its properties. Furthermore, two inter-
esting tools have been developed for this logic: AMT (NM07) for the
Boolean semantics and Breach (Don10) for the quantitative one.

Signals. A signal s is a function s ∶ T → D, where T, the time domain,
is a real-valued interval [0, T ] ⊆ R≥0, for some T > 0, and D is a subset of
R∗ = R⋃{+∞,−∞}. Signals with D = B = {0,1} are called Boolean signals,
while signals whit D = R∗ are called real-valued or quantitative signals.

Given a trace ξ ∶ T→ D, we can define x(t) ∶= (x1(t),⋯, xn(t)), where
each xi = ξ∣Di ∶ T → Di, for i = 1, ..., n, is the projection on the ith coordi-
nate/variable of ξ. Note that these projections have the form of quantita-
tive signals. They are called the primary signals of the trace. We can then
see the trace as a set of primary signals. This means that STL can specify
properties of temporal traces. For simplicity, from now we denote the
trace as x.
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Definition 3.1 (STL syntax) The syntax of STL is given by

ϕ ∶= ⊺ ∣ µ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 U[a,b] ϕ2,

where ⊺ is a true formula, conjunction and negation are the standard Boolean
connectives, [a, b] is a dense-time interval with a < b and U[a,b] is the until
operator. The atomic predicate µ ∶ Rn → B is defined as µ(d) ∶= (y(d) ⩾
0), d ∈ Rn, where y ∶ Rn → R is a real-valued function. The predicate µ
can be lifted to an operation between signals, transforming a real valued signal
into a Boolean one, i.e., to a mapping µ ∶ D([0,∞),Rn) → D([0,∞),B), by
µ(x)(t) = (y(x(t)) ⩾ 0); y(x(t)) is known as the secondary signal.

The (bounded) until operator ϕ1 U[a,b] ϕ2 requires ϕ1 to hold from now
until, in a time between a and b time units, ϕ2 becomes true. The even-
tually operator F[a,b] and the always operator G[a,b] can be defined as
usual: F[a,b]ϕ ∶= ⊺U[a,b)ϕ, G[a,b]ϕ ∶= ¬F[a,b]¬ϕ. We introduce now the
Boolean and the quantitative semantics for STL as in (MN04; DM10).

Definition 3.2 (STL Boolean Semantics) The Boolean satisfaction relation
⊧ for an STL formula ϕ on a temporal trace x is defined recursively by:

(x, t) ⊧ ⊺
(x, t) ⊧ µ ⇔ µ(x(t)) = 1

(x, t) ⊧ ¬ϕ ⇔ (x, t) /⊧ ϕ
(x, t) ⊧ ϕ1 ∧ ϕ2 ⇔ (x, t) ⊧ ϕ1 and (x, t) ⊧ ϕ2

(x, t) ⊧ ϕ1 U[a,b]ϕ2 ⇔ ∃t′ ∈ [t + a, t + b] ∶ (x, t′) ⊧ ϕ2 ∧ ∀t′′ ∈ [t, t′), (x, t′′) ⊧ ϕ1

A trace x satisfies ϕ, denoted by x ⊧ ϕ, if and only if (x,0) ⊧ ϕ.

This because we are working with future temporal modalities whose truth
value now depends on the future states of the trace.

Definition 3.3 (STL Quantitative Semantics) The quantitative satisfaction
function ρ returns a value ρ(ϕ,x, t) ∈ R̃2 quantifying the robustness degree (or
satisfaction degree) of the property ϕ by the signal x at time t with respect to

2R̃ = R ∪ {−∞,+∞}.
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perturbations. It is defined recursively as follows:

ρ(⊺,x, t) = ⊺
ρ(µ,x, t) = y(x(t)) where µ ≡ y(x(t)) ⩾ 0

ρ(¬ϕ,x, t) = − ρ(ϕ,x, t)
ρ(ϕ1 ∧ ϕ2,x, t) = min(ρ(ϕ1,x, t), ρ(ϕ2,x, t))
ρ(ϕ1 U[a,b]ϕ2,x, t) = sup

t′∈t+[a,b]
(min(ρ(ϕ2,x, t

′), inf
t′′∈[t,t′)

(ρ(ϕ1,x, t
′′))))

Moreover, we let ρ(ϕ,x) ∶= ρ(ϕ,x,0).

The sign of ρ(ϕ,x) provides the link with the standard Boolean semantics
of (MN04): ρ(ϕ,x) > 0 only if x ⊧ ϕ, while ρ(ϕ,x) < 0 only if x /⊧ ϕ. The
case ρ(ϕ,x) = 0, instead, is a borderline case, and the truth of ϕ cannot
be assessed from the robustness degree alone. Furthermore, ρ does not
preserve logical equivalence, for instance φ ∨ ¬φ = ⊺, but ρ(φ ∨ ¬φ,x, t) =
max(ρ(φ,x, t),−ρ(φ,x, t)) /= ⊺ = ρ(⊺,x, t).

The absolute value of ρ(ϕ,x), instead, can be interpreted as a mea-
sure of the robustness of the satisfaction with respect to noise in signal x,
measured in terms of the induced perturbation in the secondary signal.
This means that if ρ(ϕ,x, t) = r then for every signal x′ for which every
secondary signal satisfies maxt ∣yj(t)− y′j(t)∣ < r, we have that x(t) ⊧ ϕ if
and only if x′(t) ⊧ ϕ.

Remark 3.1 We stress that the choice of the secondary signals y ∶ Rn → R is
an integral part of the definition of the STL formula, reflecting the intuition of
the modeller and encoding the behaviour of interest. Different choices of sec-
ondary signals result in formulae expressing different behavioural properties,
hence naturally in different robustness measures.

The robustness degree of Definition 3.3 has to be interpreted as a
weight of “how much” a given model (with fixed initial conditions and
parameters) satisfies a STL formula. More precisely, its absolute value
represents the max distance of the signal x under consideration from the
set of trajectories satisfying/violating the formula (FP09).

In this sense, this measure is different from the more common sensitivity-
based notions of robustness, like those discussed in (KCRS11), measur-
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ing the size of a region in the parameter space in which the system be-
haviour is roughly constant. However, sensitivity analysis and its related
techniques can be applied as well in combination with the robustness
degree of Definition 3.3 as a discriminative function for interesting be-
havioural patterns to investigate. The definition of robustness or robust
satisfaction considered here was first proposed by Fainekos and Pappas
in (FP09) and later extended by Donzé et al. in (DM10). This is differ-
ent from the satisfaction/violation degree or quantitative satisfaction defined
by Rizk et al. in (RBFS08). In the first case the robustness corresponds to
the distance of a signal from a set of signals satisfying the same formula
(the minimal perturbation value that can violate the specification), while
in the second case it provides a distance between a formula and a set of
formulae satisfying the same signal (RBFS08).

3.2.1 Monitoring

A monitoring procedure is an algorithm for deciding whether a given
trace x satisfies a property ϕ, x ⊧ ϕ, i.e., whether x ∈ Lϕ. The algorithm,
for an STL formula ϕ, works with a bottom-up approach on the syntax
tree of ϕ, iteratively computing the temporal signals of each subformula.
Each node of the tree represents a subformula, the leaf are the atomic
propositions and the root represents the whole formula. Given a trace
x(t), the algorithm starts computing the Boolean and/or the quantita-
tive signals of all the atomic propositions, then it goes up on the tree
computing the Boolean and/or the quantitative signals of a node using
the signals of its child. There exist then a specific algorithm to compute
the signal for each operator ∗ of the logic.

Let’s illustrate this in a sketch of the algorithm for the quantitative
signal, Algorithm 1. The algorithm, given as input a trace x and a for-
mula ϕ, returns the quantitative signal RobustSignal(ϕ,x(t)) ∶= ρ(ϕ,x, t)
of the trace x for the formula ϕ. We recall that if RobustSignal(ϕ,x(0)) >
0 then x⊧ϕ. As trace, the monitoring in (DFM13) considers a piecewise-
linear function obtained by linear interpolation of a sequence of time-
stamped values (usually the solution of the numerical integration), also
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the output RobustSignal(ϕ,x) is a piecewise-linear function.

Algorithm 1 RobustSignal(ϕ,x)
case ϕ = ⊺

return y = ⊺̄ (a constant signal true)
case ϕ = y(x(t)) ≥ 0

return y
case ϕ = ∗ϕ1

y =RobustSignal(ϕ1,x)
return Compute (∗, y)

case ϕ = ϕ1 ∗ ϕ2

y1 =RobustSignal(ϕ1,x)
y2 =RobustSignal(ϕ2,x)
return Compute (∗, y1, y2)

The sketch of the algorithm for the Boolean signal is almost the same,
replacing the atomic proposition case with a Boolean signal instead of
the secondary signal y.

In the running example below, we present informally how some STL
operators can specify dynamic behaviours and how they can be moni-
tored. To see in detail the monitoring algorithms we refer to (MN04) for
the Boolean semantics and to (DFM13) for the quantitative one.

Example 3.1 (SIR properties) Let us consider the SIR population model pre-
sented in the example 2.1, Chapter 2, with the deterministic semantics. It corre-
sponds to the system of ODEs:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dXS
dt

= −XI ⋅Xs ⋅ kinf +XRkloss,
dXI
dt

=XI ⋅Xs ⋅ kinf −XIkrec,
dXR
dt

=XIkrec −XR ⋅ kloss.

where, the variablesXS , XI , andXR represent the concentration of susceptible,
infected and recovered individuals. Given the initial condition of the system,
X(0) = (0.9,0.1,0), we can derive the solution of the system via numerical
integration. We normalise the values s.t. XS +XI +XR = 1. Let us denote the
trace of the system as x(t) = (xS(t), xI(t), xR(t)). A plot of the trace can be
found in Figure 3.1.
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Figure 3.1: A simulation of a deterministic epidemic model.

For example, we want to study if, in the presence of an infection, after a
certain time, the concentration of recovered individuals remains high for at least
30 time units. This behaviour can be specified by the formula

ϕSIR ∶ (xI > 0.05) ∧ G[60,90] (xR > 0.7), (3.1)

that means “at time 0, the concentration of infected individuals is more than
0.05 and, after 60 time units, the concentration of recovered individuals remains
more than 0.7 for at least 90-60=30 time units” .

To see if the trace x(t) = (xS(t), xI(t), xR(t)) satisfies the formula ϕSIR,
the monitoring algorithm has, first, to determine the parse tree of the formula
and then to compute the Boolean or the quantitative signals, from the atomic
propositions to the root, climbing up the tree. The Boolean and quantitative
satisfaction correspond then to the value of the Boolean and quantitative signals
of ϕSIR at time zero. The procedure is illustrated in Figure 3.2.

In Figure 3.3 we plot the Boolean and the quantitative signals for each sub-
formula. The atomic predicates of the formula are: µ1 ∶ xI − 0.5 > 0 and
µ2 ∶ xR − 0.7 > 0. From these we can derive the secondary signals y1(x(t)) =
xI(t)− 0.5 and y2(x(t)) = xR(t)− 0.7, where xS(t), xI(t), and xR(t) are the
primary signals, and x = (xS , xI , xR) corresponds to a trajectory of the system.

We discuss just the computation of the quantitative signal, considering the
Boolean signal equal to one only when the quantitative signal is positive, i.e.,
sφ(t) ∶= 1 if ρφ(t) > 0. However, there exist also a specific monitoring procedure
for the Boolean semantics (MN04) that uses the interval covering of a signal; we
will discuss and exploit it in our algorithms in Chapter 6.
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ϕ ∶ µ1 ∧ ψ
sϕ(t), ρϕ(t)

µ1 ∶ xI − 0.05 > 0
sµ1(t), ρµ1(t)

xI(t) − 0.05

ψ ∶ G[60,90] µ2

sψ(t), ρψ(t)

µ2 ∶ xR − 0.7 > 0
sµ2(t), ρµ2(t)

xR(t) − 0.7

Boolean signals
Quant. signals

sϕ(0), ρϕ(0) Boolean satisfaction
Quant. satisfaction

Secondary signals

Figure 3.2: The monitoring procedure of the formula ϕ.

First, the quantitative signals of the atomic propositions correspond exactly
to the secondary signals, i.e., ρµi(t) = yi(t). Then, from the signal ρµ2(t),
we can compute the signal ρψ of the subformula ψ ∶ G[60,90]µ2. The temporal
modalities of STL are future temporal modalities, i.e., given a time t, they verify
whether a property is satisfied at a certain time in a future dense-time interval
t ⊕ [a, b] = [t + a, t + b]. For this reason the monitoring procedure has to go
backwards, i.e., to shift the signal backwards. Let [0, T ] be the time domain of
the signal µ2. Then, time domain of ψ will be [0, T − 90].

For a fixed trace, for compactness of notation, we denote the quantitative
signal of a formula ψ as ρψ ∶= ρ(ψ,x). From the quantitative semantics, we
have that

ρψ(t) = min
t′∈[t+60,t+90]

(ρµ2(t)), for t ∈ [0,10].

Finally, ρφSIR(t) = ρµ1∧ψ(t) = min(ρµ1(t), ρψ(t)), for t ∈ [0,10].
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Figure 3.3: The Boolean and the quantitative signals for each subformulae
of the formula 3.1

37



3.3 A Literature Review on Spatial Logics

In this section, we give an overview of the existing logics dealing with, in
some way, spatial aspects of systems. In general, logics and in particular
their semantics are usually related to the class of model on which they are
interpreted. As an extreme example, spatial properties cannot be inter-
preted in a model with no spatial aspects. Another example is the corre-
spondence between logic operators and the constructs in Process Calcu-
lus like in the Ambient Calculus (CG00). Hence, we classify logics depend-
ing on the type of models they have to be interpreted on. The first two
subsections describe logics based on topological or closure space mod-
els. The third subsection illustrates SpaTel (HJK+15), a spatio-temporal
logic in which spatial properties are expressed using ideas from image
processing, namely quad trees (FB74). The fourth subsection presents two
examples of logics for process algebras with locations (Cas01). In the last
section, we report some others spatial logics.

3.3.1 Topo-Logics

Here we present some investigations about spatial operators in the con-
text of topological space and the S4 modal logic. The material comes
from the Handbook of Spatial Logics (APHvB07), in particular Chapters
5 and 9, and from the technical report (CML08).

Given a set X, a topology on X is a collection T ⊂ P(X) of subsets of X
(called open sets) s.t.: ∅,X ∈ T and T is closed under arbitrary unions and
under finite intersections. The pair (X,T ) is called a topological space.

A topological modelM is a topological space provided with a valuation
function V from the set of atomic propositions to P(X) 3. The interpre-
tation of a formula φ is given over the single point x ∈X , i.e.,M, x ⊧ φ.

The first spatial interpretation with this type of model consists in the
description of open/closed properties using the S4 modal operators ◻
and ◇. Given a formula φ that holds in the subset S of X , ◻φ means that
φ holds in the interior of S (the largest open set contained in S) and ◇φ

3Given an atomic proposition p, V(p) are the set of x ∈ X for which p holds.
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means that φ holds in the closure of S (the smallest closed set containing
S). In other words,

M, x ⊧ ◻φ⇐⇒ ∃O ∈ T s.t. x ∈ O andM, y ⊧ φ ∀y ∈ O

M, x ⊧◇φ⇐⇒ ∀O ∈ T s.t. x ∈ O implies that ∃y ∈ O s.t.M, y ⊧ φ

From these we can derive other connectives such as the boundary opera-
tors Bφ =◇φ ∧ ¬ ◻ φ.

Extending the logic with quantifiers (the existential operator E and
the universal operator U) permits the specification of global properties,
i.e., to speak about the behaviour of a subset of points of the space. In
detail,

M, x ⊧ Eφ⇐⇒ ∃y ∈X s.t.M, y ⊧ φ

M, x ⊧ Uφ⇐⇒ ∀y ∈X, M, y ⊧ φ

To add time in the model we can extend the logic with the temporal Until
operator.

There are many other possible spatial properties in this context. As
we will explain below, these type of properties are interesting only for
continuous topologies; since as for now we are working only with dis-
crete space, we do not address this topic in detail.

3.3.2 Spatial Logic for Closure Spaces (SLCS)

SLCS, Spatial Logic for Closure Spaces (CLLM14), is a spatial logic that
extends the topological semantics of modal logics to closure spaces (Gal99).

The finest topology of a discrete space is the discrete topology where
each element is both open and closed. The use of S4 modal operators as
spatial operators in case of this topology becomes useless, as the closure
and the internal of a subset will always coincide with itself. Hence, the
semantic becomes:

M, x ⊧ ◻φ⇐⇒M, x ⊧ φ

M, x ⊧◇φ⇐⇒M, x ⊧ Uφ.

A possible solution to specify open/closed properties in a discrete space
is to use the closure spaces. Given a set X , a closure space is a pair (X,Cl)
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where Cl ∶ P(X)→ P(X) is a function s.t., for all A,B ∈ P(X), it satisfies
the properties: Cl(∅) = ∅, Cl(A) ⊃ A and Cl(A⋃B) = Cl(A)⋃Cl(B).
A particularity of these spaces is the lack of the idempotent property of
closure, i.e., Cl(Cl(A)) /= Cl(A). Hence, if X is the set of nodes of a graph,
the closure operator can be seen as the operation that maps a set of nodes
A to the set of all nodes that belong to A or that are one step away from an
element of A. An important class of Closure space is the class of graphs.

SLCS is equipped with a closure modality, ◇, turning the closure op-
erator Cl into a logical operator. It means that a point x satisfies a formula
◇ϕ iff x is an element of the closure of the set of points satisfying ϕ. The
second spatial modality of SLCS is a spatially interpreted until operator U .
Intuitively, this operator describes a situation in which it is not possible
to escape an area of points satisfying a certain property, unless by pass-
ing through at least one point that satisfies another given formula. This
means that a point x satisfies ϕ1Uϕ2 if there is no possibility to “leave”
a ϕ1-region unless passing by a point that satisfies ϕ2. As in the topo-
logical case, from these operators, we can also derived some other spa-
tial operators like the interior ◻φ (describing the element in the interior
region), the boundary ∂φ (describing the element in the boundary), the
interior boundary ∂−φ, (describing the elements that satisfy φ and that are
in the boundary), and the closure boundary ∂+φ, (describing the element
that satisfy /φ and that are in the boundary). Furthermore, we can derive
other operators that describe rechability and global or possible satisfaction
properties. For more details about this logic, we refer to (CLLM14). A
first application of that work in the context of smart transportation can
be found in (CGL+14).

A temporal extension of SLCS, Spatio-Temporal Logic of Closure Spaces
(STLCS), combining the logic with the temporal modality of the branch-
ing logic CTL, Computation Tree Logic, can be found in (CGG+15). STLCS
is interpreted on a variant of Kripke models, where valuations are inter-
preted at points of a closure space. The temporal aspect is treated as a
“snapshot” model. The problem with this type of algorithm (to check
snapshot models) is that they have very high computational cost. They
are susceptible to state-space explosion problems because the spatial for-
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mulas have to be recomputed at every state. Furthermore, the logic does
not have a stochastic or a quantitative semantics.

3.3.3 Spatel

Spatial-Temporal Logic (HJK+15) (SpaTeL) is the unification of Signal Tem-
poral Logic (MN04) (STL) and Tree-Spatial-Superposition-Logic (TSSL)
introduced in (AGBB14) to classify and detect spatial patterns. TSSL rea-
sons over quad trees (FB74), spatial data structures that are constructed
by recursively partitioning the 2-dimensional space into uniform quad-
rants. TSSL is derived from Linear Spatial-Superposition-Logic (LSSL)
(GSC+09), where the notion of superposition provides a way to describe
statistically the distribution of discrete states in a particular partition
of the space and the spatial operators correspond to zooming in and out
of particular areas. This allows one to capture very complex spatial
structures, but at the price of a complex formulation of spatial prop-
erties, which are in practice only learned from some template image.
In (GSC+09), the authors show also that, by nesting these operators, they
are able to specify self-similar and fractal-like structures, that generally
characterise the patterns emerging in nature. SpaTeL is equipped with a
qualitative (yes/no answer) and a quantitative semantics that provides a
measure or robustness of how much the property is satisfied or violated.
In (HJK+15) this measure of robustness is used as a fitness function to
guide the parameter synthesis process for a deterministic reaction diffu-
sion system using particle swarm optimisation (PSO) algorithms. How-
ever, the authors do not consider stochastic reaction-diffusion systems
and PSO techniques generally do not provide any asymptotically guar-
antee for reaching the global optimum.

3.3.4 Spatial Logics for Process Algebras

In the following, we present in detail MoSL and the Ambient Logic. They
are two examples of spatial logics specifically defined to describe prop-
erties of process algebra models (Cas01). Process algebrae or process
calculus are high-level languages to describe concurrent systems (collec-
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tion of agent or processes that can interact, communicate and synchro-
nise). They usually come with specific semantics to translate the high-
level model in mathematical models such as CTMC systems.

Mobile Stochastic Language. MoSL(NKL+07) is a logic designed to spec-
ify properties of Klaim models (NLK+). StoKlaim is a stochastic exten-
sion of Klaim (NFP98) ( by the addition of exponential negative distri-
bution rates to each action).

Klaim is a programming language based on process algebra with
a Linda-like communication model. As Linda, it has an asynchronous
communication, shared memory through tuple spaces and pattern match-
ing. In addition to Linda, it has a number of explicit localities where
the processes and the tuple spaces are positioned. Linda primitives are
extended by adding the address of the tuple space on which they op-
erate. A Klaim system, called a net, is a set of nodes, each of which is
identified by a physical locality that can be seen as the address of the net-
work. In each node there is a tuple space, a set of processes (running in
parallel) and an allocation environment. We can refer to the nodes using
the physical or the logical localities; the latter have only a local meaning
(i.e., it depends on where the process is running) and the allocation en-
vironment is used to map the logical localities to the physical ones. The
principal actions in Klaim are: out (to put a tuple), in (to take a tuple),
read (to read a tuple without removing them), eval (to deposit and start
a process), newloc (to create a locality).

MoSL is a real-time temporal logic. It is both action- and state-based and
it is probabilistic, i.e., it is possible to express the probability that a par-
ticular event happens. The atomic propositions are built using a variant
of the MoMo (NL04) consumption and production operators. A consumption
formula P@`→ Φ is satisfied if there exists in the network a process P run-
ning at site ` and the “remaining” network satisfies Φ. We can express
also the consumption of tuples using the formula < F > @` → Φ, where
F is a template and the formula is satisfied if there exists in ` a tuple that
matches the template. A production formula P@` ← Φ is satisfied if the
network satisfies Φ whenever a process P is executed at site `. We can
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express also the production of tuples using the formula < f > @` ← Φ,
where f is a tuple, and the formula is satisfied if the network satisfies Φ

whenever a tuple f is stored in `.
MoSL is inspired by aCSL (HKMkS00) (an action-based version of

CSL (ASSB96)), hence it has two classes of formulae: state formulae and
path formulae. Path formulae are based on the aCTL until operator, Φ∆UΩΨ,
where Φ and Ψ are state formulae and ∆ and Ω are a set of actions. In
MoSL, rather than sets of actions, ∆ and Ω indicate a set of action specifiers
{ξ1, .., ξn}. An action specifier can be seen as a template for actions; for
example, the action specifier `1 ∶ O(< f >, `2) is satisfied by any action
executed at site `1 which uploads a tuple < f > to the site `2. The until
operator presents also a time constraint. A path satisfies Φ∆U<tΩ Ψ when-
ever, within t time units, eventually a state which satisfies Ψ is reached,
via a path such that each state satisfies Φ, each executed actions satis-
fies ∆ and the last action satisfies Ω. The state formulae include the
atomic propositions, the classic formulae in propositional logic and the
probabilistic formulae P&p(ϕ) and S&p(ϕ), where & ∈ {<,>,<=,>=} and
p ∈ [0,1]; the last formula, S&p(ϕ), corresponds to a steady-state proba-
bility property, i.e., for t →∞. A numerical model-checker has been imple-
mented in SAM (CL10) using the model-checker algorithm proposed in
(NKL+07). Furthermore, SAM includes also a statistical model-checker.

Ambient Logic. Ambient Logic (CG00) was introduced to describe prop-
erties of models specified in the Ambient Calculus language (CG98).
We chose this logic as an example of a category of logics, designed to
express properties of concurrent systems, in particular for mobile pro-
cesses and mobile ambients. The choice is justified because it gives a
good overview of the existing spatial operators in this context. Some
of the spatial modalities that we will describe have been directly taken
from (e.g., the π-Calculus, (Cai04), (CC03), (LV08))) or are similar to (e.g.,
MoSL) other process calculi with localities; furthermore, some operators
can be applied also to process algebras without locations (CM98).

The Ambient Calculus is a process algebra with localities, designed to
study the mobility of concurrent systems. The localities are hierarchically
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organized, the resources can be shared privately, i.e., only the processes
that know a private/secret location could access to it. The space here can
be seen as a tree, where each subtree represents the hierarchy of its root
location. Therefore, we do not have a physical structure of space nor we
have any information about the relationship between locations that are
not nested.

We describe now some of the ambient logic operators, for more de-
tails, for example on the derived connectives, we refer to (CG00). Op-
erators can be divided in five classes: those in which the system is des-
ignated to a specific location, those in which the system is composed of
more the one subsystems, those in which the system restricts the utiliza-
tion of the resources to a certain subsystems, the spatial modalities that
specify the states that may be reach “further away” and the quantified
variables. Given a location n and the formulae φ,ψ:

• The location operator n[φ] means that φ holds at location n. It is
satisfied by each process P located in n that satisfies φ, i.e., by each
R = n[P ] s.t. P ⊧ φ.

The placement operator φ@n is satisfied by each process P that if
located in n satisfies φ, i.e., by each P s.t. n[P ] ⊧ φ.

• The composition operator φ∣ψ means that φ and ψ hold contiguously.

The formula is satisfied by contiguous processes of the form P ∣Q

(where ∣ is the classic process algebra parallel operator), i.e., when

∃R = P ∣Q, P ⊧ φ, and Q ⊧ ψ .

The guarantee operator ⊳ is used to ensure that a process satisfies
a property also when it is a subcomponent. In detail, a process

P ⊧ φ ⊳ ψ iff for each Q s.t. Q ⊧ φ we have Q∣P ⊧ ψ.

• The hiding operator ⦸ is used to restrict a name. P ⊧ φ⦸ n iff there
exists a process P s.t. (νn)P ⊧ φ, where (νn)P is the Ambient Cal-
culus restriction operator and means that n is not know outside P,
i.e., outside the scope of νn.
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The revelation operator ® is instead used to reveal a private name.
P ⊧ n®φ iff it exists a process Q s.t. P = (νn)Q and Q ⊧ φ.

• The somewhere (♢) and everywhere (◻) modalities. The “exploration”
is done only along the sublocation of a process, i.e., these operators
exploit the hierarchical organization of the system. For example
P ⊧ ♢φ if φ holds at some sublocation Q of P .

• The quantified variables range only over name variables x and can-
not occur free in the formula but only together with other con-
structs. A process P satisfies a universal quantification ∀x.φ iff for
all names m ∈ ∆, where ∆ is the set of all names, we have that P
satisfies φ{x ← m}. For example, if P ⊧ ∀x.(x[T ]) iff P ⊧ m[T ],
∀m ∈ ∆, where T means true. The existential quantifier ∃x.φ works
in a similar way.

