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Abstract

Extreme value methods have been successfully applied in var-
ious disciplines with the purpose of estimating tail quantiles.
The probabilistic results underlying the inference procedures
for the extreme values rely on the assumption of independent
and identically distributed (iid) random variables. However,
empirical observations often present time variation and vi-
olate the iid assumption, thus the development of methods
for modelling the extremes of dependent data is currently
the subject of ongoing research. This thesis provides origi-
nal contributions in this direction. Exploiting data on finan-
cial asset returns, we address questions regarding the tails of
the conditional return distribution and propose models for
them. We begin questioning whether extreme returns exhibit
seasonal behaviour and develop an approach to uncover this
fact. Next, we propose to employ a method based on high-
frequency data to pre-whiten the returns, and then apply an
extreme value model to the tails of the estimated residuals.
We then study the extremal dependence inherent in financial
returns, and evaluate the ability of various high-frequency
based volatility processes in generating such dependence. Fi-
nally, we propose a new class of dynamic extreme value mod-
els that exploit high-frequency data to model the tails of the
conditional return distribution.
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Chapter 1

Introduction

Empirical and theoretical contributions to the analysis of heavy-tailed
distributions in economics and finance date back at least to Mandelbrot
(1963). He was the first to note that rare events in asset returns tend to
occur more frequently than under the Gaussian paradigm. Since then,
numerous studies have uncovered the presence of heavy-tailed distribu-
tions in several economically relevant variables, such as financial returns
and foreign exchange rates (Fama, 1965; McFarland et al., 1982); the in-
come and the wealth distributions (Gabaix, 2009); the city and the firm
size distributions (Axtell, 2001; Gabaix, 1999); insurance claims from op-
erational losses and natural disasters (Embrechts et al., 1997).

Since the probability of rare disasters sensibly affects the social wel-
fare (Barro, 2006), identifying heavy-tailed phenomena and understand-
ing their implications becomes relevant for policy and regulatory pur-
poses as well as for the decision processes of firms and individuals. But,
what does heavy-tail mean? As discussed in Embrechts et al. (1997), there
is no a unique definition of heavy-tailed distribution, and throughout we
will identify it with the notion of regular variation. A random variable X
is said to be regularly varying with index α ≥ 0 if its distribution F (x)

obeys to the following law,

F (x) = x−αL(x),
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where F (x) = 1 − F (x) and L(x) is a slowly-varying function, meaning
that limx→∞ L(tx)/L(x) = 1 with t constant. This law states that as we
move further into the tails of the distribution, the probability mass scales
as a function of α. In particular, the smaller the tail index α, the more
the probability mass in the tail, hence the probability of observing an
extreme event. For example, take a worldwide investor that wants to
make an investment in a certain country, and suppose that the success of
such an investment is linked to the expected GDP growth of that country.
Now, suppose that the distribution of the negative shocks to the GDP
is regularly varying with L(x) constant equal to one. It is clear that the
lower is α, the higher is the probability of experiencing a negative shocks.
If, for instance, α = 3 then the probability of observing negative shocks
larger than 2% is 1/23 = 0.125. However, if α = 2 then such probability
becomes 1/22 = 0.25. It doubles! Given this scenario, it is clear that the
propensity of investing in that country strongly depends on the value of
α.

It should be now clear that the knowledge of the value of the tail in-
dex α is crucial to infer the behaviour of a heavy-tailed phenomenon, and
the probabilistic results of the Extreme Value Theory offer strong foun-
dations to develop statistical methods to address this issue. Fisher and
Tippett (1928) show that, for a sequence of independent and identically
distributed (iid) random variables, there exist only three possible limiting
distributions to which normalized sample maxima can converge. Fur-
thermore, these limiting distributions preserve the same tail behaviour
of the distributions they attract. This result represents the backbone for
the statistical approaches of the Block Maxima and Peaks over Threshold,
that allow to estimate the tail index α (Embrechts et al., 1997). These ap-
proaches have been applied successfully in fields where extreme risk is of
major concern: from environmental studies (Smith, 1989) to climatology
(Dupuis, 2012), from civil engineering (Smith, 1986) to finance (McNeil
and Frey, 2000).

The beauty of EVT comes forward when dealing with iid observa-
tions. However, variables of interest in economics and finance typically
come in the form of time series presenting dependencies and structural
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changes. To overcome these issues, a lot of efforts have been done to
draw probabilistic results concerning the sample maxima of both station-
ary and non-stationary sequences (Hüsler, 1986; Leadbetter et al., 1983).
Similarly, several statistical methods to deal with heteroskedasticity and
trends in the extremes have been developed following the work of Davi-
son and Smith (1990). This thesis contributes to this literature and ad-
dresses novel questions regarding the time variation in the extremes of
asset returns and provide novel approaches to estimate the tails of the
return distribution when the iid assumption does not hold.

Besides the introduction, this dissertation consists of four chapters.
Each of them represents an individual article, consequently references
and appendices are given at the end of each chapter, rather than at the
end of the thesis. Furthermore, the necessary notation is defined in the
introduction of each chapter, hence it is not necessarily consistent be-
tween them.

Chapter 2 investigates whether the tails of the conditional return dis-
tribution present seasonalities. The interest of financial economics in
asset return seasonalities has long history, however this literature typi-
cally focuses on mean returns and volatility. We try to shift the attention
to extreme returns and present a new algorithm to detect and estimate
seasonal change-points in the tails of financial time series. Exploiting
a dataset recording the daily returns of twelve U.S. sectors for almost
ninety years, our empirical investigation reveal the emergence of sea-
sonal behaviour in the upper tail.

Chapter 3 is inspired by the widely cited work of McNeil and Frey
(2000), which proposes a two-step procedure to model the tails of as-
set returns with EVT while accounting for the intrinsic dependence. In
particular, they first pre-whiten the returns with an autoregressive vo-
latility model and then use an extreme value model for the tails of the
estimated residuals. Recent advancements in the financial econometrics
literature have lead to the development of models for the volatility ex-
ploiting high-frequency data. These models prove to outperform the
traditional parametric models in terms of forecasts, and we propose to
use them to pre-whiten the returns before applying EVT to the estimated
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residuals.
Chapter 4 is partly a follow up of Chapter 3 and addresses differ-

ent questions regarding the dependence between extreme observations.
While the dependence in the second moment of the conditional return
distribution has been widely studied, empirical investigations concern-
ing the extremal dependence of financial returns did not receive the de-
served attention. The first contribution of this chapter is to fill this gap.
We then question whether processes for the daily returns exploiting high-
frequency data to model the dynamic of the volatility are able to generate
a degree of extremal dependence consistent with that observed empiri-
cally.

Chapter 5 is inspired by a recent literature that tries to apply EVT
directly to the conditional return distribution instead of proceeding as
in McNeil and Frey (2000). A shortcoming of the two-step procedure
is that if the time series model used to pre-whiten the returns do not
fully capture the dependence, then application of EVT to the estimated
residuals could be undermined. Therefore, we develop a dynamic Peaks-
over-Threshold method where measures built from high-frequency data
are used to model the time-varying behaviour of daily extreme returns.
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Chapter 2

U.S. stock returns: Are
there seasons of excesses?

2.1 Introduction

The search for seasonal patterns in asset returns has a long history in the
financial economics literature. During the seventies, economists got in-
terested in the possible existence of seasonality in stock returns and its
implications for capital market theory, capital market efficiency and the
nature of the distribution of stock returns. The earliest evidence of sea-
sonal behaviour is provided by Officer (1975), Rozeff and Kinney (1976),
Roll (1983) and Keim (1983) which report evidence of a January effect, ob-
serving that average stock returns in the U.S. are higher in January than
during the remaining eleven months of the year. Similar behaviour is
also observed for the industrialized countries in Gultekin and Gultekin
(1983) and the emerging markets in Claessens et al. (1995).

Although the January effect has been the most intriguing financial
markets anomaly, other seasonal patterns have been reported. For in-
stance, Cross (1973), French (1980), Jaffe and Westerfield (1985) and Lakon-
ishok and Maberly (1990) provide evidence for the weekend effect, ob-
serving that Monday returns are on average lower than returns on other
days. Ariel (1990) and Kim and Park (1994) give support to the holiday
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effect, observing that returns are on average higher the day before a hol-
iday. Another notable example is the Halloween indicator, according to
which average stock returns should be lower in the May through Octo-
ber period than during the rest of the year (Bouman and Jacobsen, 2002).
An extensive investigation of many of these seasonal effects in interna-
tional markets is found in Fama (1991), Agrawal and Tandon (1994) and
Hawawini and Keim (1995).

Although investigation of seasonality in mean returns still continues
on both the empirical and theoretical front, see e.g. Heston and Sadka
(2008), Heston and Sadka (2010), Kamstra et al. (2012), analysis of sea-
sonality in stock markets has also moved forward to the second moment
of the return distribution. Evidence of seasonal variation in the variance
of stock returns at the intra-daily, daily and monthly level is reported
by Wood et al. (1985), French and Roll (1986) and Gallant et al. (1992),
respectively. Differences in the mean and the variance are investigated
by including a dummy variable in the regression for the unconditional
moment1. In Glosten et al. (1993) and Baillie and Bollerslev (2002), two
different GARCH specifications with external regressors to capture sea-
sonal dynamics in the conditional variance are inspected, while Boller-
slev and Ghysels (1996) introduce a periodic autoregressive conditional
model where parameters vary with time.

The literature sheds some light on the seasonality in equity returns
at different frequency levels, but the analysis is restricted to the first two
moments of the return distribution. In this paper, we investigate sea-
sonality over the year in extreme returns. In the last fifteen years, there
has been growing interest in the tail behaviour of returns to improve
risk management practices and deepen the knowledge of financial mar-
kets (Embrechts et al., 1997, 1999; Jalal and Rockinger, 2008; Jondeau and
Rockinger, 2003; McNeil, 1999; McNeil and Frey, 2000). Nonetheless, to
the best of our knowledge, no attention has been paid to the possible ex-
istence of seasonality in extreme stock returns. The relevance of such an

1Alternatively to the dummy variable approach, differences in the mean and the vari-
ance are also tested non parametrically with the Kruskal-Wallis test. An example of a para-
metric test for both the unconditional mean and variance is reported in Section 2.2.
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investigation is pointed out in Rozeff and Kinney (1976). These authors
assume the unconditional return distribution to be fully represented by
a symmetric-stable distribution and study whether the characteristic ex-
ponent of the latter varies across the months of the year.

We examine tail estimation for return series of financial data. We hy-
pothesize that the return series follow a stationary process with time-
varying conditional mean and volatility. The presence of time-varying
conditional moments means that two return distributions are of interest:
the conditional return distribution where conditioning is on the avail-
able information set, and the marginal distribution of returns, see Mc-
Neil et al. (2005) for a discussion. In this paper, we focus on the former
for two specific reasons: financial interest is mainly directed to moments
conditional on available information; probabilistic theory underlying the
statistical model we outline in the next section to identify the seasons is
valid for observations that satisfy the iid assumption or a particular mix-
ing condition.

We take a two-stage approach. We pre-whiten the data by means
of appropriate dynamics (estimated using quasi maximum likelihood
methods) and model the innovation distribution using the residuals from
the dynamic model as data, after controlling for seasonalities in the first
two moments of the return distribution. The model for the tail distribu-
tion of the innovations is based on EVT.

We develop a new algorithm based on Kim and Lee (2009) to detect
and estimate the seasonal change-points in the tail of financial time se-
ries. These seasonal change-points define tail seasons. A comprehensive
simulation study establishes the good performance of our procedure and
shows how tail seasons can be distinguished from mean and volatility sea-
sons. An extensive empirical study examining the daily returns of 12
equally-weighted industry portfolios of stocks from the NYSE, AMEX
and NASDAQ over the last 90 years reveals the emergence of coherent
tail seasons over time for many industries.

Seasonality in the tails presents a potentially serious challenge for
both financial economics and risk management practice. As to the for-
mer, tail events are the major determinant of asset risk premia (Boller-
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slev and Todorov, 2011; Kelly and Jiang, 2014), thus a proper framework
describing the dynamics of the tails is required. As to risk manage-
ment, cycles in the tail risk have strong implications relative to capital
requirements and strategic allocation, thus careful modelling of the tails
is needed to avoid under- or overestimation of risks.

The remainder of the chapter is organized as follows. In Section 2.2,
we present our approach to identify tail seasons in financial return series.
In Section 2.3, we validate the approach through a comprehensive sim-
ulation experiment. In Section 2.4, we present the results of the large
empirical study on returns of U.S. stocks. In Section 2.5, we try to link
tail seasonalities to conditional skewness and kurtosis. In Section 2.6, we
sketch some implications for financial practitioners. Finally, some dis-
cussion and concluding remarks appear in Section 2.7.

2.2 Methodology

We consider daily returns rt that follow the general discrete-time model

rt = f(rt−1, . . . , rt−u, εt, . . . , εt−v)
εt = σtηt
σ2
t = h(σ2

t−1, . . . , σ
2
t−q, εt−1, . . . , εt−p)

where f(rt−1, . . . , rt−u, εt, . . . , εt−v) and h(σ2
t−1, . . . , σ

2
t−q, εt−1, . . . , εt−p)

are functions describing respectively the dynamics of the conditional
mean and the conditional variance, and ηt is an iid random variable with
zero mean and unit variance.

For the conditional variance, we use GARCH models (Bollerslev, 1986).
As economic theory suggests that market information should have an
asymmetric effect on volatility and empirical analyses show that posi-
tive and negative innovations to returns have a different impact on con-
ditional volatility (Glosten et al., 1993), we use a GARCH model with
leverage to model the time-varying volatility. We also include autore-
gressive terms in the mean dynamics. More precisely, we consider the
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ARMA(u, v)-GJR-GARCH(p, q) class of models given by

rt = µ+
u∑
k=1

φkrt−k +

v∑
z=1

ψzεt−z + εt (2.1)

εt = σtηt (2.2)

σ2
t = ω +

p∑
i=1

(αi + γiI(εt−i < 0)) ε2t−i +

q∑
j=1

βjσ
2
t−j (2.3)

where I is the indicator function, αi, γi and βi are constants satisfying
the constraints αi > 0, βi > 0 and

∑p
i=1(αi + γi/2) +

∑q
j=1 βj < 1, see

Ling and McAleer (2002).

2.2.1 Seasons in the returns

A standard approach used in financial economics to investigate possible
seasonality in the mean returns of the stocks is to test whether the returns
distribution differs across the months of the year (Agrawal and Tandon,
1994; Claessens et al., 1995; Corhay et al., 1987; Gultekin and Gultekin,
1983; Rozeff and Kinney, 1976). For instance, defining a dummy variable
Dm which takes on value 1 only when the return rt is in month m, m =

1, . . . , 11, we can extend (2.1) to

rt = µ+

11∑
m=1

δmDm +

u∑
k=1

φkrt−k +

v∑
z=1

ψzεt−z + εt .

One can then proceed as in Keim (1983) and Rozeff and Kinney (1976),
testing for differences in the unconditional mean via the hypothesis test
H0 : δ1 = · · · = δ11 = 0 vsH1 : Not H0. Similarly, by generalizing (2.3) to

σ2
t = ω +

11∑
m=1

ψmDm +

p∑
i=1

(αi + γiI(εt−i < 0)) ε2t−i +

q∑
j=1

βjσ
2
t−j ,

one can proceed as in Rozeff and Kinney (1976) and Gallant et al. (1992),
testing for monthly differences in the variance via the hypothesis test
H0 : ψ1 = · · · = ψ11 = 0 vsH1 : Not H0.
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In this paper, our interest lies in the tails of the conditional return
distribution, and thus in the tails of ηt ∼ F . Suppose that F has upper
end point υF := sup{ηt : F (ηt) < 1}. Given a high threshold u, u < υF ,
Pickands (1975) shows that when u→ υF , the distribution of the excesses
(ηt−u)+ converges to a Generalized Pareto (GP) distributionGwith shape
parameter ξ and scale parameter ν > 0. That is, Pr(ηt − u ≤ x|ηt > u)

goes to

G(x; ξ, ν) =

 1− {1 + ξx/ν}−
1
ξ for ξ 6= 0

1− exp {−x/ν} for ξ = 0
(2.4)

as u→ υF . When ξ > 0, F has Pareto-type upper tail with tail index 1/ξ.
In this case, to test for tail index changes in the time series {ηt}Tt=1, Kim
and Lee (2009) consider the hypothesis

H0 : ξ1 = · · · = ξT = ξ H1 : Not H0 . (2.5)

One can investigate both tails of ηt over time by looking for changes in
the tail index of the sequence ηt and the negated sequence −ηt, respec-
tively. However, this is insufficient for our purpose as we try to find sea-
sonal change-points over the annual cycle by considering annual data
over several years. In Section 2.2.2, we discuss how the Kim and Lee
approach can be adapted to derive a test in this setup. Once the sea-
sons are identified, we can study the tail behaviour using the peaks-over-
thresholds method (Embrechts et al., 1997). Specifically, for each season,
the excesses over a high threshold u are identified, and the limiting result
in Equation (2.4) is used to model the respective tails. We then obtain a
tail estimator ̂̄F (u+ x) =

Nu
T

(
1 + ξ̂

x

ν̂

)− 1

ξ̂

where F̄ = 1−F ,Nu is the number of observations exceeding the thresh-
old u, and ξ̂ and ν̂ are Maximum Likelihood (ML) estimates.

2.2.2 Finding tail seasons in ηt

Our goal is not to establish that the tail behavior of the ηt is not the same
in different months, this could easily be determined via a likelihood ratio
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test. We rather wish to identify seasons for the tail behavior. More specif-
ically, we adopt a change-point model and aim to identify change-points
from multiple cross sectional time series of financial returns.

As the ηt are unobservable, we have to find a suitable proxy. It is a
standard approach to use the scaled residuals from the estimated condi-
tional mean and conditional variance models as the proxy, but one must
proceed cautiously: if the estimated parameters of the conditional mod-
els are not at least consistent, the resulting scaled residuals may be a very
poor proxy for the ηt. Meitz and Saikkonen (2011) show that the global
Gaussian quasi ML estimators (QMLE) for all the classes of models in
Equations (2.1)-(2.3) is strongly consistent, even for heavy-tailed inno-
vation distributions as long as they have finite second moment2. The
stronger condition E

[
η4
t

]
< ∞ is required in many proofs of the consis-

tency of QMLE in the GARCH extended family of models. If our model is
correctly specified and QMLE is used to estimate the model parameters,
residuals of the model fit, scaled by the level of conditional volatility,
should represent approximately an iid sequence from the distribution
function F . Scaled residuals η̂t are used both to check for the adequacy
of the dynamic model and as input for the second stage of our method.
To derive the scaled residuals η̂t, we consider different ARMA(u,v)-GJR-
GARCH(1,1) specifications3 and select the best filter according to the BIC
criterion (Schwarz, 1978).

We relabel the η̂t to a corresponding Zid notation to facilitate the
remaining discussion. Our data thus consist of observations {Zid, i =

1, . . . , n, d = 1, . . . , D}, where i denotes the year of the observation and d
denotes the day of the observation. The value of n depends on the length
of the sample (we use n = 50 both in the simulations and the empirical
study), whereas D is equal to 250 in the simulation study and D = 365

in the real-data analysis4. Let ι0, . . . , ιm, m ≥ 2 and ι0 = ιm, be the un-

2Other models can also capture the leverage effect (Nelson, 1991; Zakoian, 1994), how-
ever as the consistency of the Gaussian QMLE has only been established for the class in
(3.2)-(3.3), it is our best option.

3We also add external regressors for the mean to explain observed behavior.
4Since the markets are not open on weekends and public holidays, there are not always

n observations for day d. Therefore, when it is convenient, we use the notation nd ∈
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known change-points resulting in m segments defining the seasons5. For
every i, assume that Zid ∼ fj for d ∈ [ιj−1, ιj), j = 1, . . . ,m. The fj are
distributions such that fj differs from both fj−1 and fj+1 in the right tail.

We now test the hypothesis (2.5), but using the sequence Zid to draw
insights regarding the seasons. Let τ be a high quantile level close to one.
Define the test statistic

H(φ) =
1√
Tτ

max
ι−≤ι≤ι+

∣∣∣M(ι, q̂τ )− ι

T
M(D, q̂τ )

∣∣∣ , (2.6)

where M(ι, q̂τ ) =
∑ι
d=1

∑nd
i=1 φ {log (Zid/q̂τ )}, T =

∑D
d=1 nd, q̂τ is the

τ th sample quantile of {Zid}, ι ∈ {1, . . . , 365} are the candidate change-
points, and ι− and ι+ are the first candidate change-points such that
ι−
∑ι−

d=1 nd ≥ λT and (T − ι+
∑ι+

d=1 nd) ≥ (1 − λT ) where λ is set equal
to a small positive value6 Defining φ1(x) = I(x > 0) and φ2(x) = x+ we
can exploit respectively the frequency of the excesses and their magni-
tude to find the change-points. Kim and Lee (2009) show that under H0,

H(φ1)
d−→ B and H(φ2)/

√
2ξ

d−→ B where B is the distribution function of
supλ≤s≤1−λ |B(s)|, with B a Brownian bridge. We obtain an estimate of

1/ξ with the Hill (1975) estimator, 1/ξ̂ =
(
K−1

∑D
d=1

∑nd
i=1 log (Zid/q̂τ )

)−1

where K is the number of observations Zid exceeding the threshold q̂τ .
The above adaptation of Kim and Lee (2009) was shown in Dupuis et al.
(2015) to offer the best performances under different assumptions on the
distribution F of the {Zid} and to be computationally very efficient. Fur-
thermore, it is completely non-parametric and offers the flexibility of us-
ing the frequency of the exceedances or their magnitude.

Dupuis et al. (2015) assume ι0 = 1 and this implies a necessary change-
point on January 1. As our goal is to identify the possible seasons in the
year for the tail (and one may run through the Fall and Winter period for

{n1, . . . , nD} to denote the number of observations corresponding to each day d.
5In Section 2.3 we discuss the possibility of finding only one change-point and provide

an explanation for this occurrence.
6This constraint is needed to avoid intervals that are too small as a minimum number

of observations are required to estimate the tail index. In a given iteration, some of the
365 days of the year are thus excluded from being candidate change-points. However, as
our algorithm involves multiple iterations, these days become candidate change-points in
other iterations.
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example), this artificial constraint is problematic. We implement a new
sequential strategy that returns both the optimal number m of change-
points and their locations ι̂0, . . . , ι̂m. The algorithm has two phases: the
Initialization phase where one seeks to establish the existence of a first
change-point, and the Multiple change-points phase where one looks
for more change-points if an initial change-point is found in the first
phase. In the first step, we carry out the test in equation (2.6) over the
sequence Zid from the beginning to the end of the year. The idea is to
find a first change-point to replace January 1 as the starting point in
Dupuis et al. (2015). If H(φ1) < Bα or H(φ2)/

√
2ξ < Bα, where Bα

is the (1-α)-quantile of B, then there is no change-point and the proce-
dure terminates. Otherwise, H0 is rejected and the first change-point
is set to be ι̂1 = arg maxι

∣∣M(ι, q̂τ )− ι
TM(D, q̂τ )

∣∣. Then, the {Zid} are
relabeled so that they begin and end at the identified ι̂0 and ι̂0 − 1, re-
spectively. In the second phase, the test in equation (2.6) is performed
over each interval, and the mth change-point is identified and set equal
to ι̂m = arg maxι−≤ι≤ι+

∣∣M(ι, q̂τ )− ι
TM(D, q̂τ )

∣∣, if H0 is rejected at the
level α/(m + 1). This iterative procedure continues until the test fails to
reject the null in each segment, or when the shortest segment defined by
adding another change-point is shorter than λT .

In the algorithm, the function φ(·), the threshold τ and the value of
the parameter λ must be chosen. We conduct a simulation experiment to
assess the sensitivity of the performance to the choice of φ(·) and τ . The
value of λ is set pragmatically as we have to prevent intervals shorter
than say one month, otherwise a given interval may not have a sufficient
number of observations to carry out the subsequent extreme value anal-
ysis. Details of the implemented algorithm are given in Appendix A.1.

Finally, once the tail seasons are identified, the peaks-over-threshold
method is used to estimate the tail model for each. The extent to which
large volatility adjusted innovations are likely throughout the year, and
seasonal differences occur, can then be assessed.
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2.2.3 Extremes of GARCH processes

Conditional and unconditional distributions are both important concepts
in finance, and their differences are related to the information sets with
respect to which they are measured. For a fixed point in time t, the con-
ditional distribution returns information regarding the probability of an
event given the time series path up to that time. On the other hand, the
unconditional distribution gives the probability of an event regardless of
the accumulated information. The general class of GARCH processes are
known to be unconditionally heavy-tailed (Basrak et al., 2002; Davis and
Mikosch, 2009a; Mikosch and Starica, 2000). From Corollary 1 in Davis
and Mikosch (2009a), under appropriate conditions on ηt, the tails of the
marginal distribution of a stationary GARCH process exhibit power law
behaviour. In particular, for εt in equation (2.2) there exist κ > 0 and
positive constants c|ε| and cσ such that

P (|ε| > x) ∼ c|ε|x−2κ and P (σ > x) ∼ cσx−2κ . (2.7)

The value of κ can be determined following Kesten (1973). In the case
of a GARCH(1,1) process, direct calculation shows that κ is the unique
solution of the equation

E[(α1η
2 + β1)κ] = 1, (2.8)

and can be found numerically for known values of the GARCH parame-
ters α1 and β1, and assuming a density for η. Thus, a close relationship
can be established between the parameters of the GARCH process and
the tail index of the marginal distribution of |ε|. A change in the GARCH
parameters induces a change in both tails of the marginal distribution of
rt, whereas a change may exist in only one tail of the distribution of the
innovations ηt. We can thus detect tail seasons in only one tail (positive
or negative) of innovations and not necessarily in both. Our simulation
study seeks to confirm these facts and the good performance of our ap-
proach.

Financial extremes tend to occur in clusters. The degree of depen-
dence in the extremes of a stationary series is determined by the extremal
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index θ (Leadbetter, 1983). In particular, when θ < 1 the extremes are de-
pendent, conversely for θ = 1 they are independent. More precisely, fol-
lowing Davis and Mikosch (2009a), for εt in equations (2.2)-(2.3), it holds

that (c|ε|T )−
1
2κMT (|ε|) d−→ θ

1
2κ

|ε| Φ2κ where MT (|ε|) = max {|ε1|, . . . , |εT |},
Φ2κ is a Fréchet distribution with index 2κ, and θ|ε| < 1 (Embrechts et al.,
1997). This property of the GARCH process is extremely relevant and jus-
tifies the use of a GARCH model to pre-whiten the data. In fact, a correct
pre-processing model is essential to obtain estimates of ηt that are iid as
required by the peaks-over-threshold approach. When it is not possible
to get rid of the extremal dependence, the probability of exceedances are
distorted. The application of a de-clustering procedure returns the prob-
ability of cluster exceedances and this is unintuitive in a financial context.
To verify the degree of dependency left in the estimated residuals η̂t we
use the interval estimator of Ferro and Segers (2003). This estimator does
not need to be tuned and requires only a choice of threshold.

2.3 Simulation experiments

In this section, we set up a large Monte Carlo experiment to assess both
the precision of our algorithm in identifying the change-points, and our
ability to recover the innovation tail parameter of each season given the
returns. Similar analysis for independent observations has been carried
out in Dupuis et al. (2015), but the use of the estimated residuals η̂t of
the pre-processing model as a proxy for the innovations ηt adds a layer
of complexity. It is worth investigating the performance for GARCH-
like returns as the test statistic in Equation (2.6) may lose power as a
consequence of the filtering procedure. We establish different scenarios
to control for two aspects that are relevant in the analysis. Differences in
the extremes of η̂t may arise as a consequence of changes in the mean and
the variance process, when these are not appropriately accounted for in
the pre-processing model. We must be able to disentangle the changes
in the innovation tails from those in the first two moments of the return
distribution, and we assess the behaviour of our algorithm under differ-
ent assumptions regarding the nature of the change-points. Contrarily to
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changes in the parameters of the mean and the variance processes, inno-
vations may present variation in only one tail that causes changes in only
one tail of the conditional distribution of returns. It is important to verify
that both one-tailed variation and two-tailed variation can be recovered
from the estimated residuals η̂t.

A second purpose of these experiments is to study the performance
of the algorithm for different choices of the threshold τ and the function
φ(·). These two parameters must be set in advance and may affect the
quality of the information provided by the algorithm. In what follows,
we give a detailed description of the procedures and discuss the results.

2.3.1 Double change-points

The most intuitive situation is the double change-points case. We con-
sider 50 years of 250 days and two seasons per year defined by two
change-points at ι0 = 125 and ι1 = 250. Each season presents a specific
tail behaviour determined by an ARMA(1,1)-GJR-GARCH(1,1) process.
Parameters in the baseline specification are varied depending on the na-
ture of the change that we want to induce. We list the various scenarios,
explaining how they relate to the different features of the algorithm that
we want to test. Parameter settings are given in Table 1.

Case A.1 Two-tailed change-points arising as a consequence of changes
in both tails of the innovation process ηt.

Case A.2 Change-points only in the upper tail of ηt resulting in one-tailed
seasons in rt. To generate this pattern we rely on the Asymmetric
Exponential Power (AEP) distribution introduced by Bottazzi and
Secchi (2011), which allows one to generate observations following
a standard Normal distribution on one side and a heavy-tailed dis-
tribution on the other side. Along with A.1, this scenario allows us
to understand whether the algorithm recovers both one-tailed and
two-tailed changes.

Case B. In Equation (2.7) we have shown that GARCH processes induce
regular variation, thus generating heavy-tailed observations even
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when the innovation process is light-tailed. A change in the GARCH
parameter β causes a variation in the parameter of both tails, hence
a different extremal behaviour.

Case C. Similar to Case B, an increase in the unconditional variance ω

generates more extreme observations in both tails.

Case D. A change in the unconditional mean µ of the process causes re-
spectively an increase of the number of extreme observations in one
tail and a reduction in the other for the marginal process.

For each scenario, we carry out 100 simulations using the two func-
tions φ1 and φ2, and three thresholds q̂τ at τ = 0.95, 0.975, 0.99. To assess
the performance of the algorithm, we estimate the scaled residuals η̂t,
apply the change-point algorithm to Zid, and provide summary statis-
tics measuring our ability to retrieve the true change-points ι0 and ι1. In
Table 2, we report the following statistics:

TP1: Number of cases where one true change-point is detected. We
record a true positive only if the detected change-point is within
five days of a true value;

TP2: Number of cases where two true change-points are detected;

FP1: Number of cases where at least one false positive is detected. We
record a false positive if any of the identified change-points lie out-
side the five-day radius around the true change-points;

FP2: Number of times that more than two change-points are detected.

Although the choice of the function φ(·) does not affect the ability to re-
cover inadequate pre-processing of mean and variance changes, the first
two columns of Table 2 show that φ2 has a higher precision in finding the
change-points generated by the innovation process. Analogously, the
threshold choice is relevant to detect this type of change, and it seems
that going further in the tails allows us to more easily pinpoint the exact
position of the change-points. Sometimes the 95th quantile outperforms
the 97.5th because of the proximity of the latter to the crossing point of
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the densities of the two generating processes. In fact, a heavy-tailed dis-
tribution has a thinner body than a light-tailed distribution. This implies
that when the 95th quantiles of the two distributions are not far enough
in the tail, the difference in the central part is caught. This pattern is
confirmed by the fact that the 99th quantile outperforms the others in all
scenarios.

As to the different phenomena that cause differences in the tails along
the year, we see that the algorithm is able to capture all of them, thus we
must be able to find a way to disentangle the true generating mechanism
of the change-points. In this regard, the fact that it perfectly discerns
one-tailed changes from two-tailed changes is critical in the empirical
analysis, as changes in the tails of the innovations process are the only
ones that can lead to one-tailed change-points.

Table 1: Double change-points. ARMA(1,1)-GJR-GARCH(1,1) parameters
used to generate the different scenarios. Unless otherwise stated, parame-
ters values are (µ, φ, ψ, ω, α, γ, β) = (10−4, 0.1, 0.2, 10−6, 0.1, 0.05, 0.8) and
η ∼ N(0, 1).

Scenario First Season Second Season

Case A.1 η ∼ N(0, 1) η ∼ t(4)
Case A.2 η ∼ N(0, 1) η ∼ AEP (1, 2, 0.8, 1)
Case B β = 0.8 β = 0.85
Case C ω = 10−6 ω = 10−4

Case D µ = 10−4 µ = 10−2
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2.3.2 Triple change-points

For this simulation study, we generate 50 years × 250 days of observa-
tions with change-points at ι0 = 83, ι1 = 166 and ι2 = 250. We simply
adapt the scenarios previously described to the three change-point case,
and generate the intervals according to the variations shown in Table 3.
In Table 4, we report TP1, TP2, FP1 and

TP3: Number of cases where three true change-points are detected;

FP2: Number of times that more than three change-points are detected.

The results obtained from the triple change-point experiments are
qualitatively the same as those from the double change-points, though
the performance deteriorates as a consequence of the lower power of the
test statistic that is computed using fewer observations in each interval.
Also in this case, the choices of φ(·) and of the threshold τ are not rel-
evant for the identification of change-points that originated either from
misspecification of the mean or the variance processes. Using φ2 with
a higher threshold level considerably improves the performance of the
algorithm in the case of changes in the innovation tails.

Table 3: Triple change-points. ARMA(1,1)-GJR-GARCH(1,1) parameter
values used to generate the different scenarios. Unless otherwise stated, pa-
rameter values are (µ, φ, ψ, ω, α, γ, β) = (10−4, 0.1, 0.2, 10−6, 0.1, 0.05, 0.8).

Scenario First Season Second Season Third Season

Case A.1 η ∼ N(0, 1) η ∼ AEP (1, 1.7, 1, 1.7) η ∼ t(4)
Case A.2 η ∼ N(0, 1) η ∼ AEP (1, 2, 0.95, 1.5) η ∼ AEP (1, 2, 0.8, 1)
Case B β = 0.75 β = 0.8 β = 0.85
Case C ω = 10−6 ω = 10−5 ω = 10−4

Case D µ = 10−4 µ = 10−3 µ = 10−2
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2.3.3 Single Change-point

Even though at first glance this may seem to be the most straightforward
case, the presence of a single change-point is a bit counterintuitive as it
entails that a change during the year does indeed not happen. However,
as empirical analysis may yield a persistent single change-point pattern,
we formulate some theoretical explanations that may account for this
singularity, and run simulations to verify their plausibility.

Our first proposal asserts that at a certain point of the year an abrupt
change in the tail shape occurs and it then fades out over time. We try to
reproduce this effect by drawing innovations ηt from a standard Normal
to the left of the single change-point, then switch to a standardized Stu-
dent t with degrees of freedom slowly increasing as we move away from
the change-point.

A second possible explanation is that there are two real change-points,
but they are so close to each other that the test statistic is not powerful
enough to detect both of them. Under this scenario, what appears as a
year with a single change-point is actually a year with two change-points
that the algorithm does not recognize. To account for this effect we sim-
ply draw the innovations from a N(0, 1) in one period, and a t(4) in the
other, but contrarily to the double change-point case, we set ι0 = 110 and
ι1 = 150.

We report in Table 5 the performance statistics of the algorithm. Our
first proposal generates too much noise: the true change-point is rarely
identified and there are many false positives. The second proposal pro-
duces the sought after behaviour and thus may be a plausible explana-
tion for the one change-point case.

2.3.4 A full experiment

Our simulations challenged our algorithm’s ability of finding the true
change-points. The full two-step approach however foresees that after
having identified the intervals, we study the behaviour in the tails by
fitting a GP distribution. It is important to understand how difficult it
is to retrieve the true tail parameters given the noise introduced by both
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Table 5: Single change-point. Results for 100 replications of the single
change-point scenarios described in Section 2.3.3, with thresholds q̂τ at
τ = 0.95, 0.975, 0.99, and functions φ2 and φ1. Smooth refers to a single
change-point that fades out over the year, while Short refers to two change-
points occurring at a short distance. The values in the table are the counts
of each statistic out of 100 simulations. The values marked with the asterisk
refer to cases in which more than one change-point was found.

Function φ2

Upper tail Lower Tail

Smooth Short Smooth Short

0.95 0.975 0.99 0.90 0.95 0.99 0.95 0.975 0.99 0.90 0.95 0.99

TP 1 3 3 1 6 34∗ 1 3 4 0 6 26∗

FP1 9 22 55 5 15 43 6 26 49 3 13 40
FP2 9 22 55 0 0 2 6 26 49 0 0 2

Function φ1

Upper tail Lower Tail

Smooth Short Smooth Short

0.95 0.975 0.99 0.90 0.95 0.99 0.95 0.975 0.99 0.90 0.95 0.99

TP 0 0 0 4 0 3 0 0 1 7 2 2
FP1 4 2 27 11 6 10 6 5 25 11 4 4
FP2 4 2 27 2 0 0 6 5 25 1 0 1
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the pre-processing model and the change-point algorithm.
We consider two GARCH(1,1) processes withα = 0.1, β = 0.8, and re-

spectively ηt ∼ N(0, 1) and ηt ∼ t(4). We generate a double change-point
sequence of 50 years × 250 days, with ι0 = 125 and ι1 = 250. Then, we
filter the observations with a GARCH(1,1) model to obtain the estimated
residuals η̂t. Finally, we apply the change-point algorithm considering
the function φ2 and τ = 0.99, and fit a GP distribution to the excesses
over the 99th quantile of each interval. Our purpose is to verify whether
we are able to recover the true tail parameters of the two innovation pro-
cesses, ξ = 0 for the N(0, 1) and ξ = 0.25 for the t(4).

We discard for clarity those cases in which the algorithm does not
identify exactly two change-points, as our main interest is to judge the
ability of our two-step approach in recovering the values of the true tail
parameters. In Figure 1, we report the 100 estimates of the parameter ξ
of the GP distribution for the two intervals. We also display the 100 es-
timates of ξ obtained by fitting a GP distribution to data over the 99th
quantile of a sample of 50 × 125 iid observations from respectively a
N(0, 1) and a t(4). The figure clearly shows that the properties of the
estimator of the tail parameter are not jeopardized by our two-step pro-
cedure. The estimated values using the scaled residuals are similar to
those obtained using the iid sequence with only a slight loss of efficiency.

2.4 Tail seasonality in U.S. industries

2.4.1 Data description

We consider the equally-weighted returns of 12 industry portfolios avail-
able in the Kenneth R. French data library. The dataset runs from 1926
to 2013 and was created from the CRSP database, assigning each NYSE,
AMEX, and NASDAQ stock to an industry portfolio based on its four-
digit SIC code.

As we benefit from long time series, we consider 39 overlapping rolling
windows of 50 years. Precisely, we analyze data in the interval 1926 −
1975, then consider 1927 − 1976, and so on up to the interval 1964 −
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Figure 1: Full experiment. Estimated ξ̂ parameters for data over the 99th
empirical quantile for GARCH(1,1)-t(4) residuals, iid t(4), GARCH(1,1)-
N(0, 1) residuals and iid N(0, 1). Horizontal lines indicate the true values
ξ = 0.25 for t(4) and ξ = 0 for N(0, 1). There are always 50× 125 observa-
tions in the iid case. For the filtered observations, the number varies due to
estimated change-points.
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2013. The use of rolling windows is common in econometrics and finance
(Chan et al., 1999; Merton, 1980), but there are no clear rules regarding
the length of the interval and the overlaps to include, thus making these
settings case-dependent. Our choice of a 50-year rolling window is a
trade-off between the need for a sample long enough to conduct an ex-
treme value analysis and the desire to carry out many analyses to verify
whether the identified seasons are coherent over time.

2.4.2 Pre-processing approach

Given that we consider moving windows spanning over a time interval
of 50 years, it is not sensible to assume time invariance of the ARMA-
GARCH parameters over that period. In particular, Mikosch and Star-
ica (2004) discuss how time structural changes in the parameters might
be harmful for the Gaussian QMLE. Consequently, we allow for a more
dynamic environment by fitting an ARMA(u,v)-GJR-GARCH(1,1) model
to every five years of data, a period considered long enough to permit
a good inference. As noted in the introduction, the financial literature
documents many seasonalities in the mean and variance behavior. We
found some of these anomalies in the mean but not in the variance. First,
in all the moving windows of the different industry series, the average
return in January tends to be much higher than during the rest of the
period, particularly in the first week of the month. Second, we also no-
ticed a daily effect where Monday typically presents lower mean returns,
and Friday higher mean returns, with respect to the other days. We did
not find substantial difference in the unconditional variance across the
months of the year. Our investigation was performed by binding obser-
vations by month and calculating the Median Absolute Deviation. We
used a robust measure of the variability to exclude extreme events, as ex-
treme seasonalities could be interpreted as seasonalities in the volatility
if we used the standard deviation.

To take into account these effects and better single out tail changes,
we consider two augmented versions of the ARMA model. First, we
consider a season in the mean for the first week of January and add a
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dummy variable only for this period, dFWJ , to the baseline specification,
i.e.

rt = µ+ δ1dFWJ +
u∑
k=1

φkrt−k +

v∑
z=1

ψzεt−z + εt . (2.9)

Then, we further augment the model and consider all the seasonal anoma-
lies in the mean: we add a dummy variable for Monday (dMon) and Fri-
day (dFri), and a dummy variable for the whole month of January (dJan).
Thus the model specification becomes,

rt = µ+ δ1dJan+ δ2dMon+ δ3dFri+

u∑
k=1

φkrt−k +

v∑
z=1

ψzεt−z + εt . (2.10)

For both the baseline specification in (3.2) and the augmented specifica-
tions in (2.9)-(2.10), we consider various values of lags in the parameters
of the conditional mean model. Specifically, while we consider only the
first order specification of the conditional variance model (Hansen and
Lunde, 2005), we employ ARMA(u,v) models with {u, v ≤ 2} allowing
for higher orders of dependence in the conditional mean. We report only
the results for the model with the lowest BIC. Specifically, since in every
window we fit an ARMA-GJR-GARCH model to every five years of data,
we compare the BIC of the 12 models in each five-year interval, and se-
lect the specification with the highest number of lowest value of the BIC7.
We found that in nine industries out of 12 the optimal specification is an
ARMA(1,2)-GJR-GARCH(1,1) model without external regressors, while
in the other three industries, the preferred model is the first order full
specification that includes external regressors for the different seasonal
effects in the mean. We report the results for only one specification, how-
ever the findings in Section 2.4.3 extend to the larger models.

2.4.3 Tail season identification

The change-point algorithm is applied to the scaled residuals from the
pre-processing model. In Section 2.3, we established the better perfor-
mance of the algorithm using function φ2, the threshold q̂τ set at the 99th

712 = 3×4 models are considered: three specifications defined by the possible inclusion
of external regressors, times four possible combinations of the lags.
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empirical quantile, and a significance level α = 0.05. In particular, the
test with these settings is more powerful in detecting the true change-
points and this is substantiated also by the three change-points analysis
reported in the supplementary appendix. We use these settings through-
out, as a different configuration may increase the probability of missing
a change-point or finding spurious change-points.

In Figures 2-4, we report the change-points in the upper tail of the in-
dustries that exhibit at least one change-point in any of the 39 windows.
Similar results are displayed in Figure 5 for the lower tail of the only two
industries that present change-points. Given that there is no evidence of
change-points in the lower tail, apart for the random occurrence reported
in Figure 5, we conclude that lower tail behaviour remains constant over
the year. Contrarily, we report evidence of change-points in the upper
tail for nine out of 12 industries, signalling a strong seasonal behaviour
in the upper tail. As pointed out in Section 2.3, this evidence is due to
pure tail changes given that one-tailed change-points can only occur as a
consequence of variation in only one of the tails of the innovation distri-
bution.

