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Abstract

This thesis addresses the problem of designing short-term fo-
recasting models for water demand time series presenting
nonlinear behaviour difficult to be fitted with single linear
models. These behaviours can be identified and classified
to build specialised models for performing local predictions
given an estimated operational regime. Each behavior class is
seen as a forecasting operation mode that activates a forecas-
ting model. For this purpose we developed a general modu-
lar framework with three different implementations: An im-
plementation of a Multi-Model predictor that works with Ma-
chine Learning regressors, clustering algorithms, classifica-
tion, and function approximations with the objective of pro-
ducing accurate forecasts for short horizons. The second and
third implementations are hybrid algorithms that use qual-
itative and quantitative information from time series. The
quantitative component contains the aggregated magnitude
of each period of time and the qualitative component con-
tains the patterns associated with modes. For the qualitative
component we used a low order Seasonal ARIMA model and
for the qualitative component a k-Nearest Neighbours that
predicts the next pattern used to distribute the aggregated
magnitude given by the Seasonal ARIMA. The third imple-
mentation is based on the same architecture, assuming the
existence of an accurate activity calendar with a sequence of
working and rest days, related to the forecast patterns. This
scheme is extended with a nonlinear filter module for the pre-
diction of pattern mismatches.

xviii



Chapter 1

Introduction

In areas like natural sciences, economics or engineering it is necessary,
for specific purposes, to monitor or observe the dynamics of certain phe-
nomena that is related to the field of study. The weather dynamics, in-
dustrial process, the fluctuation of the stock market are just some exam-
ples where the understanding of the dynamics is relevant. For example,
the study of the environment dynamics in natural sciences is useful for
the implementation of policies to preserve ecosystems, optimise the use
of natural resources and improve the quality of life by modelling the dy-
namics of the urban sprawl.

The prediction of the stock market in economics is vital for making
better decisions about the actions that can be taken by the investors, and
the study of model identification with the objective of constructing a mo-
del that behaves similarly to the real process for control. There are exam-
ples where the observation and modelling of the dynamics of the system
is relevant, and a subset of them are related directly to the study of time
series.

Time series are presented explicitly or implicitly in every day life. A
time series is defined as a sequence of data measurements chronologi-
cally ordered with certain frequency. This data might come from differ-
ent sources related to the studied discipline; these data may come from
human activity, wind dynamics, and mathematics, among others. These
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disciplines follow different ends but they share in common the problem:
the modelling of the dynamical system that fits better with the observed
data able to produce or simulate such information. One of the most ac-
tive research for these purposes is system modelling for prediction.

The study of the analysis of time series was born with the need to un-
derstand the dynamics of the data fluctuation generated by an unknown
system. Dynamics are seen as changes of values along time of certain
variable of study. These fluctuations might represent different kinds of
data, depending on the application field.

The observed data is generated by a known or unknown model. When
the model is unknown, a general dynamical model is constructed from
previous analysis of the data.

A general classification of the models used for forecasting can be done
according to the linear nature of their structure. The classification accord-
ing to this criterion is:

• Linear models: Explain the relation between the variables by means
of linear correlation.

• Nonlinear models: The relation between the variables are not ex-
plained by means of linear correlations. The modelling deals with
a nonlinear structure, present in piece-wise linear and nonlinear
models. The characteristics of these models are:

– Piece-wise linear models: Is a set of linear models that are
activated when certain conditions are satisfied.

– Piece-wise nonlinear models: Is a set of nonlinear models
that are activated when certain conditions are satisfied.

1.1 Problem Definition

Time series forecasting is performed by a regression function, which is a
model that receives a sequence of observations and returns a scalar or a
vector of real numbers. The regression function that predicts the value

2



in the next instant of time t + 1, given a sequence of values in Y′t is
expressed by Equation 1.1.

Ŷt+1 = F(A,Y
′

t) (1.1)

where F is the regression function, A = {a1, . . . , ak} are the parame-
ters of the model, Y

′

t is the input vector with m number of elements
Y
′

t = {Yt−m, . . . , Yt} and Ŷt+1 is the the prediction given by the regres-
sor F returning h steps ahead Ŷt+1 = {Ŷt+1, . . . , Ŷt+h}. The general ob-
jective function for fitting time series with a regressor model is given by
Equation 1.2.

min
{A}

n−h∑
t=m

||Ŷt+1 −Yt+1||2 (1.2)

where the regression function minimises the squared errors between the
output of the regressor F and the original data Yt+1 = {Yt+1, . . . , Yt+h}.

Time series are generated by dynamical systems from different sour-
ces, such as energy sources as wind (JQWS15), energy prices (XPX11),
(U.S14), human water demand, and water precipitation (Wat03) often
difficult to model and forecast with precision. According to the stationar-
ity and sampling theory usually systems present an intermittent change
of behavior (HA13) that implies a mismatch with the regression model.
This problem motivates the use of alternative regression methods and
combinations of them, depending on the nature of the system.

The problem to solve in this thesis is the design of a general frame-
work that incorporates multiple regression models that are selected to
be activated according to predefined rules. For this purpose, the data is
analysed and clustered in classes according to their common character-
istics to fit local models. The proposed model to study is given by the
piecewise Equation 1.3
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F(A,Y
′

t) =


f1(a1,Yt) if mode = 1

f2(a2,Y
′

t) if mode = 2
...
fk(ak,Y

′

t) if mode = k

(1.3)

where F(A,Y
′

t) is the multi-model that contains k independent local
models f1, . . . , fk. A is the set of the selector parameters for the mod-
els and it is defined as A = {a1, a2, . . . , ak} and Y

′

t is a vector with recent
measurements at time t. The objective of study is to build a multi-model
that fits complex dynamics of time series. The objective function for the
multi-model is described by Equation 1.4.

arg min
{A}

n−h∑
t=m

||F(A,Y
′

t)−Yt+1|| (1.4)

The selection of the modes of global modelling is a design problem for
the activation of different modes according to knowledge collected from
the observed data and a priori information. The developing of this global
modelling is related to the construction and exploitation of probabilistic
or deterministic rules that should be explored for finding a suitable mo-
del of this kind that estimates accurately the next operation mode.

1.2 Main Objective

The main objective is to find high performance drinking water demand
prediction models that provide accurate predictions in the short term.
The availability of an accurate and detailed prediction is a very impor-
tant part for making accurate decisions regarding the operation, control
and management of drinking water networks. An accurate model allows
minimising operational costs and wastewater without sacrificing quality
of service, delivering drinking water to the population. The problem is
addressed studying the identification and classification of different dy-
namic patterns found in drinking water demand time series for the de-
sign of local predictors that are integrated later in a global model.
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1.2.1 Particular Objectives

• To explore the integration of machine learning, data mining, and
statistical models such as neural networks, k-means clustering, and
Box-Jenkins models in Multi-Model predictors (MMP) and com-
pare their performance with classical forecasting methods such as
exponential smoothing and traditional neural networks for data re-
gression.

• To explore and validate with standard metrics the clustering of
time series to identify different behaviours and its decomposition
to simplify and improve the accuracy of the forecasting models.

• The exploration and design of global methodologies for the detec-
tion and activation of forecasting operation modes.

• Test and validate in the short term the Multi-Model Predictor ar-
chitecture with drinking water demand time series.

1.3 Justification

Time series analysis is an important discipline useful in the optimisation
of the exploitation of natural resources and renewable energy. The per-
formance of model forecasters impacts directly the operation costs since
an estimate of future information can be used to take optimal decisions
in the management of drinking water. For example, in the case of the
drinking water delivery, where special attention is required in the max-
imisation of the water availability and minimisation of the operational
costs for bringing safe drinking water to the population, it is important
to have certainty about the future requirement of this resource in differ-
ent terms (short and long term) to optimise its use.

The Primary Health Care in Alma-Ata declared in 1978 the safe water
as the most important resource for human health (Org93). The extrac-
tion, treatment, storage, and distribution of drinking water is a costly
and complex task usually bringing it from faraway places using pipe ne-
tworks connected to the urban population to distribute the consumption
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of this element (AS77). In the operational cost of the water production
are implied chemicals, legal canons, electricity costs. The transportation
of the drinking water also contributes to the electricity cost since the wa-
ter pumping stations require energy to operate, such as the Barcelona
drinking water delivery (BRRP11).

Optimising the management of the water network supply also avoids
the unnecessary expansion of the water network infrastructure and new
supplies (S+98). It also reduces withdrawals from limited freshwater
supplies, reducing at the same time the negative effect that produces the
exploitation of this resources on the natural environment.

To manage the water supply network efficiently several strategies
have been developed. One of them is Model Predictive Control (MPC)
(PRP+13), an optimisation-based control strategy applicable to a wide
range of industrial applications (YBH+12; OL94; OJ06). MPC provides
suitable techniques to compute optimal control strategies ahead in real
time for all the control elements of a water supply system. The accuracy
of MPC depends on the water distribution model and the accuracy of
the short term forecasting water demand. MPC solves the control prob-
lem each time step finding the best input control sequence several steps
ahead, applying just the first action of the sequence. Since the MPC uses
the prediction as reference for the optimal control, inaccurate predictions
increase statistically the operation cost. According to the study of Hip-
pert et al. in (HPS01) an increase of 1% in the error would imply to £10
million increase of operational cost.

Usually MPC is extended with a feedback mechanism that deals with
the system disturbances. This extension consists of solving the best input
sequence for a certain forecast horizon t+ 1, . . . , t+ h, and apply just the
solution of the next step t + 1. It is desired to apply this process each
time t in an environment with disturbances. The longer the horizon, the
better control performance is achieved. MPC applied to drinking wa-
ter networks has as main objective to reduce operational costs, related
to production, transportation and the maximisation of the quality of ser-
vice, delivering the water properly to the population. For this reason it
is important to make accurate water consumption predictions which will
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be used by MPC.

1.4 Thesis Organisation

The thesis is organised as follows: Chapter 2 addresses related work
to the Multi-Model forecasting framework. Chapter 3 introduces time
series forecasting and system identification, considering the linear and
nonlinear approaches for the analysis also including an introduction of
classification and feature extraction important for data treatment that can
be implemented straightforwardly in the proposed framework. Chapter
4 addresses the proposed Multi-Model Predictor architecture and three
proposed implementations. Chapter 5 presents the results of the differ-
ent proposed forecasting methodologies. Finally Chapter 6 presents con-
clusions and future work suggested by the author.
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Chapter 2

Related Work

In the early successful stage, during the 70’s decade, important discover-
ies appeared in time series modelling and forecasting with the first appli-
cations in econometrics. George E.P. Box and G.M. Jenkins (BJR94) used
the divide and conquer strategy decomposing and characterising the basic
components of series trying to explain in a certain way the characteris-
tics of the general dynamics of time series, such as trend, seasonal, cyclic,
and random components. All these components were integrated for the
first time in the Autoregressive Integrated Moving Average methodol-
ogy creating the Box-Jenkins or ARIMA methodology.

The first reference regarding the study of the combination of forecasts
produced by different models is found in 1976. It asserts that although
the single Box-Jenkins forecasting is better that other methodologies of
that time, like exponential smoothing, a simple average forecast from
a set of models can be more accurate under some circumstances. This
implies the suggestion of using a combination of several models instead
of one. This discovery by Castaño et. al (CM00) stimulated the study
of the linear combination of forecasts models to improve the prediction
performance.

The study affirms that after proving under the assumption of having
different unbiased forecasts, the optimum linear combination of forecasts
produces another unbiased forecast. In order to optimise the weights
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of the linear combination it is necessary to have as much evidence as
possible for constructing the forecast.

This idea was accepted gradually with the development of expert sys-
tems, which reinforced the idea of combining different forecasters be-
longing to different information sources. Castaño (CM00) also statisti-
cally proved that the forecast produced by a combination of models is
always better that the use of a single model.

Nowadays, the development of a new generation of forecasting mod-
els and strategies is strongly related to multidisciplinary novel research
mainly from mathematics, computing, and statistics. Regarding the time
series literature, there is a strong effort on finding the best way to decom-
pose time series in several but simpler time series to fit better simpler
models that improve the forecasting performance. This is not an easy
task since in real cases arise several challenges, one is about the unavail-
ability of a full model that describes the dynamic fluctuation of the data.
Often the time series information is insufficient, noisy, or corrupted. For
this reason the data should be analysed and processed to be fixed. In
other situations the data is so large and complex that it is computation-
ally infeasible to optimise parameters of statistical models or training the
machine learning models.

Fortunately, despite all the problems that may occur, thanks to the
growing of computational resources and the development of machine
learning and pattern recognition algorithms, it is possible to analyse time
series with a higher complexity in their dynamics (e.g. Nonlinear dy-
namical systems and hybrid dynamical systems). A good review about
the representation, indexing, similarity measure, segmentation and vi-
sualisation of time series analysis from the data mining point of view is
found in (Tc11). Also the book of Multiple Model Approaches to Mod-
elling and Control (SJ97) a comprehensive survey about modelling us-
ing multiple models is presented. A collection of practical examples and
approaches are discussed where the single modelling approach is not
enough for systems with complex and hybrid motion.

Although the multi-modelling approach was born with the analysis
of partially known systems (grey box modelling), the same ideas can be
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adopted for time series which there is no knowledge about the system
or mathematical model that produces its dynamics. Real cases are pre-
sented regularly in the water demand, solar radiation, wind speed and
stock market fluctuations.

As a historical reference, one of the earliest works related to water
time series forecasting, presents a multi-model application to water de-
mand forecasting shown in the work of Shvartser in (SSF93). This work
proposes a methodology based on pattern recognition and time series
analysis; the daily consumption cycle is divided in three segments; ris-
ing, oscillating, and falling. These segments are modelled separately and
are seen as dynamical states. The sequence of the activation of each pat-
tern associated with one state is modelled with a Markov process cap-
turing the transition probabilities between states. Each segment of the
time series with a specific pattern is associated with each state which is
represented with a low order ARIMA model.

Figure 1 is an example of the decomposition of the time series in seg-
ments. Segments number 1, 2, and 3 are classified as rising, oscillating,
and falling respectively where the limits of the segments are defined by
the dense dotted lines. Each segment may be occur during the day trans-
action indicated by the pointy line. The pattern is observed throughout
the information of two days.

Segment 1
Segment 2 
Segment 3

Day 1 Day 2

Figure 1: Rising, oscillating, and falling patterns classification
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S. Alvisi and M. Franchini (AFM07) developed a short-term, pattern-
based model for water-demand forecasting. The model captures the pe-
riodic patterns presented at annual, weekly and daily levels.

The model structure is based on the observed patterns at different ab-
straction levels of the water demand time series. The forecasting struc-
ture is hierarchically organised in two levels: The high level module that
captures the low frequency patterns, like the seasonal and weekly pat-
terns of the time series observed in Figure 1 from (AFM07). The low level
model describes and predicts the daily consumption (Figure 3 presented
in (AFM07)). In order to get the hourly forecasts over the next 24 hours
period, a short term forecasting mechanism based on the combination of
both models is implemented.

The work of J. Quevedo and V. Puig in (QSPB14) addresses a similar
approach, where a Seasonal ARIMA (SARIMA) is used for predicting the
daily water demand consumption combined with a descriptor class that
distributes the amount of the predicted water consumption along one
day. Mainly two validated descriptors are used. These descriptor classes
are shown in Figure 2 and Figure 3, describing working and resting days
patterns. These descriptors are validated using the LAMDA clustering
method found in SALSA software package (KAS+03; Kem04). The pat-
terns given by the descriptors are a priori assigned to each calendar day
according to the human activity calendar.

Figure 2: Class 1 descriptor
associated with weekend and
holiday consumption patterns.
( c©2014, IEEE).

Figure 3: Class 2 descriptor as-
sociated with weekdays con-
sumption pattern. ( c©2014,
IEEE).

11



Benmouiza developed (BC13) a methodology based on the combina-
tion of clustering methods and artificial neural networks to predict in
the short term the solar horizontal radiation. The predictor model is a
composition of several independent local models. Each model is trained
with clustered data of one class containing similar dynamical patterns.
The architecture has a Global Nonlinear Autoregressive Neural Network
(NAR) used for predicting the local model to forecast. Once the local mo-
del is selected, a local NAR model associated with each cluster is used to
forecast the hourly radiation. Although the application of the work aims
to forecast the solar radiation, it might be possible to implement it for
water demand forecast, since the dynamics of the water demand may
obey also to global and local structure in its dynamics where the local
dynamic patterns can be identified and clustered.

Figure 4 shows how the data in phase space is classified using a clus-
tering algorithm finding three kind (or regions) of solar radiations. Each
region represents low, medium and high solar radiation levels. A global
NAR (Neural Auto Regressive) predicts the next region. Once the next
region is estimated the local model forecaster related to the region is used
to predict the radiation in an hourly basis. The dynamics of the hourly
basis radiation is shown in Figure 5.

Figure 4: Phase space representation and clustered in regions of the hourly
global horizontal solar radiation 0.
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Figure 5: Measured hourly global horizontal solar radiation time series of
July 1996 0.

M. Bakker et al. (BVVS13) propose a fully adaptive forecast scheme
using a static calendar to compute in real time model weight coefficients
(named day factors), and demand patterns used by the model. The mo-
del assumes the existence of four kinds of different water demand pat-
terns (reported in (ZAWL02)) of which those associated with holidays,
weekdays, and holidays variations are known in advance but not the
variants of season water demand patterns which should be detected on-
line.

