
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

Embedded Model Predictive Control:
Finite Precision Arithmetic
and Aerospace Applications

PhD Program in Computer Science and Engineering

XXVII Cycle

by

Alberto Guiggiani

2015

The dissertation of Alberto Guiggiani has been approved.

Program Coordinator: Prof. Alberto Bemporad,
IMT Institute for Advanced Studies, Lucca (IT).

Advisor: Prof. Alberto Bemporad,
IMT Institute for Advanced Studies, Lucca (IT).

Co-advisor: Prof. Panagiotis Patrinos,
IMT Institute for Advanced Studies, Lucca (IT).

Co-advisor: Prof. Ilya Kolmanovsky,
University of Michigan, Ann Arbor, MI (US).

The dissertation of Alberto Guiggiani has been reviewed by:

Prof. Ion Necoara,
University Politehnica of Bucharest (RO).

Dr. Samir Bennani,
European Space Agency (ESA).

IMT Institute for Advanced Studies, Lucca

2015

alla mia famiglia

Table of Contents

Page

List of Figures xiii

List of Tables xvii

Acknowledgements xix

Vita and Publications xxi

Abstract xxv

Notation and Abbreviations xxvii

1 Introduction 1
1.1 Model Predictive Control 2

1.1.1 Linear Tracking Formulation 5
1.1.2 Extensions . 8

1.2 Quadratic Programming for Model Predictive Control 12
1.2.1 Lagrangian Duality 14
1.2.2 Methods . 15

vii

1.2.3 From Model Predictive Control to Quadratic
Programming 21

1.3 Fixed-Point Computations 24
1.3.1 Overflow Errors 27
1.3.2 Round-off Errors 28
1.3.3 Errors due to Mathematical Operations . . . 29

1.4 Embedded Model Predictive Control 30
1.5 Offset-Free Model Predictive Control 33

1.5.1 Methods for Offset-Free Model Predictive
Control . 33

1.5.2 Simulation . 41
1.6 Model Predictive Control for Aerospace Applications 46
1.7 Motivation and Contribution 48

2 Gradient Projection Methods in Finite Precision Arith-
metic 57
2.1 Inexact Gradient Projection 58
2.2 Inexact Dual Gradient Projection 64

2.2.1 Modified Primal-Dual Pair 66
2.2.2 Inexact Oracle 68
2.2.3 Primal Convergence Rates 70
2.2.4 Optimal Choice of α for Fixed Oracle Errors

εz , εξ . 76
2.2.5 Bound of the Number of Iterations 76
2.2.6 Maximum Admissible Oracle Errors εz , εξ . 78

2.3 Fixed-Point Dual Gradient Projection for Quadratic
Programs . 81

viii

2.3.1 Fixed-point Implementation 82
2.3.2 Guidelines for the Number of Fractional Bits 83
2.3.3 Guidelines for the Number of Integer Bits . . 85

2.4 Simulations . 87
2.4.1 Sample Evolutions 87
2.4.2 Infeasibility and Suboptimality Bounds . . . 90
2.4.3 Target Infeasibility 92
2.4.4 Bounds on Iteration Count 95
2.4.5 Masses Serially Connected Example 97

3 Proximal Newton Methods in Finite Precision Arithmetic101
3.1 Problem Setup . 102
3.2 Proximal Newton Algorithm 104
3.3 Fixed-Point Proximal Newton Algorithm 107

3.3.1 Round-off Error Analysis 107
3.3.2 Avoiding Overflow Errors 108

3.4 Optimization of the Algorithm 110
3.4.1 Preconditioning 110
3.4.2 Division-free Computations 113

3.5 Simulations . 115
3.5.1 Computational Complexity 115
3.5.2 Solution Accuracy 119
3.5.3 Control of a F16 Aircraft Example 121

4 Experimental Tests 125
4.1 Embedded Optimization on ARM Cortex 126

4.1.1 The ARM Cortex-M3 Processing Unit 126

ix

4.1.2 Gradient Projection Methods on ARM Cortex 127
4.1.3 Proximal Newton Methods on ARM Cortex . 130

4.2 Embedded Optimization on FPGA 134
4.2.1 Introduction to FPGA Devices 134
4.2.2 Fixed-Point Dual Gradient Projection on FPGA138

5 Aerospace Applications 147
5.1 Spacecraft Nonlinear Model 148
5.2 Control Objective . 150
5.3 Control Model . 152
5.4 MPC Formulation . 154
5.5 Computational Complexity 161
5.6 Simulations . 163

5.6.1 Sinusoidal References Tracking 163
5.6.2 Rest-to-Rest Orientation Maneuver 166
5.6.3 Fixed-Point Accuracy 168

5.7 Reaction Wheels Desaturation by Gravity Gradients 170
5.7.1 Background 170
5.7.2 Nonlinear Model 170
5.7.3 Control Model 172
5.7.4 Simulation Results 173
5.7.5 Comparison with LQR 176

5.8 Reaction Wheels Desaturation by Magnetic Moments 178
5.8.1 Background 178
5.8.2 Nonlinear Model 179
5.8.3 Control Model 180
5.8.4 Simulation Results 182

x

6 Conclusions 185
6.1 Summary . 186
6.2 Future Work . 188

Bibliography 189

xi

List of Figures

Figure Page

1.1 Graphical representation of Model Predictive Control . 3
1.2 Typical Model Predictive Control loop 8
1.3 One-dimensional graphical example of Lagrangian duality 16
1.4 Structure of a fixed-point number 26
1.5 Fixed-point errors . 27
1.6 Scheme for integral action on the reference signal . . . 42
1.7 Closed-loop simulation of integral action techniques . . 45

2.1 Sample primal infeasibility and suboptimality evolutions 89
2.2 Asymptotic primal infeasibility and suboptimality com-

pared to theoretical bounds 91
2.3 Iterations to target infeasibility 93
2.4 Fractional bits for target infeasibility 94
2.5 Number of iterations for target infeasibility 96
2.6 Masses serially connected 99

3.1 Impact of preconditioning 112

xiii

3.2 Proximal Newton methods compared to Gradient Meth-
ods (number of iterations) 115

3.3 Proximal Newton methods compared to Gradient Meth-
ods (number of fixed-point operations) 117

3.4 Proximal Newton methods compared to Gradient Meth-
ods (solution accuracy) 120

3.5 Open-loop and closed-loop simulations of pitch and
attack angles in F16 aircraft 122

4.1 Dual Gradient Projection Algorithm on ARM Cortex-M3 128
4.2 Proximal Newton Algorithm on ARM Cortex-M3 . . . 132
4.3 FPGA Structure . 135
4.4 Detail of FPGA programmable switch 136
4.5 Dual Gradient Projection on FPGA 139
4.6 Dual Gradient Projection on FPGA 141
4.7 Clock signals . 143

5.1 Domain of attraction . 157
5.2 Offset-free control . 160
5.3 Closed-loop simulation of sinusoidal reference tracking 165
5.4 Rest-to-rest orientation maneuver 167
5.5 Fixed-point and 64-bit floating-point comparison 168
5.6 Closed-loop simulation with MPC for reaction wheels

desaturation using the gravity gradients 175
5.7 Closed-loop simulation with LQR for reaction wheels

desaturation using the gravity gradients 177
5.8 Test orbit . 181

xiv

5.9 Closed-loop simulation with LTV-MPC for reaction
wheels desaturation using the Earth magnetic field . . . 183

xv

List of Tables

Table Page

1.1 Fixed-point vs. floating-point arithmetics. 24

3.1 Estimation of the exponential coefficient 116

4.1 Dual Gradient Projection Algorithm on ARM Cortex-M3 129
4.2 Proximal Newton Algorithm on ARM Cortex-M3 . . . 133
4.3 Fixed-Point Dual Gradient Projection Algorithm on FPGA.145

5.1 Parameters in the spacecraft closed-loop simulations. . 158
5.2 Spacecraft attitude controller complexity. 162
5.3 Spacecraft (Ji) and wheels (J̃) moments of inertia used

in the reaction wheels desaturation simulations. 173
5.4 Test orbit parameters. 181

xvii

Acknowledgements

First of all, I would like to thankmy advisorsAlberto Bemporad,
Panos Patrinos, and Ilya Kolmanovsky. Alberto, your skills
and expertise have always been an inspiration, and your help

for my career has been invaluable. Panos, most of this thesis results
wouldn’t have been possible without the passion and dedication
that you put in your work. Ilya, I really appreciated your hospitality
at the University of Michigan, you made my visiting period an
enriching experience and gave an essential contribution to this
thesis work.

Regarding the visiting period, I wish also to thank Eric Tseng
and Davor Hrovat for hosting me at Ford Research in Dearborn.

I wish to expressmy gratitude to IonNecoara and Samir Bennani
for their efforts in reviewing this thesis, and for giving constructive
feedbacks that helped me to improve this work.

xix

I would like to thank all my friends and colleagues at IMT Lucca,
with whom I had the pleasure to spend enjoyable moments through
the three years of PhD. A special thanks goes to Matteo, Daniele,
Pantelis, Lorenzo, Andreas, Gionata, Ajay, Carlo Alberto, and all the
past and current Dynamical Systems, Control, and Optimization
research unit fellows, that were always available for help andwilling
to engage in constructive discussions.

Un ringraziamento speciale alla mia famiglia per il supporto
offerto in ogni istante di questo viaggio iniziatomolti anni fa. Questa
tesi è dedicata a voi.

xx

Vita

Feb. 17, 1985 Born, Bagno a Ripoli (Florence), Italy

Education

2012-15 Ph.D., IMT Institute for Advanced Studies, Lucca.
Dynamical Systems, Control and Optimization Research Unit.
Advisor: Prof. Alberto Bemporad.

2005-11 B.Eng. + M.Eng., University of Florence, Florence (IT).
Electrical and Automation Engineering degree.
Final Mark: 110/110 cum Laude.
Thesis title:Project and implementation of a real-time control system
in an optical tweezer for neuronal stimulation measurements.

Studies Abroad

2014 Visiting, University of Michigan - Aerospace Engineering Dept.,
Ann Arbor (MI).

2008 Erasmus, University of Lancaster, Lancaster (UK).

xxi

Experience

2014 Internship, Ford Research and Advanced Engineering, Dearborn
(MI).
Topic: Research on automotive control.

2012 Collaborator, National Research Council of Italy (CNR) - Institute for
Complex Systems (ISC), Florence (IT).
Topic: Development of a real-time control system for Atomic Force
Microscopy (AFM) imaging.

2011 Internship, Italian Institute of Technology (IIT) - Neuroscience and Brain
Technologies Dept. (NBT), Genoa (IT).
Topic: Project and implementation of a control system for optical
trap to study effects of mechanical stimuli on neuronal cells in vitro.

Projects

HYCON2 Matlab Toolbox, dysco.imtlucca.it/h2t.
An unified environment developed within the HYCON2 European
Network of Excellence to promote and integrate MATLAB toolboxes
for networked control design.

RealTime Suite, rtaixml.net/realtime-suite.
Tools and guides to set up a Linux-RTAI real-time machine within
a CACSD environment.

Manuale di Automazione, manualeautomazione.netsons.org.
Notes (in italian language) covering many control theory and ap-
plications topics, including system modeling and identification,
stability analysis, control systems synthesis, laboratories, and more.

xxii

dysco.imtlucca.it/h2t
rtaixml.net/realtime-suite
manualeautomazione.netsons.org

Publications

Journal Papers

2015 M. Rubagotti, P. Patrinos, A. Guiggiani, A. Bemporad. "Real-
Time Model Predictive Control Based on Dual Gradient Pro-
jection: Theory and Fixed-Point FPGA Implementation". Inter-
national Journal of Robust and Nonlinear Control.

2015 P. Patrinos, A. Guiggiani, A. Bemporad. "A Dual Gradient
Projection Algorithm for Model Predictive Control in Fixed-
Point Arithmetic". Automatica, 55.

2011 A. Guiggiani, B. Torre, A. Contestabile, F. Benfenati, M. Basso,
M. Vassalli, , and F. Difato. "Long-range and long-term inter-
ferometric tracking by static and dynamic force-clamp optical
tweezers". Optics Express, 19(23).

xxiii

Conference Proceedings

2015 A. Guiggiani, I. Kolmanovsky, P. Patrinos, and A. Bemporad.
"Constrained Model Predictive Control of Spacecraft Attitude
with Reaction Wheels Desaturation". In Proc. European Control
Conference, Linz, Austria.

2015 A. Guiggiani, I. Kolmanovsky, P. Patrinos, and A. Bemporad.
"Fixed-Point Constrained Model Predictive Control of Space-
craft Attitude". In Proc. American Control Conference, Chicago,
Illinois.

2014 A. Guiggiani, P. Patrinos, and A. Bemporad. "Fixed-Point
Implementation of a Proximal NewtonMethod for Embedded
Model Predictive Control". In Proc. IFAC World Congress, Cape
Town, South Africa.

2013 P. Patrinos, A. Guiggiani, and A. Bemporad. "Fixed-point dual
gradient projection for embedded model predictive control".
In Proc. 12th European Control Conference, Zurich, Switzerland.

2012 F. Difato, H. Tsushima, M. Pesce, A. Guiggiani, F. Benfenati,
A. Blau, M. Basso, M. Vassalli, and E. Chieregatti. "Axonal
regeneration of culturedmouse hippocampal neurons studied
by an optical nano-surgery system". In Proc. Conference on
Photonic Therapeutics and Diagnostics, San Francisco, California.

2011 A. Guiggiani, M. Basso, M. Vassalli, and F. Difato. "RealTime
Suite: a step-by-step introduction to the world of real-time
signal acquisition and conditioning". In Proc. Real Time Linux
Workshop, Prague, Czech Republic.

xxiv

Abstract

Model Predictive Control (MPC) is a multivariable advanced
control technique widely popular in many industrial appli-
cations due to its ability to explicitly optimize performance,

straightforwardly handling constraints on system variables.

However, MPC requires solving a Quadratic Programming (QP)
optimization problem at each sampling step. This has slowed down
its diffusion in embedded applications, in which fast sampling
rates are paired with scarce computational capabilities, as in the
automotive and aerospace industries.

This thesis proposes optimization techniques and controller
formulations specifically tailored to embedded applications. First,
fixed-point implementations of Dual Gradient Projection (DGP)
and Proximal Newton methods are introduced. Detailed conver-
gence analysis in the presence of round-off errors and algorithm
optimizations are presented, and concrete guidelines for selecting
the minimum number of fractional and integer bits that guarantee
convergence are provided.

xxv

Moreover, extensive simulations and experimental tests on em-
bedded devices, supported by general-purpose processing units
and FPGAs, are reported to demonstrate the feasibility of the pro-
posed solvers, and to expose the benefits of fixed-point arithmetic
in terms of computation speeds and memory requirements.

Finally, an embedded MPC application to spacecraft attitude
control with reaction wheels actuators is presented. A lightweight
controller with specific optimizations is developed, and its good
performance evaluated in simulations. Moreover, special MPC for-
mulations that address the problem of reaction wheel desaturation
are discussed, where the constraint handling property of MPC is ex-
ploited to achieve desaturation without the need of fuel-consuming
devices such as thrusters.

xxvi

Notation and Abbreviations

The notation and abbreviations adopted through the thesis can be
resumed as follows.

xxvii

Notation
R Set of real numbers.
R+ Set of nonnegative real numbers.
Rn Set of column real vectors of length n.
Rm×n Set of m by n real matrices.
In Identity matrix of rank n.
0m×n m by n matrix of all zeros.
A′ Transpose of matrix A.
[z]+ Euclidean projection of vector z on the nonnegative orthant.
[z]Z Euclidean projection of vector z on the setZ.
‖z‖ Euclidean norm of vector z.
‖A‖ Spectral norm of matrix A.
λ(A) Set of eigenvalues of matrix A.
Ai i-th column of matrix A.
z i i-th element of vector z.
z(ν) Vector z at algorithm iteration ν.
x(t) Dependency of vector x on continuous time instant t.
xt Dependency of vector x on discrete time step t.
fi (ξ) Fixed-point representation of number ξ.

xxviii

Abbreviations
ASIC Application-Specific Integrated Circuit.
DGP Dual Gradient Projection.
FPGA Field-Programmable Gate Array.
GEVP Generalized EigenValue Problem.
GP Gradient Projection.
LQR Linear Quadratic Regulator.
LVLH Local-Vertical Local-Horizontal.
MIQP Mixed-Integer Quadratic Programming/Program.
MPC Model Predictive Control.
QP Quadratic Programming/Program.
SDP Semi-Definite Programming.

xxix

C
h

a
p

te
r

1
Introduction

This chapter details the fundamental concepts behind Model
Predictive Control (Section 1.1) and Quadratic Programming
(Section 1.2), and surveys some of the key publications in

those fields. Moreover, the basics of fixed-point computations are
covered in Section 1.3. The issues and previous attempts in embed-
ding MPC on hardware platforms, and the problem of achieving
offset-free control, are detailed in Section 1.4 and Section 1.5, respec-
tively. Section 1.6 presents existing literature on MPC for aerospace
applications. Finally, Section 1.7 states the contributions given by
this thesis.

1

CHAPTER 1. INTRODUCTION

1.1 Model Predictive Control

Model Predictive Control, also known as Receding Horizon Control, is a
control strategy based on the knowledge of a plant model to predict
future system states and compute an optimal input sequence. At
each time step, a Quadratic Programming problem is solved in order
to find the optimal control action which minimizes a combination
between the actuation effort and the tracking error, over a fixed
prediction horizon (Figure 1.1). Then, only the first computed input
is fed to the system and the whole process is repeated at the
subsequent time step, reinitializing the optimization problem with
the new state measurement.

MPC controllers can be interfaced to plants described by dy-
namical systems with an arbitrary number of states and inputs,
provided that sufficient computing power is available to evaluate
the control input within the sampling period; in addition to that,
they can inherently handle constraints on system states and inputs.
This is a fact of uttermost relevance which greatly supported MPC
diffusion in industries, since nearly every physical system is subject
to constraints: actuators can exert forces in a limited range, system
states can have security boundaries (e.g., temperature or pressure
in a chemical plant), and so on. Moreover, MPC formulations can
be modified and expanded to interact with a vast diversity of con-
trol problems, including nonlinear, stochastic or hybrid systems,
large-scale and distributed scenarios, and embedded applications.

Model Predictive Control raised a significant interest in the

2

1.1. MODEL PREDICTIVE CONTROL

Past Future

k � 0 k � Nc − 1 k � N − 1

t

References

Predicted Outputs
Past

Outputs

Past
Inputs

Predicted
Inputs

Input Constraints

∑N−1
k�0 yk − rk

∑N−1
k�0 uk

Figure 1.1: Graphical representation of Model Predictive Control.
At current time step, a number Nc of future control moves uk are
computed such that the predicted system outputs yk over N time
steps are driven to desired reference signals rk , while minimizing a
weighted sum of the actuation effort and the tracking error (shaded
areas).

control community for decades, and the literature is vast and
elaborate. For classic reference books, refer to [1], [2], and [3].
Tutorial [4] introduces predictive control techniques for linear and
nonlinear constrained system, with a non-expert target audience
in mind. Notable surveys include [5], focused on research trends
in stability and optimality, [6], investigating the diffusion of MPC
as industrial technology, and [7], where also hybrid and explicit

3

CHAPTER 1. INTRODUCTION

setups are included.

The roots of the fundamental concepts underlying MPC can
be found in the optimal control theories emerged in the "control
revolution" of the 1960s. Indeed, the Model Predictive Control key
idea links the two major research themes of that period.

The first comes from the Dynamic Programming theories of
Hamilton, Jacobi and Bellman, which provided a way to evaluate
an optimal feedback control in the form

u � K(x).

The second is the maximum principle, which allows the computation
of an optimal open-loop control sequence

u∗(k , x) for k � 0, 1, ...

The link is implicit in the Bellman’s principle of optimality [8],
which states:

"An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting
from the first decision."

More explicitly, the link becomes

K(x) � u∗(0, x)

as in Lee and Markus [9]:

4

1.1. MODEL PREDICTIVE CONTROL

"One technique for obtaining a feedback controller synthesis
from knowledge of open-loop controllers is to measure the
current control process state and then compute very rapidly
for the open-loop control function. The first portion of this
function is then used during a short time interval, after
which a new measurement of the process state is made and
a new open-loop control function is computed for the new
measurement. The procedure is then repeated."

1.1.1 Linear Tracking Formulation

The basic linear Model Predictive Control formulation for reference
tracking can be detailed as follows. Consider a physical system
whose dynamics are described by a set of differential and output
equation in the form

(1.1)
ẋ(t) � f (x(t), u(t)) ,

y(t) � g (x(t)) ,

where f : Rnx × Rnu → Rnx and g : Rnx → Rny are (possibly
nonlinear) functions, x(t) ∈ Rnx and u(t) ∈ Rnu are,respectively,
the vectors of system states and control inputs at time t, and
y(t) ∈ Rny is the vector of measured system outputs.

The control objective is to steer the system outputs to asymptoti-
cally track desired reference signals r, i.e.,

(1.2) y(t) → r(t) for t →∞.

5

CHAPTER 1. INTRODUCTION

In order to be employed as prediction model in the MPC setup,
the system dynamics (1.1) needs to be formulated in the discrete-
time, linear state-space form

(1.3)
xt+1 � Axt + But ,

yt � Cxt ,

Going from (1.1) to (1.3) is a critical step that often requires appro-
priate linearization or system identification procedures. The goal
is to find a proper trade-off between simplicity and exhaustivity, i.e.,
the prediction model needs to be simple enough to allow for fast
online computations, but complex enough to capture the significant
plant dynamics.

The linear Model Predictive Control strategy for reference track-
ing can be summarized as follows.

1. At current time t, obtain the system output measurement yt .
Feed yt to a state observer, generally based on a Kalman filter,
to compute the current system state estimation x̂t .

