
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

Business-Oriented Model Driven Development
of Service Oriented Architectures

PhD Program in Computer Science and Engineering

XXI Cycle

By

Luca Abeti

2009

http://www.imtlucca.it
mailto:luca.abeti@imtlucca.it

Program Coordinator:
Prof. Ugo Montanari,
Computer Science Department, University of Pisa

Supervisor:
Prof. Paolo Ciancarini,
Computer Science Department, University of Bologna
ciancarini@cs.unibo.it

Tutor:
Prof. Paolo Ciancarini,
Computer Science Department, University of Bologna

The dissertation of Luca Abeti has been reviewed by:

Prof. Daniela Damian,
Department of Computer Science, University of Victoria

Prof. John Mylopoulos,
Dep. of Information and Communication Technology, University of Trento

IMT Institute for Advanced Studies, Lucca

2009

http://www.imtlucca.it

to Myself

Contents

List of Figures x

List of Tables xii

Acknowledgements xiii

Vita and Publications xv

Abstract xviii

1 Introduction 1
1.1 Motivations . 3

1.1.1 Global Software Engineering of SOA’s 3
1.1.2 The Need for a Business-Oriented Approach to Soft-

ware Services Development 5
1.2 Contributions of the Thesis 10

1.2.1 General Objectives for the Thesis 11
1.2.2 Summary of Contributions and Limitations 12

1.3 Previous Work of the Author Related to the Thesis 17
1.4 Services in e-Government and Civil Protection 23

1.4.1 Services for Critical Infrastructure Protection and
Emergency Management 24

1.4.2 The Marche Region SISSI Scenario 28
1.4.3 An Inquiry on the Causes of the SISSI Failure 30

1.5 Outline of the Thesis . 32

vii

2 State of Art of Business-Oriented Model Driven Development 34
2.1 Business Modeling and Reengineering 35

2.1.1 A Historical Perspective of Business Modeling . . . 36
2.1.2 The Discipline of Business Modeling in Computer

Science . 39
2.1.3 Business Process Modeling is not Process Modeling 45
2.1.4 Notations for Business Process Modeling 51
2.1.5 The ATHENA Model-Driven Interoperability Frame-

work . 53
2.2 Global Requirements Engineering 59

2.2.1 Requirements Engineering 60
2.2.2 Requirements in Distributed Projects 64
2.2.3 The SOP-wiki and Softwiki Projects 73
2.2.4 The Goal Oriented Approach to Requirements En-

gineering . 76
2.3 Modeling Enterprise-centric Computing 93

2.3.1 MDE and MDA in Enterprise Computing 94
2.3.2 MDA Tools . 101
2.3.3 How Eclipse supports MDA 104

3 My proposal: the Enterprise-Service-Implementation (ESI) De-
sign Method 115
3.1 A Business-oriented Approach to Software Modeling . . . 117

3.1.1 The Enterprise Modeling phase 120
3.1.2 The Service Modeling phase 128
3.1.3 Platform Specific Implementations 129

4 My Technological Framework 132
4.1 The Framework Transformations 132

4.1.1 The Goals 2 Services Transformation 132
4.1.2 The Services 2 Web Services & Portlets Transforma-

tions . 136
4.2 Plug-in Architectures as Patterns for SOA Interaction . . . 138

4.2.1 SOA Infrastructures 139
4.2.2 Plug-ins as a Reference Architecture for ESB’s . . . 143

viii

5 My Tools Supporting the ESI Method 147
5.1 Semantic Wikis for Requirements Engineering 147

5.1.1 The WikiReq tool . 148
5.1.2 WikiReq argumentation feature 153
5.1.3 WikiReq to Eclipse export 154
5.1.4 WikiReq: an Example Scenario 155

5.2 The SMOTE Tool . 157
5.2.1 Goals2Service as a CIM2PIM MDA Transformation 157
5.2.2 Services2WebServices&Portlets as PIM2PSM MDA

Transformations . 163

6 The Civil Protection Case Study 167
6.1 The Case Study . 167

6.1.1 The IDEA Enterprise Modeling Phase 168
6.1.2 The IDEA Service Modeling Phase 173
6.1.3 The IDEA Platform Specific Implementation Phase 177

6.2 Critical Evaluation and Results of the Experiment 180
6.2.1 Lessons Learned and Threats to Validity 184

7 Conclusions and Future Works 186

Bibliography 193

URL’s 210

ix

List of Figures

1 The ISA framework matrix 41
2 Roles and Artifacts of business modeling in RUP 43
3 Modeling levels in BPM. 47
4 Theory family tree for BPM standards as envisioned in (86) 50
5 BPMN core: flow objects . 52
6 BPMN core: connecting objects, swimlines and artifacts . . 54
7 Research areas of the ATHENA Interoperability Project . . 55
8 The ATHENA Realization Framework 59
9 Global Requirements Engineering main stakeholders as de-

scribed in (57) . 65
10 The SOP-wiki Architecture 74
11 Pros and Cons of wikis used in requirements engineering . 76
12 The Tropos metamodel of the actor concept and the depen-

dency relation specified by means of UML. 86
13 The paint ”The Treachery of Images”, René Magritte, 1929. 96
14 The OMG 4-layer Metamodeling Architecture. 99
15 Model to model transformation. 100

16 Our three views for Business Modeling. 119
17 The three main phases of our ESI method. 121
18 The Si*, BMPN and UseCase graphical syntaxes exploited

by the ESI method. 131

19 Our BPR framework architecture 133

x

20 WikiReq tool: Main Page . 149
21 WikiReq tool: the Actor semantic form 150
22 WikiReq tool: the Actor viewpoint page 152
23 The actor model exported from WikiReq by the RDFtoEMF

script and loaded in the TAOM4E plug-in 156
24 The SMOTE Architecture . 158
25 SMOTE tool: the Si* metamodel used by SMOTE 159
26 SMOTE tool: the BPMN metamodel used by SMOTE . . . 160
27 SMOTE tool: a screenshot of the SMOTE ATL configuration 161
28 SMOTE tool: the metamodel for Service PIM’s 164

29 The WikiReq Actor Viewpoint page for the IDEA project . 171
30 The To speed up administrative processes goal page in WikiReq 172
31 A subset of the IDEA stakeholders goals 173
32 A sceenshot of the IDEA Service Model in SMOTE 178
33 A screenshot of the IDEA palmtop software 179
34 The results of the questionnaire about the WikiReq system. 182

xi

List of Tables

1 A glossary for business processes related terms 111
2 TOP 5 threats faced by distributed projects identified by

Smite (147) . 112
3 A comparison among wiki platforms and CMS platforms

features in GSE . 112
4 The Tropos main concepts 113
5 An overview on tools that currently support MDA 114

xii

Acknowledgements

First of all, I wish to express my gratitude to my tutor and
mentor, Prof. Paolo Ciancarini, for his wise advices and his
bear with me. I thank the Coordinator of the CSE program,
Prof. Ugo Montanari, for the chance to study at IMT Lucca. I
would like to gratefully acknowledge my evaluation commit-
tee, Prof. Paola Inverardi and Porf. Davide Rossi for their sug-
gestions. I am forever indebted to Dr. Rocco Moretti for the
hard work we carry out in these years. I am also grateful to
Prof. Maurizio Lenzerini for the involvement in the TOCAI.it
FIRB project; the support given by the CINI consortium; my
two external referees Prof. John Mylopoulos and Prof. Daniela
Damian; Prof. Fausto Marincioni and the IMT PhD Office, in
particular, Silvia Lucchesi and Silvia Doberti.

Desidero esprimere la mia gratitudine in primo luogo al mio
tutor e mentore, il Prof. Paolo Ciancarini, per i saggi insegna-
menti e la pazienza dimostratami in questo articolato e lungo
percorso formativo, per aver sempre creduto in me e nelle mie
capacitá, introducendomi con rigore nell’avvincente e com-
plesso mondo della ricerca scientifica. Ringrazio il coordi-
natore del dottorato CSE IMT, il Prof. Ugo Montanari, per
l’opportunitá di crescita concessami qui a Lucca e per l’alto
profilo con il quale ha improntato questa ed altre iniziative
a cui ho avuto modo di prender parte. Un cordiale ringrazia-
mento ai membri della commissione di valutazione, la Prof.ssa
Paola Inverardi ed il Prof. Davide Rossi per gli utili suggeri-
menti a guida del mio percorso di ricerca. Una particolare
gratitudine al Dr. Rocco Moretti per le infinite ore di lavoro in-
sieme, senza la cui pazienza ed il supporto difficilmente avrei
raggiunto questo risultato. Desidero inoltre ringraziare il Prof.

xiii

Maurizio Lenzerini per il coinvolgimento nel progetto TO-
CAI; il Prof. Fausto Marincioni; il consorzio CINI; i due ref-
eree esterni della tesi Prof. John Mylopoulos e Prof.ssa Daniela
Damian ed il PhD Office dell’IMT, in particolare Silvia Lucch-
esi e Silvia Doberti.

Sono grato alla mia famiglia, a mio padre e mia madre che
mi hanno insegnato il valore della conoscenza e che sono stati
sempre, insieme a Sara, coinvolti come parte integrante in ques-
to oneroso lavoro. Il ringraziamento piú grande va senz’altro
alla mia futura moglie, Elisabetta, che con pazienza ed amore
ha patito insieme a me le rinunce e la fatica di uno sforzo cosı́
impegnativo, dimostrandomi in tal modo, in maniera chiara,
ció che di piú bello al mondo un uomo puó desiderare.

Ringrazio il resto della famiglia per la stima e l’affetto: Marino,
Matteo, Antonia, Giovanni, Valentina, Davide, Matteo, Clau-
dia, Mimmo, gli zii Giancarlo, Tiziana, nonne Ersilia, Emilia,
Ilda ed Elisabetta.

Un sentito grazie al Dott. Roberto Oreficini Rosi ed al Dott.
Maurizio Ferretti per aver dato spazio alla mia crescita forma-
tiva e per aver cosı́ dimostrato di credere nella mia persona an-
cora prima che nelle mie capacitá professionali. Grazie anche
ai cari amici e colleghi del Centro Funzionale per il supporto
logistico ed umano in mille modi offertomi, in particolare a
Paola e Gianluca per la pazienza sulle frequenti necessitá det-
tate da questa attivitá di ricerca.

Grazie ai miei amici, indubbiamente i piú trascurati per via
di questo dottorato, con i quali mi ripropongo di recuperare
negli anni a venire.

xiv

Vita

April 26, 1980 Born, Ascoli Piceno, Italy

March 2003 Master Degree in Computer Science
University of Bologna, Italy

From 2004 Information Systems Officer
Civil Protection and Security Department
Marche Region, Italy

July 2005 Laurea Specialistica Degree in Computer Science
Final mark: 110/110 cum laude
University of Bologna, Italy

February 2006 PhD Admission for the XXI Cycle
IMT Institute for Advanced Studies of Lucca, Italy

From 2006 Collaborations with the Computer Science Dep.
Involved in the TOCAI.it project
University of Bologna and CINI, Italy

July 2007 Summer school ”Advances in Software Engineering”
International School for Computer Science Researchers
University of Catania, Italy

May 2009 Chair in a special session of the ”Collaboration and So-
cial Networking in Emergency” Track (ISCRAM 2009)
ISCRAM Community, Int.

xv

Papers Related to the Thesis

1. L. Abeti, P. Ciancarini, and R. Moretti. Business-Oriented Model Driven De-
velopment of Services in Civil Protection. To appear in International Journal
of Emergency Management (IJEM), Jean-Luc Wybo, Luca Abeti, Paolo Cian-
carini Ed., volume, 1, Inderscience, UK, Apr 2010.

2. L. Abeti, P. Ciancarini, and R. Moretti. Wiki-based Requirements Manage-
ment for Business Process Reengineering. In A. Aguiar, U. Dekel, and P.
Merson, editors, ICSE Companion Wikis4SEWorkshop Proceedings of the In-
ternational Conference on Software Engineering (ICSE) 2009, volume CFP0935G,
May 16-24, 2009 Vancouver, British Columbia, Canada, IEEE Computer Soci-
ety.

3. L. Abeti, P. Ciancarini, and R. Moretti. Wiki-based Requirements Manage-
ment for Business Process Reengineering. In Proceedings of The International
Symposium on Wikis, September 8 - 10, Porto, Portugal, Porto, Portugal, Sep
2008.

4. L. Abeti, P. Ciancarini, and R. Moretti. Requirement-Driven Development
for Emergency Management Systems. In Proceedings of International Work-
shop on Mobile HCI for Emergencies in conjunction with CHI , April 5 - 10, Flo-
rence, Italy, Florence, Italy, Apr 2008. ACM SIGCHI.

5. L. Abeti, P. Ciancarini, and R. Moretti. Business process modeling for orga-
nizational knowledge management. In Pierpaolo Degano, Rocco De Nicola,
and José Meseguer, editors, Concurrency, Graphs and Models, volume 5065 of
Lecture Notes in Computer Science, pages 301–311, Berlin / Heidelberg, 2008.
Springer-Verlag.

6. L. Abeti, P. Ciancarini, and R. Moretti. Model driven development of ontology-
based grid services. In WETICE, pages 229–234, Los Alamitos, CA, USA,
2007. IEEE Computer Society Press.

7. L. Abeti, P. Ciancarini, and R. Moretti. Service oriented software engineer-
ing for modeling agents and services in Grid systems. Multiagent and Grid
Systems, 2(2):135–148, Apr 2006.

xvi

Other Publications

1. L. Abeti and F. Marincioni. Geoinformatics and Communication Technol-
ogy for Climate Change Hazards; Musing Beyond the Technical Issues. To
appear in P.K. Joshi, A. Joshi and T.P. Singh, editors Geoinformatics for Cli-
mate Change Studies, volume, 1, Nova Science Publishers, Hauppauge, NY
Vienna, May 2010.

2. L. Abeti, P. Ciancarini, and R. Moretti. A Service Oriented Approach to
Model a Grid System for the Civil Protection. In Proceedings of Workshop
on Complex Networks and Infrastructure Protection (CNIP2006), March 28 - 29,
Rome, Italy, pages 489–498, Rome, Italy, Mar 2006.

3. L. Abeti, P. Ciancarini, and V. Presutti. An Ontology Driven Method for De-
signing Software Agents for Workflows across Organizations. In A. Cimi-
tile, A. DeLucia, and H. Gall, editors, Cooperative Methods and Tools for Dis-
tributed Software Processes, Software Technologies, pages 162–175. Franco
Angeli, Rome, Italy, 2003.

4. P. Ciancarini, V. Presutti, and L. Abeti. An ontology driven design method
for inter-agent communication. In SEKE, pages 90–94, San Francisco, CA,
Jul 2003. Knowledge Systems Institute.

xvii

Abstract

Context & motivation: The success in the adoption of inno-
vative technologies and new software systems inside an or-
ganization is related not only to technical problems. Several
authors pointed out the importance of business modelling in
software development in order to understand for instance:
how the organizational environment relates to its software in-
frastructure and how the development of a new software-in-
tensive service for a company implies changes in the company
business and in its processes. The growing complexity of or-
ganizations, such as: networked and information-dependent
companies; globalization of the companies structures; evanes-
cent services provided by companies, increase the uncertainty
in software projects. Software engineering successes in turn
became more and more bounded to the understanding of the
organizational assets and their relation to the software.
Question/problem: How can we model the business in re-
quirements engineering phases and, at the same time, enable
business-level concepts (such as strategies, goals, trust, etc.)
to relate to system-level artifacts?
Principal ideas/results: Our aim is to define a framework that
helps software engineers to develop their systems in what we
named the business-oriented approach. The business-oriented
approach to software development has been defined as an ap-
proach that carefully consider the processes, actors and goal
of the business in developing a software system and also an-
alyzes the changes that the software will cause to the organi-
zation itself. In order to define such a framework we exploit
model driven engineering that helps in managing high level
abstractions for the software. In particular, our work relies on

xviii

the service architectural paradigm that is particularly suitable
in modeling socio-technical systems.
Contribution: In order to define our framework we define:
a method; a framework of technologies and a set of tools.
Our method, named the Enterprise-Service-Implementation
(ESI), starts from the requirements of the organization and the
system, it derives a platform independent service model that
can be in turn transformed into platform specific implemen-
tations. ESI exploits the service concept as an intermediate
abstraction. Model driven technologies help us to translate
concepts from the business domain, such as goals, into ser-
vices concretely bounded to a specific implementation plat-
form. A framework of technologies and languages helps us to
implement the ESI method. We exploit and combine: a goal-
oriented language named Si*; UML Use Cases and a business
process modeling language named Buiness Process Modeling
Notation (BPMN), in order to model the business from differ-
ent perspectives. We develop two tools to put into practice our
framework. The Wiki Requirements tool (WikiReq) is a collab-
orative system and business requirements management Web
application based on a wiki. WikiReq uses semantic wiki fea-
tures for requirements gathering and management and is able
to export semantically annotated knowledge to the Eclipse In-
tegrated Development Environment (IDE). The Service Mod-
eling Tool for Eclipse (SMOTE) is an Eclipse IDE application
that exploits the Eclipse model driven architecture in order
to perform the models transformations needed in our frame-
work. We present a case studio where we experienced our
framework in the challenging domain of Civil Protection. We
present first results on the adoption of our approach concern-
ing both the stakeholders experience and quantitative data.

xix

Chapter 1

Introduction

The work of this thesis is based on previous research activities carried out
by the author in some fields of software engineering. We started our work
in 2002 defining an UML-based ontology design system which allows to
represent, manage and serialize UML models representing ontologies(7;
48). Ontologies modeled in UML allow on one hand the knowledge man-
agement in a human-readable form, on the other hand a general repre-
sentation for knowledge used by agents and Web Services (BL98).

In all our research work it can be identified a general leitmotiv that is:
the usage of software modeling languages to abstract away the complex-
ity of enterprise software development. The ability to model software
by means of a hierarchy of abstractions (i.e., a meta-modeling hierarchy)
bring us to investigate how requirements and business modeling could
be effectively related to the model-driven software development.

The growing consensus about Meta-Object Facility (MOF) (OMG02a)
and Model Driven Architecture (MDA) (Obj01) standards, reinforces the
opinion that software applications design can be carried out manipulat-
ing models and meta-models. MDA allows to abstract away software
details and to produce software using a meta-level representation of its
structures. This approach has noticeable consequences in software en-
gineering. In particular, referring to the MDA approach, we have stud-
ied how the Service Oriented Computing (SOC) benefits from a meta-

1

modeling representation of software application. Thus, in 2004-2006 we
have investigated how the ”service” concept can be employed in the MDA
technology to define and manage SOA’s interoperability.

The general goal of the service oriented approach is to overcome cur-
rent interoperability issues among middlewares, languages and hardware
platforms (155). It is explanatory that this is also the main goal of the
MDA technologies which attempt to reach it from a model-oriented per-
spective. Service Oriented Architectures (SOA’s)(OAS06a) play a funda-
mental role in this scenario. They can be considered the middle-level ab-
straction, between the business and the software, that can bridge existing
gaps among business requirements and system development artifacts.

The main goal of this thesis is to give an answer to the question ”how
we can formalize stakeholders-level requirements in order to connect them
with software-implementable abstractions?”. In order to give an answer
to this question we have moved the focus of our research from a system-
centric perspective to a business-centric perspective. Thus, we start in-
vestigating requirements engineering methods and frameworks that can
be employed in modeling the business in order to connect, in some way,
the model of the business with the model of the system.

In the rest of this Chapter we state the problem of developing a SOA in
a global software engineering context (Section 1.1.1) and how this context
require a business-oriented approach to treat development issues (Section
1.1.2). We outline the contribution of this thesis in Section 1.2. Sections
1.3 and 1.4 describe respectively our previous work on the model driven
development of SOA’s and the emergency management domain where
we apply and compare our approach to commonly used requirements
engineering practices. Finally, Section 1.5 gives an outline of the thesis
organization.

2

1.1 Motivations

1.1.1 Global Software Engineering of SOA’s

The globalization of the companies structures requires an high organiza-
tional flexibility both in time and in space. These companies take part
in opportunistic joint-ventures; they rapidly change their organization to
accommodate market changes or new strategies. Besides, they do not
have centralized structures (77). In this context, requirements engineering
should model the system-to-be (i.e., the system that must be developed)
carefully considering the impact of such a system in the organization, the
changes that it requires and how it affects the whole business.

Global Software Engineering

Global software development (GSD) (88) faces challenges additional to
those of single-site development. Global software engineering practices
are performed at geographically separate locations. This difference intro-
duces challenges that have been reported in the literature (58; 89; 91), such
as temporal, strategic, and sociocultural challenges. Thus, the globaliza-
tion of software is pervasive in the IT and software industry and affects
both the context where the software has to be used and the software de-
velopment process.

Herbsleb and Moitra (89) attribute the rapid growth of the GSD field
of research on five specific benefit they identify in multi-site software de-
velopment:

1. capitalize on the talent pool and use resources wherever available;

2. business advantages of new markets;

3. quick formation of virtual teams to capitalize market needs;

4. improve time to market by utilizing ”around-the-clock” develop-
ment;

5. flexibility to capitalize on merger and acquisition opportunities glob-
ally.

3

As evidenced by Fred Brooks in the classic Mythical Man-Month (41)
lack of communication in software development is the main cause of
schedule disasters, functional misfits and system bugs. This statement
has gained even more significance in GSD (29).

The diversity of culture and communication and the dispersion over
time and space require novel techniques, tools, and practices from many
disciplines to overcome numerous difficulties and to take advantage of
rare opportunities such environments entail (88).

Some promising solutions to address these challenges have been iden-
tified, e.g. in (51; 94; 124). Despite the real contribution of such appro-
aches cannot yet be fully demonstrated, it is useful to evidence that such
solutions are all founded on splitting the decisions basing on the archi-
tecture of the software. The architecture can induce dependencies be-
tween software engineering tasks such as managing synchronization and
meeting a release schedule (26). As with single-site development, archi-
tectures can help to overcome some of these challenges also in GSD(36;
51). Among the possible approaches based on architectures the service-
oriented one seems a right compromise that allows us to consider also
business and organizational issues (106). The SOA approach supports
the componentization of the architecture into isolated functional compo-
nents (i.e., the services) that can be then composed via a loosely coupled
composition.

Service Oriented Architectures: a bridge between the software and the
organization

Services are not only an interesting abstraction to overcome technical is-
sues on global organizations and global software development. Economic
statistics confirm that local, national, and global economies are increas-
ingly based on information and services (22; 165). Service industries is
the great majority of the Gross Domestic Product (GDP) of all most de-
veloped economies (1; 135). Services cover a very broad and diverse
range of activities, including health care, education, transportation and
logistics, utilities, financial services, government services, including na-
tional defense, civil protection, entertainment, and more. The demand for

4

new services using IT is also increasing, and the importance of services in
inter-corporate competition is rising as well.

Because of their importance, the development and delivery of services
have become a common discussion matter at universities and corpora-
tions. In particular, in finding a way to increase productivity and inno-
vation in services-related industries and tasks by applying a scientific ap-
proach (1).

The Levitt claim ”everything is a service” (110) evidenced the misun-
derstanding in believing that the service was people-intensive while the
rest of the economy was capital-intensive. He argue that there are only
industries more or less service-oriented than other industries. The more
a product is technologically sophisticated, the more it success depends
on the quality and availability of its accompanying services that defines a
value for the customer (110).

In modern global economies the differentiation between products and
services is increasingly blurring (160). The analysis of services and service
value should not be distinguished from that of products; further ”prod-
ucts themselves should be merely seen as vehicles for service delivery”
(25).

Basing on this envision of services the analysis of the problems of ser-
vices industries requires more than a purely technical (e.g., software engi-
neering) solution. The human element is almost always present in every
step of the service development and usage lifecycle. Thus, an effort in-
volving multiple disciplines is required. A consensus is emerging that the
cumulative and interconnected innovations in information and commu-
nication technology, industrial engineering, business strategy, economics,
law, and elsewhere cannot be described and understood by a single aca-
demic discipline (151; 153).

1.1.2 The Need for a Business-Oriented Approach to Soft-
ware Services Development

The need for a deep understanding of services and improved productiv-
ity is becoming unavoidable inside business and non-business organiza-

5

tions such as government structures. Either if manufacturing products
depends on the related services, the services themselves were differenti-
ated from other products on the basis of four characteristics: intangibility,
heterogeneity, inseparability, and perishability (178).

A general definition of service can be as follow:

Service:”a change in the condition of a person, or a good be-
longing to some economic entity, brought about as the result
of the activity of some other economic entity, with the ap-
proval of the first person or economic entity.” (90)

The value of a service is created through a complex set of relationships
among involved actors. The typical actors of a service value network in-
volves: consumers, service providers and service enablers. Such a value
is influenced by the social, technological, economic and political context
in which the service is embedded (25). Aside from the value network also
the services exchange is different from both the agricultural and man-
ufacturing epochs (78). ”Each party in the exchange needs the other’s
knowledge in negotiating the exchange” (46). The provider lacks the con-
textual knowledge of the customer’s business, and the customer lacks the
knowledge of the full capabilities of the provider’s technologies and ex-
perience.

This leads to consider the nature of the knowledge involved in a ser-
vices exchange. It can be given a fundamental distinction for this knowl-
edge (130):

• Codified knowledge: that refers to knowledge transmittable in for-
mal, systematic languages (e.g, a technical specification of a prod-
uct).

• Tacit knowledge: that is difficult to transfer between people, be-
tween groups, and between organizations (e.g., the ability to ride a
bicycle). This knowledge may also be difficult to explicit.

The nature of tacit knowledge complicates the services exchange, and
limits the ability of each party to fully comprehend the needs and abilities
of the other, thus to benefit from their value.

6

In this thesis we analyze the relationship among services (intended in
their broad meaning) and software development. We evidence that the
service has a double importance in this connection because in SOA’s: the
software is a service and IT services are enabled by the software.

The software is a service because it can be consumed as a service (31;
135; 155). Indeed, the software is a very unusual ”product”. It is one
of the most service-oriented products because like the general notion of
service (178) the software is intangible , heterogeneous and perishable
too. Many current services and in particular IT services are enabled by
software and new related technologies (67). In particular, the software
affects the Business Processes (BP’s) (83) that enable services to produce
their values.

Thus, the problem of addressing global software engineering taking
into consideration the business and organization issues can be addressed
by means of a reengineering of the processes that enable the services. Our
approach is aimed to adopt business reengineering techniques and meth-
ods in order to develop service-oriented software.

We need to consider a business-oriented approach to the software
because GSD defines a complex scenario both in software development
and in the company management. The requirements that influence the
adoption of the software such as organizational assets, business strate-
gies, business rules, political issues etc., must be carefully considered and
analyzed in relation to the developed software. In an economy based on
services, we need a business-oriented approach because also the value of
a product is not only related to its physical manufacture. A product is a
part of a service that is sold to the customer and the product is a result of
a production BP usually heavily based on software systems and ICT.

Current Approaches to the Problem

New challenges in software development require new techniques, tool
and practices in order to solve the issue described in this section. Current
methods and tools try to address the described issues limited to a single
point of view. They lack to use a comprehensive approach that allows to
treat all the described problems in a coordinated way.

7

Requirements engineering, for instance (93; 171), center on require-
ments and their evolution during the system development process. In
particular, for software systems such studies have concluded that one of
the most problematic tasks in the development is understanding the re-
quirements and correctly transforming them into code (145).

Despite requirements engineering recognizes that not only the func-
tionality of the system itself, but also its environment needs to be con-
sidered during specification (163); it is yet more concerned with technical
problems. Such as, the environment and the organization are investigated
in order to understand only how they influence the software develop-
ment. They use techniques like for example use case modeling (105) and
business modeling (156) to better understand requirements for the sys-
tem to develop (43; 69; 141).

The business modeling activities carried out in requirements and soft-
ware engineering do not focus on business reengineering and are aimed
to model the environment of the system in order to support project and
change management activities and to better understand system require-
ments (82). A typical example is the Rational Unified Process (RUP) (105)
approach. RUP is an iterative software development process that inte-
grates many software engineering best practices. An important feature of
RUP is that it uses software engineering techniques to perform the busi-
ness modeling. The language, and thus the diagrams, used for business
modeling are the same used for system modeling. This has many advan-
tages in mapping processes concepts to system concepts in the require-
ments documents. RUP allows to derive parts of the system specification
directly from the business models. RUP has several drawbacks: it does
not support a cross-functional modeling of BP’s; it is limited to the de-
velopment process and it does not support interactions among different
teams (15).

Some other approaches are mainly intended to represent all the knowl-
edge about the enterprise and to reengineer the business by means of
new technologies. They are concerned in understanding how the devel-
opment of a new software system for a company implies changes in com-
pany business (15; 99; 102). It is the case of business process reengineering

8

(83) extensions of RUP named the Enterprise Unified Process(EUP) (15)
that adds to RUP: the definition and analysis of the enterprise strategy;
the identification of processes implementation options; the modeling of
the organization and the domain besides the BPM. Another business-
oriented approach is the goal oriented approach (99) like the Yu’s i* lan-
guage (172). The approach is requirements driven i.e., concepts used
in requirements modeling are used/mapped also in design phases. This
feature allows to define a continuity from early requirements analysis to
the detailed design and system implementation. In this way, conceptual
models representing the system are obtained with an incremental refine-
ment and extension of a model of the environment. The usage of use
cases in EUP and goals in i* to describe the business, are useful to de-
fine a business-oriented approach of software development. Neverthe-
less, both use cases and i* do not take into consideration dynamic aspects
of the business and in particular the BP’s. Moreover, it is not clear how
requirements described by means of use cases and goals can be concretely
mapped in software implementable abstraction for instance components
or services, assuring the traceability of requirements.

A description of the dynamic aspects of the business can be achie-
ved by means of Business Process Modeling (BPM) (86). For instance the
Business Process Modeling Notation (BPMN) (OMG06) standard synthe-
sizes the BPM community best practices and it is aimed to give a stan-
dardized notation for BPM. BPMN defines a graphical notation for BP
similar to flow-charts which is aimed to be understood by stakehold-
ers, analysts, business users, developers etc. BPMN can be incrementally
adopted and supports automated translation to BP execution languages.
However, BPM is not useful to describe systems that are not process ori-
ented (86; 164). The BPM is a complementary approach to the use case
and i* business modeling but these approaches are currently completely
unrelated each other.

9

1.2 Contributions of the Thesis

In this section we describe the thesis contributes and how they relate with
the issues described in Section 1.1.

Several authors have pointed out the importance of a business-oriented
approach in software development (43; 69; 141). They found their appro-
aches only on business modeling for software requirements engineering
and business process modeling.

We have pointed out that global companies continually renew them-
selves, their products, and their processes. They have to survive to rapid
changes in markets, user preferences and technologies and their products
are increasingly service-oriented. It is meaningful to remark that those
changes must be supported by new technologies (31). The development
of such new technologies cannot be performed without considering how
new systems affect the organizational processes of the companies where
they are employed (83).

The products and the business organizations are more and more or-
ganized around the concept of service (44; 78; 111) and the service notion
share many foundation characteristics with the software. In particular,
the service can act both as an enabler of flexible rapid changes (e.g., in
software SOA’s) and as a way to connect business requirements to code
(17; 71). Thus, information technology professionals are appointed to im-
plement organizational reengineering efforts (43; 69; 83) by means of the
technologies they are used to employ, in particular service-oriented tech-
nologies. The ability to model, represent and manage the service notion
in a system engineering context, is the fundamental requirements in order
to manage global software engineering complexity.

Among other technologies, the Model Driven Engineering (MDE)(33)
is the software modeling approach that allows to model business-level
concepts and relate them to the system by means of the service abstrac-
tion. Thus, this thesis is concerned to define a framework to perform
business-oriented software engineering. We base our work on the results
reached with our previously developed MOTO-GAS tool, that helps to
manage the service concept by means of MDE technologies.

10

1.2.1 General Objectives for the Thesis

The overall goal of this thesis work is to define a single framework to
perform business-oriented software engineering.

That is to define:

• a method (Chapther 3)

• a framework of technologies (Chapther 4)

• a set of tools (Chapter 5)

that can be used to reengineer the business and its processes by means
of model driven engineering and service oriented architectures.

In this section we summarize the context of the thesis problem that we
argue in previous sections (Section 1.1.1 and 1.1.2).

The problems the thesis try to overcome are:

• The organizations where the software has to be used are global;

• Requirements engineering and software development must be both
performed globally;

• Modern economies are more and more based on the service paradigm:
that is a notion, a unit of measure, a business-autonomous entity, an
arrangement to define structures inside an organization, etc.;

• Services are different from other products: intangibility, heterogene-
ity, inseparability, and perishability. They resemble to the software;

• The more a product is technologically sophisticated, the more it suc-
cess depends on the quality and availability of its accompanying
services;

Why the problem is a problem?:

• Diversities in global software development requires new techniques,
tool and practices;

11

• A new paradigm is needed in order to define a common under-
standing among software users, business needs, sotfware architects,
organizational processes and software developers;

• The service value network influence service development by: the
social, technological, economic and political context in which it is
embedded;

• The manufacturing industry is increasingly service-oriented: the
product success depends by the related services (e.g., sales).

1.2.2 Summary of Contributions and Limitations of the
Approach

In this Section we show how the exposed problems are faced in this thesis.
Solutions:

• An architectural paradigm to be used in socio-technical problems:
the service;

• A method that takes into consideration organizational and software
issues: the business-driven approach;

• A framework that helps to manage high level abstraction for soft-
ware by means of model driven engineering;

• Reengineering manufaturing business processes taking in consider-
ation that ”everything is a service”(110).

How can we model the business in requirements engineering and, at
the same time, enable business-level concepts (such as processes, strate-
gies, goals, trust, etc.) to relate to system artifacts?

Our idea is to explore the engineering of requirements by using the
technology of wikis, more precisely Semantic Media Wiki (Wik07). The
result is a collaborative system which stakeholders can use to write re-
quirements using different notations and producing a model suitable for
further transformations based on MDE and the service abstraction.

12

Thus we define a business-oriented methods to support the modeling
of the knowledge about the business and the system. We name such a
method the Enterprise-Service-Implementation (ESI) method (5). The ESI
method is organized in three phases:

1. Enterprise Modeling phase: that models the organization, strate-
gies, business rules, business domains, internal and external BP’s
etc.

2. Service Modeling phase: that models the internal BP’s, business en-
tities, the systems, the architectures etc. It is the perspective of the
software engineers.

3. Platform Specific Implementation phase: that defines an executable
model for BP’s and concerns with system design and implementa-
tion.

The Enterprise Modeling is a requirements engineering phase. En-
terprise Modeling requirements engineering is not only limited to the
software system, it involves also the whole organization that have to be
reengineered and modeled similarly to a system.

At the beginning of the Service Modeling phase the goals and the goal
dependencies among the actors are analyzed to understand how they
relate with the system. A set of transformations are used to transform
requirements into a technological platform independent service model.
Such Platform Independent Model (PIM) (OMG01) can in turn be trans-
formed in a Platform Specific Model (PSM) (Obj01) in order to be imple-
mented. The ESI method is presented in Chapter 3.

We define a framework of technologies, we named the Business Pro-
cess Reengineering Framework (BPR Framework) in order to support
the ESI method. We use a set of language to support requirements ac-
quiring during the Enterprise Modeling phase, such languages are based
on goal oriented formalism (e.g., i*), Use Case and notations to describe
BP’s. They allows to define a Computational Independent Model (CIM)
(Obj01; OMG01) such as a model of the business that is independent from

13

the software based manipulation of the some of its parts. The BPR Frame-
work also define an architecture to support transformations performed by
means of the MDE approach. We define two main transformations that
are: the CIM2PIM transformation mapping the business concepts con-
tained in the CIM into a service-oriented PIM; the PIM2PSM transforma-
tion that derives a platform specific service model (e.g., a model for Web
Services) from the PIM service model. The BPR framework is presented
in Chapter 3.

Finally, in order to support our approach, we develop two tools named
WikiReq and SMOTE. The Wiki for Requirements (WikiReq) tool (6) is
used to manage both the system and the organizational requirements, in
the context of business process reengineering. Such a wiki is based on
three main contributes: 1) using a semantic wiki for requirements gather-
ing and management; 2) exploiting the wiki platform to define an argu-
mentation system for both synchronous and asynchronous discussions
among stakeholders; 3) achieving interoperability between the semantic
wiki and an Integrated Development Environment (IDE) platform like
Eclipse. The WikiReq tool is exploited in the Enterprise Modeling phase
in order to support the requirements elicitation process. WikiReq allows
sketching the non-functional requirements described in terms of goals
and actors, it connects this knowledge with a more formalized version
defined in the enterprise knowledge.

The Services MOdeling Tool for Eclipse (SMOTE) (3) defines an archi-
tecture that supports the management of PIM and PSM service models.
SMOTE is based on a set of Eclipse plug-ins implementing the MDA ar-
chitecture (OMG01). It defines a modellation environment for business
and implementable services and concretely implements the CIM2PIM and
PIM2PSM BPR Framework transformations. The WikiReq and the SMOTE
tools are presented in Chapter 5.

Summing up the main contribute of this thesis are:

• The ESI method: a business-oriented method to derive a platform
independent service model of the system starting from the business
model;

14

• The BPR Framework: a framework of languages and technologies
that support the ESI method;

• Two tools:

– WikiReq that is a collaborative system and business require-
ments management semantic Web application based on wiki;

– SMOTE that is a service models design and management ap-
plication based on MDA and the Eclipse IDE.

Moreover, our thesis provide a detailed case studio on a real project in
Civil Protection. Civil Protection is a very challenging business domain
since it requires the rapid development of system infrastructure among a
wide set of heterogeneous organizations. Chapter 6 describe such case of
reengineering in Marche Region local government Civil Protection where
our framework has been applied.

Limitations of the approach

The approach we present has both technical and application limitations
we report in this section. First of all it is limited in its context of applica-
tion. Indeed, it is not a framework intended to be adopted in large devel-
opment teams and big software development companies. We define the
framework presented in this thesis in order to provide an instrument to
software development in Small Medium-sized Enterprises (SME’s) which
can use it to develop customer software taking into consideration busi-
ness modeling and reengineering issues. It can also be used internally in
those organizations that want to analyze how to revamp their processes
and successfully introduce new software technologies in their work. Such
as in the e-Government scenario we present. In an e-Governement sce-
nario is fundamental to analyze in advance implications and applicability
of new software systems and then commit them to a software develop-
ment team by means of a detailed call for tender.

In those contexts the usage of WikiReq together with an approach
that derives services starting from a set of goals defined by stakeholder

15

(i.e., our framework) it is strategic. e-Government organizations are usu-
ally very complex organizations, where results not only depends by eco-
nomics or measurable indexes. For instance, results could depend by
politicians satisfaction or by the social utility of the services furnished to
the citizens. By means of WikiReq it is possible to allow the e-Government
organization stakeholders integrate their visions and relate technical choses
to vague goals where the fulfillment condition is not or cannot be well de-
fined (they are named soft-goals in i*).

Despite we have based our approach on GSD, our framework is not
applied to a world-wide software development context. We adopt a multi-
sited approach of requirements and software engineering. Indeed, dis-
tances need not to be global to be important(12; 104). In fact, being in
another building or on a different floor of the same building, strongly
reduces the communication among employers and teams (89). Solutions
that improve globally distributed work will much more improve the work
of teams ”in the same zip code”. Also regarding the GSD solutions to cul-
tural differences issues our approach should not be regarded limited to
ethnic diversities. Cultures may differ on many dimensions, for instance
attitudes toward hierarchy, ICT backgrounds, generational differences,
sense of time and communication styles.

We limited our investigation on SME’s organizations and prove re-
sults on the e-Government context. Despite the term ”global” could in-
duce to think to a world-wide activity, usually managed by big enter-
prises, the SME’s and e-Government contexts in which smallest and het-
erogeneous teams and technologies have to cooperate is more interest-
ing for our research (8; 74). SME’s have not only flourished in domestic
economies. SME’s evolve as multinationals either through their own in-
vestments or as a result of the formation of alliances with other SME’s or
institutions. Thus, SME’s companies are entering in the GSD arena, but
”their involvement is more often opportunistic than carefully planned”
(142). The limitation to small teams and organization (both in SME’s and
public administration) is not restrictive in size. Indeed, more than the Eu-
rope 70% Gross Domestic Product derives from SME’s (Mic05) thus it is
fundamental to provide SME’s with lighweight solutions to the new chal-

16

lenges of GSD requirements management and software development. In
particular, the Italian public administration domain is very suitable for a
business-driven and service-oriented approach. Indeed, the lacks in com-
munication and sharing of knowledge in these organizations is one of the
most important causes of its inefficiency (49; 63; 74).

As for the service-oriented approach we remark that our approach as-
sign to the notions of service and SOA a very general interpretation. Thus,
the service should be intended not only an implementable entity (e.g., a
Web Service (W3C01)). For instance, a service can be also meant as an
economic entity with an assigned and measurable value or as a computa-
tional independent manner to organize BP’s outputs entirely performed
by human beings.

From a software implementation point of view this thesis is not in-
tended to concern automatic orchestration and choreography of SOA’s
and Web Services. We limited our research to the use of SOA’s software
platform as a middleware to define platform independent software. Thus,
we exploit the service abstraction to define a new service or application
plug-in defining a model where a set of services are statically related.
Thus from a software engineering point of view we consider SOA’s as a
reference architectural middleware for the development of software com-
ponents without providing support for service orchestration and chore-
ography. The approach we plan use use relates service and to define new
services starting from those services is described in Section 4.2. It is a fu-
ture work where define a way to manage interactions in SOA’s by means
of the plug-in architecture that allows to define a user interface for a new
developed services able to be exploited by the user inside a wrapper ap-
plication.

1.3 Previous Work of the Author Related to the
Thesis

In this section we discuss how technologies based on the Model Driven
Architecture (MDA)(119) can be exploited to the design of service ori-
ented applications. The presented approach is supported discussing the

17

design and use of the tool we have developed for service modeling, named
MOdeling TOol for Grid and Agent Services (MOTO-GAS) (3). We start
developing the tools and the frameworks described in this thesis found-
ing on the previous research work carried out in MOTO-GAS.

Model Driven Development in SOA

Our work starts by considering three main fields of research: the Model
Driven Architecture (MDA) (Obj01; OMG01), the Grid (72), and the Se-
mantic Web Services (144). The goal was to understand how an effective
degree of interaction among some service-oriented technologies could be
obtained by means of an abstract definition of the ”service” concept.

To reach a general understandable definition of the service concept,
two standards have been investigated: the Web Service Description Lan-
guage (WSDL) (W3C01) and the WS-Resource (OAS06d) .

WSDL simplifies the encapsulation behind a common interface of di-
verse implementations of the same services (virtualization). It defines
services as collections of network endpoints, or ports. The WSDL specifi-
cation provides an XML format for documents services endpoints.

