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Abstract

Graphs are powerful data structure for representing objects
and their relationships. They are extremely useful in the study
of dynamical systems, evaluating how different agents in-
teract among each other and behave. An example is repre-
sented by the consensus problem where a graph models a
set of agents that locally interact and exchange their opin-
ions with the aim of reaching a common opinion (consen-
sus state). At the same time, many learning techniques rely
on graphs exploiting their potentialities in modeling the rela-
tionships between data and determining additional features
related to the data similarities. To study both the consensus
problem and specific machine learning applications based on
graphs, the study of the spectral properties of graphs reveals
fundamental. In the consensus problem, the convergence rate
to the consensus state strictly depends on the spectral pro-
perties of the transition probability matrix associated to the
agents network. Whereas graphs and their spectral proper-
ties are fundamental in determining learning algorithms able
to capture the structure of a dataset. We propose a theoretical
and numerical study of the spectral properties of a network
of agents that interact with the aim of increasing the rate of
convergence to the consensus state keeping as sparse as pos-
sible the graph involved. Experimental results demonstrate
the capability of the proposed approach in reaching the con-
sensus state faster than a classical approach. We then inve-
stigate the potentialities of graphs when applied in classifica-
tion problems. The results achieved highlight the importance
of graphs and their spectral properties handling with both
semi–supervised and supervised learning problems.

xxi
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Introduction and
background
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1
Introduction

1.1 Graphs versatility and applications

Graphs are a general and powerful data structure for objects repre-
sentation; they are used to model entities, their attributes and their re-
lationships (1). Generally speaking, a graph is characterized by a set of
nodes, which represent the different entities, and a set of edges that link
pairs of nodes and represent the interconnections between the nodes. In
particular, a graph is directed if the edges have a direction associated
with them, undirected otherwise. Nowadays, graphs are becoming in-
creasingly important in modeling structures and their interactions, with
broad applications including computer vision, bioinformatics, text re-
trieval, and Web analysis, where they represent a useful tool for sear-
ching and for community discovery (2). In modeling physical and bio-
logical processes (3; 4; 5) graphs, for instance, are used to represent con-
nections between interacting parts of a system, to model the dynamics of
a physical process, disease propagation, as well as the evolution of po-
pulations in an ecosystem (6). Several biological systems, in fact, can be
usefully represented as networks. Examples are the genetic regulatory
network and the food web network, which can be modeled by a graph
with nodes representing species in an ecosystem and directed edges in-
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dicating which species prey on the other (3). In addition, they are widely
used in the study of social systems (7), where a social network is a set of
people or groups of people with some patterns of contacts or interactions
between them (8). The patterns of friendships between individuals, busi-
ness relationships between companies are examples of social networks
(3). At the same time, graphs represent a useful tool to study the flow
of information between different systems (9), how news and information
spread between single individuals and groups of agents (10; 11), and to
analyze the flow of traffic on roads (10). Finally, another application of
graphs is represented by the network of citations between academic pa-
pers. In this case, the nodes of the network are the articles, while the
directed edges indicate which articles cite the others.

At the same time, in the machine learning field different methods
rely on graphs. There are both unsupervised and supervised learning
techniques that make use of graphs. Regarding unsupervised and semi–
supervised methods, graphs can provide a model of the manifold where
the data lie on and they are also used to determine clusters of similar
data (12). In a supervised context, graphs can be exploited to infer la-
bels or numerical values attached to nodes, to extract novel and useful
knowledge from data, and additional features (13). In addition, they can
be also combined with other learning techniques, such as the so–called
kernel methods (14), providing a useful tool to deal with several learning
problems.

Moreover, in (15) the idea of constructing kernels on the nodes of
graphs was first proposed, with the aim of capturing the relationships
between data points induced by the local structure of the graph; the work
(16), instead, focuses on kernels capturing the similarity of whole graphs
(that idea was first proposed by (17)). For both these types of graph ker-
nels, the challenge is to define a kernel that captures the semantics inher-
ent in the graph structure (16). Examples of application of graph kernels
can be found, for instance, in (18), where they are used to compare bio-
logical networks, or in (19), for the prediction of protein function.

Finally, another application of graphs in the field of patter recogni-
tion and computer vision is represented by the graph matching problem
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(20; 21). This problem consists in searching for an edge–preserving map-
ping between the nodes of two graphs (22). Specifically, in the field of
computer vision, many problems are formulated as an attributed graph
matching problem; the nodes of the graphs correspond to local features
of the image and edges correspond to relational aspects between fea-
tures. The final goal is to find a correspondence between nodes of the
two graphs such that they “look similar” (23). In a pattern recognition
context, instead, the graph matching problem can be found, for instance,
in the human faces recognition problem (24).
Beside the problems already introduced, additional learning problems
that rely on graphs concern, for instance, the problems of character recog-
nition, shape analysis (25), Web document analysis (26; 27; 28) and data
mining (29).

1.2 Problem statement

One of the problems investigated in the theory of dynamical systems
is the consensus problem. This kind of situation is characterized by a
group of agents that locally interact and exchange opinions. They are
modeled by a graph with nodes corresponding to the agents and edges
representing their interconnections. For instance, if the graph of inter-
connections is undirected, an edge between two different agents (i.e.,
nodes) represents the possibility for one of the two to receive informa-
tion from the other and vice–versa (30; 31). Agents influence each other
depending on the strength of the interconnections between them (32). In
particular, a “consensus algorithm” is an interaction rule that specifies
the information exchange between an agent and all of its neighbors on
the network (33). The final goal of this problem is to have all the agents
agree upon a common opinion, a “consensus”, that means to reach an
agreement regarding a certain quantity of interest that depends on the
state of all agents. Several applications of this kind of problem exist. For
instance, the consensus problem arises when dealing with the collective
behavior of networked agents (34), in the context of multiagent coordi-
nation (35; 36), sensor networks (37) and many other applications (38).
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At the same time different consensus algorithms and studies have been
developed (39; 40; 41).

In this dissertation we focus on the average consensus problem, where
the graph of interconnections is undirected (i.e., the edges are not orien-
tated, thus an agent connected to another can communicate with him
and vice–versa), and the final consensus state is given by the average
of their initial opinions (42). In particular we are interested in studying
the convergence rate to the consensus state. In this context, the spectral
properties of the network which models the group of agents play a cru-
cial role. In particular, the Laplacian matrix and its spectral properties
(43; 44) are fundamental to study how the network of agents evolves.
Studies related to the convergence rate to the consensus state have been
developed, for instance, in (45; 46; 47), while in (48) it is studied the re-
lated problem of the mixing time.

We intend to focus from both a theoretical and practical point of view
on the spectral properties of the network involved in order to increase
the convergence rate to the consensus state keeping, at the same time,
as sparse as possible the agents network. We require, in fact, to obtain
solutions able to keep the cost of communications between the different
agents small.

On the other hand, in the thesis the spectral properties of graphs are
also exploited in a machine learning context. Beside the application of
graphs to the study of dynamical systems and of interconnections of indi-
viduals, we intend to study the potentiality of graphs in their application
to classification problems. In particular, we aim at analyzing the spectral
properties of graphs, previously evaluated in the consensus problem, in a
semi–supervised learning context. We focus on the application of a semi–
supervised learning technique that relies on a graph built on the dataset
for the classification of flood–prone areas. Graphs, in situations where
both labeled and unlabeled data are present, represent a fundamental
tool to handle with both such types of data, making possible to extract
additional information from the unlabeled data. The spectral properties
of graphs, in this context, reveal to be fundamental to estimate the data
probability distribution. This knowledge is fundamental to compute a
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classifier able to usually achieve better performance than a classical one
that does not rely on the spectral properties of a graph adequately com-
puted on the dataset.

Finally, the potentialities of graphs in a learning context are shown in
another classification problem. We study and apply graphs in a classifi-
cation problem of parkinsonian disorders in order to model the dataset,
extracting additional graph–based features from the data. We aim at
computing features that capture the similarities between data belonging
to the same class and the dissimilarities between data coming from dif-
ferent classes. The comparison between this approach and a classical one
that does not rely on graphs highlights again the capabilities of graphs
in modeling data and extracting additional and useful information.

1.3 Challenges and scientific contributions

The main contribution of this dissertation relies on the theoretical and
practical studies of graphs and their spectral properties in both the con-
trol field and in machine learning problems. In Part II we present orig-
inal theoretical studies related to the solution of the consensus problem
and we provide theoretical and practical solutions able to sparsify the
network of the agents, keeping at the same time the rate of convergence
to the consensus state sufficiently high. We then focus on a novel ap-
proach able to increase the convergence rate to the consensus state di-
viding the original network in several subgraphs. Again, we ground our
study on graph spectral theory and in particular on the application of the
Cheeger’s inequality (49).

Beside our investigation of the consensus problem, in Part III, we also
provide novel contributions in specific classification problems. We high-
light the potentiality of a semi–supervised learning technique based on
graphs in improving the classification performance of a classical super-
vised classifier that does not exploit spectral properties of graphs. Fi-
nally, we conclude our study on graphs evaluating their capabilities in
modeling a dataset and extracting additional information from it.

After an overview of graphs and their basic notations, in Chapter
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2 we report and describe fundamental graph features that are consid-
ered in the following chapters. In particular we briefly introduce spectral
graph theory and its notions. The study of the eigenvalues and eigenvec-
tors of the matrices related to graphs represents the common denomina-
tor between the two different topics treated in this dissertation.

In Chapter 3 the consensus problem is presented. We introduce the
problem of dealing with a large number of agents that locally interact
and have to reach a common opinion as fast as possible. We focus on
the study of the graph topology determining the structure of the net-
work that leads to the fastest convergence rate to the consensus state.
In particular, we are interested in determining a sparse variation of the
problem, with the aim of determining a sparse graph with a fast conver-
gence rate to the consensus state. Dealing with large networks is, from a
computational point of view, expensive and time consuming especially
when huge networks are considered. Hence, determining a method able
to provide satisfactory results in terms of convergence rate to the consen-
sus state maintaining, at the same time, the graph as sparse as possible is
useful and advantageous in many applications where large networks are
considered. In Chapter 4 we continue the study on the consensus prob-
lem and the rate of convergence to the consensus state. Differently from
the previous chapter, where a convex optimization problem is consid-
ered, now the idea is to opportunely divide the original network in dif-
ferent subnetworks (i.e., subsets of agents), having fast convergence rate
to their local consensus state. We thus decompose the consensus prob-
lem in many consensus subproblems and then we investigate the final
consensus problem “merging” the local consensus states previously com-
puted. A suitable technique able to extract from the original graph differ-
ent subgraphs where the convergence rate to their own consensus state
is fast, reveals useful to increase the convergence rate to the consensus
state computed on the original network, without using such technique.
In Chapter 5 the spectral properties of graphs are again studied but they
are applied in a different context. A machine learning problem is con-
sidered, dealing with a semi–supervised classification problem, where
both labeled and unlabeled data are provided to a classifier. In particu-
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lar, we apply a semi–supervised learning technique for the classification
of flood–prone areas. The main purpose of the specific study is the eval-
uation of the capabilities of a semi–supervised learning technique that
exploits the spectral properties of a graph used to model the manifold
where the data lie on. We compare the results achieved by the semi–
supervised classifier with the ones achieved by a supervised learning
technique trained on the labeled data only. A graph–based learning tech-
nique reveals suitable for this particular classification context. Finally, in
Chapter 6 we show an additional application of graphs in the machine
learning field. Again a classification problem is presented, dealing with
different parkinsonian disorders. Contrary to the previous problem, in
this case graphs are not used in the learning algorithm, but they provide
a model of the dataset highlighting the similarities and dissimilarities be-
tween the data. A graph is built on the dataset with the aim of extracting
additional features from the data that have to be classified. We observe
that graphs are a powerful structure able to provide useful information
to improve the classification results achieved when graph–based features
are not added to the dataset. Finally, Chapter 7 offers a final discussion
and the concluding remarks highlighting the important developments
achieved in this work and future improvements to carry out.
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2
Introduction to graphs and spectral

properties

2.1 Introduction

In this preliminary chapter we provide a brief introduction to graphs.
We introduce the basic notations and information necessary to deal with
the arguments described later. We first recall the generic notations used
to introduce and describe graphs, then a selection of features related to
both single nodes and subsets of nodes in a graph will be provided. We
introduce only the notations that will be recalled and used in the fol-
lowing chapters. Subsequently, we will focus on spectral graph theory
whose properties will be discussed in Chapters 3 and 4, where the con-
sensus problem is studied, and Chapter 5 where semi–supervised learn-
ing techniques are studied and applied. In particular, we will focus on
the study of the eigenvalues of the Laplacian matrix of a graph introduc-
ing important results that will be used and considered in the study of the
consensus problem.
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2.2 Graph representation

A graph G consists of a finite set of nodes (or equivalently vertexes)
V and a set of edges E; its representation is given by a pair G = (V,E).
From now on, we will indicate with vi a generic node in the vertex set
V , while with eij ∈ E we indicate the edge between a couple of nodes vi
and vj . |V | indicates the cardinality of V ; thus, if V = {v1, v2, . . . , vN},
it follows that |V | = N . We are interested in undirected graphs where
no orientation in the edges is present, while weighted and unweighted
graphs will be both taken in consideration. The difference between the
two is related to the presence or not of a weight associated to the edges
between the different pairs of nodes. We will use the same notation to
indicate both the unweighted and weighted graphs. For the latter we
will sometimes indicate withW the weighted adjacency matrix (used ex-
tensively in the following chapters) whose entries wij specify the weight
associated to each edge eij . The weight wij is a real non negative number
that represents the strength of the connection between the pair of nodes
vi and vj , ∀ i, j = 1, . . . , N . Note that, for undirected graphs, wij = wji.

As just introduced for weighted graphs, we recall that both a weighted
and an unweighted graph can be entirely represented by a matrix A

which is called the adjacency matrix. If |V | = N , the adjacency matrix A
is an N ×N matrix whose entries are defined as

aij =

{
wij if (vi, vj) are connected by an edge
0 otherwise

in the case of weighted graphs. Sometimes we will use either A or W to
indicate the adjacency matrix in the weighted case. If unweighted graphs
are considered, the adjacency matrix is a binary matrix A with entries:

aij =

{
1 if (vi, vj) are connected by an edge
0 otherwise

Again, if the graph is undirected, the adjacency matrix A is symmetric.
Note that, in this introductory chapter, when defining graph features

and important quantities related to graphs, we do not consider nodes
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with self–loops. Anyway, in Chapters 3 and 4 where the consensus prob-
lem is studied, we will introduce graphs presenting self–loops.

In the following section we first provide a description of a series of
graph features (50; 51; 52; 53) that will be used in the following chapters.

2.2.1 Graphs features and fundamental notions

Nodes definitions and features

Let G be a generic graph, with N nodes, i.e., |V | = N ; G could be either
a weighted graph or an unweighted one. We now report some measures
of the importance of a generic node vi ∈ G; indices that define the im-
portance of a node are the so–called centrality measures (6; 54). First, we
mention the degree of a node vi, with i = 1, . . . , N , which is defined as
di =

∑N
j=i aij . It is the sum of the edge values incident to the vertex,

where each of these edges has value 1 in the unweighted case, wij oth-
erwise. The sum of the degrees of all the vertices is the total degree of a
graph. The degree matrix D of a graph, instead, is defined as the diago-
nal matrix with the degrees d1, . . . , dN on the main diagonal. In general
an important node is involved in a large number of interactions.

Beside the degree of a node, before introducing other centrality mea-
sures, we need to introduce the natural distance metric between pairs of
nodes; this measure is the length of the shortest path between two nodes.
More precisely, given two nodes vi and vj , a shortest path between them
is defined as any of the paths (i.e., a sequence of edges which connect
the two nodes) with the minimum number of edges (in the unweighted
case) or with the minimum sum of the weights of its constituent edges,
for weighted graphs. Thus, as previously mentioned, the distance be-
tween pairs of nodes is measured as the length of any of the shortest
paths between them, i.e., the sum of the weights of the edges in such
shortest path. We define the length of the shortest path between nodes vi
and vj as δ(vi, vj).

Important centrality measures are:
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• closeness centrality: given a node vi, it is defined as

Cc(vi) :=
1∑

vj
δ(vi, vj)

.

This feature defines the importance of a node measuring if this
node is “close” to and can communicate quickly with the other
nodes in the graph;

• betweennes centrality: given a node vi inG, this centrality measure
is defined in the following way:

Bc(vi) :=
∑

vj 6=vi 6=vk∈V

σvj ,vk(vi)

σvj ,vk
,

where σvj ,vk is the total number of shortest paths from node vj and
node vk, while σvj ,vk(vi) is the number of those paths that pass
through vi. This measure tells us that an important node lies on a
high proportion of shortest paths between other nodes.

We then mention the vertex eccentricity e(vi) of a generic node vi de-
fined as e(vi) = max{δ(vi, vj) : vj ∈ V }; the radius r(G) of a graph
that is r(G) = min{e(vi) : vi ∈ V }. Finally, we introduce the clustering
coefficient of a node vi that is a measure of the degree to which nodes
in a graph tend to cluster together. More precisely, defining the neigh-
borhood Ni of a vertex vi as the set made of its immediately connected
neighbors, i.e., Ni = {vj : eij ∈ E}, the clustering coefficient C(vi) of
node vi is defined as:

C(vi) =
2|{ejk : vj , vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
,

where ki is the number of neighbors of node vi.

Subgraphs notions

From the vertex set V of a graph, it is possible to consider a generic subset
of vertices S ⊆ V that define a subgraph of the original graph G. In
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particular, given the subset S ⊆ V , we denote its complement as V \ S
or, equivalently as S̄. The “size” of subset S is defined either as

|S| := the number of vertices in S,

or as
vol(S) :=

∑
i∈S

di. (2.1)

In particular, we say that a subset S is connected if any two vertices
in S can be joined by a path such that all intermediate nodes also lie in S.
Moreover, a subset S is called a connected component if it is connected
and if there are no connections between nodes in S and S̄. Finally, given
two disjoint subsets S, T ⊂ V , we define the cut between them as:

cut(S, T ) :=
∑

i∈S,j∈T
wij (2.2)

Thus, the cut between the sets of nodes S and T is the sum of the edge
values with an extremity in S and another in T . Finally, we introduce the
definition of connected graph that will be extensively used in Chapters 3
and 4. An undirected graph G is connected if each pair of vertices forms
the endpoints of a path (i.e., for each vi and vj nodes in G there is a path
which connects them). In addition, when dealing with directed graphs, a
directed graph G is said to be strongly connected if for each two vertices
there are paths from one to the other in both directions. The notations
just introduced are necessary to deal with the consensus problem and
the particular development described in Chapter 4.

Before diving into spectral graph theory and its properties, we de-
scribe some methods used to build a graph that will be considered in
Chapters 5 and 6.

2.2.2 Similarity graphs

Given a dataset X = {x1, . . . , xN}, where xi ∈ Rn, with i = 1, . . . , N ,
are n–dimensional vectors, if one is interested in building a graph G =

(V,E) on these data points, either a weighted one or an unweighted one,
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it is necessary to define a notion of similarity sij ≥ 0 between all pairs of
data xi and xj . More precisely, each data point xi corresponds to a node
vi, while the similarity measure sij encodes the strength of the connec-
tion between points xi and xj . In general, these two points are connected
by an edge eij if the similarity measures sij is positive or larger than a
certain threshold. We use the term similarity measure, or equivalently,
distance measure to describe three techniques commonly used to define
a graph starting from the points; they are:

• ε–neighborhood graph: the points connected are those with distances
sij , with i = 1, . . . , N , smaller than a given ε > 0;

• k-nearest neighbor graph: for a given k, a vertex vj , corresponding to
an element xj , is connected to another vertex vi if vj is among the
k nearest neighbors of vi. Since we will deal with only undirected
graphs, and the one built following this rule is a directed one, one
of the following ways to make the graph undirected can be ap-
plied. Either vi is connected to vj if vi is among the k–nearest neigh-
bors of vj or vice–versa, determining a k–nearest neighbor graph; or
vi and vj are connected by an edge if vi is among the k–nearest
neighbors of vj and vj is among the k–nearest neighbors of vi. The
resulting graph is called mutual k–nearest neighbor graph: this con-
struction leads to a sparser graph than the previous one. Both un-
weighted and weighted k-nearest neighbor graphs/mutual k–nearest
neighbor graphs can be built depending on the choice of assigning
the value 1 to the edges connecting the nodes or a weight related to
the distance between the pairs of nodes;

• fully connected graph: between all the possible pairs of points the
Gaussian similarity function sij = exp(

‖xi−xj‖2
2σ2 ) is computed de-

termining the weighted matrix W with entries wij = sij .

From the similarity measures, depending on the particular applica-
tion and purpose one is dealing with, either a weighted graph can be
obtained by using as edge weights the similarity measures themselves
or an unweighted graph can be built. It can be obtained by threshold-
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ing the values of the weights and assigning an edge with value 1 only
between pairs of points xi and xj with similarity sij that satisfies certain
requirements. Otherwise, if a k–nearest neighbor graph is considered, it
can be transformed into an unweighted one by assigning value 1 to the
edges instead of their original weight (55).

We have introduced a brief overview on graph notations useful for
the studies presented in the next chapters. We now continue the intro-
duction to graphs focusing on spectral graph theory and its properties.
Our main goal is to introduce definitions and techniques able to deter-
mine clusters inside a graph. In Chapter 4, in fact, we will need to de-
termine clusters inside a single graph in order to increase the rate of con-
vergence to the consensus state.

2.3 Spectral graph theory

This branch of graph theory is concerned with the analysis of graphs
by using algebraic properties of associated matrices. In particular, it
studies the relation between graph properties and the spectrum of the
adjacency matrix or the Laplacian matrix (56). The latter matrix is de-
fined as L = D − A, where D is the degree matrix of a graph, while A is
either the binary adjacency matrix in the case of unweighted graphs or
the weighted adjacency matrix if weighted graphs are considered. More
specifically, L is the matrix with components equal to:

Lij =


di if i = j
−1 if vi and vj are connected by an edge
0 otherwise

For our purposes we denote with ξi, with i = 0, . . . , N − 1 the eigenval-
ues of the Laplacian matrix, where, in the following, the eigenvalues are
considered in a non–decreasing order, i.e., ξ0 ≤ ξ1, . . . ,≤ ξN−1. Note that
L, defined as above, is also called unnormalized Laplacian matrix; in the
following we list some properties of L that can be found, for instance in
(55; 57; 58).

Remark 1. The matrix L satisfies the following properties:
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• ∀x ∈ RN one has xTLx = 1
2

∑N
i,j=1 wij(xi − xj)2 ;

• L is a symmetric positive-semi-definite matrix;

• the smallest eigenvalue of L is ξ0 = 0. Moreover, the indicator vector
1 = (1, · · · , 1)T is an eigenvector associated with the eigenvalue 0;

• from the second property it follows that the eigenvalues of L are real and
non–negative values

0 = ξ0 ≤ ξ1, . . . ,≤ ξN−1.

Another important property ofL that is fundamental in spectral graph
theory is the following:

Remark 2. The multiplicity of the eigenvalue 0 of L is equal to the number of
connected components of the graph, and a basis of the associated eigenspace is
made of the indicator vectors of such connected components.

We refer to (55) for the proof of the propositions stated above.
In many applications two possible variations can be used instead of

the unnormalized Laplacian matrix L. They are:

• the normalized Laplacian matrix given by LN = I −D− 1
2AD−

1
2 ,

• the random walk Laplacian matrix defined as Lrw = I −D−1A.

Where, again, A can be either a binary or a weighted adjacency matrix.
If graphs with isolated nodes are considered (i.e., a graph G with at least
a node vi with degree di = 0), we introduce the following notation re-
ported in (59):

d−1
ii = d

− 1
2

ii = 0 ∀ vi such that di = 0

In particular, the structure of matrix LN is the following:

LNij =


1 if di 6= 0 and i = j

− 1√
didj

if (vi, vj) are connected by an edge and di 6= 0

0 otherwise
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while

Lrwij =


1 if di 6= 0 and i = j

− 1
di

if (vi, vj) are connected by an edge and di 6= 0

0 otherwise
.

Similar properties like the ones listed in Remarks 1 and 2 hold for the
two versions of the normalized Laplacian matrices, that can be found,
for instance, in (49; 60; 61; 62). In the following we will indicate with ξi
the eigenvalues of both the unnormalized and the normalized Laplacian
matrix, depending on the application we will consider.

Now, our purpose is twofold. We first intend to introduce some fun-
damental notions of spectral clustering, because, as we will describe in
Chapter 4, we need a method able to determine clusters inside a graph in
order to increase the convergence rate to the consensus state. Then, we
aim at introducing some important quantities related to the set of eigen-
values of L in order to better understand the topology of a given graph
(49). Of course, these two tasks are strongly related.

2.3.1 Spectral clustering technique

The goal of spectral clustering is to cluster data making use of the
eigenvalues and eigenvectors of the Laplacian matrix. In particular, for
spectral clustering algorithms, both the unnormalized version and the
normalized version of the Laplacian matrix can be used. All the spec-
tral clustering algorithms are able to cluster a set of data points X =

{x1, . . . , xN} by means of the eigenvectors of the Laplacian. More pre-
cisely, as stated in Remark 2, by considering the multiplicity of the eigen-
value 0 of the Laplacian matrix, it is possible to estimate the number of
clusters inside a graph. In fact, as shown in (63), if a connected compo-
nent has a structure with k “apparent” clusters, the first k eigenvalues
will be close to 0, while starting from the k+ 1-th eigenvalue, their value
will be significantly larger than 0. In this case, the projection of the data
points xi on the subspace defined by the first k eigenvectors correspond-
ing to the k smallest eigenvalues ξj , with j = 0, . . . , k − 1, makes the
clustering process easier to be performed. In particular, without going
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into details, a spectral clustering algorithm, starting from the similarity
graph W and the number k of clusters that are supposed to be present in
the original graph, computes the first k eigenvectors u0, . . . , uk−1 of the
unnormalized or normalized Laplacian matrix. It subsequently builds
a matrix U ∈ RN×k containing the vectors u0, . . . , uk−1 as columns. Fi-
nally, the algorithm clusters the new points corresponding to the rows of
U (that are the original nodes projected in the new k–dimensional space
spanned by the first k eigenvectors of the Laplacian matrix), with the
k–means clustering algorithm (64).

The spectral clustering technique can be derived starting from differ-
ent theories and points of view. In the following section we briefly list
some of these theories and the connection with spectral clustering. For
further information and for the proofs of the statements we will intro-
duce, the reader is referred to (55; 65).

2.3.2 Spectral clustering points of view

LetX = {x1, . . . , xN} be a set of data points and letG the correspond-
ing similarity graph G with adjacency matrix W built following one of
the methods described in Section 2.2.2. Spectral clustering can be ex-
plained by the following theories.

Graph cut point of view

As previously mentioned, clustering tends to separate points in dif-
ferent groups according to their similarities; it means that the goal of this
kind of method is to partition a graph such that the edges between differ-
ent groups have a very low weight, while edges inside the same cluster
have high weight. This problem can be translated in solving the mincut
problem. More precisely, starting from the definition of cut between two
different subsets (Formula (2.2)), given a generic number k of subsets,
the mincut problem consists in determining the partition S1, S2, . . . , Sk

that minimizes
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cut(S1, . . . , Sk) =

k∑
i=1

cut(Si, Si). (2.3)

Thus, the minimization of (2.3) imposes the edges between different groups
to have a very small weight. However, since the solution of problem (2.3)
often leads to unsatisfactory results, in general, two different functions
are preferred:

RatioCut(S1, . . . , Sk) =

k∑
i=1

cut(Si, Si)
|Si|

; (2.4)

Ncut(S1, . . . , Sk) =

k∑
i=1

cut(Si, Si)
vol(Si)

. (2.5)

These two different functions are usually preferred since in many
cases, the minimization of (2.3) determines a solution given by one in-
dividual vertex separated from the rest of the graph. Thus, in order to
have reasonably large clusters, minimizing either equation (2.4) or (2.5)
which are normalized by the size of the subset, leads to a solution with
reasonably large subsets S1, S2, . . . , Sk. In particular, the RatioCut equa-
tion measures the size of a subset Si by its number of vertices |Si|, while
the Ncut equation divides the cut by the weight vol(Si) of the edges in
subset Si. Now, it is possible to prove that spectral clustering represents
a way to solve a relaxed versions of the RatioCut problem (Formula (2.4))
and the Normalized cut problem (Formula (2.5)) (55; 60; 61; 66).

Random walks point of view

Random walks on the similarity graph can be used to derive another
possible explanation of spectral clustering. In particular, spectral cluster-
ing can be associated to the problem of finding a partition of the graph
such that the random walk stays long within the same cluster and sel-
dom jumps between clusters.

Defining by pij the transition probability of jumping in one step from
vertex vi to vertex vj , it is common to assume that pij is proportional
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to the edge weight wij ; in particular, a possible choice is pij :=
wij
di

. It
follows that the transition matrix P = (pij)i,j=1,...,N of the random walks
is defined by

P = D−1W,

that is strictly related to the normalized Laplacian, since Lrw = I − P . In
particular, this equivalence will be discussed in details in Chapter 3 and
4.

Now, as (67) shows there is a formal equivalence between the Ncut
and the transition probabilities of random walks; thus, solving the Ncut
minimization problem allows to determine a cut through the graph such
that a random walk seldom passes through a cluster and another. This
explains another spectral clustering point of view.

Matrix perturbation point of view

The last interpretation of spectral clustering derives from perturba-
tion theory (68; 69). This studies how eigenvalues and eigenvectors of
a matrix change if a small perturbation is added to the matrix itself. In
particular, the formal basis for the perturbation approach to spectral clus-
tering is the Davis–Kahan theorem (70).

Now, if we consider a disconnected graph with k connected compo-
nents, we know that the first k eigenvectors of L or Lrw are the indicator
vectors of the clusters. If we then slightly perturb (i.e., by adding a small
number of edges between nodes in different clusters) the original graph,
the corresponding perturbed (normalized or unnormalized) Laplacian is
a small perturbation of the original Laplacian matrix. Now, from Davis–
Kahan theorem it follows that the relationship between matrix perturba-
tion theory and spectral clustering resides on the choice of an appropri-
ate interval I that contains both the first k eigenvalues of the Laplacian
in the ideal case (disconnected graph with k connected components) and
the ones of the perturbed Laplacian matrix. In particular, the choice of
the appropriate interval I is easier the smaller the perturbation of L and
the larger the eigengap |ξk+1 − ξk|. Finally, from Davis–Kahan theorem
it follows that the larger the eigengap, the closer the eigenvectors of the
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ideal case and the perturbed case, and hence the better spectral clustering
works. For further details we refer to (55; 70).

In the next section a detailed study on the second smallest eigenvalue
ξ1 of the normalized Laplacian matrix LN is carried out. This eigenvalue,
in fact, is an indicator of the rate of convergence to the consensus state,
argument that will be studied in the following two chapters.

2.3.3 Laplacian eigenvalues and their properties

In this section, we focus on the study of the Cheeger’s inequality,
(see, e.g., (71)) which provides an upper and lower bound for the sec-
ond smallest eigenvalue ξ1 of the normalized Laplacian matrix LN .

The Cheeger’s inequality, as described in (71) relates the eigenval-
ues of the normalized Laplacian matrix associated to a graph with the
Cheeger’s constant of the graph. In particular, if G = (V,E) is a graph
and S ⊂ V , denoting with ∂(S) the boundary of S, i.e.,

∂(S) := {(u, v) ∈ E : u ∈ S, v /∈ S}

the Cheeger’s constant is defined in the following way:

Φ(G) := min
S⊂V

|∂(S)|
min{vol(S), vol(V − S)}

, (2.6)

where vol(S) is the volume of the subset S ⊂ V defined in Formula (2.1).
Now, the relation between the Cheeger’s constant and the second

smallest eigenvalue ξ1 of the normalized Laplacian matrix follows from
the Cheeger’s inequality:

Φ(G)2

2
≤ ξ1 ≤ 2Φ(G). (2.7)

The proof of Formula (2.7) can be found, for instance, in (71). It is proved
for unweighted graphs without self-loops but the proof can be general-
ized to weighted graphs with self-loops (see Section 5 in (71)).

A related results to the Cheeger’s inequality, is represented by he fol-
lowing formula, that is again shown in (49) :

ξ1 ≥
1

D(G) vol (G)
, (2.8)
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where D(G) is the diameter of G, i.e., the maximum value of the shortest
paths between any pair of nodes. From Formula (2.8), we can infer that
vol (G) being the same, ξ1 is larger when G is a “cluster” of vertices.
For instance, if we consider two subgraphs with the same volume, the
smallerD(G) (i.e., the more a subgraph is “dense” or a cluster), the larger
the lower bound on ξ1; it is then expected that ξ1 is larger. We will see in
Chapter 4 that Formulas (2.7) and (2.8) are useful to determine an upper
and lower bound for the second smallest eigenvalue of the normalized
Laplacian matrix ξ1 that is needed to estimate the rate of convergence to
the consensus state. In particular, we will see that, in order to achieve
a fast convergence to the consensus state, one should avoid a situation
where a graph, or a subgraph is made of two clusters “poorly” connected
by a small number of edges, since in this case, the upper bound on ξ1 and
thus the value of ξ1 is expected to be small.

2.4 Summary

In this chapter we provided a brief background on graph theory. The
basic definitions and notions were introduced focusing on the descrip-
tion of some features related to both single nodes and set of nodes that
constitute subgraphs. The basic notations of spectral graph theory and
its related quantities and properties were introduced too.

In the next chapter we will focus on the use of graphs in the study of
dynamical systems. Our attention is channeled on the consensus prob-
lem discussed first in Chapter 3 and then evaluated from a different point
of view in Chapter 4. In particular, to deal with this kind of problem, the
spectral properties of graphs will be evaluated and studied in details.