6

1.1. MODEL PREDICTIVE CONTROL

2. Solve the following constrained optimization problem
(1.4)

min[
∆u0 .. ∆uNc−1

]′‖yN − rN ‖2WN
+

N−1∑

k�0
‖yk − rk ‖2Wy

+ ‖∆uk ‖2Wu

subject to xk+1 � Axk + Buk ,

yk � Cxk ,

uk � uk−1 + ∆uk , k < Nc ,

uk � uk−1 , k ≥ Nc ,

u−1 � ut−1 , x0 � x̂t ,

(yk , uk) ∈ Z,

where, over a prediction horizon of length N , a number Nc of
free control moves are chosen to minimize a weighted sum
of the tracking errors and the actuation efforts, with weights
given by the matrices Wu , Wx , and WN , while maintaining
the input and output trajectories constrained in the setZ ∈
Rnu+ny . The computation of the prediction is initialized with
the control action at the previous time step ut−1 and the
current state estimate x̂t . The number of free control moves
Nc is usually chosen significantly smaller than the prediction
horizon N in order to reduce the computational complexity.
The terminal cost ‖yN − rN ‖WN is optional and generally used
to prove closed-loop stability (see [10] for a seminal work
in the context of predictive control of unconstrained linear
systems, and [11, 12] for key extensions to the constrained
case).

7

CHAPTER 1. INTRODUCTION

MPC

Optimizer

Cost +
Constraints

System
Model

Plant

State
Observer

u y

x̂

Figure 1.2: Typical Model Predictive Control loop. An optimization
problem, built using the knowledge of the plant model, is solved to
compute the control action u that minimizes a given performance
index while satisfying actuator and state constraints. The problem is
parametrized with respect of the current state estimate x̂, obtained
from a state observer.

3. Apply only the first optimal input u∗0 and discard the rest of
the sequence. Then, repeat Steps 1-2 when the new system
output measurement yt+1 is available.

A typical Model Predictive Control setup is depicted in Fig-
ure 1.2.

1.1.2 Extensions

Many modifications and extensions to the linear tracking formula-
tion (1.4) have been proposed in the literature for specific control
problems. Here follows a brief overview with some of the most
significant.

8

1.1. MODEL PREDICTIVE CONTROL

Nonlinear MPC When performance specifications get tighter,
safety or environmental considerations arise in importance, and
system is driven close to constraints boundaries, can happen that the
controller is required to take into account of process nonlinearities.
Although the MPC framework outlined in this section has closed-
loop nonlinear dynamics due to the presence of constraints, it
is supported by a linear prediction model. On the other hand, a
nonlinear MPC framework can be described as in (1.4), but with the
state update equation is replaced by a nonlinear equation [13]. It
now happens to be a constrained nonlinear parametric program,
of which the solution may be hard (if not impossible) to compute
online. In this case, an alternative approach is to linearize the system
at each sampling step around the current operating point and build
a new linear MPC problem, obtaining the so called time-varying
MPC. For additional reading, refer to [14], [15], and [16].

Hybrid MPC The term Hybrid MPC refers to predictive control
of system described by hybrid models. In hybrid models differential
(difference) equations, for continuous (discrete) state evolutions,
are possibly paired with switching dynamics, boolean inputs, finite
state machines, and logic constraints. A framework for modeling
(and controlling) hybrid systems was proposed in [17]; is based on
describing the hybrid dynamics in term of Mixed Logical Dynamical
(MLD) systems, which are computationally tractable as prediction
models resulting in Mixed-Integer Quadratic Programming (MIQP).
Stability of hybrid MPC formulations is investigated in [18].

9

CHAPTER 1. INTRODUCTION

Explicit MPC Explicit Model Predictive Control was first intro-
duced in [19] (see also [20]) and has the objective of overcoming the
online computational burden that comes in the optimization process
by giving an explicit piecewise affine form for the controller, which
can be computed offline by partitioning the input and state space.
Then, online one has to evaluate the current region in the state space
and compute an affine function. The key strength point of explicit
MPC approach is the (generally) low computational effort required
online at each sampling step. This is a fact of uttermost relevance
for embedded MPC applications, where usually the controller must
run on low-consumption, low-power devices. On the other hand, for
larger problems the number of regions may explode, requiring a lot
of memory to store the control laws and making the time required
to evaluate the active region comparable to the time needed to solve
online the optimization problem, thus neglecting the advantages of
the explicit approach.

Robust MPC The basic linear MPC formulation (1.4) does not
take into account of mismatches between the system model and
the actual plant dynamics, and of any unmeasured disturbances
acting on the system. In practical applications, both of those issues
are present; this is the reason that motivated research in the robust
MPC field. Preliminary investigations about robustness in model
predictive control can be found in [21]; then, the main research
direction was related to min-max optimal control problem, e.g.,
where an optimization of the worst-case scenario is performed. The
biggest drawback of this approach is an exponential growth of the

10

1.1. MODEL PREDICTIVE CONTROL

complexity with respect to the prediction horizon; this issue was
partially addressed in [22]. Additional key literature include [23],
[24], and [25].

Stochastic MPC The robust approach is designed to address
a worst-case scenario. However, for many applications where a
strong and intrinsic stochasticity affects the model, robust control
techniques may become too conservative. Sample applications
belonging to this category include control of smart grids of multiple
power generators and optimal interface to the energy market [26],
vehicle adaptive cruise control with driver behavior modeling [27],
networked control systems subject to time-varying transmission
intervals, delays and dropouts [28]. The stochastic predictive control,
instead of considering the worst-case disturbances, tries to embed a
stochastic model of those uncertainties directly into the prediction
model of the plant. This can be done by making the systemmatrices
dependent on a set of discrete disturbances that vary with time
according to proper dynamics (e.g., a Markov chain).

11

CHAPTER 1. INTRODUCTION

1.2 Quadratic Programming for Model
Predictive Control

Quadratic Programming is a class of mathematical problems that
falls into the category of convex optimization problems. The defini-
tion of a quadratic program relies on the concepts of convex sets and
convex functions.

Definition 1.2.1 (Convex Set). A set C ⊂ Rn is convex if, for any x1,
x2 ∈ C, the set

P � λx1 + (1 − λ)x2 , λ ∈ [0, 1]
is is entirely contained in C. In other words, the line drawn between
any two points of the set still belongs to the set.

Definition 1.2.2 (Convex Function). A function V : C → R is convex
if the set C is convex and, for any x1, x2 ∈ C, the following inequality
holds

V (λx1 + (1 − λ)x2) ≤ λV (x1) + (1 − λ)V (x2), λ ∈ [0, 1] .
In other words, the function always remains below the line traced
between any two points of the function itself.

Definition 1.2.3 (Strongly Convex Function). A function V : C → R
is strongly convexwith modulus c if, for any x1, x2 ∈ C and λ ∈ [0, 1],
it holds

(1.5) V (λx1 + (1 − λ)x2) ≤
λV (x1) + (1 − λ)V (x2) − cλ(1 − λ)(x1 − x2)2.

12

1.2. QUADRATIC PROGRAMMING FOR MODEL PREDICTIVE
CONTROL

For V differentiable, (1.5) can be rewritten as

(∇V (x1) − ∇V (x2))′ (x1 − x2) ≥ κV ‖x1 − x2‖2 ,

where κV � 2c.

Definition 1.2.4 (Convex Optimization Problem). A convex opti-
mization problem is the problem of minimizing a convex function
V with respect to an optimization vector z, which is constrained to
belong to a convex set C:

(1.6)
min

z
V (z)

subject to z ∈ C.

Problem (1.6) is also a strongly convex optimization problem if V (z)
is strongly convex.

Definition 1.2.5 (Quadratic Programming). Quadratic Program-
ming is a class of convex optimization problems in the form (1.6),
where the cost function V : C → R is quadratic with respect to the
optimization vector z ∈ Rn , i.e.,

V (z) �
1
2 z′Qz + c′z ,

with Q ∈ Rn×n (Hessian matrix) and c ∈ Rn , and C is a polyhedron.

Literature on convex optimization is vast and covers over one
century of research. However, the last 30 years have seen interest
growing in this field due to two main reasons:

13

CHAPTER 1. INTRODUCTION

1. new algorithms and techniques were developed to solve
efficiently even complex and large-scale problems;

2. applications in many and heterogeneous sciences were dis-
covered to rely on convex problems; this includes predictive
control, where a quadratic programming problem has to be
solved at each sampling step.

For an excellent reference book on convex optimization theory and
applications see [29].

1.2.1 Lagrangian Duality

Consider a convex optimization problem in the form

(1.7)
P : min

z
V (z)

subject to g(z) ≤ 0

where z ∈ Rn , V : Rn → R is a convex function, and g(z) : Rn → Rm

describes a convex set. We call (1.7) the primal problem P.

Definition 1.2.6 (Lagrangian Function). Consider a constrained
convex optimization problem as in (1.7). Its Lagrangian function L is
defined as

L(z , y) � V (z) + y′g(z),

where y ∈ Rm is a vector of Lagrange multipliers.

14

1.2. QUADRATIC PROGRAMMING FOR MODEL PREDICTIVE
CONTROL

Using the Lagrangian function one can formulate a dual problem
D as follows

(1.8)
D : max

y
Φ(y)

subject to y ≥ 0,

where

(1.9) Φ(y) � inf
z∈Rn
L(z , y).

Intuitively, the dual problem is obtained by relaxing the primal
constraints. Their violation is now permitted, but penalized in the
cost function and weighted by positive coefficients (the Lagrange
multipliers). A simple graphical representation of the Lagrangian
duality is depicted in Figure 1.3.

Under the assumption that the primal problem (1.7) is convex
and feasible, i.e., the set of solutions z∗ is non-empty, then the primal
and dual problem have the same optimal value of the cost function
(V∗ � Φ∗). This is a key result of the Lagrangian duality theory, and
is exploited by many algorithms that work on the dual problem to
ultimately find a solution for the primal problem.

For further reading on the duality theory, we refer to [30–32].

1.2.2 Methods

The theoretical foundations of Quadratic Programming are dated
back in the 1950s [33–35]; since then, many methods and algorithms
have been investigated in the literature. Today, we can identify three

15

CHAPTER 1. INTRODUCTION

V (z)

Φ(y)

z

y

Figure 1.3:One-dimensional graphical example of Lagrangian duality.
The primal problem (1.7) is formulated with V (z) � z2 − 2z and
g(z) � z. The dual cost in (1.8) becomes Φ(y) � − 1

4 y2 + y − 1. Solid
lines are cost functions inside constraints, dashed lines are cost
functions outside constraints. Notice how the minimum of the primal
cost function V (z) coincides with the maximum of the dual cost
function Φ(y) (denoted by a cross).

16

1.2. QUADRATIC PROGRAMMING FOR MODEL PREDICTIVE
CONTROL

most popular classes of algorithms to solve problem arising in
Model Predictive Control applications: active setmethods, interior
pointmethods, and gradient projectionmethods.

Active Set Methods The term active set refers to the subset of
constraints that are satisfied as equalities by the current estimate of
the optimization vector; this class of methods is named after this
term since the computations performed at each iteration are based
on updating the active set.

Active set methods are divided into primal feasible methods
and dual feasiblemethods. In the primal approach, computation is
divided into two phases. The first phase requires to find a feasible
point for the primal, while in the second phase the objective function
is decreased by updating a Karush-Kuhn-Tucker (KKT) matrix and
the set of active constraints. Algorithm terminates when the current
estimate is feasible for the dual problem.

Dual approaches work in a similar way, searching feasible points
for the dual problem and increasing the objective function by a KKT
matrix update. With respect to the primal feasible approaches, they
generally require less computations to find a feasible point, since
dual constraints are simpler (non-negativity constraints). On the
other hand, they require that the primal problem is strongly convex.

Active-set general purpose solvers are adopted in MPC applica-
tions for small-to-medium scale problems, since problem complexity
is O(N3), i.e., grows cubicly with respect to the prediction horizon.

17

CHAPTER 1. INTRODUCTION

Examples of active-set methods are found in literature since
the early 1980s [36, 37]. For notable subsequent advancements and
algorithm formulations see [38–40]. Finally, for an active set method
specifically tailored for fast MPC applications refer to [41].

Interior Point Methods The roots of modern interior point meth-
ods are found in the barriermethods, popular during the 1960s to
solve constrained programming [42].

Consider an optimization problem in the form (1.7). Barrier
methods approximate it into an unconstrained problem by adding
a barrier function to the cost function that penalizes the candidate
solution for being infeasible. A sample barrier function is given by
the logarithmic barrier; the resulting problem then becomes

(1.10) min
z

V (z) +
m∑

i�i

−λ−1 log (−gi (z)
)

where λ is an user-defined parameter that regulates a trade-off
between a good solution approximation (λ → ∞) and a more
numerically stable Hessian (λ → 0). The approximated problem
(1.10) can then be solved with Newton methods [43, 44].

Interest in barrier methods quickly faded when, in the late 1960s,
it was shown that the Hessian of the barrier function can become
increasingly ill-conditioned as the solution is approached [45, 46].
The mainstream optimization community then abandoned barrier
methods in favor tomore promising - for that time - approaches, like
augmented Lagrangian and sequential quadratic programming.

18

1.2. QUADRATIC PROGRAMMING FOR MODEL PREDICTIVE
CONTROL

Everything changed with the interior-point revolution of 1984,
started with the Karmarkar announcement of a new linear pro-
gramming method able to solve the problem in polynomial time
[47]. Just one year later it was demonstrated that there was a formal
equivalence between Karmarkar’s algorithm and classical barrier
methods [48], which then gained again popularity amongst the
optimization community.

Subsequent works bridged classical barrier methods to modern
optimization, extending polynomial-time complexity to new convex
optimization problems [49]. Today, modern interior-points methods
are routinely used inmany applications, includingModel Predictive
Control [50]. Since problem complexity grows as O(N), i.e., linearly
with the prediction horizon, interior-point solvers are the standard
for large-scale problems.

Gradient Projection Methods Gradient projection methods are
a class of first-order methods, i.e., where only first-order informa-
tions of the function to be minimized, which include the function
value and its gradient, are required. The first examples of gradient
projection method are dated back in the late 1950s [51–53].

The simple idea behind this class of algorithms is the following.
Consider a constrained optimization problem in the form (1.6),
where the cost function V (z) has a Lipschitz-continuous gradient
with constant L, i.e.,

‖∇V (z1) − ∇V (z2)‖ ≤ L‖z1 − z2‖ ,

19

CHAPTER 1. INTRODUCTION

for all z1, z2 ∈ C. Then, gradient projection algorithms in their
basic implementation perform, at each iteration, a descent step and
a projection step.

In the descent step, the current solution estimate is updated by
performing a step in the direction of the negative function gradient:

(1.11) z(ν) ← z(ν) − λ∇V (z),

where ν is the iteration counter and parameter λ has to be
properly cosen to ensure convergence.

Then, in the projection step the solution estimate is projected on
the constraint set, obtaining the new solution candidate

(1.12) z(ν+1) �
[
z(ν)

]
C ,

which preserves feasibility. Note that gradient methods are of
interest if computing the projection on the set C is simple.

If a solution accuracy ε is required for the objective function,
algorithm (1.11)-(1.12) requires O

(
L
ε

)
iterations. This speed bound

was broken in Fast Gradient Methods (FGM), introduced in [54] and
extended in [55–57], which exploit acceleration techniques based
on variable step sizes and reach a solution accuracy ε in O

(√
L
ε

)

iterations.

20

1.2. QUADRATIC PROGRAMMING FOR MODEL PREDICTIVE
CONTROL

1.2.3 FromModel Predictive Control to Quadratic
Programming

Consider a Model Predictive Control problem in the regulation
form

(1.13)

min[
u0 .. uNc−1

]′‖xN ‖2WN
+

N−1∑

k�0
‖xk ‖2Wx

+ ‖uk ‖2Wu

subject to xk+1 � Axk + Buk ,

uk � uk−1 , k ≥ Nc ,

x0 � x̂t ,

¯
x ≤ xk ≤ x̄ ,

¯
u ≤ uk ≤ ū.

The goal is to formulate problem (1.13) in a condensed quadratic
programming problem in the form

(1.14)
min

z

1
2 z′Qz + c′z

subject to Gz + g ≤ 0,

where z �

[
u0 .. uNc−1

] ′
is the stacked vector of control inputs over

the control horizon. This can be achieved by means of the following
procedure.

21

CHAPTER 1. INTRODUCTION

1. Build the extended weight matrices

Wx �

N blocks︷ ︸︸ ︷

Wx 0 . . . 0

0 0
...

... Wx
...

0 0 . . . WN


, Wu �

Nu blocks︷ ︸︸ ︷
Wu 0 0

0 . . . 0
0 0 Wu


.

2. Build the state update matrices

A �

[
A′ (A2)′ . . . (AN)′

] ′

B �

Nu blocks︷ ︸︸ ︷

B 0 0
AB B 0
...

...
. . .

...
...

ANu−2B ANu−3B . . . B 0
...

... . . . AB B
...

... . . .
... B

∑1
i�0 Ai

...
... . . .

...
...

AN−1B AN−2 . . . AN−Nu+1B B
∑N−Nu

i�0 Ai



.

3. Build the constraints matrices

G �



INu nu

−INu nu

B
−B


, S �


02Nu nu×nx

−A
A


, w �



Ū
−
¯
U

X̄
−
¯
X


22

1.2. QUADRATIC PROGRAMMING FOR MODEL PREDICTIVE
CONTROL

where Ū,
¯
U (and X̄,

¯
X) are the stacked vectors of upper and

lower bounds on inputs (states), repeated Nu (N) times, and
Iη is the identity matrix of size η.

4. Finally, the QP problem (1.14) is defined by

Q � 2
(B′WxB +Wu

)
,

c � 2B′WxA x̂t ,

g � −Sx̂t − w.

The procedure to build the QP problem starting from a tracking
MPC setup, as in (1.4), is equivalent to the one detailed in this
section, but applied to an extended system where the control inputs
are included as states, i.e.,

(1.15)




xt+1

ut+1

 �


A B

0nu×nx Inu



xt

ut

 +


B
Inu

 ∆ut

yt �

[
C 0ny×nu

] 
xt

ut

 .

23

CHAPTER 1. INTRODUCTION

Table 1.1: Fixed-point vs. floating-point arithmetics.

Fixed-Point Floating-Point

Pros Pros
Faster computations. Extended range.

Broader hardware support. Enhanced precision.
Lower power consumption. Higher flexibility.

Cons Cons
Limited range and precision. Slower computations.

Round-off errors. Limited hardware support.
Overflow errors. Larger power consumption.

1.3 Fixed-Point Computations

When performing computations on digital hardware, numbers are
stored into binary words, sequences of bits (either one or zero) of
fixed length. How these sequences are to be interpreted to get
the real-world number depends on the data type; it can be either
fixed-point or floating-point. A synthetic comparison of the two is
presented in Table 1.1.

In the floating-point format, part of the available bits are reserved
to the exponent, and part to the mantissa (significand), plus one sign
bit. To retrieve the stored number it is sufficient to perform the
operation

real-world number � mantissa × 2exponent.

Being able to control the exponent value, and therefore the scaling,
enables a trade-off between range and precision. According to the

24

1.3. FIXED-POINT COMPUTATIONS

needs, floating-point format allows to represent very large values,
or small values with high precision. For this reason, floating-point
representations are the standard in the majority of computing
applications.

Efficiently executing operation between floating-point numbers
on digital calculators requires the processor to be equipped with
a floating-point unit (FPU). While nearly all modern, desktop-class
CPUs come equipped with hardware support for floating-point
computations, this is not true for most of the microprocessors
employed in embedded control applications, such as automo-
tive and aerospace, and for programmable devices such as Field-
Programmable Gate Arrays (FPGAs) and Application-Specific Integrated
Circuits (ASICs). As demonstrated in [58], performing operations in
floating-point arithmetic on such devices can lead to slower compu-
tations and larger power consumption with respect to fixed-point
arithmetic.

When trying to minimize computational effort, power consump-
tion, and chip size, a great positive impact is given by the choice of
fixed-point number representation, especially in embedded appli-
cations [59].

Fixed-point data types, as depicted in Figure 1.4, are defined by:

• a total number w of bits (word length),

• r bits for the integer part,

• p bits for the fractional part,

25

CHAPTER 1. INTRODUCTION

s ir−1 ir−2 . . . i1 i0 . f0 f1 . . . fp−2 fp−1

sign
bit

radix
pointr integer bits p fractional bits

word length w

Figure 1.4: Structure of a fixed-point number. A total number w of
bits (word length) is split between r bits for the integer part, p bits for
the factional part, and one (optional) sign bit. Unlike floating-point
number representations, the radix point is fixed.

• a fixed radix point, and

• an optional sign bit.

The real-world number can be restored from the fixed-point repre-
sentation with the following operation:

real-world value � stored value × 2−p

Switching to fixed-point format in embedded applications can
lead to a significant improvement in computational performance;
however, this comes at the price of overflow errors and round-off
errors (Figure 1.5).

26

1.3. FIXED-POINT COMPUTATIONS

x1fi(x1)

round-o� error

x2fi(x2)

over�ow error

range[
−2r−1 , 2r−1 − 1

]

2−p

precision

Figure 1.5: Fixed-point errors. Because of finite precision, real-world
number x1 is rounded to the representable value fi(x1) committing a
round-off error. Because of limited range, real-worldnumber x2,which
lies out of admissible range, is stored as the maximum representable
number fi(x2), committing an overflow error.

1.3.1 Overflow Errors

A fixed-point data type can represent numbers in a limited range.
For a signed fixed-point number, this corresponds to

range �

[
−2r−1 , 2r−1 − 1

]
,

where the asymmetry comes for the representation of the zero-
element.

If the result of a mathematical operation is a number which
lies outside this range, an overflow error occurs. Then, according
to the architecture, the number can be projected to the maximum
representable value (saturation), or cast back into the representable
space (modulo arithmetic). In both cases it is in a dangerous situation
that can lead to totally unexpected computation results. For this
reason, it is of uttermost importance to ensure that the number r of

27

CHAPTER 1. INTRODUCTION

integer bits is large enough such that every operation output lies
within the admissible range.

1.3.2 Round-off Errors

In fixed-point computations, alongside with limited range comes
limited precision. The precision is the difference between successive
values representable by fixed-point data type, which is equal to
the value of its least significant bit. The precision is linked to the
number of fractional bits, i.e.,

precision � 2−p

If a number cannot be represented exactly by the specified data
type and scaling, a rounding method is used to cast the value to
a representable number and a round-off error occurs. This error
becomes particularly dangerous in iterative algorithms, that can
suffer of error accumulation. Embedding the error dynamics in
iterative algorithms for Quadratic Programming is a challenging
task and is one of the main contributions of Chapter 2.

An excellent reference book on fixed-point error analysis is [60],
where round-off errors coming from fixed-point and floating-point
number representations are analyzed, and their effect in many
algebraic operations is investigated. Other notable literature on the
topic can be found in [61–64].