Apart for slight time variations, the change-points are quite stable
within industries, while they tend to be different in terms of number and
location across industries. We note the presence of a short Winter season
and a long Summer season, with the length of these seasons depending
on the industry. In particular, Winter seems to be critical in that fluc-
tuation in the tail looks frequent during this period, as witnessed by the
appearance of a third change-point that splits this season in two intervals
in both the Manufacturing and Shops industries.

In a few windows of the Other industry, a single change-point is ob-
served. Focusing on the whole spectrum of change-points across the 39
windows of this industry, we can notice that windows with two change-
points very close to each other co-exist with windows with a single change-
point. This evidence gives support to the hypothesis put forth in Section
2.3 that only one change-point may be detected if the actual season is
quite small. Either the power of the test is too low, or the second change-
point happens within the 30-day bound defined by the λ parameter in
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Equation (2.6).
Once we have identified the change-points, we proceed with the study

of the tail behaviour within each interval. Although we filter the obser-
vations with a pre-processing model, it is important to verify the level of
dependence in the extremes of the estimated residuals as it may be quite
different from that which occurs at mean levels. In Figure 25 we report,
for the 10 industries presenting at least one change-point in the upper
tail, the estimated values of the extremal index θ obtained with the in-
terval estimator of Ferro and Segers (2003). Most of the estimates are in
the interval (0.8, 1). We argue that the pre-processing model has filtered
away much of the dependence and we treat the residuals as independent.

In each identified interval, we fit the GP to the exceedances over a
threshold q. There exists a huge literature regarding threshold selection
in EVT (Scarrott and MacDonald, 2012), nonetheless a full agreement re-
garding the right way to proceed has not been achieved. We fit the GP
distribution to data over a sequence of thresholds qn, from the 90th up to
the 99th empirical quantile, and qualitatively evaluate the tail behaviour.

To assess the goodness of fit, we visually inspect the QQ-plots. Given
the large number of plots, we do not report them here, but note that
most of the time the observations nicely adhere to the theoretical lines
of the GP. We also test the null hypothesis of a GP distribution with the
Anderson-Darling and the Cramer-von Mises tests of Choulakian and
Stephens (2001). In Figures 6-14, we report the frequency of rejection
and non rejection for both tests at the different qn thresholds.

Specifically, to clearly distinguish between Summer and Winter, we
consider only windows exhibiting two seasons. The figures show that in
most cases the assumption that the upper tail follows a GP distribution
is not rejected. Summer seasons tend to present a higher rate of rejection
as a consequence of the larger number of observations. This implies that
some of the thresholds are too low for the convergence result of Pickands
(1975). On a few occasions, the number of observations over the 99th
quantile in Winter is insufficient to compute MLE.

In Figure 15, we show a scatter plot of the ν and ξ parameter esti-
mates, obtained over the 10 different threshold levels in qn, for the Sum-
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mer and the Winter seasons. Specifically, we discard the estimated values
for which the GP distribution null hypothesis was rejected at the 5% level
either by the Anderson-Darling or the Cramer-von Mises test. The figure
shows that the two seasons are not substantially different with respect to
ξ, but they are strongly different in terms of scale. The values of ν are
much higher in Winter than in Summer. In Figures 16-24 we report the
empirical quantiles of η̂t, considering only those windows for which ex-
actly two seasons are identified. The heat map tracks the change in the
value of the quantile by changing the colour of the corresponding tile.
From these plots two main messages can be extracted. First, the fact that
much of the area in the higher quantiles of the Winter plots is covered
by red tiles confirms that Winter is subject to more extreme observations.
Second, the fact that the difference between the Summer and the Winter
plots at the 90th quantile is small confirms that this behaviour is a con-
sequence of a pure shift in the tail shape, and not a consequence of the
mean or the variance process. Indeed, we compute the average differ-
ence between the quantiles at the same level in Winter and Summer, and
find that it increases as we move toward the 99th quantile. We conclude
that while both seasons present a similar upper tail decay, the magnitude
of the tail events is higher in Winter.
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Figure 2: Upper tail change-points. Each line corresponds to one of the 39
rolling windows. Lines 1 and 39 represent respectively the time intervals
1926− 1975 and 1964− 2013, with the other lines representing the intervals
ranging in between at yearly steps. The red crosses represents the identified
change-points over the year.
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Figure 3: Upper tail change-points. Each line corresponds to one of the 39
rolling windows. Lines 1 and 39 represent respectively the time intervals
1926− 1975 and 1964− 2013, with the other lines representing the intervals
ranging in between at yearly steps. The red crosses represents the identified
change-points over the year.
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Figure 4: Upper tail change-points. Each line corresponds to one of the 39
rolling windows. Lines 1 and 39 represent respectively the time intervals
1926− 1975 and 1964− 2013, with the other lines representing the intervals
ranging in between at yearly steps. The red crosses represents the identified
change-points over the year.
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Figure 5: Lower tail change-points. Each line corresponds to one of the 39
rolling windows. Lines 1 and 39 represent respectively the time intervals
1926− 1975 and 1964− 2013, with the other lines representing the intervals
ranging in between at yearly steps. The red crosses represents the identified
change-points over the year.
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Figure 6: Goodness of fit - Business Equipment. Non rejection (light) and
rejection (dark) frequencies for the GP null hypothesis. Only windows for
which two seasons were identified are considered. The horizontal axis refers
to the sequence of threshold levels qn.
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Figure 7: Goodness of fit - Chemicals. Non rejection (light) and rejection
(dark) frequencies for the GP null hypothesis. Only windows for which two
seasons were identified are considered. The horizontal axis refers to the
sequence of threshold levels qn. At the 99th quantile of the Winter season it
was not always possible to obtain estimates of the GPD parameters because
of the small number of observations.
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Figure 8: Goodness of fit - Durable. Non rejection (light) and rejection
(dark) frequencies for the GP null hypothesis. Only windows for which two
seasons were identified are considered. The horizontal axis refers to the
sequence of threshold levels qn.
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Figure 9: Goodness of fit - Health. Non rejection (light) and rejection (dark)
frequencies for the GP null hypothesis. Only windows for which two sea-
sons were identified are considered. The horizontal axis refers to the se-
quence of threshold levels qn.
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Figure 10: Goodness of fit - Manufacturing. Non rejection (light) and rejec-
tion (dark) frequencies for the GP null hypothesis. Only windows for which
two seasons were identified are considered. The horizontal axis refers to the
sequence of threshold levels qn.
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Figure 11: Goodness of fit - Money. Non rejection (light) and rejection (dark)
frequencies for the GP null hypothesis. Only windows for which two sea-
sons were identified are considered. The horizontal axis refers to the se-
quence of threshold levels qn.
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Figure 12: Goodness of fit - No Durable. Non rejection (light) and rejection
(dark) frequencies for the GP null hypothesis. Only windows for which two
seasons were identified are considered. The horizontal axis refers to the
sequence of threshold levels qn.
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Figure 13: Goodness of fit - Shops. Non rejection (light) and rejection (dark)
frequencies for the GP null hypothesis. Only windows for which two sea-
sons were identified are considered. The horizontal axis refers to the se-
quence of threshold levels qn.
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Figure 14: Goodness of fit - Other. Non rejection (light) and rejection (dark)
frequencies for the GP null hypothesis. Only windows for which two sea-
sons were identified are considered. The horizontal axis refers to the se-
quence of threshold levels qn. At the 99th quantile of the Winter season it
was not always possible to obtain estimates of the GPD parameters because
of the small number of observations.
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Figure 15: GP parameters scatterplot. Estimated parameters of the GP dis-
tribution in Equation (2.4). For each industry we consider only windows
for which two change-points were identified and plot the estimates for the
Winter season (blue) and the Summer season (red).
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Figure 16: Empirical tails - Business Equipment. 90th to 99th empirical
quantiles for the Summer and Winter seasons. Only the windows with ex-
actly two change-points are considered. The tile corresponding to a fixed
window and threshold shifts from green to red as the value of the empirical
quantile increases.
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Figure 17: Empirical tails - Chemicals. 90th to 99th empirical quantiles
for the Summer and Winter seasons. Only the windows with exactly two
change-points are considered. The tile corresponding to a fixed window
and threshold shifts from green to red as the value of the empirical quantile
increases.
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Figure 18: Empirical tails - Durable. 90th to 99th empirical quantiles for the
Summer and Winter seasons. Only the windows with exactly two change-
points are considered. The tile corresponding to a fixed window and thresh-
old shifts from green to red as the value of the empirical quantile increases.
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Figure 19: Empirical tails - Health. 90th to 99th empirical quantiles for the
Summer and Winter seasons. Only the windows with exactly two change-
points are considered. The tile corresponding to a fixed window and thresh-
old shifts from green to red as the value of the empirical quantile increases.
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Figure 20: Empirical tails - Manufacturing. 90th to 99th empirical quantiles
for the Summer and Winter seasons. Only the windows with exactly two
change-points are considered. The tile corresponding to a fixed window
and threshold shifts from green to red as the value of the empirical quantile
increases.

49



Figure 21: Empirical tails - Money. 90th to 99th empirical quantiles for the
Summer and Winter seasons. Only the windows with exactly two change-
points are considered. The tile corresponding to a fixed window and thresh-
old shifts from green to red as the value of the empirical quantile increases.
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Figure 22: Empirical tails - No Durable. 90th to 99th empirical quantiles
for the Summer and Winter seasons. Only the windows with exactly two
change-points are considered. The tile corresponding to a fixed window
and threshold shifts from green to red as the value of the empirical quantile
increases.
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Figure 23: Empirical tails - Shops. 90th to 99th empirical quantiles for the
Summer and Winter seasons. Only the windows with exactly two change-
points are considered. The tile corresponding to a fixed window and thresh-
old shifts from green to red as the value of the empirical quantile increases.
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Figure 24: Empirical tails - Other. 90th to 99th empirical quantiles for the
Summer and Winter seasons. Only the windows with exactly two change-
points are considered. The tile corresponding to a fixed window and thresh-
old shifts from green to red as the value of the empirical quantile increases.
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Figure 25: Extremal index estimates. Only sectors presenting at least one
change-point in any of the 39 windows are reported. The box-plots pool
together the tail index estimates over ten thresholds (from the 90th to the
99th quantiles) of both the Summer and the Winter seasons.

2.5 Tails vs skewness and kurtosis

The finance literature is typically concerned with the moments of the
return distribution, and in particular, skewness and kurtosis. In this sec-
tion, we try to establish a link between our findings on tail seasonalities
and these two moments. Although it is difficult to determine an elegant
mathematical relationship (if possible), the intuition is that the seasonal
variation that we observed in the upper tail should somehow be reflected
in the skewness and kurtosis.
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The traditional approach to identify seasonalities computes sample
statistics for observations binned by month. In Figure 26, we report the
empirical skewness and kurtosis computed on the unconditional return
for each month in every window. Each month has a natural seasonal
colour, i.e. reds for Summer, browns for Autumn, blues for Winter, and
greens for Spring. The different sectors present approximately the same
U-shape behaviour indicating that there is probably a market-wide com-
ponent generating this pattern. Though it is quite difficult to say whether
a particular month presents higher skewness or kurtosis than the others,
as different colours contribute to create the whole smile, two insights
emerge. Brown points on the extreme right correspond to two events in
the October following the Great Depression, so it’s hard to argue that is
a seasonality. Blue points generally lie to the right of red points, sug-
gesting that unconditional returns might be more right-skewed in Win-
ter. We pursue a qualitative investigation of this possibility and compute
the skewness and kurtosis of the unconditional returns for the Summer
and Winter seasons identified in Section 2.4. Figure 27 shows these mea-
sures computed for each 50-year window. Although there is no statistical
foundation for adopting a decomposition of the year which follows the
seasons arising from a specific model on the conditional tails, the figure
suggests that there is probably also some seasonal behaviour in the skew-
ness and kurtosis of the unconditional returns. In particular, the fact that
Winter is right-skewed is consistent with the idea that this period is more
prone to positive tail events.

Is the dynamic model for mean and variance able to capture the sea-
sonalities in Figure 27? Figure 28 shows the monthly skewness and kur-
tosis computed on the estimated residuals from the ARMA-GARCH mo-
del considered in Section 2.4. We can see that the model captures the
observations corresponding to the re-bound after the Great Depression,
and the figure now looks more like a smirk than a smile. Also in this
case, binning the observations by month does not return clear informa-
tion, but one can still notice the tendency of the blue points to favor the
right-side of the plot. In Figure 29 we compute the skewness and kurtosis
of the residuals of the ARMA-GARCH model for the Summer and Win-
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ter seasons. Once again, there is no justification for the use of these two
seasons, but the figure still suggests that the innovations may present a
seasonal component in both skewness and kurtosis. Figure 29 is similar
to Figure 15 but not as clear. Our approach which focusses on the tails
allows us to disentangle possible differences between the upper and the
lower tails. Indeed, our empirical analysis strongly indicates that seasons
in the extremes exist only in the upper tail, while the lower tail tends to
be constant over time. It is difficult to appreciate this distinction while
pursuing a study of the skewness and kurtosis, as the blurred clusters in
Figure 29 show.

Relying on a monthly-based approach to identify seasonality does not
return complete information, thus performing a sound statistical analy-
sis is certainly worthwhile. The apparent seasonal behaviour in skew-
ness and kurtosis is not limited to the unconditional returns, and it is
not fully captured by a conditional model for the mean and the variance.
This suggests that a direct analysis of the seasonal variation of these two
moments could be interesting for several applications. We discuss some
of them in the next section.

2.6 Implications for practices in finance

2.6.1 Impact on asset pricing

There is compelling evidence that higher moments of the returns distri-
bution are relevant in asset pricing. Harvey and Siddique (2000) present
a quadratic pricing kernel which allows the skewness to be priced, while
Dittmar (2002) proposes a cubic pricing kernel which accounts also for
the risk-aversion to kurtosis. Considering these frameworks, the im-
pact of seasonalities in the skewness and kurtosis on asset pricing can
be assessed through the definition of an appropriate econometric mo-
del which accounts for seasonal components in the skewness and kur-
tosis. An appealing econometric framework was developed in Harvey
and Siddique (1999) where they use a non-central t distribution to assess
the impact of time variation in the conditional skewness on asset pricing.
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Figure 26: Unconditional monthly skewness and kurtosis. Each colour
represents a different month and the tones follow the natural seasons. Mul-
tiple points of the same colour refer to the same month over the 39 windows.
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Figure 27: Unconditional skewness and kurtosis in Summer and Winter.
For each industry we consider only windows for which two change-points
were identified and plot the estimates for the Winter season (blue) and the
Summer season (red).
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Figure 28: Conditional monthly skewness and kurtosis as calculated on
the residuals of the ARMA-GARCH model. Each colour represents a dif-
ferent month and the tones follow the natural seasons. Multiple points of
the same colour refer to the same month over the 39 windows.
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Figure 29: Conditional skewness and kurtosis for Summer and Winter as
calculated on the residuals of the ARMA-GARCH model. For each indus-
try we consider only windows for which two change-points were identified
and plot the estimates for the Winter season (blue) and the Summer season
(red).
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In particular, they consider GARCH-type dynamics for both the condi-
tional variance and skewness. One could extend this model to include a
seasonal component in the skewness, using for example a periodic model
as in Bollerslev and Ghysels (1996).

An alternative approach is followed by Maheu et al. (2013) who com-
bine a cubic pricing kernel with a GARCH model with time-varying
jumps. They show that the jump process affects both skewness and kur-
tosis, and this in turn has an impact on the pricing kernel. Following
this path, one can define a jump intensity varying according to the sea-
sons and investigate whether the jump component may be the source of
seasonality in the tails. In the same spirit, another possible framework to
investigate seasonalities in the jumps is the one of Bollerslev and Todorov
(2011).

2.6.2 Impact on option pricing

Christoffersen et al. (2006) introduce conditional skewness in a discrete-
time GARCH model to capture the volatility smirk. In particular, they
use an inverse Gaussian distribution on top of an asymmetric GARCH
model to reinforce the leverage parameter. They present a closed-form
option pricing formula and show that there are some benefits from mod-
elling the conditional skewness. Extending this framework to allow for
a seasonal component in the conditional skewness could be interesting.
Intuitively, given the evidence of increasing positive extreme events dur-
ing Winter, one might find an increment in the demand for in-the-money
call options, and subsequently, a seasonal change in the volatility smirk.

2.6.3 Impact on risk management

We found the emergence of seasonality in the upper tail of the return
distribution. Although most of the analysis from a risk management
perspective deals with the lower tail, the upper tail is still relevant to
investors who pursue strategies involving short positions. Fully rational
investors would take advantage of both bearish and bullish trends in the
market. Long-traders hold a stock while it appreciates in price, and fear
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the downside risk. On the other hand, short-traders react in the opposite
way and dread any upside movements. When two different measures
PW and PS determine the tail behaviour over the year, then the use of
a constant measures P results in both an over- and underestimation of
capital requirements and a mis-interpretation of risk.

2.7 Conclusions

Abundant literature has uncovered seasonality in both the mean and the
variance of financial returns. This article further expands our knowledge
through the development of a two-step procedure to identify yearly sea-
sonality in the tails. In particular, we focus on changes in the tails of the
innovation process. We first pre-whiten the returns to obtain a proxy for
the innovations, and then identify seasons with a change-point algorithm
for the extremes. We confirm the good performance of the new estima-
tion procedure through a series of Monte Carlo simulation experiments
and illustrate its applicability using 12 industry portfolios of US stocks
data.

The results of our empirical investigation show that while the lower
tail is approximately constant over the year, the upper tail of innovations
is larger in Winter than in Summer, in nine out of 12 industries. We find
that this difference is imputable to specific changes in the tail of the inno-
vations, and not to variation in either the mean or the variance process.
This evidence is consistent with the idea of the Santa Claus rally, a surge
in the price of stocks that often occurs in the last five trading days of the
year. The extended season that we identified could be the result of an
anticipating behaviour of investors trying to take advantage of the rise
in stock during January. Investigation of this possibility remains open to
future research.

Future research should address questions regarding extreme season-
ality over non-annual frequencies, such as weekly and intra-daily, and in-
vestigate analogous behaviour in other markets, such as exchange rates
and commodities. Similarly, from a multivariate perspective it may be
interesting to assess whether different stocks present seasonal co-movements,
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or, in other words, to study the seasonal dynamics of the extremal depen-
dence.
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Appendix A

A.1 Change-points algorithm

Algorithm 1
1: procedure INITIALIZE
2: λ← 0
3: T ← length(Zid)
4: q̂τ ← quantile(Zid, 0.99)
5: compute H(φ1)
6: if H(φ1) > Gα then
7: ι̂0 ← arg maxι

∣∣M(ι, q̂τ )− ι
T
M(D, q̂τ )

∣∣
8: Zid ←

{
{Zid}Dd=ι̂0 , {Zid}

ι̂0−1
d=1

}
9: else

10: stop
11: procedure MULTIPLE CHANGE POINTS
12: λ← T

12

13: I1 ← ι̂1
14: while Im > Im−1 do
15: for j in Im do
16: T ← length({Zid}

ι̂j
ι̂j−1

)

17: q̂τ ← quantile({Zid}
ι̂j
ι̂j−1

, 0.99)

18: compute H(φ1)
19: if H(φ1) > Gα/m then
20: ι̂j ← arg maxι−≤ι≤ι+

∣∣M(ι, q̂τ )− ι
T
M(D, q̂τ )

∣∣
21: Im ← ι̂j

return Im
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Chapter 3

Realizing the extremes:
Estimation of tail-risk
measures from a
high-frequency perspective

3.1 Introduction

Accurate assessment of the tail behaviour of asset returns is of the ut-
most importance for financial market practitioners and regulators. Ex-
treme Value Theory (EVT) is very useful as it provides probabilistic re-
sults which characterize the tail behaviour of any distribution, without
requiring knowledge of the main body of the distribution.

McNeil and Frey (2000) develop a two-step procedure to model the
tails of the conditional returns distribution with EVT: first, the returns
are pre-whitened with a GARCH-type model which explicitly accounts
for the heteroskedasticity; then the tails of the standardized residuals
from the GARCH model are fitted using the Peaks-over-Threshold (POT)
method (Davison and Smith, 1990). McNeil and Frey (2000) backtest this
approach on different time series and provide evidence that it outper-
forms both the unconditional EVT model (Danielsson and de Vries, 1997)
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and the GARCH models with normal and Student’s t distributions. This
two-step conditional EVT (C-EVT) approach is now considered standard
in the financial community.

In a large simulation experiment, Jalal and Rockinger (2008) study
the performance of C-EVT under different hypotheses regarding the un-
derlying data generating process (DGP). They conclude that C-EVT per-
forms fairly well in terms of one-day-ahead predictions of the conditional
quantiles under misspecification of the conditional mean and variance
dynamics.

In this paper, we develop a realized EVT (RV-EVT) approach which
exploits high-frequency information to pre-whiten the returns in the first
step, and uses the standardized residuals of the high-frequency based
model in the second step. Recent work on realized volatility has empha-
sized how the use of high-frequency information can enhance the fore-
cast of the conditional variance of the returns (Shephard and Sheppard,
2010). We propose a class of high-frequency based volatility models that
combines reduced form models for the realized volatility (Corsi, 2009)
with a link function relating the conditional return volatility with the pre-
diction of the realized volatility. We consider three different link functions
of increasing complexity and six reduced form models with both sym-
metric and asymmetric structures.

It is important to filter out the dependence in the first step before ap-
plying the POT approach in the second step. We investigate whether a
high-frequency based volatility model produces standardized residuals
closer to the ideal iid than those obtained under a GARCH-type model.
We compare the degree of extremal dependence left in the standardized
residuals of our models and the GARCH model for 17 time series of in-
ternational stock indices from 2000 to 2014.

We then add to the simulation experiment of Jalal and Rockinger
(2008) by examining the out-of-sample C-EVT forecasts of both Value-at-
Risk (VaR) and Expected Shortfall (ES) for a 10-day horizon1. This period
is relevant from the regulatory perspective as the risk capital of a bank

1Note that with ten-day-ahead risk measures, we mean the risk measures estimated on
the conditional distribution of the sum of the next ten-day returns.
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must be sufficient to cover losses on the bank’s trading portfolio over a
10-day holding period. We also consider an additional DGP where ob-
servations are generated according to the parametric model of Bandi and
Renò (2015). The latter not only accommodates several stylized facts of
the asset returns, but also allows us to draw intra-day observations and
produce forecasts of the risk measures with the RV-EVT approach.

Finally, we compare C-EVT and RV-EVT for forecasting VaR and ES
on the 17 international indices time series. The backtesting exercise is
fully out-of-sample, with a training sample for the models (in-sample)
of two different sizes, respectively 2000 and 500 observations. This part
of the work is close to that of Giot and Laurent (2004), Clements et al.
(2008), and Brownlees and Gallo (2010), in the sense that we assess the
merit of using high-frequency data, but we do so within the context of
EVT approaches.

The remainder of the chapter is organized as follows: in Section 3.2,
we present the C-EVT of McNeil and Frey (2000); in Section 3.3 we intro-
duce the RV-EVT; in Section 3.4 we compare the two approaches, looking
separately at the filtering and forecasting components; in Section 3.5 we
perform robustness checks aimed at consolidating the evidence from the
main analysis; in Section 3.6 we give concluding remarks. Some techni-
cal details appear in the appendix and further outcomes can be found in
the supplementary material.

3.2 The conditional EVT approach

Let pt be the logarithmic price at time t and define the conditional log-
returns rt as,

pt − pt−1 = rt = µt + σtεt,
µt = f(Ft−1),
σ2
t = h(Ht−1),

(3.1)

where µt and σ2
t , are respectively the conditional mean and variance,

functions of the information sets Ft−1 and Ht−1, and εt an iid process
with zero mean and unit variance. A notable amount of empirical re-
search in financial markets shows time-variation and heaviness in the
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tails of the conditional returns distribution. To account for this evidence,
Bollerslev (1986) proposes to model σ2

t as a function of its past values
and the past values of εt, assuming εt to be normally distributed. This
model is commonly referred to as GARCH.

McNeil and Frey (2000) propose to pre-whiten the returns using a
standard GARCH and then model the tails of the estimated residuals
by means of EVT. The theoretical justification is that Gaussian Quasi-
Maximum Likelihood (QML) estimation of a GARCH model is consis-
tent as long as E(ε2t ) <∞. Formally, they consider an AR(1)-GARCH(1,1),

rt = µ+ φ1rt−1 + σtεt (3.2)

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1 (3.3)

where εt ∼ F with zero mean and unit variance, and α1 +β1 < 1 to guar-
antee stationarity. Suppose2 that F has upper endpoint vF := sup{εt :

F (εt) < 1}. Given a high threshold u, u < vF , Pickands (1975) shows
that when u → vF , the distribution of the excesses (εt − u)+ converges
to a Generalized Pareto (GP) distribution G with shape parameter ξ and
scale parameter ν > 0. That is, Pr(εt − u ≤ x|εt > u) goes to

G(x; ξ, ν) =

 1− {1 + ξx/ν}−
1
ξ for ξ 6= 0

1− exp {−x/ν} for ξ = 0
(3.4)

as u→ υF . When ξ > 0, F has Pareto-type upper tail with tail index 1/ξ.
A model for the tail of the residuals ε̂ can be defined following the

POT method. The tail estimator of F is then

̂̄F (ε̂) =
Nu
T

(
1 + ξ̂

ε̂− û
ν̂

)− 1

ξ̂

, (3.5)

where F̄ = 1 − F , û is an appropriately chosen threshold, ξ̂ and ν̂ are
maximum likelihood (ML) estimates, and Nu is the number of observa-
tions exceeding the threshold û.

2The following argument equally applies to εt and the negated series −εt. Through-
out we will typically refer to the latter term or its distribution function that we call loss
distribution.
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For α > 1 − Nu/T , it is possible to use Equation (3.5) to obtain one-
day-ahead prediction of the VaR and ES at level α,

V̂ aR
α

t,t+1 = µ̂t,t+1 + σ̂t,t+1

(
û+

ν̂

ξ̂

((
1− α
Nu/S

)−ξ̂
− 1

))
, (3.6)

ÊS
α

t,t+1 = µ̂t,t+1 + σ̂t,t+1ε̂α

(
1

1 + ξ̂
+

ν̂ − ξ̂û
(1− ξ̂)ε̂α

)
, (3.7)

where µ̂t,t+1 and σ̂t,t+1 are the forecast of the conditional mean and the
conditional variance, and ε̂α is the (1−α)quantile of the residuals at time
t.

Financial decisions are often predicated on accurate multi-period-ahead
forecasts of the risk measures, even though the risk management liter-
ature surprisingly focuses almost exclusively on the accuracy of one-
period-ahead forecasts. The dominant long-horizon forecasting approach
consists of scaling the one-period-ahead forecasts by

√
k where k is the

horizon of interest. Its popularity among practitioners stems mostly from
its use in RiskMetrics. Alternatively, we follow the iterative approach of
McNeil and Frey (2000) to obtain the regulatory relevant ten-day-ahead
VaR and ES forecasts, as they were shown to outperform the

√
k rule.

We fit a GP distribution to both tails of the GARCH residuals and model
the body by means of the empirical distribution function. Then, com-
bining bootstrapping and GP simulation it is possible to obtain a semi-
parametric estimate of the innovation distribution:

F̂ε(ε) =


NLu
S

(
1 + ξL |ε−û

L|
νL

)−1/ξ̂L

ε < ûL

1
S

∑S
i=1 1εi≤ε ûL ≤ ε ≤ ûH

1− NHu
S

(
1 + ξH |ε−û

H |
νH

)−1/ξ̂H

ε > ûH

(3.8)

where S is the sample size, N i
u is the number of exceedances, ξ̂i and ν̂i

are GP parameter estimates, ûi is a high threshold and i = L,H indicate
respectively the lower and upper tails. Through an iterative algorithm
which consists of drawing observations from this distribution, see Ap-
pendix B.1, and updating the GARCH equation, it is possible to simu-
late several sample paths for the next ten days and obtain an estimate
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of the multi-period distribution. Throughout the analysis we generate
1000 sample paths. The ten-day-ahead VaR is obtained from the inver-
sion of Equation (3.5) and ES as conditional expectation of exceedances
over VaR.

3.3 The realized EVT approach

Our proposal is to incorporate high frequency (intra-daily) information
in the sets Ft and Ht of Equation (3.1), and use the POT approach to
model the tails of the residuals. To the extent that high-frequency based
volatility models provide better forecasts, they should produce residuals
with a lower degree of extremal dependence and allow for a better esti-
mation of the tail. As the POT approach is based on the assumption of
iid observations, residuals ε̂t that better proxy the innovations εt improve
the inference on the GP parameters and the estimation of the probabil-
ity of exceedances. At the same time, improved volatility predictions
provide better forecasts of the conditional density and more accurate es-
timates of tail-related risk measures.

Assuming µt to be constant in Equation (3.1) (its effect is negligible),
we specify a class of high-frequency based volatility models for the latent
variable σ2

t , using as a proxy the realized volatility (RV). The latter is a
non-parametric estimator of the variation of the price path of an asset
obtained as the sum of squares of intra-day returns recorded during the
open hours of the stock exchange. Formally, let pt denote the log-price of
an asset at time t and rt,∆ = pt − pt−∆ the discretely sampled ∆-period
return. The RV on day t is then defined as

RVt =

N∑
j=1

r2
t−1+(j·∆). (3.9)

If market microstructure noise is absent then, as ∆→ 0, RVt consistently
estimates the quadratic variation of the price process on day t (Andersen
et al., 2001; Barndorff-Nielsen and Shephard, 2002). In practice, market
microstructure noise plays an important role, and econometricians usu-
ally resort to 1- to 5-minute return data to mitigate the effect of the noise.
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Let E(RVt|Ht−1) be the conditional expectation of the RV given the
information set Ht−1 and assume that σ2

t is defined as a function of
E(RVt|Ht−1), σ2

t = g(E(RVt|Ht−1)). We need to specify a model for the
conditional expectation of the RV and a link function g that maps the
conditional mean of the RV to the conditional variance of the returns. In
what follows, we discuss these two issues separately and then show how
to obtain forecasts of the risk measures.

3.3.1 The link function

Different approaches have been attempted to provide a connection be-
tween the conditional variance of the returns and RV but, to the best of
our knowledge, a comparative study of these link functions has not been
pursued so far. In this paper, we consider and discuss three different link
functions, those of Giot and Laurent (2004), Clements et al. (2008) and
Brownlees and Gallo (2010), and compare their performances.

The simplest approach is the one used in Clements et al. (2008), where
the conditional variance of returns is defined by

σ̂2
t,t+h = exp

(
̂log(RVt,t+h)

)
. (3.10)

We call this link function type-I. This specification bears two different
sources of bias: one related to the log-transformation and the other one
due to the imprecision of the volatility proxy. Specifically, given that re-
turns are measured close-to-close while intra-daily observations neglect
overnight information, this information mismatch may be a source of
bias (Andersen et al., 2011). To circumvent this problem, Brownlees and
Gallo (2010) assume the conditional variance σ2

t to be an affine function
of the RV. This model is nested in the HEAVY class of Shephard and
Sheppard (2010). Our logarithmic specification of the HAR function pro-
hibits us from applying the idea directly, but we adapt it and call it type-
II. We have

σ̂2
t,t+h = c+ d exp

(
̂log(RVt,t+h)

)
, (3.11)

where c and d are coefficients to be estimated. Finally, similarly to Giot
and Laurent (2004), we incorporate a correction for the logarithmic trans-
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formation and call it type-III. We have

σ̂2
t,t+h = c+ d exp

(
̂log(RVt,t+h) + 0.5σ̂2

η̂

)
, (3.12)

where σ̂2
η̂ is the estimated variance of the logarithmic HAR regression

residuals.
A word of caution is in order as concerns models (3.10), (3.11) and

(3.12), because they are reduced-form models that are misspecified in the
presence of jumps and/or stochastic volatility, and this may have severe
consequences on the estimation procedures; see, e.g., Nelson (1992).

3.3.2 Reduced form models

Several approaches have been proposed in the financial econometrics
literature to model the dynamics of E(RVt|Ht−1), see Andersen et al.
(2003), Bollerslev et al. (2009), and Andersen et al. (2011). In this pa-
per, we rely on the heterogeneous autoregressive (HAR) class of models,
initially proposed by Corsi (2009), and now considered as the standard
approach in the high-frequency literature. In particular, we use the loga-
rithmic specification of these models for two specific reasons: constraints
on the parameters to guarantee positive volatility are not necessary; the
estimated residuals of the logarithmic specification are closer to normal-
ity, hence more amenable to standard time series procedures.

Let the multi-period normalized RV be denoted by

RVt,t+h = h−1[RVt+1 + · · ·+RVt+h]. (3.13)

Note that RVt,t+1 ≡ RVt+1. The daily HAR model of Corsi (2009) can
then be expressed as

log(RVt,t+h) = β0+βD log(RVt)+βW log(RVt−5,t)+βM log(RVt−22,t)+ηt,t+h,

(3.14)
where t = 1, . . . , T . This parsimonious specification exploits the infor-
mation from the past 1-day, 5-day and 22-day average RV, reflecting the
idea that heterogeneity in investor behaviour creates different volatility
components having different impacts on the future volatility.
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The intuition that the disentanglement of the continuous and discon-
tinuous sample paths could be a valuable source of information leads
Andersen et al. (2007) to extend the HAR model to include a jump com-
ponent. This is important also in the light of the findings of Todorov
and Tauchen (2011) and Bandi and Renò (2015) that volatility jumps are
relevant. Adding the realized jump measure Jt, obtained as the differ-
ence between the realized variance and the bipower variation (Barndorff-
Nielsen and Shephard, 2004), as an explanatory variable, one obtains
their HAR-J model

log(RVt,t+h) = β0 + βD log(RVt) + βW log(RVt−5,t) + βM log(RVt−22,t)
+βJ log(Jt + 1) + ηt,t+h.

(3.15)
The jump component usually adds a significant contribution in terms of
R2, see Andersen et al. (2007) and Corsi et al. (2010).

The models in Equations (3.14)-(3.15) are both symmetric in the sense
that they do not have a parameter accounting for the so called leverage
effect, i.e. the generally negative correlation between an asset’s returns
and its changes of volatility (Nelson, 1991). To generate the desired lever-
age effect, a first possibility is to use the signed jump variation obtained
from the realized semi-variance (Patton and Sheppard, 2015). By isolat-
ing the sign of the jump, we can differentiate its impact on RV. Letting
RS+

t and RS−t be the positive and negative realized semi-variance re-
spectively, the HAR-SJ model has specification

log (RVt,t+h) = β0 + βJ+ log(∆J2+
t + 1) + βJ− log(∆J2−

t + 1)
+βD log(RVt) + βW log(RVt−5,t)
+βM log(RVt−22,t) + ηt,t+h,

(3.16)
with signed jump variations

∆J2+
t = (RS+

t −RS−t )I{(RS+
t −RS

−
t )>0},

∆J2−
t = (RS+

t −RS−t )I{(RS+
t −RS

−
t )<0}.

Assuming that jumps are rare, these two quantities broadly capture the
variation of positive and negative jumps. Nonetheless, if jumps of differ-
ent signs occur on the same day, then these measures account only for a
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small part of the total jump variation. In this case, the HAR-SJ can miss
valuable information coming from the actual size of the jumps. To over-
come this issue, we propose a simple extension of this model and refer
to it as the HAR-SJaug model, see Appendix B.2 for a discussion.

Another asymmetric model is the LHAR of Corsi and Renò (2012)
that adds to the simple HAR specification three leverage components
capturing the persistence of the leverage effect. In contrast to Patton and
Sheppard (2015), they use the lagged negative returns to generate the
desired effect,

log(RVt,t+h) = β0 + βD log(RVt) + βW log(RVt−5,t) + βM log(RVt−22,t)
+γdr

−
t + +γwr

−
t−5,t + γmr

−
t−22,t + ηt

(3.17)
where rt−h,t = 1

h

∑h
j=1 rt−j , and r−t−h,t = min (rt−h,t, 0).

3.3.3 Forecasting risk measures

Once we have a high-frequency based model for the conditional vari-
ance, we can filter the returns and model the tails of the residuals with
the estimator in Equation (3.5). Whereas to obtain one-day-ahead pre-
dictions for C-EVT we rely on a closed-form approach (see Equations
(3.6)-(3.7)), to obtain multiple-day-ahead predictions we have to use an
iterative approach based on Equation (3.8) since the multiple-day condi-
tional distribution of a daily GARCH is not available. We can proceed
differently for RV-EVT. Considering that it is standard in the financial
econometrics literature to fit the HAR model directly to the multi-period
RV, we can compute explicitly the forecasts at both horizons for the RV-
EVT. The h-day-ahead predictions of the VaR and ES at level α are then
defined as

V̂ aR
α

t,t+h = µ̂t,t+h + σ̂t,t+h

(
û+

ν̂

ξ̂

((
1− α
Nu/T

)−ξ̂
− 1

))
(3.18)

ÊS
α

t,t+h = µ̂t,t+h + σ̂t,t+hε̂α

(
1

1 + ξ̂
+

ν̂ − ξ̂û
(1− ξ̂)ε̂α

)
(3.19)
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where µ̂t,t+h and σ̂t,t+h are respectively the h-period forecasts of the con-
ditional mean and variance, and ε̂α is the (1−α) quantile of the residuals
at time t− 1.

3.4 Conditional EVT vs. Realized EVT

3.4.1 Data

The empirical analysis is based on the Oxford-Man Institute “Realised Li-
brary” version 0.2, Heber et al. (2009). We consider 17 different stock in-
dices from the beginning of 2000 to the end of 2014, see Table 6. For each
asset, the library currently records the daily returns and several daily re-
alized measures. Among the latter, we consider the 5-min RV and use
the 5-min Bipower Variation (BV) and the 5-min RSV to extract the jump
components. The 5-min sampling frequency is standard in the literature
as it mitigates the microstructure noise and assures good performance of
the estimators (Liu et al., 2015). To control whether the microstructure
noise is still of any concern, we repeat the analysis with the Second Best
estimator of Zhang et al. (2005) and the Realized Kernel of Barndorff-
Nielsen et al. (2008) instead of the RV estimator, see Section 3.5.2.

Table 6: Data description. Time series of indices start January 2, 2000 and
end December 31, 2014. Stock exchanges respect different holidays and the
number of observations T subsequently differs.

Asset Abbr. T Asset Abbr. T

Amsterdam Exchange Index AEX 3816 IBEX35 IBX 3782
All Ordinaries Index AOI 3743 IPC Mexico IPC 3748
Bovespa Index BVP 3664 Korea Composite Index KCI 3690
CAC40 CAC 3817 Nasdaq 100 NSQ 3747
DAX30 DAX 3795 Nikkei 225 NK 3630
Dow Jones Industrial DJ 3746 Russel 2000 Index RUS 3745
Euro Stoxx 50 ESX 3794 SP500 SPX 3744
FTSE MIB MIB 3778 Swiss Market Index SMI 3749
FTSE100 FT 3764
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3.4.2 Methodology

Given the long series in Table 6 and the out-of-sample nature of our in-
vestigation, a rolling-window approach is used to obtain a time series of
performance measures to compare the C-EVT and the RV-EVT. In partic-
ular, we use a fixed rolling-window length of S = 2000 days to train our
models (in-sample) and daily updates.

We consider the exceedances over the threshold û corresponding to
the 95th quantile of the negated residuals −ε̂t. We perform Anderson-
Darling and Cramér-von Mises goodness-of-fit tests at a level of signif-
icance of 0.05 to check the validity of the GP convergence (Choulakian
and Stephens, 2001). Recall from Pickands (1975) that convergence of
the distribution of the excesses to the GP distribution occurs when the
threshold u goes to the right endpoint of the support. Selecting a high
empirical quantile as a threshold, we are using the results pre-asymptotically
as an approximation only. One can thus expect the quality of the approx-
imation to differ across the stock indices. When it is poor according to
the goodness-of-fit tests, we raise the threshold u to the 98th quantile.
These cases are flagged with the * symbol in the figures and the tables.

We assume the conditional mean of all models to be constant and
equal to zero as in Brownlees and Gallo (2010). In the C-EVT, we use a
GJR-GARCH(1,1) specification instead of the GARCH(1,1) to account for
the evidence of leverage effect in the financial returns.

We compare our EVT-based methods along two separate but related
dimensions: the filtering and forecasting components. On the one hand,
we assess how much of the extremal dependence inherent in the returns
is captured by the different models. To this end, we rely on the concept
of extremal index θ (Leadbetter, 1983) which is a parameter measuring
this dependence. As for forecasts, we produce one-day- and ten-day-
ahead predictions of the VaR and ES at level α = 0.01 and use standard
performance measures to evaluate them, see Christoffersen (1998) and
Engle and Manganelli (2004) for the VaR and McNeil and Frey (2000) for
the ES.
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3.4.3 The filtering component

Financial extremes tend to occur in clusters, and the degree of depen-
dence in the extremes of a stationary series is measured by the extremal
index θ. In particular, when θ < 1 the extremes are dependent, con-
versely with θ = 1 they are independent. The first step of C-EVT or
RV-EVT should filter out this dependence so that the residuals used in
the respective second steps are iid. If they are not, both the inference
on the GP parameters and the probability of threshold exceedances will
be affected. Given our finite sample size, we consider the standardized
residuals of the models to be close to independent when 0.85 ≤ θ̂ ≤ 1,
where θ̂ is the Ferro and Segers (2003) intervals estimate.

In what follows, we compare the performance of the GJR-GARCH(1,1)
and the HAR models of Section 3.3.2 as filters. In particular, we es-
timate the extremal index θ̂ of the model residuals obtained over each
window. We repeat the analysis with the different link functions in Equa-
tions (3.10)-(3.12) to assess the merit of the complexity added to the high-
frequency based model for the conditional volatility.

Figure 30 displays the estimates of θ for the type-I link function. The
figure clearly shows that, in general, the residuals of each model exhibit
a very low degree of extremal dependence and that the GJR-GARCH(1,1)
model appears as the best performer. On a few occasions, the high-
frequency based volatility models fail to capture the extremal depen-
dence, particularly on the RUSSEL time series. Adding jumps and lever-
age does not seem to contribute substantially.

In Figures 31-32, we report the estimates of θ respectively for the
type-II and type-III link functions. The figure suggests that there is no
real benefit from increasing the complexity of the conditional volatility
model. The degree of extremal dependence left in the residuals by the
high-frequency based models is in line with that observed in Figure 30
and GJR-GARCH(1,1) is still the best choice.

Although the results are compelling, they might seem counterintu-
itive. Indeed, to the extent that a model provides superior forecasts of
the volatility, it should also provide a better proxy of the innovations.
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We argue that the observed difference in the estimated residuals might
be explained by the different ability of the two approaches in generating
extremal dependence.

Most of the evidence on the higher performance of the high-frequency
based volatility models is based on comparisons of the R2 statistic or
other loss functions. But this does not say anything regarding the ex-
tremal dependence. The GARCH class of models is supported by theo-
retical arguments which show their ability to generate extremal depen-
dence in the volatility process and consequently in the return process
(Basrak et al., 2002). The HAR class of models is a simple equation that
fits nicely the stylized facts of the financial time series and is supported
by economic arguments regarding the heterogeneous behaviour of dif-
ferent investors. It is difficult (if possible) to derive a theoretical result on
the extremal behaviour of this model as it is for GARCH processes.

In order to get some insights on this issue, we can build upon the
comparison between GARCH processes and stochastic volatility (SV) mod-
els from an extreme perspective. While GARCH processes exhibit ex-
tremal dependence, SV may or may not fail to account for this property
depending on the specification (Davis and Mikosch, 2009b; Fasen et al.,
2006). As the HAR class of models can be considered in the domain of
SV models (Corsi, 2009), then it may either capture or not the extremal
dependence in the returns.