Subsequently in Chapters 5 and 6 graphs will be exploited in a ma-
chine learning context. Again, the spectral properties of graphs will be
considered to introduce an application in a classification problem of a
semi–supervised learning technique, while graph–based features will be
evaluated in another classification problem in order to extract additional
and useful information from a dataset.
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Part II

The consensus problem and
its graph of

interconnections
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3
The consensus problem and its sparse

variations

3.1 Introduction

The theory of complex systems deals with the study of the behavior of
different types of systems made of agents that interact among each other;
the study, for instance, of physical systems with particles that interact,
social and economic networks, natural and ecological systems are typical
examples (72). All of these situations are characterized by a large number
of agents which interact among each other, without having, in general, a
global knowledge about the structure of the system but interacting only
locally with their neighbors (73; 74).

One particular study characterized by a network of agents that locally

This chapter is partly based on:

• G. Gnecco, R. Morisi, A. Bemporad, “Sparse solutions to the average consensus
problem via various regularizations of the fastest mixing Markov-chain problem”,
IEEE Transactions on Network Science and Engineering, 2:97-111,2015

• G. Gnecco, R. Morisi, A. Bemporad, “Sparse solutions to the average consensus
problem via l1–norm regularization of the fastest mixing Markov-chain problem”,
Proceedings of the IEEE International Conference on Decision and Control (CDC),
2014:2228-2233
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interact among each other is the so–called consensus problem (30; 75). It
consists in investigating how complex systems, constituted by the inter-
connection of many units, behave with respect to the possibility of reach-
ing consensus. The behavior of these systems is related on the dynamics
of their units and on the topology of the connections between them. In
particular, we are interested in studying the conditions under which a
complex system has all its agents agree with the same opinion (the con-
sensus state) and the time of convergence to that consensus. In this work
we focus on the study of the rate of convergence to the consensus state
paying particular attention to the the structure of the graph of intercon-
nections with the aim of keeping it as sparse as possible. In fact, when
dealing with large graphs with high cost of communication between the
different nodes, it reveals extremely useful to find a solution able to guar-
antee the convergence to the consensus state as fast as possible reducing
the number of interconnections, thus the communication costs, between
the different agents. Starting from the formulation given in (48), the main
contribution of the present work resides in the study from both a theo-
retical and practical point of view of sparse solutions of the consensus
problem with satisfactory rate of convergence to the consensus state.

We first provide an introduction to the model of the problem, see
e.g., Section 3.2; then, in Section 3.3 we introduce the Fastest Mixing
Markov–Chain (FMMC) Problem, which is concerned with the study of
the topology of the network with the aim of determining the fastest mix-
ing Markov chain on the graph (48). We then provide an additional theo-
retical study and some variations of the FMMC Problem (see e.g., Section
3.4); and finally, in Section 3.5 we show numerical results.

3.2 Consensus problem - the model

Let G = (V,E) be a network of n agents (i.e., |V | = n) which locally
interact between each other. We aim at studying the dynamics of the
units in order to have all the agents agree upon a common opinion. This
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problem can be modeled by the following linear system:

X(t+ 1) = PX(t), (3.1)

where X(t) ∈ Rn is the vector describing the opinions of the n agents at
a generic time t, while P is a symmetric doubly stochastic matrix, (i.e.,
Pij ≥ 0 ∀ i, j = 1, . . . , n, P1n = 1n and P = PT ), where 1n is the vector
of length n with each entry equal to 1. In particular, P can be seen as
a matrix of transition probabilities of a finite–states Markov chain, with
Pii ≥ 0 for all i ∈ 1, . . . , n. If the undirected graph G = (V,E), with
|V | = n, associated to the dynamical system described by equation (3.1)
is connected, it is well–known (see, e.g., (30)) that

xi(t)
t→∞−→ 1

n
1Tnx(0), ∀i = 1, . . . , n; (3.2)

with x(0) being the vector of the initial opinions of the agents. The quan-
tity Σ = 1

n1Tnx(0), that is exactly the average of the initial opinions of
the agents, is the consensus state of the system. We aim at studying the
convergence rate to the consensus state Σ making it as fast as possible.
In addition, we are interested in obtaining sparse solutions to the aver-
age consensus problem. This is motivated, e.g., in the case of high cost
of communication associated with each edge. Note that we are limiting
our study on the time–invariant consensus algorithm described by For-
mula (3.1) where the network of agents is described by a time–invariant
undirected graph. Anyway, time–variant models (where the matrix of
interconnection P (t) is time dependent) and with a directed network of
agents are also possible (76).

Before diving in the specific study of the consensus problem, we pro-
vide some information about the matrix of interconnections P and how
its spectral properties are related to the convergence rate to the consensus
state.

3.2.1 Spectral properties of matrix P

Let us consider the graph G = (V,E) associated to the dynamical
system studied; thus V = {v1, v2, . . . , vn} is the set of nodes which cor-
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respond to the agents of the system. P is the transition probability ma-
trix associated to G with eigenvalues λ0 ≥ λ1 ≥ · · · ≥ λn−1 ordered
in a non-increasing order. Each entry Pij different from zero is asso-
ciated to an edge eij between the vertex vi and vj of G. In particular,
we require G to be connected, otherwise the consensus state cannot be
reached. Under these assumptions, from Perron–Frobenius theorem (77)
(which we report below), it follows that P has a positive (real) eigenvalue
λmax = λ0 with multiplicity equal to 1 and all the other eigenvalues sati-
sfy |λi| < λmax with i = 1, . . . , n− 1.

Theorem 1 (Perron-Frobenius theorem). Let A ∈ Rn×n be an irreducible
and non-negative matrix (i.e., the graph associated with the matrix is strongly
connected), then:

• A has a positive (real) eigenvalue λmax such that all the other eigenvalues
of A satisfy

|λi| < λmax,with i = 1, . . . , n− 1,

• λmax has algebraic and geometric multiplicity one, and has an eigenvector
x with positive entries;

In the following proposition we will use λ0 instead of λmax.

Proposition 1. Let the assumptions of Theorem 1 holds, withA = P a stochas-
tic matrix. Then λ0 = 1.

Proof. From Perron Frobenius theorem we have that ∃ λ0 > 0 eigenvalue
of P . Now, being v0 the eigenvector associated to λ0, we have that Pv0 =
λ0v0. Considering the i-th component of the matrix–vector product Pv0,
this is equal to (Pv0)i =

∑
j Pijv0j = (λ0v0)i = λ0v0i. Now, we define

M := maxj(v0j), and m := minj(v0j). It follows that

m =
∑
j

Pijm ≤ (λ0v0)i ≤
∑
j

PijM = M.

In particular, ∃ h such that v0h = m, and ∃ k such that v0k = M . Thus,
we have:

m ≤ λ0v0h = λ0m⇒ λ0 ≥ 1,

λ0M = λ0v0k ≤M ⇒ λ0 ≤ 1.

Finally, from both the inequalities we can conclude that λ0 = 1.
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From the previous statements we can now show that the rate of con-
vergence to the consensus state is related to the second-largest eigen-
value modulus of P , µ(P ) := maxj=1,...,n−1 |λj | (58; 78), with µ(P ) = λ1.
In fact, considering the Jordan decomposition of matrix P (79)

P = T−1


λ0

Λ1

.
.

Λm

 T ,

where T =
[
wT

W

]
, T−1 = [v V ] = [1nV ] and Λ := diag{Λ1, . . . ,Λm}

with Λi the Jordan blocks associated to the eigenvalues λi, it follows:

P = vλ0w
T + V ΛW = 1nw

T + V ΛW,

P t = 1nw
T + V ΛtW

t→∞−→ 1nw
T .

Now, denoting with c(t) the norm of the vector having as components
the differences, at time t, between the state of each agent x(t) and the
consensus state x(∞), we have:

c(t) = ‖x(t)−x(∞)‖ = ‖(1nwT+V ΛtW )x(0)−1nw
Tx(0)‖ = ‖V ΛtWx(0)‖.

(3.3)
Thus, the rate of convergence to the consensus state is related to the
largest eigenvalue of the matrix Λ and this is exactly λ1, the second
largest eigenvalue of P . Hence, the smaller λ1 = µ(P ) the faster the con-
vergence rate to the consensus state. Since the symmetric matrix P has
non–negative elements and satisfies P1n = 1n, its generic element Pij
can be interpreted as a transition probability from the vertex i to the ver-
tex j of a graph (including the case of a self-loop when i = j), whose ver-
tices are the subsystems. Hence, the rate of convergence of the Markov
chain with transition probabilities Pij to its stationary distribution de-
pends on µ(P ).

A related quantity to µ(P ) is the mixing time (48)

τ(P ) :=
1

log
(

1
µ(P )

) , (3.4)
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which is an asymptotic measure of the number of steps required for re-
ducing by the Euler’s number e a suitable distance (the total variation
distance) between the global state vector and the vector whose compo-
nents are equal to the average consensus state.

Note that, from now on, we continue to indicate with 1s a generic s–
dimensional vector with entries equal to 1, and analogously, with 0s we
will indicate the s–dimensional vector with all the entries equal to 0.

3.3 The Fastest Mixing Markov Chain Problem

We are interested in increasing the rate of convergence to the consen-
sus state, thus, given the propositions stated above and Formula (3.3),
we aim at minimizing µ(P ). The problem of determining the coefficients
Pij that minimize µ(P ) subject to a given topology of the graph is called
the Fastest Mixing Markov–Chain problem (Problem FMMC, in the fol-
lowing). In particular, we start from the formulation given in (48), where
the problem of minimizing the value of µ(P ) is treated as a convex opti-
mization problem (specifically, as a semidefinite program (SDP)), and it
is the following:

Problem FMMC (first formulation) :

minimizeP∈Rn×n µ(P )

subject to P1n = 1n, P = PT ,

Pij ≥ 0, ∀i, j ∈ {1, . . . , n} ,
Pij = 0, if (i, j) /∈ E .

(3.5)

Interestingly, this is a convex optimization problem, since

µ(P ) = |λmax|
{
P − 1

n
1n1Tn

}
(3.6)

(see (48) for a proof of formula (3.6)), where |λmax| stands for the largest
eigenvalue modulus. Moreover, Problem FMMC can also be written as a
semidefinite program (48, Section 2.3).
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We first introduce an equivalent version of Problem FMMC, using a
notation suitable for its sparse extensions presented later and for their
theoretical investigations.

In the following, we denote by w ∈ Rm the column vector of weights
associated with the m edges joining different vertices, and by wsl ∈ Rn

the column vector of weights associated with the n self-loop edges. Hence,
we can represent the weighted adjacency matrix P as a linear function
P (w,wsl) of such weights. For instance, for n = 3 and m = n(n − 1)/2

(the case of a complete graph), one obtains the symmetric matrix

P (w,wsl) =

wsl,1 w1 w2

w1 wsl,2 w3

w2 w3 wsl,3

 . (3.7)

Moreover, introducing the vertex-edge incidence matrix M ∈ Rn×m,
whose elements are defined as follows:

Mij =


1 , if the vertex vi is an endpoint of

the (non self-loop) edge eij ,
0 , otherwise ,

(3.8)

and setting
wsl := 1n −Mw , (3.9)

the constraints

Pij ≥ 0 for any i, j ∈ {1, . . . , n} and P1n = 1n (3.10)

are equivalent to

wi ≥ 0 for any i ∈ {1, . . . ,m} and Mw ≤ 1n . (3.11)

Using (3.9), the matrix P becomes an affine function P (w) of the weights
vector w, and the second-largest eigenvalue modulus of P is expressed
as a convex function - denoted by µ(w) - of the weights vector w, since
convexity is preserved by affine mappings (80, Section 3.2). With the
notations just introduced, Problem FMMC can be compactly rewritten as

Problem FMMC (second formulation) :
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minimizew∈Rm f(w) := µ(w)

subject to w ≥ 0m,

Mw 6 1n .

(3.12)

Again, we assume the graph associated to the vertex–edge incidence ma-
trix M to be connected, in order to have λ0 = λmax with multiplicity
equal to 1.

We now start dealing with sparse variations of the problem just intro-
duced.

3.4 Sparse variations of the Fastest Mixing
Markov – Chain problem

Our study concerns the determination of a trade–off between good
spectral properties of the communication graph involved in the consen-
sus problem, hence of the transition probability matrix P , and its spar-
sity. To achieve this goal, we intend to use an approach based on an
l1-norm regularized version of Problem FMMC, which is called Problem
FMMC-l1(η), where η > 0 denotes the regularization parameter. This
variation of Problem FMMC is motivated by the fact that, due to geo-
metrical properties of the l1-norm (81), the introduction of such a regu-
larization term in the objective of a convex optimization problem often
enforces the sparsity of an optimal solution of the regularized version
of that problem. In a second moment, we also consider another varia-
tion of Problem FMMC (called Problem FMMCconstr-l1(η)) in which, be-
sides the introduction of the l1-norm regularization term, the weights
of some edges are fixed. Notice that similar studies related to the de-
termination of sparse solutions of the problem have been already car-
ried on, for instance, in (82, Section 7.2) and in (83). In particular, Prob-
lems FMMC-l1(η) and FMMCconstr-l1(η) are similar to one already pro-
posed and investigated numerically in (82, Section 7.2), with the differ-
ence that the l1-norm term in that reference appears inside an additional
constraint instead than in the objective. We also mention that, for the
average consensus problem in the presence of disturbances, a similar
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graph-sparsification optimization problem was also recently considered
in (83), and solved through the Alternating Direction Method of Multi-
pliers (ADMM) (84). Unlike these previous works, we also give an in-
terpretation of Problem FMMC-l1(η) as a robust version of the Fastest
Mixing Markov-Chain problem, and provide theoretical results using
Gershgorin’s theorem and Weyl’s inequalities (79). Finally, we investi-
gate the regularized version of Problem FMMC obtained by replacing
the l1-norm in Problem FMMC-l1(η) with the l0-“pseudo-norm” ‖w‖0 :=

number of non-zero components of w . Both, a theoretical analysis of such
variations of Problem FMMC and a numerical example modeling a wire-
less sensor network are provided, comparing their solutions with the one
obtained solving Problem FMMC.

3.4.1 Sparse variations of Problem FMMC - models

We define for any η > 0, the following regularized version of Problem
FMMC, in which an l1-regularization term with regularization parameter
η is added to the objective (here, ‖w‖1 :=

∑m
i=1 |wi|):

Problem FMMC− l1(η) :

minimizew∈Rm f (1,η)(w) := µ(w) + η‖w‖1
subject to w ≥ 0m,

Mw 6 1n .

(3.13)

The term η‖w‖1 in (3.13) often induces sparsity of a resulting optimal
solution w◦(η) (81), i.e., many components of w◦(η) tend to be 0.

In addition, we consider the regularized version of Problem FMMC
considering the l0-pseudo norm instead of the l1-norm. This problem is
defined as follows:

Problem FMMC− l0(η) :

minimizew∈Rm f (0,η)(w) := µ(w) + η‖w‖0
subject to w ≥ 0m,

Mw 6 1n .

(3.14)
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Although the l0-pseudo-norm is a more natural way to enforce sparsity
than the l1-norm, it is a nonconvex function, so, when sparsity is desired,
it is common to replace the l0-pseudo-norm with the l1-norm, which is a
convex function.

Another variation of Problem FMMC-l1(η) we intend to deal with,
consists in fixing some components of the weight vector w. This is mo-
tivated, e.g., when one is interested in imposing some additional struc-
ture on the topology of the graph resulting from the optimization of the
weight vector (e.g., enforcing the presence of given subgraphs, such as
trees connecting important “backbone” vertices). Without loss of gen-
erality, we assume (up to a permutation of the indices) that the fixed
weights are the first mfixed ones (where 1 ≤ mfixed ≤ m), whereas the last
mfree : m − mfixed weights are not fixed (the special case mfixed = m is
trivial). We then decompose the column vector w as

w = col(wfixed, wfree) (3.15)

and the vertex-edge incidence matrix M as

M = [Mfixed|Mfree] , (3.16)

and we express the second-largest eigenvalue modulus µ as a function
µ(wfree) of the unfixed weights only. Then, for a given choice of the
weight vector wfixed, we consider the following optimization problem:

Problem FMMCconstr − l1(η) :

minimizewfree∈Rmfree f
(1,η)
constr(wfree) := µ(wfree) + η‖wfree‖1

subject to wfree ≥ 0mfree
,

Mfreewfree 6 1n −Mfixedwfixed .

(3.17)

Problem FMMCconstr-l1(η) has a form which is similar to the one of
Problem FMMC-l1(η). We assume in the following that the fixed weights
have been chosen in such a way that the polyhedron

{w ∈ Rmfree : wfree ≥ 0free,Mfreewfree 6 1n −Mfixedwfixed} (3.18)

is non-empty, so that Problem FMMCconstr-l1(η) admits a feasible solu-
tion.
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Remark 3. A similar variation can be studied replacing the l1-norm with the
l0-pseudo-norm, but it is not investigated here, to avoid redundancy in the anal-
ysis. Another variation is obtained assuming that some edges are just “suffi-
ciently used” rather than “fixed”, i.e., that, for some indices i and some con-
stants βi ∈ [0, 1], one has wi ≥ βi. The resulting problem has still linear
equality and inequality constraints.

Remark 4. Although the l1-norm is nondifferentiable at the origin, the terms
‖w‖1 and ‖wfree‖1 in the objectives of Problems FMMCconstr-l1(η) and FMMC-
l1(η) can also be written, respectively, as 1Tmw and 1Tmfree

wfree (thus, as linear
- hence differentiable - terms), due to the respective non-negativity constraints
w ≥ 0m and wfree ≥ 0mfree

.

3.4.2 Theoretical results for Problems FMMC-l1(η) and
FMMCconstr-l1(η)

We first consider a theoretical analysis of Problem FMMC-l1(η), and
then we extend the results to Problem FMMCconstr-l1(η). Note that, for a
clearer notation, in the following definitions, propositions and remarks,
when introducing a generic s–dimensional vector different fromw ∈ Rm,
the s–dimensional zero vector 0s ∈ Rs and the vector 1s ∈ Rs with en-
tries equal to 1, we will denote it with h ∈ Rs.

a) Existence of an optimal solution.

Proposition 2. Problem FMMC-l1(η) admits an optimal solution for ev-
ery η > 0.

Proof. The feasible set of Problem FMMC-l1(η) is convex, closed, and
bounded. Moreover, its objective is continuous since the l1-norm reg-
ularization term ‖w‖1 is continuous, and on the feasible set the second-
largest eigenvalue modulus µ(P ) has the expression (3.6), which is con-
tinuous due to the continuous dependence of the eigenvalues of a matrix
on its entries (85, Section 7.6), and the fact that the point-wise maximum
of a finite set of continuous functions is continuous, too. Concluding,
Problem FMMC-l1(η) involves the minimization of a continuous objec-
tive function on a compact set, so an optimal solution to Problem FMMC-
l1(η) exists by Weierstrass theorem.

b) Effect of the regularization parameter.
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Solving Problem FMMC-l1(η) involves finding a good compromise
between the minimization of the term µ(w) and the one of ‖w‖1. Next
Proposition 3 shows that the regularization parameter η has opposite ef-
fects on the two terms µ(w) and ‖w‖1, when evaluated at an optimal
solution.

Proposition 3. Let 0 < η1 < η2, and w◦1(η1), w◦1(η2) be optimal solutions
to Problem FMMC-l1(η1) and Problem FMMC-l1(η2), respectively. Then,
i) µ(w◦1(η1)) ≤ µ(w◦1(η2)) ,
ii) ‖w◦1(η1)‖1 ≥ ‖w◦1(η2)‖1 .

Proof. By the optimality of w◦1(η1) for Problem FMMC-l1(η1), one has

µ(w◦1(η1)) + η1‖w◦1(η1)‖1 ≤ µ(w◦1(η2)) + η1‖w◦1(η2)‖1 . (3.19)

Similarly, by the optimality of w◦1(η2) for Problem FMMC-l1(η2), one gets

µ(w◦1(η2)) + η2‖w◦1(η2)‖1 ≤ µ(w◦1(η1)) + η2‖w◦1(η1)‖1 . (3.20)

Combining the two inequalities above, one obtains

η2(‖w◦1(η2)‖1 − ‖w◦1(η1)‖1)

≤µ(w◦1(η1))− µ(w◦1(η2))

≤η1(‖w◦1(η2)‖1 − ‖w◦1(η1)‖1) ,

which is satisfied if and only if conditions i) and ii) hold, as 0 < η1 <
η2.

In general, instead, the sparsity

s(w◦1(η)) := 1− ‖w◦1(η)‖0/m
= fraction of zero components of w◦(η)

of an optimal solution to Problem FMMC-l1(η) may not be a monotonic
function of η, as shown in Fig. 5 (see Section 3.5). This behavior is sim-
ilar to the one observed for other l1-regularized optimization problems,
such as the classical Least Absolute Shrinkage and Selection Operator
(LASSO) problem (see., e.g., Fig. 1 in (86)).

c) Conditions under which w = 0m is an optimal solution to Problem
FMMC-l1(η).
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The next result states conditions on the regularization parameter un-
der which w = 0m is an optimal solution to Problem FMMC-l1(η), or its
unique optimal solution. An application of the result to the choice of the
regularization parameter is given in Section 3.4.2 e).

Proposition 4. Let η ≥ 2. Thenw = 0m is an optimal solution to Problem
FMMC-l1(η). If η > 2, then w = 0m is its unique optimal solution.

Proof. Let ∆w be an arbitrary admissible increment of w, starting from
w = 0m (such an increment can be used to generate the whole set of
admissible solutions to Problem FMMC-l1(η), since it is convex and con-
tains 0m). Then, the corresponding increment ∆f (1,η) in the objective
f (1,η) of Problem FMMC-l1(η) is

∆f (1,η) =µ(∆w)− µ(0m) + η‖∆w‖1 . (3.21)

Now, one has µ(0m) = 1 (as the associated weighted adjacency matrix
is P (0m) = In, the identity matrix of dimension n × n), whereas one
can find a lower bound on µ(∆w) as follows. The matrix P (∆w) can be
written as

P (∆w) = In + E(∆w) , (3.22)

where the main-diagonal entries of the matrix E(∆w) are non-positive
with their absolute values bounded from above by ‖∆w‖1, whereas, for
each row i, one has

n∑
j 6=i, j=1

|Eij(∆w)| ≤ ‖∆w‖1 . (3.23)

Then, by Gersghorin’s theorem 1, all the eigenvalues ofE(∆w) are bounded
from above in absolute value by 2‖∆w‖1. As the presence of the matrix
In in formula (3.22) has only the effect of translating the eigenvalues of
E(∆w) by 1, one finally obtains

µ(∆w) ≥ 1− 2‖∆w‖1 . (3.24)

Concluding, for an arbitrary admissible increment ∆w, one gets

∆f (1,η) ≥ 1− 2‖∆w‖1 − 1 + η‖∆w‖1 = −2‖∆w‖1 + η‖∆w‖1 . (3.25)
1 Gersghorin’s theorem (87, Section 7.2) states that all the eigenvalues of a matrix A ∈

Rn×n belong, in the complex plane, to at least one of the Gersghorin circles Gi (for i =
1, . . . , n), whose centers and radii are defined, respectively, by Aii and

∑n
j 6=i, j=1 |Aij |.
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If η ≥ 2, then ∆f (1,η) is non-negative for every admissible ∆w, hence
w = 0m is an optimal solution to Problem FMMC-l1(η). If η > 2, then
∆f (1,η) is positive for every ∆w 6= 0m, hence w = 0m is the only optimal
solution to Problem FMMC-l1(η).

The following example shows that the bound obtained in Proposition
4 is tight, at least if one does not impose further restrictions on the class
of graphs to be considered.

Example 1. Let n = 2 and m = 1. Then, the matrix P (w) has the expression

P (w) =

[
1− w1 w1

w1 1− w1

]
, (3.26)

whose eigenvalues are 1 and 1 − 2w1. Hence, on the set [0, 1] of admissible
solutions to Problem FMMC-l1(η), its objective is |1−2w1|+ηw1, and w1 = 0
is, respectively, the unique optimal solution to Problem FMMC-l1(η) for η >
2, one of its (infinite) optimal solutions for η = 2 (the optimal ones being all
w1 ∈

[
0, 1

2

]
), and a suboptimal solution for 0 < η < 2 (the optimal one being

w1 = 1
2 ).

d) Non differentiability of the objective at w = 0m.
In the proof of Proposition 4, we have used Gersghorin’s theorem in-

stead than an approach based on first-order optimality conditions for a
differentiable objective. The reason is that, as shown in the next Propo-
sition 5, in general the objective of Problem FMMC-l1(η) is not differen-
tiable at w = 0m, although the l1-regularization term is represented by a
linear function on its set of admissible solutions. To state Proposition 5,
we need the following definition.

Definition 1. A function y : D → R defined on a convex and compact
subset D ⊆ Rm is differentiable at a point x0 belonging to the boundary
∂D of D iff there exists a linear map J : Rm → R such that

lim
t→0+

y(x0 + th)− y(x0)− J(th)

‖th‖
= 0 , (3.27)

for all feasible directions h ∈ Rm, i.e., such that x0 + th ∈ D for all t > 0
sufficiently small.
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Remark 5. In the usual definition of differentiability, instead, one assumes that
the point x0 belongs to the interior of the set D, and in that case all vectors
h ∈ Rm are feasible directions. In Definition 1, we extend this concept to a
point belonging to the boundary of the domain (which is the case of w = 0m
for Problem FMMC-l1(η), as it belongs to the boundary of the domain of the
function µ(w)).

Remark 6. For i = 1, . . . , n, let ei ∈ Rm denote the vector whose component i
is equal to 1, and all its other components are equal to 0. If the directions ei are
feasible, (3.27) and the linearity of the map J imply, for every feasible direction
h,

lim
t→0+

y(x0 + th)− y(x0)

‖th‖
=

m∑
i=1

hi lim
t→0+

y(x0 + tei)− y(x0)

t
.

Proposition 5. Let n ≥ 3. Then the objective of Problem FMMC-l1(η) is
nondifferentiable at w = 0m.

Proof. For i = 1, . . . , n and for each t ∈ [0, 1], the graph associated with
the weighted adjacency matrix P (tei) is disconnected, hence the maxi-
mum (and maximum modulus) eigenvalue λmax{P (tei)} = 1 of P (tei)
has multiplicity at least 2, and its second-largest eigenvalue modulus is
µ(tei) = 1. Thus, at w = 0m, the directional derivative of the objective of
Problem FMMC-l1(η) in the direction ei, i.e.,

lim
t→0+

µ(tei)− µ(0m) + η1Tm(tei)

t
, (3.28)

is equal to η. Now, let ŵ be any admissible weight vector with ŵ > 0m
(elementwise). Since the graph associated with the weighted adjacency
matrix P (ŵ) is connected, λmax{P (ŵ)} = 1 has multiplicity equal to 1,
hence λ2(P (ŵ)) ≤ µ(ŵ) < 1, and λn{P (ŵ)} > −1 by Gersghorin’s the-
orem. Now, for any t ∈ [0, 1], one has P (tŵ) = (1 − t)I + tP (ŵ). Then,
the eigenvalues of P (ŵ) and P (tŵ), ordered nonincreasingly with their
multiplicity, are related by

λi{P (tŵ)} = (1− t) + tλi{P (ŵ)} , (i = 1, . . . , n) , (3.29)

so, assuming without loss of generality µ(ŵ) = λ2(P (ŵ)) > 0 (the case
mu(ŵ) = max{|λ2(P (ŵ))|, |λn(P (ŵ))|} is similar), for t > 0 sufficiently
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small one gets µ(tŵ) = 1 − t + tλ2(P (ŵ)). Hence, at w = 0m, the direc-
tional derivative of the objective of Problem FMMC-l1(η) in the direction
ŵ, i.e.,

lim
t→0+

µ(tŵ)− µ(0m) + η1Tm(tŵ)

t
, (3.30)

is equal to λ2(P (ŵ))− 1 + η‖ŵ‖1, which differs from

m∑
i=1

ŵi

(
lim
t→0+

µ(tei)− µ(0m) + η1Tm(tei)

t

)
= η‖ŵ‖1 (3.31)

(due to Definition 1 and Remark 6, formulas (3.30) and (3.31) would have
coincided, instead, in the case of differentiability of the objective of Prob-
lem FMMC-l1(η) at w = 0m). Then, we conclude that the objective of
Problem FMMC-l1(η) is nondifferentiable at w = 0m.

Remark 7. For n = 2 and m = 1, instead, the objective of Problem FMMC-
l1(η) is differentiable atw = 0m, as shown by Example 1. This is not in contrast
with the proof of Proposition 5, since in this case - as being n < 3 - the graph
associated with the weighted adjacency matrix P (te1) is connected for every
t ∈ (0, 1].

e) Choice of the regularization parameter and reoptimization.
The theoretical results presented above justify the following practical

rule for choosing the regularization parameter η:

− given a positive integer N and a maximal acceptable increase ε > 0

for the second-largest eigenvalue modulus of P with respect to its
optimal value µ◦FMMC in Problem FMMC, solve Problem FMMC-
l1(η) in correspondence of N values η(j) for η such that

· 0 < η(1) < η(2) < . . . < η(N) < 2 (the last inequality needed to
avoid just the trivial optimal solution w◦ = 0m), and

· µ(w◦1(η(j))) ≤ µ◦FMMC+ε (j = 1, . . . , N ) (the inequality needed
just to guarantee the desired tolerance on µ(w◦1(η(j))), hence
on the rate of convergence to the consensus state);

− choose j◦ ∈ {1, . . . , N} that maximizes the sparsity s(w◦1(η(j)));
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− perform a final reoptimization step, solving Problem FMMC on the
graph obtained removing from the original graph all the non self-
loop edges i for which w◦1,i(η

(j◦)) = 0, obtaining another weight
vector w◦reopt.

The last reoptimization step satisfies µ(w◦reopt) ≤ µ(w◦1(η(j◦))) (due to the
optimality of w◦reopt on Problem FMMC on the new graph, and the fea-
sibility of w◦1(η(j◦)) for such an optimization problem), and s(w◦reopt) ≥
s(w◦1(η(j◦))). Such a reoptimization step is common to other l1-regularized
optimization problems: for the LASSO, it is known as debiasing (88, Sec-
tion 13.3.5).

Finally, a possible way to choose the tolerance parameter ε (which has
to be in any case smaller than 1− µ◦FMMC , again to avoid trivial optimal
solutions) consists in expressing it in terms of the maximal allowable ra-
tio ρ between the mixing time τ(P (w)) and its optimal value τ◦FMMC :=

1

log

(
1

µ◦
FMMC

) , which is obtained when solving Problem FMMC, i.e., one

sets
ε = (µ◦FMMC)

1
ρ − µ◦FMMC . (3.32)

f) Interpretation of Problem FMMC-l1(η) as a robust version of Problem FMMC.
Problem FMMC-l1(η) has also the following interpretation. Let us

suppose that, for any given “nominal” choice of the weights wi (i =

1, . . . ,m), one has an “uncertainty” ∆wi such that |∆wi| ≤ δ|wi|, for some
fixed δ > 0. Then, an application of Gersghorin’s theorem and Weyl’s in-
equalities2 in matrix-perturbation theory shows that the second-largest
eigenvalue modulus µ(w + ∆w) is bounded from above as

µ(w + ∆w) ≤ µ(w) + 2δ‖w‖1 . (3.36)
2LetA,B ∈ Rn×n and symmetric, and let their eigenvalues be ordered nonincreasingly

with their multiplicity as

λ1(A) ≥ λ2(A) ≥ . . . ≥ λj(A) ≥ . . . ≥ λn(A) , (3.33)

λ1(B) ≥ λ2(B) ≥ . . . ≥ λj(B) ≥ . . . ≥ λn(B) . (3.34)
Then, in their simplest form, Weyl’s inequalities (89, Theorem 8.4.11) state that, for every
j = 1, . . . , n, one has

λj(A) + λn(B) ≤ λj(A+B) ≤ λj(A) + λ1(B) . (3.35)
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Then, an optimal “robust” choice of the nominal weight vector w is ob-
tained minimizing the objective µ(w) + 2δ‖w‖1 on the set of admissible
weight vectors w, i.e., solving a robust version of Problem FMMC which
takes into account the uncertainty of the weights, and is obtained replac-
ing its objective µ(w) with µ(w) + 2δ‖w‖1. However, this is equivalent
to solving Problem FMMC-l1((η) with the choice η = 2δ. Finally, we
notice that, when δ ≥ 1, for every admissible nominal choice of the vec-
tor w, the perturbation ∆w = −w is admissible for the robust version
of Problem FMMC just described, and the resulting perturbed vector is
w + ∆w = 0m, which satisfies µ(0m) = 1, as being the resulting graph
disconnected. Hence, when δ ≥ 1, for every nominal choice ofw one can-
not have µ(w + ∆w) < 1 for every admissible perturbation, and w = 0m

is an optimal nominal choice. This is consistent with Proposition 4.

g) Extension to Problem FMMCconstr-l1(η).

Apart from the tightness of the bound on the minimal value of the
regularization parameter η for which wfree = 0mfree

is an optimal solu-
tion, the results above can be extended to Problem FMMCconstr-l1(η). In
particular, Propositions 2, 3, and 4 can be extended to Problem FMMCconstr-
l1(η), simply replacing wfree with w. For the first two propositions, the
extension requires no significant changes in the proofs. In the third case,
the only significant change in the proof is the additional use of the above-
mentioned Weyl’s inequalities to get a formula similar to (3.24), bound-
ing the eigenvalues of the sum of two symmetric matrices. To obtain the
extension of Proposition 5, maintaining the structure of the proof, one re-
quires the additional assumption that the subgraph containing only the
fixed edges is disconnected, and remains disconnected when adding ar-
bitrarily only one of the “free” edges.

h) Formulation through semidefinite programming (SDP).

Likewise Problem FMMC, Problems FMMC-l1(η) and FMMCconstr-
l1(η) can be formulated as semidefinite programs, allowing the use of
interior-point methods for finding their optimal solutions. More pre-
cisely, expressing the m non self-loop edges in terms of their endpoints
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as (i, j), and considering the set

E :={(i, j) : i 6= j, i, j ∈ {1, . . . , n}, and

∃k ∈ {1, . . . , n} such that Mik = Mjk = 1} . (3.37)

one obtains the following alternative formulation3 of Problem FMMC-
l1(η),

Problem FMMC− l1(η) (SDP formulation) :

minimizes∈R,P∈Rn×n

s+
η

2

n∑
i 6=j, i,j=1

Pij


subject to − sI � P − 1

n
1n1Tn � sI,

P1n = 1n, P = PT ,

Pij ≥ 0, ∀i, j ∈ {1, . . . , n} ,
Pij = 0, if (i, j) /∈ E.