Another interesting approach based on the combination of multiple
models, are the consensus and ensemble methods. The consensus mod-
els are tools to create structured prediction maps which consider a lim-
ited set of future forecasts based on expert information. This set of fore-
cast are provided by the human knowledge (McN87). On the other hand,
an ensemble forecast is a collection of two or more forecasts performed
at the same time. These methods focus on generating scenarios that de-
scribe probabilistically the predicted states of a dynamical system (LP08).
Ensemble forecasting is considered a Monte Carlo analysis method where

0Energy Conversion and Management, Vol 75, K. Benmouiza,A. Cheknane, Reprinted from
Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregres-
sive neural network models, Pages No 561-569, Copyright (2013), with permission from
Elsevier
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multiple numerical predictions are produced from generating different
possible initial conditions given a past sequence and current set of obser-
vations. Applications of these models are found in medicine (KOB13),
health (FKCB84), economics, meteorology and water management. In
economics, this approach is so relevant at the point that exists a spe-
cialised firm named Consensus EconomicsTM group (Dat16) that collects
the state-of-the-art forecasters with their predictions for a big number
of variables (more than 1000) from 85 industrialised countries in East-
ern Europe, Asia Pacific and Latin America. The group has a signifi-
cant community of researchers that confirm better accuracy of Consen-
sus ForecastsTM than most of the individual forecasters (Bat00; BWWA01;
Jon14; NR11).

In meteorology, consensus forecasts are implemented to predict wea-
ther and meteorological phenomena. As an example, Figure 6, a picture
taken from the National Whether Service (Ser15), describes a category 4
Hurricane, Debby, that appeared in 1994. Each colored trajectory line, is
a forecast simulation considering a randomised scenario. The set of fore-
cast trajectories are used to produce a nominal prediction. This forecast
is the most likely trajectory that might be taken as official to predict the
phenomenon dynamics.

Considering the survey of novel application in water management by
Donkor et al. (DMSR14), the general concern of forecast methodologies
is to fit the time series reducing the difference between the real value and
the estimated forecast. Even though model fitting by minimising this gap
is crucial to select a good forecasting model, the uncertainty prediction is
also an important component for the forecast that should be considered
in order to define the prediction bounds to give confidence to the predic-
tion. With regard to water management, Tiwari et al. (TA15) propose a
bootstrap method to learn a wavelet based machine learning considering
also the minimisation of the prediction bounds. Other articles studying
the uncertainty of stochastic models are found in (HK15), (CCK+08) and
(AF14).

Based on the multi-modelling approach and the references collected
regarding the design of multi-model forecasting, this thesis proposes the
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Figure 6: Example of an application of ensemble forecasting applied to the
prediction of hurricane trajectories.

next contributions to multi-model forecasting.

• The design of a module based framework that is able to exploit the
empirical information using machine learning algorithms rather
than the seasonal structure.

• Algorithms based on the exploitation of the historical information
are useful as alternative to the existing modelling global methods.

• An implementation based on machine learning algorithms such
as neural networks and clustering that identifies on-line different
kinds of behavior patterns.

• Two implementations based on the qualitative and quantitative de-
composition of the time series. Where the predicted quantitative in-
formation is distributed along of an unitary pattern that describes
a kind of activity (e.g, working or resting days).

– The first variation does not assume any a priory human in-
formation about the water consumption modes and proposes
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the use of a qualitative k-Nearest Neighbour (kNN) for mode
prediction.

– The second implementation assumes the existence of an ac-
tivity calendar used as predictor, but with the contribution of
extending the method using a simple nonlinear filter to de-
tect the qualitative pattern mismatches to readjust the pattern
forecast along time.

This Chapter presented a brief historical introduction where George
E.P. Box and G.M. Jenkins explored the decomposition of the data to anal-
yse and understand time series dynamics to construct a stochastic model
capable to predict time series with certain accuracy. After some research
Castaño et al. proved that a combination of unbiased forecasts gives reg-
ularly a better unbiased forecast. Nowadays computational power gives
the possibility to analyse and construct complex dynamics presented in
time series. We addressed recent research in multi-modelling applied
to time series from real sources as water demand, solar radiation, stock
market fluctuations and meteorology. Next Chapter 3 addresses the com-
mon forecasting methods and clustering algorithms oriented to system
identification for our proposal.
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Chapter 3

Time Series Forecasting and
System Identification

A time series is defined as a sequence of chronologically ordered obser-
vations recorded at regular time intervals. The observations are sequen-
tial data that might represent qualitative or quantitative information de-
pending on the source and application field. When the data are quantita-
tive, the measurements that compose the time series express magnitudes
or scalar information. An univariate time series notation used in the lit-
erature is defined as follows in Equation 3.1:

Yfull = {Y1, Y2, . . . , Yt, . . . , Yn} (3.1)

where Yfull is the full time series, t is the index that indicates the time
when the value was taken, n is the length of the time series. Usually time
series Yfull, deals with scalar numbers that might be integers, reals, but
sometimes they store qualitative information, where each element takes
on a symbol from a defined set of objects. Yt ∈ A, where A is a set of
symbols included in the alphabet.

These measurements are taken via observations and then recorded
somehow; for example manually or using computers that interact with
electronic devices that record the information in data bases. The use of
high speed computers and big storage allows to implement powerful
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statistics and machine learning algorithms.
Time series forecasting is strongly related to system identification and

modelling. System identification integrates statistical and mathematical
tools to estimate and exploit the available information, and also studies
the optimal design of experiments to generate informative data to fit dy-
namical models. This is achieved by removing redundant or erroneous
data keeping useful and descriptive information to model the object of
study. This data treatment is useful for reducing the training or the pa-
rameter optimisation time, and the model simplification.

The selection of information is important to control the detail level of
the model according to the power and capacity of the implementation
device: e.g., for small devices with limited memory and power process-
ing a simple version of the model generated from the data should con-
sider the most important characteristics of the object of study (as models
implemented in microcontrollers for embedded control).

There are three levels of modelling abstraction in system identifica-
tion. According to the scope of the and knowledge availability of the
study object, the modelling levels can be classified as white, grey, and
black-box modelling.

In white-box modelling, the dynamical processes are modelled us-
ing differential equations to describe the motion of the system. Under
this approach there is detailed and enough information to build an ac-
curate model describing the nominal motion of the system of interest.
This kind of modelling is useful for solving the implementation prob-
lems of control, simulation and synthesis of the control law, especially
in the space state approach. Typically, system identification is done by
a human expert following laws and rules, for example the physical law
of motion or chemical reaction laws. Although white-box is desirable in
many cases due to the parsimony of the models, this approach has lim-
itations when the systems are more complex or when it is not possible
to have the precise parameter values for the system. In these cases the
white-box methodology is not enough.

The next abstraction level of modelling is grey-box modelling. It ad-
dresses those problems where the dynamical system is partially known
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and the model is completed using empirical information. A typical case
of grey-box modelling is when the general dynamic of the system is mod-
elled but there are parameters that still need to be tuned. For example,
the parabolic shot modelled with newton gravitational laws or hydro-
logic model behaviours such as Nash-Sutcliffe and coefficient of deter-
mination model efficiency (KBB05) (used to assess the predictive power
of hydrological models). In this case, these parameters should be esti-
mated using statistical methods with the available observations so far.

Black-box modelling is the highest level of modelling abstraction of
the system identification approaches where there is little, no information,
or unclear insight about the model behind that generates the sequence
of observed data. This kind of modelling uses general purpose models
tuned or trained using just the observed data. Examples of this kind
of models are Auto Regressive (AR) models, Artificial Neural Networks
(ANN) and Support Vector Machines (SVM) for discrete time modelling
of continuous dynamical systems, or deterministic state machine for pi-
ecewise models or Markov Chains Models for piecewise stochastic mod-
els.

Once a model is obtained, it can be applied to simulation, control or
forecasting of dynamical systems among others. The concept of black-
box modelling abstraction is linked to the time series analysis that is the
main focus of this thesis.

The main purpose of the time series analysis, is the design of dynam-
ical models based on the empirical observations of different phenomena.
For the study of these observations, time series analysis provides the use-
ful theory for the construction of methodologies and algorithms that are
provided as tools for understanding the information for the correct mod-
elling of the behaviour of the observed data.

During the analysis of time series two general approaches are taken
into account depending on the linearity of the data, like the linear and
nonlinear approaches. Linear methods are useful when the interpreta-
tion of the observed data is regular presenting a dominant frequency and
sequential information that can be measured with linear correlations. It
is assumed that the systems are governed and explained with linear alge-
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bra theory. Using this approach the linear equations are limited to model
systems that present a decaying, growing or damped periodically oscil-
lating behaviour. The remaining irregularities are assumed to be random
external inputs or disturbances to the system that can be described statis-
tically by the normal distribution. Some examples of systems studied un-
der this assumption are shown in Table 1 taken from the book Nonlinear
Dynamical Systems in (Str94) of Strogatz and Steven H., where the dy-
namics of the linear systems is determined and classified by the number
of variables or differential equations. The basic systems belonging to this
classification, present a simple growth, decay, or equilibrium dynamics
when the dynamical systems contain one variable. When oscillations are
present in the systems, they can be modelled with linear systems of two
variables, for example, a simple mass-spring system. With more than
three variables, applications are found in engineering e.g., coupled sys-
tems modelled with several linear systems. For more complex systems
like coupled oscillators require a greater number of equations or vari-
ables to model them.

On the other hand, nonlinear methods address a more general family
of dynamical models. This approach must be considered when the time
series presents irregularities from the point of view of linear dynamical
systems theory. The main drawback of linear theory is the impossibility
to distinguish the random noise from the nonlinear structure of the data,
therefore, it cannot model appropriately this kind of behaviour since the
nonlinearity produces false residuals that might be confused with the
noise where in reality it can be still modelled somehow. The systems in
this category are natural processes. The simplest nonlinear models that
contain just one variable are used to study fixed points, bifurcations, over
damped systems or the equilibrium in ecosystems. For two variables nat-
ural oscillations, like limit cycles, biological oscillations, and nonlinear
electronics are studied. For three or more variables, systems that might
present strange attractors, chemical kinetics, iterated maps or fractals are
studied. For many variables the nonlinear optics, non equilibrium sta-
tistical mechanics, heart cell synchronisation, biological neural networks
response, complete ecosystems and economics behavior are studied. For
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the continuum domain, nonlinear waves, plasma, earthquakes, general
relativity, quantum field theory, reaction diffusion, biological and chem-
ical waves among others systems are studied.

Table 1: Classification of the dynamical systems according to their number
of variables

n n = 1 n = 2 n>3

General approach Growth, decay, or equilibrium Oscillations Applications in engineering

Linear Exponential growth
RC circuit

Civil Engineering
Electrical Engineering

Nonlinear

Fixed points
Bifurcations
Over damped systems
Relaxational dynamics
Logistic equation for single species

Pendulum
Limit cycles
Biological oscillators
(Heart cells, neurons)
Nonlinear electronics

Strange attractors
3-Body problem
Chemical kinetics
Iterated maps
Fractals
Forced nonlinear oscillators
Practical uses of chaos

n n � 1 Continuum
General approach Collective phenomena Waves and patterns

Linear Coupled harmonic oscillators
Equilibrium in statistical mechanics

Elasticity
Wave equations
Electromagnetism
Acoustics

Nonlinear

Lasers, non linear optics
Non-equilibrium statistical
mechanics
Nonlinear solid state physics
Heart cell synchronisation
Neural networks
Immune systems
Ecosystems
Economics

Nonlinear waves
Plasma
Earthquakes
General relativity
Quantum field theory
Reaction diffusion
Biological and chemical waves
Fibrillation
Epilepsy
Turbulent fluids
Life

All the mentioned systems are able to generate a time series since it
is possible to measure the states of certain variables along time. For this
reason the study of time series is also strongly related to the study of
nonlinear dynamical systems when they come from natural or artificial
systems.

The present thesis is related to dynamical systems difficult to mo-
del analytically belonging to nonlinear systems family. The models are
obtained using different technics with the final objective of producing
accurate forecasts.

A special case of nonlinear systems are the piecewise linear or non-
linear dynamical systems, where the system is modelled by a set of local
models that are activated by certain rules. Each local model is associated
with one operation mode. The activation of these local models depends
on the model of the finite state machine in the deterministic case (Bla08),
or by a stochastic state machine that activates the different local mod-
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els by probabilistic rules such as those performed by Markov Models
Chains. Figure 7 shows an example of a finite state machine model that
captures the dynamics of behavior changes. The submodels or states are
activated when an event occurs. In contrast, the Markov Model (GS10)
in Figure 8 models the change of states by producing probabilities events
to jump from one state to another.

Figure 7: In a finite state machine transition states are triggered by events.

Figure 8: In Markov Model transition states are triggered with certain prob-
ability.

The next subsection addresses the basics of linear time series analy-
sis introducing its basic components, a general methodology to extract
them, and some notes about stationarity and sampling that remarks the
importance of selecting the correct data to the study and modelling of
time series.
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3.1 Linear Time Series Analysis

Linear time series analysis studies time series that can be modelled by
analysing and identifying the secular trend, seasonality, and noise com-
ponents. A popular and simple way to analyse the dynamics is by us-
ing Auto-Regressive time series models. These models are a standard
in modern stationary time series data analysis (MJK08). The advantage
of these models is that they are seen as a combination of components of
larger models that leads to generalised forms.

Although it has limitations for nonlinear time series, the concepts and
structure of linear models provide a background for the analysis of non-
linear models. Univariate time series also can be classified according to
their domain in frequency based methods and Time domain based meth-
ods.

Regarding time domain based methods the time series are studied
from the stochastic process point of view. A stochastic process is a se-
quence of random variables Yt taking any value from [−∞,∞] where t
is interpreted as the time in the discrete domain. Given a sequence of
values each of the Yt variables have their own function that captures
their distribution within of their corresponding moment. Each pair of
these variables will have their corresponding joint distribution and the
marginal distribution functions.

These time series can be decomposed to be analysed by its three com-
ponents: the trend (long term direction), the seasonal (systematic, cal-
endar related movements) and the irregular (unsystematic, short term
fluctuations) components.

In order to proceed with the description of some of the most popular
methods used in the literature as Box-Jenkins and Holt-Winters, basic
definitions are defined next about the structure of the linear time series.

i Secular trend is the persistent component of the observed phenom-
ena; it describes the long-term trend. The appearance of this com-
ponent is exemplified in Figure 9 where the red line shows the long-
term trend. Although for simplification a linear fitting is used, it is
also common to observe a long-term nonlinear trend (e.g., exponen-
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tial or geometric growth). Some examples of secular trend cases can
be global warming, inflation in economy, increase of energy and con-
sumption and decrement of the availability of the water resources
along the time.
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Figure 9: Secular trend

ii Seasonality variation describes the short-term periodic movement.
An example of how this component looks is presented in Figure 10.
Some examples where this component is present are daily variation
of the temperature, daily sea level and water demand in a short term.

iii White noise is modelled by a normal distribution function that cap-
tures the random variation of variables. This component also has the
property of having zero mean, constant and independent variance
for different values along time. An example of what the noise com-
ponent looks is shown in the Figure 11. White noise can be presented
as external disturbances, error measurements due to technical limita-
tions and interference.

iv Transient variation captures the accidental dynamic presented reg-
ularly as isolated perturbations or aperiodic fluctuations that affect
the regular behaviour over the time. An example of the appearance
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Figure 10: Seasonal variation
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Figure 11: Noise

of this component is shown in Figure 12, where aperiodic oscilla-
tions are present. It is possible to confuse this component with noise.
When it appears, a nonlinear model might be used for describing the
dynamics of this component.

In the time series classical analysis literature, decomposition is used
to describe separately the trend and seasonal factors. Linear modelling
can be classified according to the way of combining these components
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Figure 12: Transient variation

in additive, multiplicative and pseudo additive compositions (HA13).
Another kind of decompositions focuses on describing long-run cycles,
like the weekends and holiday effects (QSPB14). The classification of
time series according to their decomposition is:

i Additive models consider the sum of the trend, seasonal, and ran-
dom variation. It is used when the seasonal variation is relatively
constant over time. It is expressed by Equation 3.2

Yt = T + S + R (3.2)

where the times series is generated by adding T, S, and R, the trend,
seasonal, and random components respectively. An example of the
general structure of this model is shown in Figure 13.

In this figure the red line is the trend approximation of the time se-
ries, and the black line is the real data with seasonal components and
noise.

ii Multiplicative models are composed by the multiplication of the dif-
ferent components like trend, seasonal and random components. This
kind of model is used when an increasing seasonal variation is ob-
served along the time. It is expressed by Equation 3.3.
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Figure 13: Additive composition example

Yt = T× S× R (3.3)

where the components R, S and T are the same described previously,
with the difference that the time series Yt is the result of the product
of such components. An example of the structure using this kind of
decomposition is shown in the Figure 14.

50 100 150 200
t

-6

-4

-2

2

4

6

Y

Figure 14: Multiplicative composition example

The red dotted lines of the figure shows the multiplicative trend of
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variance of the time series Yt.

iii The pseudo-additive decomposition (Mixed) presents a more com-
plex dynamic, adding and multiplying the different components. It
combines features of both the additive and the multiplicative models.
The general structure of this kind of model is expressed by Equation
3.4:

Yt = TCt × (S + I)− 1 (3.4)

where the addition of the seasonal effects, and irregular fluctuations
(S + I)− 1 produces a trend in the mean, and the trend cycle compo-
nent TCt produces a multiplicative effect that increases the variance
along time. Figure 15 shows an example of how a time series of this
type looks like. The low and high red dotted line bound the time se-
ries according to an increasing variance. The continuous red line is
the mean increasing along the time.
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Figure 15: Pseudo-additive time series example

3.1.1 Decomposition Methodology in Classical Analysis

In time series classical analysis, it is important the study of different com-
ponents present in time series separately. Although time series analysis
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may be considered a sort of art, it requires statistical knowledge, the-
ory and good practices for generating a valid and correct model. Box
and Jenkins proposed a methodology to understand systematically how
a time series behaves following a divide and conquer strategy (BJR94). De-
composing the data in simpler time series is crucial to identify and esti-
mate the different components involved in the time series. An important
assumption to consider is the generation of the data by a linear dynami-
cal system. Considering the different components the general steps that
should be taken into account, according to Box and Jenkins are:

i Observation: This step is the most important because with visual
analysis is possible to have the intuition and information about gen-
eral aspects of the data useful for selecting the proper general model
to use.

ii Trend estimation: To detect the estimation in the long term in time
series can be used mainly two different kind of methods belonging
to different approaches:

• Filtering: It is a function capable of neglecting the short term
dynamics and keep the general dynamics. An example of this
kind of algorithms is the smoothing effect of a moving average.