The combination of these operators permits to describe very elaborate
properties, but having so many operators could be a problem. Further-
more, all these operators are strictly related to a specific process algebra.

3.3.5 Other Spatial Logics

Other works that present spatial logics as extension of classic temporal
logics, have been developed for: networks of processes (RS85), (graph)
rewrite theories (BM12), (Mes08), bigraphs (CMS07), and data structure
as graphs (CGG02) and heaps (BDL12). Below we discuss the work in
(RS85) in more detail.

A Multiprocess Network Logic. An example of extension of classical
temporal logics is given by Reif in (RS85). The logic is applied over a
directed graph model M. The nodes are processes. With each process
is associated an ω−sequence of states and with each state is associated a
set of atomic propositions true in that state. In addition to the Boolean
and temporal operators there are three spatial modalities: somewhere, ev-
erywhere and symbols called links drawn from the set of label, L attached
to the edge of the graph. The time is discrete. These spatial operators
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permit to relate properties at time t ∈ N of a given process P with prop-
erties of other processes linked to it at the same time t (two processes are
linked if there exists a path that connects them). For example, defining
sP,i the i-th state of the process P , calling φ a property and L∗ the set of
all paths between all nodes, the semantic is:

sP,i ⊧ somewhere φ ⇐⇒ ∃α ∈ L∗ s.t. Q = E(α,P ) and Q ⊧ φ

where E ∶ L∗ × P → P is a partial function that maps a process P to
the process E(α,P ) where α is the path that connects the two processes.

Combining the temporal and the spatial operator, we can relate prop-
erties of different states of different processes. For example it is easy to
describe the provision for broadcasting messages:

hereafter everywhere (M-sent→ everywhere eventually M-received)

where M-sent and M-received are atomic propositions indicating that a
message is sent or received in a state of a process.
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Chapter 4

Statistical Methods

In this Chapter, we summarise a number of statistical methods that we
exploit in our work: Statistical Model Checking, (JCL+09b; YKNP04; YS06),
Gaussian Processes - Upper Confidence Bound Optimisation (RW06; SKKS12)
and Smoothed Model Checking (BMS16).

4.1 Statistical Model Checking

The class of algorithms that goes under the name of Statistical Model
Checking (SMC) is successfully used in the formal methods community
to estimate the probability of the satisfaction of a set of linear tempo-
ral logic formulae φ over a stochastic process. The idea is that, given a
PCTMC (or an equivalent stochastic model), with fixed parameters θ, a
simulation algorithm is used to sample trajectories of the process, e.g.,
SSA (Gil77), described in Chapter 2. For each sample, we run a suitable
verification algorithm to validate φ. In this way, we generate a Bernoulli
random variable Xφ (equal to 1 iff φ is true). Statistical analysis are then
performed onXφ to compute the probability distributions of the satisfac-
tion of P (Xφ = tt) or to test if P (Xφ = tt) > q, with a chosen confidence
level α. There are two different statistical approaches: frequentist and
Bayesian inference. We describe below the latest, for the frequentist ap-
proach we refer the interested reader to (JCL+09b; YKNP04; YS06).
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The Bayesian SMC (JCL+09a) exploits prior distribution to estimate
P (Xφ = tt). We can encode our uncertain knowledge about P (Xφ = tt)
by assuming that p = P (φ = 1) is given by a random variable, whose
density function is called the prior density. The choice of the prior usu-
ally depends on the beliefs and previous experiences about the system.
A possible choice is the Beta prior distribution Beta(p∣a, b), where the
parameters a and b are usually set to 1 and regularise the estimate when
a truth value is rarely observed. The Beta distribution is, indeed, the con-
jugate prior to the Bernoulli distribution. This relationship gives rise to
closed-form solutions to the posterior density over p (Bis06). Let n be the
total number of observations, h the number of true observations and Dφ

a sample data then the posterior

P (p∣Dφ) =
P (Dφ∣p)P (p)

P (Dφ)
= Beta(p, a + h, b + n − h).

We can then use the predictive distribution: P (Xφ = tt∣Dφ) = E[p∣Dφ] =
h+a

h+a+n−h+b
as prediction of the true probability P (Xφ = tt).

4.2 GP - Upper Confidence Bound Optimisation

In this thesis, we exploit Gaussian Process (GP) regression (RW06) to effi-
ciently estimate an unknown objective. Function approximation is a cen-
tral task in machine learning and statistics. The general regression task
can be formulated as follows (Bis06): given a set of input-output pairs
(θi, yi), i = 1, . . . ,N (training data), with θi ∈ Rd and yi ∈ R, determine
a function f ∶Rd → R s.t. f(θi) is optimally close to the target values yi
(usually in terms of minimising a suitable loss function). Several meth-
ods exist for addressing this task; we adopt a Bayesian perspective: we
specify a prior distribution over a suitable function space, and condition
on the observed values to obtain a posterior estimation of the function
value at all possible input points. GPs are flexible non-parametric distri-
butions over spaces of functions which can be used as prior distributions
in a Bayesian framework, where the input-output pairs represent noisy
observations of the unknown function. This enables a natural quantifi-
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cation of the uncertainty of the estimated function at every new input
value; this uncertainty will play a central role in the optimal design strat-
egy we propose in Chapter 5. We describe below in detail the definition
of GP and the optimisation technique.

Gaussian Process. Formally, a GP over a subset X ⊆ Rd is a collection
of random variables indexed by θ ∈ X , any finite number of which have
a joint Gaussian distribution, and it is completely defined by its mean
µ∶X → R and its covariance k∶X × X → R functions. We denote a sample
from a GP with mean function µ and covariance function k as

f ∼ GP(µ, k).

Gaussian Process Regression. Denote again as (θi, yi), i = 1, ..,N

our observations, and let p(yi∣f(θi)) denote observation error model.
From the previous definition we have

f ∼ GP (µ,K)↔ f = (f(θ1), ..., f(θN)) ∼ N(µ,K),

where µ is the vector of evaluations of µ at every θ1, . . . ,θN , andK is the
matrix obtained evaluating the covariance matrix at all pairs of training
inputs. A case of particular interest arises when the observation error
model p(yi∣f(θi)) = N (0, σ2) is Gaussian itself. In this case, the inference
can be computed analytically to yield a closed form for the predictive
posterior.

In the regression procedure, the combination of the prior Gaussian
process GP (µ, k) and the training set of points (θi, yi), i = 1, ..,N (where
in our case yi is the noisy evaluation of the unknown function computed
at θi) leads to a posterior distribution GP (µnew, knew) over the space of
functions, which represents our knowledge of the values of f at a further
input point θ∗. In particular, let be k∗ = k(θ∗,θ1), . . . , k(θ∗,θN) the vec-
tor obtained evaluating the covariance matrix at the new input and at all
training input, and as k∗∗ =K(θ∗,θ∗) the prior variance at the new input
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point, we have that

µnew(f(θ∗)) = kT∗ (K + σ2I)−1
y

knew(f(θ∗) = k∗∗ − kT∗ (K + σ2I)−1
k∗.

(4.1)

As it is clear from the equations for µnew and knew, the choice of the
covariance function k(x,x′) is fundamental in the modelling decision, as
it defines the behaviour of the posterior GP and thus the type of func-
tions that emulate the wanted unknown function f . In this work, we
will exploit the popular Radial Basis Function (RBF)

k(x,x′) = γ exp[− ∣x − x′∣2
δ2

]

where the amplitude γ and the lengthscale δ are two hyper-parameters
that control how much and how fast a sampled function changes in time.
The success of this particular covariance lays in the fact that this ker-
nel enjoys a universality property (Ste02) that ensures the existence of
an optimal emulation of our unknown function, and moreover it iden-
tifies with probability one infinitely differentiable functions. For a good
review of Gaussian Process Regression see (RW06) .

The input-output pairs in a regression task are often different features
of experimentally observed data points. In our work, the output points
correspond to true functional evaluations of an unknown (and analyti-
cally intractable) function of the inputs. In this case, the regression task
is often given the special name of emulation in the statistics literature.

In our analysis, we can only obtain a sampling approximation through
statistical methods such as SMC (described in the previous section). This
means that our function evaluations are noisy; by virtue of the Central
limit theorem we can assume that, provided sufficient samples, the noise
will be approximately Gaussian. 1 This therefore enables us to obtain an
analytical estimate of the posterior process (RW06).

GP - UCB algorithm. We now address the task of maximising the un-
known function. Let µN(θ) and kN(θ) be the mean and variance of the

1Note that here we approximate as a GP a fitness score as a function of parameters. We
are not imposing any (Gaussian) approximation of the process itself.
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GP emulator at a given point in input space θ (recall that the marginal at
any point will be Gaussian). At each iteration of the algorithm, the solu-
tion is searched among the set of observations (θ1, y1), ..., (θN , yN), and
an intuitive approach to the optimisation problem would be to maximise
the posterior mean µN(θ), exploring the region (i.e., choosing the next in-
put) near the point θN+1 = arg maxθ[µN(θ)]. This procedure, though, is
evidently vulnerable to local optima: the emulated function is estimated
based on relatively few function evaluations, so that, while the emulator
typically provides a good approximation of the true function near the
sampled points, regions of parameter space far from the sampled points
may contain the true maximum undetected. Using the language of rein-
forcement learning, maximising the emulated function would privilege
exploitation (i.e., using currently available information) at the expense of
exploration. Obviously, given sufficient computational power, one may
consider sampling many parameter points so as to have sufficient cov-
erage of the whole region of interest; this strategy is however bound to
fail in even moderate dimensions due to the curse of dimensionality. An
elegant solution to the above conundrum can be obtained by also consid-
ering the uncertainty of the emulated function (which is also computed
analytically in GP regression): intuitively, one should explore regions
where the maximum could plausibly be, i.e., regions in parameter space
where there is substantial posterior probability mass for the function to
take a high value. This is done by the GP-Upper Confidence Bound (GP-
UCB) algorithm (SKKS12); indeed, it takes into account also the poste-
rior covariance kN(θ), that eventually allows the investigation of new
regions (far from the current input points) where the global maximum
may be hidden; this means that it maximises an upper quantile of the
distribution (e.g., the 95% quantile). The rule for selecting the next input
point to be added to the set of observations is

θN+1 = argmaxθ (µN(θ) + βN
√
kN(θ)) (4.2)

where βN is a constant that depends on the iteration in such a way that it
ensures convergence. This allows us to recast the optimisation problem
balancing the exploitation of promising regions (where the emulation has
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high values) with the exploration of new regions (where the emulation
is very uncertain, and hence high values may be hidden). The algorithm
stops whenever no further improvements can be made (i.e., the evalua-
tions yi over the new inputs resemble the ones comprising the current set
of observations), or we reach a prefixed maximum number of iterations.
The convergence of the algorithm to the global optimum was theoreti-
cally proven in (SKKS12).

4.3 Smoothed Model Checking

The standard Statistical Model Checking (SMC) techniques, described in
Section 4.1, are usually applied to models with fixed parameters, their
application over a range of parameter values requires then a prohibitive
number of simulations. The Smoothed Model Checking (BMS16) is a novel
SMC technique that permits to verify simultaneously a property, for a
range of parameters values of an uncertain stochastic model, i.e., a model
for which the parameters values are not all known exactly. It relies on
the characterisation of the satisfaction probability of MITL formula φ for
these kind of models. The method leverages the smoothness of the truth
probability as function of the model parameters, under some conditions,
and transfers the information across nearby parameter values. From this
information, it designs an analytical approximation of such probability.
This allows the computation of the approximate probability for all values
of the uncertain parameters, through the evaluation of the satisfaction on
few parameter values only.

Let us now describe the procedure in detail. An uncertain CTMC,
Mθ, is a family of CTMCs, defined in Chapter 2, whose transition rates,
τ (X,θ), depend also on a set of parameters θ ∈ K ⊆ Rd. Given an un-
certain CTMC Mθ, the satisfaction function of a MITL formula φ is a
function f ∶K → [0,1], such that :

f(θ) ≡ p(φ = true∣Mθ), (4.3)

i.e., f(θ) is the probability that φ is true conditionally on the model hav-
ing parameters θ. The goal of the smoothed model checking algorithm is
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to statistically estimate the satisfaction function f(θ), evaluating such
function (via monitoring of the formula on samples) only for a small
set of parameter values, the training data set, (θ̂, f̂) = {(θi, f(θi)), i =
1,⋯,N}.

It has been proven in (BMS16) that, if the transition rates τ (X,θ) de-
pend smoothly on the parameters θ and polynomially on the state of the
system X, thenf(θ) ∈ C∞(K), meaning that the satisfaction function of
φ is a smooth function of the parameters. The smoothness of f(θ) per-
mits to exploit the Gaussian Process (GP) regression, described in the
previous section, to efficiently emulate the unknown function.

The Gaussian Process (GP) regression adopts a Bayesian perspective.
Given a Gaussian prior distribution and a training set (θ̂, f̂), we can eval-
uate the mean and the covariance at a new input value θ∗, that corre-
sponds to the gaussian distribution p(f(θ∗), f(θ1),⋯, f(θN)).

Combining this distribution with the likelihood functions p(f̂i∣f(θi)), i =
1,⋯,N and applying the Bayes’ theorem, we can obtain the joint poste-
rior:

p(f(θ∗), f(θ1),⋯, f(θN)∣f̂) ∶= 1

C
p(f(θ∗), f(θ1),⋯, f(θN))∏

i

p(f̂i∣f(θi)),

where C is a normalisation constant. The desired posterior p(f(θ∗)∣f̂) is
then obtained marginalising the joint posterior:

p(f(θ∗)∣f̂) = ∫
N

∏
i=1

df(θi)p(f(θ∗), f(θ1),⋯, f(θN)∣f̂). (4.4)

The likelihood function p(f̂i∣f(θi)) describes how the probability of the
actual observations θ̂ depends on the unknown true value at that input
points. In the smoothed model checking, the observations f(θ1),⋯, f(θN)
are computed using a Binomial random variable B(m,f(θi)), where m
is the number of observations of each parameters set of the training set.
It means that the algorithm generates and monitors m samples for each
parameters set θi of the training set, m usually is a small number.

Finally, the procedure computes an approximation of the GP poste-
rior distribution p(f(θ∗)∣f̂), using and Expectation Propagation (EP) ap-
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proach (Min13), a variational procedure producing an analytical approx-
imation of the integral (4.4),(RW06). In this way, we obtain an analytical
approximation of the satisfaction function. This implies that the satis-
faction probability can be estimated at any point in the parameter space
with no additional cost. Furthermore, evaluating the statistics of the in-
duces posterior distribution we obtain also a confidence interval.

The power of this method is that usually fewer samples are required
to achieve a given level of accuracy, at any single point, than just by using
standard SMC. In the experiments of (BMS16), it has been possible to
accurately approximate the satisfaction function over a wide range of
parameters using less than 10% of the simulation runs required to obtain
the same result with exhaustive parameter exploration by classic SMC.
This resulted in a decrease of the total analysis time nearly by 90%.

54



Part II

Contribution
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Chapter 5

System Design via
Robustness Maximisation

In this chapter, we present a novel notion of robustness for temporal prop-
erties of stochastic models and its application in the context of the system
design problem, then we apply the new framework to a number of case
studies. The work has been published in (BBNS13; BBNS15).

5.1 Robustness of Models

A classical question in formal modelling is how to compute the prob-
ability that a behaviour, expressed in terms of a certain temporal logic
formula, may occur in a given stochastic process, modelled, for exam-
ple, as a Continuous Time Markov Chain or as a Stochastic Hybrid Au-
tomaton (see Chapter 2), with fixed parameters. Probabilistic Model Check-
ing (BCHG+97; BHHK03) is a well-established verification technique that
provides an answer to such a question, i.e., the probability of a property
being true. However, especially when we deal with stochastic models,
the notion of satisfiability may not be enough to determine the capac-
ity of a system to maintain a particular emergent behaviour, unaffected
by the uncertainty of the perturbations due to its stochastic nature or by
possible small changes in the model parameters.
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In case of deterministic dynamical systems, which may be subject to
extrinsic noise or uncertainty in the parameter, researchers from the veri-
fication community have proposed several notions of temporal logic based
robustness (DM10; FP09; RBFS08). We described this notion in Chapter 3,
showing how it provides a measure of distance between a trajectory of
a system and the behavioural property of interest, expressed in terms of
a temporal logic formula. This effectively endows the logic of interest
with a quantitative semantics, as we have seen for Signal Temporal Logic,
allowing us to capture not only whether a property is satisfied but also
how much it is satisfied. Below, we formalise a similar notion of robust-
ness for stochastic models.

5.2 Stochastic Semantics of STL

Here, starting from the quantitative semantics of the Signal Temporal Lo-
gic, STL, described in Chapter 3, we present a formal definition of the
notion of robustness for stochastic systems, showing that this naturally
leads to a distribution of robustness scores.

Consider a STL formula φ, with predicates interpreted over state vari-
ables of a stochastic process (X(t))t∈T = (X1(t), ...,Xn(t))t∈T , where each
vector X(t) corresponds to the state of the system at time t. We assume
X(t) ∈ D, where D is the state space of the system. For simplicity, we
indicate the stochastic model with X(t).

As described in Chapter 2, X(t) can be seen also as a random vari-
able X on the space D-valued cadlag functions D([0,∞),D), which in this
section we denote by D, assuming the domain D to be fixed. It means
that the set of trajectories x of the stochastic process X is represented by
the set D.

The Boolean semantics of φ is readily extended to stochastic models
as customary, by measuring the probability of the set of trajectories that
satisfy the formula

P (φ) = P{x ∈ D ∣ x ⊧ φ}.
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BooleanThis is true for CTMC while for SHA or SDE more refined
constructions are needed, see for instance (Dav93; Bil99). Furthermore,
the set of trajectories that satisfy/falsify a formula is a measurable set
(ZPC10), so that we can safely talk about its probability.

In order to extend this definition to the robustness score, it is con-
venient to think of the set of trajectories that satisfy φ as a measurable
function Iφ ∶ D → {0,1}, such that Iφ(x) = 1 if and only if x ⊧ φ. Then,
we can define the random variable Iφ(X) on {0,1} induced by X via Iφ as
the Bernoulli random variable which is equal to 1 with probability P (φ).
We can equivalently write:

P(Iφ(X) = 1) = P({x ∈ D ∣ Iφ(x) = 1}) = P(I−1
φ (1)).

We can extend the robustness score to stochastic models in a similar
way: given a trajectory x, we can compute its robustness score, according
to the quantitative semantics (Def. 3.3, Chapter 3), and interpret ρ(φ,x,0)
as a functional Rφ ∶ D → R. To propagate the distribution of X to R, we
need then to show that Rφ is measurable.

Theorem 5.1 For any STL formula φ, with atomic predicates defined by con-
tinuous functions, the functional Rφ ∶ D → R is measurable, with respect to the
Borel σ-algebra of the topology of D induced by the Skorokhod metric

In order to prove theorem 5.1, we need some preliminary results about
measurability of the functions involved in the definition of the robust-
ness score ρ.

We recall that the space of cadlag functions D([0,∞),D) is given
the structure of a metric space by the Skorokhod metric, also described
in Chapter 2. Furthermore, the Skorohod metric defines a topology for
which D([0,∞),D) is complete and separable, i.e., it is a Polish space.

We first note here that a sequence of functions xn ∈ D([0, T ],D) con-
verges to x ∈ D([0, T ],D) if and only if there is a sequence of time-wiggle
functions ωn ∈ IT satisfying supt∈[0,T ] ∥ωn(t)−t∥→ 0 and supt∈[0,T ] ∥xn(t)−
x(ωn(t))∥→ 0.

We also recall an important property of cadlag functions, which es-
sentially allows us to approximate any cadlag function with a step func-
tion.
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Lemma 5.1 Let x ∈ D([0, T ],D). For each ε > 0, there exists a finite grid
T = {0 = t0 < t1 < t2 < . . . < tk = T} such that for each i = 0, . . . , k − 1

sup
t,s∈[ti,ti+1)

∥x(t) − x(s)∥ < ε

Proof: See (Bil99).
As we always deal with time bounded signals, we start by consider-

ing ρ, for a given formula φ, as a transducer of real-valued signals, i.e.,
as a functional from D([0, T ],D) to itself. To be more precise, we need
to take into account that a STL formula looks Tφ time units into the fu-
ture1, hence R̂φ ∶ D([0, T ],D) → D([0, T − Tφ],D) (where R̂ denotes the
functional between cadlag function spaces associated with the robust-
ness score ρ).

Lemma 5.2 Consider the spaceD([0, T ],D) of cadlag functions. The following
functionals are measurable, with respect to the Borel σ-algebra induced by the
Skorokhod topology (or the product σ-algebra).

a) Forward time shifts: δa ∶ D([0, T ],D) → D([0, T − T̂ ],D), defined by
δa(x)(t) = x(t + a), for T̂ > a. Similarly for backward time shifts.

b) Pointwise maximum (and minimum): max ∶ D([0, T ],D)×D([0, T ],D)→
D([0, T ],D).

c) Maximum (and minimum) over a dense interval in the future: SUP[T1,T2] ∶
D([0, T ),D)→ D([0, T − T2),D), defined2 as

SUP[T1,T2](x)(t) = sup
τ∈t⊕[T1,T2]

x(τ),

for 0 ≤ T1 < T2 < T fixed.

Proof: To prove points a) and b), we rely on the fact that the Borel σ-
algebra in D([0, T ],D) is generated by the following collection of sets
(forming a π-system): AT = {π−1

t1,...,tk
(h) ∣ k ∈ N,h ∈ Dk,0 ≤ t1 < . . . < tk ≤

T}, where πt1,...,tk is the projection on Dk, which is measurable (Bil99).

1Tφ is defined recursively by Tµ = 0, Tφ1∧φ2
= max{Tφ1

, Tφ2
}, T¬φ = Tφ, and

Tφ1U[T1,T2]φ2
= max{Tφ1

, Tφ2
} + T2.

2Recall that ⊕ is the Minkowski sum of two sets, A⊕B = {a + b ∣ a ∈ A, b ∈ B}
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a) We just need to prove that δ−1
a (π−1

t1,...,tk
(h)) is measurable for each

π−1
t1,...,tk

(h) ∈ AT−T̂ . But δ−1
a (π−1

t1,...,tk
(h)) = π−1

t1+a,...,tk+a
(h).

b) Denote with b a Boolean tuple of length k and with b̄ its element-
wise Boolean complement. Define π−1

t1,...,tk,b
(h) to be the set

⎡⎢⎢⎢⎢⎣
⋂

i∶b[i] true

π−1
ti ({hi})

⎤⎥⎥⎥⎥⎦
∩
⎡⎢⎢⎢⎢⎣

⋂
i∶b[i] false

π−1
ti ((−∞, hi))

⎤⎥⎥⎥⎥⎦
which is measurable (by measurability of finite dimensional pro-
jections). It holds that

max −1(π−1
t1,...,tk

(h)) =⋃
b

π−1
t1,...,tk,b

(h) × π−1
t1,...,tk,b̄

(h),

where the union is taken over all possible Boolean tuples of length
k. Hence, the set max−1(π−1

t1,...,tk
(h)) is measurable in the product

σ-algebra.

c) We prove this only for the maximum, as the result for the minimum
follows similarly.

For each n, define the finite grid Tn = {T1, T1 + δn, . . . , T2}, where
δn = T2−T1

n
. Furthermore, let

SUPn[T1,T2]
(x)(t) = max

τ∈t⊕Tn
x(τ).

Fix x ∈ D([0, T ),D), and call gn(t) = SUPn
[T1,T2]

(x)(t) and g(t) =
SUP[T1,T2](x)(t). We will prove that gn → g in the Skorokhod met-
rics. By additionally showing the measurability of SUPn

[T1,T2]
for

each n, we can rely on a classic result for measurable functions, i.e.,
that the pointwise limit of a sequence of measurable functions is
measurable (Bil12), to prove the measurability of SUP[T1,T2].

Measurability of SUPn
[T1,T2]

. Call xi(t) = x(t+ i ⋅ δn) and observe
that SUPn

[T1,T2]
(x)(t) = max{x0(t), . . . ,xn(t)}. The measurability

of SUPn
[T1,T2]

follows from points a) and b) above (extending point
b to the maximum of n functions is straighforward).
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Convergence of gn to g. Fix ε > 0 sufficiently small and use Lemma
5.1 for x on [0, T ] to find a grid Tx,ε = {t0, t1, . . . , th} in [0, T ] sat-
isfying the condition in the Lemma for the given ε. Fix a closed
interval I ⊆ [0, T ] and consider any finite set T̂I that contains one
point t̂ ∈ [tj , tj+1) ∩ I for each [tj , tj+1) ∩ I ≠ ∅. By splitting the
supremum in each [tj , tj+1), Lemma 5.1 implies that

sup
τ∈I

x(τ) ≤ max
t̂∈T̂

x(t̂) + ε. (5.1)

Now let δTx,ε = mintj∈Tx,ε(tj+1 − tj) be the smallest step size of Tx,ε

and choose n0 such that δn0 = T2−T1

n0
< δTx,ε/2. It then follows that

t⊕Tn contains at least one point in each of the intervals [tj , tj+1) of
Tx,ε, hence (5.1) implies (uniformly in t) that

g(t) − ε < gn(t) < g(t).

Concluding, we found n0 such that, for all n > n0, dT (gn, g) < ε,
which implies the convergence of gn to g in D([0, T ],D).

Lemma 5.3 Let φ a STL formula. The functional R̂φ associated with it, R̂φ ∶
D([0, T ],D)→ D([0, T − Tφ],D), is measurable.

Proof: We proceed by structural induction on the formula φ.

Atomic predicate µ. Let µ be defined by the function y(x[t]), required
to be at least continuous. As the pointwise extension toD([0, T ],D)
of a continuous function is a continuous functional, R̂µ is measur-
able.

Negation ¬φ. R̂¬φ = −R̂φ is measurable by inductive hypothesis (and
continuity of the function −x).

Conjunction φ1 ∧ φ2. R̂φ1∧φ2 = min{R̂φ1 , R̂φ2}, which is measurable in
virtue of Lemma 5.2 b) and of the fact that measurability is pre-
served when composing measurable functions.

Eventually F[T1,T2]φ. R̂F[T1,T2]φ = sup[T1,T2]
(R̂φ) is measurable in virtue

of the measurability of R̂φ (structural induction) and of Lemma 5.2
c).
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Globally G[T1,T2]φ. R̂G[T1,T2]φ = inf[T1,T2](R̂φ) is also measurable for the
same reason above.

Until φ1U[T1,T2]φ2. By definition,

R̂φ(x)(t) = R̂φ(x)(t) = R̂φ1U[T1,T2]φ2(x)(t)
= sup
t′∈t⊕[T1,T2]

{min{R̂φ2(x)(t′), inf
τ∈[t,t′]

R̂φ2(x)(τ)}}.

Measurability follows from a technical argument similar to the one
of Lemma 5.2 c), combined with the measurability of R̂φ1(x) and
R̂φ2(x) by inductive hypothesis. More specifically, we need to con-
struct a sequence of convergent approximations Rn(x)(t) of

R̂φ1U[T1,T2]φ2(x)(t),

computed on a discrete grid that shifts with t and t′. The discrete
grids, like in Lemma 5.2 c), have to be independent from the spe-
cific x, while the convergence must be uniform in t, but it can de-
pend on x (we need to prove only pointwise convergence).