(3.38)

Similarly to the previous expression, one gets the following alternative
formulation of Problem FMMCconstr-l1(η), introducing the subset Efixed ⊆
E of edges (i, j) associated with fixed weights Pij,fixed = Pji,fixed.

Problem FMMCconstr − l1(η) (SDP formulation) :

minimizes∈R,P∈Rn×n

s+
η

2

n∑
i 6=j, i,j=1

Pij


subject to − sI � P − 1

n
1n1Tn � sI,

P1n = 1n, P = PT ,

Pij ≥ 0, ∀i, j ∈ {1, . . . , n} ,
Pij = 0, if (i, j) /∈ E,

Pij = Pij,fixed, if (i, j) ∈ Efixed.

(3.39)

3Here and in the following, for any two symmetric matrices X,Y ∈ Rn×n, the notation
X � Y (resp.,X � Y ) means thatX−Y is negative (resp., positive) semidefinite, whereas
X ≤ Y (resp., X ≥ Y ) stands for an elementwise inequality.
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Of course, the fixed weights Pij can be removed from the summation in-
side the objective of the optimization problem above, without changing
its optimal solution.

In Section 3.5, we present some numerical results obtained solving
both Problems FMMC-l1(η) and FMMCconstr-l1(η) through a modified
version of the MATLAB function fmmc.m in the CVX package (http:
//cvxr.com/cvx/download/), which solves the SDP formulation of
Problem FMMC presented in (48) and (82). Such a modified version is
basically obtained adding the linear term η

2

∑n
i 6=j, i,j=1 Pij inside the ob-

jective of the original optimization problem.

3.4.3 Theoretical results for Problem FMMC-l0(η)

In this section, we provide some theoretical results about the opti-
mal solution of Problem FMMC-l0(η). They usually provide structural
properties of the optimal solution similar to the ones obtained in Sec-
tion 3.4.2 for Problem FMMC-l1(η), with some differences in the proofs.
To differentiate the notation with respect to the one used for Problem
FMMC-l1(η), we use the subscript “0” when referring to an optimal so-
lution of Problem FMMC-l0(η).

a) Existence of an optimal solution.
The next result states the existence of an optimal solution to Problem

FMMC-l0(η). Before stating it, we need to recall the following definition
of lower semi-continuity, which is used in the proof of the next Proposi-
tion 6.

Definition 2. Let f : X → R be a real-valued function defined on a
topological space X . Then, f is lower semi-continuous iff ∀c ∈ R, the set
{x ∈ X : f(x) ≤ c} is closed.

Proposition 6. Problem FMMC-l0(η) admits an optimal solution for ev-
ery η > 0.

Proof. The feasible set of Problem FMMC-l0(η) is convex, closed, and
bounded, hence compact, as being Rm a finite-dimensional vector space.
Moreover, its objective is lower semi-continuous since:
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− taking, for any c > 0, any convergent sequence {w(k)}∞k=1 such that
‖w(k)‖0 ≤ c for all k, and observing that also its limit satisfies the
same inequality, it follows that the l0-pseudo-norm regularization
term ‖w‖0 is lower semi-continuous;

− as it has been shown in the proof of Proposition 2, on the feasible
set, the second-largest eigenvalue modulus µ(P (w)) is continuous
(hence, also lower semi-continuous);

− the sum of two lower semi-continuous functions is lower semi-
continuous, too.

Concluding, Problem FMMC-l0(η) involves the minimization of a lower
semi-continuous objective function on a compact set, so an optimal solu-
tion to Problem FMMC-l0(η) exists by the generalized Weierstrass theo-
rem (90, Theorem 2.43).

b) Effect of the regularization parameter.
Likewise Proposition 3, next Proposition 7 shows that the regulariza-

tion parameter η has opposite effects on the two terms µ(w) and ‖w‖0,
when evaluated at an optimal solution. The proof is very similar to the
one of Proposition 3, hence it is not reported.

Proposition 7. Let 0 < η1 < η2, and w◦0(η1), w◦0(η2) be optimal solutions
to Problem FMMC-l0(η1) and Problem FMMC-l0(η2), respectively. Then,
i) µ(w◦0(η1)) ≤ µ(w◦0(η2));
ii) ‖w◦0(η1)‖0 ≥ ‖w◦0(η2)‖0 .

Differently from the case of Problem FMMC-l1(η) investigated in Sec-
tion 3.4.2, however, also the sparsity

s(w◦0(η)) := 1− ‖w◦0(η)‖0/m
= fraction of zero components of w◦0(η)

is a monotonic function of η, as it is shown by the next proposition,
whose proof is immediate and is, therefore, omitted.

Proposition 8. Let 0 < η1 < η2, then s(w◦0(η1)) ≤ s(w◦0(η2)).

Notice that, since
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− any subgraph with n vertices and m̂ ≤ m (non self-loop) non-zero
weighted edges cannot be connected when m̂ < n − 1 (as n − 1 is
the number of edges in a spanning tree);

− when the subgraph associated with a feasible w is disconnected,
the corresponding µ(w) is equal to 1, so the optimal choice for w
in Problem FMMC-l0(η) is w = 0m, when one limits to consider
disconnected subgraphs;

the value of the optimal sparsity for Problem FMMC-l0(η) cannot belong
to the interval

(
m−n+1

m , 1
)

(which corresponds with disconnected sub-
graphs with at least 1 non self-loop edge), whereas the value 1 is achiev-
able, and it corresponds to the trivial case of a completely disconnected
subgraph at optimality. Concluding, the possible values for the optimal
sparsity for Problem FMMC-l0(η) are 0, 1

m ,
2
m , . . . ,

m−n
m , m−n+1

m , 1.

The next result states the continuity of the optimal value of the objec-
tive in Problem FMMC-l0(η), and shows also that Problem FMMC-l0(η)
“behaves” like Problem FMMC for η sufficiently small.

Proposition 9. Let w◦0(η) (resp., w◦) be an optimal solution of Problem
FMMC-l0(η) (resp., of Problem FMMC), and µ(w◦0(η)) (resp., µ(w◦)) the
value of the second-largest eigenvalue modulus of the corresponding
weighted adjacency matrix P (w◦0(η)) (resp., P (w◦)). Then,
i) µ(w◦0(η)) + η‖w◦0(η)‖0 depends continuously on η;
ii) limη→0+ µ(w◦0(η)) = µ(w◦);
iii) Given any sequence {ηk}+∞k=1 convergent to 0, and an associated se-
quence {w◦0(ηk)}+∞k=1, one can extract from the latter a subsequence that
converges to an optimal solution of Problem FMMC.

Proof. i) Let 0 < η1, 0 < η2, and η1 6= η2. Due to the optimality of w◦0(η1)
and w◦0(η2) for Problems FMMC-l0(η1) and FMMC-l0(η2), resp., one gets

µ(w◦0(η1)) + η1‖w◦0(η1)‖0 ≤ µ(w◦0(η2)) + η1‖w◦0(η2)‖0 , (3.40)

and

µ(w◦0(η2)) + η2‖w◦0(η2)‖0 ≤ µ(w◦0(η1)) + η2‖w◦0(η1)‖0 . (3.41)
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Then, combining (3.40) and (3.41), one obtains

µ(w◦0(η1))

≤ µ(w◦0(η2)) + η1 (‖w◦0(η2)‖0 − ‖w◦0(η1)‖0)

≤ µ(w◦0(η1)) + η2 (‖w◦0(η1)‖0 − ‖w◦0(η2)‖0)

+η1 (‖w◦0(η2)‖0 − ‖w◦0(η1)‖0)

= µ(w◦0(η1)) + (η2 − η1) (‖w◦0(η1)‖0 − ‖w◦0(η2)‖0) . (3.42)

Since w◦0(η1) and w◦0(η2) belong to the admissible set, which is compact,
formula (3.42) implies (reversing also the roles of η1 and η2)

µ(w◦0(η1)) + η1‖w◦0(η1)‖0
= lim
η2→η1

(µ(w◦0(η2)) + η1‖w◦0(η2)‖0)

= lim
η2→η1

(µ(w◦0(η2)) + η2‖w◦0(η2)‖0) , (3.43)

from which item i) follows.
Item ii) is proved likewise item i), exploiting also the fact that w◦0 be-

longs to an admissible compact set, hence the term η‖w◦0‖0 vanishes as η
tends to 0 from the right.

Finally, item iii) is obtained combining item ii) with the compactness
of the admissible set (which makes it possible to extract a convergent
subsequence, starting from any subsequence belonging to that set) and
the continuity of the second-largest eigenvalue modulus µ(P (w)) with
respect to w (already shown in the proof of Proposition 2).

Remark 8. A result similar to Proposition 9 holds also for Problem FMMC-
l1(η). In that case, the proof of the corresponding item i) could be also obtained
exploiting Berge’s theorem of the maximum (see, e.g., (91, Section 3.3)).

c) Conditions under which w = 0m is an optimal solution to Problem
FMMC-l0(η).

The next result states conditions on the regularization parameter un-
der which w = 0m is an optimal solution to Problem FMMC-l0(η), or its
unique optimal solution. An application of the result to the choice of the
regularization parameter is given in Section 3.4.3 f).

Proposition 10. Let η ≥ 1
n−1 . Then w = 0m is an optimal solution to

Problem FMMC-l0(η). If η > 1
n−1 , then w = 0m is its unique optimal

solution.
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Proof. Let ∆w be an arbitrary admissible increment of w, starting from
w = 0m. Then, the corresponding increment ∆f (0,η) in the objective
f (0,η) of Problem FMMC-l0(η) is

∆f (0,η) =µ(∆w)− µ(0m) + η‖∆w‖0 . (3.44)

Now, one has µ(0m) = 1 (as the associated weighted adjacency matrix
is P (0m) = In). If ‖∆w‖0 < n − 1, then the graph associated with ∆w
is disconnected, and ∆f (0,η) = η‖∆w‖0 ≥ 0. If ‖∆w‖0 ≥ n − 1, then
∆f (0,η) ≥ η‖∆w‖0 − 1, which is also non-negative by the assumption
η ≥ 1

n−1 . Then, if η ≥ 1
n−1 , ∆f (0,η) is non-negative for every ∆w 6= 0m,

hencew = 0m is an optimal solution to Problem FMMC-l0(η). If η > 1
n−1 ,

then ∆f (0,η) is positive for every arbitrary admissible ∆w 6= 0m, hence
w = 0m is the only optimal solution to Problem FMMC-l0(η).

The following example shows that the bound obtained in Proposition
10 is tight, at least if one does not impose further restrictions on the class
of graphs to be considered.

Example 2. Likewise in Example 1, let n = 2 and m = 1. Then, again,
the matrix P (w) has the expression (3.26) and the eigenvalues 1 and 1 − 2w1.
Hence, on the subset (0, 1] of admissible solutions to Problem FMMC-l0(η), its
objective is |1−2w1|+η, whereas for w1 = 0, the objective is equal to 1. Hence,
w1 = 0 is, respectively, the unique optimal solution to Problem FMMC-l0(η) for
η > 1, one of its two optimal solutions for η = 1 (the other one being w1 = 1

2 ),
and a suboptimal solution for 0 < η < 1 (the optimal one being w1 = 1

2 ).

Remark 9. Interestingly, Example 2 demonstrates that the functions µ(w◦0(η))
and ‖w◦0(η)‖0 may be not continuous. Indeed, in this example, it follows that
µ(w◦0(η)) = 0 for η ∈ (0, 1), and µ(w◦0(η)) = 1 for η > 1. Moreover,
‖w◦0(η)‖0 = 1 for η ∈ (0, 1), and ‖w◦0(η)‖0 = 0 for η > 1. A similar re-
mark about the possible absence of continuity holds for Problem FMMC-l1(η),
when one considers the same graph of this example.

d) Non differentiability of the objective at w = 0m.
Likewise Proposition 5, the next result shows that in general the ob-

jective of Problem FMMC-l0(η) is not differentiable at w = 0m.

Proposition 11. Let n ≥ 2. Then,
i) the second-largest eigenvalue modulus term µ(w) is nondifferentiable
at w = 0m for n ≥ 3, and differentiable for n = 2;
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ii) the l0-pseudo-norm regularization term ‖w‖0 is nondifferentiable at
w = 0m;
iii) the objective of Problem FMMC-l0(η) is nondifferentiable at w = 0m.

Proof. i) Let us consider at first the case n ≥ 3. Then, at w = 0m, pro-
ceeding likewise in the proof of Proposition 5, the directional derivative
of the term µ(w) in the direction ei, i.e.,

lim
t→0+

µ(tei)− µ(0m)

t
, (3.45)

is equal to 0. Now, let ŵ be any admissible weight vector with ŵ > 0m
(elementwise). Then, at w = 0m, proceeding likewise in the proof of
Proposition 5, the directional derivative of the term µ(w) in the direction
ŵ, i.e.,

lim
t→0+

µ(tŵ)− µ(0m)

t
, (3.46)

is different from 0, and differs from
m∑
i=1

ŵi

(
lim
t→0+

µ(tei)− µ(0m)

t

)
= 0 (3.47)

(recall Remark 6). Then, we conclude that, for n ≥ 3, the term µ(w) is
nondifferentiable at w = 0m. Finally, for n = 2, the term µ(w) is differen-
tiable, as shown by Example 2.
ii) Nondifferentiability of the l0-pseudo-norm term ‖w‖0 at w = 0m fol-
lows by the facts that ‖0m‖0 = 0, and in any neighborhood of 0m with
radius ε > 0 there exists a feasible w(ε) with ‖w(ε)‖0 ≥ 1.
iii) This follows combining the proofs of items i) and ii).

e) Algorithmic issues.
The following result shows that Problem FMMC-l0(η) is a combi-

natorial problem and also how solving an instance of such a problem
can be reduced to solving several instances of (easier to solve) Problems
FMMC. The upper bound b 1

η c of non self-loop edges in the next propo-
sition comes from the consideration that any optimal solution w◦0(η) of
Problem FMMC-l0(η) cannot have more than b 1

η c non-zero components,
otherwise the trivial choice w = 0m is a better solution.

Proposition 12. Any instance of Problem FMMC-l0(η) can be solved as
follows:
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− starting from the original graph G associated with the vertex-edge
incidence matrix M , generate the set Gη of all its subgraphs Gk
with n vertices and with at most b 1

η c non self-loop edges;

− for each subgraph Gk ∈ Gη , find an optimal solution w◦(Gk) of the
instance of Problem FMMC associated with such subgraph, and the
corresponding µ(w◦(Gk));

− find a subgraph Gk◦ ∈ Gη that solves the optimization problem

minimizeGk∈Gη (µ(w◦(Gk)) + η‖w◦(Gk)‖0) . (3.48)

Then,
i) the resulting vectorw◦(Gk◦(η)) is an optimal solution of Problem FMMC-
l0(η);
ii) all optimal solutions of Problem FMMC-l0(η) can be generated accord-
ing to the procedure above. Moreover, the same optimal solution w◦0(η)
of Problem FMMC-l0(η) may be generated starting from more than one
subgraph Gk◦(η) ∈ Gη (which is optimal for the optimization problem
(3.48)), in case of non-uniqueness of the optimal k◦(η). In particular, one
of such subgraphs Gk◦(η) is the one Gk̃(η) whose non self-loop edges are
the ones associated with the non-zero components of w◦0(η).

Proof. i) Since w◦(Gk◦(η)) is feasible for Problem FMMC-l0(η), one gets,
for any optimal solution w◦0(η) of Problem FMMC-l0(η),

µ(w◦(Gk◦(η))) + η‖w◦(Gk◦(η))‖0 ≥ µ(w◦0(η)) + η‖w◦0(η)‖0 . (3.49)

Let us show by contradiction that also the reverse inequality holds in
(3.49), implying the equality therein. Suppose to the contrary that

µ(w◦(Gk◦(η))) + η‖w◦(Gk◦(η))‖0 > µ(w◦0(η)) + η‖w◦0(η)‖0 . (3.50)

Let Gk̃(η) ∈ Gη the subgraph whose non self-loop edges are the ones
associated with the non-zero components of w◦0(η). Hence, solving Prob-
lem FMMC on Gk̃(η), one obtains

µ(w◦(Gk̃(η))) ≤ µ(w◦0(η)) , (3.51)

by the optimality of w◦(Gk̃(η)) for Problem FMMC on Gk̃(η), and the fea-
sibility of w◦0(η) for the same optimization problem, and

‖w◦(Gk̃(η))‖0 ≤ ‖w
◦
0(η)‖0 , (3.52)
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by construction. Hence,

µ(w◦(Gk̃(η))) + η‖w◦(Gk̃(η))‖0
≤µ(w◦0(η)) + η‖w◦0(η)‖0
<µ(w◦(Gk◦(η))) + η‖w◦(Gk◦(η))‖0 , (3.53)

which contradicts the optimality of Gk◦(η) for the optimization problem
(3.48). Hence, (3.50) cannot hold, and w◦(Gk◦(η)) solves Problem FMMC-
l0(η).

ii) Let us consider any optimal solution w◦0(η) of Problem FMMC-
l0(η). Likewise in the proof of item ii), considering the subgraph Gk̃(η) ∈
Gη whose non self-loop edges are the ones associated with the non-zero
components ofw◦0(η), one obtains both (3.51) and (3.52) with the equality,
due to the optimality of w◦0(η) for Problem FMMC-l0(η). So, w◦0(η) is also
generated by the procedure detailed in the statement of the proposition.
In particular, it is generated starting from the subgraph Gk̃(η). However,
in general there may exist also other optimal subgraphs Gk◦(η) for the
optimization problem (3.48), which generate the same w◦0(η), i.e., such
that w◦(Gk◦(η)) = w◦0(η).

Due to the combinatorial nature of Problem FMMC-l0(η), unfortu-
nately, the number of instances of subproblems FMMC to be considered
in formula (3.48) is in general very large (unless the original graph is
“small”, or η is large), however we remark that:

− each subproblem FMMC is convex and has a semidefinite program-
ming formulation; each one can be solved through the MATLAB
function fmmc.m in the CVX package (http://cvxr.com/cvx/
download/), as already mentioned in Section 3.4.2;

− the number of subproblems FMMC to be considered depends on
the parameter η, and is non-increasing with respect to η. In par-
ticular, larger values for η (which correspond with a larger desired
sparsity) are associated with a smaller number of subproblems;

− some simplifications are possible, making it possible to reduce the
number of subgraphs to be considered in formula (3.48). For in-
stance, one can detect and remove all disconnected subgraphs. They
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can be detected, e.g., either checking the algebraic multiplicity of
the associated Laplacian eigenvalue 1, or applying an algorithm
presented in (92), which generates all connected subgraphs of a
given graph, with the same number of vertices as in the original
graph. Finally, isomorphic subgraphs could be also detected and
represented by one single subgraph (although the approach should
be in practice limited to subgraphs with a small number of edges,
since the graph isomorphism problem belongs to the NP class of
computational complexity (93));

− as one possible heuristic to obtain good suboptimal solutions to
an instance of Problem FMMC-l0(η), Proposition 12 may suggest
to generate a small number of random sparse subgraphs Gk of the
original graph with vertex-edge incidence matrixM . Subsequently
the associated instances of Problem FMMC have to be solved, and
finally, among the obtained optimal solutions w◦(Gk), we have to
consider the one that minimizes µ(w◦(Gk)) + η‖w◦(Gk)‖0.

f) Choice of the regularization parameter.
Likewise in Section 3.4.2, the theoretical results presented above jus-

tify the following practical rule for choosing the regularization parameter
η:

− given a positive integer N and a maximal acceptable increase ε > 0

for the second-largest eigenvalue modulus of P with respect to its
optimal value µ◦FMMC in Problem FMMC, solve Problem FMMC-
l0(η) in correspondence of N values η(j) for η such that

· 0 < η(1) < η(2) < . . . < η(N) < 1
n−1 , and

· µ(w◦0(η(j))) ≤ µ◦FMMC + ε (j = 1, . . . , N ) ;

− choose j◦ ∈ {1, . . . , N} that maximizes the sparsity s(w◦(η(j))).

Remark 10. Differently from the case of Problem FMMC-l1(η) investigated in
Section 3.4.2, a final reoptimization step is not needed after finding w◦(η(j◦)),
sincew◦(η(j◦)) solves an optimization problem including basically also the spar-
sity in its objective.
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Finally, a possible way to choose the tolerance parameter ε (which has
to be in any case smaller than 1− µ◦FMMC , again to avoid trivial optimal
solutions) is given by formula (3.32), likewise in Section 3.4.2.

g) Interpretation of Problem FMMC-l0(η) as a robust version of Problem
FMMC.

Likewise Problem FMMC-l1(η), Problem FMMC-l0(η) has the follow-
ing interpretation. Let us suppose that, for any given “nominal” choice
of the weights wi (i = 1, . . . ,m), one has an “uncertainty” ∆wi such that
|∆wi| ≤ δU(wi), for some fixed δ > 0, where

U(wi) :=

{
0 if wi = 0 ,

1 if wi > 0 .
(3.54)

Then, likewise in Section 3.4.2 f), one can show that the second-largest
eigenvalue modulus µ(w + ∆w) is bounded from above as

µ(w + ∆w) ≤ µ(w) + 2δ‖w‖0 . (3.55)

Then, an optimal “robust” choice of the nominal weight vector w is ob-
tained minimizing the objective µ(w) + 2δ‖w‖0 on the set of admissible
weight vectorsw, and is obtained replacing the objective µ(w) of Problem
FMMC with µ(w) + 2δ‖w‖0. However, this is equivalent to solving Prob-
lem FMMC-l0((η) with the choice η = 2δ. Likewise in Section 3.4.2 g),
when δ ≥ 1, w = 0m is just an optimal nominal choice for the robust ver-
sion of Problem FMMC just described, which is consistent with Propo-
sition 10. In this case, however, that proposition shows that w = 0m is
an optimal nominal choice even under a less restrictive condition on δ:
namely, for any δ ≥ 1

2(n−1) .

3.5 Results and Discussion

In this section, we first solve numerically Problems FMMC-l0(η) and
FMMC-l1(η) on a toy example, in which both problems can be practically
solved in a reasonably small amount of time, then their optimal solutions
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can be compared. At the end of the section, we compare the optimal solu-
tions of Problems FMMC and FMMC-l1(η), when both problems are ap-
plied to a model of a wireless sensor network with a much larger number
of nodes/edges. Finally, some future improvements are discussed.

3.5.1 Comparison of Problems FMMC-l1(η) and FMMC-
l0(η)

The comparison between the two sparse variations of Problem FMMC
is performed on a graph with n = 8 vertices and m = 20 non self-
loop edges, which is shown in Fig. 1. Problem FMMC-l0 is solved by
following the procedure described in Proposition 12. One can observe
that, in this case, the number of all subgraphs with n vertices is equal
to 220 = 1048576. However, since we are interested only in connected
subgraphs, we first generate all such subgraphs (which have at least
n− 1 = 7 non self-loop edges, since they must contain at least one span-
ning tree), then we associate all isomorphic connected subgraphs with a
single representative connected subgraph. In this way, a total of 8693 non
isomorphic subgraphs is generated, on which Problem FMMC is solved,
according to the procedure described in Proposition 12. The comparison
between the optimal solutions to Problems FMMC-l1(η) and FMMC-l0(η)
is performed by varying the regularization parameter η, and considering
different ranges for such a parameter in the two problems, since equal
values of the parameter are not directly comparable, as being associated
with different regularizations. In particular, for both problems, we con-
sider N = 100 different values for the regularization parameter equally
spaced inside an interval I1 for Problem FMMC-l1(η) and an interval I0
for Problem FMMC-l0(η). From now on, we indicate with η(l1) the regu-
larization parameter associated to Problem FMMC-l1(η), while η(l0) rep-
resents the regularization parameter associated to Problem FMMC-l0(η).

As a first step, we solve Problem FMMC on the graph shown in Fig. 1,
obtaining its optimal solution w◦FMMC , whose second-largest eigenvalue
modulus is equal to µ(w◦FMMC) = 0.3786, and the sparsity is equal to
s(w◦FMMC) = 0. Then, we study the optimal solutions achieved by Prob-
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Original graph

Figure 1: A toy example modeled by a graph with 8 vertices and 20 non
self–loop edges.

lem FMMC-l1(η) and Problem FMMC-l0(η). In practice, following the
procedures illustrated in Sections 3.4.2 e) and 3.4.3 f), respectively, we
aim at determining a feasible solution whose associated second-largest
eigenvalue modulus is not much larger than its minimum possible value
µ◦FMMC , and that, at the same time, provides a satisfactory sparsity. For
both procedures, we choose ρ = 1.5, which is associated with the tol-
erance ε = 0.145, as µ◦FMMC = 0.3786 (see formula (3.32)). Hence, we
are interested in studying how the optimal solutions to the two prob-
lems vary depending on η(l1) and η(l0), respectively, imposing the up-
per bound µ◦FMMC + ε = 0.5236 on µ. In particular, for Problem FMMC-
l0(η) we consider 100 values of η(l0) equally spaced inside the interval
I0 = [2 · 10−8, 0.08]; while for Problem FMMC-l1(η) we consider 100 val-
ues for η(l1) equally spaced inside the interval I1 = [0.02, 0.198], since
they provide comparable ranges of values for µ at optimality (for graph-
ical reasons, the results in the next figures are reported at a lower resolu-
tion).

In Fig. 2, we report, as functions of the regularization parameter,
the values of the second-largest eigenvalue modulus µ and the spar-
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sity s for the optimal solutions of Problem FMMC-l1(η) (subplots (a) and
(b), respectively and Problem FMMC-l0(η) (subplots (c) and (d), respec-
tively). The results in Fig. 2 reveal, as expected, that Problem FMMC–

Figure 2: Dependence on the regularization parameter of the second-largest
eigenvalue modulus µ and the sparsity s for the optimal solutions of Prob-
lems FMMC-l1(η) (subplots (a) and (b)) and FMMC-l0(η) (subplots (c) and
(d)).

l0(η) usually provides better solutions than Problem FMMC-l1(η). In fact,
in the two respective ranges of values for the regularization parameter,
the values of the second-largest eigenvalue modulus obtained solving
Problem FMMC-l0(η) are comparable with the ones achieved solving
Problem FMMC-l1(η), but with a better sparsity. However, from a com-
putational point of view, solving Problem FMMC-l0(η) for the specific
example takes a much longer time than solving Problem FMMC-l1(η)
for the same example, i.e., about 40 seconds are needed to solve Prob-
lem FMMC-l1(η) for all the 100 values of its regularization parameter,
whereas more than 4000 seconds are required to solve Problem FMMC-
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l0(η) for all the 100 values of its regularization parameter, since this re-
quires solving also all its subproblems FMMC (one time each). The nu-
merical simulations have been performed using MATLAB R2015a on a
notebook with a 1.60 GHz CPU and 8 GB of RAM.

In order to perform another comparison between the two approaches,
we also proceed in the following way:

1. we fix a positive integer Ng , then we extract randomly Ng sub-
graphs over the total of 8683 non isomorphic connected subgraphs
of the original graph. This number of subgraphs is chosen in order
to be able to find an approximate solution to Problem FMMC-l0(η)
in a time comparable to the one needed to solve Problem FMMC-
l1(η) exactly (see the next step);

2. we apply a variation of the procedure described in Proposition 12,
considering only the subgraphs generated in the step 1) above;

3. we repeat the two steps above for some number Ns of times;

4. we compute the average and standard deviation of the results ob-
tained over the Ns repetitions.

In the following, for illustrative purposes, we always choose Ng = 100.
We first consider the results achieved by the procedure described above
when fixing Ns = 1. Fig. 3 shows the values of the second-largest eigen-
value modulus (subplot (a)) and of the sparsity for the suboptimal so-
lution (subplot (b)) to Problem FMMC-l0(η) obtained in this case. Also
in this case, the values of the sparsity obtained are better than the ones
achieved solving Problem FMMC-l1(η), but larger values of the second-
largest eigenvalue modulus are obtained compared with the exact solu-
tion of Problem FMMC-l0(η). In addition, when η(l0) is larger than 0.04,
the obtained suboptimal solutions do not even satisfy the required con-
straint µ ≤ 0.5236.

We now consider the case Ns = 10. The plot on the top of Fig. 4
shows the average and standard deviation of the second-largest eigen-
value modulus of the suboptimal solution to Problem FMMC-l0(η) (sub-
plot (a), whereas subplot (b) does the same for the sparsity. Again, when
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Figure 3: Dependence on the regularization parameter of the second-largest
eigenvalue modulus µ and the sparsity s for the suboptimal solution of
Problem FMMC-l0(η), obtained when 100 subgraphs are randomly ex-
tracted from the whole set of connected non isomorphic subgraphs.

η(l0) is larger than 0.06, in general the obtained suboptimal solutions do
not even satisfy the required constraint µ ≤ 0.5236. In addition, due
to the 10 repetitions, the time needed to obtain these results is about 10

times larger than the one needed to solve Problem FMMC-l1(η) exactly.

3.5.2 Comparison of Problems FMMC-l1(η),
FMMCconstr-l1(η), and FMMC

We now investigate numerically the optimal solutions of Problems
FMMC-l1(η) and FMMCconstr-l1(η), comparing them with the one of Prob-
lem FMMC. In particular, as a test example, we consider a vertex-edge
incidence matrix M corresponding to a model of a wireless sensor net-
work with 50 vertices and 200 edges, generated in a similar way as the
one in (82, Section 5.1). The first two plots in Fig. 5 (subplots (a) and (b),
respectively), which refers to the behavior of an optimal solution w◦1(η)

with respect to η, confirm the statement of Proposition 3 about the op-
posite monotonic dependence on η of µ(w◦1(η)) and ‖w◦1(η))‖1. Subplot
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Figure 4: Dependence on the regularization parameter of the average (over
10 trials) of the second-largest eigenvalue modulus µ (upper plot) and of the
sparsity s (lower plot) for the suboptimal solution of Problem FMMC-l0(η),
obtained when 100 subgraphs are randomly extracted from the whole set of
connected non isomorphic subgraphs.

(c) shows its sparsity s(w◦1(η)) as a function of η, which in this particular
case is not a monotonic function of η. However, the plots also show that
w◦1(η) is sparser than the optimal solution of Problem FMMC, for all the
considered values of η. So, they highlight the possibility, in this case, of
finding a value of the parameter η for which the second-largest eigen-
value modulus µ(w◦1(η)) is not much larger than its minimum possible
value µ◦FMMC , and that, at the same time, provides a satisfactory sparsity
of w◦1(η). Again, in order to find such a parameter, we follow the proce-
dure illustrated in Section 3.4.2 e). We choose ρ = 1.5, associated with the
tolerance ε = 0.027, as µ◦FMMC = 0.9165 in this particular case. We also
consider N = 20 values η(1), . . . , η(N) for the regularization parameter η
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Figure 5: Dependence on η of the second–largest eigenvalue modulus of the
weighted adjacency matrix P , the l1–norm and the sparsity of an optimal
solution of Problem FMMC–l1.

(uniformly spaced in the interval [2 · 10−5, 5 · 10−3], see Fig. 5), obtaining
j◦ = 5 and η(j◦) = 1.1 · 10−3 as the optimal regularization parameter. For
this value, we obtain µ(w◦1(η(j◦))) = 0.9186, ‖w◦1(η(j◦))‖1 = 17.45, and
s(w◦1(η(j◦))) = 0.545. Compared with the optimal solution w◦FMMC of
Problem FMMC (for which µ(w◦FMMC) = 0.9165, ‖w◦FMMC‖1 = 23.71,
and s(w◦FMMC) = 0.41), the increase of the second-largest eigenvalue
modulus, the decrease of the l1-norm of the weight vector, and the in-
crease of its sparsity are, respectively, about 0.2%, 26%, and 25%. In terms
of the mixing time (3.4), we obtain an increase of about 3% with respect
to the value associated with w◦FMMC . Fig. 6 shows: the original graph
associated with the given vertex-edge incidence matrix M (subplot (a));
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original graph FMMC subgraph

FMMC-l1(2
(j/)) subgraph FMMC vs FMMC-l1(2

(j/))

reoptimized subgraph FMMC-l1(2
(j/)) vs reoptimization

(a) (b)

(c) (d)

(e) (f)

Figure 6: A comparison of the subgraphs associated with non-zero weights
in the optimal solutions to Problems FMMC and FMMC-l1(η(j

◦)). See the
main text for explanations about the colors used in the figure.

its subgraph obtained keeping only the edges associated with non-zero
weights in the optimal solution w◦FMMC to Problem FMMC (subplot
(b)); the one obtained keeping only the edges associated with the non-
zero weights of w◦(η(j◦)) (subplot (c)); a comparison of the two sub-
graphs (subplot (d)), obtained merging such subgraphs and highlighting
in blue the non-zero-weighted edges appearing in both graphs and in
green (resp., red) the non-zero weighted edges of the optimal solution to
Problem FMMC (resp., Problem FMMC-l1(η(j◦))) that are associated with
zero weights in the optimal solution to Problem FMMC-l1(η(j◦)) (resp.,
Problem FMMC). In particular, starting from the original 200 edges join-
ing different vertices, the optimal solution to Problem FMMC keeps 118
edges, while the optimal solution to Problem FMMC-l1(η(j◦)) keeps only
91 edges. The percentage of edge reduction when moving from w◦FMMC
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to w◦1(η(j◦)) is therefore about 23%.
As described in Section 3.4.2 e), after finding the parameter η(j◦), an

additional improvement may be obtained performing a reoptimization
step, solving Problem FMMC on the sparser subgraph obtained deleting
the edges associated with zero weights in the obtained optimal solution
w◦1(η(j◦)) to Problem FMMC-l1(η(j◦)). This step is illustrated in subplots
(e) and (f) of Fig. 6, which shows in red the edges deleted by the reopti-
mization step. In this way, a new weight vector w◦reopt is obtained with
µ(w◦reopt) ≤ µ(w◦1(η(j◦))) and s(w◦reopt) ≥ s(w◦1(η(j◦))). So, compared with
w◦1(η(j◦)), the sparsity of the weight vectorw◦reopt either remains the same
or even increases, whereas the second-largest eigenvalue modulus either
remains the same or even decreases. Indeed, after the reoptimization
step, we obtain µ(w◦reopt) = 0.9169 and s(w◦reopt) = 0.56.