The WS-Resource approach issue from the observation that there are
many ways a Web Service might model, access and manage a state. The
WS-Resource has been proposed as a means to codify the relationship be-
tween Web Services and stateful resources in terms of an implied pattern.
The WS-Resource approach introduces support for stateful resources with-
out compromising the ability to implement Web Services as stateless mes-
sage processors. The relationship between Web Services and stateful re-
sources in WS-Resource is codified in terms of an implied resource pat-
tern (CFF04; K. 05). The implied resource pattern refers to the mecha-
nism used to associate a stateful resource with the execution of message
exchanges implemented by a Web Service. This support is performed by
means of the Resource Property Document (RPD) (OAS06c) defined by
the Web Service Resource Framework (WSRF) (CFF04). The RPD is the
XML data structure representing the state for the (stateless) Web Service
and is used in an implied pattern to define stateful services that can be
instantiated.

18

The WS-Resource standard enables the convergence between the Grid
and the Semantic Web Service technologies. In this context the notion of
Web Service as defined for Grid systems (72) has important implications
for the convergence of the Grid, Semantic Web and MDA technologies.

Several standard specifications have been proposed for semantic Web
Services (W3C05; OMG03a; W3C02a). Among them, the Web Service Se-
mantics (WSDL-S) (W3C05) seems to be more suitable to be used in this
context. Similarly to WS-Resource, WSDL-S is a lightweight approach ex-
tending the WSDL metamodel to define an ontology for service concepts.
Other approaches to the Sematic Web Services like, for instance, OWL-S,
duplicate the WSDL input and output descriptions and are bound to spe-
cific ontology representations (W3C05). Despite its simplicity, WSDL-S
is compatible with different ontology definition mechanisms such as the
OMG Ontology Definition Metamodel (ODM) (OMG03a), the Web On-
tology Language (OWL) and UML. It can be used both in stateless and
stateful services and hence it complies with the general framework for
services defined by WSDL and WSRF.

Despite the technological perspective, a general notion of services, can
be also treated by means of a model-oriented viewpoint. In recent years
the increasing demand of complex business applications and the growth
of different distributed systems technologies have determined the emer-
gence of new approaches to modeling standards. This situation led to the
development of a more general system to drive software development
lifecycle named Model Drive Engineering (MDE) (33).

MDE is a software development methodology which focuses on cre-
ating models that describe the elements of a system. One of the basic
principles of MDE is that ”Everything is a model” (33): models are the
main entities that drive the software development process. Model Drive
Architecture (MDA) (Obj01) accomplish the MDE principles by means a
set of OMG’s standards-based modeling languages that are used as for-
mal model-based development languages. MDA is about using modeling
languages as programming languages rather than merely as design lan-
guages. Programming with modeling languages can improve the produc-
tivity, quality, and longevity of software. OMG’s Model Drive Architec-

19

ture (MDA) (Obj01) in this context must be interpreted as an alternative
way to solve the middleware interoperability problem respect to the SOA
approach.

MDA is based on a straightforward idea: simply exploiting the meta-
modeling mechanisms in order to allow the development of software at
an higher-level than it is commonly used to. It obtains this goal separating
the specification of system functionality from the specification of the im-
plementation of that functionality on a specific technology platform. An
application business functionality or behavior can be engineered by us-
ing a Platform Independent Model (PIM) expressed in UML. This model
is expected to remain stable as technologies evolve. An MDA develop-
ment tool then converts this PIM in one or more Platform Specific Models
(PSM’s) and finally to (one or more) working implementation on virtu-
ally any middleware/framework platform. A set of rules and techniques
is used to transform a model into another one. The MDA Metamodel
Description (Obj01) can help us to describe different kinds of mapping
which can occur in MDA: PIM to PIM; PIM to PSM; PSM to PSM; PSM to
PIM.

In order to manage the WSDL and WSRF features together with their
semantics, we define in MOTO-GAS a MOF compliant meta-model and
we use this meta-model as a profile for modeling the services. From such
WSDL/WSRF MOF meta-model we can represent services in a platform
independent way by means of application service models describing both
WS-Resources and Web Services. In this context, we use MDA-based
transformations as an harmonizing glue. Such transformations consist of
a set of rules and techniques used to transform an model into another mo-
del. The models in MDA may represent, for instance, parts of functions,
structures or behaviors of a system at different levels of detail. Our frame-
work automatically transforms a platform-independent service models in
a platform-specific model which directly maps into code files implement-
ing the services.

The general goal of MOTO-GAS is to make the design of an SOA ap-
plication similar to the design of an Object Oriented (OO) application in
UML. For instance, programmers and software engineers can find many

20

analogies with concepts of OO development. The service abstraction al-
lows to manage new challenging situations (76; 77) where not only the
applications and the infrastructures (e.g., the Grid) dynamically change,
but also the business organizations and the business goals.

A number of tools, for instance, the UML-Based Ontology Toolset
(UBOT) (24) and UML Data Binding (UDB) (53), have demonstrated the
suitability of using UML for developing and represent the ontologies. Ac-
cording to this approach (48), the designer can model the ontology do-
main (e.g., in a class diagram) and then refer concepts described in this
domain in the service application model.

We have introduced in MOTO-GAS the support for semantic Web Ser-
vices in order to allow the service to represent and manage ontologies in
Web and Grid infrastructures (4).

We implement MOTO-GAS by means of a set of MDA frameworks
described in (3). We compare MOTO-GAS with other similar appro-
aches. For instance the Uniframe (30) and the IBM Emerging Technolo-
gies Toolkit (ETTK) (aI06) projects.

Uniframe is aimed to overcome distributed platforms heterogeneity
using an MDA-based service-oriented view of the system. It uses a for-
mal specification language to define the components and to support con-
nection and Quality of Services (QoS) computation. Uniframe has inves-
tigated many component-based and service-oriented issues and define a
good abstraction for a unified architecture by means of the service ab-
straction. It also uses UML and MDA respectively to design service mod-
els and to realize the Unified Meta-Component Model (UMM) (30) em-
ployed as a glue that puts different technologies together.

ETTK is a collection of technologies developed by IBM research labs.
It provides experimental tools, for example code, documentation and ex-
ecutable demos that illustrate IBM’s current approach on emerging tech-
nology topics. In particular, the ”ETTK for Web Services and Autonomic
Computing” (ETTK-WS) (aI06) is a software development kit for design-
ing, developing and executing Web Service technologies using open spec-
ifications such as SOAP, WSDL, WS-Resource and Web Services Distributed
Management (WSDM)(OAS06b). ETTK-WS provides to developer basic

21

software components needed to experiment with and create Web services
and autonomic programs. In particular it gives a Java implementation
of all WSRF specifications and allows WS-Resource to be modeled with
some plug-ins in the IBM WebSphere (IBM97) development environ-
ment.

Currently, the combined usage of MDA and SOA is a widespread ap-
proach in enterprise computing (73). MDA and SOA did not invent new
middleware technologies or new interaction patters rather than expand
on existing frameworks and help them to work better. Despite the nicely
characteristics of the SOA’s, their success heavily depends on surround-
ing conditions like for example: the vendor support; the standard evo-
lution and the community acceptance (155). Beside using MDA to give
an abstract representation of services, we can use MDA also to overcome
the SOA’s technology volatility. Such as to use a platform independent
service model that allows an effective decoupling between the services
represented at the business level and the specific technologies used to im-
plement the services (e.g., WSDL, WSRF, CORBA etc.).

The goal of the model driven development of SOA is to provide an
environment where technology-specific services can be produced in a
way that is independent as possible from the particular implementing
technologies ant their changes. Also in design phases services should be
considered a technology aware concept and modeled at a business-level.
Business-level services concern mainly with business requirements rather
to technological issues and should focus on the information the service
need to manipulate and the functionalities the service must provide(73).

In order to give a more general representation of the service concept
(actually the business service concept) the research presented in this the-
sis moves from the scenario discussed in this section and investigates how
business services can be directly derived from requirements. Thus, we
analyze how services relate to business models and business processes in
order to define service models useful both for software development and
business reengineering.

22

1.4 Services in e-Government and Civil Protec-
tion

Every business and government organization is engaged in delivering
services. We can summarize this vision we expose in the previous sec-
tions, quoting Newcomer and Lomow: ”the service orientation is an or-
ganizational principle that applies to business and government as well as
to software”(128).

Different national governments are aware that the use of ICT repre-
sents a means to increase collaboration and cooperation between differ-
ent public institutions. They aims to provide better and more efficient
services to citizens. However most of the governmental bodies develops
their own ICT systems independently from the other organizations and
connecting them together is not a simple task.

The development of an e-Government system usually requires an ef-
fort in the integration of heterogeneous architectures and applications
among heterogeneous organizational structures. Nevertheless, there are
some situations, such as emergencies and crises, where systems have to
be integrated in a few days and, sometimes, in a few hours. In these situ-
ations, many organizations and governmental departments, involved in
order to face up the emergency and avoid further damages, are unaware
to the structures and technologies of other organizations.

The main challenge in e-Government relies on integrating efficiently
all those heterogeneous public ICT systems by providing an unified mid-
dleware (2; 23). The SOA approach has been studied to be a successful
approach in defining such a middleware (122; 127). SOA’s represent a
suitable standardized integration architecture to achieve better flexibil-
ity while implementing new business processes across organisation di-
visions and ICT systems (139). The need for such integration is driven
by the concern of process integration while maintaining different IT in-
frastructures across the whole organisations. SOA-based approaches to
e-Government have been specified keeping in mind that business pro-
cesses integration should be as well taken in account (23). As claimed in
this thesis, also in the e-Government scenario social and organisational

23

aspects should be taken in account since the integration success depend
heavily on the acceptance of the global model (139).

In Chapther 6 we show how our BPR framework and the SMOTE tool
can be used together to implement an e-Government application useful
in a Civil Protection scenario. We highlight how our business-oriented
approach to the software development helps to overcome issues related
to the management of emergency management volunteers organizations.

In particular, the Italian public administration domain is very suitable
for a business-driven and service-oriented approach because it lacks in
communication and sharing of knowledge, this is one of the most impor-
tant causes of its inefficiency (49; 63; 74).

Thus in this section we discuss the challenging domain of Civil Pro-
tection e-Government scenario that it is also useful to understand the
case studio described in Chapter 6. Moreover, we present a scenario of
a service-oriented project named SISSI that has been developed in the
Marche Region Civil Protection. The software developed in such a project
has never be used due to some misjudging on the analysis BP’s and orga-
nizational issues.

1.4.1 Services for Critical Infrastructure Protection and Emer-
gency Management

The e-Government contexts in which smallest and heterogeneous teams
and technologies have to cooperate(8; 74) is an interesting domain for our
research .

The issues to solve for service integration in the e-Government context
can be meant and compared to the ”global context” we present in Section
1.1.1 for the Global Software Engineering. The e-Government context de-
mands to many institutions to collaborate actively. Usually, these institu-
tions are different because of their organizational structure and ”business
culture”. This collaboration, in particular concerning the experience and
the information exchange, is particularly complex in the civil protection
domain.

Civil protection is the institutional function responsible over emer-

24

gency management in the Governments of European countries (Eur02).
Especially in recent years, the Civil Protection had to face increasingly
complex and varied emergencies, not only closely related to natural haz-
ards. Also anthropic (i.e., induced from humans) and social emergencies
had to be faced by the Civil Protections such as the Campania Italian re-
gion trash emergency in 2007 or the management of big events like the
G8 in L’Aquila in 2009(Pre09). Moreover, during the last few years, more
and more active collaborations between the European and the World Civil
Protections makes this context an effectively global context where ser-
vices have to be developed and deployed.

Civil protection is a ”system” that operates in times of normality (also
called ”times of peace”) to develop prediction, prevention and study of
the various risks faced by the territory. In times of emergency, Civil Pro-
tection provides the best possible operative answers. The system of Civil
Protection is a complex system in which organizations, institutions, and
different structures have to operate in a synergistic way.

The activity of the Civil Protection system is governed by a set of laws
and rules, both from national and regional authorities, which allows to
govern and manage the different situations generally defining processes
and tasks of each actor involved in emergency prevision and prevention.

In most European countries, Civil Protection is a function assigned to
a single institution or a few public authorities. In Italy, both centrals and
peripherals organizations of the State are involved in this function: local
authorities (such as municipalities, provinces and regions) and also civil
society fully participate in what is named ”the National Service of Civil
Protection”, including voluntary citizen organizations as well.

The activities of the National Service of Civil Protection in Italy are
not limited to attend in case of disasters and calamities. Indeed, the Civil
Protection is employed mainly in prevision and prevention of various risk
scenarios and in the management of potential emergency situations (in-
cluding the development of intervention procedures to be used in emer-
gency planning).

Prevention is intended as the study of the causes of the disasters phe-
nomena, the identification of risks and identification of areas of the terri-

25

tory subjected to the same risks. Prevention activities are carried out by a
system of networks linking the Civil Protection service to:

• national centers of scientific research (e.g., universities, research in-
stitutes, centers of excellence, etc.);

• technology systems of collecting and processing information about
various types of risk and conditions that may increase the probabil-
ity of danger for the community;

• information centers that are able to report the probability of catas-
trophic events.

This set of technical and scientific activities, ranging from the collec-
tion of land information to their preparation, allows to the entire system
of Civil Protection to evaluate the possible risk situations and to alert the
intervention system with the most useful advance. It is also useful to
provide the authorities the necessary information to make reasoned and
timely decisions.

The prevision consists of the activities directed to avoid or minimize
the possibility of damage consequent the events also from knowledge ac-
quired about the effect of prevision. It is an emergency management task
aimed to reduce the probability of disastrous events or, at least, to limit
the effects on population and settlements of a calamitous hazard. In par-
ticular, among the prevision activities, a special mention must be given
to the emergency planning activity. Besides the plans prepared by each
municipality, special plans are prepared for particular risks (e.g., sanitary
risk, business risk, traffic, etc.). The planning must of course include op-
erating proceses of rapid intervention and through specific methods of
work.

The offices of the National Civil Protection Department are responsi-
ble for predicting natural and anthropic risks. They are connected through
a network organized at national and regional levels. Therefore is of vital
importance the rapid and timely exchange of knowledge with the area
where the disaster may occur. The use of technologically advanced net-
works, such as radar networks for weather forecasting, the national net-

26

work of seismographs, the sophisticated systems for monitoring the ac-
tivity of volcanoes, and the best scientific and professional expertise avail-
able, help the Italian Civil Protection operate also basing on early warning
and, when possible, adopting preventive measures such as evacuation of
areas interested by a risk.

The aid activities consist in the implementation of emergency inter-
ventions to ensure, to the populations affected by natural disasters, first
aid and assistance. For the purpose of civil protection activities, the law
divides the field of natural disasters in three categories:

1. natural events or events connected with the human activity that can
be faced through interventions implemented by individual institu-
tions and competent authorities in ordinary way;

2. natural events or events connected with human activity which by
their nature and extension involve the coordinated action of several
institutions or competent authorities in ordinary way;

3. natural events, disasters or other large scale events that must be
faced with extraordinary resources and powers due to their magni-
tude;

It is important to remark that the classification of an event in one of
three categories is closely connected with the size and the resources held
by individual institutions. Indeed, an event that occurs in a big city can be
run directly by local technical services, while in a small town may have to
be managed as a real emergency. The overcoming of emergency consists
in the implementation of the actions needed to be postponed to remove
obstacles to the resumption of normal living conditions.

With the Italian law (No. 225) of February 24th 1992, Italy has orga-
nized civil protection as a ”national service”. Such a service is coordi-
nated by the President of the Council of Ministers (through the Depart-
ment Head of Civil Protection) and composed, as the first Law comma
”by the authorities in the central and peripheral, Regions, Provinces, the
Municipalities, the National public and local entities and all other institu-
tions and private and public organizations on national territory.”

27

Therefore the Italian Civil Protection national service is a very com-
plex organization that requires, in respect of independence and auton-
omy of its individual components a close collaboration among institu-
tions, businesses, voluntary organizations and non-governmental organi-
zations and even individuals. Moreover, the interaction between the civil
protections organizations during a disaster must be established quickly
and in a coordinated manner in order to reduce the lives loss and to miti-
gate the harmful consequences inherent in every disaster.

Finally, this scenario has been further complicated by the recent need
to coordinate and set up systems of civil protection at a supranational
level and, sometimes, worldwide level. As an example it was necessary
in the tsunami in Thailand in 2004 (INE04) and Katrina Hurricane in 2005
(Nat05).

In recent years, the European Union is implementing a specific sys-
tem of European Civil Protection (Eur02) named the EU Civil Protection
Mechanism. It incorporates, basing on the involved countries, very dif-
ferent tasks, measures and organizations of nationals Civil Protection or-
ganizations. Such a meta-organization has the challenging mission of in-
tegrate system that are culturally, organizationally and of course techno-
logically very different.

For these reasons we believe that the domain of Civil Protection is
especially suited to test and demonstrate the validity of our business-
oriented approach to the implementation of SOA’s. In this domain more
than it happens in others domain, the integration between technology
and processes has a strategic role in the success of adopting a new soft-
ware. The rapid and right integration among services and processes in
civil protection are, sometime ”matter of life and death”.

1.4.2 The Marche Region SISSI Scenario

In January 2001, the Marche Region commit in outsourcing the design
and implementation of a software named SISSI to the Company Design
Services Srl, a software development company located on the same city
of the Marche Region offices and with a total of 7 employees.

28

The SISSI project involved the creation of a Web application for the
prevention activities relating to the protection of water resources in the
Marche region area. The two main goals of the software were:

• the census of water resources in the area (i.e., source, group of springs,
wells, derivations etc.) by means of forms filled online directly by
the resources holders.

• to enable resource holders to send periodically data on the monitor-
ing of water (e.g., minimum, maximum and other data to measure).

From a technical point of view, the tender documents required a soft-
ware architecture based on Web Services, an immature technology, that
was slightly used in 2001 to implement applied e-Government projects
and that was not completely standardization at that time. In fact, this
constraint was not motivated by special needs or organizational require-
ments rather by the possibility of claiming an innovative software that be-
sides technical benefits gave prestige to the institution and the involved
officers.

In order to collects requirements in the SISSI project, they have been
possible only four 3-hours meetings with the technical officials who fol-
lowed the contract. Only in 2 meetings there was the attendance of the
executive managers of the Marche Region. The outcome of the meetings
led to the following technical choices:

• The use of the Web Services Architecture;

• The login system of the Web application should use certificates, in
the light of the fact that by 2003 the Marche region was equipped
with a single signature system accessible by digital signature;

• The creation of a single card for both census and monitoring data of
a water resource with a total of 74 fields distributed up to 12 forms
for each resource.

Meetings only marginally was interested in the system users require-
ments. Such users worked into agencies external to the Marche Region

29

organization. Such agencies were named Optimal Territorial Area (ATO).
The ATO were distributed over the entire Marche territory, they were 5
and employ an average of 5 persons per office. Both the ATO managers
and the employers were not involved in the design of the system.

In light of the difficulties encountered in adopting a system based on
Web Services, which also used digital certificates for logging, the devel-
opment company limited the compatibility of the system to Netscape
(Ame94) version 6.0. The constraint was accepted considering the con-
sequences of this choice less important than the fact that project used a
Web Service SOA.

The SISSI system has been verified and released on September 2003
and never used by ATO’s. It was only used for a few months by ATO no.
3 and ATO no. 5 but then abandoned. In 2007 the SISSI system has been
completely dismissed and the function of water resource monitoring and
data acquiring has been entrusted to the Marche Regione Civil Protection
Department (MR-CPD) (The09b) due to a drought emergency in central
Italy during summer 2007. Officers and technicians of MR-CPD define a
simple and synthetic spreadsheet in Microsoft Excel delivered by mail to
all ATO directors to be returned in 20 days. Hence, they start defining a
new Web application starting from the acquired data.

1.4.3 An Inquiry on the Causes of the SISSI Failure

We have made a telephonic interview to one referent for each ATO in or-
der to understand the most relevant misunderstanding of SISSI require-
ments and goals. We further analyze the technical choices of SISSI with
the Marche Region officer responsible for the project. We summarize the
main causes of failure of the SISSI project as follow:

1. ATO’s employees were not well skilled in the usage of computers
and Internet navigation. Their age is comprised between 45-60 year
old. They use computers rarely and only for office automation tasks.
Thus, they were unaware to use an unknown Web browser (i.e.,
Netscape) and the login certification system;

30

2. Only 2 of the 5 ATO’s dispose of at least one worker sufficiently
skilled in ICT that could helps other fellow worker in case of issues
with the system. This is particularly important in the first phases
of system adoption when the great part of data should be inserted.
Besides, a continuous assistance is likewise important in the peri-
odical sending of measured data because it is a task performed 3 or
4 time per year and some employers forget how to use the system;

3. The SISSI project foresees only few training activities that have been
judge insufficient from both the ATO’s and the Marche Region em-
ployers devoted to use the Web application;

4. None processes have been studied and applied in the verification of
inserted data and to control the actual delivery of data;

5. None institutional support has been provided to legitimate the Marche
Region to require data to the ATO’s (e.g., laws, regulations, etc.);

6. The fact that each client required the installation of Netscape re-
sulted in a limitation on the number of computers enabled to use
the SISSI system;

7. The form fields used to register water resources are excessive and
unnecessary in relation to the primary goal of define a map of exist-
ing resources. This have discouraged the ATO’s to fill such a long
forms for each resource. Since the ATO’s cannot fill all the form
fields they do not fill at all.

8. The usage of the Web Services Architecture (W3C04a) in the SISSI
Web application, where the main task is form filling is rather incon-
venient. Such a choice creates a development overhead and reduce
the ability to modify the system.

9. The new versions of the Netscape Web browser are incompatible
with the SISSI system.

10. A single signature system for the login to the Marche Region sys-
tem was not operative in 2003 and it is currently (2009) not fully
implemented in all the ATO’s.

31

We use the SISSI scenario to show how our contributes can be applied
in a real word project. It is obvious that the project requirements and
description have been highly simplified. Many details have been omitted
in order to use SISSI as a reference scenario.

We emphasize that the identified causes of failure are all derived by
lacks in connecting requirements expressed as goals to processes and im-
plemented services. Even if the SISSI project is completely based on the
Web Service SOA’s its services have not been defined considering require-
ments and business goals the software should solve.

1.5 Outline of the Thesis

The rest of the thesis is structured as follow.
In Chapter 2 we present the state of art of related technologies and re-

searches. In particular, Section 2.1 presents a survey on BPM and reengi-
neering considering both the economic and the computer science point of
views; Section 2.2 discusses how GSD practices has been applied also to
the requirements engineering discipline in order to address multi-site dis-
tributed requirements gathering; Section 2.3 presents MDE technologies
relating them to the enterprise-centric computing perspective that consid-
ers technology evolution very bounded to business and organizational as-
sets. At the end of each section of this chapter we present current related
works of the topic: Section 2.2.4 discusses the goals oriented approach
to requirements engineering and introduce the goal-oriented i* language
and the Tropos software engineering method; Section 2.1.5 presents the
ATHENA Framework that is a project that share many motivation with
our approach; Section 2.2.3 gives an overview of Softwiki that applies a
wiki to requirements engineering practices and can be compared to our
WikiReq tool.

Chapters 3, 4, and 5 presents our three contribute: Chapter 3 presents
the ESI method and its three phases; Chapter 4 presents the BPR frame-
work describing the transformations that support the goal to service map-
ping and the plug-in based approach to service static orchestration. Chap-
ter 5 details the WikiReq and SMOTE tools that support our method by

32

means of the BPR framework technologies.
In Chapter 6 we validate the hypothesis of our thesis in a real case

studio developed in the Civil Protection Department of the Marche Re-
gion concerning the development of some Web applications that directly
affects the organization BP’s.

Finally, Chapter 7 draws up our conclusions and future works.

33

Chapter 2

The State of Art of
Business-Oriented Model
Driven Development

In this chapter we present the state of art of the technologies and method
related to our work. Section 2.1 discusses business modeling techniques
currently used in software engineering for requirements acquiring and
the relations of such activity with the reengineering of the organizations.
Software and information related services are a fundamental parts of the
companies business: they influence both the companies products and the
companies organization. Thus, we consider an essential issue to study
the way companies and their business will be redefined by the software.

In Section 2.2 we present the new challenges due to the ”globaliza-
tion” of companies. The issue of consider business modeling in software
engineering is further complicated by the global dimension of the orga-
nizations. The global and multi-site organizational style is a problem
in software engineering, new methods and approaches have to be de-
veloped. In particular, the globalization of companies is a problem for
requirements engineering. A global context requires software engineer-
ing methods that take into account both the multi-site development to
be performed in global software development companies and the multi-

34

site requirements gathering that must be performed in order to develop
software for companies with a global organization.

Section 2.3 gives the state of art of some technological approaches that
take into account enterprise-level issues in the development of software.
Basing on such technologies, for instance MDA, new high level abstrac-
tions can be defined in order to manage software components. In particu-
lar, we study the service abstraction that can be used to relate the software
with the organization.

At the end of each section of this chapter we present current related
works concerning the topic.

2.1 Business Modeling and Reengineering

The concept of process definition in order to improve human activities is
an old idea, for instance, in the V sec. B.C. Sun Tzu describes the need for
hierarchical structure and communications in ”The art of war” that can be
considered the basis for strategic planning of modern business processes
(118). More generally the study of processes and the study of the orga-
nizational models are closely related concepts (102). Thus, to understand
how the business can be modeled and improved we need to understand
also how business organizations are changed over the past two centuries
and how they are changing nowadays.

In this section we present business modeling and how this discipline
is evolved in recent years. Currently, the business modeling study re-
quires to consider both economic and computer science approaches. The
technology-centered perspective was first introduced by Michael Ham-
mer in 1990 with the Business Process Reengineering (BPR) approach
(83). Hammer claims to use information technologies to radically re-
design business process in order to obtain effective improvement of the
business rather to embed ”outdated processes in silicon and software”.
Usually, BPR imply to obliterate existing processes and to rapidly change
the organization structure to accommodate and improve opportunities
given by the new technologies. Reengineering trigger changes in many
aspects of the business, not just in the business processes themselves.

35

Anything associated with the process must be refashioned: job designs,
organizational structures, management systems etc.

Thus, in order to understand the whole business not only processes
must be analyzed (i.e., business process modeling). A more general activ-
ity of business modeling must be performed in redefining software and
non-software systems. In the rest of this section we distinguish among
business modeling and business process modeling and present details
about notations to be used in business process modeling.

2.1.1 A Historical Perspective of Business Modeling

The concept of process in the business was first analyzed by Adam Smith
(1723-1790) in the book ”An Inquiry into the Nature and Causes of the
Wealth of Nations” (148). In a pin farm he showed how the division
and specialization of work improves productivity of the 24.000% . Sub-
sequently, Frederik Taylor (1856-1915), a mechanical engineer, identified
”scientific management” as a new discipline to study and optimizes work
processes analytically. This approach introduced in enterprises a scien-
tific method to study information and data about processes in order to
optimize the productivity of the work. A strict separation of planning
(management) and doing (work) was defined in the organizations. The
Taylor model well fitted the organizations of the early 20th century. How-
ever, this approach underestimated one important factor: the technology.
One of the most critical points of the Taylor theories was that they are not
concerned with technology. Scientific management ”took tools and tech-
nology as givens” (67) while technology is not a way to enhance organi-
zation performances; it is the principal source of organizational change.

A more systematic study of the Business Process (BP) field come from
the Business Process Reengineering (BPR). In 1990 Michael Hammer (a
professor of Computer Science) claimed that the major challenge for man-
agers is to obliterate non-value adding work, rather than using technol-
ogy for automating it (83). This statement accused managers of having
focused the wrong issues, namely that technology and information sys-
tems has been used primarily for automating existing work rather than

36

using it as an enabler for making non-value adding obsolete. The idea
was that most of the work being done does not add any value for cus-
tomers, and this work should be removed rather than accelerated through
automation.

Hammer and Champy (84) claimed that modern enterprises are the
product of the industrial revolution. The methods of work of such enter-
prises (based on BP’s) were defined at a time when management methods
prescribed a decomposition of work into a set of elementary tasks that
could be performed without thinking as discussed for Smith and Taylor
theories. Enterprises then needed to put all these tasks together again
into a meaningful whole. To manage these processes such organizations
needed to develop large bureaucracies that monitored the status of the
tasks and relayed the result of each task to the next task. Hammer and
Champy claimed that the enterprises crisis that began in the 1970s was
largely due to enterprises focusing inward on the tasks that they were
performing rather than outward towards their customers. It thus spelled
the enterprises inability to adapt to a changing environment. Enterprises
that could not adapt were doomed to disappear. In BPR the required
change could not be performed by evolving the existing processes of en-
terprises but by rethinking them from the core. Thus BPR prescribes rad-
ical change, rather than the continuous change.

Hammer defines some principles for reengineering that we resume:

1. Organize around outcomes, not tasks: the design of a person job should
be organized around an objective or a outcome, not around a task or
a single task of a given process. Step by step sequential processing
(e.g., of an order) causes problems. For instance all data must be
passed through the process step even if they are useful also in the
step n. Often, these causes numerous errors and misunderstand-
ings, moreover any new question about requirements have to come
back all the steps down to the customer causing delays and reworks.

2. Have those who use the output of the process perform the process: depart-
ments, units and individuals that need the result of a process should
perform the process themselves. Specialized departments that han-

37

dle specialized processes allow the process to work anyway but the
work is slow and bureaucratic.

3. Subsume information-processing work into the real work that produces
the information: an organization unit that produces an information
should be capable also to process it. Often, there are units inside the
organization aimed only to collect and process information. Mod-
ern technologies allow information producers to process informa-
tion in a semi-automatic way.

4. Link parallel activities instead of integrating their results: parallel func-
tions should be coordinated and linked together while their activi-
ties are in process and not after. For instance product development
usually develop sub-systems independently and then integrates its
results. In this way problems and errors come out only at the end,
in the testing phase. By means of interconnection systems it can be
performed an ongoing coordination.

5. Put decision points where the work is performed: the control should be
put into the process. The process should have a built-in control,
who do the work should make the decisions. That principle im-
ply to rethink the hierarchical structure of the organization, pyrami-
dal management layers can be compressed in order to allow a self-
managing and self-controlling hierarchy. The manager role changes
from one of controller ans supervisor to one of supporter and facil-
itator.

6. Capture information once and at the source: This is a simple rule, to
integrate and centralize information. Technologies such as online
databases, bar code, Radio Frequency IDentification (RFID) and other
systems help retrieving and sharing information eliminating redun-
dancy and overhead costs.

These principles help us to understand how much the organizational
study and the process analysis is affected by technologies, in particular
by software technologies. The contribution of computer science in this

38

discipline is not only limited to process modeling. Reengineering triggers
changes in many aspects of the business, not only limited to the business
processes themselves. Also the organizational structures, the strategies
and the management must be revamped. This is because, in this thesis,
we generically refers to business modeling and reengineering rather than
business process modeling and BPR.

Actually, business modeling is a topic that spans between two dis-
ciplines: economics and computer science. The work on reengineering
developed by Hammer (that was partially anticipated by Peter Druker in
the 80th (67)) has influenced many other similar approaches. For instance,
the Lean Thinking approach (132) that is an economic strategy centered
on the notion of value where everything that do not generate value is
obliterated, exposes principles very similar to the business reengineering
principles. Thus, reengineering, that comes from the ICT discipline, can
be more generally interpreted as a theory that actually has affected eco-
nomic business modeling over the past two decades.

2.1.2 The Discipline of Business Modeling in Computer
Science

Software development affect business processes. However, it is in turn a
process (i.e., a production process) that could be reengineered in a way
similar to BPR and Lean Thinking (132). Indeed, modern approaches to
software engineering such as eXtreme Programming (XP) and agile meth-
ods share many principles with lean management (56).

Despite these mutual influences, current software engineering pro-
cesses lack to give an adequate support to analyze how the software sys-
tem they are developing affect the business processes and more generally
the whole organization (126; 172; 174).

The emergence, since the 1960’s, of software systems in the enterprises
has created a situation in which enterprises have become increasingly de-
pendent on the capabilities of their software and ICT systems. This real-
ization led Zachman to define a framework for Information Systems Ar-
chitecture (ISA)(176). The ISA framework was renamed as ”The Frame-

39

work for Enterprise Architecture” to show to what extent software sys-
tems were important to the enterprise (150).

The ISA framework is defined by Zachman as providing a ”neutral,
unbiased, independent” representation of the enterprise and its IT sys-
tem. For Sowa and Zachman (150) the ISA framework’s purpose is to
provide an overall view of the IT system and its relationship to the enter-
prise and the enterprise’s surrounding environment. From this perspec-
tive, failure to provide such a view may lead to the optimization of only
some capabilities of the IT system and/or the enterprise. This partial op-
timization may come at the expense of the optimization of the enterprise
as a whole, thus leading to results that are viewed as negative.

The ISA framework seeks to integrate a number of different represen-
tations of the enterprise in a model that is independent of any of these
representations. The idea is to provide a holistic view of the enterprise
as a whole and at the same time segmenting this holistic view into inde-
pendent viewpoints so that the each of these viewpoints can be reflected
upon, in isolation from the other viewpoints.

The term architecture is used to show the analogy between ”the con-
struction of a computer system and the construction of a house” (150).
Hence, the ISA framework is based on analogies between traditional build-
ing architecture and software systems requirements definition, design,
and implementation.

We show the the ISA framework in Figure 1.
This ISA framework has six columns and 5 rows. The rows repre-

sent analogs of the architectural levels to an enterprise with a focus on
IT systems. The rows are named: Scope description; Model of the busi-
ness; Model of the Information System; Technology model and Detailed
description. Zachman states that each row is not merely a more detailed
description of the row above it. Rather, it is a different representation
done for a different purpose by different disciplines.

The columns represent the kind of questions that can be asked about
each of the rows. Thus, the cells of the table represent answers to the ques-
tions: ”what entities are involved, how they are processed, where they are
located, who works with the system, when events occur, and why these

40

Figure 1: The ISA framework matrix

activities are taking place” (176) for each one of the views represented by
a row.

Zachman states that the order of the columns does not represent a
hierarchy of importance. The ISA framework requires that entities and
their relationships, their functions, the people who manipulate them and
their motivations be separated into four separate columns with four dif-
ferent notations. Thus, the end/means hierarchy (why) is separated from
the entities and their relationships (what), from the activities performed
on these entities (how), and from the people performing these activities
(who). From our point of view these aspects can and should be modeled
together. Also, the separation of the what and the who columns is quite
artificial.

Computer Scientists’ business modeling and BPM is aimed to better
understand requirements for the system to develop. Several software en-
gineering processes include a BPM phase to better understand require-
ments of software. In order to give an overview of how BPM has been
used in software engineering we present the Rational Unified Process
(RUP) (105) approach.

RUP is an iterative software development process that integrates many

41

software engineering best practices, it is a process framework that can be
adapted and extended to suit the needs of an organization. RUP uses two
software engineering perspectives (named disciplines): the development
discipline and the support discipline.

Business process modeling is the first development workflow of the
RUP process, it does not focuses on business reengineering and it is aimed
to model the environment of the system in order to support project and
change management activities and to better understand system require-
ments.

An important feature of RUP is that it uses software engineering tech-
niques and languages to perform business modeling. The language, and
thus the diagrams, used for business modeling are the same used for sys-
tem modeling. This has many advantages in mapping processes concepts
to system concepts in the requirements documents.

In RUP BP’s elements are intended as follows:

• Business Actors: represent business users e.g., customers, vendors,
or partners

• Business Use Case and Business Use Case realizations: represent
BP’s. They refer to business goals and business rules

• Business Workers: represent the roles that people play in an organi-
zation

• Business entities/events: represent the ”thing” that an organization
manages and/or produces. They are organized in business systems

As depicted in Figure 2, such elements are used to produce artifacts
by two roles of BPM: the Business Process Analyst and the Business De-
signer. The former leads BPM activities outlining the organization being
modeled, for instance it captures business goals and determines business
actors; the second details the specification of a part of the organization,
for instance it describes one or several business cases, it determines the
business workers and business entities defining their responsibilities, op-
erations, attributes and relationships.

42

Figure 2: Roles and Artifacts of business modeling in RUP

The most relevant artifacts of the RUP business modeling workflow
are:

• Business Use Case Model: it is a model of the business intended
functions used as an input to identify roles and deliverables in the
organization.

• Business Analysis Model: it is an object model describing the real-
ization of the business use cases.

• Target-Organization Assessment: it describes the status of the orga-
nization in which a system is to be deployed.

• Business Architecture Document: it provides an overview of archi-
tecturally significant aspects of the business from a number of per-
spectives. It is used in reengineering some processes or to describe
the business to other parties.

One of the advantages of using the same formalism to model both
the BP’s and the system, is to define a mapping among elements of the
organizational domain and elements of the system to be.

43

RUP defines this mapping and allows to derive parts of the system
specification directly from the BP models. System Use Cases can be iden-
tified starting from the business object model: for each business worker
a candidate system actor is identified and for each business use case the
business actor participates a system use case is created.

If the goal of the designer is to automate a BP, then the business worker
is not mapped into the system actor, but the business actor is mapped into
the system actor and communicates directly with the system.

Business entities will correspond to entities in the analysis model of
the information system and other not specified mappings can be per-
formed in order to extract other system requirements (i.e., user profiles,
legacy considerations, system architecture constraints etc.)

RUP has several drawbacks: it does not support a cross-functional
BPM; it is limited to the development process and it does not support in-
teractions among different teams. In order to meet the ”real-world needs
of typical organizations”. Thus, RUP has been extended with a further
discipline named the Enterprise Discipline by the Enterprise Unified Pro-
cess(EUP) (15).

In particular, EUP extends the business modeling workflow of RUP to
support the enterprise view of BP’s. The Enterprise Business Modeling is
mainly intended to represent all the knowledge about the enterprise and
to reengineer the business by means of technology.

EUP produces artifacts at a higher-level than RUP business model-
ing. It includes: the definition and analysis of the enterprise strategy; the
identification of processes implementation options; the modeling of the
organization and the domain besides the BPM.

BP’s can be shared and used for different development projects. They
are more stable and allow an evaluation of business strategies, rules and
organization. The business modeling activity it is intended to model the
vision and the mission of the business. It identifies 3 main dimensions for
BP’s:

1. External Environment: it models the environment which surrounds
BP’s. Customers and their needs are identified, as well as suppliers,

44

vendors, partners and competitors.

2. Business Processes: they identify BP’s for marketing, administra-
tion and sales. An important part is the identification of the of-
ferings (services and products) the organization provides to cus-
tomers.

3. Critical Business Rules: the critical business rules, policies and fun-
damental ideas of are also identified and modeled. These BP’s allow
to observe and validate the adequacy of such rules.

Some overlaps exist between the EUP and RUP activities. However,
the BPM scope of each process is different. Enterprise Business Modeling
(EBM) looks at the entire business, whereas business modeling typically
looks only at the business related to a single system. Thus, EBM can be
used in business modeling of several projects, sharing a unique vision for
the business, the organization and the main goals.

Despite the EUP can be considered a meaningful advance in extending
software engineering to business modeling it does not furnish an effective
support to analyze how business processes are affected by the system to
be developed and how such a system will affect the goals and strategies
of the entire business. EUP tries to perform a more accurate requirements
engineering in order to ”deliver systems that meet all the needs of to-
day’s businesses” (15). It allows a more accurate requirements and do-
main engineering, it is about to better relate project management with
software development. Nowadays, EUP, RUP and many other software
development processes lack for a business driven approach that consider
software as an instrument to rethink and redesign the enterprise (a leaner
enterprise if possible) rather to automate some tasks.

2.1.3 Avoid confusion: Business Process Modeling is not
(only) Process Modeling

The studies on BPM are based on the observation that each product that a
company provides to the market is the outcome of a number of activities
performed. BP are a way to model and organize such activities in order

45

to improve them and understand their interrelationships. Software and
IT play a fundamental role in BPM, because more and more activities that
a company performs are supported by information systems. While at an
organizational level, BP’s are essential to understanding how companies
operate, BP’s also play an important role in the design and implementa-
tion of flexible information systems. As we discuss in the previous sec-
tions BPM is influenced by concepts and technologies from both business
administration and computer science.

In order to understand the differences in how BPM is performed at
an organizational level and to support information system development,
we present BP’s basing on the organizational vs. operational dimension
(162). As depicted in Figure 3 they can be identified five levels of abstrac-
tion in BPM. At the highest level business strategies of the organization are
identified. In the second level business strategies are divided into a set
of goals and sub-goals that contribute to satisfy the related strategy. The
third level concern with organizational BP’s, such as high-level BP’s some-
time described in textual form only considering process inputs, outputs
and expected results. Operational BP’s describe in detail activities and re-
lationships among processes needed to support organizational BP’s. Fi-
nally, implemented BP’s contain information on the execution of BP’s activ-
ities and information on the environment where such activities have to be
executed.

There are multiple ways to implement a BP. For instance it can be spec-
ified by means of written procedures and policies to be adopted by work-
ers in the organization or it can use a process management software plat-
form. Also formalism to describe such processes can be various: ranging
from informal and semiformal techniques used for the three higher level
depicted in Figure 3 to more formal and consistent languages adopted in
the remaining BP’s levels.

Despite all the levels described in Figure 3 can be defined in terms of
processes, a separation of concerns is needed here. In particular process
models are not a good starting point for identifying business stakeholder
requirements. For instance in a e-commerce scenario a projects start with
the design of a business model stating what is offered by whom to whom,

46

Figure 3: Modeling levels in BPM.

47

rather than with the design of a process model stating how these offerings
are selected, negotiated, contracted and fulfilled operationally (82).

Thus is evident that different levels of the BPM require different for-
malisms to describe their meaning. In particular the first three levels are
different in content to the remaining two levels. In this thesis we will re-
fer to Business Modeling to the representation and management of the
strategies, goals and organizational BP’s and to Process Modeling to the
representation of operational ad implemented BP’s.

A business model represents the way of doing business in terms of
the stakeholders strategic goals in order to create and exchange objects of
value. It represent ”the way of doing business” exposing the ”what” and
the ”who” of the business. BPM further specify the ”how” of the business
defining how resources and other entities identified in Business Modeling
must be used in order to produce a value for the organization.

Gordijn et al. identify several differences among these two levels of
concerns (such as, Business Modeling vs. process modeling)(82):

• Business Modeling is aimed to define common understanding be-
tween stakeholders regarding the business, its organization, and
the way the business is carried out (involved actors, resources, tasks
etc.). Rather process model is aimed to clarify how processes should
be carried out, and by whom.

• Contents in Business Modeling are centered around the notion of
value, while in Process Modeling concepts focus on how a process
should be carried out and the related issues.

• In Business Models value exchanges represent a transfer of own-
ership, while in a process model a flow of information or goods
implies a change of state.

• Decomposition rules of model are different. Business Models use
decomposition of value-adding activities as a way to discover new
value-adding activities. Process Models serves the goal of clarity, or
studying various resource allocations to activities.

48

• In Business Models, object properties are used by the stakeholders
to determine the value of an object. In Process Model properties are
used to determine the state transitions.

Thus, both Business Modelling and process modelling are forms of
conceptual modelling but they differs both for the type on information
they describe and in the way such information are described.