28

1.3. FIXED-POINT COMPUTATIONS

1.3.3 Errors due to Mathematical Operations

Suppose that an algorithm is running with fixed-point arithmetic
with a scaling factor 2−p , i.e., with a number p ∈ N+ of fractional
bits, and assume that real numbers are represented in fixed-point
by rounding to the closest value. Therefore, the resolution (i.e.,
the smallest representable non-zero magnitude) of a fixed-point
number is equal to 2−(p+1) .

Performing additions and subtractions between fixed-point
numbers does not result in any loss of accuracy due to rounding.

On the other hand, the operation of multiplication can generate
a round-off error in the result even if the operands are represented
exactly. In specific, multiplying two fixed-point numbers ζ � γξ

leads to the fixed-point representation fi(ζ) of ζ, with

|ζ − fi(ζ) | ≤ 2−(p+1) .

For x , y ∈ Rn let

fi(x′y) ,
n∑

i�1
fi(xi yi).

Then, the round-off error for the inner product of x and y can be
bounded as follows

(1.16) |x′y − fi(x′y) | ≤ 2−(p+1)n.

If A is an m × n matrix and x is an n-vector, then

(1.17) ‖Ax − fi(Ax)‖∞ ≤ 2−(p+1)n.

29

CHAPTER 1. INTRODUCTION

1.4 Embedded Model Predictive Control

In computing applications, the term embedded systems refers to small
computers programmed to perform specific tasks within a larger
system. With respect to general-purpose computers, embedded
devices are characterized by lower power consumption and per-unit
cost.

Embedded control applications usually distinguish for fast
system dynamics, leading to high sampling frequencies and tight
real-time constraints. At the same time, embedded controllers often
dispose of scarce computing capabilities, e.g., low clock frequencies,
limited memory, and lack of hardware support for floating-point
computations.

For those reasons, implementing a Model Predictive Controller
on embedded platforms poses quite a few challenges, both from
a system-theoretic and an optimization point of view. Specifically,
the main requirements that make a Quadratic Programming solver
suitable for embedded MPC are the following.

1. The algorithm should be simple enough to be implemented
on simple hardware platforms, for example requiring no
divisions or dynamic memory allocation.

2. One must be able to compute a bound on its worst-case
execution time for computing a (reasonably good) solution;
this is a key requirement to guarantee that real-time constraints
are satisfied.

30

1.4. EMBEDDED MODEL PREDICTIVE CONTROL

3. Stability and invariance guarantees for the resulting closed-
loop system must be provided despite a degree of subopti-
mality and/or infeasibility of the solution.

4. The algorithm should be robust to low precision arithmetic,
i.e., the effect of round-off errors should be small (avoiding
error accumulations between algorithm iterations), and no
overflow should occur, by means on known bounds on all
the computed variables. Moreover, one should be able to
determine a priori the behavior of the algorithm under such
hypotheses.

In recent years, significant interest amongst researchers and
practitioners raised for extending advanced control techniques,
such as Model Predictive Control, to fast embedded applications.
This interest is supported and accentuated by two key factors:

1. new convex optimization algorithms and software tools which
allow computing times for small-to-medium size problems in
the range of milliseconds, even with relatively small comput-
ing capabilities, and

2. technological advancements in the production processes that
brought embedded systems with faster microcontrollers and
larger memory sizes, at lower per-unit cost and power con-
sumption.

In [65] an FPGA implementation of an interior-point method
for solving the QP problem is presented, showing that the "MPC-

31

CHAPTER 1. INTRODUCTION

on-a-chip" idea is indeed viable. In [66], an active-set QP solver
for ASIC and FPGA is proposed and tested for Model Predictive
Control of nonlinear systems. In [67, 68], a "QP-on-a-chip" controller
is implemented on FPGA with an iterative linear solver and tested
with hardware-in-the-loop experiments for aircraft control. In [69]
an implementation of a modified interior-point solver in fixed-point
is presented.

Recently, the use of first-order methods, and in particular Fast
Gradient Methods developed by Nesterov [56], has been advocated
as a viable candidate for embedded optimization-based control
[70–77]. These methods can compute a suboptimal solution in a
finite number of iterations, which can be bounded a priori, and they
are simple enough (usually requiring only matrix-vector products)
for hardware implementation. In particular, the accelerated Dual
Gradient Projection method proposed in [71, 76], called GPAD,
can be applied to linear MPC problems with general polyhedral
constraints and with guaranteed global primal convergence rates.
In [78] results of [76] are exploited to show how GPAD can be used
in Model Predictive Control to provide invariance, stability and
performance guarantees in a finite number of iterations for the
closed-loop system.

Moreover, in [79] the authors derive convergence estimates for
dual first order methods in general convex problems, under inexact
dual information. The results of this paper are then extended in
[80] to prove closed-loop stability in the context of embedded MPC.

32

1.5. OFFSET-FREE MODEL PREDICTIVE CONTROL

1.5 Offset-Free Model Predictive Control

When Model Predictive Controllers are used for reference tracking,
one fundamental issue is to deal with constant tracking errors that
persist in steady-state.

The computation of the control action is based on a prediction
model whose dynamics cannot fully capture the behavior of the real
physical process. This might be due to modeling errors that affect
the steady-state, such as in the presence of nonlinear DC gains, or
of constant disturbances that represent the steady-state value of
unmodeled dynamics affecting the controlled system.

An "integral action" is needed so that desired reference signals
are tracked without a residual bias, even in the presence of model
mismatches and unknown disturbances. The goal is to asymptoti-
cally track a vector r̄t ∈ Rny of desired output references, namely

(1.18) yt → r̄t for t →∞.

1.5.1 Methods for Offset-Free Model Predictive Control

In this section we review the most important methods for offset-free
tracking in Model Predictive Control, i.e., modifications or exten-
sions to (1.4) such that condition (1.18) is verified. Those classic
methods include: augmenting the prediction model with states that
integrate the tracking error; adopting disturbance models to be esti-
mated together with system states; converting the prediction model
to the so-called velocity form, where system states are updated in

33

CHAPTER 1. INTRODUCTION

incremental form. Moreover, a novel approach based on adding the
integral of the tracking error to the reference signal is proposed.

IntegralStates Afirstmethod inMPCschemes to eliminate steady-
state offsets in set-point tracking is to augment the dynamical model
used for prediction with the integral of the tracking error. This
technique, well-known for PID control, was proposed for state-
feedback LQR control in [81], and can be successfully adopted in
several state-feedback strategies such as MPC.

The formulation of an optimal, receding-horizon control prob-
lem that includes the explicit integration of the tracking error
becomes the following:
(1.19)

min[
∆u0 .. ∆uNc−1

]′ ‖yN − rN ‖2WN
+

N−1∑

k�0
‖yk − rk ‖2Wy

+ ‖∆uk ‖2Wu
+ ‖ik ‖2Wi

subject to xk+1 � Axk + Buk ,

yk � Cxk ,

ik+1 � ik + Ts
(
yk − rk

)
,

uk � uk−1 + ∆uk , k < Nc ,

uk � uk−1 , k ≥ Nc ,

u−1 � ut−1 , x0 � xt ,

(xk , uk) ∈ Z.
The term ik ∈ Rny in (1.19) collects the additional states where
integral of the tracking error is accumulated; those states also enter
the cost function with a weight given by the matrix Wi ∈ Rny×ny .

34

1.5. OFFSET-FREE MODEL PREDICTIVE CONTROL

The relative values of Wu , Wy , Wi , that is the weights on input
increments, outputs and integral of tracking errors, respectively, are
the main tuning knobs to shape the closed-loop performance of the
controller.

This method is simple to implement, as it requires only a slight
modification of the cost function of the QP problem associated
with (1.19). The additional on-line computation load introduced by
the integral state ik is very mild, as it only affects the computation
of the linear term of the cost function, while it does not change the
number of optimization variables and constraints in the QP, nor it
affects the state observer.

The main drawback of the method, as in PID control, is potential
controller windup. Controller windup is a well-know phenomenon
that occurs when the required control action is larger than the actual
control action fed to the plant due to the actuators saturation (e.g.,
in the transient right after a big step of the reference signal). This
leads to an accumulation of the integral states, and eventually to
large overshoots in the outputs and even instability [82]. A detailed
review of anti-windup methods, along with a general framework to
describe them, is presented in [83].

Within the proposed MPC framework, a large initial value i0 in
the prediction in (1.19) causes the term

‖ik ‖Wi � i′kWi ik � (i0 + Ts

k−1∑

j�1
yk − rk)′Wi (i0 + Ts

k−1∑

j�1
yk − rk)

where Ts is the sampling time, to create the following (possibly

35

CHAPTER 1. INTRODUCTION

large) linear term

2Ts i′0Wi

k−1∑

j�1
yk − rk

in the cost function that is minimized with respect to ∆u. Therefore,
a large i0 may bias the entire MPC function. Such a term i0 may no
be diminishable quickly because of limited actuation authority.

Extensions of this method for output feedback and tracking
of nonlinear, possibly continuous time systems are discussed in
[84, 85].

DisturbanceModels One of the most popular and effective meth-
ods for achieving offset-free model predictive control involves
augmenting the model with artificial, a-priori unknown, constant
disturbances that are estimated together with the system states by
an observer.

Seminal works on the topic include [86–88]; then, numerous
extensions and refinements can be found in the literature. In [89]
robust constraint satisfaction is ensured in offset-free control in
presence of time-varying setpoints. A method for combined distur-
bance model and observer design is discussed in [90]. [91] analyzes
the case where then number of measured variables is larger than
the number of tracked variables. Finally, an extension to general
nonlinear models is discussed in [92].

The method can be implemented by means of the following
procedure.

36

1.5. OFFSET-FREE MODEL PREDICTIVE CONTROL

1. Augment the prediction model with constant disturbance
states

(1.20)

xk+1 � Axk + Bd dk + Buk ,

dk+1 � dk ,

yk � Cx + k + Cd dk ,

where dk ∈ Rny , i.e., the number of disturbances equals the
number of measured outputs.

2. Choose Bd and Cd such that the augmented system (1.20) is
observable. A necessary and sufficient condition for observ-
ability is

(1.21) rank


A − Inx Bd

C Cd

 � nx + ny .

3. Ensure that the pair (A, B) is controllable and

(1.22) rank


A − Inx B

C 0

 � nx + ny .

This requires that the number of manipulated variables is
at least equal to the number of controlled outputs, which is
a rather intuitive condition for being able to achieve perfect
tracking of all output references.

4. Design an asymptotically stable linear observer

(1.23)
x̂k+1 � Ax̂k + Bd d̂k + Bu(k) + Lx

(
Cx̂k + Cd d̂k − yp

k

)

d̂k+1 � d̂k + Ld

(
Cx̂k + Cd d̂k − yp

k

)
.

37

CHAPTER 1. INTRODUCTION

In most practical cases, assuming that the overall system remains
observable, one choses Bd � 0 and Cd � I, so that dk asymptotically
compensates for mismatches of the DC gain of the model and the
real (possibly nonlinear) DC gain of the system. This is the default
choice for example in the Model Predictive Control Toolbox for
MATLAB [93].

A Model Predictive Controller built with an augmented pre-
diction model as in (1.20), paired with a state observer as in (1.23),
guarantees zero-offset tracking in the steady-state, that is yk → rk

as k →∞. An intuitive argument for this is the following: in steady-
state, the observer (1.23) makes the predicted output equal to the
measured output, the MPC controller makes the predicted output
equal to the set-point, and as a result the measured output coincides
with the set-point.

Velocity Forms The velocity form is a reformulation for linear
systems that, adopted in the prediction model used by MPC, leads
to offset-free tracking in the presence of constant disturbances. The
key principle behind velocity forms is to move to an enlarged state
composed by the increments of the original system states, plus the
output errors.

Velocity forms were initially applied to LQ regulators [94],
and then extended to Model Predictive Control frameworks [95].
In [96], an offset-free MPC formulation based on velocity form
is proposed, along with stability and feasibility results even for
unfeasible desired references. An extension that includes the case

38

1.5. OFFSET-FREE MODEL PREDICTIVE CONTROL

of non-constant but bounded disturbances, relying on a tube-based
approach, is presented in [97].

A velocity formulation for a linear system in the form

(1.24)
xk+1 � Axk + Buk + ωk ,

yk � Cxk ,

where the number of outputs ny equals the number of inputs nu

and the disturbance ω ∈ W is bounded, can be computed by means
of the following procedure.

1. Ensure that the pair (A, B) is reachable and

(1.25) rank


Inx − A −B

C 0

 � nx + ny .

2. Define the extended system state vector as

(1.26) ξk ,

∆xk

εk

 �


xk − xk−1

yk − rk

 ,
for which the system dynamics becomes

(1.27) ξk+1 �


A 0

CA Inu

 ξk +
[
B CB

]
∆uk +


Inx

C

 ∆ωk .

3. Map the constraints on the original states and inputs vectors
x, u into constraints on the enlarged state ξ.

39

CHAPTER 1. INTRODUCTION

One then derives a nominal model by neglecting the disturbance
term in the system equation (1.27). Using the resulting nominal
system as the prediction model in the MPC formulation, paired
with new the state constraints defined as in Step 3, grants offset-free
reference tracking.

Regarding mapping the original constraints into the new model,
a detailed (and nontrivial) procedure can be found in [97, Sec. II.B].
Here, we propose a new simpler approach to enforce input and
output constraints. We extend further the model in (1.27) by adding
uk−1 (for input constraints) and xk (for output constraints) as extra
states in the overall model, and uk , yk � Cxk as constrained outputs.
Hence, the overall model becomes

(1.28)
ξk+1 �



A 0 0 0
CA Inu 0 0
0 0 Inu 0
Inx 0 0 Inx


ξk +



B
CB
Inu

0


∆uk +



Inx

C
0
0


∆ωk

zk �


0 0 Inx 0
0 0 0 C

 ξk

where

ξk ,



∆xk

εk

uk−1
xk


, zk ,


uk

yk

 .

Reference Governor The main idea of the so-called “reference
governors” is to manipulate the reference signal before feeding it to

40

1.5. OFFSET-FREE MODEL PREDICTIVE CONTROL

the controller (usually an existing linear controller), so to achieve
desired properties such as constraint satisfaction [98–100].

Along the idea of manipulating the reference signal, we propose
here a reference governor method that achieves offset-free tracking
by adding the integration of the tracking errors on the reference
signals. This means that the actual reference vector r(t) fed to the
controller is different from the desired reference vector r̄(t), and
r(t) is computed as follows:

(1.29) r(t) � r̄(t) −
∫ t

0

(
y(τ) − r̄(τ)

)
dτ,

where y(t) are themeasurements of the systemoutputs to be tracked.
The rationale is rather intuitive: if the output y(t) is smaller than
the desired r̄(t), the reference signal given to the MPC controller is
increased, or vice versa decreased, until a steady-state value r(t) is
achieved (possibly r(t) , r̄(t)) that makes y(t) � r̄(t).

A possible extension is to limit the rate of change of the tracking
error signal fed to the integrator. This prevents an undesired charge
of the integral state in the transient after a large reference change,
that could otherwise lead to large overshoots. The overall control
loop is depicted in Figure 1.6.

1.5.2 Simulation

In this section we detail a closed-loop simulation based on a real-
world control scenario where integral action is needed in order to
achieve offset-free control. The simulation is repeated for each of

41

CHAPTER 1. INTRODUCTION

+ MPC PLANT

∫

+

r̄(t) r(t) u(t) y(t)

−
rate lim.

−

Figure 1.6: Scheme for integral action on the reference signal. r̄(t) is
the desired reference vector; r(t) is the actual reference vector fed to
the controller; u(t) is the control action; y(t) is the vector of measured
system outputs.

the integral action techniques introduced in this section in order to
assess their performance.

Gasoline engines for vehicles are required to satisfy CO2 emis-
sion regulations, which are becoming stricter and stricter. At the
same time, consumers demand high performance and low fuel
consumption. This challenge paves the way for advanced control
techniques, with Model Predictive Control being a suitable candi-
date due to the support for multiple-input, multiple-output systems
and the optimal constraint handling.

The control objective is to regulate the engine airflow and
the boost pressure generated by the compressor to maintain an
optimal stoichiometric fuel-to-air ratio and thereforeminimizing the
emissions and fuel consumption, while guaranteeing the required
torque output. This is achieved by manipulating the throttle placed

42

1.5. OFFSET-FREE MODEL PREDICTIVE CONTROL

at the engine intake manifold inlet, and the wastegate valve which
deviates a fraction of the exhaust gases back into the turbine.

For a comprehensive formulation of the engine model that
includes the nonlinear equations, the reader is referred to [101].

The simulation is performed at a sampling time Ts � 20 ms.
The system state is estimated from the measured variables using a
Kalman filter.

The throttle control input is constrainedwithin the [0, 100] range
with a maximum rate of 200 per second, while the wastegate input
is constrained in the [0, 0.4] interval with a maximum rate of 2.5
per second. An additional constraint is imposed on the wastegate
state, which need to be in the range [0, 0.5].

In order to properly test the techniques for offset-free control,
a mismatch between the prediction model and the plant model
generating the output data is introduced. This is obtained by varying
the parameter denoting the sensitivity of the engine flow with
respect to the intake pressure.

The test scenario simulates a tip-in maneuver, with a sudden
increase in the torque request coming from the driver. The step is
sufficiently large to cause actuator saturation and therefore require a
proper anti-windup formulation when adopting the integral states
method. Simulation results are shown inFigure 1.7,where the engine
flow closed-loop trajectories are compared for a baseline controller
without integral action, and controllers modified according to the
techniques introduced in this section. With the baseline controller a

43

CHAPTER 1. INTRODUCTION

steady-state offset is present; on the other hand, all the modified
controllers are able to achieve offset-free tracking, although with
varying closed-loop performance.

44

1.5. OFFSET-FREE MODEL PREDICTIVE CONTROL

0
0.05
0.1

0.15
No Integral Action

meas. output
reference

0
0.05
0.1

0.15
Integral States

0
0.05
0.1

0.15

∆
En

gi
ne

Fl
ow

[k
g/

s]

Disturbance Model

0
0.05
0.1

0.15
Velocity Form

0 1 2 3 4 5 6
0

0.05
0.1

0.15

Time [s]

Reference Governor

Figure 1.7: Closed-loop simulation of integral action techniques for
tracked variable engine flow during a tip-in maneuver. Baseline
controller performance without integral action (top) is compared
with modified controllers according to the offset-free techniques
introduced in Section 1.5.

45

CHAPTER 1. INTRODUCTION

1.6 Model Predictive Control for Aerospace
Applications

In aerospace applications,Model Predictive Control has been shown
to be an effective approach for problems of rendezvous and proxim-
ity maneuvers [102–105]. MPC was a natural choice because of its
systematic handling of constraints such as maintaining a spacecraft
position within line of sight of the docking port, or terminal velocity
constraints such that spacecraft and port velocities match when
docking.

Another relevant aerospace application for MPC is given by
the problem of attitude control. Recent developments include [106]
where an explicit solution is derived from a linearized spacecraft
model, [107] where MPC is applied to spacecraft attitude con-
trol using magnetic actuators, [108] which demonstrates a global
in orientation attitude stabilization using a Lie group variational
integrator-basedmodel, and [109] where a fast real timeMPC imple-
mentation for low level Guidance/Navigation/Control functions
on a low power embedded computing platform is presented.

In Chapter 5 we investigate the problem of attitude control
for spacecraft equipped with reaction wheels actuators. Reaction
wheels, a type of momentum-exchange devices, are a common
way to control the attitude in a spacecraft, requiring only electrical
power to operate [110, 111]. However, the presence of external
disturbances can lead to a constant increase of the wheels rotational
speeds, and ultimately to a saturation. Typically, this problem is

46

1.6. MODEL PREDICTIVE CONTROL FOR AEROSPACE
APPLICATIONS

solved by periodically activating mass-expulsion devices such as
thrusters [112, 113], or by using magnetic coils [114, 115].

47

CHAPTER 1. INTRODUCTION

1.7 Motivation and Contribution

Technological advancements in recent years brought us enhanced
computing capabilities on processing units for embedded systems,
together with cheaper per-unit cost, lower power consumption, and
larger memory sizes. This paved the way for advanced control tech-
niques in a broader range of domains, including applications with
fast dynamics and tight real-time constraints such as automotive
and aerospace.

Amongst such advanced techniques stand out Model Predictive
Control; interest in embedded MPC implementations is growing
both in academic communities and industry practitioners. This
is justified by the flexibility of control solutions based on MPC,
that allow for optimization of arbitrary performance indexes, while
inherently accounting for input and output constraints.

However, embedding Model Predictive Control on hardware
platforms poses quite a few challenges, both from the theoretical
point of view, with the need for proper optimization techniques,
and from the implementation aspects. Those challenges are the
motivation behind the work presented in this thesis.

Themain contributions of this thesis are the analysis of quadratic
programming methods specifically tailored for fixed-point arith-
metic, targeting embedded MPC applications. For these methods,
we analyze round-off error propagation, and give specific guide-
lines to avoid the occurrence of overflow errors. Moreover, we
conduct experimental tests to assess algorithms performance when

48

1.7. MOTIVATION AND CONTRIBUTION

implemented on hardware. Finally, we investigate the problem
of spacecraft attitude control with reaction wheels actuator, and
demonstrate the viability and good performance of an embedded
MPC controller supported by one of the fixed-point QP solvers
introduced.

Here follows a detailed description of the contributions given
by each chapter of the thesis.

49

CHAPTER 1. INTRODUCTION

Chapter 2: Gradient Projection Methods in Finite
Precision Arithmetic

When running Quadratic Programming solvers on embedded de-
vices, switching to fixed-point arithmetic may lead to significantly
faster computation, smaller chip size, and lower power consumption,
as shown in Section 1.3.

Nevertheless, the improvement in performance comes at the
price of reduced range in which numbers can be represented,
and round-off errors due to finite-precision computations. Because
of this, quadratic programming algorithms that perform well in
floating-point may perform much worse (even completely wrongly)
in fixed-point. Therefore, additional challenges arise when dealing
with fixed-point arithmetic, mainly studying round-off error accu-
mulation during algorithm iterations, and establishing bounds on
the magnitude of the computed variables to avoid overflows.

In Chapter 2, we propose a Dual Gradient Projection method,
which can be seen as a simplified (non-accelerated) version of GPAD
algorithm (cf. [76]), specifically tailored for fixed-point implementa-
tion.