Finally, we report the results obtained solving Problem FMMCconstr-
l1(η) (in this case, for simplicity of comparison, for η = η(j◦)), imposing
the constraint that the 11 non self-loop edges associated with the vertexA
in Fig. 7 are fixed, resp., to the values 0.1, 0.05, 0.25, 0.1, 0.01, 0.07, 0.05, 0.1,

0.02, 0.05, 0.1, whose sum is 0.9 < 1 (hence the problem is feasible). Since
such constraints are not satisfied by w(j◦)

1 , a significant change of the op-
timal solution is expected, with respect to the unconstrained version of
the problem. Indeed, for the optimal solution w◦free,1(η(j◦)) to such an
instance of Problem FMMCconstr-l1(η(j◦)), we obtain µ(w◦free,1(η(j◦))) =

0.9193. Such an increase of µ(w◦free,1(η(j◦))) with respect to µ(w◦1(η(j◦)))

was also expected, as Problem FMMCconstr-l1(η(j◦)) is more constrained
than Problem FMMC-l1(η(j◦)), and has the same objective (including in
the objective also the fixed weights).

3.5.3 Discussion and Conclusions

In this work, we have presented some theoretical and numerical re-
sults about several sparse variations of the Fastest Mixing Markov–Chain
Problem. Among possible future developments we mention the possi-
bility of using other sparsity enforcing regularization terms (such as the
reweighted l1–norm (94), the group LASSO (95) and the sparse group
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FMMC-l1(2
(j/)) vs FMMCconstr-l1(2

(j/))

A

Figure 7: A comparison of the subgraphs associated with non-zero weights
in the optimal solutions to Problems FMMC-l1(η(j

◦)) and FMMCconstr-
l1(η(j

◦)). This is obtained by merging such subgraphs and highlighting in
blue the non-zero-weighted edges appearing in both graphs and in green
(resp., red) the non-zero weighted edges of the optimal solution to Problem
FMMCconstr-l1(η(j

◦)) that are associated with zero weights in the optimal
solution to Problem FMMC-l1(η(j

◦)) (resp., Problem FMMCconstr-l1(η(j
◦))).

LASSO (96)). At the same time it would be useful to solve the proposed
regularized optimization problems in a distributed way. Finally we men-
tion the possibility of extending the theoretical analysis to nonlinear and
stochastic consensus problems.

3.6 Summary

In this chapter we described sparse variations of the consensus prob-
lem with the aim of determining solutions that lead to a fast conver-
gence to the consensus state keeping, at the same time, the network of
the agents as sparse as possible. In particular we started from Problem
FMMC which is concerned with the study of the topology of the net-
work of agents with the aim of reaching the consensus state as fast as
possible. We presented theoretical statements and satisfactory numerical
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results for both the sparse variations introduced (the one involving the
l1 norm of the variables vector and the one with the l0–pseudo norm of
the variables vector).

In the next chapter we will continue the study of the consensus prob-
lem, paying particular attention on the structure of the graph of inter-
connections G. We will deal with the problem of increasing the rate of
convergence to the consensus state from another point of view. In fact, in
the approach presented in the next chapter, we are not interested in de-
termining the optimal entries of P that minimize µ(P ), but we intend to
“decompose” opportunely the original networkG in different subgraphs
where the rate of convergence to the consensus state should be faster. We
intend to define a sort of hierarchical procedure that can be easily paral-
lelized and can increase the overall rate of convergence to the common
opinion.
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4
Spectral graph theory in the consensus

problem

4.1 Introduction

We continue our discussion on the consensus problem with the aim
of better evaluating and studying the spectral properties of the agents
network. Our idea is to develop an approach able to increase the con-
vergence rate to the consensus state by dividing the original graph in
many subgraphs where the rate of convergence to the “local” consensus
state (i.e., the consensus state when the consensus algorithm is run on
the subgraphs) should be faster. Our approach consists in extracting sub-
graphs with “good” spectral properties that lead to a fast convergence to
the local consensus state. We intend to apply both a spectral clustering
algorithm and another technique, developed for this study, that should
be able to extract “dense” subgraphs for which the second–largest eigen-
value modulus of the transition probability matrix is relatively small and

This chapter is partly based on:

• Rita Morisi, Giorgio Gnecco, Alberto Bemporad “A hierarchical consensus method
for the approximation of the consensus state, based on clustering and spectral graph
theory”, submitted to Engineering Applications of Artificial Intelligence.
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the corresponding rate of convergence to the consensus state relatively
fast. Similar approaches to the one we intend to study have been pro-
posed in (97; 98). They propose to decompose the multi–agent system
in an optimal hierarchical structure considering a multi–layer method.
Nevertheless, in (98) they approximate the rate of convergence to the
consensus state by evaluating its upper bound based on the Laplacian
matrix of the network, while, as we will see later, we ground our study
on the transition probability matrix. In addition, neither (97) nor (98) con-
sider techniques that exploit the spectral properties of the graph for the
detection of different subgraphs. We thus believe that, compared with
(97; 98) the main original contribution of the present chapter lies on the
techniques adopted to determine the different connected subgraphs and
on the theoretical study using the Cheeger’s inequality (Formula (2.7))
to explain and prove the results shown in Section 4.5. In Section 4.2 we
first provide the formulation of the specific problem, then in Section 4.3
we focus on the methods adopted to divide the original graph. Section
4.4 provides a theoretical study of the time of convergence to the consen-
sus state of the method developed, while Section 4.5 presents numerical
examples. In Section 4.6 we better evaluate from both a theoretical and
practical point of view a problematic issue that arises in some situations
and we subsequently provide a solution able to improve the final results.
Section 4.7 offers the conclusions and the final discussion.

4.2 Problem formulation

In Chapter 3 the consensus problem has been studied starting from
the approach developed in (48), where, for a given graph topology, it
has been solved through a convex optimization problem able to deter-
mine the entries of the transition probability matrix P that minimize its
second–largest eigenvalue modulus. Now, we are not interested in op-
timizing the entries of the matrix P , but we intend to increase the con-
vergence rate to the consensus state by considering local consensus sub-
problems run on different subgraphs of the original network and then to
determine the final consensus state by evaluating every single local con-
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sensus state. Our method consists of two steps: the first step can be easily
parallelized, hence, it should be able to increase the rate of convergence
to the consensus state. This phase consists in dividing the original graph
G = (V,E) with |V | = N agents in many subgraphs (evaluating the spec-
tral properties of the network) where the consensus algorithm can be run
in parallel. The second step, instead, consists in determining an auxiliary
graph that connects, depending on the connection in the original graph,
some selected nodes of the previous subgraphs. The consensus state de-
termined on this auxiliary graph is the same, up to a certain tolerance, of
the one determined in the original network (details are provided in the
following sections). We ground our analysis of the convergence rate to
the consensus state on the following upper bound (see e.g., (99)):

‖x(t)− 1

N
1N1TNx(0)‖22 ≤ µ(P )t‖x(0)‖22. (4.1)

Formula (4.1) is used to determine an approximation of the rate of con-
vergence to the consensus state on each graph/subgraph considered. In
fact, defining a suitable probability matrix of interconnections P on a
connected graph (condition required by the consensus problem in order
to have all the agents agree upon a common opinion), Formula (4.1) can
be applied both to the original graph G and to different subgraphs ob-
tained fromG. The entries pij and the dimension of P change depending
on the graph/subgraph considered. We aim at exploiting Formula (4.1)
in order to find subgraphs with “good” spectral properties, i.e., with fast
convergence rate to the consensus state inside each single subgraph. We
recall that µ(P ) in Formula (4.1) is the second–largest eigenvalue modu-
lus of P associated to the dynamical system (now every matrix P associ-
ated to each graph/subgraph is determined a–priori), x(t) is the vector of
the different opinions of the agents at time t, x(0) is the vector of the ini-
tial opinions and 1

N 1N1TNx(0) is the consensus state, i.e., the average of
the initial opinions of the agents. x(0), thus 1

N 1N1TNx(0), change depend-
ing on the graph/subgraph considered. When referred to a subgraph
extracted from G, x(0) contains the initial opinions only of the agents
associated to the subgraph considered. Again, we are dealing with undi-
rected graphs, hence with symmetric transition probability matrices that
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lead to the average consensus problem (i.e., the consensus state is the
average of the initial opinions of the agents).

As stated in the previous chapter, from the previous inequality we
can infer that the smaller the second–largest eigenvalue modulus µ(P ),
the faster the convergence rate to the consensus state. Our idea is to de-
termine a method able to decrease the value of the second–largest eigen-
value modulus µ(P ) by choosing suitable subgraphs, and exploiting the
inequality (4.1) that gives an estimate of the time t needed by the sys-
tem to reach the consensus state up to a fixed tolerance. We proceed
our study by first describing the method used to compute the transition
probability matrix of a graph starting from its topology. Subsequently,
we describe in details how different subgraphs are extracted from the
original network.

4.2.1 Computation of the transition probability matrix

The method briefly reported below, that is used to compute the transi-
tion probability matrix P involved in the linear system (3.1), is described
in (100). In particular, given the unweighted adjacency matrixA ∈ RN×N

of a graph, a doubly stochastic and symmetric matrix P can be computed
determining a diagonal matrix

∆ =


δ1 0 · · 0
0 δ2 · · 0
· · ·
· · ·
0 δN

,

hence the unknown diagonal entries δi with i = 1, . . . , N , such that

P = ∆ + ε(A− I);

where I is the identity matrix. Thus, choosing ε such that 0 < ε < 1
dmax

,
where dmax is the maximum node degree of the graph, the solution of a
system of N equations with N unknowns equal to the diagonal elements
of ∆ gives the desired matrix P with entries

pij =

{
ε if (i, j) ∈ E and i 6= j

1− εdi if i = j
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where di is the degree of node i. In particular, the condition on ε is nec-
essary to guarantee that all the diagonal terms are positive. The proce-
dure just described is used to compute the transition probability matrix
P of the original graph G and of all the subgraphs (corresponding to the
subsets of agents extracted) involved in the problem. When computing
the matrix P associated either to the original graph G or to a generic
subgraph extracted from G, we fix ε = 1

dmax+1 , where dmax is the maxi-
mum degree of the specific graph/subgraph. In this way, the constraint
0 < ε < 1

dmax
always holds.

4.3 Dividing graphG to increase the convergence
rate to the consensus state

We aim at dividing the original graph G = (V,E) in different con-
nected subgraphs with a smaller second–largest eigenvalue modulus than
the one associated to the original network. On each subgraph we esti-
mate the time needed by the agents involved in that subgraph to reach
the local consensus state up to a certain tolerance evaluating the upper
bound in formula (4.1). Later we will see that subgraphs with nodes
in common are allowed. However, this does not create a problem to
our procedure that can be easily parallelized. After each subgraph has
reached an approximation of its own consensus state, an auxiliary net-
work with a number of nodes equal to the number of subgraphs previ-
ously generated is created. To each node of the auxiliary graph is asso-
ciated the value of the local consensus state previously computed. The
consensus algorithm is run again on the auxiliary graph and the upper
bound in (4.1) is used to evaluate the convergence rate to the consen-
sus state on this final auxiliary graph. In particular, the consensus state
determined with the procedure just described is the same, up to a cer-
tain tolerance, of the one obtained directly applying the algorithm to the
original graph (see e.g., section 4.4). As previously mentioned, two con-
secutive steps are run: the first one consists in identifying a set of sub-
graphs with “good” spectral properties, the second one aims at building
a final auxiliary graph where the consensus algorithm is run again in or-
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der to determine the final consensus state; this is a sort of hierarchical
method. Figure 8 explains with a simple example the approach just de-
scribed. In this case, the convergence rate of the consensus algorithm
directly applied to the original graph, the one in the upper left corner,
is slow. In fact, the information related to the different opinions slowly
flows, for instance, from the group of agents in red and either the group
of agents in yellow or blue since these groups are poorly connected (in-
deed, there is only one edge among the blue/yellow agents and the red
ones). However, extracting a set of denser subgraphs may lead to a faster
convergence rate to the local consensus state in each subgraph, since in
that case the information would flow faster than in the original graph
(for the example considered, the ideal case would be associated with the
extraction of the 3 subgraphs shown with different colors in Figure 8).
Then, in the specific case, the second phase deals with a small and suf-
ficiently dense auxiliary graph, for which the rate of convergence to the
associated consensus state is fast. In this example we suppose to extract
the 3 subgraphs with different colors such that in the 2nd phase each
one is represented by only one node that summarizes the opinions of
all its agents. Each node of the auxiliary graph used in the 2nd phase
has an initial value equal (up to a given tolerance) to the average of the
initial opinions of the agents of the subgraph it comes from. Concern-
ing the first step, we consider two techniques able to divide the graph
in many subgraphs; the first one consists in applying a spectral cluster-
ing algorithm to the original dataset; we provide a brief summary of this
technique in the following section. The second one, instead, has been de-
veloped for this particular study, and it is described in section 4.3.2. We
call this procedure nearest supernode approach.

We indicate with M the number of subgraphs we intend to define
with both the spectral clustering and the nearest supernode approach used
during the 1st step. Thus, from the original network G we determine M
different subgraphs Gm with m = 1, . . . ,M . The goal of the hierarchi-
cal method is to generate the subgraphs Gm such that the rate of con-
vergence to the consensus state inside each subgraph is faster than the
one in the original graph G. The choice of the two clustering techniques
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Figure 8: For a simple example: the subgraphs and the auxiliary graph de-
termined, respectively, in the first phase and in the second phase of the pro-
posed hierarchical consensus method.

described in the following subsections reflects this goal, since they are
expected to generate “dense” subgraphs. It is worth remarking that, by
construction, also the auxiliary graph Gaux is expected to be dense. In-
deed, due to Formula (2.8), its volume is equal to the number of sub-
graphs (hence, it is small when this number is small), whereas its diame-
ter is expected to be small, due to the rule used for the construction of its
edges.

4.3.1 Spectral clustering

As described in Section 2.3.1, spectral clustering is a technique able
to determine the subgraphs inside an original graph, by exploiting the
eigenvalues and eigenvectors of the Laplacian matrix of the graph. In
particular, this kind of method needs the number of clusters, the M sub-
graphs in our problem, one intends to detect inside the original graph;
thus, if one has knowledge about the structure and the topology of the
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original graph, it is easier to provide to the algorithm the information
about the numberM of clusters/subgraphs it is expected to exist. For our
study we intend to apply this method to the network of agents by evalu-
ating different numbers of clusters/subgraphs we require the method to
detect. In fact, we test the hierarchical method on both graphs with and
without a clear clustering structure; thus, we try different options in or-
der to understand the ones that lead to the best results. In particular we
use an algorithm that makes use of the normalized Laplacian (see e.g.,
(60)).

4.3.2 Nearest supernode approach

Beside the spectral clustering algorithm, we intend to develop an-
other method for the determination of the subgraphs Gm, with m =

1, . . . ,M . In fact, we would like to define a more automatic technique (no
knowledge about the structure of the graph is required) and less expen-
sive from a computational point of view than the spectral clustering al-
gorithm. Indeed, especially for the case of networks with a huge number
of agents, the application of spectral clustering can be difficult, since this
method requires the computation of selected eigenvectors of the normal-
ized Laplacian matrix, whose number of elements grows quadratically
with the number of agents. Hence, here we propose a second clustering
method, which we call nearest supernode approach, able to overcome this
issue, and to produce results comparable with the ones achieved by spec-
tral clustering (a numerical comparison of the two methods, confirming
this expectation, is reported later in Section 4.5).

The following rules are used by the proposed nearest supernode ap-
proach to determine suitable subgraphs Gm of the original connected
graph G.

• Starting from a connected graph G, the number M of subgraphs
considered to partition G is fixed;

• M nodes, called supernodes, are generated; they are used to create
the subgraphs. In the next sections, these supernodes are generated
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following 4 different types of procedure: either they can be ran-
domly sampled from the set V (without repetition) or they can be
selected depending on different measures. More precisely, we can
choose to consider the first M nodes with the highest degree, with
the highest betweenness centrality, or with the highest clustering
coefficient (see e.g., Section 2.2.1 for a description of these graph
features);

• the set of nodes V is partitioned into two disjoint subsets SN and
ON , where SN is the set of supernodes determined above, while
ON = V \ SN is the set containing the other nodes of the graph G;

• the nodes in ON are assigned to the supernodes in the following
way:

– a node vi from ON is randomly picked up;

– the shortest path (SP) (based on the unweighted adjacency
matrix of the graph) between vi and all the supernodes is com-
puted;

– three possible situations can arise: vi has length(SP ) = 1 to
only one supernode, thus, it is assigned to this supernode; dif-
ferent supernodes with length(SP ) = 1 to vi exist, vi is then
randomly associated to one of the nearest supernodes. Finally,
no supernodes with length(SP ) = 1 to vi exist. Thus, vi is ei-
ther assigned to the nearest supernode with length(SP ) > 1

or randomly assigned to one of the nearest supernodes with
length(SP ) > 1, if more than one nearest supernodes exist.
In this situation, all the nodes in the path are associated to
the nearest supernode; this prevents subgraphs to be discon-
nected and it can allow some nodes to be shared by differ-
ent subgraphs (details are provided below). Note that, each
node belonging to subset ON is associated to a node in SN

depending on the shortest path without imposing constraints
on the number of nodes associated to the supernodes. Thus,
subgraphs with different dimensions are generated; in gen-
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eral, supernodes with high degree are expected to generate sub-
graphs with larger dimension than supernodes with low de-
gree.

In order to allow each subgraph to converge to its own consensus state,
subgraphs Gm have to be connected; thus, the procedure just described
allows the presence of overlaps, i.e., nodes shared by different subgraphs.
As just described, the subgraphs are determined by randomly choosing a
node vi ∈ ON and then assigning it to the nearest supernode. If the length
of the shortest path SP between vi and every single supernode is greater
then 1, then vi is assigned to the nearest supernodes with length(SP ) > 1.
To avoid the presence of isolated nodes, all the nodes in the shortest path
are associated to the same supernode. Thus, let us consider the situation
depicted in Figure 9. The nodes with indexes 2 and 7 have been chosen
as supernodes. Thus, SN = {2, 7}, while ON = {1, 3, 4, 5, 6, 8}. Nodes
with indexes 1 and 3 are associated to 2 since they have length(SP ) = 1

to the supernode 2, while nodes 6 and 8 are associated to 7. Node indexed
4 is then picked up and randomly assigned to one of the two supern-
odes since it has length(SP ) = 1 to both of them. Let us suppose that it
has been assigned to node 7; up to now subgraph G1 = {1, 2, 3}, while
G2 = {4, 6, 7, 8}. Finally, node with index 5 is picked up and again it is
randomly assigned to one of the two supernodes (length(SP ) = 2 to both
of them). If supernode 2 is chosen between the two, then node with index
4 is associated to subgraph G1 too. Thus, node with index 4 is shared
between subgraph G1 made of the nodes in yellow and node with index
2 and subgraph G2 with the blue nodes and node indexed 7; with this
procedure no isolated nodes are allowed. The presence of nodes in com-
mon between different subgraphs does not represent a problem since the
shared nodes can be seen as multiple independent copies of the same
node in different subgraphs.
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Figure 9: Examples of subgraphs generation where one node is shared be-
tween two subgraphs.

4.4 Consensus on the subgraphs and on the aux-
iliary graph

For each type of graph G studied (they will be better described later)
both the methods described above are used to extract the M subgraphs
Gm with m = 1, . . . ,M . Once the subgraphs have been generated, each
subgraph evolves independently according to Formula (3.1) (with obvi-
ous changes in notation, to adapt it to that subgraph). This phase re-
quires a number of iterations of Formula (3.1) sufficiently large to allow
all the subgraphs to approximate the local consensus state within a de-
sired accuracy. This number of steps is approximately equal to the one
required by the subgraph Gm̂ with the largest µ(Pm̂) among the second–
largest eigenvalue moduli µ(Pm) of all the subgraphs, because such sub-
graph is the one with the smallest rate of convergence to the local consen-
sus state (see Formula (3.3)). After the subgraph Gm̂ has reached the de-
sired approximation of its local consensus state, the second phase of the
hierarchical consensus method starts, by determining an auxiliary graph
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Gaux with a number of nodes equal to the number of subgraphs previ-
ously determined. The nodes in this graph are connected depending on
the connections in the original graph. More precisely, two nodes vi and vj
of Gaux are connected by an edge in Gaux if and only if at least two nodes
of G belonging to the subgraphs associated, respectively, with vi and vj ,
are connected by an edge of G. Once the auxiliary graph is built, it also
evolves according to Formula (3.1) (with obvious changes in notation, to
adapt it to the auxiliary graph), and an approximation of its consensus
state is determined, after some number of iterations. With a proper ini-
tialization of the states of the nodes belonging to the auxiliary graph (see
Section 4.4.3), this is also an approximation, up to a desired tolerance, of
the global consensus state of the original graph G. It is worth remarking
that, when the nearest supernode approach is used in the first phase of the
hierarchical consensus method, all the subgraphs Gm and the auxiliary
graph Gaux are guaranteed to be connected. Spectral clustering, instead,
does not provide such guarantee. Nevertheless, when spectral clustering
is used, the subgraphs Gm and the auxiliary graph Gaux are usually con-
nected, at least for small choices of M . In the following, we assume that
all the graphs/subgraphs are connected.

In the next subsection, we provide a detailed analysis of conditions
under which, the desired approximation of the global consensus state
of G being the same, the proposed hierarchical method requires a total
number of iterations smaller than the one required by the direct evalua-
tion of Formula (3.1) on the original graph G.

4.4.1 Approximation of the global consensus state through
the hierarchical method

We recall that we associate with the graphG, with each subgraphGm,
and with the auxiliary graph Gaux, respectively, the transition probabil-
ity matrices P , Pm, and Paux, which are all generated according to the
procedure described in Section 4.2.1. Such a procedure, indeed, is guar-
anteed to generate a doubly stochastic and symmetric matrix for which
formula (3.2) holds. By the short-hand notations µ, µm, and µaux, we in-
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dicate, respectively, the second–largest eigenvalue modulus of the tran-
sition probability matrices P , Pm, and Paux.

Since the graphs and subgraphs involved in the hierarchical consen-
sus method have in general different numbers of nodes, it is useful to
consider in the analysis the l∞–norms rather than the l2–norms of the
vectors of initial opinions. In this way, the elements of such vectors are
more easily comparable. Moreover, as it is shown later in Section 4.4.3,
using the l∞–norm also allows one to translate some upper bounds valid
for the graph G to upper bounds valid for Gm and Gaux. In order to per-
form the approximation error analysis using the l∞–norm, we recall that,
given a generic vector z ∈ RN , its l2–norm and l∞–norm are related by
the following inequalities:

‖z‖∞ ≤ ‖z‖2 ≤
√
N‖z‖∞ . (4.2)

This, combined with the bound (4.1), provides∥∥∥∥x(t)− 1

N
1 1Tx(0)

∥∥∥∥2

∞
≤ µt(P )|V | ‖x(0)‖2∞ , (4.3)

which is the main tool used for the next approximation error analysis
(with obvious changes in notations, similar bounds hold for each Gm,
and for Gaux).

The time needed to reach a desired accuracy in the approximation
of the consensus state of the graph G through both the non–hierarchical
consensus method and the proposed hierarchical consensus method is
estimated in the following way:

• a tolerance ε > 0 is fixed; this tolerance represents, for both meth-
ods, the desired accuracy in the approximation, in the l∞–norm, of
the consensus state of the original graph G;

• the number of iterations needed by formula (3.1) applied to the
original graph G to reach the consensus state up to the tolerance ε
is bounded from above by choosing the smallest value T of t for
which

µt(P )|V |‖x(0)‖2∞ ≤ ε2. (4.4)

76



(see Formula (4.3)). Note that, to compute T , here we are assuming
that ‖x(0)‖∞ is known, but we are not assuming the values of every
single element of the vector x(0) to be also known. This assumption
could be relaxed replacing ‖x(0)‖∞ in formula (4.4) with an upper
bound. However, as shown later in Section 4.4.3, this relaxation is
not essential for the analysis;

• a similar kind of performance analysis is applied to every single
subgraph, evaluating an upper bound t1◦phase on the number of it-
erations needed to reach the local consensus state, in this case up to
the tolerance ε

2 , still with respect to the l∞–norm. In fact, since the
hierarchical method is made of two consecutive phases (the first
one with each subgraph evolving independently according to for-
mula (3.1), and the second one involving the auxiliary graph), and
since the l∞–norm is used in the analysis, one can fix a tolerance
equal to ε

2 for each of the two phases of the hierarchical consensus
method, in order to achieve the desired accuracy ε in the approxi-
mation of the global consensus state of the original graph G. With-
out a significant loss of generality, as it is detailed later in Section
4.4.3, the upper bound t1◦phase can be computed considering only
the behavior of the graph with the largest µm;

• at time t1◦phase, the auxiliary graph is considered;

• the matrix Paux and the corresponding second-largest eigenvalue
modulus µaux are computed, and an upper bound t2◦phase on the
number of iterations needed to reach the required accuracy ε

2 in
the approximation of its consensus state is determined, still with
respect to the l∞–norm. The vector of initial opinions of the agents
associated with the nodes of the auxiliary graph is constructed in
such a way that the consensus state of the auxiliary graph approxi-
mates the global consensus state of the graphGwithin the accuracy
ε
2 (see Section 4.4.2 for the definition of such a vector of initial opin-
ions).

Summarizing, the time needed by the first phase of the hierarchical con-
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sensus method to terminate is equal to t1◦phase, and depends mainly on
the expression µmax := maxm=1,...,M{µm}, whereas the time needed by
the second phase to terminate is equal to t2◦phase, and depends mainly on
µaux. It follows that the proposed hierarchical consensus method has bet-
ter performance guarantees than the non-hierarchical consensus method
if the following condition is met:

t1◦phase + t2◦phase < T . (4.5)

More details about this comparison are provided in Section 4.4.3.

4.4.2 Definitions of the vectors of initial opinions, and
asymptotic analysis

In this subsection, we aim at studying the solution computed by the
hierarchical consensus method when the numbers of iterations of both its
phases are sufficiently large (ideally, when both t1◦phase and t2◦phase tend
to infinity, or equivalently, when the tolerance ε tends to 0), to verify
that it can really provide a good approximation of the global consensus
state of the graph G, if the initial opinions of the nodes belonging to the
subgraphs and to the auxiliary graph are chosen properly.

We recall that, in the first phase of the proposed hierarchical consen-
sus method, one determines M connected subgraphs Gm = (Vm, Em),
with m = 1, . . . ,M . Here, we denote the number of nodes of each sub-
graph by Nm = |Vm|. Since the proposed procedure allows the presence
of overlaps of nodes, i.e., it may happen that the same node is shared by
different subgraphs, it is important to deal with such shared nodes prop-
erly (this issue is present only if the nearest supernode approach is applied
in the first phase, since there are no shared nodes when the spectral clus-
tering is applied). In the following, we suppose that, when evolving each
subgraph, one knows which nodes are shared with other subgraphs, and
the number of such node–sharing subgraphs (this is a mild assumption,
since this information could be provided by the agent associated with the
node itself). We define the vectors xm(0) ∈ RNm (m = 1, . . . ,M ) of initial
opinions of the agents belonging to the subgraphs in the following way.
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If a component of xm(0) (say the p–th component, denoted by x
(p)
m (0))

refers to a node of G which is not shared with other subgraphs (say the
node q), then we set

x(p)
m (0) = x(q)(0) , (4.6)

where the right–hand side refers to the q–th component of x(0). It the
node p is shared, say, by Mp subgraphs, then we set

x(p)
m (0) =

x(q)(0)

Mp
. (4.7)

In this way, the opinions of the agents associated with nodes shared by
various subgraphs are rescaled. Now, at the end of the first phase, when
t1◦phase is sufficiently large, one has, for all m = 1, . . . ,M , and for each
i–th component of xm(t1◦phase),

x(i)
m (t1◦phase) ' 1

|Vm|
1Tmxm(0) , (4.8)

where 1m denotes a vector of all 1s, of the same dimension |Vm| as xm(0),
and formula (4.8) holds since (3.2) can be applied in the analysis. Hence,
the local consensus state of each subgraph is equal to the average of the
initial opinions of the agents associated to that subgraph, possibly rescal-
ing the values of the opinions of the agents associated with nodes shared
by different subgraphs (thus, the local consensus state of a subgraph that
shares some nodes with other subgraphs may be different from its local
consensus state in case of no shared nodes). Without loss of generality, in
the following we assume that the supernodes are associated with i = 1

in formula (4.8).
At this point, at the beginning of the second phase of the hierarchi-

cal consensus method (i.e., at time t = t1◦phase), we define the vector
xaux(t1◦phase) ∈ RM of initial opinions of the agents associated with the
nodes of the auxiliary graph as follows:

xaux(t1◦phase) =

[
|V1|

M

N
x

(1)
1 (t1◦phase), . . . , |VM |

M

N
x

(1)
M (t1◦phase)

]T
,

(4.9)
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i.e., the opinion of the agent associated with them–th supernode is rescaled
by the factor |Vm|MN . Finally, by a similar analysis, the consensus state of
the auxiliary graph (which is achieved within an arbitrary accuracy if
t2◦phase is sufficiently large) is the average of such opinions, and is equal
to∑M

m=1 |Vm|
M
N x

(1)
m (t1◦phase)

M
'
∑M
m=1 |Vm|

M
N

1
|Vm|1

T
mxm(0)

M
=

1

N
1Tx(0) ,

(4.10)
where the last expression is just the desired global consensus state of the
original graph G.

4.4.3 Performance analysis

In this subsection, we provide a performance analysis of the proposed
hierarchical consensus method, comparing it with the non–hierarchical
consensus method, and expressing condition (4.5) in terms of spectral
properties of the graphs/subgraphs involved in the method. A similar
analysis was made in (97) for a similar hierarchical consensus method
developed therein, but in that case, no spectral graph arguments were
presented to motivate that method.

In the following, we investigate the number of iterations needed by
the hierarchical consensus method to reach an approximation of the global
consensus state up to the tolerance ε > 0. The following discussion refers
to any among the graphs G, Gm, and Gaux, although we exemplify it
at first by considering the graph G. Using formula (4.3), the minimum
number of iterations of formula (3.1) that guarantees an approximation
of the consensus state up to the desired tolerance ε > 0 is equal to

T = max

0,
log
(

ε2

|V |‖x(0)‖2∞

)
log (µ)

 . (4.11)

Since µ < 1, one gets log (µ) < 0, while log
(

ε2

|V |‖x(0)‖2∞

)
could either

be positive or negative. In particular, its numerator is positive when

ε >
√
|V |‖x(0)‖∞, from which it follows

log
(

ε2

|V |‖x(0)‖∞

)
log(µ) < 0 and T = 0.
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Moreover, for the case of a sufficiently small value of ε, one has ε <√
|V |‖x(0)‖∞ (hence, a positive value for T ), and formula (4.11) becomes

T =
log
(

ε2

|V |‖x(0)‖2∞

)
log (µ)

. (4.12)

A similar kind of bound holds, with obvious changes in notations, for
the subgraphs Gm and for the auxiliary graph Gaux. In the following, we
always assume that the associated ε is sufficiently small, in such a way
that simplifications like (4.12) can be made. In particular, for the first
phase of the hierarchical consensus method, one gets

t1◦phase ≤ max
m=1,...,M

 log
(

ε2

4|Vm|‖xm(0)‖2∞

)
log (µm)

 , (4.13)

and, for its second phase,

t2◦phase ≤

 log
(

ε2

4|Vaux|‖xaux(t1◦phase)‖2∞

)
log (µaux)

 . (4.14)

At this point, we observe that an advantage of using the l∞–norm in the
analysis (with respect, e.g., to the l2–norm) is that, since the state vector
in (3.1) is a convex combination of the opinions of the agents associated
with the nodes of the graph, one gets

‖x(t)‖∞ ≤ ‖x(0)‖∞ ,∀t = 1, 2, . . . . (4.15)

This, combined with the definitions (4.6), (4.7), and (4.9), provides also
the following upper bounds:

‖xm(0)‖∞ ≤ ‖x(0)‖∞ ,∀m = 1, . . . , N , (4.16)

‖xaux(t1◦phase)‖∞ ≤ max
m=1,...,M

{|Vm|}
M

N
‖x(0)‖∞ , (4.17)

which allow one to bound from above t1◦phase and t2◦phase in terms of
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‖x(0)‖∞ as follows:

t1◦phase ≤ max
m=1,...,M


log

(
ε2

4|Vm|(maxm=1,...,M{|Vm|}MN )
2‖x(0)‖2∞

)
log (µm)

 ,

(4.18)

t2◦phase ≤

 log
(

ε2

4|Vaux|‖x(0)‖2∞

)
log (µaux)

 . (4.19)

For ε sufficiently small (in particular, smaller than 1, in such a way that
log (ε) is negative), the right–hand sides of formulas (4.12), (4.18), and
(4.19) are dominated, respectively, by the terms 2 log(ε)

log(µ) , 2 log(ε)
log(µmax) , and

2 log(ε)
log(µaux) . Then, the hierarchical consensus method has better perfor-

mance guarantees than the non-hierarchical consensus method when the
following condition holds:

1

log (µmax)
+

1

log (µaux)
>

1

log (µ)
, (4.20)

(here, one can notice that all the ratios involved are negative).
Concluding, formula (4.20) shows that the hierarchical consensus method

is associated with better performance guarantees than the non–hierarchical
one when all the subgraphs Gm (m = 1, . . . ,M ) and the graph Gaux have
better spectral properties than G.