• Estimating a regression equation: A (linear or nonlinear) func-
tion might be used to describe the trend using least squares op-
timisation (Sch13). (Like the solid red line in Figures 9, 13 and
15).

iii De-trending: When the trend is already known, for the additive com-
position the trend is removed subtracting it from the original time
series. For the multiplicative composition the trend is removed di-
viding the time series by the trend.

iv Detection of seasonal factors: If the seasonality is known, the sim-
plest method for estimating these effects is to average the de-trended
values for a specific season using the Seasonal Sub-series Plot, other-
wise a correlation plot helps finding the seasonality (Cle93) .
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v Determine the random (irregular) component: The random compo-
nent is analysed last. After obtaining the forecasting model, the vari-
ance of the noise by means of gaussian random distribution is anal-
ysed.

series. Matlab does this (and estimates the trend with a straight line
in the iteration.

3.1.2 Stationarity and Sampling

In order to study a phenomena it is important to reproduce it many times
under the same conditions and be sure that the measurements taken ef-
fectively correspond to the same scientific study, object, or process. The
concept of reproducibility in time series is strongly related to invariabil-
ity and availability meanings.

1. Invariability of parameters during the analysis of the system: These
parameters must not depend on time and they change once they
are noticed or desired to produce intentionally an output.

2. Availability of the data addresses the problem of the incorrect mod-
elling due the lack of information which impedes to detect and con-
sider the non-stationarity of the process. Non-stationarity is dif-
ficult to detect and model since it is also difficult to know if the
acquired information is enough and reliable providing a good de-
scription of the general dynamic of the data.

When the phenomena is studied a finite number of times and behaves
differently we can also say that it represents a non-stationarity process,
and presents an intermittency effect. The intermittence is observed only
if we can replicate the process enough times. Conversely, the analyst will
not have enough data to produce a reliable model. Therefore, the length
of the series must provide enough information to describe and take into
account intermittency.
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3.1.3 Testing for Stationarity

The stationarity test is performed over stochastic processes. The simplest
non-periodic stochastic process, is composed by a set random variables
{Yt}t∈O, where Yt ∈ R, t is the time index included in the set O, with
infinite values in the interval (0,∞] in a continuous-time. For discrete-
time process the random variable takes a finite number of N values O =

(0,N], restricting the length of the discrete time series. A stationarity
process is present when the probabilities related to the random variables
are constant over time. This is expressed in Equation 3.5.

Pr(Yt+τ ) = Pr(Yt) (3.5)

where Pr is the probability of observing certain value, and {Yt, Yt+τ ,
. . . , Yt+psτ} are the observations belonging to the same probability dis-
tribution Pr(Yt).

Stationarity is confirmed when there is no violation of the basic prop-
erties of the stochastic system like variance, mean, transition probabili-
ties, and correlations. Considering the difficulty for detecting stationar-
ity for periodic time series, it is recommended to get considerably longer
data length than the period length for modelling to capture as much
cyclic samples as possible. As soon as we get large data, we will have
more chances to determine and distinguish the global trend, patterns
and intermittence effects. This means that the sample data size must
be greater than the period, τ .

In other words we need a large data set of size n, such that n � psτ ,
where τ is the size of the period and ps is the number of periods that
guarantee p characteristic samples, e.g., Figure 16 gives the impression
of non-stationarity only if the data we have is limited, therefore it is not
possible to determine periodicity. On the other hand, if we have more
data, like in Figure 17 a pattern is revealed. Hence local stationarity is
detected. Figure 17 shows complete cycles with a relative stationarity
(since we do not know what will happen in the future).

Assuming we have sufficient information, we can take two appro-
aches for testing stationarity: the parametric and nonparametric app-
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roach. The parametric is usually used by researchers considering sta-
tistical assumption about the distribution of the data in the time field
domain, such as economists and statesmen. Such assumptions can be
tested according to the 1st or 2nd order stationarity criteria.

• 1st order stationarity is related to strict stationarity criteria. It as-
sumes a time-independent joint statistical distributions and vari-
ations of the time series, therefore, the mean and variance at any
moment must be the same. Strict stationarity satisfies Equation

[Pr(Yt1+τ ′), . . . , P r(Ytns+τ ′)] = [Pr(Yt1), . . . , P r(Ytns )]

where the probability of the shifted vectors satisfies the equality
independently of the chosen value ns, t1, . . . , tns ∈ O, or lag τ ′

(LRS13).

In real time series this definition is very tight and time series pre-
senting some irregularities almost never satisfy this condition.

• 2nd order stationarity is about relaxed stationarity condition. It
is more flexible and considers a stationary process only if the mean
(first moment) is constant and covariance (second moment) is finite
and depends just on the time difference τ ′ = t−t′ along time series.

The nonparametric approach does not require any assumption of the
data, therefore it is more general. One of the most popular stationarity
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test is the Runs Test. The test defines a run as “succession of one or more
identical symbols or patterns”, which are followed and preceded by a
different symbol or no symbol at all (Gib83). The idea behind is similarly
to a series (or runs) generated by identical flips of a coin, where the sym-
bol O and I represents heads and tails, respectively. An example of such
run is the sequence C = {OIIIIIIOOIOO}. If the coin is balanced, the
sequence will present stationarity approximating the same number of O
and I as long as more observations are available, otherwise a trend might
be detected.

The stationarity of data can be determined by using the algorithm of
the runs test proposed by Bendat and Piersol in (BP86) as follows:

1. Divide into intervals T of length τ .

Z ′T = {Yt}Tτt=τ(T−1)+1 (3.6)

2. Compute a mean value for each interval.

Z
′
T =

1

τ

τ∑
t=1

(Z ′T ) (3.7)

3. Collect the occurrences of values above (I) and below (O) the me-
dian value Z̃ ′ of the series using Equation 3.8.

CT =

{
I if Z

′
T > Z̃ ′)

O otherwise
(3.8)

4. Count the number of runs with I and O following Equation 3.9

CO = |{i,∀i ∈ {1, 2, . . . , T − 1, T}, |Ci = O}| (3.9)

CI = |{i,∀i ∈ {1, 2, . . . , T − 1, T}, |Ci = I}|

5. Compute the probability of having a run Pr(CO) and Pr(CI) and
if Pr(CO) ≈ Pr(CI), the the stationarity test is passed.
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3.1.4 Linear Autocorrelations

We have seen so far how the general characteristics of the time series are
analysed discarding dynamic details at local level. In order to analyse
what is going on with the observed dynamic fluctuations at local level of
the time series, a relation analysis between variables is performed.

The relation analysis is an important part of the study of linear time
series, it focuses on the existence of a linear temporal relation between
the the variable of interest and another one is named autocorrelation.

There are two kinds of autocorrelation metrics used as tools for mea-
suring the existence and intensity of such correlation among the data, the
simple and partial autocorrelation.

• The Simple Autocorrelation Function (ACF), measures the lineal
relation between the observation Yt from a time series and the de-
layed value Yt−τ .

• The Partial Autocorrelation (PACF), is the estimation of the simple
correlation but removing the effect produced by the autocorrela-
tions for delays shorter than τ .

The degree of relation for the simple and partial autocorrelation is
measured using the autocorrelation coefficient ρτ . The coefficient takes
values in the interval [−1, 1]. This coefficient provides information about
the existence and the type of correlation. A coefficient with value of +1

means a strong positive relation between two observations separated by
k units of time. The positive sign means that both variables respond
similarly. A value of−1 expresses a strong inverse relation. When a value
of 0 is obtained, the two variables do not exhibit any relation. Equation
3.10 computes the autocorrelation function.

ρτ = corrττ (Yt, Yt+τ ) =
γτ
γ0

(3.10)

where corr is the autocorrelation function at lag τ , ρτ is the coefficient
of the simple autocorrelation for a delay of τ , and γ is the covariance
function defined in Equation 3.11
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γτ = cov(Yt, Yt−τ ) = E[(Yt − Y )(Yt−τ − Y )] (3.11)

where cov is the covariance function, Y is the mean of the time series,
Yt−τ is the observation at lag τ , E is the expectation and γ0 is equal to 1
by definition following Equation 3.12

γ0 = var(Yt) = ρ0 = 1 (3.12)

where var is the variance. This property is found in (Fra85).
The Partial Autocorrelation Function (PACF) of τ order is similar to

the ACF that measures the correlation between two variables Yt and
Yt−τ , but with the difference of discarding the influence of the depen-
dency of the intermediate lags between both of them. The partial auto-
correlation gives information about the AR order. The recursive formula
proposed by Levinson and Durbin (Fra85) is described in Equation 3.13

π̂11 = ρ1 (3.13)

π̂τ,τ =
ρτ −

∑τ−1
j=1 π̂τ−1,j ∗ ρτ−j

1−
∑k−1
j=1 π̂τ−1,j , ρτ−j

where π̂τ,j = π̂τ−1,j − π̂τ,τ π̂τ−1,τ−j is the covariance at different lags
j = 1, 2, . . . , τ − 1.

Equation ACF 3.10 and PACF 3.13 are used to produce plots named
autocorrelograms. Each autocorrelogram is composed plotting the coef-
ficients ρτ and π̂τ,τ respectively varying τ at different lags. Each auto-
correlogram provides information about the Moving-Average (MA) and
Auto-Regressive (AR) polynomial order and structure (BJR94). The de-
scription of the Box-Jenkins ARIMA methodology is addressed in Chap-
ter 3.2.

The Ljung-Box test is an auxiliary test born in 1970 (BP70) and imple-
mented to quantify the model fitting (LB78) measuring the independency
of the values of time series. This test gives information about the possible
existence of linear relations in the data or if the data sequence is merely
random noise. The Ljung-Box test is given by Equation 3.14
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LBm = n(n+ 2)

m∑
t=τ

π̂t,t
n− τ

(3.14)

where n is the sample size, m is the lag length and π̂t,t is the autocorrela-
tion of the sample at lag t.

The LBm value is evaluated using the χ2 test. If LBm exceeds the
critic value of the χ2 to the significance level selected (usually at 95%).
The test assumes the mull correlation hypothesis H0 among the values
until the opposite is demonstrated. If the alternative is demonstrated,
then H0 would be rejected and the existence of significant correlation
hypothesis H1 is taken. This is expressed in Equation 3.15.

{
H0 : No Rejection of null hypothesis if LBm < χ2

(m)

H1 : Rejection of null hypothesis otherwise
(3.15)

3.2 Box-Jenkins Auto-Regressive Forecasting

A very useful framework for time series analysis is the Box-Jenkins Auto-
Regressive method. In 1970 Box and Jenkins proposed this framework to
identify, estimate, and diagnoses dynamic models of time series, where
the variable time is important. The objective of Box-Jenkins is to provide
an algorithmic way to construct forecasting models (AM10).

3.2.1 Auto-Regressive (AR) Models

The first set of models to capture the dynamic of linear time series is
the Auto-Regressive model. Auto-regressive models explain an endoge-
nous variable of a period t by the previous observations adding an error
term (under previous conditions, Yt can be expressed as a linear combi-
nation of its past values plus an error term). The notation of the Auto-
Regressive models are abbreviated as AR models, a p-order model is
written as AR(p). Where p is the number of observations in the past that
are taking into account by the model. The basic Auto-Regressive model
is expressed as AR(1) and is represented by Equation 3.16.
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Ŷt = Φ0 + Φ1Yt−1 + εt (3.16)

where Ŷt is the forecast value, εt is the error term with the property of
having a zero mean, constant variance, and null covariances among er-
rors associated with different observations. The general AR(p) model is
expressed by Equation 3.17

Ŷt =

p∑
i=1

ΦiYt−i + Φ0 + εt (3.17)

where the Φi components are the Auto-Regressive coefficients, p is the or-
der of the model and ε is assumed to be a random variable with normal
distribution with zero mean. This can be simplified using the lag polyno-
mial operator composed by lag operators that are applied to move back
the index t, p times backward presented in Equation 3.18

L1Yt = Yt−1

L2Yt = Yt−2 (3.18)
...

LpYt = Yt−p

Therefore, taking into account the lag operator definition, Equation 3.19
defines the lag polynomial operator Φp(L),

Φp(L) = 1− Φ1(L)− Φ2(L)2, . . . ,Φp(L)p (3.19)

where Φ0 = 1. This allows to have a compact representation of the AR
process as shown in Equation 3.20.

(1− Φ1L− Φ2L
2−, . . . ,−ΦpL

p)Ŷt = Φ(L)Ŷt = εt (3.20)

More details about the lag notation and manipulation is found in (HA13).

37



3.2.2 Moving-Average (MA) Models

The Moving-Average (MA) model explains the value of a variable at time
instant t, as a weigh function of the previous independent error terms.
The model is expressed as MA(q) where q is the number of error terms.
The basic Moving-Average model is expressed as MA(1) and is written
as Equation 3.21:

Yt = µ+ εt + Θ1εt−1 (3.21)

where µ is the mean and Θ is the coefficient of the model and εt−1is the
previous prediction error. Equation 3.21 can be generalised as shown in
Equation 3.22.

Yt =

q∑
i=1

Θ(t−1)ε(t+1−i) + µ (3.22)

and the lag polinomial notation is used as well to express any MA(q)

model as shown in Equation 3.23.

Θq(L) = 1−Θ1(L)1 −Θ2(L)2, . . . ,Θq(L)q (3.23)

Letting Θ0 = 1, the MA process can be written in a compact form simi-
larly to AR process, as in Equation 3.24

Ŷt = Θ(L)εt (3.24)

3.2.3 ARIMA(p,d,q)

The ARMA model is a case of the ARIMA model that includes the Auto-
Regressive and Moving-Average components. It is written as ARMA(p, q)

where p is the order of the Auto-Regressive component and q of the mov-
ing average component (Equation 3.25)

Ŷt = Φ0 + εt +

p∑
i=1

(ΦiYt−i) +

q∑
i=1

Θiεt−i (3.25)

the lag polinomium notation is used to represent the model
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Φ(L)(Ŷt − µ) = Θ(L)εt (3.26)

The nonseasonal ARIMA is written as ARIMA(p, d, q) where d is the
degree of differencing associated with the component of integration (1−
L)dYt. This component discards any non stationary trend from the time
series and is present in Equation 3.27.(

1−
p∑
i=1

Φi(L)i

)
(1− L)dYt =

(
1 +

q∑
i=1

Θi(L)i

)
(3.27)

3.2.4 Seasonal ARIMA

The general version of the Box-Jenkins models is the Seasonal ARIMA
(SARIMA) model. This model also considers the modelling of the sea-
sonal components of the time series. This model uses two polynomials
expressed by ARIMA (p, d, q) (P,D,Q)š. Where the notation component
(p, d, q) is the nonseasonal part of the model and (P,D,Q)š is the seasonal
component where m is the number of measurements per season or cycle.
The order of the different polynomials are expressed by p, d, q, P,D, and
Q. In order to illustrate how the seasonal component extends the non-
seasonal model, we analyse a SARIMA model (1, 1, 1)(1, 1, 1)š presented
in Equation 3.28:

(1− Φ1(L))(1− φ(L)š)(1− L)(1− (L)š)Yt = (1 + Θ1(L))(1 + θ1(L)š)εt

(3.28)
where the seasonal AR, MA, and the difference components consider a
seasonal lag at time š in the component (L)š that multiplies their respec-
tive nonseasonal components.

The Box-Jenkins model optimisation parameters is a well studied to-
pic, therefore it is possible to find statistical optimisation methodolo-
gies and their implementation in different software packages. Regard-
ing the optimisation methods, one of the most popular methodologies
are the minimisation of the exact maximum likelihood (HM88), and least
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squares fitting methods. The software packages that provide these func-
tionalities are found in statsmodels (Python), Econometrics Toolbox (MAT-
LAB), ARIMAProcess Function (MATHEMATICA), and the arima com-
mand (STATA), among others.

3.3 Holt-Winters: Exponential Smoothing

An alternative to the Box-Jenkins forecasting is the exponential smoo-
thing method. The basic framework of this method was proposed in the
late 50’s by C.C. Holt in 1957 and his student Peter Winters (Goo10). Ba-
sically, the forecast produced by this method is the result of weighing the
average of the past observations with weights decaying exponentially as
the observations get older. The advantages related to this framework is
to generate forecasts easily with very low storage requirements, ease of
automation, reliable and adaptable to new changes in trends and sea-
sonal patterns. These characteristics make these methods suitable to be
applied widely in the industry due to their simplicity (Kal04).

3.3.1 Single Exponential Smoothing

The basic Holt-Winters comes from a family of exponential smoothing
methods based on the continuously updated forecast giving more rele-
vance to the recent experience. Exponential smoothing is named in this
way because the weights decrease exponentially as the observations gets
older. The single exponential smoothing is used for short term forecas-
ting. It assumes that the dynamics of the data fluctuate around a reason-
ably stable mean. That is, the assumption of lack of trend or seasonal
components of the time series under analysis. Given the information
available in time t, the exponential smoothing is given by Equation 3.29.