Usually, Business Modeling in the first three levels of Figure 3 are per-
formed by requirements engineering formalism (172) and regards only
marginally BP’s representation. In particular, strategies and goals can be
represented by goal oriented requirements engineering formalism like i*
and Tropos (126) or by not-process-oriented formalisms like the UML Use
Case diagrams(105).

Instead, operational and implemented BP’s can be represented with
process-oriented (i.e., workflow-like) formalism (164). Such formalism
share a theoretical underpinning on the pi-calculus and Petri Net (86)
and allow choreography, orchestration and high level design of processes
(e.g., BPEL4WS (BEA03), WS-CDL (W3C04b) and BPMN (OMG06) are all
comprised in this category). In Figure 4 we report how the most notice-
able process modeling standard relate to pi-calculus and Petri Nets.

Obviously, we can apply also process modeling formalisms to the
business modeling. In particular it could be useful to exploit the BPMN,
that allows to define an high level representation of processes, to rep-
resent some organizational BP’s. However, not all business modeling
concepts can be represented in terms of processes. Also from the im-
plementation point of view there can be some problem to define all the
software system by means of BP’s. Process modeling is concerned only
with process-oriented applications (86) such as applications whose pro-
cesses have the following characteristics (86):

• Atomicity: processes are executed in an atomic way such as ”all or
nothing”; they are completely executed or none.

• Consistency: a process when executed terminate in a valid terminal
state of the system.

49

Figure 4: Theory family tree for BPM standards as envisioned in (86)

• Isolation: a process does not influence a not related process either if
they are concurrently executed.

• Durability: the result of a completed process must not be discharged.

• Long running: from start to finish the process require hours, weeks,
month or more to be performed.

• Persistent state: because the process is long running the state reside
in a database.

• Bursty: the process sleep most of the time and waits to triggering
events to wake up.

• System/Human Orchestration: the process manage the communi-
cation of many system and human actors

Thus there can be application that are more or less process-oriented
also at an implementation level. For instance, Process Modeling is suit-
able for the modeling of a booking process in a travel agency but is less
suited for a On Line Transaction Process (OLTP) application, such as ATM’s,
because of lacks longevity and a persistent state in the latter example.

50

In this thesis we will refer BPM and Business Modeling as synony-
mous, that is as the discipline that comprises all the levels depicted in
Figure 3. In order to clarify the terms we used and the way we use them
in Table 1, we furnish a general glossary for BP and related terms.

2.1.4 Notations for Business Process Modeling

In this section, we present an initiative about BPM aimed to connects the
economic and the computer science perspective on BP’s design. It is the
development of the Business Process Modeling Notation (BPMN) (OMG06)
standard that is aimed to give a standardized notation for BPM for these
two research domains. For these reasons, it is particularly suited to the
modeling of organizational and operational BP’s.

BPMN synthesizes the BPM community best practices. It defines a
graphical notation for BP similar to flow-charts which is aimed to be un-
derstood by stakeholders, analysts, business users, developers etc. BPMN
can be incrementally adopted and supports automated translation to BP
execution languages (such as BPEL4WS(BEA03) and ebXML).

In BPMN there is a core set and a full set of elements. The core set is
useful for many BP’s while the full set is needed only for complex BP’s.
The core elements are divided in 4 categories:

1. Flow Objects: they are the main graphical elements (Events, Activi-
ties, Gateways)

2. Connecting Objects: they allow to connect flow objects (Sequence
Flows, Message Flows, Associations)

3. Swimlines: they group elements and processes (Pools, Lanes)

4. Artifacts: they are used to add (graphically) further information to
the process (Data Object, Groups, Annotations)

Figures 5 and 6 represent respectively, the Flow Objects and the re-
maining BPMN core elements. For each BPMN element it is defined: a
graphical notation; a semantic description in natural language and a set
of standard attributes. BPMN further defines mechanisms to exchange

51

Figure 5: BPMN core: flow objects

BP models connection rules for some elements patterns for complex asso-
ciations; standard flows and ways to perform the BPEL4WS mapping.

A process in BPMN is an activity performed in the organization. It is
represented as a graph of Flow Objects that are sets of other activities and
connection objects. BPMN business processes, more generically, are a set
of activities which are performed within an organization or across orga-
nizations. A BP thus consists in a set of one or more separate Processes.

If in a BP Diagram more than one process is used, the usage of Pools is
mandatory. Pools are a way to distinguish a business entity or a business
role that interact in the BP by means of of Message Flows. The artifacts are
used to facilitate analysis and reading of the BP but they do not influence
the flows.

BPMN is an important attempt to define a standard way to represent
BP’s. It specifies only the notation for business modeling (and not an
entire process as described for RUP and EUP). However, the opportunity
to use a standardized notation for a BP will be a strategic feature in order

52

to define a unique framework for reengineering shared among software
engineers and managers.

2.1.5 The ATHENA Model-Driven Interoperability Frame-
work

The Advanced Technologies for interoperability of Heterogeneous Enter-
prise Networks and their Applications (ATHENA) project (The09a) is an
integrated project sponsored by the European Commission in support of
the Strategic Objective ”Networked businesses and government” set out
in the IST 2003-2004 Workprogramme of FP6. ATHENA aims to make a
major contribution to interoperability by identifying and meeting a set of
inter-related business, scientific and technical, and strategic objectives.

We consider ATHENA a work related to the approach presented in
this thesis since it also attempts to develop software components taking
into account the impact of such software in enterprise processes and in-
teroperation.

The ATHENA consortium currently comprises 19 leading organiza-
tions in research, academia, industry and other stakeholder communities
including SME’s, working collaboratively in pursuit of a common set of
objectives in interoperability.

The ATHENA Model-Driven Interoperability (MDI) Framework pro-
vides guidelines for how MDE approaches can be applied in develop-
ing interoperable enterprise software system. As showed in Figure 7, the
ATHENA project merges three research areas supporting the develop-
ment of Interoperability of Enterprise Applications and Software:

1. Architecture and Platforms: to provide implementation frameworks,

2. Enterprise Modelling: to define interoperability requirements and
to support solution implementation,

3. Ontology: to identify interoperability semantics in the enterprise.

ATHENA adopts an ”holistic” perspective on interoperability in or-
der to achieve interoperation between enterprises. It identifies a struc-
tured approach to collect, identify and represent the current state of the

53

Figure 6: BPMN core: connecting objects, swimlines and artifacts

54

Figure 7: Research areas of the ATHENA Interoperability Project

art, vision statements, and research challenges. It defined a framework
for capturing and inter-relating this information from many perspectives
consisting in three layers:

• The business layer is located at the top of the framework. In this
layer, all issues related to the organisation and the operations of an
enterprise are addressed. Amongst others, they include the way
an enterprise is organised, how it operates to produce value, how
it takes decisions, how it manages its relationships (both internally
with its personnel and externally with partners, customers, and sup-
pliers).

• The knowledge layer deals with acquiring a deep and wide knowl-
edge of the enterprise. This includes knowledge of internal aspects
such as products, the way the administration operates and controls,
how the personnel is managed, and so on, but also of external as-
pects such as partners and suppliers, laws and regulations, legal
obligations, and relationships with public institutions.

55

• The ICT systems layer focuses on the ICT solutions that allow an
enterprise to operate, make decisions, exchange information within
and outside its boundaries, and so on.

• The semantic dimension cuts across the business, knowledge and
ICT layers. It is concerned with capturing and representing the ac-
tual meaning of concepts and thus promoting understanding.

To achieve meaningful interoperability between enterprises, interop-
erability must be achieved on all layers. In particular in business layer
the business environment and business processes; the knowledge layer
organisational roles, skills and competencies of employees and knowl-
edge assets; in the ICT layer applications, data and communication com-
ponents and finally, in the semantics support mutual understanding on
all layers.

The interoperability framework integrates principles of model driven,
service oriented and adaptive software architectures. Model driven ar-
chitectures focus on design-time aspects of system engineering. Model
driven development methodologies describe how to develop and use mod-
els as an active aid in the analysis, specification, design and implementa-
tion phases of an ICT system. Service-oriented architecture (SOA) spec-
ifies systems composed of services offered by various service providers,
which provides the basis for supporting new business models, such as
”virtual organisations”. Adaptive software architectures focus on run-
time aspects of system engineering. Agent and P2P technologies enrich
an ICT system with dynamic and adaptive qualities.

The ATHENA model-driven interoperability framework builds on the
vision: ”Enterprises are able to flexibly develop and execute interoperable
applications based on model-driven development approaches to service-
oriented and adaptive software solutions” (The09a)

The framework is structured in three main integration areas:

• Conceptual integration which focuses on concepts, metamodels, lan-
guages and model relationships. It provides us with a foundation
for systemising various aspects of software model interoperability.

56

• Technical integration which focuses on the software development
and execution environments. It provides us with development tools
for developing software models and execution platforms for execut-
ing software models.

• Applicative integration which focuses on methodologies, standards
and domain models. It provides us with guidelines, principles and
patterns that can be used to solve software interoperability issues.

For each of these three areas a reference model to describe and sup-
port the application of model-driven development of software systems is
specified.

The reference model for conceptual integration has been developed
from a MDE point of view focusing on the enterprise applications and
software system. A CIM corresponds to a view defined by a computation
independent viewpoint. It describes the business context and business
requirements for the software system. A PIM corresponds to a view de-
fined by a platform independent viewpoint. It describes software spec-
ifications independent of execution platforms. A PSM corresponds to a
view defined by a platform specific viewpoint. It describes the realisation
of software systems. The models at the various levels may be semanti-
cally annotated using reference ontologies which help to achieve mutual
understanding on all levels. ATHENA also uses interoperability patterns
for horizontal and vertical integration.

ATHENA identifies four categories of system aspects where specific
software interoperability issues can be addressed by conceptual integra-
tion. These four aspects can be addressed at all three CIM, PIM and PSM
levels. Service aspects are an abstraction and an encapsulation of the func-
tionality provided by an autonomous entity. Information aspects are related
to the messages or structures exchanged, processed and stored by soft-
ware systems or software components. Processes aspects describe sequenc-
ing of work in terms of actions, controlflows, information flows, inter-
actions, protocols, etc. Non-functional aspects represents extra-functional
qualities that can be applied to services, information and processes.

The architecture of the enterprise applications and software systems

57

can be described according to a 4-tier reference architecture where each
tier provides different software services required by the enterprise. The
software system itself is coupled to an ICT infrastructure illustrated by a
service bus that provides the necessary communication infrastructure. In-
frastructure services such as composition, mediation, matchmaking and
transformation that enables interoperability between software systems
should be provided. The service bus will make use of infrastructure ser-
vices, and registry and repository.

The MDE methodology needs to follow a structured approach where
interoperability requirements from business operations in a networked
enterprise drive the development of software solutions. This means that
MDE methodology needs to be related to enterprise architectures. A spe-
cific part needs to address how the MDE concepts and the technical soft-
ware components are reflected in a model world of the enterprise. The
Figure 8 shows how the model world, reflecting the applicative integra-
tion, is related to the reference models for conceptual and technical inte-
gration. Enterprise and software models can be built to understand and
analyse the interoperability requirements of an enterprise.

An enterprise model describes a set of enterprise aspects, which in-
cludes business models capturing actors and stakeholders, business ser-
vices, business information and business processes. These business mod-
els provide a context for the software solutions that needs to be devel-
oped and integrated. Software models describe how software systems
are used to support the businesses of an enterprise. The software mod-
els further refines the business models in terms of software realisation
models. All these models should include descriptions of the four system
aspects identified in the reference model for conceptual integration. The
software models can be classified as CIM, PIM or PSM models according
to a MDE abstraction.

The realisation of the framework focuses on providing guidelines and
existing method chunks for creating or customizing the development and
integration methodologies based on these principles, and guidelines and
existing assets for creating or customizing your own MDI tool set.

The MDI framework aims at providing guidelines for the following

58

Figure 8: The ATHENA Realization Framework

topics: Model-driven architecture (MDA) and interoperability; Metamod-
elling; UML profiles and domain-specific languages (DSLs); Model trans-
formations and Method engineering. In addition it provides reusable as-
sets in terms of method chunks, tools and services, models and meta-
models, model transformations, DLSs and UML profiles and reference
examples. The assets in the form of examples and tutorials will focus on
applying Eclipse technologies for implementing your own MDI method-
ology and tool suite.

2.2 Global Requirements Engineering

Despite the modeling of the process-oriented part of the business, it is
of fundamental importance in our framework to exploit also other for-
malisms that allow to model the business from others perspectives. A
great effort in this direction has been performed in the requirements en-
gineering disciplines (171). Requirements engineering is an activity that

59

is not only restricted to software engineering, but that can be performed
in the engineering of a generic system (157). In particular, we are in-
terested in global requirements engineering, such as the study of how
to gather requirements for a system in a distributed organizational and
development context. Studies and techniques for the global context are
an interesting starting point to address issues due to modern enterprises
organizations. Actually, requirements engineering issues identified for
distributed projects (93) are likewise important in a single-site software
development context (147) in particular relating to the needs of collabo-
ration and information sharing.

In this section we give an overview of some aspects of requirements
engineering that are related with our work and describe how the require-
ments engineering practices has been applied in a global context. We
discuss in detail the wiki-based approach and the goal-oriented approach
to the management of requirements and they relationships with our con-
tribute.

2.2.1 Requirements Engineering

Requirements engineering (RE) is concerned with producing a set of spec-
ifications for software systems that satisfy their stakeholders and can be
implemented, deployed and maintained (93). A classical definition of re-
quirements is: ”A specification of what the system should do without
specifying how it should do it” (20; 107). This is a quite sibylline defini-
tion since in practice it is difficult to separate the ”what” from the ”how”
(108).

The primary measure of success of a software system is the degree to
which it meets the purpose for which it was intended. Broadly speaking,
software systems RE is the process of discovering that purpose, by iden-
tifying stakeholders and their needs, and documenting these in a form
that is amenable to analysis, communication, and subsequent implemen-
tation. There are a number of inherent difficulties in this process.

An assessed definition of requirements engineering (131; 157) is the
Zave one (177): ”Requirements engineering is the branch of software en-

60

gineering concerned with the real world goals for, functions of, and con-
straints on software systems. It is also concerned with the relationship
of these factors to precise specifications of software behavior, and to their
evolution over time and across software families”.

This definition highlights the importance of ”real-world goals” that
motivate the development of a software system. These represent the
”why” as well as the ”what” of a system we discuss in the ISA frame-
work and help us to connect RE with the BPM discipline.

We can summarize the reason that make the RE process so complex
(93; 107; 157):

• Usually stakeholders cannot express what they need. They may
not share the same perceptions of their problems with an external
observer.

• Many users have great difficulty explaining what tasks they per-
form, and even more difficulty in explaining why they carry out
these tasks.

• Often stakeholders specify a solution instead of a demand.

• The target system is not just a piece of software, but also comprises
the environment that will surround it: is made of humans, devices,
and/or other software.

• Stakeholders find it difficult to imagine new ways of doing things,
or imagine the consequences of doing a familiar task in a proposed
new way.

• There are multiple concerns to be addressed beside functional (e.g.,
safety, security, usability, flexibility, performance, cost, etc.) These
non-functional concerns are often conflicting.

• Often different stakeholders have conflicting views because of dif-
ferent background, skills, knowledge, concerns, perceptions, and
expression means.

61

• Stakeholders will often reject proposals due to a general resistance
to change.

• Demands change over time. External factors change and priorities
change. Once a demand is met, new ones turn up as a result.

• Requirements specifications may suffer a great variety of deficien-
cies (121).

• RE covers multiple intertwined activities in business and engineer-
ing contexts and it is not just a single phase that is carried out and
completed at the outset of product development. (93).

Requirements engineering has emerged as a field of research indepen-
dent from the disciplines in which it was incepted, software engineering,
systems engineering, computer science, in an effort to manage all aspects
of requirements in order to specify complete and correct requirements
despite problems such as those listed above.

The question of RE thus becomes: ”what is the environment of the IT
system and how it can be described?”. The environment of an IT system
is usually thought of as being the enterprise for which it is built. The def-
initions of RE given above reflect the point of view, largely shared among
requirements engineers, that the enterprises and stakeholders that consti-
tute the environment of an IT system are mainly motivated by the satis-
faction of goals.

According to Nuseibeh and Easterbrook (131) ”the context in which
RE takes place is usually a human activity system, and the problem own-
ers are people”. The fact that a RE activity should take place implies that
some new computer-based system could be useful or needed, but such a
system will change the activities that it supports. Thus, at this point is
clear that RE and BPM are very bound activities.

Due to the nature of the object that RE should model and the involved
stakeholders, RE methods needs to be sensitive to how people perceive
and understand the world around them, how they interact, and how the
sociology of the workplace affects their actions. RE should thus consider
cognitive and social sciences issues in defining practical techniques for

62

eliciting and modelling of requirements (131). In particular Cognitive
Science can help in understanding the difficulties people may have in de-
scribing their needs; Anthropology provides a methodological approach
to understand how computer systems may help human activities and if
they will be accepted by employers and, finally, Sociology can help in un-
derstanding the political and cultural changes caused by the introduction
of a new software system (e.g. how they affect the structure and commu-
nication paths within an organization).

Thus, RE can be considered as a discipline that include business mod-
eling in particular regarding to the requirements related to the organiza-
tion and its processes (171). Indeed, the Zachman ISA framework can be
considered a way to organize the various requirements types (87). In par-
ticular, business goals are the abstraction that connect RE and business
modeling. Business requirements are the essential activities of an enter-
prise that bring to the need of developing systems and software. Great
part of business requirements are derived from business goals (i.e., the
objectives of the enterprise or organization). In order to identify business
goals, all the business and organizational activities should be considered
and thus BPM is an essential activity to be performed in all RE processes
(171).

An interesting aspect analyzed by RE is the requirements traceabil-
ity. In RE context, traceability is about understanding how high-level
requirements (such as objectives, goals, aims, aspirations, expectations,
needs etc.) are transformed into low-level requirements. Traceability re-
lates low and high level requirements many-to-many: one lower level re-
quirements may be referred to several higher level requirements and vice
versa. Traceability is important not only for requirements management
but also in RE analyses (93):

• Impact analysis allows to determine the impact of requirements change
on other system artifacts.

• Derivation analysis helps in understanding the change impact start-
ing form lowlevel artifacts.

• Coverage analysis can be used to determine that all requirements do

63

trace downwards to lower layers and thus that all elicited issues has
been considered.

The RE point of view brings to identify goals to be achieved by enter-
prises and stakeholders and to transform these goals into requirements
for the IT system. For those methods to be successful, they need, as in-
put, goals that the enterprise seeks to satisfy. Thus they implicitly assume,
or sometime explicitly state, that goals are to be found in the enterprise.

2.2.2 Requirements in Distributed Projects

A multi-sited distributed context adds a new dimension in the complex-
ity of RE. In particular, effective knowledge sharing platforms and rela-
tionship building practices are needed (57). In global RE stakeholders
operate in geographical distribution. This situation not implies only a
two-site distribution (i.e., customer stakeholders located differently from
software engineers) but it is usually complicated by GSD. Client organi-
zations, such as a government department, outsource a software to a geo-
graphically remote vendor that may rely on other software development
teams closer to the client location. Such a situation described in Figure 9
explain the global context motivation of our thesis that we introduce in
Section 1.1.1.

In GSD the global challenges are referred to coordination and man-
agement of development teams. The distributed dimension of require-
ments engineering introduces a more challenging situation that require
to consider also a multi-sited distribution of stakeholders. Damian recog-
nize that the challenges introduced by global RE concern mainly knowl-
edge and change management, she claim a clear separation between: the
knowledge related to the application/user needs and the knowledge re-
lated to the project development. In a investigation on 28 distributed
projects Smite recognize that the five top threats in distributed project
derive from a poor global RE (147). In Table 2 we report the result of such
Smite’s survey.

However, the solution to both application/user needs and the project
development needs is the same (57; 147). They are needed new platforms

64

Figure 9: Global Requirements Engineering main stakeholders as described
in (57)

65

to support GSD and Global RE that allow:

• A rapid adoption by development teams: because the process ma-
turity and expertise of involved development teams is usually dif-
ferent and their work practices may differ, thus they have to adapt
the system in their contexts.

• Easy to learn for involved stakeholders: because they ”do not have
sufficient human resources to validate all software requirements spec-
ifications” (147).

• Both synchronous and asynchronous collaborations: because global
virtual collaborations requires to collaborate mostly asynchronously
(e.g., in case of worldwide development it is a must due to timezone
differences). Asynchronous collaborations also help to overcome
language differences since many stakeholders are not able to speak
fluently other languages and misunderstandings can arise.

• An integrated and easy to use/learn version management system:
because the set of involved stakeholders, project managers, devel-
opers and users may be large and culturally conflicting.

• The rapid share and update of the knowledge about the project: be-
cause all changes must be known early and by everyone.

• The definition of standard template for requirements gathering and
analysis and the definition of a common glossary.

• A reduction of the face to face meetings: because they are expensive
for all involved organizations.

• A constant communication: because there are small doubt and ques-
tions that can be replayed soon or more appropriately with advanced
and innovative communication tools. The e-mail excange is not suf-
ficient in global RE (58). Messaging tool, chats, videoconference sys-
tems enrich the communication possibility.

66

• Synchronization among the development teams: because GSD re-
quires commonly defined milestones and clear entry and exit crite-
ria (89). Good tools supporting collaboration among time and space
are required.

• The use of a general and clear architectural software abstraction:
because the absence of a clear trace of what software components
address a requirements can result in misalignment and rework.

Summing up, Smite’s survey shows that requirements management
in global projects is one of the essential challenges that shall be paid ade-
quate attention. The ”virtual product development” is considerably more
complex than projects managed entirely in-house(98). Communication
plays an important role and the dimension of the GSD problem is some-
time misunderstood. Solutions that help collaboration in globally dis-
tributed context will help in-house development: ”we probably think of
distributed work in much too limited a way. Distances need not be global
to be important. In fact, being in another building or on a different floor
of the same building, or even at the other end of a long corridor, severely
reduces communication.” (89). Also cultural factors are not exclusively
related to worldwide contexts but mainly to the organizational culture,
such as differing attitudes toward hierarchy and communication styles.
Finally, from a technical point of view, the process differences inherent
in inter-organizational partnerships cause problems in aligning RE pro-
cesses and supporting tools because each group has different processes
for requirements analysis, documentation, and change management (58).

Thus, the principal requirements for tools and platforms supporting
GSD and global RE are: a strong support of multi-channel multi-modal
communications; a lightweight and easy to learn introduction of applica-
tions, languages and new practices supporting global RE; and a software
architecture abstraction that allows a synchronous development of com-
ponents that is consistent with requirements.

67

The Wiki Way to Requirements Engineering

A recent approach to requirements engineering is based on the usage of
wikis for the gathering of requirements(109). Wikis are systems that al-
low the collaborative creation and edition of Web page content using a
Web browser. They follow a text-oriented model using titles, paragraphs,
lists, tables, figures, etc. as building blocks for creating hypertexts. They
provide the user with a simple syntax, allowing any word to be easily
turned into a hyperlink, hence supplying a flexible mechanism for orga-
nizing contents. Wikis are particularly appropriate in collaboration sce-
narios, they are capable of effectively presenting and editing Web-based
information, using a very simple markup language, a powerful dynamic-
linking mechanism based on lexical conventions, and support the notion
of adaptive Web pages.

The simplicity of wikis makes them easily accessibly to a wide range
of possible users whenever a generalized availability of the produced
contents is desired. Due to their simplicity and effectiveness as a medium
for collaborative authoring, wikis are now widely extremely popular, spread
all over on the Web and can be successfully adopted in requirements engi-
neering. A large amount of the software documentation produced today
is Web-based. Since wikis provide a nice environment for collaborative
authoring of Web-based documents, wikis can be used as a tool to sup-
port the edition, organization and storage of software requirements. They
can be effectively used to solve both issues related to the global context
than the issues of relating the software with the organization (11; 140).

Indeed, the use of wikis in software engineering dates back to 1995 at
the beginning of this technology. Ward Cunningham(109) created the first
ever wiki as a platform for discussing patterns and software development
efforts, namely in the Portland Pattern Repository(Cun96). The simplicity
and effectiveness of wikis as a medium for collaborative authoring has
lead to their vast popularity across many domains.

They are often used to support software development, in particular
in the area of open source software. In these contexts, wikis are seen
as a lightweight platform for exchanging reusable artifacts between and

68

within software projects. Indeed, they facilitate communication through
a basic set of features and delegate the actual way of coordination to the
people using the wiki. From the point of view of the author, these basic
features are (140):

• single place publishing: there is only one version of a document
available that is regarded as the current version;

• simple and safe collaboration: the versioning and locking mecha-
nisms that most wikis provide;

• easy linking: documents within a wiki can be linked by their title
using a simple markup;

• description on demand: links can be defined to pages that have
been not been created yet, but might be filled with content in the
future.

Nowadays, there are a lot of wikis specifically used to support code
development and documentation. They offer specific functionalities for
software engineering like the creation and maintenance of software doc-
umentation, taking into account also needs like consistency maintenance,
contents integration, reuse and process integration. We present an overview
of them with their most important features (52; 140):

• Xiao et al. (169) propose the Galaxy Wiki project which integrates
code and textual editing directly into the wiki. The per-page orga-
nization of the wiki architecture is exploited developing a one-to-
one relation between a wiki page and a object oriented class. This
straightforward relation helps not only in ease code production but
also in documentation production and maintainance.

• The Trac system developed by Edgewall Software (Edg03) is a soft-
ware project management tool based on wiki that allows to relate
wikis pages to issues and vice versa. It also allows the integra-
tion between documentation and the software development arti-
facts, like source code files, issue tracker items and project mile-
stones, etc.

69

• FitNesse (R. 08) integrates a wiki and an acceptance testing frame-
work in order to create acceptance tests in a collaborative way (e.g.,
including stakeholders in the process of defining inputs and execut-
ing the tests). As for Galaxy Wiki the integration is at the page level,
wiki pages may include both textual descriptions and tests, which
can be ran from within the wiki page context.

• WikiDoc (M. 05) allows a collaborative effort among stakeholders
to create code documentation. It consists in a wiki interface that
allows to add help to the Java code.

• Aguiar et al. (10) propose the XSDoc system, one of the first experi-
ments of source code and models integration in wikis. XSDoc does
not allow source code and model editing directly inside the wiki
but integrate the pages with other IDE’s. In particular, it manages
documentation and code in different page file allowing a more rich
correlation among artefacts.

• TeamWeaverWiki (H. 08), similarly to Trac, integrate the wiki in the
full software development process. It empower the viki with spe-
cific source code editors and search engine. It further integrate wiki
pages with tools commonly used in software development like Con-
current Versions System (The98) and eclipse (The08a).

In recent years there are also interesting experiences in using wikis
as requirements engineerings tools. In particular the wikis lightweight
”philosophy” address many issues of the global requirements engineer-
ing context. Ward Cunningham confirmed this vision in a recent inter-
view (May 2009) (War09) where he speaks about the wiki as an approach
oriented to a wide active participation in software engineering. Such as,
it is indeed the wiki ”philosophy” that can be applied to the software and
requirements engineering, allowing the opening of requirements elicita-
tions to a wide range of stakeholders and permitting a more effective col-
laboration among software developers, also in the physical World.

Beside the practical reasons we expose above, wikis features help in
addressing the GSE challenges presented in the previous sections. In

70

global software development, developers are located in different cities,
different countries, or different hemisphere, communication and coordi-
nation is the major concern in the management of distributed teams.

Al-asmari and Yu (11) have published a study evidencing how wikis
facilitate communication, coordination, and documentation writing in dis-
tributed software development. They analyze the communication system
commonly used in GSD, such as:

• Travel. Globalization involves that people interact with each other
more frequently and using many different methods, including travel.
Working geographically dispersed should be just like working in
the same building. Therefore, travel is still a necessary in order to
bring team members face-to-face. However, ”travel is one of the
most expensive and time-consuming communication methods; the
more you travel, the more you reduce the benefits of distributed de-
velopment” (11). Therefore, travel should be used only if necessary.

• Phone. Conversations by Phone are the traditional communication
technique in GSD. Since it is a very rapid communication, it has
many limitations, for instance a phone call is more suited for a step-
by-step instruction; involved stakeholders need to be available at
the same time; time zone can be a problem; etc.

• Email. Email is widely used in collaborative work by distributed
teams. However, email is an informal communication method, it
does not support the structuring of contents, an effective system for
versioning and backup.

• On-line project management software. Such software can provide
information like project overview, project organization, project plan,
time schedule, and work assignments. It is a formal communication
method but most project management software only support one-
way communication, that is from manager to developers; they do
not support multi communication channels among developers.

• Content management software. Content management software al-
lows members in distributed teams to work together on the same

71

document, such as the system design specification, at the same time.
Some CMS allow also more complex documents, including PDF and
Microsoft Word editing. However, most of the content management
software is complex, need training to be understood and it does not
support communications among users in an effective way.

All these tools have been employed to facilitate GSD communication
and coordination. However, all these methods have their limitations. On
the other hand, wikis are tools that simply allow users to freely create and
edit Web pages contents using any Web browser. With the same simple
architecture, wikis allow also to manage page history, email notification,
passwords, messaging chats, collaborative drawing, etc. Therefore, wikis
are an ideal tool for distributed software engineering. However, it does
not replace completely the communication channel we discuss but inte-
grate them and empower collaboration efficency: wikis do not constrain
the time schedule of the developers like face-to-face meetings and phone;
message posts in a wiki are more easy to be noticed, shared and discussed
by all users.

We remark that wikis do not introduce an innovative technology or a
particular powerful instrument respect to other existing systems. Wikis
introduce a different approach in the way stakeholders collaborate in soft-
ware engineering, in a way that is, at the same time, easy to be understood
and used by all stakeholders. Indeed, wikis are not more sophisticated
than a database or a content management system, but, for instance: a
database requires the people who uses it to have a prior knowledge of
its working language, its restrictions and its internal organization (e.g.,
tables, relationships, primary keys, etc.) and if the project is large, it is
unlikely that all people involved in it have the necessary skills to con-
tribute actively to the development of documentation.

Wikis has all the advantages of a database (i.e., many implementa-
tions store its contents in a relational database), with the ease of access
of a Web page (i.e., its contents are published through a Web browser)
(14). The use of wikis in a working environment in GSD, solve also two
of the main drawbacks of this technology such as: lacks in monitoring
of the quality of content and vandalism. A comparison with the content

72

management systems, that are very similar to wikis regarding to the con-
tent management, has been given in one of our works (6) and reported in
Table 3

Obviously, also the wiki technologies has some limitations (11): they
currently do not support collaboration on complex document type edit-
ing, such as Microsoft Word and Microsoft Excel files; many wikis do not
support a visual editing but a minimum of tag learning is required; an
integration with other presentation tools such as video conference tools
and phone services will be useful.

In any case, we think that the wiki-based approach is the best fitted
choice in order to face the complexity of the business-oriented software
development scenario. Wikis from one hand address the GSE issues due
to a multi-sited distribution of development teams, from the other hand,
the wiki approach guarantee a wide participation of all stakeholders in
requirements and software engineering, that is a fundamental need in
business modeling (68).

2.2.3 The SOP-wiki and Softwiki Projects

There are various works that emphasize the advantages of exploiting
wikis as requirements engineering tools (62; 137; 140). In particular, the
work carried out for the Software Organization Platform wiki (SOP-wiki)
(161) and the SoftWiki (114) systems are interesting related works we an-
alyze.

The SOP-wiki is an evolution of a software previously developed by
Decker et al. (62) for the exchange of information and collaborative work
on software artifacts. SOP-wiki is mainly based on the MediaWiki (Wik08)
wiki platform that is a popular wiki engine used in many collaborative
projects, such as Wikipedia (Wik09). The GUI of the wiki has been imple-
mented by means of the Adobe Flex technology (Ado09) that allows at
the same time to structure the requirements and give them a semantics.
The Flex user interface is built around a browser control mechanism (i.e.,
a widget or a component in the context of the Flex framework), which
allows browsing and editing wiki articles. It further allows to create sev-

73

Figure 10: The SOP-wiki Architecture

eral user interfaces for several input devices. The SOP-wiki architecture
is depicted in Figure 10.

SOP-wiki authors claims that it will keep track of all activities through-
out the entire software process once integrated into other tools for soft-
ware development by means of import and export capabilities.

The result of the SOP-wiki application experiences (62) are likewise
important and useful in our work. SOP-wiki has been tested in small
project involving from ten to thirty stakeholders. However, the result of
this wiki are important in our work. Besides, we focus our attention in
the application of the framework for SME’s and in project that involve
no more than one hundred stakeholders. Decker et al. identify six main
drawbacks in using wikis for requirements engineering (62):

1. Remembering page names: in order to define page links, the user
has to remember the page name and sometime interrupt page edit-
ing;

74

2. Versioning across several pages: wikis versioning features are usu-
ally per-page based, thus it is difficult to define a release based on
the state of several pages in a particular moment;

3. Page structuring: most wikis support page structuring only by cat-
egories or namespaces, there is the need for more rich semantics in
order to manage link between pages;

4. Page reclassification: wikis do not provide a way to classify and
re-classify groups of pages, thus sometime repetitive operations are
needed to re-classify pages when a requirements schema changes

5. Missing replication of contents: some stakeholders need to work
offline from time to time and wikis does not support content repli-
cation and change management for offline changes.

They overcome a great part of these issues improving the wiki with a
specific semantic support and by means of the usage of other developing
frameworks. Thus, since a wiki can be used as is for requirements engi-
neering purposes, small and not overloading adjustments are useful to
solve such limitations and further improve the effectiveness of the appli-
cation of wikis in requirements engineering.

In Figure 11 we report a table comparing the pros and cons of a general
wiki platform and a wiki specifically adjusted for requirements engineer-
ing.

Another interesting project similar to SOP-wiki is SoftWiki (137). Soft-
Wiki is a work aimed to support the collaboration of software require-
ments stakeholders in a very large and spatially distributed scenario. Soft-
Wiki is based on an explicit requirements engineering ontology which
comprise, among the others, the goal and the stakeholder concepts (114).
Each requirement gets its own URI, then it is linked to other resources
using Semantic Web standards such as RDF and OWL. SoftWiki exploit
an explicit ontology for semantical annotation named SoftWiki Ontology
for Requirements Engineering (SWORE)(170).

The aim of SoftWiki is to support the collaboration in potentially very
large and spatially distributed user groups in order to give rich seman-

75

Figure 11: Pros and Cons of wikis used in requirements engineering

tics to requirements. SoftWikis thus uses wikis focusing on its support
in semantically annotated requirements rather than effectively gathering
and structuring requirements. This project aims to enable semantic inter-
operability with further tools for instance exporting the requirements in
RDF-format and manage them with other IDE.

2.2.4 The Goal Oriented Approach to Requirements Engi-
neering

The need for Requirements Engineering (RE) activities implies that a new
computer-based system has to be developed. Such a system will change
the working activities that it supports thus it is clear that exists interest-
ing links to study between RE and BPM. Early-requirements engineering
techniques focused on the later phase of RE, which concern completeness,
consistency, and automated verification of requirements (171). In con-
trast, the later phase of requirements engineering models and analyzes
stakeholder interests and how they might be addressed, or compromised,
by various system-and-environment alternatives. (173). Yu, Mylopoulos
and van Lamsweerde (37; 126; 159) recognized the importance of goals in
order to provide for a modelling and reasoning support in the early phase
of requirements engineering. Requirements engineering research has in-

76

creasingly recognized the leading role played by goals in the RE process
(158).

Goals, in this context, are understood as giving the rationale for stake-
holders actions and hence, serve as the rationale for software system re-
quirements. Thus, van Lamsweerde in the 2000 propose to (re)defines the
RE basing on goals: ”Requirements engineering is concerned with the
identification of the goals to be achieved by the envisioned system, the
operationalization of such goals into services and constraints, and the as-
signment of responsibilities for the resulting requirements to agents such
as humans, devices, and software” (157).

RE is concerned with producing a set of specifications for software
systems that satisfy their stakeholders and can be implemented, deployed
and maintained. Goal oriented requirements engineering takes the view
that requirements should initially focus on the why and how questions
rather than on the question of what needs to be implemented. Tradi-
tional RE analysis and design methods focused on the the functionality
of the system to be built and its interactions with users. Instead of asking
what the system needs to do, goal oriented methods ask why a certain
functionality is need and how it can be implemented. Thus goal oriented
methods give a rationale for system functionality by answering why a cer-
tain functionality is needed while also tracking different implementation
alternatives and the criteria for the selection among these alternatives.

The goal oriented approach models human organizations considering
both humans and organizations as goal-seeking entities. This approach
derives from a model of software engineering that consider new systems
to be built in order to help people and organizations achieving their goals
(92). From this perspective all the RE discipline is now defined in the
RE community as goal driven. Anton explains what differentiate goal-
oriented methods from more ”traditional” RE techniques in the following
way: ”Traditional systems analysis focuses on what features (i.e. activi-
ties and entities) a system will support. Goal-based approaches focus on
why systems are constructed, providing the motivation and rationale to
justify software requirements. The notion of focusing on the why is not
new; organizing requirements around goals is new” (18)

77

Goals oriented methods can be seen as a subset of RE methods, which
propose techniques for defining the complete requirements for a software
system starting from stakeholders goals. However, most other RE and
enterprise architecture methods give goals a very important place.

Goals are important in several respects of RE (59): they lead to iden-
tify the system components which support the requirements; they help
to obliterate useless system components or justify the presence of com-
ponents (that are not necessarily for the clients); they may be used to as-
sign and evaluate the system components development of the system (ac-
cording to the capabilities, reliability, cost, load, motivation of the related
goal); finally, goals provide basic information for detecting and resolving
conflicts that arise from multiple viewpoints stakeholders (143).

In particular the motivation that brings to goals oriented methods for
RE can be summarized as follow (158):

• Goals are more stable than the requirements that implement them.
(18). The higher level the goal is the more stable it will be (158).

• Goal refinement techniques give traceability from organizational
goals to IT systems requirements. Goal refinement tree provides
traceability links from high-level strategic objectives to lowlevel tech-
nical requirements. In particular, for business application systems,
goals may be used to relate the software-to-be to organizational and
business contexts.

• Goals enable to verify that the requirements are complete. If the re-
quirements can be proved to satisfy all the stakeholders goals, then
the requirements are complete.

• Goals enable requirements engineers to define which requirement
is irrelevant and which is not, avoiding irrelevant requirements.

• Goals enable requirements engineers to better explain requirements
to stakeholders; to manage conflicting requirements and to consider
alternative design decisions.

• Goals and scenarios are considered to be a basic driving force be-
hind requirements.

78

• Goals are used to understand stakeholders issues and negotiating
them, they are used to systemically search for intentional keywords
relating to: enterprise policies, enterprise mission statements, en-
terprise goals, BP diagrams, interview and scenarios written with
stakeholders.

Goal oriented methods are mainly built on the notion that goals can be
arranged in a hierarchical order, from high-level to low level goals. Such
method are mainly based on problem solving techniques developed in
Artificial Intelligence (AI) (166). The main technique used in these meth-
ods is goal refinement. Goal refinement is a technique used to reduce a
goal into sub-goals by means of AND/OR relations.

There is a number of definition of the goal concept in the RE litera-
ture each targeted for the method or approach based on this concept. In
this thesis we will refer to the Mylopoulos and Yu perspective that con-
sider a goal as a state to be achieved. A goal is a ”condition or state of
affairs in the world that the stakeholders would like to achieve.” (38).
They introduce also the concept of soft-goal that is very useful in early re-
quirements modeling and to the hypothesis of our research work: ”Soft-
goals are goals that do not have a clear-cut criterion for their satisfaction.
We will say that soft-goals are satisfied when there is sufficient positive
and little negative evidence for this claim, and that they are unsatisfiable
when there is sufficient negative evidence and little positive support for
their satisfiability.” (126).

Goal oriented RE methods are connected to BPR and sometimes to
business strategic planning like the ”organizational theory” of choice (102).
Goals, in this vision, are implicitly and explicitly considered as the ulti-
mate explanation of human behavior.

The most noticeable goal oriented methods in RE are the following:

• The Knowledge Acquisition in automated Specification (KAOS) (59;
159) method that consists of a formal framework based on temporal
logic and AI refinement techniques where all terms such as goal and
state are consistently and rigorously defined. The main emphasis of
KAOS is on the formal proof that the requirements match the goals

79

that were defined for the envisioned system.

• The Non-Functional Requirements (NFR) approach (47; 125; 126) is
based on the notion of soft-goals rather than (hard) goals. A soft-
goal is satisfied rather than achieved. Goal satisfying is based on
the notion that goals are never totally achieved or not achieved. We
enclose in this category techniques and method like Tropos (79), i*
(47) and the the Goal-oriented Requirements Language (GRL) (113).

• Goal-Based Requirements Analysis Method (GBRAM) (18) defines
a top-down analysis method refining goals and attributing them to
agents starting from inputs such as corporate mission statements,
policy statements, interview transcripts etc.

• The ESPRIT CREWS approach (146) focuses more on goal defini-
tion and the linking of goals to stakeholders actual needs by linking
goals and scenarios.

• Pohl and Haumer (85) and Kaindl (96) also define methods for re-
lating goals with scenarios.

KAOS is a formal approach for analyzing goals and produce require-
ments based on pre-stated goals (59). KAOS is largely the product of van
Lamsweerde at the Catholic University of Louvain, Belgium. The KAOS
approach is mainly oriented toward insuring that high-level goals iden-
tified by stakeholders to concrete system requirements. The method is
composed of:

• A specification language based on concepts such as object, action,
agent, goal, constraint, etc. This language also used a so called
real-time temporal logic to represent constraints on past and future
states. The temporal primitives are, for example: in the next state;
in the past state; always in the future; always in the past.

• An elaboration method for transforming stakeholders goals into re-
quirements for the software system. This method includes classical
questions such as how and why to refine and abstract goals in the

80

goal-reduction graph: the identification of pre, post and trigger con-
ditions of goals, the identification of agents to which goals are to be
ascribed, identification and resolution of conflicts etc.

• A meta-level knowledge base used for guiding decisions during the
elaboration process. This meta-level knowledge base contains: a
classification of goals; rules for insuring the consistency and com-
pleteness of requirements; rules for insuring the consistency and
completeness of requirements; tactics and heuristics for driving the
elaboration and selecting among alternative goals.

The most interesting aspect of KAOS is the classification of goals. KAOS
classifies goals into: achieve, cease, maintain, avoid and optimize goals.
Achieve and cease goals are said to generate behaviors. Maintain and
avoid goals are said to restrict behaviors. Optimize goals are said to com-
pare behaviors (59). KAOS uses domain knowledge that is considered as
objective knowledge, to reduce goals into sub-goals. Also, KAOS does
not encourage the challenging of goals given expressed by stakeholders
with the exception of conflict resolution (159). Thus, KAOS provides tools
for transforming stakeholders goals into requirements but without mak-
ing sure that these are the right goals to base the requirements on.