4.5 Numerical examples and results

In the following, we present some numerical examples of the sug-
gested procedure. In particular we perform the 1st step of the hierar-
chical procedure by applying both the spectral clustering algorithm and
the nearest supernode approach with the aim of comparing the two meth-
ods. In both the situations we evaluate the results changing the number
M of subgraphs extracted from the original graph G. We test the pro-
cedure with random graphs; first we apply the method to a random ge-
ometric graph whose construction is explained later, then we apply the
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method to a planted partition model (101; 102) and finally to a prefer-
ential attachment model (103). This model generates random scale–free
networks (104; 105; 106) such the Internet network, the World Wide Web,
citation networks, and some social networks. In particular, for all the
types of graphs considered, we test both spectral clustering and the near-
est supernode approach on graphs with a relative small number of nodes,
such as 100 and 300, in order to reduce the computational effort espe-
cially when spectral clustering algorithm is applied. In addition, when a
planted partition graph is considered, two examples are considered, for
different choices of the intra– and inter–clusters probability values (pa-
rameters that will be better explained in this chapter). The idea is to test
the performances of both the methods with examples where clusters are
more visible and easier to detect and with examples where the cluster–
exhibiting structure is less defined and clear. When applying the nearest
supernode approach, we first fix the number M of subgraphs, then we run
10 tests for each situation studied. In fact, in the process of computing
the subgraphs, the nodes in ON are randomly picked up and then as-
signed to the supernodes. Thus, we run different tests in order to obtain
statistically significant results and better comparisons. The final result
reported is then the mean and the standard deviation over the 10 tests.
For every kind of graph considered in the numerical comparison, the
vector x(0) of the initial opinions of the N agents is generated as the re-
alization of a random vector, where each component is drawn i.i.d. from
the standard uniform distribution on the interval (0, 1). The l∞–norm of
this vector is then used to determine the minimal number of steps of the
non–hierarchical consensus method that guarantees to reach the global
consensus state up to the fixed tolerance ε > 0 (see Formula (4.11)). It
is worth noting that, with this choice of the vector x(0), one can bound
from above its l∞–norm by the value 1, without knowing the specific re-
alizations of its components. Formulas (4.18) and (4.19) are then used for
the two phases of the hierarchical consensus method. Finally, we con-
sider values of ε sufficiently small in order to neglect the dependence
of formulas (4.12), (4.18), and (4.19) on the number of nodes of the sub-
graphs/graphs considered, and to assume that the slowest subgraph in
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Figure 10: Adjacency matrices of a random geometric graph. On the left an
example with 100 nodes, on the right an example of graph with 300 nodes.

the first phase of the consensus method is the one associated with µmax.

4.5.1 Random geometric graph

To generate this kind of graph, we sample N points from a 3 dimen-
sional Gaussian distribution with mean (0, 0, 0) and covariance matrix =
3I3. A threshold is then applied on the distances between every pair of
points connecting with an edge the points with a distance smaller than
the threshold. Two random geometric graphs with different dimension
are considered. The first one with N = 100 nodes and the second one
with N = 300 nodes. The two adjacency matrices are shown in Figure
10. In particular, in both the examples, we fix a tolerance ε equal to 10−6.
We estimate the number of steps required by the algorithm by consider-
ing Formula (4.11) with the infinity norm.

Random geometric graph with N = 100 nodes

In this case study, the second–largest eigenvalue modulus of the transi-
tion probability matrix P associated to this graph is equal to µ = 0.97,
while the number of steps required by the classical algorithm applied
directly to the original graph up to the tolerance ε are T = 458. We
compute the 1st phase of the hierarchical method by considering both
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the spectral clustering algorithm and the nearest supernode. In particular,
when the spectral clustering method is applied we require the method
to extract a number of clusters M ∈ {10, 5, 2, 1}, while with the nearest
supernode approach we compute the results when M ∈ {20, 10, 5, 2, 1}. We
do not require the spectral clustering algorithm to determine 20 clusters
because that algorithm could create disconnected subgraphs. Clearly, the
result obtained forM = 1 is the one achieved by the consensus algorithm
applied to the original graph G. In the figures we report the results asso-
ciated to M = 1 in order to have a clear comparison between the time of
convergence to the consensus state of the consensus algorithm applied
to G and the sum of the times of the 1st and 2nd steps of the hierarchical
method.

Figure 11 reports t1◦step + t2◦step, i.e., the sum of the time needed
by the slowest subgraph to reach its own consensus during the 1st phase
and the time needed by the auxiliary graph to reach the final result, vary-
ing the number M of subgraphs considered. On the left it is shown the
time needed by the method when spectral clustering is applied during
the 1st phase of the technique, while on the right the results obtained by
the nearest supernode approach. For both the figures, the one on the left
that is obtained by applying the clustering algorithm for the 1st phase
and the one on the right that shows the results when the nearest supernode
approach is applied, we report on the x–axis an indicative value of the di-
mension of the subgraphs. In fact in both the situations we do not know
the exact dimension of each subgraph. When the spectral clustering al-
gorithm is applied, the method requires in input the number of clusters
M one wants to detect and not their dimension, hence the dimensions of
the subgraphs change; while with the nearest supernode approach overlaps
of nodes are allowed among the different M subgraphs due to the proce-
dure followed for their construction, and again subgraphs with different
dimensions are created. We indicate with N

M (C)/ N
M (K) the indicative di-

mension of the subgraphs when the spectral clustering/nearest supernode
approach, respectively, is considered. Note that, when the nearest supern-
ode approach is considered, in case of no overlaps the average dimension
of the subgraphs takes a value k = N

M , while since in our situation over-
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Figure 11: Number of steps to reach the consensus state with a random
geometric graph with 100 nodes. On the left: spectral clustering is used
during the 1st phase of the algorithm; on the right: the 1st phase of the
algorithm is computed by applying the nearest supernode approach selecting
the supernodes with the 4 different types of seeds.

laps are allowed, in general the dimension of the subgraphsGm is greater
than k = N

M . However, the nearest supernode approach creates subgraphs
even with a number of nodes smaller than k. The plot shows the mean
and standard deviation of the number of steps required by the hierarchi-
cal procedure over the 10 tests when nearest supernode approach is used in
the 1st phase of the method. The four types of seeds are considered.

Random geometric graph with N = 300 nodes

Concerning the random geometric graph withN = 300 nodes, whose ad-
jacency matrix is the one on the right in Figure 10, one obtains µ = 0.995.
The number of steps required by the algorithm to reach the consensus
state up to a tolerance ε are T = 2543. On the left of Figure 12 the re-
sults obtained when spectral clustering is applied to compute the 1st

phase of the method are shown. In particular, a number of clusters
M ∈ {30, 15, 6, 3, 2, 1} are required to be detected. Again we do not con-
sider a higher number of clusters, such as 60, because the algorithm has
problem in detecting connected subgraphs. When the nearest supernode
approach is considered, the number of subgraphs used to divide the orig-
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Figure 12: Number of steps to reach the consensus state with a random
geometric graph with 300 nodes. On the left: spectral clustering is used
during the 1st phase of the algorithm; on the right: the 1st phase of the
algorithm is computed by applying the nearest supernodeapproach selecting
the supernodes with the 4 different types of seeds.

inal graph, instead, are M ∈ {60, 30, 15, 6, 3, 2, 1}. The result is the plot
on the right of Figure 12 and it is obtained by averaging over 10 tests the
result of each run. The results corresponding to M = 1 are the ones ob-
tained by the consensus algorithm directly applied to the original graph
G.

From the plot shown in Figure 12, we can infer that for each type
of seed used and for each value of k, when random geometric graphs
are considered, the hierarchical method improves the results obtained
by the classical algorithm. In addition, when a random geometric graph
with a relatively high number of nodes (300 nodes rather then 100 nodes)
is considered, the nearest supernode approach works even better than the
spectral clustering algorithm. When small subgraphs are generated, with
an approximate number of nodes equal to 5 or 10, and even when the
original graph is divided in only M = 2 subgraphs, the consensus state
is reached faster applying the nearest supernode approach for the 1st phase.

4.5.2 Planted partition graph

The same procedure is then applied to a planted partition model.
This kind of graph is a cluster–exhibiting random graph model, where
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nodes inside the same cluster are connected by an edge with probability
p, while nodes belonging to different clusters are connected with prob-
ability equal to q (107; 108). In particular, we follow the Erdos–Renyi
model that generates a random graph with N nodes, that exhibits two
clusters: the first one with dimension N1 and the second one with N2

nodes. In the following we will indicate with pin the probability of inter-
connection p inside each single cluster, while pout stands for the probabil-
ity q of interconnections among nodes belonging to different clusters. We
consider examples with two equal–sized clusters. Thus, starting from a
graph with N nodes, we require each cluster to have dimension equal to
N
2 .

Planted partition graphs with N = 100 nodes

We first consider two graphs with N = 100 nodes but different values
for the probabilities pin and pout. The first one, whose adjacency matrix
is shown on the left of Figure 13, has intra–cluster probability of con-
nection equal to pin = 0.1, while points in different clusters are con-
nected with probability pout = 0.02. On the right of Figure 13, instead,
the graph shown has probability of intra–cluster connection equal to 0.2,
while points in different clusters are connected with probability 0.01. We
refer to the last graph as the denser graph between the two, while we
indicate the first one as the sparser one. We first study the sparser case
(adjacency matrix on the left of Figure 13). The number of steps required
by the algorithm to reach the consensus state up to a tolerance ε = 10−6

are T = 239, while the second–largest eigenvalue modulus takes a value
µ = 0.94. The results obtained by the hierarchical method by considering
spectral clustering and the nearest supernode approach to complete the 1st

phase are shown in Figure 14.

Concerning the denser graph (adjacency matrix on the right of Fig-
ure 13), the results are shown in Figure 15. In particular, on the original
graph, the number of steps required to reach an approximation of the
consensus state up to a tolerance equal to ε = 10−6 are T = 326 while the
second–largest eigenvalue modulus is equal to µ = 0.96.
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Figure 13: Adjacency matrices of a planted partition graph with 100 nodes.
On the left an example with pin = 0.1 and pout = 0.02, on the right an
example with pin = 0.2 and pout = 0.01.

When dealing with planted partition graphs, the nearest supernode
approach does not work as well as in the case with random geometric
graphs. In particular, when sparser graphs are considered, this method
is not able to outperform the result achieved by the consensus algorithm
directly applied to the original graph, as Figure 14 shows. Neverthe-
less, if the 1st phase is performed by the spectral clustering algorithm,
we obtain satisfactory results (plot on the left of Figure 14). In fact, all
the choices for the number of clusters considered to partition the original
graph lead to an increase of the convergence rate to the consensus state.
As expected, when two clusters are required, the method obtains the best
result. When denser subgraphs are considered, instead, even the nearest
supernode approach is able to achieve good results, as Figure 15 shows, es-
pecially when the clustering coefficient is adopted to select the supernodes
and subgraphs with a small number of nodes (approximately equal to 5

or 10) are considered.

Planted partition graph with N = 300 nodes

Finally, we report another example that considers a planted partition
graph with N = 300, pin = 0.2 and pout = 0.01; the corresponding ad-
jacency matrix is shown in Figure 16. The number of steps required by
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Figure 14: Number of steps to reach the consensus state with a planted
partition graph with 100 nodes with pin = 0.1 and pout = 0.02. On the left:
spectral clustering for the 1st phase of the algorithm; on the right: nearest
supernode approach.

the consensus algorithm to reach the consensus state up to a tolerance
equal to 10−6 are T = 213, while the second–largest eigenvalue modu-
lus is equal to µ = 0.94. The results achieved by the spectral clustering
algorithm and by the nearest supernode approach are shown on the left of
Figure 17 and on the right of Figure 17, respectively. Note that when
spectral clustering is adopted, the original graph is divided in a num-
ber of subgraphs M ∈ {30, 15, 6, 3, 2, 1}; while, wen we compute the 1st

step of our method by means of the nearest supernode approach, we divide
the original graph in a number of subgraphs M ∈ {60, 30, 15, 6, 3, 2, 1}.
Again, we can infer that the spectral clustering method works better than
the nearest supernode approach, even if the latter is able to achieve good re-
sults when subgraphs Gm with approximately a small number of nodes,
i.e., 5 or 10, are extracted from graphG. A detailed analysis of the behav-
ior of the nearest supernode approach will be provided in Section 4.6.

4.5.3 Preferential Attachment model

We conclude the study of the hierarchical method by applying it to a
Preferential Attachment (PA) model. The graph is generated according
to the G(N,m) model (109), where the number of edges inserted when-
ever a new node is added is m = 2, while for N , we again choose to
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Figure 15: Number of steps to reach the consensus state with a planted
partition graph with 100 nodes with pin = 0.2 and pout = 0.01. On the left:
spectral clustering for the 1st phase of the algorithm; on the right: nearest
supernode approach for the 1st phase.

test the method to both a graph with N = 100 nodes (adjacency matrix
shown on the left of Figure 18) and one with 300 nodes, whose adjacency
matrix is the one on the right of Figure 18.

PA model with N = 100 nodes

The second–largest eigenvalue modulus of the transition probability ma-
trix associated to the original graph is µ = 0.99 while the number of steps
required by the algorithm to reach the consensus state up to a tolerance
equal to ε = 10−6 are T = 937. The results obtained by applying the
hierarchical method are shown in Figure 19.

PA model with N = 300 nodes

Finally, we perform the same study with a PA model with N = 300

nodes; the adjacency matrix is shown on the right of Figure 18. For this
example, the second–largest eigenvalue modulus of the transition prob-
ability matrix takes a value µ = 0.99, while the number of steps needed
by the consensus algorithm directly applied to the original graph to reach
an approximation of the consensus state equal to ε = 10−6 are T = 1005.
The results obtained by applying both the spectral clustering algorithm
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Figure 16: Adjacency matrix of a planted partition graph with 300 nodes,
pin = 0.2 and pout = 0.01.

and the nearest supernode approach are shown in Figure 20.
With a PA model the hierarchical method shows some problems with

both the methods adopted during the 1st phase, especially with quite
large graphs (worse results are achieved with the graph with 300 nodes).
Nevertheless, when smaller graphs G are considered, i.e., the case with
100 nodes, good results are obtained. In particular, the nearest supernode
approach with subgraphs Gm, m = 1, . . . ,M with a relatively small num-
ber of nodes is able to increase the convergence rate to the consensus
state. In addition, as the plot on the right in Figure 19 shows, the best
results are obtained when the clustering coefficient is used as seed for
the selection of the supernodes.

4.6 Drawbacks and refinements of the basic ver-
sion of the method

In the previous sections, we have applied the hierarchical consensus
method to different kinds of graphs, using two clustering methods for
the extraction of the subgraphs Gm. We have observed that both meth-
ods are able to achieve satisfactory results when realizations of random
geometric graphs are considered. Indeed, in this case, better results have

92



Figure 17: Number of steps to reach the consensus state with a planted
partition graph with 300 nodes with pin = 0.2 and pout = 0.01. On the left:
spectral clustering for the 1st phase of the algorithm; on the right: nearest
supernode approach for the 1st phase.

Figure 18: Adjacency matrices of a PA model. On the left an example with
100 nodes, on the right an example with 300 nodes.

been always obtained than the ones achieved by the non–hierarchical
consensus method, as Figures 11 and 12 show. When realizations of
planted partition models are considered, the results highlight the fact
that, when a cluster–exhibiting graph G is considered, the hierarchical
consensus method implemented via spectral clustering has better per-
formance than the non–hierarchical consensus method; while the nearest
supernode approach reveals some drawbacks. Finally, when considering
realizations of the preferential attachment model, both clustering meth-
ods show problems. Nevertheless, the nearest supernode approach achieves
better results than spectral clustering, and in some situations it is able to
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Figure 19: Number of steps to reach the consensus state with a PA model
with 100 nodes. On the left: spectral clustering for the 1st phase of the
algorithm; on the right: nearest supernode approach for the 1st phase of the
method.

outperform the non-hierarchical consensus method.
In this section, first, we analyze a factor, which we will call antenna

effect, that is shown to influence strongly (and negatively) the results ach-
ieved by both clustering methods adopted to perform the first phase of
the hierarchical consensus method. Subsequently, we provide a possible
way to overcome that effect. Finally, we discuss the choice of the supern-
odes in the nearest supernode approach.

4.6.1 The antenna effect

In this subsection, we analyze the performance of the hierarchical
consensus method when subgraphs Gm containing one node with de-
gree equal to 1 are generated. We refer to this kind of situation by the
term antenna effect. To simplify the theoretical analysis, we consider here
the case of a graph like the one shown in Figure 21, which is made of a
complete subgraph (in this case, made of N − 1 = 4 nodes) connected
by a single edge to another node with degree equal to 1. We call this
kind of graph basic antenna effect model with N nodes. In the next subsec-
tion, we also investigate numerically other kinds of graphs showing the
occurrence of the antenna effect.

We aim at studying this kind of situation making use of the Cheeger’s
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Figure 20: Number of steps to reach the consensus state with a PA model
with 300 nodes. On the left: spectral clustering for the 1st phase of the
algorithm; on the right: nearest supernode approach for the 1st phase of the
method.

inequality, see Section 2.3.3. We briefly recall that this inequality pro-
vides a lower and an upper bound on the second–smallest eigenvalue
of the normalized Laplacian of the graph considered (see, e.g., Formula
(2.7)) by means of the Cheeger’s constant (Formula (2.6)). Given a graph
G = (V,E), the Cheeger’s constant is computed by considering all the
subgraphs S ⊂ V that partition G in two subgraphs S and V \S. For our
investigation of the antenna effect, we do not need to compute exactly the
Cheeger’s constant appering inside the Cheeger’s inequality (which is a
combinatorial problem, see Formula (2.7)), but we limit to find an upper
bound on it.

Now, in our particular context, we can see the transition probability
matrix P as the weighted adjacency matrix A of the graph G. We recall
that P , hence A, in the average consensus problem is a doubly stochastic
matrix; thus the normalized Laplacian matrix LN = I −A = I −P , since
the degree matrix D is exactly equal to the identity matrix I . It follows
that the eigenvalues of the Laplacian matrix ξi and the eigenvalues of the
transition probability/adjacency matrix λi are related by the following
relation:

ξi = 1− λi, for i = 0, . . . , N − 1. (4.21)

We know that the convergence rate to the consensus state depends on
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Figure 21: A nearly complete graph with a node attached to only one node
of the complete part.

the value of the second–largest eigenvalue modulus of P , µ; thus, given
Formula (4.21), it follows that the larger the second–smallest eigenvalue
ξ1 of LN , the faster the convergence rate to the consensus state. Note that
these considerations hold when ξ1 < 1 (otherwise it would be necessary
to consider ξN−1); anyway, as (71) shows, it is possible to modify the
original graph by adding self–loops with a certain value to every vertex
of the graph in order to have ξ1 < 1 without changing the results and the
particular situation studied.

Now, we aim at at studying how the eigenvalue ξ1 is influenced by
the occurrence of the antenna effect. To do this, we exploit the Cheeger’s
inequality to find an upper bound on ξ1 for the basic antenna effect model
with N ≥ 2 nodes.

We recall that the matrix P , which from now on is treated as the
weighted adjacency matrixA of graphG, is computed following the pro-
cedure described in Section 4.2.1. Thus, to each edge of G one associates
in P a weight w (ε according to the notation used in Section 4.2.1), while
a self-loop with weight 1−wdi is associated in P to every vertex i, where
di is the corresponding degree. Now, for the basic antenna effect model,
the largest degree dmax(G) in the graph is achieved by the only node of
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the complete part of the graph which is connected to the node of degree
1, and is equal to N − 1. Hence, since the weight of each self-loop has to
be non-negative and smaller than or equal to 1, one obtains the bounds

0 ≤ w ≤ 1

N − 1
. (4.22)

Moreover, choosing the set S in the definition of the Cheeger’s constant
as in Figure 22 and using formula (2.6), one gets

Φ(P ) ≤ w

min {1, N − 1}
= w . (4.23)

This, combined with Formulas (2.7) and (4.22), provides the following
upper bound on ξ1 for the basic antenna effect model with N ≥ 2 nodes:

ξ1 ≤ 2w ≤ 2

N − 1
. (4.24)

Hence, we can conclude that the basic antenna effect model withN ≥
2 nodes has a very small value of ξ1 , hence, also its rate of convergence to
the (local) consensus state is small. It is also worth mentioning, instead,
that, for N ≥ 3, the complete subgraph with N −1 nodes inside the basic
antenna effect model (i.e., the subgraph obtained disconnecting the node
with degree 1, and replacing the weight 1 − (N − 1)w of the self-loop of
the attached node with 1− (N − 2)w) has1

ξ1 = (N − 2)w · N − 1

N − 2
= (N − 1)w , (4.25)

whose maximum value is
ξ1 =

N − 1

N − 2
(4.26)

when w achieves its maximum admissible value 1
N−2 . When N is large,

formula (4.26) simplifies to
ξ1 ' 1 . (4.27)

Hence, we can conclude that the presence of the additional node in the
basic antenna effect model can decrease significantly the value of the
second–smallest eigenvalue of the normalized Laplacian matrix.

1Formula (4.25) is provided, e.g., in (71, Lemma 1.7) for the case w = 1
N−2

(no self-
loops), whereas its extension to the presence of self-loops is straightforward.
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Figure 22: Choice of the subset S to determine an upper bound on the
Cheeger’s constant for the basis antenna effect model.

From the analysis presented above, we can conclude that, in situa-
tions for which the first phase of the hierarchical method can produce
subgraphs showing the antenna effect, it is better to keep the average
number of nodes of such subgraphs small. This explains why, in the nu-
merical results presented in Section 4.5, good results have been obtained
several times when, for instance, subgraphs with a small approximate
average number of nodes h = N

M (i.e., either 5 or 10), have been consid-
ered.

To support the theoretical analysis just presented, in the next subsec-
tion, we also investigate from a numerical point how the spectral proper-
ties of a graph can be influenced by the antenna effect.

4.6.2 Numerical examples related to the antenna effect

In the following, we examine two trivial examples of graphs pre-
senting the antenna effect. Their adjacency matrices are shown in Fig-
ure 23; in particular, on the left we have a graph made of a complete
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graph with 10 nodes with an additional node connected by means of
only one edge; while the plot on the right shows the adjacency matrix
of a random geometric graph (sparser than the complete one) with 50

nodes in total, where one of them has degree equal to 1. We perform the

Figure 23: A complete graph on the left and a sparser one, on the right, with
a node attached to only one node of the original graph.

following experiment. First, we consider the original graph (either the
complete one with 10 nodes, or the sparser one with 50 nodes), and we
compute the second–largest eigenvalue modulus of its associated tran-
sition probability matrix P . Then we connect the additional node to
one selected node of the original graph, and we compute the second–
largest eigenvalue modulus of the transition probability matrix P asso-
ciated with the resulting graph. We repeat this procedure selecting each
time a different node of the original graph, then we compare the result-
ing second–largest eigenvalue moduli. To do the comparison, we com-
pute the transition probability matrix P in two ways: using the method
described in Section 4.2.1, and also solving the Fastest Mixing Markov–
Chain (FMMC) problem (48), which determines the optimal (i.e., small-
est) value for the second–largest eigenvalue modulus when considering
the non–hierarchical case. In this way, we avoid the possibility that an
increase of the second–largest eigenvalue modulus obtained after the in-
sertion of additional node has to be ascribed to the particular method
adopted to determine the transition probability matrix P .
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Concerning the complete graph, the second largest eigenvalue modu-
lus obtained before the insertion of the additional node is approximately
equal to 0, for both the methods adopted to compute the matrix P . When
the additional node is inserted, connecting it every time with a different
node of the original graph, one obtains a remarkable increase of the value
of the second–largest eigenvalue modulus. Figure 24 shows the results:
on the left the second–largest eigenvalue modulus of the matrix P com-
puted with the method described in Section 4.2.1, on the right the results
obtained by applying the FMMC method. The latter produces better re-
sults in terms of the value in modulus of the second–largest eigenvalue
but the antenna effect still substantially worsen the final solution. Due to
the nature of the original graph, that is a complete one, it was expected
that the results achieved when one node with degree 1 is added do not
depend on the choice of the node linked to the node added, as Figure 24
shows.

Figure 24: Second–largest eigenvalue modulus when a complete graph with
the antenna effect is considered.

Regarding the second example (the one reported on the right of Fig-
ure 23), the results obtained by applying the same procedure are shown
in Figure 25. For this example, the second–largest eigenvalue modulus
of matrix P of the original graph computed with the method described
in Section 4.2.1, is equal to µ = 0.8275. The plot on the left of Figure
25 shows the increase of the second–largest eigenvalue modulus of P
associated to the original graph adding every time a node connected to
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Figure 25: Second–largest eigenvalue modulus when a sparser graph than
the complete one presents the antenna effect.

only one node of the original graph. On the other hand, if we apply the
FMMC algorithm to the original graph we obtain a value of µ equal to
0.5606, while the increase of the second–largest eigenvalue modulus is
shown in the plot on the right of Figure 25. Again, we can see that the
results are remarkably worse with both the methods.

As an additional study, we analyze, from a numerical point of view,
the effect of adding a pair of nodes with degree equal to one. In particu-
lar, we consider again the graph shown on the right of Figure 23, adding,
each time, two nodes with degree equal to one instead of only one. Sim-
ilarly to the previous experiment, we connect two nodes with degree
equal to one to a specific selected node of the original graph, and we com-
pute the second–largest eigenvalue modulus of the transition probability
matrix P associated with the resulting graph. We repeat the procedure
selecting each time a different node of the original graph. In this case, the
value of the second–largest eigenvalue modulus of the transition proba-
bility matrix slightly increases. In fact, when the matrix P is computed
by the method described in Section 4.2.1, considering 50 different com-
binations of pairs of nodes with degree equal to one, the average of the
value of the second–largest eigenvalue modulus over the 50 tests is 0.95,
wheres the standard deviation is 0.05. On the other hand, if the FMMC
algorithm is applied to compute the second–largest eigenvalue modu-
lus of the 50 different cases, one obtains 0.89 ± 0.02. It is interesting to
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notice the increase of the second–largest eigenvalue modulus especially
when the FMMC algorithm is applied. On the other hand, if two nodes
with degree equal to one are connected to two different nodes and not
only one, the average value of the second–largest eigenvalue modulus
equal to 0.94 (standard deviation 0.04) is obtained, when the matrix P is
computed by the method described in Section 4.2.1. When the FMMC
algorithm is applied, instead, one obtains 0.81± 0.01.

Finally, we report the result obtained considering a planted partition
graph withN = 100 nodes, pin = 0.2 and pout = 0.01. When dealing with
this type of model, we use the term cluster to refer to the clusters gen-
erated by the model, while with subgraph we indicate the one extracted
by the nearest supernode approach. In particular, for the following study,
we apply the nearest supernode approach by selecting M = 2 subgraphs
and the clustering coefficient as the seed to generate the supernodes. The
adjacency matrix is shown in Figure 26; the second–largest eigenvalue
modulus of the transition probability matrix associated to it and com-
puted following the procedure in Section 4.2.1 is µ = 0.953.

Figure 26: Adjacency matrix of a planted partition graph with 100 nodes,
pin = 0.2 and pout = 0.01.

In Figure 27 the two subgraphs extracted from the original graph are
shown. The second–largest eigenvalue modulus of the transition proba-
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bility matrix associated to the first subgraph is equal to µ1 = 0.854, while
the one associated to the second subgraph is µ2 = 0.95. Only one node
wrongly assigned (the one in the second subgraph that originally be-
longs to the first cluster of the planted partition graph but it is wrongly
assigned to the second cluster of the model) with degree 1 in the sub-
graph it is assigned to, considerably worsen the result.

Figure 27: Subgraphs determined by the hierarchical method with cluster-
ing coefficient as seed. In the adjacency matrix on the right is shown the
antenna effect.

The numerical examples just introduced provide an additional demon-
stration regarding the possibly high change of the spectral properties of
a graph if one node with degree 1 is added. Thus, it is necessary to de-
termine an automatic method able to avoid this situation. A possible
solution is explained and presented later.

4.6.3 A solution to overcome the antenna effect

In this section we present a solution able to improve the results of the
hierarchical method when subgraphs presenting the antenna effect are ex-
tracted from the original graph. In particular we test the method with
the nearest supernode approach. The idea is to reassign the nodes with de-
gree equal to 1 to subgraphs where their degree should be higher. More
precisely, once the M subgraphs Gm with m = 1, . . . ,M have been de-
termined, we compute the degree of the nodes inside every single sub-
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graph; if a node has degree equal to 1 in the subgraph it is assigned to, we
compute its degree as if it would be assigned to all the other subgraphs
and we finally assign it to the subgraph where its degree is maximum. In
this way we try to avoid nodes with degree equal to 1 in the subgraphs
they are assigned during the 1st phase of the method. To investigate
numerically the effectiveness of the proposed solution to overcome the
antenna effect, we apply it to a realization of the planted partition model
with N = 100, pin = 0.1 and pout = 0.02, whose results are shown in the
plot on the right of Figure 14. The results achieved are shown in Figure
28. The method is applied to the nearest supernode approach by considering
all the four types of seeds. In blue the original results, and in red the ones
obtained reassigning to other subgraphs the nodes with degree equal to
1 in the subgraph they are assigned at the beginning. The method is then
applied to the realization of the planted partition graph with 300 nodes,
pin = 0.2 and pout = 0.01 whose results are shown in Figure 17. The
new results are reported in Figure 29. The results shown in the figures
highlight that the procedure of reassigning the nodes with degree 1 in
the subgraph they are assigned at the beginning remarkably improves
the results. In the examples reported, the number of steps considerably
decreases when all the types of seeds are considered. In particular, the
best results are obtained when the clustering coefficient is chosen as seed
to determine the supernodes. When a planted partition graph with a rel-
atively high value for pin is considered, like the one shown in Figure 16
satisfactory results are achieved, especially for subgraphs Gm with a rel-
atively small approximate number of nodes, i.e. 5 or 10. When a graph
with less intra–cluster connections is considered (the one reported on
the left of Figure 13) it is more difficult to obtain better results than the
one achieved by the consensus algorithm directly applied to the original
graph but, remarkably improvements are still obtained and, with addi-
tional studies, even better results are expected.
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Figure 28: Planted partition graph with 100 nodes, pin = 0.1 and pout =
0.02. In blue: number of steps required by the original hierarchical method;
in red: number of steps reassigning the nodes with degree 1 to other sub-
graphs.

4.6.4 Choice of the supernodes in the planted partition mo-
del

We conclude by mentioning another possible issue that can decrease
the performance of the hierarchical consensus method, when the near-
est supernode approach is applied during its first phase. This issue is im-
portant especially for planted partition models. The problem regards
the choice of the supernodes: as it is shown in the following, bad perfor-
mances are expected if the supernodes belong to the same “apparent clus-
ter”. Let us consider again the planted partition model with N = 100

nodes, pin = 0.2, and pout = 0.01, which has been shown in Figure 26.
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Figure 29: Planted partition graph with 300 nodes, pin = 0.2 and pout =
0.01. In blue: number of steps required by the original hierarchical method;
in red: number of steps reassigning the nodes with degree 1 to other sub-
graphs.

We randomly select 2 supernodes (we require the nearest supernode ap-
proach to detect two subgraphs), which are the nodes numbered 20 and
49. They both belong to the first apparent cluster of the model, since
nodes with index between 1 and 50 belong to the first apparent cluster,
while nodes with index between 51 and 100 belong to the second appar-
ent cluster. The subgraphs produced in the first phase of the hierarchical
consensus method are reported in Figure 30. In this case, both subgraphs
have a second–largest eigenvalue modulus of P equal to 0.97, while the
second–largest eigenvalue modulus of the original graph is µ = 0.96.
Thus, in this pathological case, the first phase of the hierarchical consen-
sus method is even slower than the non–hierarhical consensus method.
This numerical example shows that the choice of the supernodes when a
model with a cluster–exhibiting structure is considered, is extremely im-
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Figure 30: Subgraphs determined by the hierarchical method when the two
supernodes belong to the same cluster.

portant. A possible way to overcome this problem could consist in mak-
ing the supernodes change during the clustering process. If more clusters
are present a more general technique that evaluates the dimension of the
different clusters in order to correctly choose the supernodes is necessary.
In addition, when more than 2 subgraphs are required to be detected,
it is important to “balance” the supernodes in the different clusters. For
instance, if we require the nearest supernode approach to determine 5 sub-
graphs, it is better to choose the supernodes such as 2 belong to a cluster
and the other 3 to the other cluster. Again, a constraint on the choice of
the supernodes evaluating their mutual distances is necessary.

4.7 Discussion and Conclusions

We studied the approximation of the global consensus state through
a hierarchical consensus method, divided in two phases. The goal of
the first phase is to extract, from the original agents’ network, subgraphs
with “good” spectral properties, which guarantee a fast convergence rate
to the local consensus states of the subgraphs. In the second phase,
an auxiliary graph, derived from such subgraphs, is considered, to find
an approximation of the global consensus state. The proposed method
has been motivated theoretically using spectral graph theory arguments
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and also investigated numerically, comparing it with a non–hierarchical
method on different kinds of graphs modeling real–world complex net-
works. The results of the proposed hierarchical consensus method are
satisfactory in almost all the situations studied, showing usually a better
performance with respect to the non–hierarchical method (i.e., a smaller
number of iterations needed to guarantee the same accuracy in the ap-
proximation of the consensus state of the original network). We also in-
vestigated, both theoretically and numerically, a phenomen, called an-
tenna effect, which could worsen, in some situations, the performance of
the hierarchical consensus method itself. Then we suggested a solution
to overcome the antenna effect, and demonstrated numerically its effec-
tiveness. In fact, from both Figures 28 and 29, we can argue that the
procedure suggested improves the results obtained by the original near-
est supernode approach. Thus, the idea of reassigning the nodes with de-
gree 1 to another subgraph where its degree is higher is promising and
it can be applied to every type of graph. We also intend to better ana-
lyze, not only from a numerical point of view, the effect of connecting
two different nodes with degree equal to one to a given graph. It would
be interesting to study from a theoretical point of view, how the second–
largest eigenvalue modulus changes when two nodes with degree equal
to one are added to the same node and when they are connected to two
different nodes.

In addition, we saw that when the nearest supernode approach is ap-
plied to compute the 1st phase of the hierarchical method, the best re-
sults are in general obtained when the clustering coefficient is chosen to
select the supernodes. In fact, the nodes with highest clustering coefficient
are expected to be a sort of “center” of a cluster, and the denser the sub-
graph the faster the convergence rate to the consensus state inside that
subgrah.