Ŷt+1 =

∞∑
i=0

wtYt−i (3.29)

where W = {w0, w1, . . . , w∞} are the weights given to the past values
of the series with the property of summing 1. The recent values have a
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higher weight that the old ones. The weighs are set using Equation 3.30

wi = α(1− α)i (3.30)

where i = {1, 2, . . . ,∞} and α is a constant real value 0 < α < 1 that
regulates the relevance of the previous values to produce the forecast.
Each successive observation in the series is a new smoothed value. This
value is computed as the weighted average of the current observation
and the previous smoothed observations. Substituting Equation 3.30 in
3.29 are obtained the forecasting Equations 3.31-3.33.

Ŷt+1 = αYt+α(1−α)Yt−1 +α(1−α)2Yt−2 + · · ·+α(1−α)mYt−m (3.31)

where m is the number of considered lags. Factoring Equation 3.31 we
obtain:

Ŷt+1 = αYt+(1−α)(αYt−1+α(1−α)Yt−2+· · ·+α(1−α)m−1Yt−m) (3.32)

which is expressed iteratively in Equation 3.33

Ŷt+1 = αYt + (1− α)Ŷt (3.33)

where Ŷt is the previous estimate. An alternative notation of the smoo-
thing forecasting is given by Equation 3.34

Ŷt+1 = αεt + Ŷt (3.34)

where εt = Yt − Ŷt. It works as the correction for Equation 3.33.

3.3.2 Double Exponential Smoothing

Double exponential smoothing is an extension of the single exponential
smoothing that considers the trend in time series. The exponential smo-
othing component that capture the linear trend is described by the linear
Equation 3.35

Ŷt = `t−1 + bt−1 (3.35)
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where the terms `t and bt are the level and slope (trend) at time t. This
model is used to predict stable long-term time series. The h-step ahead
prediction, also named Holt’s method, is performed by Equation 3.36

Ŷt+h = `t−1 + hbt−1 (3.36)

where h is positive and defines the prediction at time h. A deeper anal-
ysis of this component is found in (Tho80). The level and trend compo-
nents are smoothed according to Equation 3.37-3.38

`t−1 = Yt−1 + (1− α)2εt−1 (3.37)

bt−1 = bt−2 + α2εt−1 (3.38)

where εt−1 is the previous forecasting error defined by Equation 3.39

εt−1 = Ŷt−1 − Yt−1 (3.39)

The Holt-Winters linear trend estimates the trend using a weighting
function which considers more relevant the most recent observations.
This estimation uses a local trend equation where the linear trend ` and
slope b components of the forecasting Equation 3.36 are updated each
period with Equation 3.40 and 3.41.

`t = αYt + (1− α1)(`t−1 + bt−1) (3.40)

bt = α2(`t − `t−1) + (1− α2)bt−1 (3.41)

Similar to single exponential smoothing, the slope and level compo-
nents also can be expressed as a function of their errors using the correc-
tion form presented in Equation 3.42 - 3.43.

`t = `t−1 + bt−1 + α1ε (3.42)

bt = b+ t− 1 + α1α2ε (3.43)
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The problem of the initialisation of parameters `1 and b1 has been
addressed before (Kal04). Different methods have been proposed for the
initialisation of these values. For b1, it is possible to use the alternatives
given by Equation 3.44 - 3.46, for `1 it can be initialised to Y1.

b1 = Y2 (3.44)

b1 = [(Y2 − Y1) + (Y3 − Y2) + (Y4 − Y3)]/3 (3.45)

b1 = (Yn − Y1)/(n− 1) (3.46)

The three initialisation options approximate a trend in different ways;
the first ones is by taking just the second element of the time series, the
second is computing the average of the three first differences of the time
series, and as third option is considered the slope produced by the divi-
sion of the subtraction of the fist element Y1 of the last element Yn.

3.3.3 Seasonal Holt-Winters

The Holt-Winters extension for seasonal components in time series is
composed basically by three equations: the level equation `t, the trend
equation bt and the seasonal component equation s1

t . With smoothing
parameters α1, α2, and α3, and the seasonal parameter τ that expresses
the period of the seasonality. These components are described in Equa-
tion 3.47-3.50

Ŷt+h = `t + hbt + s1
t−τ+h+

τ
(3.47)

`t = α1(Yt − s1
t−τ ) + (1− α)(`t−1 + bt−1) (3.48)

bt = α2(`t − lt−1) + (1− α2)bt−1 (3.49)

s1
t = α3(Yt − `t−1 − bt−1) + (1− α3)s1

t−τ (3.50)

where h+
τ = [(h− 1) mod τ ] + 1.

The level equation computes an average of the weights between the
seasonal measurement (Yt−s1

t−τ ) and the nonseasonal prediction (`t−1+
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bt−1) in time t. The trend equation, is similar to Equation 3.40. The sea-
sonal equation is an average of the weights between the current seasonal
time, (Yt − `t−1 − bt−1), and the same seasonal time of the previous year.
The corresponding error correction alternative is given by Equations 3.51
- 3.53.

`t = `t−1 + bt−1 + α1εt (3.51)

bt = bt−1 + α1α2εt (3.52)

s1
t = s1

t−m + α3εt (3.53)

where εt = (`t−1+bt−1+s1
t−τ ) = Yt−Ŷt|(t−1) are the one-step training

for the forecast errors.

3.3.4 Double Seasonal Holt-Winters

The double seasonal Holt-Winters (DSHW) is an extension of the pre-
vious method adding an extra seasonal equation (s2) (TdMM06), that
captures a second seasonal period. It is also added other smoothing and
seasonal parameter ω and τ2 respectively. The new parameters have in-
formation about a bigger periodicity multiple of τ1. The additive DSHW
is described in Equation 3.54 - 3.58.

Ŷt+h = (`t + hbt) + s1
t−τ1+h + s2

t−τ2+h (3.54)

`t = α1(Yt − (s1
t−τ1 + s2

t−τ2)) + (3.55)

(1− α)(`t−1 + bt−1)

bt = α2(`t − `t−1) + (1− α2)bt−1 (3.56)

s1
t = α3(Yt − (`t + s2

t−τ2)) + (1− α3) + s1
t−τ1 (3.57)

s2
t = ω(Yt − (`t + s1

t )) + (1− ω) + s2
t−τ2 (3.58)

Where Yt+h is the h-th step ahed forecast from forecast origin t. The
parameters are optimised by minimizing the sum of squared errors of
one step-ahead residuals. In order to use the multiplicative version the

44



Single and Double Seasonal Holt-Winters, they are obtained by the prod-
uct of the seasonal components (SS11; SBM07).

3.4 k-Nearest Neighbours Forecasting

The k-Nearest Neighbours (kNN) is an nonparametric learning algorithm
used in classification and forecasting. It takes decisions based on the ex-
perience contained in the training set (in the best case a subset of them).
kNN assumes that the data is in a feature metric space. The considered
data might be scalars, multidimensional vectors, labels or characters, etc.
kNN forecasting is used to solve the problem of estimating the next ele-
ments Yt+1, . . . , Yt+h given a set of examples of the time series. kNN is
considered a lazy learning algorithm which given a sample of past infor-
mation, finds in the history similar scenarios to imitate their dynamics
and use them to construct a short term forecast. kNN only needs three
parameters: the sampling rate τ , the embedding dimension m, and the
geometric size of the neighbourhood defined in ε (where the objects in-
side the radius ε are considered part of the neighbourhood). kNN fore-
casting requires a times series defined in Equation 3.59

Yfull = {Y1, . . . , Yt, . . . , Yn} (3.59)

where Y1 is the first element of the time series, Yn is the latest value at
time n and t is the t−th measurement. For this purpose, the time series
is organised in subsequences named delay vectors of the form.

Dt = {Yt−(m+1)τ , . . . , Yt}

where m is the size of the delay vector Dt, and τ is the sampling fre-
quency over the time series where t = {(m−1)τ+1, (m−1)τ+2, . . . , n−
1 − h}. To get the nearest neighbours of Dt, the parameter ε is defined
to get the delayed neighbour vectors v1, ..., vk respect with Dt satisfying
Equation 3.60

dist(Dvκ ,Dt) ∈ ε (3.60)
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where dist can be any distance. For magnitudes is common to use the
Euclidean distance, but for comparing sequences of qualitative informa-
tion, the Hamming distance is an adequate metric. For real numbers dist
can be any norm. The more used norms are infty and euclidean distance.

3.4.1 Real Numbers Forecasting

The forecasting for real numbers where the vector to forecast is a real
number vector Dt ∈ Rm is performed by using Equation 3.61 with the
vectors that satisfy the constraint expressed in Equation 3.60. The fore-
casting value is the result of the weighted sum of the futures Yt+h∆n of
the selected vectors v1, . . . , vκ and it is defined in Equation 3.61

Ŷt+h∆n = αj

κ∑
j=1

Yt+h∆n (3.61)

where h∆n is the prediction horizon at next instants {1, . . . , h}, {αj}κj=1

are weights that add up to 1 expressed by Equation 3.62:

κ∑
j=1

αj = 1 (3.62)

There are two popular ways to assign the values to the weights α:

1. Set all the weights equally to predict the average value.

αj =
1

κ
(3.63)

2. Set the weights inversely proportional to the closeness of the vec-
tors Dvk respect with Dt as described by Equation 3.64 and 3.65.

αj =
βj∑κ
i=1 βi

(3.64)

where the partial weights {βi, . . . , βκ} are assigned with Equation
3.65
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βj =
dist(Dt,Dvκ)− dist(Dt,Dvj )

dist(Dt,Dvκ)− dist(Dt,Dv1)
(3.65)

where Dv1 is the closest and Dvj is the farthest vector. As a result
the closer delayed vector will have more influence for the predic-
tion.

Besides of these methods for the weight assignment is possible to set
the weights using other kind of kernels like gaussian, sigmoidal or an-
other kind of nonlinear relation.

3.4.2 Qualitative Forecasting

When each element Yt of the time series take elements Yt ∈ A from any
alphabet A, where A contains symbols used as labels, rather than scalar
values, we call the time series qualitative. For example, classification la-
bels for the identification of certain patterns associated with any class.
Since these values are not related to any magnitude, the metric to mea-
sure the distance must considers only the qualitative differences of the
elements of the delay vector Dt. For this purpose, the Hamming distance
is a suitable metric to measure the difference between two sequences of
labels. The Hamming distance is shown in 3.66

dist(x,y) =

∑m
i=1 hamming(xi, yi)

m
(3.66)

where x = {x1, . . . , xm} and y = {y1, . . . , ym} are label vectors where
x,y ∈ Am are sequence labels of length m and the distance is evaluated
as presented in Equation 3.67

hamming(x, y) =

{
0 if x = y

1 otherwise.
(3.67)

The estimation of the next h labels is performed by means of the sta-
tistical mode Mo (Equation 3.68)

Ŷt+h∆n = Mo({Yt+h∆n}κj=1) (3.68)
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where Ŷt+h∆n is the forecasted value at time t given by the mode of the
set {Yt+h∆n}κj=1 produced by the nearest neighbours and h∆n takes the
prediction horizon values from 1 to h. This scheme is also known as ma-
jority vote, studied deeply by Bon Boyer and J. Strother Moore (BM91).
The scheme also has important applications in multi-model classification
systems ((Nip11), (SCM02) (Fre95)).

3.4.3 Simple Nonlinear Filter

A filter is a function that replaces a noisy measurement by a new value
with less noise, and closer to the real value. In time series, filters are use-
ful for removing noise in order to find a dynamic structure in a system.
The Simple Nonlinear Filter presented in the book of Nonlinear time se-
ries analysis by H. Kantz (KS04), is an algorithm for noise reduction of
nonlinear time series. This algorithm is based on finding similar pat-
terns of any section of the time series. Once similar patterns are found,
the average of these components is computed and the studied point is
replaced by a new filtered point.

The raw data might contain noisy information in the time series. The
recent raw data input is processed in real time and the filter should pro-
vide a new value with a reduced amplitude of the noise component. The
noise filter tries to identify the data by decomposing it into two compo-
nents: the signal structure and random fluctuations. This is presented as
an additive superposition of the two components in Equation 3.69

Yt+1 = ssig,t+1 + ηt+1 (3.69)

where ssig,t is the noise-free signal and ηt is random noise with null au-
tocorrelations.

In order to recover the signal st from the raw (and possibly noisy)
signal Yt, it is necessary the availability of a function f̂ that processes the
data {Yt−m+1, . . . , Yt}. The ideal noise filter must satisfies Equation 3.70

ssig,t+1 − f(Yt−m+1, . . . , Yt) = 0 (3.70)
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which it is an equivalence approximated by replacing the t-th value by
the middle m/2 average value of the nearest neighbours vectors. This
function f̂ is given by Equation 3.71

ŝsig,t0−dm/2e =
1

|U∈(Yt0)|
∑

Yt∈U∈(Yt0 )

Yt−dm/2e (3.71)

where ŝsig,t0−dm/2e is the estimated noiseless value and U∈(Yt0 ) is the set
representing the neighbours close to Yt0 .

3.5 Radial Basis Function Artificial Neural Net-
works

In machine learning, artificial neural networks (ANN) are computational
models inspired in the biological neural networks applied to solve engi-
neering problems as clustering, function modelling, regression and sys-
tem identification for control (HH92), (SJ97). For the purpose of this the-
sis we are interested in the prediction capabilities of these kind of models.

A basic ANN is composed by an input layer of same size as the in-
put vector, a hidden layer that weighs the result of applying a certain
basis function to each element of the input vector, and the output vector
is the weighted sum of the values from the hidden layer. Radial Basis
Function Artificial Neural Networks (RBF-ANN) are a kind of artificial
neural networks with the characteristic of using Radial Basis Functions
in the neurons of its hidden layer (Orr96).

The Radial Basis Functions (RBF) are monotonically decreasing or in-
creasing real-valued functions that depend just on the distance between
the origin (or center) µ and another other point x. The center µ, the dis-
tance r and the radius or width σ the parameters of a RBF.

Therefore a RBF function ψ(x, µ) computes an associated value with
the distance r = ||x−µ||2 . This value is the maximum when the distance,
r, is the minimum, and the minimum value when r tends to infinity. This
property makes that these kind of functions produce higher response for
the values in the neighbourhood close to the centre.
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Particularly, the RBF for the ANN considered in this work is the Gaus-
sian Radial Basis that is one of the most used RBF functions for general
purposes and it is given by Equation 3.72

ψj(x) = exp

(
−||x− µj ||

2

2σ2
j

)
(3.72)

where x is the input vector, µ is the center of the function, and σ is the
width of the exponential function. The mathematical model of the RBF-
ANN can be expressed as follows

fk(x) =

M∑
j=0

wkjψj(x) (3.73)

where wkj is the weight of the j-th neuron and the k-th output, M is
the total number of hidden neurons, fk(x) is the k-th output layer of
the neural network and ψ is a radial basis function. The weights w in
Equation 3.73 must be set to minimise Equation 3.74

arg min
w

N∑
i=1

(yi − ŷi)
2 (3.74)

where w is the set of weights that minimises Equation 3.74 given the σ
widths and µ centers. n is the total number of samples x of the train-
ing set, ŷi is the mapping produced by the artificial neural network in
Equation 3.73 and yi is the actual output associated with input xi.

3.6 Error Measurement Indicators

To measure the general performance of the error in forecasting models,
different indicators are used in the literature. These indicators are useful
metrics to compare the accuracy of forecasting models with the aim of
avoiding the error cancelation produced by the accumulation of positive
and negative errors. This is achieved removing the direction of the er-
ror either using the absolute value or squaring the error value. The i-th
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error is an scalar value represented by e(i). Popular error indicators or
deviations used to summarize the error in a scalar vector are:

• Mean Absolute Error (MAE): Measures the average of the absolute
errors of the error set with size n of forecasts. It can be interpreted
as the average of all the equally weighted error magnitudes. This
is expressed by Equation 3.75.

MAE =
1

n

n∑
1=1

|e(i)| (3.75)

• Mean Squared Error (MSE): It is a quadratic metric that computes
the average of the individual square errors. This metric assigns
higher weights to large magnitude errors with a quadratic propor-
tion. It is expressed in Equation 3.76.

MSE =
1

n

n∑
1=1

e(i)2 (3.76)

• Mean absolute percentage error (MAPE): This accuracy metric nor-
malises the errors respect to the process mean giving the error in
terms of percentage. This characteristic is useful to compare dif-
ferent performances in different time series belonging to different
order. Since the re-escalation is applied, it makes the indicator a-
dimensional. The definition is found in Equation 3.77.

MAPE =
100

n

n∑
i=1

|e(i)
µ
| (3.77)

where µ is the mean of the full set of values.

• Root Mean Square Error (RMSE): It is a quadratic metric that mea-
sures square root of the average squared error. Since each error
is squared, weights are assigned quadratically to the errors which
they are then summed. The result of the sum is normalised when
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it is divided by the number of elements n. It is useful for compar-
ing vectors of predicted and observed values. This is expressed by
Equation 3.78.

RMSE =

√∑n
i=1 e(i)

2

n
(3.78)

The average RMSEh is a reference index for comparing the perfor-
mance of the different forecasting algorithms at different prediction hori-
zon values h. It is defined by Equation 3.79,

RMSEh =
1

n

n∑
n′=1

√∑n′+h−1
i=n′ e(i)2

h
(3.79)

where n′ is an auxiliary index that is moved one step ahead and then
fixed to move the index i, h steps ahead. At each n′ is computed the root
square of the h next square errors e(i)2 average. Finally the average of
the independent vector errors is computed.