The Goal Based Requirements Analysis Method (GBRAM) has been
proposed by Anton in 1996 (18). It attempts to reach more accuracy in the
identification of high-level goals that it was in KAOS and i*. GBRAM does
not assume that high-level goals have been previously specified. It iden-
tify and abstract goals from all available sources of information. Thus,
in GBRAM, the origin of goals is considered to be the available informa-
tion sources, scenarios, etc. Stakeholders identification proceeds from the
identification of goals. One of the main preoccupations in GBRAM is the
need to create models that are understandable by stakeholders.

The GBRAM inquiry process follows the following activities(18):

• Extracting goals from natural language documents, interviews pol-
icy statements, etc.

• Identifying goals and stakeholders and matching stakeholders with
goals;

81

• Organizing goals by considering their precedence relationships and
classifying these goals into different types of goals, mainly into main-
tenance and achievement goals;

• Refining goals, eliminating redundancy and reconciling synonymous
goals;

• Elaborating goals, uncovering hidden goals and requirements by
identifying goal obstacles and scenarios;

• Operationalizing goals, transforming goals into a software require-
ments document by formalizing goals into goal schemas and iden-
tifying the actions necessary to support the goals.

The GRAMB source of goals is the document that helps to identify the
goal. It is important to understand the stakeholders application domain
and goals before concentrating on the actual or current system so that the
system requirements may be adequately specified (18).

Anton recognize that customers tend to express their goals within the
context of their application domain, not in terms of an existing or desired
system. This is an important issue to consider in our research since it is
connected directly with BPR issues and the way RE can be used in reengi-
neering the organization (19; 174).

GBRAM presents some lacks in its approach to goal analysis. For in-
stance goals are presumed to exist, goals derived from documentation ar-
tifacts are not questioned as to their validity. The goal is classified, recon-
ciled, expanded etc. but is not fundamentally challenged. The fundamen-
tal question about the need of the identified goal is not asked. Moreover,
goals are not considered in relation to the organization, no enterprise mo-
del is proposed and related to the stakeholder goals.

The main point in GBRAM is the process and heuristics that enable
analysts to elicit goals from stakeholders and specify scenarios for their
achievement. This is lacking in both KAOS and NFR. However, GBRAM
is very focused on goals of the IT system and therefore it lacks to relate
goals with the organization. The result is an IT system that automates

82

existing business processes without attempting to provide innovative so-
lutions hence it does not brings to an effective BPR and business-oriented
software development.

The i*, Tropos and GRL Projects

The i* modelling framework (172; 175) offers primitive concepts of (social)
actors, goals and actor dependencies, which allow to model both software
systems and organizational settings. The i* framework aims at modeling
”strategic relationships” between actors that represent stakeholders and
their goals. i* can be used to explore alternative business processes by
showing how the actors depend on each other for the achievement of
goals and to evaluate the merit of different alternative non perfect solu-
tions for the satisfying of not clearly defined non-functional requirements.

In i*, actors have freedom of action, but operate within a network of
social relationships. Specifically, they depend on each other for goals to
be achieved, tasks to be performed, and resources to be furnished. These
dependencies are intentional in that they are based on underlying con-
cepts such as goal, ability, commitment, belief, etc. The actors are defined
as strategic because they evaluate their social relationships in terms of op-
portunities that they offer, and vulnerabilities that they may bring. Strate-
gic actors attempt to protect or fulfill their interests. i* provides a higher
level of modelling rather conventional modelling techniques such as data
flow diagramming, workflows and object-oriented analysis (e.g., UML).
Such high level of modeling allow engineers to reason about opportuni-
ties and vulnerabilities of both the organization and the system.

The i * framework includes the strategic dependency model for describ-
ing the network of inter-dependencies among actors, as well as the strate-
gic rationale model for describing and supporting the reasoning that each
actor goes through concerning its relationships with other actors. The
strategic dependency model provides an intentional description of a pro-
cess in terms of a network of dependency relationships among actors
(173). It aims at capturing the underlying motivations and intents behind
the process that it is modeled. The strategic rationale model provides an
intentional description of process in terms of process elements and ra-

83

tionales behind them. Thus, the strategic dependency model describes
the external dependencies among actors while the strategic rationale mo-
del describes the intentional relationships from the internal perspective
of actors. The strategic rationale model explicits the means-ends relation-
ships that relate process elements, providing an explicit representations
of ”why” and ”how” alternatives.

Tropos (39) is a software development method that includes i* as its
requirements framework. Thus, Tropos is not limited to goal oriented
requirements engineering but it is a full featured software development
method founded on the notions of actor, goal and actor dependency which
are used as a foundation to model requirements and design the system (38;
79). More specifically, Tropos is an agent-oriented methodology founded
on the organizational theory and the i* framework. It extends the i* no-
tation with actor, goal, task/plan, soft-goal, resource, and dependency as basic
modelling constructs.

A number of organizational styles and social patterns were proposed
(102) to guide the development of the organizational model for an infor-
mation system. Organizational styles describe the overall structure of the
organizational context of the system or its architecture, while social pat-
terns focus on the social structures necessary to achieve one particular
goal.

The Tropos project consists in 3 mains efforts: the Tropos methodology
that is a software development method; formal Tropos that is a formal
language aimed to support the Tropos Methodology and some social and
intentional models used in the development process (78; 152)

The Tropos method covers four phases of software development:

1. Early requirements: where the relevant stakeholders are identified
along with their goals, this phase is concerned with the understand-
ing of a problem by studying its organizational setting;

2. Late requirements: introduce system-to-be as another actor who can
accommodate some of these goals, in this phase the system-to-be is
described within its operational environment, along with relevant
functions and qualities;

84

3. Architectural design: more system actors are added and are as-
signed responsibilities, in this phase the system’s global architec-
ture is defined in terms of subsystems, interconnected through data,
control, and other dependencies;

4. Detailed design: completes the specification of system actors and
the behavior of each component of the system architecture.

A key feature of Tropos is the usage of i* concepts through the en-
tire software development process. The approach is requirements driven
i.e., concepts used in requirements modeling are used/mapped also in
design phases. This feature allows to define a continuity from early re-
quirements analysis to the detailed design and system implementation.
In this way conceptual models representing the system are obtained with
an incremental refinement and extension of a model of the environment.

The principal concept of Tropos is the Actor(Uni02). Each phase of
the Tropos methodology treats the Actor/Agent concept and its related
notions (e.g., goals, task, plans) to design a specific aspect of software.

The Actor/Agent concept used in Tropos is a generalization of the
agent notion used in Agent Oriented Software Engineering (AOSE) (167)
and AI (166). Software development is tackled as a Multi Agent System
(MAS) planning where the delegation of goals to other actors and inten-
tionality of actors dependencies are the basis for the requirements design.

In Table 4 the main concepts used in Tropos are presented.
Tropos models software using a semi-formal visual language, this lan-

guage has been specified by: an ontology; a meta-model; a graphical no-
tation and a set of usage rules. In Figure 12 we show a part of the Tropos
metamodel relating to the actor concept taken from (152).

The method uses a development process that is based on 5 diagrams
capturing static and dynamic aspects of the system:

1. Actor Diagram: It is a static representation of the system that points
out actors, goals and actor dependencies. It is the fundamental
product of the early requirements phase where the environment
that will surround the system-to-be is described but it is used in
all phases of the Tropos method. Starting from a an arbitrary level

85

Figure 12: The Tropos metamodel of the actor concept and the dependency
relation specified by means of UML.

86

of abstraction (but focusing on the identification of stakeholders
and their dependencies) the analyst analyzes the domain to identify
main actors, actor dependencies and actor goals. This diagram is re-
fined and incrementally increased especially in late requirements.

2. Goal Diagram: It allows the means-end and AND/OR analysis of
goals and dependencies. It is also a static diagram. It is based on
the Actor Diagram and allows the goal decomposition, to find al-
ternative solutions for goals and how different solutions contribute
positively or negatively to fulfill goals. It is used mainly in early
and late requirements where it is used to analyze respectively social
actor and system actors.

3. Plan Diagram: It is an AUML (28) activity diagram that analyzes in-
ternal states of a plan inside a capability. It is realized in the detailed
design phases.

4. Capability Diagram: It is an AUML activity diagram used to model
a capability from the point-of-view of an actor. It is realized in the
detailed design phases.

5. Agent Interaction Diagram: It is an AUML sequence diagram which
model the asynchronous agent interaction. It is realized in the de-
tailed design phases.

Requirements diagrams notation is inspired by i* and KAOS while
design diagrams notation uses Agent UML techniques. We are mainly
interested in requirements phases and thus in Actor and Goals diagrams
because of it strictly relates to BPM. Differently from prescriptive (late)
requirements which capture the ”What” and ”How” of the system to be,
early requirements captures ”Why” the system is developed.

Goals are desired by actors and are delegated to other actors for fulfill-
ment. Early requirements involve identifying stakeholders (social actors)
and their goals. Late requirements phase exploits goal diagrams to de-
scribe and support the reasoning about actor relationships. In this phase
the system-to-be comes in the model as one or more actors that satisfy

87

stakeholders needs and it is given additional responsibilities. Further,
such a system actor is decomposed into several sub-actors which take on
some of these responsibilities. The Late Requirements analysis results in
the definition of all functional and non-functional requirements (i.e., re-
source, task and soft-goal dependencies) and the identification of how the
system goals can actually be fulfilled exploiting the other actors.

Goal-oriented Requirements Language (GRL) is an international stan-
dardization effort of i*. There is an abundant literature on this family
of methods that comprise also some ideas of the Tropos approach. GRL
is part of a standard draft of United Nation International Telecommuni-
cation Union (ITU) (ITU09a) that is called User Requirements Notation
(URN) (ITU09b). There are two parts to this standard: URN-FR refers to
the Functional Requirements part and URN-NFR refers to the Non Func-
tional Requirements. GRL is the language proposed to describe URN-
NFR.

GRL has evolved from the basic idea that there are two kinds of re-
quirements Functional Requirements (FR) and Non Functional Require-
ments (NFR). FR are understood as those requirements that describe what
the system should do for its stakeholders. NFR are understood as what-
ever is non FR, i.e., issues such as, customer satisfaction, increase of mar-
ket share, availability, security, adaptability etc. (96; 125; 126).

GRL supports the analysis of strategies, which help reach the most
appropriate trade-offs among (often conflicting) goals of stakeholders. A
strategy consists of a set of intentional elements that are given initial sat-
isfaction values. These satisfaction values capture contextual or future
situations as well as choices among alternative means of reaching various
goals. These values are then propagated to the other intentional elements
through their links, enabling a global assessment of the strategy being
studied as well as the global satisfaction of the actors involved. A good
strategy provides rationale and documentation for decisions leading to
requirements, providing better context for standards/system developers
and implementers while avoiding unnecessary re-evaluations of worse
alternative strategies. GRL also provides support for reasoning about

88

scenarios by establishing correspondences between intentional GRL ele-
ments and non-intentional elements referring to scenario models of URN-
FR. Modelling both goals and scenarios is complementary and may aid
in identifying further goals and additional scenarios (and scenario steps)
important to stakeholders, thus contributing to the completeness and ac-
curacy of requirements.

The basic idea of GRL is that these issues can be captured with the
concept of soft-goal. While goals are defined as: ”a condition or state of
affairs in the world that the stakeholders would like to achieve” (ITU09b).
A soft-goal is defined as a goal for which: ”A soft-goal is a condition or
state of affairs in the world that the actor would like to achieve, but unlike
in the concept of (hard) goal, there are no clear-cut criteria for whether the
condition is achieved, and it is up to subjective judgment and interpreta-
tion of the developer to judge whether a particular state of affairs in fact
achieves sufficiently the stated soft-goal” (ITU09b).

The main modeling elements in GRL are: Actor, Goal, soft-goal, task,
resource, and belief. A task specifies a particular way of doing some-
thing. Goals, soft-goals, tasks, and beliefs are called intentional elements
in GRL. GRL defines a number of relationships between the modeling el-
ements including: Means-end links reflect how goals are achieved; Decom-
position links show what are the component of a task; Contribution links
show how one intentional element influences the achievement of another
intentional element; Dependency links establish a relationship between two
actors. They contain what are called dependums. A dependum can con-
tain a goal, soft-goal, task or resource.

In GRL, as in KAOS, goals are considered to have been predefined.
The distinction between goals, soft-goals, and tasks is also considered as
non problematic. However, i* makes fewer assumptions about the need
for an IT system than methods such as KAOS and GBRAM (99), it is thus
useful in an earlier phase when the debate centers about how to resolve
some problem rather than what the goals of the IT system should be.

The purpose of GRL is to model strategic relationships and analyze
their needs but it does not offer tools for representing the constraints im-
posed by the context of an enterprise and the different interpretations that

89

stakeholders may have of these constraints. However, it provides both an
abstract and concrete grammar for its classes that can be exploited in tools
and method that will adopt such a standard.

Si* and Secure Tropos

Tropos is currently conceived as a ”Toolset” such as a collection of method-
ologies, frameworks, and models tacking different aspects of the software
development process (Uni02) (38). The Tropos toolset adopts the i* mod-
eling language (extended with concepts for security and dependability)
for requirements specification

The Tropos Toolset consists of 5 main efforts (117):

• Tropos: the main software engineering methodology which can be
used from the early requirements phase down to the implementa-
tion (see Section 2.2.4);

• Secure Tropos: a security requirements engineering methodology;

• Goal-Risk Tropos: a risk analysis framework;

• P-Tropos: a framework for the automatic selection and evaluation
of design alternatives;

• Formal Tropos: a formal language aimed to support the Tropos
Methodology;

Each framework in the toolset uses a fragment of the i* modeling lan-
guage on the basis of its purpose: Tropos uses i*; Secure Tropos uses Si*;
GR (Goal-Risk)Tropos uses GRI*; P-Tropos uses PI* and Formal Tropos
uses a subset of i*.

In order to uses Tropos and i* in our framework we consider to use
Si*, and hence the Secure Tropos methodology, as a basis for our business-
oriented approach.

Si* (81) is an extension of i* notation that consider the notion of service
and security. The basic idea of Secure Tropos is to distinguish the trust
relationships among goals and actors.

90

Secure Tropos is tailored to model and analyze security and privacy
aspect of systems and their organizational setting from the early phases of
the software development process. Beside adopting the SI* modeling lan-
guage for requirements acquisition, Secure Tropos exploits formal analy-
sis techniques for security requirements verification and validation.

Si* is used to introduce security requirements analysis in the early
phases of the software development process. This allows us to elicit se-
curity requirements from the organizational environment, to analyze se-
curity requirements within the organizational environment in which the
software will operate and to motivate the use of specific security mecha-
nisms.

Thus Si* add the possibility to delegate and manage further concepts
such as the trust and distrust notion, ownership, permission, etc. that are
fundamental notions in the organizational context(80).

Thus, Si* introduces some relations and changes in order to define the
security degree of each element of the model for modeling and analysis
of functional and security requirements. Three new relationships are in-
troduced as follow:

• Ownership (among an actor and a goal/resource) represents the
fact that an actor is the legitimate owner of a goal/resource;

• Trust (among two actors and a goal/resource), marks a social rela-
tionship that indicates the belief of one actor that another actor will
not misuse the goal/resource he has been granted. A trust relation-
ship can be: a delegation of trust permission (Tp) when the trustor
believes that the trustee will not misuse the goal/resource and a
delegation of trust execution (Te) when the trustor believes that the
trustee will achieve/deliver the goal/resource.

• Delegation (among two actors and a goal/resource), refines the del-
egation relationship of Tropos. It marks a formal passage of per-
mission. A delegation relationship can be: a delegation of permis-
sion (Dp) when the delegatee has the permission to fulfill/use the
goal/resource (but it does not need to) and a delegation of execu-
tion when the delegatee should fulfill the service.

91

Actually, the Trust relationship is the mental counterpart of delega-
tion. The Delegation relationship is used to model formal passage of re-
sponsibility, it is an action due to a decision. The Trust relationship is a
mental state driving the decision. While in case of Delegation the del-
egator becomes vulnerable, because it has no warranty that the delega-
tee will achieve/not misuse the goal/resource, in case of Trust the dele-
gator (in this case named trustor) expects the delegatee (named trustee)
achieve/not misuse the goal/resource.

Security requirements are social requirements, we need to capture the
key social requirements for security and model at the same time func-
tional requirements and security requirements. Indeed, Secure Tropos
involves two different levels of analysis: Social level analysis where the
structure of organizations are defined associating to every role objectives
and responsibilities and Individual level analysis where agents are not
only defined with their objectives and responsibilities, but also they are
associated to roles they can play.

Secure Tropos involves modeling activities similar to Tropos, such as:

• Actor Modeling: where actors are modeled with their objectives,
entitlements, and capabilities;

• Functional Requirements Model: where delegation of execution re-
lationships are defined;

• Trust Model: where trust of execution and permission relationships
are defined;

• Trust Management Implementation: where delegation of permis-
sion relationships are defined;

• Goal modeling: where to elicit actor social relationships

Secure Tropos defines also an extension of the formal model of Tropos
in order to allow automated analysis of trust and delegation relationships
(80).

In the context of our work, we base our requirements engineering pro-
cess on the Si* language in order to give a more refined delegation model

92

and to add the trust model. Thus, we use Si* instead of i* because it allows
to model and analyze security and privacy aspects along with the organi-
zational setting, in the early phases of the software development process.
In a business oriented approach, it is very useful to take into considera-
tion social relations concerning trust, permission and execution delega-
tion because they help to identify actors and goals considering security
and privacy constraints. However, only a small part of the Secure Tropos
methodology and the Si* language have been exploited in our framework.
The need of maintain our requirements framework lightweight and easy
to be understood by the stakeholders bring us to adopt only the trust and
enriched delegation model of Secure Tropos. Thus, we use the Trust and
Delegation model of Secure Tropos and define the Trust Model and Trust
Management Implementation Model leaving out more complex -though
powerful- mechanisms such as the Si* formal model.

2.3 Modeling Enterprise-centric Computing

In this section we give an overview of MDE and the support provided
to this technology by the Eclipse Integrated Development Environment
(IDE) (The08a). Eclipse is a platform for building integrated application
development tooling. The basic Eclipse environment does not provide a
great deal of end user functionality by itself. The platform encourages
the rapid development of integrated features based on a plug-in model.
Eclipse provides a common user interface (UI) model for working with
tools. It is designed to run on multiple Operating Systems (OS’s) while
providing robust integration with each underlying OS. Plug-ins can pro-
gram to the Eclipse portable API’s and run unchanged on any of the sup-
ported operating systems. At the core of Eclipse is an architecture for
dynamic discovery, loading, and running of plug-ins. The Eclipse plat-
form defines an open architecture so that each plug-in development team
can focus on their area of expertise. It uses the model of a common work-
bench to integrate the tools from the end user’s point of view. Developed
tools can plug into the workbench using well defined hooks called exten-
sion points.

93

The MDE approach is normally implemented as a set of modeling
standards and languages. In particular, the MDA specification defines
a set of OMG modeling standards to represent and transform models.
Specific implementations of the MDE approach, such as the MDA, con-
template the ability to apply different technologies in order to implement
model driven standards. Thus, the Eclipse IDE modular architecture is a
fitted choice to manage a changeable and not fully developed technology
like MDE.

In this section we will present an overview of MDE and MDA in the
context of enterprise computing. Then, we describe how the Eclipse IDE
currently support MDE by integrating a set of specific plug-ins.

2.3.1 MDE and MDA in Enterprise Computing

The history of software development is a history of raising the level of
abstraction. These abstractions arise in all the most meaningful fields of
computer science and are not completely independents in their evolu-
tion. Abstractions have been defined in programming languages (e.g.,
assembler, C, C++, Visual C); in architectures (e.g., client-server, n-tier,
SOA’s); in operative systems (e.g., Virtual Machines, Middlewares, Grid
systems, Internet operating systems); in data representation (e.g., file sys-
tems, databases, XML files) and many other research fields. Despite the
advantages of such abstractions they define new software platforms that
are more and more complex to manage and program. This complexity
is worsened by recents trends of software platforms that try to overcome
modern global enterprises organization models. Modern company struc-
tures require high flexibility both in time and in space. They take part
in opportunistic joint-venture, they rapidly change their organization to
accommodate market changes or new strategies, they do not have cen-
tralized structures (77). The exposed scenario has been referred as the
Enterprise-centric Computing (73) (also named Enterprise Computing).
Beside this scenario there are two cross platform tendencies in Enterprise
Computing to take into account, such as: a wide array of end-user sys-
tems and clients (e.g., fat clients, Web clients, mobile phones, iPods, etc.)

94

and the ubiquity of information (e.g., mobile and opportunistic network-
ing, sensor networks, radio frequency identification (RFID) applications,
etc.).

Platform volatility in Enterprise Computing can be simply resumed
saying that ”the only thing we can predict with confidence about the fu-
ture of platforms is that things we can’t predict will happen” (73).

In this thesis we underline how the MDE approach can be applied
to face up platform volatility and new challenges of software develop-
ment in the context of Enterprise Computing. The basic principle of MDE
is that ”Everything is a Model” (33). This principle, very similar to the
object oriented principle where ”Everithing is an Object” (101), has two
interesting properties: the representedBy and conformsTo relationships
among models. The word model comes from the Latin modullus through
the Italian modello, a model consist of sets of elements that describe some
physical, abstract, or hypothetical reality. There are plenty of practical us-
ages of models: statistical model, meteorological model, biological mod-
els, ecological models, economical models, etc. Computer science may be
mainly described as the science of building software models. A model
is not intended to capture all the aspects of a system, but mainly to ab-
stract out only some of these characteristics. Instead a system is usually
represented by a set of different models, each one capturing some specific
aspects. A graphical map is a typical example of this principle. Different
maps of the territory should be used if one wish to ride a bike or visit a
museum but the represented system (the territory) is the same. It is clear
in the map example the meaning of the representedBy relation among the
system and the models (i.e., the maps). A truly expressive example of this
concept is given by Bezvin (33) by means of the Magritte painting ”This is
not a pipe”. As represented in Figure 13 Magritte insisting on the fact that
the painting of a pipe may be useful for several purposes, but certainly
not to smoke tobacco. Similarly we may have a painting of the painting,
and so on.

The second important relation among models is the conformsTo re-
lation. Lets think to the graphical maps legends, they indicate how to

95

Figure 13: The paint ”The Treachery of Images”, René Magritte, 1929.

interpret the maps themselves. In this case we say that the maps conform
to their legends, such as the maps are written in the graphical language
defined by their legends. The conformsTo principle generalizes this con-
cept saying that a model conform to its metamodel. A metamodel can
be simply defined as a model of a modelling language. It defines the
structure, semantics, and constraints for a family of models (i.e., a group
models that share common syntax and semantics). The relation between
a model and its metamodel is also related to the relation between a pro-
gram and the programming language in which it is written, defined by its
grammar, or between an XML document and the defining XML schema
or DTD (73; 119). Coming back to the Magritte example in Figure 13 it is
useful to remark that representedBy define a chain of models of models
and not metamodels (i.e. models of modelling languages).

MDA may be defined as the realization of the MDE principles around
a set of Object Management Group (OMG) standards like MOF, XMI,
OCL, UML, etc. MDA uses such standards-based modeling languages
as formal development languages in order:

96

• to allow the definition of models and metamodels

• to allow model transformations

• to define system in a way that is independent from:

– platforms

– platforms evolution

– application domains

The basic usage of metamodels in MDA is to facilitate the separation
of concerns. We can characterize each perspective of the system we are
modeling by means of different metamodels. The OMG define the so
named ”4-layer metamodeling architecture” to define metamodeling as
represented in Figure 14. A model or terminal model (M1) is a represen-
tation of a part of the real system (M0) such as, for instance, a represen-
tation of a pipe. This M1 model conform to its metamodel defined at the
M2 level. The M2 metamodel is the representation of a set of modeling
construct (that can be used in M1) that conform itself to a further meta-
model named meta-metamodel at level M3. Finally, the meta-metamodel
conforms to itself.

OMG furnish different standards to instantiate the 4-layer metamod-
eling architecture. For instance the classical usage of UML is one of these.
In this case we use UML metamodel conforming to MOF as the modeling
language (M2); a UML model conforming to the UML metamodel to rep-
resent a class of object (M1). MDA fits the MDE postulate to have a unique
meta-metamodel by means of MOF specification (33). This is an essential
postulate to comply with, since the number of domain specific metamod-
els is rapidly growing with the danger of a fragmentation in MDE. With-
out a unique, or a small set of, meta-metamodeling languages, compara-
tions, transformations, marges and other operations among models and
metamodels would be impossible to be realized.

The MOF specification defines both an abstract language and a frame-
work to specify, develop, manage and exchange metamodels. The frame-
work allows to implement metamodeling repositories that store a persis-
tent representation of metamodels. However, what concretely helps in

97

defining models in MDA is UML. UML in this sense has a double role
in MDA: 1) Its specification is an instantiation of the 4-layer metamod-
eling architecture; 2) it is the modeling language used to define all the
models used in all the 4-layer metamodeling architecture. Despite using
UML to model class diagrams we can use UML constructs also to rep-
resent metamodeling and meta-metamodeling concepts. A MOF meta-
model normally consist in a formal definition of the abstract syntax of the
model concepts conforming to the MOF meta-metamodel plus an infor-
mal description of the metamodel semantics usually defined in natural
language. The abstract syntax can be expressed in a graphical notation
or not. Usually, to express MOF metamodels it is used UML as concrete
syntax graphical notation. Other possible concrete syntaxes for MOF can
be used such as the XML Metadata Interchange (XMI) (OMG07b) that is a
XML specification to metamodel interchange and transformation. A MOF
metamodel described in the abstract syntax or by means the UML con-
crete syntax can be ”serialized” to a XMI model, such as can be rendered
in a textual structured Semantic Web file in order to be exchanged among
modeling tools or managed by MDA transformation engines. Thus the
unicity of MOF as a meta-metamodeling language can be exploited by
means of concrete syntaxes in order to define bridges between the MDA
technical space and other spaces like XML documents (trough XMI) or
the Java technical space (trough the JMI (Sun02) specification that defines
a correspondence among MOF and Java classes) or adding other specifi-
cations.

The MDA has demonstrated the realism of the MDE approach. MDA
can be used in different context from metaprogramming to dynamic ar-
chitecture management (27; 33; 119). For the sake of this thesis we are
interested in the classical way MDA is used in software platforms. In the
traditional MDA approach, the objective is to be able to generate Platform
Specific Models (PSM’s) from Platform Independent Models (PIM’s). A
PIM is a model of a system that does not consider technical detail of a spe-
cific platform. On the contrary a PSM is a model that represents details
about a particular platform. Both PIM and PSM conform to a metamod-
els that define the level of abstraction we are dealing with. Automatic or

98

Figure 14: The OMG 4-layer Metamodeling Architecture.

semi-automatic generation imply the existence of a transformation lan-
guage for MDA. In order to unify these languages or at least a family of
such languages, OMG defines a request for proposal for transformation
domain specific languages named MOF Query/View/Transformation-
(MOF/Q/V/T) (OMG02b). In MOF/Q/V/T transformation generates a
target model Mb from a source model Ma as described in Figure 15. A mo-
del conforms to a metamodel. The source and target models conform to
metamodels MMa and MMb. Similarly the transformation Mt: Ma-¿Mb
(i.e. the transformation program itself) conforms to a metamodel MMt
defining the common model transformation language. MOF Q/V/T ap-
ply the MDE principle since the transformation Mt itself is a model. The
PIM to PSM transformations are used to map in a semi-automatic way
a PIM to different PSM’s and thus to give independence both from plat-
forms technologies and from platform evolution of the systems described
in PIM’s. However, other transformations are possible such as: PIM to

99

PIM transformations used to refine models without concern with plat-
form specific details; PSM to PSM transformations used to deploy com-
ponents in the context of a specific platform and PSM to PIM transforma-
tions used to abstract PIM from existent models (e.g., extraction of models
from legacy systems). Platform independence is however a relative con-
cept (73). It means independence from some specific execution and devel-
opment domains, thus it has meaning only with respect to some specified
platform or platforms. When we use the term platform independent or
PIM; we have to specify the domains from which independence is being
asserted.

Figure 15: Model to model transformation.

Nowadays, the MDA technology is still in development, and some of
the technologies need to be developed further and standardized, while
others need further definition. One important difference between the
old modeling practices and modern MDE is that the new vision is not

100

to use models only as simple documentation but as formal input/output
for computer-based tools implementing precise operations. As a conse-
quence model-engineering frameworks have progressively evolved to-
ward solid proposals like the OMG MDA. We may clearly see the three
levels of principles (general MDE principles), of standards (e.g. the OMG-
/MDA set of standards), and of tools (like the Eclipse Modeling Frame-
work (EMF) (The08b) or the Microsoft Visual Studio system (Mic08)).

It is useful to remark that MDA is not aimed to substitute other tech-
nologies or abstractions. The problem is not that we use different abstrac-
tions to describe different aspects of software components. The problem
is that we have no overall architecture for integrating specifications made
in different languages. MDA defines a single architecture for the inte-
grated management of such metadata, it expands on existing technolo-
gies and abstractions in order to help them working better.

MDA is not a completely new approach, it has notable ancestors, such
as database schemes, generative programming, CASE tools and many
other model oriented approach to software development(50; 54; 73). Nowa-
days this technology is applied to the Enterprise Computing scenario us-
ing a set of standard languages in a generalized way. It attempts to move
from solution space abstractions used in programming languages to prob-
lem space abstractions to be used in Enterprise Computing.

2.3.2 MDA Tools

Beside general principles and specification levels of model-engineering
frameworks, represented respectively by MDE and MDA, the tools level
is what concretely allows to put in practice the MDE proposal. Currently,
there are not tools that fully implement MDA as envisioned by the OMG
(35). Existing tools are usually limited to a single aspect such as: a specific
platforms; a specific languages or some specific transformations. Usually,
such existing MDA tools are evolutions of tools born in other research
fields especially in generative programming (54) and Metaprogramming
(27).

At the top level, a rough classification of the MDA tools is based the on

101

their model transformation approaches (55; 138). We can distinguish be-
tween model-to-model and model-to-code transformation support. The
two approaches are significantly different since, usually, tools that man-
age model-to-code transformations are evolutions of generative program-
ming tools while tools that support model-to-model transformations have
been more likely developed by the MDE/MDA community. Anyway,
model-to-code transformations can be considered as special cases of model-
to-model transformations; we only need to provide a metamodel for the
target programming language since the source code is an executable mo-
del of a system described in terms of a programming language (55). How-
ever, from a practical point of view, model-to-code tools are significantly
different by mode-to-model tools. In order to use existing programming
language compilers, model-to-code tools simply generate code as text,
which is then fed into a compiler. For this reason, model-to-code trans-
formation would be better described as model-to-text since non-code ar-
tifacts such as XML may be generated. Some tools offer both model-to-
model and model-to-code transformations (e.g., OptimalJ (Com08)).

In the model-to-code category, we can distinguish between:

• Visitor-based approaches: consists in a visitor mechanism to navi-
gate the internal representation of a model and write code to a text
stream.

• Template-based approaches: template usually consists of the target
text containing splices of metacode to access information from the
source. Metacode performs an iterative code selection on the source
model. The structure of the template is very similar to the code that
will be created, and thus more intuitive for transformation develop-
ers. Templates combines untyped string patterns with executable
logic for code selection and iterative expansion. The logic access-
ing the source model may have different forms, it could be simple
Java API provided by the internal representation of the source mo-
del (e.g., JMI (Mic02)) or it could be declarative queries (e.g. OCL
(OMG03b) or XPath (W3C99a)).

The majority of currently available MDA tools support template-based

102

model-to-code generation. Differently, model-to-model transformations
translate between source and target models, allowing OMG Q/V/T PIM
to PSM mappings. Usually, this type of MDA tools allow also PIM to PIM
and sometime PSM to PIM mappings. All of these approaches support
syntactic typing of variables and patterns.

In the model-to-model category, we distinguish among:

• Direct-manipulation approaches: that offer internal model repre-
sentations for models plus some API to manipulate them. They
usually provides a minimal infrastructure to organize the transfor-
mations (e.g., an abstract class for transformations). Users have to
implement transformation rules mostly from scratch.

• Relational approaches: are based on mathematical relations. They
state the type of the source and the target element of a model and
specify it by using constraints. Such declarative constraints can
be given executable semantics by means of predicates of logic pro-
gramming.

• Graph-transformation approaches: are based on theoretical work
on graph transformations. These approaches operate on typed, at-
tributed, labeled graphs. Graph transformation rules consist on
graph patterns. The graph patterns can be rendered in the concrete
syntax of their respective source or target language (e.g.,in VIATRA)
or in the MOF abstract syntax.

• Structure-driven approaches: distinguish two phases, the first phase
is concerned with creating the hierarchical structure of the target
model, the latter phase sets the attributes and references in the tar-
get. It is the framework that determines rules the scheduling and
application strategy; users are only concerned with providing the
transformation rules. The OptimalJ (Com08) model-to-model trans-
formations use a structure-driven approach.

• Hybrid approaches: combine different techniques from the previ-
ous categories.

103

There is another approach that could be used to model-to-model trans-
formations that MDA tool do not implement for efficiency reasons. Since
models can be serialized as XML using XMI transformations could be im-
plemented by means of XSLT (W3C99b), which is a standard technology
for transforming XML documents. Unfortunately, this approach has se-
vere scalability limitations. XMI and XSLT suffer of maintainability prob-
lems due to their verboseness. Model transformations in XSLT quickly
leads to non maintainable implementations. Even defining more declar-
ative XSLT rule descriptions, this approach suffers from poor efficiency
because of the copying required by the pass-by-value semantics of XSLT
and the poor compactness of XMI (55).

As mentioned before there are not tools that fully implement MDA as
envisioned by the OMG (i.e., with a CIM, PIM and PSM). Currently, many
products that are sold as MDA tools actually are not (35; 103). In partic-
ular, tool developed in the context of generative programming and code
generation tools developed prior to the MDA specification are not specif-
ically MDA tools, although they may be applicable to an MDA process.
Also model-to-model tools usually implement only partial functionalities
of MDA or do not conform to MOF or the Q/V/T request for proposal.
Basing on these considerations, we can characterize MDA tools basing
on their limitations in: 1) tools form models representation and manage-
ment; 2) tools for models transformation; 3) tools for models-to-code gen-
eration.

In order to give an overview of MDA tools currently present in the
market, in Table 5 we describe tools that are succeeding both in the model-
to-code and in model-to-model context.

2.3.3 How Eclipse supports MDA

Eclipse is a general purpose IDE aimed to be an universal tooling plat-
form (i.e., it provides an open platform for setting up application devel-
opment tools). Eclipse is an open, extensible architecture based on plug-
ins. All the tool presented in Table 5 can be employed in the Eclipse IDE

104

in order to define a MDA-based development environment.

As we discuss in the previous section, none of the presented tools
support all the features defined in the MDA specification (Obj01). This
is because two reasons: 1) MDA is composed by a set of standard not
completely defined yet; 2) the different levels in MDE (such as MDE prin-
ciples, MDA specifications and tools implementations) allow specific im-
plementations of the MDE approach, such as the MDA, to apply different
technologies in order to implement model driven tools. For these reasons,
the Eclipse IDE plug-in architecture is a fitted choice to manage a change-
able and not fully developed technology like MDE and thus MDA.

A plausible strategy to define a framework for MDA in Eclipse is to
combine different plug-ins in order to obtain a MDA IDE targeted for
specific needs. It also helps in managing the evolution of the specific
technologies whose impact are limited to single plug-ins. This is the ap-
proach we follow in our researches (4) and the same chosen by the Eclipse
Foundation with the Eclipse Modeling Tools package (The08c) that is a
pre-bundled version of Eclipse comprising most relevant and free open
source plug-ins for modeling and metamodeling.

In this section we present two interesting technologies that are emerg-
ing as de-facto standard in Eclipse and are supported by great part of cur-
rent MDA Eclipse tools. The Eclipse Modeling Framework (EMF) is the
analogous of MOF in the Eclipse IDE Platform, it consists of an extended
set of API, a metamodelling framework named Ecore and an Eclipse plug-
in. The Atlas Transformation Language (ATL) is a language specifically
targeted for model transformations, it supports MOF 1.4 and Ecore while
conforming to MDA Q/V/T transformation request for proposal.

EMF is a framework and a code generation facility. It relies on a
meta-metamodel named Ecore and allows to mange models represented
in code and graphs. In particular, EMF is aimed to unify Java, XML
and UML in order to bridge the gap between modelers and Java pro-
grammers. Models can be defined using a UML modeling tool, an XML
Schema, or by specifying simple annotations on Java interfaces. EMF is
a framework and code generation facility that allows to define a model
in any of these forms (that is, Java interfaces, UML diagram, or XML

105

Schema) and then automatically generate the others and also the corre-
sponding implementation classes. For instance, if we want to build an ap-
plication to manipulate some specific XML message structure, EMF let us
to automatically get a UML class diagram starting from the XML schema.
At the same way starting from the XML schema or the UML class diagram
EMF allows to generate a set of Java implementation classes for manipu-
lating the XML. EMF is truly integrated with and tuned for efficient pro-
gramming, the claim is that ”in EMF, modeling and programming can be
considered the same thing” (42).

The meta-metamodel used to represent models in EMF is called Ecore.
MOF and Ecore have many similarities in the management of classes.
Nevertheless Ecore is comparable to MOF it is not correct to define it a
MOF implementation. Ecore and more generally EMF are more focused
on tool integration, rather than metamodel management. However, the
EMF experience is substantially influencing the MOF specification evolu-
tion thus we can foreseen a future alignment of these two approaches on
meta-metamodeling.

The initial Ecore model can be created both in UML, XML and Java.
In order yo create the model in UML it can be used any UML modeling
tool that support Ecore such as Omondo (Omo07) or IBM Rational Rose
(IBM08); to create the model in XML it can be used an Ecore XMI file that
is a standard XML serialization of the exact metadata that EMF uses; fi-
nally to create a model from Java it can be used some tags to mark classes
interface such as @model . Once we have the model, EMF allows to au-
tomatically generate code from it. For each ”class” defined in the model
EMF generates an interface and an implementation class. The implemen-
tation class defines a set of API providing accessor methods to allow to
get and set values for each attribute and reference that belong to the class
together with reflective methods to manage structural features. Two fur-
ther classes named factory and package are created. Factory includes a
create method for each class in the model that can be used to create
objects; the package class provides static constants and a set of method
to access model metadata. EMF can also generate other code such as a
skeleton for adapter class factories and a plug-in manifest file to use the

106

model as a plug-in.
EMF is not limited to the base generator we described. There is also

the EMF.Edit extension that generates adapter classes to enable model
viewing and editing. Such an extension can even generate a working ed-
itor for the model. The EMF.Edit framework code is divided into two
parts: 1) the EMF.Edit is a plug-in containing the user interface indepen-
dent editing support classes; 2) the EMF.Editor is a plug-in containing
user interface dependent editing support classes. The EMF.Edit genera-
tor generates a complete plug-in containing the UI independent portion
of a model editor. The EMF.Editor defines a very functional multipage ed-
itor provided with wizards for creating new model instance documents;
action bars, toolbars; menu bars items and icons. Finally, EMF provide
also interoperability features such as notifier classes that send notifica-
tions whenever an attribute or a reference change; a generic XMI serial-
ized not limited to Ecore models and the support for dynamic generation
of model instances.

Starting form a model, that is actually a metamodel, EMF.Edit pro-
duces:

• A set of typed item provider classes, one for each class in the core
model;

• An item provider adapter factory class that creates the generated
item providers for the package. It extends from the model-generated
adapter factory base class;

• A plug-in class that includes methods for locating the plug-in’s re-
source strings and icons;

• A plug-in manifest file, plugin.xml, specifying the required depen-
dencies;

• A property file, plugin.properties, containing the externalized strings
needed by the generated classes and the framework;

• A directory of icons, one for each model class.

107

The generated editor is a very functional multipage editor. The fol-
lowing is generated in the editor plug-in (EMF.Editor):

• An integrated Eclipse workbench editor;

• A wizard for creating new model instance documents;

• An action bar contributor that manages the popup menus, and tool-
bar and menu bar items;

• A plug-in class that includes methods for locating the plug-in’s re-
source strings and icons;

• A plug-in manifest file, plugin.xml, that specifies the required de-
pendencies and extensions of the editor, wizard, and action work-
bench extension points;

• A property file, plugin.properties, containing the externalized strings
needed by the generated classes and the framework;

• A directory containing icons for the editor and model wizard;

Thus, EMF is not just a generator tool, it is also a powerful runtime
framework to model management. Like MOF in MDA, EMF is consid-
ered only the starting point in the MDE support given by the Eclipse IDE.
Almost all tools exposed in Table 5 are based on EMF and Ecore models.

The EMF.Edit generate a minimal graphical plug-in that helps defin-
ing models basing on Ecore metamodel used in the generation process.
The editor generated by EMF is based on the tree representation of the
model that could be uncomfortable for people experienced with UML
tools. Another framework named Generative Modeling Framework (GMF)
(The05a) is focused on feature-rich and extensible graphical model editor.
It defines a generative infrastructure to graphical editor production bridg-
ing EMF and the Graphical Editing Framework (GEF). GEF allows Eclipse
developers to create generic rich graphical editors providing a layout and
rendering toolkit for displaying graphs, manage palettes, handle and re-
size graphical objects. As for EMF, the GMF framework (The05a) do not
implement a complete plug-in yet. It creates the skeleton framework with

108

minimal editing capabilities, more advanced editing and visualization
components need to be instrumented in code.

The second de-facto standard MDA technology in Eclipse is ATL. ATL
is a model transformation language specified both as a metamodel and
as a textual concrete syntax. Relating on the taxonomy given in Sec-
tion 2.3.2, ATL is a hybrid approach (55). A transformation rule in ATL
may be fully declarative, hybrid, or fully imperative. Declarative style is
the default choice for simple transformations, source model elements are
navigated by means of a set of rules that create target model elements.
However, ATL also provides imperative constructs in order to ease the
specification of mappings that can hardy be expressed declaratively. An
ATL transformation program is composed of rules that define how source
model elements are matched and navigated to create and initialize the el-
ements of the target models. ATL relies on a ATL Virtual Machine that
allows transformations. A transformation from the ATL metamodel to
the virtual machine code enables to ”execute” ATL transformations. ATL
mainly focus on the model to model transformations and comply with
the OMG Q/V/T request for proposal. Its transformation engine cur-
rently provides support for both the MOF 1.4 (OMG02a) and the Ecore
meta-metamodels.

The ATL model transformation language enables to specify how one
(or more) target model can be produced from a set of source models. The
transformation language is specified both as a metamodel and a textual
concrete syntax. Model to model transformations can be specified by
means of ATL modules. Besides modules, the ATL transformation lan-
guage also enables developers to create model to primitive datatype pro-
grams (ATL queries) aimed to compute a primitive value, such as a string
or an integer. ATL also allows to define ATL libraries that can be imported
from the different types of ATL units, including libraries themselves. An
ATL transformation file has the .atl extension. Modules are structured
in three sections: 1) the headers that define some attributes relative to
the transformation; the helpers that are similar to Java methods and the
rules that define the way target models are generated from source mod-

109

els. Rules can be of two types: matching rules and called rules. Matching
rules are used for ATL declarative specifications both to define for what
kind of source elements target elements must be generated and to define
the way the generated target elements have to be initialized. Called rules
are used in ATL imperative programming, they are a particular type of
header that can generate target model elements (we ca also invoke called
rules in imperative code sections).