As future studies we first intend to test the method with other types
of graphs modeling real–world complex networks. At the same time
we realized that depending on the structure of the graph, we have to
decide which algorithm is better to apply during the 1st phase. Maybe
it would be interesting to automatically determine the method to apply
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during the 1st step. Additional studies and improvements are necessary
for a better detection of the subgraphs, such as a completely automatic
method able to choose the supernodes in the right clusters. Finally some
improvements concerning the assignation of nodes in ON to nodes in
SN can be evaluated.

4.8 Summary

In this chapter we concluded our study on the consensus problem.
The common denominator between the previous chapter and this one is
related to the study of the rate of convergence to the consensus state.
In fact, in both the works we focused on the study of a method able
to increase the convergence rate to the common opinion of a network
of agents. In Chapter 3 we started from the algorithm developed in
(48) adding to it different sparse variations with the aim of determin-
ing sparse solutions keeping as fast as possible the rate of convergence
to the consensus state. In this chapter, instead, we directly focused on
a method able to increase the convergence rate to the consensus state
by decomposing the agents network in subgraphs with “good” spectral
properties.

In the following chapters we continue our study on graphs–related
techniques in a different context. Up to now we have studied graphs in
the control field, now we focus on the machine learning field by evaluat-
ing and applying graph–based techniques in two different classification
problems.
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Part III

Graphs in semi–supervised
learning and in modeling

data for features extraction
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5
Graphs in semi-supervised learning

5.1 Introduction

The properties and peculiarities of graphs are now exploited in a
semi–supervised learning context. We apply a semi–supervised learning
technique, called Laplacian Support Vector Machine (Laplacian SVM)
(110), in the detection of flood–prone areas. Semi–supervised learning
techniques are suitable in many situations and for different purposes.
In fact, they are able to exploit the information coming from both the
labeled and unlabeled data with the aim of obtaining a classifier that is
better (in terms of performances) than a supervised classifier trained only
on the labeled data. In many tasks, such as speech recognition, spam fil-
tering, video surveillance and so on, there is a paucity of labeled data, be-
cause they require human annotators, special devices, or expensive and
slow experiments; thus, techniques able to exploit the information com-
ing from the unlabeled data are extremely useful (111). The detection of
flood–prone areas is one of these examples, since the process of labeling

This chapter is partly based on:
• G. Gnecco, R. Morisi, G. Roth, M. Sanguineti, A. C. Taramasso, “Supervised and

semi–supervised classifiers for the detection of flood–prone areas”, Soft Computing,
doi: 10.1007/s00500-015-1983-z
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the data requires special devices, expensive and time–consuming experi-
ments, or human annotators. The labeling process of the hazard level of a
hydrological area, could be done, e.g., by a risk-analysis study performed
by an expert, or by an analysis of historical series, which are both costly
and time consuming processes. Thus, since in this context only a few
labeled data are in general available, while a huge amount of unlabeled
data is much more easier to be obtained, semi–supervised learning meth-
ods are suitable in this particular classification problem. For the reasons
stated above we test the Laplacian SVM in the detection of flood–prone
areas comparing its performances to the results obtained with a classical
supervised learning algorithm such as Support Vector Machines (SVMs).

The chapter is organized as follows: Section 5.2 provides a brief intro-
duction on semi–supervised learning focusing on the particular method
adopted for our study, Section 5.3 presents the specific problem stud-
ied, while Section 5.4 presents the different experiments carried out dis-
tringuishing between the results achieved by an SVMs and by the semi–
supervised technique Laplacian SVM; finally, Section 5.5, shows the re-
sults achieved and the relative discussion.

Note that, for the reader’s convenient, we report the basic notations
and definitions about SVMs in Appendix A, while the description of the
Laplacian SVM is reported in Appendix B.

5.2 Semi–supervised learning: a brief overview

Let us consider a set of data xi with i = 1, . . . , n, belonging to a set
X ⊆ RD. Each sample xi is represented by a D–dimensional feature vec-
tor, where each dimension is a feature of that particular sample. Without
going into details, we recall that a generic learning task consists in pre-
dicting a value yi, for i = 1, . . . , n, called label for the specific input sample
xi. Thus, a generic learning algorithm aims at determining a function g

g : X→ Y,

where the output domain Y is the label set, able to associate a label/output
to every sample. In particular, Y can be either a discrete set (in the classi-
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fication context) or a continuous one (in general, in a regression context).
We refer, for instance, to (14; 112; 113) fur further details about the pro-
cess usually followed in a machine learning context.

Our particular study is concerned with the classification of both la-
beled and unlabeled samples; we aim to determine a classification func-
tion g trained on both labeled and unlabeled samples able to predict the
output of unseen test samples. Our dataset X is thus composed of l la-
beled samples {xi, yi}li=1, provided with their labels yi, and u unlabeled
samples {xj}l+uj=l+1, without the corresponding label; we fix l + u = n.

5.2.1 Manifold regularization

For the detection of flood–prone areas, we adopt a semi–supervised
learning technique called manifold regularization, a technique devel-
oped in (110). A main assumption of manifold regularization is that the
input data points are drawn from a probability distribution whose sup-
port resides on a Riemannian manifold embedded in the original feature
space. A 2–dimensional manifold can be thought as a surface embedded
in a higher dimensional Euclidean space (114). The surface of the Earth,
for instance, is approximately a 2–dimensional manifold embedded in a
3–dimensional space. Similar remarks hold for larger dimensional man-
ifolds. A Riemannian manifold is one on which one can define the “in-
trinsic distance” between any two points on the Riemannian manifold
itself as their geodesic distance on the manifold, i.e., the length of the
shortest path on the manifold between the two points.

Now, let us suppose that all the data (both the l labeled samples and
the u unlabeled samples) are sampled from a probability distribution P
onX×R. As previously mentioned, the assumptions on which the mani-
fold regularization is based are two: the first one is that the marginal dis-
tribution PX has support on a low dimensional manifold M embedded
in the feature spaceX . The second is that if two points xi and xj are close
with respect to the intrinsic distance on the Riemannian manifold they lie
on, they are likely to have similar labels, i.e., the conditional probabilities
P (y|xi) and P (y|xj) are similar. Here, with the term “intrinsic distance”
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between two points we mean the length of the geodesic curve connecting
them on the manifold. In practice, an approximation of the Riemannian
manifold can be obtained by using both the labeled and unlabeled input
data, building a weighted undirected graph G = (V,E) with weighted
adjacency matrix W (see e.g., Chapter 2) on the entire dataset consid-
ered. The graph here provides a discrete model of the manifold itself.
In this particular context, assigning a weight to an edge means defining
a measure of similarity between the associated vertices (input samples).
Once a similarity measure has been chosen, the larger the similarity be-
tween the two input data points xi and xj , the stronger their connection
in the graph. Thus, the higher the weight wij = wji between xi and xj ,
the higher the probability that they belong to the same class. Determin-
ing a suitable similarity measure between every pair of input data points
(hence, a suitable weight matrix W ) is a challenging task, and several
methods have been proposed in the literature to deal with such an issue.
In fact, this measure is fundamental to build the graph that models the
manifold where the data lie on. As described in Chapter 2 many similar-
ity measures can be taken in consideration for the graph construction. In
this particular context, we first consider a Gaussian similarity function

wij := e
−||xi−xj ||

2

4t2 to define the weights of the edges. Then we define a
mutual k–nearest neighbor graph (see, i.e., Section 2.2.2). As an example,
Figure 31 shows the graph built on the specific data of the problem stud-
ied. In the figure, we consider only two features for each point in order to
easily visualize the graph. In particular the graph represents an approxi-
mation of the Riemannian manifold where the data lie on. The graph has
been built by using all the samples shown in the figure and by setting
k = 5 in the definition of the mutual k–nearest neighbor graph.

5.3 Supervised and Semi-Supervised Classifiers
for the Detection of Flood-Prone Areas

As mentioned in the introduction, we now aim at distinguish be-
tween flood–exposed and marginal–risk areas. In particular, we consider
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Figure 31: Example of a discrete approximation of the manifold the data lie
one. The red points denote negative samples, the blue ones belong to the
positive class, while the black points represent unlabeled samples.

Kernel–based binary classifiers (14) using six quantitative morphological
features, derived from data stored in Digital Elevation Models (DEMs),
comparing the recognition of the flood hazard obtained by both a su-
pervised and a semi–supervised learning method. The use of such auto-
matic classification techniques is valuable, e.g., in insurance applications,
where one is interested in estimating the flood hazard of areas for which
limited labeled information is available. In our particular situation, we
intend to apply the machine-learning techniques to the basin of the Ital-
ian Tanaro River.

Among natural risks, floods are particularly relevant, as it is wit-
nessed by the frequency of inundation events, together with all the as-
sociated negative consequences on society and local economies. The still
limited availability of flood hazard information makes it very impor-
tant to construct maps of flood-exposed areas, which should be one of
the first steps in any analysis of the flood risk. In general, this kind of
analysis begins with an investigation of hydrological data, and contin-
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ues by modeling the evolution, in both space and time, of the flooding
process itself (115; 116; 117). Unfortunately, techniques for the recogni-
tion of flood–exposed areas by experts down to very small scales (e.g.,
the scale of a single building) are very time–consuming and costly, as
they require the acquisition of information which is not easily available
for all the areas of interest, together with the intervention of the experts
themselves. Hence, even nowadays, the mapping of flood–exposed ar-
eas is far from being complete. At the same time, in recent years, the
availability of new technologies, such as radar and laser altimetry and
GPS, has led to the development of Digital Elevation Models (DEMs),
which have become standard tools of analysis for geomorphologists and
hydrologists (118; 119; 120; 121; 122; 123). Since DEMs make automati-
cally available several morphological and hydrological features (such as
drainage areas, stream channels, and valley bottoms), they have replaced
more time–consuming manual techniques. So, among other applications,
nowadays DEMs are used for the identification of flood–exposed areas
(see, e.g., (124; 125; 126)). The larger availability of measured data, com-
pared to past acquisition techniques, has encouraged the application to
flood risk analysis of machine learning techniques, too. This is done with
the aim of using at the best the available information to construct flood
hazard maps, or simply to suggest which areas should be subject to a
more detailed investigation by experts (see, e.g., (127; 128)). The ap-
plication of machine-learning techniques to the flood risk identification
is particularly needed when a large portion of the data made available
by DEMs is unlabeled. This is the case, e.g., of a high cost of labeling,
as a detailed flood risk analysis by experts usually requires a specific
study for each area of interest. Hence, we propose the application of the
semi-supervised machine learning techniques Laplacian SVM to flood
risk analysis, with the goal of making a better use of the large portion
of unlabeled data which is often made available by DEMs. Likewise in
(127; 128), we make use of a variety of morphological features for the
detection of the local flood hazard, described later. The main difference
with respect to the two above–mentioned papers consists in the addi-
tional exploitation of unsupervised information in the training of the
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learning machine. At the same time, we compare the cases of super-
vised and semi–supervised training information. Likewise in (127; 128),
the machine learning techniques are applied to the basin of the Italian
Tanaro River. This has been selected as a case study due to the coexis-
tence therein of different kinds of natural morphologies (from alluvial to
mountain environments), together with the presence of civil and indus-
trial settlements and their infrastructures. Indeed, the Tanaro basin in-
cludes environments that are representative of a much larger geograph-
ical region, which includes large portions of Italy and southern Europe,
with the exception of arid areas and major rivers.

5.3.1 Flood–Prone Areas Dataset and Features

For the classification problem just introduced, we are provided with a
dataset made of 187306 labeled data points belonging to the Tanaro basin
area. Each data point is described by a set of 8 features (“feature vector”):
its latitude (α) and longitude (β), its distance from the nearest stream (D),
its elevation to the nearest stream (H), the local surface curvature (∆H),
the local contributing area (A), the local slope (S), and its absolute eleva-
tion (E). The data points are initially divided into two classes, one rep-
resenting marginal–hazard areas, and the other one representing flood–
prone areas. The first class is identified by the label 0. The data points
belonging to the second class are further divided into three subclasses
related to the hazard level of the area: the label 1l stands for low-hazard
level, 1m for medium-hazard level, and 1h for high-hazard level. Of the
total 187306 labeled data points in the dataset, 55521 belong to flood–
prone areas (without taking into account their hazard level), while the
other 131785 come from marginal–hazard areas. The 55521 data points
associated with flood–prone areas are further divided by hazard levels:
16659 are labeled as areas subject to a low flood hazard, 20099 are sub-
ject to a medium flood hazard, and the remaining 18763 ones are subject
to a high flood hazard. In some of the experiments presented and dis-
cussed later, we will not distinguish among the 55521 flood-prone area
data points according to their different hazard level, but we will group
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them in the same class “flood–prone areas”, giving them the label 1.

5.3.2 Classification tasks and experimental settings

We train several binary classifiers to learn to distinguish between data
points belonging to two different classes of hydrologic areas. In particu-
lar, we consider the following binary classification problems: “marginal–
hazard areas” versus “flood–prone areas”, and “marginal–hazard areas”
versus “high–hazard areas”. This study is performed by using a subset
of the dataset at our disposal for training/validation, and another sub-
set for testing purposes. In more detail, the idea is to study, for different
kinds of binary classifiers and different experimental settings, the clas-
sification performance of the trained classifiers, i.e., their capability to
correctly identify the class associated with a data point given as input to
the classifier. In doing this, we have to distinguish between data points
used for training the classifier (“training samples”), and data points used
as “test samples”. A more detailed description of the kind of classifiers
adopted in this study is reported in Section 5.4 and in Appendices A and
B . Note that, while in (127) and (128) the investigations performed were
limited to a restricted family of supervised classifiers and their focus was
on the classification performance on only the training set, we intend now
to exploit also unsupervised samples to train the classifiers.

In order to compare the classification performance of different classi-
fiers, we perform several experiments to simulate and reproduce differ-
ent realistic case studies. First, we consider two different binary classifi-
cation problems, which differ for the choice of one of the two classes:

• binary classification of marginal–hazard (class 0) areas versus “high–
hazard” (class 1h) areas (“0 vs 1h” classification problem);

• binary classification of marginal-hazard (class 0) areas versus “flood–
prone” (class 1) areas (“0 vs 1” classification problem).

For each of such binary classification problems, we train and test the
classifiers by using two different choices for the percentage of data points
belonging to the high–hazard (respectively, flood–prone) class over the
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total number of training/test data. More precisely, we consider the two
following experimental settings:

• an unbalanced dataset is used, extracted from the original one,
and characterized by a larger amount of high-hazard (respectively,
flood–prone) data points than marginal–hazard data points: in-
dicatively, 70% of high–hazard (respectively, flood–prone) train-
ing/test data points versus 30% of marginal–hazard training/test
data points (“70% positive, 30% negative” case). This choice of the
distribution of the positive and negative samples does not reflect
the composition of the original dataset made of 187306 data points,
but it is motivated by applications (such as insurance ones) where
a classification error on a flood–prone area has more negative con-
sequences than a classification error on a marginal–hazard area.

• a completely balanced dataset, which is again extracted from the
original one: 50% of the training/test data is made of data points
coming from high–hazard (respectively, flood–prone) areas, and
the other 50% is made of marginal–hazard data points (“50% posi-
tive, 50% negative” case). In this context, the two classes of objects
have the same importance.

In order to reduce the time required to train the classifiers and to keep the
dimension of the training problem relatively small (hence, avoiding the
use of more complex training procedures, optimized for huge datasets),
for each kind of experiment we use only a relatively small subset of the
entire dataset to train the classifiers. Implementation details are given
later in Section 5.5.

5.4 The proposed learning approach

In order to simulate a real situation where few labeled data are avail-
able while a huge amount of unlabeled data is provided, we simulate
possible realistic scenarios characterized by only a few number of labeled
samples and a much larger number of unlabeled samples, with the aim
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to determine a classification method that is able to deal efficiently with
this kind of situation. In the specific, we consider n input data, xi, with
i = 1, . . . , n, each one described by D features; thus, they are arranged
in an input data matrix X ∈ Rn×D. In general, we will indicate with
n the number of samples considered for each kind of experiment per-
formed; thus, n can vary. However its value is always smaller or equal
to 187306. D, instead, is smaller than or equal to 8 (details are provided
later in Section 5.4.1). To each object xi is associated its own label, i.e.,
the class it belongs to, which is denoted by yi, i = 1, , n. Thus, we refer
to each single data point as a pair (xi, yi), i = 1, , n. Since we always deal
with binary classification problems, we can assume that either yi = 0 or
yi = 1 holds. For instance, for the “0 vs 1” binary classification problem,
the data points belonging to the three largest hazard levels are grouped
into the same “positive” class 1, while the marginal–hazard data points
compose the “negative” class 0. Hence, in this case, yi = 1 for an input
data point xi corresponding to a flood–prone area, whereas yi = 0 if xi
belongs to a marginal–hazard area. As described in Section 5.2, the labels
yi, with i = 1, . . . , n are collected into the n–dimensional output domain
vector Y .

In order to simulate a realistic semi–supervised learning scenario,
we further divide the dataset X in two subsets. The first one is repre-
sented by a matrix X(L) ∈ Rl×D made of l labeled samples {(xi, yi), i =

1, . . . , l}. To X(L) we associate Y (L), that is the vector containing the
labels yi, with i = 1, . . . , l corresponding to each xi coming from the sub-
set X(L) of labeled samples. The second subset, instead, is represented
by a matrix X(U) ∈ Ru×D containing u unlabeled samples {xj , j =

l + 1, . . . , l + u}. Clearly, the class of the u unlabeled objects is unknown
to the classifier (particularly, in its training phase). The goal of semi–
supervised techniques, such as the Laplacian SVM is to exploit potential
class–related information coming from the unlabeled data to find a clas-
sifier that is better - in terms of the percentage of correctly classified data -
than a classifier trained in a supervised way, using the labeled data alone
(111).

We aim at building a classification model able to reach satisfactory
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results for the hazard level classification in a “few labeled data points
regime”. At the same time, we are interested in obtaining a quite general
classification model, one that can be used in as many situations as pos-
sible. Indeed, it is extremely useful to determine a classification model,
trained on data belonging to a particular subregion of the river basin,
that is able to perform well not only when tested on input data coming
from the same subregion, but also from a different subregion of the same
basin or even from another basin. In the following sections, we consider
these two classification methods:

• a Laplacian SVM as a representative state of the art semi–supervised
model (whose details can be found in Appendix B);

• a completely supervised SVM classifier, for comparison purposes.
Appendix A reports a brief description of this learning method.

By simulating the Laplacian SVM semi–supervised scenario we shall in-
vestigate whether a satisfactory classification performance can be ach-
ieved by using only a few labeled samples, together with a much larger
amount of unlabeled samples. This will be compared with the case where
training is restricted to the labeled data above and a SVM is used, and to
the situation in which also the originally-unlabeled data used to train the
Laplacian SVM are provided to the SVM, together with their labels (of
course, assuming that one can obtain such an information, at some addi-
tional cost). Since, in our context, the whole dataset is actually labeled,
we do not provide to the classifier the labels of some training samples,
in order to simulate the semi–supervised scenario. In this way, we deal
effectively with them as unlabeled data, while we provide the remaining
input data points to the classifier, together with their labels.

5.4.1 Experimental design

As mentioned in Section 5.3.1, each sample in the dataset is described
by 8 features. However, when training the classifiers (both the super-
vised and the semi–supervised ones), we have decided not to provide
the latitude and longitude features to them. Indeed, taking into account
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such information would likely prevent the classifiers to learn a correct
classification in regions geographically distant from the ones associated
with the training data points. Moreover, in case of SVM/Laplacian SVM
classifiers using certain kernel functions (see Appendix A), the latitude
and longitude features are expected to be misleading for the classifica-
tion of data points coming from sufficiently separated regions (e.g., this
would happen in case of the linear kernel, see again Appendix A for
its definition). However, as described later, in some cases we have still
used the latitude and longitude features to separate geographically the
training and test sets in a pre–processing phase, before training the clas-
sifiers. After having reduced in this way the number of features from 8

to 6, each feature is normalized in the interval [−1, 1]. This permits to
give a–priori the same importance to each feature in the training phase.
Then, different experiments are performed in order to test the perfor-
mance of both the supervised and the semi–supervised classifier, dealing
with case studies representing realistic situations. In particular, for each
binary classification problem considered (i.e., either the “0 vs 1h” or the
“0 vs 1” problem), we run N different realizations of the experiments,
as detailed in the following. First, the entire dataset is partitioned into
two subsets S1 and S2, from which the training set and the test set are,
respectively, extracted. This partitioning is obtained using the following
three procedures.

• The first procedure consists in randomly assigning, with the same
probability, each point of the entire dataset either to S1 or S2; clearly,
in this way the two sets share no data.

• The second procedure exploits a threshold on the latitude feature to
partition the input data. More precisely, the samples whose latitude
is smaller than or equal to a given threshold are assigned to the
set S1, whereas the ones whose latitude is greater than the same
threshold are assigned to the set S2.

• The third procedure exploits a threshold on the longitude feature to
partition the input data. The data points whose longitude is greater
than or equal to a given threshold are assigned to the set S1, while
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those with longitude smaller than the same threshold are assigned
to the set S2.

Although no overlap between the sets S1 and S2 occurs for any of the
three procedures, in the first case it may still happen that some data
points in S1 are very similar to data points in S2, as they may belong
to adjacent geographical areas. In the second case, however, this issue
is likely limited to data points for which the latitude feature is near the
threshold. A similar remark holds for the third case, referring to the lon-
gitude feature rather than the latitude one. Hence, the last two cases are
intended to simulate a possible realistic situation where the sets S1 and
S2 (hence, also the training and test sets) are composed of data belong-
ing to different subregions. The procedure described below is followed
to perform the different experiments.

Experiments pipeline

For each of the N realizations, a set TR is first randomly extracted from
the set S1, independently for each realization. Then, each type of clas-
sifier is trained taking a subset of TR as the training set (details are
provided in Section 5.5), and tested on a different test set, which is also
randomly extracted from the set S2, independently for each realization.
Thus, for each type of classifier,N training sets andN test sets are consid-
ered during the entire procedure. Finally, the classification errors com-
puted at each realization, i.e., the “test errors”, are averaged over the N
realizations. When compared with the case of a fixed test set, the pro-
cedure of randomly generating N different test sets reduces the bias in
the overall classification performance, producing results that are statisti-
cally more accurate. The SVM and Laplacian SVM classifiers considered
in the following are characterized by a series of parameters to be tuned.
Indeed, for both cases we have used a Gaussian kernel (see Appendix
A), which contains an internal width parameter σ to be chosen. Simi-
larly, for the Laplacian SVM one has to tune also the number k of nearest
neighbors that are used to build the edge set E of the graph that is used
inside the associated optimization problem (see Appendix B). Such pa-
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rameters have to be tuned externally, as they assume fixed values in the
optimization problems associated with SVM and Laplacian SVM train-
ing (see, respectively, Formula (A.1) and Formula (B.1)). In particular,
for the SVM classifier with the Gaussian kernel, as it can be argued from
Appendix A, the parameters are:

• the width σ of the Gaussian kernel (Formula (A.6));

• the regularization parameter γA (Formula (A.1)).

Similarly, as it is shown in Appendix B, the parameters of the Laplacian
SVM classifier with the Gaussian kernel are:

• k: the number of nearest neighbors considered for the construction
of the graph;

• t: the parameter used inside the definition of the Gaussian weights
for the edges of the graph;

• the width σ of the Gaussian kernel (Formula (A.6));

• the regularization parameters γA and γI (Formula (B.1)).

For some of the parameters, we then perform a cross–validation proce-
dure with K folds (112; 113) in order to find the values that are most
suitable for the particular context and situation investigated. In particu-
lar, after having determined the best set of parameters, i.e., the one cor-
responding to the smallest average validation error, the model is trained
again on the entire training set, using such optimal parameters. Finally,
the obtained model is evaluated on the test set, which has not been pre-
viously used in the overall training/validation process. In particular,
during the cross–validation procedure, the training samples are equally
distributed in the K folds in order to make each fold as representative
as possible of the entire training set. More precisely, in order to have the
same percentage of labeled and unlabeled data in each group, at first we
divide all the u unlabeled objects in K folds, assuming that u is a mul-
tiple of K. Similarly, both the positive and negative labeled samples (lP
objects for the “positive” class, lN objects for the “negative” class) are
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partitioned into K different groups, assuming that both lP and lN are
multiples of K. Thus, each fold is composed of lPK positive labeled sam-
ples, lNK negative labeled samples, and u

K unlabeled samples. In order to
highlight the effect of the unsupervised samples when moving from the
SVM to the Laplacian SVM classifier, the parameters that are in common
to both the classifiers have been assigned to the same values for both
models. More precisely, first, the value of the width σ of the Gaussian
kernel is fixed. Then, the cross–validation procedure detailed above is
performed in order to find the best value for the regularization parameter
γA for the SVM. Subsequently, the parameters σ and γA of the Laplacian
SVM are fixed to the same values chosen for the SVM (i.e., its a–priori
fixed valued for σ, and the one γA chosen by the first cross–validation
performed for the SVM). Moreover, the value of the Gaussian weight pa-
rameter t of the Laplacian SVM is fixed to the same value chosen for the
parameter σ, as the two parameters have similar meanings. Then, for the
Laplacian SVM, the cross–validation is performed to find the best values
for the remaining parameters k (the number of nearest neighbors used to
build the associated graph) and γI (the additional regularization parame-
ter), which are involved in the “semi–supervised component” of the opti-
mization problem associated with the Laplacian SVM, see Formula (B.1).
The motivation for the whole procedure is that both parameters σ and
γA appear in the “supervised component” of such an optimization prob-
lem (as Formula (B.1), and Formula (A.6) show), which is in common
with the optimization problem associated with the SVM (see Formulas
(A.1) and (A.6)). As the procedure assigns the same values to such com-
mon parameters, any difference in classification performance between
the two classifiers is likely to be ascribed mainly to the absence/presence
of unsupervised training samples.
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5.5 Results and Discussion

5.5.1 Experimental results

We implement the method described in Section 5.4 in MATLAB. The
code is mainly based on the library lapsvm from (129), available at http:
//sourceforge.net/projects/lapsvmp/. We report the results
obtained by generating, for each type of experiment, N = 10 realiza-
tions. As mentioned in Section 5.4.1, the test set is randomly and inde-
pendently generated at each realization, and is made of T = 4000 sam-
ples. In particular, in the “70% positive, 30% negative” case it is made
of 2800 samples from the positive class and 1200 from the negative one.
Similarly, still in the “70% positive, 30% negative” case, the training set,
randomly extracted during each realization, is composed of 140 labeled
samples for the positive class, 60 labeled samples for the negative class,
and u = 3800 unlabeled samples, which are generated from labeled sam-
ples simply by removing their labels before presenting them to the clas-
sifier. In addition, 2660 of these unlabeled samples come from the posi-
tive class, and 1140 from the negative (but this additional information is
not provided to the classifier). In the “50% positive, 50% negative” case,
instead, the test set is made of 2000 samples for each class, and the train-
ing set is composed of 100 labeled samples for each class, and u = 3800

unlabeled samples, which are generated as described before. In addi-
tion, 1900 of these unlabeled samples come from the positive class, and
1900 from the negative one (and again, this additional information is not
provided to the classifier). Concerning the completely supervised SVM
classifier, in the following tables we report two kinds of classification re-
sults. The first row shows the results achieved by the SVM trained only
with l = 200 labeled data (the same labeled samples used also to train
the Laplacian SVM), while the third row reports the results obtained by
training the SVM on all the 4000 data composing the training set (i.e.,
reinserting the labels in its unlabeled samples). Finally, the second row
refers to the semi–supervised Laplacian SVM, trained with l = 200 la-
beled data and u = 3800 unlabeled data. As regards the choices of the
parameters in the classifiers, the width σ of the Gaussian kernel is set
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to 0.5, and also the parameter t of the Gaussian edge weight is set to
0.5. Concerning the cross–validation procedure, we fix a number of folds
K = 5. Then, a first cross–validation is performed on the regularization
parameter γA, restricting the values considered for such a parameter in
the three–elements set {10−3, 10−2, 10−1}. As already mentioned, we de-
cide to fix the parameters σ and γA to the same values for both classifiers
in order not to have substantial differences in the supervised part of the
optimization problems associated, respectively, with the completely su-
pervised SVM classifier, and the semi–supervised Laplacian SVM clas-
sifier. Then, a second cross–validation procedure is performed for the
additional parameters of the Laplacian SVM model. In the specific ex-
periments, the following possible choices for such parameters have been
examined during cross–validation: the number k of neighbors needed
for the graph construction in the Laplacian SVM is chosen inside the
three–elements set {5, 7, 10}, whereas the value of the second regulariza-
tion parameter γI is chosen inside the three–elements set {10−1, 1, 10}.
Likewise the set used for γA, such sets are chosen of small cardinalities,
to limit the computational time needed to perform the cross–validation
procedure. Tables 1–6 show the results achieved by both the supervised
and semi–supervised classifiers (“pos” stands for “positive”, while “neg”
for “negative”). We report the results obtained for the different case stud-
ies described in the sections above. The tables show the mean accuracies
obtained averaging the test accuracies over the N = 10 different real-
izations, and their empirical standard deviations. Such accuracies are
defined, respectively, as

• the percentage of data points in the test set correctly classified by
the trained classifier (accuracy);

• the true positive rate TP, which is the ratio between the number
of “positive” samples in the test set that are correctly classifed by
the trained classifier as “positive” samples, and the total number of
“positive” data in the test set;

• the true negative rate, defined as TN = 1 - FP, where FP stands for
false positive rate, i.e., the ratio between the number of “negative”
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Table 1: “0 vs 1h” binary classification problem, when the sets S1 and S2

are obtained by a random partitioning of the dataset.

Accuracy TP TN

SVM200 93%± 0.5% 95%± 0.3% 89%± 1%

LapSVM 92%± 0.4% 98%± 0.5% 78%± 0.2%
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0
%

ne
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SVM4000 96%± 0.2% 98%± 0.4% 90%± 2%

SVM200 92%± 1% 93%± 4% 91%± 2%

LapSVM 91%± 0.5% 95%± 1% 87%± 1%

5
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%
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s
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0
%

ne
g

SVM4000 95%± 0.4% 96%± 0.4% 93%± 0.6%

Table 2: “0 vs 1h” binary classification problem, when the sets S1 and S2

are defined, respectively, as the subset of objects with latitude greater than
or equal to 2750 (expressed in pixel units), and the subset of objects with
latitude smaller than the same threshold.

Accuracy TP TN

SVM200 89%± 2% 97%± 5% 75%± 10%

LapSVM 91%± 1% 99%± 0.5% 73%± 5%

7
0
%
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s

3
0
%

ne
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SVM4000 95%± 0.8% 97%± 0.9% 91%± 2%

SVM200 89%± 2% 90%± 5% 89%± 5%

LapSVM 91%± 1% 98%± 1% 83%± 4%

5
0
%

po
s

5
0
%

ne
g

SVM4000 94%± 0.9% 95%± 3% 92%± 1%

samples in the test set that are erroneously classified by the trained
classifier as “positive” samples, and the total number of “negative”
data in the test set.

As an illustrative example, Figure 32 shows the ground truth. Fig-
ure 33, instead, reports on the left the classifications produced by an
SVM trained on l = 200 labeled samples, while on the right the results
produced by a Laplacian SVM trained on l = 200 labeled samples and
u = 3800 unlabeled samples when the scenario considered is the one re-
ported in Table 4, with 50% positive training samples and 50% training
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Table 3: “0 vs 1h” binary classification problem, when the sets S1 and S2 are
defined, respectively, as the subset of objects with longitude smaller than
or equal to 2400 (expressed in pixel units), and the subset of objects with
longitude greater than the same threshold.

Accuracy TP TN

SVM200 89%± 3% 90%± 0.6% 87%± 3%

LapSVM 91%± 0.8% 99%± 0.7% 75%± 3%

7
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%
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3
0
%
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g

SVM4000 94%± 0.6% 97%± 1% 89%± 1%

SVM200 88%± 2% 88%± 5% 90%± 3%

LapSVM 90%± 0.7% 96%± 2% 84%± 3%

5
0
%

po
s

5
0
%
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g

SVM4000 93%± 0.3% 96%± 0.7% 91%± 0.6%

Table 4: “0 vs 1” binary classification problem, when the sets S1 and S2 are
obtained by a random partitioning of the dataset.

Accuracy TP TN

SVM200 89%± 1% 90%± 2% 86%± 2%

LapSVM 90%± 0.7% 93%± 1% 80%± 2%

7
0
%

po
s

3
0
%

ne
g

SVM4000 93%± 0.4% 98%± 0.3% 77%± 2%

SVM200 88%± 0.3% 90%± 2% 86%± 1%

LapSVM 87%± 0.3% 92%± 2% 83%± 2%

5
0
%

po
s

5
0
%

ne
g

SVM4000 90%± 0.5% 93%± 0.5% 86%± 0.7%
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Table 5: “0 vs 1” binary classification problem, when the sets S1 and S2

are defined, respectively, as the subset of objects with latitude greater than
or equal to 2750 (expressed in pixel units), and the subset of objects with
latitude smaller than the same threshold.

Accuracy TP TN

SVM200 86%± 5% 93%± 8% 68%± 8%

LapSVM 90%± 1% 99%± 1% 65%± 8%

7
0
%

po
s

3
0
%

ne
g

SVM4000 90%± 2% 98%± 3% 65%± 2%

SVM200 80%± 2% 93%± 5% 67%± 7%

LapSVM 83%± 3% 98%± 1% 68%± 8%

5
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5
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%
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g

SVM4000 83%± 2% 96%± 4% 70%± 2%

Table 6: “0 vs 1” binary classification problem, when the sets S1 and S2 are
defined, respectively, as the subset of objects with longitude smaller than
or equal to 2400 (expressed in pixel units), and the subset of objects with
longitude greater than the same threshold.