3.7 Classification and Clustering

This section addresses the k-means algorithm and the silhouette method
used in data mining and machine learning for pattern recognition and
identification. These methods are able to identify temporal behavior
characteristics useful for local modelling which allow to build a multiple
model able to capture and differentiate dynamical modes which present
different statistical properties among them.

A clustering algorithm is a method that groups a set of vectors ac-
cording to a specific similarity criterion (e.g, the euclidean distance, the
infinity norm, or hamming distance). These algorithms work with the
principle that vectors (or objects) may share characteristics in common
so, the objects with similar characteristics are grouped in a class. In this
way the clustering simplifies the description of the data diversity of a
complex data set.
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3.7.1 k-Means Clustering

The k-means algorithm is a data mining clustering method based on min-
imising the mean distance of each centroid to a set of selected data points
according to their distances. The centroids represent different classes of
data, and are used as prototypes. The k-means algorithm tries to min-
imise the objective function described as shown in Equation 3.80

arg min
{µi}k1

k∑
i=1

∑
x∈x
||x− µi||2 (3.80)

where x = {x1, . . . , xn} is the set of objects to be classified, µi is the cen-
troid to be optimised, and k is the number of clusters contained in the
data set. Solving the k-means optimisation in Equation (3.80) is NP-hard
but in practice it can be solved efficiently with the 2-step Lloyd’s algo-
rithm described by means of Equations (3.81) and (3.82). When the cen-
troids are initialised (random initialisation is an accepted strategy), the
next step is to update the next position of the centroids µi using Equa-
tion:

Ci = {xn : ||xn − µi|| ≤ ∀||xn − µl||} (3.81)

where Ci is the set of objects belonging to centroid µi, defined by the
minimum distance given by ||xn − µi|| over all the centroids and the
update is computed by Equation

µi =
1

|Ci|
∑
x∈Ci

x (3.82)

where µi is the updated centroid generated by the arithmetic mean of the
objects in Ci. In order to select the most suitable number of classes k that
fit better the data, auxiliary methods to measure and validate the quality
the data separation among classes might be used.

3.7.2 Selecting the Best Cluster Partition

In order to find the best separation of classes after the execution of a
clustering algorithm, an index that indicates how well the clusters are
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separated is used. Depending on the characteristics of the data the clus-
tering algorithm for separating the data in groups with its number of
clusters k. The parameter k is chosen from a set of possible valuesKtest =

{1, . . . , k, . . . , kmax}. Once the clustering algorithm is executed, an indi-
cator of qualityQk is associated with the clustered data in k ∈ Ktest clus-
ters. The criteria depends on the kind of index, it might be the maximum
value of the indicator as expressed by Equation (3.83).

arg max
k∈Ktest

Qk (3.83)

Also the minimum value of the indicator as shown in Equation (3.84)

arg min
k∈Ktest

Qk (3.84)

or the Ktest,k that produces the biggest difference respecting Ktest,k−1 as
shown in Equation (3.85)

arg max
k∈Ktest

Qk −Qk−1 (3.85)

where Qk is defined by Equation (3.86)

Qk = Q(P, k) (3.86)

where P is the partitioned data, k is the selected number of clusters in P ,
andQ is the function that evaluates the index for P using any algorithm.
In the literature are found a plentiful of quantitative indexes for evaluat-
ing the clustering quality. A good survey with a good number clustering
criteria is found in (Des13).

Silhouette Method

In clustering analysis, intuitive ideas are adopted for the development
of clustering algorithms and indicators for measuring the cluster quality.
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The concepts of cluster, mass, radius, density, cohesion, and separation
are mixed and used for this proposal.

The silhouette method is an algorithm to compute a separability coef-
ficient developed by Peter J. Rousseauw (Rou87) inspired by the human
intuition of clustering and classification. The silhouette coefficient is re-
liable in compact and clearly separated clusters. The silhouette method
requires the data set partitioned in k− clusters and the set of proximities
between all the objects.

To measure the silhouette coefficient we define s(i) as the dissimilar-
ity distance of object i. A is the cluster to which object i belongs. The
average similarity of i with the other j objects in A is computed and ex-
pressed as Equation 3.87 and 3.88.

a(i) =
1

|A| − 1

∑
j∈A and i 6=j

dist(i, j) (3.87)

b(i) = minimum dist(i,B) (3.88)

where dist(i,B) is the set of all similarity measures between i and objects
j ∈ B. b(i) is the minimum similarity measure of the nearest cluster
B 6= A. With these definitions we are able to compute the individual
silhouette coefficient for each object i using Equation 3.89.

s(i) =
b(i)− a(i)

max{a(i),b(i)}
(3.89)

Finally the average silhouette coefficient is given by Equation 3.90.

1

n

n∑
i=1

s(i) (3.90)

In many real cases, there exists the possibility of having not perfectly
separated clusters having mixed clusters, in this case the output of Equa-
tion 3.89 might be negative. The meaning of this is that there is an in-
trusive object inside the set A belonging actually to another cluster. For
that reason b(i) can be substituted by the mean of all the distances of the
objects i ∈ A with the objects j ∈ B.
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b(i) =
1

|B| − 1

∑
j∈B and i6=j

dist(i, j) (3.91)

where B is the closest cluster to the object i and dist(i,B) is the set of
dissimilarity distances between i and the j objects contained in B.

3.7.3 Feature Extraction

Since the proposed Multi-Model Predictor addressed in Chapter 4 is ba-
sed strongly on the feature extraction for the identification of patterns,
this subsection includes a general guide introducing a general classifica-
tion of different feature extraction algorithms that can be implemented
for the identification and modelling of dynamical patterns. The feature
extraction is a kind of data processing to obtain meaningful characteris-
tics from the raw data in order to improve the performance of algorithms
oriented to system modelling and identification. This processing is use-
ful to remove redundant data, select local features or enhance a signal. A
classification of the feature extraction algorithms is shown next.

• Standardisation and normalisation: These algorithms translate to
a common scale to compare and analyse data from different sources
with different scales. In time series it is convenient to scale the data
sequence to unique range in order to compare the performance of
different forecasting methods applied to different time series with
different range. These algorithms are studied widely and applied
in machine learning and pattern recognition (SKF08), (AH01).

• Signal enhancement: In the nature regularly the signal is noisy
or weak to manipulate. This is because the signal to noise ratio
is high. In order to reinforce the signal, it is possible to apply de-
noising, smoothing, sharpening or de-trending filters. As example,
differentiating is a simple de-trending operation that removes the
trend from the time series in order to obtain a stable mean in time
series. This is useful when is required to compare the qualitative
characteristics of the time series. This algorithms are also found in
instrumentation research (ELW+08), (Ras14).
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• Extraction of local features: Methods for encoding the data and
transform the knowledge in features. In time series this consists on
finding the proper model for certain sections of the time series with
specific characteristics. The local features are modelled by inde-
pendent models selected following certain rules and conditions. A
survey about time series clustering by using local features is found
in (War05).

• Linear and nonlinear space embedding methods: Since the Multi-
Model Predictor framework is based on clustering and regression
methods, they may have limitations dealing with high dimensional
data. In order to deal with this fact, it is important to discard the
irrelevant components that do not contribute with relevant infor-
mation. Data discrimination is useful for two reasons: The num-
ber of optimisation variables might be reduced and the computa-
tional performance might be improved once the irrelevant data is
not computationally analysed anymore. For example, old past in-
formation of time series with negligible influence in the recent dy-
namics of the system is better to be discarded. Another example
in nonlinear time series, is the use of mutual information and false
neighbours algorithms (KS04) for detecting and discarding useless
information for system modelling.

• Nonlinear expansion: When the data is too complex, is common to
transform the data into a higher dimension. This idea is applied to
nonlinear time series, where observing just one variable in a unidi-
mensional space, is possible to reconstruct the trajectory in a higher
dimensional space. The theory of machine learning classifiers as
ANN and SVM provides the possibility of implementing a set of
hidden neurons with nonlinear activation functions to transform
or map the input data in a nonlinear space. For the Support Vec-
tor Machines the implementation of kernel tricks is useful also for
transforming the dimension and shape of the original feature space
of the data to another that improves the performance. Examples
of applications exploring the nonlinear relationship of the natural
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data are found in (CLX+11) and (She05).

• Feature discretisation: For dealing with computational complex-
ity, some algorithms require to discretise the continuous model or
data. For example, for the implementation of a dynamical sys-
tem for simulation in MPC for being solved by computers or micro
controllers since the continuous characterisation of the model is in-
tractable for computers. An important article about discretisation
of partial differential equations and discretisation of continuous at-
tributes as preprocessing step for machine learning are found in
(BWZ08) and (CGB96)

Here is concluded the basic theory and the description of the algo-
rithms involved to address the Multi-Model Predictor framework. The
Multi-Model Predictor Framework and three implementations are ad-
dressed and described in detail in Chapter 4.
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Chapter 4

Multi-Model Forecasting

Time series can present several pattern behaviours in regular time lapses
activated by events generated by natural or social circumstances (e.g. so-
cial events, meteorological phenomena, regime of chemical reactions).
This is, for example, the case of water or electricity consumption that
presents a daily periodicity (the demands present a repetitive pattern
every day varying regularly during week-ends and holidays), a weekly
periodicity (the demand decreases during the week-ends) and seasonal
changes (the demand changes according to the season because of wea-
ther, holidays, etc.).

Several approaches have been proposed in the literature for forecas-
ting time series that presents several patterns and seasonalities, see e.g.,
(AFM07) or (QPG+10), where a two-level model is used: a daily flow
time series model is combined with a daily 10-minute distribution pat-
tern. The identification of these patterns allows to design local models to
forecast specific regimes. Recent related research on identifying behavior
regimes in time series can be found in the literature. In (BC13), the im-
plementation of a global NAR neural network predictor is proposed to
estimate the regimes associated with local NAR neural network predictor
used for forecasting the hourly global solar radiation. In (KP10), an al-
gorithm is proposed for clustering the data and training local predictive
models for each set to generate a forecast based on the combination of the
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local models. In (MALS+07), clustering is used to group the days with
similar pattern with regard to the variation of working days and holi-
days. In fact, time series forecasting presenting multiple patterns is re-
lated to the multi-modelling approach of dynamical systems (SJ97). This
is an approach used for modelling nonlinear systems under the assump-
tion that they can be approximated by a finite number of interpolated
linear invariant (LTI) models in different operating points (regimes). The
identification of those multi-models also involves identifying the differ-
ent regimes. Once identified, a linear model is estimated for each regime
and these local models are combined on-line using weighted sum and a
scheduling variable.

This Chapter describes three different implementations of the Multi-
Model Forecasting Framework. The Section 4.1 describes the general
predictor architecture that they use. The three algorithms are classified
in two groups according to their similarity in their off-line (preparation)
and on-line (operational) phases:

1. Qualitative and Quantitative Multi-Model Predictor QMMP that
includes:

(a) Multi-Model Predictor based on the Qualitative and Quanti-
tative Decomposition of time series using SARIMA and kNN
as qualitative estimator (QMMP+kNN).

(b) Multi-Model Predictor based on the Qualitative and Quantita-
tive decomposition of time series using SARIMA with a noise
filter using a predefined calendar activity as qualitative esti-
mator(QMMP+NF).

These algorithms are based on the qualitative and quantitative de-
composition which are inspired on the SARIMA pattern algorithm
proposed by Quevedo in (QPG+10) (QMMP).

2. ANN Multi-Model Predictor

(a) Multi-Model Forecasting using Radial Basis Function Neural
Networks with an on-line Mode Recognition (RBFMMP+OR)
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that consists in a framework for training machine learning
Multi-Model predictors.

The Multi-Model Forecasting RBFMMP+OR algorithm is described
in Section 4.2. A particular case is addressed using a collection of algo-
rithms that allows the multi-model prediction, such as k-means for pat-
tern classification, RBF-ANN for the Multi-Model Predictor, and a mode
recognition mechanism based on the nearest neighbour rule.

In Section 4.3, the two Multi-Model Predictors based on the decom-
position of the quantitative and qualitative decomposition of time series
QMMP are described. The first configuration QMMP+kNN implements
two parallel forecasters where the qualitative predictor assumes the lack
of future information to activate the most suitable operation mode. For
this implementation, the decisions are based completely on the history
of the operation modes sequence. The second implementation, assumes
the existence of an activity calendar with the definition of the sequence
of working and resting days related to the forecasting operation modes.
This scheme is extended with a nonlinear filter module for modelling
and predicting the mismatches to improve the prediction accuracy. Both
algorithms use a low order SARIMA model to forecast the quantitative
(aggregated) component of the time series.

4.1 General Predictor Architecture

The proposed general architecture is designed, as we mentioned before,
to be used as general modelling methodology applicable to time series
and also to systems presenting multiple behaviours. The proposed frame-
work provides a methodology for:

• The preparation phase consisting of the off-line training of the Multi-
Model Predictor (MMP) and

• The execution phase that is the on-line implementation of the Multi-
Model Predictor (MMP).
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The Multi-Model Predictor MMP has an architecture composed of
interconnected modules involved in the mode recognition or prediction,
and activation of the suitable model predictor. This architecture is de-
scribed in Figure 18. It has three main modules: Feature Extraction,
Mode Recognition and the Multi Forecasting Model.

The function provided by the Feature Extraction module allows to
transform the data to extract qualitative information from the time se-
ries (GE06). This is done by transforming the time series input into suit-
able qualitative representation extracting detrended unitary patterns that
can be used by the Mode Recognition, and into quantitative representa-
tion to be used by the Multi Forecasting Model. The Mode Recognition
module estimates the next pattern to be activated using the processed
information produced by the Feature Extraction, and the Multi-Model
module contains a set of independent forecasting models associated with
each mode.

Mode 
Recognition

Mode 
Recognition

Y
t
Y
t

Y
(t-m)
Y
(t-m)

............Y
t-m-τ
Y
t-m-τ

Multi-ModelMulti-Model

Ŷ
(t+1,...,t+h)
Ŷ
(t+1,...,t+h)

Feature
Extraction
Feature

Extraction

Figure 18: General structure of the Multi-Model Predictor

4.2 Multi-Model Forecasting Using RBF-ANN
with an On-line Mode Recognition

The proposed algorithm based on machine learning algorithms allows
the off-line identification and training of the different dynamic behaviours
presented in time series, and the on-line model recognition and activa-
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tion according to the detected pattern. A particular implementation ba-
sed on k-means and Radial Basis Functions (RBF) is proposed to exem-
plify a possible implementation oriented to the short term water demand
forecast using demand data from the Barcelona drinking water network.

The Multi-Model Predictor MMP consists in a sequence of steps that
involves the training of a machine learning model using classified pat-
terns of the time series. This process is described by means of the block
diagram of the Figure 19. The raw data might be required to be pre-
processed to enhance the mode and cluster identifiability of the patterns
considering the Feature Extraction as an optional component.

Figure 19: Multi-Model training process

The steps involved in the off-line MMP training are:

1. Decomposition: The training set is organised in samples S of the
time series given by the Split Module. If needed, the output of this
module is transformed to another feature space by the means of
Feature Extraction module responsible of mapping the vectors S
into vector S′ according to Equation 4.1.

Ψ : S 7→ S′ (4.1)

2. Classification: This step includes the Pattern Classifier module
for classifying the split time series S (if the feature spaces is trans-
formed, then the classification is performed with the transformed
vectors S′) extracted by the Feature Extraction module in order to
generate labeled samples LS that include the assigned class. The
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classified labeled samples LS are formatted by the Data Format-
ting module that generates training sample vectors TS that con-
tain input-output training information with the associated class at-
tached.

3. Training: In this step, a machine learning model is trained using
the input-output samples TS.

Since the proposed framework might be seen as an open modular mo-
del, there exists a large collection of machine learning and pattern recog-
nition algorithms in the literature that can be used for the implementa-
tion of the proposed MMP. However, only a particular implementation
using standard and well known algorithms used in machine learning lit-
erature, is addressed with the objective of illustrating the improvement
of the prediction accuracy over the traditional methodologies (JV08) -
(XKQ+08). Therefore the following algorithms are used:

• k-means clustering algorithm for the Pattern Classifier module,

• RBF neural networks for the Multi-Model predictor module, and

• Discrete differentiation of time series for the Feature Extraction
module.

The implementation of the Split Time Series, Data Formatting and
Mode Recognition modules are addressed in the next section as part of
the training step.

4.2.1 Discrete Derivative as a Feature Extraction Method

The Feature Extraction module performs the task of transforming raw
data into a set of useful features (GE06). The function of the feature ex-
traction is to improve the classification performance of the data. The
discrete derivative (or differentiation) of the time series is implemented
as feature extraction method described by

Y ′t = Yt − Yt−1 (4.2)
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where Y ′t is given by the difference of the data at time t at lag t− 1.
The effect of this transformation consists in removing the mean and

trend taking the relative increments of the time series used for the mode
identification (MG08).

4.2.2 On-line Mode Recognition for the Multi-Model Pre-
dictor Approach

The proposed methodology for building the Multi-Model Predictor is
designed to use machine learning regression methods that learn a model
that associates the input with the output vectors from a subset of samples
(AYK+11). In order to build the Multi-Model Predictor, the specific algo-
rithms for the MMP training and On-line Mode Recognition with the
Multi-Model Predictor (RBFMMP+OR) implementation are described
next.

Preparation Phase

In the preparation phase is performed the training of the Multi-Model
predictor. This phase involves the Decomposition, Identification and
Training steps performed off-line. The implementation of each step in-
volved is described next.