The ATL language has been developed by the ATLAS project team
of INRIA (ATL08). It has been implemented as an Eclipse plug-in in
2006 and in 2007, it has been recognized a standard component in the
the Eclipse Modeling Tools package (The08c). In particular, ATL is the
bases for other MDA tools and plug-in such as the AM3 and AMW de-
scribed in Table 5 and general modeling tools such as TopCased (Top08)
and Papyrus UML (Pap08).

Obviously, there are other emerging technologies in Eclipse concern-
ing MDA, we present EMF and ATL because of their general acceptance
and proved efficacy. We expect that further implementations of EMF, such
as the GMF (The05a), and the integration of ATL in widely used modeling
tools like TopCased will define in a few year a strong MDA framework
that enable the Eclipse IDE to fully support the MDA/MDE approach.

110

Te
rm

D
efi

ni
ti

on
Pr

oc
es

s
a

se
ri

es
of

ac
ti

on
s

or
op

er
at

io
ns

co
nd

uc
in

g
to

an
en

d;
es

pe
ci

al
ly

:a
co

nt
in

uo
us

op
er

at
io

n
or

tr
ea

tm
en

te
sp

ec
ia

lly
in

m
an

uf
ac

tu
re

(M
er

ri
am

-W
eb

st
er

on
-l

in
e

di
ct

io
na

ry
)

Bu
si

ne
ss

Pr
oc

es
s

(B
P)

a
st

ru
ct

ur
ed

,m
ea

su
re

d
se

to
fa

ct
iv

it
ie

s
de

si
gn

ed
to

pr
od

uc
e

a
sp

ec
ifi

c
ou

tp
ut

fo
r

a
pa

rt
ic

ul
ar

cu
st

om
er

or
m

ar
ke

t.
(6

0)
Bu

si
ne

ss
Pr

oc
es

s
en

co
m

pa
ss

es
th

e
en

vi
si

on
in

g
of

R
ee

ng
in

ee
ri

ng
(B

PR
)

ne
w

w
or

k
st

ra
te

gi
es

,t
he

ac
tu

al
pr

oc
es

s
de

si
gn

ac
ti

vi
ty

,a
nd

th
e

im
pl

em
en

ta
ti

on
of

th
e

ch
an

ge
in

al
li

ts
co

m
pl

ex
te

ch
no

lo
gi

ca
l,

hu
m

an
,a

nd
or

ga
ni

za
ti

on
al

di
m

en
si

on
s.

(6
0)

Bu
si

ne
ss

Pr
oc

es
s

in
cl

ud
es

m
et

ho
ds

,t
ec

hn
iq

ue
s,

M
an

ag
em

en
t/

M
od

el
in

g
(B

PM
)

an
d

to
ol

s
to

su
pp

or
tt

he
de

si
gn

,e
na

ct
m

en
t,

m
an

ag
em

en
t,

an
d

an
al

ys
is

of
bu

si
ne

ss
st

ra
te

gi
es

,
go

al
s,

or
ga

ni
za

ti
on

al
,o

pe
ra

ti
on

al
an

d
im

pl
em

en
te

d
bu

si
ne

ss
pr

oc
es

se
s.

(1
56

)

Ta
bl

e
1:

A
gl

os
sa

ry
fo

r
bu

si
ne

ss
pr

oc
es

se
s

re
la

te
d

te
rm

s

111

Threats Risk Frequance Mangitude
Poorly defined or inconsistent software 3 4 (62%) 3
requirements specifications
Faulty effort estimates 3 4 (62%) 3
Diversity in process maturity and/or 3 3 (52%) 3
inconsistency in work practices
between the partners
Increased level of unstructured 3 3 (45%) 3
poorly-defined tasks
Poor or disadvantageous distribution 3 3 (41%) 3
of software development activities
between the customer and supplier(s)

Table 2: TOP 5 threats faced by distributed projects identified by Smite (147)

Wiki CMS
It requires less effort by It has a backoffice that
the stakeholders in order. has to be understood
to learn it. It requires before the pages
to understand only editing.
the ”edit page” tab.
All stakeholders are page It has some editors
editors (e.g., few stakeholders; only

requirements engineers)
and many readers.

There is no page structure. Pages are structured.
Everyone can modify The Web site structure
the Web site structure. is managed by

an administrator.
The revisions are kept The versioning is
for every editing. usually supported

worse than a wiki.
The page is a primary It usually distinguishes
conceptual unit for among pages, sections,
content management. contents items, news,

notes etc.

Table 3: A comparison among wiki platforms and CMS platforms features
in GSE

112

Name Description
Actor It is an intentional entity with strategic goals inside the system.

It can be a person, an animal a machine as well as a software
component. It has 3 specialization (agent, role, position)

Goal It represents a strategic interest of an actor inside the system
or organization. It has 2 specialization (hard- and soft-goal)

Plan It represents a way (set of actions) to satisfy a goal.
Used as synonymous of task (i.e., action+intention)

Resource It represents a physical or informational entity that
one actor wants and another can deliver

Dependency It indicates that one actor depends on another one
in order to obtain some goals, execute its plan or obtain
a resource.

Capability It represents the ability of an actor to define,
choose and execute a plan to fulfill a goal in a given
environment. It is activated by an event

Belief It represents the actor’s knowledge of the world

Table 4: The Tropos main concepts

113

N
am

e
D

es
cr

ip
ti

on
To

ol
Ty

pe
Tr

an
sf

or
m

at
io

n
A

cc
el

eo
A

M
D

A
ba

se
d

co
de

ge
ne

ra
to

r
fo

r
va

ri
ou

s
ta

rg
et

m
id

dl
ew

ar
e

an
d

la
ng

ua
ge

s:
Ja

va
EE

,C
#,

Py
th

on
,P

H
P

et
c.

3
x

A
tl

as
It

de
fin

es
a

m
an

ag
em

en
te

nv
ir

on
m

en
tf

or
M

D
E

re
po

si
to

ri
es

ba
se

d
on

th
e

”m
eg

am
od

el
”

M
eg

am
od

el
ap

pr
oa

ch
.A

m
eg

am
od

el
is

a
re

gi
st

ry
of

m
od

el
re

so
ur

ce
s

av
ai

la
bl

e
in

a
gi

ve
n

M
an

ag
em

en
t(

A
M

3)
sc

op
e

(a
zo

ne
)I

n
or

de
r

to
m

an
ag

e
m

eg
am

od
el

s
us

er
s

m
ay

us
e

m
et

am
od

el
s

fr
om

a
lib

ra
ry

or
in

ve
nt

th
ei

r
ow

n
on

es
fo

r
ne

w
ki

nd
s

of
ar

ti
fa

ct
s.

1
x

A
tl

as
M

od
el

A
to

ol
fo

r
re

pr
es

en
ti

ng
co

rr
es

po
nd

en
ce

be
tw

ee
n

m
od

el
s

by
m

ea
ns

of
W

ea
ve

r
(A

M
W

)
a

m
od

el
(n

am
ed

w
ea

vi
ng

m
od

el
).

C
om

m
on

w
ea

vi
ng

us
e

ca
se

s
ar

e:
da

ta
ex

ch
an

ge
,d

at
a

in
te

gr
at

io
n,

m
od

el
m

er
gi

ng
,e

tc
1

x
A

tl
as

A
m

od
el

tr
an

sf
or

m
at

io
n

la
ng

ua
ge

th
at

pr
ov

id
es

w
ay

s
to

pr
od

uc
e

a
se

t
Tr

an
sf

or
m

at
io

n
of

ta
rg

et
m

od
el

s
fr

om
a

se
to

fs
ou

rc
e

m
od

el
s.

It
al

so
pr

ov
id

e
La

ng
ua

ge
(A

TL
)

a
to

ol
ki

t(
th

e
A

TL
ID

E)
w

it
h

a
nu

m
be

r
of

to
ol

s
ai

m
ed

to
ea

se
th

e
de

ve
lo

pm
en

to
fA

TL
tr

an
sf

or
m

at
io

ns
.

2
x

Ep
si

lo
n

It
ca

n
be

us
ed

to
m

an
ag

e
m

od
el

s
of

di
ff

er
en

tm
od

el
in

g
te

ch
no

lo
gi

es
us

in
g

a
fa

m
ily

of
in

te
gr

at
ed

m
od

el
m

an
ag

em
en

tl
an

gu
ag

es
.I

tc
an

be
us

ed
fo

r
m

od
el

na
vi

ga
ti

on
,m

od
ifi

ca
ti

on
,t

ra
ns

fo
rm

at
io

n,
va

lid
at

io
n

an
d

co
m

pa
ri

so
n.

It
al

so
pr

ov
id

es
to

ol
s

fo
r

de
fin

in
g

an
d

ex
ec

ut
in

g
w

iz
ar

d
an

d
fo

r
co

de
pr

ofi
lin

g
an

d
m

on
it

or
in

g.
1

x
IB

M
M

od
el

Is
a

se
to

ft
oo

ls
th

at
he

lp
s

to
m

ak
e

co
m

pa
ri

so
ns

,c
he

ck
co

ns
is

te
nc

y,
an

d
im

pl
em

en
tt

ra
ns

fo
rm

at
io

ns
Tr

an
sf

or
m

at
io

n
Fr

am
ew

or
k

be
tw

ee
n

Ec
lip

se
M

od
el

in
g

Fr
am

ew
or

k
(E

M
F)

m
od

el
s.

2
x

K
er

m
et

a
A

m
et

ap
ro

gr
am

m
in

g
en

vi
ro

nm
en

tb
as

ed
on

an
ob

je
ct

or
ie

nt
ed

ex
ec

ut
ab

le
m

et
a-

m
od

el
in

g
pa

ra
di

gm
:a

D
om

ai
n

Sp
ec

ifi
c

La
ng

ua
ge

(D
SL

)o
pt

im
iz

ed
fo

r
m

et
am

od
el

en
gi

ne
er

in
g.

It
al

lo
w

s
m

od
el

an
d

m
et

am
od

el
m

an
ag

em
en

t,
w

ea
vi

ng
an

d
tr

an
sf

or
m

at
io

n.
2

x
op

en
It

is
su

it
e

of
to

ol
s

an
d

co
m

po
ne

nt
s

su
pp

or
ti

ng
in

m
od

el
dr

iv
en

so
ft

w
ar

e
A

rc
hi

te
ct

ur
eW

ar
e

de
ve

lo
pm

en
t.

It
is

bu
ilt

up
on

a
m

od
ul

ar
m

od
el

-t
o-

co
de

ge
ne

ra
to

r
fr

am
ew

or
k

im
pl

em
en

te
d

in
Ja

va
.I

ts
up

po
rt

s
ar

bi
tr

ar
y

im
po

rt
(m

od
el

)f
or

m
at

s,
m

et
a

m
od

el
s,

an
d

ou
tp

ut
(c

od
e)

fo
rm

at
s

It
is

”a
to

ol
fo

r
bu

ild
in

g
M

D
A

to
ol

s”
1,

3
x

A
nd

ro
M

D
A

A
nd

ro
M

D
A

is
an

ex
te

ns
ib

le
ge

ne
ra

to
r

fr
am

ew
or

k
th

at
ad

he
re

s
to

M
D

A
.

M
od

el
s

fr
om

U
M

L
to

ol
s

ar
e

tr
an

sf
or

m
ed

in
to

de
pl

oy
ab

le
co

m
po

ne
nt

s
di

ff
er

en
tp

la
tf

or
m

s:
J2

EE
,S

pr
in

g,
.N

ET
.I

tp
ro

vi
de

s
pa

tt
er

ns
fo

r
A

xi
s,

St
ru

ts
,J

SF
,S

pr
in

g,
H

ib
er

na
te

an
d

ot
he

r
to

ol
ki

ts
3

x
Q

iQ
u

It
tr

an
sf

or
m

s
an

U
M

L-
m

od
el

in
to

so
ur

ce
-c

od
e

(J
av

a,
C

#,
C

ob
ol

et
c.

).
It

re
lie

s
on

X
M

Ia
nd

al
lo

w
s

to
bu

ild
a

do
m

ai
n-

sp
ec

ifi
c

ge
ne

ra
to

r
th

at
tr

an
sf

or
m

m
od

el
s

in
to

co
de

or
an

yt
hi

ng
el

se
(X

M
L,

H
TM

L,
Sc

ri
pt

s,
Ex

ce
le

tc
.)

3
x

Ta
bl

e
5:

A
n

ov
er

vi
ew

on
to

ol
s

th
at

cu
rr

en
tl

y
su

pp
or

tM
D

A

114

Chapter 3

My proposal: the
Enterprise-Service-
Implementation (ESI)
Design Method

The reengineering of a company BP’s is more than an attempt to automate
or speed up the existing processes (83). Usually, the reengineering implies
a deep rethink of the entire business: the job design, the organizational
structure, the company strategies, the management systems, etc. These
activities require a continuous collaboration among engineers and stake-
holders. Such a collaboration goes beyond a simple stakeholder-producer
relationship but is an effective collaborative work which should continue
during the entire business lifecycle (9).

Nowadays, to developing a new software system for a company does
not mean only to provide a new system but, in many cases, it means also
to develop a new product or to define new services. Software engineering
in these contexts cannot be carried out without taking into consideration a
reengineering of the business. This need originate because modern com-
panies businesses are intimately bounded with software and technolo-
gies. Thus, also the nature of the product to be developed is changed. The

115

services, such as the abstraction we identify to concretely connect busi-
ness modeling and system development, are quite different from other
commodities. The service development is more complex, information-
centric and economic-related. In the service development context the
quality of the involved BP’s is an essential part of the service quality, that
is the service quality is not only a simple consequence of the quality of its
development process as for commodities and goods (46; 60). The service
quality depends on many other factors and related services, for instance,
the marketing services, the BP’s that have to be used in order to exploit
the service, possible cultural aspects influencing the service usage, etc.

However, the need to reengineering the business by means of soft-
ware, in particular service-oriented software, arises also in more tradi-
tional manufacturing industry. Modern companies structures require high
flexibility both in time and in space. They are rapidly changing organi-
zation due to market changes and usually they do not have centralized
structures (77). In these contexts, an approach to business modeling and
BPM based only on software engineering is not enough. The final goal
of software engineering is the software development, while the final goal
for business modeling is the reengineering of the business by means of
the software (46).

In order to study and foresee the effect of the software in the business,
we need BPR techniques that allow to consider the entire company do-
main and to relate it directly with the technologies. We must understand
why, what, who, when and where a process can or should be reengineered
(32) and the way these changes affect the business strategies, the business
rules and the business goals as envisioned by Zachman in his framework
(150).

The how, which is usually addressed by software engineering, is only
a part of this more complex scenario. Software engineering alone does
not address all the business reengineering requirements. Current soft-
ware engineering processes miss to adequately treat the way the software
system they are developing affects the business processes and more gen-
erally the organization.

The Standish Group (Sta00) have studied that about the 28% of soft-

116

ware projects fail and over the 50% of software project have problems
because of the misunderstanding of the context where the software have
to be used (such as the users, the management and their requirements).

There is the need for a unique method taking into consideration the
engineering of the entire business as a whole. Technologies must be de-
veloped to drive the revamp of business processes and to refashion the
whole business. It means to consider: the business issues, the human fac-
tors, markets and society paradoxes that are not commonly modeled in
a software engineering process. We named this approach the business-
oriented approach to software modeling.

This Chapter detail the methodological contribute of this thesis. We
present the Enterprise-Service-Implementation (ESI) design method that
is a way to employ the framework described in Chapter 4 and the tools
described in Chapther 5 in order to develop software considering the
business-oriented approach.

3.1 A Business-oriented Approach to Software
Modeling

The studies about enterprise organizational processes have brought deep
changes in the economy and in the society (60). It is important to point
out how the evolution of the business management discipline has been
strongly influenced by the new technologies. Indeed, as we discuss in
Section 2.1, the new technologies are the main harbingers of the business
innovation in the context of business process reengineering(83).

Despite the close relationship between the business process modeling
approach in technology and economy, processes are considered differ-
ently and for different goals by the software engineers and the managers
(OMG06).

The Business Processes (BP’s) of modern networked enterprises (e.g.,
Amazon and IBM) have to consider the changes brought by the new tech-
nologies in their processes and organization(135). On the other hand, de-
velopers of new technologies and the software engineers, have to con-
sider the importance of the overall enterprise business in the develop-

117

ment of new software systems (77). Besides, the emergence of new en-
terprise models, such as networked and service-oriented enterprises, re-
quires open and interoperable technologies supporting their processes
and changes. Summing up these issues, there is the need for a unique
framework that allows to manage business modeling and reengineering
in a technology-centric way. This unique framework could be the enabler
of new business opportunities provided by the new technologies, which
allow many new services. This scenario has been sometime referred as the
Service Science (135) that is a discipline focusing on finding new ways to
increase the productivity and innovation in services-related industries .

In order to propose such a framework that helps to address business-
oriented software development challenges we develop:

• a method (presented in this chapther 3)

• a framework of technologies (presented in Chapther 4)

• a set of tools (presented in Chapter 5)

The ESI method guides the usage of the framework of technologies we
employ and the tools we develop and allow us to define such a proposed
unique framework for business-oriented software development.

In order to understand the contexts of our contributes, we have iden-
tified three point of view (see Figure 16) representing three main perspec-
tives for Business Modeling and its goals:

1. Enterprise view: models concern with organization, strategies, busi-
ness rules, business domains, internal and external BP’s etc. It is the
business modeling perspective commonly used by economic busi-
ness analysts. It corresponds to the first two perspective of the Zach-
man ISA framework showed in Figure 1.

2. System view: models the requirements of the system by means of
the business understanding. The models concern with organization,
internal BP’s, business entities, systems, architectures etc. It is the
perspective of the software engineers. It corresponds to the logical
and physical perspective of the ISA framework.

118

3. Execution view: defines an executable model for BP’s and systems.
It is the view concerning with the system implementation, execution
and evaluation. It corresponds with the last two perspectives of the
ISA framework.

Our work focuses in particular on understanding and clarify the re-
lationship between the Enterprise view and the System view. The con-
tribute presented in this thesis take into account such three perspective of
business modeling we depict in Figure 16.

Figure 16: Our three views for Business Modeling.

In the context of this chapter, Figure 17 presents the three main phases
of the ESI method and how they model the knowledge about the business
and the system from various perspectives.

119

3.1.1 The Enterprise Modeling phase

The goals of the Enterprise Modeling phase is to wrap the current man-
agement with a technology support and to constantly share the knowl-
edge about the enterprise among the economists, the managers, the users,
the system engineers and other stakeholders.

The focus of the Enterprise Modeling phase is on collecting and main-
taining all the knowledge about the company organization, the strategies,
the goals, the risks and the management-related issues. In order to face
these aspects, this phase is decomposed into two sub-phases: the infor-
mal brainstorming and the enterprise knowledge formalization. The former
sub-phase is a collective learning activity (123) trying to define a shared
knowledge-base about the company organization, the strategies and the
goals.

Usually different stakeholders assign different meanings to the con-
structs of the organizational knowledge (e.g., actors, goals, strategies, or-
ganizational units) based on their mental models. Morecroft (123) rec-
ognizes that the collaboration in business modeling cannot be solely as-
sessed in purely teleological terms (such as, the production of an accept-
able model), but it has to be seen as a collective learning exercise that
augments the organizational knowledge base of the organization (9). The
model serves as a transitional object for mental models in a very similar
way we present the Magritte’s paint of Figure 13 in Chapther 2.3.1.

In such an informal-brainstorming sub-phase, the models are mainly
used to structure the problems and the organization. In the latter sub-
phase, such as the enterprise knowledge formalization sub-phase, the
business process analysts and the managers try to formalize the knowl-
edge in order to check its consistency and to discuss with the stakehold-
ers. Thus, these sub-phases are cyclic Enterprise Modeling sub-phases
performed many times taking into account the specific company, project
or stakeholders needs. These sub-phases enable to move from a tacit
knowledge of the company into a codified and consistent knowledge con-
sisting of Si* diagrams and BP’s describing the represented organization.

In the Enterprise Modeling phase the degree of competency and the

120

background of each participant may vary significantly. Thus, it does not
make sense to propose a standard sets of steps and restrictive guidelines
for business modeling. Besides, the language constraint provided by Si*
(117), UML (OMG07a) and the Business Process Management Notation
(BPMN) (OMG06) are enough to guide the enterprise knowledge formal-
ization. This set of guidelines and languages is not restrictive because
usually the stakeholders and managers are reluctant to spend time on
brainstorming, process formalization, learning, training and becoming
confident with formal specification languages and methods.

Figure 17: The three main phases of our ESI method.

The WikiReq tool is exploited in this phase in order to support the
acquirement process. Internet and Web-based collaboration tools have a
proven efficacy in the development of business modeling (9; 97). WikiReq
allows to sketch the non-functional requirements described in Si* and
connect this knowledge with a more formalized version defined in the

121

enterprise knowledge formalization sub-phase. WikiReq is a suitable in-
strument in order to perform the collective learning exercise in the orga-
nizational knowledge formalization recognized by Morecroft and other
authors such as Adamides and Karacapilidis (9).

We distinguish between functional and non-functional specifications.
The functional specifications are formalized using the UML Use Case di-
agrams as regards the static aspects of BP’s, and BPMN as regards the
dynamic interactions among the BP’s concepts. The non-functional spec-
ifications closer to tacit knowledge are formalized by using Si* diagrams.
The informal brainstorming sub-phase allows to identify an unorganized
and not-formalized set of early-requirements giving a first sketch of the
domain and the knowledge concerning the organization.

The modeling of goals and strategies (that are not caught by Use Cases
and BPMN models) are essential for the design of the business models.
Si* helps to model strategical and operational aspects of the business. By
means of the Si* concepts, we are able to connect systems and actors to, for
instance, business units, manager aims, practices and company policies.

The enterprise knowledge formalization sub-phase is the first phase
trying to obtain a formal and analyzable representation of the business
models. The cyclic informal brainstorming sub-phase helps the stake-
holders in understanding their implicit knowledge and defining a shared
knowledge base of the business and the BP’s. Due to the general mean-
ing of the Si* concepts, we start using them without a prescriptive for-
malism in the informal brainstorming sub-phase. Thus, starting from the
beginning of our practice, the tacit knowledge is acquired in terms of the
concepts that we will use in the Enterprise knowledge formalization sub-
phase and in the Service Modeling phase.

The output of the Enterprise Modeling phase consists in three Si* mod-
els derived by the WikiReq tool in a semi-automatic way: (1) the Actor
Model derived by the Actor Viewpoint page; (2) the Goal Model derived
by the Goal Viewpoint page; (3) the Dependency Model derived by the
Relational Viewpoint page. Moreover, it has been developed a model for
each process and Use Case of the organization that has been identified
during this phase. BP and Use Case models are described in a require-

122

ments document.
Thus at the end of the two sub-phases of the Enterprise Modeling

phase it is expected to have:

• An Actor Model: that identifies the actors and their objectives, enti-
tlements, and capabilities. The agents are also described in terms of
the roles they play.

• A Goal Model: that models the goals from the point of view of an
actor. The impact of the goals on the achievement of other goals is
analyzed and modeled in order to refine the requirements models
and to elicit new social relations among the actors.

• A Delegation Model: allows to model an actor delegating to other ac-
tors the achievement of the goals, the execution of tasks, the access
to the resources and the ownership of trust. This model enables
the transfer of rights among the actors and the assignments of re-
sponsibilities and trust among the actors. It is used mainly in the
Enterprise Modeling phase in order to lead stakeholders choices in
the definition of the goal and actor model.

• A Set of BPMN models: that details the steps and the states of the
BP’s workflows and their interactions by means of messages.

• A requirements document with a set of Use-Cases: the document is
edited by all stakeholders in the WikiReq tools to clarify the main
needs, goals and opportunities expected in business reengineering.
Use Cases give a very high-level structuring of BP’s and business
actors interactions. They help to coherently connect processes and
goals with concrete cases (in top-down analyses) and to maintain a
general representation of the business (in bottom-up analyses). Also
contents from the WikiReq argumentation system are used in order
to identify general rules of the business and undefined constraint
(e.g. budget, time limits, etc.).

The structure of the first three models is borrowed from the Tropos
methodology (39). As showed in Figure 17, we categorize the Enter-
prise Modeling as a requirements engineering phase. What we perform

123

in Enterprise Modeling is a requirements engineering not only limited to
the software system, but to the whole organization that must be reengi-
neered, that is modeled like a system. We do not model only the part of
the organization bounded to the system, but the ESI method requires to
model the entire business of the company. In a business reengineering
perspective, we force stakeholders to discuss and think about their or-
ganization and BP’s in order to analyze together, first of all, the Why of
the system. It should not be confused with a Project Management activ-
ity, such as a cost-benefit analysis. In project management, the whys of
the system and its relations with a model of the organization are not an-
alyzed systematically and involving all stakeholders in the debate . The
Enterprise Modeling phase helps in thinking over the real need of a new
system and also to foresee the changes that the system will bring in the
organization and in the business (e.g., creation of new business units, de-
velopment of new services to support the system product, opening of
new markets, etc.).

Concerning the languages used in the Enterprise Modeling phase, the
UML Use Case diagrams have been chosen because of their proved effi-
cacy in stakeholder-analyst collaboration (66). Even if we do not intro-
duce this formalism in Chapter 2, UML Use Cases diagrams use intuitive
and quick to understand concepts (105) such as: actor, use case, inclusion,
extension and system boundary.

BPMN (OMG06) is the OMG and Business Process Management Ini-
tiative (BPMI.org) specification we introduce in Section 2.1.4. It synthe-
sizes the best practices of the BPM community and defines a graphical
notation for the BP’s similar to a flow-chart. Such a notation is both con-
sistent with UML and easy understandable by the stakeholders, analysts,
business users, developers, etc. Moreover, BPMN is widely extensible
and can be incrementally adopted.

Si* (79) exploits the i* set of primitive concepts in order to model a
socio-technical system as described in Section 2.2.4. We choose Si* in-
stead of the original i* because of the managing of the trust relation that
is very useful in modeling the business. However, we do not exploits
all the Si* capabilities, such as formal analysis techniques used for re-

124

quirements verification and validation. The usage of Si* is only limited
to the definition of the trust relations in the Delegation Model, that is not
exported in the other phases of the ESI method. Indeed the Delegation
Model is used like the UML Use Cases to lead stakeholders choices in the
definition of the Goal and Actor model. Thus, the use of Si* in the frame-
work presented in this thesis is limited to an early requirements analysis,
such as Si* helps us to correctly define Actor and Goal models in the in-
formal brainstorming phase taking into consideration the trust relation-
ships. However, we do not perform further considerations on security
and formal checking of trust relationships either if Si* allows to perform
powerful formal analysis.

In this thesis we refer only to the actor, goal, soft-goal task, and resource
Si* concepts. Indeed there are other concepts and characterization of such
concepts used both by i* and Si* (e.g., plans and roles as we see in Table
4) that we do not consider in our framework.

The meaning we give in our framework to the the Si* concepts is the
same of Tropos and i* (79), it is composed by: actor, goal, soft-goal, task,
and resource (79). An actor is an active entity having strategic goals and
performing actions to achieve these goals. The actors can be modeled by
using two types of sub-units: agents and roles. An agent is an actor with
concrete, physical manifestations. A role is the abstract characterization
of the behavior of a social actor within some specialized context. A goal
is a strategic interest of an actor. A soft-goal is similar to the goal but the
fulfillment condition is not clearly defined. A task specifies a sequence
of actions that can be executed to achieve a goal. A resource represents a
physical or an informational entity. The graphical notation of the concepts
of Si* we exploit in the ESI method is reported in Figure 18.

Goals, tasks, and resources are often related among them in many
ways. In particular, three relations have been identified, namely AND/OR
decomposition, means-end, delegation, and contribution relations (79). The
AND/OR decomposition combines AND and OR refinements of a root
goal into sub-goals. Means-end and contribution relations analyze how
goals are delegated among actors and how actors act so that their goals
can be fulfilled. The contribution relation is used to expose goals con-

125

tributes to the soft-goals fulfillment. Since an actor may not have enough
capabilities to achieve its objectives by themselves, they can delegate its
execution to other actors as described in the delegation relation. Si* en-
riches the delegation relation defining a delegation of permission (Dp)
when the delegatee has the permission to fulfill/use the goal/resource
(but it does not need to) and a delegation of execution (De) when the del-
egatee should fulfill the service. Moreover, Si* allows us to define in the
same model the trust relations, such as to model trust permissions (Tp)
when the trustors believes that the trustees will not misuse the goal/re-
source and a delegation of trust executions (Te) when the trustors believes
that the trustees will achieve/deliver the goal/resource.

From a MDA point of view, the framework of language we define (i.e.,
composing Si*, Use Case and BPMN), allows to define a Computational
Independent Model (CIM) (Obj01; OMG01) that defines the business con-
text and business requirements for the system that have to be realized. A
CIM in MDA is a view of a system from the computation independent
viewpoint. A CIM does not show details of the structure of systems.
In other requirements engineering contexts (171) CIM is sometimes re-
ferred as a domain model. CIM’s have to bride the gap between those
that are experts about the domain and its requirements on the one hand,
and those that are experts of the design and construction of the artifacts
that together satisfy the domain requirements, on the other hand such as
the main goal of the ESI Enterprise Modeling phase.

We resume all the formalisms of our CIM language in a single images
(see Figure 18). Such an image is also the image we use also to instruct
stakeholders to the graphical semantics of the language employed in the
ESI method.

The modeling of goals and strategies (that are not caught by Use Cases
and BPMN models) is essential in the Enterprise Modeling phase for the
knowledge acquisition about the organization. For this purpose, our ap-
proach uses the Si* notation. Si* helps to model strategical and opera-
tional aspects of the business. By means of the Si* concepts, we are able
to connect formally represented systems and actors to, for instance, busi-
ness units, manager aims, practices and company policies.

126

In particular, Si* is useful in business modeling because it exploits the
same small set of concepts both in the organizational context and in the
system context. In this way, Si* allows the system that must be devel-
oped, the system-to-be, to be represented as a further actor that can be
inserted in the organizational scenario. Thus, after a first phase of early
requirements elicitation, based on the description of the goals and the
related BP’s and Use Cases, the system-to-be appears as a new actor of
the scenario together with its goals, tasks and resources. Means-end and
contribution analyses allow to understand how the actor representing the
system-to-be relates to the other actors and goals. In this way, it is pos-
sible to analyze how the business and its processes are affected by the
system functionalities. For instance, we can represent how the system
contributes in the fulfillment of a goal or the way a BP is affected by the
system-to-be. Stakeholders can define their knowledge about BP’s and
business requirements inside the wiki by means of Si* concepts.

The modeling and analysis of goals and strategies (that are not repre-
sented by means of Use Cases and BPMN models) are essential in order
to represent and study the business models. Si* helps to model strategical
and operational aspects of the business. By means of Si*, we are able to
connect systems and actors to: business units, manager goals, practices
and company policies. Si* and the Tropos methodology indeed enable
to model the organizational theory and the strategic alliance of the busi-
ness (37; 102) (i.e., the functional and cross-functional aspects of the orga-
nization). At the same time, Si* is quite intricate when used to represent
processes and dynamic evolving activities. Either if Si* allows such rep-
resentation (136), in order to represent processes in a simple way rapidly
understandable by stakeholders we introduce BPMN. Finally, modeling
Use-Cases allows to further complements the other models giving a high
level representation of system interaction and functional requirements.
Thus, like the Si* Delegation Model, Use Cases are used to support the
reasoning on Goals and Actors models and to enrich the descriptions in
the Enterprise Modeling phase.

127

3.1.2 The Service Modeling phase

At the beginning of the Service Modeling phase, we use the outputs of
the Enterprise Modeling phase in order to derive an analysis similar to
the Tropos early-requirements analysis (102).

The Enterprise Modeling phase provides three inputs to the Service
Modeling phase:

1. A formalized knowledge about the business and business processes
represented in a set of diagrams (we named these diagrams the
CIM’s of the business).

2. Some indicative choices and purposes of managers to develop new
systems and products.

3. A first analysis concerning the technologies that can be used to de-
fine new goals or improve the existing business (described in the
requirements document)

In the Service Modeling phase, further technical choices are made in
technical brainstorming. The requirements document and the Use Cases
are analyzed to better define what type of technologies can be employed
in the organization (i.e., also considering management issues such as times,
deadlines, budgets etc.).

In particular, we consider the non-functional requirements defined by
means of Si* inside the WikiReq tool. Besides, the goals and the soft-
goals and their relationships with the system can be deeply analyzed by
exploiting the Tropos early-requirements analysis process (79; 102).

The goals and the goal dependencies among actors are analyzed to
understand how they relate with the systems actors. This is a fundamen-
tal step in our framework since it allows us to relate the business with the
systems. In Si* and in Tropos the ”system-to-be”, that is the system (or
the systems) that drive the reengineering of the business, are described
as actors, such as they are represented as workers, offices and business
units. Since Si* is a goal-oriented language, in this way we relate goals
and tasks concerning the company with the system actor.

128

These models enable to define a rigorous representation of the enter-
prise knowledge. Besides, they enable to perform some analysis on such a
knowledge by means of the Goal model. The analyses that can be carried
out are:

• Means-end analysis: aimed to identify tasks, goals or resources that
provide means for achieving a specific goal.

• Goal/Resource refinement: analyzes and decomposes the goals and/or
resources in terms of AND/OR decompositions.

• Contribution Analysis: studies the impact of the tasks and the achieve-
ments of goals on the achievement of other goals.

After the redefinition of the models performed by System Engineers,
in the Service Modeling phase a MDE transformation allows to derive a
Service Model starting from the CIM set of models. Such a Service Model
represents the platform independent vision of an implementable SOA to
be used to develop the new software system.

Goals identified in the Enterprise Modeling phase and refined in this
phase are related to BPMN activities and transformed into set of services.
We give a detailed description of these MDA transformation processes in
Chapter 4.

3.1.3 Platform Specific Implementations

The last phase of our practice is the System Implementation phase whose
goal is to model the concrete executable support for the BP’s and hence to
define the business reengineering technologies.

The aim of this phase may change depending on the specific structure
of the Enterprise Modeling and Service Modeling phases. The System
Implementation phase is not necessarily performed because in the Service
Modeling phase it is possible to decide that no changes have to be made in
the current BP’s and that no new systems or software have to be realized
(such as, that a reengineering activity is not necessary in the organization
at the moment).

129

The output of the Service Modeling phase is a service model. Such
model can be used to obtain a detailed design of the system. Depending
on the system nature (e.g., Web applications, centralized systems, Grid
systems, agent-based systems, etc.), a specific system implementation ab-
straction is used in order to model the service.

We could decide to define a set of Web Services starting from the
system-related services that appears in the service model. In this case the
resulting SOA is very similar to the one defined in our previous works
(3) described in Section 1.3. However, the MOTO-GAS service model de-
fines a set of services without considering their mutual relationships and
the way those services are related with business models.

In the System Implementation phase we can exploit also other archi-
tectures rather Web Services such as the the plug-in architectural style.
Plug-ins allow to define a more complete SOA, starting from the service
model defined in the Service Modeling, the plug-in abstraction can be
used to define patterns for service orchestration. Actually, the plug-in
implementation is only a work in progress, we give further details on this
approach in Section 4.2.1.

130

Figure 18: The Si*, BMPN and UseCase graphical syntaxes exploited by the
ESI method.

131

Chapter 4

My Technological
Framework

In this chapter we describe the framework of technologies we exploit to
implement the ESI method. We present how the technologies that com-
pose our framework work together in order to put into practice the three
phases we report in Capther 3. The framework has been named the BPR
framework. It is shown in Figure 19. We describe the details of the two
tools we develop, such as Wikireq and SMOTE, in Chapter 5. This chap-
ter give details on the approach used to perform the transformations from
goals to services and from services to implementable platforms such as
Web Services and Portlets. In particular, Section 4.2 exposes our research
in progress regarding portlets and plug-ins architectures as a target for
the ESI System Implementation phase. Such a subject will be the basis for
our future works on the presented framework.

4.1 The Framework Transformations

4.1.1 The Goals 2 Services Transformation

The most important activities of the Service Modeling phase is the map-
ping from the business models concepts into the concepts useful in the

132

Figure 19: Our BPR framework architecture

Platform Specific Implementation phase. In our framework, these con-
cepts are not mapped directly into programming languages concepts (e.g.,
objects, classes or functions), but we exploit the service concepts as in-
termediate abstractions enabling to move from business concepts, repre-
sented in the CIM, to implementation concepts, in the PSM. Starting from
the Si* and BPMN models, a service model is defined.

We named the transformation the Goal to Service transformation since
the goals represented in Si* are analyzed and transformed into a set of
services. The transformation is performed taking into consideration both
BPMN processes and Use Cases. The output service model represents
a platform independent model for the system. In our SMOTE tool that
implements the transformation presented in this section we implement it
as a CIM2PIM Transformation.

The Goals2Service transformation is based on some considerations:

1. A service is needed in order to satisfy a goal: the nature of the ser-
vice implies that there are two or more economic entities (See Sec-

133

tion 1.1.2) that operate in order to change the condition of a good
or a person. This change of condition correspond to one or more
goals that can be extracted from Si* diagrams and analyzed and con-
nected to concrete services.

2. A goal is satisfied by an end event (or a specific intermediate event)
of a process: thus BP’s and goal diagrams have an explicit point
of contact in end events that represents the end of the change of
condition defined by the services interacting in order to fulfill the
goal.

3. Goals are fulfilled by tasks, and processes are executed by tasks
(named activities in BPMN): it means that goals and BP’s have a
further point of contact in tasks. Tasks are a unit of execution in
processes and a way to fulfill goal we have to consider designing
the services.

4. Actors perform processes in order to satisfy their goals: It is a syl-
logism of the previous point. Goals are fulfilled by tasks and set
of tasks (such as processes), and actors want their goal to be satis-
fied, thus we can relate the actors and goals identified in Si* also by
means of BPMN processes.

5. Tasks and resources are the enablers of a services: tasks can be con-
sidered the elementary steps useful to clarify the boundary of a ser-
vices. At the same way, resources can be used to identify services
but they gives a further information about the fact that services con-
tain or not a persistent state.

The strategy of executing the transformation starts from goals as they
are described in the goal model after the Tropos-based analyses (i.e., Means-
End, Goal/Resource and Contribution analyses) performed in the Enter-
prise ans System Modeling phases of the ESI method. For each goal a
high-level service is defined (we have named this type of service the Busi-
ness Service). If some tasks are necessary for the fulfillment of the goal
related to the Business Service, the Business Service is replaced by a set

134

of service (one for each task linked to the considered goal). We have to
remember the Business Service that originates these services so we can
use a specific attribute or a meaningful name (such as BusinessService-
Name ServiceName). This transformation of task is performed only for
those tasks that appear in a BP (other goal tasks are discharged). At this
point we have a -big- set of services and Business Services. We identify
those services and Business Services related to the system actor. For each
Business Service related to the system actor a BPMN process have to be
defined. So, if any, we have to perform a cyclic phase and return in the
Enterprise Modeling phase in order to understand how that business ser-
vice relate to the BP’s (in this case relations have not been defined).

At this point in the service model will appear both services (some of
them related to the system) and Business Services. For each Business Ser-
vice we have to a consider if it can be transformed into an implementable
service, if it has to be obliterated or if there are other services that can
replace it. If it is not the case, the goal related with the Business Services
is suggested to be debated in a cyclic phase and return, if needed, in the
Enterprise Modeling phase in order to understand if the Business Service
is useful or it has been wrongly analyzed.

The final version of the service model do not contain Business Ser-
vices. However, it contains two type of services: system-related and not-
system-related services. All these services derive from a goal that is ful-
filled by tasks that appear in at least one BP.

The concept of service is considered as a very general abstraction in
the context of our framework and can be used to represent a wide range of
interacting software components (155). The service model is represented
in diagrams similar to the UML Class Diagrams (OMG07a). We propose
this type of diagrams since they are very intuitive and have an easy to
remember semantics (48).

Besides, the service abstraction is useful for a logical division of the
software (134). Such a division is more coarse-grained than the division
obtained by components or objects. The selection of the service abstrac-
tion represents a meeting point between the designer and developer re-

135

quirements in the translation from business models to services. The gran-
ularity of the services helps to define software components that can be
changed and reused in a way that is understandable by the stakeholders.
Moreover, the service notion itself (OAS06a) is not bounded to a specific
computer-dependent abstraction (like for instance the object and compo-
nent concepts). Thus, this help us to use services in a straightforward
way inside MDA as a PIM, let zooming in and out models maintaining or
discharging properties and details about the modeled system.

We named our framework showed in Figure 19 the BPR framework
since the effect of the Goals2Services Transformation is to think about the
organization and how its goals relate to the outcome of the organization.
One of the main principles for reengineering identified by Hammer and
Champy (84) and described in Section 2.1.1 is that the design of a the
organization job should be arranged around an goal or a outcome, not
around a task or a single task of a given process. Goals in the business
context connect the customer and the producers, in a business and more
generally in a organizational context, we have a goal because we have a
customer need to satisfy (and make profits in this activity). For this rea-
son, the goals that we transform into services have to be identified among
what we named the Business Goals. The service model that outputs from
this transformation is thus technologically neutral, it is implemented as
a PIM in the SMOTE tool. Business Goals are what effectively relate the
business and the system contexts; thus processes are only a way to per-
form the goals that rapidly change basing on the implementing technolo-
gies.

4.1.2 The Services 2 Web Services & Portlets Transforma-
tions

Basing on the PIM, such as the service model we developed in the Service
Modeling phase by means of the Goals2Service transformation, we can
produce a plug-in PSM and a Web Services PSM. Both the PSM’s are cre-
ated because a plug-in is intended a set of services wrapped in the plug-in
content infrastructure.

136

These PIM2PSM’s transformations are more related to the metamod-
els of the specific technology employed. We describe the technical details
of the MDA transformation implemented in the SMOTE tools in Section
5.2.2. However, it is an evolution of our previous work on WSDL and
WSRF mapping introduced in Section 1.3.

The transformation to Web Services is very similar to the one imple-
mented in the MOTO-GAS tool (3). It has been simplified not consider-
ing different types of services (e.g., Grid service, Web Service and WS-
Resource).

We analyze the service model manually, then decide what service have
to be implemented by means of a software system and then we identify if
there are already implemented Web Services that can be used to perform
the service work. If there are not already existent services, we transform
the service specification in the related WSDL code.

The transformation to plug-in architectures is more complex and is
actually a work in progress. Basing on the information obtained by the
BP models defined in the Enterprise Modeling phase, we group services
that appears in the service model basing on BP’s flows. For each service
group we evaluate if the group is useful to support the considered BP’s.
If it is the case those groups of services will define a more general service
named plug-in. Notice that is a normal situation that plug-ins share one
or more services. Events, resources and flows information can be used at
this point in order to define how the plug-in must relate with the other
plug-ins while performing their tasks. Since the plug-in is composed also
by non-system-related services, we can also extract useful information on
human-computer interaction needs in the concrete development of Web
Services and Plug-ins.