More specifically, let Tn = {T1, T1 + δn, . . . , T2} for δn = (T2 − T1)/n,
and Tn1 = {0, δ1

n, . . . , T2}, for δ1
n = T2/n1 ≤ δn. Then the finite approx-

imation of R̂φ(x)(t) is

Rn(x)(t) = max
t′∈An

{min{R̂φ2
(x)(t′),min

τ∈Bn
R̂φ2

(x)(τ)}},

with An = t⊕ Tn and Bn = (t⊕ Tn1 ∪ t⊖ Tn1 ) ∩ [t, t′]. The definition
of Bn keeps into account the fact that both t and t′ can vary, and it
is needed to ensure that there is an n0 such that, for n ≥ n0 we find
for any t, t′ points of Bn in a fixed but arbitrary finite partition of
[0, T ]. The measurability of Rn as a functional follows from similar
arguments than those in Lemma 5.2 c).

Now, fix ε > 0 and an element x in D([0, T ],D). Construct a finite
partitioning Tx,ε of [0, T ] such that Lemma 5.1 is satisfied both for
R̂φ1(x) and R̂φ2(x) for ε/2. Then it is easy to check that, if n is such
that δn is smaller than half the step δTx,ε = mintj∈Tx,ε(tj+1 − tj) of
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Tx,ε, then An and Bn contain points of each interval of Tx,ε, so that
the minimum approximates the infimum with an error bounded
by ε/2 for each t and t′, and the maximum cumulates another ε/2
approximation error with respect to the supremum. It follows that
the distance between Rn(x)(t) and R̂φ(x)(t) is no more than ε, uni-
formly in t, showing the convergence of the approximation in the
Skorokhod metric.

We can finally prove Theorem 5.1. Recall that Rφ ∶ D([0,T],D) → R is
defined by Rφ(x) = ρ(φ,x,0). Given a formula φ, let D = D([0, T ],D) for
some T > Tφ.

Proof of Theorem 5.1. The theorem follows form the fact that Rφ =
π0 ○ R̂φ, i.e., it is the composition of the measurable functional R̂φ (Lemma
5.3) with the measurable projection π0.

In virtue of Theorem 5.1, Rφ induces a real-valued random variable
Rφ = Rφ(X) with probability distribution given by

P (Rφ(X) ∈ [a,b]) = P (X ∈ {x ∈ D ∣ ρ(φ,x,0) ∈ [a, b]})

In other words, if we apply the definition of robustness to a stochastic
model, we obtain a distribution of robustness degrees. This distribution
tells us much more than the standard probabilistic semantics, because it
tells us “how much” a formula is true.

In particular, here we will be interested in some statistics of this dis-
tribution, specifically the average robustness degree, and the average ro-
bustness conditional on a formula being true or false. The first quantity
gives a measure of how strongly a formula is satisfied on average. The
larger this number, the more robust is satisfaction. Most of the times,
this number will be correlated with the satisfaction probability, yet we
can have a large average satisfaction score even for a small probability of
satisfaction. Better indicators of the intensity of satisfaction and dissatis-
faction are the conditional averages, E(Rφ ∣ Rφ > 0) and E(Rφ ∣ Rφ < 0).
These are related to the average by the equation

E(Rφ) = P (φ)E(Rφ ∣ Rφ > 0) + (1 − P (φ))E(Rφ ∣ Rφ < 0)

which holds provided P(Rφ = 0) is zero.
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In the next sections, we investigate to what extent these three syn-
thetic indices are good descriptors of the robustness distribution, and
how they can be exploited to do parameter synthesis for stochastic mod-
els. Before that, we discuss the continuity of Rφ.

Continuity of Rφ An interesting question about the robustness score Rφ
of a formula φ is whether it is continuous as a functional on the space
of trajectories D. It turns out that Rφ is not continuous on D, because D
contains trajectories with discontinuous jumps, and the notion of metric
convergence in D allows one to align close jumps (in time) between two
trajectories. On the other hand, in the definition of the robustness score
ρ, there is no such flexibility on the time bounds of the formula. This
discrepancy results in the lack of continuity. We formalise and prove this
in the proposition below.

Proposition 5.1 Let φ be a STL formula. The functional R̂φ ∶ D([0, T ],D) →
D([0, T − Tφ],D) is not continuous with respect to the Skorokhod topology.

Proof: We provide a counterexample to continuity, by exhibiting a for-
mula φ and a trajectory x ∈ D([0, T ],D) such that R̂φ is not continuous in
x. Fix φ = F[1,2]X ≥ 0, where X is the only system variable. The trajec-
tory x(t) we consider is equal to 1 for t ∈ [0,1)∪ [2, T ), and equal to 0 for
t ∈ [1,2). Let now xn(t) be equal to 1 for t ∈ [0,1) ∪ [2 + εn, T ) and to 0
for t ∈ [1,2 + εn), where εn > 0 is a sequence such that εn → 0. We have
that R̂φ(x) = y, with y the constant function 1, while R̂φ(xn) = yn, where
yn(t) = 0 for t ∈ [0, εn) and yn(t) = 1 for t ≥ εn. It is easy to check that
xn → x in the Skorokhod topology, using the sequence of time wiggle
functions ωn such that ωn(2) = 2 + εn and ωn linear elsewhere. On the
other hand yn does not converge to y, which proves the claim, as con-
tinuous functions send convergent sequences to convergent sequences.

Continuity, however, is a desirable feature, as it guarantees that small
perturbations in system trajectories will result in small perturbations in
the robustness score. Hence, a more precise characterisation of the con-
tinuity properties of Rφ on subspaces of D would be valuable, yet non-
trivial. It is quite easy to assess that Rφ is continuous on the subspace C ⊂
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D of continuous trajectories, as in C the metric on D reduces to the stan-
dard supremum norm, for which Rφ is known to be continuous (DFM13).
We conjecture that Rφ will be continuous also for most of the trajectories
with jumps. The argument is as follows. Consider a simple formula
φ = F[T1,T2]X ≥ 0. Then problems may arise for all those trajectories for
which two discontinuous jumps happen at exactly T2, T1, or T2 −T1 time
instants apart. We believe, although we still do not have a formal proof,
that the functional Rφ is continuous on all other trajectories. This soon
implies that Rφ is almost surely continuous with respect to any probabil-
ity measure on D induced by a Continuous Time Markov Chain (or by
other nicely behaved stochastic processes, like Feller processes (Kal10)).
By standard arguments about weak convergence of probability measures
on D (Bil99), this will guarantee that small perturbations of any stochas-
tic model will results in small perturbations of the distribution Rφ of the
robustness score.

The alternative would be to modify the definition of the robustness
score ρ to enforce continuity of Rφ. This would require a notion of space-
time robustness. In (DM10), the authors consider a definition which is
based on the localisation of zeros (of the atomic predicates or of the ro-
bustness function). Unfortunately, this degree can be computed easily
for piecewise linear continuous signals, but it is undecidable in general,
even for continuous functions (Col08; Ric97)). A possible alternative can
be that of “blurring” the boundaries of the time intervals by a proper use
of integrals. Investigating such a direction, however, is out of the scope
of this work.

Example 5.1 (SIR stochastic property) We give a simple example of the com-
putation of the average robustness. For more interesting case studies, we remind
to Section 5.4. Let’s consider again the SIR population model presented in the
Example 2.1. In this case, we want to study the stochastic dynamics of the
system. The stochastic process for this epidemic model can be represented by
the family of vectors (X(t))t∈R⩾0 = (XS(t),XI(t),XR(t))t∈R⩾0 where each
Xi(t) ∈ N counts the number of indivuals in the state i at time t, and N is the
number of the whole population. Then, we consider the property

ϕpeak ∶ G[35,45](xI > 30). (5.2)
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The meaning of the formula is “the number of infected individuals is always
more than 30 between 35 and 45 time units”.

In Figure 5.1(a) left, we plot the distribution of the average robustness for the
formula 5.2, for 10000 runs. The red line corresponds to the average robustness,
equal to -3.1704 with error ±0.1899 at 95% confidence level. The green lines
represent the conditional averages robustness of the formula ϕ in (5.4) being
true or false. The satisfaction probability, indeed is p = 0.2582, error ±0.0138 at
95% confidence level. In Figure 5.1(b), we show an example of the relationship
between the average robustness and the satisfaction probability. We plot the
average robustness against the satisfaction probability, varying the parameter
krec in the interval [0.01, 0.08] with a 0.005 time step. We can see that when
the probability is equal to 0 or 1 the information is the same for many parameters
values; instead, we have more information with the average robustness. If we
consider only the windows of parameters values where the probability p ∈]0,1[
then the dependency seems to be linear, with a Pearson correlation coefficient
equal to 0.9898.
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Figure 5.1: Robustness distribution for Formula 5.2 for 10000 runs. The av-
erage robustness (red line) is −0.0151, the conditional averages of robustness
are -6.3145 and 4.6445 (green lines) (left). Satisfaction probability versus av-
erage robustness varying parameter krec between 0.01 and 0.08 in steps of
0.03 units (right).
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5.3 System Design

We now discuss an application of the robust semantics to the system de-
sign problem. Usually, the system design problem consists in tuning prop-
erly the uncertain parameters of a model in order to reproduce the be-
havioural properties observed in the experimental data. For this reason,
we can refer to this problem also as the parameter synthesis problem. In
particular, the problem we want to tackle is the following:

Given a population model, M, depending on a set of parame-
ters θ ∈K ⊆ Rd, and a specification φ given by a STL formula,
find the parameter combination θ∗ such that the system sat-
isfies φ as robustly as possible.

We will tackle this problem by:

1. Rephrasing it as a (non-linear, non-convex) optimisation problem.

2. Evaluating the function to optimise, the average robustness.

3. Solving the optimisation problem.

Let’s see in detail each point.
(1) Rephrasing it as a (non-linear, non-convex) optimisation problem.
An optimisation problem is the problem of finding the best parameters
that maximise or minimise a certain function. Rephrasing the problem
means then to find which is the function that has to be maximise/min-
imise in a such a way that the model satisfies φ as robustly as possi-
ble. According to the quantitative semantics of STL, the robustness value
ρ(ϕ,x) = ρ(ϕ,x,0) expresses the level of satisfaction of φ by a trajectory
x (i.e., the satisfaction at time zero). We are then interested in maximising
the average robustness:

E(Rφ) = ∫ ρ(φ,x)p(x)dx (5.3)

where p(x) is the probability density of trajectory x. So, the system de-
sign corresponds to find the parameter configuration θ∗ that maximises
the function f ∶K → R s.t. f(θ) ∶= E(Rφ)[θ].
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(2) Evaluating the function to optimise. E(Rφ) is evaluated at a few pa-
rameter values, with a fixed number of runs, usually 100. In particular,
the algorithm is initialised with a random grid of points, θi, i = 1, ..,N

(the parameter values), for each of which E[Rφ] is approximately eval-
uated via statistical means. The input-output pairs (θi, yi), i = 1, ..,N is
the training data set, where yi ∈ R are the evaluations/observations.

(3) Solving the optimisation problem. The optimisation problem is solved
using an optimisation strategy for reinforcement learning.This methodol-
ogy is an extension of (BS13; BS15) and is based on a statistical emulation
of the unknown function via Gaussian processes regression (RW06) and
a Gaussian Process - Upper Confidence Bound optimisation algorithm,
GP-UCB (SKKS12), described in Chapter 4. An efficient estimation of the
unknown objective function (i.e., the average robustness as a function
of the parameters) is a key ingredient for the design problem. Function
approximation is a central task in machine learning and statistics. The
general regression task can be formulated as follows (Bis06): given a set
of input-output pairs (θ, yi), i = 1, ..,N (training data), with θ ∈ Rd and
yi ∈ R, determine a function f ∶Rd → R s.t. f(θ) is optimally close to the
target values yi. Several methods exist for addressing this task; here we
consider Gaussian Process (GP) regression, a popular Bayesian method-
ology (RW06) described in detail in Chapter 4. Indeed, if the statistical
analysis is performed over a sufficiently large number of simulations of
the process (few tens typically suffice), we can assume that the estima-
tion noise is approximately Gaussian. For this reason, we can treat the
unknown function to be maximised as a random function (sampled from
a suitable prior stochastic process, namely a Gaussian Process (GP)), and
the numerical estimations as function evaluations. Using the evaluations
of the previous point as a training set, the GP is then used to emulate the
unknown function, i.e., to make predictions regarding the E[Rφ] value
at different parts of the search space. We calculate the GP posterior for
a set of test points; that involves calculating an estimate of the expected
robustness and its associated variance. These observations are then used
to obtain a posterior prediction at new input points, which are chosen
according to an efficient optimisation procedure called GP - Upper Con-
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fidence Bound (GP-UCB) algorithm. The GP optimisation algorithm dic-
tates that the point that maximises the upper quantile of the GP poste-
rior is added to the training set, after being evaluated for its associated
robustness via statistical estimation. A high value for the upper quantile
at any point in the parameter space indicates the possibility of an undis-
covered maximum nearby. This feature allows us to direct the search
towards areas of the parameter space that appear to be more promising.
More details about Gaussian process and GP-UCB can be found in Chap-
ter 4. This process is repeated for a number of iterations, and the training
set is progressively updated with new potential maxima until no further
improvements can be made or we reach a prefixed maximum number
of iterations. The output of the algorithm are then the parameter val-
ues corresponding to the maximum yi among those in the training set,
i.e., θ∗ = θi. For a smooth objective function, the algorithm is proved to
converge to the global optimum in (SKKS12).

Note that the samples also allow us to estimate the (sample) variance
in the average robustness at every sampled parameter value; this infor-
mation can also be included leading us to a heteroschedastic (i.e., with
non identical noise) regression problem (which is however still analyti-
cally tractable), see (BS13; BS15) for more details.

To better understand how the technique works in practice, we refer
the reader to the next section which describes its application to case stud-
ies step by step.

In certain cases, such as bistable systems, a large average robustness
may not be the appropriate objective; in fact, for highly unbalanced ro-
bustness scores, a formula can have a high average robustness without
having a high probability of being true. Therefore, one would like to
modify the design problem to incorporate an additional constraint that
the satisfaction probability p of the formula be bounded below by a fixed
q. This considerably complicates the problem: we are not aware of prov-
ably convergent non-convex constrained optimisation algorithms. Nev-
ertheless, the problem can be approximately solved using penalty terms
to encode for probability constraints. More specifically, assuming we
want to enforce the satisfaction probability to be at least q, we add a
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penalty term of the form α(q − p), if p < q, and 0 otherwise, where α < 0

controls the penalty intensity. A sufficiently high value of α (which can
be chosen manually with a few trial runs) will ensure that the optimisa-
tion will satisfy the probability constraint.

5.4 Case Studies

In this section, we report a number of case studies to investigate exper-
imentally the notion of robust semantics of STL formulae for stochastic
models and its exploitation in the system design problem. We consider
three case studies: the Schlögl system (GCPDI05), a simple set of bio-
chemical reactions exhibiting a bistable behaviour, the Incoherent type 1
Feed-forward loops (I1-FFL) (Alo07), a frequent motif in gene regulatory
systems, and the Repressilator (EL00; BP08; BP10), a synthetic biological
clock implemented as a gene regulatory network. More specifically, we
consider CTMC models of the Schlög system and the I1-FFL, and a hy-
brid model of the Repressilator. The models, the optimisation algorithm
and the experiments are implemented in Matlab exploiting the Breach
toolbox for the quantitative monitoring and a dedicated Java implemen-
tation, combining standard Monte Carlo simulation (by the Gillespie al-
gorithm (Gil77)) and Bayesian statistical model checking (JCL+09b) for
the satisfaction probability. All the experiments were run on a Macbook
Pro, OS X 10.9.5, Intel Core i5 processor with 2.6 GHz, 8GB 1600 MHz
memory. Recently, the whole procedure has been implemented in a Java
toolbox, U-Check (BMS15), briefly described in Chapter 8, together with
other innovative techniques to analyse stochastic systems.

5.4.1 Schlögl System

The Schlögl model is a simple biochemical network with four reactions,
listed in Table 5.1. The rates of the reactions are computed according to
the mass action principle for stochastic models (Gil77). Species A and B
are considered to be present in large quantities, hence they are assumed
to be constant and the system will be represented by only one variable,
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Reaction rate constant init pop
A + 2X → 3X k1 = 3 ⋅ 10−7 X(0) = 247
3X → A + 2X k2 = 1 ⋅ 10−4 A(0) = 105

B →X k3 = 1 ⋅ 10−3 B(0) = 2 ⋅ 105

X → B k4 = 3.5

Table 5.1: Biochemical reactions of the Schlögl model. Parameters are taken
from (DG08a).

the concentration of the species X. The characteristic of this system is to
have, for certain parameter values, like the one shown in Table 5.1, a
bistable behaviour.

More specifically, the reaction rate ODE system has two stable steady
states, and for this model the trajectories of the stochastic system starting
from a fixed initial state, X(0) = x0, can end up in one attractor or the
other. The probability of choosing one stable state or the other depends
on the position of x0 relative to the basin of attraction of the two equi-
libria. If we start close to its boundary, the bistable behaviour becomes
evident, see Figure 5.2(a).

We now consider the property of eventually ending up in one basin
of attraction, using the following STL formula to express it

ϕ ∶ F[0,T1]G[0,T2](X − kt ≥ 0), kt = 300. (5.4)

The exact meaning of the formula is: after at most T1 time units, the con-
centration of the species X stabilises to a value which remains above kt = 300

for at least T2 time units. From the atomic predicate µ(X) = X − kt ≥ 0,
we can derive the secondary signal y(x(t)) = x(t) − kt, where x(t) is the
primary signal corresponding to a trajectory of the system (the variation
in the concentration of X over the time).

As Figure 5.2(a) shows, if the model is in the large equilibrium, then
this property is true, and false in the other case. If we estimate the prob-
ability of the formula statistically, for model parameters as in Table 5.1
and formula parameters T1 = 10 and T2 = 15, then we obtain the value
p = 0.4583 (10000 runs, error ±0.02 at 95% confidence level and execution
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(a) CTMC simulation
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(b) Distribution of the robustness degree

Figure 5.2: Simulation of the Schlögl model (100 runs), for parameters as in
Table 5.1. The blue straight line is the value X = 300 (left). The distribution
of robustness degree for the STL formula 5.4 with T1 = 10 and T2 = 15
time units (10000 runs). The average robustness is -53.15 (vertical red line),
the conditional averages of robustness are 169.89 and -239.52 (vertical green
lines), and satisfaction probability is 0.4552 (right).

time of 99.49 seconds). This raw number cannot be used to retrieve any
information on the bistability of the system. Indeed, a system stabilising
just above x(t) = kt = 300, and such that roughly 55% of its trajectories
cross such threshold “frequently”, can satisfy the same formula with the
same probability. The bimodal behaviour of the system becomes evi-
dent, instead, if we look at the distribution of the robustness degree of
the formula, see Figure 5.2(b). The figure shows also the conditional ro-
bustness averages of the formula ϕ in (5.4) being true or false that are
169.89 and −239.52, respectively. These two indicators estimate how ro-
bustly the system remains in the basin of attraction of each steady state.
Hence, the robustness degree carries additional amount of information
w.r.t. the satisfaction probability of a STL formula. We stress that we are
not comparing the robustness degree with the probability distribution of
the CTMC X(t): both the satisfaction probability of ϕ and its robustness
are (unidimensional) quantities derived from X(t), which are easier to
compute and visualise. In Figure 5.3, we varied the threshold level kt in
the formula (Figure 5.3(a)), and the rate constant k3 (Figure 5.3(b)), and
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(a) Varying the threshold kt.
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(b) Varying the parameter k3.

Figure 5.3: Satisfaction probability versus average robustness degree for
varying (left) the threshold kt in the STL formula (5.4) and (right) the pa-
rameter k3. k3 was varied between 100 and 300 in steps of 10 units, while
the threshold kt was varied between 50 and 600 in steps of 10.

then we plot the satisfaction probability versus the average robustness
degree, estimating them statistically from 10000 runs for each parameter
combination. As we can see these two quantities seem to be correlated.
By varying the threshold, the Pearson’s correlation coefficient between
satisfaction probability and robustness degree is 0.8386, while the de-
pendency, by visual examination of the data, seems to follow a sigmoid
shaped curve. In the second case, instead, the correlation between sat-
isfaction probability and average robustness degree is 0.9718, with an
evident linear trend.

System Design. We set up the experiment as follows. We ask to max-
imise the robustness degree of the formula 5.4 optimising the parameter
k3. We varied k3 uniformly in [50,1000], fixing all other parameters to the
values of Table 5.1. We ran the GP-UCB optimisation algorithm by first
estimating the robustness degree for 15 points sampled randomly and
uniformly from the parameter space with 100 runs for each sample, and
then using the GP-UCB strategy to estimate the maximum of the upper
bound function in a grid of 200 points. If, in this grid, a point is found
with a larger value than those of the observation points, we compute
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the robustness also for this new point, and add it to the observations
(thus changing the GP approximation). Termination happens when no
improvement can be made after three grid resampling. Further integra-
tion of local maximisation can further improve the method.
In the experiment, repeated 10 times, we used a GP with radial basis
kernel (Bis06), with length scale fixed to 0.5 (after standardisation of the
parameter range to [−1,1]). The amplitude of the kernel was adaptively
set to 60% of the difference between the max and the mean value of the
robustness for the initial observations. The observation noise was ex-
perimentally fixed to 1, by monitoring the average standard deviation at
different random parameter combinations.
The median of the results are shown in Table 5.2. As we can see, the result
of the optimisation suggests that the more robust system satisfying the
specification (i.e., remaining as much as possible above the threshold 300

for a sufficiently long amount of time) is the one obtained for k3 = 1000.
This is in agreement with the fact that, in this case, the robustness func-
tion is easily seen to be a monotonic and increasing function of the pa-
rameter. This property is helpful to test the method, given that we know
the analytic solution. Furthermore, GP regression using a gaussian ker-
nel often results in an accurate reconstruction of a monotonic function,
due to the kernel shape (RW06), resulting in a challenging problem for
our method. In Table 5.2 we report also the optimisation time, 23.156 sec-
onds, which is almost entirely spent in evaluating the likelihood (22.565

seconds), i.e., in running the simulations of the system. In Figure 5.4(a),
we plot the emulation of the robustness function obtained in the last it-
eration of one of the 10 experiments. We can see also from here that the
optimum value of k3 (the value that maximise the emulation function
and the robustness degree) is 1000. The result is confirmed by the com-
putation of the approximated robustness distribution, Figure 5.4(b): for
k3 = 1000, the system becomes monostable, and X stably remains above
550 units (corresponding to an average robustness score above 250).
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k3 optimisation Median Range
Parameter 1000 [939.08, 1000]

Average robustness 350.6 [344.98, 353.74]
Probability satisfaction 1 1
n Rob. fcn evaluations 17 [16, 20]
n simulation runs 1700 [1600, 2000]

Rob. fcn eval. time (sec.) 22.565 [20.19,29.43]
Optim. time (sec.) 23.156 [20.58, 30.82]

Table 5.2: Statistics of the results of 10 experiments to optimise the param-
eter k3 in the range [50,1000]. We report the median and the range of the
optimum parameter, the average robustness, the probability satisfaction, the
number of robustness function evaluations (n Rob. fcn evaluations), the to-
tal number of simulation runs, and the time, in seconds, of the robustness
function evaluations (Rob. fcn eval. time) and the optimisation (Optim.
time). The number of runs for each evaluation, i.e., each SMC, is 100.

5.4.2 Type 1 Incoherent Feed Forward Loop

The second example we discuss is a small frequent motif in genetic regu-
latory networks (Alo07), known as the feed forward loop (FFL). FFL are
composed by two genes, B and C, in which B regulates C and both are
regulated by a third transcription factor, the product of gene A. The reg-
ulation is acyclic: there are no feedback loops. However, different roles
played by A and B as regulators of the expression of B and C give rise
to different behaviours, which are used within the cell to modulate the
response to external (or internal) stimuli, changing the expression of A.
In this study, in particular, we discuss the incoherent type-1 FFL (I1FFL),
according to the nomenclature of (Alo07). I1FFL is characterised by a
topology with two parallel but competitive paths: A activates the pro-
duction of both B and C, while B is a repressor of C. We consider the
case of an “AND” logic gate inC, corresponding to the situation in which
we have production of C if A is above a certain value threshold and B is
not above a certain value threshold (i.e., B repression is not active).

The dynamics of this network can be understood in terms of an in-
put/output relationship, where C is the output signal. In the presence
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Figure 5.4: The emulated robustness function in the optimisation of k3 (left).
The distribution of the robustness score for k3 = 1000 and 10000 runs; the
average robustness (red line) is 351.1 and the satisfaction probability is 1.

of an external input signal, which corresponds to an high value of A, the
production of B and C is activated in parallel. B takes some time to ac-
cumulate and to cross the threshold to activate C repression. This effect
translates in an initially high production of C followed by a decrease and
a consequent stabilisation to a low steady state. This results in pulse-like
response to the input signal, as can be seen in Figure 5.5(a), left.

The network is described by a Markov population process, in which
activation and repression are modelled as Hill functions, while degrada-
tion is described in the standard mass action style (Gil77). The value of
XA is considered to be constant, as an input signal. More precisely, we
have the following reactions:

B production: ∅→ B, at rate βB
XnA

Kn
AB

+Xn
A

;

B degradation: B → ∅, at rate αBXB ;

C production: ∅→ C, at rate βC
XnA

Kn
AC

+Xn
A

1
Kn
BC

+Xn
B

;

C degradation: C → ∅, at rate αCXC ;

We normalise the system, dividing each valueXA,XB ,XC , for the to-
tal populationXA+XB+XC . For simplicity, we will denote byXA,XB ,XC
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(b) Robustness distribution

Figure 5.5: Simulation of the I1FFL model. Trajectory ofXC , for parameters
KAB = 1, KAC = 1, KBC = 0.17, αC = 1, βC = 1, αB = 1, βB = 1 and n =
2, XA = 1 and initial value xB(0) = 0, xC(0) = 0. The range of variables is
expressed as a concentration (left). The distribution of the robustness degree
for the formula 5.5 with θhigh = 0.7, Tr = 0.5, h = 1, Ts = 1.5, Toff = 10,
T = 15, and θlow = 0.3 for 10000 runs (right). The simulator for the model
has been implemented in Java.

the normalised variables.
In order to capture the pulse-like behaviour, we use the STL formula

φpulse = F[Tr,Tr+h]G[0,Ts](XC ≥ θhigh) ∧ G[Toff ,T ](XC ≤ θlow). (5.5)

The formula φpulse requires the output signal to be above an high thresh-
old θhigh at a certain time t ∈ [Tr, Tr+h] from the introduction of the input
signal, and remains high for at least Ts time units. Furthermore, the for-
mula imposes that the pulse has terminated after Toff units of time, so
that the concentration of XC stabilises to a low value (less than θlow) for
at least T time units.

In Figure 5.5(b), we show the distribution of the robustness degree of
the formula (see caption for parameters) with 10000 simulations. The av-
erage robustness degree is −0.2198 and is almost equal to the negative
average robustness, −0.2204. Indeed, the formula is “almost always”
false, as confirmed by the satisfaction probability degree that is 0.0014.
Figure 5.5(a) illustrates on the left that the negative robustness on a sim-
ulated trajectory is caused by the pulse peak, which does not last enough
time. We show now how to tackle the system design problem of this
stochastic model by using the robustness degree to guide the parameter
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synthesis for which the pulse will become larger and longer.