Decomposition:

This step decomposes the time series for the identification of the different
behavior patterns. The decomposition starts assuming the availability of
an univariate time series described by Equation 4.3,

Y = {Y1, . . . , Yi, . . . , Yn} (4.3)

where Y1, Yi and Yn are the first, the i-th and the last element of the time
series respectively. The time series Y is decomposed in samples S as
presented in Equation 4.4.

S = {S1, . . . , Si, . . . , SN ′} (4.4)
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where N ′ is the total number of samples defined by bn−h−m+1
τ c and Si

is the sample obtained splitting the original time series Y according to
Equation 20

Si = {Y(τ ·i−m+1), . . . , Yτ ·i, . . . , Yτ ·i+h} (4.5)

where m is the number of observations, h is the desired prediction hori-
zon, and τ is the period parameter that defines a split point that is ap-
plied every τ number of displacements. The τ displacements are per-
formed by a sliding window of size m+h inside each sample Si in order
to construct the training samples TS. A graphical description of the data
organisation used for the construction of the training set is shown in the
Figure 20, where S1 and S2 are samples of size m+ h+ τ − 1 that allows
τ displacements of the sliding window inside each sample.

m h

Figure 20: Time Series processing data

Identification and training

The objective of the identification analysis is to detect the number of dif-
ferent modes in the samples S. The samples S are classified into a suit-
able number of classes k using a clustering algorithm to group them ac-
cording to their similarity. Then, a local forecast model is trained with
classified data for each specific mode. In order to choose a number of
clusters k, the classification is validated by maximizing the mean silhou-
ette coefficient shown in Equation 3.89. When the Feature Extraction
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module is implemented, the Pattern Classifier uses the samples S′ that
are transformed in the same feature space to classify S. After the classi-
fication of S, labeled samples LSi = {Ci, Si} are obtained where Ci ∈ K
are the possible labels ofCi withK = {1, . . . , k}. Then, the class informa-
tion is incorporated using extended input vectors that include the m last
observations concatenated with the codified class information. The pro-
cedure for generating training samples TS is implemented in the Data
Formatting module. To generate the training samples TS, a sliding win-
dow of size m + h is used to obtain from the labeled samples LS the
training samples TS = {{C′, Input},y} where C ′i = {ICi,1, . . . , ICi,k} is
the codification of the class in ci using the Ci − th row of the identity
matrix Ik×k as shown in:

k1 → k′1
...

kk → k′k

 =


1 . . . 0

...
. . .

...
0 . . . 1


k,k

= Ik,k (4.6)

The vector Inputi = {Si,j , . . . , Si,j+m−1} is a sequence of m inputs
and yi = {Si,j+m, . . . , Si,j+m+h} is the output or target vector of size
h where j = {1, . . . , τ} is the index that moves the sliding window τ

times composing the training set by extending the each input vector to
xi = {Ci, Inputi} obtaining a set of training samples denoted by TS =

{xi,yi}N
′

i .

Training

The machine learning method is trained using the training samples TS
to optimize the objective function

minimise
w

N ′∑
i=1

(f(xi)− yi)
2 (4.7)

where w is the set of weights that minimises the sum of the squared
errors between the estimated output by the neural network denoted by
f(xi) and the real output vectors yi.
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Operational Phase

The operational phase consists in the implementation of the execution
the Multi-Model Predictor. After training the RBF-ANN, arises the chal-
lenge of designing a mechanism for the Mode Recognition module to
estimate and discover the current operation mode. For this module, a
mode discovery based on the nearest neighbour rule using a variable
queue of observations is proposed. The idea is based on the exploitation
of the current and limited historical information to estimate the class as-
sociated with class of the observed measurements using the Euclidean
distance. The implementation consists in a queue W ′ of variable size
that stores from m to m+ τ − 1 measurements as follows in Equation 4.8,


W1

W2

...
Wm+mod(t,τ)

 =


Yt−(m+mod(t,τ))+1

Yt−(m+mod(t,τ))+2

...
Yt

 (4.8)

where W1 is the first element of the queue that stores a delayed mea-
surement Yt−(m+mod(t,τ))+1, andWm+mod(t,τ) stores the current measure-
ment Yt. Notice thatW1 is realigned each period defined by τ . In order
to simplify the notation, we define in Equations 4.9 and 4.10, the queue
{W ′}sup(t) and the prototype vectors {Pk}sup(t).

{W ′}sup(t) = {W1, . . . ,Wsup(t)}, (4.9)

{Pk}sup(t) = {P k1 , . . . , P ksup(t)}, (4.10)

where sup(t) = m+mod(t, τ). The estimation of the class associated with
the current observations in time t stored in {W ′}sup(t) is performed using
the nearest neighbour rule defined by Equation 4.11

arg min
k∈K

∣∣∣∣∣∣{Pk}sup(t) − {Z}sup(t)∣∣∣∣∣∣ (4.11)
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where the class selected is the argument k that minimises the distance
between the prototype {Pk}sup(t) and the current measurement stored
in {W ′}sup(t).

4.3 Multi-Model Predictor Based on Qualitative
and Quantitative Decomposition

In this Section, two implementations of the Multi-Model Predictor are
addressed exploiting the decomposition of the time series in its qualita-
tive and quantitative components; a Multi-Model Predictor with qualita-
tive forecasting assuming no knowledge about the future (e.g., the lack of
a calendar activity), and another implementation assuming the calendar
of activity that provides the forecasting modes but including a nonlin-
ear filter for detecting mismatches in the qualitative pattern prediction.
The architecture of the Multi-Model Predictor is described previously in
Figure 18. In both implementations are included:

• A seasonal ARIMA model that predicts the quantitative compo-
nent using daily aggregated magnitudes.

• A mode estimator that can be implemented using different strate-
gies depending on the knowledge data assumption. In the first
case, it is assumed that the sequence of the modes are not known a
priori and in the second case it is assumed that the operation modes
are a priori known as a good approximation of the global behavior,
for example, the annual activity calendar of working and resting
days governing the behavior of the urban population. The mod-
elling study of such information belongs to the global modelling.

• A k-means clustering algorithm for finding the patterns modes.

To perform the training and tuning parameters of the different algo-
rithms involved, the raw time series described by Equation 4.3, is decom-
posed in its qualitative and quantitative components. The quantitative
time series is given by Equation 4.12
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Zi =

i·τ∑
j=((i−1)τ+1)

Yj (4.12)

where τ indicates the seasonality while the qualitative (or normalised)
time series is obtained by Equation 4.13:

Xi =
{Y((i−1)τ+1), . . . , Yi∗τ}

Zi
(4.13)

where X = {X1, . . . , Xi, . . . , XN} is the time series containing the adi-
mensional qualitative unitary patterns. The qualitative patterns are clas-
sified and associated with a class K ∈ {1, . . . , k}. The associated classes
are contained in C defined by Equation 4.14

CT = arg min
i∈K

||XT − Pi|| (4.14)

where Pi is the distribution pattern or prototype, given by the mean of
the objects contained in each class, and k is the number of classes. Each
object CT ∈ K contains a label from K. The new time series with the
sequence of labels CT is defined in Equation 4.15.

C = {C1, . . . , CT , . . . , CN} (4.15)

Time series prediction models for Z and C are modelled indepen-
dently. On one hand, the estimation of the next value ẐT+1 might be per-
formed by a low order Seasonal ARIMA. On the other hand, ĈT+1 can
be estimated using two main general approaches based on the certainty
assumption of the data. The first one is using the a priori knowledge of a
human based calendar assuming that the patterns approximate the activ-
ity calendar of working and resting days. The second approach consists
in using a general method for determining the next pattern automatically
without any assumption. For this latter approach, methods based on the
knowledge representation as kNN, Bayesian Networks, Markov Chains
can be used.
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The final forecasting is produced by the composition of the predicted
qualitative and quantitative components ZT = {ẐT+1, . . . , ẐT+H} and
PT = {PĈT+1

, . . . , PĈT+H
}, as follows

Ŷ(Tτ)+1, . . . , Ŷ(T+1)τ = ẐT+1 · PĈT+1
(4.16)

...

Ŷ(T+H−1)τ+1, . . . , Ŷ(T+H)τ = ẐT+H · PĈT+H

where τ is the length of the period, H and T are the prediction horizon
and current time respectively in a τ period basis.

4.3.1 Multi-Model Predictor Based on the Qualitative and
Quantitative Decomposition of Time Series using
SARIMA and kNN

The implementation of this Multi-Model Predictor with a Mode Predic-
tion without any information about the future of the prediction mode,
uses a qualitative forecasting model based on kNN. The scheme is de-
scribed in Figure 21.
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QuantitativeQuantitative

Feature 
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Figure 21: Multi-model training process

According to Figure 21, the observed data so far {Y1, . . . , Yfloor(t/τ)τ}
is received and processed by the Qualitative Feature Extraction module
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delivering the extracted qualitative information to the Mode Recogni-
tion module. On the other hand, the subset of observations

Yfloor[(t−τ∗ά+1)/τ ]τ , . . . , Yfloor(t/τ)τ , (4.17)

(where ά constraints the last days to be considered) is processed by the
Quantitative Feature Extraction module related directly with the sea-
sonality value used by SARIMA forecasting model. The SARIMA fore-
casting model is included in the Multi-Model module. The implementa-
tion is composed by the preparation and operational phases using data
organised in training and validation sets respectively. The procedures of
both phases are described next.

Preparation Phase

For the preparation phase, the parameters of the qualitative kNN pre-
dictor and SARIMA model are tuned using the training data set. The
parameters ε and delays m of the qualitative kNN forecasting are found
in Equation 3.66, 3.67 and 3.68 in Subsection 3.4.2.

The correlation analysis is required to identify the SARIMA model,
and then optimise its parameters with any gradient based parameter es-
timation algorithm. Once the SARIMA model is obtained, the kNN pa-
rameters are adjusted executing exhaustive search bounding the search
space by means of the parameters ε and m minimising the RMSEh er-
rors as follows in Equation 4.18:

arg min
m,ε

N∑
T=1

||ŶTτ+1 −YTτ+1|| (4.18)

where ŶTτ+1 is the predicted value given by the composition of the qual-
itative and quantitative forecasting for the next days expressed by Equa-
tion 4.19

ŶTτ+1 = {ẐT+1PĈT+1
, . . . , ẐT+HPĈT+H

} (4.19)

and YTτ+1 is the real hourly information (in our application, water con-
sumption) defined by
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YTτ+1 = {YTτ+1, . . . , Yτ(T+H)} (4.20)

where H is the H-th predicted vector with τ elements. The Figure 22
shows how the prediction at the smallest basis (hours) is performed along
the period (day), using a sliding window of size h covering the predic-
tion subsequence data from (τT ) + 1 to (τ(T +H)) in τ steps.

Operational Phase

In the operational phase, the Multi-Model Predictor architecture pre-
sented in the Figure 21 is implemented. In real-time, the model collects
the raw measurements as input for transforming the data to allow the
extraction and classification of the qualitative patterns performed by the
Qualitative Feature Extractions and the aggregated data by the Quanti-
tative Feature Extraction every τ steps. The sequence of labels C (Equa-
tion 4.15) are processed by the Mode Detection Module to estimate with
Hamming distance based kNN, the next pattern to be considered and
used by the Multi-Model Module.

For the operational control of water distribution networks, it is neces-
sary to have available 24 hour ahead predictions not only in each period
τ , but in an hourly basis. For expanding the capability of having the
prediction information, kNN estimates two modes ahead, and SARIMA
predicts two aggregated consumption days described as the Figure 22.
The prediction at any time t is provided by a sliding window over Ŷt+1

shown in Figure 22 with a desired prediction horizon h.

4.3.2 Multi-Model Predictor Based on the Qualitative and
Quantitative Decomposition of Time Series Using
SARIMA and Noise Filter

This is another implementation of the Multi-Model Predictor using a low
order SARIMA and an human activity calendar based on the information
given by a human expert with qualitative sequence definition of resting
and working days.
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Figure 22: Prediction sample

The contribution of this algorithm is the introduction of a noise fil-
tering module to address the problem of filtering the residuals or (mis-
matches) generated by the Multi-Model Forecasting (MMP) proposed
by (QSPB14) in short-term Demand Forecasting for Operational Control
and generalised in (LPR15). The objective of filtering the residuals is to
discover the structure that improves the accuracy of the 24 hours ahead
water demand forecasting for operational control. The algorithm uses
a simple nonlinear filter to separate the noise from the structure of the
residuals. The extracted information is useful for correcting the predic-
tion in the next time instant.

In linear systems, the residuals of a good model fit a normal distribu-
tion with zero mean and constant variance along time. Real time series,
e.g., those extracted from nature, might be influenced by external dy-
namics, changing gradually the behavior and characteristics of the sys-
tem. Under those conditions, we need to readjust the parameters once
the prediction residual structures or the increasing of the error predic-

74



tion are noticed, or even worst, use a new model to fit the new behavior
properly. For cases where the systems present sporadic unmodelled dy-
namics, the mismatch must be processed and predicted to improve the
accuracy or the forecast.

Implementation

The Filter module is an extension of the the Multi-Model Predictor ar-
chitecture. We call it Qualitative Multi-Model Predictor with Noise Fil-
ter (QMMP+NF). The Filter module provides a noise filtering mecha-
nism to improve the forecasting accuracy and it is included in Figure 23.
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Figure 23: Multi-Model Predictor with the Filter Module

The Multi-Model module is seen as separated Qualitative Multi-
Model Forecaster and Quantitative Forecaster modules. The implemen-
tation of the proposed methodology is divided also in the preparation
and operational phase. In the preparation phase the separation of the
data in training, validation and test sets is performed and the implemen-
tation of all the modules. In the operational phase the prediction mech-
anism for having the forecasting available for each hour along the day.
The description of the two phases is explained in the next subsections is
implemented.
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Preparation Phase

The description of the modules of the QMMP+NF are:

• Feature Extraction: It performs the decomposition of the time se-
ries in its qualitative and quantitative components X and Z by us-
ing the Equations (4.12) and (4.13).

• Mode Recognition: This module is based completely on the knowl-
edge of the human activity. It is represented by the function F̂cal

that is the two class calendar function defined a priori according to
the working and resting days, so the next mode is predefined by
the calendar defined in Equation (4.21)

ĈT+1 = F̂cal(C1, . . . , Ci, . . . , CT ) (4.21)

where each element Ci ∈ [1, ..., k] contains the class label associ-
ated with the pattern mode P . The validation of the calendar ac-
tivity presented in the time series is performed by k-means and the
silhouette coefficient.

• Qualitative Multi-Model Forecaster: This module receives the next
mode selected by the strategy implemented in the Mode Recog-
nition module. It contains the different patterns associated with
different classes.

• Quantitative Forecaster: It includes a SARIMA model using the
quantitative time series Z. It is tuned with the training set and
validated with the validation set.

• Filter: This module is tuned once the previous modules are defined
and implemented. The Filter collects the residual vectors R pro-
duced by the difference of predicted qualitative component PĈT+1

and the real qualitative component in XT+1, producing the residu-
als.

RT+1 = PĈT+1
−XT+1 (4.22)
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Filtering is performed on current time T , H steps ahead. It uses the
residuals stored in R = {R1, . . . , RT }. Once the predictions are available,
the residual indexes associated with the modes {ĈT+1, . . . , ĈT+H} are
collected in vector V following the Equation (4.23)

V = {∀i ∈ [1, T ], Ci = ĈT+1} (4.23)

The most recent occurrence of the mode ĈT+1 in the past is taken using
Equation (4.24).

s = max(V ) (4.24)

where max function gets the vector element with the maximum value
and it is stored in s. The last occurrence of the predicted mode ĈT+1 is
used as reference for searching κ similar residuals to Rs. The residual Rs
is selected as the basis for searching and sorting its κ similar residuals.
In Equation (4.25) the vectors RVl are sorted and then taken the κ closest
residuals to Rs

dist(Rs, RVl) < dist(Rs, RVl+1
) (4.25)

where function dist is the Euclidean distance function and l = {1, . . . , κ−
1} are the indexes related to the closets residuals. Once V indexes are or-
dered, the filter for the next time step T +1 is computed by the following
equation (that is the simplification of Equation (3.71) setting m = 1).

FT+1 =
1

k

κ∑
i=1

Rvi (4.26)

The FT+1 vector is used as predictor corrector and it is integrated in
Equation (4.27).

{ŶTτ+i}Hτi=1 = {ẐT+i ·PĈT+i
+ αFT+i}Hi=1 (4.27)

where α ≤ 1 is a real constant number that weighs the amplitude of
the filter signal. Notice that when α = 0 the filter has no effect, and
when α = 1 the filter might over re-adjust the prediction producing poor
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accuracy forecast. To estimate a value for the α parameter, the MMP+NF
is executed with different α and κ values using the validation set and are
selected those that minimize the prediction error.

Operational Phase

For the operational phase of water distribution networks, as it is men-
tioned before, it is necessary to have available 24 hour ahead predictions
in an hourly basis for the operational control. Similarly to the previous
algorithm, two days ahead are predicted and a window of size τ is slid
over the prediction ŶTτ+1, . . . , Ŷτ(T+H). This process is described by Fig-
ure 22. To measure the performance of this architecture in an hourly basis
is obtained using the testing data set.

With this last algorithm is concluded this Chapter. Next, the evalua-
tion performance is addressed in Chapter 5 implementing the proposed
forecasting models to predict the drinking water demand.
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Chapter 5

Results

This chapter addresses the performance comparison in the short term
of the proposed multi-model forecasting algorithms. In Section 5.1 the
database of water demand times series is described as well as their gen-
eral characteristics. Section 5.2 shows the experiments and validation for
the proposed multi-model algorithms.