In other words, the plug-in abstraction helps in treating services and
services compositions bridging the gap between business modeling rep-
resented by means of the business goals and business processes. In an
analogous way, in the implementation level, the plug-in abstraction bridges
the gaps between Business Services and the fine grained service compo-
sition defined in Web Service SOA.

137

4.2 Plug-in Architectures as Patterns for SOA In-
teraction

In the previous section we present how concretely the business knowl-
edge acquired in the Enterprise Modeling phase can be translated to a
service-based PIM.

We have implemented the Services2WebServices transformation that
is a basis also for the Services2Portlets transformation that we will de-
velop as a future work. In this section we give an overview of the research
we carried out so far in this topic and the reason that lead us to expand
our framework whit plug-ins architectures.

Starting from the system-related services defined in the service model
of the Service Modeling phase, the Service 2 Web Service transformation
allows us to define a set of Web Services obtaining a SOA model similar
to the one defined in the MOTO-GAS tool (3; 5). However, this SOA
define a set of services without considering their relations and the way
such services interact together.

In the Web Service context, the Business Process Execution Language
for Web Services (BPEL4WS) (BEA03) is a general accepted language for
specifying business process behavior. BPEL4WS provides a language for
the formal specification of business processes and business interaction
protocols. By doing so, it extends the Web Services interaction model
and enables it to support business transactions. BPEL4WS defines an in-
teroperable integration model that facilitates the expansion of automated
process integration.

Since our framework defines a set of unrelated services, we could use
BPEL4WS to define the interaction relation among those services. Be-
sides, we could also exploit the BPMN to BPEL4WS mapping defined in
the BPMN specification (OMG06). However, implementing effectively a
SOA requires, besides service and composition description, also applica-
tions and run-time infrastructures that support the SOA principles. The
Enterprise Service Bus (ESB) is emerging as a middleware infrastructure
component that is needed in order to implement SOA’s within enterprises
(44).

138

ESB’s generally provide an abstraction layer on top of an implemen-
tation of an enterprise messaging system, which allows integration archi-
tects to exploit the value of messaging without writing code. The need
for an ESB in implementing SOA is fundamental in order to (100):

• Decouple the business view of a service from the actual implemen-
tation of the service

• Decouple technical aspects of service interactions

• Integrating and managing services in the enterprise

In this section we propose an approach to enhance our framework in
order to support also service interaction by means of the Service2Portlets
transformation. This approach differs from BPEL4WS and other workflow-
based approaches. We propose to pay more attention on the standardiza-
tion of ESB’s rather to exploit general notations for service interaction like
in BPEL4WS. This approach is based on two considerations:

1. The limits of the workflows-oriented approaches. BPEL4WS is suited
only in process oriented applications (86), such as applications with
an essential sense of the state and process that are intimately part of
the application.

2. The emergence, in the Internet, of new wrappers for software and
Web Services that overcome many interoperability issues and can
be considered enablers for a convergence toward a standard model
for ESB’s.

4.2.1 SOA Infrastructures

The idea of assembling components into a network of services in build-
ing distributed applications is the essence of service-oriented computing
(133). In particular, Web services have been broadly accepted in the in-
dustry; they are supported by products of many vendors and can thus be
defined as the ”incarnation” of the service oriented technology envision
(111).

139

SOA’s rely upon orchestration to assemble business processes from
loosely-coupled services. The orchestration enables businesses to shift
the focus from data centric to business centric applications with several
advantages such as: improved flexibility; better alignment with business;
cost reduction and increased manageability of the architecture (116).

The standard set of Web Service technologies (i.e., XML, SOAP, WSDL)
provides the means to describe, locate and invoke a Web Service as a sin-
gle and platform independent entity. The Web Service Description Lan-
guage (WSDL) (W3C01) describes each atomic and low-level functions of
the service. However, the basic technologies do not give SOA’s enough
behavioral details to describe the role the service plays as a part of a com-
plex collaboration scenario. Orchestration technologies are aimed to de-
scribe services collaboration activities when they are designed to accom-
plish a specific business goal.

Currently, there are many languages and frameworks to support ser-
vice orchestration. Early work in Web Services orchestration included
CommerceNet eCo (Dum99) for e-commerce service integration; Web
Services Conversation Language (WSCL) (W3C02b) to standardize lan-
guage conversation among services; Microsoft XLANG (Tha01) to cre-
ate business processes in the Microsoft BizTalk Server, and the IBM Web
Services Flow Language (WSFL) to describe both public and private pro-
cess flows. The Web services workflow specifications outlined by XLANG
and WSFL have been superseded by BPEL4WS (BEA03). The BPEL4WS
specification combines WSFL and XLANG specifications to model the be-
havior of Web services in a business process interaction. The specifica-
tion provides an XML-based grammar for describing the control logic re-
quired to coordinate Web services participating in a process flow. This
grammar can then be interpreted and executed by an orchestration en-
gine, which is controlled by one of the participating parties. The engine
coordinates the various activities in the process, and compensates the sys-
tem when errors occur.

SOA applications collaborate by invoking each other services, and
services are composed into larger sequences to implement business pro-
cesses. From this perspective, SOA is an architectural approach to define

140

integration architectures that are based on services. In this context, a ser-
vice can be defined as a discrete function that can be offered to an external
user. The function can be an individual business function or a collection
of functions that together form a process. Successfully implementing a
SOA requires applications and run-time infrastructures that can support
the SOA principles. Applications can be developed by creating service in-
terfaces to existing or new functions that are hosted by the applications.
The service interfaces should be accessed using an infrastructure that can
route and manage service requests to the correct service provider.

ESB’s generally provide an abstraction layer on top of an implemen-
tation of an enterprise messaging system, which allows integration archi-
tects to exploit the value of messaging without writing code.

Despite the importance of ESB’s components in SOA there is not in
the current services architecture implementations a standardization effort
similar to the one carried out for the basic set of Web services technolo-
gies (i.e., XML, SOAP, WSDL). Probably, this standardization effort will
never occur. As for other middleware technologies, software companies
like IBM, Microsoft, BEA and SUN Microsystem find more profitable to
develop ESB framework bound to their architectures (e.g., programming
languages, Web servers, development suites and other software) rather
than searching for a high level interoperability among services. More-
over, ESB’s software require a lot of training to be understood and usually
they are expensive software suites. Thus many small companies prefer to
adopt less sophisticated solutions to deploy and run Web services, like
Apache Tomcat used together with JAX-PRC API and Java Web Service
Development Pack (JWSDP) (Sun08) or to adopt none while recognizing
the value of SOA’s 1.

The gaps between the business models and the service composition
bring engineers to exploit SOA’s principally for integration purposes (116),
such as using Web services as an alternative technology for implementing
distributed systems rather than to exploit their orchestration features.

These lacks in standardization must be took care in defining a pat-

1Forrester Reseach. SOA Adoption in European and North American Enterprises.
http://www.forrester.com/Research/Document/Excerpt/0,7211,41686,00.htm

141

tern oriented service composition design. Service oriented applications
should run inside ESB’s, much like Web applications run in Web Servers.
In order to understand how to define patterns for service composition in
ESB, we must agree on a simple and common model for the ESB’s archi-
tectures.

A further underestimated drawback in SOA design is the business
modeling vs. business process modeling misunderstanding (82), we have
discussed this topic in Section 2.1. This misunderstood separation of con-
cerns is the sake of many issues in mapping business requirements in
business processes and hence in service composition structures. In par-
ticular, process models are not a good starting point for identifying busi-
ness stakeholder requirements. They are too workflow-oriented to gather
the generic concepts and relationships needed to model the business (82).
Also analysis and decomposition techniques are soundly different: busi-
ness modeling decomposition is aimed to analyze and discover goals and
actors, while business processes study the way actors manage services
and resources to fulfill goals. Finally, workflows-oriented approaches are
a fitted choice only for process-oriented applications that are applications
with the following characteristics (86):

• Long running: The process spans hours, days, weeks etc. from start
to finish

• Persisted state: Because the process is long-lived the state have to
be stored (e.g., in a database)

• Bursty: The process spends most of the time waiting for the next
triggering event.

• Orchestrator: The process is responsible for managing and coordi-
nating the communications of various systems or human actors.

Obviously, not all applications are process-oriented, and also process-
oriented applications can exhibit different degree of process-orientation.
Without criticism on the BPEL4WS and workflow-based approach to ser-
vice interaction, the exposed scenario bring us to investigate a different
approach to treat service orchestration.

142

4.2.2 Plug-ins as a Reference Architecture for ESB’s

In order to obtain the goal of an effective modularization of software, in-
teractions must be treated as first-class elements. We must be able to dy-
namically manage interactions upon components (17; 64), in other words
a separation of computation from coordination is needed (75). This goal has
been partially obtained in SOA’s by means of loosely-coupling and just-
in-time binding. These SOA features help to replace the identity-based
model of the Object Oriented paradigm with the service-based model in
module interactions (17). Thus, in a SOA a change in the service intercon-
nection does not necessary imply code-level changes.

SOA’s satisfy the first key requirement of the programming in-the-
large envision (64) such as decoupling of interaction and implementation.
However, there is a second requirement of the programming in-the-large
vision that is not completely solved by the SOA abstractions. It is the need
for a high-level orchestrator component (64; 70; 120) helping in coordinat-
ing and managing software components. Despite there are many efforts
concerning languages and specifications to formally check and manage
components orchestration, less attention has been paid to the standard-
ization of ESB’s and more generally to orchestrator engines. Thus, we
focus on understanding how the emerging architectures and frameworks
can support a better orchestration of software services.

An important drawback of SOA’s is the lack of a standardized archi-
tecture for ESB components. There are interesting emerging SOA models
to study in the Web 2.0 (61). In such models, the services are developed,
deployed and provided not only relying on a service interconnection ar-
chitecture based on standard protocols (OAS06a). In such models there
is an high level orchestrator of services. This orchestrator can be consid-
ered as a lightweight ESB describing design time service compositions.
We give some example of such architectures:

• Portlets are pluggable user interface components managed and dis-
played in Web portals. They are based on the OASIS Web Services
for Remote Portlet (WSRP) standard protocol that allows the remote
plug-and-play of remote portlet components and a set of interoper-

143

ability API’s named Java Portlet Specification (JSR186).

• Yahoo! Konfabulator is the Widget Engine of Yahoo! Inc. A Widget is
a small XML wrapped application that runs locally inside the kon-
fabulator widget engine. Konfabulator is a Javascript runtime en-
gine for Windows and MacOS X that allows to manage (download,
set and run) widget components.

• Wordpress is one of the most popular content management system
over the World 2. It is used for Blogs and Web Site creation. Word-
press is based on plug-ins that are programs or functions in the PHP
scripting language. A plug-in adds a specific set of features/services
to the content management system. Plug-ins are hooked in the
Wordpress core platform by means of a Javascript & PHP API’s plus
a set of standard triggered functions and header information.

• GoogleGadgets are small applications built by means of HTML, Java-
script and Flash. Gadgets run inside some lightweight environment
provided by Google Inc. such as: iGoogle (a personalized Ajax Web
page); Google Desktop (a hosting application); Google Toolbar (a
Web browser plug-in); Google Map (a georeferenced Web applica-
tion).

These sample architectures are based on different SOA orchestrators:
WebPage-based (e.g, iGoogle, Portlets, Wordpress); WebBrowser-based
(e.g., Google Toolbar, YouOS) and ProprietaryEnvironment-based (e.g.,
Yahoo! Konfabulator, Java Virtual Machine, Macromedia Flash).

In our opinion, the described orchestrators are a specialization of a
more general emerging model that is the plug-in Architectural style (21;
40). The applications and the development context in plug-in architec-
tures relyes on the assumptions going further a SOA defined as a service
interconnection architecture based on standard protocols. The Plug-in
model is significantly different from the SOA reference architecture (OAS06a)
and the Web Service SOA implementation (W3C04a). It assumes the exis-
tence of an hosting environment which is able to host, to manage, to load

2Alexa - http://www.blogsweek.com/en/most-visited-cms-site

144

and to present ad-hoc wrapped services (either developed by means of
Web Services, PHP code, RSS feeds, C programs etc.).

Our claim is that this emerging general model tries to overcome the
second key requirement of a programming in-the-large envision, such as
a reference architecture for an orchestrator of distributed components.

Nowadays many distributed applications are adopting the plug-in ar-
chitecture model. At the same time, the effective openness of the under-
lying components, made possible by means of SOA’s and Semantic Web
standards, helps in opening further scenarios for this paradigm.

There are two basic features that differentiate plug-ins from SOA’s ar-
chitectures such as the Web Service Architecture (WSA)(W3C04a):

1. The existence of an explicit host that acts as an orchestrator of com-
ponents. It means that it is possible to centralize policies, security,
verification of consistency features in these hosts (sometimes con-
sidered as an upper-level service).

2. The presentation oriented aims of plug-ins. They go further the
(standardized) business logic method presented by SOA services.
Plug-ins enable a very quick plug-and-play of components without
code rewriting needs.

The first feature allows to give a more consistent environment for SOA
services in spite of what is possible in the current WSA. The second fea-
ture allows what is currently named ”component mashup” (61) that is a
concept very similar to service composition but at an higher architectural
level.

Other benefits of plug-in architectures can be summarized as follows (21):

• Application features can be implemented and incorporated very
quickly in the system

• Problems can be quickly isolated and solved at a business modeling
level, because plug-ins are separated modules with well-defined in-
terfaces

• Custom versions of an application can be created without source
code modifications

145

• Third parties can develop additional features without any effort on
the part of the original application developer

• Plug-in interfaces can be used to wrap legacy code written in differ-
ent languages

• The application user interface can be managed and simplified by
customers basing on their preferences

• Application customization can reduce memory footprint and im-
proving performance

All these considerations on plug-in architectures are useful to define
a framework for plug-in-based composition of software. Plug-ins are
meant as special types of SOA services bound to a particular orchestra-
tion architecture (i.e., specific ESB’s). The plug-in itself can be either a set
of composed services (e.g., a set of Web Services or other plug-ins) imi-
tating the recursive architecture of SOA’s compositions, inside a specific
environment.

The Plug-ins introduce a further level of abstraction in service compo-
sition. They can be defined, for instance, as patterns to host Web services,
they can thus act themselves as recursive orchestrators of services. Since
plug-ins themselves can be composed and they represent very high level
functionalities for the system.

146

Chapter 5

My Tools Supporting the
ESI Method

The framework we have defined by means of the ESI method and the
transformations presented in the previous chapters, is supported by two
tools: WikiReq and SMOTE. This chapter gives a detailed description of
these tools, their architecture and their features.

5.1 Semantic Wikis for Requirements Engineer-
ing

In the context of a national project named TOCAI.IT 1 (TOC08), we have
developed a wiki to support our BPR framework (5). The BPR frame-
work we present in Chapter 4 formalizes the enterprise knowledge by
means of a set of models connected with software requirements and also
provides a partial automation of the system implementation. The ESI
method drives the usage of WikiReq according to the BPR framework.
In this context, a clear and consistent requirements elicitation is a funda-
mental task in order to analyze how the system functionalities relate and

1TOCAI: Tecnologie Orientate alla Conoscenza per Aggregazione di Imprese in Internet
(Knowledge-oriented technologies for enterprise aggregation in Internet)

147

affect BP’s. Wikis are eligible platforms for complex requirements gath-
ering. They easily allow collaboration in document redaction and both
synchronous and asynchronous debates among a very large number of
spatially distributed stakeholders (62). Our BPR framework provides a
wiki named Wiki for Requirements (WikiReq) in order to collaborate in
defining a first common knowledge base about the organization, its goals
and its processes. WikiReq is based on the Semantic Mediawiki (SMW)
platform (Wik07) and the Si* goal-oriented language (79). Such a wiki al-
lows to acquire requirements by means of a set of pre-defined forms. It
also enables to automatically define semantic relationships among the Si*
main concepts. The SMW has been enhanced to support an argumenta-
tion debate about requirements (9) in a specific tab page. Finally, semanti-
cally annotated requirements are managed by a PHP script in order to be
transformed in an Eclipse Modeling Framework (EMF) (The08b) instance
to graphically represent Si* concepts in the Eclipse IDE (The08a).

WikiReq is based on three ideas: 1) using a semantic wiki for require-
ments elicitation and management; 2) exploiting the wiki platform to de-
fine an argumentation system for both synchronous and asynchronous
discussions among stakeholders; 3) achieving interoperability between
the semantic wiki and an Integrated Development Engineering (IDE) plat-
form like Eclipse.

Requirements acquired by the Semantic Mediawiki can be exported
in the Eclipse IDE in order to partially automate the rendering of orga-
nizational business processes and system artifacts from the requirements
description. We present the WikiReq tool highlighting its relationships
with model driven engineering and business process modeling in order
to show how WikiReq can be used in the context of a full featured busi-
ness reengineering framework.

5.1.1 The WikiReq tool

Despite the availability of a great number of notations, methods and tools
for requirements engineering, Small and Medium-sized Enterprises (SME)
are unfamiliar with these techniques (129). Most SME’s use only a few

148

Figure 20: WikiReq tool: Main Page

well known set of tools for this activity such as office suites and gen-
eral collaborative tools (62). An analogous problem is suffered in soft-
ware houses where the effort to adopt a complex notation, such as the
full UML specification, is considered to be ”of insufficient value to justify
the costs” (66). In this thesis we have defined a lightweight framework
for Business-Oriented Software Engineering that allows business model-
ers, managers, engineers, users and other stakeholders (such as company
employees and customers) to reduce the effort needed for a deep under-
standing of specific language syntaxes and semantics. In WikiReq we
combine the benefits of the three notations used in ESI: Si*(79); UML Use
Cases (OMG07a) and Business Process Management Notation (BPMN)
(OMG06). Stakeholders can define their knowledge about BP’s and sys-
tem requirements inside WikiReq by means of Si* concepts. Such a knowl-
edge is then exported in the Eclipse IDE to be detailed and connected to
BPMN and Use Cases diagrams.

WikiReq has been developed in order to support the stakeholders in

149

Figure 21: WikiReq tool: the Actor semantic form

acquiring the requirements in terms of the Si* concepts. These require-
ments are acquired by means of a set of semantic schemes that helps
to describe actors, goals, tasks and resources. The WikiReq system is
based on the SMW. SMW allows to relate Resource Description Frame-
work (RDF) (Wor08) semantic notation to the wiki content in order to
better organize the search and browsing of the information. We actually
exploit also a SMW extension, named Semantic Forms (Wik08) that al-
lows to manage the semantics of the edited pages by means of simple
Web forms.

We have developed three form templates for the WikiReq pages to be
filled by all stakeholders:

• Actor Viewpoint. It is used to identify and detail the actors involved
in the business and the actors that interact with the system. Also
the system-to-be is represented as an actor (or a set of actors in case
of systems that require complex interactions). Actors are described
and commented by the wiki users. All the goals that an actor at-
tempts to fulfill are selected by the existing goals or edited as red
links (i.e., in a new page that must be created).

• Goal Viewpoint. It is used to identify and detail the goals in an

150

analogous way it is done for the agents. In addition to descriptions,
comments and actors involved in the goal fulfillment the stakehold-
ers have to specify whether the goal is a soft-goal and/or what sub-
goals contribute to its fulfillment.

• Relational Viewpoint. It is used to define the delegation relation-
ship. This page is used to model the transfer of duties to do some-
thing, from an actor who delegates a goal (the delegator) to another
actor who receives the delegation (the delegatee) (79).

In Figure 21 and Figure 22 we show how these requirements scheme
are filled by means of respectively: the semantic form, and the resulting
Actor Viewpoint page. In Figure 21 a new actor named Sales Manager is
added by means of the actor semantic form. Figure 22 presents the Actor
Viewpoint page where the Sales Manager actor is listed together with the
Define offers red link goal and the other information.

The Relational Viewpoint actually is used exclusively in the context
of WikiReq and it is not imported in the Eclipse IDE. The delegation and
trust relations are used mainly to elicit the actors (i.e., to recognize agents
and roles) and to understand how goals have to be fulfilled and/or de-
composed accordin to the security and trust scenario.On the contrary,
the Goal Viewpoint is useful in refining the Si* models in Eclipse, since
the sub-goals relationships with goals (or soft-goals) help to define the
AND/OR decomposition and the contribution analysis. Thus, further
details on the Si* goal-oriented analysis are performed and discussed in
Eclipse by the technical managers, engineers and analysts. If doubts or
incoherences appears, the analysts can come back to WikiReq and dis-
cuss the issues with the other stakeholders in order to modify the require-
ments.

We point out that the semantic expressiveness of SMW is an enabling
feature to WikiReq. It is the basis for transforming and structuring re-
quirements into EMF models. It is also fundamental in order to make
easier the selection of semantically related concepts by means of the se-
mantic autocompletion of fields supported by the Semantic Forms exten-
sion. The autocompletion allows an easy way to overcome one of the

151

Figure 22: WikiReq tool: the Actor viewpoint page

152

principal drawbacks of using a wiki for requirements engineering such
as the user ability to remember the page names (62).

5.1.2 WikiReq argumentation feature

The second feature of WikiReq is the customization of the SMW talk page
(also named discussion page) in order to support an argumentation ap-
proach to the knowledge acquiring. WikiReq allows the collaborative
work among the stakeholders not only for software requirements elic-
itation but also in BP’s understanding. It is a fundamental activity in
order to clarify how the company works and how the system-to-be will
change its processes (9). We use the Toulmin schema for expressing argu-
ments (154). It consists in defining for each argument: a Claim (such as
the conclusions whose merit must be established); the Data (the facts we
appeal to as a foundation for the claim); a Warrant (the statement autho-
rizing our movement from the data to the claim); a Backing (that must be
introduced when the warrant itself is not convincing enough in order to
certify the statement expressed in the warrant); the Rebuttal (that consists
of statements recognizing the restrictions to which the claim may legit-
imately be applied); and, finally, the Qualifier (that consists of words or
phrases expressing the speaker’s degree of force or certainty concerning
the claim).

The WikiReq arguments are partially connected to the goals and actors
by the RDF semantic statements. The SMW Social Rewarding (Wik08)
extension is used in order to define a metrics to evaluate the argument
validity and the weight basing on the claiming stakeholder rewards. The
WikiReq argumentation allows an asynchronous conversation by means
of the argumentation system. Moreover, synchronous conversations among
the stakeholders are provided by means of the Wiki Chat extension (Wik08)
that allows a rapid interaction especially in clarifying the arguments. The
chat contents are not volatile, so that other people can read the previous
conversations about the page (i.e., the goals or the actor described by the
page). Both synchronous and asynchronous conversations are a funda-
mental enhancement with respect to sporadic brainstorming where not

153

all stakeholders are present. They also represent a continuously updated
record of the work done to elicit the requirements.

5.1.3 WikiReq to Eclipse export

The most important feature of WikiReq is the ability to export the ac-
quired knowledge in the Eclipse IDE. We allow to use the Si* concepts
without a prescriptive formalism. The elicitation of the requirements is
based on filling a WikiReq form. Therefore, the stakeholders are not re-
quired to understand the graphical notations. The Si* requirements are
then automatically transformed into graphs that can be used by the de-
velopers as a basic input in order to define a formalized version of these
specifications. These can be done by means of a rigorous usage of Si* and
other languages such as UML Use-Case (OMG07a) and BPMN (OMG06).
Even though the UML Use Cases and BPMN are intended to be used by
a small subset of the stakeholders to validate and verify the consistency
with WikiReq requirements, we choose these two formalisms because of
their simplicity. The Use-Case diagrams use intuitive and easy to un-
derstand concepts (such as: actor, use case, inclusion, extension, system
boundary etc.) and are the most used diagrams for stakeholder-analyst
interaction (66). BPMN is a notation to describe BP’s easy to understand
by all business stakeholders (OMG06).

In order to specify how WikiReq relates to the other components of
this framework we show in Figure 19 its overall architecture (our con-
tributes are in orange). The WikiReq output is managed by a set of Eclipse
IDE plug-ins. The Tool for Agent Oriented Modeling (TAOM4E) (Cen08)
plug-in allows to graphically represent the Si* model and to detail an
AND/OR decomposition analysis for system goals. The remaining com-
ponents allow to manage the Si*, UML Use Cases and BPMN models
according to the MDA transformations inside the Eclipse IDE. The BPR
framework manages Si*, UML Use Case and BPMN artifacts in Eclipse by
means of a set of EMF models. By means of EMF, we are able to define an
instance model conforming to a meta-model and more generally to man-
age knowledge by means of models and model transformations. We have

154

developed a PHP script for SMW named RDFtoEMF which allows to ex-
port the semantically annotated RDF representation of the requirements
in a EMF model conforming to the Si* meta-model. The TAOM4E Eclipse
plug-in is then used to represent the Si* model in a graphical format.

Thus, starting from the beginning of our requirements engineering
process, the tacit knowledge about system requirements and the company
BP’s is acquired by the stakeholders in terms of the same general concepts
that we will use also in system modeling and implementation. Combin-
ing the wiki functionalities with MDA modeling is a fundamental task
to maintain coherence between system artifacts and requirements. The
MDA functionalities allow to partially automate the knowledge manage-
ment by means of model transformations. These functionalities enables
also to define software system taking into consideration how the BP’s re-
late to requirements as it is expected in BPR.

5.1.4 WikiReq: an Example Scenario

This section presents an example scenario developed in the context of the
TOCAI.IT project 2 in order to show how WikiReq works and the way
the stakeholders can use it to elicit requirements. A stakeholder can add
a new actor to the Actor Viewpoint page by clicking on the Add Actor
link at the end of the page. WikiReq requires to insert the name of the
new actor that will become the name of the semantically annotated page
describing the actor. As shown in Figure 21 the stakeholder can create
the Sales Manager actor and adds goals and descriptive information indi-
cating that the actor represents actually a role. When the page is saved,
the new actor is showed in the scheme of the Actor Viewpoint page. The
Define offers goal is a red link meaning that the page corresponding to the
goal has not yet been created. The stakeholder can then easily create the
Define offers goal by clicking on the red link. In the goal form we can add
information about the goal and its sub-goals. We model the Define offers
goal as a soft-goal and relate it with two sub-goals: Understand the buyer

2TOCAI: Tecnologie Orientate alla Conoscenza per Aggregazione di Imprese in
Internet (Knowledge-oriented technologies for enterprise aggregation in Internet)
- http://www.dis.uniroma1.it/t̃ocai

155

Figure 23: The actor model exported from WikiReq by the RDFtoEMF script
and loaded in the TAOM4E plug-in

financial availability and Understand the product utility for the buyer. In the
main page of WikiReq, the stakeholder (for instance an analyst) can in
any moment open the RDFtoEMF wiki page and instantiate the script to
export the Actor and Goal viewpoints of a specific project. The output
in the TAOM4E (Cen08) Eclipse plug-in is represented in Figure 23. As
described in this figure, we have zoomed the Sales Manager actor which
contains the Define offers soft-goal and the related sub-goals. Then, the
model can be further detailed in Eclipse by the stakeholders in order to
define a more refined formalized representation of the BP’s requirements.
The BPR framework allows to relate the WikiReq model elements with
both Use Case and BPMN model elements in order to connect functional
requirements with non functional requirements represented as Si* soft-
goals (5).

156

5.2 The SMOTE Tool

In this section we describe the Services MOdeling Tool for Eclipse (SMOTE),
the tool we have developed in order to implement the framework trans-
formations we present in Chapter 4.1. SMOTE is conceptually similar to
our previous MDE tool, the MOTO-GAS tool (3), we have introduced in
Section 1.2.2. However, SMOTE has been developed in the Eclipse IDE
and manage models described by using the Ecore metamodel (The08b)
rather than OMG MOF (OMG02a).

SMOTE exploits some plug-ins that provide for an MDA support in
the Eclipse IDE as represented in Figure 24. We describe these plug-ins
and their role in Section 2.3.3. In the Eclipse IDE, differently from other
MDA-enabled IDE like Microsoft Visio (Mic08) and IBM Rational Rose
(IBM08), the support of MDA feature is carried out by means of a set
of community developed plug-ins rather than by a specific predefined
component. Despite the Eclipse Modeling Tools package, we originally
start using a set of component we set up independently from such dis-
tribution. This is not a problem since the models and code developed in
SMOTE has been also tested in the Eclipse Modeling Tools environment
without problems.

The SMOTE tool consists in two contributes:

1. The CIM2PIM ATL Transformation

2. The PIM2PSM ATL Transformation

We details each contribute in the following sections.

5.2.1 Goals2Service as a CIM2PIM MDA Transformation

The Goals to Service transformation of our framework described in Sec-
tion 4.1.1 has been implemented in SMOTE in a CIM2PIM MDA trans-
formation (OMG01). The model exported by the PHP script of WikiReq
allows to represent a detailed goal and actor models in the TAOM4E plug-
in. Indeed, TAOM4E represents models both graphically than in the Ecore
XML notation.

157

Figure 24: The SMOTE Architecture

BP’s are described in SMOTE by means of BPMN in the STP BPMN
plug-in. STP BPMN allows to graphically represent the BP described in
the wiki document as an output of the Enterprise Modeling phase of the
ESI method. Also STP BPMN outputs an Ecore version of its models that
we use for the SMOTE transformation.

Actually, SMOTE does not use directly the Ecore models produced
by TAOM4E and STP BPMN. We transform such models by means of
a further PHP script that cleans some notations and make them comply
with the SMOTE metamodels.

We define a SMOTE metamodel for the subset of Si* we use in our
framework (reported in Figure 25) and the SMOTE metamodel of BPMN
(reported in Figure 26). All model elements have to be meant with an
attribute that defines their name (it is inherited by a generalized element
that is not showed in the models). We also develop a SMOTE version
of the UML Use Case metamodel. Either if SMOTE transformation cur-
rently do not involve Use Cases (they are only used by the stakeholders
as a reference in the documentation) we develop the SMOTE Use Case
metamodel because a future work about WikiReq is to implement Use
Case modeling directly into the wiki.

158

Figure 25: SMOTE tool: the Si* metamodel used by SMOTE

159

Figure 26: SMOTE tool: the BPMN metamodel used by SMOTE

160

Figure 27: SMOTE tool: a screenshot of the SMOTE ATL configuration

SMOTE uses the ATLAS Transformation Language (ATL) (13; 95) and
the ATLAS MegaModel Management (AM3) (34) in order to perform the
transformations we generally describe in Section 4.1. ATL is both a declar-
ative and imperative language. We adopt the declarative style in our
transformations. Source model elements are navigated by means of a set
of rules that create target model elements on the basis of source model el-
ements. ATL relies on a ATL Virtual Machine that allows transformations
to be translated in virtual machine code and executed by the ATL engine
as described in Section 2.3.3.

We define ATL modules (such as model-to-model transformations) for
each concept treated in our metamodels. Modules enable ATL developers
to specify the way to produce a set of target models starting from a set of
source models. Models are composed by: an Header section that defines
some attributes related to the transformation; Helpers that are very similar
to Java methods; Rules that define the way target models are generated
from source models.

We show in Figure 27 the ATL interface used to apply the transforma-

161

tions of SMOTE. We set SMOTEistar.ecore and SMOTEbpmn.ecore as
source metamodels and SMOTEservice as the target metamodel, while
in the Target Model field we insert SMOTEservices.ecore,that is the
name of the model produced by the transformation (that will conform to
the SMOTEservice metamodel).

In order to give an example, we report a part of the Goals2BusinessService
module of the CIM2PIM transformation as follows:

162

module Goals2BusinessServices;
create OUT : BusinessService from IN : Goal;

rule Goal {
from
a : SMOTEistar!Goal
to
p : SMOTEServices!BusinessService (
name <- a.name
)
}

For instance, the Task2Service module is very similar to the listed
code, with the exception of the fact that it calls a method that verify the
existence of a link of the Task with the goal in a context of a process.

5.2.2 Services2WebServices&Portlets as PIM2PSM MDA
Transformations

The second transformation of SMOTE, such as the PIM2PSM transforma-
tion, allows to transform the Service Model SMOTEservices produced
as an output of the CIM2PIM transformation in a model able to be im-
plemented. Thus, the target model of the CIM2PIM transformation be-
came the source model of this further transformation (and consequently
the complying SMOTEservices.ecoremetamodel is used here as the
source metamodel).

We show the SMOTEservices.ecore metamodel in Figure 28. In
such diagram we distinguish four type of services. Actually, this is only a
distinction needed in order to help the transformations to work because
the metamodel concept actually needed is only service . The remain-
ing three entities are used because the CIM2PIM transformation does not
map directly into the final services. In order to obtain the service model,
engineers must operate manually to decide if Business Service should be
transformed into Services, if they are implemented by existing services or
if they should be obliterated. Sometime the complexity of the analyzed

163

Figure 28: SMOTE tool: the metamodel for Service PIM’s

Business Service lead to come back to analyze better the goal that gen-
erates the Business Service or, in other cases, to debate the goal again in
WikiReq.

Actually, in PIM2PSM’s transformations, the term ”model” can mis-
lead the reader and bring to think to a graphical model. Indeed, platform
specific model can be both model graphically representable (e.g. in EMF)
than instances of a language metamodel (e.g., Fortran). Thus the output
of the transformation can be, beside a graph, also a textual PSM that can
be compiled in order to be executed.

Thus the Services2WebServices transformation has been implemented
both by means of an ATL Model to Model (M2M) transformation and as
a Java Emitter Templates (JET) (The03) Model to Text (M2T) transforma-
tion.

The M2M transformation performed by means of ATL is simply an
aggregation of some services. In the manual operation that define the ser-
vice model the engineers instantiate the isPortType boolean attribute.
That attribute helps the ATL transformation to identify a service that ac-
tually represent a function that does not need to be implemented as an
independent Web Service but that can be used as a PortType of another
Web Service. Thus the engineer sets the isPortType attribute true for

164

the services that will became Port Types and connects them with the ser-
vice that will contain the PortType once transformed to a Web Service.
At this point the ATL PIM2PSM transformation is run and the result is
a new service model, very similar to the source model but with some
services transformed in PortTypes attributes of other services. Instead
to define another source and destination metamodel for this transforma-
tion we use the same service metamodel. The drawback of this choice
is that we have some platform specific implementation details on the
SMOTEservices.ecoremetamodel. This is not a issue since such de-
tails (i.e. the isPortType and portTypeName attributes of service)
are optionals and not instantiated in the CIM2PIM transformation.

The M2T part of our PIM2PSM transformation has been implemented
in JET. JET is a generic template engine that can be used to generate SQL,
XML, Java source code and other output from templates (The03). It is a
part of the EMF Eclipse plug-in (The08b). In JET generating text takes
two steps: a translation step and a generation step. The first step trans-
lates the template to a template implementation class. The second step
uses this template implementation class to generate the text. Thus in the
first step we have defined the template for the generation of the XML
text of WebServices WSDL that takes in input the Ecore file of the source
model. The JET API automatically has generated the related Java classes
able to perform the transformation. Thus, these classes can be used by
the command line interface to generate the Web Services WSDL defini-
tions together with Port Type where defined from the service model.

Despite JET is included in EMF, it is used mainly to manage generic
XML documents. It is a powerful but generic system to manage trans-
formations that do not exploit the full capabilities of Ecore and MDE.
In order to improve the M2T part of the PIM2PSM transformation and
to extend it to support plug-ins, we are using another code generation
tool named MOFScript (The05b). MOFScript is a complete framework
for supporting model to text transformations, it supports the generation
of implementation code directly from Ecore models providing support
for parsing, checking, and the execution of the transformation. The MOF-
Script architecture will allow to improve the M2T transformation cur-

165

rently defined in JET and to implement the Plug-in PIM2PSM transfor-
mation.

166

Chapter 6

The Civil Protection Case
Study

In Section 1.4 we have presented the issues related to the software devel-
opment to be used in e-Government organization and in particular, in the
Civil Protection domain.

In order to illustrate the use of our approach in a case study of real-
world software project, this chapter presents a project we have developed
in the Marche Region Civil Protection Department (MR-CPD) (The09b).
We show how our framework has been applied by the MR-CPD in the
IDentification for Emergency Administration (IDEA) project (Mar07) con-
cerning the development of a Radio Frequence IDentification (RFID)-based
system for the management of civil protection volunteers in emergency
situations. The project started in October 2007 and terminate in May 2009.

6.1 The Case Study

The IDEA system issues from the general need (such as the general goal)
of managing the civil protection volunteers during emergency operations.
In particular, the MR-CPD needs to manage the accesses of voluntaries in-
side some emergency areas (e.g., camps, forest fires, garrisons, etc.) and
the administrative operation connected with the participation of volun-

167

teers to the activities together with their vehicles.
The problem presents various complications, for instance:

• one goal is that volunteers data have to be acquired without loss
of time in asking each person and, if possible, completely avoiding
writing on papers or forms.

• the attendance of worker volunteers in an activity implies to per-
form a rapid BP where the MR-DPC has to communicate to the em-
ployer the participation of the worker to the emergency as a volun-
teer. Then, the MR-CPD will refund the employer for the working-
day directly to its bank account.

• there is the need to estimate the number of meals that have to be
prepared for the volunteers considering their turns in the camp, if
they are away for operation and if they will have only lunch or if
they also sup.

The MR-CPD contracts the project to two companies: The Proietti S.r.l.
and Informasistemi S.p.a. The Proietti S.r.l. company is far 120 kilometers
from the MR-DPC head office and employs in the project 1 programmer
and 2 electronic engineers. The Informa Sistemi S.p.a. company is far
320 kilometers from MR-DPC employs 5 programmers, 1 software engi-
neer and 2 managers in this project. We will name them company A and
company B hereafter.

6.1.1 The IDEA Enterprise Modeling Phase

We start the Enterprise Modeling phase in order to model the civil pro-
tection organization structure and to better understand the stakeholders,
their competences and their responsibilities. We design BP’s for the en-
tire voluntary service of the MMR-CPD since a good solution to the access
control problem could also be applied to other contexts. Indeed, during
the analysis we realize that two other processes can be automated relying
on the same identification system: the management of the camps canteen
service and the management of the emergency vehicles of the volunteers.

168

The requirements in the Enterprise Modeling phase have been ac-
quired by means of 29 stakeholders. The MR-CPD team is composed
by 18 people: a project manager, two software engineers, four expert of
the volunteer domain, one administrative expert, five volunteers, two de-
signed users of the system, two executive managers and one general di-
rector. The remaining 11 stakeholders are the workers of the two involved
companies. We planned five brainstorming meetings and adopted the
usage of WikiReq. WikiReq helps us to develop the collaborative spec-
ifications and to have the argumentation brainstorming. The Enterprise
Modeling phase started in January 2008 and end in May 2008, some other
meeting and work has been necessary until the end of the project (May
2009). The schedule and argument of the meeting has been as follows:

1. Jan 2008: The first meeting has been spent mainly to expose the
usage of WikiReq and the Si*, UML and BPMN languages to all
stakeholders. In this meeting we also start the informal brainstorm-
ing sub-phase. We require to all stakeholder to start writing their
goals and involved actors or to rewrite the one described by oth-
ers. We suggest to model all the organization structures by means
of Si* giving more details for the volunteers system and the office
that administer the volunteers.

2. Feb 2008: The second meeting has helped to solve some issues re-
lated to the understanding of the organization both by companies A
and B, and among the MR-CPD employees. The latter also did not
have a clear and shared envision of the processes in the volunteers
context. For instance, MR-DPC project managers and software en-
gineers worked in a office that manages hydro-geological distasters
so they had a vague and wrong supposition on he way volunteers
were managed. In this meeting a first cyclic step of the enterprise
knowledge formalization sub-phase is performed, some goals and
relations among actors described in the delegation model were dis-
cussed and clarified.

3. Apr 2008: In this meeting the scenario become more clear, we un-
derstand that also the management of the camps canteen service

169

process and the management of the volunteers emergency vehi-
cles process can be reengineered by means of the same technologies
exploited for the volunteers management, thus we start informal
brainstorming also for these parts of the project. Before the meet-
ing, the engineers performed a first exports of the goals and actors
diagrams from WikiReq to TAOM4E. They graphically analyzed the
defined relations and compare them with Use Cases and delegation
models. Since there were some inconsistencies, the issues have been
discussed and explained to MR-CPD managers.

4. May 2009. In the fourth meeting the actors, goals and relations
scenario was quite complete. Soft-goals in particular has been dis-
cussed in order to clarify their fulfillment conditions if existent. The
diagrams exported in TAOM4E have been presented and analyzed
together with the other stakeholders. Actually, it has been a more
technical meeting more focused on the Enterprise Knowledge For-
malization sub-phase.

5. May 2009. The last meeting held after 20 days from the fourth. It
has been a meeting where the first sketch of the service model pro-
duced from the CIM2PIM transformations has been presented to
the MR-CPD stakeholders in order to analyze the services that the
goals produced.

Since the project is relatively large (it is a SME’s-sized project as we
expect for our method) we consider unnecessary a further iteration from
the Service Modeling phase to the Enterprise Modeling phase at the end
of requirements engineering activities. However, if important incoher-
ences and services produced, further iteration would have performed.

Quite all the stakeholders have taken part to the first two meetings,
however from the third meeting the participants go down to the 50 %
or less. On the contrary, the WikiReq usage increase from March 2008
to April 2009 such as in the most important period for the requirements
engineering activities performed in the Enterprise Modeling phase.

For the sake of brevity we do not report all the actors and their de-
scription. Some of them has been shown in Figure 29 that reports a part

170

Figure 29: The WikiReq Actor Viewpoint page for the IDEA project

of the Actor Viewpoint for the IDEA project in WikiReq.
In particular there are three actors that have been particularly impor-

tant in the analysis such as: MR-CPD Volunteer Office; Canteen Volunteers
and Registration system. The last one is the main system actor. MR-CPD
Volunteer Office share with the other actors many goals, we knew in ad-
vance that it would be the most important actor but we verify this fact
while using the wiki. We start designing BPMN processes from this actor
since it is the actor that manages the great part of the activities concerning
the volunteers system. The fact that also Canteen Volunteers actor had a
great number of goals have suggested us to investigate its processes and
the goals related to such an actor. We evidenced that the system is not lim-
ited only to the management of volunteers but also meals and volunteers
vehicles have to be managed.

We identify 76 goals (including soft-goals and sub-goals). For instance
the MR-CPD Volunteer Office goals are:

1. To reduce the number of unnecessary meals

2. To speed up administrative processes (a soft-goal)

171

Figure 30: The To speed up administrative processes goal page in WikiReq

3. To refound the employers

4. To know if there are ongoing changes in the number of meals

Goals 1 and 4 are shared with the Canteen Volunteers actor. About
these goals we give an example of argumentation. The panel discus-
sion in the WikiReq talk page originate because of the different and op-
posed meanings of the two goals for the two actors. The Volunteer Office
mean to spend less by reducing the number of meals prepared and not
served, while Canteen Volunteers was only interested in reducing meals
not served since they were refunded basing on the number of meals pre-
pared. This originate a different AND/OR Structuring of the sub-goals
that has been discussed in meeting 3 and 4. The goal to speed up adminis-
trative processes that we report expanded in Figure 30 has been structured
in four sub-goals: to have the bank account of each volunteer; to be sure of the
identity of the volunteer; to automate refoundings.