To assess this possibility, we follow Liu and Tawn (2013) and rely on
the conditional tail probability c(x) = P(Xt+1 > q|Xt > q). Theoretically,
c(x)→ 0 as q →∞when the extremes are independent and c(x)→ c > 0

as q → ∞ when they are dependent. As it is not possible to study the
asymptotic behaviour of c(x) for q → ∞, we approximate it considering
a sequence of high quantiles q. Figure 33 displays the empirical condi-
tional tail probability at different levels q for three sub-samples of the
S&P500. Moreover, we report the same coefficients estimated on simu-
lated data produced by the GJR-GARCH(1,1) and the HAR models fitted
to these three samples. As expected, the tail probability implied by the
GARCH model is positive at every quantile pointing toward the pres-
ence of extremal dependence. The conditional probability for the HAR
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model does not reach zero at the considered levels, but it is clear that its
decay is much faster than the one of the GJR-GARCH model, and it fails
to capture the empirical tail dependence.

Based on this evidence, it is worth investigating whether the time se-
ries for which the HAR provides a good filter exhibit a lower degree of
extremal dependence. A positive response would be consistent with the
idea that GARCH and HAR models imply two different degrees of de-
pendence in the extremes. Figure 34 displays the estimates of θ obtained
on the return series of the 17 stock indexes in the different windows. The
results are somewhat blurred: some cases are consistent with the find-
ings in Figure 30 and some others are not. For instance, a high degree
of dependence is shown by the AEX and the SPX and a low degree of
dependence is shown for the BVP and the NK, which is in line with the
dependence left in the residuals of the HAR models. But at the same
time, IPC and RUS present lower dependence than other series, yet HAR
models could not filter to iid.

Figure 30: Extremal index estimates for the type-I link function. Values
of θ estimated on the standardized residuals obtained from the different
windows of length S = 2000.

3.4.4 The forecast component

Jalal and Rockinger (2008) carry out an extensive simulation experiment
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Figure 31: Extremal index estimates for the type-II link function. Values
of θ estimated on the standardized residuals obtained from the different
windows of length S = 2000.

Figure 32: Extremal index estimates for the type-III link function. Values
of θ estimated on the standardized residuals obtained from the different
windows of length S = 2000.
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Figure 33: Conditional tail probaility. Estimates of c(x) for the lower tail
of three sub-samples of the S&P500 at 10 different quantiles: Empirical
(points); simulation from the GJR-GARCH(1,1) model (solid) and tolerance
levels (dotted); simulation from the HAR model (dashed) and tolerance levels
(dash-dotted).

Figure 34: Extremal index on the raw data. Estimates of θ on the lower tail
of the return series over moving windows of length S = 2000.
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to investigate the performance of C-EVT when the DGP is not the stan-
dard GARCH(1,1) model of Bollerslev (1986). Their results emphasize
how C-EVT provides accurate one-day-ahead forecasts of the VaR and
ES regardless of the assumed DGP, thus strengthening the conclusions of
McNeil and Frey (2000).

We suspect that the performance of the C-EVT deteriorates as estima-
tion moves to longer time horizons. The quality of the estimation of the
tail-risk measures depends on the quality of the volatility forecast. As
it is shown that the volatility forecasting performance of methods based
on daily returns deteriorates with increasing horizon length (Brownlees
et al., 2011), similar deterioration should be seen in tail-risk forecasts.

We perform both a simulation experiment and an empirical data anal-
ysis. In both cases, we provide out-of-sample forecasts of the one-day-
and ten-day-ahead VaR and ES at level α = 0.01.

Simulation experiment.

First, we reproduce the analysis of Jalal and Rockinger (2008). We con-
sider six different DGP: the GARCH(1,1) with Gaussian and t innova-
tions; the EGARCH(1,1) of Nelson (1991); the regime-switching model
of Schaller and Norden (1997); the discrete-time jump diffusion model
of Pan (1997) and its pure jump version. For each process, we generate
B = 100 samples of T = 4000 daily returns. Figure 35 shows the results
for both the one-day- and ten-day-ahead forecasts. To evaluate the per-
formance of the VaR, we count the violations in each window. When the
length of the widow is S = 2000, the expected number of violations is
(T − S) × α = 20. As a performance measure for the ES, we compute
its distance from the actual return when the VaR is exceeded, and expect
this to be mean zero and symmetrically distributed.

Although we do not report any formal test, the results for the one-
day-ahead predictions in Figure 35 are consistent with those of Jalal and
Rockinger (2008). However, focussing particularly on the VaR, it is evi-
dent that the accuracy of the C-EVT is reduced at the longer time horizon.
Indeed, for three out of six DGP the average number of violations moves
further away from the expected number.
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Can RV-EVT provide more accurate predictions? We set up another
simulation experiment where the two approaches can be compared. We
need to generate high-frequency observations, so we consider the stochas-
tic volatility model of Bandi and Renò (2015). The latter involves 21 pa-
rameters and accommodates several attributes of financial time series.
It accounts for time-variation in both the volatility and leverage, and al-
lows for idiosyncratic and common jump discontinuities in the price pro-
cess and the volatility, determined from a complex dependence structure.

We generateB = 100 samples of T = 4000 daily observations for both
the returns and the 5-min realized measures. We use the Euler scheme
to generate N = 2520 equally-spaced observations per day, assuming 7
hours of trading and changes in the price level occurring every ten sec-
onds, leading to 6 ticks per minute (6×60×7 = 2520). This discretization
method is standard in the literature (Huang and Tauchen, 2005), while
the choice of the frequency is mainly for computational reasons. The pa-
rameters of the model are set according to the GMM estimates obtained
on the S&P500 futures from April 1982 to February 2009 in Bandi and
Renò (2015).

In Figure 36, we report the one-day- and ten-day-ahead VaR and ES
forecasts obtained over each window. We consider only a Type-I link
function for RV-EVT. Consistent with the results in Figure 35, the C-EVT
performs well for one-day-ahead forecasts but deteriorates as we extend
the time horizon. Contrarily, the RV-EVT approach seems to be less af-
fected by the increasing time horizon and performs well regardless of
the high-frequency based volatility model for the RV. In particular, the
LHAR model emerges as the best one since it presents a smaller range of
variability in terms of number of violations, and it is less upward biased
in the estimation of the ES.

Empirical analysis.

We now consider empirical data and assess whether the results sug-
gested by the simulation experiment are confirmed.

In Table 7, we compare one-day-ahead VaR forecasts from the C-EVT
and RV-EVT for the 17 indices. To evaluate the accuracy of the predic-
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Figure 35: Extending experiments in Jalal and Rockinger (2008). One-
and ten-day-ahead predictions at level α = 1%. VaR violations (left pan-
els) and actual returns minus ES when VaR is exceeded (right panels). Ex-
pected number of violations is 20. ES differences should be mean zero and
symmetrically distributed. DGP are: Gaussian-GARCH(1,1) (a); Student’s-
GARCH(1,1) (b); EGARCH(1,1) (c); Switching-Markov (d); Jump-diffusion
(e); Pure jumps (f).

Figure 36: Comparison of C-EVT and RV-EVT for simulated data follow-
ing Bandi and Renó (2014) model. One- and ten-day-ahead predictions at
level α = 1%. VaR violations (left panels) and actual returns minus ES when
VaR is exceeded (right panels). Expected number of violations is 20. ES dif-
ferences should be mean zero and symmetrically distributed. Models used
in first step: (C-EVT) 1 - GARCH ; (Symmetric RV-EVT) 2 - HAR; 3 - HAR-J;
(Asymmetric RV-EVT) 4 - HAR-SJ; 5 - HAR-SJaug; 6 - LHAR.
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tions, we use the standard tests of unconditional coverage (UC), inde-
pendence assumption (IN) and conditional coverage (CC) suggested by
Christoffersen (1998), and the dynamic quantile test (DQ) of Engle and
Manganelli (2004). These results suggest that the C-EVT and the RV-EVT
perform equally well for one-day-ahead. In most of the cases, the num-
ber of violations for both approaches is very close to the expected, and
the null hypothesis of independence is typically not rejected at the stan-
dard levels. Noteworthy is the DQ statistic, reflecting the predictability
of a violation given the past information. The null hypothesis of inde-
pendence between consecutive violations appears to be the one most fre-
quently rejected. In sum, these results are in line with those obtained
by Giot and Laurent (2004) and Brownlees and Gallo (2010) using non
EVT-based modelling assumptions.

To compare the one-day-ahead ES predictions, we test the hypothesis
that conditional upon exceeding the 99th quantile of the loss distribution,
the difference between the actual return and the predicted ES has mean
zero. We conduct a one-sided test with the alternative that the mean is
greater than zero using a bootstrap that makes no assumption about the
distribution of the differences, see Section 16.4 of Efron and Tibshirani
(1994). The small number of p-values below 0.05 in Table 8 indicate that
the good results for the VaR extend to ES.

Turning to the ten-day-ahead predictions of these tail-risk measures,
hypothesis testing is complicated by the fact that the violations are in-
herently autocorrelated. Nonetheless, we provide two simple statisti-
cal tests for the VaR and the ES. First, let Iαt,t+10 take value one when
the ten-day-ahead VaR prediction at level α is violated, and zero oth-
erwise. {It,t+10, t = 1, 2, . . . } is a sequence of correlated Bernoulli ran-
dom variables. Letting Φ(·) be a Probit link function, we assume that
It,t+10 = Φ(γ) and test the hypothesis of correct unconditional coverage
H0 : γ = Φ−1(α) against the alternative H1 = not H0. We perform a
simple Wald test with robust standard errors computed with the Newey-
West estimator to account for the autocorrelations. Table 9 shows the
number of violations of each model along with the p-value of the test.
The results suggest that at longer time horizons the RV-EVT approach
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is more accurate than C-EVT: in three cases the null of correct uncondi-
tional coverage is rejected for C-EVT, and most of the time the RV-EVT is
more accurate in terms of number of violations.

To compare the ten-day-ahead ES predictions, we employ again the
bootstrap test used for the one-day-ahead ES predictions, but we base it
on a block bootstrap because of the autocorrelations in the violations. In
Table 10 we report the p-values of the test. Contrasts are not as clear as
in the case of the VaR as the number of rejections of the null hypothesis
of mean zero difference between the ten-day-ahead ES forecasts and the
actual ten-day returns is very similar in all cases.

Results obtained with the Type-II and Type-III link functions and re-
ported in Appendix B.3 lead to the same conclusions.

3.5 Further analysis

The results from the preceding sections highlight the ability of the GARCH
model as a filter, and the merits of the high-frequency based volatility
models for the forecast of the tail-risk measures. Now, as standard in fi-
nance, we verify that the results obtained are robust to the choices made.

3.5.1 An investigation during a period of turmoil

We evaluate the performance of C-EVT and RV-EVT when the training
sample used to fit the models is limited to 500 days instead of 2000. Fur-
thermore, we consider the time period from the beginning of 2007 to the
end of 2011.

Given the reduced sample size, we consider the exceedances over the
threshold û corresponding to the 90th quantile of the negated residu-
als −ε̂t of the considered model. Goodness-of-fit tests are carried out as
described in Section 3.4.2. When the threshold seems to be still at the
sub-asymptotic level, it is raised to the 92nd quantile. One-day- and ten-
day-ahead forecasts of the VaR and the ES are produced at level α = 0.05.

Results available in Appendix B.4 confirm the findings of Section 3.4,
although the difference are less pronounced when looking only at the
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Table 7: Performance measures for the one-day-ahead VaR forecast. For
each model (GARCH (a), HAR (b), HAR-J (c), HAR-SJ (d), HAR-SJaug (e),
LHAR (f)), we report: the actual number of violations (NV); the p-values
for the unconditional coverage (UC), the independence assumption (IN),
the conditional coverage (CC), and the DQ test (DQ). Expected number of
violations are in parentheses. Rejection at the level α = 5% is in bold. The
* denotes series for which a higher threshold was required for appropriate
GPD behaviour.

Index PM (a) (b) (c) (d) (e) (f) Index PM (a) (b) (c) (d) (e) (f)

AEX* NV 22 18 18 19 19 17 IBX NV 26 19 19 20 21 18
(18) UC 0.36 1 1 0.81 0.81 0.81 (18) UC 0.07 0.81 0.81 0.64 0.49 1

IN 0.46 0.55 0.55 0.52 0.52 0.57 IN 0.38 0.20 0.20 0.22 0.25 0.54
CC 0.50 0.83 0.83 0.79 0.79 0.82 CC 0.14 0.42 0.42 0.42 0.40 0.83
DQ 0.65 0.72 0.72 0.75 0.75 0.99 DQ 0.003 0.19 0.18 0.001 0.002 0.54

AOI NV 16 13 15 16 17 11 IPC NV 13 7 7 7 9 7
(17) UC 0.80 0.30 0.62 0.81 1 0.12 (17) UC 0.31 0.005 0.005 0.005 0.03 0.005

IN 0.58 0.66 0.61 0.59 0.56 0.71 IN 0.66 0.81 0.81 0.81 0.76 0.81
CC 0.82 0.54 0.77 0.83 0.84 0.27 CC 0.54 0.02 0.02 0.02 0.10 0.02
DQ 0.99 0.34 0.51 0.61 0.63 0.12 DQ 0.27 0.46 0.49 0.49 0.75 0.47

BVP NV 13 12 12 14 14 13 KCI NV 13 20 20 19 21 17
(17) UC 0.31 0.30 0.20 0.45 0.45 0.31 (17) UC 0.31 0.48 0.48 0.63 0.35 1

IN 0.65 0.66 0.68 0.63 0.63 0.65 IN 0.65 0.23 0.23 0.21 0.26 0.56
CC 0.53 0.54 0.40 0.66 0.66 0.53 CC 0.53 0.38 0.38 0.40 0.34 0.83
DQ 0.25 0.34 0.27 0.06 0.07 0.31 DQ 0.97 0.36 0.34 0.16 0.27 0.42

CAC NV 29 26 27 26 27 22 NSQ NV 20 22 22 20 20 17
(18) UC 0.01 0.08 0.05 0.08 0.05 0.36 (17) UC 0.48 0.24 0.24 0.48 0.48 1

IN 0.33 0.38 0.37 0.38 0.37 0.46 IN 0.50 0.45 0.45 0.50 0.49 0.56
CC 0.03 0.14 0.09 0.14 0.09 0.49 CC 0.61 0.38 0.38 0.61 0.61 0.84
DQ 0.02 0.05 0.04 0.05 0.04 0.09 DQ 0.0008 0.13 0.13 0.18 0.40 0.16

DAX NV 19 18 17 16 16 15 NK NV 15 16 16 15 16 15
(18) UC 0.81 1 0.81 0.63 0.63 0.46 (16) UC 0.80 1 1 0.80 1 0.80

IN 0.52 0.54 0.57 0.59 0.59 0.61 IN 0.13 0.15 0.15 0.13 0.15 0.13
CC 0.78 0.82 0.81 0.76 0.76 0.66 CC 0.30 0.34 0.34 0.30 0.35 0.29
DQ 0.16 0.04 0.14 0.11 0.42 0.29 DQ 0.50 0.007 0.008 0.01 0.02 0.007

DJ* NV 21 22 21 20 21 17 RUS NV 23 25 25 23 24 20
(17) UC 0.35 0.25 0.35 0.48 0.34 1 (17) UC 0.16 0.07 0.07 0.16 0.11 0.48

IN 0.47 0.28 0.48 0.50 0.47 0.56 IN 0.43 0.39 0.39 0.43 0.41 0.49
CC 0.49 0.28 0.49 0.61 0.49 0.83 CC 0.28 0.13 0.13 0.28 0.19 0.61
DQ 0.52 0.008 0.01 0.95 0.69 0.99 DQ 0.005 0.001 0.001 0.001 0.02 0.42

ESX* NV 31 18 18 19 19 15 SPX* NV 27 25 28 25 25 23
(18) UC 0.01 1 1 0.82 0.81 0.46 (17) UC 0.02 0.07 0.01 0.07 0.07 0.16

IN 0.29 0.54 0.55 0.53 0.53 0.61 IN 0.36 0.40 0.34 0.40 0.40 0.43
CC 0.01 0.82 0.82 0.79 0.79 0.66 CC 0.05 0.13 0.03 0.13 0.13 0.27
DQ 0.001 0.37 0.37 0.13 0.12 0.41 DQ 0.11 0.40 0.003 0.20 0.28 0.73

MIB NV 31 23 23 24 25 23 SMI NV 17 19 19 18 18 15
(18) UC 0.01 0.26 0.26 0.17 0.12 0.26 (17) UC 1 0.63 0.63 0.81 0.81 0.62

IN 0.29 0.44 0.44 0.42 0.40 0.43 IN 0.56 0.20 0.20 0.54 0.54 0.62
CC 0.01 0.38 0.38 0.29 0.20 0.38 CC 0.84 0.39 0.39 0.79 0.79 0.77
DQ 0.003 0.02 0.02 0.04 0.22 0.04 DQ 0.68 0.13 0.13 0.17 0.17 0.93

FT NV 20 16 16 15 15 13
(18) UC 0.64 0.63 0.63 0.46 0.46 0.26

IN 0.50 0.59 0.59 0.61 0.61 0.43
CC 0.70 0.76 0.76 0.67 0.67 0.38
DQ 0.71 0.96 0.97 0.98 0.98 0.34
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Table 8: Performance of one-day-ahead ES forecast. P-values from the one-
sided upper-tail bootstrap test for the null of mean zero difference between
actual returns and ES when VaR is exceeded. Rejection at level α = 5% is
in bold. The * denotes series for which a higher threshold was required for
appropriate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJaug LHAR

AEX* 0.020 0.090 0.113 0.097 0.048 0.135
AOI 0.920 0.577 0.480 0.787 0.630 0.96
BVP 0.414 0.988 0.982 1.000 1.000 1.000
CAC 0.103 0.599 0.457 0.425 0.148 0.655
DAX 0.262 0.315 0.307 0.303 0.376 0.235
DJ* 0.998 1.000 1.000 0.993 1.000 1.000

ESX* 0.737 0.406 0.431 0.555 0.567 0.491
MIB 0.821 0.807 0.840 0.857 0.844 0.906
FT 0.410 0.647 0.719 0.791 0.693 0.719
IBX 0.328 0.435 0.317 0.257 0.213 0682
IPC 0.827 0.991 0.989 0.999 0.956 0.953
KCI 0.063 0.254 0.135 0.177 0.076 0.289
NSQ 0.490 0.900 0.910 0.797 0.755 0.678
NK 0.023 0.034 0.023 0.017 0.008 0.023
RUS 0.960 0.781 0.671 0.523 0.500 0.539
SPX* 0.999 0.995 0.993 0.999 1.000 1.000
SMI 0.198 0.860 0.875 0.776 0.799 0.638
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Table 9: Performance measures for the ten-day-ahead VaR forecast. Ac-
tual and expected number of violations of the VaR.Cases in which the null
hypothesis of correct unconditional coverage is rejected at level α = 10%
are in bold. The best performer is in italic. The * indicates series for which a
higher threshold was required for good GPD behavior.

Index Expected GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 18 34 (0.08) 18 (1.00) 16 (0.81) 19 (0.89) 20 (0.79) 18 (0.99)
AOI* 17 25 (0.43) 25 (0.43) 25 (0.43) 23 (0.60) 22 (0.68) 21 (0.63)
BVP 17 12 (0.49) 22 (0.54) 22 (0.54) 21 (0.60) 22 (0.54) 19 (0.77)
CAC 18 29 (0.23) 27 (0.36) 27 (0.36) 27 (0.34) 27 (0.34) 27 (0.30)
DAX 18 27 (0.33) 22 (0.66) 20 (0.82) 21 (0.73) 21 (0.73) 22 (0.66)

DJ 17 12 (0.51) 20 (0.71) 20 (0.71) 18 (0.92) 18 (0.92) 19 (0.83)
ESX 18 32 (0.17) 21 (0.72) 21 (0.72) 21 (0.72) 22 (0.64) 20 (0.81)
MIB 18 50 (0.02) 25 (0.36) 25 (0.36) 25 (0.36) 25 (0.36) 25 (0.34)
FT 18 33 (0.14) 19 (0.95) 18 (0.95) 18 (0.95) 19 (0.95) 24 (0.41)
IBX 18 39 (0.07) 24 (0.87) 25 (0.78) 26 (0.69) 26 (0.69) 25 (0.35)
IPC 17 14 (0.68) 7 (0.16) 7 (0.16) 7 (0.16) 7 (0.16) 9 (0.30)

KCI* 17 11 (0.45) 26 (0.21) 27 (0.25) 27 (0.25) 28 (0.23) 26 (0.21)
NSQ 17 20 (0.73) 18 (0.92) 18 (0.92) 15 (0.75) 15 (0.75) 14 (0.62)
NK 16 24 (0.57) 25 (0.47) 25 (0.47) 26 (0.39) 26 (0.39) 25 (0.48)
RUS 17 18 (0.94) 18 (0.93) 17 (0.98) 17 (0.98) 16 (0.88) 18 (0.94)
SPX 17 10 (0.38) 17 (0.98) 17 (0.97) 16 (0.88) 16 (0.88) 19 (0.83)
SMI 17 24 (0.41) 11 (0.35) 11 (0.35) 11 (0.35) 11 (0.35) 11 (0.35)
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Table 10: Performance of ten-day-ahead ES forecast. P-values from the
one-sided upper-tail block-bootstrap test for the null of mean zero differ-
ence between actual returns and ES when VaR is exceeded. Rejection at
level α = 5% is in bold. The * denotes series for which a higher threshold
was required for appropriate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 0.114 0.124 0.071 0.123 0.333 0.294
AOI* 0.946 0.244 0.249 0.243 0.345 0.122
BVP 0.673 0.128 0.138 0.118 0.035 0.073
CAC 0.283 0.534 0.562 0.414 0.391 0.601
DAX 0.045 0.101 0.035 0.060 0.059 0.056

DJ 0.345 0.288 0.246 0.232 0.217 0.211
ESX 0.153 0.170 0.203 0.153 0.057 0.025
MIB 0.288 0.743 0.763 0.776 0.787 0.816
FT 0.119 0.451 0.396 0.312 0.379 0.622
IBX 0.738 0.157 0.196 0.291 0.238 0.183
IPC 0.220 0.767 0.741 0.908 0.868 1.000

KCI* 0.027 0.123 0.140 0.251 0.281 0.319
NSQ 0.062 0.028 0.022 0.000 0.000 0.003
NK 0.007 0.021 0.030 0.019 0.024 0.035
RUS 0.089 0.156 0.085 0.134 0.052 0.178
SPX 0.282 0.047 0.043 0.038 0.038 0.092
SMI 0.479 0.511 0.483 0.493 0.484 0.341
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period of turmoil and the poorer performance of the GJR-GARCH(1,1) is
clearer in the estimates of ES.

3.5.2 Microstructure noise

To investigate whether the microstructure noise has an impact on the
analysis of Section 3.4, we repeat it on both the full and restricted samples
using two estimators of the quadratic variation that mitigate the effect of
the microstructure noise: the Second-Best Approach: Sub-sampling and Av-
eraging estimator of Zhang et al. (2005), which is biased in the presence
of microstructure noise but presents a lower variance than the RV esti-
mator; and the Realized Kernel (RK) of Barndorff-Nielsen et al. (2008).

We assess both the filtering and forecasting component of the RV-
EVT using first the sub-sampled measures and then substituting the sub-
sampled RV with the RK. Results reported in Appendix B.5 lead to the
same conclusions of Section 3.4.

3.6 Concluding remarks

This article questions whether combining the recent advances in the high-
frequency financial econometrics with results from the Extreme Value
Theory can improve the fit of the tails of the conditional returns distribu-
tion.

We propose an RV-EVT approach where returns are pre-whitened
with a high-frequency based volatility model and the POT approach is
applied to the tails of the standardized residuals. We use three different
functions to link the predictions of the realized volatility to the condi-
tional variance of returns, and employ six different econometric specifi-
cations to model the realized volatility.

This approach is compared to the standard C-EVT technique both
through simulation and with an extensive empirical analysis on 17 in-
ternational indexes. We assess both approaches’ ability of filtering the
dependence in the extremes and of producing stable out-of-sample VaR
and ES predictions for one- and ten-day time horizons.
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Summarizing the results, it seems that a GARCH-type filter performs
slightly better than a high-frequency based filter, even though they both
tend to produce estimated residuals which are close to independent. From
a risk management perspective however, the RV-EVT approach seems
preferable, especially at the longer time horizons which are of interest
for regulatory purposes.
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Appendix B

B.1 Sampling from the semi-parametric distri-
bution of the residuals

1. Randomly select with replacement a residual from the sample of S
residuals;

2. If the residual exceeds an upper threshold ûH sample a GP(ξ̂H , η̂H )
distributed observation yH from the right tail and return ûH + yH ;

3. If the residual is less than a lower threshold ûL sample a GP(ξ̂L, η̂L)
distributed observation yL from the left tail and return ûL + yL;

4. Otherwise return the residual itself;

5. Repeat.

B.2 Augmented HAR-RV model with signed jumps

Patton and Sheppard (2015) propose to extend the HAR-J model of An-
dersen et al. (2007), isolating the information coming from the sign of
the jumps. They use a measure called signed jump variation ∆J2

t ≡
RS+

t − RS−t which is positive when a day is dominated by an upward
jump and negative when a day is dominated by a downward jump. They
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explicitly decompose this measure into two components

∆J2+
t = (RS+

t −RS−t )I{(RS+
t −RS

−
t )>0},

∆J2−
t = (RS+

t −RS−t )I{(RS+
t −RS

−
t )<0}.

(B.1)

If jumps are rare then these measures should respectively correspond
to the jump variation when either a positive or a negative jump occurs.
However, if jumps tend to cluster, there might be more than one jump in
a day and the measures in Equation (B.1) will fail to capture the whole
jump contribution. To verify whether the actual size of the jumps could
still generate valuable information, we extend the model of Patton and
Sheppard (2015) to obtain the following HAR-SJaug model,

log(RVt,t+h) = β0 + βJ log(1 + Jt) + βJ+ log(∆J2+
t + 1)

+ βJ− log(∆J2−
t + 1) + βJJ+ log(1 + Jt) log(∆J2+

t + 1)
+ βJJ− log(1 + Jt) log(∆J2−

t + 1) + βC log(RVt)
+ βW log(RVt−5,t) + βM log(RVt−22,t) + ηt,t+h.

B.3 Forecasting with other link functions

In this section, we report the performance evaluation for the risk-measure
forecasts obtained with the type-II and type-III link functions.

The results for both the one-day (Tables 11 to 14) and ten-day-ahead
(Tables 15 to 18) predictions are very similar to those obtained with the
type-I link function. At the one-day level, the performance of the C-
EVT and RV-EVT are very similar, but as the time horizon increases the
higher accuracy of the high-frequency based volatility estimates results
in improved predictions of the risk-measures.

Comparing the outcomes across the three different link functions, it
seems that the higher complexity of the conditional volatility model does
not bear any significant impact on forecasting. Given that the type-II and
type-III link functions require more effort to get an estimate of the vo-
latility, only type-I link function results are included in the main paper.
Practitioners can decide whether a more complex link function is neces-
sary.
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Table 11: Performance measures for the one-day-ahead VaR forecast with
type-II link function. For each model (GARCH (a), HAR (b), HAR-J (c),
HAR-SJ (d), HAR-SJaug (e), LHAR (f)), we report: the actual number of vi-
olations (NV); the p-values for the unconditional coverage (UC), the inde-
pendence assumption (IN), the conditional coverage (CC), and the DQ test
(DQ). Expected number of violations are in parentheses. Rejection at level
α = 5% is in bold. The * denotes series for which a higher threshold was
required for appropriate GPD behavior.

Index PM (a) (b) (c) (d) (e) (f) Index PM (a) (b) (c) (d) (e) (f)

AEX* NV 22 18 18 19 19 18 IBX* NV 26 20 21 21 21 22
(18) UC 0.36 1 1 0.81 0.81 1 (18) UC 0.08 0.64 0.49 0.49 0.49 0.36

IN 0.46 0.55 0.55 0.53 0.53 0.54 IN 0.38 0.22 0.25 0.25 0.25 0.27
CC 0.50 0.83 0.83 0.79 0.79 0.83 CC 0.14 0.42 0.40 0.40 0.40 0.36
DQ 0.65 0.72 0.72 0.75 0.75 0.72 DQ 0.003 0.20 0.24 0.002 0.002 0.12

AOI NV 16 13 16 14 15 17 IPC* NV 13 9 9 9 9 9
(17) UC 0.81 0.31 0.81 0.45 0.62 1 (17) UC 0.31 0.03 0.03 0.03 0.03 0.03

IN 0.59 0.66 0.59 0.63 0.61 0.56 IN 0.66 0.76 0.76 0.76 0.76 0.76
CC 0.83 0.54 0.83 0.67 0.77 0.84 CC 0.54 0.10 0.10 0.10 0.10 0.10
DQ 1 0.34 0.00 0.44 0.48 0.64 DQ 0.27 0.04 0.74 0.74 0.74 0.04

BVP NV 13 14 14 13 14 14 KCI NV 13 20 20 19 20 19
(17) UC 0.31 0.45 0.45 0.31 0.45 0.45 (17) UC 0.31 0.48 0.48 0.63 0.48 0.63

IN 0.65 0.63 0.63 0.65 0.63 0.62 IN 0.65 0.23 0.23 0.21 0.23 0.21
CC 0.53 0.66 0.66 0.53 0.66 0.66 CC 0.53 0.38 0.38 0.40 0.38 0.40
DQ 0.25 0.26 0.26 0.17 0.27 0.21 DQ 0.98 0.36 0.34 0.16 0.27 0.32

CAC NV 29 27 28 26 26 27 NSQ NV 20 21 21 21 21 23
(18) UC 0.02 0.05 0.03 0.08 0.08 0.05 (17) UC 0.48 0.35 0.35 0.35 0.35 0.16

IN 0.33 0.37 0.35 0.38 0.38 0.36 IN 0.50 0.47 0.47 0.47 0.47 0.43
CC 0.04 0.09 0.06 0.14 0.14 0.09 CC 0.61 0.49 0.49 0.49 0.49 0.28
DQ 0.02 0.11 0.09 0.14 0.07 0.11 DQ 0.0009 0.16 0.16 0.26 0.41 0.24

DAX* NV 19 21 21 20 21 26 NK NV 15 16 16 15 16 16
(18) UC 0.81 0.49 0.49 0.64 0.49 0.08 (16) UC 0.80 1 1 0.80 1.00 1

IN 0.52 0.48 0.48 0.50 0.48 0.38 IN 0.13 0.15 0.15 0.13 0.15 0.15
CC 0.79 0.61 0.61 0.71 0.61 0.14 CC 0.30 0.35 0.35 0.30 0.35 0.35
DQ 0.16 0.10 0.11 0.30 0.31 0.01 DQ 0.50 0.01 0.01 0.01 0.02 0.01

DJ* NV 21 21 21 20 21 21 RUS NV 23 22 24 22 22 26
(17) UC 0.35 0.35 0.35 0.48 0.35 0.35 (17) UC 0.17 0.24 0.11 0.24 0.24 0.04

IN 0.47 0.47 0.47 0.50 0.47 0.25 IN 0.43 0.45 0.41 0.45 0.45 0.37
CC 0.49 0.49 0.49 0.61 0.49 0.33 CC 0.28 0.38 0.19 0.38 0.38 0.08
DQ 0.52 0.02 0.02 0.95 0.69 0.43 DQ 0.01 0.66 0.01 0.66 0.66 0.31

ESX* NV 31 16 16 18 16 24 SPX* NV 27 24 25 21 21 26
(18) UC 0.01 0.63 0.63 1 0.63 0.17 (17) UC 0.02 0.11 0.07 0.35 0.35 0.05

IN 0.30 0.59 0.59 0.55 0.59 0.42 IN 0.36 0.41 0.39 0.47 0.47 0.37
CC 0.01 0.76 0.76 0.82 0.76 0.28 CC 0.05 0.19 0.13 0.49 0.49 0.09
DQ 0.001 0.17 0.17 0.21 0.12 0.01 DQ 0.11 0.51 0.21 0.45 0.69 0.31

MIB NV 31 23 24 26 25 29 SMI NV 17 18 18 18 18 22
(18) UC 0.01 0.26 0.18 0.08 0.12 0.02 (17) UC 1 0.81 0.81 0.81 0.81 0.24

IN 0.29 0.44 0.42 0.38 0.40 0.32 IN 0.56 0.18 0.18 0.54 0.54 0.28
CC 0.01 0.38 0.28 0.14 0.20 0.04 CC 0.84 0.39 0.39 0.80 0.80 0.28
DQ 0.003 0.02 0.01 0.04 0.22 0.01 DQ 0.68 0.14 0.14 0.18 0.18 0.12

FT NV 20 15 16 15 15 15
(18) UC 0.64 0.46 0.63 0.46 0.46 0.46

IN 0.50 0.61 0.59 0.61 0.61 0.61
CC 0.71 0.67 0.76 0.67 0.67 0.67
DQ 0.71 0.98 0.97 0.98 0.98 0.97

95



Table 12: Performance measures for the one-day-ahead VaR forecast with
type-III link function. For each model (GARCH (a), HAR (b), HAR-J (c),
HAR-SJ (d), HAR-SJaug (e), LHAR (f)), we report: the actual number of vi-
olations (NV); the p-values for the unconditional coverage (UC), the inde-
pendence assumption (IN), the conditional coverage (CC), and the DQ test
(DQ). Expected number of violations are in parentheses. Rejection at level
α = 5% is in bold. The * denotes series for which a higher threshold was
required for appropriate GPD behavior.

Index PM (a) (b) (c) (d) (e) (f) Index PM (a) (b) (c) (d) (e) (f)

AEX* NV 22 18 18 19 19 18 IBX NV 26 20 20 21 21 22
(18) UC 0.36 1 1 0.81 0.81 1 (18) UC 0.08 0.64 0.64 0.49 0.49 0.36

IN 0.46 0.55 0.55 0.53 0.53 0.55 IN 0.38 0.22 0.22 0.25 0.25 0.27
CC 0.50 0.83 0.83 0.79 0.79 0.83 CC 0.14 0.42 0.42 0.40 0.40 0.36
DQ 0.65 0.72 0.72 0.75 0.75 0.72 DQ 0.003 0.20 0.25 0.002 0.002 0.12

AOI NV 16 13 16 14 15 17 IPC* NV 13 9 9 9 9 9
(17) UC 0.81 0.31 0.81 0.45 0.62 1 (17) UC 0.31 0.03 0.03 0.03 0.03 0.03

IN 0.59 0.66 0.59 0.63 0.61 0.56 IN 0.66 0.76 0.76 0.76 0.76 0.76
CC 0.83 0.54 0.83 0.67 0.77 0.83 CC 0.54 0.10 0.10 0.10 0.10 0.10
DQ 1 0.34 0.00 0.44 0.48 0.67 DQ 0.27 0.04 0.74 0.74 0.74 0.04

BVP NV 13 14 14 13 14 14 KCI NV 13 20 20 19 20 19
(17) UC 0.31 0.45 0.45 0.31 0.45 0.45 (17) UC 0.31 0.48 0.48 0.63 0.48 0.63

IN 0.65 0.63 0.63 0.65 0.63 0.63 IN 0.65 0.23 0.23 0.21 0.23 0.21
CC 0.53 0.66 0.66 0.53 0.66 0.66 CC 0.53 0.38 0.38 0.40 0.38 0.40
DQ 0.25 0.26 0.26 0.17 0.27 0.27 DQ 0.98 0.36 0.34 0.16 0.27 0.32

CAC NV 29 27 28 26 26 27 NSQ NV 20 21 21 21 21 23
(18) UC 0.02 0.05 0.03 0.08 0.08 0.05 (17) UC 0.48 0.35 0.35 0.35 0.35 0.17

IN 0.33 0.37 0.35 0.38 0.38 0.37 IN 0.50 0.47 0.47 0.47 0.47 0.43
CC 0.04 0.09 0.06 0.14 0.14 0.09 CC 0.61 0.49 0.49 0.49 0.49 0.27
DQ 0.02 0.11 0.09 0.14 0.07 0.11 DQ 0.0009 0.16 0.16 0.26 0.41 0.23

DAX* NV 19 21 21 20 21 26 NK NV 15 16 16 15 16 16
(18) UC 0.81 0.49 0.49 0.64 0.49 0.08 (16) UC 0.80 1 1 0.80 1 1

IN 0.52 0.48 0.48 0.50 0.48 0.38 IN 0.13 0.15 0.15 0.13 0.15 0.15
CC 0.79 0.61 0.61 0.71 0.61 0.14 CC 0.30 0.35 0.35 0.30 0.35 0.35
DQ 0.16 0.10 0.11 0.30 0.31 0.01 DQ 0.50 0.01 0.01 0.01 0.02 0.01

DJ* NV 21 21 21 20 21 21 RUS NV 23 22 25 21 22 26
(17) UC 0.35 0.35 0.35 0.48 0.35 0.35 (17) UC 0.17 0.24 0.07 0.35 0.24 0.05

IN 0.47 0.47 0.47 0.50 0.47 0.25 IN 0.43 0.45 0.39 0.47 0.45 0.37
CC 0.49 0.49 0.49 0.61 0.49 0.33 CC 0.28 0.38 0.13 0.49 0.38 0.08
DQ 0.52 0.02 0.02 0.95 0.69 0.43 DQ 0.01 0.66 0.001 0.57 0.66 0.01

ESX NV 31 16 16 18 16 24 SPX* NV 27 25 27 24 23 26
(18) UC 0.01 0.63 0.63 1.00 0.63 0.18 (17) UC 0.02 0.07 0.02 0.11 0.17 0.04

IN 0.30 0.59 0.59 0.55 0.59 0.42 IN 0.36 0.40 0.37 0.41 0.43 0.37
CC 0.01 0.76 0.76 0.82 0.76 0.29 CC 0.05 0.13 0.05 0.19 0.28 0.08
DQ 0.001 0.17 0.17 0.21 0.12 0.01 DQ 0.11 0.40 0.00 0.22 0.36 0.31

MIB NV 31 23 24 26 25 29 SMI NV 17 18 18 18 18 22
(18) UC 0.01 0.26 0.18 0.08 0.12 0.02 (17) UC 1 0.81 0.81 0.81 0.81 0.24

IN 0.29 0.44 0.42 0.38 0.40 0.33 IN 0.56 0.18 0.18 0.54 0.54 0.28
CC 0.01 0.38 0.28 0.14 0.20 0.04 CC 0.84 0.39 0.39 0.80 0.80 0.28
DQ 0.003 0.02 0.01 0.04 0.22 0.01 DQ 0.68 0.14 0.14 0.18 0.18 0.12

FT NV 20 15 16 15 15 15
(18) UC 0.64 0.46 0.63 0.46 0.46 0.46

IN 0.50 0.61 0.59 0.61 0.61 0.61
CC 0.71 0.67 0.76 0.67 0.67 0.67
DQ 0.71 0.98 0.97 0.98 0.98 0.97
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Table 13: Performance of one-day-ahead ES forecast with type-II link
function. P-values from the one-sided upper-tail bootstrap test for the null
of mean zero difference between actual returns and ES when VaR is ex-
ceeded. Rejection at level α = 5% is in bold. The * denotes series for which
a higher threshold was required for appropriate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-Sjaug LHAR

AEX* 0.024 0.104 0.114 0.098 0.065 0.051
AOI 0.919 0.517 0.603 0.642 0.407 0.458
BVP 0.387 0.880 0.839 0.963 0.997 0.576
CAC 0.102 0.572 0.485 0.395 0.059 0.193
DAX* 0.261 0.543 0.558 0.636 0.644 0.717

DJ* 0.996 1.000 1.000 0.969 0.988 0.988
ESX 0.720 0.464 0.484 0.521 0.233 0.503
MIB 0.810 0.649 0.738 0.850 0.791 0.894
FT 0.435 0.560 0.673 0.720 0.633 0.365
IBX 0.354 0.427 0.419 0.252 0.151 0.318
IPC* 0.822 0.556 0.550 0.464 0.460 0.181
KCI 0.071 0.324 0.183 0.252 0.084 0.132
NSQ 0.481 0.790 0.829 0.814 0.826 0.718
NK 0.020 0.027 0.027 0.009 0.006 0.007
RUS 0.959 0.165 0.125 0.514 0.216 0.180
SPX* 0.999 0.988 0.974 0.983 0.945 0.887
SMI 0.199 0.781 0.754 0.719 0.784 0.823
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Table 14: Performance of one-day-ahead ES forecast with type-III link
function. P-values from the one-sided upper-tail bootstrap test for the null
of mean zero difference between actual returns and ES when VaR is ex-
ceeded. Rejection at level α = 5% is in bold. The * denotes series for which
a higher threshold was required for appropriate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-Sjaug LHAR

AEX* 0.013 0.090 0.105 0.090 0.062 0.051
AOI 0.948 0.504 0.611 0.654 0.403 0.478
BVP 0.408 0.872 0.812 0.965 0.991 0.534
CAC 0.130 0.589 0.467 0.422 0.055 0.161
DAX* 0.241 0.565 0.537 0.595 0.658 0.731

DJ* 0.997 0.999 1.000 0.973 0.995 0.987
ESX 0.703 0.460 0.453 0.512 0.256 0.498
MIB 0.810 0.680 0.762 0.875 0.748 0.886
FT 0.409 0.512 0.690 0.676 0.634 0.358
IBX 0.326 0.431 0.368 0.246 0.161 0.347
IPC* 0.828 0.552 0.522 0.468 0.487 0.183
KCI 0.065 0.293 0.156 0.246 0.080 0.130
NSQ 0.458 0.804 0.813 0.794 0.839 0.730
NK 0.025 0.020 0.021 0.010 0.006 0.009
RUS 0.964 0.175 0.252 0.192 0.208 0.167
SPX* 0.999 0.982 0.979 0.992 0.959 0.887
SMI 0.211 0.754 0.741 0.759 0.778 0.810
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Table 15: Performance measures for the ten-day-ahead VaR forecast with
type-II link function. Actual and expected number of violations of the VaR.
In bold, the cases in which the null hypothesis of correct unconditional cov-
erage is rejected at 10%. In italics, the best performer. The * denotes series
for which a higher threshold was required for appropriate GPD behavior.

Index Expected GARCH HAR HAR-J HAR-SJ HAR-SJaug LHAR

AEX 18 34 (0.08) 17 (0.89) 16 (0.79) 19 (0.89) 21 (0.69) 18 (0.99)
AOI* 17 25 (0.43) 24 (0.45) 24 (0.45) 24 (0.45) 27 (0.28) 23 (0.43)
BVP 17 12 (0.49) 24 (0.45) 24 (0.45) 22 (0.57) 22 (0.57) 22 (0.56)

CAC* 18 29 (0.23) 25 (0.45) 25 (0.45) 26 (0.41) 26 (0.41) 27 (0.36)
DAX 18 27 (0.33) 22 (0.66) 21 (0.74) 21 (0.74) 22 (0.66) 21 (0.73)

DJ 17 12 (0.51) 17 (0.96) 18 (0.93) 17 (0.96) 17 (0.96) 16 (0.86)
ESX 18 32 (0.17) 20 (0.82) 20 (0.82) 20 (0.82) 21 (0.73) 20 (0.81)
MIB 18 50 (0.02) 25 (0.36) 25 (0.36) 25 (0.36) 25 (0.36) 25 (0.33)
FT 18 33 (0.14) 18 (0.95) 18 (0.95) 16 (0.82) 17 (0.93) 23 (0.48)
IBX 18 39 (0.07) 29 (0.23) 29 (0.23) 31 (0.15) 32 (0.12) 32 (0.11)
IPC 17 14 (0.68) 15 (0.77) 17 (0.96) 16 (0.86) 14 (0.66) 15 (0.75)
KCI 17 11 (0.45) 25 (0.45) 25 (0.45) 25 (0.45) 24 (0.53) 27 (0.34)
NSQ 17 20 (0.73) 22 (0.59) 22 (0.59) 20 (0.76) 19 (0.84) 20 (0.75)
NK 16 24 (0.57) 27 (0.42) 27 (0.42) 27 (0.39) 28 (0.30) 23 (0.45)
RUS 17 18 (0.94) 22 (0.68) 22 (0.68) 21 (0.72) 21 (0.72) 19 (0.87)
SPX 17 10 (0.38) 18 (0.94) 18 (0.94) 17 (0.97) 17 (0.97) 20 (0.73)
SMI* 17 24 (0.41) 12 (0.42) 11 (0.34) 11 (0.29) 11 (0.34) 10 (0.28)
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Table 16: Performance measures for the ten-day-ahead VaR forecast with
type-III link function. Actual and expected number of violations of the
VaR. In bold, the cases in which the null hypothesis of correct unconditional
coverage is rejected at 10%. In italics, the best performer. The * denotes series
for which a higher threshold was required for appropriate GPD behavior.