5.1 Description of the Database

To illustrate application with real data of the proposed forecasting mod-
els, a brief description of the time series origin is explained. The time
series are selected from the database generated by the flowmeters of the
water supply network (WSN) of Barcelona. The WSN of Barcelona is
managed by AGBAR company (Aguas de Barcelona). AGBAR supplies
water to Barcelona and metropolitan area. The water delivered comes
from different water resources: from the rivers Ter and Llobregat, the
underground flows and wells that provide water through pumping sta-
tions. The total water resources provides a flow approximately of 7m3/s.
A desalinisation plant is also part of the DWN located at the end of Llo-
bregat river, it produces drinking water by treating the sea water. This
plant of 60hm3/year capacity, is strategically convenient specially in case
of drought periods.
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The water demand often presents a pattern repeated daily with vari-
ations during weekends, and also, sometimes between winter and sum-
mer.

The experiments are performed with measurements taken by flow-
meters at the entrance of the demand sectors that present a typical be-
havior of water consumption of residential zones. Since the database
is composed by raw time series directly acquired from the flowmeters,
some time series present missing or irregular data due to technical issues
such as poor transmission quality or malfunction. Due to this, the data
should be validated or preprocessed before being used as correct data.
The validation and reconstruction of raw data is a task that is out of the
scope for this thesis, nevertheless it is possible to make a preliminary out-
lier analysis with well known statistical tools. We detect and count the
outliers adopting the modified Thompson tau technique (DI07). Thomp-
son tau helps to decide whether to keep or discard suspected outliers in
a sample of a single variable. The sequences considered for the analy-
sis are those with zero or few outliers. The Figure 24 and 25 show the
plots of all the complete time series found in the database with the cor-
responding number of detected outliers. The sequences remarked in red
are considered for testing the proposed multi-model forecasting meth-
ods. The vertical axis is the normalised magnitude Y and the horizontal
axis represents the time t in hours.

The time series are normalised transforming the original range values
to the bounded domain [0, 1]. The flowmeters are enumerated to iden-
tify the sector that they cover with their corresponding detected outliers.
We choose those time series 5, 11, 14, 20, 78 and 90 containing less than
70 outliers shown in Table 2, and one time series with an irregular data
segment enumerated as 19. The sectors correspond to those with code in
the original database p10007, p10015, p10017, 10026, p10095, p10109 and
p10025 respectively.
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Figure 24: Raw time series generated by different flowmeters during the
year 2012.

The characteristic trend of the selected time series is shown in the plot
of Figure 26 and 27.

81



Figure 25: Raw time series generated by different flowmeters during the
year 2012

The fitted green plain line describes the trend of each series with the
slope and intercept components proper of the linear regression. The val-
ues of the series of interest are presented in Table 3.

A light trend near to zero is noticed in the series, nevertheless it is not
possible to assume constant trend in the long term as soon as we do not
have more information about the next years. The trend of the Sector 19
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Sector Outliers
5 4

11 8
14 1
19 453
20 66
78 1
90 10

Table 2: Number of outliers detected by the modified Thompson tau tech-
nique with a significance of α = 0.01
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Figure 26: Linear regression for illustrating the trend of the selected time
series

is severely affected for an irregular period that makes to have a possibly
false sense of the trend.

Regarding the seasonality, Figures 28 and 29 show the strongest auto-
correlation at lag 24 for all the time series, which confirms the water de-
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Figure 27: Linear regression for illustrating the trend of the selected time
series

Sector Slope
(1× 10−5)

Intercept
(Mean)

5 0.2214 0.3351
11 -0.4062 0.3998
14 0.1380 0.2066
19 -0.6750 0.3054
20 0.008 0.4340
78 -0.2145 0.3900
90 0.3389 0.3900

Table 3: Trend described by the slope and intercept components of linear
regression

mand cycles consumption are repeated in daily basis. Once the database
is described, the next Subsection presents the results of the different al-
gorithms developed.

5.2 Experiments

This subsection presents the performance presented by the different Multi-
Model Predictor algorithms: the quantitative and qualitative Multi-Model
predictors (QMMP+NF, QMMP+kNN) and the ANN Multi-Model Pre-
dictor (RBFMMP+OR). These algorithms are tested and compared with
the selected time series described previously.
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Figure 28: Autocorrelation plots of different sectors
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Figure 29: Autocorrelation plot of sector p10025

5.2.1 Validation and Performance Comparison of QMMP
Algorithms

The performance of QMMP+kNN and QMMP+NF depends on the se-
lected prediction strategy. As we mentioned before, a SARIMA pattern
is selected to produce the quantitative forecast and an activity calendar
or a kNN to produce the qualitative forecasting. To select the qualita-
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tive prediction strategy, a two fold cross validation is performed over a
the Training-Validation set from the full mode sequence. This analysis
helps to understand the dynamics that follows the mode sequences. The
organisation of the sets are described in Figure 30.

A B

70% 30%

TestTraining-Validation

Two – fold 
Cross Validation

Full set

Figure 30: Organisation of the training-validation and test sets

The training-validation is divided in datasets A and B taken from the
70% of the total data. For this task the time series Yfull, is decomposed in
its qualitative and qualitative components Z and X by using the Equa-
tion 4.12 and 4.13 respectively. The parameter τ is set to 24 according
to the seasonality observed in the correlation plots of Figure 28 and 29,
the qualitative time series X is classified using k-means. The number of
classes is selected according to the maximum silhouette coefficient cri-
teria. Different number of classes are tested with Ktest = {1, . . . , 10}.
Their silhouette values are plot in the Figure 31, where all the time series
considered matches with a number of classes k = 2.

The centroids of each class obtained by k-means represent the differ-
ent nominal consumption patterns and are used as unitary mode pro-
totypes. The classification labels C are represented in Figure 32, where
each monochromatic square represents a pattern mode label.

We consider the calendar F̂cal (Equation (4.21) ) and kNN qualitative
mode predictor (Section 3.4.2) to be chosen. The mode strategy that de-
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Figure 31: Mean silhouette coefficient values for different values of k in k-
means and different time series of water demand.
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Figure 32: The two pattern modes of different sectors. The week starts on
Sunday.
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scribes and predicts better the mode sequences is selected.
The cross-validation estimates the predictability of the pattern mode

of both strategies. The strategy is selected according to the minimisa-
tion of the average pattern prediction errors criteria. The two iteration
cross-validation is performed in this way: the first iteration considers the
subset B as the training set and the set B is the validation set, and for
the second iteration, B is used as training set and B as the validation set.
After finishing the two iterations, the errors obtained are averaged. The
results are shown in the Table 4.

Iteration 1 Iteration 2 Mean Suggestion
Sectors kNN Calendar kNN Calendar kNN Calendar

5 5 5 13 0 9 2.5 Calendar
11 20 4 15 7 17.5 5.5 Calendar
14 5 5 11 17 8 11 kNN
19 3 5 14 1 8.5 3 Calendar
20 4 1 15 2 9.5 1.5 Calendar
78 4 3 7 2 5.5 2.5 Calendar
90 7 5 18 2 12.5 3.5 Calendar

Table 4: Two iteration cross validation for kNN and Calendar mode estima-
tion

In both iterations the parameters m and ε defining the length and
neighbourhood of the qualitative delay vectors of kNN are optimised
using the Equation 5.1

arg min
m,ε

N∑
T=1

dist(ĈT+H ,CT+H) (5.1)

setting the prediction horizon one day ahead H = 1 (prediction of one
pattern mode ahead), where dist is the Hamming distance taking into
account that C is a sequence of labels and the prediction is performed
by using the Equation 3.68. Table 5 includes the parameters that opti-
mise the prediction with kNN for each iteration. The distance of the
neighbourhood and size of the delay vector for kNN mode estimator are
those that minimises the objective function expressed by (4.18) subject to
ε = {0.01, 0.02, . . . , 0.1} and m = {2, . . . , 10}.
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Iter 1 Iter 2
Sector m m

14 10 5
90 8 6
78 8 9
20 10 9
11 6 8

5 10 9
19 8 9

Table 5: m parameters that optimize the mode prediction with kNN. ε =
0.01 was chosen for all time series

This test suggests the use of the calendar for all time series, with the
exception of the Sector 14 that is more suitable to be predicted using
kNN.

Performance of QMMP + kNN and QMMP+NF

For the algorithm QMMP + kNN, the data set is also divided in two data
sets. The training and testing set with the 70% and 30% from the total
data respectively. The preparation phase is performed with the training
set by means of the decomposition, pattern mode estimation, SARIMA
and kNN parameter tuning.

In the case of the algorithm QMMP+NF, the data set is divided in 3
sets. The preparation phase of is similar to the QMMP + kNN. With the
difference that the half of the testing set is used for tuning the noise filter.
The organisation of the different data sets can also be observed in Figure
33.

The parameters m, ε and SARIMA structures of the two algorithms
are shown in Table 6 that consider the search space for the kNN qualita-
tive forecaster is defined bym = {1, . . . , 20} and ε = {0.01, 0.02, . . . , 1.00}.
For the noise filter parameters, the search space is defined by α = {0, 0.1,
0.2, . . . , 1} and κ = {1, 2, . . . , 40}. All those values are tested using the
validation set and selected those that minimise the mean of all the inde-
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Figure 33: Training and testing data organisation

pendent RMSEh described by Equation 5.2.

arg min
α,κ

RMSEh (5.2)

The two algorithms are compared with well known forecasting mod-
els, Double Seasonal Holt-Winters (DSHW) and RBF Neural Networks
(RBF-ANN).

For the Holt-Winters, two parameters associated with two periods are
fixed. Since Holt-Winters manages hourly data, period τ1 and period τ2

parameters are set to 24 and 168 for the daily and weekly period. For the
RBF-ANN, different structures are implemented with 192 neurons in the
hidden layer, fixed widths with σ = 1, and input layer of size 24 and the
output layer of size 24 (h = 24).

Finally to measure the performance of the algorithms is used the
RMSE24 (Equation 3.79). TheRMSEh produced by the QMMP, QMMP
+NF, QMMP+kNN, RBF-ANN and DSHW using the test set for h = 24
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steps ahead, α and κ best values for the QMMP+NF are reported in Table
7.

SARIMA Models kNN Noise filter
Sectors p d q P D Q m α κ

5 [2,4] 1 [1] [0] 0 [7] 9 0.85 70
11 [2,4] 1 [1] [0] 0 [7] 14 0.65 70
19 [2,4] 1 [1] [0] 0 [7] 13 0.55 42
20 [2,4] 1 [1] [0] 0 [7] 13 0.8 70
78 [1,2,3,19] 1 [0] [0] 0 [7] 10 0.6 70
90 [2,4] 1 [1] [0] 0 [7] 8 0.7 70
14 [0] 1 [2, 7] [0] 0 [7] 7 0.6 70

Table 6: Parameters for the Noise Filter, kNN Qualitative Forecaster and
SARIMA models for each time series found.

Sec QMMP QMMP+NF QMMP+kNN RBF-ANN DSHW
5 0.0436 0.04 0.0494 0.0563 0.1009

11 0.0492 0.047 0.051749 0.0649 0.0755
19 0.0248 0.0239 0.029168 0.0333 0.0313
20 0.0494 0.0473 0.050302 0.0578 0.0555
78 0.0404 0.0359 0.041641 0.0572 0.0512
90 0.0632 0.0469 0.0640 0.0627 0.0609
14 0.0723 0.0727 0.0418 0.0558 0.0592

Table 7: RMSE24 performance comparison of the different algorithms

In order to compare graphically the performance of the QM MP+NF,
Figures 34 - 47 illustrate the improvement that the filter produces: the
first column of plots shows the prediction errors RMSE24 at each time
t in hours along the testing set comparing the performance of the Noise
Filter (QMMP+NF) (red line) with the original Qualitative and Quan-
titative forecasting (QMMP) (Black dotted line) taking into account the
pattern mode calendar. For the second column, a prediction sample 48
hours ahead is plot comparing the actual (black line), with the normal
(QMMP) (blue dotted line) and filtered predictions (QMMP+NF) (red
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line). It is observed that the noise filter reduces in general the prediction
error since the red line is the most of the time lower than the black line
representing the prediction with SARIMA pattern without filtering.

Discussion

The proposed architecture can be generalised for those time series that
present clear patterns in regular time lapses and can be validated as in
Section 6.1. The SARIMA pattern is a simple and effective method that fit
in the proposed Multi-Model MMP architecture. It works quite good for
the short term water demand forecasting. The general architecture of this
methodology is very flexible, although we explored some configurations.
However more work exploring suitable algorithms for decomposing the
time series in other simpler forms and predicting them should be done.
The architecture allows to substitute and plug different forecasting mod-
els for the qualitative and quantitative components. For example, the
quantitative series is possible to be modelled with DSHW, ANN among
others. Also the qualitative component is not limited to be modelled
either with the calendar or kNN. As an example, the structure organi-
sation of the multi-model allows to implement straightforward a mix of
the MMP+kNN and MMP+NF approaches for increasing the prediction
accuracy.

Conclusions

This subsection has shown a validation strategy based on the two itera-
tion cross-validation for choosing a qualitative mode predictor for pro-
posed Multi-Model Predictor based on the decomposition of qualitative
and quantitative components. Also two algorithms are compared against
RBF-ANN and Holt-Winters. kNN mode predictor is shown as an alter-
native of pattern prediction when the calendar based pattern prediction
performs poor. The algorithms and models can be chosen a priory ob-
serving the performance presented in the testing set. A filter that distin-
guishes the noise from the structure of the past residuals to improve the
prediction accuracy is introduced. It is demonstrated in practice that dis-
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Figure 34: Error along the testing
set of Sector 5
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Figure 35: Prediction sample of 2
days ahead of Sector 5
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Figure 36: Error along the testing
set of Sector 11
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Figure 37: Prediction sample of 2
days ahead of Sector 11
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Figure 38: Error along the testing
set of Sector 19
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Figure 39: Prediction sample of 2
days ahead of Sector 19
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Figure 40: Error along the testing
set of Sector 20
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Figure 41: Prediction sample of 2
days ahead of Sector 20
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Figure 42: Error along the testing
set of Sector 78
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Figure 43: Prediction sample of 2
days ahead of Sector 78
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Figure 44: Error along the testing
set of Sector 90
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Figure 45: Prediction sample of 2
days ahead of Sector 90
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Figure 46: Error along the testing
set of Sector 14
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Figure 47: Error along the testing
set of Sector 14

covering structure from the past errors may improve the performance in
general. The implementation of the filter processing may produce more
flexible and adaptable forecasting models that fit the gradual appearance
of unobserved and unmodelled dynamics that may occur in real systems.

As future work the authors suggest to explore the performance of the
kNN mode predictor plus the noise filter for improving the pattern pre-
diction. Also is suggested the exploration of the other kind of forecasters
and filters and the study.

5.2.2 Validation and Performance of the Multi-Model Fo-
recasting Using RBF Artificial Neural Networks with
an On-line Mode Recognition

In this subsection, another Multi-Model Predictor implementation, the
RBFMMP+OR, is applied to the water demand time series described
previously in Subsection 5.1.

The RBFMMP+OR is implemented with the algorithms described in
the Section 4.2 setting the parameters as follows: for the Split Time Se-
ries and Mode Recognition modules, the split point is set to τ = 12 and
the mode recognition implements the nearest neighbour rule. For the
Feature Extraction module implements the discrete derivative or differ-
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entiation of the time series. The Pattern Classifier implements k-Means.
The number of clusters k is defined by the maximisation of the average
silhouette coefficient. For the Multi-Model module predictor, the RBF-
ANN structure has input layer of size k + 24, the hidden layer has 192

neurons with width σ = 1 and an output layer size 24 where each output
neuron is the prediction for each time step in the next 24 hours.

The data is divided in two sets; 70% for training and tuning the dif-
ferent parameters of the models, and the 30% for validation. The Figure
48 shows the average silhouette values obtained for different sectors and
different number of clusters k. The Classifier module uses k-Means al-
gorithm.
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Figure 48: Mean silhouette coefficient values for different values of k in k-
means and different time series of water demand.

The results including the number of clusters selected are indicated in
Table 48 where the RMSEh given by the Equation 3.79 is used for mea-
suring the accuracy of the forecasting in the validation set. The proposed
approach RBFMMP+OR is compared with:

• A Seasonal ARIMA Pattern (SARIMA) (QMMP) based on the work
of (QPG+10) with a SARIMA model structure is defined previously
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in the Table 6.

• A Double Seasonal Holt-Winters (DSHW) (Kal04) with period τ1

and period τ2 set to 24 and 168 for the daily and weekly period,
respectively.

• A standard RBF Artificial Neural Network RBF-ANN considering
m+ k inputs and h outputs, with m = 24.

The Table 8 presents the results of this comparison. The columns of
the RBFMMP+OR contains the modes identified from the Figure 48.

Sect. QMMP DSHW k
modes

RBFMMP
+

OR

RBF-ANN
24 + k inputs
h outputs

5 0.0453 0.1009168 5 0.0522 0.0526
11 0.051719 0.07225436* 7 0.0658 0.0606
19 0.027823 0.03130634 2 0.0336 0.037
20 0.045474 0.05559293 7 0.0543 0.0557
78 0.040847 0.0512956 7 0.0546 0.0527
90 0.059176 0.0609 8 0.0624 0.0599
14 0.0651 0.05646 6 0.0433 0.0513

Avg. 0.0479 0.0612 6 0.0523 0.0528

Table 8: RMSE24 indicator for each time series produced by QMMP,
DSHW, RBFMMP+OR and RBF-ANN

Evaluating the average performance of each algorithm for all the se-
ries, the Table shows that QMMP is the algorithm with the best average
performance with an average error of 0.0479. The second best is the pro-
posed algorithm RBFMMP+OR with an average performance of 0.0523,
the third best algorithm is the RBF-ANN with an average performance of
0.0528. The DSHW is the algorithm with the worst performance with an
average performance of 0.0612. Comparing with percentages, QMMP,
RBFMMP+OR, and RBF-ANN are %21, %13.7 and %14.5 better than
DSHW performance. The asterisk written in the performance box of the
DSHW with regard to Sector 11 means that it displays an unstable behav-
ior for a set of values of the time series. So, in order to have a consistent
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error measurement, the unstable section was omitted. This kind of sit-
uations reinforces the need of exploring filtering and reconstructing the
time series. Figures 49-55 present the prediction samples produced by
the RBFMMP+OR 24 hours ahead during the day 298. The red dotted
line is the prediction and the solid black line is the real water demand
during that period.