Other goals such as Do not wait for meals, Do not wait for registration
and To use a contactless technology bring to the choice of adopting the Ra-
dio Frequence IDentification (RFID) technology and to endow each vol-
unteer with a RFID badge. In particular, the system need to be used in
emergency situations thus it requires quick and easy interactions with a

172

Figure 31: A subset of the IDEA stakeholders goals

high number of volunteers (such as between 200 and 1.500 peoples). An-
other factor that brings to the adoption of the RFID is that other identifi-
cation technologies such as Bar Codes and Magnetic Bands deteriorate in
case of extreme condition (e.g., mud, sun exposition, contact with cellular
phones etc.).

A small subset of the stakeholders goals are represented in Figure 31.
The goal the system must not be regarded as an obedience system for volunteer
has determined the choice to use free-hands gates instead of automated
doors in monitoring the accesses of the volunteers. Other identification
technologies (i.e., a Bar Code and a Magnetic Band) are combined with
RFID in order to assure redundancy of infrastructure in case of failures.
Beside free-hands gates also rugged and wearable palmtop computers are
used to read the volunteer badge.

6.1.2 The IDEA Service Modeling Phase

In order to comply with the stakeholder deadlines, in the Service Mod-
eling phase we choice to split the system realization into three parts.
The full project is named IDentification for Emergency Administration

173

(IDEA) (Mar07). The first part of IDEA concerns with the free-hand gate
access control and the access control software development. The second
part is an upgrade of the access control technology to support the can-
teen management and the palmtop usage instead of free-hands gates.
The third part concerns with volunteer vehicles management in emer-
gency situations (vehicles tracking and monitoring, driver identification,
itineraries, etc.). We perform 7 CIM2PIM transformations, two for the
first two parts of IDEA and four for the third part.

In particular, we present the Service Modeling activities related to the
palmtop software actor and the related transformation.

The most relevant goals concerning the palmtops non-functional re-
quirements are: to work with and without network infrastructures; to manage
of both centralized and distributed data; to use rugged devices; the rapid display
of reports to support decision making. Beside these goals, also functional re-
quirements for the software have to be considered. They are represented
by the same goals of the Registration system actor such as: To register ac-
cesses; To register volunteers that take part to the event or emergency; To register
meals; To manage security with the accesses.

Here is the service and business services produced by the CIM2PIM
transformations directly from the goals exposed above (we rename them
for a human comprehension):

• NetworkSupport : it is a Business Service that have to manage the
sending of data from the palmtops to the servers considering the
presence or not of network infrastrutures (e.g., Wireless netowrks,
cellular phone data networks, etc.). If there are not networks avail-
able then data must be collected locally and then send to the server.
Since conflicts can occour, then the service should also solve such
data inconsistencies;

• DataStore : it is a Business Service that works with
NetworkSupport in order to manage data storage and sending of
data to the distributed architecture. It is bounded to some tasks that
appear also in BP’s that describe how the data must be send and
received basing on the presence of a network;

174

• RuggedDevice : is a Business Service that indicates that the palm-
top device has to be a rugged device;

• Reports : it is a Business Service that manages the display of re-
ports about the activities;

• Registration : it is a Business Service that manages the registra-
tion of a volunteer that takes part in a event or emergency;

• AccessMonitoring : it is a Business Service that manages the ac-
cesses (i.e., entrances and exits) of volunteers from a camp or an
emergency area;

• CanteenManagement : it is a Business Service that accounts the
number of meals needed and served both for lunch and dinner.

• SecurityManagement :it is a Business Service in charge of man-
aging security issues.

There are also other services derived from the tasks needed by the
presented goals and that appear in BP’s, such as:

• AccessMonitoring\DefinitiveExit : this service manages the
definitive exit of a volunteer from an emergency or an event. It is
the counterpart of the Registration service but is managed in the
context of AccessMonitoring business service.

• AccessMonitoring\ExitforActivities : this is a service de-
rived from a task of the To register accesses goal that indicates a dif-
ferent way to manage exits from the camp or the area of activities.
The volunteers exit for a particular objective, such as an activity like
succors, garrison or surveillance. The related BP’s defines a further
activity beside the one expected for the exit such as to register the
type of activity.

• Registration\RegistrationWithoutBadge : this service man-
ages the task related to the registration of volunteers that do not
have the RFID badge. They might do not have the badge because

175

of they miss it or they have not already received it from the MR-
CPD. So, a different registration process is needed that has to be
supported by this service.

• SecurityManagement\Identification : this is a service re-
lated to the To manage security with the accesses goal task. The RFID
badge allows also to identify the volunteer and to know information
about him, for instance: if his organization is authorized to partici-
pate to the event/emergency, if he is an active volunteer, etc.

At this point the CIM2PIM’s transformations end its work. A manual
adjustment has been performed by the engineers of companies A & B,
and by the engineers of MR-CPD. As we present in Section 4.1.1 all the
Business Services has to be transformed in Services or obliterated.

The Report Business Services is actually a service since it has been
already identified as a task of a goal in the transformation relating the
access control part of the project. RuggedDevice is actually a Business
Service that is not related to systems services (such as, services derived
from a goal of the system actors) and thus it has been obliterated. In or-
der to obliterate a Business Service does not mean to discard it. On the
contrary, for instance to use rugged devices identifies a fundamental non-
functional goal, the relating service RuggedDevice will thus be ”imple-
mented” outside the system context, and hence in the organizational con-
text, that requires rugged palmtops. Thus, the service RuggedDevice

will be implemented by the rugged palmtop devices. It is also interest-
ing to note the argumentative discussion in the talk page about this goal:
technicians pound away at buying rugged devices; the Administrative
Office is averse because the cost of fulfilling this goal is four time the
cost of buying not-rugged palmtops (there was a soft-goal added by the
Administrative Office that influenced negatively the other goal that has
been deleted in Enterprise Modeling). The Head of Department decide
for a win-win solution. He claims that ”it is true that rugged devices are
expensive (in the future we will buy 50 devices) but it is also true that
in some situations rugged devices are needed”, so the decision has been
to buy the first 6 devices rugged and the future 50 not rugged. All the

176

remaining Business Services exposed above has been transformed into
Services.

The service model of the palmtop software part of the IDEA system
modeled in the SMOTE service model editor developed by means of GMF
(The05a) has been reported in Figure 32

6.1.3 The IDEA Platform Specific Implementation Phase

In the System Implementation phase the PIM2PSM Web Service transfor-
mation produces a service-oriented architecture derived from the appli-
cation service model developed in the System Modeling phases. For each
Service in the service model a Web Service is defined.

The goals of data decentralization and the uncertain on the existence
of network infrastructure, deeply influence the design of the architecture.
All devices involved in the IDEA architecture (RFID gateways, rugged
and wearable palmtop) access a shared database by means of three al-
ternative network technologies: WiFi 802.11b, GPRS and Wired Ether-
net. However, each device can manage data locally and then transfer
data to the centralized database or to other devices that it ”senses”. The
NetworkSupport and DataStore have to manage the switching among
networks and the conflicts of opportunistically transfered data.

The Graphical User Interface (GUI) for the the palmtop software has
been developed in the System Implementation phase. As depicted in
Figure 33, it corresponds approximatively to the AccessMonitoring ;
CanteenManagement ; and SecurityManagement services of the sys-
tem by means of three large buttons. This approximation is a simplifica-
tion used in this thesis to better explain the Implementation Pahse, how-
ever, functions in the GUI do not necessary match with one single service.
For instance Registration is implemented in the same GUI function
of AccessMonitoring and SecurityManagement is actually imple-
mented by the SecurityManagement\Identification service. Thus,
here is evident how the service abstraction is useful in splitting system
functionalities in a right way for the platform specific architecture (main-
taining the traceability with requirements). At the same time, a further

177

Figure 32: A sceenshot of the IDEA Service Model in SMOTE

178

Figure 33: A screenshot of the IDEA palmtop software

abstraction can help in grouping service together, and define GUI func-
tionalities. For these reasons we are investigating plug-ins as a plausible
way to group services in order to define GUI functionalities as exposed
in Section 4.2.

Once the user pushes a button the RFID reader starts reading in a con-
tinuous way in order to search for tags. A continuous reading allows to
perform multiple tag reads without further human interactions. Such a
continuous and usable reading strategy has been tested to be very use-
ful in emergency but it conflicts with the soft-goal of a long mobile device
battery endurance. In order to fulfill this non-functional requirement dur-
ing the IDEA Implementation phase we took the decision of developing a
specific function that manages the RFID reader activity accordingly with
palmtops screensavers states.

A goal-oriented design of the early requirements helps in perform-
ing a better user-centred engineering of the application also during the
System Implementation phase. Goals such as the system should be usable
by aged and technology-unskilled volunteers, bring to reduce the number of
functions presented in the GUI to three big buttons.

179

6.2 Critical Evaluation and Results of the Exper-
iment

We have submitted a questionnaire to all the 29 stakeholders that have
used WikiReq during the Enterprise modeling phases of IDEA. The ques-
tionnaire investigates how the wiki is perceived by the stakeholders con-
sidering their skills and competencies about business modeling and soft-
ware engineering.

The objectives of the study are: (a) to measure the degree of satisfac-
tion; (b) to measure the degree of participation of the stakeholders.

The questionnaire comprises eleven questions, 2 about personal skills
and 9 about the experience with WikiReq. The stakeholders can replay to
the 9 questions with a five-point Likert scale (112) , such as: 5 = ”strongly
agree” , 4 = ”agree”, 3 = ”neutral”, 2 = ”disagree” and 1 = ”strongly dis-
agree”.

The questions are:

1. What is your knowledge about software engineering?

2. In how many ICT development projects have you been involved in
the last 6 year?

3. WikiReq caused the write of unnecessary requirements.

4. The time spent in learning the ESI language framework has been
useful in define correctly the requirements about the project.

5. WikiReq collaborative features (such as, the live chat, the argumen-
tation system, the versioning system) are useful to clarify the re-
quirements about the system and the organization.

6. WikiReq help to save time.

7. Requirements gathered by means of WikiReq are qualitatively bet-
ter than requirements gathered in other projects.

8. The resulting system satisfy the requirements.

180

9. WikiReq helps in selecting a better solution for an issue in spite of a
meeting.

10. WikiReq does not help to learn new facts about the organization
that will use the software.

11. The services that fulfill the requirements expressed by means of
goals are evident in the service models.

The panel of the 29 stakeholders is composed by: 6 programmers; 5
engineers; 12 users; 6 managers. We obtain 22 compiled questionnaire
(such as the 75.8%). The items 3 and 10 are negative items, thus their
answers have been inverted. It has been assigned a value from 1 to 10 to
the first question basing on the answers.

In Figure 34 we report the data acquired by means of the question-
naire. The interviewees are more pleased by their experience with the
wiki relating to the organization than to the system. In particular, this
attitude is clear in question 4, 5 and 9. Also the general question 8 (i.e.,
The resulting system satisfy the requirements) reach a kind result with a
fairly good standard deviation.

The results derived by this analysis conform to similar researches on
wikis for requirements engineering. In particular, Eric Ras has analyzed
two case studies (140) in the application of the SOP-Wiki platform (see
Section 2.2.3). He shows that the highest effort savings has been observed
for corporate knowledge and users experience management, such as to
improve the knowledge about new facts on the organization and the sys-
tem that were unknown before and which would not have been commu-
nicated by verbal communication.

Majchrzak et al. (115) performed a survey with 168 corporate wiki
users. The users mentioned that reputation is enhanced, that work is
made easier and that it helps to improve the organization processes.

Chau and Maurer (45) also performed a case study in a medium-sized
software company, where they used a wiki-based experience repository
called MASE for formal and informal knowledge acquiring. Their eval-
uations focused on read access (80% of read access were concentrated on

181

Figure 34: The results of the questionnaire about the WikiReq system.

182

20% of the pages), amount of structured (42%) vs. unstructured (58%
) information and amount of synchronous vs. asynchronous (more than
90%) communication.

Beside the evaluation of WikiReq by means of the questionnaire we
also analyze the impact of the IDEA system in the BP’s that it reengineers.
The registration of volunteers on camps in normal situations (e.g., with
more that 800 volunteers) need four people that spent about four hours
to manage this task. Moreover, the volunteers have to wait in queues
from 3 to 30 minutes to be registered. The IDEA system optimize and
speed up this BP that is now performed by one person in few second per
volunteer that has to wait a maximum of 5 minute to be registered. Post
emergencies BP’s, such as the refunding of vehicles fuel and employers
require about the 30 per cent of the time of the previous administrative
processes.

The analysis of the IDEA system shows that such a system fulfill also
unforeseen goals, such as it helps to evaluate the effective contribution of
volunteer organizations in an emergency or an event, and hence to refund
these organizations accordingly with meritocratic criteria.

A final remark about the IDEA project and its results concern its effi-
cacy. The Italian Minister of Public Administration indicate this project as
one of the best-practices in e-Government ICT projects 1. The inexpensive
budget for the development of the IDEA system lead other e-Government
organizations (such as the Rome Municipality, the Veneto and Piemonte
Regions) to ask for reuse such projects. Actually, it is an ongoing pro-
cess, but the knowledge acquired by means of WikiReq is going to be
easily shared and reused by the other organizations. In particular, issues
and goals discussed and solved by means of WikiReq in IDEA are ana-
lyzed by the engineers of the reuse projects and directly presented to their
stakeholders to focus on such most challenging issues. Thus, we foresee
a further WikiReq benefit to study, such as the ability to easily reuse and
share ”solutions”. These solutions are not given as software components
or reengineering practices but as goals binded to software-implementable

1Ministero della Funzione Pubblica - Non Solo Fannulloni - Progetto IdEA -
http://www.nonsolofannulloni.forumpa.it/100-storie/segnalazioni-dalla-pa/?id=583

183

services and requirements structured and unstructured knowledge (e.g.,
discussions, chats, arguments, etc.).

6.2.1 Lessons Learned and Threats to Validity

The application of the ESI method; the tools and the framework presented
in this thesis to the IDEA project, helps us to realize some limitation and
future extensions of our work.

We become aware that the framework work better in projects that ex-
pect a long time for requirements engineering activities. There is a trade
off between the size of the project, in particular regarding the require-
ments elicitation, and the effort needed by all stakeholders to understand
the three languages we use and the WikiReq platform (even if they are
simple to learn). However, the time saved in software maintenance due
to the right and quite complete identification of system functionalities
will compensate costs for requirements engineering. In fact, in IDEA, ESI
has reduced both maintenance time than cyclic phases of development
if compared with similar project in the Marche Region. Consider, for in-
stance, the time spent in the SISSI project presented in Section 1.4.2 for
iterative phases in the definition of the interface form field. In order to
support this claim, we require to apply ESI to at least another project.

From the point of view of the application of the ESI method, in IDEA
we noticed that a great part of the goals have been identified during the
discussion about the actor, such as when we ask stakeholders to describe
in detail actor feature and characteristics. We also noticed an interesting
correlation among tasks that originate a service in the CIM2PIM transfor-
mation and the Use Cases, such as between BPMN activities that satisfy a
goal and Use Cases. In particular, the most relevant Use Cases (i.e., cases
that originate services independent from other goals functionalities) are
represented as Si* tasks. Thus, such tasks are quite all described by a Use
Case that can be used to give implementation details to the developers.
Generally speaking, the fact that requirements engineering is an activ-
ity that should be carried out in all phases of system engineering is not
a novelty as reported by Young in his Handbook (171). It is interesting

184

to note in ESI that there are requirements acquired in business modeling
that can be used in different phases of the system engineering. This is a
unexpected effect that we will further study in future application of the
method.

Another unexpected lesson learned by the application of the ESI me-
thod to the IDEA project concern the usefulness of Si* in late phases of
analysis and development. Beside the goals and actor model, we also
define the trust and delegation relations in the WikiReq relational view-
point. In ESI the relational viewpoint has been defined to help stakehold-
ers to define accordingly actors and goals viewpoints and their related
models. Since relations are described at a requirements-level and defined
considering goals instead of service, developers have found very useful
the knowledge described in the wiki. This has been especially true for
trust and security policies to adopt in services that implement functional-
ities for the volunteers access and exit BP’s. They have been also useful to
define the security levels in the palmtop and Web Application software.

Finally, the IDEA experience has confirmed our hypothesis about the
application of plug-ins architectures as patterns for the orchestration of
services. We observe that services once decomposed from goals in the
CIM2PIM transformation and further decomposed in the PIM2PSM trans-
formation, need to be grouped again in a way that is consistent with
the implementation architecture and the GUI functionalities (e.g., IDEA
server, palmtop software functionalities, etc.). We mean that plug-in ar-
chitectures help in defining such a composed services.

185

Chapter 7

Conclusions and Future
Works

In this thesis we have presented the Enterprise-Service-Implementation
(ESI) method and a framework of technologies aimed to implement this
method. Our aim is to define a framework that helps software engineers
to develop their systems in what we named the business-oriented ap-
proach. The business-oriented approach to software development has
been defined as an approach that takes into account new challenging is-
sues of software engineering, such as: the complexity of globals and mul-
tisited organizations; the changes made by new technologies and soft-
ware in the organization BP’s; and the services related to the products the
company or the organization supplies.

We present a systematic approach that enclose in a single framework
all the technologies needed to address the problem of modeling the busi-
ness in requirements engineering and, at the same time, to relate business-
level concepts (such as strategies, goals, trust, etc.) to system artifacts.
Our work involves a broad spectrum of researches and technologies we
analyze to define a fairly lightweight approach.

We explore the engineering of requirements by using the technology
of wikis in order to define a collaborative system which stakeholders can
use to write requirements. We also provide the stakeholder with a model-

186

ing language that helps to define a computationally independent model
of the entire business domain. We use different notations and produce a
model suitable for further transformations based on MDE and the service
abstraction.

Thus, our method starts from what Mylopoulos et al. (102) name the
”early-requirements”, such as the requirements of the organization, and
its domain. The ESI method manages models of both the domain and the
system down to the implementation phases. The service abstraction and
the ability to manage such an abstraction with MDE technologies help
us to translate concepts from the business domain, such as goals, into
services more and more concretely bounded to a specific implementation
platform. Also the i* and Tropos role is decisive since they allow to model
non functional aspects of the organization and to relate them with the
systems.

The effectiveness of our approach has been tested in the Civil Pro-
tection case studio reported in Chapter 6. The Civil Protection domain
and this case studio presents all the issues we want to address with our
framework, for instance: heterogeneity and global asset of the involved
organizations; strong correlation among BP’s and the system to develop;
many soft-goals to debate and analyze. The results of this case studio
evidence the fact that our framework improves the requirements engi-
neering activities for all stakeholders, their work is made easier and they
also improve the knowledge about new facts on the organization and the
system.

The impact of a wide participation of stakeholders, in particular users,
in requirements engineering has been empirically tested in (68) to be crit-
ical. The results indicate that as uncertainty increases, greater user partic-
ipation alleviates the negative influence of uncertainty on the quality of
requirements engineering. This also results concerning the stakeholder
involvement (62). Complex organizations, multisited development and
evanescent services provided by companies, together increase the uncer-
tainty in software projects. The software projects in turn, are more and
more bounded to the organizational assets: the software may change the
organization BP’s, the software can create new services to be used by

187

workers or to be sold, and hence a new business or a new piece of the
organization, etc.

In order to solve these interwoven issues we interweave three instru-
ments: a wiki exploited as a platform for requirements engineering; a set
of languages easy to be understood by all stakeholders; a MDA to manage
stakeholder-understandable abstractions of the software.

Many related works confirms the effectiveness of the wiki-based ap-
proach we adopt, in particular in the design of software taking into con-
sideration both business processes and the organization (11; 52; 62; 114;
137; 140; 161). WikiReq together with the languages we exploit for re-
quirements engineering, helps us to define a framework that permits stake-
holders to collaborate sharing their knowledge in terms of a small set of
concepts.

The need for a predefined structure for requirements acquiring in wikis
is an essential pre-condition to avoid inconsistencies and uncontrolled
content sprawls as evidenced by Decker et al. (62). However, WikiReq
gives more emphasis on this pre-condition than it is done in the Decker
et al. SOP-wiki. In fact WikiReq uses the explicit semantics of Seman-
tic MediaWiki RDF notations and imposes a template also for the dis-
cussions structure. Different stakeholders usually assign different mean-
ings to the constructs of the organizational knowledge and to the nota-
tion used to represent such knowledge (e.g., actors, classes, tasks etc.).
The wikis collaborative features are particularly important in these con-
texts. Our approach reduces and simplifies the concepts involved in the
requirements and BP’s structuring and, at the same time, complies with
more technical artifacts (such as UML Use Cases and BPMN models). In
this way, WikiReq forces stakeholders to reason and expose their require-
ments in terms of the few set of concepts presented for Si* that are then
connected with the other language by means of the transformations. Our
wiki also improves the debate management if compared with SoftWiki
and SOP-wiki. The argumentation feature described in Section 5.1.2 has
been successfully experienced by Karacapilidis et al. (97) for both require-
ments and collaborative BP’s debates (9). We exploit argumentation also
in the wiki context combining the results of both research areas (such as

188

wikis for requirements engineering and Web-based argumentation and
collaborative decision making). WikiReq offer features to ”detect unex-
pressed conflicts” (62) that is one of the six drawbacks in unsing wikis for
requirements engineering we report in Section 2.2.3. Also others draw-
backs are solved by WikiReq such as: ”page name remembering” that we
solve with the semantic autocompletion of fields, ”page structuring and
reclassification” that are solved by WikiReq Semantic Forms exploiting
and ”versioning across several pages” that can be solved by backups of
contents in the RDF format. Semantic Forms are also useful to maintain
the collaboration platform easy to use and maintain, unlike SOP-wiki that
uses Adobe flex to create forms and manage semantics and thus requires
the installation and understanding of other components in order to use
or customize the platform if needed.

The WikiReq semantically-annotated and machine-processable forms
allow both to export the requirements in Eclipse and to bind the discus-
sions to a specific concept. We give a one-to-one relation between pages
and goals/actors. As we discuss in Secion 2.2.2 this is one of the main
advantages of using wikis to structuring knowledge rather than content
management systems.

Further work in WikiReq is required to model Si* tasks directly inside
the MediaWiki platform. This will be useful to show to the stakeholders
how the Si* task concepts will be related to the BP’s activities. We are
also working on integrating an extension of MediaWiki that helps to di-
rectly design UML diagrams into the wiki and export them in RDF. Such
an extension will be based on the MetaUML language (Sol09). A more
challenging issue is the ability to manage a two-way relations among the
Eclipse IDE and WikiReq, such as to re-import models from Eclipse to
WikiReq. This feature will allow to semantically represent in the WikiReq
platform the enhancements of models carry out by analysts in the Eclipse
plug-ins (such as TAOM4E).

Also the SMOTE tool will be improved in many ways. In general,
the PIM2PSM transformations that maps the service model to a platform
specific implementation of the model, has to be enhanced to support the
production of more details in the WSDL code. The PIM2PSM transforma-

189

tion is going to be translated in MOFScript(The05b) in order to support
the generation of implementation code considering the Ecore models el-
ement instead of the XML file as it is in JET. MOFScript will provide a
complete support for parsing, checking, and the execution of the trans-
formation of the model to the code. In order to graphically model the
services in SMOTE, we currently use the EMF.Editor editor generated by
means of GMF. We made only few changes to the editor automatically
generated, so it such editor is very coarse (see Figure 32) and can be re-
fined adding richer graphical elements and tools.

As we state in the Introduction, our work is not intended to concern
automatic orchestration and choreography of SOA’s and Web Services.
We limited our research to the use of SOA’s software platform as a mid-
dleware to define platform independent software. Thus, we exploit the
service abstraction to define a new service or application plug-in defining
a model where a set of services are statically related. Thus, from a soft-
ware engineering point of view we consider SOA’s as reference architec-
tural middlewares for the development of software components without
considering providing support for service orchestration and choreogra-
phy. This is a limitation we think to overcome by the approach described
in Section 4.2. We retain such approach the main future extension of our
work, in particular in the use of plug-in architectures to define a user in-
terface for a new developed services. The future works described until
now are based on methods and tools we have already developed, the ap-
proach of using plug-ins as a service wrapper instead is a completely new
part of our research. Either if it can be implemented as a further extension
of the PIM2PSM transformation made by means of MOFScript, the plug-
in paradigm is particularly interesting from a methodological point of
view. In particular, we plan to study plug-ins architecures relating them
with Feature Oriented Programming (FOP) (149) that is the study of fea-
ture modularity in product-lines. A feature is a characteristic that sig-
nificantly distinguishes a member within a family of similar systems (i.e.
a product-line). Features can be considered increments in product func-
tionalities of large-scale software design and construction. Indeed FOP
moves from step-wise refinement (65), a paradigm for developing com-

190

plex programs from a single program by incrementally adding details.
FOP proposes to specify systems as a composition of features and ”pat-
tern” of features (named collaborations (16)). Some approaches to FOP
treat composition synthesis of programs. Features and multi-featured ap-
plications are treated as algebraic expressions. Algebraic approaches de-
fine basic programs and features respectively as a set of constants and
refinements, they use this ”domain model” as an algebra for the domain
to be modelled (such as the product-line) (149). The general goal of the
FOP approaches is to make the modular design of applications as sim-
ple as possible. The existence of an underlying algebra and the ability to
compose programs by means of declarative languages (50) constitute a
practical and powerful framework to base our work on plug-ins compo-
sition.

FOP and the base research fields underling FOP represent valid con-
tributes to be applied in SOA’s structuring their ESB as plug-in architec-
tures. Indeed, the plug-in architectural style:

• It is very similar to a software product-line: the plug-in host defines
a family of similar systems (149) that can change the application
component plug-ins basing on the stakeholder needs.

• It builds applications following a step-wise refinement approach.
Starting from the host application, features are added or subtracted
in order to obtain the desired system.

• It is based on an orchestrator component that is the scenario ex-
pected in SOA’s and hierarchical structures of architectural metapro-
gramming (17).

• It can be easily manipulated by model driven engineering due to its
very high-level representation of software components.

The refinement and synthesis approach of FOP (currently studied for
the object oriented abstraction) can be compared with the operations im-
plemented in the plug-in approach (e.g. hooks, extension points etc.).
Thus, specific refinement operations can be studied for plug-in architec-
tures to define refinement and synthesis of service composition patterns.

191

Basing on the FOP work, a core algebraic framework can be defined to be
implemented in plug-in hosts (for instance treating the hosts themselves
as base programs for feature refinements). Declarative Domain Specific
Languages (DSL) (50) can be studied for plug-ins composition. They can
be derived from general real domains or single plug-in architectures (e.g.
a DSL for Civil Protection, a DSL for the Yahoo! widget architecture).
Declarative specifications can improve optimization and give further sim-
plification and abstraction of service composition .

Finally, the application of the ESI method to the Civil Protection case
studio evidenced a lack in the management of data. A critique move by
engineers and programmers of IDEA to our method and tools is that it
is currently too oriented to the functionalities of the system and do not
take into account data concepts. We have underestimated the importance
of data in requirements engineering because we was convinced that data
would have been useful only in implementation phases (e.g., when devel-
opers implements Web Services). Instead, IDEA show us that data is im-
portant both in modeling goals and BP’s, also at a requirements engineer-
ing level. We plan to cover this lack of our method exploiting the resource
element of Si* and defining a specific viewpoint page in the WikiReq tool.
Such a viewpoint will be treated by other MDA transformations and man-
aged as an ontology model (24) in order to be implemented in database
schemes or other data repositories. In this way we will improve also the
service model that currently does not manage nor service attributes nei-
ther PortTypes parameters.

192

Bibliography

[1] T. Abe. What is Service Science? Technical Report No.246, Fujitsu Research
Institute., Mar 2005. 4, 5

[2] L. Abeti, P. Ciancarini, and R. Moretti. A Service Oriented Approach to
Model a Grid System for the Civil Protection. In Proceedings of Workshop
on Complex Networks and Infrastructure Protection (CNIP2006), March 28 - 29,
Rome, Italy, pages 489–498, Rome, Italy, Mar 2006. 23

[3] L. Abeti, P. Ciancarini, and R. Moretti. Service oriented software engineer-
ing for modeling agents and services in grid systems. Multiagent and Grid
Systems, 2(2):135–148, Apr 2006. 14, 18, 21, 130, 137, 138, 157

[4] L. Abeti, P. Ciancarini, and R. Moretti. Model driven development of
ontology-based grid services. In WETICE, pages 229–234, Los Alamitos,
CA, USA, 2007. IEEE Computer Society Press. 21, 105

[5] L. Abeti, P. Ciancarini, and R. Moretti. Business process modeling for orga-
nizational knowledge management. In Pierpaolo Degano, Rocco De Nicola,
and José Meseguer, editors, Concurrency, Graphs and Models, volume 5065 of
Lecture Notes in Computer Science, pages 301–311, Berlin / Heidelberg, 2008.
Springer-Verlag. 13, 138, 147, 156

[6] L. Abeti, P. Ciancarini, and R. Moretti. Wiki-based requirements man-
agement for business process reengineering. In A. Aguiar, U. Dekel, and
P. Merson, editors, ICSE Companion Wikis4SE Workshop Proceedings, volume
CFP0935G, pages 14–25, Los Alamitos, CA, USA, May 2009. IEEE Com-
puter Society. 14, 73

[7] L. Abeti, P. Ciancarini, and V. Presutti. An Ontology Driven Method for De-
signing Software Agents for Workflows across Organizations. In A. Cimi-
tile, A. DeLucia, and H. Gall, editors, Cooperative Methods and Tools for Dis-
tributed Software Processes, Software Technologies, pages 162–175. Franco
Angeli, Rome, Italy, 2003. 1

193

[8] Z. J. Acs and L. Preston. Small and medium-sized enterprises, technology,
and globalization: Introduction to a special issue on small and medium-
sized enterprises in the global economy. Journal Small Business Economics,
9(1):1–6, Feb 1997. 16, 24

[9] E. Adamides and N. Karacapilidis. A knowledge centred framework for
collaborative business process modeling. Business Process Management Jour-
nal, 12(5):557–575, 2006. 115, 120, 121, 122, 148, 153, 188

[10] A. Aguiar, G. David, and M. Padilha. Xsdoc: an extensible wiki-based in-
frastructure for framework documentation. In Ernesto Pimentel, Nieves R.
Brisaboa, and Jaime Gómez, editors, JISBD, pages 11–24, San Vicente del
Raspeig, Alicante, Spain, Oct 2003. Universidad de Alicante. 70

[11] K. Al-Asmari, R. Batzinger, and L. Yu. Experience distributed and central-
ized software development in ipdns project. In H. R. Arabnia and H. Reza,
editors, Software Engineering Research and Practice, pages 46–51, Athens, GA,
USA, Jun 2007. CSREA Press. 68, 71, 73, 188

[12] T. J. Allen. Managing the Flow of Technology. The MIT Press, Cambridge, MA,
USA, Oct 1977. 16

[13] F. Allilaire and T. Idrissi. ADT: Eclipse development tools for ATL. Techni-
cal Report 17-04, University of Kent, Sep 2004. 161

[14] J. Alonso, J. Olmeda, and J. Rodrguez. Documentation Center Simplifying
the Documentation of Software Projects. In Online proceedings of the Inter-
national Symposium on Wikis, September 8 - 10, Porto, Portugal, Porto, Portu-
gal, Sep 2008. http://www.wikisym.org/ws2008/index.php/Wikis4SE -
Wikis For Software Engineering. 72

[15] S. W. Ambler, J. Nalbone, and M. J. Vizdos. The Enterprise Unified Process: Ex-
tending the Rational Unified Process. Prentice Hall PTR, Upper Saddle River,
NJ, USA, Feb 2005. 8, 9, 44, 45

[16] E. P. Andersen and T. Reenskaug. System design by composing structures
of interacting objects. In O. L. Madsen, editor, ECOOP, volume 615 of Lec-
ture Notes in Computer Science, pages 133–152, London, UK, 1992. Springer-
Verlag. 191

[17] L. F. Andrade and J. L. Fiadeiro. Service-oriented business and system spec-
ification: Beyond object-orientation. In H. Kilov and editors K. Baclwaski,
editors, Practical Foundations of Business System Specifications, pages 1–23.
Kluwer Academic Publishers, Norwell, MA, USA, 2003. 10, 143, 191

194

[18] A. I. Antón. Goal-based requirements analysis. In C. Chang and
C. Shekaran, editors, Second International Conference on Requirements Engi-
neering (ICRE 96), 15-18 Apr 1996, Colorado Springs, CO, USA, pages 136–
144, Los Alamitos, CA, USA, Apr 1996. IEEE Computer Society. 77, 78, 80,
81, 82

[19] A. I. Antón, W. M. McCracken, and C. Potts. Goal decomposition and sce-
nario analysis in business process reengineering. In G. Wijers, S. Brinkkem-
per, and A. I. Wasserman, editors, CAiSE, volume 811 of Lecture Notes in
Computer Science, pages 94–104. Springer, Jun 1994. 82

[20] A. I. Antón and C. Potts. The use of goals to surface requirements for
evolving systems. In K. Torii, K. Futatsugi, and R. Kemmerer, editors, In-
ternational Conference on Software Engineering (ICSE 98), pages 157–166, Los
Alamitos, CA, USA, Apr 1998. IEEE Computer Society Press. 60

[21] Apple Inc. Code Loading Programming Top-
ics for Cocoa. Cupertino, CS, USA, Aug 2007.
http://developer.apple.com/documentation/Cocoa/Conceptual/Loa-
dingCode/LoadingCode.html. 144, 145

[22] U. Apte, U. Karmarkar, and H. K. Nath. Information services in the U.S.
economy: Values, jobs, and management implications. California Manage-
ment Review, 50(3):12–30, Sep 2008. 4

[23] A. Bechina Arntzen and A.-M. Krosgrud. Web-services architecture: The
solution for e-government applications. In H. R. Arabnia, editor, CSREA
EEE, pages 49–54, Las Vegas, Nevada, USA, Jun 2006. CSREA Press. 23

[24] K. Baclawski, M. M. Kokar, P. A. Kogut, L. Hart, J. E. Smith, W. S. Holmes
III, J. Letkowski, and M. L. Aronson. Extending UML to support ontology
engineering for the Semantic Web. In Martin Gogolla and Cris Kobryn,
editors, UML, volume 2185 of Lecture Notes in Computer Science, pages 342–
360, Berlin / Heidelberg, 2001. Springer-Verlag. 21, 192

[25] R. C. Basole and W. B. Rouse. Complexity of service value networks: con-
ceptualization and empirical investigation. IBM System Journal, 47(1):53–70,
2008. 5, 6

[26] M. Bass, V. Mikulovic, L. Bass, J. D. Herbsleb, and M. Cataldo. Architec-
tural misalignment: An experience report. In R. Nord, N. Medvidovic,
R. Krikhaar, J. Stafford, and J. Bosch, editors, WICSA, pages 1–17. IEEE
Computer Society, 2007. 4

[27] D. Batory. Multilevel models in model-driven engineering, product lines,
and metaprogramming. IBM System Journal, 45(3):527–539, 2006. 98, 101

195

[28] B. Bauer, F. Bergenti, P. Massonet, and J. Odell. Agents and the UML: A
unified notation for agents and multi-agent systems? In Wooldridge et al.
(168), pages 148–150. 87

[29] A. Begel and N. Nagappan. Global software development: Who does it? In
S. Sowmyanarayanan, F. Lanubile, and B. Sengupta, editors, IEEE interna-
tional conference on Global Software Engineering (ICGSE08) 17-20 Aug, pages
195–199, Los Alamitos, CA, USA, Aug 2008. IEEE Computer Society. 4

[30] B. Benatallah, R. Dijkman, M. Dumas, and Z. Maamar. Service Composi-
tion: Concepts, Techniques, Tools, and Trends. In Z. Stojanovic and A. Da-
hanayake, editors, Service-Oriented Software System Engineering: Challenges
and Practices, chapter 3, pages 68–87. Idea Group Publishing, Hershey, PA,
2005. 21

[31] K. H. Bennett, P. J. Layzell, D. Budgen, P. Brereton, L. A. Macaulay, and
M. Munro. Service-based software: the future for flexible software. In
D. Poo, J. S. Dong, J. He, and M. Purvis, editors, APSEC, pages 214–221.
IEEE Computer Society, 2000. 7, 10

[32] A. T. Berztiss and J. A. Bubenko. A software process model for business
reengineering. In Proceedings of Information Systems Development for Decen-
tralized Organizations (ISDO95), an IFIP 8.1 Working Conference, pages 184–
200, Norwell, MA, USA, Aug 1995. Chapman & Hall - Kluwer Academic
Publishers. 116

[33] J. Bézivin. On the unification power of models. Software and Systems Model-
ing, 4(2):171–188, May 2005. 10, 19, 95, 97, 98

[34] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Modeling in the large
and modeling in the small. In U. Aßmann, M. Aksit, and A. Rensink, edi-
tors, MDAFA, volume 3599 of Lecture Notes in Computer Science, pages 33–46,
Berlin Heidelberg, 2004. Springer-Verlag. 161

[35] J. Bézivin, F. Jouault, and D. Touzet. Principles, standards and tools for
model engineering. In ICECCS, pages 28–29, Los Alamitos, CA, USA, 2005.
IEEE Computer Society. 101, 104

[36] M. Boasson. The artistry of software architecture. IEEE Software, 12(6):13–
16, Nov 1995. 4

[37] A. Borgida, S. Greenspan, and J. Mylopoulos. Knowledge representation
as the basis for requirements specifications. In C. Rich and R. C. Waters,
editors, Artificial Intelligence and Software Engineering, pages 561–570, 1986.
76, 127

196

[38] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Mod-
eling early requirements in tropos: A transformation based approach. In
Wooldridge et al. (168), pages 151–168. 79, 84, 90

[39] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tro-
pos: An agent-oriented software development methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, May 2004. 84, 123

[40] F. Bronsard, D. Bryan, W. Kozaczynski, E. S. Liongosari, J. Q. Ning, Á.
Ólafsson, and J. W. Wetterstrand. Toward software plug-and-play. SIG-
SOFT Software Engineering Notes, 22(3):19–29, 1997. 144

[41] F. Brooks. No Silver Bullet: Essence and accidents of software engineering.
IEEE Computer, 20(4):10–19, Apr 1987. 4

[42] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose. Eclipse Mod-
eling Framework: A Developer’s Guide. E. Gamma, L. Nackman, and J. Wie-
gand. The Eclipse series. Addison-Wesley Professional, Boston, MA, USA,
Aug 2003. 106

[43] J. Champy. X-engineering the corporation: Reinvent your business in the digital
age. Warner Business Books, Clayton VIC, Australia, Feb 2002. 1st edition.
8, 10

[44] D. Chappell. Enterprise Service Bus. O’Reilly Media, Inc., Sebastopol, CA,
USA, Jun 2004. 10, 138

[45] T. Chau and F. Maurer. A case study of wiki-based experience repository
at a medium-sized software company. In P. Clark and G. Schreiber, editors,
K-CAP, pages 185–186, New York, NY, USA, Oct 2005. ACM. 181

[46] H. Chesbrough and J. Spohrer. A research manifesto for services science.
Communication ACM, 49(7):35–40, Jul 2006. Special Issue: Service Science.
6, 116

[47] L. Chung, B. A. Nixon, and E. S. K. Yu. Using non-functional requirements
to systematically support change. In Second IEEE International Symposium on
Requirements Engineering, March 27 - 29, 1995, York, England, pages 132–139,
Los Alamitos, CA, USA, 1995. IEEE Computer Society. 80

[48] P. Ciancarini, V. Presutti, and L. Abeti. An ontology driven design method
for inter-agent communication. In SEKE, pages 90–94, San Francisco, CA,
Jul 2003. Knowledge Systems Institute. 1, 21, 135

[49] A. Ciliberti. Changes in discursive practices in italian public administra-
tion. Journal of Pragmatics, 27(2):127–144, Feb 1997. 17, 24

197

[50] T. Cleenewerck. Component-based DSL development. In F. Pfenning and
Y. Smaragdakis, editors, GPCE, volume 2830 of Lecture Notes in Computer
Science, pages 245–264, New York, NY, USA, 2003. Springer-Verlag. 101,
191, 192

[51] V. Clerc, P. Lago, and H. van Vliet. Global software development: are ar-
chitectural rules the answer? In F. Paulisch, P. Kruchten, and A. Mockus,
editors, Second IEEE International Conference on Global Software Engineering
(ICGSE 2007) August 27-30, pages 225–234, Washington, DC, USA, Aug
2007. IEEE Computer Society. 4

[52] F. Correia. Extending and Integrating Wikis to Improve Soft-
ware Documentation. In Online proceedings of the International Sym-
posium on Wikis, September 8 - 10, Porto, Portugal, Porto, Portu-
gal, Sep 2008. http://www.wikisym.org/ws2008/index.php/Wikis4SE -
Wikis For Software Engineering. 69, 188

[53] S. Cranefield. UML and the Semantic Web. In I. F. Cruz, S.n Decker,
J. Euzenat, and D. L. McGuinness, editors, The Emerging Semantic Web, vol-
ume 75 of Frontiers in Artificial Intelligence and Applications, pages 113–130,
Amsterdam, The Netherlands, 2001. IOS press. 21

[54] K. Czarnecki and U.W. Eisenecker. Generative programming: methods, tools,
and applications. Addison-Wesley Publishing Co., New York, NY, USA, Jun
2000. 101

[55] K. Czarnecki and S. Helsen. Classification of model transformation appro-
aches. In R. Crocker and G. L. Steele Jr., editors, OOPSLA, pages 361–378,
New York, NY, USA, 2005. ACM Press. 102, 104, 109

[56] M. Dall’Agnol, A. Janes, G. Succi, and E. Zaninotto. Lean management-a
metaphor for extreme programming? In M. Marchesi and G. Succi, editors,
XP, volume 2675 of Lecture Notes in Computer Science, pages 26–32, Heidel-
berg, Germany, 2003. Springer. 39

[57] D. Damian. Stakeholders in global requirements engineering: Lessons
learned from practice. IEEE Software, 24(2):21–27, Apr 2007. x, 64, 65

[58] D. Damian and D. Zowghi. Re challenges in multi-site software develop-
ment organisations. Requirements Engineering, 8(3):149–160, Aug 2003. 3, 66,
67

[59] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed require-
ments acquisition. Science of Computer Programming, 20(1-2):3–50, 1993. 78,
79, 80, 81

198

[60] T. Davenport. Process Innovation: Reengineering work through information tech-
nology. Harvard Business School Press, Boston, 1993. 111, 116, 117