System Design. In the I1FFL example, we try to optimise model pa-
rameters to enforce a specific shape to the pulse, namely a duration of
1.5 time units with an amplitude larger than 0.7. This is obtained in the
STL framework by assigning the following parameters to the formula
(5.5): θhigh = 0.7, Tr = 0.5, h = 1, Ts = 1.5,Toff = 10, T = 15 and θlow = 0.3.

We considered two scenarios, assuming we can regulate the repres-
sion and degradation rates of the regulation of protein C. In the first
case, we optimise only the degradation αC , while in the second case, we
optimise simultaneously both KBC and αC . For each scenario, we use
the robustness score of the STL formula 5.5.

The setting of the algorithm are similar to the ones for the Schlögl
model, except for the hyper-parameters of the kernel and the observa-
tions noise. In this case, the hyper-parameters of the kernel have been
identified relying on a model selection criterion, i.e., optimising the ro-
bustness function as computed from an initial batch of observations, see
(RW06) for more details. We improve also the treatment of the obser-
vation noise by using an heteroscedastic noise model. The noise of the
robustness function for each explored point of the parameter space is es-
timated by bootstrapping. Furthermore, in this set of experiments, we
use 10 initial random samples for each parameter.

We ran the optimisation algorithm 10 times. The results are reported
in Figure 6.5.1 and Table 5.3. As we can see, the algorithm returns a
precise value in one dimension, while it tends to be more erratic when
searching the two dimensional space. This is typically a sign of uncer-
tainty in the identification of parameters, meaning that there is some sort
of dependency between the parameters we are exploring, resulting in
a flat maximum or in a ridge of points more or less with the same ro-
bustness. This is confirmed in Figure 5.7, where we plot the emulated
function at the end of one optimisation. We can see that in almost all the
region identified by the parameter range of Table 5.3 for αC and kBC , the
robustness degree is similar (the dark red region); furthermore, the vari-
ability is more evident for the α parameter than the threshold concentra-
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(a) Stochastic simulation
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(b) Robustness distribution

Figure 5.6: Simulation of the I1FFL model, for parameters kBC = 0.1732,
αC = 0.3555, KAB = 1, KAC = 1, βC = 1, αB = 1, βB = 1 and n = 2, and initial
value xA(0) = 1, xB(0) = 0, xC(0) = 0. The range of variables is expressed
as a concentration (left). The robustness distribution of the formula 5.5 with
θhigh = 0.7, Tr = 0.5, h = 1, Ts = 1.5, Toff = 10, T = 15, and θlow = 0.3 for
10000 simulations (right).

tion KBC . Finally, we can note from Table 5.3 that also in this case most
of the computational cost is spent in the evaluation of the robustness
function, i.e., in simulation of the model and statistical model checking.
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αC ,KBC optimisation αC αC ,KBC

Median Range Median Range
Parameter 0.3759 [0.3703, 0.4038] 0.3812, 0.1742 [0.3183, 0.4806],

[0.1556, 0.1899]
Average robustness 0.1239 [0.1187, 0.1358] 0.1270 [0.1186, 0.1352]

Probability satisfaction 0.942 [0.899, 0.999] 0.973 [0.897, 0.989]
n rob. fcn evaluations 22 [17, 23] 58 [55, 62]
n simulation runs 2200 [1700, 2300] 580 [5500, 5800]

Rob. fcn eval. time (sec.) 28.38 [21.22, 30.83] 81.69 [77.59, 89.77]
Optim. time (sec.) 30.42 [22.17, 33.36] 108.98 [99.73, 129.91]

Table 5.3: Statistics of the results of 10 experiments to optimise the param-
eter αC in the range [0.035,3.5] and simultaneously both αC in the same
range and the parameter KBC in the range [0.017,1.7]. We report the me-
dian and the range of the optimal parameter, the average robustness, the
probability satisfaction, the number of robustness function evaluations (n
rob. fcn evaluations), the total number of simulation runs, and the time, in
seconds, of the robustness function evaluations (Rob. fcn eval. time) and
the optimisation (Optim. time). The number of runs for each function eval-
uation, i.e., the number of simulations for SMC, is 100.

5.4.3 Repressilator

The last case study is a genuine stochastic hybrid model of the Repressi-
lator (EL00), a synthetic genetic clock composed of three genes express-
ing three transcription factors repressing each other in a cyclical fash-
ion (see Figure 5.8). Genetic networks like the Repressilator can also be
found in actual biological systems. Here we consider the putative regula-
tory network of the Circadian Clock in Ostreococcus Tauri, an unicellular
alga that is widely studied as a model organism. The model and param-
eters are taken from (OMS13), where the authors start from experimental
data and learn a stochastic hybrid model of the circadian clock network
in O. Tauri, which is known to involve only two genes, expressing tran-
scription factors TOC1 and CCA1. They conjecture the existence of a
third regulatory protein X , similarly to the mechanism recently discov-
ered for the circadian clock in Arabidopsis Taliana, forming a repression
cycle as in Figure 5.8.

This system is modelled by a SHA with three continuous variables,
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Figure 5.7: Part of the emulated robustness function in the optimisation of
αC and KBC for the I1FFL example. The colour corresponds to the value
of the average robustness in agreement with the legend on the right of the
plot.
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(b) Hybrid stochastic simulation

Figure 5.8: The repressilator-like model of the O.Tauri circadian clock
(left) is a cyclic negative-feedback loop composed of three repressor genes:
TOC1,CCA1, and an unknown geneX . Oscillatory behaviour of the model
(right), for model parameters taken from (OMS13).

XTOC1, XCCA1, and XX , and with eight discrete modes, corresponding
to all possible combinations of active and inactive states of each involved
gene. The dynamics of gene repression is modelled as a telegraph pro-
cess, i.e., as a two states Markov model, with a phenomenological rate of
repression of gene i (binding of the protein to the gene) equal to

fbind,i(X) = kpi exp(keiXj),
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where Xj is the repressor of gene i. The unbinding rate, instead, is con-
stant: funbind,i(X) = kmi . The steady state distribution of the probability
of gene i being active is a sigmoid (saturating) function of the repres-
sor concentration. Production and degradation of protein i, instead, are
modelled by stochastic differential equations of the form

dXi = (Aiµi + bi − λiXi)dt + σdW,

where µi denotes the state of gene i (with µi = 1 denoting the repressed
state and µi = 0 the active state), bi is the basal production rate and Ai < 0

reduces it in case of repression, and λi is the degradation rate. The form
of this model is particularly efficient to perform statistical inference of
parameters in presence of observed data. Note also that the stochastic
hybrid model we consider here is different from previous hybrid mod-
els of the repressilator (BP08; BP10), in that it assumes a different form
for the rate of gene repression, and in that it models protein production
and degradation by stochastic differential equations rather than ODEs.
In Figure 5.8(b), we show a simulation of the model, for the parameter
values taken from (OMS13), which exhibit sustained oscillations with a
more or less stable period.

In order to specify the presence of oscillations, we use the STL for-
mula
ψ = G[0,T ]((Xi > khigh)→ F[T1,T1+h](Xi < klow))∧
G[0,T ]((Xi < klow)→ F[T2,T2+h](Xi > khigh)) ∧F[0,T ](Xi > khigh),

(5.6)

expressing the fact that high values of Xi alternate to low values, with
a period between T1 + T2 and T1 + T2 + 2h, where i is TOC1, CCA1 or X.
In particular, we require that a high value of Xi (Xi > khigh) is followed
within time [T1, T1 + h] by a low value of Xi, which is subsequently fol-
lowed by a high value in a time between [T2, T2 + h]. The last part of
the formula requires that the model indeed reaches a high value of Xi in
order to trigger the chain of implications. The parameter h gives a value
of the period stability, the higher the h, the more irregular is the period.
As said before, Xi can be the concentration of one of the three proteins of
the clock. In the next discussion, we focus on the unknown protein X .

Again, the robustness degree provides a measure of the satisfaction/vi-
olation of the formula. An example is shown in Figure 5.9(a) left, where
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we can see that the formula, for the parameters in the caption, tends to
be false (the average robustness is negative and the satisfaction probabil-
ity is 0.256). This, of course, may depend on the choice of the parame-
ters, which do not properly capture the amplitude, the period, and the
shape of the oscillations. For instance, a negative robustness value of δ
can be obtained if, from a point in which Xi < klow, the system remains
below khigh − δ for a whole (half) period of oscillation (which is con-
strained to be in [T2, T2 +h]). We will see now how these parameters can
be chosen in a principled way, taking inspiration from requirement min-
ing (JDDS13; GSC+09). In the same figure, we can also see the conditional
average robustness, whose values are both close to the average robust-
ness, suggesting that the low satisfaction probability is not very robust.
In Figure 5.9(b), we plot the average robustness against the satisfaction
probability, varying the property parameter T1, showing once again the
correlation between the two quantities. The dependency seems to be lin-
ear, with a Pearson correlation coefficient of 0.9841.
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(a) Robustness distribution
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(b) Satisfaction probability vs robustness degree

Figure 5.9: Robustness distribution for Formula 5.6 parameters klow = 0.14,
khigh = 0.5, T1 = 800, T2 = 700, h = 350, T = 7000 and 1000 runs. The average
robustness (red line) is −0.0151, conditional averages of robustness are -
0,0183 and 0,0064 (green lines), and the estimated satisfaction probability
is 0.256 (left). Satisfaction probability versus average robustness. T1 was
varied between 800 and 1100 in steps of 10 units (right).

Property Design. In this final scenario, we consider a different opti-
misation problem. We keep model parameters constant and we try to
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optimise the parameters of the formula to make the robustness score as
large as possible. This is a version of the requirement mining problem
(JDDS13), which can be seen as a sort of dual problem to system de-
sign, in which the goal is to learn the emergent behaviour of the model
in terms of the most robustly satisfied formula (of fixed structure). Fur-
thermore, the parametrisation of a formula is usually an underestimated
problem, as the satisfaction/robustness heavily depends on these param-
eters. This problem has been partially tackled, e.g., in (RBFS08; JDDS13)
for deterministic models, but never for stochastic ones, to authors’ knowl-
edge.

In particular, we consider Formula (5.6), and optimise the temporal
delays T1 in the range [100,1700] and T2 in the range [100,1000]. This can
be seen as an attempt to learn the best bounds on the oscillatory period,
through the filter of the logical specification of oscillations of Formula
(5.6). Inspecting the structure of the formula, we can observe that it is the
conjunction of two temporal properties, one containing the parameter T1

(φ1 = G[0,T ]((Xi > khigh) → F[T1,T1+h](Xi < klow))) and the other one
containing the parameter T2 (φ2 = G[0,T ]((Xi < klow) → F[T2,T2+h](Xi >
khigh))). We can exploit this structure and perform the optimisation of φ1

and φ2 separately, as model parameters are fixed and the total robustness
degree is simply the minimum of those of φ1 and φ2. In these formulae,
we also keep T and h constant. T is related to the length of the signal we
are observing, while h governs the length of the error we allow on the
half period. In particular, observe that maximising h is meaningless: it is
easy to show that the (average) robustness score will increase monotoni-
cally with h, so that the optimisation will always pick the upper bound.
Hence, we fix h = 350. We decide to study the oscillation of the unknown
gene X , i.e we set i =X .

The results of the optimisation of the two parameters are reported in
Table 5.4, while in Figure 5.10(a) we show the emulated robustness func-
tion of T1. The optimisation algorithm was set as for the I1FFL case, save
for the number of initial observations, set to 12. The parameters of the
model are fixed to those shown in the caption of Figure 5.8. As we can
see from the robustness distribution in Figure 5.10 right, we find param-
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T1, T2 optimisation T1 T2

Median Range Median Range
Parameter 903.65 [895.89, 947.56] 675.28. [658.73, 688.11]

Average robustness 13.72 [11.45, 15.15] 0.0113 [0.0112, 0.0115]
Probability satisfaction 0.882 [0.874, 0.883] 0.689 [0.685, 0.695]
n rob. fcn evaluations 23 [22, 23] 20 [17, 22]
n simulation runs 2300 [2200, 2300] 2000 [1700, 22]

Rob. fcn eval. time (sec.) 2534 [2381, 2543] 2189 [1848, 2727]
Optim. time (sec.) 2537 [2385, 2546] 2189 [1849, 2729]

Table 5.4: Statistics of the results of 10 experiments to optimise the param-
eter T1 in the range [100,1700] and of 10 experiments to optimise T2 in the
range [100,1000]. We report the median and the range of the optimal pa-
rameter, the average robustness, the probability satisfaction, the number of
robustness function evaluations (n rob. fcn evaluations), the total number of
simulation runs, and the time, in seconds, of the robustness function evalua-
tions (Rob. fcn eval. time) and the optimisation (Optim. time). The number
of runs for each evaluation, i.e., each SMC, is 100.

eters increasing the average robustness score of the formula to a positive
value. From the emulated robustness function of parameter T1 (Figure
5.10 left), we can note that T1 is identified precisely: the robustness func-
tion has a strict maximum. Finally, we observe that if we had taken the
search domains of T1 or T2 to be much larger, we would have found addi-
tional maxima of similar height, corresponding to values of T1 increased
by one period, two periods, and so on.

5.5 Related Works

In the last years, there was a great effort to develop new and efficient
techniques to guide the system design of models with uncertain param-
eters, using temporal logic.

For example, Batt et al. in (BYWB07) showed that the behaviour of a
genetic regulatory network can be approximated with a piecewise multi-
affine system. This class of models exhibits useful convexity properties
which allows to compute a conservative finite-state automaton abstrac-
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(b) Robustness distribution after the opti-
misation

Figure 5.10: The emulated robustness function in the optimisation of T1

(left). The distribution of the robustness score for T1 = 903.65 and T2 =
675.28. The average robustness is 0.0113 and the estimated satisfaction
probability is 0.689. (right)

tion where the states represent the reachable sets in the form of hyper-
rectangles in which the original state-space is partitioned and the transi-
tions among the states characterise an over-approximation of the flows
among the reachable sets. In a model with uncertain parameters, sev-
eral different finite-state automata can be derived starting from different
parameter sets. The model checking of a temporal logic formula guides
the selection of the parameters sets for which the conservative abstrac-
tion, and so the model, will violate the problem of interest. Recently,
other authors have extended this approach (GBF+11; BLMP12), by intro-
ducing an optimal approximation algorithm, to biological models with
generic nonlinear differential equations such as the cardiac cell excitabil-
ity (GBF+11) and the bone remodelling (BLMP12) case studies. However,
this approach cannot be applied to stochastic models and the use of an
over-approximation abstracts away important timing relations, resulting
in the selection of very coarse parameter sets.

An alternative approach is to use under-approximation techniques
such as simulation or sampling. Following this direction, in the last
years, there was a great scientific effort to enrich the classical qualita-
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tive semantics of temporal logic or satisfiability (yes/no answer for the
formula satisfaction of a trajectory) with more powerful and useful no-
tions of quantitative semantics (FP07; FP09; DM10; RBFS08; ALFS11;
AGBB14; HJK+15) (or robustness degree), providing a real value measur-
ing the level of satisfaction or violation for a trajectory of the property of
interest. Several tools, such as BIOCHAM (CFS06), S-TaLiRo (ALFS11)
and Breach (Don10), are now available to perform robustness analysis on
the time series collected in wet-lab experiments or produced by simulation-
based techniques. The robustness degree have been successfully em-
ployed in the analysis of ODE-based biological models, to tune the pa-
rameters discriminating the behaviours observed experimentally. In (DFG+11),
Donzé et al. proposed a multi-step analysis, where they adopt STL to ex-
press dynamical properties and they use robustness and sensitivity anal-
ysis to sample efficiently the parameter space, searching for feasible re-
gions in which the model exhibit a particular behaviour. In (BBN13), we
proposed a new approach, based on robustness degree, for the design of
a synthetic biological circuit whose behaviour is specified in terms of sig-
nal temporal logic (STL) formulae. However, in all the aforementioned
cases, stochasticity is not taken into account. It is worth mentioning that
all these simulation based techniques are based on the (approximate) so-
lution of reachability problems for non-linear ODE systems, which can
be tackled with Bayesian optimisation techniques presented in this pa-
per (BS14).

With regard to the stochastic models, the satisfiability analysis has
been considered as a discriminating criterion to tune the parameters in
the design process using both simulation-based statistical approximated
methods (KNP04; BS15) and symbolic methods (LMST07; BGK+11). Lan-
otte et. al (LMST07) showed that for parametric probabilistic transition
systems (or discrete time Markov chains) the problem of finding (sym-
bolically) an instance of parameter values for a reachability property to
be satisfied is equivalent to the problem of finding the roots of a gen-
eral polynomial and so it is generally undecidable if proper restrictions
are not considered. In (DG08b), the authors proposed a combined ap-
proach of a model checker together with a genetic algorithm to guide
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the parameter-estimation process by reducing the distance between the
desired behaviour and the actual behaviour. The work (HKM08) con-
cerns with the parameter-synthesis problem, using symbolic methods,
for parametric continuos time markov chains and time-bounded prop-
erties. Also in this case the problem results to be generally undecidable
and the authors proposed (HKM08) an approximation method that pro-
vide a solution in most cases. Another related work in this sense is that
of (BCDŠ13), where authors compute exactly upper and lower bounds
on the satisfaction probability within a given region of the parameter
space. All these approaches are designed to work with specific classes of
stochastic models.
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Chapter 6

Signal Spatio-Temporal
Logic

In this chapter, we present the Signal Spatio-Temporal Logic, SSTL, (NB14;
NBC+15), a spatial extension of Signal Temporal Logic, STL, described in
Chapter 3. In particular, we extend STL with two spatial modalities: the
bounded somewhere operator �[d1,d2] and the bounded surround operator
S[d1,d2]. In the following, we first introduce the type of signals that the
logic specifies, then we define the syntax and the semantics of SSTL; af-
terwards, we introduce the monitoring algorithms for this language. We
defined also a stochastic semantics for SSTL, similarly to the one define
for STL in the previous chapter. Finally, we present a number of case
studies to illustrate the logic at work.

6.1 Spatio-Temporal Signals and Traces

SSTL is interpreted on spatio-temporal signals with continuous time and
discrete space.

Formally, a spatio-temporal signal, is a function s ∶ T ×L→ E, where

• T is the time domain; it is a real-valued interval [0, T ] ⊆ R≥0, for
some T > 0,
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• L is a discrete set of locations. In particular, the discrete space is
described by a weighted graph G = (L,E,w), where L is the set of
locations (nodes), E is the set of edges, and w ∶ E → R is a function
that associates a weight to each edge.

The space is also equipped with a metric, i.e., a function d ∶ L×L→
R≥0 that returns a positive real value for each pair of elements in
L; in particular, the metric is the shortest weighted path distance, i.e.,
the cost of the shortest path between two different locations. More
details about the space representation can be found in Chapter 2.

• E is a subset of R∗ = R⋃{+∞,−∞}. Signals with E = B = {0,1}
are called Boolean signals, whereas those where E = R∗ are called
real-valued or quantitative signals.

A spatio-temporal trace is a function x ∶ T × L → D, s.t. x(t, `) ∶=
(x1(t, `),⋯, xn(t, `)) ∈ D ⊆ Rn, where each xi ∶ T × L → D1 ⊆ R, for
i = 1, ..., n, is the projection on the ith coordinate/variable. Note that
these projections have the form of quantitative signals. They are called
the primary signals of the trace. We can thus see the trace as a set of
primary signals. This means that SSTL can specify property of spatio-
temporal traces. Spatio-temporal traces can be obtained, e.g., by simu-
lating a stochastic model or by computing the solution of a deterministic
system. For example, the framework of patch-based population models,
described in Chapter 2, are a natural setting from which both stochas-
tic and deterministic spatio-temporal traces of the considered type can
emerge. An alternative source of traces are measurements of real sys-
tems.

6.2 Syntax

The syntax of SSTL is given by

ϕ ∶= µ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 U[t1,t2] ϕ2 ∣ �[d1,d2]ϕ ∣ ϕ1 S[d1,d2]ϕ2.

where µ is an atomic predicate, negation and conjunction are the stan-
dard Boolean connectives, and U[t1,t2] is the until operator, where [t1, t2]
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is a real positive closed intervals with t1 < t2. The new spatial operators
are the somewhere operator, �[d1,d2], and the bounded surround operator
S[d1,d2], where [d1, d2] is a closed real interval with d1 < d2.

Similarly to STL, the atomic predicate µj is of the form µj(x1, . . . , xn) ≡
(fj(x1, . . . , xn) ≥ 0), for fj ∶ Rn → R. Each atomic proposition gives rise
to a spatio-temporal signal. In the Boolean case, given a trace x, we can
compute the Boolean signal sj(t, `) = µj(x(t, `)) by point-wise lifting,
where sj ∶ T × L → B; Similarly, a quantitative signal is obtained as the
real-valued function yj ∶ T × L → R, with yj(t, `) = fj(x(t, `)), this latter
is also called the secondary signal.

The (bounded) until operator ϕ1 U[t1,t2] ϕ2 requires ϕ1 to hold from
now until, in a time between t1 and t2 time units in the future, ϕ2 be-
comes true. The eventually operator F[a,b] and the always operator G[a,b]
can be defined as usual: F[a,b]ϕ ∶= ⊺U[a,b]ϕ, G[a,b]ϕ ∶= ¬F[a,b]¬ϕ. In a sim-
ilar way, we can derive the everywhere operator �[d1,d2]ϕ ∶= ¬�[d1,d2] ¬ϕ.

We now describe in detail the new spatial operators. The somewhere
and the everywhere operators were inspired from the modal operators
of the Multiprocess Network Logic (RS85), described in Chapter 3. The
idea came from the necessity to describe behaviours at a certain distance
from a specific point, e.g., “from a bike sharing station, in a radius of 100
meters, there are more than 30 bikes” or “in all the positions around my
location, at a distance less the 1 km, there are no infected individuals”.
Formally, the spatial somewhere operator �[d1,d2]ϕ requires ϕ to hold
in a location reachable from the current one with a cost greater than or
equal to d1 and lesser than or equal to d2. The cost is given by the shortest
weighted distance between the locations, i.e., the sum of the weights of
the edges of the shortest path (for a formal definition of the metrics see
Chapter 2). We use the word “cost” to distinguish it from the classical
spatial notion of distance. Indeed, we can have two streets with the same
distance but different travel time due to traffic light or congestion. In
Figure 6.1, we report some examples of spatial properties. In the graph
of the figure, the orange point satisfies the property �[3,5] pink. Indeed,
there exists a point at a distance 3 from the orange point that satisfies the
pink property. The everywhere operator �[d1,d2]ϕ ∶= ¬�[d1,d2]¬ϕ requiring
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ϕ to hold in all the locations reachable from the current one with a total
cost between d1 and d2. In Figure 6.1, the orange point of the graph
satisfies the property �[2,3] yellow. Indeed, all the points at a distance
between 2 and 3 from the orange point satisfy the yellow property.

The surround operator ϕ1 S[d1,d2]ϕ2 was inspired by the spatial until
modality of SLCS, Spatial Logic for Closure Spaces, (CLLM14), described in
Chapter 3. It expresses the topological notion of being surrounded by a
ϕ2-region, while being in a ϕ1-region, with additional metric constraints.
The idea is that one cannot escape from a ϕ1-region without passing from
a node that satisfies ϕ2 and, in any case, one has to reach a ϕ2-node at a
distance between d1 and d2. For example, this operator permits to de-
scribe properties as “there are no bikes in my station but all the bike
stations directly connected with me have at least one bike and are at a
distance less than 100 meters from me”. Formally, the surround formula
ϕ1 S[d1,d2]ϕ2 is true in a location `, when ` belongs to a set of locations A
satisfying ϕ1 and at a distance less than d2 from `, the external boundary
B+(A) of A must contain only locations satisfying ϕ2. Furthermore, lo-
cations in B+(A) must be reached from ` with a cost between d1 and d2.
B+(A) is the set of all the locations that do not belong to A but that are
directly connected with a location in A. In Figure 6.1, the green points
satisfy greenS[0,100] blue. Indeed, for each green point we can find a
region that contains the point, such that all its points are green and all the
points connected with an element that belongs to the region are blue and
satisfy the metric constraint. Instead, the property greenS[2,3] blue is
satisfied only by the dark green point. The reason is that such a dark
green point is the only point for which there exists a region (the green
region) such that all its elements are at a distance less than 3 from it and
are green; and all the elements of the external boundary (the blue region)
are at a distance between 2 and 3 from it and are green.
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Figure 6.1: Example of spatial properties. The orange point satis-
fies �[3,5] pink. The orange point satisfies �[2,3] yellow. All green
points satisfy greenS[0,100] blue. The dark green point satisfies also
greenS[2,3] blue.

For more interesting examples of SSTL formulae we refer the reader
to Section 6.5.

6.3 Semantics

We now define the Boolean and the quantitative semantics for SSTL.
The Boolean semantics, as customary, returns true/false depending on
whether the observed trace satisfies the SSTL specification.

6.3.1 Boolean Semantics
Definition 2 (SSTL Boolean semantics) The Boolean satisfaction relation for
an SSTL formula ϕ over a spatio-temporal trace x is given by:

(x, t, `) ⊧ µ ⇔ µ(x(t, `)) = 1

(x, t, `) ⊧ ¬ϕ ⇔ (x, t, `) /⊧ ϕ
(x, t, `) ⊧ ϕ1 ∧ ϕ2 ⇔ (x, t, `) ⊧ ϕ1 ∧ (x, t, `) ⊧ ϕ2

(x, t, `) ⊧ ϕ1 U[t1,t2]ϕ2 ⇔ ∃t′ ∈ t⊕ [t1, t2] ∶ (x, t′, `) ⊧ ϕ2 ∧ ∀t′′ ∈ [t, t′],
(x, t′′, `) ⊧ ϕ1

(x, t, `) ⊧�[d1,d2]ϕ ⇔ ∃`′ ∈ L ∶ d1 ⩽ d(`′, `) ⩽ d2 ∧ (x, t, `′) ⊧ ϕ

(x, t, `) ⊧ ϕ1 S[d1,d2]ϕ2 ⇔ ∃A ⊆ L`[0,d2] ∶ ` ∈ A ∧ ∀`′ ∈ A, (x, t, `′) ⊧ ϕ1∧

B+(A) ⊆ L`[d1,d2] ∧ ∀`
′′ ∈ B+(A), (x, t, `′′) ⊧ ϕ2.

A trace x satisfies ϕ in location `, (x, `) ⊧ ϕ, if and only if (x,0, `) ⊧ ϕ.
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In the semantics, d ∶ L × L is the weighted distance function of the
graph G = (L,E,w); and L`

[d1,d2]
is define as the set of locations `′ such

that d1 ≤ d(`, `′) ≤ d2, i.e., L`
[d1,d2]

= {`′ ∈ SP ∣ d1 ≤ d(`, `′) ≤ d2}. More
detail about weighted distance and graph can be found in Chapter 2.

The verification of all the trace is done at time t = 0 because we are
working with future temporal modalities that talk about true now as a
function of some true in the future. Furthermore, the trace is verified in
each point in space, as we assume no privilege direction or location.

6.3.2 Quantitative Semantics

The quantitative semantics returns a real value that can be interpreted
as a measure of the strength with which the specification is satisfied or
falsified by an observed trajectory. More specifically, the sign of such a
satisfaction score is related to the truth of the formula (positive stands
for true), while the absolute value of the score is a measure of the robust-
ness of the satisfaction or dissatisfaction. This definition of quantitative
measure is illustrated in Chapter 3, in the description of STL.