The main contribution in this chapter is a detailed convergence
rate and asymptotic error analysis in terms of primal cost and primal
feasibility in the presence of round-off errors due to fixed point
arithmetic. In addition to that, specific guidelines are given on the
number of decimal bits that certify the convergence to a target
suboptimal solution, as well as on the number of integer bits to

50

1.7. MOTIVATION AND CONTRIBUTION

avoid overflow errors. The machinery used to perform the analysis
is based on the notion of the inexact oracle proposed in [116].

The work of Chapter 2 has been conducted in cooperation with
P. Patrinos (IMT Lucca) and A. Bemporad (IMT Lucca), and is based
on publications [117, 118]:

• P. Patrinos, A. Guiggiani, and A. Bemporad, "Fixed-Point Dual
Gradient Projection for Embedded Model Predictive Control",
in Proc. European Control Conference, 2013, pp. 3602-3607.

• P. Patrinos, A. Guiggiani, and A. Bemporad, "A Dual Gradient-
Projection Algorithm for Model Predictive Control in Fixed-
Point Arithmetic", Automatica, vol. 55, pp. 226-235, 2015.

51

CHAPTER 1. INTRODUCTION

Chapter 3: Proximal Newton Methods in Finite Precision
Arithmetic

In Chapter 3 is presented an implementation of a Quadratic Pro-
gramming solver based on the Proximal Newton method of [119].
With motivations similar to the ones behind the work in Chapter 2,
emphasis is put on issues arising from fixed-point arithmetics. An
analysis of the accumulation of round-off errors is performed, and
guidelines for the number of integer bits are provided such that
occurrence of overflow errors is avoided.

Algorithm optimizations to enhance efficiency and robustness
are also proposed, with focus on the problems of preconditioning
and division-free computations. Moreover, an in-depth comparison
against gradient-based approaches, both in terms of computational
complexity and solution accuracy, is presented. Finally, algorithm
performance when employed as a solver in an MPC controller is
evaluated.

The work of Chapter 3 has been conducted in cooperation with
P. Patrinos (IMT Lucca) and A. Bemporad (IMT Lucca), and is based
on publication [120]:

• A. Guiggiani, P. Patrinos, and A. Bemporad, "Fixed-Point
Implementation of a Proximal NewtonMethod for Embedded
Model Predictive Control", in Proc. IFAC World Congress, 2014,
pp. 2921-2926.

52

1.7. MOTIVATION AND CONTRIBUTION

Chapter 4: Experimental Tests

The goal of Chapter 4 is to evaluate performance of the algorithms
introduced in Chapter 2 and Chapter 3, when implemented on
hardware platforms with similar computing capabilities and mem-
ory amounts to the ones generally employed in actual embedded
control systems.

The main contribution of the chapter comes from the imple-
mentation of the fixed-point Dual Gradient Projection method on a
reconfigurable hardware platform based on FPGA. Thanks to the
efficiency of these devices, computation times for the QP solution
are shown to lie in the sub-millisecond range. Other contributions in
the chapter are experimental tests for both the Gradient Projection
method and the Proximal Newton method for implementation on
low-power, general purpose embedded devices based on ARM
Cortex processing units, with emphasis on the performance gains
obtained by switching from floating-point to fixed-point arithmetic.

The work of Chapter 4 has been conducted in cooperation with
P. Patrinos (IMT Lucca), M. Rubagotti (Nazarbayev University) and A.
Bemporad (IMT Lucca), and is based on publication [121]:

• M. Rubagotti, P. Patrinos, A. Guiggiani, and A. Bemporad,
"Real-Time Model Predictive Control Based on Dual Gradient
Projection: Theory and Fixed-Point FPGA Implementation",
International Journal of Robust and Nonlinear Control,

along with publications [117, 118, 120].

53

CHAPTER 1. INTRODUCTION

Chapter 5: Aerospace Applications

The work detailed in Chapter 5 introduces the application of space-
craft attitude control with reaction wheels actuators. The control
setup is characterized by multiple actuators and multiple tracked
variables, with input and (possibly) state constraints; it is therefore
very well suited for approaches based on embedded MPC.

The contribution in Chapter 5 is given by an embedded MPC
formulation for spacecraft attitude control. The controller relies on
the fixed-point Dual Gradient Projection algorithm introduced in
Chapter 2 for the solution of the QP problem, equipped with the
integral action technique based on reference governor detailed in
Section 1.5. A special control model formulation allows for extended
domain of attraction while maintaining the QP problem small. The
controller complexity is evaluated, and its performance tested in
closed-loop simulations.

Moreover, the problem of reaction wheel desaturation is ad-
dressed. Two special controller formulations, that exploit gravity
gradient effects or the Earth magnetic field to achieve desaturation
without the need of fuel-consuming devices, are presented. Empha-
sis is posed on the controller performance gains derived from MPC
approaches, mainly due to the constraints handling.

The work of Chapter 5 has been conducted in cooperation with I.
Kolmanovsky (University of Michigan), P. Patrinos (IMT Lucca), and
A. Bemporad (IMT Lucca), and is based on publications [122, 123]:

54

1.7. MOTIVATION AND CONTRIBUTION

• A. Guiggiani, I. Kolmanovsky, P. Patrinos, and A. Bempo-
rad, "Fixed-Point Constrained Model Predictive Control of
Spacecraft Attitude", in Proc. American Control Conference, 2015.

• A. Guiggiani, I. Kolmanovsky, P. Patrinos, and A. Bemporad,
"Constrained Model Predictive Control of Spacecraft Attitude
with Reaction Wheels Desaturation", in Proc. European Control
Conference, 2015.

55

C
h

a
p

te
r

2
Gradient Projection Methods in Finite

Precision Arithmetic

A Dual Gradient Projection method is proposed in this chap-
ter. Section 2.1 gives general theoretical results when the
algorithm runs with an inexact oracle. In Section 2.2 an

inexact DGP method is applied to a modified version of the dual
problem and its convergence rate with respect to primal suboptimal-
ity and infeasibility is analyzed. In Section 2.3, the general results
of the proposed inexact DGP method are applied to the case of QP
based on a fixed-point implementation. Finally, simulation results
are presented in Section 2.4.

57

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

2.1 Inexact Gradient Projection

Consider a Quadratic Programming problem in the form

(2.1)
min

y
Φ(y)

subject to y ∈ Y ,
whereY is a nonempty closed convex subset ofRm , andΦ : Rm → R
is convex, LΦ-smooth, i.e., there exists a LΦ > 0 such that

‖∇Φ(y) − ∇Φ(w)‖ ≤ LΦ‖y − w‖ , y , w ∈ Rm .

Assumption 2.1.1. Problem (2.1) admits solution, i.e.,

Φ? , inf
y∈Y
Φ(y)

is finite and
Y? , argmin

y∈Y
Φ(y)

is non-empty.

The goal is to find an approximate solution of (2.1) by applying
the Gradient Projection method that, at each iteration ν, updates
the current solution estimate as follows

(2.2) y(ν+1) �
[
y(ν) − 1

LΦ
∇Φ(y(ν))

]
Y ,

where the operator [·]Y denotes a projection on the setY.

However, it is assumed that the gradient of Φ cannot be com-
puted exactly. At every iterate, instead of the gradient ∇Φ(y(ν)), is

58

2.1. INEXACT GRADIENT PROJECTION

only available an inexact oracle providing an approximate first-order
information of the cost function. The notion of inexact oracle was
introduced in [116] and is defined as follows.

Definition 2.1.1 (Inexact Oracle). Φ : Rm → R is equipped with a
first-order (δ, L)-oracle if for any w ∈ Rm one can compute a pair
(Φδ,L (w), sδ,L (w)) ∈ R × Rm such that

(2.3) 0 ≤ ∆δ,L (y; w) ≤ L
2 ‖y − w‖2 + δ, ∀y ∈ Rm ,

where

∆δ,L (y; w) , Φ(y) − `δ,L (y; w),

`δ,L (y; w) , Φδ,L (w) + sδ,L (w)′(y − w).

We call the first-order (0, LΦ)-oracle, (Φ(y),∇Φ(y)), the exact
oracle.

The implementation of a Gradient Projection method with
inexact oracle becomes

(2.4) y(ν+1) �
[
y(ν) − 1

L sδ,L (y(ν))
]
Y .

Comparing the exact Gradient Projection method (2.2) with the
inexact counterpart (2.4), two key differences need to be noted:

1. in the inexact method, sδ,L (y(ν)) is used instead of the exact
gradient ∇Φ(y(ν));

2. in the inexact method, the step size is determined by the new
constant L which is different from the Lipschitz constant LΦ.

59

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

We will now introduce two lemmas, essential in proving con-
vergence rates for both primal and dual versions of the inexact
Gradient Projection algorithm; the first is a direct extension of [124,
Lemma 3.2] in the inexact case1.

Lemma 2.1.1. Let {y(ν) } be generated by iterating (2.4) from any y(0) ∈
Y.

Then, for any y ∈ Y and ν ∈ N the following inequality holds

(2.5) `δ,L (y(ν+1) ; y(ν))+ L
2 ‖y(ν+1)−y(ν) ‖2 ≤
`δ,L (y; y(ν))+ L

2 ‖y(ν)−y‖2− L
2 ‖y(ν+1)−y‖2.

Proof. The single algorithm iteration

y(ν+1) �
[
y(ν) − 1

L sδ,L (y(ν))
]
Y

can be rewritten as

(2.6) y(ν+1) � argmin
w∈Y

{`δ,L (w; y(ν)) + L
2 ‖w − y(ν) ‖2}.

Writing down the optimality conditions for (2.6) (see e.g., [126, Cor.
26.3], or [32, Prop. 5.4.7]), we obtain

(2.7) 1
L `δ,L (y(ν+1) ; y(ν)) ≤ 1

L `δ,L (y; y(ν))+(y(ν+1)−y(ν))′(y−y(ν+1)),

1In [124, Lemma 3.2] the property is proved for general Bregman distances,
see also [32, 125].

60

2.1. INEXACT GRADIENT PROJECTION

for all y ∈ Y. Now, by rearranging terms,

(2.8) 1
L `δ,L (y(ν+1) ; y(ν)) − y′(ν) (y(ν+1) − y(ν))+

− y′(ν+1) (y − y(ν+1)) ≤ 1
L `δ,L (y; y(ν)) − y′(ν) (y − y(ν))

After some simple algebraic manipulations, and adding 1
2 ‖y‖2 −

1
2 ‖y(ν) ‖2, we get (2.5). �

Lemma 2.1.2. Let {y(ν) } be generated by iterating (2.4) from any y(0) ∈
Y.

Then, for any y ∈ Y and ν ∈ N the following inequality holds

(2.9)
ν∑

i�0
(Φ(y(i+1))−Φ(y)) +

ν∑

i�0
∆δ,L (y; y(i))+

+ L
2 ‖y − y(ν+1) ‖2 ≤ L

2 ‖y − y(0) ‖2 + (ν + 1)δ.

Proof. By the second part of (2.3) and Lemma 2.1.1

(2.10)
Φ(y(ν+1)) ≤ `δ,L (y(ν+1) ; y(ν))+ L

2 ‖y(ν+1) − y(ν) ‖2 + δ
≤ `δ,L (y; y(ν))+ L

2 ‖y−y(ν) ‖2− L
2 ‖y−y(ν+1) ‖2+δ,

or

(2.11) Φ(y(ν+1)) −Φ(y) + ∆δ,L (y; y(ν)) + L
2 ‖y − y(ν+1) ‖2 ≤

L
2 ‖y − y(ν) ‖2 + δ.

Combining (2.11) with

∆(y; y(ν)) − LΨ
2 ‖y − y(ν) ‖2 ≤ ∆δ,L (y; y(ν))

61

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

we arrive at

(2.12) Φ(y(ν+1)) −Φ(y) + ∆(y; y(ν))+

+ L
2 ‖y − y(ν+1) ‖2 ≤ L+LΦ

2 ‖y − y(ν) ‖2 + δ

Summing over 0, . . . , ν we prove (2.9). �

Remark 2.1.1. Lemma 2.1.2 is the main difference of the analysis
proposed in this section compared to that of [116]. It provides the
inequality (2.9) that plays a key role in deriving convergence rate
estimates not only for the primal version of the inexact Gradient
Projection (as done in [116]) but also for its dual counterpart. This
will ultimately allow to deduce convergence rate estimates for
primal feasibility and optimality in fixed-point implementations
of the Dual Gradient Projection algorithm for Model Predictive
Control problems.

The next theorem provides convergence rate estimates for the
inexact primal Gradient Projection scheme defined in (2.4).

Theorem2.1.3 (Convergence of InexactGradient ProjectionMethod).
Let {y(ν) }ν∈N be generated by iterating (2.4) from any y(0)∈Y and let

ȳ(ν+1) ,
1
ν+1

ν∑

i�0
y(i+1) .

Then, the convergence of the cost function Φ to the optimal value Φ? is
bounded as follows

(2.13) Φ(ȳ(ν+1)) −Φ? ≤ L
2(ν+1) ‖y? − y(ν) ‖2 + δ.

62

2.1. INEXACT GRADIENT PROJECTION

Proof. Putting y � y? in (2.9), dropping the terms
∑ν

i�0 ∆δ,L (y?; y(i))
and L

2 ‖y? − y(ν+1) ‖2 since they are nonnegative, and dividing by
(ν + 1), we arrive at

(2.14) 1
(ν+1)

ν∑

i�0
(Φ(y(i+1)) −Φ?)≤ L

2(ν+1) ‖y? − y(0) ‖2 + δ.

Since Φ is convex, the following holds

(2.15) Φ(ȳ(ν+1)) ≤ 1
(ν+1)

ν∑

i�0
Φ(y(i+1)).

Finally, by substituting (2.15) in (2.14) we prove (2.13). �

63

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

2.2 Inexact Dual Gradient Projection

Consider the problem

(2.16)
P : min

z
V (z)

subject to g(z) ≤ 0

We call (2.16) the primal problem (recall the notions on Lagrangian
Duality in Section 1.2.1). We assume that (2.16) is be feasible.

V : Rn → R is a differentiable, strongly convex function with
convexity parameter κV , i.e.,

(∇V (z1) − ∇V (z2))′(z1 − z2) ≥ κV ‖z1 − z2‖2

for all z1 , z2 ∈ Rn , and g(z) � Gz − b, b ∈ Rm . The unique solution
of (2.16) is denoted by z?.

The ultimate goal is to compute an (εV , εg)-optimal solution for
(2.16), defined as follows.

Definition 2.2.1. [(εV , εg)-optimal solution] Consider two nonneg-
ative constants εV , εg . Vector z is an (εV , εg)-optimal solution for
(2.16) if

V (z) − V? ≤ εV(2.17a)

‖[g(z)]+‖∞ ≤ εg ,(2.17b)

where (2.17a) is a bound on the solution suboptimality, i.e. the
discrepancy between the optimal and the achieved cost function
values, and (2.17b) is a bound on the solution infeasibility, i.e. the
maximal constraint violation.

64

2.2. INEXACT DUAL GRADIENT PROJECTION

Next, consider the Lagrangian function of problem (2.16)

L(z , y) � V (z) + y′g(z).

The (negative of the) dual problem of (2.16) can be expressed as (2.1),
with the convex function Φ : Rm → R given by

(2.18) Φ(y) � − inf
z∈Rn
L(z , y)

andY � Rm
+ , i.e., the nonnegative orthant.

Assume that there is no duality gap, i.e., V? � −Φ?. This
assumption is fulfilled if, for example, Problem (2.16) is a convex
quadratic program that is feasible, or the Slater condition holds [30–
32].

Since V is strongly convex,

z?y � argmin
z∈Rn

L(z , y)

is unique for any y ≥ 0, andΦ is LΦ-smoothwith LΦ � ‖G‖2/κV [57].

The gradient of Φ is given by

(2.19) ∇Φ(y) � −g(z?y).

Furthermore, we can obtain the unique optimal solution of (2.16)
from any dual optimal solution y? ∈ Y? via

(2.20) z? � argmin
z∈Rn

L(z , y?).

65

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

The gradient projection algorithm applied to the dual problem (2.18)
becomes (for a given y(0))

z(ν) � argminz∈RnL(z , y(ν))(2.21a)

y(ν+1) �
[
yν + 1

LΦ
g(z(ν))

]
+

(2.21b)

where [·]+ denotes the projection on the nonnegative orthant.

Next, assume that for every y ∈ Y, instead of the exact gradient
∇Φ(y) � −g(z?y), one can only calculate an approximate gradient

(2.22) ∇̃Φ(y) � −g(zy) + ξ,

where

(2.23)
‖zy − z?y ‖ ≤ εz ,

‖ξ‖ ≤ εξ ,

for given positive constants εz , εξ.

2.2.1 Modified Primal-Dual Pair

The goal is to construct a first-oder inexact oracle, introduced in
Definition 2.1.1, for Φ (cf. (2.18)) with sδ,L (y) � ∇̃Φ(y).

Convergence rate results for Gradient Projection methods in the
presence of an additive disturbance ξ require the constraint setY
of the dual problem (2.1) to be bounded [127, 128]. For this reason,
the dual problem (2.1) will be modified in order to have a bounded
constraint set.

66

2.2. INEXACT DUAL GRADIENT PROJECTION

Let d ∈ Rm be such that its i-th element satisfies

(2.24) di ≥ max{y?i , 1}

for some y? ∈ Y?, and

(2.25) Yα , {y ∈ Rm | 0 ≤ y ≤ αd}, α ≥ 1.

For a discussion about the choice of the parameter α we refer the
reader to Section 2.2.4.

Furthermore, let

D , ‖d‖ ,
Dα , max

y1 ,y2∈Yα
‖y1 − y2‖ � αD ,

the diameter ofYα. Notice thatYα ⊆ Y andYα ∩Y? , ∅.
Next, consider the following modified dual problem

(2.26)
min Φ(y)

subject to y ∈ Yα ,
where the non-negativity constraint has been replaced by the con-
straint setYα. Obviously it holds that

Y?α , argmin
y∈Yα

Φ(y) ⊆ Y?,

therefore any optimal solution of the modified dual problem (2.26)
is also a solution of the original dual problem. Hence, one can
compute an optimal solution for the primal problem (2.26) and
recover the optimal solution for (2.16) via (2.20).

67

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

Remark 2.2.1. In principle, determining a vector d such that (2.24)
holds requires one to know bounds on the elements of a dual
optimal solution. If (2.16) is a parametric QP, as in embedded
linear MPC, then tight uniform bounds (valid for every admissible
parameter vector) can be computed using techniques described in
[76]. In fact, one has to compute such bounds anyway, since they
are imperative for determining the worst-case number of iterations,
and consequently the worst-case running time of the algorithm, a
central concern in embedded optimization applications (see, e.g.,
[71, 129, 130]).

2.2.2 Inexact Oracle

We are now ready to derive an inexact oracle for Φ on Yα under
assumptions (2.22), (2.23). The next proof follows the lines in [116].

Proposition 2.2.1. Consider Φ given by (2.18). The pair

Φδ,L (y) � −L(zy , y) − αDεξ ,(2.27a)

sδ,L (y) � ∇̃Φ(y) � −g(zy) + ξ(2.27b)

furnishes a (δα , L)-oracle for Φ on Yα, where

δα , LVε
2
z + 2αDεξ ,

L , 2
κV
‖G‖2.

Proof. Since L(·, y) is LV -smooth and z?y is its unconstrained mini-
mum, we have that

L(zy , y) − L(z?y , y) ≤ LV
2 ‖zy − z?y ‖2.

68

2.2. INEXACT DUAL GRADIENT PROJECTION

Therefore, ‖zy − z?‖ ≤ εz implies

(2.28) L(zy , y) − L(z?y , y) ≤ LV
2 ε

2
z .

In [116, Sec. 3.2] it is shown that if for every y ∈ Yα one is able to
compute a zy such that (2.28) is satisfied, then (−L(zy , y),−g(zy))
is a (LVε2z , L)-oracle for Φ.

Next, consider any w , y ∈ Yα and ξ such that ‖ξ‖ ≤ εξ . We have

(2.29)

Φ(w) � −L(z?w , w)

≥ −L(zy , w)

≥ −L(zy , y) − g(zy)′(w − y)

� −L(zy , y) + (−g(zy) + ξ)′(w − y) − ξ′(w − y)

≥ Φδ,L (y) + sδ,L (y)′(w − y),

where thefirst inequality follows from(2.18) and z?w � argminz∈Rn L(z , w),
the second inequality by the fact that (−L(zy , y),−g(zy)) is a
(LVε2z , L)-oracle for Φ and the left part of (2.3), and the last inequal-
ity by Cauchy-Schwarz and (2.27).

On the other hand,

(2.30)

Φ(w) ≤ −L(zy , y) − g(zy)′(w − y) + L
2 ‖w − y‖2 + LVε

2
z

≤ −L(zy , y) + (−g(zy) + ξ)′(w − y)+

− ξ′(w − y) + L
2 ‖w − y‖2+LVε

2
z

≤ −L(zy , y) + (−g(zy) + ξ)′(w − y)+

+ L
2 ‖w − y‖2+LVε

2
z + αDεξ

� Φδ,L (y) + sδ,L (y)′(w − y) + L
2 ‖w−y‖2+

+ LVε
2
z + 2αDεξ .

69

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

where thefirst inequality follows from the fact that (−L(zy , y),−g(zy))
is a (LVε2z , L)-oracle for Φ and the right part of (2.3), the third in-
equality by Cauchy-Schwarz, and the equality by (2.27). Therefore,
(Φδ,L (y), sδ,L (y)) given by (2.27) is a (δα , L)-oracle for Φ onYα. �

Notice that the oracle error δα decreases with α, achieving its
minimum value for α � 1. Furthermore, the bounding of the dual
feasible set is essential (cf. (2.25)), otherwise it would not be possible
to bound quantities such as ‖w − y‖, for any w , y ≥ 0.

2.2.3 Primal Convergence Rates

Under the assumptions imposed by (2.22), (2.23), the ν-th iteration
of the Inexact Dual Gradient Projection scheme applied to Problem
(2.26) with the first-order oracle given by Proposition 2.2.1 is

(2.31) y(ν+1) �
[
y(ν) + 1

L (g(z(ν)) + ξ(ν))
]
Yα ,

with z(ν) , ξ(ν) subject to

‖z(ν) − z?y(ν)
‖ ≤ εz ,

‖ξ(ν) ‖ ≤ εξ .