Index Expected GARCH HAR HAR-J HAR-SJ HAR-SJaug LHAR

AEX 18 34 (0.08) 17 (0.89) 16 (0.79) 19 (0.89) 21 (0.69) 18 (0.98)
AOI* 17 25 (0.43) 24 (0.46) 24 (0.46) 24 (0.46) 26 (0.32) 23 (0.43)
BVP 17 12 (0.49) 24 (0.45) 24 (0.45) 22 (0.57) 21 (0.65) 22 (0.57)

CAC* 18 29 (0.23) 25 (0.45) 25 (0.45) 26 (0.41) 26 (0.41) 27 (0.36)
DAX 18 27 (0.33) 22 (0.66) 21 (0.74) 21 (0.74) 22 (0.66) 21 (0.74)

DJ 17 12 (0.51) 17 (0.96) 17 (0.96) 17 (0.96) 17 (0.96) 16 (0.86)
ESX 18 32 (0.12) 20 (0.82) 20 (0.82) 20 (0.82) 21 (0.73) 20 (0.81)
MIB 18 50 (0.02) 25 (0.36) 25 (0.36) 25 (0.36) 25 (0.36) 25 (0.33)
FT 18 33 (0.14) 18 (0.95) 17 (0.93) 16 (0.82) 17 (0.93) 23 (0.47)
IBX 18 39 (0.07) 29 (0.23) 29 (0.23) 30 (0.18) 32 (0.13) 32 (0.11)
IPC 17 14 (0.68) 15 (0.77) 17 (0.96) 16 (0.86) 14 (0.66) 15 (0.75)
KCI 17 11 (0.45) 25 (0.45) 25 (0.45) 26 (0.37) 24 (0.53) 27 (0.34)
NSQ 17 20 (0.73) 22 (0.59) 22 (0.59) 20 (0.76) 19 (0.84) 20 (0.75)
NK 16 24 (0.57) 27 (0.42) 27 (0.42) 27 (0.36) 28 (0.30) 26 (0.45)
RUS 17 18 (0.94) 22 (0.68) 22 (0.68) 21 (0.73) 21 (0.73) 19 (0.88)
SPX 17 10 (0.38) 18 (0.94) 18 (0.94) 17 (0.97) 17 (0.97) 20 (0.74)
SMI* 17 24 (0.41) 12 (0.42) 11 (0.33) 11 (0.28) 11 (0.33) 10 (0.29)
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Table 17: Performance of ten-day-ahead ES forecast with type-II link
function. P-values from the one-sided upper-tail block-bootstrap test for
the null of mean zero difference between actual returns and ES when VaR
is exceeded. Rejection at level α = 5% is in bold. The * denotes series for
which a higher threshold was required for appropriate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 0.114 0.099 0.051 0.121 0.397 0.268
AOI* 0.946 0.176 0.165 0.286 0.597 0.222
BVP 0.673 0.053 0.045 0.021 0.022 0.007
CAC 0.283 0.344 0.308 0.362 0.283 0.585
DAX 0.045 0.110 0.074 0.070 0.103 0.124

DJ 0.345 0.213 0.215 0.215 0.137 0.092
ESX 0.153 0.069 0.072 0.069 0.059 0.052
MIB 0.288 0.694 0.708 0.742 0.743 0.868
FT 0.119 0.439 0.495 0.290 0.360 0.644
IBX 0.738 0.003 0.006 0.046 0.051 0.037
IPC 0.220 0.882 0.882 0.816 0.713 0.828

KCI* 0.027 0.213 0.207 0.293 0.170 0.347
NSQ 0.062 0.043 0.055 0.044 0.032 0.018
NK 0.007 0.029 0.020 0.024 0.030 0.015
RUS 0.089 0.014 0.031 0.035 0.044 0.009
SPX 0.282 0.057 0.071 0.031 0.042 0.085
SMI 0.479 0.389 0.359 0.255 0.339 0.325
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Table 18: Performance of ten-day-ahead ES forecast with type-III link
function. P-values from the one-sided upper-tail block-bootstrap test for
the null of mean zero difference between actual returns and ES when VaR
is exceeded. Rejection at level α = 5% is in bold. The * denotes series for
which a higher threshold was required for appropriate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 0.114 0.095 0.057 0.120 0.357 0.283
AOI* 0.946 0.190 0.171 0.284 0.521 0.199
BVP 0.673 0.050 0.065 0.030 0.011 0.011
CAC 0.283 0.381 0.307 0.341 0.289 0.598
DAX 0.045 0.109 0.065 0.071 0.116 0.118

DJ 0.345 0.246 0.189 0.216 0.145 0.080
ESX 0.153 0.073 0.072 0.061 0.038 0.048
MIB 0.288 0.740 0.694 0.761 0.735 0.863
FT 0.119 0.423 0.375 0.271 0.344 0.639
IBX 0.738 0.005 0.005 0.027 0.047 0.042
IPC 0.220 0.893 0.847 0.798 0.736 0.840

KCI* 0.027 0.245 0.234 0.324 0.184 0.311
NSQ 0.062 0.032 0.045 0.034 0.032 0.010
NK 0.007 0.027 0.033 0.031 0.032 0.016
RUS 0.089 0.023 0.017 0.030 0.034 0.013
SPX 0.282 0.065 0.052 0.037 0.027 0.116
SMI 0.479 0.419 0.372 0.243 0.356 0.315
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B.4 An investigation during a period of turmoil

As in the full sample analysis, we focus on the filtering and forecasting
components separately to understand the merits of the C-EVT and RV-
EVT with regard to both aspects.

B.4.1 Filtering component

Figures 37-39 report the estimates of the extremal index θ̂ obtained on
the restricted sample (beginning of 2007 to end of 2011) with the three
different link functions. The degree of extremal dependence left in the
residuals of the different models is generally quite low. Results seem
unaffected by the choice of the link function and the GARCH model ap-
pears to be a better filter.

Figure 37: Extremal index estimates for the type-I link function. Values
of θ̂ estimated on the standardized residuals obtained from the different
windows of length S = 500. Data from beginning of 2007 to end of 2011.
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Figure 38: Extremal index estimates for the type-II link function. Values
of θ̂ estimated on the standardized residuals obtained from the different
windows of length S = 500. Data from beginning of 2007 to end of 2011.

Figure 39: Extremal index estimates for the type-III link function. Values
of θ̂ estimated on the standardized residuals obtained from the different
windows of length S = 500. Data from beginning of 2007 to end of 2011.
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B.4.2 Forecasting component

Conclusions based on the one-day-ahead VaR (Tables 19-21) and ES fore-
casts (Tables 22-24) obtained during the period of turmoil are the same
as those from the full sample analysis: the C-EVT and RV-EVT present
similar performances. Focussing on the ten-day-ahead prediction, the
evidence from the restricted sample is less clear but still seems to suggest
a benefit from the use of the RV-EVT. In terms of VaR violations (Tables
25-27), the GJR-GARCH(1,1) is the worst performer on half of the cases,
and its poorer accuracy is emphasized in the estimates of the ES (Tables
28-30).
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Table 19: Performance measures for the one-day-ahead VaR forecast dur-
ing a period of turmoil with type-I link function. For each model (GARCH
(a), HAR (b), HAR-J (c), HAR-SJ (d), HAR-SJaug (e), LHAR (f)), we report: the
actual number of violations (NV); the p-values for the unconditional cov-
erage (UC), the independence assumption (IN), the conditional coverage
(CC), and the DQ test (DQ). Expected number of violations are in parenthe-
ses. Rejection at level α = 5% is in bold. The * denotes series for which a
higher threshold was required for appropriate GPD behavior.

Index PM (a) (b) (c) (d) (e) (f) Index PM (a) (b) (c) (d) (e) (f)

AEX NV 28 22 22 22 20 19 IBX NV 29 28 28 29 30 25
(26) UC 0.69 0.41 0.41 0.41 0.21 0.14 (26) UC 0.55 0.69 0.69 0.55 0.43 0.84

IN 0.07 0.93 0.93 0.93 0.79 0.23 IN 0.76 0.69 0.69 0.76 0.84 0.49
CC 0.18 0.68 0.68 0.68 0.42 0.16 CC 0.76 0.81 0.81 0.77 0.98 0.73
DQ 0.64 0.51 0.52 0.52 0.37 0.74 DQ 0.39 0.60 0.60 0.70 0.32 0.92

AOI NV 17 21 20 21 21 19 IPC NV 22 18 18 17 17 17
(25) UC 0.08 0.40 0.29 0.40 0.40 0.20 (25) UC 0.53 0.13 0.13 0.08 0.08 0.09

IN 0.27 0.19 0.21 0.19 0.19 0.23 IN 0.97 0.25 0.25 0.27 0.27 0.27
CC 0.12 0.28 0.25 0.28 0.28 0.21 CC 0.78 0.16 0.16 0.12 0.12 0.12
DQ 0.42 0.57 0.61 0.57 0.56 0.40 DQ 0.68 0.46 0.45 0.59 0.59 0.61

BVP NV 19 18 20 19 19 18 KCI NV 18 22 22 23 22 18
(24) UC 0.28 0.19 0.39 0.28 0.28 0.19 (25) UC 0.13 0.53 0.53 0.68 0.53 0.13

IN 0.77 0.70 0.85 0.77 0.77 0.70 IN 0.67 0.33 0.33 0.10 0.35 0.68
CC 0.51 0.38 0.65 0.51 0.51 0.38 CC 0.28 0.49 0.49 0.23 0.49 0.28
DQ 0.12 0.45 0.76 0.85 0.85 0.87 DQ 0.47 0.22 0.22 0.03 0.30 0.31

CAC NV 24 24 24 24 24 23 NSQ NV 20 22 23 22 22 20
(26) UC 0.68 0.68 0.68 0.68 0.68 0.54 (25) UC 0.28 0.53 0.68 0.53 0.53 0.29

IN 0.13 0.92 0.92 0.92 0.92 0.15 IN 0.20 0.97 0.96 0.15 0.16 0.20
CC 0.28 0.87 0.87 0.87 0.87 0.27 CC 0.24 0.78 0.87 0.29 0.29 0.24
DQ 0.28 0.28 0.29 0.31 0.30 0.22 DQ 0.67 0.29 0.44 0.31 0.32 0.55

DAX NV 26 27 28 27 25 25 NK NV 22 14 15 16 16 10
(26) UC 1 0.84 0.69 0.84 0.84 0.84 (23) UC 0.83 0.04 0.07 0.11 0.11 0.01

IN 0.09 0.69 0.66 0.72 0.12 0.83 IN 0.14 0.35 0.33 0.30 0.30 0.50
CC 0.23 0.86 0.79 0.87 0.27 0.91 CC 0.30 0.07 0.12 0.16 0.16 0.01
DQ 0.79 0.70 0.36 0.42 0.50 0.85 DQ 0.35 0.55 0.53 0.64 0.63 0.21

DJ NV 24 25 25 24 26 20 RUS NV 21 22 21 23 21 18
(25) UC 0.84 1 1 0.84 0.83 0.29 (25) UC 0.39 0.53 0.39 0.68 0.40 0.13

IN 0.13 0.51 0.51 0.45 0.58 0.82 IN 0.17 0.15 0.17 0.14 0.17 0.24
CC 0.01 0.77 0.77 0.70 0.79 0.53 CC 0.27 0.28 0.27 0.29 0.27 0.16
DQ 0.61 0.40 0.41 0.71 0.90 0.81 DQ 0.72 0.78 0.86 0.85 0.67 0.54

ESX NV 29 23 22 21 22 23 SPX NV 21 20 21 22 22 20
(25) UC 0.42 0.68 0.53 0.40 0.53 0.68 (25) UC 0.40 0.28 0.40 0.53 0.53 0.29

IN 0.54 0.14 0.16 0.18 0.16 0.14 IN 0.17 0.82 0.90 0.97 0.97 0.82
CC 0.57 0.30 0.30 0.28 0.30 0.29 CC 0.27 0.53 0.67 0.78 0.78 0.53
DQ 0.07 0.32 0.26 0.52 0.59 0.36 DQ 0.73 0.89 0.89 0.93 0.92 0.87

MIB NV 30 30 30 29 29 25 SMI NV 26 29 29 30 29 27
(25) UC 0.32 0.32 0.32 0.42 0.12 1.00 (25) UC 0.83 0.42 0.42 0.32 0.42 0.69

IN 0.05 0.05 0.05 0.06 0.06 0.11 IN 0.10 0.76 0.58 0.52 0.57 0.71
CC 0.09 0.09 0.09 0.12 0.12 0.26 CC 0.24 0.65 0.59 0.46 0.59 0.81
DQ 0.01 0.01 0.01 0.11 0.01 0.05 DQ 0.10 0.01 0.01 0.01 0.01 0.01

FT NV 25 27 26 25 26 23
(25) UC 1 0.68 0.84 1 0.84 0.68

IN 0.85 0.71 0.78 0.85 0.79 0.99
CC 0.93 0.81 0.89 0.93 0.89 0.87
DQ 0.38 0.11 0.58 0.67 0.13 0.34
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Table 20: Performance measures for the one-day-ahead VaR forecast
during a period of turmoil with type-II link function. For each model
(GARCH (a), HAR (b), HAR-J (c), HAR-SJ (d), HAR-SJaug (e), LHAR (f)), we
report: the actual number of violations (NV); the p-values for the uncon-
ditional coverage (UC), the independence assumption (IN), the conditional
coverage (CC), and the DQ test (DQ). Expected number of violations are in
parentheses. Rejection at level α = 5% is in bold. The * denotes series for
which a higher threshold was required for appropriate GPD behavior.

Index PM (a) (b) ( c) (d) (e) (f) Index PM (a) (b) ( c) (d) (e) (f)

AEX NV 28 20 20 18 18 21 IBX* NV 29 29 29 29 30 31
(26) UC 0.69 0.21 0.21 0.09 0.09 0.30 (26) UC 0.55 0.55 0.55 0.55 0.43 0.33

IN 0.08 0.21 0.21 0.26 0.26 0.19 IN 0.77 0.77 0.77 0.77 0.84 0.92
CC 0.18 0.20 0.20 0.12 0.12 0.23 CC 0.76 0.76 0.76 0.76 0.68 0.58
DQ 0.64 0.57 0.57 0.68 0.67 0.72 DQ 0.39 0.15 0.15 0.72 0.33 0.29

AOI NV 17 21 21 21 21 20 IPC NV 22 18 18 17 17 19
(25) UC 0.08 0.40 0.40 0.40 0.40 0.29 (25) UC 0.53 0.13 0.13 0.08 0.08 0.20

IN 0.27 0.19 0.19 0.19 0.19 0.21 IN 0.97 0.25 0.25 0.27 0.27 0.22
CC 0.12 0.28 0.28 0.28 0.28 0.25 CC 0.78 0.16 0.16 0.12 0.12 0.20
DQ 0.42 0.57 0.57 0.57 0.56 0.49 DQ 0.68 0.49 0.48 0.59 0.59 0.37

BVP NV 19 19 19 19 19 19 KCI* NV 18 21 21 23 22 21
(24) UC 0.28 0.28 0.28 0.28 0.28 0.28 (25) UC 0.13 0.40 0.40 0.68 0.53 0.40

IN 0.77 0.77 0.77 0.77 0.77 0.77 IN 0.68 0.28 0.28 0.10 0.33 0.28
CC 0.51 0.51 0.51 0.51 0.51 0.51 CC 0.28 0.38 0.38 0.23 0.49 0.38
DQ 0.12 0.68 0.68 0.85 0.86 0.68 DQ 0.47 0.18 0.17 0.03 0.30 0.22

CAC* NV 24 24 23 22 23 22 NSQ NV 20 21 22 22 22 23
(26) UC 0.68 0.68 0.54 0.41 0.54 0.41 (25) UC 0.29 0.40 0.53 0.53 0.53 0.68

IN 0.13 0.92 0.99 0.94 0.99 0.94 IN 0.20 0.89 0.97 0.16 0.16 0.95
CC 0.28 0.87 0.79 0.68 0.79 0.68 CC 0.24 0.67 0.78 0.29 0.29 0.87
DQ 0.28 0.27 0.25 0.28 0.35 0.26 DQ 0.67 0.20 0.33 0.27 0.27 0.37

DAX NV 26 27 27 26 25 29 NK NV 22 14 14 15 15 14
(26) UC 1 0.84 0.84 1 0.84 0.55 (23) UC 0.83 0.04 0.04 0.07 0.07 0.04

IN 0.09 0.69 0.69 0.79 0.12 0.56 IN 0.14 0.35 0.35 0.31 0.31 0.35
CC 0.23 0.86 0.86 0.92 0.27 0.67 CC 0.31 0.07 0.07 0.11 0.11 0.07
DQ 0.80 0.68 0.68 0.46 0.48 0.89 DQ 0.35 0.55 0.56 0.66 0.66 0.56

DJ NV 24 25 26 25 26 26 RUS NV 21 22 22 23 21 25
(25) UC 0.84 1 0.84 1 0.84 0.84 (25) UC 0.40 0.53 0.53 0.68 0.40 1

IN 0.13 0.81 0.58 0.51 0.58 0.74 IN 0.17 0.15 0.15 0.14 0.17 0.10
CC 0.01 0.92 0.80 0.77 0.88 0.80 CC 0.27 0.28 0.28 0.29 0.27 0.25
DQ 0.61 0.94 0.80 0.84 0.90 0.98 DQ 0.72 0.78 0.78 0.85 0.67 0.19

ESX NV 29 23 23 23 23 24 SPX NV 21 20 21 22 22 21
(25) UC 0.42 0.68 0.68 0.68 0.68 0.84 (25) UC 0.40 0.29 0.40 0.53 0.53 0.40

IN 0.55 0.14 0.14 0.14 0.14 0.12 IN 0.17 0.82 0.90 0.97 0.97 0.90
CC 0.57 0.30 0.30 0.30 0.30 0.28 CC 0.27 0.53 0.67 0.78 0.78 0.67
DQ 0.08 0.32 0.32 0.32 0.31 0.20 DQ 0.73 0.89 0.88 0.92 0.92 0.93

MIB NV 30 30 30 29 30 32 SMI NV 26 28 28 26 27 28
(25) UC 0.32 0.32 0.32 0.42 0.32 0.17 (25) UC 0.84 0.55 0.55 0.84 0.69 0.55

IN 0.05 0.05 0.05 0.06 0.05 0.40 IN 0.10 0.64 0.64 0.77 0.71 0.64
CC 0.09 0.09 0.09 0.12 0.09 0.25 CC 0.24 0.71 0.71 0.89 0.81 0.71
DQ 0.02 0.01 0.01 0.01 0.01 0.01 DQ 0.10 0.01 0.01 0.20 0.04 0.01

FT NV 25 26 25 25 25 28
(25) UC 1 0.84 1 1 1 0.54

IN 0.85 0.78 0.85 0.85 0.85 0.68
CC 0.93 0.89 0.93 0.93 0.93 0.72
DQ 0.38 0.11 0.62 0.11 0.11 0.13
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Table 21: Performance measures for the one-day-ahead VaR forecast dur-
ing a period of turmoil with type-III link function. For each model
(GARCH (a), HAR (b), HAR-J (c), HAR-SJ (d), HAR-SJaug (e), LHAR (f)), we
report: the actual number of violations (NV); the p-values for the uncon-
ditional coverage (UC), the independence assumption (IN), the conditional
coverage (CC), and the DQ test (DQ). Expected number of violations are in
parentheses. Rejection at level α = 5% is in bold. The * denotes series for
which a higher threshold was required for appropriate GPD behavior.

Index PM (a) (b) ( c) (d) (e) (f) Index PM (a) (b) ( c) (d) (e) (f)

AEX NV 28 20 20 18 18 21 IBX* NV 29 29 29 29 30 31
(26) UC 0.69 0.21 0.21 0.09 0.09 0.30 (26) UC 0.55 0.55 0.55 0.55 0.43 0.33

IN 0.08 0.21 0.21 0.26 0.26 0.18 IN 0.77 0.77 0.77 0.77 0.84 0.91
CC 0.18 0.20 0.20 0.12 0.12 0.23 CC 0.76 0.76 0.76 0.76 0.68 0.58
DQ 0.64 0.57 0.57 0.68 0.67 0.73 DQ 0.39 0.15 0.15 0.72 0.33 0.28

AOI NV 17 21 21 21 21 20 IPC NV 22 18 18 17 17 19
(25) UC 0.08 0.40 0.40 0.40 0.40 0.29 (25) UC 0.53 0.13 0.13 0.08 0.08 0.20

IN 0.27 0.19 0.19 0.19 0.19 0.21 IN 0.97 0.25 0.25 0.27 0.27 0.22
CC 0.12 0.28 0.28 0.28 0.28 0.25 CC 0.78 0.16 0.16 0.12 0.12 0.20
DQ 0.42 0.57 0.57 0.57 0.56 0.49 DQ 0.68 0.49 0.48 0.59 0.59 0.37

BVP NV 19 19 19 19 19 19 KCI* NV 18 21 21 23 22 21
(24) UC 0.28 0.28 0.28 0.28 0.28 0.28 (25) UC 0.13 0.40 0.40 0.68 0.53 0.40

IN 0.77 0.77 0.77 0.77 0.77 0.77 IN 0.68 0.28 0.28 0.10 0.33 0.28
CC 0.51 0.51 0.51 0.51 0.51 0.51 CC 0.28 0.38 0.38 0.23 0.49 0.37
DQ 0.12 0.68 0.68 0.85 0.86 0.68 DQ 0.47 0.18 0.17 0.03 0.30 0.21

CAC* NV 24 24 23 22 23 22 NSQ NV 20 21 22 22 22 23
(26) UC 0.68 0.68 0.54 0.41 0.54 0.41 (25) UC 0.29 0.40 0.53 0.53 0.53 0.68

IN 0.13 0.92 0.99 0.94 0.99 0.94 IN 0.20 0.89 0.97 0.16 0.16 0.95
CC 0.28 0.87 0.79 0.68 0.79 0.68 CC 0.24 0.67 0.78 0.29 0.29 0.87
DQ 0.28 0.27 0.25 0.28 0.35 0.26 DQ 0.67 0.20 0.33 0.27 0.27 0.37

DAX NV 26 27 27 26 25 29 NK NV 22 14 14 15 15 14
(26) UC 1 0.84 0.84 1.00 0.84 0.55 (23) UC 0.83 0.04 0.04 0.07 0.07 0.04

IN 0.09 0.69 0.69 0.79 0.86 0.56 IN 0.14 0.35 0.35 0.31 0.31 0.35
CC 0.23 0.86 0.86 0.92 0.92 0.67 CC 0.31 0.07 0.07 0.11 0.11 0.07
DQ 0.80 0.68 0.68 0.47 0.76 0.89 DQ 0.35 0.55 0.56 0.66 0.66 0.56

DJ NV 24 25 26 25 26 26 RUS NV 21 22 22 23 21 25
(25) UC 0.84 1 0.84 1 0.84 0.84 (25) UC 0.40 0.53 0.53 0.68 0.40 1

IN 0.13 0.81 0.58 0.51 0.58 0.74 IN 0.17 0.15 0.15 0.14 0.17 0.10
CC 0.01 0.92 0.80 0.77 0.88 0.80 CC 0.27 0.28 0.28 0.29 0.27 0.25
DQ 0.61 0.94 0.80 0.84 0.90 0.98 DQ 0.72 0.78 0.78 0.85 0.67 0.19

ESX NV 29 23 23 23 23 24 SPX NV 21 20 21 22 22 21
(25) UC 0.42 0.68 0.68 0.68 0.68 0.84 (25) UC 0.40 0.29 0.40 0.53 0.53 0.40

IN 0.55 0.14 0.14 0.14 0.14 0.12 IN 0.17 0.82 0.90 0.97 0.97 0.89
CC 0.57 0.30 0.30 0.30 0.30 0.28 CC 0.27 0.53 0.67 0.78 0.78 0.66
DQ 0.08 0.32 0.32 0.32 0.31 0.20 DQ 0.73 0.89 0.88 0.92 0.92 0.93

MIB NV 30 30 30 29 30 32 SMI NV 26 28 28 26 27 28
(25) UC 0.32 0.32 0.32 0.42 0.32 0.17 (25) UC 0.84 0.55 0.55 0.84 0.69 0.55

IN 0.05 0.05 0.05 0.06 0.05 0.41 IN 0.10 0.64 0.64 0.77 0.71 0.64
CC 0.09 0.09 0.09 0.12 0.09 0.25 CC 0.24 0.71 0.71 0.89 0.81 0.71
DQ 0.02 0.01 0.01 0.01 0.01 0.01 DQ 0.10 0.01 0.01 0.20 0.04 0.01

FT NV 25 26 25 25 25 28
(25) UC 1 0.84 1 1 1 0.55

IN 0.85 0.78 0.85 0.85 0.85 0.68
CC 0.93 0.89 0.93 0.93 0.93 0.72
DQ 0.38 0.11 0.62 0.11 0.11 0.13
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Table 22: Performance of one-day-ahead ES forecast during a period of
turmoil with type-I link function. P-values from the one-sided upper-tail
bootstrap test for the null of mean zero difference between actual returns
and ES when VaR is exceeded. Rejection at level α = 5% is in bold. The
* denotes series for which a higher threshold was required for appropriate
GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJaug LHAR

AEX 0.748 0.721 0.815 0.772 0.625 0.565
AOI 0.214 0.734 0.537 0.695 0.832 0.812
BVP 0.385 0.394 0.639 0.576 0.545 0.868
CAC 0.013 0.063 0.069 0.151 0.23 0.442
DAX 0.633 0.546 0.703 0.681 0.644 0.919

DJ 0.154 0.586 0.716 0.947 0.998 0.758
ESX 0.760 0.939 0.87 0.801 0.93 0.975
MIB 0.234 0.400 0.381 0.220 0.326 0.505
FT 0.186 0.253 0.180 0.330 0.371 0.432
IBX 0.126 0.428 0.421 0.590 0.559 0.283
IPC 0.048 0.632 0.565 0.315 0.267 0.651
KCI 0.001 0.096 0.081 0.048 0.068 0.02
NSQ 0.409 0.998 0.999 0.999 0.994 0.994
NK 0.852 0.524 0.765 0.85 0.839 0.181
RUS 0.348 0.933 0.905 0.924 0.924 0.736
SPX 0.075 0.158 0.279 0.695 0.832 0.624
SMI 0.447 0.052 0.085 0.253 0.184 0.142
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Table 23: Performance of one-day-ahead ES forecast during a period of
turmoil with type-II link function. P-values from the one-sided upper-tail
bootstrap test for the null of mean zero difference between actual returns
and ES when VaR is exceeded. Rejection at level α = 5% is in bold. The
* denotes series for which a higher threshold was required for appropriate
GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJaug LHAR

AEX 0.706 0.616 0.724 0.652 0.634 0.511
AOI 0.223 0.650 0.717 0.643 0.797 0.175
BVP 0.372 0.670 0.655 0.565 0.545 0.672

CAC* 0.009 0.109 0.073 0.149 0.244 0.032
DAX 0.642 0.470 0.410 0.434 0.441 0.640

DJ 0.156 0.743 0.843 0.963 0.988 0.885
ESX 0.750 0.932 0.904 0.918 0.944 0.678
MIB 0.272 0.214 0.189 0.134 0.242 0.461
FT 0.223 0.274 0.191 0.313 0.381 0.354

IBX* 0.131 0.452 0.421 0.574 0.560 0.354
IPC 0.067 0.656 0.555 0.293 0.264 0.315

KCI* 0.001 0.081 0.058 0.051 0.081 0.078
NSQ 0.421 0.991 0.992 0.996 0.998 0.993
NK 0.879 0.625 0.614 0.710 0.667 0.580
RUS 0.342 0.874 0.915 0.865 0.910 0.832
SPX 0.072 0.062 0.135 0.563 0.680 0.287
SMI 0.488 0.186 0.201 0.095 0.155 0.390
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Table 24: Performance of one-day-ahead ES forecast during a period of
turmoil with type-III link function. P-values from the one-sided upper-
tail bootstrap test for the null of mean zero difference between actual returns
and ES when VaR is exceeded. Rejection at level α = 5% is in bold. The *
denotes series for which a higher threshold was required for appropriate
GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJaug LHAR

AEX 0.724 0.617 0.724 0.677 0.615 0.519
AOI 0.235 0.644 0.697 0.651 0.793 0.155
BVP 0.352 0.672 0.633 0.565 0.508 0.655

CAC* 0.020 0.115 0.058 0.103 0.274 0.026
DAX 0.654 0.493 0.418 0.412 0.468 0.628

DJ 0.165 0.761 0.838 0.971 0.993 0.896
ESX 0.767 0.928 0.908 0.916 0.944 0.743
MIB 0.257 0.192 0.197 0.160 0.258 0.069
FT 0.199 0.258 0.183 0.294 0.362 0.475

IBX* 0.125 0.458 0.418 0.548 0.539 0.348
IPC 0.050 0.619 0.548 0.298 0.273 0.333

KCI* 0.003 0.076 0.082 0.051 0.063 0.066
NSQ 0.481 0.994 0.996 0.997 0.994 0.989
NK 0.860 0.567 0.643 0.713 0.696 0.580
RUS 0.323 0.881 0.905 0.877 0.905 0.809
SPX 0.075 0.070 0.128 0.587 0.670 0.299
SMI 0.454 0.191 0.186 0.102 0.140 0.230
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Table 25: Performance measures for the ten-day-ahead VaR forecast dur-
ing a period of turmoil with type-I link function. Actual and expected
number of violations of the VaR. Cases in which the null hypothesis of cor-
rect unconditional coverage is rejected at level α = 10% are in bold. In ital-
ics, the best performer. The * indicates series for which a higher threshold
was required for appropriate GPD behavior.

Index Expected GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 25 26 (0.63) 9 (0.03) 9 (0.03) 9 (0.03) 9 (0.03) 12 (0.10)
AOI 25 22 (0.69) 18 (0.57) 18 (0.57) 18 (0.57) 18 (0.57) 17 (0.46)
BVP 24 10 (0.07) 14 (0.31) 14 (0.31) 14 (0.31) 14 (0.31) 13 (0.24)

CAC* 25 33 (0.58) 19 (0.50) 19 (0.50) 19 (0.50) 19 (0.50) 19 (0.54)
DAX 25 32 (0.81) 14 (0.02) 13 (0.01) 14 (0.02) 14 (0.02) 14 (0.27)

DJ 25 12 (0.06) 19 (0.61) 19 (0.61) 19 (0.61) 19 (0.61) 20 (0.64)
ESX 25 21 (0.78) 12 (0.22) 12 (0.22) 12 (0.22) 12 (0.22) 10 (0.14)
MIB 25 39 (0.64) 32 (0.96) 32 (0.96) 32 (0.96) 32 (0.96) 34 (0.48)
FT 25 43 (0.40) 17 (0.47) 17 (0.47) 18 (0.49) 18 (0.49) 17 (0.49)
IBX 25 37 (0.38) 26 (0.93) 26 (0.93) 26 (0.93) 26 (0.93) 25 (0.97)
IPC 25 29 (0.99) 12 (0.02) 12 (0.02) 13 (0.02) 13 (0.02) 13 (0.07)
KCI 24 11 (0.07) 17 (0.41) 18 (0.50) 18 (0.50) 18 (0.50) 18 (0.47)
NSQ 25 23 (0.83) 21 (0.77) 21 (0.77) 21 (0.77) 20 (0.77) 21 (0.71)
NK 23 5 (0.003) 2 (0.001) 2 (0.001) 2 (0.001) 2 (0.001) 2 (0.001)
RUS 25 19 (0.47) 13 (0.14) 13 (0.14) 14 (0.19) 14 (0.19) 13 (0.14)
SPX 25 15 (0.14) 18 (0.52) 18 (0.52) 19 (0.61) 19 (0.61) 19 (0.55)
SMI* 25 27 (0.88) 22 (0.63) 22 (0.63) 21 (0.53) 21 (0.53) 20 (0.64)
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Table 26: Performance measures for the ten-day-ahead VaR forecast dur-
ing a period of turmoil with type-II link function. Actual and expected
number of violations of the VaR. Cases in which the null hypothesis of cor-
rect unconditional coverage is rejected at level α = 10% are in bold. In ital-
ics, the best performer. The * indicates series for which a higher threshold
was required for appropriate GPD behavior.

Index Expected GARCH HAR HAR-J HAR-SJ HAR-SJaug LHAR

AEX 25 26 (0.63) 9 (0.021) 9 (0.02) 9 (0.02) 10 (0.04) 12 (0.10)
AOI 25 22 (0.69) 12 (0.17) 12 (0.17) 12 (0.17) 13 (0.23) 14 (0.25)
BVP* 24 10 (0.06) 9 (0.15) 8 (0.09) 8 (0.09) 8 (0.09) 10 (0.14)
CAC* 25 33 (0.58) 19 (0.54) 19 (0.54) 19 (0.54) 19 (0.54) 19 (0.54)
DAX 25 32 (0.81) 14 (0.02) 13 (0.02) 13 (0.02) 14 (0.03) 14 (0.27)

DJ 25 12 (0.06) 21 (0.73) 21 (0.73) 24 (0.95) 23 (0.88) 22 (0.81)
ESX 25 21 (0.78) 12 (0.21) 12 (0.21) 12 (0.21) 12 (0.21) 10 (0.14)
MIB 25 39 (0.64) 32 (0.59) 32 (0.59) 32 (0.59) 31 (0.63) 34 (0.48)
FT 25 43 (0.40) 17 (0.47) 17 (0.47) 15 (0.40) 17 (0.49) 16 (0.42)
IBX 25 37 (0.38) 26 (0.96) 26 (0.96) 26 (0.96) 26 (0.96) 25 (0.97)
IPC 25 29 (0.99) 12 (0.07) 12 (0.07) 12 (0.07) 13 (0.09) 12 (0.07)
KCI 24 11 (0.07) 17 (0.39) 18 (0.47) 18 (0.47) 18 (0.47) 18 (0.47)
NSQ 25 23 (0.83) 19 (0.61) 19 (0.61) 19 (0.61) 20 (0.66) 20 (0.63)
NK 22 5 (0.003) 2 (0.001) 2 (0.001) 3 (0.001) 2 (0.001) 3 (0.001)
RUS 25 19 (0.47) 14 (0.18) 13 (0.13) 15 (0.24) 15 (0.24) 13 (0.15)
SPX* 25 15 (0.14) 23 (0.87) 22 (0.78) 22 (0.78) 22 (0.78) 22 (0.78)
SMI* 25 27 (0.88) 22 (0.83) 22 (0.83) 22 (0.81) 21 (0.73) 20 (0.65)
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Table 27: Performance measures for the ten-day-ahead VaR forecast dur-
ing a period of turmoil with type-III link function. Actual and expected
number of violations of the VaR. Cases in which the null hypothesis of cor-
rect unconditional coverage is rejected at level α = 10% are in bold. In ital-
ics, the best performer. The * indicates series for which a higher threshold
was required for appropriate GPD behavior.

Index Expected GARCH HAR HAR-J HAR-SJ HAR-SJaug LHAR

AEX 26 31 (0.63) 9 (0.02) 9 (0.02) 9 (0.02) 10 (0.04) 11 (0.09)
AOI 25 22 (0.69) 13(0.21) 13 (0.21) 12 (0.17) 13 (0.23) 14 (0.25)
BVP* 24 10 (0.06) 8 (0.16) 8 (0.09) 8 (0.09) 8 (0.09) 10 (0.14)
CAC* 25 33 (0.58) 19 (0.54) 19 (0.54) 19 (0.54) 19 (0.54) 19 (0.54)
DAX 25 32 (0.81) 14 (0.27) 13 (0.25) 13 (0.25) 14 (0.27) 14 (0.27)

DJ 25 12 (0.06) 21 (0.73) 21 (0.73) 24 (0.95) 23 (0.88) 22 (0.81)
ESX 25 21 (0.78) 12 (0.21) 12 (0.21) 12 (0.21) 12 (0.21) 10 (0.14)
MIB 25 39 (0.64) 32 (0.59) 32 (0.59) 32 (0.59) 31 (0.63) 34 (0.48)
FT 25 43 (0.40) 17 (0.47) 17 (0.47) 15 (0.40) 17 (0.49) 16 (0.43)
IBX 25 37 (0.38) 26 (0.96) 26 (0.96) 26 (0.96) 26 (0.96) 25 (0.97)
IPC 25 29 (0.99) 12 (0.07) 12 (0.07) 12 (0.07) 13 (0.09) 12 (0.07)
KCI 24 11 (0.07) 17 (0.39) 18 (0.47) 18 (0.47) 18 (0.47) 18 (0.47)
NSQ 25 23 (0.83) 19 (0.61) 19 (0.61) 19 (0.61) 20 (0.66) 20 (0.64)
NK 22 5 (0.003) 2 (0.001) 2 (0.001) 3 (0.001) 2 (0.001) 3 (0.001)
RUS 25 19 (0.47) 14 (0.18) 13 (0.13) 14 (0.18) 15 (0.24) 13 (0.45)
SPX* 25 15 (0.14) 23 (0.87) 22 (0.78) 22 (0.78) 22 (0.78) 22 (0.78)
SMI* 25 27 (0.88) 22 (0.83) 22 (0.83) 22 (0.81) 21 (0.73) 20 (0.65)
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Table 28: Performance of ten-day-ahead ES forecast during a period of
turmoil with type-I link function. P-values from the one-sided upper-tail
block-bootstrap test for the null of mean zero difference between actual re-
turns and ES when VaR is exceeded. Rejection at level α = 5% is in bold.
The * denotes series for which a higher threshold was required for appro-
priate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 0.954 0.999 1.000 1.000 0.992 0.814
AOI* 1.000 0.192 0.175 0.227 0.180 0.239
BVP 0.887 0.938 0.951 0.959 0.955 0.924
CAC 0.385 0.275 0.305 0.309 0.318 0.225
DAX 0.623 0.937 0.892 0.927 0.939 0.753

DJ 0.971 0.599 0.572 0.506 0.503 0.877
ESX 1.000 1.000 1.000 1.000 1.000 0.997
MIB 0.001 0.001 0.002 0.002 0.002 0.017
FT 0.177 0.032 0.031 0.044 0.044 0.02
IBX 0.564 0.349 0.327 0.331 0.318 0.317
IPC 0.567 0.593 0.594 0.600 0.697 0.546

KCI* 1.000 0.964 0.976 0.971 0.976 0.965
NSQ 0.820 0.495 0.427 0.476 0.476 0.377
NK 0.924 1.000 1.000 1.000 1.000 0.778
RUS 0.997 0.888 0.901 0.882 0.890 0.881
SPX 0.996 0.553 0.540 0.769 0.745 0.751
SMI 0.054 0.078 0.086 0.073 0.128 0.199
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Table 29: Performance of ten-day-ahead ES forecast during a period of
turmoil with type-II link function. P-values from the one-sided upper-tail
block-bootstrap test for the null of mean zero difference between actual re-
turns and ES when VaR is exceeded. Rejection at level α = 5% is in bold.
The * denotes series for which a higher threshold was required for appro-
priate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 0.954 1.000 1.000 0.988 1.000 0.832
AOI* 1.000 0.139 0.128 0.149 0.149 0.362
BVP 0.887 0.860 0.881 0.874 0.874 0.832
CAC 0.385 0.277 0.295 0.273 0.288 0.207
DAX 0.623 0.845 0.746 0.741 0.826 0.720

DJ 0.971 0.707 0.623 0.856 0.778 0.757
ESX 1.000 1.000 1.000 1.000 1.000 1.000
MIB 0.001 0.001 0.001 0.001 0.001 0.028
FT 0.177 0.034 0.029 0.019 0.039 0.008
IBX 0.564 0.314 0.348 0.358 0.388 0.314
IPC 0.567 0.421 0.384 0.363 0.543 0.500

KCI* 1.000 0.959 0.983 0.980 0.971 0.969
NSQ 0.820 0.555 0.516 0.554 0.768 0.353
NK 0.924 1.000 1.000 0.896 1.000 0.773
RUS 0.997 0.920 0.932 0.922 0.928 0.929
SPX 0.996 0.962 0.941 0.905 0.923 0.915
SMI 0.054 0.066 0.076 0.104 0.080 0.126
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Table 30: Performance of ten-day-ahead ES forecast during a period of
turmoil with type-III link function. P-values from the one-sided upper-
tail block-bootstrap test for the null of mean zero difference between actual
returns and ES when VaR is exceeded. Rejection at level α = 5% is in bold.
The * denotes series for which a higher threshold was required for appro-
priate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 0.954 1.000 1.000 0.986 1.000 0.818
AOI* 1.000 0.153 0.173 0.184 0.084 0.357
BVP 0.887 0.856 0.901 0.863 0.873 0.835
CAC 0.385 0.281 0.300 0.261 0.276 0.203
DAX 0.623 0.823 0.743 0.760 0.828 0.717

DJ 0.971 0.682 0.603 0.834 0.777 0.782
ESX 1.000 1.000 1.000 1.000 1.000 0.998
MIB 0.001 0.001 0.001 0.001 0.001 0.016
FT 0.177 0.026 0.027 0.027 0.030 0.013
IBX 0.564 0.328 0.317 0.379 0.402 0.317
IPC 0.567 0.406 0.407 0.377 0.542 0.510

KCI* 1.000 0.968 0.975 0.978 0.964 0.970
NSQ 0.820 0.561 0.509 0.539 0.752 0.392
NK 0.924 1.000 1.000 0.877 1.000 0.744
RUS 0.997 0.961 0.955 0.929 0.965 0.943
SPX 0.996 0.947 0.932 0.919 0.912 0.930
SMI 0.054 0.074 0.075 0.100 0.113 0.107
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B.5 Microstructure noise

In this section, we present the results obtained with the sub-sampled re-
alized measures and the realized kernel. Given results in Appendixes
B.3 and B.4, we report only the results for the type-I link function. Fig-
ures 40-43 show extremal index estimates when using sub-sampled re-
alized measures and the realized kernel for both the full sample and the
period of turmoil only. We find slightly better filtering for some series,
slightly worse for others. Results are presented for one-day-ahead VaR
(Tables 31-34), one-day-ahead ES (Tables 35-38), ten-day-ahead VaR (Ta-
bles 39-42) and ten-day-ahead ES (Tables 43-46). In summary, the results
from both the full and restricted samples are in line with those previ-
ously obtained. Therefore, according to this analysis we conclude that
the microstructure noise does not seem to affect our results.

Figure 40: Extremal index estimates with sub-sampled realized measures.
Values of θ estimated on the standardized residuals obtained from the dif-
ferent windows of length S = 2000.
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Figure 41: Extremal index estimates with realized kernel. Values of θ esti-
mated on the standardized residuals obtained from the different windows
of length S = 2000.

Figure 42: Extremal index estimates during a period of turmoil with sub-
sampled realized measures. Values of θ estimated on the standardized
residuals obtained from the different windows of length S = 500.
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Figure 43: Extremal index estimates during a period of turmoil with real-
ized kernel. Values of θ estimated on the standardized residuals obtained
from the different windows of length S = 500.
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Table 31: Performance measures for the one-day-ahead VaR forecast with
sub-sampled realized measures. For each model (GARCH (a), HAR (b),
HAR-J (c), HAR-SJ (d), HAR-SJaug (e), LHAR (f)), we report: the actual num-
ber of violations (NV); the p-values for the unconditional coverage (UC), the
independence assumption (IN), the conditional coverage (CC), and the DQ
test (DQ). Expected number of violations are in parentheses. Rejection at
level α = 5% is in bold. The * denotes series for which a higher threshold
was required for appropriate GPD behavior.