Definition 3 (SSTL Quantitative semantics ) The quantitative satisfaction
function ρ(ϕ,x, t, `) for an SSTL formula ϕ over a spatio-temporal trace x is
given by:

ρ(µ,x, t, `) = f(x(t, `)) where µ ≡ (f ≥ 0)
ρ(¬ϕ,x, t, `) = − ρ(ϕ,x, t, `)
ρ(ϕ1 ∧ ϕ2,x, t, `) = min(ρ(ϕ1,x, t, `), ρ(ϕ2,x, t, `))
ρ(ϕ1 U[t1,t2]ϕ2,x, t, `) = sup

t′∈t+[t1,t2]
(min{ρ(ϕ2,x, t

′, `), inf
t′′∈[t,t′]

(ρ(ϕ1,x, t
′′, `))}

ρ(�[d1,d2]ϕ,x, t, `) = max{ρ(ϕ,x, t, `′) ∣ `′ ∈ L,d1 ⩽ d(`′, `) ⩽ d2}
ρ(ϕ1 S[d1,d2]ϕ2,x, t, `) = max

A⊆L`[0,d2]
,`∈A,B+(A)⊆L`[d1,d2]

(min(min
`′∈A

ρ(φ1,x, t, `
′),

min
`′′∈B+(A)

ρ(φ2,x, t, `
′′)))

where ρ is the quantitative satisfaction function, returning a real number ρ(ϕ,x, t, `)
quantifying the degree of satisfaction of the property ϕ by the trace x at time t
in location `. Moreover, ρ(ϕ,x, `) ∶= ρ(ϕ,x,0, `).
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The definition for the surround operator is essentially obtained from
the Boolean semantics by replacing conjunctions and universal quantifi-
cations with the minimum and disjunctions and existential quantifica-
tions with the maximum, as done for STL.

The satisfaction score has some fundamental properties: if ρ(ϕ,x, t, `) >
0, then (x, t, `) ⊧ ϕ, and similarly if ρ(ϕ,x, t, `) < 0, then (x, t, `) /⊧ ϕ. The
absolute value ∣ ρ(ϕ,x, t, `) ∣, instead, gives a measure of the strength of
the truth value.

6.4 Offline Monitoring Algorithms

In this section, we present the offline monitoring algorithms to check the
validity of a formula ϕ on a trace x(t, `), in case of discrete spaces, de-
scribed as graphs. The monitoring procedures extend the property mon-
itors introduced in (MN04) for the Boolean semantics and in (DFM13) for
the quantitative semantics, briefly described in Chapter 3.

As for STL formulae, our algorithms work with a bottom-up approach
on the syntax tree of ϕ, iteratively computing the temporal signals of
each subformula. Each node of the tree represents a subformula, the
leaf are the atomic propositions and the root represents the whole for-
mula. Given a spatio-temporal trace x(t, `), the algorithm starts comput-
ing the spatio-temporal Boolean/quantitative signals of all the atomic
propositions, then it goes up on the tree computing the spatio-temporal
Boolean/quantitative signals of a node using the signals of its child and
a specific algorithm for each operator of the logic. Finally, the spatial
Boolean/quantitative satisfaction function corresponds to the value of
the signal at time zero ρϕ(0, `). An example of the the procedure can be
seen in Figure 6.2.

In the case of the Boolean semantics, for each subformula ψ, it con-
structs a spatio-temporal signal sψ s.t. sψ(`, t) = 1 iff the subformula
is true in position ` at time t. In the case of the quantitative seman-
tics, for each subformula ψ, the signal sψ corresponds to the value of the
quantitative satisfaction function ρ, for any time t and location `. Here,
we discuss in detail the algorithms to check the new spatial operators:
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the somewhere and surround operators; the procedures for the others
Boolean and temporal operators are similar to the STL and will be just
quickly recalled. The processing of the somewhere operator is a simple
extension of the disjunction operator. The treatment of the bounded sur-
round modality ψ = ϕ1S[w1,w2]ϕ2, instead, deviates substantially from
all these procedures and will be discuss more in detail. In particular, in
the following, we will present two recursive algorithms to compute the
Boolean and the quantitative satisfaction, assuming the Boolean/quanti-
tative signals of ϕ1 and ϕ2 being known.

⋯

µ1 ∶ f1(x(t, `)) > 0
sµ1(t, `), ρµ1(t, `)

f1(x(t, `))

x1(t, `), ..., xn(t, `)

µ2 ∶ f2(x(t, `)) > 0
sµ2(t, `), ρµ1(t, `)

f2(x(t, `))

x1(t, `), ..., xn(t, `)

Boolean signals
Quant. signals

Secondary signal

sϕ(t, `), ρϕ(t, `)

sϕ(0, `), ρϕ(0, `)
Spatial Boolean satisfaction
Spatial Quant. satisfaction

Secondary signals

Primary signals

Figure 6.2: The monitoring procedure of an SSTL formula ϕ.

6.4.1 Boolean Semantics

The algorithm proceeds inductively bottom-up on the parse tree of the
formula. Given a formula ϕ, to determine if (x, `) ⊧ ϕ, we construct, for
every sub formula ψ, a Boolean signal sψ ∶ [0, T ] × L → B s.t. sψ(t, `) =
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1 iff (x, t, `) ⊧ ψ and 0 otherwise. At the termination of the algorithm, we
have the signal sφ(t, `) whose value at t = 0 determines if the trace x sat-
isfies ϕ in location `. The properties can be verified pointwise over each
location and each time independently, due to Definition 3.2: (x, `, t) ⊧ ϕ
means “the trace x in location ` at time t satisfies the property φ ”.

To optimise the monitoring procedure, we decide to split the time
domain according to the minimal interval covering Is1,...,sn consistent with
a set of temporal Boolean signals s1, . . . sn, as in (MN04). We recall that a
temporal Boolean signal is a function s ∶ [0, T ] → B. Note that, we can
represent the signal sψ ∶ [0, T ] × L → B as a finite collection of temporal
signals {sψ,`}`∈L where sψ,`(t) ∶= sψ(`, t).

Definition 4 Given an interval I , and a set of temporal signals s1, . . . sn with
si ∶ I → B, the minimal interval covering Is1,...,sn of I consistent with
the set of signals s1, . . . , sn is the shortest finite sequence of left-closed right-
open intervals I1, ..., Ih such that ⋃j Ij = I , Ii⋂ Ij = ∅, ∀i ≠ j, and for k ∈
{1, . . . , n}, sk(t) = sk(t′) for all t, t′ belonging to the same interval 1. The
positive minimal interval covering of s is I+s = {I ∈ Is∣∀t ∈ I ∶ s(t) = 1}.

The positive interval I+sψ,` corresponds to the satisfaction set of the
formula over the signal sψ,`. Futhermore, any signal can be written as
s = s1 ∨ s2 ∨⋯ ∨ sk where each si is an unitary signal, meaning that it has
a singleton positive interval, i.e., I+si = {[t1, t2)} for some t1 < t2 ∈ R⩾0.
Finally, Isψ,` = I+sψ,` ⋃I

−
sψ,`

and I+sψ,` ⋂I
−
sψ,`

= ∅.
Using these definitions of signals, interval coverings, and satisfaction

set, the procedure for the classic operators of STL is similar to the one
described in paper (MN04). We briefly recall it in the following and then
we describe the new spatial operators.
Atomic Predicates: ψ = µ. The computation of the Boolean signal as-
sociated with an atomic predicate is a direct application of Definition 2:
sµ,`(t) = µ(x(t, `)).
Negation: ψ = ¬φ, then I+s¬φ,` = I

−
sφ,`

.

Disjunction: ψ = φ1 ∨ φ2, then, given sφ1,`, sφ2,`, let I be the minimal in-
terval covering consistent with both signals. For each Ii ∈ I, we construct

1The fact that we can always obtain a finite interval covering is a consequence of the
restriction to closed intervals [t1, t2], t1 < t2, in STL. For more detail about signals and
interval covering see Chapter 3 or (MN04).
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the signal sψ,`(Ii) = sφ1,`(Ii) ∨ sφ2,`(Ii) and we merge adjacent positive
intervals to obtain I+

ψ,`
.

Until: ψ = φ1U[a,b]φ2. As we are working with future temporal modal-
ities, we need to shift intervals backwards. This has to be done inde-
pendently for each unitary signal, then taking the union of the so ob-
tained satisfaction sets. Given two unitary signals p and q, the signal
ψ = pU[a,b]q is the unitary signal such that I+ψ = {((Ip ∩ Iq)⊖ [a, b])⋂ Ip},
where [m,n)⊖ [a, b] = [m− b, n−a)⋂[0, T ] is the Minkowski sum. In the
general case, let sφ1,` = p1∨⋯∨pn and sφ2,` = q1∨⋯∨qm be signals written
as union of unitary signals, then ψ = sφ1,`U[a,b]sφ2,` = ⋁ni=1⋁mj=1 piU[a,b]qj .
The proof of this result can be found in (MN04).
Somewhere: ψ =�[d1,d2]ϕ. As remarked at the beginning of this section,
and relying on the fact that we have a finite number of locations, we can
process independently each location in the signal. Given the signal sψ,`,
for a fixed location `, we can rewrite the spatial operator as a disjunction
between all signals in locations `′ s.t. d1 ⩽ d(`′, `) ⩽ d2. This allows us to
use the monitoring procedure for disjunction, constructing the minimal
interval covering I consistent with all sφ,`′ signals s.t. d1 ⩽ d(`′, `) ⩽ d2,
and defining, for each Ii ∈ I ∶

sψ,`(Ii) = ⋁
d1⩽d(`′,`)⩽d2

sϕ,`′(Ii).

The satisfaction set I+sψ,` is then the union of the positive Ii (i.e., Ii s.t.
sψ,`(Ii) = 1), merging adjacent positive intervals.

We stress here that the introduction of the spatial somewhere oper-
ator is not merely syntactic sugar, for two reasons. First, its definition
can be applied also to countable discrete spaces, and it can be easily gen-
eralised to continuous spaces. Secondly, even assuming a finite discrete
space, expanding it as a disjunction would produce a blowup of the for-
mula size exponential in the nesting level of spatial operators, and hence
an exponential increase in the complexity of the monitoring procedure.

Surround: ψ = ϕ1S[d1,d2]ϕ2. Algorithm 4 presents the procedure to mon-
itor the Boolean semantics of ψ in a location `, returning the temporal
Boolean signal sψ,` of ψ at location `. The algorithm first computes the
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set of locations L`
[0,d2]

that are at distance d2 or less from `, and then, re-
cursively, the temporal Boolean signals sϕ1,`′ and sϕ2,`′ , for `′ ∈ L`

[0,d2]
.

These signals provide the satisfaction of the sub-formula ϕ1 and ϕ2 at
each point in time, and for each location of interest. Then, a minimal in-
terval covering consistent to all the signals sϕ1,`′ and sϕ2,`′ is computed,
and to each such interval, a core procedure similar to that of (CLLM14)
is applied. More specifically, we first compute the set of locations W in
which both ϕ1 and ϕ2 are false, and that are in the external boundary of
the locations that satisfy ϕ1 (V ) or ϕ2 (Q). The locations in W are “bad”
locations, that cannot be part of the external boundary of the set A of ϕ1-
locations which has to be surrounded only by ϕ2-locations. Hence, the
main loop of the algorithm removes iteratively from V all those locations
that have a neighbour inW (setN , line 13), constructing a new set T con-
taining only those locations inN that do not satisfy ϕ2, until a fixed point
is reached. As each location can be added to W and be processed only
once, the complexity of the algorithm is linear in the number of locations
and linear in the size of the interval covering. Correctness can be proven
in a similar way as in (CLLM14) and is reported in Appendix A.1.

6.4.2 Quantitative Semantics

The quantitative semantics for STL is defined for arbitrary signals, but al-
gorithms are provided only for piecewise linear continuous ones (DM10;
DFM13), considered as the interpolation of continuous functions. Here,
we deviate from this interpretation, and consider instead a simpler inter-
polation based on piecewise constant signals, as described below.

Piecewise constant approximation of quantitative signals. We discre-
tise the time domain with step h > 0, so that our signals in each loca-
tion `, s` ∶ [0, T ] → R, are represented by the finite set {s`(0), s`(h), . . . ,
s`(mh)}, where mh = T . Then, the piecewise constant approximation
of s`(t) is the signal ŝ`(t) = s`(kh) for t ∈ [kh, (k + 1)h). We further as-
sume, without loss of generality2, that all time bounds appearing in the

2Time bounds can be restricted to rational numbers, hence there always exists an h > 0
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Algorithm 2 Boolean monitoring for the surround operator
1: input `,ψ = ϕ1S[d1,d2]ϕ2

2: ∀`′ ∈ L`
[0,d2]

compute sϕ1,`′ , sϕ2,`′

3: compute Isψ,` {the minimal interval covering consistent with sϕ1,`′ , sϕ2,`′ ,

`′ ∈ L`
[0,w2]

}
4: for all Ii ∈ Isψ,` do
5: V = {`′ ∈ L`

[0,d2]
∣sϕ1,`′(Ii) = 1}

6: Q = {`′ ∈ L`
[d1,d2]

∣sϕ2,`′(Ii) = 1}
7: T = B+(Q⋃V )
8: while W /= ∅ do
9: W ′ = ∅

10: for all ` ∈W do
11: N = pre(`)⋂V = {`′ ∈ V ∣`E`′}
12: V = V /N
13: W ′ =W ′⋃(N/Q)
14: end for
15: W =W ′

16: end while

17: sψ,`(Ii) =
⎧⎪⎪⎨⎪⎪⎩

1 if ` ∈ V,
0 otherwise.

18: end for
19: merge adjacent positive interval Ii, i.e., Ii s.t. sψ,`(Ii) = 1
20: return sψ,`
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temporal operators of a SSTL formula are multiples of h.
Under the assumption that secondary signals are Lipschitz continu-

ous3, and letting K be the maximum of their individual Lipschitz con-
stants, the following properties hold: (a) s`(kh) = ŝ`(kh); and (b) ∥s`(t) =
ŝ`(t)∥ ≤Kh/2, uniformly in t.

Monitoring the quantitative semantics.

We now turn to the monitoring algorithm for the quantitative semantics,
assuming the input is a piecewise constant signal, where the time domain
has been discretised with step h.

Monitoring Boolean operators is straightforward, we just need to ap-
ply the definition of the quantitative semantics pointwise in the discreti-
sation. The time bounded until operator can also be easily computed
by replacing the min and max over dense real intervals in its definition
by the corresponding min and max over the corresponding finite grid of
time points. In this case, however, we can introduce an error due to the
discrete approximation of the Lipschitz continuous signal in intermedi-
ate points, yet this error accumulates at a rate proportional to Kh, where
K is the previously defined Lipschitz constant.

Monitoring the somewhere operator�[d1,d2]ϕ is also immediate: once
the location ` of interest is fixed, similarly to the Boolean semantics, we
can just turn it into a disjunction of the signals sϕ,`′ for each location
`′ ∈ L`

[d1,d2]
.

The only non-trivial monitoring algorithm is the one for the spatial
surround operator, which we discuss below. However, as the satisfaction
score is computed at each time point of the discretisation and depends on
the values of the signals at that time point only, this algorithm introduces
no further error w.r.t. the time discretisation. Hence, we can globally
bound the error introduced by the time discretisation:

Proposition 6.1 Let the primary signal x be Lipschitz continuous, as the func-
tions defining the atomic predicates. Let K be a Lipschitz constant for all sec-

satisfying all assumptions.
3The assumption of Lipschitz continuity holds whenever the primary signal is the solu-

tion of an ODE with a locally Lipschitz vector field, as usually is the case.
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ondary signals, and h be the discretisation step. Given a SSTL formula ϕ, let
u(ϕ) count the number of temporal until operators in ϕ, and denote by ρ(ϕ,x)
its satisfaction score over the trace x and by ρ(ϕ, x̂) the satisfaction score over
the discretised version x̂ of x with time step h. Then ∥ρ(ϕ,x) − ρ(ϕ, x̂)∥ ≤
u(ϕ)Kh.

Proof: We first observe that the monitoring algorithm for Boolean and
spatial operators preserve the error of the input quantitative signals. This
means that if ∥sϕj ,`− ŝϕj ,`∥ ≤ ε, then ∥sψ,`− ŝψ,`∥ ≤ ε, for ψ one of ¬ϕ1, ϕ1∧
ϕ2, ϕ1S[d1,d2]ϕ2, �[d1,d2]ϕ1. Hence, temporal discretisation introduces
errors only for temporal operators.

Now, let I = [t1, t2] be such that tj = kjh, and denote the Minkowski
sum by ⊕, so that t⊕I = [t+ t1, t+ t2]. Denote by Î the discretised version
of I , with step h, Î = {k1h, (k1 + 1)h, . . . , k2h}. We observe two facts for
the maximum, with identical statements holding for the minimum.

• Let f(t) be Lipschitz with constant K. Let g(t) = maxt′∈t⊕I f(t)
and ĝ(t) = maxt′∈t⊕Î f(t). Then ∥g(t) − ĝ(t)∥ ≤ Kh/2. This holds
by applying the Lipschitz property between a generic point in t⊕ I
and the closest point in t⊕Î , and noting that the maximum distance
between such points is h/2.

• If f̃ is such that ∥f̃(t) − f(t)∥ ≤ ε uniformly in t, and we let g, ĝ as
above, and g̃(t) = maxt′∈t⊕Î f̃(t), then

∥g(t) − g̃(t)∥ ≤ ∥g(t) − ĝ(t)∥ + ∥ĝ(t) − g̃(t)∥ ≤Kh/2 + ε.

Hence, the second property implies that the additional error we intro-
duce by evaluating a time bounded until is an additive term no larger
than Kh, as in the definition of the quantitative semantics of the until,
there are a nested minimum and a maximum over dense time intervals.
Hence the total error will be bounded by Kh times the number of tem-
poral operators.

Monitoring Algorithm for the Surround. The quantitative monitoring
procedure for the bounded surround operator is shown in Algorithm 3.
Similarly to the Boolean case, the algorithm for the surround formula ψ =
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ϕ1S[d1,d2]ϕ2 takes as input a location ` and returns the quantitative signal
sψ,`, or better its piecewise constant approximation with time-step h (an
additional input, together with the signal duration T ). As a first step, it
computes recursively the quantitative satisfaction signals of subformula
ϕ1, for all locations `′ ∈ L`

[0,d2]
, and of subformula ϕ2, for all locations

`′ ∈ L`
[d1,d2]

. Furthermore, it sets all the quantitative signals for ϕ1 and
ϕ2 for the other locations to the constant signal equal to minus infinity.
The algorithm runs a fixpoint computation for each time instant in the
discrete time set {0, h,2h, . . . ,mh}. The procedure is based on computing
a function X , with values in the extended reals R∗, which is executed on
the whole set of locations L, but for the modified signals equal to −∞
for locations not satisfying the metric bounds for `. The function X is
defined below.

Definition 5 Given a finite set of locations L and two functions s1 ∶ L →
R∗, s2 ∶ L→ R∗. The function X ∶ N ×L→ R is inductively defined as:

1. X (0, `) = s1(`)

2. X (i + 1, `) = min(X (i, `),min`′∣`E`′(max(X (i, `′), s2(`′))))

The algorithm then computes the function X iteratively, until a fixed-
point is reached.

Theorem 6.1 . Let s1 and s2 be as in Definition 5, and

s(`) = max
A⊆L,`∈A

(min(min
`′∈A

s1(`′), min
`′∈B+(A)

s2(`′))),

then
lim
i→∞
X (i, `) = s(`), ∀` ∈ L.

Moreover, ∃K > 0 s. t. X (j, `) = s(`),∀j ≥K.

The following corollary provides the correctness of the method. It
shows that, when X is computed for the modified signals constructed by
the algorithm, it returns effectively the quantitative satisfaction score of
the spatial surround.
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Algorithm 3 Quantitative monitoring for the surround operator

1: inputs: `,ψ = ϕ1S[d1,d2]ϕ2 , h, T
2: for all `′ ∈ L do
3: if 0 ≤ d(`, `′) ≤ w2 then
4: compute sϕ1,`′

5: if d(`, `′) ≥ d1 then
6: compute sϕ2,`′

7: else sϕ2,`′ = −∞
8: else sϕ1,`′ = −∞, sϕ2,`′ = −∞
9: end for

10: for all t ∈ {0, h,2h, . . . , T} do
11: for all `′ ∈ L do
12: Xprec(`′) = +∞
13: X (`′) = sϕ1,`(t)
14: end for
15: while ∃`′ ∈ L, s.t. Xprec(`′) /= X (`′) do
16: Xprec = X
17: for all `′ ∈ L do
18: X (`′) = min(Xprec(`′),min`′′∣`′E`′′(max(sϕ2,`′′(t),Xprec(`′′))))
19: end for
20: end while
21: sψ,`(t) = X (`)
22: end for
23: return sψ,`
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Corollary 6.1 Given an ˆ̀∈ L, let ψ = ϕ1S[d1,d2]ϕ2 and

s1(`) =
⎧⎪⎪⎨⎪⎪⎩

ρ(φ1,x, t, `) if 0 ≤ d(ˆ̀, `) ≤ d2

−∞ otherwise.

s2(`) =
⎧⎪⎪⎨⎪⎪⎩

ρ(φ2,x, t, `) if d1 ≤ d(ˆ̀, `) ≤ d2

−∞ otherwise.

Then ρ(ψ,x, t, ˆ̀) = s(ˆ̀) = maxA⊆L,ˆ̀∈A (min(min`∈A s1(`),min`∈B+(A) s2(`))).

In order to discuss the complexity of the monitoring procedure, we
need an upper bound on the number of iterations of the algorithm. This
is given by the following.

Proposition 6.2 Let dG be the diameter of the graph G and X (`) the fixed
point of X (i, `), then X (`) = X (dG + 1, `) for all ` ∈ L.

It follows that the computational cost for each location is O(dG∣L∣m),
where m is the number of sampled time-points. The cost for all locations
is therefore O(dG∣L∣2m).

The proofs of Theorem 6.1, Corollary 6.1 and Proposition 6.2 are re-
ported in Appendix A.2.

6.4.3 Stochastic Semantics

The extension of the definition of the SSTL semantics to stochastic sys-
tems follows directly from the definition of the stochastic semantics of
STL, defined in the previous chapter. Remember that the verification of
a spatio-temporal property is done over each specific location. Given a
spatio-temporal trace x(t, `) and a property φwhen we check its satisfac-
tion or robustness score what we obtain are a satisfaction and a robust-
ness function, i.e., we have a value for each location. Let us denote by
D the space of all possible trajectories of the stochastic spatio-temporal
process. It can be seen as the space of the cadlag functions D([0,∞],D),
where D = D1⊕⋯⊕Dm, with m = ∣L∣ the number of locations and Di the
state space of the temporal trajectories in location `i. We denote by D`i
the projection on the Di state space of the location `i.
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X induces a probability measures on D. We can interpret the Boolean
and the quantitative satisfaction function of φ as functionals on the space
D, assigning to each trajectory x ∈ D its corresponding set of truth val-
ues according to the Boolean semantics or its set of satisfaction degrees
according to the quantitative semantics, one for each location. In the
Boolean case, the functional is Iφ ∶ D → {0,1}m, such that Iφ(x)[`] = 1 if
and only if (x, `) ⊧ φ, where ` ∈ L. Hence, it identifies, in each location,
the subset of temporal trajectories that satisfy the formula φ. It follows
that

P (φ, `) = P{(x, `) ∈ D` ∣ Iφ(x)[`] = 1} = P{(x, `) ∈ D` ∣ (x, `) ⊧ φ}.

In the quantitative case, the robustness (satisfaction degree) function
ρ(φ,x, `) can be seen as a functional Rφ from the trajectories in D to Rm,
defined as Rφ(x)[`] = ρ(φ,x, `) = ρ(φ,x,0, `). If Rφ is measurable, we
can define, then, a set of real-valued marginal random variables Rφ[`] =
Rφ(X)[`], ` ∈ L, with probability distribution:

P (Rφ(X)[`] ∈ [a,b]) = P (X` ∈ {(x, `) ∈ D` ∣ ρ(φ,x, `) ∈ [a, b]}) .

Applying this definition to a stochastic spatio-temporal model, we
obtain a distribution of robustness degrees. From these distributions we
can compute the average robustness in each location E(Rφ[`]) that gives
a measure of how strongly a formula is satisfied.

After that, we can use a Bayesian statistical model checking approach to
estimate the satisfaction probability, described in Chapter 4 and classic
statistical tools for the average robustness degree, as in Chapter 5.

To prove that Rφ is measurable, we can first note that the new spatial
operators do not increase the time horizone Tφ = max`∈L{Tφ[`]} of the
formula and that they work in a similar way as the conjunction and dis-
junction operators. Indeed, T�[d1,d2]φ[`] = max`′∣d(`,`′)∈[d1,d2] Tφ[`′], and a
similar formula can be derived for the surround operator.

Then, we have to extend Lemma 5.3 to SSTL formulae. Let φ be an
SSTL formula. Let R̂φ be the functional associated with it, R̂φ ∶ D([0, T ],D)
→ D([0, T − Tφ],D), s.t. R̂φ(x)(t)[`] = ρ(φ,x, t, `). To prove that R̂φ is
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measurable, we have to extend the measurability on the spatial formu-
las. This means we have to prove that R̂�[d1,d2]φ[`] and R̂φ1S[d1,d2]φ2[`]
are measurable for an arbitrary location `, supposing R̂φ, R̂φ1 , and R̂φ2

measurable (for the structural induction).

Somewhere �[d1,d2]φ. R̂φ1∧φ2 = max`′∣d(`,`′)∈[d1,d2] R̂φ[`′], which is mea-
surable in virtue of Lemma 5.2 b), of the fact that measurability
composing measurable functions and of the fact that the set L is
finite.

Surround φ1S[d1,d2]φ2. The procedure is similar. Indeed, R̂φ1S[d1,d2]φ2 =
maxAmin{min`′∈A{R̂φ1[`′]}min`′∈B+(A){R̂φ2[`′′]}}, where A is a fi-
nite set of locations of L. This is again measurable by the same ar-
guments above, and the fact that there is a finite number of sets
A.

The measurability of Rφ ∶ D([0,T],D) → Rm then follows from the fact
that Rφ = π0 ○ R̂φ, i.e., Rφ(x)[`] = ρ(φ,x, `) = ρ(φ,x,0, `) = R̂φ(x)(0)[`].

6.5 Case Studies

6.5.1 Spread of a Cholera Infection

As first case study, we consider a model of a cholera outbreak. Cholera is
an infection of the intestine caused by the bacterium Vibrio cholerae and
a prominent example of a waterborne disease (BAM+08; MBR+12). Typi-
cally, the infection is transmitted by contaminated food or water. An ex-
plicit modelling of the hydrological space where the infection spreads is
therefore a crucial aspect to understand and analyse this kind of disease.
For this reason this example is very suitable to show the potentiality of
this logic, here we will see how our logic can easily describe elaborated
spatio-temporal behaviours by means of the spatial operators. In particu-
lar, with this example, we will explore the potentiality of the somewhere
operator.
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Figure 6.3: The graph of the population spatial distribution /locations dis-
tribution. Note that this is not the graph of the patch-PCTMC model but
only the graph of the locations. The nodes `1, ..., `7 represent the different
communities; the edges represent the connection between the communities
through the water basin. The green numbers correspond to the values w of
the distance between locations.