The Euclidean projection ontoYα is very easy to compute, since
for w ∈ Rm we have

[w]Yα � max {min{w , αd}, 0} .

70

2.2. INEXACT DUAL GRADIENT PROJECTION

Wewill next derive global convergence rates to primal optimality
and primal feasibility for the ergodic primal iterates

(2.32) z̄(ν) ,
1
ν+1

ν∑

i�0
z(i) .

First, the following lemma is needed.

Lemma 2.2.2. Let {y(ν) , z(ν) } be generated by iterating the Inexact Dual
Gradient Projection algorithm (2.31) from any y(0) ∈ Yα.

Then, for any y ∈ Yα and ν ∈ N, the following inequality holds
(2.33) L(z̄(ν) , y) − V? ≤ L

2(ν+1) ‖y − y(0) ‖2 + δα .

Proof. For any y ∈ Yα, one has

(2.34)

∆δ,L (y; y(ν)) � Φ(y) + L(z(ν) , y(ν))+

+ αDεξ + (g(z(ν)) − ξ(ν))′(y − y(ν))

≥ Φ(y) + V (z(ν)) + αDεξ + g(z(ν))′y+

− ‖ξ(ν) ‖‖y − y(ν) ‖
≥ Φ(y) + L(z(ν) , y),

where the equality follows from (2.27), the first inequality byCauchy-
Schwartz, and the second inequality by (2.23) and the fact that y(ν)

belongs toYα.
Summing over 0, . . . , ν,

(2.35)

ν∑

i�0
∆δ,L (y; y(i)) � (ν + 1)Φ(y) +

ν∑

i�0
L(z(ν) , y)

≥ (ν + 1)(Φ(y) + L(z̄(ν) , y)),

71

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

where the inequality follows by convexity of L(·, y) for any fixed
nonnegative y ∈ Yα.

Dropping L
2 ‖y − y(ν+1) ‖2 from (2.9) since nonnegative, using

(2.35), and the convexity of Φ, we obtain

(2.36) Φ(ȳ(ν+1)) + L(z̄(ν) , y) ≤ L
2(ν+1) ‖y − y(0) ‖2 + δα .

Finally, since Φ(ȳ(ν+1)) ≥ −V? we prove (2.33). �

The next theorem gives the convergence rate towards primal
feasibility for the ergodic primal iterates generated by the Inexact
Dual Gradient Projection algorithm (2.31).

Theorem 2.2.3 (Bound on Primal Infeasibility). Let {y(ν) , z(ν) } be gen-
erated by iterating ine Inexact Dual Gradient Projection algorithm (2.31)
from any y(0) ∈ Yα.

If α > 1, then for any ν ∈ N the primal infeasibility is bounded as
follows

(2.37) ‖[g(z̄(ν))]+‖∞ ≤ α2

α−1
LD2

2(ν+1) + δ
g
α ,

where
δ

g
α ,

1
α−1LVε

2
z + α

α−12Dεξ .

Proof. Maximizing both sides of (2.33) with respect to y ∈ Yα and
using

(2.38) max
y∈Yα
L(z̄(ν) , y) � V (z̄(ν)) + α

m∑

i�1
d i[g i (z̄(ν))]+

72

2.2. INEXACT DUAL GRADIENT PROJECTION

we obtain

(2.39) V (z̄(ν)) − V? + α
m∑

i�1
d i[g i (z̄(ν))]+ ≤ LD2

2(ν+1)α
2 + δα .

Now choose any y? ∈ Y?α such that y? ≤ d (it exists by definition of
d). By the saddle-point inequality, we have that

V?
� L(z?, y?) ≤ L(z̄(ν) , y?),

or

(2.40) V (z̄(ν)) − V? ≥ −g(z̄(ν))′y? ≥ −[g(z̄(ν))]′+y?.

Using (2.40) in (2.39), we arrive at

(2.41)
m∑

i�1
(αd i − y i?)[g i (z̄(ν))]+ ≤ LD2

2(ν+1)α
2 + δα .

Since α > 1 and y? ≤ d,
(2.42)

m∑

i�0
(αd i − y i?)[g i (z̄(ν))]+ ≥ (α − 1) min

i∈N[1,m]
{d i } ·∑m

i�1[g i (z̄(ν))]+

≥ (α−1)‖[g i (z̄(ν))]+‖∞ ,
where the last inequality follows from (2.24).

Therefore,

(2.43) ‖[g(z̄(ν))]+‖∞ ≤ α2

α−1
LD2

2(ν+1) +
δα

(α−1) .

�

73

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

Notice that, by tuning the parameter α, one is able to perform a
trade-off in (2.37) between the constant of the O(1/ν) term deter-
mining the convergence rate to feasibility, and the maximum level
of infeasibility that one is able to tolerate, asymptotically. As α →∞,
δ

g
α approaches its minimum, 2Dεξ, but at the same time α2

α−1 →∞,
therefore slowing down the convergence rate.

By choosing α � 2 (the one that minimizes α2

α−1 , thus achieving
optimal convergence rate) we arrive at

(2.44) ‖[g(z̄(ν))]+‖∞ ≤ 2LD2

ν+1 + LVε
2
z + 4Dεξ .

The next theorem gives the convergence rate towards primal
suboptimality for the ergodic primal iterates generated by the
Inexact Dual Gradient Projection algorithm (2.31).

Theorem 2.2.4 (Bound on Primal Suboptimality). Let {y(ν) , z(ν) } be
generated by iterating the Inexact Dual Gradient Projection algorithm
(2.31) from any y(0) ∈ Yα.

Then, the primal suboptimality is bounded as follows

V (z̄(ν))−V? ≤ L
2(ν+1) (‖y?‖2+‖y(0) ‖2)+δα ,(2.45a)

V (z̄(ν)) − V? ≥ −
(
α2

α−1
LD2

2(ν+1) + δ
g
α

)
D.(2.45b)

Proof. Choose y? ∈ Yα with y? ≤ d. By substituting y � ȳ? ≥ 0 in
(2.33), where

ȳ i?
�


y i?, if g i (z̄(ν)) ≥ 0,

0, if g i (z̄(ν)) < 0,

74

2.2. INEXACT DUAL GRADIENT PROJECTION

and dropping the term g(z̄(ν))′ ȳ? since it is nonnegative, we obtain

(2.46) V (z̄(ν)) − V? ≤ L
2(ν+1) ‖ ȳ? − y(0) ‖2 + δα .

Now notice that

(2.47)
‖ ȳ? − y(0) ‖2 � ‖ ȳ?‖2 − 2y′(0) ȳ? + ‖y(0) ‖2

≤ ‖y?‖2 + ‖y(0) ‖2 ,
since ‖ ȳ?‖ ≤ ‖y?‖ and 2y′(0) ȳ? ≥ 0.

Therefore, using (2.47) in (2.46), we prove at (2.45a).

To prove (2.45b), using (2.40) and Cauchy-Schwartz we obtain

(2.48) V (z̄(ν)) − V? ≥ −

[g(z̄(ν))]+

 ‖y?‖.
Because of (2.37), and choosing any y? with ‖y?‖ ≤ d, we get
(2.45b). �

Notice that the constant of the O(1/ν) term in (2.45a) is inde-
pendent of α. In fact, if iterations (2.31) start from y(0) � 0, then the
cost V (z̄(ν)) is always lower than V? + δα, the best achievable by the
corresponding scheme asymptotically, as it is shown below. In that
case, one has to worry only about feasibility.

Corollary 2.2.5. Let {y(ν) , z(ν) } be generated by iterating the Inexact
Dual Gradient Projection algorithm (2.31) starting from y(0) � 0.

Then, the primal suboptimality is bounded as follows

(2.49) V (z̄(ν)) − V? ≤ δα , ∀ν ∈ N.

Proof. Simply put y � 0 in (2.33). �

75

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

2.2.4 Optimal Choice of α for Fixed Oracle Errors εz , εξ

We will next derive the value of the user-defined parameter α that
achieves the fastest convergence rate to an (εV , εg)-solution, given
oracle parameters εz , εξ.

For simplicity and without loss of generality, we assume that
the initial iterate is equal to the zero vector, i.e., y(0) � 0. In that
case one should only worry about convergence to primal feasibility
since, due to Corollary 2.2.5, V (z̄(ν))−V? ≤ δα, for every ν∈N+.

First, one must have εV ≥ δα, or

(2.50) α ≤ εV − LVε2z
2Dεξ

.

Regarding εg , for sure it must be larger than 2Dεξ , the infimum of
δ

g
α. Furthermore, by (2.37) it must satisfy εg ≥ δg

α, implying that α
must satisfy

(2.51) α >
εg + LVε2z
εg − 2Dεξ

.

Notice that the right hand-side of (2.51) is greater than one, since
εg > 2Dεξ. Equations (2.50), (2.51), pose the following restriction

(2.52) εV >
εg (LVε2z + 2Dεξ)

εg − 2Dεξ
.

2.2.5 Bound of the Number of Iterations

The next theorem provides an upper bound on the number of
iterations needed by the Inexact Dual Gradient Projection algorithm

76

2.2. INEXACT DUAL GRADIENT PROJECTION

(2.31) such that the obtained solution is at least (εV , εg)-optimal.
This is a crucial certification to run the algorithm in embedded
applications with tight real-time constraints.

The tightest upper-bound on the number of iterations is given
by the next theorem.

Theorem 2.2.6 (Bound of the Number of Iterations). Suppose that
εg > 2Dεξ, and let εV satisfy (2.52).

Then, an (εV , εg)-solution, i.e., a solution that guarantees a primal
suboptimality lower than εV and a primal infeasibility lower than εg , is
obtained by iterating the Inexact Gradient Projection Algorithm (2.31)
from y(0) � 0 with α � α?,

(2.53) α? , min
{
2(εg+LV ε2z)
εg−2Dεξ

, εV−LV ε2z
2Dεξ

}
,

no more than ν(α?) times, where ν(α) is given by

(2.54) ν(α) �
LD2α2

2(εg − 2Dεξ)α − 2(εg + LVε2z)
− 1.

Proof. Let

c1 � LD2 ,

c2 � 2(εg − 2Dεξ),

c3 � 2(εg + LVε
2
z),

then, ν(α) � c1α2
c2α−c3

.

The fastest convergence rate is achieved when

α � α? , argmin{ν(α) |α ∈ [α, α]},

77

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

where

α �
c3
c2
, α �

εV − LVε2z
2Dεξ

.

Function ν(α) is convex on [α, α] since ν′′(α) �
2c1c23

(c2α−c3)3 ≥ 0, for
α ≥ α. Setting its derivative equal to zero, we find α �

2c3
c2
, which is

the first term in the min operator in (2.53). �

For the nominal case (εz � εξ � 0), from (2.53) we obtain α? � 2.
If 2Dεξ � εg and κVε2z � min{εg , εV }, then α? ≈ 2.

2.2.6 Maximum Admissible Oracle Errors εz , εξ

Based on the results of Section 2.2.3, wewill give explicit formulae of
themaximumadmissible oracle errors εz , εξ as a function of solution
accuracy εV , εg , and consequently of the number of iterations that
are executed.

The question just posed is of significant importance in embed-
ded optimization-based control, like MPC, for the following reason.
Given hard real-time constraints dictated by hardware specifica-
tions and sampling time, as well as sufficiently small values for
εV , εg such that closed-loop stability is guaranteed (see [78]), one
wants to determine the smallest allowable oracle precision (maxi-
mum allowable values for εz , εξ) that achieves the aforementioned
requirements.

As it will become clear in Section 2.3, the values of εz , εξ can be
linked to round-off errors occurring due to fixed-point arithmetic,

78

2.2. INEXACT DUAL GRADIENT PROJECTION

which in turn depend on the number of fractional bits chosen
(cf. Section 1.3). The smaller the number of fractional bits is (i.e.,
the larger the maximum allowable oracle errors), the smaller the
execution time and the power consumption of the hardware device
will be.

Corollary 2.2.7. Suppose that εξ�βεz , for some β > 0, and set α � 2,
which is a good approximation for small εz , εξ.

Then, in order to converge asymptotically to an (εV , εg)-solution, the
Inexact Gradient Projection Algorithm (2.31) must have a maximum
oracle error εz bounded by

(2.55) εz <

√
ε

LV
+

(2Dβ
LV

)2 − 2Dβ
LV
,

where ε � min{εg , εV }.

Proof. First, from (2.44), we have

(2.56) 2LD2

ν+1 + LVε
2
z + 4Dβεz ≤ εg .

By solving with respect to εz , we arrive at

(2.57) εz ≤
√

εg
LV

+
(2Dβ

LV

)2 − 2LD2

LV (ν+1) − 2Dβ
LV
.

Due to Corollary 2.2.5, one must have δ2 ≤ εV , or

(2.58) εz ≤
√

εV
LV

+
(2Dβ

LV

)2 − 2Dβ
LV
.

Letting ν →∞ in (2.57), and taking into account that
√
ε/LV +

(
2Dβ/LV

)2

is increasing as a function of ε, we prove (2.55). �

79

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

Note that the assumption εξ�βεz does not cause a loos of
generality in the case that the oracle errors are generated by fixed-
point arithmetic, as it will be justified in Section 2.3.

Finally, it is worth mentioning that the maximum oracle error
εz , that allows one to reach accuracy ε, decreases as O(

√
ε), slower

than O(ε) for ε < 1 (which is usually the case of interest).

80

2.3. FIXED-POINT DUAL GRADIENT PROJECTION FOR QUADRATIC
PROGRAMS

2.3 Fixed-Point Dual Gradient Projection for
Quadratic Programs

The theory presented in Section 2.2 allows to analyze the fixed-point
implementation of the Dual Gradient Projection algorithm defined
by (2.21) for strictly convex quadratic programs, such as the ones
arising in Model Predictive Control applications. This is achieved
by linking the errors committed due to fixed-point arithmetic to the
oracle errors εz and εξ.

Consider the optimization problem (2.16) with

V (z) � 1
2 z′Qz + c′z ,

and let
κV � λmin(Q) > 0,

where λ(Q) denotes the set of eigenvalues of the matrix Q.

The dual problem (modulo a sign change) is (2.1) with objective
function

Φ(y) � 1
2 y′H y + h′y ,

and constraint setY � Rm
+ , where

H � GQ−1G′,

h � GQ−1c + b.

Furthermore, the unconstrained solution z?y of the primal problem
takes the analytical form

(2.59) z?y � Ey + e ,

81

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

where

E � −Q−1G′,

e � −Q−1c.

Therefore, the Dual Gradient Projection iterations (2.21) with
target solution infeasibility εg lead to Algorithm 1.

Algorithm 1 Dual Gradient Projection algorithm for Quadratic
Programs.
Input: E, e, G, b, L, εg .
1: y(0) ← 0
2: ν ← 0
3: repeat
4: ν ← ν + 1
5: z(ν) ← Ey(ν) + e
6: g(ν) ← Gz(ν) − b
7: y(ν+1) ←

[
y(ν) + 1

L g(ν)
]
+

8: z̄(ν) ← 1
ν+1

∑ν
i�0 z(i)

9: until ‖[Gz̄(ν) − b]+‖∞ ≤ εg
Output: z

2.3.1 Fixed-point Implementation

Let Algorithm 1 be embedded on a fixed-point hardware with a
scaling factor 2−p , where p ∈ N+ is the number of fractional bits.

Assume that real numbers are represented in fixed-point by
rounding to the closest value. Therefore, the resolution (i.e., the

82

2.3. FIXED-POINT DUAL GRADIENT PROJECTION FOR QUADRATIC
PROGRAMS

smallest representable non-zeromagnitude) of a fixed-point number
is equal to 2−(p+1) .

In a fixed-point architecture, for a given y ∈ Rm , instead of the
gradient ∇Φ(y) � −g(z?y), where z?y is given by (2.59), we have
access to an approximate gradient ∇̃Φ(y) of the form (2.22), with

zy � fi(Ey + e),

ξ � g(zy) − fi(Gzy − b).

Due to error propagation in matrix-vector products (cf. (1.17)),
the vectors ξ, zy satisfy (2.23) with

εz � 2−(p+1)m
√

n ,(2.60a)

εξ � 2−(p+1)n
√

m .(2.60b)

Since L �
2
κV
‖G‖2, by properly scaling the problem matrices we

can assume that L � 1, therefore there is no round-off error in
computing the product 1

L g(ν) .

According to Proposition 2.2.1, the pair (Φδα ,L (y), ∇̃Φ(y)) given
by (2.27) is a (δα , L)-oracle for Φ onYα.

The Inexact Dual Gradient Projection scheme (2.31) imple-
mented on the fixed-point hardware platform becomes Algorithm 2.
Notice the modification of the projection step which now requires
the upper bound d on the dual variables, as defined in (2.24).

2.3.2 Guidelines for the Number of Fractional Bits

We now provide explicit bounds on the number of fractional bits
required to grant convergence of Algorithm 2 to a target primal

83

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

Algorithm 2 Dual Gradient Projection algorithm for Quadratic
Programs in fixed-point arithmetic.
Input: E, e, G, b, L, εg , d.
1: y(0) ← 0
2: ν ← 0
3: repeat
4: ν ← ν + 1
5: z(ν) ← fi(Ey(ν) + e)
6: g(ν) ← fi(Gz(ν) − b)
7: y(ν+1) ← max{min{y(ν) + 1

L g(ν) , αd}, 0}
8: z̄(ν) ← 1

ν+1
∑ν

i�0 z(i)
9: until ‖[Gz̄(ν) − b]+‖∞ ≤ εg

Output: z

suboptimal solution satisfying the bound on maximal primal infea-
sibility

‖[Gz̄(ν) − b]+‖∞ ≤ εg .

Corollary 2.3.1 (Bound on the Number of Fractional Bits). Let
{
z(ν)

}

be generated by Algorithm 2, with y(0) � 0. Assume that real numbers are
rounded to the closest fixed-point value.

Then, the algorithm converges asymptotically to an
(
εg , εV

)
-solution,

with εg > 2Dεξ and εV satisfying (2.52), if the number of fractional bits
p is such that
(2.61) p ≥ log2

m
√

n√
ε

LV
+ n

m

(
2D
LV

)2
−
√

n
m

2D
LV

− 1,

where ε � min{εg , εV }.

Proof. Substitute (2.60a) and (2.60b) in (2.55). �

84

2.3. FIXED-POINT DUAL GRADIENT PROJECTION FOR QUADRATIC
PROGRAMS

2.3.3 Guidelines for the Number of Integer Bits

Together with round-off errors, another key issue that arises while
embedding computations on fixed-point architectures is the oc-
currence of overflow errors given by the limited range for number
representation, as detailed in Section 1.3. In particular, if the number
of bits for the integer part equals r, the computed variables can only
assume values in

[
−2r−1 , 2r−1 − 1

]
.

The next Corollary will set precise guidelines for choosing a
number of integer bits that is sufficiently large to avoid overflows.

Corollary 2.3.2 (Bound on the Number of Fractional Bits). Let the
iterations in Algorithm 2 be run on a fixed-point architecture with r bits
for the integer part and y(0) � 0.

Then, occurrence of overflow errors is avoided if r is chosen such that

(2.62) r ≥ log2
(
max

{
ŷ , ẑ , ĝ

}
+ 1

)
+ 1,

where
ŷ � α‖d‖∞ ,
ẑ � ‖E‖∞ ŷ + ‖e‖∞ ,
ĝ � ‖G‖∞ ẑ + ‖b‖∞.

Proof. A real number γ lies within the admissible range repre-
sentable in fixed-point with r integer bits if r ≥ log2

(
γ + 1

)
+ 1.

Since log2(·) is strictly increasing, r must be such that
r ≥ log2(max{‖y(ν) ‖∞ , ‖z(ν) ‖∞ , ‖g(ν) ‖∞} + 1) + 1,

85

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

for all ν ∈ N.
Using Algorithm 2, one obtains ‖y(ν) ‖∞ ≤ ŷ, ‖z(ν) ‖∞ ≤ ẑ,

‖g(ν) ‖∞ ≤ ĝ, for all ν. Again, since log2(·) is strictly increasing we
arrive at (3.10). �

86

2.4. SIMULATIONS

2.4 Simulations

2.4.1 Sample Evolutions

The aim of this simulation is to show sample infeasibility and
suboptimality evolutions generated by Algorithm 2 for multiple
fixed-point precisions p, and compare them with the floating-point,
double-precision case.

Simulations are performed in MATLAB R2012b equipped with
the Fixed-Point Toolbox v.3.6 on a Mid-2012 Macbook Pro Retina
running OSX 10.8.2.

We iterate Algorithm 2 for a fixed number of steps ν on the dual
of randomly generated QP problems, with 10 optimization variables
and 20 constraints. Figure 2.1 shows the experimental convergence of
the primal infeasibility ‖[g(z̄(ν))]+‖∞ and the primal suboptimality��V (z̄(ν)) − V?�� for the averaged iterates. In both figures, computation
in double precision is compared with fixed-point precision for
p � {2, 4, 6}. Simulation for the double-precision evolution was
performed according to the Dual Gradient Projection algorithm
(2.2).

Curve shapes are consistent with the theoretical bounds given
by Theorem 2.2.3 and Theorem 2.2.4. In addition, the algorithm
presents a remarkable robustness to round-off errors; 4-bits and
6-bits curves already show a convergence comparable with the
double-precision case. This fact is of particular interest for em-
bedded implementations, since computational burden and power

87

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

consumption are heavily dependent on the number of bits used to
represent numbers [59].

88

2.4. SIMULATIONS

10−2

10−1

100

Sample Primal Infeasibility

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
·104

−100

−101

Iterations

Sample Primal Suboptimality

p � 2

p � 4
double

p � 6

p � 2

p � 4

double ∼ p � 6

Figure 2.1: Sample primal infeasibility (top plot) and suboptimality
(bottom plot) evolutions, obtained by iterating Algorithm 2 on a
randomQP problem for varying number of fractional bits p � (2, 4, 6).
Results are compared with the 64-bit floating-point double precision
(dashed lines).

89

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

2.4.2 Infeasibility and Suboptimality Bounds

The purpose of the second simulation is to test the tightness for
the primal infeasibility and suboptimality bounds given by Theo-
rem 2.2.3 and Theorem 2.2.4, respectively.