Index PM (a) (b) (c) (d) (e) (f) Index PM (a) (b) (c) (d) (e) (f)

AEX* NV 22 18 18 18 20 18 IBX NV 26 19 19 20 22 20
(18) UC 0.35 1 1 1 0.64 1 (18) UC 0.07 0.81 0.81 0.64 0.36 0.64

IN 0.46 0.55 0.55 0.55 0.51 0.55 IN 0.38 0.20 0.20 0.22 0.27 0.50
CC 0.50 0.83 0.83 0.83 0.71 0.83 CC 0.14 0.42 0.42 0.42 0.36 0.71
DQ 0.65 0.72 0.73 0.73 0.17 0.72 DQ 0.003 0.12 0.13 0.001 0.001 0.55

AOI NV 16 15 16 16 17 11 IPC NV 13 10 11 10 11 9
(17) UC 0.80 0.62 0.81 0.81 1 0.12 (17) UC 0.31 0.06 0.12 0.06 0.12 0.03

IN 0.58 0.61 0.58 0.59 0.56 0.71 IN 0.66 0.73 0.71 0.73 0.71 0.76
CC 0.82 0.77 0.83 0.83 0.84 0.27 CC 0.54 0.17 0.27 0.17 0.27 0.09
DQ 0.99 0.53 0.001 0.61 0.002 0.12 DQ 0.27 0.84 0.92 0.85 0.92 0.73

BVP NV 13 11 11 12 13 13 KCI NV 13 21 21 19 20 16
(17) UC 0.31 0.12 0.12 0.20 0.31 0.31 (17) UC 0.31 0.35 0.35 0.63 0.48 0.80

IN 0.65 0.70 0.70 0.68 0.65 0.65 IN 0.65 0.47 0.47 0.21 0.49 0.58
CC 0.53 0.27 0.27 0.40 0.53 0.53 CC 0.53 0.49 0.49 0.40 0.60 0.82
DQ 0.25 0.17 0.17 0.27 0.05 0.28 DQ 0.97 0.69 0.69 0.14 0.73 0.93

CAC NV 29 27 27 26 26 24 NSQ* NV 19 17 17 18 19 20
(18) UC 0.01 0.08 0.05 0.08 0.08 0.18 (17) UC 0.63 1 1 0.81 0.63 0.48

IN 0.33 0.37 0.37 0.38 0.38 0.42 IN 0.52 0.56 0.56 0.54 0.52 0.50
CC 0.03 0.09 0.09 0.14 0.14 0.29 CC 0.72 0.84 0.84 0.80 0.71 0.61
DQ 0.02 0.07 0.07 0.09 0.09 0.10 DQ 0.15 0.15 0.15 0.16 0.14 0.18

DAX* NV 19 17 17 13 15 13 NK NV 15 16 16 16 16 14
(18) UC 0.81 0.81 0.81 0.21 0.46 0.21 (16) UC 0.80 1 1 1 1 0.61

IN 0.52 0.57 0.57 0.66 0.61 0.66 IN 0.13 0.15 0.15 0.15 0.15 0.11
CC 0.78 0.82 0.81 0.41 0.67 0.41 CC 0.30 0.34 0.34 0.34 0.35 0.24
DQ 0.16 0.14 0.14 0.21 0.37 0.80 DQ 0.50 0.008 0.009 0.01 0.009 0.003

DJ* NV 21 20 20 19 21 17 RUS* NV 23 20 20 22 22 15
(17) UC 0.35 0.48 0.48 0.63 0.34 1 (17) UC 0.16 0.47 0.47 0.24 0.24 0.62

IN 0.47 0.50 0.50 0.52 0.47 0.56 IN 0.43 0.49 0.50 0.45 0.45 0.61
CC 0.49 0.61 0.61 0.71 0.49 0.83 CC 0.28 0.61 0.61 0.38 0.38 0.77
DQ 0.52 0.70 0.70 0.98 0.93 0.99 DQ 0.005 0.15 0.13 0.15 0.65 0.35

ESX NV 30 16 16 15 15 13 SPX NV 24 23 22 24 23 21
(18) UC 0.009 0.63 0.63 0.46 0.46 0.21 (17) UC 0.11 0.16 0.24 0.11 0.16 0.35

IN 0.31 0.59 0.59 0.61 0.61 0.66 IN 0.41 0.43 0.45 0.41 0.43 0.47
CC 0.02 0.76 0.76 0.67 0.67 0.42 CC 0.19 0.28 0.38 0.19 0.28 0.49
DQ 0.001 0.26 0.26 0.38 0.33 0.20 DQ 0.16 0.36 0.37 0.32 0.33 0.93

MIB NV 31 23 23 24 24 20 SMI NV 17 19 18 20 20 17
(18) UC 0.005 0.26 0.26 0.17 0.17 0.64 (17) UC 1 0.63 0.81 0.48 0.48 1

IN 0.29 0.44 0.44 0.42 0.42 0.50 IN 0.56 0.51 0.54 0.50 0.50 0.56
CC 0.01 0.38 0.38 0.29 0.29 0.71 CC 0.84 0.72 0.80 0.61 0.61 0.84
DQ 0.03 0.02 0.02 0.04 0.24 0.06 DQ 0.68 0.35 0.39 0.16 0.17 0.41

FT NV 20 23 23 24 24 12
(18) UC 0.64 0.26 0.26 0.18 0.18 0.13

IN 0.50 0.44 0.44 0.42 0.42 0.69
CC 0.70 0.38 0.38 0.28 0.28 0.29
DQ 0.71 0.05 0.05 0.04 0.24 0.91
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Table 32: Performance measures for the one-day-ahead VaR forecast with
realized kernel. For each model (GARCH (a), HAR (b), HAR-J (c), HAR-SJ
(d), HAR-SJaug (e), LHAR (f)), we report: the actual number of violations
(NV); the p-values for the unconditional coverage (UC), the independence
assumption (IN), the conditional coverage (CC), and the DQ test (DQ). Ex-
pected number of violations are in parentheses. Rejection at level α = 5% is
in bold. The * denotes series for which a higher threshold was required for
appropriate GPD behavior.

Index PM (a) (b) (c) (d) (e) (f) Index PM (a) (b) (c) (d) (e) (f)

AEX* NV 22 18 18 18 18 18 IBX NV 26 19 19 20 21 19
(18) UC 0.35 1 1 1 1 1 (18) UC 0.07 0.81 0.81 0.64 0.49 0.81

IN 0.46 0.55 0.55 0.55 0.55 0.55 IN 0.38 0.20 0.20 0.22 0.25 0.52
CC 0.50 0.83 0.83 0.83 0.83 0.83 CC 0.14 0.42 0.42 0.42 0.39 0.78
DQ 0.65 0.72 0.72 0.72 0.72 0.72 DQ 0.003 0.13 0.10 0.001 0.001 0.56

AOI NV 16 13 15 16 19 11 IPC* NV 16 8 8 9 9 7
(17) UC 0.80 0.31 0.61 0.81 0.63 0.12 (17) UC 0.81 0.01 0.01 0.03 0.03 0.005

IN 0.58 0.66 0.61 0.59 0.52 0.71 IN 0.59 0.78 0.79 0.76 0.76 0.81
CC 0.82 0.54 0.77 0.83 0.72 0.27 CC 0.83 0.05 0.05 0.09 0.09 0.02
DQ 0.99 0.34 0.006 0.61 0.001 0.12 DQ 0.47 0.59 0.59 0.73 0.74 0.47

BVP NV 13 13 13 13 14 13 KCI* NV 13 22 23 19 20 17
(17) UC 0.31 0.31 0.31 0.31 0.45 0.31 (17) UC 0.31 0.24 0.16 0.63 0.48 1

IN 0.65 0.65 0.65 0.65 0.62 0.65 IN 0.65 0.28 0.32 0.21 0.23 0.56
CC 0.53 0.53 0.53 0.53 0.66 0.53 CC 0.53 0.28 0.23 0.40 0.38 0.83
DQ 0.25 0.05 0.05 0.04 0.06 0.29 DQ 0.98 0.35 0.32 0.28 0.16 0.36

CAC NV 29 25 25 26 26 22 NSQ* NV 19 19 19 19 20 21
(18) UC 0.01 0.12 0.12 0.08 0.08 0.36 (17) UC 0.63 0.63 0.63 0.63 0.48 0.35

IN 0.33 0.40 0.40 0.38 0.38 0.46 IN 0.51 0.51 0.52 0.51 0.50 0.47
CC 0.03 0.20 0.20 0.14 0.14 0.50 CC 0.71 0.71 0.71 0.71 0.61 0.49
DQ 0.02 0.07 0.07 0.09 0.10 0.09 DQ 0.15 0.18 0.18 0.19 0.16 0.16

DAX NV 19 14 14 15 16 16 NK* NV 17 15 15 15 14 13
(18) UC 0.81 0.32 0.32 0.46 0.63 0.63 (16) UC 0.80 0.80 0.80 0.80 0.61 0.43

IN 0.52 0.64 0.64 0.61 0.59 0.59 IN 0.17 0.13 0.13 0.11 0.11 0.09
CC 0.78 0.55 0.55 0.67 0.76 0.76 CC 0.37 0.29 0.30 0.24 0.24 0.17
DQ 0.16 0.28 0.27 0.32 0.43 0.53 DQ 0.58 0.003 0.005 0.003 0.004 0.03

DJ NV 19 15 17 19 20 16 RUS NV 23 29 29 26 26 24
(17) UC 0.63 0.62 1 0.63 0.48 0.81 (17) UC 0.16 0.008 0.008 0.0 0.04 0.11

IN 0.52 0.61 0.56 0.52 0.49 0.59 IN 0.43 0.32 0.32 0.37 0.37 0.41
CC 0.72 0.77 0.84 0.71 0.61 0.83 CC 0.28 0.02 0.02 0.08 0.08 0.19
DQ 0.57 0.99 0.99 0.98 0.97 0.99 DQ 0.005 0.001 0.002 0.008 0.02 0.13

ESX NV 30 18 19 16 16 15 SPX* NV 27 26 24 24 23 22
(18) UC 0.009 1 0.81 0.63 0.63 0.46 (17) UC 0.02 0.04 0.11 0.11 0.17 0.24

IN 0.31 0.55 0.52 0.59 0.59 0.61 IN 0.35 0.37 0.41 0.41 0.43 0.45
CC 0.02 0.82 0.78 0.76 0.76 0.67 CC 0.05 0.08 0.19 0.19 0.28 0.38
DQ 0.001 0.35 0.09 0.27 0.38 0.39 DQ 0.11 0.23 0.32 0.32 0.36 0.86

MIB NV 31 24 24 25 24 18 SMI NV 17 17 17 19 19 15
(18) UC 0.005 0.18 0.18 0.12 0.18 1 (17) UC 1 1 1 0.63 0.63 0.61

IN 0.29 0.42 0.42 0.40 0.42 0.54 IN 0.56 0.56 0.54 0.52 0.52 0.61
CC 0.01 0.28 0.28 0.20 0.28 0.82 CC 0.84 0.84 0.80 0.72 0.72 0.77
DQ 0.003 0.004 0.004 0.02 0.38 0.06 DQ 0.35 0.35 0.39 0.37 0.37 0.82

FT NV 20 15 14 13 14 14
(18) UC 0.64 0.46 0.32 0.21 0.32 0.32

IN 0.50 0.61 0.63 0.66 0.64 0.63
CC 0.70 0.67 0.54 0.41 0.54 0.54
DQ 0.71 0.95 0.96 0.92 0.96 0.95
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Table 33: Performance measures for the one-day-ahead VaR forecast dur-
ing a period of turmoil with sub-sampled realized measures. For each mo-
del (GARCH (a), HAR (b), HAR-J (c), HAR-SJ (d), HAR-SJaug (e), LHAR (f)),
we report: the actual number of violations (NV); the p-values for the uncon-
ditional coverage (UC), the independence assumption (IN), the conditional
coverage (CC), and the DQ test (DQ). Expected number of violations are in
parentheses. Rejection at level α = 5% is in bold. The * denotes series for
which a higher threshold was required for appropriate GPD behavior.

Index PM (a) (b) (c) (d) (e) (f) Index PM (a) (b) (c) (d) (e) (f)

AEX NV 28 22 21 22 19 18 IBX NV 29 27 26 29 30 25
(26) UC 0.69 0.41 0.30 0.41 0.14 0.10 (26) UC 0.55 0.84 1 0.55 0.43 0.84

IN 0.07 0.93 0.86 0.93 0.23 0.26 IN 0.76 0.62 0.55 0.76 0.84 0.49
CC 0.18 0.68 0.55 0.68 0.16 0.12 CC 0.76 0.82 0.79 0.76 0.68 0.73
DQ 0.64 0.53 0.41 0.53 0.77 0.07 DQ 0.39 0.11 0.61 0.71 0.35 0.92

AOI NV 17 22 21 21 21 19 IPC NV 22 19 19 18 18 19
(25) UC 0.08 0.53 0.40 0.40 0.40 0.20 (25) UC 0.53 0.20 0.20 0.13 0.13 0.20

IN 0.27 0.16 0.19 0.19 0.19 0.23 IN 0.97 0.22 0.22 0.25 0.25 0.22
CC 0.12 0.30 0.28 0.28 0.28 0.21 CC 0.78 0.20 0.20 0.16 0.16 0.20
DQ 0.42 0.62 0.57 0.57 0.57 0.40 DQ 0.68 0.80 0.80 0.73 0.73 0.79

BVP NV 19 21 21 20 20 19 KCI NV 18 24 25 24 25 20
(24) UC 0.28 0.52 0.52 0.39 0.39 0.28 (25) UC 0.13 0.83 1 0.84 1 0.29

IN 0.77 0.93 0.93 0.85 0.85 0.77 IN 0.67 0.45 0.15 0.13 0.16 0.23
CC 0.51 0.77 0.77 0.65 0.65 0.51 CC 0.28 0.70 0.35 0.29 0.35 0.27
DQ 0.12 0.70 0.70 0.68 0.68 0.85 DQ 0.47 0.23 0.05 0.03 0.04 0.12

CAC NV 24 24 25 23 23 22 NSQ NV 20 22 22 22 22 19
(26) UC 0.68 0.68 0.84 0.54 0.54 0.41 (25) UC 0.28 0.53 0.53 0.53 0.53 0.20

IN 0.13 0.41 0.48 0.99 0.99 0.16 IN 0.20 0.97 0.97 0.97 0.16 0.22
CC 0.28 0.63 0.72 0.79 0.79 0.26 CC 0.24 0.78 0.78 0.78 0.29 0.20
DQ 0.28 0.08 0.06 0.34 0.33 0.25 DQ 0.67 0.12 0.34 0.33 0.22 0.51

DAX NV 26 27 27 27 27 27 NK* NV 22 15 15 16 17 15
(26) UC 1 0.84 0.84 0.84 0.84 0.84 (23) UC 0.83 0.07 0.07 0.11 0.18 0.07

IN 0.09 0.72 0.72 0.72 0.72 0.72 IN 0.14 0.33 0.33 0.30 0.27 0.51
CC 0.23 0.87 0.87 0.87 0.87 0.87 CC 0.30 0.11 0.11 0.16 0.21 0.14
DQ 0.79 0.41 0.41 0.42 0.41 0.38 DQ 0.35 0.59 0.60 0.69 0.74 0.22

DJ NV 24 25 25 25 24 23 RUS NV 21 20 20 20 20 19
(25) UC 0.84 1 1 1 0.83 0.68 (25) UC 0.39 0.29 0.29 0.29 0.29 0.20

IN 0.13 0.51 0.51 0.51 0.88 0.95 IN 0.17 0.20 0.20 0.20 0.20 0.22
CC 0.10 0.77 0.77 0.77 0.92 0.87 CC 0.27 0.24 0.24 0.24 0.24 0.20
DQ 0.61 0.40 0.40 0.44 0.81 0.73 DQ 0.72 0.77 0.77 0.55 0.56 0.66

ESX NV 29 20 20 21 23 23 SPX* NV 21 22 22 21 20 20
(25) UC 0.68 0.29 0.29 0.40 0.68 0.68 (25) UC 0.40 0.53 0.53 0.40 0.29 0.29

IN 0.14 0.20 0.20 0.17 0.14 0.14 IN 0.17 0.97 0.97 0.89 0.20 0.82
CC 0.29 0.24 0.24 0.27 0.29 0.29 CC 0.27 0.79 0.78 0.66 0.24 0.53
DQ 0.16 0.68 0.51 0.66 0.32 0.38 DQ 0.73 0.64 0.64 0.89 0.76 0.82

MIB* NV 31 29 29 29 30 24 SMI NV 26 29 30 31 31 30
(25) UC 0.23 0.42 0.42 0.42 0.31 0.84 (25) UC 0.83 0.42 0.31 0.23 0.23 0.32

IN 0.04 0.06 0.06 0.06 0.08 0.13 IN 0.10 0.76 0.84 0.47 0.46 0.52
CC 0.06 0.12 0.12 0.12 0.08 0.28 CC 0.24 0.65 0.56 0.35 0.35 0.46
DQ 0.002 0.11 0.11 0.12 0.009 0.11 DQ 0.10 0.004 0.01 0.006 0.006 0.01

FT NV 25 28 28 28 28 24
(25) UC 1 0.54 0.54 0.54 0.54 0.84

IN 0.85 0.64 0.65 0.65 0.65 0.92
CC 0.93 0.71 0.71 0.71 0.71 0.93
DQ 0.38 0.06 0.06 0.07 0.07 0.29
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Table 34: Performance measures for the one-day-ahead VaR forecast dur-
ing a period of turmoil with realized kernel. For each model (GARCH (a),
HAR (b), HAR-J (c), HAR-SJ (d), HAR-SJaug (e), LHAR (f)), we report: the
actual number of violations (NV); the p-values for the unconditional cov-
erage (UC), the independence assumption (IN), the conditional coverage
(CC), and the DQ test (DQ). Expected number of violations are in parenthe-
ses. Rejection at level α = 5% is in bold. The * denotes series for which a
higher threshold was required for appropriate GPD behavior.

Index PM (a) (b) (c) (d) (e) (f) Index PM (a) (b) (c) (d) (e) (f)

AEX NV 28 21 21 22 20 18 IBX NV 29 27 26 29 30 25
(26) UC 0.69 0.30 0.30 0.41 0.21 0.09 (26) UC 0.55 0.84 1 0.55 0.43 0.84

IN 0.07 0.86 0.86 0.93 0.79 0.26 IN 0.76 0.62 0.55 0.76 0.84 0.49
CC 0.18 0.55 0.55 0.68 0.42 0.12 CC 0.76 0.82 0.80 0.76 0.68 0.73
DQ 0.64 0.41 0.42 0.53 0.37 0.66 DQ 0.39 0.12 0.60 0.72 0.36 0.93

AOI* NV 17 22 22 22 22 20 IPC NV 22 18 18 18 18 17
(25) UC 0.08 0.53 0.53 0.53 0.53 0.29 (25) UC 0.53 0.13 0.13 0.13 0.13 0.08

IN 0.27 0.16 0.16 0.16 0.16 0.21 IN 0.97 0.25 0.25 0.25 0.25 0.27
CC 0.12 0.30 0.30 0.30 0.30 0.24 CC 0.78 0.16 0.16 0.16 0.16 0.12
DQ 0.42 0.62 0.62 0.75 0.76 0.47 DQ 0.68 0.74 0.74 0.74 0.74 0.61

BVP NV 19 22 22 20 20 17 KCI NV 18 22 24 22 22 22
(24) UC 0.28 0.67 0.67 0.39 0.39 0.12 (25) UC 0.13 0.53 0.84 0.53 0.53 0.53

IN 0.77 0.99 0.99 0.85 0.85 0.62 IN 0.67 0.07 0.13 0.07 0.08 0.97
CC 0.51 0.87 0.87 0.65 0.65 0.26 CC 0.28 0.17 0.29 0.16 0.16 0.78
DQ 0.12 0.83 0.83 0.67 0.67 0.78 DQ 0.47 0.02 0.04 0.02 0.02 0.53

CAC NV 24 25 26 24 24 23 NSQ NV 20 22 22 22 21 22
(26) UC 0.68 0.84 1 0.68 0.68 0.54 (25) UC 0.28 0.53 0.53 0.53 0.40 0.53

IN 0.13 0.47 0.54 0.92 0.92 0.15 IN 0.20 0.97 0.97 0.97 0.17 0.97
CC 0.28 0.72 0.79 0.87 0.87 0.27 CC 0.24 0.78 0.78 0.78 0.27 0.78
DQ 0.28 0.07 0.03 0.30 0.30 0.22 DQ 0.67 0.33 0.33 0.33 0.23 0.31

DAX NV 26 27 26 27 27 26 NK* NV 22 15 16 17 17 15
(26) UC 1 0.84 1 0.84 0.84 1 (23) UC 0.83 0.07 0.11 0.18 0.18 0.07

IN 0.09 0.72 0.79 0.72 0.72 0.75 IN 0.14 0.32 0.30 0.27 0.27 0.46
CC 0.23 0.87 0.91 0.87 0.87 0.90 CC 0.30 0.11 0.16 0.21 0.21 0.12
DQ 0.79 0.41 0.23 0.42 0.42 0.74 DQ 0.35 0.63 0.61 0.73 0.74 0.29

DJ NV 24 23 22 25 25 20 RUS NV 21 21 22 20 20 18
(25) UC 0.84 0.68 0.53 1 1 0.29 (25) UC 0.39 0.39 0.53 0.29 0.29 0.13

IN 0.13 0.39 0.33 0.51 0.51 0.82 IN 0.17 0.17 0.15 0.20 0.20 0.25
CC 0.01 0.60 0.49 0.76 0.76 0.53 CC 0.27 0.27 0.28 0.24 0.24 0.16
DQ 0.61 0.66 0.40 0.41 0.43 0.80 DQ 0.72 0.68 0.78 0.56 0.56 0.54

ESX NV 29 23 24 23 23 24 SPX* NV 21 23 23 22 22 21
(25) UC 0.68 0.84 0.53 0.68 0.68 0.83 (25) UC 0.40 0.67 0.68 0.54 0.53 0.40

IN 0.14 0.13 0.16 0.14 0.14 0.12 IN 0.17 0.95 0.95 0.97 0.97 0.90
CC 0.29 0.29 0.30 0.30 0.29 0.28 CC 0.27 0.87 0.87 0.78 0.78 0.67
DQ 0.16 0.14 0.26 0.57 0.16 0.20 DQ 0.73 0.71 0.72 0.63 0.63 0.89

MIB NV 30 29 29 29 30 24 SMI* NV 26 29 30 31 31 27
(25) UC 0.32 0.42 0.42 0.42 0.32 0.84 (25) UC 0.83 0.42 0.32 0.23 0.23 0.69

IN 0.05 0.06 0.06 0.06 0.05 0.12 IN 0.10 0.76 0.83 0.46 0.46 0.71
CC 0.09 0.12 0.12 0.12 0.09 0.28 CC 0.24 0.65 0.56 0.35 0.35 0.81
DQ 0.01 0.14 0.14 0.13 0.01 0.12 DQ 0.10 0.003 0.01 0.006 0.006 0.03

FT NV 25 28 27 25 25 26
(25) UC 1 0.54 0.68 1 1 0.84

IN 0.85 0.65 0.71 0.85 0.85 0.78
CC 0.93 0.71 0.81 0.93 0.93 0.89
DQ 0.38 0.10 0.49 0.64 0.64 0.04
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Table 35: Performance of one-day-ahead ES forecast with sub-sampled
realized measures. P-values from the one-sided upper-tail bootstrap test
for the null of mean zero difference between actual returns and ES when
VaR is exceeded. Rejection at level α = 5% is in bold. The * denotes series
for which a higher threshold was required for appropriate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJaug LHAR

AEX* 0.019 0.165 0.170 0.074 0.034 0.315
AOI 0.927 0.659 0.636 0.756 0.79 0.943
BVP 0.401 1.000 0.997 0.998 1.000 1.000
CAC 0.101 0.675 0.676 0.55 0.464 0.707
DAX* 0.303 0.477 0.522 0.165 0.388 0.262

DJ* 0.996 1.000 1.000 0.988 0.780 1.000
ESX 0.694 0.461 0.456 0.301 0.284 0.265
MIB 0.8 0.838 0.852 0.921 0.848 0.875
FT 0.396 0.544 0.291 0.192 0.161 0.692
IBX 0.315 0.26 0.264 0.289 0.244 0.700
IPC 0.811 0.992 0.991 0.898 0.903 0.989
KCI 0.073 0.255 0.219 0.223 0.266 0.175

NSQ* 0.425 0.240 0.279 0.300 0.08 0.805
NK 0.019 0.027 0.034 0.04 0.071 0.110

RUS* 0.961 0.601 0.519 0.780 0.702 0.436
SPX 0.983 0.989 0.966 0.956 0.9 0.995
SMI 0.189 0.874 0.825 0.861 0.887 0.783
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Table 36: Performance of one-day-ahead ES forecast with realized kernel.
P-values from the one-sided upper-tail bootstrap test for the null of mean
zero difference between actual returns and ES when VaR is exceeded. Re-
jection at level α = 5% is in bold. The * denotes series for which a higher
threshold was required for appropriate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJaug LHAR

AEX* 0.016 0.274 0.273 0.112 0.05 0.414
AOI 0.939 0.554 0.632 0.784 0.836 0.950
BVP 0.408 1.000 0.998 0.999 1.000 1.000
CAC 0.100 0.278 0.296 0.542 0.471 0.483
DAX 0.271 0.073 0.058 0.251 0.372 0.443

DJ 0.995 0.983 0.989 1.000 0.999 1.000
ESX 0.684 0.475 0.521 0.332 0.261 0.418
MIB 0.825 0.840 0.832 0.924 0.889 0.768
FT 0.392 0.143 0.146 0.338 0.526 0.582
IBX 0.332 0.434 0.390 0.391 0.338 0.805
IPC* 0.992 0.936 0.967 0.900 0.830 0.994
KCI* 0.045 0.209 0.199 0.041 0.163 0.144
NSQ* 0.469 0.136 0.183 0.242 0.074 0.712
NK* 0.016 0.058 0.012 0.023 0.021 0.141
RUS 0.946 0.611 0.650 0.466 0.434 0.623
SPX* 0.997 0.995 0.956 0.984 0.981 0.998
SMI 0.188 0.735 0.744 0.875 0.858 0.536
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Table 37: Performance of one-day-ahead ES forecast during a period of
turmoil with sub-sampled realized measures. P-values from the one-sided
upper-tail bootstrap test for the null of mean zero difference between ac-
tual returns and ES when VaR is exceeded. Rejection at level α = 5% is in
bold. The * denotes series for which a higher threshold was required for
appropriate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJaug LHAR

AEX 0.713 0.808 0.742 0.79 0.729 0.552
AOI 0.284 0.847 0.722 0.664 0.737 0.695
BVP 0.376 0.607 0.554 0.454 0.450 0.763
CAC 0.018 0.061 0.094 0.183 0.152 0.267
DAX 0.634 0.801 0.794 0.903 0.869 0.982

DJ 0.157 0.756 0.832 0.889 0.922 0.914
ESX 0.744 0.745 0.585 0.824 0.956 0.979
MIB* 0.454 0.571 0.604 0.581 0.678 0.378

FT 0.195 0.374 0.288 0.312 0.292 0.439
IBX 0.112 0.496 0.425 0.550 0.557 0.375
IPC 0.061 0.408 0.396 0.537 0.450 0.728
KCI 0.001 0.110 0.138 0.052 0.062 1.000
NSQ 0.438 0.991 0.995 0.993 0.993 0.975
NK* 0.870 0.825 0.804 0.888 0.930 0.221
RUS 0.353 0.907 0.880 0.902 0.906 0.829
SPX* 0.083 0.616 0.727 0.724 0.625 0.904
SMI 0.474 0.106 0.101 0.104 0.135 0.240
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Table 38: Performance of one-day-ahead ES forecast during a period of
turmoil with realized kernel. P-values from the one-sided upper-tail boot-
strap test for the null of mean zero difference between actual returns and
ES when VaR is exceeded. Rejection at level α = 5% is in bold. The * de-
notes series for which a higher threshold was required for appropriate GPD
behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJaug LHAR

AEX 0.731 0.733 0.780 0.799 0.657 0.561
AOI* 0.240 0.812 0.790 0.706 0.810 0.869
BVP 0.374 0.81 0.758 0.520 0.492 0.801
CAC 0.02 0.141 0.225 0.212 0.174 0.555
DAX 0.639 0.677 0.370 0.825 0.792 0.869

DJ 0.157 0.563 0.430 0.924 0.931 0.694
ESX 0.756 0.953 0.949 0.917 0.964 0.988
MIB 0.242 0.454 0.506 0.409 0.54 0.382
FT 0.201 0.252 0.290 0.354 0.341 0.439
IBX 0.147 0.485 0.416 0.579 0.571 0.415
IPC 0.058 0.721 0.676 0.570 0.643 0.592
KCI 0.001 0.092 0.173 0.069 0.056 0.083
NSQ 0.437 0.967 0.962 0.989 0.992 0.980
NK* 0.851 0.610 0.810 0.939 0.930 0.367
RUS 0.375 0.877 0.859 0.900 0.896 0.803
SPX* 0.092 0.512 0.671 0.799 0.791 0.880
SMI* 0.511 0.032 0.096 0.110 0.115 0.101
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Table 39: Performance measures for the ten-day-ahead VaR forecast with
sub-sampled realized measures. Actual and expected number of violations
of the VaR. Cases in which the null hypothesis of correct unconditional cov-
erage is rejected at level α = 10% are in bold. The best performer is in
italics. The * indicates series for which a higher threshold was required for
appropriate GPD behavior.

Index Expected GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 18 34 (0.08) 18 (0.99) 17 (0.88) 18 (0.99) 18 (0.99) 18 (0.99)
AOI* 17 25 (0.43) 23 (0.30) 23 (0.35) 22 (0.34) 22 (0.37) 22 (0.52)
BVP 17 12 (0.49) 22 (0.54) 22 (0.54) 22 (0.54) 23 (0.49) 20 (0.68)

CAC* 18 29 (0.23) 26 (0.36) 26 (0.36) 26 (0.39) 26 (0.39) 28 (0.32)
DAX 18 27 (0.33) 22 (0.66) 22 (0.66) 20 (0.82) 23 (0.58) 21 (0.75)

DJ 17 12 (0.51)) 18 (0.93) 18 (0.93) 20 (0.73) 20 (0.73) 19 (0.82)
ESX 18 32 (0.12) 19 (0.90) 19 (0.90) 18 (0.99) 20 (0.81) 21 (0.71)
MIB 18 50 (0.02) 25 (0.36) 25 (0.36) 25 (0.36) 25 (0.36) 23 (0.49)
FT 18 33 (0.14) 16 (0.82) 16 (0.82) 15 (0.68) 16 (0.81) 18 (0.95)
IBX 18 39 (0.07) 25 (0.39) 24 (0.44) 22 (0.58) 25 (0.40) 25 (0.36)
IPC 17 14 (0.68) 9 (0.30) 8 (0.23) 9 (0.30) 10 (0.32) 10 (0.32)

KCI* 17 11 (0.45) 29 (0.50) 29 (0.50) 29 (0.50) 29 (0.50) 30 (0.24)
NSQ 17 20 (0.73) 16 (0.84) 16 (0.84) 15 (0.72) 16 (0.84) 17 (0.95)
NK 16 24 (0.57) 26 (0.40) 26 (0.50) 27 (0.37) 27 (0.37) 25 (0.48)
RUS 17 18 (0.94) 16 (0.94) 17 (0.87) 14 (0.69) 14 (0.69) 16 (0.87)
SPX 17 10 (0.38) 18 (0.93) 18 (0.93) 17 (0.96) 17 (0.96) 17 (0.96)
SMI 17 24 (0.41) 13 (0.43) 13 (0.43) 13 (0.43) 13 (0.43) 12 (0.43)
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Table 40: Performance measures for the ten-day-ahead VaR forecast with
realized kernel. Actual and expected number of violations of the VaR.
Cases in which the null hypothesis of correct unconditional coverage is re-
jected at level α = 10% are in bold. The best performer is in italics. The *
indicates series for which a higher threshold was required for appropriate
GPD behavior.

Index Expected GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 18 34 (0.08) 16 (0.76) 16 (0.76) 19 (0.89) 18 (0.99) 19 (0.90)
AOI* 17 25 (0.43) 24 (0.30) 23 (0.29) 23 (0.29) 23 (0.16) 23 (0.44)
BVP 17 12 (0.49) 23 (0.46) 23 (0.46) 22 (0.54) 23 (0.48) 19 (0.77)

CAC* 18 29 (0.23) 26 (0.36) 26 (0.36) 25 (0.39) 26 (0.39) 27 (0.36)
DAX 18 27 (0.33) 21 (0.74) 20 (0.82) 20 (0.82) 22 (0.66) 22 (0.66)

DJ 17 12 (0.51) 18 (0.93) 18 (0.93) 19 (0.82) 19 (0.82) 19 (0.82)
ESX 18 32 (0.12) 21 (0.73) 21 (0.73) 20 (0.82) 21 (0.73) 21 (0.75)
MIB 18 50 (0.02) 26 (0.32) 26 (0.32) 25 (0.36) 25 (0.36) 23 (0.49)
FT 18 33 (0.14) 19 (0.84) 18 (0.95) 18 (0.95) 18 (0.95) 23 (0.48)
IBX 18 39 (0.07) 24 (0.42) 24 (0.42) 24 (0.42) 25 (0.38) 25 (0.36)
IPC 17 14 (0.68) 12 (0.05) 11 (0.07) 13 (0.02) 13 (0.02) 8 (0.21)

KCI* 17 11 (0.45) 29 (0.23) 29 (0.23) 29 (0.23) 29 (0.25) 30 (0.24)
NSQ 17 20 (0.73) 21 (0.65) 21 (0.65) 20 (0.73) 20 (0.73) 20 (0.72)
NK 16 24 (0.57) 25 (0.44) 27 (0.35) 25 (0.41) 25 (0.41) 26 (0.40)
RUS 17 18 (0.94) 19 (0.85) 19 (0.85) 18 (0.94) 18 (0.94) 19 (0.85)
SPX 17 10 (0.38) 18 (0.93) 19 (0.82) 16 (0.87) 16 (0.87) 20 (0.72)
SMI* 17 24 (0.41) 12 (0.43) 12 (0.43) 12 (0.43) 12 (0.43) 12 (0.43)
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Table 41: Performance measures for the ten-day-ahead VaR forecast dur-
ing a period of turmoil with sub-sampled realized measures. Actual and
expected number of violations of the VaR. Cases in which the null hypoth-
esis of correct unconditional coverage is rejected at level α = 10% are in
bold. The best performer is in italics. The * indicates series for which a
higher threshold was required for appropriate GPD behavior.

Index Expected GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 25 26 (0.63) 9 (0.02) 9 (0.02) 9 (0.02) 9 (0.02) 12 (0.10)
AOI 25 22 (0.69) 19 (0.61) 19 (0.61) 19 (0.61) 19 (0.61) 18 (0.52)
BVP 24 10 (0.06) 15 ( 0.34) 15 (0.33) 14 (0.27) 15 (0.35) 14 (0.29)

CAC* 25 33 (0.58) 19 (0.54) 19 (0.54) 19 (0.54) 19 (0.54) 18 (0.46)
DAX 25 32 (0.81) 13 (0.25) 13 (0.25) 14 (0.27) 14 (0.27) 14 (0.27)

DJ 25 12 (0.06) 20 (0.66) 20 (0.66) 20 (0.66) 20 (0.66) 19 (0.60)
ESX* 25 21 (0.78) 11 (0.15) 11 (0.15) 10 (0.09) 10 (0.09) 9 (0.08)
MIB 25 39 (0.64) 32 (0.59) 31 (0.63) 31 (0.63) 31 (0.63) 32 (0.59)
FT* 25 43 (0.40) 19 (0.59) 19 (0.59) 18 (0.53) 18 (0.53) 17 (0.49)
IBX 25 37 (0.38) 26 (0.96) 27 (0.89) 25 (0.98) 26 (0.96) 24 (0.90)
IPC 25 29 (0.99) 12 (0.07) 12 (0.07) 13 (0.09) 13 (0.09) 13 (0.09)
KCI 24 11 (0.07) 24 (0.39) 23 (0.39) 23 (0.47) 23 (0.47) 17 (0.42)
NSQ 25 23 (0.83) 26 (0.95) 21 (0.87) 21 (0.87) 21 (0.87) 22 (0.78)
NK 23 5 (0.01) 1 (0.003) 2 (0.006) 2 (0.006) 2 (0.006) 2 (0.007)
RUS 25 19 (0.47) 15 (0.24) 16 (0.32) 15 (0.24) 15 (0.24) 13 (0.15)
SPX 25 15 (0.14) 18 (0.50) 19 (0.57) 18 (0.50) 18 (0.50) 21 (0.71)
SMI 25 27 (0.88) 21 (0.75) 21 (0.75) 20 (0.67) 20 (0.67) 20 (0.67)

131



Table 42: Performance measures for the ten-day-ahead VaR forecast dur-
ing a period of turmoil with realized kernel. Actual and expected number
of violations of the VaR. Cases in which the null hypothesis of correct un-
conditional coverage is rejected at level α = 10% are in bold. The best
performer is in italics. The * indicates series for which a higher threshold
was required for appropriate GPD behavior.

Index Expected GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 25 26 (0.63) 10 (0.02) 10 (0.02) 9 (0.02) 10 (0.02) 12 (0.09)
AOI 25 22 (0.69) 19 (0.61) 19 (0.61) 19 (0.61) 18 (0.61) 16 (0.37)
BVP 24 10 (0.06) 15 (0.33) 15 (0.33) 15 (0.27) 15 (0.33) 14 (0.29)

CAC* 25 33 (0.58) 19 (0.54) 19 (0.54) 19 (0.54) 19 (0.54) 18 (0.46)
DAX 25 32 (0.81) 14 (0.27) 12 (0.25) 14 (0.27) 14 (0.27) 14 (0.27)

DJ 25 12 (0.06) 18 (0.65) 18 (0.65) 19 (0.65) 19 (0.65) 18 (0.54)
ESX 25 21 (0.78) 11 (0.08) 11 (0.08) 11 (0.08) 11 (0.08) 10 (0.14)
MIB 25 39 (0.64) 32 (0.60) 33 (0.62) 31 (0.60) 32 (0.62) 33 (0.53)
FT* 25 43 (0.40) 20 (0.59) 20 (0.59) 20 (0.59) 19 (0.53) 19 (0.59)
IBX 25 37 (0.38) 27 (0.96) 27 (0.96) 26 (0.89) 27 (0.96) 24 (0.90)
IPC 25 29 (0.99) 12 (0.07) 11 (0.07) 13 (0.09) 13 (0.09) 14 (0.13)
KCI 24 11 (0.07) 18 (0.39) 18 (0.39) 20 (0.47) 20 (0.47) 17 (0.42)
NSQ 25 23 (0.83) 25 (0.95) 24 (0.87) 24 (0.87) 24 (0.87) 24 (0.95)
NK 23 5 (0.01) 2 (0.006) 2 (0.006) 2 (0.006) 2 (0.006) 1 (0.002)
RUS 25 19 (0.47) 15 (0.24) 17 (0.31) 15 (0.24) 15 (0.24) 13 (0.15)
SPX 25 15 (0.14) 18 (0.50) 19 (0.57) 18 (0.50) 18 (0.50) 20 (0.64)
SMI* 25 27 (0.88) 22 (0.75) 22 (0.75) 21 (0.67) 21 (0.67) 19 (0.57)
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Table 43: Performance of ten-day-ahead ES forecast with sub-sampled re-
alized measures. P-values from the one-sided upper-tail block-bootstrap
test for the null of mean zero difference between actual returns and ES when
VaR is exceeded. Rejection at level α = 5%is in bold. The * denotes series
for which a higher threshold was required for appropriate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 0.114 0.298 0.231 0.275 0.414 0.437
AOI* 0.946 0.163 0.095 0.268 0.165 0.056
BVP 0.673 0.081 0.068 0.081 0.038 0.09
CAC 0.283 0.408 0.420 0.367 0.367 0.732
DAX 0.045 0.068 0.077 0.024 0.108 0.026

DJ 0.345 0.215 0.215 0.158 0.133 0.109
ESX 0.153 0.117 0.127 0.058 0.059 0.292
MIB 0.288 0.925 0.934 0.942 0.932 0.843
FT 0.119 0.319 0.318 0.216 0.288 0.249
IBX 0.738 0.340 0.303 0.141 0.045 0.400
IPC 0.220 0.811 0.274 0.749 0.858 0.829

KCI* 0.027 0.350 0.312 0.356 0.362 0.276
NSQ 0.062 0.010 0.015 0.005 0.004 0.012
NK 0.007 0.013 0.007 0.004 0.011 0.021
RUS 0.089 0.076 0.145 0.061 0.049 0.110
SPX 0.282 0.040 0.039 0.019 0.020 0.021
SMI 0.479 0.475 0.474 0.430 0.430 0.398
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Table 44: Performance of ten-day-ahead ES forecast with realized kernel.
P-values from the one-sided upper-tail block-bootstrap test for the null of
mean zero difference between actual returns and ES when VaR is exceeded.
Rejection at level α = 5% is in bold. The * denotes series for which a higher
threshold was required for appropriate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 0.114 0.249 0.277 0.291 0.304 0.479
AOI* 0.946 0.296 0.087 0.299 0.295 0.068
BVP 0.673 0.082 0.104 0.097 0.033 0.071
CAC 0.283 0.460 0.490 0.343 0.463 0.684
DAX 0.045 0.0.057 0.018 0.019 0.053 0.063

DJ 0.345 0.135 0.110 0.278 0.283 0.218
ESX 0.153 0.240 0.219 0.173 0.059 0.158
MIB 0.288 0.919 0.918 0.903 0.916 0.762
FT 0.119 0.276 0.158 0.233 0.222 0.266
IBX 0.738 0.422 0.564 0.450 0.454 0.623
IPC 0.220 0.633 0.614 0.737 0.788 1.000

KCI* 0.027 0.265 0.233 0.284 0.323 0.246
NSQ 0.062 0.066 0.087 0.079 0.023 0.009
NK 0.007 0.004 0.006 0.002 0.001 0.018
RUS 0.089 0.093 0.086 0.054 0.044 0.084
SPX 0.282 0.034 0.039 0.018 0.022 0.098
SMI 0.479 0.544 0.541 0.527 0.531 0.491
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Table 45: Performance of ten-day-ahead ES forecast during a period of
turmoil with sub-sampled realized measures. P-values from the one-sided
upper-tail block-bootstrap test for the null of mean zero difference between
actual returns and ES when VaR is exceeded. Rejection at level α = 5% is
in bold. The * denotes series for which a higher threshold was required for
appropriate GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 0.954 0.982 0.992 0.992 0.992 0.795
AOI* 1.000 0.263 0.306 0.277 0.320 0.326
BVP 0.887 0.945 0.929 0.909 0.939 0.946
CAC 0.385 0.296 0.264 0.276 0.238 0.187
DAX 0.623 0.884 0.903 0.845 0.878 0.740

DJ 0.971 0.713 0.669 0.629 0.645 0.715
ESX 1.000 1.000 1.000 1.000 1.000 1.000
MIB 0.001 0.007 0.001 0.001 0.002 0.030
FT 0.177 0.061 0.068 0.026 0.026 0.026
IBX 0.564 0.377 0.426 0.334 0.182 0.243
IPC 0.567 0.582 0.592 0.672 0.706 0.714

KCI* 1.000 0.960 0.976 0.985 0.983 0.945
NSQ 0.820 0.632 0.571 0.559 0.636 0.355
NK 0.924 1.000 1.000 0.877 1.000 1.000
RUS 0.997 0.953 0.963 0.950 0.943 0.908
SPX 0.996 0.592 0.632 0.532 0.476 0.885
SMI 0.054 0.007 0.016 0.024 0.012 0.083
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Table 46: Performance of ten-day-ahead ES forecast during a period of
turmoil with realized kernel. P-values from the one-sided upper-tail block-
bootstrap test for the null of mean zero difference between actual returns
and ES when VaR is exceeded. Rejection at level α = 5% is in bold. The
* denotes series for which a higher threshold was required for appropriate
GPD behavior.