Model. We represent space as a weighted graph, shown in Figure 6.3.
The nodes represent the human communities and the edges describe the
links between water basins of different areas. The idea is to analyse the
diffusion of an epidemic along the communities that live close to a river.
There are two agent classes: the bacteria and the individuals. The bacte-
ria have only one state (B) but they can be transported to different nodes
via the river. An individual, instead, can be in three different states:
susceptible (S) infected (I) and recovered (R), but cannot change loca-
tion. Ignoring human mobility is a simplification justified by the fact
that we are considering communities that live in specific places. Fur-
thermore, here our focus is to illustrate the logic at work, rather than
presenting a fully realistic model. Extension to more complex scenar-
ios, however, are relatively straightforward (MBR+12), and can be easily
described within our formal framework, so that analogous or more com-
plex spatio-temporal logical properties can still be checked.

The model of this system has state variables XS ,XI ,XR,XB , count-
ing the number of susceptible, infected, and recovered individuals, and
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the concentration of the bacteria in each location. Discrete space is de-
scribed by the graph in Figure 6.3, which is equipped with a weight
function w ∶ E → R that returns the cost of each edge. In this specific
case, we interpret the cost w(`i, `j) of an edge between nodes `i and `j

as the distance between them. We compute, then, the distance function
d ∶ L×L→ R that evaluates the shortest distance for each pair of locations
inL. So, for example, in Figure 6.3, d(`1, `5) = w(`1, `2)+w(`2, `5) = 9. The
movement of bacteria from a location `i to a directly connected location
`j is specified by the inter-patch transitions νmov = (mov,B, gmov). Here
gmov(X(t, `), `i, `j) = lpijXB(t, `i) is the rate function, where l is the total
water flow (assumed equal for all nodes) and pij is the fraction of water
flowing out of node `i which reaches node `j . Such a rate function de-
scribes the bacteria mobility as a passive mobility due to the water flow.
The probability pi,j to go from `i to `j is

(pi,j)`i,`j∈L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 2/5 3/5 0 0 0 0
0 0 2/10 3/10 1/2 0 0
0 2/10 0 3/10 1/2 0 0
0 0 0 0 3/10 2/5 3/10
0 0 0 3/10 0 3/10 2/5
0 0 0 0 0 0 1/2
0 0 0 0 0 1/2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The sum of the values pij in each row is equal to one, i.e ∑k pik = 1,
except for the locations `6 and `7 where is less than one to capture the
continuation of the river. The other transitions describe the change of
the individual state, according to a model similar to the SIR epidemics
model introduced in the Example 2.1, with the notable difference of the
infection rate, which now depends on the concentration of bacteria in
water and not directly on the number of infected individuals. We also
consider transitions describing decrease or growth of the bacterium pop-
ulation.

The patch population model is thus ((S,X,T ),G,V), where S = {S, I,
R,B} is the set of states, X = (XS ,XI ,XR,XB) is the state vector, G =
(L,E,w), with L = {`1, ..., `n}, is the graph as in Figure 6.3, V = {(mob,B,
gmob)} is the set of inter-patch transition, as described above, and T is
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the set containg the following intra-patch transitions. More specifically:
⋆ τinf is the infection transition: S + B → I + B with rate finf(X) =
β(`) XB

K+XB
XS , where K is the half saturation constant, β(`) represents

the site-dependent rate of exposure to contaminated water,
⋆ τSnat is the natality transition: ∅ → S, with rate fSnat(X) = µH(`).
H(`) is the size of the community in location `, it is assumed to be at a
demographic equilibrium with µ being the human mortality rate,
⋆ τSmort is the mortality of a susceptible individual: S → ∅, with rate µ,
⋆ τImort is the mortality of a infected individual: I → ∅, with rate µ + α,
where α is the mortality rate due to cholera,
⋆ τrec is the recovery transition: I → R, with rate γ,
⋆ τBdeg is the degradation transition: B → ∅, with rate µB ,
⋆ τBgrowth is the bacterial growth transition: ∅ → B, with rate function
fSnat(X) = p

W
XI , where p is the rate at which bacteria are produced by

one infected person and W is the volume of the contaminated water.

Analysis. The first spatio-temporal behaviour that we consider is how
the epidemic propagates along the river. The idea is to consider a model
that starts with the infection in only one location, `1, and then to check
whether the infection has propagated at a certain distance from `1 after a
certain time. This behaviour can be captured by the SSTL formula:

φ1 = F[0,Tinf ] �[d1,d2] (XI > cinf), (6.1)

verifying it in location `1. The exact meaning of the formula is: even-
tually, in less than Tinf unit time, the number of infected individual be-
comes more than cinf in a location ` with d(`1, `) ∈ [d1, d2], i.e., at a dis-
tance from location `1 equal or greater than d1 and equal or less than
d2.

We analyse a system with 7 locations, all with the same size, with
distance between locations d(`i, `j), in agreement with the green integer
values labelling the edges in Figure 6.3. We choose the parameter val-
ues following (BAM+08). As initial variables we set, for all the locations
apart `1, the same number of susceptible individuals, XS = 500, and we
start with zero infected individuals, XI = 0; whereas, for `1 we set 100
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Figure 6.4: (a) Dependency of the robustness degree on the mobility rate
(for the ODE interpretation of the model). (b) Empirical robustness distri-
bution of the formula 6.1 with d1 = 12 and d2 = 15 and Tinf = 5, obtained
from 1000 simulation runs.

infected individuals and 400 susceptible. There are no recovered individ-
uals at the beginning. We set also the bacterium concentration equal to
zero in all the locations except `1. From (BAM+08), the parameters of the
model have been set as µ = 0.0005,H(`i) = 500, β = 1,K = 5, γ = 0.2, α =
0.0004, µB = 0.228, p = 0.2,W = 50, l = 0.5 while the matrix (pij)i,j≤7 has
as non-zero entries those specified in Figure 6.3. For the formula param-
eters, we set d1 = 12 and d2 = 15, cinf = 150 and Tinf = 5 unit times.

In Figure 6.4, we show some results of the monitoring of this for-
mula. In the top panel, we consider the ODE interpretation and show
how the robustness score increases as a function of the mobility rate. In
the bottom panel, we show the empirical distribution from 1000 runs of
the robustness degree from the stochastic model, with vertical lines de-
noting the average (red lines) and conditional averages on the formula
being false/ true (green lines). Changing the mobility rate in the stochas-
tic model from 0.3 to 0.6, the satisfaction probability varies from 0.397
to 0.975, while the average robustness score varies (monotonically) from
-16.93 to 52.72. We stress here how the robustness score can be used for
system design purposes, trying to robustly match spatio-temporal SSTL
specifications, following, e.g., the procedure described in the previous
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chapter.
In order to illustrate in more detail the expressive power of this logic,

we discuss now two additional properties, using the following building
blocks:

ψ1 = F[0,Tstart](�[0,dnear](XI > cinf)))
ψ2 = (F[Tstart,Tstart+DT ] �[dfar,dmax] (XI > cinf))

The first one is �[0,dmax](ψ1 Ð→ ψ2) , stating that a large infection (with
at least cinf individuals) happening at some time t ∈ [0, Tstart] and lo-
calised within distance dnear from a given reference point, will spread
further away, at a location at distance between dfar and dmax, at some
time t′ ∈ [Tstart, Tstart+DT ]. Furthermore, this is true for every reference
point (say at distance at most dmax from `1). Checking this formula on
1000 runs of the stochastic model, with parameters dnear = 3, dfar = 13,
dmax = 15, Tstart = 1 and DT = 4, we obtain a satisfaction probability
of 0.9220 ± 0.0085 (all results reported at 95% confidence), and an aver-
age robustness degree of 42 ± 0.8771. The robustness score for the ODE
interpretation, though, is 30.26.

The other formula we consider is ψ2 Ð→ ψ1, stating that a high in-
fection level at a far-away location at a late time must have been high at
a nearer location some time before, i.e., that the current reference point
is close to the epicentre of the epidemic. In this case, with the same pa-
rameters of the previous formula, verifying it in location `2, we obtain a
satisfaction probability of 0.997 ± 0.0017, an average robustness score of
55.48 ± 0.5677 and a robustness score of the ODE model of 58.08.

In general, we observe that the ODE interpretation generates robust-
ness scores that are in agreement with the ones of the stochastic model,
at a much cheaper computational price. This may be the effect of some
convergence theorem at work, and may be exploited for system design
purposes, as numerically solving ODEs is in general computationally
cheaper than analysing or simulating stochastic models.

We implemented this model in Matlab, both as a set of differential
equations and as a stochastic process. In order to compute the Boolean
semantics of SSTL formulae, we exploited a dedicated Java implemen-
tation; for the quantitative semantics instead, we exploited the routines
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provided by the Breach toolbox (Don10), adapting them to check SSTL
formula. ODEs describing the dynamics of the systems, obtained from
the prescriptions of Section 2.1, have been numerically integrated using
a Matlab built-in solver. The stochastic interpretation of the population
model, instead, has been analysed by a dedicated Java implementation,
combining standard Monte Carlo simulation (by the Gillespie algorithm
(Gil77)) and Bayesian statistical model checking (JCL+09b). Recently, the
whole monitoring procedure has been implemented in a Java toolbox,
jSSTL, described in Chapter 8. All the experiments were run on a Intel
Core i5 2.6 GHz CPU, with 8GB 1600 MHz RAM.

6.5.2 Pattern Formation in a Reaction-Diffusion System

With this case study, we show how SSTL can be used to identify the for-
mation of patterns in a reaction-diffusion system. Patterning is a ubiq-
uitous feature of biological organisms, and the presence of regular geo-
metric motifs on many organisms has long fascinated scientists. Pattern
formation is also the subject of one of the earliest, and most influential,
computational systems biology works, Alan Turing’s pioneering work
on morphogenesis (Tur52a). Turing’s insight was that biological patterns
can be viewed as emergent behaviour (in modern terminology) arising
from local interactions of microscopic agents. More precisely, Turing con-
sidered spatially distributed systems whose local concentration vector u
obeys a reaction-diffusion partial differential equation (PDE)

∂u

∂t
=D∇2u + f(u). (6.2)

Equation (6.2) defines the time evolution of the local concentration u as
the sum of two terms: a dispersal or diffusion term D∇2u, which glob-
ally drives the system towards a uniform equilibrium, and a reaction
term f(u), which accounts for local interactions of the chemicals. Tur-
ing then proved that, under certain conditions on the reaction/ diffusion
parameters, these two counteracting processes could give rise to regu-
lar patterns of concentration, providing a plausible mechanistic model of
biological pattern formation.
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Turing’s ideas have been empirically demonstrated in many areas of
biochemistry (see (MWB+12) for a recent review), and are still influential
in particular in the field of developmental biology (see, e.g., (FI14) for a
recent paper building on these ideas). The crucial idea in the application
of reaction-diffusion systems to development is that these mechanisms
would underpin the local concentration patterns of regulatory proteins,
which would instruct different genetic programs to be executed at dif-
ferent spatial locations. These special regulatory proteins are called mor-
phogens in developmental biology, as they are believed to be responsible
for the establishment of the shape of an organism in higher organisms.

The natural analogue, systems of agents moving in continuous space,
is however prohibitively expensive computationally; an approach that is
more amenable to analysis is to discretise space into a number of cells
(voxels) which are assumed to be spatially homogenous, and to replace
spatial diffusion with transitions between different cells.

From the point of view of formal verification, the formation of pat-
terns is an inherently spatio-temporal phenomenon, in that the relevant
aspect is how the spatial organisation of the system changes over time.

Model. Our model, similar to (GBB14; HJK+15), describes the produc-
tion of skin pigments that generate spots in animal furs. The reaction-
diffusion system is discretised, according to a Finite Difference scheme (Olv14),
as a system of ODEs whose variables are organised in aK×K rectangular
grid. More precisely, we treat the grid as a weighted undirected graph,
where each cell (i, j) ∈ L = {1, . . . ,K} × {1, . . . ,K} is a location (node),
edges connect each pairs of neighbouring nodes along four directions (so
that each node as at most 4 adjacent nodes), and the weight of each edge
is always equal to the spatial length-scale δ of the system4. We consider

4For simplicity, here we fix δ = 1. Note that using a non-uniform mesh the weights of
the edges of the resulting graph will not be uniform.
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Figure 6.5: Value of xA for the system (6.3) for t = 0,5,7,12,20,50 time units
with parameters K = 32,R1 = 1,R2 = −12,R3 = −1,R4 = 16,D1 = 5.6 and
D2 = 25.5. The initial condition has been set randomly. The colour map for
the concentration is specified in the legend on the right.

two species A and B in a K ×K grid, obtaining the system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dxAi,j
dt

= R1x
A
i,jx

B
i,j − xAi,j +R2 +D1(µAi,j − xAi,j) i = 1..,K, j = 1, ..,K,

dxBi,j
dt

= R3x
A
i,jx

B
i,j +R4 +D2(µBi,j − xBi,j) i = 1..,K, j = 1, ..,K,

(6.3)
where: xAi,j and xBi,j are the concentrations of the two species in the cell
(i, j); Ri, i = 1, ...,4 are the parameters that define the reaction between
the two species; D1 and D2 are the diffusion constants; µAi,j and µBi,j are
the inputs for the (i, j) cell, that is

µni,j =
1

∣νi,j ∣
∑
ν∈νi,j

xnν n ∈ {A,B}, (6.4)

where νi,j is the set of indices of cells adjacent to (i, j). The spatio-
temporal trace of the system is the function x = (xA, xB) ∶ [0, T ] × L →
RK×K × RK×K where each xA and xB are the projection on the first and
second variable, respectively. In Fig. 6.5, we report the concentration of
A for a number of time points, generated by the numerical integration of
System 6.3; at time t = 20 and t = 50, the shape of the pattern is apparent
and remains stable. We can see that some regions (in blue) have a low
concentration of A surrounded by regions with a high concentration of
A. We consider as spots of our pattern the regions with low concentra-
tion of A. The opposite happens for the value of B (high density regions
surrounded by low density regions, not shown).
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Analysis. The following shows how we can use the surround operator
to characterise the behaviour of this system. In order to classify spots,
one should identify the sub-regions of the grid that present a high (or
low) concentration of a certain species, surrounded by a low (high, re-
spectively) concentration of the same species. Formally, one can, e.g.,
capture the spots of the A species using the spatial formula

φspot ∶= (xA ≤ h)S[d1,d2](xA > h). (6.5)

A trace x satisfies φspot at time t, in the location (i, j), (x, t, (i, j)) ⊧ φspot,
if and only if there is a subset L′ ⊂ L, that contains (i, j), such that all
elements have a distance less than d2 from (i, j), and xA, at time t, is less
or equal to h. Furthermore, each element in the boundary of L′ has a
concentration of A, at time t, greater than h, and its distance from (i, j)
is in the interval [d1, d2]. Note that the use of distance bounds in the sur-
round operator allows one to constrain the size/ diameter of the spot to
[d1, d2]. Recall that we are considering a spatio-temporal system, so this
spatial property alone is not enough to describe the formation of a pat-
tern over time; to identify the insurgence time of the pattern and whether
it remains stable over time we have to combine the spatial property with
temporal operators in this way:

φpattern ∶= F[Tpattern,Tpattern+δ]G[0,Tend](φspot); (6.6)

φpattern states that eventually at a time between Tpattern and Tpattern+δ the
property surround becomes true and remains true for at least Tend time
units. In Fig. 6.6 we show the validity of the property φpattern in each cell
(i, j) ∈ L, for both the Boolean and the quantitative semantics. We recall
that (x, `) ⊧ ϕ, if and only if (x,0, `) ⊧ ϕ; for this reason the plots show
the satisfaction at time t = 0. It is evident how well the procedure is able
to identify which locations belong to the spots or not. If we make the
distance constraint stricter, by reducing the width of the interval [d1, d2],
we are able to identify only the “centre” of the spot, as shown in Fig. 6.7.
However, in this case we may fail to identify spots that have an irregular
shape (i.e., that deviate too much from a circular shape).
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Figure 6.6: Validity of formula (6.6) with parameters h = 0.5, Tpattern =
19, δ = 1, Tend = 30, d1 = 1, and d2 = 6. (a) Concentration of A at time t =
50; (b) Boolean semantics of property (6.6); the cells (locations) that satisfy
the formula are in red, the others are in blue; (c) Quantitative semantics of
the property (6.6); the value of the robustness is given by a colour map as
specified in the legend on the right of the figure.

Formula φpattern describes the persistence of a spot in a specific loca-
tion. To describe the global spatial pattern, that every location is part of
a spot or has a nearby spot, the following SSTL formula can be used:

φST−pattern ∶= �[0,dmax] �[0,dspot] φpattern, (6.7)

where � and � are the everywhere and somewhere operators, dmax is
chosen to cover all space, and dspot measures the maximal distance be-
tween spots. Checking this formula in a random location of our space is
enough to verify the presence of the pattern; this is enough because the
first part of the formula, �[0,dmax], permits us to reach all the locations of
the grid. This is an example of how we can describe global property also
with a semantics that verifies properties in single locations. We verify
the property (6.7) with dmax = 45 and dspot = 15 (the other parameters
as in Fig. 6.6), for a solution of the system (6.3) obtaining true for the
Boolean semantics and 0.3 for the quantitative one. The low value of the
quantitative semantics is due to the choice of the threshold h.

Changing the diffusion constants D1 and D2 affects the shape and
size of the spots or disrupts them, as we can see in Figure 6.8. We eval-
uate the pattern formula (6.7) with parameters as in Fig. 6.6, for the pat-
terns in Figure 6.8, where D = [1.5,23.6] and D = [8.5,40.7] and the other
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Figure 6.7: Boolean semantics of formula (6.6) with parameters h =
0.5, Tpattern = 19, δ = 1, Tend = 30, d1 = 1, and d2 = 4; the cells (locations)
that satisfy the formula are in red, the others are in blue.

parameters equal to the previous model, and it results false with a quan-
titative value equal to -0.05 for both. Formula (6.6), though, is still true
in some locations. This is due to the irregularity of the spots (where,
as in Fig. 6.8(a), some spots can have a shape similar to the model in
Fig. 6.6(a)), or due to particular boundary effects on the border of the
grid (where fractions of spots still remain, as in Fig. 6.8(a)).

A strength of spatio-temporal logics is the possibility to nest the tem-
poral and spatial operators. We illustrate this in the following scenario.
We set as initial conditions for the system (6.3) its stable state, i.e., the
concentrations of A and B at time 50 (see Fig. 6.6(a)). We introduce a
small perturbation, by changing a single value in a specific location in
the centre of a spot. The idea is to study the effect of this perturbation,
i.e., checking if it will disrupt the system or not. Specifically, we perturb
the cell (6,6), by setting xA6,6(0) = 10. Dynamically, the perturbation is
quickly absorbed and the system returns to the previous steady state.
Formally, we consider the following property:

φpert ∶= (xA ≥ hpert) ∧ (φ1S[dm,dM ]φ2); (6.8)

(x, (i, j)) ⊧ φpert, i.e., a trace x satisfies φpert in the location (i, j), if
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Figure 6.8: Snapshots at time t = 50 of xA for the model (6.3) with param-
eters with parameters K = 32,R1 = 1,R2 = −12,R3 = −1,R4 = 16, and
D = [1.5,23.6] in (a) and D = [8.5,40.7] in (b).

and only if xAi,j(0) > hpert (the location is perturbed) and if there is a
subset L′ ⊆ L that contains (i, j) such that all its elements have a dis-
tance less than dM from (i, j) and satisfy φ1 = F[0,Tp]G[0,Td](xA < h′);
φ1 states that the perturbation of xA is absorbed within Tp units of time,
stabilising back to a value xA < h′ for additional Td time units. Further-
more, within distance [dm, dM ] from the original perturbation, where dM
is chosen such that we are within the spot of the non-perturbed system,
φ2 ∶= G[0,T ](xA < h′) is satisfied; i.e., no relevant effect is observed, the
value of xA stably remains below h′. The meaning of φpert is that the in-
duced perturbation remains confined inside the original spot. In Fig. 6.9,
we report the evaluation of the quantitative semantics for φpert, zooming
in on the 15 × 15 lower left corner of the original grid. As shown in the
figure, the perturbed location (6,6) satisfies the property.

Model (6.3) has been coded in Matlab/Octave, and the monitoring
has been performed by our Java implementation, jSSTL, described in
Chapter 8. Regarding time performance, the verification of property
φpattern took 1.04s (Boolean) and 69.39s (quantitative) for all locations
and 100 time points, while property φST−pattern took 1.81s and 70.06s,
and property φpert took 28,19s and 55,31s, respectively. The compu-
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Figure 6.9: Boolean and quantitative semantics for formula 6.8 with param-
eters hpert = 10, wm = 1, wM = 2, Tp = 1, Td = 10, h′ = 3, and T = 20.

tation of the distance matrix can be done just once because it remains
always the same for a given system, this takes about 23s. All the exper-
iments were run on a Intel Core i5 2.6 GHz CPU, with 8GB 1600 MHz
RAM.
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Chapter 7

Statistical Analysis of
Stochastic Spatio-Temporal
Systems

In this chapter, we extend the methodology presented in Chapter 5 to
SSTL, the spatio-temporal logic defined in the previous chapter. Further-
more, we extend, in a similar way, the smoothed model checking technique
developed in (BMS16), and described in Chapter 4. The entire frame-
work can then be used to analyse and design systems with stochastic
spatio-temporal dynamics. In particular, we apply it to study a french-
flag model of the Drosophila’s Bicoid morphogen (work published in
(BBM+15) ).

7.1 Methodology

The main objective of this chapter, and of the entire thesis, is to be able
to analyse and design complex systems with spatio-temporal dynamics.
Complex systems are often very large-scale systems. As we explained
in Chapter 5, an exhaustive parameter exploration is particularly expen-
sive for these kind of models, one reason being the high cost of stochastic
simulations. When the spatial dimension is added to the system and to
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its dynamics, the analysis becomes much more complicated and compu-
tationally costly.

In this section, we report the methodologies that we use to perform
system design/parameter synthesis and model checking in presence of
parametric uncertainty of stochastic spatio-temporal systems.

We extend the approach described in Chapter 5 and the smoothed
model checking (BMS16), described in Chapter 4, where only temporal
formulae were considered, to work with SSTL formulae and to be able
to consider models with spatio-temporal dynamics. The extension ba-
sically consists in substituting the STL and MITL logics with the SSTL
logic and its monitoring procedures, showing that this is a consistent op-
eration. The approach works then with the robustness value ρ(ϕ,x, t, `)
and the satisfaction of a spatio-temporal formula φ, p(φ = true∣Mθ, `).

From the implementation point of view, we integrated jSSTL, as a
Java library, in the U-Check tool, both described in Chapter 8.

Despite the fact that the extension does not pose many challenges
from the theoretical point of view, it has strong implications from the per-
spective of applications. It permits us not only to analyse behaviours that
we could not describe by a temporal logic, but also to avoid a blowup of
the formula size (which would be the case in any attempt to syntactically
turn a spatio-temporal property into a purely temporal one), exponen-
tially in the nesting level of spatial operators, and hence an exponential
increase in the complexity of the monitoring procedure.

Below, we report briefly the two techniques: robust parameter syn-
thesis and smoothed model checking.

7.1.1 Robust Parameter Synthesis

Given a population model, M, depending on a set of parameters θ ∈K ⊆
Rd, and a specification φ, the problem of robust parameter synthesis (or
system design) is that of identifying the parameter combination θ∗ such
that the system satisfies φ as robustly as possible. For a stochastic tempo-
ral model, the problem was translated in finding the model parameters
that maximise the average robustness degree E[Rφ].
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The problem for a spatio-temporal formula is to determine the pa-
rameter combination θ∗ such that the system satisfies a spatio-temporal
formula φ as robustly as possible in a given location `.We stress the fact
that by verifying properties in a specific location, we can still specify
global behaviours, by properly use the everywhere and the somewhere
operators. The location where the property is verified can be considered
as a sort of “initial position”, the equivalent of t0 = 0 for the time.

According to the quantitative semantics of SSTL, the robustness value
ρ(ϕ,x, `) expresses the level of satisfaction of φ by a trajectory x in loca-
tion `. We recall that in this case, instead of having a quantitative satis-
faction degree, we have a spatial quantitative satisfaction function that
gives a value for each locations. As described in the previous chapter,
we can interpret then the robustness of φ for stochastic spatio-temporal
models as the functional Rφ ∶ D → Rm, where D([0,∞],D) is the trajec-
tory space of our system with D = D1⊕⋯⊕Dm, m = ∣L∣ the number of
locations and Di the state space of the temporal trajectories in location
`i. Hence, the problem is rephrased as the identification of the model pa-
rameters that maximise the average robustness in location `, E(Rφ[`]),
of a spatio-temporal formula φ.

We are therefore interested in maximising the expected quantitative
score:

E(Rφ[`]) = ∫ ρ(φ,x, `)p(x, `)dx (7.1)

where p(x, `) is the probability density of trajectory x`(t) ∶= x(t, `). For
a specified location `, the expectation E(Rφ[`]) constitutes an objective
function, of which we can obtain noisy estimates by generating samples
from the trajectory space via stochastic simulation. So, the system design
corresponds to finding the parameter configuration θ∗ that maximises
the function f ∶K → R s.t. f(θ) ∶= E(Rφ[`])[θ] for a fixed `.

We employ then the Gaussian Process regression and the Gaussian
Process Optimisation algorithms described in Chapter 4 to find the pa-
rameter configuration θ∗ that maximises f(θ). We briefly recall the tech-
nique. The algorithm is initialised with a random grid of points, for each
of which f(θ) is approximated via statistical means. Hence, using these
points as a training set, the objective function is approximated by a Gaus-
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sian Process (GP) regression, i.e., the GP is used to make predictions re-
garding the valuef(θ) at different parts of the search space. We calculate
the GP posterior for a set of test points, that involves calculating an esti-
mate of the expected robustness and its associated variance. The GP op-
timisation algorithm dictates then that the point that maximises the up-
per quantile of the GP posterior is added to the training set, after being
evaluated for its associated robustness via simulations. This process is
repeated for a number of iterations, and the training set is progressively
updated with new potential maxima. For a smooth objective function,
the algorithm is proved to converge to the global optimum in (SKKS12).

7.1.2 Smoothed Model Checking

Smoothed Model Checking, described in Chapter 4, is a technique to
characterise the satisfaction probability of a time-bounded linear time
property φ as a function of model parameters. Here, we extend this pro-
cedure to characterise the satisfaction probability of a SSTL formula.

LetMθ be an uncertain CTMC model, i.e., a model whose transition
rates depend smoothly on a set of parameters θ ∈K ⊆ Rd. We define then
the satisfaction probability function of a SSTL formula φ as the function
f ∶K ×L→ [0,1], where L is the set of locations, s.t.

f(θ, `) ≡ p(φ = true, `∣Mθ).

It corresponds to the probability that φ is true in location `, given a model
with parameter θ. We recall that we defined P (φ, `) in Chapter 6 as
P (φ, `) = P{(x, `) ∈ D` ∣ (x, `) ⊧ φ}, i.e., the probability that a trajectory in
location ` satisfies φ.