The analysis is performed on a worst-case scenario, running
Inexact Dual Gradient projection iterations (2.31) with ‖ξ(ν) ‖ � εξ
to solve 100 randomly generated QP problems, with 10 optimization
variables and 20 constraints.

The goal is to compare error bound terms δα and δg
α with the

practical asymptotic values of the primal infeasibility and subopti-
mality as ν→∞. Different trials are ordered for increasing values of
D, term proportional to the constraint set diameter.

Simulation results, depicted in Figure 2.2, show an acceptable
tightness for bounds, as they exceed the practical values by a factor
between 3.33 and 8.32 for infeasibility, and between 3.05 and 5.74 for
suboptimality. In addition, the linear (for infeasibility) and quadratic
(for suboptimality) theoretical dependencies on D are reflected in
the experiment results.

90

2.4. SIMULATIONS

0

0.05

0.1

0.15

0.2

0.25
Asymptotic Primal Infeasibility

bound in Theorem 2.2.3
experimental value

15 20 25 30 35 40 45 50 55

−10

−5

0

D

Asymptotic Primal Suboptimality

bounds in Theorem 2.2.4
experimental value

Figure 2.2: Asymptotic primal infeasibility (top plot) and subopti-
mality (bottom plot) compared to theoretical bounds, ordered for
increasing D. Experimental values (solid lines) are obtained running
Algorithm 2 on random QPs. Theoretical bounds (dashed lines) are
given by Theorem 2.2.3 and Theorem 2.2.4.

91

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

2.4.3 Target Infeasibility

Figure 2.3 shows simulation results on the practical number of
iterations needed to reach a target primal infeasibility for a sample,
random QP problem with 5 variables and 10 constraints.

A comparison is made between the double-precision Gradient
Projection algorithm with iterations as in (2.2), and Algorithm 2
running supported by fixed-point arithmeticwith 2-bit precision. Re-
sults are in accordance with the theoretical results of Theorem 2.2.3
since, for finite precision, the number of iterations grows to infinity
when target infeasibility reaches a critical value, different from zero.

Figure 2.4 shows how the theoretical guaranteed primal infea-
sibility is related to the number of fractional bits, based on the
guidelines in Corollary 2.3.1. Note that inequality constraints for
the primal QP have been normalized, such that all elements of b
are equal to one. Results show how such guidelines are not over-
conservative and are applicable in practical scenarios (e.g., 13-bit
precision for a guaranteed infeasibility below 10%, which is enough
for many applications).

92

2.4. SIMULATIONS

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2
·104

Target Infeasibility (%)

Ite
ra
tio

ns

floating-point, double
fixed-point, p � 2

Figure 2.3: Iterations to target infeasibility. Experimental iteration
counts obtained by running Algorithm 2 to reach different levels
of target infeasibility, supported by double precision floating-point
arithmetic (dashed line) and fixed-point arithmetic with 2 bits for the
fractional part (solid line).

93

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

10 20 30 40 50 60 70 80 90

9

10

11

12

13

92

58

29

16

7.8

Target Infeasibility (%)

Fr
ac

tio
na

lB
its

Figure 2.4: Fractional bits for target infeasibility. Entries are computed
according to the theoretical guidelines on the required fractional bits
to achieve a guaranteed target infeasibility given by Corollary 2.3.1.

94

2.4. SIMULATIONS

2.4.4 Bounds on Iteration Count

This simulation is performed to test the tightness of the theoretical
bound on the number of iterations given by Theorem 2.2.6.

We let Algorithm 2 run on MATLAB R2012b and Fixed-Point
Toolbox v.3.6 on aMid-2012Macbook Pro Retina runningOSX 10.8.2
to solve various random QP problems (sizes are equal to 4 and 8 for
the primal and the dual, respectively). In Figure 2.5 the practical
number of iterations needed to reach varying target infeasibility is
compared the theoretical bound; different colors and markers are
chosen for different QP problems.

Results show that theoretical bounds are about one order of
magnitude larger than actual iterations. In addition to this, two
interesting properties emerge from the plot:

1. within one single QP plot, the two curves of practical and
theoretical values have similar shapes;

2. if the practical number of iterations needed to solve a first QP
is larger than the number to solve a second QP, then also the
first QP theoretical iteration bound is larger then second QP
bound.

Those facts increase the confidence in the accuracy of bound formu-
lation.

95

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

20 30 40 50 60 70 80

103

104

105

Target Infeasibility (%)

bounds in Theorem 2.2.6
experimental values

Figure 2.5:Number of iterations for target infeasibility in four different
random problems (identified by different colors and markings). Theo-
retical bounds (dashed lines) are given by Theorem 2.2.6. Experimental
values (solid lines) are obtained by iterating Algorithm 2.

96

2.4. SIMULATIONS

2.4.5 Masses Serially Connected Example

The purpose of this example is to test the fixed-point Dual Gradient
Projection Algorithm 1 as a QP solver for aModel Predictive Control
design.

The reference physical system is composed by a series of M
elements, each of mass m, connected by springs with constant k
and dampers with constant c. The first and the last element are
connected to fixed walls, and actuators are placed between each
pair of masses to exert tensions. The state-space model is derived
by a set of first-principle ODEs, where the system states are the
displacements and velocities of the masses and the inputs are the
tensions exerted by the actuators. This is a modification of the
example proposed in [131].

By letting x i be the displacement of the i-th mass, and u i the
tension exerted by the actuator placed right of the i-th element, the
system can be modeled by the following set of ODEs:

(2.63)



mẍ i � −kx i − k
(
x i − x i+1

)
+

−cẋ i + c
(
ẋ i − ẋ i+1

)
+ u i (i � 1)

mẍ i � k
(
x i−1−x i

)
− k

(
x i−x i+1

)
+ c

(
ẋ i−1−ẋ i

)
+

−c
(
ẋ i − ẋ i+1

)
+ u i − u i−1 (i ∈ N[2,M−1])

mẍ i � k
(
x i−1 − x i

)
− kx i−

+cẋ i + c
(
ẋ i−1 − ẋ i

)
− u i−1 (i � M)

Simulations have been performed in MATLAB R2012b on a

97

CHAPTER 2. GRADIENT PROJECTION METHODS IN FINITE
PRECISION ARITHMETIC

Mid-2012Macbook Pro Retina running OSX 10.8.2. The QP problem
is built forcing the system states to be in [−4, 4] and inputs in [−1, 1],
and setting the stage cost equal to l(x , u) � 1

2 (x′Wx x + u′Wu u) with
Wx and Wu as identity matrices. The prediction horizon N equals
10, and the sampling time 0.5 s.

Figure 2.6 shows the evolution of position and velocity for the
second mass out of a total of 3 masses. The reference dashed lines
(double precision) are obtained closing the loop with a Model
Predictive Controller supported by IBM ILOG CPLEX v.12.4 as
solver of the QP optimization problem. For the remaining plots,
the controller is instead supported by fixed-point Dual Gradient
Projection algorithm implemented with Fixed-Point Toolbox v.3.6;
two simulations are performed varying precision to 2 and 6 bits.

Results show a remarkable robustness of the closed-loop evo-
lutions with respect to fixed-point precision. Position and velocity
trajectories of the 6-bit simulation are almost indistinguishable with
the double precision simulation, while for the 2-bit case a small di-
vergence shows up. This behavior is consistent with what shown in
the sample infeasibility and suboptimality evolutions of Figure 2.1.

98

2.4. SIMULATIONS

−0.5

0

0.5

1

m

Mass Displacement

0 1 2 3 4 5 6 7 8 9 10

−1

−0.5

0

Time (s)

m
/s

Mass Velocity

p � 2
double ∼ p � 6

p � 2

double ∼ p � 6

Figure 2.6: Masses serially connected. Closed-loop simulation of a
Model Predictive Controller with QP solver based on Algorithm 2
attached to a set of three masses serially connected by springs and
dampers. The plot depicts displacement (top) and velocity (bottom) of
the middle mass.

99

C
h

a
p

te
r

3
Proximal Newton Methods in Finite Precision

Arithmetic

This chapter details aspects in the fixed-point implementation
of Proximal Newton Methods. After a brief introduction
on the problem setup in Section 3.1, Section 3.2 details the

proximal Newton procedure, and Section 3.3 investigates the impact
of low-precision computations, due to fixed-point arithmetic, on the
algorithm execution. In Section 3.4 two algorithm optimizations are
discussed, namely preconditioning and division-free computations.
Finally, Section 3.5 shows the results of simulations exploring
computational complexity, solution accuracy, and an aircraft control
application.

101

CHAPTER 3. PROXIMAL NEWTON METHODS IN FINITE PRECISION
ARITHMETIC

3.1 Problem Setup

Consider the following input-constrained, discrete-time, linear time-
invariant system

(3.1)
xt+1 � Axt + But

u ≤ ut ≤ u , ∀t ∈ N,

where xt ∈ Rnx is the state vector, ut ∈ Rnu the input vector, and
A, B are real-valued matrices of appropriate dimensions.

From (3.1) it is possible to formulate a receding-horizon optimal
control problem over N prediction steps in the following condensed
form

(3.2)
min

z

1
2 z′Qz + c′z

subject to g(z) ≤ 0,

where z ∈ Rn denotes the sequence of inputs over the control
horizon (n � Nc nu), c ∈ Rn is computed from the statemeasurement,
Q ∈ Rn×n is a symmetric positive definite (SPD) matrix, Fx ∈ Rn×nx

and and g(z) : Rn → Rm is an affine mapping.

The procedure to compute (3.2) starting from aModel Predictive
Control formulation applied to (3.1) is detailed in Section 1.2.3.
Peculiarity of the present formulation is that constraints are posed
only in the form of box constraints on the control input. Hence, the
mapping g(z) takes the simplified form

g(z) � Gz − w

102

3.1. PROBLEM SETUP

where

G �


In

−In

 , w �


Ū
−
¯
U



103

CHAPTER 3. PROXIMAL NEWTON METHODS IN FINITE PRECISION
ARITHMETIC

3.2 Proximal Newton Algorithm

A computationally efficient Proximal Newton method for convex,
possibly non-smooth, composite optimization problems has been
recently introduced by [119].

The proposed approach is attractive for embedded applications
since it retains the low number of iterations typical of Newton-
based methods, and concurrently lowers per-iteration complexity
requiring the solution of a linear systemon a reduced-order problem.

Algorithm 3 is the Proximal Newton method applied to solve
the quadratic programming problem (3.2). It is based on the idea
that problem (3.2) is equivalent to minimizing the real-valued,
continuously differentiable convex function
(3.3) Fγ (z) � V (z)− γ2 ‖∇V (z)‖2+ 1

2γ ‖z−γ∇V (z)−[z−γ∇V (z)]z
z ‖2 ,

where V denotes the cost function of problem (3.2), provided that
the parameter γ is smaller than 1/λmax(Q).

The procedure requires as inputs the Hessian matrix Q, the
linear term c, and the box constraints (z , z̄) on the optimization
vector. Additional tuning parameters are the value of γ and the line
search parameter σ ∈ (0, 12), e.g. σ � 10−4. It should be remarked
here that the performance of the algorithm is insensitive to the
choice of these two parameters.

Under exact arithmetic, the algorithm guarantees convergence
to the unique optimal solution z? in a finite number of iterations.

104

3.2. PROXIMAL NEWTON ALGORITHM

Algorithm 3 Proximal Newton algorithm for box-constrained QP

Input: Q, c, z, z, σ ∈ (0, 12), γ < 1/λmax(Q), z0 ∈ Rn

1: for ν � 1, 2, . . . do
compute Newton direction

2: β ←
{
i |z i < z i

(ν) −
(
Q i z(ν) + c i

)
< z i

}
3: d i ← −

(
z i −

[
z i

(ν) − γ
(
Q i z(ν) + c i

)] z i

z i

)
, i < β

4: dβ ← −(Qββ)−1
(
Qβzβ(ν) + cβ + Qβ¬βd¬β

)

perform line search
5: α ← 1

6: while Fγ
(
z(ν) + αd

) −Fγ
(
z(ν)

)
>σα∇Fγ

(
z(ν)

)′ d do
7: α ← α

2
8: end while

9: z(ν+1) ← z(ν) + αd, k ← k + 1
10: end for

Output: z∗

In practice the algorithm can be stopped as soon as

z(ν) − [
z(ν) − γ (

Qz(ν) + c
)] z

z

 ≤ γ

√
2µε ,

where µ is (lower bound on) the smallest eigenvalue of the positive
definite matrix Q, for some given error tolerance ε > 0. This
condition guarantees that

V (ẑ(ν) , x) − V? ≤ ε

105

CHAPTER 3. PROXIMAL NEWTON METHODS IN FINITE PRECISION
ARITHMETIC

for
ẑ(ν) �

[
z(ν) − γ (

Qz(ν) + c
)] z

z ,

where V? is the optimal value of problem (3.2).

106

3.3. FIXED-POINT PROXIMAL NEWTON ALGORITHM

3.3 Fixed-Point Proximal Newton Algorithm

3.3.1 Round-off Error Analysis

We now analyze the effects of round-off errors (cf. Section 1.3.2)
occurring when executing Algorithm 3 supported by a fixed-point
number representation with p bits for the fractional part.

Assume that input data is represented exactly, i.e. fi(η) � η for
η �

{
Q , c , z , z̄ , ε, σ

}
.

The goal is to bound the round-off error accumulated on the op-
timization vector z during the execution of one algorithm iteration.

We proceed by bounding the error on the Newton direction
fi(d) − d when executing steps 2-4 in Algorithm 3. The values of d
are updated either according to step 3, by computing amatrix-vector
product and an Euclidean projection, or according to step 4, where a
matrix-vector product and the solution of a linear system is required.
Computing the projection does not cause additional errors; on the
other hand (as detailed shortly) this happens for the linear system.
Therefore, we analyze the error on d by considering the worst-case
scenario where β � {1, 2, . . . ,Nc nu } and d is updated by solving a
linear system whose dimension is equal to the number of variables
of Problem (3.2).

From standard linear algebra results (see, e.g., [60, 132]), given a
perturbed linear system in the form

Q (x + x̃) � b + b̃ ,

107

CHAPTER 3. PROXIMAL NEWTON METHODS IN FINITE PRECISION
ARITHMETIC

it holds that

(3.4)
‖ x̃‖ ≤ κ(Q) ‖ b̃‖‖b‖ ‖x‖
≤ κ(Q)‖ b̃‖‖Q−1‖ ,

where κ(Q) � ‖Q‖‖Q−1‖ is the condition number of matrix Q.

In our case,

(3.5)
b � Qz + q ,

x̃ � d − fi (d) .

Substituting (3.5) into (3.4) and taking into account the bound
(1.17) on round-off error propagation in matrix-vector multiplica-
tions, we obtain
(3.6) ‖d − fi (d) ‖ ≤ κ(Q)‖Q−1‖2−(p+1) (Nc nu)3/2 .

The line search operation does not cause round-off errors to
accumulate on z, since it only involves halving the stepsize α.

Finally, in line (9) of Algorithm 3, z acquires the perturbation
on d, bounded by (3.6), plus a final round-off due to multiplication
by α. Therefore, the bound on round-off errors accumulated on the
optimization vector in one iteration becomes
(3.7) ‖z − fi (z) ‖ ≤

(
1 + κ(Q)‖Q−1‖ (Nc nu)3/2

)
2−(p+1) .

3.3.2 Avoiding Overflow Errors

Overflow errors occur when trying to store a number outside of the
representable range [−2r , 2r − 1] (cf. Section 1.3.1). To avoid them,
r must be chosen large enough such that every computed value

108

3.3. FIXED-POINT PROXIMAL NEWTON ALGORITHM

during the execution of the algorithm lies within the admissible
range. Provided that r is chosen large enough to represent all static
problem data, we now give lower bounds for it that guarantee the
representability of variable data as well, namely z and d vectors.

Let εd and εz be the right-hand sides of inequalities (3.6) and
(3.7), respectively. Then,

(3.8)

‖fi (z) ‖∞ � ‖fi (z) − z + z‖∞
≤ ‖z‖∞ + ‖fi (z) − z‖∞
≤ max

{
‖z‖∞ , ‖z‖∞

}
+ εz

, ẑ.

Moreover,

(3.9)

‖fi (d) ‖∞ � ‖fi (d) − d + d‖∞
≤ ‖d‖∞ + ‖fi (d) − d‖∞
≤ ‖Q−1‖∞ (‖Q‖∞ ẑ + ‖q‖∞)

+ εd

, d̂.

Therefore, the execution of Algorithm 3 supported by fixed-
point number representation with r bits for the integer part does
not cause overflow or underflow errors if
(3.10) r ≥ log2

(
max

{
ẑ , d̂

}
+ 1

)
+ 1,

where ẑ and d̂ are defined in (3.8) and (3.9), respectively.

109

CHAPTER 3. PROXIMAL NEWTON METHODS IN FINITE PRECISION
ARITHMETIC

3.4 Optimization of the Algorithm

In this section we analyze key issues regarding algorithm imple-
mentation in fixed-point arithmetic and propose procedures to deal
with them and optimize computation efficiency.

3.4.1 Preconditioning

The accuracy of the result, when computing the solution of a
perturbed linear system, is sensible to the conditioningof theproblem,
as shown in (3.4).

This sensitivity is directly reflected in the accuracy of the overall
solution of the QP given by Algorithm 3, where an ill-conditioned
Hessian cause a significant degeneration of its performance. How-
ever, the impact of this phenomenon can be reduced by precondi-
tioning the problem, i.e., finding a change of coordinates

z̄ � P̄−1z

such that the condition number of the Hessian of the transformed
problem, κ

(
P̄QP̄

)
, is smaller than the condition number of the

Hessian of the original problem (3.2), κ(Q).

Ideally P̄ should solve the problem

(3.11)
min κ (PQP)

subject to P ∈ Rn×n is PSD.

In general, the preconditioner resulting from (3.11) will not preserve
the box structure of the feasible setZ. This can be avoided by forcing
P diagonal.

110

3.4. OPTIMIZATION OF THE ALGORITHM

Solving problem (3.11), as shown in [133, Sec 2.2.3], is equivalent
to solving the following generalized eigenvalue problem (GEVP)

(3.12)

min ξ

subject to S > 0,

S diagonal,

ξ ≥ 0,

S ≤ Q ≤ ξS,

and picking P � S−1/2.

In order to avoid the inclusion of a bilinear matrix inequality
constraint, problem (3.12) can be reformulated (for an alternative
approach, see [134]) by means of the Schur complement as follows

(3.13)

max δ

subject to S > 0,

S diagonal,

δ ≥ 0,
S δI
δI Q−1

 ≥ 0,

Figure 3.1 highlights the effects of preconditioning on 1000
random QP problems of variable sizes in the range [20, 200] and
variable Hessian condition numbers. The top histogram plots the
variation of the condition number expressed as κ (PQP)) /κ (Q).
The bottom histogram plots the variation of the solution errors
expressed as ‖ζ∗ − zC‖/‖z∗ − zC‖, where ζ∗ is the solution of the
preconditioned problem and zC is the solution given by the solver

111

CHAPTER 3. PROXIMAL NEWTON METHODS IN FINITE PRECISION
ARITHMETIC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

1.2

5.4

7.9

10.110.5

12.4

10.210.7

8.9 8.6

4
3.4

2.4
1.4 1.4

0.6 0.2 0.4

κ (PQP) /κ (Q)

O
cc

ur
re

nc
es

(%
)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

2.7 3 2.9

5.8

7.1

8.8

7.3

4.9

2.5

1.4 1.4
1

0.2 0.1
0.6 0.2 0.2 0.1 0.2

‖ζ∗ − zC‖/‖z∗ − zC‖

O
cc

ur
re

nc
es

(%
)

Figure 3.1: Impact of preconditioning on the Hessian condition num-
ber (top plot) and solution error (bottom plot) in terms of distributions
of the conditioned to non-conditioned ratios over 1000 random QP
problems.

112

3.4. OPTIMIZATION OF THE ALGORITHM

of CPLEX.

Results show that by preconditioning one obtains an average
56.4% reduction of condition number of the Hessian and 34.7%
of the solution error. Note that preconditioning can be computed
offline. However, preconditioning is not beneficial for all the prob-
lems: in 10.6% of the cases the solution error is increased. This
happens since a modification of the Hessian may cause a change in
the constraint activation behavior during algorithm execution, and
therefore the size of the linear system that has to be solved at each
iteration.

3.4.2 Division-free Computations

An efficient way to solve the linear system in step 4 of Algorithm 3
is by means of a Cholesky factorization followed by forward and
backward substitution. However, these procedures require the com-
putation of the reciprocal and the square root of the diagonal entries
of the matrix. Performing a division on most embedded devices
requiresmore cycles than performing additions andmultiplications;
therefore, the presence of divisions can cause a degeneration of
overall performances.

A possible approach for division-free computations is the fol-
lowing.

1. Scale the QP problem such that the Hessian has all entries in
the range [−1, 1]. This causes that all its diagonal entries fall
in the range (0, 1], since it is SDP.

113

CHAPTER 3. PROXIMAL NEWTON METHODS IN FINITE PRECISION
ARITHMETIC

2. Store into the computing device assigned to execute the algo-
rithm a pre-computed look-up table containing 1/

√
ξ , with ξ

covering all the fixed-point values in the range (0, 1] for the
selected precision.

3. To evaluate the inverse of a desired value simply access the
look-up table with the value itself as index, and square the
result.

This solution constitutes a trade-off knob between computation
speed and memory occupancy, increasing the latter by w · 2p/8
bytes.

114

3.5. SIMULATIONS

3 4 5 6 7 14 16 18 20 22 24 26
0

10

20

30

40

50

60

2 1 3

10
7

28 29

13

6
11 0 1 3 3

11
16

27
23

7 8
13

56

18

12

1

Number of Iterations

O
cc

ur
re

nc
es

(%
)

Proximal Newton
∼ 9.700

FIOPs/iter

Fast Gradient
∼ 4.900

FIOPs/iter

Simple Gradient
∼ 4.850

FIOPs/iter

Figure 3.2:ProximalNewtonmethods compared toGradientMethods
(number of iterations). Histogram of the distribution for the required
number of iterations to solve 100 random QPs.

3.5 Simulations

3.5.1 Computational Complexity

We first compare the computational complexity for the implementa-
tion in fixed-point arithmetic of Algorithm 3 against gradient-based
methods (see [54, 56]). The reason of this choice is due to the interest
arising recently in embedded implementations of first-order algo-
rithms, which have been proven to perform well on low-precision
arithmetic, as detailed in Section 1.4 and Chapter 2.