Accuracy TP TN

SVM200 87%± 2% 88%± 4% 83%± 5%

LapSVM 88%± 1% 91%± 2% 80%± 2%

7
0
%

po
s

3
0
%

ne
g

SVM4000 89%± 0.7% 95%± 0.7% 69%± 2%

SVM200 84%± 2% 89%± 5% 79%± 5%

LapSVM 85%± 0.5% 91%± 1% 79%± 2%

5
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%
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5
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%
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SVM4000 83%± 0.5% 92%± 0.7% 74%± 0.8%
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Figure 32: Ground truth.

negative samples, and the sets S1 and S2 are obtained by a random par-
titioning of the entire data set. Concerning the supervised classifier, the
results are obtained by choosing an SVM with the best parameters (in
terms of the validation error) among the N different classifiers trained
during the N realizations; while, the semi–supervised classifier chosen
is the one of the N different semi–supervised classifiers trained during
the N realizations with the “best” set of parameters, in terms of the vali-
dation error.

Note that Figure 33 reports the classification results obtained by the
two best classifiers on a larger dataset, which contains also samples whose
labels are completely unknown (not only to each learning machine, dur-
ing its training), simply because their labels are not available in such an
extended dataset. So, they differ from the 3800 “unlabeled” samples
used by the Laplacian SVM, which, as already reported, are originally
“labeled” samples, whose label has only been “hidden” to the learning
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Figure 33: Output of the SVM classifier (l = 200) on the left. Output of the
Laplacian SVM on the right.
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Figure 34: ROC curves of the three classifiers computed by changing the
percentage of the positive samples over the total number of samples.

machine during its training.
In addition, to better investigate the behavior of the TP and FP rates

on the test set, we evaluate their variations with respect to the compo-
sition of the training set, focusing on the case in which the three classi-
fiers are applied to the “0 vs 1” binary classification problem, and the
sets S1 and S2 are defined by means of a threshold on the latitude (i.e.,
the same scenario of the results reported in Table 5). In particular, we
vary the percentage of positive and negative samples in both the train-
ing and test sets, which are both randomly extracted from S1 and S2.
More precisely, we consider 7 different situations where the percentage
of positive samples over the total is 20%, 30%, 40%, 50%, 60%, 70%, 80%,
respectively. For each type of situation, N = 10 different realizations
are considered and both the TP and FP rates are averaged over the N
realizations. We display the obtained results by means of the Receiver
Operating Characteristic (ROC) curve (130) shown in Figure 34. In such
figure, the percentage of positive samples over the total is indicated only
for the curve representing the results of the SVM trained with l = 200
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labeled samples. Clearly, the same labeling of the percentage holds for
the other two curves.

5.5.2 Discussion and Conclusions

In this work, the semi–supervised technique, Laplacian Support Vec-
tor Machine (Laplacian SVM), has been studied and applied for the clas-
sification of marginal–hazard and high-hazard/flood prone areas. The
emphasis is on understanding the potentiality of this semi–supervised
method when only few labeled samples are provided, together with a
much larger number of unsupervised samples. In order to highlight the
capabilities of the Laplacian SVM classifier, we performed different ex-
periments comparing the performances obtained by this technique with
the ones achieved by the fully supervised SVM classifier, using the same
number of labeled data. For comparison purposes, we considered also
the case of a SVM classifier trained with a much larger number of (costly)
labeled samples. To understand the generalization capability of the mod-
els in various situations, we took into account different cases for the gen-
erations of the training and test sets. Beside choosing the training and
test set from the same sub–region, in other experiments we separated the
training and test sets by using longitude and latitude information, in or-
der to simulate a possible situation where the classifier is trained with
data belonging to a specific sub–region, and subsequently tested on a
different sub–region.

Tables 2–6 show a Laplacian SVM accuracy equal or even larger than
the SVM accuracy (except for the case shown in Table 4, “50% positive,
50% negative”), when the latter is trained with the same number of la-
beled samples. The improvements are larger in the unbalanced case,
where one 70% of the test set is made of positive samples, while the re-
maining 30% is made of negative samples. Moreover, we can see that
the Laplacian SVM accuracy always improves when moving from the
totally balanced situation (“50% positive, 50% negative”) to the unbal-
anced (“70% positive, 30% negative”) one (except for the case shown in
Table 2, where the accuracy remains the same). In addition, the True Pos-
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itive (TP ) rates reported in the different tables highlight that the Lapla-
cian SVM performs better than the SVM trained with the same number of
labeled samples in detecting the actual high–hazard/flood prone areas.
This is particularly important for applications such as insurance ones.
In this context, indeed, the wrong classification of a positive sample as
a negative one is much less desirable than the wrong classification of a
negative sample as a positive one. Thus, if one has to choose between a
higher TP rate with a slightly higher FP rate, and a lower TP rate with
a slightly lower FP rate, the first case is preferred. A smaller percentage
of positive samples are in fact misclassified in the first case. However, the
results reported in the third row of the tables show that a better classifi-
cation performance is usually obtained for the SVM, when this is trained
using a number of labeled samples equal to the number of (labeled and
unlabeled) data employed by the Laplacian SVM itself. This is expected,
as such a SVM models a case in which the classifier has at its disposal a
larger amount of (costly) information for its training.

In particular, from Tables 5 and 6 one realizes that, for the “0 vs 1”
binary classification problem, the Laplacian SVM achieves the same or
even a better performance than the SVM trained with l = 4000 labeled
samples, when the two sets S1 and S2 are obtained by using a threshold
either on the latitude or on the longitude and both are trained by us-
ing 50% positive samples and 50% negative samples. Hence, the semi–
supervised classifier shows a larger generalization capability when the
training and test sets are extracted from geographically separated re-
gions. In addition, from Figure 34 we can infer that the Laplacian SVM
performs well also when unbalanced data sets are considered, and the
error in the detection of the high–hazard/flood–prone areas is more pe-
nalized than the error in the detection of marginal–hazard areas. In gen-
eral, it could be argued that the differences in the performances of the
Laplacian SVM and SVM, reside on a larger generalization capability of
the semi–supervised method. This is due to the fact that this model takes
into account more samples to model the manifold where the data lie on,
hence acquiring useful information related to the space and the relation-
ships between the different samples. Note that, this information do not
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require any additional cost, since the data are unlabeled. Thus, the Lapla-
cian SVM is, in general, able to perform better than the SVM, especially
when training and test are extracted from geographically separated re-
gions and when unbalanced sets are considered. In the data analysis,
we used a variety of morphological features for the detection of the local
flood hazard. In addition, the results show that for each type of scenario
studied (training and test sets randomly extracted from the dataset or
obtained by a threshold on the latitude/longitude), the overall accuracy
of every type of classifier is higher in the “0 vs 1h” binary problems than
the “0 vs 1” ones. This behavior is expected since in the “0 vs 1” binary
problems more similar samples belonging to different classes are present.
We expect that the classification between samples from low–hazard level
areas and samples from flood–prone areas is more difficult than the clas-
sification between flood–prone areas and high–hazard level areas. The
samples from the latter scenario are supposed to be more different, thus
easier to be classified, than the ones belonging to the first classification
scenario.

It is worth noting that, as a future extension, we intend to improve
the methodology adopted in the different experiments and to run addi-
tional tests to better validate the semi–supervised technique applied to
the specific problem. More specifically, the idea is to compute the perfor-
mance of both the semi–supervised and supervised methods by chang-
ing the distribution of the positive and negative samples in the training
set, keeping fixed the distribution of the samples in the test set. In addi-
tion, we intend to examine an alternative construction of the ROC curve
displayed in Figure 34 considering the same classifier and evaluating its
performances obtained for various distributions of the samples, and cor-
respondingly optimized thresholds. Finally, to obtain more accurate and
complete results it would be interesting to include the parameter t of the
Gaussian weight present in the Laplacian SVM as a parameter to be op-
timized during the cross–validation procedure.

In addition, one can take into account also externalities modeled through
features related to the local human intervention against floods. We fo-
cused on binary classifiers, as our goal consisted in comparing different
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classifiers based on the absence/presence of labels associated with some
samples (dealt with as supervised by some classifiers, and as unsuper-
vised by other ones), without taking into account the number of possible
values for the labels. Another future development consists in extending
the comparisons to the multi–class case, either training directly multi–
class classifiers, or combining several binary classifiers, likewise in (127).

5.6 Summary

In this chapter we have studied the utilization of graphs in a semi–
supervised learning context in order to evaluate their capabilities in a
specific classification problem. In particular we focused on the classifica-
tion of flood–prone areas that represents a typical classification problem
characterized by a large number of data, the majority of them unlabeled.
In fact, the labeling process is often expensive, time–consuming and it
requires special devices. For this problem, a semi–supervised learning
method able to exploit the information coming from the unlabeled data
is thus extremely important. We saw that the Laplacian SVM outper-
forms the SVM in almost all the situations studied. Hence, the promising
results obtained highlighted the potentiality of graphs in determining a
discrete approximation of the manifold on which the data reside. The
manifold is built on both the labeled and the unlabeled samples and it
allows to obtain additional information on the data and to achieve better
performances than the ones obtained by a supervised technique com-
puted by using only the labeled data.

In the next chapter we will continue our evaluation and study of
graphs in a machine learning context. In particular we will deal with
graphs with the aim of modeling the connections among the samples in
a dataset. The goal is to extract additional features of each single sample
in the dataset that can be useful to improve the classification accuracy
of a classifier trained on the original dataset without considering graph–
based features. We will apply graphs in a medical context, with the aim
of automatically distinguishing patients with different forms of Parkin-
sonisms.
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6
Graph-based features extraction in a

supervised learning context

6.1 Introduction

In this chapter we continue the study related to the application of
graphs in a machine learning context. While in the previous chapter
graphs are exploited to obtain a classifier trained on both labeled and un-
labeled samples with better performances of a classical supervised clas-
sifier trained on the labeled data only, the idea now is to exploit graph
in the features computation process. More precisely, we will deal with
binary and multi–class classification problems in a supervised learning
context. The idea is to extract additional information, i.e., features, from

This chapter is partly based on:

• R. Morisi, G. Gnecco, N. Lanconelli, S. Zanigni, D. Manners, C. Testa, S. Evangelisti,
L. L. Gramegna, C. Bianchini, P. Cortelli, C. Tonon, R. Lodi, “Binary and multi–
class Parkinsonian disorders classification using Support Vector Machines”, Lecture
Notes in Computer Science, 2015,

• R. Morisi, G. Gnecco, N. Lanconelli, S. Zanigni, D. Manners, C. Testa, S. Evangelisti,
L. L. Gramegna, C. Bianchini, P. Cortelli, C. Tonon, R. Lodi, “Binary and multi–
class classification of parkinsonian disorders with support vector machines based
on quantitative brain MR and graph–based features”, submitted to Movement Dis-
orders.
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each sample starting from a graph built on the dataset, with the aim of
improving the classification performances obtained when the samples
described by only their original features (without the ones obtained from
the graph) are provided to the same supervised classification model.
The problem we are dealing with concerns the classification of Degener-
ative Parkinsonisms. We have already studied pattern recognition prob-
lems in the medical field. In particular, in (131; 132) we focused on the
detection of myocardial scars in patients who suffered of cardiac prob-
lems. The goal was to provide to the clinicians a technique able to au-
tomatically determine either the presence or the absence of scars in the
myocardium of a patient. In that particular problem, we applied pat-
tern recognition techniques on segmented Magnetic Resonance Images.
Then, in (133) we also carried out another study that again applied patter
recognition techniques in the medical field. It concerned the application
of an unsupervised learning method, Independent Component Analy-
sis (ICA), for the detection of ischemic territories in the heart. ICA was
applied to timeseries extracted from the heartbeat, with the aim of auto-
matically distinguishing timeseries coming from healthy territories and
ischemic territories in the heart.
Now we proceed with the study of machine learning methods applied
to the medical field. We consider again the classical SVM as the super-
vised learning technique, applying it to a dataset made of patients with
parkinsonian disorders with the aim of automatically distinguishing the
different disorders. Beside the learning method, we intend to model the
dataset by means of a graph in order to extract information and addi-
tional knowledge about the relationships among the patients either with
the same disorder or with different disorders.
Details related to this specific issue are provided in Section 6.2, then in
Section 6.3 we describe the dataset we are dealing with and how the
different features are computed; in Section 6.4 we introduce the appli-
cation of graphs in this particular context and the classification method
adopted, while the results obtained and the conclusions are provided in
Section 6.5.1 and 6.5.2, respectively.
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6.2 Degenerative Parkinsonisms - overview

Degenerative Parkinsonisms, such as Idiopathic Parkinson‘s Disease
(PD), Progressive Supranuclear Palsy (PSP) and Multiple System Atro-
phy (MSA), with the cerebellar (MSA–C) and parkinsonian (MSA–P) vari-
ants, are chronic progressive diseases characterized primarily by move-
ment impairment accompanied by various degrees and combinations of
autonomic, cognitive and behavioral alterations. Although these disor-
ders are characterized by different clinical features, response to pharma-
cological treatment and prognosis, the in vivo differential diagnosis is
often challenging because of clinical overlapping and definite diagno-
sis can be reached only post–mortem. In order to improve the accu-
racy of clinical diagnostic criteria, various promising biomarkers have
been identified (134). In particular, advanced Magnetic Resonance (MR)
quantitative markers of brain microstructure, metabolism, regional atro-
phy respectively obtained from Diffusion Tensor Imaging (DTI), proton
spectroscopy (1H-MRS) and morphometric-volumetric analysis, demon-
strated high accuracy in differentiating parkinsonian syndromes (135).
(136) showed that DTI can be useful in classifying subjects with Parkin-
son‘s disease, atypical parkinsonism and essential tremor, while (137)
and (138) investigated the potentiality of MR Spectroscopy in the study
of Parkinson‘s Disease. A multimodal approach combining different
quantitative MR markers may also improve diagnostic accuracy and may
be useful to discriminate parkinsonian syndromes at an individual level.
In addition, a pattern recognition approach able to provide a first quick
and automatic diagnosis, helping the experts for its successive refine-
ment, should be extremely useful. Recently, Support Vector Machines
(SVMs) have been applied in this context to discriminate parkinsonian
syndromes at an individual level, using a combination of multiple fea-
tures, i.e., various MR markers. In particular, in (139) SVMs have been
used in distinguishing patients with PD from those with PSP, in (140),
the automatic classification of PD patients from normal volunteers has
been studied, while (141) has applied SVMs for the automatic discrimi-
nation of PD from atypical forms of Parkinsonism. Another study where
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SVMs have been applied in a related context is described in (142), where
this method is used to discriminate between essential tremor with rest
tremor and tremor–dominant Parkinson Disease. On the other hand,
(143) presents a multi–class classification problem applying a statistical
technique for the discrimination of different forms of Parkinsonism (PD,
PSP, MSA–C, and MSA–P). Multi–class classification problems are stud-
ied also in (144) together with binary problems, performing the analysis
by means of SVMs, for both the binary and the multi–class classification
problems.

Now, our idea is to start from the results and type of study performed
in (144), and to investigate the possibility and the potentiality of comput-
ing additional features to provide to the machine learning method in or-
der to better discriminate the different disorders. We intend to exploit a
graph-based technique on the data at our disposal with the aim of collect-
ing additional information related to the connections among the different
patients. Stronger connections and similarities of features are expected
among patients with the same disorder rather than patients with differ-
ent disorders. Thus, a graph built on the markers of each single patient is
expected to provide such information. In addition, as performed in (144),
we intend to apply and study a feature selection algorithm in order to
better understand the most discriminative subset of features, comparing
the results with the experts’ opinions. The feature selection algorithm is
also expected to provide useful information about the importance of the
graph–based features computed and added to the original dataset.

6.3 Patients and Methods

In this section, we provide a description of the dataset at our disposal.
In particular, we report in Section 6.3.1 some information about the dif-
ferent patients; instead Section 6.3.2 describes the process of acquisition
and computation of the different markers, starting from the MR images.
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Table 7: Demographic and clinical features of the study sample.

Mean ± standard deviation

variable PD PSP MSA–C MSA–P

Sex: No. of M/F 32/16 12/10 5/4 6/1

Age at the evaluation (years) 64.7± 10.2 73.5± 6.5 59.1± 7.0 61.6± 10.6

Disease duration (years) 3.8± 3.2 3.5± 1.9 6.8± 3.9 4.9± 2.9

6.3.1 Dataset preprocessing

We include in the study 9 MSA–C, 7 MSA–P, 22 PSP and 48 PD con-
secutive patients who underwent brain MR at the Functional MR Unit of
the Policlinico S. Orsola - Malpighi, in Bologna, Italy, as part of the diag-
nostic work–up. Clinical diagnosis were performed according to current
criteria (145; 146). Their demographic data are summarized in Table 7.

We are provided of l = 86 (i.e., the total number of patients consid-
ered) labeled pairs (xi, yi), i = 1, . . . , l, where xi ∈ RD (D = 152 MR
markers/features are provided for each patient) and yi ∈ {1, 2, 3, 4} (4
different types of disorders are considered). Thus, the patients are ar-
ranged in a dataset X ∈ Rl×D, while the labels of each single patient are
arranged in a l–dimensional feature vector Y . In particular, l1 = 9 sam-
ples belong to class 1, l2 = 7 belong to class 2, l3 = 22 to class 3, while
l4 = 48 samples are from class 4.

Note that, before being provided to the supervised learning technique
for the disorders classification, the dataset X has been preprocessed re–
scaling each feature inside the interval [−1, 1] in order to give them the
same importance a–priori.

6.3.2 MR Imaging

All participants underwent the same brain MR protocol with a 1.5 T
GE scanner: axial T2–weighted FLAIR, coronal T2–weighted FSE, T1–
weighted volumetric FSPGR, axial Diffusion Tensor Imaging (DTI) with
25 directions and a single–voxel cerebellar proton-MR spectroscopy (1H-
MRS) using PRESS sequence. A manual morphometric analysis was ex-
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Figure 35: Examples of imaging and spectroscopic quantitative parameters
used as features for SVM analysis: manual morphometry (A); DTI FA and
MD quantification by ROIs (B) and histograms (C) analysis; semi–automatic
segmentation of deep brain structures (D); cerebellar volume of interest lo-
calization (E) and corresponding 1H–MR metabolites spectrum (F).

ecuted in order to measure midbrain area, pons area, the diameters of
the middle and superior cerebellar peduncles (MCP and SCP), their ra-
tios and the MR parkinsonism index (MRPI) (147) (7 features). The mean
DTI parameters (Fractional Anisotropy, FA, and Mean Diffusivity, MD)
were calculated by using a Regions of Interest (ROIs) method (84 fea-
tures) and by using an histogram–analysis method (148) (34 features). A
semi–automated volumetric and mean DTI parameters analysis based on
FSL tools http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ was per-
formed for deep brain structures, lateral ventricles, cortical lobes, and
cerebellum (21 features). We quantified in (1H-MRS) spectra N–Acetyl
Aspartate (NAA), Choline (Cho), Creatine (Cr) and myo–inositol (mI)
content expressed as ratios: NAA/Cr, Cho/Cr, mI/Cr, NAA/mI (4 fea-
tures). The fitting–program LCModel v 6.3 was used to perform the last
analysis. An example of processed MR images is shown in Figure 35.
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6.4 Pattern Recognition Analysis

In this particular context, the potentialities of SVMs in both binary
and multi–class classification problems have been previously studied in
(144). We first perform the same type of study by considering a larger
dataset, and we then apply a graph–based technique to extract additional
features. In the binary classification case, we consider all the possible
combinations of pairs of disorders (named “one disorder vs another”)
with the goal of distinguishing the two classes; at the same time we per-
form binary classification problems between a specific disorder and all
the other ones grouped in a single class, we refer to this case as “one
disorder vs all”. Moreover, the potentiality of SVMs are evaluated in a
four–class classification scenario, where each disorder is treated as a sin-
gle class, and in a three–class classification scenario, considering MSA–C
and MSA–P as a single class, since they are subtypes of the same disor-
der.

The SVMs performances are evaluated and compared when they are
applied to different sets of features. More precisely, as a reference, we
first consider the original dataset provided by the clinicians where each
single patient is described byD = 152 MR markers evaluating the results
achieved by the learning method; then we add the additional graph–
based features to the original dataset with the aim of improving the per-
formances of the SVMs.

In the following, we first provide the description of the graph–based
model built on the dataset in order to extract additional features for each
single patient, then the supervised classification method used in this par-
ticular context is presented and, finally, we provide a brief description of
the feature selection technique adopted to determine the most meaning-
ful subset of MR markers and graph–based features for this particular
problem.

6.4.1 Modeling the dataset with graphs

Our idea is to extract additional features from the dataset X in order
to add to the original D = 152 features more information that can be
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useful to improve the classification performance of the SVMs. In partic-
ular we build an undirected unweighted graph G = (V,E) (see Chapter
2) on the MR markers. For our purposes, a graph built on the dataset
made up of the MR markers of the patients can provide useful informa-
tion about the similarities between patients with the same Parkinsonism
and dissimilarities between patients with different parkinsonian disor-
ders. Each node vi ∈ V with i = 1, . . . , l represents a patient. We expect,
indeed, that two patients vi and vj with the same disorder are much more
similar, in terms of the values of the MR markers collected, rather than
two patients with different disorders. Hence, in the graph G, they are
expected to be connected by an edge eij , while edges between patients
with different disorders are expected to be more rare. Thus, a graph
whose measure of similarity is built on the MR markers is expected to
highlight connections among the different patients. We build a k–nearest
neighbor graph (see, i.e., Chapter 2), by first computing the euclidean dis-
tance between all possible pairs of nodes (each patient is seen as a point
in the euclidean space, whose coordinates are given by the values of the
markers). Then, the number k of desired connections, i.e., edges, for each
node is fixed and two nodes vi and vj , are connected by an edge if either
vi is among the k–nearest neighbors of vj or vice–versa. The final adja-
cency matrix associated to the graph is a binary one. Once the graph is
built, 6 additional features are computed for each node; these features are
subsequently added to the feature set made by the MR markers of each
patient. The additional features extracted from each node are mainly
measures of centrality that give information of the structural importance
of a node, i.e., a patient, in the graph. In particular, they are: the degree,
the local average degree (which gives information about the degrees of
the neighboring nodes of a given node), the closeness and betweenness
centrality (which measure the influence a node has on the other nodes),
the eccentricity of a node and the clustering coefficient. It is reasonable
to assume that these additional features added to the original dataset
should be useful in the overall classification process since we can expect
that nodes, i.e., patients, belonging to the same class have similar values
of the same feature, while nodes, i.e., patients, in different classes have
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different values of the same feature. More precisely, for each binary clas-
sification problem we expect that, on average, the degree of the nodes
belonging to the class with more patients is higher than the one of the
nodes belonging to the less numerous class. We recall that the graph is a
k–nearest neighbor graph, thus, in general, there are more than k edges for
each node. In addition, considering, for instance, the closeness centrality,
it can be expected that nodes belonging to the most numerous class have
a closeness centrality higher than nodes belonging to the less numerous
class. In fact, since this feature, for each node vi, is obtained by dividing
1 for the sum of the lengths of the shortest paths between vi and all the
other nodes, we can easily expect that this sum is smaller for the nodes
belonging to the most populous class than the other one. Similar argu-
ments can be provided for the other graph–based features computed. In
general, these types of features give information about the interactions
each node is involved in; fur further details, please refer to Chapter 2.

6.4.2 Classification model

For our classification problems, we choose an SVM with linear ker-
nel. In fact, by running some preliminary comparison tests with other
kernels (e.g., polynomial, radial basis function), it turned out that the
linear SVM performed better than the others. Indeed, it is not unusual
that in high–dimensional datasets with a small number of samples, ra-
dial basis function and polynomial kernels lead to overfitting, while the
linear kernel provides the best result (149).

The model adopted in this study is a classical binary classification
problem, with l samples xi, i = 1, . . . , l, and the corresponding labels
yi ∈ {−1, 1}. Later, the generalization of this model used to deal with
the multi–class classification problems is described. Starting from the
general formulation of a binary SVM described in Formula A.3, the opti-

146



mization problem for the binary linear SVM is the following:

minimizew,b,ξ

(
1

2
wTw + C

l∑
i=1

ξi

)
subject to yif(xi) ≥ 1− ξi, for i = 1, . . . , l ,

ξi ≥ 0, for i = 1, . . . , l ,

(6.1)

where C > 0 is a penalty term and f(xi) = wTxi + b is an affine func-
tion of xi. Beside the model described by Formula (6.1) which assigns a
sample xi to one of the two classes according to the sign of f(xi), a prob-
abilistic output can be also used (150). More precisely, given a sample
xi and the corresponding value of f(xi), the a–posteriori probability of
xi to belong to one of the two classes yi ∈ {−1, 1} can be estimated by a
sigmoid function in the following way:

P (yi = j|xi) =
1

1 + exp(Af(xi) + B)
, (6.2)

where j is either equal to −1 or 1, and A and B are suitable parameters.
Then, xi is automatically assigned to the class yi with the highest pos-
terior probability between the two. The parameters A and B in formula
(6.2) are estimated by solving a regularized maximum likelihood prob-
lem, following the procedure described in (151). The probabilistic output
reveals to be especially suitable in the multi–class classification scenario.
In that case, to automatically classify the samples according to the dif-
ferent classes, we use a combination of R two–classes 1–vs all classifiers,
where R represents the number of classes presented, i.e., R = 4 in the
four–class classification study, while R = 3 when MSA–C and MSA–P
are considered as a single class. More specifically, R binary 1–vs all lin-
ear SVMs with probabilistic output Pr(x) (r = 1, . . . , R) are trained, i.e.,
for each class the training is realized by labeling the samples belonging
to the class chosen as samples from the “positive” class, while all the oth-
ers are grouped together in the “negative” class. Once the R classifiers
are trained, a new input x is tested by presenting it to all theR classifiers,
then it is assigned to the class with the highest a-posteriori probability,
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i.e., the one that maximizes Pr(x):

maximizer p(y = r|x).

For each type of binary classification problem considered, we adopt
the following pipeline:

• a binary problem is chosen, either a “one disorder vs another” case
or “one disorder vs all” situation;

• depending on the dimension of the dataset considered, a series of
values k for the k–nearest neighbors procedure adopted to build
the graph are chosen. For instance, if one is interested in the classi-
fication problem “MSA–C vs MSA–P”, the values for k are smaller
than the values considered in a binary classification problem that
takes in consideration the entire dataset, such as “one disorder vs
all”. In fact, in this case, the dimension of the original dataset is
larger than the one in the previous situation, thus a larger num-
ber of connections between the different nodes (the samples) can
be fixed;

• a set of values for the regularization parameter C is fixed;

• the classification process is performed:

– if graph–based features are not considered, we run a leave–
one–out cross–validation procedure (LOOCV) to determine
the penalty term C value (see Formula (6.1)) that leads to the
best accuracy, computed as the average of the samples cor-
rectly classified at each run of the LOOCV procedure;

– if graph–based features are added to the original dataset, the
LOOCV procedure is performed on both the values k of the
number of nearest neighbors considered to build the graph
and on the values for the penalty term C. The accuracy is
again computed by averaging over the samples correctly clas-
sified at each run of the LOOCV procedure determining the k
and C values that lead to the best result;
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Note that the process described above is performed with both the entire
set of features and only a subset extracted from the original dataset by a
feature selection algorithm described in the following section. In addi-
tion, we are not considering an independent evaluation test set since our
dataset is relatively small; the accuracy reported in the results in Section
6.5 is then the one associated to the best C value obtained by averaging
the results on the samples that are left out at every step of the LOOCV
procedure. At each iteration of the LOOCV a value 1 is considered if the
classifier correctly classifies the sample left out, 0 otherwise. The predic-
tions are then averaged over the total number of samples. In addition,
beside the best results of the overall classification process (the one cor-
responding to the best C value), in order to have a more accurate esti-
mate of the final results, we report the average and standard deviation
of the classification process obtained with the entire set of the values of
the regularization parameter C considered for each binary classification
problem.

Concerning the multi–class classification scenarios, the pipeline fol-
lowed is the same as the one described above. One of the two multi–class
classification problems has to be chosen, either the one with 4 classes or
the one with 3 classes. Then, again a set of values for the parameter k
and C is fixed and the LOOCV procedure is performed determining the
best accuracy for each problem considered.

Note that, for both the binary and the multi–class classification prob-
lems, the C value and the number of nearest–neighbors k fixed to build
the graph, may depend on the classification problem itself. In other term,
different classification problems may have different optimal values for C
and k.

6.4.3 Feature selection

As a pre–processing step, a feature selection method is applied to
the dataset in all the problems treated; we aim at understanding if some
features are more meaningful and useful than others for diagnosis pur-
poses. In addition, it is interesting to see if the most meaningful MR
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markers automatically selected, agree with the ones considered by the
experts opinions as the most useful ones. We apply a ranking criterion
to the D features in the dataset X which orders the features according to
their capability of assigning each sample to the correct class. In partic-
ular, for each binary classification problem, an independent evaluation
criterion is used, i.e., the features are considered individually in deter-
mining their capability to discriminate between the two classes, when
each feature is used alone. We choose the relative entropy criterion (152)
as the method to assess the ability of every feature in separating the two
labeled classes. First, its value is computed for each of the D features.
Then, the features are ranked decreasingly with respect to their relative
entropies, following the procedure described in (112). Depending on the
subsequent classification problem one is interested in, the D̃ < D fea-
tures corresponding to the D̃ best values of the ranking can be subse-
quently selected, to form a reduced dataset X̃ ∈ Rl×D̃ (this procedure is
repeated for several choices of D̃). Then, in each binary classification sce-
nario, we evaluate the outcome of the feature selection method by means
of Receiver Operating Characteristic (ROC) curves (153). By comparing
the ROC curve obtained with only D̃ features corresponding to the D̃
best values of the ranking, and the one for the entire set of D features, an
estimate of the goodness of the feature selection method can be done. We
propose to build the ROC curve by changing the value of the threshold
on the probabilistic output of the SVM. More precisely, when a classifier,
already trained, is tested on a new sample x, the output obtained is the
probability p of x to belong to the “positive” class and 1− p to belong to
the “negative” class, or in other words, in the default case, the threshold
is set equal to 1

2 . Then, by means of a threshold on p, the sample x is as-
signed to one of the two classes. The classifier automatically assigns x to
the “positive” class if p ≥ 1−p, to the negative class otherwise. Changing
the threshold on p, different classification rules, thus different classifica-
tion results can be obtained and a ROC curve can be determined.

All the described methods are implemented using MATLAB and, specif-
ically for the classification part, we use the codes described and imple-
mented in (150).
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6.5 Results and Discussion

6.5.1 Binary and multi–class classification results

We first investigate two binary classification scenarios, the first one
considers all the combinations between pairs of different disorders, i.e.,
PSP vs. PD, MSA–C vs. MSA–P and so on, while the second one consists
in classifying each disorder versus the other three, grouped in a single
class. Subsequently, we consider two multi–class classification problems:
a 4–class problem (i.e., the number of classes is equal to the number of
disorders), and a 3–class one (the classes MSA–C and MSA–P are here
grouped into one single class, as being variants of the same disorder).
Also for the binary classification problems, we perform some tests by
considering MSA–C and MSA–P as a single class, named as MSA.

These situations are first evaluated and studied by applying the SVMs
on the dataset made of the MR markers alone (i.e., the additional graph–
based features are not used in this first analysis). The results achieved are
considered as a sort of reference in order to subsequently compare such
results with the performances obtained when additional graph–based
features are added to the dataset. In particular, for each type of classi-
fication problem, both the binary and the multi–class one, a graph is first
built on the specific dataset involved, then 6 more features are computed
for each patient and added to the original set of features. An example of
the adjacency matrix obtained on the entire dataset is shown in Figure
36; in particular, for this example, a number of nearest neighbors k = 40

is fixed. The light–blue squares presented in the figure highlight the 4

different classes. For both the binary and the multi–class situations we
compare the performances of the linear SVM obtained with the entire set
of features and with only a small subset extracted by the ranking pro-
cedure described in Section 6.4.3. A LOOCV procedure is performed in
both the situations (i.e., a dataset with either D or D̃ features), to deter-
mine the best C and k values for each type of problem. In particular, 100

values equally spaced in the interval [10−2, 1] are considered for the regu-
larization parameter C. In addition, in the reduced–dimension scenario,
we compute the accuracy of the SVM by considering a reduced dataset
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Figure 36: Adjacency matrix when the entire dataset is considered, fixing
the number of nearest neighbors k = 40.

made of the first D̃ = 10, D̃ = 20, D̃ = 30 and D̃ = 40 ranked features.

First of all we report some results concerning the study of the fea-
ture selection technique. Figure 37 shows a comparison in terms of ROC
curves, between the outcomes obtained with the entire set of D features
and a reduced set made of the first D̃ = 20 ranked features in the “PD vs
MSA” binary problem. In the default case of the value 1

2 for the thresh-
old, the accuracy achieved when graph–based features are not added to
the dataset (plot on the left) is equal to 91% when the entire set ofD = 152

is considered, while it is equal to 92% when the first D̃ = 20 ranked fea-
tures are taken in consideration. Regarding the result achieved when the
graph–based features are considered, the accuracy is equal to 91% when
the entire set of D = 158 is used, while it is equal to 94% when the first
D̃ = 20 ranked features are considered. Note that, by an inspection of the
ROC curves, it is possible to set a value of the threshold different from
the one considered by default by the SVM (i.e., 1

2 ), that leads to a higher
accuracy. Nevertheless, since we are interested in an automatic classifi-
cation procedure, we prefer to maintain the threshold equal to 1

2 for the
computation of the final accuracy. In this way, the method is as general
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Figure 37: Comparison between the ROC curves obtained when the entire
set of features is considered (blue curve) and when only a subset with the
first 20 ranked features is used (green curve). On the left the results without
using graph–based features, on the right the curves obtained when graph–
based features are added to the dataset.

and automatic as possible.

Figure 38 shows the frequency of the first 40 features extracted by the
ranking procedure in the 13 binary problems “one disorder versus all”
and “one disorder versus another” (whose results are reported in Tables
9 and 12, respectively) when graph–based features are not taken in con-
sideration. In dark are highlighted the most used features, i.e., those
appearing among the first 40 ranked features in at least 10 binary prob-
lems over the 13 total. Specifically, they are: Magnetic Resonance Parkin-
sonism Index (MRPI), MD Middle Cerebellar Peduncle (MCP) right (R),
MD cerebellar White Matter (WM), MD pre–frontal WM left(L), MD pre–
frontal WM R, MD Posterior Fossa (PF) (25◦ percentile), MD Posterior
Fossa (PF) (50◦ percentile), MD cerebellar hemisphere R (25◦ percentile),
MD cerebellar hemisphere R (50◦ percentile), MD cerebellar hemisphere
L (50◦ percentile), MD cerebellar hemispheres R+L and cerebellum vol-
ume. Note that, 43 features over a total of 152 are never listed in the first
40 features, suggesting their negligible importance in the specific classi-
fication problem.