In (BMS16) the authors prove that the satisfaction function of a MITL
formula is a smooth function of the parameters if the transition rates of
Mθ depends smoothly on the parameters θ and polynomially on the
state of the system. Note that f(θ, `) can be seen as a product of smooth
functions f` ∶= π` ○ f , which shows that it is smooth.

The method then is similar to the one described in Chapter 4. Com-
puting analytically this function is almost impossible. The technique ex-
ploits then the smoothness of the satisfaction function to emulate it using
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the Gaussian Progress Regression, described in Chapter 4. Hence, fixed
a certain location `, ∀θ∗ ∈ K, it computes an estimation of f(θ, `) and a
confidence interval for such a prediction. As stated before, the strength
of the method is that fewer samples are needed to obtain a good level of
accuracy, compared to standard parameter synthesis techniques that use
only SMC.

7.2 Case Study: The French Flag Model

In this section, we apply the described techniques to a reaction-diffusion
model of segmentation in Drosophila melanogaster and the spatio-temporal
pattern characterising it, known as the French Flag model. In particular,
we want to study the effects of the morphogen Bicoid parameters on the
satisfaction of the French Flag property.

We presented an overview about pattern formation and reaction-diffusion
systems in Chapter 6, Section 6.5.2. One of the most widely studied mod-
els of morphogenesis is the establishment of spatial patterning (stripes)
along the body of the fruit fly Drosophila melanogaster. Several morphogens
are known in Drosophila; mostly, these are maternal proteins that are pro-
duced in a localised area of the embryo (in correspondence to a maternal
deposit of messenger RNA), and then establish a concentration gradient
during development, effectively providing cells within an embryo with
a spatial reference. An important morphogen is the protein Bicoid.

Before describing the Bicoid model, it is worth remarking on a funda-
mental shift of perspective that has happened since Turing’s pioneering
work, the realisation of the importance of stochasticity in biology. Nu-
merous lines of evidence indicate that biology at the single cell level is
intrinsically stochastic. Stochasticity cannot be ignored when modelling
early embryogenesis, when only a handful of cells are present. Morpho-
genetic reaction-diffusion models can therefore be modified to account
for the intrinsic discreteness of biology at the microscopic level. Mor-
phogenetic systems, and in particular the Bicoid system, have already
been analysed from a simulation perspective in (WMR07) and from a
statistical perspective in (DOS10). Here, we present a first analysis of
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this system from the point of view of spatio-temporal logic, to analyse
directly the system’s behaviour at the level of the emergent properties of
the trajectories.

7.2.1 The Bicoid Gradient Model

The Bicoid (Bcd) molecule was the first protein to be identified among the
morphogens. In the Drosophila embryos, the Bcd protein is distributed
along the Anterior-Posterior axis (A-P axis). The Bcd mRNA is translated
at the anterior pole of the embryo, and the synthesised protein spreads
through the A-P axis by diffusion accompanied by decay.

V1
... ... V100

V0
l

l 101 × l

Figure 7.1: A schematisation of the Drosophila embryo volume. The volume
is divided in 101 cubic subvolumes, V0, ..., V100, with side l = 5µm.

We will describe the dynamics of the Bcd protein by a stochastic reaction-
diffusion system, as reported in (WMR07). Given a certain volume where
the Bcd protein is distributed, we can divide it into a series of subvol-
umes or voxels that are small enough to be regarded as well mixed. Then,
we can consider the decay reaction as a transition that happens inside the
subvolumes and the diffusion as exchange of molecules between neigh-
bouring voxels. In particular, we consider 101 homogeneous cubic sub-
volumes with side l = 5µm that comprise the entire volume as in Fig. 7.1.
The length of the side l and the number of subvolumes were chosen in
light of those of actual Drosophila embryos, which are 500µm long. The
first subvolume (j = 0), corresponds to the anterior pole of the embryo
and it is the only subvolume where the Bcd protein is synthesised.

We can describe the set R of reactions governing the stochastic dy-
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namics of Bcd as:

νp ∶ ∅→ B0 at rate J, (production)

νdegj ∶ Bj → ∅ at rate w, for j = 0, ...100, (degradation)

νdif+
j
∶ Bj → Bj+1 at rate

D

l2
, for j = 0, ...99, (diffusion to the right).

νdif−
j
∶ Bj → Bj−1 at rate

D

l2
, for j = 1, ...100, (diffusion to the left).

where Bj is a Bcd protein in the jth subvolume.
The state vector of the system is then xB = (xB0 , ..., xB100) where xBj

is the number of Bcd molecules in the jth subvolume. From the setRwe
can derive the infinitesimal generator matrix of the CTMC that formally
represents the dynamics of the system. The CTMC can then be simulated
with a standard algorithm, such as SSA or τ -leaping.

Note that, from the set of reactions R, we can easily revert the dis-
cretisation process and obtain a semantics in terms of Reaction-Diffusion
Rate Equation (RDRE). This is obtained by converting variables into con-
centrations, taking the length of voxels to zero, and interpreting each rate
as a flow, both in the degradation and in the diffusion reactions. In this
way, we can define the system

∂u

∂t
=D∂

2u

∂y
−wu, (7.2)

where u(y, t) is the concentration of Bcd at time t in position y, measured
in µm, y ∈ [0,500], giving the boundary conditions ∂u

∂y
∣
y=0

= − J
∆

and
∂u
∂y

∣
y=500

= 0, where ∆ = l3.

7.2.2 Segmentation and the French Flag property

The spatial distribution of the Bicoid protein has a crucial role in the for-
mation of the horizontal segmentation in the development of the Drosophila’s
embryo. One of the most important interpretations of this distribution is
given by the French Flag model (Wol68), and more generally by the the-
ory of gap genes (Jae10; WTA15). The body of the fruit fly Drosophila
melanogaster, as in most arthropods, exhibits a particular type of spatial
patterning called segmentation, whereby the main body is composed of

127



several segments. Gap genes were discovered and named following mu-
tagenetic experiments, whereby biologists observed that deletion of cer-
tain genes resulted in the omission of a segment in the fly’s body, as if
the mutant organism had a gap. This observation implies that gap genes
must be expressed in a precisely spatially co-ordinated manner, i.e., the
biochemistry of the fruit fly must possess a way of measuring distances.

The French Flag model is a simplified model of gap gene regulation
in early embryogenesis involving only four genes, the Bicoid morphogen
protein and three target genes. The underlying assumption is that the
spatial distribution of Bicoid protein, which as we have seen tends to de-
crease along the A-P axis (see Fig. 7.2), provides the ruler with which
the Drosophila embryo measures distances. Gap genes are activated in a
concentration dependent manner by Bicoid, so that a set of genes are acti-
vated at the high concentrations near the anterior part of the embryo (the
blue in the French Flag), a different set of genes is activated in the central
part (the white) and a third set is activated a low concentrations near the
posterior end (red). This model has survived with some modifications
(JMA09) until this day, its beauty providing a paradigm for pattern de-
velopment in many areas of biology. From our point of view, this model
is particularly interesting because it refocuses attention from local inten-
sive quantities (local concentrations) towards the importance of a global
emergent property of the system (the establishment of a gradient), which
is ideally suited for reasoning upon in terms of spatio-temporal logics.
We will see now how to describe the French Flag pattern using a spatio-
temporal logic.

To describe the French Flag pattern we have first to define the trajec-
tories that we want to characterise and its related graph. Let consider
a trace (a simulation) (xB(t))t∈[0,T ] = (xB0(t), ..., xB100(t))t∈[0,T ] of the
Bicoid model described in the previous section, where [0, T ] is the time
domain, with T > 0. We can transform the temporal trace in a spatio-
temporal trajectory defining xB ∶ L × [0, T ] → R s.t. xB(Vi, t) ∶= xBi(t),
where L = {V0, ..., V100} is the set of locations. The graph G = (L,E,w) of
the system is a one-dimensional graph where each Vi is connected only
to Vi−1 and Vi+1, with w(Vi, Vi+1) = 1, i.e., all the edges have weight equal
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to 1. The weight between two arbitrary locations is given by the weight
of the shortest path connecting them.

We can now use the logic to specify the French Flag model. As we
described in Section 7.2, this pattern is used to represent the effect of
a morphogen in the expression of different genes, i.e., to represent the
correlation between the concentration of the morphogen and the activa-
tion or repression of other genes. In particular, the spatial distribution of
the morphogen, at the steady state, is divided in three regions: a blue, a
white and a red region, as shown in Fig.7.2 (left), that activate different
target genes.

We can describe this behaviour with the property

ψflag ∶= φblue ∧ φwhite ∧ φred (7.3)

φblue ∶= �[0,wblue](xB >Kblue − hbw)
φwhite ∶= �[wblue,wwhite]((xB <Kblue + hbw) ∧ (xB >Kwhite − hwr))
φred ∶= �[wwhite,wmax(xB <Kwhite + hwr)

(7.4)
The verification of the formula is done in the location V0. (x,V0) ⊧

ψflag iff it satisfies each subformulae φblue, φwhite, φred; (x,V0) ⊧ φblue

iff, in all the locations Vi s.t. w(V0, Vi) ≤ wblue, the number of Bicoid
molecules is higher thanKblue−hbw, i.e xB >Kblue−hbw. In a similar way
we can describe φwhite and φred. The meaning of the property is that the
spatial distribution of the Bicoid protein is divided in three regions, the
blue, where the xB > Kblue − hbw, the white, where Kblue + hbw > xB >
Kwhite − hwr, and the red, where xB < Kwhite + hwr. Note that hbw and
hwr parameters have the role to relax the thresholds that define different
regions, to properly deal with noise in Bcd expression, we will discuss
this point more in detail in the Section 7.2.3.

At steady state, the concentration of the Bicoid protein is exponen-
tially distributed along the anterior-posterior (A-P) axis, with higher con-
centrations towards the anterior. We can identify the insurgence time of
this pattern, and if it remains stable, combining the spatial property with
temporal operators as follows:
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ψstableflag ∶= F[Tflag,Tflag+δ](G[0,Tend]ψflag) (7.5)

ψstableflag means that eventually, in a time between Tflag and Tflag+δ,
the property ψflag remains true for at least Tend time units.

7.2.3 Results

In this subsection, we perform a series of experiments to explore the sen-
sitivity and robustness of the French Flag property w.r.t. changes in the
rates of production J and degradation w, and the diffusion rate parame-
ter D. The size of the cubic subvolumes is known, that is l = 5µm, as it is
one of the main modelling assumptions.

Experimental Data Following (PKT09; WMR07), we chose as param-
eters of the ψstableflag property (7.5), specified in Section 7.2.2, Tflag =
3950, δ = 10, Tend = 1000, wblue = 35.5, wwhile = 67.5 and wmax = 101. The
wblue and wwhile parameters mean that the blue area involves the subvol-
umes between V0 and V35, the white area extends from volume V36 to V67,
and finally the red one from V68 to V100; the time is in terms of seconds.

In order to fix the thresholds parameters Kblue, Kwhite and hbw,hwr
we use the Bicoid fluorescence concentration at cycle 13 (where the gra-
dient is considered to be in the steady state) downloaded from the FlyEx
database (fly). The choice of the data follows the analysis done in (WMR07).
To the best of our knowledge, all the quantifications of the Bicoid protein
in the Drosophila embryo refers to the measurements of fluorescence
concentrations, rather than direct observations of the Bicoid molecular
population. From (WMR07), we define the fluorescence concentration
I = m × xB , where m is a scaling factor that denotes the fluorescence-
to-molecule ratio. Our approach is to rescale the thresholds reported in
terms of fluorescence concentrations with the m factor.

The data has been given originally in the form of two-dimensional co-
ordinates paired, the A-P and D-V coordinate, from the central 10% strip.
As in (WMR07), we choose the embryos where the variation inside each
spatial subregions is low, in particular in these embryos the inverse of
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Figure 7.2: Left: Fluorescence concentrations of the Bicoid protein for 17
embryos during the cycle 13. Right: The same concentrations in the area
between locations 35 and 67, which define the white area in the French flag
property.

the spatial exponential coefficient varied by less that 1%. We have trans-
formed the data to obtain a single concentration value for each of the
101 discretised locations. Fig. 7.2 depicts the result. On the left-side fig-
ure, we see how the different locations lie within the areas prescribed by
the French Flag property. Although the shape of the data is apparently
negative exponential, there is a considerable amount of noise, which has
to be taken into consideration in terms of the French Flag property. We
therefore define the thresholds in the form regions, rather than strict val-
ues. On the right-side of Fig.7.2, we see a magnified version of the figure,
where only the white area is depicted. The majority of the concentrations
recorded for volumes from V36 to V67 are between 60 and 2. In the same
way, we can empirically derive zones of desired concentration levels for
the blue and read areas. Therefore we have Kblue = 45/m, hbw = 15/m,
Kwhite = 6/m, and hwr = 4/m.

Optimisation of Expected Robustness We now explore how the model
parameters (including the scaling factor m) can be tuned to increase the
robustness of the French Flag pattern.

We applying the GP optimisation algorithm discussed in Chapter 5,
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for a four-dimensional space that involves the parameters: w ∈ [0.001,0.01],
J ∈ [10,400], D ∈ [1,40], and m ∈ [0.01,1]. The parameter ranges have
been selected so that the resulting space is a superset of the explored
space in (WMR07). Regarding the fluorescence-to-molecule ratio in par-
ticular, we note that the extremes considered in (WMR07) were0.07 and
0.7.

For each evaluation of the expected robustness, the system has been
simulated up to time t = 4000 sec, which is when the steady-state is ap-
proached according to (WMR07). The robustness expectation has been
approximated statistically using 12 simulation runs for each parameter
set. The algorithm has been initialised by 80 evaluations of the objective
function at random points; a number of 282 evaluations were performed
at points selected by the optimisation process, until convergence was de-
tected. Convergence has been determined when no significant improve-
ment of the expected robustness has been observed for 200 iterations. An
improvement is considered significant, if it is more than 1% increase over
the previously recorded maximum robustness.

At the end, a total of 362 function evaluations have been performed,
which is arguably a small number of samples to explore a 4-dimensional
space. The execution times have been 85 minutes for the initial 80 eval-
uations, and 263 minutes for the actual optimisation process. Stochas-
tic simulations have been performed in parallel using 12 threads. The
experiments have been performed on an Intel® Xeon® CPU E5-2680 v3
2.50GHz. The majority of the computational effort was spent in simu-
lation, despite the fact that only 12 trajectories have been generated for
each parameter set considered. Therefore the idea of reducing the num-
ber of samples by exploiting the smoothness of the objective function has
been a sensible practice.

The values returned by the optimisation process have been: w∗ =
0.0038, J∗ = 390, D∗ = 32.5, and m∗ = 0.048. The robustness of the opti-
mum returned has been 2.99, implying that the property is robustly satis-
fied for the given solution. In Fig. 7.3, we present a sample trajectory for
the given parameter configuration, and the average of 40 random trajec-
tories, along with the associated 99.8% confidence bounds. The sample
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Figure 7.3: Left: Sample trajectory for the parameter configuration that max-
imises the robustness of the French Flag property. Right: Average of 40 ran-
dom trajectories; the dotted lines indicate the 99.8% confidence interval.

trajectory is plotted against the experimental data that were used to ad-
just the threshold parameters of the French Flag property. We see that
the optimised model has a behaviour very similar to the one observed in
real-world experiments. However, it appears that the simulation results
are much less noisy, when compared to the actual observations. This
finding is in agreement with the result of (WMR07), where it was argued
that the intrinsic noise as modelled by the stochastic dynamics of the
master equation is not sufficient to explain the variability in the data, i.e.,
the noise in the fluorescence measurement as a crucial role that has to be
taken into account.

Parameter Exploration with Smoothed Model Checking We perform,
then, a more thorough exploration of the parameter space. Our objec-
tive is to discover dependencies among the parameters, considering the
satisfaction probability of the French Flag property. On that respect, the
fluorescence-to-molecule ratio m is not significant, as this will have an
obvious effect on the thresholds for the property. We fix the fluorescence-
to-molecule ratio m to 0.048, which is the optimal value reported by the
optimisation algorithm in the previous section. The rest of the model pa-
rameters, w ∈ [0.001,0.01], J ∈ [10,400], and D ∈ [1,40], are explored via
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the smoothed model checking approach.

During the initialisation step of the algorithm, we have performed
216 evaluations of the satisfaction function of (7.3), for a regularly dis-
tributed set of values. As in the previous section, the satisfaction proba-
bility is approximated by statistical model checking using 12 simulation
runs for each parameter configuration, where the system is simulated up
to time t = 4000 sec.

The duration of this initial statistical model checking process has been
nearly 170 minutes, on an Intel® Xeon® CPU E5-2680 v3 2.50GHz, using
12 threads in parallel. The hyperparameter optimisation that is required
to tune the GP probit regression model subsequently required only 20

seconds, which is a trivial price to pay compared to the massive simu-
lation cost. The final GP probit regression for a grid of 4096 points re-
quired only 1.2 seconds. Most importantly, it is only this last cost that we
are required to pay to produce any further estimations of the satisfaction
function.

Fig.7.4 depicts the satisfaction function for the French Flag property
for parameters θ = {w,J,D}, as this has been approximated by smoothed
model checking. Each of the depicted subfigures shows the satisfaction
probability as function of the production rate J and the diffusion param-
eter D, for a different value of the degradation rate w. Regarding the
confidence of the estimated probabilities, we report that the 73.6% of the
values are associated with 95% confidence intervals of width less than
0.2.

As a general remark, it appears that the manifestation of the gradi-
ent pattern, as this is captured by the French Flag property, is associated
with a fine balance among the model parameters. There is a small area in
the parameter space for which the property is satisfied with high proba-
bility. As we increase the decay parameter w however, we observe two
behaviours regarding this area: its size is being increased, and its location
is being shifted to the right. This implies that w is positively correlated
with the production rate J . In other words, a particular ratio between
protein production and decay is required for the formation of the partic-
ular pattern. At the same time, increasing the decay rate means that the
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formula may be satisfied for a wider range of the diffusion parameter.
It also appears that there is a negative correlation between the pro-

duction rate J and the diffusion parameter D. This behaviour is present
for the entire range of w examined, but it tends to become more obvi-
ous as w is increased. It is reasonable to conclude that a simultaneous
increase of J and D would destroy the exponential shape of the Bicoid
distribution across space. This observation suggests that the property is
more likely to be satisfied if all the rate constants in the system have high
values. This reflects in a less erratic stochastic behaviour.

We remark that we chose a relative simple model and property, putting
more effort in the accuracy of the specification and in the methodology.
This has been particularly effective from a computational point of view,
since stochastic simulation of the spatio-temporal model in question is
very expensive; hence, standard parameter exploration techniques are
not feasible, as a large number of samples is needed to obtain valid re-
sults.
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Figure 7.4: Emulated satisfaction probability of the French Flag property as
function of θ = {w,J,D}. Each subfigure has the w parameter fixed.
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Chapter 8

Tool Support

In the first section of this chapter, we present jSSTL, a Java tool for
the specification and verification of SSTL properties. In particular, we
present a Java library and an ECLIPSE plugin of jSSTL. The tool has
been implemented in collaboration with Michele Loreti and Luca Borto-
lussi and is still in development. In the second section, we briefly intro-
duce U-check (BMS15), a Java tool for analysing stochastic models with
uncertainty in the parameter space.

8.1 jSSTL

To support qualitative and quantitative monitoring of SSTL properties, a
prototype tool has been developed. This tool, developed in Java, consists
of a Java library (jSSTL API) and a front-end, integrated in ECLIPSE.
Both the library and the ECLIPSE plugin can be downloaded from http:

//quanticol.sourceforge.net/. The source code is available at
https://bitbucket.org/LauraNenzi/jsstl. The library can be
used to integrate jSSTL within other applications and tools, whereas the
ECLIPSE plugin provides a user friendly interface to the tool. Further-
more, the modular approach of the implementation allows to develop
different front-end for jSSTL. We report a scheme of the implementation
in Table 8.1.
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ECLIPSE plugin

Xtext editor View

jSSTL API

Table 8.1: The diagram of the implementation

We describe now in detail the library and the plugin.

8.1.1 jSSTL Java library

Our library has been designed in a modular way, which allows us to
change/improve specific classes in the library without changing the over-
all behaviour. It consists of three main packages: util, core, and io.

Package util handles the temporal signals of the logic. Its BooleanSignal
class defines the temporal Boolean signals of the logic. They are repre-
sented as a sequence of time intervals with value true or false. The class
BooleanSignalTransducer implements a method to compute the interval
covering of a set of Boolean signals, a method to convert piecewise con-
stant signals into Boolean signals and the methods to perform operations
between temporal signals: and, or, not, until, eventually, always. The class
QuantitativeSignal defines the temporal quantitative signals of the logic,
represented as piecewise constant signals. The class QuantitativeSignal-
Transducer implements the same methods as the Boolean case, for the
operations between quantitative signals.

Package core is divided in three subpackages: space, monitor and for-
mula. In the space subpackage, the class SpaceModel is an interface
that represents a generic space model. It is parametrised with respect
to the type of data that represents the nodes and the edges. It provides
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three methods to obtain informations about nodes, edges and the exter-
nal border of the model. The GraphModel class implements the interface
as a space model based on a graph, and contains the methods to design,
work, and have informations about the graph. It exploits the JGraphT1

package to compute the matrix distance of the graph.
The monitor package handles the spatial Boolean and quantitative

signals of the logic. They are treated as an HashMap that associates a
temporal (Boolean or quantitative) signal to each location of the graph.
The classes SpatialBooleanSignalTransducer and SpatialQuantitativeS-
ignalTransducer contains all the methods to make operations between
spatio-temporal signals: surround, somewhere, everywhere, and, or, not
, until, always, eventually. The method surround corresponds to the im-
plementations of the monitoring algorithms presented in Chapter 6.

The third subpackage, formula, provides the classes used to repre-
sent SSTL formulae. These classes mimic the abstract syntax tree of for-
mulas. The base interface is the class formula, it contains the methods
booleanCheck and quantitativeCheck that compute the spatial Boolean
and quantitative signals, taking as input the GraphModel and the Signal.
The Signal class contains the method to translate the data, i.e., the pri-
mary signals, in a spatial Boolean or quantitative signal. Each operator
has a specific class formula parametrised over one or two sub-formulae
(depending on whether the operator is unary or binary) and an interval
for some operators. The methods in each subformula refer to the meth-
ods in the SignalTransducer class of the specific operator. For example,
the SurroundFormula class has the method booleanCheck that returns
the monitoring evaluation SpatialBooleanSignalTransducer.surround of
the signals of the two subformulae for the given (spatial) interval. Hence,
the Monitoring algorithm is implemented following the visitor pattern. It
is performed via a visit of a formula that implements a bottom-up evalu-
ation. It is important to remark that the use of this pattern simplifies the
integration of possible alternative monitoring algorithms.

Package io provides a set of classes that can be used to read graph mod-

1http://jgrapht.org

139

http://jgrapht.org


els and input signals from an input stream and to write monitoring re-
sults to an output stream. Currently, CSV and tabular based ascii files
are supported for both input and output of signals. Specific interfaces
are also provided to simplify the integration of new specific input/out-
put data formats.

8.1.2 ECLIPSE Plugin

The ECLIPSE plugin uses the Java library, described in the previous sec-
tion and provides an editor based on Xtext2 for supporting the definition
of SSTL scripts and a view to visualise the results of the analyses.

In the jSSTL editor it is possible to define a script that contains the
list of properties that we want to analyse using jSSTL. The syntax of the
script of our language is reported in Figure 8.1. Besides the list of formu-
lae, each script contains the list of the variables considered in the model,
a set of constants, and a list of parameters that may occur in the formula.
The parameters can be declared as belonging to an interval. When the
monitoring procedure is performed, the user can select a specific value
for each parameter in the corresponding interval. Standard expression
can be used to define both constant and parameter intervals. In the script,
each formula is associated with a name, that is used to select the specific
property during the monitoring procedure.

The jSSTL view provides three different panels to visualise the spa-
tial models, the relevant data declared in a script and to plot the system’s
trajectories and the Boolean and quantitative satisfaction signals. In Ap-
pendix B, we describe in detail the jSSTL view with a running example.

8.2 U-check

U-check is a Java toolbox that implements a number of methodologies
combining formal analysis techniques of stochastic systems with ma-
chine learning methods for optimisation and regression problems. It can
be downloaded at http://homepages.inf.ed.ac.uk/dmilios/ucheck.

2https://eclipse.org/Xtext/
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script ∶∶= element∗

element ∶∶= variableDec ∣ constDec ∣ parameterDec ∣ formulaDec

variableDec ∶∶= variable name

constDec ∶∶= const name = expr

parameterDec ∶∶= parameter name in interval

interval ∶∶= [expr, expr]

expr ∶∶= baseExpr ∣ expr + expr ∣ expr × expr ∣ ⋯
baseExpr ∶∶= int ∣ float ∣ literalExpr

formulaDec ∶∶= formula name = formula

formula ∶∶= formula&formula ∣ formula∣formula

∣ formulaUinterval formula ∣ Ginterval formula

∣ Finterval formula ∣ formulaSinterval formula

∣ <<>> interval formula ∣ [[]]interval formula

∣ !formula ∣ relExpr

relExpr ∶∶= expr<expr ∣ expr≤expr ∣ expr>expr ∣ expr≥expr

∣ expr==expr ∣ ! =expr

Figure 8.1: jSSTL formula syntax.
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We briefly describe the main characteristics of the tool, for more details
we refer to the tool paper (BMS15).

U-check allows to perform a number of formal analysis of stochas-
tic models. It is possible to load models written for PRISM (KNP11)
and Bio-PEPA (CH09) for stochastic system, and SimHya for hybrid sys-
tems (PBXB08). As logic specification, it uses the MITL (AFH96) logic
and the STL logic.

In particular, it permits three type of analysis:

• Parameter estimation from qualitative observations, a method-
ology to evaluate the parameter values that better explain the be-
haviour of a set of observations. Observations are assumed to be
truth value of MITL formulae (AFH96) over few independent ex-
periments. Parameters are then estimated by maximising the likeli-
hood of the parameter configuration that better explains the dataset,
using Bayesan MC to evaluate it. More details about this procedure
can be found in (BS13; BS15).

• System Design via Robustness maximisation, using the method-
ology presented in Chapter 5.

• Smoothed Model Checking, a model checking for systems with
uncertainty in the parameter space, briefly described in Chapter 4.

All these techniques have in common the fact that they exploit the
GP regression and the GP-UCB algorithms, described in Chapter 4, to
emulate and/or optimise an unknown function with possibly noisy ob-
servations.
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Chapter 9

Conclusions

9.1 Concluding Remarks

In this thesis, we presented a framework for the formal analysis of stochas-
tic and deterministic complex systems with a spatio-temporal dynamics.

We defined Signal Spatio-Temporal Logic, a spatio-temporal exten-
sion of STL (DM10), in which space is a finite metric structure repre-
sented by an undirected weighted graph. SSTL is interpreted over spatio-
temporal signals with continuous time and discrete space. It permits the
specification and verification of spatio-temporal property of systems em-
bedded into a discrete space. It has the same operators as STL, plus two
spatial operators: the bounded somewhere operator and the bounded
surround operator. In SSTL, spatial and temporal operators can be arbi-
trarily nested. We provided the logic with a Boolean and a quantitative
semantics in the style of STL (DM10), and defined novel monitoring al-
gorithms to evaluate such semantics on spatio-temporal trajectories. The
monitoring of the surround operator requires a different algorithm from
those developed for timed modalities, as space is bi-directional, thus it
makes sense to observe both reaching and being reached; classical path-
based model checking does not coincide with spatial model checking
also because loops in space are not relevant in the definition of surrounded
operators. We remark that the logic is not tied to a specific class of pro-
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cesses. We can, in principle, handle any system for which we can gen-
erate sample execution trajectories. In fact, we could even use traces
generated from the execution of an actual system rather than through
simulation of a model.