[61] D. Lopez de Ipina, J. I. Vazquez, and J. Abaitua. A Web 2.0 platform to en-
able context-aware mobile mash-ups. In B. Schiele, A. K. Dey, H. Gellersen,
B. E. R. de Ruyter, M. Tscheligi, R. Wichert, E. H. L. Aarts, and A. P. Buch-
mann, editors, AmI, volume 4794 of Lecture Notes in Computer Science, pages
266–286, Heidelberg, Germany, 2007. Springer. 143, 145

[62] B. Decker, E. Ras, J. Rech, P. Jaubert, and M. Rieth. Wiki-based stakeholder
participation in requirements engineering. IEEE Software, 24(2):28–35, Mar-
Apr 2007. 73, 74, 148, 149, 153, 187, 188, 189

[63] C. Demmke, G. Hammerschmid, and R. Meyer. Decentralisa-
tion and accountability as a focus of public administration mod-
ernisation: Challenges and consequences for human resource man-
agement. Technical report, European Institute of Public Admin-
istration (EIPA), Maastricht, NL, Dec 2006. EIPA Code 2006/01
http://www.eipa.eu/en/publications/show/&tid=1765. 17, 24

[64] F. DeRemer and H. Kron. Programming-in-the large versus programming-
in-the-small. In Proceedings of the international conference on Reliable software,
pages 114–121, New York, NY, USA, 1975. ACM Press. 143

[65] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall Series in Auto-
matic Computation. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, Oct
1976. 190

[66] B. Dobing and J. Parsons. How UML is used. Communications of the ACM,
49(5):109–113, May 2006. 124, 149, 154

[67] P. F. Drucker. The coming of the new organization. Harvard Business Review,
1(88105):45–53, Jan 1988. 7, 36, 39

[68] K. El Emam, S. Quintin, and N. H. Madhavji. User participation in the
requirements engineering process: An empirical study. Requirirements En-
gineering, 1(1):4–26, 1996. 73, 187

[69] A. Fairchild. Reengineering and Restructuring the Enterprise: A Management
Guide for the 21st Century. Computer Technology Research, Charleston, SC,
USA, Jan 1998. 1st edition. 8, 10

[70] J. L. Fiadeiro and T. Maibaum. A mathematical toolbox for the software
architect. In Software Specification and Design, 1996., Proceedings of the 8th
International Workshop on, pages 46–55, Washington, DC, USA, Mar 1996.
IEEE Computer Society Press. 143

199

[71] P. Fingar. Component-based frameworks for e-commerce. Communications
of ACM, 43(10):61–67, Oct 2000. 10

[72] I. T. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for dis-
tributed system integration. Computer, 35(6):37–46, 2002. 18, 19

[73] D. Frankel. Model Driven Architecture: Applying MDA to Enterprise Comput-
ing. T. Hudson and J. H. Russel. John Wiley & Sons, Inc., Indianapolis, IN,
USA, Jan 2003. 22, 94, 95, 96, 100, 101

[74] J. Garnett. Handbook of Administrative Communication, volume 63 of Public
Administration and Public Policy. CRC Press, Broken Sound Parkway, NW,
USA, Mar 1997. 1th edition. 16, 17, 24

[75] D. Gelernter and N. Carriero. Coordination languages and their signifi-
cance. Communications ACM, 35(2):97–107, 1992. 143

[76] C. Ghezzi. Flexible processes for evolvable products. In IEEE METRICS,
page 1, Washington, DC, USA, Sep 2005. IEEE Computer Society. 21

[77] C. Ghezzi. Software engineering: Emerging goals and lasting problems.
In Baresi L and Heckel R, editors, FASE, volume 3922 of Lecture Notes in
Computer Science. Springer, 2006. Fundamental Approaches to Software En-
gineering, FASE 2006, Vienna, Austria, March 27-28, 2006. 3, 21, 94, 116,
118

[78] P. Giorgini, M. Kolp, J. Mylopoulos, and A. Perini. Multi-agent and software
architectures: A comparative case study. In F. Giunchiglia, J. Odell, and
G. Weiß, editors, AOSE, volume 2585 of Lecture Notes in Computer Science,
pages 101–112, Berlin / Heidelberg, 2002. Springer-Verlag. 6, 10, 84

[79] P. Giorgini, M. Kolp, J. Mylopoulos, and M. Pistore. The Tropos method-
ology: an overview. In M.-P. Gleizes F. Bergenti and F. Zambonelli (Eds),
editors, In Methodologies And Software Engineering For Agent Systems, chap-
ter 5, pages 89–105. Kluwer Academic Publishing, Norwell, MA, USA, Dec
2004. 80, 84, 124, 125, 128, 148, 149, 151

[80] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Requirements
engineering for trust management: model, methodology, and reasoning.
International Journal of Information Security, 5(4):257–274, 2006. 91, 92

[81] P. Giorgini, F. Massacci, and N. Zannone. Security and trust requirements
engineering. In A. Aldini, R. Gorrieri, and F. Martinelli, editors, FOSAD,
volume 3655 of Lecture Notes in Computer Science, pages 237–272, Berlin Hei-
delberg, 2005. Springer-Verlag. 90

200

[82] J. Gordijn, H. Akkermans, and H. van Vliet. Business modelling is not pro-
cess modelling. In S. W. Liddle, H. C. Mayr, and B. Thalheim, editors, ER
(Workshops), volume 1921 of Lecture Notes in Computer Science, pages 40–51,
Heidelberg, Germany, 2000. Springer-Verlag. 8, 48, 142

[83] M. Hammer. Reengineering work: Don’t automate, obliterate. Harvard
Business Review, 68(4):104–112, Jul 1990. 7, 9, 10, 35, 36, 115, 117

[84] M. Hammer and J. Champy. Reengineering the Corporation: A Manifesto for
Business Revolution. HarperCollins Publishers, New York, NY, USA, May
1994. 37, 136

[85] P. Haumer, K. Pohl, and K. Weidenhaupt. Requirements elicitation and
validation with real world scenes. IEEE Transactions on Software Engineering,
24(12):1036–1054, Dec 1998. 80

[86] M. Havey. Essential Business Process Modeling. Theory in practice. O Reilly,
Sebastopol, CA, USA, Aug 2005. x, 9, 49, 50, 139, 142

[87] J. Hay. Requirements Analysis From Business Views to Architecture. Prentice
Hall PTR, Englewood Cliffs, NJ, USA, Sep 2002. 63

[88] J. D. Herbsleb and A. Mockus. An empirical study of speed and commu-
nication in globally distributed software development. IEEE Transactions in
Software Engineering, 29(6):481–494, Jan 2003. 3, 4

[89] J. D. Herbsleb and D. Moitra. Guest editors’ introduction: Global software
development. IEEE Software, 18(2):16–20, Mar 2001. 3, 16, 67

[90] T. P. Hill. On goods and services. The Review of Income and Wealth, 23(4):314–
339, 1977. 6

[91] H. Holmstrom, E. O. Conchuir, P.J. Agerfalk, and B. Fitzgerald. Global soft-
ware development challenges: A case study on temporal, geographical and
socio-cultural distance. In F. Paulisch, P. Kruchten, and A. Mockus, editors,
IEEE international conference on Global Software Engineering (ICGSE06), pages
3–11, Washington, DC, USA, Oct 2006. IEEE Computer Society. 3

[92] S. Holwell and P. Checkland. An information system won the war. IEE
Proceedings - Software, 145(4):95–99, Aug 1998. 77

[93] E. Hull, K. Jackson, and J. Dick. Requirements Engineering. Springer-Verlag,
Amsterdam, The Netherlands, 2nd edition, Dec 2005. 8, 60, 61, 62, 63

[94] A. Jansen and J. Bosch. Software architecture as a set of architectural design
decisions. In R. Nord, N. Medvidovic, R. Krikhaar, J. Stafford, and J. Bosch,
editors, WICSA, pages 109–120. IEEE Computer Society, 2005. 4

201

[95] F. Jouault and I. Kurtev. Transforming models with ATL. In J.-M. Bruel,
editor, MoDELS Satellite Events, volume 3844 of Lecture Notes in Computer
Science, pages 128–138, Berlin Heidelberg, Oct 2005. Springer-Verlag. 161

[96] H. Kaindl. Combining goals and functional requirements in a scenario-
based design process. In H. Johnson, L. Nigay, and C. Roast, editors, BCS
HCI, pages 101–121. Springer-Verlag Telos, Sep 1998. 80, 88

[97] N. I. Karacapilidis and D. Papadias. Computer supported argumentation
and collaborative decision making: the HERMES system. Information Sys-
tems, 26(4):259–277, Jun 2001. 121, 188

[98] D.W. Karolak. Global Software Development: Managing Virtual Teams and En-
vironments. Matt Loeb Wiley-IEEE Computer Society Pr, Los Alamitos, CA,
USA, Dec 1998. 67

[99] E. Kavakli and P. Loucopoulos. Goal modeling in requirements engineer-
ing: Analysis and critique of current methods. In J. Krogstie, T. A. Halpin,
and K. Siau, editors, Information Modeling Methods and Methodologies, pages
102–124. IGI Global, Hershey, PA, USA, 2005. 8, 9, 89

[100] M. Keen, S. Bishop, A. Hopkins, S. Milinski, C. Nott, R. Robinson, J. Adams,
and P. Verschueren; A. Acharya. Patterns: Implementing SOA using an Enter-
prise Service Bus. IBM Redbooks, New York, NY, USA, Jul 2005. 139

[101] W. Kent. Object-Orientation and interoperability. In Manfred Broy, editor,
NATO ASI OODBS, pages 287–305, 1993. 95

[102] M. Kolp, P. Giorgini, and J. Mylopoulos. Organizational patterns for early
requirements analysis. In J. Eder and M. Missikoff, editors, CAiSE, volume
2681 of Lecture Notes in Computer Science, pages 617–632, New York, NY,
USA, Jun 2003. Springer-Verlag. 8, 35, 79, 84, 127, 128, 187

[103] M. Kontio. Architectural manifesto: Choosing MDA
tools. Technical report, IBM developerWorks, Sep 2005.
http://www.ibm.com/developerworks/webservices/library/wi-
arch18.html. 104

[104] R. E. Kraut, C. Egido, and J. Galegher. Intellectual Teamwork: Social Founda-
tions of Cooperative Work, chapter Patterns of Contact and Communication
in Scientific Research Collaborations, page 552. Lawrence Erlbaum Associ-
ated, Hillsdale, NJ, USA, May 1990. 16

[105] P. Kruchten. The Rational Unified Process: An Introduction. The Addison-
Wesley Object Technology Series. Addison-Wesley Longman Publishing,
Boston, MA, USA, 3rd edition, Dec 2003. 8, 41, 49, 124

202

[106] J. A. Laredo and R. Ranjan. Continuous improvement through iterative de-
velopment in a multi-geography. In S. Sowmyanarayanan, F. Lanubile, and
B. Sengupta, editors, International Conference on Global Software Engineering,
pages 232–236, Los Alamitos, CA, USA, Aug 2008. IEEE Computer Society.
4

[107] S. Lauesen. Software requirements - styles and techniques. Addison-Wesley
Professional, Boston, MA, USA, Jan 2002. 60, 61

[108] S. Lauesen and O. Vinter. Preventing requirement defects: An experiment
in process improvement. Requirements Engineering Journal, 6(1):37–50, 2001.
60

[109] B. Leuf and W. Cunningham. The Wiki Way: Quick Collaboration on the Web.
Addison Wesley Longman Publishing, Boston, MA, USA, pap/cdr edition
edition, Apr 2001. 68

[110] T. Levitt. Production-line approach to service. Harvard Business Review,
50(5):4152, Sep 1972. 5, 12

[111] F. Leymann. The (service) bus: Services penetrate everyday life. In B. Be-
natallah, F. Casati, and P. Traverso, editors, ICSOC, volume 3826 of Lec-
ture Notes in Computer Science, pages 12–20, Heidelberg, Germany, 2005.
Springer-Verlag. 10, 139

[112] R. Likert. A technique for the measurement of attitude. Archives of Psychol-
ogy, 22(140):55, 1932. 180

[113] L. Liu and E. Yu. Designing information systems in social context: a goal
and scenario modelling approach. Information Systems, 29(2):187–203, Apr
2004. Special issue: The 14th international conference on advanced infor-
mation systems engineering (CAiSE*02). 80

[114] S. Lohmann and P. Heim. Semantifying requirements engineering the soft-
wiki approach. In S. Auer, S. Schaffert, and T. Pellegrini, editors, Proceedings
of the 4th International Conference on Semantic Technologies (I-SEMANTICS
’08), TRIPLE-I, page 182185, Sep 2008. 73, 75, 188

[115] A. Majchrzak, C. Wagner, and D. Yates. Corporate wiki users: results of a
survey. In D. Riehle and J. Noble, editors, International Symposium on Wikis,
pages 99–104. ACM, Aug 2006. 181

[116] D.-A. Manolescu and B. Lublinsky. Service orchestration patterns: grad-
uating from state of the practice to state of the art. In Ralph E. Johnson
and Richard P. Gabriel, editors, OOPSLA Companion, pages 148–149. ACM,
2005. 140, 141

203

[117] F. Massacci, J. Mylopoulos, and N. Zannone. An ontology for secure socio-
technical systems. In IGI Global, editor, Handbook of Ontologies for Business
Interaction, volume 1, page 469. Information Science Reference, Hershey,
PA, USA, Dec 2007. 90, 121

[118] M. R. McNeilly. Sun Tzu and the Art of Business: Six Strategic Principles for
Managers. Oxford University Press, New York, NY, USA, Apr 2000. 35

[119] S. J. Mellor, K. Scott, A. Uhl, and D. Weise. MDA Distilled: Principles of
Model-Driven Architecture. G. Booch, I. Jacobson, and J. Rumbaugh. The
Addison-Wesley Object Technology Series. Addison-Wesley Professional,
Boston, MA, USA, Mar 2004. 17, 96, 98

[120] D. Le Métayer. Software architecture styles as graph grammars. SIGSOFT
Software Engineering Notes, 21(6):15–23, 1996. 143

[121] B. Meyer. On formalism in specifications. IEEE Software, 2(1):6–26, Jan 1985.
62

[122] S. Mokhtar and H. Harudin. Interoperability in e-Government: Adopt-
ing the service oriented architecture (SOA) framework for a transparent
malaysian public delivery system. In G. Kotsis, D. Taniar, E. Pardede, and
I. K. Ibrahim, editors, iiWAS, volume 229, pages 463–469. Austrian Com-
puter Society, Dec 2007. 23

[123] J. Morecroft. Mental models and learning in system dynamics practice. In
Michael (Ed.) in Pidd, editor, Systems Modelling: Theory and Practice, chap-
ter 7, pages 101–26. John Wiley & Sons, Hoboken, NJ, USA, Feb 2004. 120

[124] N. Mullick, M. Bass, Z. Houda, Paulish Paulish, and M. Cataldo. Siemens
global studio project: Experiences adopting an integrated GSD infrastruc-
ture. In F. Paulisch, P. Kruchten, and A. Mockus, editors, IEEE international
conference on Global Software Engineering (ICGSE06), pages 203–212, Wash-
ington, DC, USA, Oct 2006. IEEE Computer Society. 4

[125] J. Mylopoulos, L. Chung, and B. A. Nixon. Representing and using non-
functional requirements: A process-oriented approach. IEEE Transactions
on Software Engineering, 18(6):483–497, Jun 1992. 80, 88

[126] J. Mylopoulos, L. Chung, and E. S. K. Yu. From Object-Oriented to Goal-
Oriented requirements analysis. Communications of ACM, 42(1):31–37, Jan
1999. 39, 49, 76, 79, 80, 88

[127] Z. Nanping and L. Yuan. Study and application of the SOA based e-
Government system. In X. Wang, H. Hu, P. Liu, and X. Cao, editors, Inter-
national Conference on Information Management, Innovation Management and

204

Industrial Engineering (ICIII 2008), pages 476–479, Los Alamitos, CA, USA,
Dec 2008. IEEE Computer Society Press. 23

[128] E. Newcomer and G. Lomow. Understanding SOA with Web Services.
Addison-Wesley Professional, Boston, MA, USA, Dec 2004. 23

[129] U. Nikula, J. Sajaniemi, and H. Kalviainen. A state-of-the-practice sur-
vey on requirements engineering in small- and medium-sized enterprises.
Technical Report Research Report 1, Telecom Business Research Cen-
ter, Lappeenrata University of Technology, Lappeenranta, Finland, 2000.
http://www.lut.fi/TBRC/. 148

[130] I. Nonaka and H. Takeuchi. The Knowledge-Creating Company. Oxford Uni-
versity Press, Virgin Islands, USA, May 1995. 1st edition. 6

[131] B. Nuseibeh and S. M. Easterbrook. Requirements engineering: a roadmap.
In 22nd International Conference on on Software Engineering the Future of Soft-
ware Engineering Track, June 4-11, pages 35–46, New York, NY, USA, Jun
2000. ACM. 60, 62, 63

[132] T. Ohno. Toyota Production System: Beyond Large-Scale Production. Produc-
tivity Press, New York, NY, USA, Mar 1988. 39

[133] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-
Oriented Computing: State of the art and research challenges. Computer,
40(11):38–45, Nov 2007. 139

[134] M. P. Papazoglou and J. Yang. Design methodology for Web Services and
Business Processes. In A. P. Buchmann, F. Casati, L. Fiege, M. Hsu, and
M. Shan, editors, TES, volume 2444 of Lecture Notes in Computer Science,
pages 54–64, London, UK, Aug 2002. Springer-Verlag. 135

[135] L. D. Paulson. Services science: A new field for today’s economy. IEEE
Computer, 39(8):18–21, Aug 2006. 4, 7, 117, 118

[136] A. Perini, M. Pistore, M. Roveri, and A. Susi. Agent-oriented modeling by
interleaving formal and informal specification. In AOSE, pages 36–52, 2003.
127

[137] K. Pohl. Softwiki: User-oriented, distributed requirements engineering
for evolutionary development processes, Jul 2008. http://www.sse.uni-
due.de/wms/en/index.php?go=236#web. 73, 75, 188

[138] N. Prakash, S. Srivastava, and S. Sabharwal. The classification framework
for model transformation. Journal of Computer Science, 2(2):166–170, Feb
2006. 102

205

[139] T. Puschmann and R. Alt. Enterprise application integration systems and
architecture the case of the Robert Bosch Group. Journal of Enterprise Infor-
mation Management, 17(2):105–116, Feb 2004. 23, 24

[140] E. Ras. Investigating wikis for software engineering - results of two case
studies. In A. Aguiar, U. Dekel, and P. Merson, editors, ICSE Companion
Wikis4SE Workshop Proceedings, volume CFP0935G, pages 47–56, Los Alami-
tos, CA, USA, May 2009. IEEE Computer Society. 68, 69, 73, 181, 188

[141] G. Regev and A. Wegmann. Defining early it system requirements with
regulation principles: The lightswitch approach. In M. Glinz, editor, RE,
pages 144–153. IEEE Computer Society, 2004. 8, 10

[142] I. Richardson, G. Avram, S. Deshpande, and V. Casey. Having a foot on
each shore - bridging global software development in the case of SMEs. In
S. Sowmyanarayanan, F. Lanubile, and B. Sengupta, editors, IEEE interna-
tional conference on Global Software Engineering (ICGSE08) 17-20 Aug, pages
13–22, Los Alamitos, CA, USA, Aug 2008. IEEE Computer Society. 16

[143] W. N. Robinson. Integrating multiple specifications using domain goals.
ACM SIGSOFT Software Engineering Notes, 14(3):219–226, 1989. 78

[144] D. De Roure, N. R. Jennings, and N. R. Shadbolt. Research
Agenda for the Semantic Grid: A Future e-Science Infrastruc-
ture. Technical Report UKeS-2002-02, National e-Science Cen-
tre, Dec 2001. Report for EPSRC/DTI e-Science Core Programme
http://eprints.ecs.soton.ac.uk/6350/1/semgrid.pdf. 18

[145] P. Sawyer, I. Sommerville, and S. Viller. Capturing the benefits of require-
ments engineering. IEEE Software, 16(2):78–85, Apr 1999. 8

[146] S. Si-Said and C. Rolland. Formalising guidance for the crews goal-scenario
approach to requirements engineering. In H. Jaakkola, H. Kangassalo, and
E. Kawaguchi, editors, 8th European-Japanese Conferences on Information Mod-
elling and Knowledge Bases (EJC 98), May 26-29, 1998, Vammala, Finland, Infor-
mation Modelling and Knowledge Bases, pages 172–190, Amsterdam, The
Netherlands, 1998. IOS Press. 80

[147] D. Smite. Requirements management in distributed projects. Journal of Uni-
versal Knowledge Management, 1(2):69–76, May 2006. xii, 60, 64, 66, 112

[148] A. Smith. An Inquiry into the Nature and Causes of the Wealth of Nations. Uni-
versity Of Chicago Press, Chicago, IL, USA, Feb 1977. First Published 1776.
36

206

[149] P. Sochos, I. Philippow, and M. Riebisch. Feature-oriented development of
software product lines: Mapping feature models to the architecture. Object-
Oriented and Internet-Based Technologies, 3263/2004:138–152, 0302-9743 2004.
190, 191

[150] J. F. Sowa and J. Zachman. Extending and formalizing the framework for
information systems architecture. IBM Systems Journal, 31(3):590–616, 1992.
40, 116

[151] J. Spohrer. The opportunities and challenges of doing busi-
ness in today’s global services economy. http://www.services-
science.de/Downloads.html, Apr 2006. 5

[152] A. Susi, A. Perini, J. Mylopoulos, and P. Giorgini. The Tropos Metamodel
and its use. Informatica (Slovenia), 29(4):401–408, 2005. 84, 85

[153] J. M. Tien and D. Berg. A case for service system engineering. Journal of
Systems Science and Systems Engineering, 12(1):13–38, Mar 2003. 5

[154] S.E. Toulmin. The Uses of Argument. Cambridge University Press, Cam-
bridge, UK, Jan 1985. 153

[155] W. T. Tsai. Service-oriented system engineering: A new paradigm. In
Service-Oriented System Engineering, 2005. SOSE 2005. IEEE International
Workshop, volume 0, pages 3–8, Washington, DC, USA, Oct 2005. IEEE Com-
puter Society. 2, 7, 22, 135

[156] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business
process management: A survey. In Wil M. P. van der Aalst, Arthur H. M.
ter Hofstede, and Mathias Weske, editors, Business Process Management, vol-
ume 2678 of Lecture Notes in Computer Science, pages 1–12, Berlin / Heidel-
berg, Jun 2003. Springer-Verlag. 8, 111

[157] A. van Lamsweerde. Requirements engineering in the year 00: a research
perspective. In 22nd International Conference on on Software Engineering , June
4-11, pages 5–19, New York, NY, USA, Jun 2000. ACM. 60, 61, 77

[158] A. van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. In S. Easterbrook and B. Nuseibeh, editors, RE, pages 249–262, Los
Alamitos, CA, USA, 2001. IEEE Computer Society. 77, 78

[159] A. van Lamsweerde, R. Darimont, and P. Massonet. Goal-directed elabora-
tion of requirements for a meeting scheduler: problems and lessons learnt.
In Second IEEE International Symposium on Requirements Engineering, March
27 - 29, 1995, York, England, pages 194–203, Los Alamitos, CA, USA, 1995.
IEEE Computer Society. 76, 79, 81

207

[160] S. L. Vargo and R. F. Lusch. The four service marketing myths: Rem-
nants of a goods-based, manufacturing model. Journal of Service Research,
6(4):324335, May 2004. 5

[161] S. Weber, L. Thomas, O. Armbrust, E. Ras, J. Rech, O. Uenalan, M. Wessner,
M. Linnenfelser, and B. Decker. A software organization platform (SOP). In
A. Jedlitschka and O. Salo, editors, 10th international Workshop on: Learning
Software Organizations Methods, Tools, and Experiences, (LSO 2008), Product-
Focused Software Process Improvement, volume 5089 of Lecture Notes in Com-
puter Science, pages 421–443, Berlin Heidelberg, 2008. Springer-Verlag. 73,
188

[162] M. Weske. Business Process Management Concepts, Languages, Architectures.
Springer-Verlag, Amsterdam, The Netherlands, Nov 2007. 46

[163] R. Wieringa. Postmodern software design with NYAM: Not Yet Another
Method. In Manfred Broy and Bernhard Rumpe, editors, Requirements Tar-
geting Software and Systems Engineering, volume 1526 of Lecture Notes in Com-
puter Science, pages 69–94. Springer, 1997. 8

[164] K.M. van Hee W.M.P. van der Aalst. Workflow Management: Models, Methods
and Systems. The MIT Press, Cambridge, MA, USA, Jan 2002. 1st edition. 9,
49

[165] A. Wolfl. The service economy in OECD countries. STI Working Pa-
per 3, Organisation for Economic Co-Operation and Development, 3 2005.
http://www.cepii.fr/anglaisgraph/pagepers/wolfl.htm. 4

[166] M. Wooldridge. An Introduction to Multiagent Systems, chapter 1, page 320.
John Wiley& Sons, Chichester, England, Feb 2002. 79, 85

[167] M. Wooldridge and P. Ciancarini. Agent-oriented software engineering:
The state of the art. In Paolo Ciancarini and Michael Wooldridge, editors,
AOSE, volume 1957 of Lecture Notes in Computer Science, pages 1–28, Hei-
delberg, Germany, 2000. Springer-Verlag. 85

[168] M. Wooldridge, G. Weiß, and P. Ciancarini, editors. Agent-Oriented Software
Engineering II, Second International Workshop, AOSE 2001, Montreal, Canada,
May 29, 2001, Revised Papers and Invited Contributions, volume 2222 of Lecture
Notes in Computer Science, Heidelberg, Germany, 2002. Springer-Verlag. 196,
197

[169] W. Xiao, C. Yan Chi, and M. Yang. On-line collaborative software develop-
ment via wiki. In A. Désilets and R. Biddle, editors, International Symposium
on Wikis, pages 177–183, New York, NY, USA, 2007. ACM. 69

208

[170] Y. Yang, F. Xia, W. Zhang, X. Xiao, Y. Li, and X. Li. Towards semantic re-
quirements engineering. In P. Sheu and H. Yu ed., editors, WSCS ’08: Pro-
ceedings of the IEEE International Workshop on Semantic Computing and Sys-
tems, 14-15 July 2008, pages 67–71, Washington, DC, USA, Jul 2008. IEEE
Computer Society. 75

[171] R. Young. The Requirements Engineering Handbook. Artech House, Norwood,
MA, USA, Nov 2003. 8, 59, 63, 76, 126, 184

[172] E. Yu. Modeling organizations for information systems requirements engi-
neering. In M. Jarke S. Jacobs and K. Pohl, editors, Proceedings of the First
IEEE International Symposium on Requirements Engineering (RE’93) San Diego,
Jan. 46, 1993, pages 34–41, Los Alamitos, CA, USA, Jan 1993. IEEE Com-
puter Society. 9, 39, 49, 83

[173] E. S. K. Yu. Towards modeling and reasoning support for early-phase re-
quirements engineering. In C. Heitmeyer and J. Mylopoulos, editors, 3rd
IEEE International Symposium on Requirements Engineering (RE’97), January
5-8, 1997, Annapolis, MD, USA, pages 226–235, Los Alamitos, CA, USA, Jan
1997. IEEE Computer Society. 76, 83

[174] E. S. K. Yu and J.Mylopoulos. Using goals, rules, and methods to support
reasoning in business process re-engineering. In S. Trevor, B. El-Rewini,
N. Hesham, S. Jay, R. Hunter, and L. Mudge, editors, 27th Annual Hawaii In-
ternational Conference on System Sciences (HICSS-27), January 4-7, 1994, Maui,
Hawaii., volume 4 of Information Systems: Collaboration Technology, Organiza-
tional Systems and Technology, pages 234–243, Los Alamitos, CA, USA, 1994.
IEEE Computer Society. 39, 82

[175] E. S. K. Yu and J. Mylopoulos. From E-R to A-R - modelling strategic actor
relationships for business process reengineering. In P. Loucopoulos, editor,
ER, volume 881 of Lecture Notes in Computer Science, pages 548–565, Berlin
/ Heidelberg, 1994. Springer-Verlag. 83

[176] J. A. Zachman. A framework for information systems architecture. IBM
Systems Journal, 38(2/3):454–470, 1999. 39, 41

[177] P. Zave. Classification of research efforts in requirements engineering. ACM
Computing Surveys, 29(4):315–321, Dec 1997. 60

[178] V. A. Zeithaml, A. Parasuraman, and L. L. Berry. Problems and strategies
in services marketing. Journal of Marketing, 49(2):3346, Aug 1985. 6, 7

209

URL’s

[Ado09] Adobe. Adobe flex 3, 2009. http://www.adobe.com/it/products/flex/,
Retrieved December 2009.

[aI06] alphaWorks IBM. The Emerging Technologies Toolkit (ETTK) Project, 2006.
http://alphaworks.ibm.com/ettk.

[Ame94] America On Line. The netscape archive, 1994.
http://browser.netscape.com/, Retrieved December 2009.

[ATL08] ATLAS. Atlas: Complex data management in distributed systems, Nov
2008. http://www.inria.fr/recherche/equipes/atlas.fr.html.

[BEA03] BEA Systems and International Business Machines Corpo-
ration and Microsoft Corporation. Business Process Execution
Language for Web Services (BPEL4WS) specifications, May 2003.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnbizspec/html/bpel1-1.asp.

[BL98] T. Berners-Lee. Semantic Web Road map, Sep 1998.
http://www.w3.org/DesignIssues/Semantic.html Draft. Plan based in
discussions with the W3C team, and various W3C member companies.

[Cen08] Centro per la ricerca scientifica e tecnologica (ITC-irst) di Trento.
The Tool for Agent Oriented Modeling for Eclipse (TAOM4E), Jul 2008.
http://sra.itc.it/tools/taom4e/.

[CFF04] K. Czsjkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, D. Snelling, and
S. Tueke. Modeling Stateful Resources with Web Services. version 1.1, Mar
2004. http://www-106.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf.

[Com08] Compuware. Optimalj, Jan 2008. http://www.compuware.com/press-
room/news/2001/1268 ENG HTML.htm.

210

[Cun96] Cunningham & Cunningham, Inc. Portland pattern repository, 1996.
http://c2.com/ppr/, Retrieved December 2009.

[Dum99] E. Dumbill. Examining commercenet’s eco framework, Oct 1999.
http://www.xml.com/pub/a/1999/10/eco/index.html.

[Edg03] Edgewall Software. The trac project integrated scm & project manage-
ment, 2003. http://trac.edgewall.org/, Retrieved December 2009.

[Eur02] European Commission. Environment directorate gen-
eral - community mechanism for civil protection, 2002.
http://ec.europa.eu/environment/civil/prote/mechanism.htm, Retrieved
December 2009.

[H. 08] H. J. Happel. Teamweaver wiki, 2008. http://www.teamweaver.org/,
Retrieved December 2009.

[IBM97] IBM. WebSphere software, 1997. http://www-
306.ibm.com/software/websphere/.

[IBM08] IBM. Rational rose product line, Nov 2008. http://www-
01.ibm.com/software/awdtools/developer/rose/.

[INE04] INET Inc. Tsunami relief information, 2004.
http://www.inet.co.th/tsunami/, Retrieved December 2009.

[ITU09a] ITU. International telecommunication union web site, 2009.
http://www.itu.int/net/about/index.aspx.

[ITU09b] ITU. URN goal-oriented requirement language specifications draft
z.151 standard, 2009. http://jucmnav.softwareengineering.ca/twiki/-
bin/view/UCM/DraftZ151Standard.

[K. 05] K. Czsjkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, D.
Snelling and S. Tueke. The WS-Resource Framework, Mar 2005.
http://www.globus.org/wsrf/specs/ws-wsrf.pdf.

[M. 05] M. Gibson. Wikidoc, 2005. http://www.wikidoc.org/, Retrieved Decem-
ber 2009.

[Mar07] Regione Marche. The IDentification for Emer-
gency Administration (IDEA) project, Aug 2007.
www.protezionecivile.marche.it/viewdoc.asp?co id=522.

[Mic02] Sun Microsystems. Java metadata interface (jmi) specification, 2002.
http://jcp.org/aboutJava/communityprocess/final/jsr040/index.html.

211

[Mic05] Microsoft EMEA Press Center. Q&a: Microsoft hosts sme day
to foster support and dialogue for europe’s small and medium-sized
enterprises, 2005. http://www.microsoft.com/emea/presscentre/pres-
sreleases/SMEDayQA 06062006.mspx, Retrieved December 2009.

[Mic08] Microsoft. Visual studio 2008 express edition, Jan 2008.
http://www.microsoft.com/express/default.aspx.

[Nat05] National Oceanic & Atmospheric Administration (NOAA). Hurri-
can katrina - most destructive hurricane ever to strike the U.S., 2005.
http://www.katrina.noaa.gov/, Retrieved December 2009.

[OAS06a] OASIS. Reference Model for Service Oriented Architecture v 1.0, July
2006. Official Committee Specification - http://www.oasis-open.org/com-
mittees/download.php/19361/soa-rm-cs.pdf.

[OAS06b] OASIS. Web services distributed manage-
ment (wsdm) version 1.1, 2006. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsdm.

[OAS06c] OASIS. Web Services Resource Properties, 2006. Working Draft -
http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-
1.2-draft-04.pdf.

[OAS06d] OASIS. The Web Services Resource Properties (WSRF) specifications,
Apr 2006. Standard http://www.oasis-open.org/committees/wsrf.

[Obj01] Object Management Group (OMG). MDA guide version 1.0.1, Jun 2001.
http://www.omg.org/cgi-bin/doc?ormsc/05-04-01.

[OMG01] OMG. Model Driven Architecture (MDA) architecture board, Jul 2001.
http://www.omg.org/cgi-bin/doc?ormsc/05-04-01.

[OMG02a] OMG. Meta-object facility MOF versione 1.4, Apr 2002.
http://www.omg.org/technology/documents/formal/mof.htm.

[OMG02b] OMG. MOF 2.0 Query / Views / Transformations RFP, Feb 2002.
http://www.omg.org/docs/ad/02-01-06.pdf.

[OMG03a] OMG. Ontology Definition Metamodel - request for proposal, Jun
2003. Document ad/2003-03-40.

[OMG03b] OMG. Uml 2.0 ocl specifications, Nov 2003.
http://www.omg.org/docs/ptc/03-10-14.pdf.

[OMG06] OMG. Business Process Modeling Notation (BPMN) 1.0 adopted spec-
ification, Feb 2006. http://www.bpmn.org/Documents.

212

[OMG07a] OMG. Unified Modeling Language specification v.2.1.2, Novem-
ber 2007. http://www.omg.org/technology/documents/modeling spec cat-
alog.htm.

[OMG07b] OMG. XMLMetadata Interchange (XMI) version 2.1.1, Dec 2007.
http://www.omg.org/cgi-bin/doc?formal/2007-12-01.

[Omo07] Omondo. Omondo uml eclipse plug-in free edition, Dec 2007.
http://www.eclipsedownload.com/download free eclipse 3.3.html.

[Pap08] Papyrus. Papyrus uml editor, Nov 2008.
http://www.papyrusuml.org/scripts/home/publigen/content/tem-
plates/show.asp?P=55&L=EN&ITEMID=2.

[Pre09] Presidenza del Consiglio dei Ministri - Dipartimento della
Protezione Civile. Grandi eventi ed ordinanze g8 2009, 2009.
http://www.protezionecivile.it/legislazione/ordinanze dettaglio.php?id=1403,
Retrieved December 2009.

[R. 08] R. C. Martin and M. Martin and P. Wilson-Welsh. Fitnesse, 2008.
http://fitnesse.org/, Retrieved December 2009.

[Sol09] C. Soltenborn. Meta uml, Jul 2009.
http://metauml.sourceforge.net/old/index.html, Retrieved December
2009.

[Sta00] Standish Group. Chaos report 2000. Techni-
cal report, The Standish Group Report, chaos2000 2000.
http://www.cs.nmt.edu/ cs328/reading/Standish.pdf.

[Sun02] Sun Microsystems. The java metadata interface
(JMI) jsr-000040 specifications - final release, Jun 2002.
http://java.sun.com/products/jmi/index.jsp.

[Sun08] Sun Microsystems. Java Web Service Development Pack (JWSDP) 2,
2008. http://java.sun.com/webservices/downloads/previous/index.jsp.

[Tha01] S. Thatte. Xlang: Web services for business process design, Oct 2001.
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm.

[The98] The Free Software Foundation Inc. Concurrent versions system, 1998.
http://www.nongnu.org/cvs/, Retrieved December 2009.

[The03] The Eclipse Funtation. Java Emitter Template, 2003.
http://www.eclipse.org/articles/Article-JET/jet tutorial1.html, Retrieved
December 2009.

213

[The05a] The Eclipse Funtation. Graphical Modeling Framework (GMF), 2005.
http://www.eclipse.org/modeling/gmf/, Retrieved December 2009.

[The05b] The Eclipse Funtation. Mofscript, 2005.
http://www.eclipse.org/gmt/mofscript/about.php, Retrieved Decem-
ber 2009.

[The08a] The Eclipse Fundation. The Eclipse Platform, Jul 2008.
http://www.eclipse.org/.

[The08b] The Eclipse Funtation. Eclipse Modeling Framework (EMF), Jul 2008.
http://www.eclipse.org/emf/.

[The08c] The Eclipse Funtation. Eclipse modeling tools package, Jun
2008. http://www.eclipse.org/downloads/packages/eclipse-modeling-
tools-includes-incubating-components/ganymedesr1.

[The09a] The ATHENA Consortium. Athena interoperability framework (aif),
Apr 2009. http://modelbased.net/aif/.

[The09b] The Marche Region . Civil protection department, Jul 2009.
http://www.protezionecivile.marche.it, Retrieved December 2009.

[TOC08] TOCAI.it. Tecnologie orientate alla conoscenza per aggregazioni di im-
prese, Oct 2008. http://www.dis.uniroma1.it/t̃ocai/.

[Top08] Topcased. Topcased uml editor, Nov 2008.
http://topcased.gforge.enseeiht.fr/index.php.

[Uni02] University of Trento. The tropos modeling language. a user guide., 2002.
http://eprints.biblio.unitn.it/archive/00000208/01/61.pdf.

[W3C99a] W3C. Xml path language (xpath) version 1.0, nov 1999.
http://www.w3.org/TR/xpath.

[W3C99b] W3C. Xsl transformations (xslt) version 1.0, Nov 1999.
http://www.w3.org/TR/xslt.

[W3C01] W3C. Web Services Description Language (WSDL) specifications, 2001.
W3C Note - http://www.w3.org/TR/wsdl.

[W3C02a] W3C. OWL. Web Ontology Language, reference version 1.0, 2002.
http://www.w3.org/TR/owl-ref/.

[W3C02b] W3C. Web services conversation language (WSCL) 1.0, Mar 2002.
W3C Note - http://www.w3.org/TR/wscl10/.

214

[W3C04a] W3C. Web services architecture (WSA), Feb 2004. W3C Working
Group Note - http://www.w3.org/TR/ws-arch/.

[W3C04b] W3C. Web services choreography description language version 1.0,
Apr 2004. http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/.

[W3C05] W3C. Web Services Semantics (WSDL-S), 2005. W3C Member Submis-
sion - http://www.w3.org/Submission/WSDL-S/.

[War09] Ward Cunningham. Interview given to wiki4se @ icse2009
workshop, 2009. http://www.youtube.com/watch?v=I 75NoC85TE&fea-
ture=player embedded, Retrieved December 2009.

[Wik07] Wikimedia Fundation. Semantic Media Wiki project, Jul 2007.
http://meta.wikimedia.org/wiki/Semantic MediaWiki.

[Wik08] Wikimedia Fundation. Mediawiki Extensions, Jul 2008.
http://www.mediawiki.org/wiki/Extension Matrix.

[Wik09] Wikimedia Fundation Inc. Wikipedia web site, 2009.
http://www.wikipedia.org/, Retrieved December 2009.

[Wor08] World Wide Web Consortium (W3C). Resource Descrip-
tion Framework (RDF) model and syntax specification, Jul 2008.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

215

	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	1 Introduction
	1.1 Motivations
	1.1.1 Global Software Engineering of SOA's
	1.1.2 The Need for a Business-Oriented Approach to Software Services Development

	1.2 Contributions of the Thesis
	1.2.1 General Objectives for the Thesis
	1.2.2 Summary of Contributions and Limitations

	1.3 Previous Work of the Author Related to the Thesis
	1.4 Services in e-Government and Civil Protection
	1.4.1 Services for Critical Infrastructure Protection and Emergency Management
	1.4.2 The Marche Region SISSI Scenario
	1.4.3 An Inquiry on the Causes of the SISSI Failure

	1.5 Outline of the Thesis

	2 State of Art of Business-Oriented Model Driven Development
	2.1 Business Modeling and Reengineering
	2.1.1 A Historical Perspective of Business Modeling
	2.1.2 The Discipline of Business Modeling in Computer Science
	2.1.3 Business Process Modeling is not Process Modeling
	2.1.4 Notations for Business Process Modeling
	2.1.5 The ATHENA Model-Driven Interoperability Framework

	2.2 Global Requirements Engineering
	2.2.1 Requirements Engineering
	2.2.2 Requirements in Distributed Projects
	2.2.3 The SOP-wiki and Softwiki Projects
	2.2.4 The Goal Oriented Approach to Requirements Engineering

	2.3 Modeling Enterprise-centric Computing
	2.3.1 MDE and MDA in Enterprise Computing
	2.3.2 MDA Tools
	2.3.3 How Eclipse supports MDA

	3 My proposal: the Enterprise-Service-Implementation (ESI) Design Method
	3.1 A Business-oriented Approach to Software Modeling
	3.1.1 The Enterprise Modeling phase
	3.1.2 The Service Modeling phase
	3.1.3 Platform Specific Implementations

	4 My Technological Framework
	4.1 The Framework Transformations
	4.1.1 The Goals 2 Services Transformation
	4.1.2 The Services 2 Web Services & Portlets Transformations

	4.2 Plug-in Architectures as Patterns for SOA Interaction
	4.2.1 SOA Infrastructures
	4.2.2 Plug-ins as a Reference Architecture for ESB's

	5 My Tools Supporting the ESI Method
	5.1 Semantic Wikis for Requirements Engineering
	5.1.1 The WikiReq tool
	5.1.2 WikiReq argumentation feature
	5.1.3 WikiReq to Eclipse export
	5.1.4 WikiReq: an Example Scenario

	5.2 The SMOTE Tool
	5.2.1 Goals2Service as a CIM2PIM MDA Transformation
	5.2.2 Services2WebServices&Portlets as PIM2PSM MDA Transformations

	6 The Civil Protection Case Study
	6.1 The Case Study
	6.1.1 The IDEA Enterprise Modeling Phase
	6.1.2 The IDEA Service Modeling Phase
	6.1.3 The IDEA Platform Specific Implementation Phase

	6.2 Critical Evaluation and Results of the Experiment
	6.2.1 Lessons Learned and Threats to Validity

	7 Conclusions and Future Works
	Bibliography
	URL's