115

CHAPTER 3. PROXIMAL NEWTON METHODS IN FINITE PRECISION
ARITHMETIC

Table 3.1: Estimation of the exponential coefficient for single
iteration (ρi) and overall algorithm (ρA) complexities with respect to

problem size (with 95% confidence bounds).

Method ρi ρA

Proximal Newton 2.32 ± 0.08 2.544 ± 0.12
Fast Gradient 2.01 ± 0.01 2.19 ± 0.09

Simple Gradient 2.01 ± 0.01 2.21 ± 0.12

Figure 3.2 shows the histogram distribution of the number of
iterations required to reach a target solution quality. Computations
are performed in fixed-point arithmetic with word length w � 32
bits and fraction length p � 16 bits. Results are based on 100 random
QPs of size n � 50 and show that iteration count lies in the range
[3, 7] for proximal Newton, [14, 23] for fast gradient, and [17, 27]
for simple gradient methods. However, the estimated average fixed-
point operations (multiplications and additions) performed per-
iteration is roughly double for the Newton method compared to
gradient-based ones.

Table 3.1 shows how per-iteration and overall computation
complexities scalewith number of variables n. The goal is to estimate
the exponent ρ when fitting the actual fixed-point operations as a
function of the problem size, according to the relation a · nρ.

The theoretical per-iteration complexity bound for the gradi-
ent methods is O(n2), due to the computation of a matrix-vector
product, and this is confirmed by the simulations. Newton-based
methods are instead bounded by O(n3) due to the solution of a

116

3.5. SIMULATIONS

10 20 30 40 50 60 70 80 90 100

103

104

105

Problem Size

Fi
xe

d-
po

in
to

pe
ra

tio
ns

Proximal Newton
Fast Gradient
Simple Gradient

Figure 3.3:ProximalNewtonmethods compared toGradientMethods
(number of fixed-point operations) to solve 200 random QPs of
increasing size.

linear system; however, the effective complexity growth is estimated
as n2.32. This happens because the proposed algorithm requires
only the solution of a linear system of reduced order.

Finally, Figure 3.3 shows a comparison of the overall fixed-
point operations executed for matrix computations, estimated over
200 random QPs of different sizes ranging from n � 10 to n �

100 variables. Results show that the proposed implementation is
indeed computationally efficient; however, the benefits compared
to gradient methods decrease for larger problems, and eventually
vanish due to the higher exponential dependency on n (cf. Table

117

CHAPTER 3. PROXIMAL NEWTON METHODS IN FINITE PRECISION
ARITHMETIC

3.1).

118

3.5. SIMULATIONS

3.5.2 Solution Accuracy

This simulation shows how solution accuracy varies with the num-
ber of fractional bits chosen in the fixed-point representation, com-
paringAlgorithm3 (ProximalNewton)with fast and simple gradient
methods.

By "solution accuracy" we mean the relative discrepancy εz with
the solution zC obtained from the state-of-the-art solver of CPLEX
running on double-precision arithmetic, that is

(3.14) εz �
‖z∗ − zC‖
‖zC‖ .

Figure 3.4 depicts average solution errors, computed as in (3.14),
over 100QPsof size 10 and100QPsof size 120, varying thenumber of
fractional bits from p � 4 to p � 16. In compliance with the bound in
(3.7) on the round-off error accumulation,we observe an exponential
decrease with respect to p. Results show a remarkable robustness
of the proposed implementation when running in finite-precision
arithmetic. Nevertheless, it is more susceptible to variations on
problem size, as reflected by the term (Nnu)3/2 in (3.7).

119

CHAPTER 3. PROXIMAL NEWTON METHODS IN FINITE PRECISION
ARITHMETIC

4 6 8 10 12 14 16

10−3

10−2

10−1

Fractional Bits

Re
la

tiv
e

so
lu

tio
n

er
ro

r

Proximal Newton (n � 10)
Fast Gradient (n � 10)
Simple Gradient (n � 10)
Proximal Newton (n � 120)
Fast Gradient (n � 120)
Simple Gradient (n � 120)

Figure 3.4:ProximalNewtonmethods compared toGradientMethods
(solution accuracy) to solve two random QPs of different sizes n �

(10, 120), varying the number of fractional bits.

120

3.5. SIMULATIONS

3.5.3 Control of a F16 Aircraft Example

We verify the closed-loop behavior of a simulated physical system
connected to a predictive controller that relies on an implementation
in fixed-point arithmetic of Algorithm 3 to solve on-line the QP
problem. The goal is to regulate roll and pitch angles of an AFTI-F16
aircraft.

The aircraft dynamics is described by a linearized, continuous-
time, state-space model (cf. [135]) in the form

(3.15)

ẋ(t)︷ ︸︸ ︷

v̇(t)
α̇(t)
θ̈(t)
θ̇(t)


� A

x(t)︷ ︸︸ ︷

v(t)
α(t)
θ̇(t)
θ(t)


+B

u(t)︷ ︸︸ ︷
ue (t)
u f (t)


y(t)︷ ︸︸ ︷
α(t)
θ(t)

 � Cx(t),

121

CHAPTER 3. PROXIMAL NEWTON METHODS IN FINITE PRECISION
ARITHMETIC

−80

−60

−40

−20

0

D
eg

re
es

Open-Loop Simulation

Pitch Angle
Attack Angle

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−10

−5

0

5

Time (s)

D
eg

re
es

Closed-Loop Simulation

CPLEX
p � 6
p � 16

Figure 3.5: Open-loop (top plot) and closed-loop (bottom plot) trajecto-
ries of pitch and roll angles in F16 aircraft simulation. Closed-loop
trajectories are compared for floating-point solver of CPLEX and Prox-
imal Newton Algorithm in fixed-point arithmetic with p � (6, 16).

122

3.5. SIMULATIONS

with

A �



−1.51 × 10−2 −6.056 × 101 0 −3.217 × 101

− × 10−4 −1.341 9.929 × 10−1 0
−1.8 × 10−4 4.325 × 101 −8.693 × 10−1 0

0 0 1 0


,

B �



−2.516 −1.313 × 101

−1.689 × 10−1 −2.514 × 10−1

−1.725 × 101 −1.576
0 0


,

C �


0 1 0 0
0 0 0 1

 ,
where v (f t/s) is the forward velocity, α (degrees) is the angle
of attack, θ (degrees) is the pitch angle, and ue , u f (degrees) are
the elevator and flaperon angles, respectively. Both inputs are
constrained in the [−25◦ , +25◦] range.

As shown by the top plot in Figure 3.5 the open-loop response
of the system described in (3.15) is unstable. The open-loop poles
are (−7.6636, −0.0075 ± 0.0556 j, 5.453).

The control objective is to regulate pitch and attack angles to zero.
A Model Predictive is Controller is designed using as prediction
model (3.15) discretized with sampling time Ts � 50 ms. Prediction
horizon is N � 10, control horizon is Nc � 3. Weight matrices are
set to Wy � I2 for measured outputs and Wu � 0.1 · I2 for control
inputs. No terminal weight WN is imposed.

The bottom plot in Figure 3.5 shows the closed-loop trajectories

123

CHAPTER 3. PROXIMAL NEWTON METHODS IN FINITE PRECISION
ARITHMETIC

of attack and pitch angles starting from x0 �
[
0 −10 2 5

] ′
. Two

implementationswith fixed-point arithmetic of Algorithm 3,with 16
and 6 bits for the fractional part, are compared with the trajectories
obtained acquiring control inputs from the state-of-the-art solver of
CPLEX, running in double-precision arithmetic.

Results show that a predictive controller supported by the
proposed implementation with fixed-point arithmetic is able to
stabilize the system. Note that the controller sampling time should
be fast enough such that oscillations in system inputs due to the
quantization of the QP solution fall outside the process bandwidth.

124

C
h

a
p

te
r

4
Experimental Tests

Experimental tests on various hardware are reported in this
chapter. Section 4.1 shows implementations on low-power,
general purpose processors in the ARM Cortex family, for

both the Gradient Projection and the Proximal Newton methods.
Then, Section 4.2 details the implementation of Gradient Projection
method on FPGA.

125

CHAPTER 4. EXPERIMENTAL TESTS

4.1 Embedded Optimization on ARM Cortex

4.1.1 The ARM Cortex-M3 Processing Unit

TheARM architecture is a family of processing units widely popular
in embedded systems due to the low power consumption with
respect to the computational capabilities. Its application scope
ranges from microcontrollers to portable devices. It is estimated
that ARM-based processors are at the core of 75% of embedded
systems.

ARM devices belong to the category of reduced instruction set
computers (RISC), which favors simple and linear architectures. A
key distinction with complex instruction set computers (such as Intel
x86 devices) is that the first allow access to the memory only with
basic load and store instructions that transfer data to and from the
processor registers.

The Cortex M3 is a 32-bit RISC processor of the ARM family
specifically developed for highly deterministic real-time applica-
tions, such as in automotive control systems. The specific model
employed for the experimental tests is the Atmel SAM3X8E, which
operates at a maximum speed of 84 MHz and comes with 512 KB of
flash memory and 100 KB of RAM.

126

4.1. EMBEDDED OPTIMIZATION ON ARM CORTEX

4.1.2 Gradient Projection Methods on ARM Cortex

The purpose of this experimental test is to assess the performance
of a QP solver based on the Dual Gradient Projection algorithm
detailed in Chapter 2 when implemented on a low-power, low-cost
microcontroller based on the 32-bit Atmel SAM3X8E ARM Cortex-
M3 processing unit. The test emphasizes in appraising the benefits
coming from performing computation in fixed-point arithmetic.

The microcontroller was assigned to solve random QP problems
of increasing size, ranging from 10 to 60 primal variables and 20 to
120 primal constraints. The algorithm was stopped upon reaching a
suboptimal solution bounded by 10% primal infeasibility.

Table 4.1 shows the results when a fixed-point number repre-
sentation is adopted, with 8 bits for the decimal part and 7 bits
for the integer part. For each problem size we report convergence
time, average time per iteration (TPI) and size of the binary code;
the latter plays an important role in embedded applications, where
usually a limited amount of memory is available.

In order to evaluate the performance enhancements coming from
fixed-point computations, we repeated all the hardware simulations
after switching to floating-point number representation. Results are
reported in Table 4.1 together with their fixed-point counterpart,
showing how the floating-point implementation is about 4 times
slower than the fixed-point one, and up to twice as bigger in code
size.

Figure 4.1 depicts the relationship between problem size, ex-

127

CHAPTER 4. EXPERIMENTAL TESTS

10/20 20/40 40/80 60/120
0

5

10

15

20

25

30

0.2 0.9
3.4

7.6

1
3.6

13.1

30.5

Ti
m
e
pe

rI
te
ra
tio

n
[m

s]

fixed-point
floating-point

10/20 20/40 40/80 60/120
0

10

20

30

40

50

60

70

15 17

27

43

16
21

40

73

Problem Size [vars/constr]

C
od

e
Si
ze

[K
B]

Figure 4.1: Dual Gradient Projection Algorithm on ARM Cortex-M3.
Comparison between fixed-point and floating-point implementations
in terms of computation speed (top plot) and memory occupancy
(bottom plot).

128

4.1. EMBEDDED OPTIMIZATION ON ARM CORTEX

Ta
bl
e
4.
1:
D
ua

lG
ra
di
en

tP
ro
je
ct
io
n
A
lg
or
ith

m
on

A
RM

C
or
te
x-
M
3.

C
om

pa
ris

on
be

tw
ee
n
fix

ed
-p
oi
nt

an
d
flo

at
in
g-
po

in
ti
m
pl
em

en
ta
tio

ns
.

Fi
xe
d-
Po

in
t

Fl
oa

tin
g-
Po

in
t

Si
ze

[v
ar
s/c

on
st
r]

Ti
m
e

[m
s]

Ti
m
e/
It
er

[µ
s]

Si
ze

[K
B]

Ti
m
e

[m
s]

Ti
m
e/
It
er

[µ
s]

Si
ze

[K
B]

10
/2
0

22
.9

22
6

15
88
.6

97
4

16
(+
28

7%
)

(+
33

1%
)

(+
6.
67

%
)

20
/4
0

52
.9

86
7

17
22

0.
1

36
08

21
(+
31

6%
)

(+
31

6%
)

(+
23
.5
%

)

40
/8
0

54
4.
9

33
82

27
22

40
13

09
9

40
(+
31

1%
)

(+
28

7%
)

(+
48
.1
%

)

60
/1
20

15
19
.8

75
61

43
58

16
30

45
0

73
(+
28

3%
)

(+
30

3%
)

(+
69
.8
%

)

129

CHAPTER 4. EXPERIMENTAL TESTS

pressed as number of variables and constraints, and the time per
iterations (top plot), and code size (bottom plot). Results are com-
pared between the implementations supported by fixed-point and
floating-point arithmetic. It is important to notice how the gain in
performance obtained by switching from floating-point to fixed-
point arithmetic increases as the problem becomes larger in size,
especially in terms of code size..

This implementation highlights some of the key advantages of
the fixed-point format: the computational burden and the memory
footprint are lowered, especially on devices lacking hardware sup-
port for floating-point operations. However, it has to be noted that
the flexibility of the floating-point representation is lost, causing
reduced precision and range; the choice of the optimal format is
therefore dependent on the specific application and computing
capabilities. Especially in the case of chipsets equipped with a
floating-point unit (FPU), the benefits from switching to fixed-point
arithmetic may be substantially reduced.

4.1.3 Proximal Newton Methods on ARM Cortex

This section details the experimental test results when an implemen-
tation of the Proximal Newton Method (cf. Algorithm 3 and Chap-
ter 3) is deployedon the low-power, low-cost,ARM-basedCortex-M3
general-purpose processing unit, similarly to what shown for the
Gradient Projection Method in Section 4.1.2.

The device was assigned to solve a set of random QPs of increas-
ing size, ranging from 10 primal variables and 20 constraints, up

130

4.1. EMBEDDED OPTIMIZATION ON ARM CORTEX

to 80 primal variables and 160 constraints. Note that they were not
the same QPs of Section 4.1.2. The algorithm was coded both in
floating-point arithmetic (word length of 32 bits) and fixed-point
arithmetic (word length of 16 bits, of which 8 bits for the fractional
part).

Table 4.2 shows the average experimental results: for each prob-
lem size, we report overall computation time for the fixed-point
arithmetic and floating-point arithmetic versions; similarly, we re-
port code size for the compiled binary. Between brackets in the
floating-point columns we also include the variation with respect
to the fixed-point counterpart.

Table 4.2 shows that switching from floating- to fixed-point
arithmetic causes the computation time and code size to become
up to 4 and 2 times smaller, respectively. Advantages become more
evident as the number of variables increases; for problems with
n ≥ 70 the floating point version is not able to converge at all, due
to lack of memory. Those results are also visualized graphically in
Figure 4.2.

131

CHAPTER 4. EXPERIMENTAL TESTS

10/20 20/40 30/60 40/80 50/100 60/120 70/140 80/160
0

20

40

60

80

100

0.6 1.8 4.7
8.8

14.7

25.7

44.8
52.4

1.8 5
9.7

45.5

89.8

100.8

Ti
m
e
[m

s]

fixed-point
floating-point

10/20 20/40 30/60 40/80 50/100 60/120 70/140 80/160
0

10

20

30

40

50

60

14.7 16 18
21

24.8
29.3

34.6

40.7

20.2 22
27

32.8

39.6

59.2

Problem Size [vars/constr]

C
od

e
Si
ze

[K
B]

Figure 4.2: Proximal Newton Algorithm on ARM Cortex-M3. Com-
parison between fixed-point and floating-point implementations in
terms of computation speed (top plot) andmemory occupancy (bottom
plot).

132

4.1. EMBEDDED OPTIMIZATION ON ARM CORTEX
Ta

bl
e
4.
2:

Pr
ox

im
al

N
ew

to
n
A
lg
or
ith

m
on

A
RM

C
or
te
x-
M
3.

C
om

pa
ris

on
be

tw
ee
n
fix

ed
-p
oi
nt

an
d
flo

at
in
g-
po

in
ti
m
pl
em

en
ta
tio

ns
.

Fi
xe
d-
Po

in
t

Fl
oa

tin
g-
Po

in
t

Si
ze

[v
ar
s/c

on
st
r]

Ti
m
e

[m
s]

Si
ze

[K
B]

Ti
m
e

[m
s]

Si
ze

[K
B]

10
/2
0

0.
6

14
.7

1.
8

20
.2

(+
20

0%
)

(+
37
.4
%

)

20
/4
0

1.
8

16
5

22
(+
17

8%
)

(+
37
.5
%

)

30
/6
0

4.
7

18
9.
7

27
(+
10

6%
)

(+
50

%
)

40
/8
0

8.
8

21
45
.5

32
.8

(+
41

7%
)

(+
56
.2
%

)

50
/1
00

14
.7

24
.8

89
.8

39
.6

(+
51

1%
)

(+
59
.7
%

)

60
/1
20

25
.7

29
.3

10
0.
8

59
.2

(+
29

2%
)

(+
10

2%
)

70
/1
40

44
.8

34
.6

n/
a

n/
a

80
/1
60

52
.4

40
.7

n/
a

n/
a

133

CHAPTER 4. EXPERIMENTAL TESTS

4.2 Embedded Optimization on FPGA

4.2.1 Introduction to FPGA Devices

FPGAs (Field Programmable Gate Arrays) are chipsets where connec-
tions between multiple logic blocks can be programmed by the user
"on the field" to perform the desired computations. Functionalities
of FPGAs range from basic glue-logic to advanced, high-speed data
acquisition and processing, as in high-energy and nuclear physics
experiments.

Usually, developing and producing application-specific inte-
grated circuits (ASICs) requires a first phase of circuit synthesis on
appropriate CAD software, and then a physical printing on silicon
wafers in high-technology factories; the whole process may require
an initial investment in the order of million of dollars. Moreover, it is
not possible to correct possible bugs and errors discovered after the
design phase. On the contrary, FPGA devices can be implemented
with a very short developing cycle. They can be reprogrammed as
needed, and present almost no starting costs.

An FPGA device (see Figure 4.3) is a chip composed mainly by
arrays of logic blocks and routing channels, with every single logic
block generally constituted of a 4-input Lookup Table (LUT), a Flip-
Flop, and one output; finally, a set of input/output blocks complete
the schematic. These are the basic components of every integrated
circuit; the only things missing are the interconnections between
them. Here comes the key advantage of the FPGA technology: those
interconnections can be programmed (see Figure 4.4) as required

134

4.2. EMBEDDED OPTIMIZATION ON FPGA

logic block
I/O block

routing channel

Figure 4.3: FPGA structure, where arrays of logic blocks (green) are
connected to Input/Output blocks (grey) and routing channels.

135

CHAPTER 4. EXPERIMENTAL TESTS

wire

programmable switch

Figure 4.4: Detail of FPGA programmable switches, where wire
connections can be manipulated to build custom circuits.

by simply feeding a serial bit stream to the device after a reset.

Modern FPGAs have a number of logic cells that ranges from
hundreds of thousands to millions, with latencies of a few nanosec-
onds and data throughputs in the order of Gb/s, opening for the
implementation of high-performance, complex data processing so-
lutions; a good overview of the modern scientific applications is
covered in [136].

136

4.2. EMBEDDED OPTIMIZATION ON FPGA

Predictive Control on FPGAs Reconfigurable computing devices
such as FPGAs has become subject of a great deal of research,
in particular starting from the late 1990s when affordable, high-
performance (for the standards of the time) solutions appeared
on the market. This was driven by the key feature of efficiently
perform computations at hardware-level, while retaining much of
the flexibility of a software solution.

An interesting survey exploring the hardware and software as-
pects of reconfigurable computingmachines and the issues involved
in runtime during program execution can be found in [137]; similar
topics and issues are covered in [138].

Starting from the late 2000s, an increasing research interest
started to show up for FPGA-based Model Predictive Control ap-
plied to high-bandwidth applications; this was driven by the avail-
ability of new-generation FPGAs with computing powers sufficient
to evaluate the solution for the constrained optimization problem
within strict real=time constraints.

In [65, 139], the authors describe a rapid prototyping environ-
ment for MPC on FPGA, exploring the possibilities of parallel
computations. In [140, 141], a mixed software-hardware formula-
tion is proposed for the embedded controller, where the bulk of the
MPC matrix computations are performed in hardware and the rest
in a general-purpose microprocessor. A comparison between active-
set and interior-point solvers is carried out in [142]. Finally, other
notable applications of Model Predictive Controllers on FPGAs
include [66–68, 143].

137

CHAPTER 4. EXPERIMENTAL TESTS

4.2.2 Fixed-Point Dual Gradient Projection on FPGA

In this section we report details on the implementation of the
Fixed-Point Dual Gradient Projection method (cf. Algorithm 2 and
Chapter 2) on a Field Programmable Gate Array, along with a
performance evaluation when solving quadratic programs.

The FPGA circuit design was performed according to the graph-
ical approach proposed by Xilinx System Generator for DSP, part
of the Xilinx ISE Design Suite v14.7. With these tools, the single
circuit blocks as multipliers, accumulators, and memories can be
placed and connected to each other in the Simulink environment.
The compiler will then automatically generate the corresponding
VHDL or Verilog code for the FPGA platform of choice.

In the proposed implementation the tests were performed tar-
geting a Xilinx Kintex 7-xc7k480t device. This is part of the 28nm
Kintex generation, and comes with 478K logic cells and 1920 DSP
slices. We choose to target this device for its fair balance between
low cost, low power consumption, and appropriate performance.

Figure 4.5 shows the top-level view of the QP solver for a sample
problem with 2 primal variables and 4 dual variables. The problem
size has been chosen small to guarantee the readability of the circuit
scheme.

The two Matrix-Vector Multiplication (MVM) units perform
algorithm steps 5-6. The output of the first MVM are the primal
variables (black). The accumulator units (cyan blocks) multiply the
gradient, obtained as output of the second MVM, by the inverse

138

4.2. EMBEDDED OPTIMIZATION ON FPGA

y4y3y2y1

pr
oj

ec
t.

pr
oj

ec
t.

pr
oj

ec
t.

pr
oj

ec
t.

M
V

M
E

y
+

e

C
K

1

z1 z2

M
V

M
G

z
−

b

C
K

2

× × × ×

1 L · · · ·

ac
cu

m
.

ac
cu

m
.

ac
cu

m
.

ac
cu

m
.