GARCH HAR HAR-J HAR-SJ HAR-SJ-AUG LHAR

AEX 0.954 1.000 1.000 0.999 1.000 0.832
AOI* 1.000 0.345 0.269 0.345 0.262 0.256
BVP 0.887 0.949 0.909 0.934 0.949 0.946
CAC 0.385 0.321 0.316 0.356 0.339 0.156
DAX 0.623 0.868 0.735 0.824 0.826 0.601

DJ 0.971 0.672 0.601 0.750 0.707 0.748
ESX 1.000 1.000 1.000 1.000 1.000 1.000
MIB 0.001 0.002 0.001 0.001 0.001 0.005
FT 0.177 0.091 0.103 0.064 0.016 0.041
IBX 0.564 0.357 0.378 0.325 0.168 0.190
IPC 0.567 0.671 0.592 0.763 0.755 0.819

KCI* 1.000 0.960 0.967 0.968 0.956 0.920
NSQ 0.820 0.347 0.391 0.392 0.451 0.254
NK 0.924 1.000 1.000 0.877 1.000 1.000
RUS 0.993 0.974 0.949 0.944 0.943 0.915
SPX 0.996 0.705 0.461 0.647 0.791 0.836
SMI 0.054 0.160 0.131 0.212 0.224 0.162
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Chapter 4

Extremal Behaviour of
Financial Returns and
Models

4.1 Introduction

A large body of the financial economics literature has been devoted to
study the autocorrelation of asset returns, particularly for its relevance
in connection with the Efficient Market Hypothesis (Conrad and Kaul,
1988; Lo and MacKinlay, 1988). The empirical evidence suggests that
daily returns present a mild and often not significant positive autocor-
relation that varies according to other variables, such as the volume of
trades Campbell et al. (1993) and the volatility of asset returns (LeBaron,
1992). In contrast, the volatility of asset returns is a highly predictable
quantity (Bollerslev, 1986; Engle, 1982) which exhibits a strong degree of
persistence.

While the serial correlation of stock returns and volatility has attracted
a lot of attention, serial dependence in extreme returns has been unex-
pectedly overlooked. Understanding the behaviour of extreme observa-
tions is crucial, as they are informative of tail risk. Are daily extreme
observations in financial returns isolated events or do they tend to occur
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together? Does the occurrence of an extreme event increase the prob-
ability of observing another event of similar magnitude? Are financial
econometrics models capable of accurately capturing the observed be-
haviour in the extremes? These questions are of interest for both regu-
latory purposes and financial risk management, and this paper attempts
to provide some answers.

The left panel of Figure 44 reports the price path recorded by the
S&P500 index in the last part of 2008, in the aftermath of the Lehman
Brothers collapse. In red, the days from September 26 to October 10 on
which the index plummeted from 1200 points to 900, losing almost one
fourth of its capitalization. The figure emphasizes that this crash was
not due to one single observation but to a sequence of extreme negative
observations. In particular, five out of ten days experienced a daily re-
turn below three standard deviations from the mean. The right panel
of Figure 44 reports a similar scenario for the Euro Stoxx 50, an index
of Eurozone blue-chips stocks, in the fall of 2011, during the European
sovereign debt crisis. In this case, the index lost 20% of its value in two
weeks and five out of twelve days registered negative values below two
standard deviations from the mean. These two examples give the feeling
of the importance of studying the dependence in extreme returns and
understanding which models are eventually able to capture it appropri-
ately.

As extreme returns happen near the boundaries of the support of
the return distribution, a definition of extremal dependence entailing an
asymptotic behaviour seems proper. Let {Xt} be a stationary sequence
and denote the conditional tail probability of the random vector (Xt, Xt+h)

at level x as
c(x, h) = Pr(Xt+h > x|Xt > x), (4.1)

then (Xt, Xt+h) are asymptotically independent if c(x, h)→ 0 as x→∞,
while they are asymptotically dependent, and thus present extremal de-
pendence, if c(x, h)→ C > 0 as x→∞. The extremal behaviour of tradi-
tional classes of models for the daily returns, such as the Generalized Au-
toRegressive Conditional Heteroskedastic (GARCH) of Bollerslev (1986)
and the Stochastic Volatility (SV) pioneered by Clark (1973), have been
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widely studied, amongst others, by Mikosch and Starica (2000), Davis
and Mikosch (2009b) and Mikosch and Rezapur (2013). In particular,
while GARCH processes exhibit extremal dependence regardless of the
assumptions on the error term, SV processes present extremal depen-
dence only if the volatility component satisfies certain conditions (Mikosch
and Rezapur, 2013).

Empirical assessment of the extremal dependence in financial returns
is restrained to few small examples (Davis et al., 2009; Liu and Tawn,
2013). Our first contribution is to provide a comprehensive empirical
analysis of the extremal behaviour of daily returns. Exploiting differ-
ent statistical procedures, we assess the existence and the persistence of
the extremal dependence in both positive and negative extreme returns
and in the extremes of the return variance for 17 international equity
indexes. In particular, we rely on three different approaches: the inter-
vals estimator of the extremal index (Ferro and Segers, 2003), a quantity
emerging from Extreme Value Theory and characterizing the extremal
behaviour of a dependent sequence; the formal test of extremal depen-
dence developed in Liu and Tawn (2013) and based on the coefficient of
tail dependence of Ledford and Tawn (2003); the extremogram of Davis
et al. (2009) providing an analogue of the correlogram to estimate the se-
rial dependence in the extremes. Our results provide evidence of strong
and persistent dependence in both the upper and lower tails of the return
distribution and in the extremes of the return variance.

The compelling evidence of extremal dependence in real data leads
to favour processes for the daily returns in the GARCH class or SV pro-
cesses satisfying the conditions of Mikosch and Rezapur (2013). How-
ever, recent contributions in the high-frequency (HF) financial economet-
rics literature have led to new classes of models that will likely become
the new standard in the near future. It is relevant to understand whether
processes for the daily returns and volatility based on HF data can ac-
count for the extremal dependence observed in the data.

With the availability of HF data, research on the volatility of returns
has taken new avenues. Intra-daily returns are used to construct non-
parametric estimators of the daily asset price variation, termed realized
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measures (Barndorff-Nielsen and Shephard, 2002). Most of the research
on this topic has been devoted to the development of models that use
the realized measures to improve the accuracy of volatility forecasts.
Hansen and Lunde (2011) classify the existing approaches in two classes.
The reduced-form class provides time series models for the realized mea-
sures. Within this class, the Heterogeneous AutoRegressive (HAR) mo-
del of Corsi (2009) has probably been the most successful. The model-
based class jointly models the returns and the realized measures of vo-
latility. Notable examples within this class are the Multiplicative Error
Model (MEM) introduced by Engle and Gallo (2006), the HEAVY model
of Shephard and Sheppard (2010), and the Realized GARCH of Hansen
et al. (2012). In this paper, we consider models that belong to this sec-
ond class and refer to them as to HF-based volatility processes. We es-
tablish a simple framework to obtain HF-based volatility processes and
provide results for the existence of processes that exhibit extremal de-
pendence. Furthermore, we use Monte Carlo simulations to explore the
degree and persistence of the extremal dependence of such processes and
assess whether it is consistent with that exhibited by real time series. We
find that modelling the persistence in the realized measure and the lever-
age effect (Glosten et al., 1993) is crucial to explain the observed pattern
of extreme dependence in both tails of financial returns.

The empirical findings on the extremal dependence are also relevant
because of the important implications they bear on continuous-time mod-
els. Given that these models are commonly used in practice, for exam-
ple in option pricing, it is important for them to account for the ob-
served pattern of dependence in the extremes. Extremal properties of
continuous-time models have been discussed, amongst others, in Fasen
(2009), but the issue we want to address is how to make the extremal
behaviour a central aspect of the estimation strategy. Estimation meth-
ods for continuous-time volatility models typically optimize the fit to the
body of the return distribution, but when the interest is on the tails, they
should be the focus in the estimation strategy. We consider the Simulated
Method of Moments (SMM) of Corradi and Distaso (2006) and include
extreme moment conditions that allow to identify both the dependence
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in the tails and the leverage effect. In this sense, we propose an alterna-
tive approach to that of Corsi and Renò (2012) and Harvey and Shephard
(1996) to estimate asymmetric continuous-time volatility models. We use
this strategy to estimate a two-factor GARCH Diffusion process (Nelson,
1990), and find that it perfectly captures the empirical pattern of extremal
dependence.

Summarizing, this article gives three contributions: first, it provides
evidence of strong and persistent dependence in both positive and nega-
tive extreme returns and in the extremes of the return volatility; second, it
studies the extremal properties of various HF-based volatility processes,
and finds that modelling the persistence in the realized measure and the
leverage effect is important to capture the empirical dependence in the
extremes; third, it addresses how to make the extremal dependence a
central aspect in the estimation of a continuous-time volatility model.

The remainder of the chapter is organized as follows: Section 4.2 de-
scribes three different estimators of the extremal dependence; Section 4.3
provides evidence of dependence in the extremes of 17 equity indexes;
Section 4.4 presents results concerning the extremal behaviour of dif-
ferent HF-based volatility processes; Section 4.5 contains estimation of
continuous-time models; Section 4.6 concludes. A supplementary ap-
pendix contains additional details and results.

4.2 Measuring the extremal dependence

Measuring and estimating the extremal dependence in a time series is a
rather challenging problem. Since financial time series are not Gaussian
processes, the autocorrelation function is not well-suited for describing
the dependence structure in the extremes. In what follows, we present
three different but related measures of extremal dependence and their
estimators. Note that the definition in Equation (4.1) characterizes the
asymptotic behaviour of the conditional tail probability at lag h, but re-
ality allows us to deal only with finite samples. To circumvent this prob-
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Figure 44: Stock market crashes. The left panel shows the S&P500 (SP500),
while the right panel shows the EuroStoxx50 (ESX).
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lem, we define a threshold u as a high empirical quantile1 of the sample
{Xt}Tt=1 and study the behaviour of the exceedances of such threshold,
i.e. Xt > u.

4.2.1 Extremal index

The extremal index is a quantity arising from the Extreme Value Theory
of weakly-dependent data, and characterizes both the frequency with
which extreme events occur and the clustering features of an extreme
event, once such an event occurs. Let {Xt} be a strictly stationary se-
quence with marginal distribution function F , finite or infinite right end
point ω = sup{x : F (x) < 1} and survival function F = 1 − F . Let
X1, . . . , Xn be a random sample from F and denote the sample maxima
as Mn = max{X1, . . . , Xn}. The process {Xt} is said to have extremal
index θ ∈ [0, 1] if for integer n ≥ 1 and for each τ > 0 there exists a
sequence of real numbers {un} such that as n → ∞ the following are
equivalent,

nF (un)→ τ (4.2)

Pr(Mn ≤ un)→ e−θτ (4.3)

If θ = 1 then exceedances of a high threshold are independent, and the
standard Extreme Value Theory results on independent sequences hold
(Embrechts et al., 1997). If θ < 1 then exceedances tend to cluster in the
limit and therefore they are dependent (Leadbetter et al., 1983). Ledford
and Tawn (2003) establish a bound relationship between the conditional
probability in Equation (4.1) and the extremal index. In particular, they
show that when {Xt} is asymptotically dependent for at least one lag
then θ < 1. Conversely, if the process is asymptotically independent at
all lags, theoretical results suggest that θ = 1. We refer to Ledford and
Tawn (2003) for a detailed discussion.

Exploiting point process theory, Hsing et al. (1988) show that the
rescaled times of exceedances of a sequence un for a stationary process

1We will always consider exceedances over a high quantile and change the underlying
sample depending on what we want to study. For instance, we will consider the negated
returns to study the dependence in the negative extreme returns.
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converge weakly to a compound Poisson process with mean cluster size
θ−1. Ferro and Segers (2003) propose an intervals estimator for the ex-
tremal index θ, based on a limiting characterization of the interexceedance
times. In particular, they show that properly normalized times between
consecutive exceedances converge to a random variable which is zero
with probability 1 − θ and exponential with mean θ−1 with probability
θ. Given this characterization, they propose a moment-based estimator
of θ.

Suppose a random sample X1, . . . , Xn from F and a high threshold
u. Let N(u) =

∑n
t=1 I(Xt > u) be the number of observations exceeding

u, and let 1 ≤ S1 < · · · < Sn ≤ n be the exceedance times. The observed
interexceedance times areEi = Si+1−Si for i = 1, . . . , n−1. The intervals
estimator is a consistent estimator of the extremal index and is defined
as

θ̃(u) =

{
1 ∧ θ̂(u) if max{Ei : 1 ≤ i ≤ n− 1} ≤ 2

1 ∧ θ̂∗(u) if max{Ei : 1 ≤ i ≤ n− 1} > 2
(4.4)

where

θ̂(u) =
2(
∑n−1
i=1 Ei)

2

(n− 1)
∑n−1
i−1 E

2
i

θ̂∗(u) =
2{
∑n−1
i−1 (Ei − 1)}2

(n− 1)
∑n−1
i−1 (Ei − 1)(Ei − 2)

.

See Ferro and Segers (2003) for further details.

4.2.2 Tail dependence coefficient

Ledford and Tawn (2003) suggest estimating the extremal dependence of
a stationary sequence {Xt} with the coefficient of tail dependence. Let
{Xt} be a stationary time series with unit-Fréchet margin, i.e.

F (x) = exp(−x−1), x > 0

then under weak regularity conditions, we have that as x→∞,

Pr(Xt+h > x|Xt > x) =
Lh(x)

x1/ηh−1
(4.5)

where ηh ∈ (0, 1) and Lh(x) is such that limx→∞ Lh(tx)/Lh(x) → 1. The
coefficient of tail dependence between Xt+h and Xt is defined as Λh =

2ηh − 1 where −1 < Λh ≤ 1.
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The limiting conditional tail probability in Equation (4.5) is positive
if ηh = 1 and Lh(x) 6→ 0, otherwise it is equal to 0 if ηh < 1 or if ηh = 1

and Lh(x) → 0 as x → ∞. Consequently, Λh provides a measure of
serial dependence between extreme values h lags apart. In particular, if
Lh(x) 6→ 0 then Λh = 1 implies asymptotic dependence, meaning that
conditional on a large observation at time t there is a positive probability
that another similar large observation occurs at time t + h. On the other
hand, Λh < 1 implies asymptotic independence.

An estimator of the tail dependence coefficient can be obtained as
follows. Given a stationary series {Xt}, apply the probability integral
transform and obtain a stationary unit-Fréchet series {Yt},

Yt = − 1

log[F̂x(Xt)]

where F̂x is the empirical distribution function. Define the sequence of
pairwise-minima of observations h lags apart as {V (h)

t }, where V (h)
t =

min(Yt, Yt+h). As a consequence of Yt being Fréchet, we have that V (h) is
regularly varying,

Pr(V (h) > x) =
Lh(x)

x1/ηh

and the tail index ηh can easily be estimated with the Hill (1975) estimator

η̂h =

{
1

Nu

n∑
i=1

log

(
V

(h)
i

u

)
I{V (h)

i > u}

}−1

where u is a high threshold and Nu the number of observations exceed-
ing u. The transformation Λ̂h = 2η̂h − 1 gives an estimate of the tail
dependence coefficient for observations h lags apart.

4.2.3 Extremogram

Davis et al. (2009) introduce another tool for measuring the extremal de-
pendence in a strictly stationary series: the extremogram. In many re-
spects, one can view the extremogram as the extreme-value analogue of
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the autocorrelation function of a stationary process. For a strictly station-
ary Rd-valued time series Xt, the extremogram is defined as a limiting
sequence given by

γAB(h) = lim
n→∞

ncov(I[a−1
n Xt∈A], I[a−1

n Xt+h∈B]) (4.6)

where I[·] is the indicator function, an is a suitably chosen normalization
sequence and A,B are two fixed sets bounded away from zero. Davis
et al. (2009) use the theory of regular variation to provide sufficient con-
ditions for the existence of the limits γAB(h) in (4.6). Note that setting
d = 1 and A = B = (1,∞) one recovers the tail dependence coefficient
introduced in Section 4.2.2 for the vector (Xt, Xt+h). Indeed, if an is such
that nP (X > an) ∼ 1 as n→∞ then,

ncov(I[Xt>an], I[Xt+h>an]) ∼
Pr(Xt > an, Xt+h > an)− (Pr(Xt > an))2

Pr(Xt > an)

∼ P (Xt+h > an|Xt > an)

A natural estimator for the extremogram can be obtained by replacing
the limiting sequence an in Equation (4.6) with a high quantile of the
process. Defining am as the mth upper order statistics of the sample
X1, . . . , Xn, the sample extremogram is given by

γ̂AB(h) =

∑n−h
t=1 I[a−1

m Xt∈A,a−1
m Xt+h∈B]∑n

t=1 I[a−1
m Xt∈A]

In order to have a consistent result, m = mn → ∞ with m/n → 0

as n → ∞. Under suitable mixing conditions and other distributional
assumptions that ensure the limit in Equation (4.6) exists, Davis and
Mikosch (2009a) show that γ̂AB is asymptotically normal,√

n/m(γ̂AB − γAB:m(h))
d−→ N(0, σ2

AB(h)) (4.7)

where
γAB:m(h) = Pr(a−1

m Xt+h ∈ B|a−1
m Xt ∈ A) (4.8)

Equation (4.8) is usually referred to as the pre-asymptotic extremogram.
This asymptotic result requires some clarifications:
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(i) σ2
AB(h) is based on an infinite sum of unknown quantities and is of-

ten difficult to estimate. For this reason Davis et al. (2012) develop
a bootstrap procedure to approximate the distribution of (γ̂AB −
γAB:m) and construct asymptotically correct confidence bands for
the PA-extremogram.

(ii) γAB:m(h) can be considered a finite approximation of its asymp-
totic limit γAB(h), and cannot always be replaced by this latter in
Equation (4.7), see Davis et al. (2013) for details.

In the rest of the paper we will only consider the extremogram for
univariate time series, i.e. d = 1. Setting the threshold u at a high quantile
of the unconditional distribution and fixing the regionsA = B = [1,+∞],
the sample extremogram at lag h simply becomes

γ̂(h) =

∑n−h
t=1 I[Xt>u,Xt+h>u]∑n

t=1 I[Xt>u]
.

4.3 Do financial returns exhibit extremal depen-
dence?

Although the extremal dependence is an important aspect of financial
returns, empirical investigations of this character have not received the
deserved attention. Small assessment of such behaviour can be found in
the empirical sections of Davis et al. (2009), Davis et al. (2012) and Liu
and Tawn (2013), but to the best of our knowledge, a sound comprehen-
sive analysis on a large dataset has never been performed. The purpose
of this section is to fill this gap.

We investigate whether the upper and lower tails of the daily returns
exhibit extremal dependence. Furthermore, given the relevance of the
volatility in the financial econometrics literature, we think that insights
on its extremal behaviour are important from a modelling perspective.
To this end, we inspect the serial dependence in the extreme observa-
tions of the squared returns (R2) and the realized variance (RV). These
are both non-parametric estimators of the variation of the price path of
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an asset, but while R2 is built upon close-to-close daily observations, RV
is obtained as the sum of squares of intra-day returns recorded during
the opening hours of the stock exchange. Formally, let pt denote the log-
price of an asset at time t and rt,∆ = pt − pt−∆ the discretely sampled
∆-period return. The RV on day t is then defined as

RVt =

N∑
j=1

r2
t−1+(j·∆) (4.9)

4.3.1 Data description

The empirical analysis is based on the Oxford-Man Institute “Realized
Library” version 0.2 (Heber et al., 2009). We consider 17 different stock
indices from the beginning of 2000 to the end of 2014, see Table 47. For
each asset, we consider the daily returns and the 5-min RV.

Table 47: Data description. Time series considered (Asset), the abbrevia-
tion (Abbr.) that we use throughout and their length (T). The starting date
and the ending dates of the samples are respectively, 2 January 2000 and 31
December 2014. Differences in the number of observations arise from the
different closures of the stock exchanges.

Asset Abbr. T Asset Abbr. T

Amsterdam Exchange Index AEX 3816 IBEX35 IBX 3782
All Ordinaries Index AOI 3743 IPC Mexico IPC 3748
Bovespa Index BVP 3664 Korea Composite Index KCI 3690
CAC40 CAC 3817 Nasdaq 100 NSQ 3747
DAX30 DAX 3795 Nikkei 225 NK 3630
Dow Jones Industrial DJ 3746 Russel 2000 Index RUS 3745
Euro Stoxx 50 ESX 3794 SP500 SPX 3744
FTSE MIB MIB 3778 Swiss Market Index SMI 3749
FTSE100 FT 3764

4.3.2 Extremal index

We start by considering the extremal index, as it is the most natural pa-
rameter to describe the degree of dependence in the extremes of a time
series. For each asset in Table 47, we estimate the extremal index on
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the upper tail of the following four time series: the daily log-returns
rt, the negated returns lt = −rt, and the two variance proxies, r2

t and
RVt. We use the intervals estimator described in Section 4.2.1, setting the
threshold u at the 95th empirical quantile of each series, and compute
the 95%-confidence bounds with the bootstrap procedure described in
Ferro and Segers (2003). Recall that an extremal index θ < 1 implies ex-
tremal dependence. The estimates θ̂ reported in Table 48 are well below
one for each series of extremes across the different assets. Furthermore,
the bootstrap confidence intervals do not contain the value of one in any
case, suggesting that both tails and the variance exhibit extremal depen-
dence.

Table 48: Extremal index estimates. Estimated values (est.) of θ̂ at the
threshold corresponding to the 95th quantile, and 95%-bootstrap confidence
bounds (q0.025, q0.975).

Upper tail Lower tail Squared return Realized variance

est. q0.025 q0.975 est. q0.025 q0.975 est. q0.025 q0.975 est. q0.025 q0.975
AEX 0.29 0.23 0.50 0.23 0.16 0.41 0.18 0.11 0.40 0.06 0.04 0.17
AOI 0.29 0.20 0.61 0.28 0.19 0.64 0.20 0.13 0.46 0.12 0.08 0.42
BVP 0.54 0.42 0.82 0.46 0.36 0.66 0.35 0.25 0.56 0.24 0.14 0.44

CAC 0.27 0.22 0.46 0.26 0.18 0.60 0.19 0.13 0.49 0.09 0.06 0.23
DAX 0.29 0.23 0.45 0.27 0.18 0.59 0.19 0.13 0.34 0.08 0.04 0.29

DJ 0.31 0.25 0.45 0.26 0.18 0.47 0.08 0.05 0.47 0.08 0.04 0.25
ESX 0.35 0.28 0.53 0.29 0.20 0.65 0.16 0.11 0.41 0.10 0.06 0.22
MIB 0.17 0.12 0.64 0.37 0.31 0.51 0.14 0.10 0.45 0.12 0.07 0.28

FT 0.26 0.20 0.46 0.22 0.16 0.42 0.12 0.08 0.32 0.10 0.06 0.27
IBX 0.31 0.25 0.59 0.18 0.13 0.69 0.15 0.11 0.43 0.15 0.11 0.33
IPC 0.38 0.29 0.57 0.32 0.25 0.47 0.22 0.16 0.39 0.12 0.07 0.38
KCI 0.43 0.35 0.57 0.31 0.25 0.47 0.39 0.31 0.51 0.09 0.06 0.34

NSQ 0.22 0.17 0.35 0.14 0.10 0.43 0.09 0.06 0.29 0.05 0.03 0.17
NK 0.47 0.36 0.77 0.60 0.51 0.73 0.32 0.25 0.45 0.20 0.13 0.42

RUS 0.26 0.20 0.44 0.36 0.28 0.51 0.13 0.08 0.46 0.09 0.05 0.33
SPX 0.25 0.20 0.39 0.12 0.09 0.56 0.09 0.06 0.41 0.07 0.04 0.23
SMI 0.30 0.23 0.51 0.28 0.20 0.54 0.20 0.14 0.42 0.06 0.04 0.19

4.3.3 Tail dependence coefficient

Liu and Tawn (2013) propose a statistical test based on the tail depen-
dence coefficient described in Section 4.2.2 to draw insights on the ex-
tremal dependence of the upper and lower tails of the asset return distri-

149



bution2. They propose to test whether the tail behaviour of the returns
are better represented by a GARCH model, which implies extremal de-
pendence, or a SV model with Gaussian innovations, which entails ex-
tremal independence. More formally, given that for adjacent observa-
tions (h = 1) a GARCH process presents a coefficient of tail dependence
Λh = 1, while a Gaussian SV process have Λh = 0, they substantially test
the following hypothesis,

H0 : Λ1 = 1 vs H1 : Λ1 = 0

Once an estimate of the tail dependence coefficient Λ̂1 is obtained with
the procedure outlined in Section 4.2.2, the decision of rejecting H0 is
based on an optimal cut-off value λ∗ ∈ [0, 1]. If Λ̂1 ≥ λ∗ then the se-
ries is better fitted by a GARCH, hence it presents extremal dependence,
otherwise the SV model is favoured and the extremes are independent.
The value of λ∗ is obtained with a Monte Carlo procedure detailed in
Appendix C.1.2. For a time series of 4000 observations and a threshold
level at the 95th empirical quantile we find that λ∗ = 0.18 for both tails
(due to symmetry arguments).

Table 49 reports the values of Λ̂1 for the upper and lower tails of the 17
assets considered. In bold, the time series for which the null hypothesis
of GARCH tails is rejected favouring a SV process. The results highlight
thatH0 is rejected only on one occasion, thus the series present extremal
dependence both in the upper and lower tails, confirming the results ob-
tained with the extremal index.

4.3.4 Sample extremogram

The preceding analysis aimed to ascertain the presence of extremal de-
pendence. We now turn our attention to the magnitude and the per-
sistence of such dependence. By means of the sample extremogram in-
troduced in Section 4.2.3, we check the degree of dependence in the ex-
tremes up to 100 lags.

2This test can be only applied to the return time series, therefore R2 and RV are not
considered here.
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Table 49: Tail dependence coefficient estimates. Values of Λ̂1 for the upper
and lower tails of the different assets. In bold the time series for which H0

is rejected.

Asset Upper tail Lower Tail Asset Upper tail Lower tail

AEX 0.23 0.48 IBX 0.25 0.27
AOI 0.39 0.42 IPC 0.34 0.46
BVP 0.11 0.45 KCI 0.39 0.40
CAC 0.37 0.37 NSQ 0.41 0.51
DAX 0.32 0.43 NK 0.35 0.21

DJ 0.38 0.42 RUS 0.27 0.28
ESX 0.25 0.35 SPX 0.33 0.43
MIB 0.31 0.33 SMI 0.53 0.53
FT 0.19 0.38

The first two columns of Figure 45 report the sample extremograms
for the upper and lower tails of the 17 assets, obtained at the thresh-
old level u corresponding to the 95th quantile of rt and lt respectively.
We also report the 99%-confidence bound obtained under the assump-
tion of independence with the permutation procedure described in Davis
et al. (2012). Values of the sample extremogram extending beyond this
bound support evidence of extremal dependence at the corresponding
lag. Overall, most of the series present a degree of extremal dependence
that persists for more than one lag. Exceptions are BVP, which does not
exhibit any dependence in the upper tail, consistent with the result ob-
tained with the tail dependence coefficient, and AEX, IBX, and IPC which
present a mild degree of dependence. The lower tail tends to exhibit
stronger tail dependence, with a higher magnitude at the early lags and
a higher degree of persistence.

The third and the fourth columns of Figure 45 show the sample ex-
tremograms at the 95th quantile for R2 and RV. Dependence in the ex-
tremes of the second moment is even stronger than that observed at the
return level. All the series exhibit a high degree of dependence that
lasts for more than 50 lags. This evidence on the return variance agrees
with what we observe in the returns. Indeed, as put forth in Davis and
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Mikosch (2009a) and Mikosch and Rezapur (2013), extremal dependence
in the volatility process is crucial to generate extremal dependence in the
return process.

Figure 45: Sample Extremograms. The points show the values of the sam-
ple extremogram at the 95th quantile up to 100 lags. The 99%-confidence
bound in red is equal to 0.09 in each panel. Blue points are those exceeding
the confidence bound and highlight the significance of the dependence at
the corresponding lag. Grey points correspond to not significant lags.

4.3.5 Summary

Overall, this analysis indicates that extremal dependence is strong and
persistent in both tails of financial returns, and in both R2 and RV. Since
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some degree of arbitrariness is implied by the choice of the 95th quantile
to run the extreme value analysis, a sensitivity analysis is opportune.
We repeat the study at the 97th quantile, and the results, reported in
Appendix C.1, confirm the conclusions above.

4.4 Extremal behaviour of HF-based volatility
models

The empirical analysis in Section 4.3 shows that financial returns present
extremal dependence, therefore econometric models able to capture this
behaviour are required. Extremal properties of standard econometric
models, such as GARCH and SV, have been widely studied. Recent mod-
els based on HF data prove to outperform the standard GARCH and SV
models in terms of forecast (Brownlees and Gallo, 2010; Engle and Gallo,
2006; Hansen et al., 2012; Shephard and Sheppard, 2010), however noth-
ing is known about their extremal behaviour. This section fills the gap.

To study the extremal properties of a class of HF-based volatility pro-
cesses, we set up an appropriate environment where a general realized
measure characterizes the conditional returns distribution. In Section 4.3
we consider the realized variance, but there exist many other measures
that can be used instead (Barndorff-Nielsen and Shephard, 2007). Let rt
be the return and xt the realized measure at time t, we will consider the
following general framework,

rt = σtZt (4.10)

σ2
t = ω + κxt−1, ω, κ ≥ 0 (4.11)

xt = m(Ft−1;β; ηt) (4.12)

where Zt ∼ iid(0, 1), m(·) is a general function defined on the infor-
mation set available at time t − 1, Ft−1, and depending on the vector of
parameters β and the error term ηt ∼ iid(0, σ2

η). We will refer throughout
to these three equations as the return equation, the variance equation, and
the realized equation. Equation (4.11) nests inside the HEAVY structure of
Shephard and Sheppard (2010), as they define σ2

t = ω + κRVt−1 + δσ2
t−1.
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The processes defined by Equations (4.10)-(4.12) can be considered latent
volatility processes, but the fact that we rely on the observable xt repre-
sents a crucial difference with the standard class of SV models.

The extremal behaviour of such a general class of processes strongly
depends on the specification of the function m(·) and the specification of
the error term ηt. We provide theoretical arguments for the existence of
HF-based volatility processes that are asymptotically independent and
HF-based volatility processes that instead present extremal dependence.
We then use Monte Carlo simulations to obtain a simulated version of
the pre-asymptotic extremogram of these processes and compare it with
the sample extremogram obtained from the real data3. Indeed, proving
asymptotic dependence between consecutive observations is not enough
for empirical purposes, as one also need to know whether the degree
and the persistence of the extremal dependence implied by a process is
consistent with that observed in the real data.

In what follows, we start considering a class of models that are asymp-
totically independent and then show how extreme dependent HF-based
volatility processes can be constructed following Mikosch and Rezapur
(2013). In order to be coherent with the empirical analysis of Section 4.3,
we will only consider the RV as realized measure, but this does not pre-
vent the use of other measures.

4.4.1 Asymptotically independent HF-based volatility pro-
cesses

Let rt and RVt be the return and the realized variance at time t respec-
tively. The first specification we consider for the realized equation is a log-
arithmic HAR model (Andersen et al., 2007; Corsi, 2009) with Gaussian
innovations ηt ∼ N(0, σ2

η). This simple three-factor model has attracted
lot of attention in the financial econometrics literature because of its abil-
ity to capture the long-range pattern in the volatility decay. Casting this

3Note that we refer to the simulated pre-asymptotic extremogram of the process and not
to the extremogram of the process because this would require deriving a specific asymp-
totic limit. In contrast, the simulated pre-asymptotic extremogram is obtained by applying
the sample extremogram to a sequence of random observations generated by the process,
and it gives insights on the extremal behaviour only at a finite level.
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model in the environment defined by Equations (4.10)-(4.12), we obtain
the HAR process,

rt = σtZt,
σ2
t = ω + κRVt−1,

logRVt = β0 + βd logRVt−1 + βw logRV
(5)
t−1 + βm logRV

(22)
t−1 + ηt,

(4.13)
where Zt ∼ N(0, 1), ηt ∼ N(0, σ2

η), logRV
(h)
t−1 = 1

h

∑h
j=1 logRVt−j with

logRV
(1)
t−1 ≡ logRVt−1, and (βd + βw + βm) < 1 to guarantee stationar-

ity. A logarithmic specification for RVt is used because it does not re-
quire positivity constraints on the parameters, and it is preferable from
an econometric perspective as logRVt exhibits a bell-shaped distribution.
The extremal behaviour of such process is defined in Proposition 1.

Proposition 1. Consider the stationary process in (4.13), then the sequences
{RVt}, {σt} and {|rt|} are all asymptotically independent.

Proof. Note first that the realized equation of the process in (4.13) can be
written as an autoregressive (AR) process of order 22,

logRVt = β0 + βd logRVt−1 + βw logRV
(5)
t−1︸ ︷︷ ︸

1
5 logRVt−1+···+ 1

5 logRVt−5

+βm logRV
(22)
t−1︸ ︷︷ ︸

1
22 logRVt−1+···+ 1

22 logRVt−22

+ηt

= β0 + (βd + 1
5βw + 1

22βm) logRVt−1 + ( 1
5βw + 1

22βm) logRVt−2

+ · · ·+ 1
22βm logRVt−22 + ηt

= β̃0 + β̃1 logRVt−1 + · · ·+ β̃22 logRVt−22 + ηt

where β̃0 = β0, β̃1 = βd + 1
5βw + 1

22βm and so on. Therefore, logRVt is
a Gaussian linear process. Note that log σ2

t inherits the behaviour from
logRVt−1 up to a shift in scale and location. Without loss of generality,
we can set the constants (ω, κ) = (0, 1) so that log σ2

t = logRVt−1 and the
asymptotic independence of RVt, σt and |rt| follows from Theorem 1 of
Breidt and Davis (1998).
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There is wide evidence of an asymmetric effect between the returns
and the volatility, which goes under the name of leverage effect (Glosten
et al., 1993). We consider also an asymmetric model as in Maheu and
McCurdy (2011), and obtain the levHAR process,

rt = σtZt,
σ2
t = ω + κRVt−1,

logRVt = β0 + βd logRVt−1 + βw logRV
(5)
t−1 + βm logRV

(22)
t−1 + γZt + ηt,

(4.14)
where Zt ∼ N(0, 1), ηt ∼ N(0, σ2

η), (βd + βw + βm) < 1 to guarantee
stationarity, and γ parameter accounts for the asymmetric feedback be-
tween the innovations and the volatility. This process presents the same
extremal behaviour of the process in (4.13).

Although these HF-based volatility processes are asymptotically in-
dependent, knowledge of the dependence they generate above a high
quantile is still relevant in practical applications such as risk manage-
ment and regulation. We compute the simulated pre-asymptotic extremo-
gram implied by these processes and compare it with the sample extremo-
gram of a real time series. We consider only the time series of the S&P500
which has N = 3743 observations. We set the parameters of each pro-
cess at values corresponding to the Maximum Likelihood (ML) estimates
obtained by fitting the models to the S&P500, and generate B = 100

samples of N observations for the rt and RVt series. For each sample
b ∈ {1, . . . , B}, we estimate the sample extremogram of both the upper
and lower tails of the returns, R2 and RV. This allows us to obtain the
simulated pre-asymptotic extremograms of the series rt, lt, r2

t and RVt,
and compute the confidence interval associated to them. We can thus
compare the sample extremograms obtained on the S&P500 with those
implied by the random processes.

In the second and third rows of Figure 46, we report the simulated
pre-asymptotic extremograms computed at the 95th quantile for the HAR
and the levHAR processes with the corresponding 95%-confidence in-
tervals. As can be seen from the grey-shaded area nicely covering the
sample extremogram of RV, both models appropriately account for the
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slow decay of the dependence in the extremes of RV. However, they fail
to capture the dependence in both the tails of the returns and in the ex-
tremes of R2. For comparison purposes, the first row of Figure 46 reports
the simulated pre-asymptotic extremograms of a GJR-GARCH(1,1) pro-
cess (Glosten et al., 1993). The grey-shaded areas perfectly covering the
sample extremograms obtained on the S&P500 suggest that the GARCH
process perform much better than the HAR and levHAR processes, par-
ticularly in the lower tail and R2. This result highlights the importance of
a model endowed with the appropriate extremal properties to character-
ize the behaviour of financial returns. Finally, comparing the HAR with
the levHAR, it seems that adding the leverage parameter improves the
results. In particular, not only it allows to capture the asymmetric degree
of dependence in the two tails, but it produces a stronger dependence in
the extremes of the volatility.

4.4.2 Asymptotically dependent HF-based volatility pro-
cesses

We have seen that the HAR and levHAR processes are asymptotically in-
dependent. We consider two different approaches to obtain extremal de-
pendence in a HF-based volatility process. The first one requires chang-
ing the structure of the realized equation with respect to the one used in
Section 4.4.1. The second one involves the modelling of the variance of
the variance, σ2

η .
Mikosch and Rezapur (2013) show that a stochastic volatility process

with recurrent structure (Kesten, 1973) exhibits extremal dependence.
We consider the stationary MEM process which takes the following form

rt = σtZt,
σ2
t = ω + κRVt−1 + δσ2

t−1,
RVt = µtη

2
t ,

µt = β0 + β1RVt−1 + β2µt−1,

(4.15)

where Zt ∼ N(0, 1), ηt ∼ N(0, 1), ω, κ, δ ≥ 0, δ ∈ (0, 1], β0, β1, β2 ≥ 0,
and β1 +β2 ∈ [0, 1). The realized equation is defined as a MEM (Brownlees
and Gallo, 2010; Engle, 2002; Engle and Gallo, 2006)with the mean fol-
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lowing a recurrent equation. This structure was proposed in Shephard
and Sheppard (2010) that also add the autoregressive term σ2

t−1 in the
variance equation, so we include it to be coherent with their framework
though it is not relevant to prove the extremal dependence property in
Proposition 2.

Proposition 2. Consider the stationary process in (4.15), then the sequences
{RVt}, {σt} and {|rt|} present extremal dependence, i.e. the extremal indexes
θRV , θσ and θ|r| are strictly lower than one.

Proof. Note first that µt can be represented as a stochastic recurrent equa-
tions Kesten (1973),

µt = β0 + µt−1

(
β1η

2
t−1 + β2

)
.

Assume, without lost of generality that (ω, κ, δ) = (0, 1, 0) so that σ2
t =

RVt−1. Extremal dependence of RVt, σt and |rt| directly follows from
Theorem 4.4 of Mikosch and Rezapur (2013).

The fourth row of Figure 46 shows the simulated pre-asymptotic ex-
tremograms computed at the 95th quantile for an asymmetric MEM pro-
cess and the corresponding 95%-confidence intervals. Note that the lever-
age effect is obtained with the realized semi-variance as suggested in
Shephard and Sheppard (2010), rather than resorting on the lagged sign
of the innovations as in (4.14). This process perfectly captures the depen-
dence in both tails of the returns and R2, outperforming also the GJR-
GARCH process.

Corsi et al. (2008) find strong evidence of time-variation and depen-
dence in the variance of the variance and propose to model this behaviour.
Following their intuition, we relax the assumption that ηt ∼ iid(0, σ2

η)

and propose the HAR-G process,

rt = σtZt,
σ2
t = ω + κRVt−1,

logRVt = β0 + βd logRVt−1 + βw logRV
(5)
t−1 + βm logRV

(22)
t−1 + ηt

σ2
η,t = ψ0 + ψ1η

2
t−1 + ψ2σ

2
η,t−1

(4.16)
with Zt ∼ N(0, 1) and ηt ∼ N(0, σ2

η,t). To guarantee stationarity of the
process we require βd+βw+βm < 1 and ψ1+ψ2 < 1. We do not present a
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formal proof for the extremal behaviour of this process. However, based
on the result of Borkovec (2000) showing that an AR(1)-ARCH(1) process
exhibits extremal dependence, we conjecture that the extremes of logRVt

are asymptotically dependent and that this property is inherited by σ2
t

and |rt| as a consequence of Theorem 4.4 of Mikosch and Rezapur (2013).
In the fifth and sixth rows of Figure 46, we report the simulated pre-

asymptotic extremograms computed at the 95th quantile for the HAR-G
and the levHAR-G processes and the corresponding 95%-confidence in-
tervals. The latter process simply corresponds to the levHAR process,
but we also include GARCH dynamics to model the variance of logRVt.
First, we note that both processes imply a higher degree of dependence
across the four series compared to the baseline HAR and levHAR pro-
cesses. However, the HAR-G process is still unable to account for the
whole dependence exhibited by the sample extremograms of the S&P500.
This suggests that though this process might be asymptotically depen-
dent, the degree of dependence it entails would not be sufficient to ap-
propriately model financial returns. In contrast, the levHAR-G process
generates a high degree of dependence in the extremes, highlighting the
importance of including a leverage parameter.

4.4.3 Summary

In this section, we have shown that HF-based volatility processes can
exhibit extremal dependence under appropriate specifications. We have
seen that the asymmetric MEM and the levHAR-G processes successfully
replicate the dependence in the extremes of the S&P500. To strengthen
this evidence, we run the same Monte Carlo analysis at the 97th quantile.
Results reported in Appendix C.2 confirm our findings.

4.5 Continuous-time models

Continuous-time volatility models are widely used in practice for deriva-
tive pricing, portfolio choice and risk management, and it is thus impor-
tant that their extremal behaviour is consistent with that observed in real
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Figure 46: HF-based processes. The grey-shaded areas correspond to the
95%-confidence interval of the simulated pre-asymptotic extremograms.
The points represent the first 100 lags of the sample extremograms com-
puted at the 95th quantile of the series rt, lt, r2t and RVt of the S&P500. Red
points identify the lags at which the dependence exceeds the confidence
bounds.
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data. Extremal dependence of continuous-time models has been investi-
gated for several classes of models (Fasen, 2009). In this section, we do
not want to examine further the theoretical properties of such models,
but we want to show how to make the extremal dependence a central
character of the estimation strategy.

Estimation of continuous-time volatility models is complicated by the
fact that the volatility is a latent process. To overcome this issue, recent
works have tried to use the daily realized measures to make the latent
volatility observable at discrete points in time, see Bollerslev and Zhou
(2002) and Corsi and Renò (2012) amongst others. We propose to use the
Simulated Method of Moments (SMM) defined in Corradi and Distaso
(2006) along with extreme moment conditions to match the extremal de-
pendence that characterizes daily financial returns with that implied by
the continuous-time model.