Another experiment is presented analysing the performance of RBF
MMP + OR at different prediction horizon values h with the same algo-
rithms presented in Table 8. RBFMMP + OR shows better performance
than the traditional RBF-ANN, specially for the series of Sector 14. The
experiment consists in testing different RBF MMP +OR and RBF-ANN
architectures, such that the structures having an input layer of size 24
plus the mode input size k, 192 neurons in the hidden layer, and variable
outputs size considering the desired horizons h = {1, 2, 3, 4, 5, 6, 12, 24}.
The mean silhouette values for each prediction horizon h is shown in the
Figure 56 and the results including the selection of k are presented in
Table 9.

Horizon
h

QMMP DSHW k

RBFMMP+OR
k-Means

24 + k inputs
h outputs

RBF
-ANN

24 + k inputs
h outputs

1 0.0422 0.04513 5 0.0173 0.0240
2 0.0456 0.04729 5 0.0217 0.0270
3 0.0483 0.04885 5 0.0244 0.0307
4 0.0506 0.05016 5 0.0260 0.0333
5 0.0528 0.05131 5 0.0283 0.0350
6 0.0551 0.05234 5 0.0283 0.0366
12 0.0651 0.05646 6 0.0345 0.0425
24 0.0587 0.05922 6 0.0433 0.0511

Table 9: RMSEh indicator for each method for the hourly time series of the
Sector 14.

Table 9, shows that RBFMMP+OR is better than RBF-ANN at differ-
ent prediction horizons. QMMP and DSHW performs quite similar but
not better than the propsed framework. The good accuracy at shorter
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tor 19
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Figure 56: Mean silhouette value for varying values of k and variable pre-
diction horizon h

prediction horizons, is because special architectures are trained to pre-
dict at specific horizon avoiding the accumulation of forecasting errors,
unlike forecasting models such as DSHW or ARIMA that are not able to
produce a forecast horizon longer than one without feedback.

5.2.3 Discussion

This approach basically proposes a methodology to train and implement
a Multi-Model Predictor with classified temporal data using RBF-ANN
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for time series with defined periodicity. This approach is based on the
concept of regimes or operation forecasting modes and required mode
recognition mechanism to identify the current mode on-line. One of the
main drawbacks is the selection of a good value for the split point. A
short split point value leads to have short prototypes and short overlaps
between consecutive segments producing a big number of classes. A
big split point leads to have long prototypes maybe difficult to recognise
when the number of observations is short producing poor mode estima-
tions and consequently poor predictions. Remember that the split point
defines the minimum amount of observations stored in the queue for
estimating the current mode. Although it is not the best model for min-
imising the error for all the time series studied in this thesis, it performs
better than the traditional RBF-ANN. The author believes that the use
of more sophisticated algorithms for clustering, feature extraction and
prediction might improve the performance even more. As future work,
other implementations should be studied extending the experimentation
with more algorithms such as feature extraction and, dimensionality re-
duction algorithms. We can conclude the model is suitable for stationary
time series presenting defined seasonal patterns along the time.
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Chapter 6

Conclusions

The main contribution of this thesis is the introduction of general Multi-
Model Predictor (MMP) architecture. Different implementations where
proposed following the qualitative and quantitative decomposition of
the data and a Multi-Model forecasting based on Machine Learning me-
thodologies with the implementation of an On-Line Mode Recognition.

6.1 General Conclusions

Time series modelling is related to the black-box modelling of dynami-
cal systems when the model that produces such dynamics is completely
unknown. For addressing this problem, different tools from statistic and
computer science are used nowadays to describe the data sequence using
general models.

In statistics, classical methods as the parametric models like moving
average, Auto-Regressive, exponential smoothing models that assumes
certain regularity in the dynamic composition of the data can be found,
in computer science nonparametric models that do not need to satisfy
any assumption about used data as Support Vector Machines, multilayer
perceptron and Artificial Neural Networks which due to their character-
istics are used to approximate any function.

Time series extracted from the nature might present complex behav-
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ior difficult to be modelled just with one single linear model. In order
to obtain a more accurate approximation, it is assumed that the behavior
can be approximated by interpolating several Linear Time Invariant (LTI)
models, such that each one is used to model scenarios or regimes locally
of the dynamical system. This fact is related to the multiple modelling
approach of nonlinear dynamical systems.

Based on this idea, this thesis addressed the Multiple-Modelling prob-
lem by defining a general framework which may adopts a collection of
statistical and machine learning algorithms for producing as accurate
predictions as possible of the system by identifying and modelling the
local regimes.

The work of this thesis has some advantages over the proposed me-
thodologies mentioned in Chapter 2. The proposed multi-modelling app-
roach does not depend completely of the structured periodicity of the
data, overall when the global model (presented in the sequence of modes
or regimes) is based on nonparametric forecasting methodologies which
learns from the past information to predict the next mode. These algorit-
hms are based on the knowledge acquired by learning from the histori-
cal behavior of the data from predefined activity modes governed by a
calendar. In other words, these prediction algorithms are based on the
common sense that come from the predefined calendar of the human ac-
tivity, on the analysis of the past information to learn and on predicting
the behavior of the next time step as shown with the qualitative kNN
predictor.

6.2 Particular Conclusions

The particular conclusions related to the algorithms developed in this
thesis are:

• Multi-Model Predictor Based on the Qualitative and Quantita-
tive Decomposition using SARIMA and kNN (MMP+kNN): This
algorithm presents better performance in the water demand time
series of a sector that does not follow the dynamic of the prede-
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fined activity calendar at all. The implementation outperforms the
SARIMA pattern algorithm, RBF-ANN, and Holt-Winters for this
case.

• Multi-Model Predictor Based on the Qualitative and Quantita-
tive Decomposition of the Time Series including a Nonlinear Fil-
ter (MMP+NF): This Multi-Model implementation includes a non-
linear filter. The nonlinear filter is used with water demand time
series which qualitative behavior approximates the human calen-
dar activity of working and resting days. The nonlinear filter was
able to find new nonlinear structure of the qualitative behavior of
the time series. The integration of this mechanism provides of in-
teresting advantages over other algorithms in real situations where
the dynamics of the system is changing gradually along the time,
such that with traditional approaches, the new data should be anal-
ysed in order to decide if the current model is still valid or not.
As soon as is detected a dynamic change, it might be required to
construct a new forecasting model. The proposed model is able to
detect the mismatches to correct the next prediction pattern. This
algorithm is more robust to the model mismatches in the sense that
presents adaptability as soon as the new information provided by
the pattern mismatches is collected and processed.

• Multi-Model Forecasting Using Radial Basis Function Neural Ne-
tworks with an On-Line Mode Recognition (RBFANN+OR): This
implementation proposes at the same time a general framework
for constructing a Multi-Model Predictor based completely in ma-
chine learning algorithms. The disadvantage of this approach is
that sometimes produces false positives regarding the forecasting
mode.

The three methodologies based on the proposed general Multi-Model
Predictor framework has some disadvantage that should be solved. The
mode prediction may produce false positives. This is worsen when the
assumption of the certainty of the data is not correct at all. For example,
the prediction fails when the strategy is to trust in the pattern calendar
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activity when in reality the prediction mode is governed by other kind of
rules. In this situation the prediction will not be robust enough. In order
to solve this problem, it is possible to be selective by associating certain
algorithms or prediction schemes to specific time series. This can be per-
formed off-line executing a cross validation methodology as we did in
Section 5.1. If the prediction scheme it is required to be adaptive taking
decisions in an on-line manner. Moreover, methodologies for exploiting
in real time the information collected so far should be considered for the
prediction of the next mode for the global modelling.

6.3 Future Work

As future work the author proposes to follow the research line of global
modelling based on time series models including modes that can be im-
plemented in the Multi-Model Predictor architecture. The prediction ac-
curacy of the next mode depends on the knowledge assumption of the
data. It might be a stochastic Markov process, deterministic rule based
prediction, as previously mentioned in Chapter 3. A correct general as-
sumption of the sequential data provides robustness to the prediction.
The author believes that the integration of different (possibly correlated)
information sources as temperature, humidity and pollution levels as
auxiliary information for the qualitative forecasters can be integrated and
exploited for improving the global mode prediction accuracy. Bayes ba-
sed tools such as Bayesian Networks allow the integration of all these
diverse information because they are able to capture the probabilistic
dependency of random variables given a set of observations (HKP11).
These kind of models are capable to predict the operation modes using
the Bayesian inference; in other words, it is possible to estimate the pos-
terior probability of unknown variables given a set of observations from
diverse sources considered as random variables. These variables might
be associated with the operation modes or regimes.

Another research direction, is the generalisation of the qualitative
and quantitative method decomposition (Section 4.3) generating several
qualitative and quantitative time series associated with specific subpe-
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riod of water demand pattern.
The proposed decomposition is useful when certain segments (or sub-

periods) of a period, obeys to different behavior. For example, in the
work of (BVVS13), M. Bakker et al. detected in the central and Southern
part of Netherlands, an increment of the normal water demand from late
afternoon to evening in summer days. This increment observed in these
specific hours of the day is called, variant of season water demand pat-
tern. This pattern is produced by people sprinkling their gardens. There-
fore, the proposed forecasting method works differently for this part of
the day.

Therefore the proposal is to extend the decomposition algorithm split-
ting the size period τ in subperiods of size τ ′. The selected subperiod size
τ ′ is selected satisfying

{∃τ ′,mod(τ, τ ′) = 0 and τ ′ ≤ τ} (6.1)

where if τ is a multiple of τ ′ then mod(τ, τ ′) = 0 and then, τ ′/τ num-
ber of qualitative and quantitative different time series are obtained. For
example: if τ = 24 assuming the time series shows seasonality each 24
hours and τ ′ = τ/2. Then, it is possible to obtain a collection of two
qualitative and two quantitative time series associated with specific pe-
riod segments {1, . . . , τ ′} and {τ ′ + 1, . . . , τ}. The generalisation of this
kind of decomposition (shown in Equation 4.12 and 4.13) is defined by
Equations 6.2 and 6.3:

Xa
T =

(T−1)τ+aτ ′∑
i=(T−1)τ+(a−1)τ ′+1

Yi (6.2)

ZaT =
{Y }(T−1)τ+aτ ′

i=(T−1)τ+(a−1)τ ′+1

Xa
T

(6.3)

where a = {1, . . . , ττ ′ } indicates the subsection part of size τ ′, and T the
T−th subsection of kind (or mode) a. Such transformation produces 2τ

τ ′

simpler time series, of which a number of τ
τ ′ are quantitative and same

number are qualitative with subpatterns of size τ ′. The sequence of el-
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ements associated with each subsection a for the qualitative time series
are set in Xa expressed in Equation 6.4.

Xa = {Xa
1 , . . . , X

a
T , . . . , X

a
n
τ
} (6.4)

The set of qualitative time series is set to Za expressed by Equation 6.5

Za = {Za1 , . . . , ZaT , . . . , Zanτ } (6.5)

where Za1 , Xa
1 are the first element, ZaT , X

a
T the current segments at time

T and Zan
τ′
, Xa

n
τ′

the last element of the series. For each qualitative Xa

and quantitative Za time series a local forecasting model is built for each
sequence, fqla and fqna respectively are part of bigger models Fql and Fqn

described by Equation 6.6 and 6.7.

Fql(XT) =


fql1 (X1

T , . . . , X
1
T−ά) if mod(b τ

′(t+1)
τ c, ττ ′ ) = 1

fql2 (X2
T , . . . , X

2
T−ά) if mod(b τ

′(t+1)
τ c, ττ ′ ) = 2

...
fqla (Xa

T , . . . , X
a
T−ά) if mod(b τ

′(t+1)
τ c, ττ ′ ) = a

(6.6)

Fqn(ZT) =


fqn1 (Z1

T , . . . , Z
1
T−ά) if mod(b τ

′(t+1)
τ c, ττ ′ ) = 1

fqn2 (Z2
T , . . . , Z

2
T−ά) if mod(b τ

′(t+1)
τ c, ττ ′ ) = 2

...
fqna (ZaT , . . . , Z

a
T−ά) if mod(b τ

′(t+1)
τ c, ττ ′ ) = a

(6.7)

where ά limits the previous days taken into account for producing the
prediction. These models belong to a Multi-Model Predictor which the
composition of both produces a short term forecast of τ ′ steps ahead as-
sociated with each segment a. The prediction produced is described by
Equation 6.8.

Fqn(Zd) ∗ Fql(XT) = ŶTτ+(a−1)τ ′+1, . . . , ŶTτ+aτ ′ (6.8)

where Fqn(ZT)∗Fql(XT) is the composition of the qualitative and quan-
titative predictions.
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Figure 57 shows an example where τ = 24 and τ ′ = τ/4 producing 4

subsegments of size τ ′ composing the full cycle. The past data is limited
setting ά = 3 representing the days (or cycles) considered (or cycles) in
the past . The segments a = {1, 2, 3, 4}, works as model selector associ-
ated with each time series and forecasters introduced in Equations 6.1 -
6.7 to the generalised multi-model decomposition. The dotted lines are
the respective forecasts produced by generalised the Multi-Model Pre-
dictor (Equation 6.8) based on the qualitative and quantitative decompo-
sition of the series.
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Figure 57: Segments of the generalised decomposition

Thus, from these results it can be concluded that the framework pro-
posed still requires a lot of experimentation to do in order to the pro-
posed approaches can be applied to other purposes as for example, the
modelling of the electricity demand.
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Appendix A

List of Symbols

a Model parameter selector
a,b Objects
A,B Sets of objects
A Set of model parameter selectors
b Trend component of Holt-Winters
C Label element
Ĉ Estimated label element
C Cluster
Ct Multiplicative coefficient
C Vector of labels
CI ,CO Number of runs of labels O, I
dist Distance function
Dt Delay vector
f Function
fql Qualitative forecasting function
fqn Quantitative forecasting function
Fcal Calendar forecasting function
F Regressor
Fql Piece-wise qualitative forecasting function
Fqn Piece-wise quantitative forecasting function
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h Short-term prediction horizon length in unitary ba-
sis

H Short-term prediction horizon periods of size τ
I Irregular fluctuations component
k Number of clusters
κ Number of neighbours
K Set of cluster labels
Ktest Set of test cluster labels
` Level component of Holt-Winters
L Lag operator
LB Ljung-Box coefficient
LS Labeled sample of RBFMMP+OR
max Maximum value function
M Number of hidden neurons of an ANN
Mo Statistical Mode
m Delay vector size
n Number of vector elements
N Number of qualitative or quantitative vector ele-

ments
N ′ Number of S samples
η Random noise with null autocorrelation
O Indexes set
p, d, q, P,D,Q SARIMA polonomial coefficients
ps Number of samples of period τ
P Set of prototypes
P Partition
P Prediction of the qualitative components
Pr Probability
Qk Separability coefficient
R Random component
RT Residual vector at time T
s1, s2 Seasonal components for Holt-Winters
s Index of the last occurrence of any class
š Seasonality for SARIMA
ssig Noiseless signal value
ŝsig Estimated noiseless signal value
s(i) Similarity of object i
S Seasonal component
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S Sample of the RBFMMP+OR
S′ Transformed sample of the RBFMMP+OR
S Sequence of samples for the RBFMMP+OR
t Index time in unitary basis
τ Period
τ ′ Subperiod
T Trend component
T Index time period of τ size basis
TS Training sample for the RBFMMP+OR
U Neighbourhood
v Index of neighbour residual vector
V Set of residual indexes associated with any mode or

class
W ′ Queue
x,y Vectors
Xa
T Qualitative time series element of section a of a pe-

riod
χ2

(m) Chi-squared distribution withm degrees of freedom
X Time series of qualitative or unitary patterns
X̂ Estimation of unitary pattern
Xa Qualitative time series of section a of a period
Yt Time series element
Y ′t Differenced time series value
Ŷt+1 Prediction at next instant
Y Time series vector
Yt Time series vector at time t
Y
′

t Vector sequence of past observations
Ŷt+1 Time series prediction vector
Yfull Full time series
Z ′T Time series interval T of size τ
Z
′
T Mean of interval T of size τ

ZaT Sum of values of section a of interval T
Z̃ ′ Median of interval of size τ
Z Prediction of the quantitative components at any

horizon H
Z Sum of values of the interval Z ′

Ẑ Sum of values estimation of the next interval τ
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Z Quantitative time series
Za Quantitative time series of section a of a period
ρτ Coefficient of the simple autocorrelation at lag τ
π̂t,t Coefficient of partial autocorrelation at lag t
α, β,w, w Weights
ά Limit of past observations
Φ AR coefficient
φ AR seasonal coefficient
Θ MA coefficient
θ MA seasonal coefficient
ε Estimation error
ε Neighborhood size
µ Mean, cluster centroid
∆n Time increment
σ2 RBF width in terms of variance
ψ Radial basis function
Ψ Mapping function
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