We extended the robustness degree of STL formulae in a probabilistic
setting. We formally defined a robustness distribution of a formula. The
average robustness degree of this distribution, E(Rφ), gives an important
measure of how strongly a formula is satisfied. This means that higher is
the value, the more robust is the satisfaction of the formula. In particular,
we showed that it provides valuable information that is not captured by
the satisfaction probability alone. We equipped then also SSTL with this
stochastic semantics.

We showed the logic at work on different case studies as a Turing
reaction-diffusion system and an epidemic scenario of the spreading of
cholera. We chose to study biological scenarios because they are very
paradigmatic in the area of complex systems. Our methods, however,
can be directly applied to socio-technological and Cyber-Phisical scenar-
ios. The Turing system models a process of morphogenesis (Tur52b)
in which spots are formed over time. We showed how to use the lo-
gic to characterise the formation of spots. Then, we demonstrated that
the logic can be used also to specify global behaviours as the entire pat-
tern of the system. Furthermore, we displayed how we can nest spatial
and temporal operators to describe the absorption of a perturbation. In
the epidemic scenario of the spreading of cholera among neighbouring
communities, we showed how our logic is suitable to describe the epi-
demic propagation along a river, considering both the deterministic and
the stochastic dynamics. In this specific example, we worked only with
few locations/nodes, but the same type of analysis can easily be applied
to more complex spatial structures, even with thousands of nodes. The
problem in the analysis of models with more complex spatial structures
is not in the verification techniques but in the simulation of the spatio-
temporal model, specially for stochastic systems. Furthermore, the same
logics can be applied to more general notions of weighted graphs, not
necessarily representing a physical space. For instance, the graph may
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represent sensors connected in a network, with weights representing the
energy cost of transmission.

The logic has been implemented in a Java toolbox and is available
at http://quanticol.sourceforge.net/ as a Java library or as an
ECLIPSE plugin.

We exploited then the logic for system design or robust parameter
synthesis and formal analysis under parametric uncertainty of spatio-
temporal properties. The framework combines statistical machine learn-
ing techniques based on Gaussian processes with the algorithm for mon-
itoring SSTL properties and its average robustness. The optimisation is
carried out using state-of-the-art optimisation algorithms coming from
active learning, which emulate the true function from just few samples,
and perform very well in a simulation based scenario. We also consid-
ered the problem of learning the most effective parameters of a given
formula maximising the robustness score.

As case study, we analysed the occurrence of the French Flag pattern
in the Bicoid gradient, during the development of Drosophila embryo.
Studying how this property depends on the parameters of the model
is challenging due to the very high computational cost of simulating a
spatio-temporal model, and has only been possible by adopting recent
efficient verification techniques that employ machine learning method-
ologies (BMS15). The combination of these new techniques with SSTL
permits exploring behaviours that are extremely difficult to express (and
monitor) with standard temporal logics, where each individual location
would need to be accounted for.

From the implementation point of view, the experiments for the tem-
poral systems have been performed in MATLAB using a Java library for
the modelling and simulation part, instead, the experiments for the spatio-
temporal systems have been realised in Java integrating jSSTL whitin
the U-check toolbox.

This is a step towards the ambitious goal of finding suitable pro-
cedures to specify, analyse and design emergent behaviours (described
as temporal logic formulae) from models and from experimental data.
Many problems need still to be faced to achieve this goal, such as how
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to choose or learn the structure of the formula, how to avoid overfitting
in the design procedure, how to deal with the curse of dimensionality
afflicting GP-UCB and other optimisation algorithms.

9.2 Future Works

The work presented in this thesis can be extended in several directions.
We plan to perform a more thorough investigation of the expres-

sivity of SSTL, applying it on further case studies and compare its ex-
pressiveness with that of other spatio-temporal logics such as SpaTeL
(GBB14; HJK+15).

We would like to consider also other representations of space like
more general quasi-discrete metric spatial structures and continuous met-
ric spaces. In the first case, we can exploit the topological notion of
closure spaces (CLLM14) and extend it to the metric case. Note that
the current monitoring algorithms work already for more general spa-
tial structures, like finite directed weighted graphs with a quasi-metric,
but we plan to provide a more precise characterisation of the class of
discrete spatial structures to which they can be applied. The case of
continuous space covers traces of model like spatio-temporal point pro-
cesses or PDE systems. The syntax and the semantics are relatively easily
extended to continuous spaces using topological paths, the main chal-
lenge being the design of efficient monitoring algorithms. One direction
is to consider the discretisation of continuous spaces with Finite Differ-
ence Methods (FDM) (Olv14), i.e., regular grids, or Finite Element Methods
(FEM) (Olv14), i.e., “triangular” meshes, analysing the error produced
by the discretisation. Another interesting spatial extension is to consider
directionality, i.e., to add a set of possible direction to the spatial oper-
ators. This will permit to specify properties as “I will find a bike at a
distance no more the 100 meters in the north-east direction”. A possi-
bility in this direction, is to label edges of the space graph and add a
regular expression on these label to the spatial operators. An example
can be �C

[0,d] φ, where the regular expression is C = [north, east]+, i.e., an
infinite combination of north and east. A location satisfies this property
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if it satisfies φ, the distance constraints and it can be reached from the
current location moving only in the north or in the east direction.

We are also analysing different spatial properties to see if we need to
design other spatial operators that can catch new spatial behaviours. We
are considering a new more global definition of the φ1S[d1,d2]φ2 surround
operator where the distance does not depend on the particular location
where the property is verified but is related to the diameter of the region
that satisfies φ1 and is surrounded by a φ2-region. We are considering
also to use some clustering algorithms, e.g., spectral clustering, to search
“φ clusters” in the graph.

Moreover, we want to give a definition of the semantics for the spa-
tial operators via paths, so that it can be used to design distributed algo-
rithms instead of the current sequential one. This will greatly improve
the performance of the monitoring procedure in practical scenarios. To
deal with the possible uncertainty in the spatio-temporal trajectories or
in the formula parameters we plan to consider also imprecision in SSTL.
Hence, this line of future work can be a starting point in the design of
online monitoring algorithms of SSTL where we have just partial infor-
mation about the signals.

The present work uses advanced machine learning concepts to ad-
dress the system design problem in formal modelling; this is a relatively
new line of work (BS15; BS14; BMS16; KJMA+14; BBS14a; LS14; BBS+14b;
HJK+15) which opens significant new avenues for further research. From
the practical point of view, more extensive testing and an efficient and ro-
bust implementation (exploiting some of the possible parallelisms, e.g.,
in SMC) will be important for the tool to be adopted. From the theoreti-
cal perspective, we plan to use multi-objective optimisation to find good
parametrisation for conflicting objectives. Another interesting direction
is to combine the design problem with the inference problem, which has
recently been addressed for a number of continuous time stochastic sys-
tems (OMS13); this would open the possibility of addressing the control
problem for such systems, simultaneously inferring the state of the sys-
tem and designing the optimal input to lead it to a desired state.
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Appendix A

Correctness of The
Monitoring Algorithms for
the Surround Operator

In this appendix, we prove the correctness of the Boolean and the quan-
titative monitoring algorithms for the surround operator.

A.1 Correctness of the Boolean Monitoring Al-
gorithm for the Surround Operator

In this section we prove the correctness of Algorithm 2, Chapter 6, that,
for simplicity, we report again below. Let’s call the algorithm BoolSur-
round.

Theorem A.1 Given a graph G = (L,w,E), two properties φ1 and φ2, a
trace x and a location `, let sψ,`=BoolSurround(G,x, φ1, φ2, `) and Isψ,` be
the minimal interval covering consistent with {sφ1,`′ , sφ2,`′}`′∈L`[0,w2]

, then, for
all Ii ∈ Isψ,`

sψ,`(Ii) = 1 ⇐⇒ (x, t, `) ⊧ φ1S[d1,d2]φ2 ∀t ∈ Ii

Proof: First we note that sψ,`(Ii) = 1 ⇐⇒ ` ∈ VIi , where VIi is the set V
at the end of the iteration of the Ii interval. Then, it is enough to prove
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Algorithm 4 Boolean monitoring for the surround operator
1: input `,ψ = ϕ1S[d1,d2]ϕ2

2: ∀`′ ∈ L`
[0,d2]

compute sϕ1,`′ , sϕ2,`′

3: compute Isψ,` {the minimal interval covering consistent with sϕ1,`′ , sϕ2,`′ ,

`′ ∈ L`
[0,w2]

}
4: for all Ii ∈ Isψ,` do
5: V = {`′ ∈ L`

[0,d2]
∣sϕ1,`′(Ii) = 1}

6: Q = {`′ ∈ L`
[d1,d2]

∣sϕ2,`′(Ii) = 1}
7: T = B+(Q⋃V )
8: while W /= ∅ do
9: W ′ = ∅

10: for all ` ∈W do
11: N = pre(`)⋂V = {`′ ∈ V ∣`E`′}
12: V = V /N
13: W ′ =W ′⋃(N/Q)
14: end for
15: W =W ′

16: end while

17: sψ,`(Ii) =
⎧⎪⎪⎨⎪⎪⎩

1 if ` ∈ V,
0 otherwise.

18: end for
19: merge adjacent positive interval Ii, i.e., Ii s.t. sψ,`(Ii) = 1
20: return sψ,`
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that, for all Ii ∈ Isψ,`

` ∈ VIi ⇐⇒ (x, t, `) ⊧ φ1S[d1,d2]φ2 ∀t ∈ Ii.

Furthermore, for the definition of the minimal interval covering (Defini-
tion 4, Chapter 6), sϕ1,`′ , sϕ2,`′ , `

′ ∈ L`
[0,w2]

have the same value in each
Ii ∈ Isψ,` . This implies, for the Boolean semantics of the surround opera-
tor, that, (x, t̂, `) ⊧ φ1S[d1,d2]φ2 for a specific t̂ ∈ Ii if and only if it satisfies
the property for all t ∈ Ii.

Let’s consider now the distance constraints of the formula. We rede-
fine the property φ1 and φ2 in this way:

(x, t, `) ⊧ φ̂1 ⇐⇒ (x, t, `′) ⊧ φ1 ∧ d(`, `′) ≤ d2,

and
(x, t, `) ⊧ φ̂2 ⇐⇒ (x, t, `′) ⊧ φ1 ∧ d(`, `′) ∈ [d1, d2].

Hence, we have that V = {`′∣sφ̂1,`′(Ii) = 1} and Q = {`′∣sφ̂2,`′(Ii) = 1}.
Furthermore, a location ` is a bad location if it can reach a point satis-

fying ¬φ̂1 passing for a node ¬φ̂2. Let’s consider the set

C` = {i ∈ N∣∃p ∶ `↝∞.G, (x, t, p(i)) ⊧ ¬φ̂1, and ∀j ∈ {1,⋯, i}(x, t, p(j)) ⊧ ¬φ̂2},

where p ∶ `↝∞.G is a path of the graph G, starting from `, then

(x, t, `) ⊧ φ1S[d1,d2]φ2 ⇐⇒ (x, t, `) ⊧ φ̂1 ∧ C` = ∅.

Hence, what we have to prove at the end is that

` ∈ VIi ⇐⇒ (x, t, `) ⊧ φ̂1 ∧ C` = ∅, for a t ∈ Ii.

We will prove it by induction. From this point on, we fix the trace x

and the time t and we will write ` ⊧ φ to indicate (x, t, `) ⊧ φ and V for
VIi .

(⇒) We have to prove that if (x, t, `) ⊧ φ̂1 ∧minC` = k then ` is removed
at iteration k from V .

(basis step) ` ⊧ φ̂1 ∧minC` = 1 then p(1) ⊧ ¬φ̂1 ∧ p(1) ⊧ ¬φ̂2. This
implies that ∃`′ ∈ T = B+(Q⋃V ), and (`, `′) ∈ E, then ` is
removed from V at the first iteration.
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(inductive step) Let’s suppose that if ` ⊧ φ̂1 ∧ minC` = k then ` is
removed at iteration k from V . We have to prove that this is
true also for k + 1. Let’s suppose that ` ⊧ φ̂1 ∧ minC` = k + 1.
This implies that p(k + 1) ⊧ ¬φ̂1 and ∀j ∈ {1,⋯, k}, p(j) ⊧ ¬φ̂2.
But if k+1 = minC` then `′ = p(1) ⊧ φ̂1 and minC`′ = k, i.e., `′ is
removed at iteration k from VIi , then ` is removed at iteration
k + 1 because (`, `′) ∈ E.

(⇐) We have to prove that if ` is removed at iteration k from VIi then
` ⊧ φ̂1 ∧minC` = k.

(basis step) If ` is removed from V at the first iteration then ∃`′ ∈ T
s.t. (`, `′) ∈ E and (x, t, `′) ⊧ ¬φ̂1 ∧ ¬φ̂2, this implies minC` = 1.

(inductive step) Let’s suppose that if ` is removed at iteration k

from V then ` ⊧ φ̂1 ∧ minC` = k. We have to prove that this
is true also for k + 1. Let’s suppose that ` is removed at itera-
tion k + 1 from V . This implies that ∃`′ ∈ L s.t. (`, `′) ∈ E and
`′ ∈ T but this means that `′ was removed from V at the previ-
ous iteration k and from the inductive step we have minC`′ =
k. If minC`′ = k then ∃p ∶ `′ ↝ ∞.G s.t. p(k) ⊧ ¬φ̂1 and,
∀i ∈ {1,⋯, k}, p(i) ⊧ ¬φ̂2. But (`, `′) ∈ E and (x, t, `′) ⊧ ¬φ̂2

(because `′ ∈ T ) then ∃p′ ∶ ` ↝ ∞.G s.t. p(k + 1) ⊧ ¬φ̂1 and,
∀i ∈ {1,⋯, k + 1}, p(i) ⊧ ¬φ̂2. This implies that minC` ≤ k + 1,
but it can be less than k + 1 because in that case it has to be re-
moved before. Hence, we can conclude that minC` = k+1.

A.2 Correctness of the Quantitative Monitoring
Algorithm for the Surround Operator

In this section, we present the proofs of Theorem 6.1, Corollary 6.1 and
Proposition 6.2. For simplicity, we report again the statements.

Theorem A.2 . Let s1 and s2 be as in Definition 5, and

s(`) = max
A⊆L,`∈A

(min(min
`′∈A

s1(`′), min
`′∈B+(A)

s2(`′))),
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then
lim
i→∞
X (i, `) = s(`), ∀` ∈ L.

Moreover, ∃K > 0 s. t. X (j, `) = s(`),∀j ≥K.

Note that s is equivalent to the quantitative semantics of the surround
operator ϕ1Sϕ2, with si denoting the robustness of ϕi, without the dis-
tance constraints. We first present two lemmas, followed by the proof of
Theorem A.2.

Lemma A.1 If X (k + 1, `) = X (k, `) for all ` ∈ L then, ∀i > k, X (i, `) =
X (k, `).
Proof: By induction.

• (basis step) i=k +1 is true by hypothesis,

• (inductive step) suppose the assert holds for i > k, i.e., X (i, `) = X (k, `)
(I.H.), then we have to prove that it holds for i + 1.

X (i + 1, `) = min(X (i, `), min
`′∣`E`′

(max(X (i, `′), s2(`′)))) {by Def. of X}

= min(X (k, `), min
`′∣`E`′

(max(X (k, `′), s2(`′)))) {by I.H.}

= X (k + 1, `) = X (k, `). {by Def. of X}

Lemma A.2 Let A` be the subregion that maximizes s(`), then, ∀`′ ∈ A`,
s(`′) ≥ s(`).
Proof: If A` is the subregion that maximizes s(`) then

s(`) = min(min
`′∈A`

s1(`′), min
`′∈B+(A`)

s2(`′)))

Suppose by contradiction that ∃ˆ̀∈ A` s.t. s(ˆ̀) < s(`). Let Q = {A ⊆ L, ˆ̀∈ A}.
Then

s(ˆ̀) = max
A∈Q

(min(min
`′∈A

s1(`′), min
`′∈B+(A)

s2(`′)))

and s(ˆ̀) < s(`) implies

max
A∈Q

(min(min
`′∈A

s1(`′), min
`′∈B+(A)

s2(`′))) < min(min
`′∈A`

s1(`′), min
`′∈B+(A`)

s2(`′)))

But A` is a subset of L and ˆ̀∈ A` therefore A` ∈ Q, thus the inequality can
not hold.
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Proof: [of Theorem 6.1] We have to prove that (1) X (i, `) converges in a
finite number of steps, in each location `, to X (`) ∈ R∗ and that (2) ∀` ∈ L,
X (`) = s(`).

1. Convergence of X .
First note thatX (i, `) ≥ min(X (i, `),min`′∣`E`′(max(X (i, `′), s2(`′)))) =
X (i+1, `), thusX∣` is a monotonic decreasing function. Second, note
thatX (i, `) ∈ {sj(`)∣j ∈ {1,2}, ` ∈ L} is a finite set of sortable values.
So, in every step, X takes a value of a sortable finite set. Finally, if
it happens that for a step, for all ` ∈ L, X (i, `) does not change then,
from Lemma A.1, it will remain the same for all the next steps. The
convergence of X to the maximum fixed point follows then from
Tarsky’s theorem.

2. We have to prove that ∀`, X (`) = s(`).

Let A` be the subregion that maximizes s(`) then

s(`) = min(min
`′∈A`

s1(`′), min
`′∈B+(A`)

s2(`′))).

First we prove that (2a) ∀`, X (`) ≥ s(`) and then that (2b) they are
equal.

2a) To prove that X (`) ≥ s(`) it suffices to prove that, for a generic
`, ∀i ∈ N, X (i, `) ≥ s(`), and for the convergence of X that
∃j ∈ N s.t. X (`) = X (j, `),∀`,∀j ≥ i. The proof is by induction.

• (basis step)

X (0, `) = s1(`) {by Def. of X}
≥ min
`′∈A`

s1(`′) {Because ` ∈ A`}

≥ min(min
`′∈A`

s1(`′), min
`′∈B+(A`)

s2(`′))) {min property}

= s(`) {by Def. of s(`)}

• (inductive step) Assume X (i, `) ≥ s(`), to prove that X (i+
1, `) ≥ s(`);
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X (i + 1, `) =min(X (i, `), min
`′ ∣`E`′

(max(X (i, `′), s2(`′)))) {by Def. of X}

We know by I.H. that X (i, `) ≥ s(`), so it remains to be
shown that also:

min
`′∣`E`′

(max(X (i, `′), s2(`′))) ≥ s(`) (A.1)

Note that it is assumed that ` ∈ A` and that `′ are direct
neighbours of `. Therefore we can distinguish the follow-
ing two cases:

– Suppose `′ ∈ A`. By I.H. we know that X (i, `′) ≥ s(`′)
and by Lemma A.2 we also know that s(`′) ≥ s(`). For
what concerns s2(`′), if s2(`′) ≤ X (i, `′) then the max
leads to X (i, `′) ≥ s(`). If instead s2(`′) ≥ X (i, `′) ≥
s(`), then obviously also s2(`′) ≥ s(`). So inequa-
tion (A.1) holds in this case.

– Suppose `′ ∈ B+(A`). Then, by definition of s(`) we
know that s2(`′) ≥ s(`). So, if s2(`′) ≥ X (i, `′) then
the inequation holds. If X (i, `′) ≥ s2(`′) then since
s2(`′) ≥ s(`), inequation (A.1) also holds.

2b) Suppose by contradiction that ∃ˆ̀ ∈ L s.t. X (ˆ̀) > s(ˆ̀). At the
fixed point we have that

X (ˆ̀) = min(X (ˆ̀),min
`∣ˆ̀E`

(max(X (`), s2(`))))

This means that the inequality

min
`∣ˆ̀E`

(max(X (`), s2(`))) > s(ˆ̀) (A.2)

has to be true.

Let A ⊆ L, we define:

• C(A) ∶= {` ∈ L∣∃`′ ∈ A s.t. `′E` ∧X (`) ≥ s2(`)}
• Ci(A) = C(Ci−1(A))
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We can then compute the closure of C, asC∗(A) = A⋃∞i=0C
i(A).

Because of the definition of C and the inequality (A.2), we
have that s1(`) ≥ X (`) > s(ˆ̀), ∀` ∈ C∗({ˆ̀}), and that s2(`) >
s(ˆ̀), ∀` ∈ B+(C∗({ˆ̀})); hence

min( min
`∈C∗({ˆ̀})

s1(`), min
`∈B+(C∗({ˆ̀}))

s2(`))) > s(ˆ̀)

i.e,.

min( min
`∈C∗({ˆ̀})

s1(`), min
`∈B+(C∗({ˆ̀}))

s2(`))) >min(min
`∈Aˆ̀

s1(`), min
`′∈B+(Aˆ̀)

s2(`′)))

but this contradicts the assumption of maximality of Aˆ̀.

Corollary A.1 Given an ˆ̀∈ L, let ψ = ϕ1S[d1,d2]ϕ2 and

s1(`) =
⎧⎪⎪⎨⎪⎪⎩

ρ(φ1,x, t, `) if 0 ≤ d(ˆ̀, `) ≤ d2

−∞ otherwise.

s2(`) =
⎧⎪⎪⎨⎪⎪⎩

ρ(φ2,x, t, `) if d1 ≤ d(ˆ̀, `) ≤ d2

−∞ otherwise.

Then ρ(ψ,x, t, ˆ̀) = s(ˆ̀) = maxA⊆L,ˆ̀∈A (min(min`∈A s1(`),min`∈B+(A) s2(`))).

Proof: We recall that

ρ(ψ,x, t, ˆ̀) = max
A⊆L

ˆ̀

[0,d2]
,`∈A,B+(A)⊆L

ˆ̀

[d1,d2]

(min(min
`∈A

ρ(φ1,x, t, `), min
`∈B+(A)

ρ(φ2,x, t, `))),

where Lˆ̀

[d1,d2]
∶= {` ∈ A∣d1 ⩽ d(`, ˆ̀) ≤ d2}. This means that ` ∈ A iff

d(`, ˆ̀) ≤ d2 and, for all `′E`, d1 ⩽ d(`′, ˆ̀) ≤ d2.
So, we consider a restricted number of subsets of L for ρ and all the

possible subsets of L for s. Furthermore, the value of the locations con-
sidered by both are always the same, i.e., the value of s1 and s2 differ only
in the locations considered by s and not by ρ. For this reason s(`) ≥ ρ(`).

Let Aρ be the subset that maximizes ρ of ˆ̀ and As the subset that
maximizes s of ˆ̀. And suppose by contradiction that

min(min
`∈As

s1(`), min
`′∈B+(As)

s2(`))) > min(min
`∈Aρ

ρ(φ1,x, t, `), min
`∈B+(Aρ)

ρ(φ2,x, t, `))),
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but the values considered by s and not by ρ are all equal to −∞ (see line 8
of Alg. 3), so if As has a location that cannot be considered by ρ it means
that

min(min
`∈As

s1(`), min
`′∈B+(As)

s2(`))) = −∞

but minus infinity cannot be bigger than any number.

Proposition A.1 Let dG be the diameter of the graph G and X (`) the fixed
point of X (i, `), then X (`) = X (dG + 1, `) for all ` ∈ L.

Proof: The graph diameter of G is equal to dg = max`,`′∈L d(`, `′). Recall
that X (dg, `) ∈ {sj(`) ∣ j ∈ {1,2}, ` ∈ L} is a finite set of sortable values. At
step zero the value of X is equal to s1 in all the locations. At each next
step, the value of X (i, `) depends only on the value of X in the same
location at the previous step and the value of s2 and X in the previous
step in the direct neighbours of `, `′E`. This means that, after a number
of steps equal to the diameter of the graph, i.e., the longest shortest path
of the network, X , for all nodes `, has taken into account the values s1

and s2 of all the nodes.
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Appendix B

The jSSTL View of the
ECLIPSE Plugin

In this appendix, we describe the jSSTL view with a running example.
Let us consider the Cholera case study presented in Chapter 6, Sec-

tion 6.5. The model describes the spread of a Cholera infection along
the communities that live close to a river. In Figure B.1, we can see the
ECLIPSE plugin. On the left, there is the editor containing the script with
the SSTL properties that we want to analyse in our scenario. On the right
side, instead, there is the jSSTL view (where the panel with the signal is
selected). As we can see, the jSSTL view provides three different panels:
to visualise the spatial models (Model panel), the relevant data declared
in a script (Script panel), and to plot the system’s trajectories and the
Boolean and quantitative satisfaction signals (Signal panel).

The Model panel can be used to see a graph-based representation of a
spatial model, Figure B.2. The spatial model can be can be imported as a
.tra file.

The Script panel, Figure B.3, represents the main information of our
scenario: the list of variables, parameters and formulae names. Cur-
rently, CSV and tabular based ascii files are supported for both input
and output of signals. The traces have to be imported with a single file
for each variable and location, e.g., for the infected individual I we will
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Figure B.1: The jSSTL ECLIPSE plugin
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Figure B.2: Visualisation of the space in the jSSTL ECLIPSE plugin.
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have the files values i I .dat, with i ∈ {1, ..,7}.
In the Signal panel, the trajectories and the Boolean and quantitative

signals can be visualised. In Figure B.4, we can see the trace xI , the vari-
ation in time of the number of infected individuals in each location.

Figure B.4: Plot of xI , number of infected individual in each location.
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Figure B.3: List of variables, formula parameters and formula names in the
jSSTL view.
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Figure B.5 shows the spatio-temporal Boolean satisfaction of the prop-
erty psi1 (in each location), and Figure B.6 the quantitative one. We recall
that the satisfaction of a formula corresponds to the value at time zero.
We can choose which variables and which locations to plot.

The plugin is still in development and new features will be integrated.
For instance, we are working on an online monitoring procedure where
trajectories are collected from external data sources and on new kinds of
format for input and output of data.
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Figure B.5: Plot of the Boolean semantics of the properties phi1.
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Figure B.6: Plot of the quantitative semantics of the properties phi1.
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Contributions to
co-authored papers

As described in the acknowledgements, most part of this thesis has been
published. In the publication of the computer science community, the
authors are usually in alphabetical order. To clarify my contribution, I
added here the details of what I have done in each paper.

In (BBNS13; BBNS15), my main contributions are in the design of
all the case studies, their implementation, simulation, analysis and their
system design experiments.

In (NB14), I worked, supervised by Luca Bortolussi, on the whole
paper: syntax, semantics, algorithms and case study.

In (NBC+15), I defined the syntax and the semantics together with
the other authors, the algorithm for quantitative surround was designed
principally in collaboration with Michele Loreti and the proof of the cor-
rectness with the help of Luca Bortolussi. I did the first version of the
Java implementation of SSTL, supervised by Michele Loreti and Luca
Bortolussi. I implemented and analysed the case study.

In (BBM+15), I designed and implemented the case study, I described
SSTL and specified the french flag property, I elaborated the real data,
and worked on the experiments in collaboration with Dimitrios Milios.
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