Let S be a sample of observations of length T and θ ∈ Θ be the vec-
tor of parameters governing the dynamics of the continuous-time mo-
del to be estimated. Let ḡ∗T be a vector of empirical moments obtained
from the sample S and g̃S(θ̃) be a vector of simulated moments obtained
from S random samples generated from the continuous-time model with
parameters θ̃. The SMM estimator is obtained as the minimizer of the
quadratic form

θ̂ = arg min
θ∈Θ

(ḡ∗T − g̃S(θ))W−1
T (ḡ∗T − g̃S(θ))

where WT is a properly chosen positive semi-definite matrix.
To account for the persistence in the volatility, we estimate a two-

factor model as in Corsi and Renò (2012). Fasen (2009) shows that the
GARCH diffusion of Nelson (1990) presents extremal dependence, there-
fore we consider this process to model the volatility dynamics. Let pt be
the logarithmic price at time t, the model specification is

dpt =
√
V 1
t dW

1
t +

√
V 2
t dW

2
t ,

dV 1
t = κ1

(
ω1 − V 1

t

)
dt+ η1V

1
t dB

1
t ,

dV 2
t = κ2

(
ω2 − V 2

t

)
dt+ η2V

2
t dB

2
t ,

(4.17)

whereB1
t ⊥ B2

t andW 1
t ⊥W 2

t are Brownian motions with corr(W i
t , B

i
t) =

ρi, for i = 1, 2.
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Table 50: Continuous-time model estimates. SMM estimates for the pa-
rameters of the model in Equation (4.17) obtained with the annualized RV
of the S&P500.

Parameters κ1 κ2 ω1 ω2 η1 η2 ρ1 ρ2

SMM estimates 0.516 0.005 0.005 0.034 1.598 0.190 0.396 -0.943

We use the following moment conditions to estimate the model: mean
and variance of the Quadratic Variation (QV); the average autocorrela-
tion of QV for lags 1-10, 11-20, 21-30 and 31-40; the average extremogram
of both the upper and lower tails of the return distribution for lags 1-10.
Since QV is unobservable, we replace the empirical moments for QV with
those of RV. Overall we have eight moment conditions that exactly match
the number of parameters of the model in (4.17).

Distinguishing between the extreme moment conditions of the upper
and lower tails, one can identify the parameters ρ1 and ρ2. From this
perspective, we add to the work of Harvey and Shephard (1996) and
Corsi and Renò (2012) which try to estimate asymmetric continuous-time
models.

Table 50 reports the SMM estimates for the parameters of the model
in Equation (4.17) obtained on the S&P500. The results are compatible
with those typically encountered in the literature (Corsi and Renò, 2012).
The sum of the long-term parameters, ω1 + ω2, is fairly close to the un-
conditional mean of the annualized RV, equal to 0.033. The values of κ1

and ρ1 imply a fast-mean reverting factor positively correlated with the
returns, while the values of κ2 and ρ2 indicate a slow mean-reverting
factor presenting a strong negative correlation with the returns.

Figure 47 reports the simulated pre-asymptotic extremograms at the
95th quantile obtained with the parameters in Table 50 and the sample
extremograms of the S&P500 for both the return tails. We can see that
the sample extremograms are within the 95%-confidence bounds of the
simulated extremograms implied by the two-factor GARCH diffusion,
therefore we conclude that this model perfectly captures the degree of
dependence in the extremes of the daily returns.
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Figure 47: Continuous-time model extremogram. The bars show the sam-
ple extremogram for the S&P500. The black line and the red lines corre-
spond respectively to the mean and the 95% confidence bands of the simu-
lated extremogram of the model in Equation (4.17).

4.6 Conclusions

Although empirical investigations of autocorrelations in returns and vo-
latility have long history in financial economics and econometrics, de-
pendence in the extremes has been underrated. Understanding the ex-
tremal properties of financial time series and related models is of central
importance to gauge financial risk, and this paper gives three contribu-
tions in this direction.

First, we add new evidence on the extremal behaviour of daily stock
returns, finding that dependence in the extremes is strong and persistent
in both tails of the return distribution, and also in the volatility process.

Second, we study the extremal behaviour of several HF-based volati-
lity processes and show how to obtain a process which exhibits extremal
dependence. Furthermore, we find that modelling the persistence in RV
and the leverage effect is crucial to account for the degree of dependence
observed in the extremes of financial time series.

Finally, we show how extreme moment conditions can be used within
a SMM estimator to estimate asymmetric continuous-time volatility mod-
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els. We find that a two-factor GARCH diffusion process perfectly model
the dependence in the tails of the S&P500.
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Appendix C

C.1 Do Financial returns exhibit extremal de-
pendence?

This section of the Appendix reports additional analysis concerning the
empirical part of the paper on the 17 equity stock indices.

C.1.1 Extremal index

The interval estimator of the extremal index, described in Section 4.2.1,
requires setting a threshold level that identifies extreme observations. In
Section 4.3.2, we set this threshold at the 95th quantile of each variable
for which the extremal index is estimated. Table 51 reports the results
obtained at the 97th quantile.

C.1.2 Tail dependence coefficient

The cut-off value λ∗

To test the null hypothesis H0 in Section 4.3.2, we consider the parsi-
monious method of Liu and Tawn (2013). This consists in fixing a value
λ∗ ∈ [0, 1] and deciding that the series is better fitted by a GARCH mo-
del when Λ̂ > λ∗ and preferring a SV model with Gaussian innovations
otherwise.

Assume that the return rt follows a multiplicative error process rt =

σtZt with Zt ∼ N(0, 1). The volatility dynamics of the GARCH(1,1) pro-
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Table 51: Extremal index estimates. Estimated values (est.) of θ̂ at the
threshold level corresponding to the 97th quantile and bootstrap confidence
bounds (q0.025, q0.975) at the 0.05 level.

Upper tail Lower tail Squared return Realized variance

est. q0.025 q0.975 est. q0.025 q0.975 est. q0.025 q0.975 est. q0.025 q0.975
AEX 0.21 0.15 0.63 0.25 0.19 0.42 0.18 0.11 0.50 0.10 0.06 0.24
AOI 0.22 0.16 0.65 0.29 0.19 0.58 0.25 0.17 0.49 0.11 0.06 0.42
BVP 0.59 0.47 0.78 0.42 0.30 0.68 0.31 0.20 0.53 0.28 0.14 0.68

CAC 0.26 0.20 0.56 0.25 0.18 0.63 0.20 0.14 0.43 0.10 0.06 0.32
DAX 0.21 0.15 0.54 0.30 0.22 0.52 0.17 0.12 0.32 0.07 0.05 0.21

DJ 0.16 0.12 0.61 0.16 0.12 0.78 0.12 0.08 0.49 0.07 0.04 0.45
ESX 0.18 0.13 0.64 0.29 0.21 0.51 0.12 0.08 0.41 0.10 0.06 0.28
MIB 0.26 0.19 0.66 0.22 0.15 0.49 0.22 0.15 0.49 0.11 0.07 0.33

FT 0.24 0.18 0.46 0.19 0.14 0.45 0.16 0.10 0.34 0.16 0.10 0.48
IBX 0.21 0.17 0.69 0.25 0.19 0.59 0.23 0.16 0.56 0.13 0.09 0.44
IPC 0.33 0.25 0.53 0.29 0.22 0.40 0.22 0.15 0.37 0.17 0.10 0.46
KCI 0.41 0.34 0.56 0.50 0.42 0.65 0.30 0.23 0.53 0.14 0.09 0.52

NSQ 0.09 0.07 0.49 0.14 0.10 0.49 0.08 0.05 0.37 0.07 0.05 0.24
NK 0.44 0.33 0.69 0.48 0.36 0.67 0.26 0.18 0.48 0.22 0.13 0.47

RUS 0.18 0.12 0.41 0.33 0.23 0.60 0.13 0.07 0.55 0.13 0.07 0.60
SPX 0.13 0.10 0.59 0.15 0.11 0.62 0.12 0.07 0.47 0.08 0.04 0.50
SMI 0.28 0.21 0.54 0.33 0.24 0.59 0.20 0.13 0.44 0.08 0.05 0.26

cess and the first-order SV process of Taylor (1982) are respectively de-
fined by the following two equations,

σ2
t = α0 + α1r

2
t−1 + β1σ

2
t−1 (C.1)

log(σ2
t ) = ω + ψ1 log(σ2

t−1) + νt (C.2)

where νt ∼ N(0, σν). To set λ∗, Liu and Tawn (2013) propose to calculate
by Monte Carlo simulations the Type-I and Type-II errors of the hypoth-
esis test

H0 : the series is GARCH vs H1 : the series is SV

for different parameters of the GARCH and SV models in Equations
(C.1)-(C.2), and different cut-off points λ∗. Let P1(α1, λ) be the proba-
bility that a GARCH series with parameter α1 is identified as a SV series
(Type-I error) for the cut-off point λ and P2(ψ1, λ) be the probability that
a SV series with parameter ψ1 is identified as GARCH (Type-II error).
The optimal cut-off point λ∗ is then given by,

λ∗ = arg min
λ∈(0,1)

{
max

α1,ψ1∈(0,1)
{max{P1(α1, λ), P2(ψ1, λ)}}

}
.
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We fix the length of each random series to n = 4000, consistent with
the length of the time series we considered. We set the threshold level
to calculate the coefficient of tail dependence at the 95th quantile. We
allow the GARCH parameter α1 to vary in the interval α ∈ [0.01, 0.98],
with α1 + β1 = 0.98 and the SV parameter ψ1 to range within [0.01, 0.98].
We find that for these specific settings the decision rule cut-off is λ∗ =

0.18. Figure 48 reports the values of max{P1(α1, λ), P2(ψ1, λ)} for the
different candidate cut-off points obtained using 100 replications for each
parameter.

Figure 48: max{P1(α1, λ), P2(ψ1, λ)} for λ∗ ∈ (0, 1) with θ = α1 = ψ1. The
dotted line represent the optimal cut-off value λ∗ = 0.18.
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Robustness checks

In Section 4.3.3, we estimate the coefficient of tail dependence on both
tails at threshold level corresponding to the 95th quantile. Table 52 re-
ports the estimated coefficients at the threshold level corresponding to
the 97th quantile. With the Monte Carlo procedure described above, we
have that λ∗ = 0.16 in this case.

Table 52: Tail dependence coefficient estimates. Values of Λ̂1 for the upper
and lower tails of the different assets. In bold the time series for which H0

is rejected.

Asset Upper tail Lower Tail Asset Upper tail Lower tail

AEX 0.36 0.54 IBX 0.37 0.37
AOI 0.40 0.44 IPC 0.33 0.55
BVP 0.15 0.56 KCI 0.37 0.35
CAC 0.23 0.34 NSQ 0.37 0.49
DAX 0.21 0.29 NK 0.45 0.15

DJ 0.43 0.49 RUS 0.41 0.36
ESX 0.43 0.39 SPX 0.40 0.51
MIB 0.32 0.27 SMI 0.57 0.52
FT 0.18 0.31

C.1.3 Extremogram

Figure 45 reports the sample extremograms obtained at the 97th quantile
for the series rt, lt, RVt and r2

t . We also report the 99%-confidence bound
obtained under the assumption of independence with the permutation
procedure described in Davis et al. (2012). All the series present a degree
of extremal dependence that persists for more than one lag, particularly
in R2 and RV. These results are coherent with those obtained in Figure 45
at the 95th quantile.
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Figure 49: Sample Extremograms. The points show the values of the sam-
ple extremogram at the 97th quantile up to 100 lags. The 99%-confidence
bound in red is equal to 0.09 in each panel. Blue points exceed the confi-
dence bound and highlight the significance of the dependence at the corre-
sponding lag. Grey points correspond to not significant lags.
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C.2 Extremal behaviour of HF-based volatility
models

In Section 4.4, we consider exceedances over the 95th quantile to approx-
imate the limiting extremal dependence. To strengthen our conclusion,
the simulated extremogram at the 97th quantile are reported in Figure
50.

Figure 50: HF-based processes. The grey-shaded areas correspond to the
95%-confidence interval of the simulated pre-asymptotic extremograms.
The points represent the first 100 lags of the sample extremograms com-
puted at the 97th quantile of the series rt, lt, r2t and RVt of the S&P500. Red
points identify the lags at which the dependence exceeds the confidence
bounds.
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Chapter 5

Realized Peaks over
Threshold: a
High-Frequency Extreme
Value Approach for
Financial Time Series

5.1 Introduction

Tail-risk has been at the heart of discussions among economists, bankers
and world leaders in the aftermath of the 2008 stock market crash. Al-
though being an elusive notion, tail risk tends to be associated to large
negative events which have a positive but rather small probability of oc-
currence. Appropriate management of this kind of risk is of the utmost
importance from both policy and regulatory perspectives and for the in-
ternal risk control of financial institutions. For this purpose, several risk
measures have been defined which require forecasting quantiles deep in
the lower tail of the financial returns distribution.

Traditional parametric methods based on estimation of entire densi-
ties are mostly ill-suited for the assessment of extreme quantiles. These
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parametric methods strive to produce a good fit in regions where most of
the data fall, potentially at the expense of a good fit in the tails. Similarly,
it is well-known that non-parametric methods of density estimation such
as kernel smoothing perform poorly in the tails.

Extreme Value Theory (EVT) is a branch of probability theory which
focusses on extreme outcomes and provides models for them. In par-
ticular, instead of forcing a single distribution on the entire sample, this
theory allows for the investigation of only the tails of the sample distri-
bution using limit laws. Estimates of probabilities associated with quan-
tiles even higher than the most extreme observations are then obtained
by extrapolation.

Use of EVT in financial applications has become more and more com-
mon over the last fifteen years. Danielsson and de Vries (1997) and Lon-
gin (2000) use EVT to model the unconditional return distribution and
emphasize its accuracy in predicting tail-risk. In a critical discussion of
the use of EVT in risk management, Diebold et al. (2000) put forth both
the opportunities and pitfalls of such applications. Their main criticism
regards the time dependence that characterize financial returns. Specif-
ically, while the probabilistic results underlying the theory hold for iid
observations, time series in economics and finance usually do not satisfy
this requirement. Despite that, they support the approach and foster its
application to the tails of the conditional return distribution.

To model the tails of the time-varying conditional return distribution,
two different paths have been taken. One consists in specifying a model
for the conditional mean and variance, and then applying an EVT-based
model to the tails of the standardized residuals (McNeil and Frey, 2000).
If the model for the first two conditional moments completely charac-
terize the dependence structure, then the standardized residuals should
be approximately iid. A second strategy is to fit a non-stationary ex-
tremal model to account for the dependence in the original data (Chavez-
Demoulin et al., 2005, 2014). The benefit of the first strategy is that any
non-stationarities are estimated much more precisely than based on the
extremal data alone. However, if the extremes of the residuals present
any form of heterogeneity, it will be necessary to model them directly.
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The claim that a model for the conditional mean and variance can pro-
duce iid residuals implies that higher conditional moments are constant
over time, but the evidence seems to argue otherwise (Hansen, 1994;
Harvey and Siddique, 1999). Furthermore, the presence of switching-
regimes, as argued in Mikosch and Starica (2004), makes the task of pre-
whitening the return time series even more difficult. These considera-
tions support direct modelling of the extremes of the original sample,
and the current paper proposes a novel dynamic extreme value approach
to do so.

Dynamic EVT modelling in finance requires finding an economically
sound source of information that can be used to explain the time-varying
behaviour of the extremes, and finding an appropriate way to use this
information within a suitable model. Current approaches exploit infor-
mation in past daily exceedances. Chavez-Demoulin et al. (2005) sug-
gest using a self-exciting process to model the probability of exceeding
a high threshold of the negated return distribution (loss distribution), and
use a time-varying Generalized Pareto (GP) distribution with the past
exceedances as covariates to model the size of the exceedances. Alterna-
tively, Chavez-Demoulin et al. (2014) model the intensity parameter of
the non-homogeneous Poisson process describing the exceedance rate
and the time-varying scale parameter of the GP with non-parametric
Bayesian smoothers.

In this paper, we consider a completely different perspective and build
models for the extremes based on measures obtained from high-frequency
(HF) data, i.e. intra-daily returns. We show that HF data hold infor-
mation about the tail beyond that contained in the daily exceedances.
There is a growing literature which attempts to exploit HF data to en-
rich models for lower frequency data. Inclusion of HF data to model the
conditional second moment of the return distribution has been proposed
by Shephard and Sheppard (2010), Noureldin et al. (2012), Hansen et al.
(2012), and Hansen et al. (2014). De Lira Salvatierra and Patton (2015)
propose incorporating HF data into models for the time-varying depen-
dence in a copula function, while Oh and Patton (2015) use a HF-based
measure of correlation to disentangle the linear from the non-linear de-

173



pendence in a portfolio of stocks and then model the non-linear depen-
dence with joint-symmetric copulas. Similarly, we propose to model the
tails of the conditional returns distribution with a class of EVT models
that incorporate HF information. The intuition underlying the proposed
approach is that HF-based measures, such as realized variation, are likely
to contain useful information regarding the extreme behaviour. If we
define extreme occurrences as observations exceeding a high quantile
of the loss distribution, then this high quantile is more likely to be ex-
ceeded when the realized variance is high. Similarly, the magnitude of
such events may also be related to the realized measures. This is well
illustrated in Figure 51 where losses for the S&P 500 are shown for the
2000-2014 period. Red points indicate the days on which the 98th quan-
tile of the loss distribution is exceeded. They tend to be concentrated in
periods of high realized variance (RV) and high jump activity (J). These
two quantities will be formally defined in Section 5.3.

From a methodological perspective, we use the Peaks-over-threshold
(POT) method of Davison and Smith (1990) and propose a realized POT
approach (RPOT). Borrowing techniques from the non-stationary EVT
literature, we consider different models for the time-varying probability
of exceeding a high threshold, exploring Generalized Linear Models and
non-homogeneous Poisson processes with different realized measures as
covariates. The size of the exceedances are modelled using a GP distri-
bution with time-varying parameters that are functions of the realized
measure.

The remainder of the chapter is organized as follows. Section 5.2 re-
views the standard and the conditional POT approaches. Section 5.3 de-
scribes the realized measures and how they are employed in the RPOT
approach. In-sample results showing that HF data convey information
on the behaviour of the extremes beyond that provided in low frequency
data appear in Section 5.4. Section 5.5 shows that out-of-sample fore-
casts of standard risk measures obtained with the RPOT approach out-
perform those from standard models. Section 5.6 contains some robust-
ness checks to consolidate the evidence from the main analysis. Section
5.7 concludes. A supplemental appendix contains additional details and
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results.

Figure 51: S&P 500. Daily negative returns (losses), Realized Variance (RV)
and Jump component (J) from the beginning of 2000 to the end of 2014. Red
dots indicate days for which a threshold set at the 98th quantile of the loss
distribution is exceeded.

5.2 Extreme Value Theory

5.2.1 The Peaks Over Threshold approach

Let {Yt}Tt=1 be a sequence of iid random variables from a distribution
function F with upper end point vF := sup{Yt : F (Yt) < 1}. Define the
extremes of {Yt}Tt=1 to be the exceedances of a high threshold u, u < vF .
As u → vF , Pickands (1975) shows that the distribution of the excesses
(Yt − u)+ converges to a GP distribution G with shape parameter ξ and
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scale parameter ν > 0. That is, Pr(Y − u ≤ y|Y > u) goes to

G(y; ξ, ν) =

 1− {1 + ξy/ν}−
1
ξ for ξ 6= 0

1− exp {−y/ν} for ξ = 0
(5.1)

When ξ > 0, F has Pareto-type upper tail with tail index 1/ξ. For a given
threshold u, the POT approach is based on the decomposition of the tail
of F as

1− F (y) = (1− F (u))(1− Fu(y)) (5.2)

where φ ≡ (1 − F (u)) = Pr(Y > u) and Fu(y) = Pr(Y − u ≤ y|Y > u).
Letting E = {t ∈ {1, . . . , T}|Yt > u} be the set containing the times
at which an exceedance occurs, the number of exceedances Nu(T ) =

card{E} can be modelled as a homogeneous Poisson process with rate
λ and the size of excesses {Wj = Yj − u|j ∈ E} with the limiting GP
distribution (Coles, 2001). An estimate of the tail probability in Equation
(5.2) can thus be obtained as

̂̄F (y) = φ̂

(
1 + ξ̂

y − û
ν̂

)− 1

ξ̂

(5.3)

where F̄ = 1 − F , û is an appropriately chosen threshold, ξ̂ and ν̂ are
estimates of the GP parameters, and φ̂ = 1 − exp(−λ̂) is an estimate
of the exceedance probability obtained from the Poisson process with
estimated intensity λ̂. In particular, letting g be the GP density, the joint
likelihood function for the POT approach is

L(λ, ξ, ν) = Pr(Nu = n)
∏n
j=1 g(yj − u)

= λn

n! exp−λ
∏n
j=1

1
ν

[
1 +

ξ(yj−u)
ν

]−(1+1/ξ)

= L(λ)L(ξ, ν)

(5.4)
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where L(λ) and L(ξ, ν) are the Poisson and GP likelihoods, respectively1.
Separate maximization leads to the Maximum Likelihood (ML) estima-
tors λ̂, ξ̂, and ν̂. We have the closed-form estimator λ̂ = n/T and so
φ̂ = 1 − exp(−n/T ). Contrarily, ξ̂ and ν̂ are found by numerical opti-
mization (Hosking and Wallis, 1987) and their asymptotic normality is
established for ξ > −0.5 (Smith, 1985).

5.2.2 The Conditional Peaks Over Threshold approach

Daily financial returns violate the iid assumption underlying the POT
approach and this hinders the applicability to the tails of the uncondi-
tional return distribution. Suppose that the process of interest {Yt}Tt=1

is stationary with marginal distribution F with upper end point vF :=

sup{Yt : F (Yt) < 1} and satisfies the mixing condition,

|Pr(Yt1 ≤ un, . . . , Ytp ≤ un, Ys1 ≤ un, . . . , Ysq ≤ un)
−Pr(Yt1 ≤ un, . . . , Ytp ≤ un) Pr(Ys1 ≤ un, . . . , Ysq ≤ un)| ≤ α(n, l)

(5.5)
for α(n, ln) → 0 for some sequence ln = o(n) and un → vF as n → ∞,
with t1 < · · · < tp < s1 < · · · < sq and s1−tp > l. Under this assumption
on the dependence structure2, the sequence of exceedances is no longer
independent, invalidating the homogeneous Poisson model for counts,
but the convergence result to the GP distribution still holds and ξ̂ and ν̂

are still asymptotically normal (Drees, 2000). This argument keeps EVT
appealing to estimate the tails of the conditional return distribution. In
financial applications, the POT approach is typically applied to the time
series of residuals from a filtering model. In particular, McNeil and Frey

1An alternative characterization of the likelihood function can be obtained with the bi-
nomial approximation of the Poisson process. In this case, φ enters the likelihood equation

L(ν, ξ, φ) =
T∏
t=1

(1− φ)1−It

(
φ

ν

[
1 +

ξ(yt − u)

ν

]−1/ξ−1

+

)It
where It takes value 1 if t ∈ E and zero otherwise. This representation will be useful in
Section 3.1 where we model φ directly.

2The Condition in Equation (5.5) is referred to as the D(un) condition and it is satis-
fied for large classes of Gaussian stationary sequences, including many Gaussian linear
processes, e.g. Gaussian ARMA and fractional ARIMA processes.
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(2000) suggest a two-step procedure that combines a GARCH model to
account for the volatility and a POT approach to estimate the tails of the
standardized residuals from the GARCH model. This approach works
reasonably well, however if dependence remains in the extremes of the
residuals, then tail probabilities are poorly estimated. Harvey and Sid-
dique (1999) provide evidence of time variation in higher moments of the
conditional return distribution, implying that GARCH models are not
able to fully capture dependence in the returns. Furthermore, difficulties
may also arise from the possible presence of non-stationarities. In partic-
ular, Mikosch and Starica (2004) explain how regime switches could be
an explanation for the long-range dependence patterns that characterize
financial returns.

An alternative way to estimate the tails of the conditional distribu-
tion consists in modelling them directly, borrowing techniques from the
non-stationary EVT literature. Suppose that {Yt}Tt=1 is a random process
which can be either stationary or non-stationary, and satisfy or not the
condition in Equation (5.5). Following Davison and Smith (1990), the tail
of the conditional distribution of Yt can be decomposed following

Pr(Yt > y|Ft−1) = Pr(Yt > u|Ft−1) Pr(Yt − u > y|Yt > u,Ft−1) (5.6)

where Ft−1 is the information set of the process up to time t − 1. An
estimate of the conditional tail probability at time t can be obtained com-
bining a dynamic model for φt = Pr(Yt > u|Ft−1) such as a Generalized
Linear Model (Davison and Smith, 1990) or a non-homogeneous Poisson
process for the counts Nu(t) (Chavez-Demoulin et al., 2005, 2014) and a
GP distribution with parameters depending on covariates for Pr(Yt−u >
y|Yt > u,Ft−1), see Coles (2001) and references therein.

With a slight misuse of notation, the joint likelihood of the conditional
tail can be written as3,

L(φ, ξ, ν) = fφ1,ξ1,ν1(φ1, ξ1, ν1)

T∏
t=2

fφt,ξt,νt|Ft−1
(φt, ξt, νt|Ft−1) (5.7)

3We write the conditional likelihood as a function of the parameter of interest φ, instead
of λ as in (5.4).
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where fφt,ξt,νt|Ft−1
(φt, ξt, νt|Ft−1) is the joint density of the model at time

t conditioned on time t−1. Assuming conditional independence between
the rate and the magnitude of the exceedances, one obtains

fφt,ξt,νt|Ft−1
(φt, ξt, νt|Ft−1) = fφt|Ft−1

(φt|Ft−1)fξt,νt|Ft−1
(ξt, νt|Ft−1)

(5.8)
where fφt|Ft−1

(φt|Ft−1) and fξt,νt|Ft−1
(ξt, νt|Ft−1) are respectively the

density of the models for the exceedance rate and the density of the GP
distribution. The joint likelihood can thus be separated into two compo-
nents that can be maximized separately,

L(φ, ξ, ν) =

{
fφ1 (φ1)

T∏
t=2

fφt|Ft−1
(φt|Ft−1)

}{
fξ1,ν1 (ξ1, ν1)

T∏
t=2

fξt,νt|Ft−1
(ξt, νt|Ft−1)

}
(5.9)

leading to the sequence of ML estimators φ̂, ξ̂, and ν̂.
Limiting arguments concerning the validity of this approach and the

asymptotic properties of the ML estimators strongly depend on the as-
sumptions on the Yt’s. Assuming {Yt} to be stationary, Hall and Taj-
vidi (2000) and Beirlant and Goegebeur (2004) establish the asymptotic
normality for several semi-parametric classes of estimators ξ̂ and ν̂ both
when the true conditional distribution is GP and when the conditional
distribution of excesses converges to the GP. Similar arguments can be
used to prove asymptotic properties of fully parametric estimators, pro-
vided that the functions used to describe the dynamic parameters satisfy
standard conditions on differentiability (Wang and Tsai, 2009). When the
series {Yt} is non-stationary, the theory of Hüsler (1986) proves the ex-
istence of an extreme value limit for the sample maxima of Yt, and we
use this result to support the time-varying POT approach. Asymptotic
results for the statistical procedures strongly depend on the knowledge
of the form of non-stationarity. We simply assume that the specification
of the parameter accounts for the possible non-stationarities, and use the
standard asymptotic results.

In what follows, we consider the conditional decomposition in Equa-
tion (5.6), and show how to incorporate HF data into the models for the
exceedance rate and the GP. In both cases, we will rely on parametric
specifications of the dynamic parameters and will base the inference on
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standard asymptotic arguments from ML theory.

5.3 The Realized Peaks Over Threshold approach

In order to model the tail of the conditional return distribution, Chavez-
Demoulin et al. (2005) and Chavez-Demoulin et al. (2014) develop re-
spectively fully parametric and non-parametric extensions of the POT
approach, consideringFt to be the information set generated by the daily
price path. We propose to augment the available information set with HF
data and model daily extremes with measures built upon these observa-
tions. We denote this new information set byHt where Ft ⊂ Ht.

Realized measures are non-parametric estimators of the variation of
the price path of an asset. They ignore the variation of prices overnight
and sometimes the variation in the first few minutes of the trading day
when recorded prices may contain large errors. A good background for
realized measures can be found in survey articles by Barndorff-Nielsen
and Shephard (2007) and Andersen et al. (2009).

Let rt,∆ = pt − pt−∆ be the discretely sampled ∆-period return on
day t. The most common realized measure is the realized variance (RV),

RVt =

N∑
j=1

r2
t−1+j·∆,∆ (5.10)

where N = 1/∆. Andersen et al. (2001) and Barndorff-Nielsen and
Shephard (2002) show that, if prices are observed without noise then,
as ∆ → 0, this measure consistently estimates the quadratic variation
of the price process pt on day t. When the price process includes a
jump component, the quadratic variation contains the contributions of
both continuous and discontinuous sample paths. As these two com-
ponents may contain different sources of information, Barndorff-Nielsen
and Shephard (2004) define the bipower variation (BV)

BVt =
π

2

N∑
j=2

|rt−1+j·∆,∆||rt−1+(j−1)·∆,∆| (5.11)
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which consistently estimates the variation due to the continuous sample
path. The jump variation (J) can then be estimated by taking the differ-
ence between RV and BV,

Jt = max(0, RVt −BVt). (5.12)

As our approach includes realized measures as covariates in the mod-
els for the exceedances, throughout we will refer to it as Realized Peaks
over Threshold (RPOT). In what follows, we discuss the two components
of the conditional likelihood in Equation (5.9) individually and show
how realized measures can be incorporated in each. First, we present
models for the exceedance rate, then we treat the modelling of excess
size.

5.3.1 Modelling the exceedance rate

We start following Davison and Smith (1990) who propose combining
the approach for stationary data with regression modelling so that the
parameters are modelled as linear functions of covariates. Treating the
occurrence of an exceedance as a dichotomous variable, the probability
of an event can thus be modelled with a Logit function,

φt =
1

1 + exp(ϕ0 + ϕ1RMt−1)
(5.13)

where RMt−1 is a generic realized measure. More generally, several lags
of realized measures can be included in a length p+1 row-vector RM′t of
regressors at time t. Parameters ϕ = [ϕ0, ϕ1, . . . , ϕp] are easily estimated
through maximization of the likelihood function,

L(ϕ) =

T∏
t=(l+1)

(
exp

(
RM′tϕ

))It 1

1 + exp
(
RM′tϕ

)
where l is the lag at which a given realized measure becomes available4,
and It takes value one if t ∈ E = {t ∈ {1, . . . , T}|Yt > u} and zero oth-

4In the simplest case, RMt = [1, RMt−1] as in Equation (5.13). When the regressors
are functions of past observations, it may require several lags before all are available. For
example, for a sequence of observations y1, . . . , yT , if we use a 30-day moving average of
the yt’s as a regressor, then the first observation will be available at l = 30.
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erwise. ML estimates of the parameters are obtained through numerical
techniques.

As an alternative approach to obtain an estimate of the time-varying
exceedance rate, Chavez-Demoulin et al. (2005) propose to model the
number of exceedances Nu(t) with a non-homogeneous Poisson process.
In this case φ = 1 − exp

(
−
∫ t

0
λudu

)
where λt is the intensity param-

eter of the Poisson process at time t. They consider a self-exciting pro-
cess depending on past exceedances to determine the intensity parame-
ter λt. We rather allow λt to change as a function of the realized measure.
In particular, considering a log-linear specification as in Coles (2001) to
guarantee the positivity of λt, we let

λt(ζ0, ζ1) = exp (ζ0 + ζ1RMt−1) (5.14)

where RMt−1 is a generic realized measure. More generally, the likeli-
hood function for the Poisson process is expressed as

L(ζ) = exp

(
−
∫
T−l

exp
(
RM′tζ

)
dt

)∏
j∈E

exp
(
RM′jζ

)
and ML estimates of the parameters ζ = [ζ0, ζ1, . . . , ζp] are obtained
through numerical techniques.

5.3.2 Modelling the excess size

The natural model for the excesses of a high threshold is the GP distribu-
tion. In the case of a non-stationary process, Davison and Smith (1990)
suggest adding linear covariates in the scale νt and shape ξt parameters.
In our specific case, νt varies according to a log-link function of the real-
ized measures, e.g. with one realized measure

νt(κ0, κ1) = exp(κ0 + κ1RMt−1). (5.15)

The estimation of a time-varying shape parameter ξt introduces a lot of
uncertainty. To gain stability, we keep it constant, ξt = ξ, similarly to
Chavez-Demoulin et al. (2014). More generally, the likelihood function
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for the size of the excesses assumes the form

L(κ, ξ) =

T∏
t=(l+1)

 1

exp
(
RM′tκ

) [1 +
ξ(yt − u)

exp
(
RM′tκ

)]−1/ξ−1

+

It

(5.16)

and κ = [κ0, κ1, . . . , κp] and ξ are the parameters that must be estimated,
It takes value one when an exceedance occurs, i.e. t ∈ E , and zero oth-
erwise. ML estimates of the parameters are obtained through numerical
techniques.

5.3.3 Estimation of the conditional risk measures

Quantile-based risk measures such as the Value-at-Risk (VaR) and the Ex-
pected Shortfall (ES) are central tools for quantitative risk management
in the financial industry. Denote by Lt(x) = −Ft(y) the loss distribution
at time t. The one-day-ahead VaR at level α is defined5 as the (1 − α)-
quantile of the loss distribution,

V aRαt|t−1 = inf{x ∈ R : Lt|t−1(x) ≥ 1− α}

where Lt|t−1(x) denotes the loss distribution conditional on the informa-
tion at time t− 1. To obtain a VaR forecast with the RPOT approach, it is
simply necessary to invert Equation (5.3) and plug-in the forecast of the
parameters obtained for the loss distribution, i.e.

V̂ aR
α

t|t−1 = û+
ν̂t|t−1

ξ̂

( φ̂t|t−1

1− α

)ξ̂
− 1

 (5.17)

where ν̂t|t−1 is the parameter forecast from the dynamic GP distribu-
tion and φ̂t|t−1 is the forecast from the threshold exceedance model. In
particular, when we model the probability of an exceedance by a Logit
function, then φ̂t|t−1 = 1/(1 + exp(ϕ̂0 + ϕ̂1RMt−1)) for the model in
(5.13) while for the non-homogeneous Poisson process we have φ̂t|t−1 =

1− exp(− exp(ζ̂0 + ζ̂1RMt−1)) for the model in (5.14).
5 In Section 5, we compute the VaR at level α = 0.01. The latter is often called the

99%-VaR in the literature.
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The one-day-ahead conditional ES at level α is defined as

ÊS
α

t|t−1 =
V̂ aR

α

t|t−1

1− ξ̂
+
ν̂t|t−1 − ξ̂û

1− ξ̂
. (5.18)

V̂ aR
α

t|t−1 and ÊS
α

t|t−1 are point forecasts. To obtain the confidence in-
terval estimates, we use a post-blackened bootstrap (Davison and Hink-
ley, 1997). First, we fit a RPOT model to the observations and obtain
the residuals Rj = 1/ξ̂ log

{
1 + ξ̂ ((Yj − û)/ν̂j)

}
for each exceedance Yj ,

j ∈ E . Then, we obtain B bootstrap samples of the residuals Rj and
apply the RPOT model to each sample to obtain a percentile based con-
fidence interval of the VaR and ES.

5.4 Empirical analysis

5.4.1 Data description

The empirical analysis is based on the S&P500 index from January 1, 2000
to December 31, 2014. We obtain the time series of returns, 5-min real-
ized variance and 5-min bipower variation from the Oxford-Man Insti-
tute “Realised Library” version 0.2 (Heber et al., 2009).

The sequence of extremes is obtained by fixing a threshold level u.
The choice of the threshold is important, implying a balance between
bias and variance. On the one hand, smaller u means more observa-
tions used for inference. On the other hand, probability theory suggests
choosing a high u for limiting results to apply. In this paper, we consider
a threshold level corresponding to the 90th quantile of the loss distribu-
tion. Graphical analysis and tests assessing the merits of this choice are
performed.

In what follows, we consider three five-year sub-samples: 2000-2004,
2005-2009, 2010-2014. This allows us to discuss the fitted models in three
different regimes of the stock market. As can be seen in Figure 52, the
first sub-sample contains the downward trend consequent to the dot-
com bubble explosion, and part of the subsequent rebound. The second
sub-sample contains the 2008 crash following the default of several banks
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and insurance companies. The last sub-sample contains the recovery and
the bullish trend of the most recent years.

Figure 52: S&P500 index data.

5.4.2 Model estimation

This section is devoted to the estimation of different specifications of the
models presented in Section 5.3. For each model, we consider four differ-
ent specifications with increasing sets of covariates. The set of covariates
at time t are obtained as measures of the information set Ht and are as
follows:

I. {log(RVt−1)}

II. {log(BVt−1), log(1 + Jt−1)}

III. {log(RVt−1), log(RV
W

t−1), log(RV
M

t−1)}

IV. {log(BVt−1), log(1 + Jt−1), log(RV
W

t−1), log(RV
M

t−1)}

where RV
W

t−1 = 1
4

∑5
i=2RVt−i and RV

M

t−1 = 1
17

∑22
i=6RVt−i. The choice

of these sets requires a bit of discussion. Set I contains the simplest re-
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alized measure: the realized variance. In the introduction, we argue
that the intuition behind the RPOT approach is a possible relationship
between excesses and the realized variance. Using the lagged realized
variance as a covariate is thus a natural specification. Set II contains the
bipower variation and the jump component. This choice follows the ar-
gument of Andersen et al. (2007) which suggests that distinguishing be-
tween the information coming from the continuous and discontinuous
sample paths could be valuable. Sets III and IV can be considered ex-
tensions where we add the information coming from the average weekly
and monthly realized variance. This gives a heterogeneous autoregres-
sive (HAR) structure (Corsi, 2009) that allows us to see whether realized
measures at different time-horizons are useful to predict the behaviour
of the exceedances. We consider the logarithmic transformation of these
realized measures as it is preferable from a modelling perspective6.

Table 53 reports the estimated parameters for the Logit model in Equa-
tion (5.13) and more elaborate specifications. Results for specification I
show that the coefficient on RV is strongly significant across the three
windows. This strong statistical evidence confirms the usefulness of HF
data for modelling the exceedance rate. Decomposing the RV in the con-
tribution from the continuous and the discontinuous sample paths in
specification II allows us to see that the jump component has a negli-
gible role on the exceedance rate. In particular, while the coefficient on
the BV is strongly significant across the windows, the jump coefficient is
never significant. Finally, information on the variance at further lags in a
HAR fashion does not seem to add significantly to the prediction of the
exceedance rate. Indeed, in both specifications III and IV, the coefficients
on RV

M
are never significant and those on RV

W
are significant on only

one occasion.

In Table 54, we report the results obtained with the non-homogeneous
Poisson process for the intensity function in Equation (5.14) and more
elaborate specifications. They substantially confirm what we found with

6In Section 5.4, we scale the jump component in order to have covariates of similar
magnitude. Indeed, while log(RVt) is much greater than RVt, log(1 + Jt) ≈ Jt, with the
consequence that the parameter associated to the latter would be huge.
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the Logit model: the coefficient on RV and BV are strongly significant
while coefficients on the jump component and longer past averaged re-
alized volatilities are not significant.

Table 55 shows the estimated parameters of the dynamic GP distri-
bution with constant ξ and νt parameter as in Equation (5.15) and more
elaborate specifications. Also in this case, the inclusion of HF data con-
tributes significantly to explain the size of the excesses. The coefficients
on RV and BV are strongly significant even when realized variances at
longer lags are added. As with the exceedance rate, the coefficients on
RV

W
and RV

M
are generally not significant, suggesting that the inclu-

sion of additional lags of realized variation does not much improve the
fit of the model. The coefficient on the jump component J is significant
only in one case.

As for the ξ parameter in Table 55, it is very close to zero or not sig-
nificantly different from zero in the sample periods 2000-2004 and 2005-
2009, while it is negative and strongly significant in the last five-year
sub-sample considered. These results imply that the right tail of the loss
distribution has either an exponential decay or even lighter during the
most recent years. As we are trying to estimate the tail of the conditional
return distribution, we do not expect the ξ parameter to be strongly pos-
itive as it is usually observed for the unconditional return distribution.
Furthermore, the results of Table 55 are consistent with the regimes of
the different sub-samples. Indeed, from Figure 52 we can clearly see that
while the first two sub-periods are characterized by extreme negative re-
turns, the last sub-sample shows mainly an upward trend.

Overall, it appears that HF data apport a meaningful contribution to
understanding the behaviour of the excesses. While the one-day lagged
realized variation is useful for modelling both the exceedance rate and
the size of excesses, the contributions of jumps and past volatilities are
limited.
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Table 53: Fitted Logit models for specifications:

I. logit(φt) = ϕ0 + ϕ1 log(RVt−1)

II. logit(φt) = ϕ0 + ϕ2 log(BVt−1) + ϕ3 log(1 + Jt−1)

III. logit(φt) = ϕ0 + ϕ1 log(RVt−1) + ϕ4 log(RV
W
t−1) + ϕ5 log(RV

M
t−1)

IV. logit(φt) = ϕ0 + ϕ2 log(BVt−1) + ϕ3 log(1 + Jt−1) + ϕ4 log(RV
W
t−1) +

ϕ5 log(RV
M
t−1)

on S&P500 returns. *,**,*** indicate significance at the 5%, 1% and 0.1% levels, respec-
tively.

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

2000-2004

I. 5.46*** 0.84***
(1.02) (0.11)

II. 6.78*** 0.97*** -0.07
(1.12) (0.12) (0.08)

III. 8.15*** 0.38* 0.52* 0.25
(1.34) (0.18) (0.24) (0.23)

IV. 9.07*** 0.62*** -0.10 0.37 0.24
(1.44) (0.18) (0.09) (0.25) (0.23)

2005-2009

I. 5.02*** 0.79***
(0.68) (0.08)

II. 5.13*** 0.78*** 0.00
(0.78) (0.08) (0.07)

III. 5.85*** 0.30 0.30 0.29
(0.74) (0.17) (0.22) (0.17)

IV. 5.86*** 0.27 0.00 0.31 0.29
(0.81) (0.18) (0.07) (0.22) (0.17)

2010-2014

I. 3.77*** 0.61***
(0.87) (0.09)

II. 4.69*** 0.68*** -0.03
(1.05) (0.11) (0.08)

III. 4.80*** 0.45*** 0.11 0.16
(1.10) (0.14) (0.18) (0.17)

IV. 5.46*** 0.54*** -0.03 0.05 0.18
(1.24) (0.15) (0.08) (0.19) (0.17)
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Table 54: Fitted non-homogeneous Poisson models for specifications:

I. λt = exp (ζ0 + ζ1 log(RVt−1))

II. λt = exp (ζ0 + ζ2 log(BVt−1) + ζ3 log(1 + Jt−1))

III. λt = exp
(
ζ0 + ζ1 log(RVt−1) + ζ4 log(RV

W
t−1) + ζ5 log(RV

M
t−1)

)
IV. λt = exp

(
ζ0 + ζ2 log(BVt−1) + ζ3 log(1 + Jt−1) + ζ4 log(RV

W
t−1) + ζ5 log(RV

M
t−1)

)
on S&P500 returns. *,**,*** indicate significance at the 5%, 1% and 0.1% levels, respec-
tively.

ζ0 ζ1 ζ2 ζ3 ζ4 ζ5

2000-2004

I. 4.15*** 0.71***
(0.87) (0.10)

II. 5.01*** 0.79*** -0.05
(0.90) (0.10) (0.07)

III. 6.53*** 0.31* 0.43 0.24
(1.18) (0.16) (0.22) (0.21)

IV. 7.16*** 0.50** -0.07 0.30 0.24
(1.24) (0.16) (0.08) (0.22) (0.21)

2005-2009

I. 3.34*** 0.62***
(0.52) (0.06)

II. 3.49*** 0.62*** -0.02
(0.59) (0.07) (0.05)

III. 4.02*** 0.23 0.23 0.24
(0.57) (0.15) (0.19) (0.15)

IV. 4.07*** 0.21 -0.01 0.25 0.24
(0.62) (0.15) (0.05) (0.19) (0.15)

2010-2014

I. 2.74*** 0.52***
(0.75) (0.08)

II. 3.48*** 0.58*** -0.03
(0.90) (0.09) (0.07)

III. 3.65*** 0.39*** 0.09 0.14
(0.97) (0.12) (0.16) (0.15)

IV. 4.23*** 0.46*** -0.03 0.04 0.16
(1.09) (0.14) (0.07) (0.17) (0.15)
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Table 55: Fitted dynamic Generalized Pareto models. The ξ parameter is constant,
while νt is allowed to vary according to

I. νt = exp (κ0 + κ1 log(RVt−1))

II. νt = exp (κ0 + κ2 log(BVt−1) + κ3 log(1 + Jt−1))

III. νt = exp
(
κ0 + κ1 log(RVt−1) + κ4 log(RV

W
t−1) + κ5 log(RV

M
t−1)

)
IV. νt = exp

(
κ0 + κ2 log(BVt−1) + κ3 log(1 + Jt−1) + κ4 log(RV

W
t−1) + κ5 log(RV

M
t−1)

)
*,**,*** indicate significance at the 5%, 1% and 0.1% levels, respectively.