From the results obtained, we notice that the best accuracy (the one
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Figure 38: Frequency of the first 40 ranked features in the 13 binary classifi-
cation problems “one disorder vs another” and “one disorder vs all”.

reported in Tables 9 and 12 for the binary classification problems, and in
Tables 18 and 19 for the multi–class classification scenarios) in most of the
cases is achieved when only a small subset of features is considered. Con-
sidering the binary classification scenarios, when graph–based features
are not added to the dataset, only two problems need the entire set of
features, i.e., the “MSA–P vs PSP” and the “MSA vs all” problems, while
5 binary classification problems achieve the best accuracy only with the
first 10 ranked features, 2 problems need 20 features, 2 the first 30 and the
remaining 2 binary problems achieve the best accuracy when the first 40

ranked features are considered. When graph–based features are taken in
consideration, instead, only the classification problem “MSA–P vs PSP”
needs the entire set of features to reach the best accuracy. In 4 binary
classification problems the best accuracy is achieved by considering only
the first 10 features, whereas 20 features are used in 2 problems, and 30

in other 6 situations.

A selection of the results achieved by the SMVs by both considering
and not considering graph–based features varying the number of fea-
tures selected by the ranking procedure is shown in Table 8.
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Table 8: Accuracy in the binary classification problem “PD vs another”
varying the dimension of the set of features considered.

PD vs PSP PD vs MSA–C PD vs MSA–P PD vs MSA
# features No graph Graph No graph Graph No graph Graph No graph Graph

10 96% 99% 96% 96% 91% 91% 88% 94%
20 96% 99% 98% 98% 89% 93% 92% 94%
30 94% 96% 98% 100% 89% 93% 92% 95%
40 94% 94% 98% 100% 91% 93% 92% 94%
all 94% 99% 98% 98% 87% 87% 91% 91%

Secondly, we report the accuracy, sensitivity (TP rate) and specificity
(TN rate) (154) of each type of binary classification problem considered.
In particular, as previously mentioned, we first study each type of sce-
nario by considering the entire set of features and then we perform the
same study considering a dataset made of only the first D̃ = 10, 20, 30 or
40 first ranked features. We decide not to consider datasets with a num-
ber of features more than 40 because we consider at most 40 features to
be a good compromise between keeping the dimension of the problem
relatively small and obtaining a good accuracy. The results reported in
Tables 9 and 12 are the best among all these possibilities, according to the
LOOCV procedure described above. In addition, to better investigate the
results achieved with the other values of the parameter C, we also report
the mean and standard deviation of the accuracies of each type of binary
classification problem related to every value of C. In particular, Tables
10 and 13 report the results when graph–based features are not consid-
ered. While Tables 11 and 14 show the mean and standard deviation of
the accuracies overall the entire set of values of the parameter C when
graph–based features are taken in consideration. Note that, in this case,
the results reported correspond to the optimal value of k.

Table 9 reports the accuracy, sensitivity and specificity when SVMs
are used to discriminate between a disorder “positive class” and all the
other disorders grouped in a single class “negative class”. Column on
the left reports the results when the classifier is applied on the MR mark-
ers alone, while the right column reports the results achieved by adding
graph-based features to the dataset.

Table 12 reports the results of the binary classification problems “one
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Table 9: Accuracy, sensitivity and specificity of SVMs in binary classifica-
tion problems “one disorder vs all”. Left column: results obtained without
graph-based features; right column: results obtained by using graphs to ex-
tract more features to provide to the classifiers. The stars specify when a
statistically significant improvement is obtained when using graph–based
features.

No graph Graph
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

PD vs all 87% 90% 84% 94% 94% 95%
PSP vs all 98% 91% 100% 98% 91% 100%

MSA–C vs all 95% 67% 99% 98% 89% 99%
MSA–P vs all∗ 92% 0% 100% 98% 71% 100%

MSA vs all∗ 94% 56% 100% 98% 88% 100%

Table 10: Mean and standard deviation over the entire set of values of the
regularization parameter C of the accuracies of the binary problems “one
disorder vs all”. Graph–based features are not considered.

PD vs all PSP vs all MSA–C vs all MSA–P vs all MSA vs all

Accuracy 86%± 0.7% 97%± 0.4% 95%± 0.7% 92%± 0% 91%± 1%

Table 11: Mean and standard deviation over the entire set of values of the
regularization parameter C of the accuracies of the binary problems “one
disorder vs all”. Graph–based features are added to the original dataset.

PD vs all PSP vs all MSA–C vs all MSA–P vs all MSA vs all

Accuracy 92%± 3% 96%± 0.8% 96%± 1% 96%± 1% 96%± 1%
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Table 12: Accuracy, sensitivity and specificity of SVMs in binary classifica-
tion problems “one disorder vs another”. Left column: results obtained
without graph-based features; right column: results obtained by using
graphs to extract more features to provide to the classifiers. The stars specify
when a statistically significant improvement is obtained when using graph–
based features.

No graph Graph

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

PD vs PSP 96% 99% 91% 99% 98% 100%

PD vs MSA–C 98% 100% 89% 100% 100% 100%

PD vs MSA–P∗ 91% 98% 43% 93% 98% 57%

PD vs MSA∗ 92% 100% 69% 95% 100% 81%

PSP vs MSA–C 100% 100% 100% 100% 100% 100%

PSP vs MSA–P 97% 100% 86% 97% 100% 86%

PSP vs MSA 97% 100% 94% 97% 100% 94%

MSA–C vs MSA–P 94% 100% 86% 94% 100% 86%

Table 13: Mean and standard deviation over the entire set of values of the
regularization parameter C of the accuracies of the binary problems “one
disorder vs another”. Graph–based features are not considered.

PD vs PSP PD vs MSA–C PD vs MSA–P PD vs MSA PSP vs MSA–C

Accuracy 95%± 0.8% 95%± 1% 89%± 0.7% 90%± 2% 97%± 1%

PSP vs MSA–P PSP vs MSA MSA–C vs MSA–p

Accuracy 96%± 0.5% 95%± 1% 73%± 7%

disorder vs another”. Again the SVMs are applied both to the original
dataset (column on the left) and on a dataset increased of 6 features ex-
tracted from the graph built on the dataset of each type of problem con-
sidered (column on the right).

As previously mentioned, the LOOCV procedure is performed in all
the situations studied (both binary and multi–class classification prob-
lems) in order to determine the values for the regularization parameter
C and the number of neighbors k used to build the graph. We report in
Table 15 the optimal number k used to build the graph and subsequently
to extract additional features in the binary problems “one disorder vs an-
other”, while Table 16 shows the optimal values for k used to achieve the
best accuracy in the binary problems “one disorder vs all”. Finally, the
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Table 14: Mean and standard deviation over the entire set of values of
the regularization parameter C of the accuracies of the binary problems
“one disorder vs another”. Graph–based features are added to the origi-
nal dataset.

PD vs PSP PD vs MSA–C PD vs MSA–P PD vs MSA PSP vs MSA–C

Accuracy 97%± 1% 98%± 0.4% 90%± 2% 95%± 1% 97%± 1%

PSP vs MSA–P PSP vs MSA MSA–C vs MSA–P

Accuracy 96%± 1% 95%± 1% 6%± 7%

Table 15: Optimal number of k nearest neighbors and features, with the
corresponding best accuracy, for the binary problems “one disorder vs an-
other”.

Accuracy k # features
PD vs PSP 99% 40 10

PD vs MSA–C 100% 30 30
PD vs MSA–P 94% 15 30

PD vs MS 95% 30 30
PSP vs MSA–C 100% 5 / 10 10
PSP vs MSA–P 97% 10 158

PSP vs MSA 97% 10 / 15 / 20 10 / 20
MSA–C vs MSA–P 94% 30 15

optimal value for k in the multi–class classification problems are reported
in Table 17. We also provide the number of features (right column) con-
sidered to achieve the best accuracy, that is, again, reported in the first
column of the Tables. Note that in some situations, such as in the “PSP
vs MSA” problem or in the “PSP vs all” binary classification problem,
more than one value for k are indicated. In fact, it happens that in many
cases, different values for k lead to the best result; we decide to report
only some examples together with the optimal number of features.

Concerning the multi–class classification scenario, the results are re-
ported by means of a confusion matrix in Tables 18 and 19. In particular,
Table 18 refers to the case where graph–based features are not added to
the dataset. The table on the left reports the results in the 4–class clas-
sification problem, when all the parkinsonian disorders are considered
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Table 16: Optimal number of k nearest neighbors and features, with the
corresponding best accuracy, for the binary problems “one disorder vs all”.

Accuracy k # features

PD vs all 94% 30 30
PSP vs all 98% 20 / 35 40 / 30

MSA–C vs all 98% 30 / 35 30 / 20
MSA–P vs all 98% 40 10

MSA vs all 98% 30 / 35 30 / 20

Table 17: Optimal number of k nearest neighbors and features, with the cor-
responding best accuracy, for the two multi–class classification problems.

Accuracy k # features
4–classes 88% 60 40
3–classes 94% 35 20

as a single class, while the table on the right shows the results of the 3–
class classification problem, when MSA–C and MSA–P are grouped in
one class, the MSA class. On the other hand, Table 19 reports the results
achieved when the 6 graph–based features are added. In particular, the
accuracy of the classifier in the 4–class classification problem is, in both
the situations, with and without the graph–based features, equal to 88%

and it is achieved when the first 40 ranked features are considered. Con-
cerning the 3–class classification problem, without adding features from
the graph, an accuracy of 91% is obtained with a dataset of 40 features,
while the best accuracy achieved when graph–based features are added
is obtained with the first 20 ranked feaures and it is equal to 94%.

6.5.2 Discussion and Conclusions

The proposed pattern recognition analysis has been revealed to be ex-
tremely suitable for the type of classification problem considered. First
of all our results allow to conclude that SVMs applied to the original
dataset made of the MR markers provided by the clinicians are able to
achieve satisfactory results in all the binary classification problems con-
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Table 18: Confusion matrices: on the left the 4–class classification problem,
on the right the 3–class classification problem. Graphs are not used to ex-
tract additional features.

Predicted
MSA–C MSA–P PSP PD

MSA–C 8 0 0 1
MSA–P 1 1 0 5

PSP 0 0 20 2

A
ct

ua
l

PD 0 0 1 47

Predicted
MSA PSP PD

MSA 11 0 5
PSP 0 20 2

A
ct

ua
l

PD 0 1 47

Table 19: Confusion matrices: on the left 4–class classification problem,
on the right the 3–class classification problem. Graph–based features are
added.

Predicted
MSA–C MSA–P PSP PD

MSA–C 8 0 0 1
MSA–P 1 1 0 5

PSP 0 0 20 2

A
ct

ua
l

PD 0 0 1 47

Predicted
MSA PSP PD

MSA 14 0 2
PSP 0 20 2

A
ct

ua
l

PD 0 1 47

sidered. Satisfactory results are even obtained by the combination of R
two–classes 1–vs all classifiers for the multi–class classification problems.
In particular, we observed that our results are in line (in terms of results
and accuracies achieved) with the previous works that consider binary
classification problems of parkinsonian disorders, such as (139), (140)
and (141). In fact, (140) applied an SVM approach to brain MR structural
and resting state fMRI data obtained from 19 PD patients and 27 normal
volunteers finding an accuracy of 86.96% in correctly discriminating the
two conditions. In (141), the authors applied the same method to DTI
data analyzed with a Tract Based Spatial Statistics (TBSS) pipeline from
17 PD patients and 23 with other forms of parkinsonism. They found
that an SVM including 100 features discriminated PD patients at an in-
dividual level with high accuracy (97.5%). Finally, in (139) a single–class
SVM classification was applied to structural T1–w and DTI images ob-
tained from 21 PSP and 57 PD patients, finding an accuracy of 100% by
using the WM atrophy at each voxel as predictor.

At the same time, concerning the multi–class classification scenario,
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we achieved results in line with (143) where an accuracy equal to 84.5%

in the 4–class classification problem was obtained, while, concerning the
3–class classification problem, an accuracy of 91.7% was achieved. In ad-
dition, comparing the results obtained without adding graph–based fea-
tures to the ones achieved in (144), where we considered a subset of the
dataset used for this work, the results improve in 7 situations, the accu-
racy remains the same in 3 problems, while it decreases in 3 classification
scenarios. When graph–based features are added, additional improve-
ments with respect to the results achieved in (144) are obtained, since the
accuracy remain the same in 3 problems, while it increases in the remain-
ing 10 binary classification scenarios. Regarding the present work, when
graph–based features are extracted from the original dataset, in 8 binary
problems out of 13, the accuracy, thus the sensitivity and specificity, im-
prove with respect to the results obtained when graph–based features
are not considered. In particular in 4 cases the improvement is statisti-
cally significant (we evaluated the results by computing the Area Under
the Curve of the ROC built on the results achieved when only the MR
markers are provided to the classifier and when graph–based features
are added, following the procedure developed in (155)). The statistically
significant improvements are indicated with a ∗ in Tables 9 and 12. Con-
cerning the multi–class classification problems, adding graph–based fea-
tures to the MR markers led to improvements in the 3–class classification
scenario. In addition, compared to the multi–class classification prob-
lems studied in (144), the results obtained in the present work improve
in both the scenarios with and without graph–based features.

To our knowledge, the application of a graph in extracting additional
features from a dataset represents a novel approach in this particular
medical problem. We realized that information coming from a graph
can be useful to better identify and highlight the connections and simi-
larities between patients with the same disorder. Thus, in a classification
problem, adding features that can help the machine learning method to
identify samples belonging to the same class and better discriminate be-
tween samples belonging to different classes is extremely useful.

Concerning the feature selection algorithm the results show that in
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most of the situations the best accuracy is achieved when only a small
subset of features is provided to the classifier. In particular, when graph–
based features are not taken in consideration, the most frequent MR mark-
ers extracted by the ranking procedure coincide with the ones mostly
used by the clinicians in this kind of diagnosis. The results reported
in Table 8 and in Figure 37 show that, in general, 10 or 20 features are
enough to achieve the same or even better results than the ones obtained
with the entire set of features. One of the most meaningful feature is,
for instance, the MRPI which is considered even in (156) to be a reliable
imaging measure in differentiating PSP from PD and controls subjects.
These additional results related to the study of the most meaningful set
of features confirm the previous results achieved in (144), where simi-
lar conclusions were obtained concerning the choice of the best features
in discriminating the different disorders. When graph–based features
are added to the dataset, the features ranking algorithm always places
the betweenness centrality in the first positions of the ranking. In ad-
dition, for the situations in which graph–based features improve the re-
sults, except for the binary problems “MSA–P vs all” and “MSA vs all” in
which the betweenness centrality is enough to improve the results, also
the closeness centrality is selected and places in the first positions of the
ranking. Finally, for the binary problems “PD vs all” and “PD vs PSP”,
even the degree is selected as one of the most meaningful features.
For what concerns future works, we first intend to apply the method
developed to a larger dataset in order to test the machine learning tech-
nique on and independent evaluation test set. In addition, we believe
that additional improvements could be obtained extending the current
construction of the graph, in order to extract additional features. We
first intend to consider different methods to build the graph by comput-
ing, for instance, different distances between the data points or evaluat-
ing correlation measures. At the same time, instead of considering all
the MR markers, it would be possible to build the graph characterizing
each single node by only a subset of features (maybe extracted before the
computation of the graph by the ranking procedure). Finally, it could
be interesting to improve the method of construction of the graph when
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additional data are added to the dataset. In the current implementation,
the graph is built at the beginning of the learning process using the entire
dataset; thus, if two independent sets are provided, one for the training
phase and the other for the test, we need to compute the graph–based
features of all the data before training the classifier. As a future improve-
ment, we could define a learning process where the graph is computed
at the beginning on the training set only, and then, once the classifier
is trained, a new test data can be “attached” to the graph built on the
training set computing its graph–based features. In this way, we would
prevent the learning process to either build the graph “a–priori” on the
entire dataset, using both training and test data, or to compute it again
when a data is added.

6.6 Summary

In this chapter we again applied graphs in a machine learning con-
text. Graphs were used in a sort of pre–processing step and not as part
of the algorithm considered (such as in the application of the Laplacian
SVM described in the previous chapter). We modeled the dataset by
means of a graph with the aim of extracting useful information to add
to the original features of the samples in the dataset. Graphs have been
revealed to be particularly suitable for this kind of application; various
improvements were obtained.

The potentialities of graphs were studied in two different types of
applications of machine learning techniques. The first one (studied and
discussed in Chapter 5) revealed that graphs are extremely useful in a
semi–supervised learning context, making it possible to exploit addi-
tional information from the unlabeled samples. The second one, instead,
highlighted the capabilities of graphs in mining a dataset, by extracting
additional information able to improve the classification performances of
a learning technique applied to the original dataset without using graph–
based techniques.
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7
Conclusions

7.1 Concluding remarks

Graphs are extremely useful in representing and modeling data and
the interactions between the different entities. They are applied in differ-
ent contexts, varying from the study of the interactions between differ-
ent entities in a physical/chemical system, to the study of the behavior
and the dynamics of a group of agents that exchange information and
opinions among each other. At the same time, a graph built on a certain
dataset highlights the similarities and dissimilarities between the pairs of
data, providing additional knowledge and information about the struc-
ture of a specific dataset and additional features of the data.

In Chapter 2, we have provided a brief description of graphs intro-
ducing the fundamental notions about graph–based features and their
spectral properties used and discussed in the following chapters. In par-
ticular, we have studied graphs in two different contexts. The first one is
the consensus problem, which concerns the study of the spectral proper-
ties of graphs in order to understand and model the dynamics of a group
of agents that exchange their opinions, with the aim of reaching at a cer-
tain time a common opinion. The problem has been discussed in Chap-
ters 3 and 4, where we have studied methods able to increase the conver-
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gence rate to the consensus state. In particular, in Chapter 3 we focused
on the topology of the network of agents with the aim of determining
a solution able to provide a fast convergence rate to the consensus state
keeping the network as sparse as possible. This type of study reveals ex-
tremely useful in real situations characterized by huge networks with a
high cost of communication between the different agents. Thus, provid-
ing a solution able, at the same time, to keep the rate of convergence to
the consensus state relatively fast and to reduce the number of intercon-
nections (hence, the communication cost) between the different agents is
extremely useful. In Chapter 4, instead, we mainly focused on the con-
vergence rate to the consensus state developing a method able to divide
the original graph in different subgraphs (groups of agents) where their
own consensus state is usually reached faster. We thus developed a sort
of hierarchical method studying the spectral properties of the graph and
the Cheeger’s inequality obtaining satisfactory results. In almost all the
examples presented, our method outperformed the classical consensus
algorithm applied to the original network.

In the third part of the thesis we studied the capabilities of graphs
in the machine learning context, applying them in two different classi-
fication problems. In Chapter 5 we first continued to study the spec-
tral properties of graphs applying a semi–supervised learning technique
for the classification of flood–prone areas. In this context, we exploited
the potentialities of graphs in modeling a dataset, thus its similarities
and dissimilarities, with the aim of extracting useful information from
unlabeled samples. In the classification problem studied, the method
adopted reveals promising since better results than the ones obtained by
a supervised model were achieved. Finally, the potentialities and versa-
tility of graphs were applied in another machine learning problem. More
precisely, in Chapter 6 we modeled through a graph a dataset made of
patients with different forms of Parkinsonisms, with the aim of extracting
additional features able to provide useful information for the classifica-
tion of the patients. In most of the situations studied the accuracy ach-
ieved adding graph–based features to the original dataset outperformed
the one obtained without adding the features extracted from the graph.

165



In the thesis, the capabilities of graphs in studying and modeling
different problems were evaluated, ranging from the study of dynami-
cal systems to classification problems. Spectral properties of graphs re-
vealed fundamental in the analysis of a system dynamics and in the ap-
plication of a semi–supervised learning method in a classification con-
text. At the same time, graphs where applied again in a classification
problem with the aim of computing additional features from the dataset.
These features revealed to be extremely useful to improve the results ob-
tained when graph–based features were not considered.

7.2 Future directions

Several research avenues remain open in both contexts studied and
discussed in the thesis. We have presented the consensus problem and
we have discussed (providing theoretical and practical examples) solu-
tions able to sparsify the original network keeping the convergence rate
to the consensus state as fast as possible. We have provided a valid ap-
proach able to increase the convergence rate to the consensus state divid-
ing the original network in many subgraphs. More detailed studies and
additional developments could be carried out. More specifically, con-
cerning the problem discussed in Chapter 3 it would be interesting to
apply techniques able to “approximate” an arbitrary graph by a sparse
one as discribed in (157; 158) and compare the results with the ones ach-
ieved by our method. At the same time it would be useful to apply our
method to networks derived from real situations, in particular in social
contexts with individuals which interact and exchange opinions.

Concerning the hierarchical method developed in Chapter 4, we first
intend to improve the methods developed to automatically determine
sufficiently “dense” subgraphs from an original graph G. It is necessary
to better study the antenna effect and to improve the choice of the supern-
odes when the nearest supernode approach is applied during the 1st phase of
the hierarchical method. At the same time, as a future development, we
intend to apply it to networks modeling real situations in order to better
understand how the individuals cluster, and to automatically determine
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subsets of agents with “similar” opinions.

When graphs are applied in a machine learning context, we intend to
further study the application of graphs in modeling a dataset of a clas-
sification problem with the aim of extracting additional information not
previously provided. This “preprocessing” step, for instance, could be
applied even in the semi–supervised learning problem studied in Chap-
ter 5, trying to achieve better results than the ones already obtained by
the Laplacian SVM. In this way we expect, in fact, to obtain additional
knowledge about the similarities and dissimilarities of the samples, which
could be useful to discriminate between samples belonging to one or the
other class.

In addition, we intend to develop a spectral study of the graph built
on the dataset studied in Chapter 6. More precisely, starting from the
graph modeling the original dataset, the idea is to evaluate the spectral
properties of a subgraph with nodes belonging to only one class, and to
study how they change if a node belonging to another class is added. Our
hypothesis is that the spectral properties of subgraphs made by nodes be-
longing to only one class should be “better” (i.e., the graph is expected
to be better clusterizable, or equivalently, the second smallest eigenvalue
of the laplacian matrix should be relatively high) than the ones related
to a subgraph with nodes representing samples belonging to different
classes. In a sense, this is also related to the techniques used to study
the consensus problem, since they have also the aim of obtaining “good”
spectral properties of graph. Thus, the evaluation of the rate of change of
the spectral properties of the subgraphs could be useful to better classify
the data in the different classes. Note that for this kind of study it is nec-
essary to “normalize” and adequately compare the subgraphs extracted
(159; 160), since the spectral properties depend also on the dimension of
the subgraphs themselves, as the studies carried out in Chapter 4 show.

Interesting and promising methods have been investigated in this
work varying from the study of dynamical systems to machine learn-
ing problems. We have provided original studies and we have obtained
positive results in the study of the consensus problem. At the same time
we have applied a semi–supervised learning technique to a classification
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problem with satisfactory results and we have added an original graph–
based study to a second classification problem. Several developments
and future studies remain open in both the situations considered and
we believe that future improvements can be even obtained by applying
techniques derived from the study of dynamical systems to a classifica-
tion context.
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A
Support Vector Machines

Let a set made of a finite number l of labeled training data {(xi, yi), i =

1, . . . , l} be given, with xi ∈ Rm and yi ∈ {−1, 1}. Here, the label −1 is
used to denote the “negative” class, while +1 is the “positive” class label.
Given a regularization parameter γA > 0 and a suitable function space
HK , more precisely, a reproducing kernel Hilbert space (14), the (binary)
Support Vector Machine (SVM) training problem consists in searching
for a classifier f∗ that solves the following optimization problem: find

min
f∈HK

(1

l

l∑
i=1

(1− yif(xi))+ + γA ‖f‖2HK
)
. (A.1)

By ‖.‖2HK we denote the square of the norm in the reproducing kernel
Hilbert spaceHK , and (1−yif(xi))+ is the so–called hinge–loss function,
which is defined as

(1− yif(xi))+ := max (0, 1− yif(xi)) (A.2)

The term 1
l

∑l
i=1(1 − yif(xi))+ in (A.1) penalizes the classification error

on the training set, whereas the term γA‖f‖2HK in (A.1) enforces a small
norm of the optimal solution f∗ in the reproducing kernel Hilbert space
HK (i.e., typically, high smoothness for f∗). Given a (possibly unseen)
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data point x ∈ Rm, the optimal classifier f∗ assigns to x the label +1 if
f∗(x) ≥ 0, otherwise it assigns to x the label −1.

The optimization problem (A.1) can be rewritten in the following
way: find

min
f∈HK ,ξi∈R

(1

l

l∑
i=1

ξi + γA‖f‖2Hk
)

subject to yif(xi) ≥ 1− ξi, for i = 1, . . . , l ,

ξi ≥ 0, for i = 1, . . . , l .

(A.3)

We denote by K : Rm × Rm → R the (uniquely determined) kernel
function associated with the reproducing kernel Hilbert space HK (14).
The optimal solution f∗ of the optimization problem (A.3) is provided
by the Representer Theorem (14) in the following form:

f∗(x) =

l∑
i=1

α∗iK(x, xi), (A.4)

where the optimal coefficients α∗i ∈ R. Therefore, solving the optimiza-
tion problem (A.3) is reduced to determining the finite–dimensional coef-
ficients α∗i that minimize its objective, when the function f is constrained
to have the form (A.4). For a reproducing kernel Hilbert space HK , the
kernel K has often a simple expression. This is the case, e.g., of the linear
kernel

K(x, y) := 〈x, y〉Rm , (A.5)

and of the Gaussian kernel

K(x, y) := exp−
‖x−y‖2Rm

2σ2 , (A.6)

where σ > 0 is a fixed width parameter. It often happens that only a
small subset of the coefficients α∗i (with respect to their total number l)
is different from 0; the input data points xi associated with non–zero α∗i
are called support vectors. In practice, a binary SVM classifier can be in-
terpreted as a binary linear classifier in a (possibly infinite–dimensional)
auxiliary feature space associated with the reproducing kernel Hilbert

170



space HK . The mapping between the original feature space Rm and the
auxiliary feature space is typically nonlinear. A binary SVM classifier of-
ten allows one to separate data points that are not linearly separable in
the original feature space.

171



B
Laplacian Support Vector Machines

Let us assume that a set made of a finite number l of labeled train-
ing data {(xi, yi), i = 1, , l}, with xi ∈ Rm and yi ∈ {−1, 1} is available.
We also assume the presence of a second set made of a finite number u
of unlabeled training data {xj , j = l + 1, , l + u}, with xj ∈ Rm. HK

denotes a reproducing kernel Hilbert space, whereas γA > 0 is a regular-
ization parameter. We also assume that a second regularization parame-
ter γI > 0 is given. With these premises, the (binary) Laplacian Support
Vector Machine (LapSVM) (110) extends the SVM formulation described
in Appendix A by solving the following optimization problem (which is
inspired by the principle of manifold regularization, see Section 5.2.1):
find

min
f∈HK

(1

l

l∑
i=1

(1− yif(xi))+ + γA ‖f‖2HK +
γI

(u+ l)2
fTLf

)
(B.1)

where f := [f(x1), . . . , f(xl+u)]]
T , and L ∈ R(l+u)×(l+u) is the graph

Laplacian matrix defined as L := D − W . W denotes the symmetric
weighted adjacency matrix, and D is the degree matrix. Likewise in Ap-
pendix A, the goal of the term 1

l

∑l
i=1(1 − yif(xi))+ in formula (B.1) is

to penalize the classification error on the training set, whereas the term
γA‖f‖2HK in (B.1) enforces a small norm of the optimal solution f∗ in the

172



reproducing kernel Hilbert space HK (i.e., typically, high smoothness for
f∗). Finally, the term γI

(u+l)2 fTLf enforces smoothness of the optimal so-
lution f∗ also with respect to the graph approximation of the Riemannian
manifold. The expression of the optimal solution f∗ of problem (B.1) fol-
lows again from another form of the Representer Theorem, and it is given
by

f∗(x) :=

l+u∑
i=1

α∗iK(x, xi), (B.2)

for suitable optimal coefficients α∗i ∈ R. Again, solving the optimization
problem (B.1) is reduced to determine the finite–dimensional coefficients
α∗i that minimize its objective, when the function f has the form (B.2).
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C
Additional studies of the Cheeger’s

inequality

In this appendix we further study the bounds on the second–smallest
eigenvalue of the Laplacian matrix of particular examples of graphs. We
thus continue the study presented in Section 4.6.1 in order to better un-
derstand possible situations that can arise when an original graph is di-
vided in several subgraphs.

Like in Section 4.6.1 we are not interested in evaluating all the possi-
ble cuts that divide the original graph G in two disjoint subgraphs; we
intend to consider only the cuts that partition G in two connected sub-
graphs. Thus, in the following studies we will provide upper bounds on
the second–smallest eigenvalue of the Laplacian matrix considering only
connected subgraphs.

Proposition 13. Let G = (V,E) be a chain graph with |V | = N and let the
transition probability matrix P associated to G computed following the proce-
dure described in Section 4.2.1. Then, the larger the dimension of the graph, i.e.,
N , the smaller the Cheeger’s upper bound on the second–smallest eigenvalue ξ1
of the normalized Laplacian matrix associated to G.

Proof. For the sake of simplicity, we investigate a chain with an even
number of nodes N . The procedure followed to compute P associates
a weight w to every edge of the chain, a self–loop with weight equal to
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Figure 39: Chain graph with 6 nodes.

1−w for the extremity nodes, and self–loops with weight equal to 1−2w
to each “internal” node (like the graph in Figure 39). In this case, the
minimum among all the possible cuts is obtained cutting the chain in
the middle, obtaining two subgraphs with the same number of nodes N

2
1. The Cheeger’s constant is then bounded from above as Φ(G) ≤ 2

Nw.
Thus, an upper bound on the second–smallest eigenvalue of the Lapla-
cian is given by:

ξ1 ≤
4w

N
.

Being w constant (note that w cannot be larger than 1), it follows that
the larger the dimension of the graph, i.e., the larger the value of N , the
smaller the upper bound on ξ1.

Remark 11. Let G = (V,E) be a chain graph with |V | = N . Now, let us con-
sider a transition probability matrix P without self–loops assigned to the “inter-
nal” nodes. Then, the larger the dimension of the graph, i.e., N , the smaller the
Cheeger’s upper bound on the second–smallest eigenvalue ξ1 of the normalized
Laplacian matrix associated to G.

1For an odd value of N , two cuts provide the minimum among all the possible cuts.
They are the ones that divide the chain in one subgraph with N+1

2
− 1 nodes and the other

with N
2

nodes.
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If no self–loops are assigned to the “internal nodes”, then a weight
w = 1

2 is associated to the “internal” edges. In this particular situation,
an upper bound on the ξ1 is the following:

ξ1 ≤
2

N
.

Again the upper bound on the Cheeger’s constant depends on the value
of N and the larger N the smaller the upper bound on ξ1.

Proposition 14. Let G = (V,E) be a graph made of two complete graphs
G1 = (V1, E1) and G2 = (V2, E2) with |V1| = |V2| = N , connected by an
edge. Let P the associated transition probability matrix computed following
the procedure described in Section 4.2.1; then, the larger the value of N , the
smaller the Cheeger’s upper bound on the second–smallest eigenvalue ξ1 of the
normalized Laplacian matrix associated to G.

Figure 40: Two complete graphs connected by an edge.

Proof. We first consider a simple example with N = 4 (Figure 40). The
entries of matrix P present a value equal to w for each non self–loop
edge, while to the self–loops it is associated a value 1 − wdi, with di the
degree of the corresponding node. Limiting to connected subgraphs, the
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cut that achieves the minimum in the definition of the Cheeger’s constant
is the one shown in Figure 40 that divides G in the two complete graphs,
with Φ(G) = w

N , where N = 4. An upper bound on the second–smallest
eigenvalue of the Laplacian matrix is then given by:

ξ1 ≤
w

2
.

The smaller w the smaller the upper bound on ξ1.
Again, if we consider a generic value for N , with the same proce-

dure adopted to compute P , limiting to connected subgraphs, the cut
that achieves the minimum in the definition of the Cheeger’s constant is
again the one that divides G in the two complete graphs. In particular,
an upper bound on ξ1 is the following:

ξ1 ≤ 2
w

N
.

Since w < 1
N , again it follows that the larger the value of N the smaller

the upper bound on ξ1.

In the following, we better analyze the different cuts we considered in
the example with two complete graphs connected by an edge and N = 4

to compute an upper bound on the Cheeger’s constant. We aim at show-
ing that the cut that minimizes the ratio on the right–hand side of For-
mula (2.6), when one limits to consider connected subgraphs, is exactly
the one reported in Figure 40. Figure 41 shows the admissible cuts that
divide the original graph G in two connected subgraphs when N = 4.
Denoting with S a generic subset of nodes of the original graph, we com-
pute

Φ(S) =
|∂(S)|

min{vol(S), vol(V \ S)}
for every choice of S ⊂ V and then we determine the minimum among
all the subsets S such that both S and V \ S are connected. The transi-
tion probability matrix P is again computed following the procedure de-
scribed in Section 4.2.1, assigning a weight w to the non self–loop edges.
Denoting with S1 (and respectively V \ S1) the subsets obtained parti-
tioning G by means of cut1 (see Figure 41), and equivalently with S2 and
V \ S2, S3 and V \ S3, S4 and V \ S4 the other sets obtained by the other
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Figure 41: All the possible cuts that divide two complete graphs connected
by an edge in two connected subgraphs.

cuts we have: Φ(S1) = w
N , Φ(S2) = (N−1)w

N−1 = w, Φ(S3) = 2(N−2)w
N−2 = 2w,

and Φ(S4) = (N − 1)w. Where N in this particular example is equal to
4. Then, the smallest value of Φ(S) is obtained by dividing G in the two
complete graphs with N = 4 nodes each. This argument can be general-
ized for every value of N .
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