κ0 κ1 κ2 κ3 κ4 κ5 ξ

2000-2004
I. -2.27* 0.31** 0.02

(0.98) (0.11) (0.09)
II. -1.84 0.35** -0.04 0.01

(1.06) (0.12) (0.08) (0.09)
III. -0.37 0.05 0.33 0.15 0.00

(1.46) (0.15) (0.20) (0.23) (0.09)
IV. 0.82 0.09 -0.06 0.38 0.19 0.00

(1.54) (0.15) (0.08) (0.20) (0.23) (0.09)

2005-2009

I. -0.95 0.42*** 0.00
(0.61) (0.07) (0.07)

II. -0.83 0.42*** -0.01 -0.02
(0.67) (0.08) (0.05) (0.07)

III. -0.51 0.06 0.48** -0.07 -0.10
(0.56) (0.12) (0.18) (0.14) (0.07)

IV. 0.03 0.11 0.22 0.19 0.07 -0.86
(0.46) (0.20) (1.58) (0.36) (0.51) (0.73)

2010-2014

I. -0.19 0.47*** -0.29***
(0.69) (0.07) (0.08)

II. 0.86 0.56** -0.12* -0.42***
(0.59) (0.06) (0.06) (0.08)

III. 0.37 0.30*** 0.32** -0.10 -0.42***
(0.67) (0.09) (0.11) (0.10) (0.09)

IV. 0.91 0.43** -0.09 0.17 -0.04 -0.50***
(0.51) (0.08) (0.05) (0.12) (0.09) (0.10)
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5.4.3 Model diagnostics

Use of appropriate model diagnostics is crucial to determine whether the
assumed model describes the behaviour of the underlying observations.
In this section, we make use of graphical methods and formal testing
procedures to assess the validity of the models fitted in Section 5.4.2.

First, we perform a deviance χ2 test on the residuals of the Logit mo-
del, a standard goodness-of-fit test in Logit regression literature (Hosmer
and Lemeshow, 2004). Given a model M0 and a sequence of observa-
tions y, the deviance is defined as

D(y,M0) = −2
(

log Pr(y|θ̂0)− log Pr(y|θ̂s)
)

where θ̂0 denotes the fitted values of the parameters in the model M0

and θ̂s denotes the fitted parameters for the saturated model, i.e. a mo-
del with a parameter for every observation. Two measures of deviance
are particularly important in a Logit model: the null deviance which rep-
resents the deviance for a model with only the intercept, and the model
deviance representing the deviance of the fitted model. To assess the con-
tribution of the predictors, one can subtract the model deviance from the
null deviance, i.e.

Dnull −Dfitted = −2
(

log Pr(y|θ̂n)− log Pr(y|θ̂0)
)

and assess the difference on a χ2 distribution with degrees of freedom
equal to the difference in the number of parameters estimated. If the
model deviance is significantly smaller than the null deviance then one
can conclude that the predictors significantly improve the model fit.

Another commonly used goodness-of-fit test in a Logit regression is
the Hosmer-Lemeshow test (Hosmer and Lemeshow, 2004). In our spe-
cific case, it tests the null hypothesis of equality between the observed
frequency of exceedances and that expected from the fitted model. For
each observation yi in the sample, the predicted probability πi of ex-
ceeding the threshold is computed. Then, the yi’s are split in G groups
of size Ng according to the rank of their predicted probabilities, with
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g ∈ {1, . . . , G}. Finally, for each group g, the average predicted proba-
bility πg = (Ng)

−1
∑Ng
ig=1 yig and the expected number of exceedances

Eg = Ngπg(1− πg) are computed. The test statistic then becomes a Pear-
son χ2 statistic with the following form,

H =

G∑
g=1

(Og − Eg)2

Eg

where Og is the number of observed exceedances in the gth group. The
test statistic follows asymptotically a χ2 distribution with G− 2 degrees
of freedom. As there are no specific rules to set the number of groups, we
set G = 10 as it is usual in this literature, confident that our large sample
size leads to enough observations in every decile.

Table 56 reports the p-values for both the deviance χ2 and the Hosmer-
Lemeshow tests. In the first test, the null hypothesis of equal explanatory
power between the null and the fitted model is rejected for all the specifi-
cations, across the three windows. At the same time, the null hypothesis
of the Hosmer-Lemeshow is rejected on only one occasion, suggesting
that in general the observed exceedance rate and that implied by the mo-
del do not differ significantly. These results indicate a good fit of the
Logit model across the different windows.

The usual approach to validate a non-homogeneous Poisson process
with intensity λt is to transform it into a unit-rate homogeneous Poisson
process (Ogata, 1988), using the transformation

tHi =

∫ tNHi

0

λtdt

where tNHi and tHi are the times of the occurrence i for the non-homogeneous
and corresponding unit-rate homogeneous Poisson processes, respec-
tively. Then, the validation analysis consists in analyzing the inter-arrival
times of the homogeneous Poisson process, di = tHi − tHi−1, that under
the null hypothesis must be an iid exponential sample. Equivalently,
the validation can be based on the transformed distances exp(−di) that
must be an iid uniform sample and Table 57 reports the p-values of the
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Kolmogorov-Smirnov test on this assumption. To account for the un-
certainty associated to the estimated parameters, we compute the distri-
bution of the test statistic by means of Monte Carlo simulations7. Non
rejection of the null across the different windows suggests that the non-
homogeneous Poisson process presents a good fit of the observed ex-
ceedance rate.

To assess the goodness of fit of the dynamic GP distribution as a mo-
del for the size of the excesses, we perform a graphical validation as in
Coles (2001). When data are assumed to be identically distributed, good-
ness of fit can be performed by means of a qq-plot or formal testing as
in Choulakian and Stephens (2001). However, in the non-stationary case,
the lack of homogeneity among observations means that some modifica-
tions are required. Diagnostic procedures are applied to a standardized
version of the data, conditional on the fitted parameter values. Consider
a threshold û leading to k threshold exceedances y1, . . . , yk where the es-
timated model is

Yj − û ∼ GP (ν̂j , ξ̂j)

with j ∈ 1, . . . , k and where ν̂j and ξ̂j are respectively the estimated scale
and shape parameters of the GP distribution at the time when the ex-
ceedance occurs. Transforming the observations Yj − û to a standard
exponential distribution

Ỹj =
1

ξ̂j
log

{
1 + ξ̂j

(
Yj − û
σ̂j

)}
(5.19)

and denoting the ordered values of the observed Ỹj ’s as ỹ(1), . . . , ỹ(k), a
quantile plot is obtained using the pairs{

(ỹ(i),− log(1− i/(k + 1))); i = 1, . . . , k
}
.

The latter plot appears in Figure 53 for our dynamic GP distribu-
tion. The fits are generally satisfactory for all the specifications across
the three windows considered. These results confirm that the dynamic
GP assumption for the excesses over the 90th quantile is representative of
the underlying data and confirm the adequacy of the chosen threshold.

7Note that using the theoretical limiting distribution of the test statistic does not change
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Table 56: Diagnostics for Logit Model. P-values for the χ2 test on the dif-
ference between the deviance residuals and the null residuals and for the
Hosmer-Lemeshow test on the null of equality between the expected and
observed frequency of exceedances. *,**,*** indicate significance at the 5%,
1% and 0.1% levels, respectively.

χ2 test Hosmer-Lemeshow test

Model 2000− 2004 2005− 2009 2010− 2014 2000− 2004 2005− 2009 2010− 2014

I. 0.000*** 0.000*** 0.000*** 0.319 0.627 0.552
II. 0.000*** 0.000*** 0.000*** 0.009** 0.485 0.987
III. 0.000*** 0.000*** 0.000*** 0.391 0.764 0.468
IV. 0.000*** 0.000*** 0.000*** 0.777 0.618 0.823

Table 57: Diagnostics for non-homogeneous Poisson models. P-values for
Kolmogorov-Smirnov test on the uniform assumption for the transformed
residuals of the process. *,**,*** indicate significance at the 5%, 1% and 0.1%
levels, respectively.

Model 2000-2004 2005-2009 2010-2014

I. 0.852 0.122 0.401
II. 0.918 0.138 0.192
III. 0.284 0.150 0.344
IV. 0.696 0.124 0.286

Figure 53: QQ-plot for dynamic GP distribution. From top to bottom,
time intervals 2000-2004, 2005-2009 and 2010-2014, respectively. From left
to right, specifications I, II, III, IV, respectively. Each panel has the theoret-
ical quantiles of a unit-rate exponential distribution on the x-axis, and the
empirical quantiles obtained with transformation (5.19) on the y-axis.

194



Table 58: Model selection. BIC of Logit models, non-homogeneous Poisson
process and dynamic GP distribution for each window. The specification
which presents the lowest BIC appears in bold.

Logit model non-homogeneous Poisson model Dynamic GP

I. II. III. IV. I. II. III. IV. I. II. III. IV.
2000-2004 761.53 755.37 744.54 743.73 781.78 778.19 765.84 766.57 -960.87 -962.37 -951.92 -953.08
2005-2009 716.70 724.42 717.45 725.13 748.38 756.08 750.95 758.56 -862.92 -863.79 -875.97 -875.84
2010-2014 786.52 790.50 773.63 779.23 805.51 810.11 791.75 797.59 -981.67 -995.02 -946.44 -957.36

5.4.4 Model selection

In Section 5.4.3 we show that several specifications of both the exceedance
rate models and the dynamic GP distribution adequately fit the data. As
a consequence, selecting the simplest model that explains as much of the
variation in the data as possible becomes a relevant issue.

Table 58 reports the values for the BIC (Schwarz, 1978) obtained for
both the exceedance rate models and the GP distribution. The table em-
phasizes how the best specification differs across the three samples, co-
herently with the different regimes. Indeed, different behaviour in the
extremes may require more or less structured models. The results sug-
gest that a specification for the exceedance rate which contains longer
past volatilities is preferred in 2000-2004 and 2010-2014, while the one-
day lag volatility is sufficient in the middle sample. An insight on these
results comes from Figure 51. It is evident that, in the second sub-sample,
most of the exceedances occur over a short time, reflecting the higher risk
perception after the defaults in the banking and insurance sectors in 2008.
On the contrary, exceedances tend to occur more uniformly in the other
sub-samples. The fast increase in the exceedance rate during the period
2005-2009 explains why a model depending only on the most recent vola-
tility may be preferred. Contrarily, the opposite situation seems to occur
on the specification for the size of the exceedance. Specifically, in this
case a more structured model seems to be preferred in the sub-sample
2005-2009.

the results.
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5.4.5 Do HF data provide additional valuable informa-
tion?

In the previous sections, we have seen that RPOT models fit the data rea-
sonably well, confirming that HF based measures are informative with
respect to threshold exceedances. An interesting question is whether HF
data add information beyond that carried by low frequency (LF) observa-
tions. As previously indicated in Section 1, past works on non-stationary
EVT in finance exploit only information on past exceedances to learn
the behaviour of future exceedances. We now consider models for the
exceedance rate and the size of excesses using both past exceedances
and the realized variation as covariates. Our intention here is to ver-
ify whether the HF-based measures add information to that conveyed
by past exceedances.

Let It be an indicator function taking value 1 when an exceedance oc-
curs, i.e. t ∈ E and 0 otherwise. Let Wt be excess size at time t ∈ E . In
Table 59, we report the results for the Logit model with the lagged vari-
able It−1 as a covariate. In the first row, we see that the coefficient ϕLF
is significant in the first two periods. This result is consistent with that
obtained in Chavez-Demoulin et al. (2005) with a self-exiting process.
In the second row, we see that adding RV can reduce the explanatory
power of It−1. The coefficient ϕHF is strongly significant and similar in
magnitude to that observed in Table 53. Similar conclusions are derived
from the parameter estimates of the non-homogeneous Poisson models
in Table 60.

As to the excess size, we proceed as in Chavez-Demoulin et al. (2005)
and assume that exceedances are Markov with Wt|Wt−1 distributed as
a GP distribution with νt depending on Wt−1. As shown in Table 61,
the LF coefficient κLF tends to be significant, but adding RV strongly
reduces its explanatory power and the HF coefficient κHF is significant.
Particularly noteworthy is the significant additional contribution of the
HF data during the 2005-2009 period which contains the crisis: ϕLF and
ϕHF in Table 59, and κLF and κHF in Table 61, are significant for that
period.
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Overall, this analysis shows that HF data convey information beyond
that provided by LF data on the behaviour of the extremes, confirming
the merits of the RPOT approach.

Table 59: Fitted Logit models with HF and LF covariates.

LF. logit(φt) = ϕ+ ϕLF It−1

HF. logit(φt) = ϕ+ ϕLF It−1 + ϕHF log(RVt−1)

on S&P500 returns. *,**,*** indicate significance at the 5%, 1% and 0.1%
levels, respectively.

2000-2004 2005-2009 2010-2014

ϕ ϕLF ϕHF ϕ ϕLF ϕHF ϕ ϕLF ϕHF

LF. -2.26*** 0.61* -2.26*** 0.59* -2.22*** 0.31
(0.10) (0.26) (0.10) (0.26) (0.10) (0.28)

HF. 5.61*** -0.11 0.86*** 5.70*** -0.62* 0.85*** 4.34*** -0.46 0.66***
(1.09) (0.28) (0.12) (0.76) (0.30) (0.08) (0.94) (0.31) (0.10)

Table 60: Fitted non-homogeneous Poisson models with HF and LF co-
variates.

LF. λt = exp (ζ + ζLF It−1)

HF. λt = exp (ζ + ζLF It−1 + ζHF log(RVt−1))

on S&P500 returns. *,**,*** indicate significance at the 5%, 1% and 0.1%
levels, respectively.

2000-2004 2005-2009 2010-2014

ζ ζLF ζHF ζ ζLF ζHF ζ ζLF ζHF

LF. -2.37*** 0.54* -2.36*** 0.52* -2.33*** 0.27
(0.10) (0.24) (0.10) (0.24) (0.09) (0.26)

HF. 4.26*** -0.09 0.72*** 3.70*** -0.42 0.65*** 3.21*** -0.39 0.56***
(0.93) (0.25) (0.10) (0.55) (0.25) (0.06) (0.80) (0.28) (0.08)

5.5 Out-of-sample forecast

In Section 5.4, we show that HF data contribute significantly toward ex-
plaining the behaviour of daily extreme returns. However, in-sample fit
does not guarantee a satisfactory out-of-sample forecast performance. In
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Table 61: Fitted dynamic Generalized Pareto models with HF and LF
covariates. The ξ parameter is constant while the νt parameter is allowed to
vary according to

LF. νt = exp (κ+ κLFWt−1)

HF. νt = exp (κ+ κLFWt−1 + κHF log(RVt−1))

*,**,*** indicate significance at the 5%, 1% and 0.1% levels, respectively.

2000-2004 2005-2009 2010-2014

κ κLF κHF κ κLF κHF κ κLF κHF

LF. -4.94*** 3.29 -4.75*** 26.39*** -5.01*** 40.89***
(0.17) (12.92) (0.10) (6.27) (0.13) (8.63)

HF. -2.26* -0.11 0.31*** -1.87*** 15.19** 0.32*** -1.44 16.61 0.36***
(1.01) (12.93) (0.11) (0.59) (5.24) (0.06) (0.98) (9.95) (0.09)

this section, we investigate whether HF data also lead to good out-of-
sample forecasts. To this end, we perform an out-of-sample analysis of
the one-day-ahead VaR and ES forecasts defined respectively in Equa-
tions (5.17)-(5.18). As a benchmark, we also report the results for the
commonly used conditional EVT (C-EVT) model of McNeil and Frey
(2000). For the latter, we filter the daily returns with an ARMA(1,1)-
GJR-GARCH(1,1) and then model the upper tail of the negated estimated
residuals with the POT method.

We apply a rolling-window scheme to obtain a time series of VaR and
ES predictions at level α = 0.01. Let n be the size of the available sam-
ple and s be the length of the window. We have two sequences of fore-
casts: {V aRαt }nt=s+1 and {ESαt }nt=s+1 of length m = n − s, where each
prediction is obtained considering the observations lt−s, . . . , lt−1. We in-
vestigate the performance of the RPOT and C-EVT approaches during
the Global Financial Crisis and the European sovereign debt crises8. We con-
sider the S&P500 from the beginning of 2000 to the end of 2012, resulting
in a time series of n = 3240 observations. This allows us to produce
m = 1240 predictions, when considering a window of size s = 2000.

8The Global Financial Crisis refers to the period of turmoil that affected the stock market
in the period 2007-2009, following the failure of several banks and insurance companies.
The European sovereign debt crises indicates the period of distress that affected the stock
market in 2010-2012, due to the deterioration in the creditworthiness of several European
countries.
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The threshold level is fixed at the 90th quantile of the unconditional loss
distribution obtained from the s observations. Figure 54 shows one-day-
ahead VaR and ES forecasts and their 95% confidence intervals for the
simplest RPOT specification.

We evaluate the performance of the RPOT approach by performing a
battery of tests. We consider the binary indicator of VaR failure

Ht+1 = I
(
lt+1 > V̂ aR

α

t+1|t

)
,

where I(·) is the indicator function. Commonly used tests are the Uncon-
ditional Coverage (UC), Independence (IND), and Conditional Coverage
(CC) suggested by Christoffersen (1998) and the Dynamic Quantile (DQ)
test suggested by Engle and Manganelli (2004). To evaluate the perfor-
mance for the ES we test the hypothesis that conditional upon exceeding
the 99th quantile of the loss distribution, the difference between the ac-
tual return and the predicted ES has mean zero. In particular, we perform
a one-sided test with the alternative that the mean is greater than zero us-
ing a bootstrap that makes no assumption about the distribution of the
differences (McNeil and Frey, 2000).

In Table 62, we report the p-values of the different tests. These results
show that the RPOT models outperform the C-EVT. In particular, while
all specifications of the RPOT approach yield large p-values, the null of
UC is rejected for the C-EVT at the 5% level. Furthermore, the RPOT
approach does not exhibit any problem with respect to the independence
requirement, while we reject the null hypothesis of the DQ test for C-
EVT. Finally, the superior performance of the RPOT is also confirmed by
the CC test where the RPOT performs reasonably well and the C-EVT
fails the test at the 10% level.

5.6 Further analysis

5.6.1 Sensitivity to the threshold choice

An important question when modelling the extremes using any form of
POT is whether the results are robust to the choice of the threshold. Al-
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Figure 54: Risk measures. In green, estimated conditional VaR (left panel)
and ES (right panel) at level α = 0.01 with the RPOT approach. RV is the
only covariate in the dynamic GP distribution and the Logit model used for
the exceedance rate. In blue, 95% confidence intervals obtained with the
post-blackened bootstrap described in Section 5.3.3.

Table 62: VaR measures. For each model (C-EVT, Logit (L), Poisson(Nhp))
and specifications (I-IV), we report: the percentage of violations (Violation);
the p-values for the unconditional coverage (UC), the independence as-
sumption (IND), the conditional coverage (CC), and the DQ tests, and the
bootstrap test for the ES (BOOT). Rejection at level of significance 0.05 ap-
pears in bold.

Violation UC IND CC DQ BOOT

C-EVT 1.61 0.046 0.418 0.097 0.022 0.939
L.I 1.29 0.325 0.518 0.494 0.867 0.348
L.II 1.29 0.325 0.518 0.494 0.910 0.459
L.III 1.29 0.325 0.199 0.267 0.040 0.714
L.IV 1.29 0.325 0.518 0.494 0.120 0.638
Nhp.I 1.29 0.325 0.518 0.494 0.866 0.273
Nhp.II 1.37 0.214 0.492 0.360 0.866 0.415
Nhp.III 1.45 0.134 0.260 0.170 0.055 0.753
Nhp.IV 1.29 0.325 0.518 0.494 0.120 0.565
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though we have seen that the quality of the fit at the 90th quantile is
remarkably good, we also perform an analysis at a threshold level cor-
responding to the 95th quantile. Results reported in Appendix D.1 con-
firm the findings of the previous sections. While the one-day lagged RV
and BV have a highly significant impact in both the models for the ex-
ceedance rate and the GP distribution, the jump component and the past
volatilities are significant on very few occasions. In this case as well, the
diagnostic tools support the good fit of the different specifications. Fi-
nally, an analysis of the out-of-sample risk measures forecasts confirms
that the RPOT approach outperforms the C-EVT.

5.6.2 An investigation over a shorter sample

We investigate whether good forecasts of the risk measures are main-
tained even when the models are estimated over shorter training peri-
ods. In particular, while in Section 5.5 we use a rolling window of 2000

observations to fit the models, here we reduce this interval to 1000 ob-
servations. The intention behind this exercise is to verify how the per-
formance of the models are affected by a higher degree of uncertainty
in parameter estimates. Results reported in Appendix D.2 show that the
good quality of the RPOT is maintained.

5.6.3 Impact of negative jumps

In Section 5.4, we considered the jump variation as a possible covariate
and ascertained that it does not play a relevant role in forecasting the
extremes. However, as we focussed only on the negative tail, it could be
the case that only the negative jumps are relevant. Patton and Sheppard
(2015) find that distinguishing between positive and negative jumps is
extremely relevant when estimating the impact of the jumps on future
volatilities. Here we use the signed jump variation, defined as

∆Jt = RS+
t −RS−t

where RS+
t and RS−t are respectively the positive and negative realized

semi-variances. This measure converges in probability to the daily dif-
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ference of jump variation induced by jumps of opposite signs. A further
decomposition allows us to obtain the positive and negative jump varia-
tions which are defined respectively as,

∆J+
t = ∆Jt · I

(
RS+

t −RS−t > 0
)

∆J−t = ∆Jt · I
(
RS+

t −RS−t < 0
)

where I(·) is the indicator function. Assuming that jumps are rare, these
quantities broadly capture the variation of positive and negative jumps.

We substitute the jump variation J with the negative jump variation
∆J− in models for the exceedance rate and the dynamic GP distribu-
tion. Results reported in Appendix D.3 suggest that the negative jump
component also does not have a substantial impact on the extremes.

5.7 Conclusions

The availability of high-frequency data has lead to breakthroughs in the
financial econometrics literature, and models that exploit this source of
information are superseding standard econometric models. In this pa-
per, we propose a novel high-frequency extreme value approach where
realized measures are used to model the time-varying behaviour of ex-
treme returns. In-sample fit of these models shows that high-frequency
data add information on the extremes, beyond that conveyed by low-
frequency data. Moreover, out-of-sample forecasts of standard risk mea-
sures outperform those of the standard conditional EVT approach.

Our proposed approach works well and we intend to build upon it.
We are working on refinements and extensions of the RPOT with the
aim of establishing a complete framework where high-frequency data
are used within extreme value models. For example, adding parametric
or non-parametric smoothing components could enhance the stability of
the extreme value models. Furthermore, the intuition of this paper can be
used to extend the time-varying threshold model of Wang et al. (2012) to
financial returns. Finally, the development of multivariate models where
the realized covariance is used as a source of information would allow
for the modelling of the joint occurrence of extreme events. Such a frame-
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work could be used to provide a much needed extreme value perspective
measure of contagion effects among assets.
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Appendix D

D.1 Sensitivity to the threshold choice

Throughout the paper, we consider as extremes the observations exceed-
ing the 90th quantile of the unconditional distribution. In order to assess
that the results obtained are not a mere consequence of the threshold
choice, we proceed with a sensitivity analysis. In this section we con-
sider a threshold corresponding to the 95th quantile of the unconditional
distribution. In Tables 63-65, we report the in-sample results for both the
models for the exceedance rate and for the GP distribution. We can see
that also at this threshold level, RV and BV are strongly significant, while
the jump component and past lagged variances are not particularly rele-
vant. The results reported in Tables 66-67 and Figure 55 confirm that the
models adequately fit the data. Table 69 reports the results of the out-of-
sample analysis, and confirms that the RPOT approach still outperforms
the C-EVT.
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Table 63: Fitted Logit models for specifications:

I. logit(φt) = ϕ0 + ϕ1 log(RVt−1)

II. logit(φt) = ϕ0 + ϕ2 log(BVt−1) + ϕ3 log(1 + Jt−1)

III. logit(φt) = ϕ0 + ϕ1 log(RVt−1) + ϕ4 log(RV
W
t−1) + ϕ5 log(RV

M
t−1)

IV. logit(φt) = ϕ0 + ϕ2 log(BVt−1) + ϕ3 log(1 + Jt−1) + ϕ4 log(RV
W
t−1) +

ϕ5 log(RV
M
t−1)

on S&P500 returns. *,**,*** indicate significance at the 5%, 1% and 0.1% levels, respec-
tively.

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

2000-2004
I. 6.40*** 1.04***

(1.35) (0.15)
II. 7.62*** 1.15*** -0.06

(1.44) (0.16) (0.1)
III. 11.07*** 0.39 0.69* 0.49

(1.93) (0.24) (0.32) (0.31)
IV. 12.14*** 0.63** -0.11 0.56 0.49

(2.06) (0.24) (0.11) (0.33) (0.31)

2005-2009

I. 5.69*** 0.97***
(0.87) (0.1)

II. 5.84*** 0.96*** -0.01
(0.99) (0.11) (0.07)

III. 6.75*** 0.26 0.60* 0.24
(0.96) (0.23) (0.29) (0.23)

IV. 6.76*** 0.23 0.00 0.62* 0.23
(1.04) (0.24) (0.07) (0.3) (0.23)

2010-2014

I. 5.01*** 0.83***
(1.12) (0.12)

II. 6.60*** 0.96*** -0.11
(1.4) (0.14) (0.11)

III. 7.05*** 0.57** 0.06 0.41
(1.41) (0.19) (0.25) (0.22)

IV. 8.48*** 0.74*** -0.12 -0.03 0.46*
(1.6) (0.21) (0.11) (0.26) (0.22)
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Table 64: Fitted non-homogeneous Poisson models for specifications:

I. λt = exp (ζ0 + ζ1 log(RVt−1))

II. λt = exp (ζ0 + ζ2 log(BVt−1) + ζ3 log(1 + Jt−1))

III. λt = exp
(
ζ0 + ζ1 log(RVt−1) + ζ4 log(RV

W
t−1) + ζ5 log(RV

M
t−1)

)
IV. λt = exp

(
ζ0 + ζ2 log(BVt−1) + ζ3 log(1 + Jt−1) + ζ4 log(RV

W
t−1) + ζ5 log(RV

M
t−1)

)
on S&P500 returns. *,**,*** indicate significance at the 5%, 1% and 0.1% levels, respec-
tively.

ζ0 ζ1 ζ2 ζ3 ζ4 ζ5

2000-2004
I. 5.39*** 0.93***

(1.19) (0.14)
II. 6.22*** 1.01*** -0.05

(1.21) (0.14) (0.1)
III. 9.68*** 0.35 0.61* 0.47

(1.74) (0.22) (0.3) (0.29)
IV. 10.46*** 0.54* -0.09 0.49 0.48

(1.83) (0.22) (0.1) (0.31) (0.29)

2005-2009

I. 4.27*** 0.82***
(0.69) (0.08)

II. 4.46*** 0.82*** -0.02
(0.78) (0.09) (0.05)

III. 5.25*** 0.22 0.49 0.22
(0.79) (0.21) (0.26) (0.21)

IV. 5.29*** 0.2 -0.01 0.52* 0.22
(0.85) (0.21) (0.06) (0.26) (0.21)

2010-2014

I. 4.09*** 0.74***
(0.98) (0.11)

II. 5.34*** 0.84*** -0.10
(1.17) (0.12) (0.1)

III. 6.02*** 0.51** 0.06 0.37
(1.29) (0.17) (0.23) (0.21)

IV. 7.24*** 0.66*** -0.10 -0.03 0.42*
(1.43) (0.2) (0.1) (0.25) (0.2)
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Table 65: Fitted dynamic Generalized Pareto models. The ξ parameter is constant,
while νt is allowed to vary according to

I. νt = exp (κ0 + κ1 log(RVt−1))

II. νt = exp (κ0 + κ2 log(BVt−1) + κ3 log(1 + Jt−1))

III. νt = exp
(
κ0 + κ1 log(RVt−1) + κ4 log(RV

W
t−1) + κ5 log(RV

M
t−1)

)
IV. νt = exp

(
κ0 + κ2 log(BVt−1) + κ3 log(1 + Jt−1) + κ4 log(RV

W
t−1) + κ5 log(RV

M
t−1)

)
*,**,*** indicate significance at the 5%, 1% and 0.1% levels, respectively.

κ0 κ1 κ2 κ3 κ4 κ5 ξ

2000-2004
I. -3.49** 0.16 0.00

(1.3) (0.15) (0.13)
II. -2.96* 0.22 -0.09 -0.02

(1.34) (0.15) (0.1) (0.13)
III. -2.77 0.14 0.25 -0.13 0.03

(2.21) (0.22) (0.28) (0.35) (0.13)
IV. -2.49 0.21 -0.09 0.25 -0.17 0.01

(2.24) (0.23) (0.11) (0.28) (0.35) (0.14)

2005-2009

I. -0.74 0.48*** 0.13
(0.92) (0.12) (0.14)

II. -0.58 0.48*** -0.01 0.10
(1.03) (0.12) (0.07) (0.14)

III. -0.18 0.11 0.48 -0.05 -0.03
(0.85) (0.16) (0.26) (0.2) (0.15)

IV. -0.41 0.08 0.00 0.49 -0.06 -0.03
(0.9) (0.18) (0.08) (0.27) (0.21) (0.15)

2010-2014

I. 0.42 0.56*** -0.27*
(1.08) (0.12) (0.12)

II. 2.42* 0.74* -0.19* -0.43***
(0.98) (0.1) (0.09) (0.11)

III. 0.79 0.27 0.6*** -0.29* -0.57**
(0.91) (0.14) (0.14) (0.12) (0.18)

IV. 1.97*** 0.44*** -0.1* 0.4*** -0.16* -0.74*
(0.27) (0.04) (0.05) (0.07) (0.07) (0.26)
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Table 66: Diagnostics for Logit Model. P-values for the χ2 test on the dif-
ference between the deviance residuals and the null residuals and for the
Hosmer-Lemeshow test on the null of equality between the expected and
observed frequency of exceedances. *,**,*** indicate significance at the 5%,
1% and 0.1% levels, respectively.

χ2test Hosmer-Lemeshow test

Model 200-2004 2005-2009 2010-2014 2000-2004 2005-2009 2010-2014
I. 0.000*** 0.000*** 0.000*** 0.776 0.551 0.178
II. 0.000*** 0.000*** 0.000*** 0.118 0.456 0.937
III. 0.000*** 0.000*** 0.000*** 0.137 0.527 0.847
IV. 0.000*** 0.000*** 0.000*** 0.656 0.365 0.537

Table 67: Diagnostics for non-homogeneous Poisson models. P-values for
Kolmogorov-Smirnov test on the uniform assumption for the transformed
residuals of the process. *,**,*** indicate significance at the 5%, 1% and 0.1%
levels, respectively.

Model 2000-2004 2005-2009 2010-2014

I. 0.905 0.058 0.183
II. 0.911 0.025* 0.170
III. 0.922 0.181 0.662
IV. 0.822 0.184 0.819

Figure 55: QQ-plot for dynamic GP distribution. From top to bottom,
time intervals 2000-2004, 2005-2009 and 2010-2014, respectively. From left
to right, specifications I, II, III, IV, respectively. Each panel has the theoret-
ical quantiles of a unit-rate exponential distribution on the x-axis, and the
empirical quantiles obtained with the exponential transformation on the y-
axis.
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Table 68: Model selection. BIC of Logit models, non-homogeneous Poisson
process and dynamic GP distribution for each window. The specification
which presents the lowest BIC appears in bold.

Logit model non-homogeneous Poisson model Dynamic GP

I. II. III. IV. I. II. III. IV. I. II. III. IV.
2000-2004 458.24 456.72 436.17 438.58 464.96 464.71 443.67 446.77 -471.35 -472.58 -451.80 -452.75
2005-2009 415.84 422.94 417.59 424.97 429.22 436.42 431.92 439.26 -420.36 -420.76 -426.49 -426.19
2010-2014 466.80 470.67 462.76 466.83 473.74 478.24 469.72 474.12 -490.19 -504.15 -483.56 -493.75

Table 69: VaR measures. For each model (C-EVT, Logit (L), Poisson(Nhp))
and specifications (I-IV), we report: the percentage of violations (Violation);
the p-values for the unconditional coverage (UC), the independence as-
sumption (IND), the conditional coverage (CC), and the DQ tests, and the
bootstrap test for the ES (BOOT). Rejection at level of significance 0.05 ap-
pears in bold.

Violation UC IND CC DQ BOOT

C-EVT 0.016 0.046 0.418 0.097 0.022 0.938
L.I 0.012 0.473 0.544 0.635 0.952 0.245
L.II 0.011 0.655 0.572 0.762 0.991 0.284
L.III 0.011 0.655 0.572 0.762 0.023 0.229
L.IV 0.012 0.473 0.544 0.635 0.000 0.311
Nhp.I 0.010 0.865 0.600 0.850 0.997 0.158
Nhp.II 0.010 0.865 0.600 0.850 0.997 0.235
Nhp.III 0.012 0.473 0.544 0.635 0.035 0.303
Nhp.IV 0.013 0.325 0.518 0.494 0.000 0.360
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D.2 An investigation over a shorter sample

We now assess whether the RPOT approach keeps providing good fore-
casts of the risk measures when the window size is 1000 instead of 2000.
Results reported in Table 70 show that in this case the C-EVT approach
does not fail the tests of coverage. However, looking at the violations, it
still seems that the RPOT does a better job, thus confirming the previous
findings.

Table 70: VaR measures. For each model (C-EVT, Logit (L), Poisson(Nhp))
and specifications (I-IV), we report: the percentage of violations (Violation);
the p-values for the unconditional coverage (UC), the independence as-
sumption (IND), the conditional coverage (CC), and the DQ tests, and the
bootstrap test for the ES (BOOT). Rejection at level of significance 0.05 ap-
pears in bold.

Violation UC IND CC DQ BOOT

C-EVT 0.014 0.146 0.469 0.263 0.039 0.978
L.I 0.009 0.655 0.659 0.814 0.996 0.289
L.II 0.008 0.455 0.688 0.692 0.996 0.347
L.III 0.006 0.168 0.748 0.364 0.060 0.211
L.IV 0.008 0.455 0.688 0.692 0.000 0.560
Nhp.I 0.010 0.897 0.602 0.856 0.999 0.368
Nhp.II 0.011 0.684 0.574 0.777 0.999 0.477
Nhp.III 0.008 0.455 0.688 0.692 0.209 0.298
Nhp.IV 0.010 0.877 0.630 0.871 0.005 0.607

D.3 Adding the signed jump variation as covari-
ate

In this section, we investigate the impact of the negative jumps, substi-
tuting the jump component J with the negative jump variation ∆J−t .
In particular, as ∆J−t is either negative or zero, we use its negated ver-
sion for practical purposes. Consequently, if the coefficient associated
to ∆J−t has positive sign, then the higher the negative jump, the higher
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the impact on the dependent variable. Tables 71-73 report the results
for the threshold level at the 90th quantile. They show that the negative
jump has a negative and statistically significant impact on the exceedance
rate models in the period 2005-2009, while it has a negative and statisti-
cally significant impact on the GP distribution in the period 2010-2014.
These results are no longer present when we shift the threshold at the
95th quantile, see Tables 74-76. Overall, we can claim that the negative
jumps have no forecasting power on the daily extremes.

Table 71: Fitted logit models with negative jump variation. Parameter estimates
for models:

II. logit(φt) = ϕ0 + ϕ2 log(BVt−1) + ϕ3 log(1 + ∆J−
t−1)

IV. logit(φt) = ϕ0 + ϕ2 log(BVt−1) + ϕ3 log(1 + ∆J−
t−1) + ϕ4 log(RV

W
t−1) +

ϕ5 log(RV
M
t−1)

on S&P500 returns. *,**,*** indicate significance at the 5%, 1% and 0.1% levels, respec-
tively.

ϕ0 ϕ2 ϕ3 ϕ4 ϕ5

2000-2004

II. 6.64*** 0.95*** 0.03
(1.16) (0.13) (0.08)

IV. 8.52*** 0.60*** 0.00 0.35 0.23
(1.41) (0.19) (0.08) (0.24) (0.23)

2005-2009

II. 6.11*** 0.88*** -0.21*
(0.80) (0.09) (0.09)

IV. 6.80*** 0.38* -0.20* 0.30 0.30
(0.83) (0.18) (0.09) (0.23) (0.17)

2010-2014

II. 4.66*** 0.68*** -0.02
(1.05) (0.11) (0.07)

IV. 5.36*** 0.54*** -0.02 0.05 0.18
(1.20) (0.16) (0.07) (0.19) (0.16)
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Table 72: Fitted non-homogeneous Poisson models with negative jump variation.
Parameter estimates for models:

II. λt = exp
(
ζ0 + ζ2 log(BVt−1) + ζ3 log(1 + ∆J−

t−1)
)

IV. λt = exp
(
ζ0 + ζ2 log(BVt−1) + ζ3 log(1 + ∆J−

t−1) + ζ4 log(RV
W
t−1) + ζ5 log(RV

M
t−1)

)
on the S&P500. *,**,*** indicate significance at the 5%, 1% and 0.1% levels, respec-
tively.

ζ0 ζ2 ζ3 ζ4 ζ5

2000-2004

II. 4.93*** 0.78*** -0.02
(0.95) (0.10) (0.06)

IV. 6.76*** 0.48*** -0.00 0.28 0.22
(1.22) (0.16) (0.06) (0.22) (0.20)

2005-2009

II. 3.91*** 0.66*** -0.14*
(0.56) (0.06) (0.07)

IV. 4.58*** 0.26 -0.14* 0.24 0.24
(0.61) (0.15) (0.07) (0.19) (0.15)

2010-2014

II. 3.47*** 0.57*** -0.02
(0.89) (0.09) (0.06)

IV. 4.14*** 0.45*** -0.01 0.03 0.16
(1.05) (0.14) (0.06) (0.17) (0.14)
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Table 73: Dynamic Generalized Pareto with negative Jump variation. The ξ pa-
rameter is kept constant, while the ν parameter is allowed to vary according to the
following models:

II. νt = exp
(
κ0 + κ2 log(BVt−1) + κ3 log(1 + ∆J−

t−1)
)

IV. νt = exp
(
κ0 + κ2 log(BVt−1) + κ3 log(1 + ∆J−

t−1) + κ4 log(RV
W
t−1) + κ5 log(RV

M
t−1)

)
*,**,*** indicate significance at the 5%, 1% and 0.1% levels, respectively.

κ0 κ2 κ3 κ4 κ5

2000-2004

II. -1.78 0.36** -0.03
(1.14) (0.13) (0.08)

IV. 0.76 0.10 -0.04 0.37 0.18
(1.57) (0.16) (0.08) (0.20) (0.23)

2005-2009

II. -0.98 0.40*** 0.02
(0.65) (0.07) (0.07)

IV. -0.72 0.02 0.05 0.52 -0.10
(0.63) (0.13) (0.08) (0.19) (0.14)

2010-2014

II. 0.79 0.55*** -0.13***
(0.62) (0.06) (0.04)

IV. 1.20** 0.43*** -0.15*** 0.18** -0.04
(0.42) (0.06) (0.04) (0.06) (0.07)
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Table 74: Fitted logit models with negative jump variation. Parameter estimates
for models:

II. logit(φt) = ϕ0 + ϕ2 log(BVt−1) + ϕ3 log(1 + ∆J−
t−1)

IV. logit(φt) = ϕ0 + ϕ2 log(BVt−1) + ϕ3 log(1 + ∆J−
t−1) + ϕ4 log(RV

W
t−1) +

ϕ5 log(RV
M
t−1)

on S&P500 returns. *,**,*** indicate significance at the 5%, 1% and 0.1% levels, respec-
tively.

ϕ0 ϕ2 ϕ3 ϕ4 ϕ5

2000-2004

II. 8.13*** 1.20*** -0.12
(1.51) (0.17) (0.10)

IV. 11.89*** 0.67** -0.08 0.52 0.45
(2.02) (0.25) (0.10) (0.32) (0.31)

2005-2009

II. 6.40*** 1.02*** -0.10
(1.01) (0.12) (0.08)

IV. 7.29*** 0.29) -0.09 0.61* 0.24
(1.06) (0.24) (0.08) (0.29) (0.23)

2010-2014

II. 6.91*** 0.99*** -0.15
(1.37) (0.14) (0.11)

IV. 8.52*** 0.81*** -0.15 0.09 0.45*
(1.54) (0.22) (0.11) (0.26) (0.22)
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Table 75: Fitted non-homogeneous Poisson models with negative jump variation.
Parameter estimates for models:

II. λt = exp
(
ζ0 + ζ2 log(BVt−1) + ζ3 log(1 + ∆J−

t−1)
)

IV. λt = exp
(
ζ0 + ζ2 log(BVt−1) + ζ3 log(1 + ∆J−

t−1) + ζ4 log(RV
W
t−1) + ζ5 log(RV

M
t−1)

)
on the S&P500. *,**,*** indicate significance at the 5%, 1% and 0.1% levels, respec-
tively.

ζ0 ζ2 ζ3 ζ4 ζ5

2000-2004

II. 6.60*** 1.04*** -0.09
(1.25) (0.14) (0.09)

IV. 10.22*** 0.57** -0.06 0.45 0.45
(1.78) (0.22) (0.09) (0.30) (0.29)

2005-2009

II. 4.63*** 0.83*** -0.06
(0.74) (0.08) (0.06)

IV. 5.62*** 0.23 -0.07 0.51* 0.23
(0.85) (0.20) (0.07) (0.26) (0.21)

2010-2014

II. 5.54*** 0.85*** -0.12
(1.31) (0.12) (0.09)

IV. 7.23*** 0.71*** -0.13 -0.08 0.41
(1.37) (0.21) (0.10) (0.25) (0.21)

215



Table 76: Dynamic Generalized Pareto with negative Jump variation. The ξ pa-
rameter is kept constant, while the ν parameter is allowed to vary according to the
following models:

II. νt = exp
(
κ0 + κ2 log(BVt−1) + κ3 log(1 + ∆J−

t−1)
)

IV. νt = exp
(
κ0 + κ2 log(BVt−1) + κ3 log(1 + ∆J−

t−1) + κ4 log(RV
W
t−1) + κ5 log(RV

M
t−1)

)
*,**,*** indicate significance at the 5%, 1% and 0.1% levels, respectively.

κ0 κ2 κ3 κ4 κ5

2000-2004

II. -3.84* 0.12 0.13
(1.42) (0.16) (0.12)

IV. -3.49 0.13 0.12 0.21 -0.17
(2.26) (0.23) (0.12) (0.27) (0.34)

2005-2009

II. -0.55 0.48*** -0.02
(1.01) (0.12) (0.08)

IV. -0.19 0.09 0.001 0.49 -0.05
(0.96) (0.18) (0.08) (0.28) (0.21)

2010-2014

II. 2.01* 0.70*** -0.17*
(1.07) (0.11) (0.08)

IV. 0.27 0.27*** -0.19*** 0.55** -0.32
(0.51) (0.08) (0.05) (0.11) (0.07)
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