C
K

a

y1 y2 y3 y4

pr
oj

ec
tio

n
m

at
-v

ec
m

ul
tip

lic
at

io
n

gr
ad

ie
nt

de
sc

en
t

Fi
gu

re
4.
5:

D
ua

lG
ra
di
en

tP
ro
je
ct
io
n
on

FP
G
A
.T

op
-le

ve
lo

ve
rv
ie
w
.

139

CHAPTER 4. EXPERIMENTAL TESTS

of the Lipschitz constant and accumulate the result, obtaining the
dual variables vector prior to the projection step. Finally, the array
of projection units n the left (green blocks) perform the projection,
completing step 7 of the algorithm. The behavior of clock signals
(dashed lines) will be detailed shortly.

Figure 4.6 shows the inside of a Matrix-Vector Multiplication
unit. To maximize device compatibility, this block is designed
up to the single multipliers/adders/accumulators units, instead
than using higher-level DSP blocks. This approach requires to
individually place blocks for each variable; to automate this process
we developed scripts to build MVM units with arbitrarily large
number of variables. For the sake of clarity, in Figure 4.6 is depicted
a small MVM unit that computes y � Ax + b, where A ∈ R2×4,
x ∈ R4, and y, b ∈ R2. Computations are performed in row-wise
parallel fashion.

The path of the computed variables is depicted in green, and
develops as follows:

1. a switch, governed by the control logic, selects consecutively
the input vector x entries;

2. the current x is split into multiple parallel paths, and each of
them is multiplied by the corresponding value of the A matrix
rows;

3. the result is then accumulated obtaining the inner products
between the input vector and the matrix rows, and added to

140

4.2. EMBEDDED OPTIMIZATION ON FPGA

x4x3x2x1

0

a1,
1

a1,
2

a1,
3

a1,
4

a2,
4

a2,
3

a2,
2

a2,
1

× ×

ac
cu

m
.

ac
cu

m
.

+ +

b1
b2

y1 y2

co
un

te
r

rs
t

en

�
�

3

C
K

rs
t

rs
t

en en

co
m

pu
ta

tio
n

co
nt

ro
ll

og
ic

st
or

ag
e

cl
oc

k
¬

cl
oc

k

Fi
gu

re
4.
6:
D
ua

lG
ra
di
en

tP
ro
je
ct
io
n
on

FP
G
A
.D

et
ai
lo

ft
he

M
at
rix

-V
ec
to
rM

ul
tip

lic
at
io
n
un

it.

141

CHAPTER 4. EXPERIMENTAL TESTS

the proper entry of the b vector.

The rows of the A matrix (cyan blocks) are stored in distributed
RAM blocks, meaning that can be placed by the compiler anywhere
on the chipset. This is a trade-off that minimizes latency at the cost
of increased chip occupancy.

The control logic is depicted in black. The key element is a
counter that directly pilots the input selector switch. Whenever the
counter reaches the input size, a second switch is triggered and
the multiplier units start to receive the 0 signal thus stopping the
accumulation on the output. Moreover, the output of the nand block
becomes FALSE, disabling the counter itself.

The MVM clock signal is depicted as a black dashed path, and
its negate in red. While TRUE, it keeps the adders working. Then, as
soon as it turns FALSE:

1. the counter is reset to 0 and disabled;

2. a switch is triggered so that a 0-signal is fed to the accumulator
units;

3. the accumulators reset.

As a result, theMVMblack-box behaviorworks as follows.While the
MVM clock is FALSE, the unit outputs 0. As soon as a FALSE→TRUE
event is detected, the unit starts reading input variables and comput-
ing partial results on the output signals. After nx + 5 master FPGA

142

4.2. EMBEDDED OPTIMIZATION ON FPGA

t
CK1

CK2

CKa
T

Figure 4.7: Clock signals for the MVM units (CK1, CK2) and for the
accumulator unit (CKa). Shaded sectors mean that computations are
in progress.

clock ticks the matrix-vector products are ready, and the outputs are
kept stable with the final result as long as the MVM clock remains
TRUE. Notice that the clocks governing the MVM units control logic
are not the same of the FPGA master clock.

Figure 4.7 shows the evolution of the two MVM clock signals
CK1, CK2 and the accumulator unit clock signal CKa. A single
algorithm iteration is completed in a period T of length equal to
(nz + ny + 11) master FPGA clock cycles, and evolves as follows:

1. a FALSE→TRUE event is triggered on the firstMVMunit, which
starts its computations using the y signals of the previous

143

CHAPTER 4. EXPERIMENTAL TESTS

iteration;

2. after (ny + 5) master clock cycles (green area) the computation
is ready, and a FALSE→TRUE event is triggered on the second
MVM unit (in the meanwhile, the first MVM is kept enabled
to feed the correct solution to the downstream units);

3. after (nz + 5) master clock cycles (green area) all the matrix-
vector computations are executed, and a single TRUE clock
tick is fed to the accumulator unit, completing the algorithm
iteration.

Table 4.3 reports the results of timing and power analysis per-
formed for aXilinx Kintex 7-xc7k480t chipset. The tests are performed
starting from randomly-generated QP problems of increasing size.
Table columns report: (1) the number of primal and dual variables
for the QP, (2) the maximum path latency, (3) the maximum master
clock frequency, (4) the time needed to complete a single algorithm
iteration, (5) the percentage of occupied slices, and (6) the power
consumption.

Due to parallelization andpipelining, themaximumpath latency
is not affected by the problem size, and the computation time grows
only linearly with size, in spite of the quadratic complexity of the
matrix-vector operations.

144

4.2. EMBEDDED OPTIMIZATION ON FPGA

Ta
bl
e
4.
3:

Fi
xe
d-
Po

in
tD

ua
lG

ra
di
en

tP
ro
je
ct
io
n
A
lg
or
ith

m
on

FP
G
A
.

Si
ze

[v
ar
s/c

on
st
r]

La
te
nc

y
[n

s]
C
lo
ck

[M
H
z]

TP
I

[µ
s]

Sl
ic
e

O
cc
up

at
io
n

Po
w
er

[W
]

4/
8

5.
77

3
17

3
0.
13

1.
81

%
0.
64

8
±0
.0
35

8/
16

5.
77

3
17

3
0.
2

3.
59

%
1.
10

2
±0
.0
35

16
/3
2

5.
77

3
17

3
0.
34

4.
77

%
8.
57

1
±0
.0
35

145

C
h

a
p

te
r

5
Aerospace Applications

Spacecraft attitude control with reaction wheels actuators is
detailed in this chapter. The spacecraft nonlinear model is
described in Section 5.1, followed by the control objective

in Section 5.2. Then, the linearized control model is defined (Sec-
tion 5.3). The MPC formulation is presented in Section 5.4, and its
computational complexity discussed in Section 5.5. Closed-loop
simulation results are reported in Section 5.6. Finally, the prob-
lems of reaction wheels desaturation with gravity gradients and
Earth magnetic field are analyzed in Section 5.7 and Section 5.8,
respectively.

147

CHAPTER 5. AEROSPACE APPLICATIONS

5.1 Spacecraft Nonlinear Model

The rotational kinematics and dynamics equations of a spacecraft,
considering a principal body frame fixed to its center of mass, are
given by

(5.1)


φ̇(t)
θ̇(t)
ψ̇(t)


�

1
c(θ)


c(θ) s(φ)s(θ) c(φ)s(θ)
0 c(φ)c(θ) −s(φ)c(θ)
0 s(φ) c(φ)



ω1(t)
ω2(t)
ω3(t)


and

(5.2)

J1ω̇1 � (J2 − J3)ω2ω3 + M1 ' M1 ,

J2ω̇2 � (J3 − J1)ω1ω3 + M2 ' M2 ,

J3ω̇3 � (J1 − J2)ω1ω2 + M3 ' M3 ,

where c(·) , cos(·) and s(·) , sin(·); φ(t), θ(t), ψ(t) (rad) are the
spacecraft roll, pitch and yaw angles, respectively; for i � (1, 2, 3),
ωi (t) (rad/s) are the angular velocities, Ji (k gm2) are the principal
moments of inertia, and Mi (Nm) are the spacecraft moments.

We suppose that the spacecraft is equipped with 3 reaction
wheels along each of its body frame axes. We consider those wheels
as perfect discs with moments of inertia J̃i , i � 1, 2, 3, generating
torques about the respective principal axes. The equations linking
the spacecraft moments to the reactionwheels dynamics are defined
as follows:

(5.3)

M1 � − J̃1 (ω̇1 + α̈1 + α̇3ω2 − α̇2ω3) ' − J̃1(ω̇1 + α̈1),

M2 � − J̃2 (ω̇2 + α̈2 + α̇1ω3 − α̇3ω1) ' − J̃2(ω̇2 + α̈2),

M3 � − J̃3 (ω̇3 + α̈3 + α̇2ω1 − α̇1ω2) ' − J̃3(ω̇3 + α̈3),

148

5.1. SPACECRAFT NONLINEAR MODEL

where α̇i (rad/s) are the wheels rotational speeds, and α̈i (rad/s2)
are the wheels accelerations.

Putting together equations (5.1)-(5.3) we can formulate a ninth-
order state-space nonlinear model with state

x �

[
φ θ ψ ωi α̇i

] ′
,

for i � 1, 2, 3, that evolves according the following set of ODEs
(dependencies on time are omitted):

φ̇ �
1

c(θ)
(
c(θ)ω1 + s(φ)s(θ)ω2 + c(φ)s(θ)ω3

)
(5.4a)

θ̇ �
1

c(θ)
(
c(φ)c(θ)ω2 − s(φ)s(θ)ω3

)
(5.4b)

ψ̇ �
1

c(θ)
(
s(φ)ω2 + c(φ)ω3

)
(5.4c)

ω̇1 �
1

J1+ J̃1

(
(J2 − J3)ω2ω3 − J̃1(α̇3ω2 − α̇2ω3) − u1

)
(5.4d)

ω̇2 �
1

J2+ J̃2

(
(J3 − J1)ω1ω3 − J̃2(α̇1ω3 − α̇3ω1) − u2

)
(5.4e)

ω̇3 �
1

J3+ J̃3

(
(J1 − J2)ω1ω2 − J̃3(α̇2ω1 − α̇1ω2) − u3

)
(5.4f)

α̈i �
1
J̃i

ui , i � 1, 2, 3,(5.4g)

where u1, u2, u3 are the torques exerted on the wheels by electric
motors.

149

CHAPTER 5. AEROSPACE APPLICATIONS

5.2 Control Objective

The control objective is to track a reference spacecraft orientation

(5.5)


φ(t)
θ(t)
ψ(t)


→


φr (t)
θr (t)
ψr (t)


� r(t)

subject to polytopic constraints in the form

(5.6) z ≤ zc ≤ z , zc � Cc



φ(t)
θ(t)
ψ(t)
α̇i


+ Dc u(t),

for i � 1, 2, 3. In other words, the control framework must be able to
handle constraints on the spacecraft orientation, the reaction wheel
speeds, and the control inputs.

To this end, we need to formulate a Model Predictive Control
setup that:

• is able to solve problem (5.5)-(5.6) taking into account both
spacecraft and reaction wheels dynamics;

• minimizes the computational impact and memory require-
ments;

• can be deployed on fixed-point microcontrollers or as an
embedded MPC-on-a-chip device.

This is achieved by formulating a reduced-order control model,
halving the overall problem size while retaining a description of the

150

5.2. CONTROL OBJECTIVE

significant spacecraft and wheels dynamics, with a modified MPC
formulation based on virtual optimization variables and references
that guarantees offset-free tracking while lowering the prediction
horizon requirements, further reducing the QP problem size.

The solution of the QP problem is assigned to the Fixed-Point
Dual Gradient Algorithm described in Chapter 2, tailored for exe-
cution on embedded devices, that exploits fixed-point arithmetics
to reduce computational load and memory footprint.

151

CHAPTER 5. AEROSPACE APPLICATIONS

5.3 Control Model

The nonlinear model of Section 5.1 is too complex as a prediction
model for an embedded MPC controller. We need to formulate
a linear, reduced-order model, that however is still capable of
capturing the significant dynamics of the system.

Since the angular momentum is conserved and neglecting all
but linear terms in (5.2)-(5.3), we set the linear model

(5.7) ω̇i � − J̃i
Ji
α̈i , i � 1, 2, 3,

hence
(5.8) α̈i �

Ji

Ji J̃i− J̃2i
ui , f

(
Ji , J̃i

)
ui , 1 � 1, 2, 3.

We are now ready to define the reduced-order model for MPC
design in LTI state-space form, linearized for small angles, as follows

152

5.3. CONTROL MODEL

(5.9)

ẋ(t)︷ ︸︸ ︷

φ̇(t)
θ̇(t)
ψ̇(t)
α̈i (t)
α̈2(t)
α̈3(t)



� AC

x(t)︷ ︸︸ ︷

φ(t)
θ(t)
ψ(t)
α̇1(t)
ȧ2(t)
ȧ3(t)



+BC

u(t)︷ ︸︸ ︷
u1(t)
u2(t)
u3(t)


,

AC ,


03×3

− J̃1
J1

0 0
0 − J̃2

J2
0

0 0 − J̃3
J3

03×3 03×3


,

BC ,



03×3

f
(
J1 , J̃1

)
0 0

0 f
(
J2 , J̃2

)
0

0 0 f
(
J3 , J̃3

)


.

153

CHAPTER 5. AEROSPACE APPLICATIONS

5.4 MPC Formulation

While designing an MPC scheme, the choice of an appropriate
prediction horizon is a critical step to ensure proper controller
performance. The prediction horizon should ideally cover the time
needed to perform the required maneuvers (e.g., on a reference step
change, the controller should be able to "see" in the future when
the orientation has approached the new reference). Therefore, one
should know a priori bounds on the reference variations in order to
select a prediction horizon large enough to account for them.

Moreover, we highlight two more issues:

1. the spacecraft maneuvers are usually "slow" compared with
the controller sampling rates, leading to requirements for
large prediction horizon and consequently a large size of the
Quadratic Program associated with the MPC controller;

2. a prediction horizon tailored to account for the upper bound
on the reference variations may cause the smaller maneuvers
to be excessively slow (in case longer horizons lead to less
aggressive control actions).

To address these issues, we propose a modified MPC setup
with additional virtual optimization variables and references. The
approach is similar to the one in [144], and can be described as
follows.

154

5.4. MPC FORMULATION

We define a new optimization vector, where the variations on
the control input (a standard choice for MPC tracking problems)
are extended with a new vector of length equal to the number of
system states, becoming

[
∆u′k x̃′k

] ′
, where ∆uk ∈ R3 and x̃k ∈ R6,

k � 0, ...,N − 1, and set the new cost function

(5.10)

V (x , r̃,∆u , x̃) � ‖xN − r̃‖2WN
+

N−1∑

k�0
‖(xk − x̃k) − r̃‖2Wr

+ ‖ x̃k ‖2Wx
+ ‖∆uk ‖2Wu

,

where N is the prediction horizon, r̃ is the reference signal for
spacecraft attitude and wheels speeds, x̃ �

[
x̃′0 . . . x̃′N−1

] ′
, ∆u �[

∆u′0 . . . ∆u′N−1
] ′
.

The optimal control problem to be solved at each sampling step
becomes

(5.11)

V∗ (xt , r̃t , ut) � min
∆u ,x̃

V (xt , r̃t ,∆u , x̃)

subject to xk+1 � Axk + Buk , k � 0, ...,N − 1

uk � uk−1 + ∆uk , k � 0, ...,Nc − 1

uk � uk−1 , k � Nc , ...,N − 1

u−1 � ut , x0 � xt

(xk , uk) ∈ Z, k � 0, ...,N − 1,

where Nc is the control horizon andZ is the polytope defined
in (5.6).

Looking at the cost function (5.10), notice that there is no direct

155

CHAPTER 5. AEROSPACE APPLICATIONS

penalty for the state being far from the reference, as in standard
tracking MPC. Instead, the optimizer has the freedom to trade-off
between the discrepancy state/reference and the magnitude of the
auxiliary variables x̃, for each prediction step. This trade-off is also
influenced by properly tuning the weight matrices Wr , Wx , WN .

The practical impact on the control performance when adopting
the modified MPC setup (5.10)-(5.11) is that the prediction horizon
can be chosen independently of the duration of the spacecraft
maneuvers, and that the simulated closed-loop system shows stable
behavior for significantly smaller prediction horizons. Similar effects
have been observed in the orbital maneuvering study [145].

Figure 5.1 shows the domain of initial conditions for which the
controller is able to drive the state trajectories to a target set (black)
of radius 0.05 rad, for a spacecraft simulated with the full nonlinear
model (5.4). The domains of attraction are computed by performing
a grid search on the state space and running closed loop simulations
with two controllers.

The green set is obtained when the controller solves the modified
problem proposed in (5.11), the red set when is instead solved
a standard MPC tracking problem (i.e., removing the auxiliary
optimization variables x̃, see also Section 1.1.1), while leaving all
the other parameters unchanged.

The controlmodels are discretizedwith sampling time Ts � 0.5s.
The full parameter setup adopted for the closed-loop simulation is
reported in Table 5.1.

156

5.4. MPC FORMULATION

modified problem
original problem
target set

0 30 60
−30−60 Pitch [deg]

0
60

−60Roll [deg]

0

30

60

90

−30
−60
−90

Ya
w

[d
eg
]

Figure 5.1: Domain of attraction representing initial conditions from
where an MPC controller based on the modified problem (5.10)-(5.11)
(green set) and a standard MPC controller (green set) are able to
asymptotically converge to the target set (black).

157

CHAPTER 5. AEROSPACE APPLICATIONS

Table 5.1: Parameters in the spacecraft closed-loop simulations.

Parameter Value
Moments of inertia

J1 3000 k gm2

J2 1500 k gm2

J3 2000 k gm2

J̃i 50 k gm2

Controller
Sampling time 0.5s

Prediction horizon 10
Control horizon 2

Constraints
Control moments [−1, +1] Nm
Wheel speeds [−10, 10] rad/s

Cost function weights

Wr

[
100 · I3 03×3
03×3 0.1 · I3

]
Wx 50 · I6
Wu 0.01 · I3
WN LQR

158

5.4. MPC FORMULATION

Simulation results show how, even with a prediction horizon
N � 10 (that gives the controller a prediction window of 5 seconds
only), we obtain a domain of attraction spanning up to [−π/2, π/2]
radians for the roll and yaw angles, and up to [−π/3, π/3] radians
for the pitch angle. This is a remarkable result, considering that the
controller operates with a prediction model linearized for small
angles.

The control development is not complete yet, as it does not
guarantee offset-free tracking in presence of model uncertainties,
and is not able to reject any constant external disturbance, such as
caused by gravity gradients or solar radiation pressure.

There are several ways to achieve integral action in a controller.
For a brief review of the principal ones, refer to Section 1.5. For this
applicationwe adopted the reference-governor like approach,where
the reference fed to the controller becomes r̃(t) �

[
r(t) 03×1

] ′
,

where

(5.12) r(t) �


φdes

θdes

ψdes


−

∫ t

0

*...,

φ(τ)
θ(τ)
ψ(τ)


−


φdes

θdes

ψdes


+///-
dτ.

With this approach we achieve offset-free tracking. The compu-
tation of the integral action (5.12) can be easily performed by an
external integratorwithout affecting the complexity of the controller.

The closed-loop simulation depicted in Figure 5.2 highlights
the effects of the integral action. The controller is set to track
a reference step change. Simulation parameters are reported in

159

CHAPTER 5. AEROSPACE APPLICATIONS

20 40 60 80 100 120 140 160 180 200

−0.2

−0.1

0

0.1

0.2

Time [s]

O
rie

nt
at

io
n

[r
ad

]

without integral action
with integral action
reference

Roll
Yaw

Pitch

Figure 5.2: Offset-free control. Comparison between a controller
equipped with the integral action on the reference (green lines), and a
controllerwithout integral action (black lines),when tracking reference
roll, pitch and yaw signals (dashed lines).

Table 5.1. Without integral action (black lines) we observe a steady-
state tracking error on the roll and yaw angles, that is caused by
the discrepancy between the simplified, linearized model used in
the prediction and the full nonlinear model used to simulate the
spacecraft response.On the other hand, by adding the integral action
(green lines) the error is eventually compensated, and steady-state
offset-free tracking is achieved.

160

5.5. COMPUTATIONAL COMPLEXITY

5.5 Computational Complexity

We now analyze the computational complexity of the controller
built on theMPC formulation introduced in Section 5.4, with the QP
solver based on the Fixed-Point Dual Gradient Projection detailed
in Chapter 2. The fixed-point number representation is chosen with
32-bit word length, of which 16 bits for the fractional part, 15 bits
for the integer part, and one sign bit.

The QP algorithm has been implemented in library-free ANSI-C
for a streamlined deployment on hardware platforms. The resulting
code is composed by two functions only; an init function to be
called oncewhich initializes theproblemdata, and a step function to
be called at each sampling step which accepts spacecraft orientation
measurements and references as input, and outputs the control
signals for the reaction wheels torques.

Table 5.2 shows the complexity for three different controller
configurations: the firstwith input constraints only (upper and lower
bounds on all the control signals); the second adding constraint
on the input variations; the last including also constraints on both
spacecraft orientation (inclusion zone constraints) andwheels speed.

The Variables column reports the number of primal and dual
variables of the resulting QP problem. The Size column shows the
memory requirements to store the problem data and to execute the
code functions. Finally, the Oper./Iter column reports the number of
fixed-point operations (multiplications and additions) required to
complete an algorithm iteration.

161

CHAPTER 5. AEROSPACE APPLICATIONS

Table 5.2: Spacecraft attitude controller complexity.

Constraints Variables Size [KB] Oper./Iter

Primal Dual Data Code
u 18 12 8.7 4.2 460

u + ∆u 18 24 8.7 4.5 900
u + ∆u + x 18 144 37.5 7.7 5300

Results show how, thanks to the modified MPC formulation
and the choice of the fixed-point QP solver, we are able to maintain
the QP problem small and solve it efficiently with minimal mem-
ory footprint and computational burden. Moreover, given specific
hardware it is possible to estimate precisely the time required to per-
form a single iteration (since the algorithm performs linear-algebra
computations on matrices of pre-determined sizes). Then, given
the sampling time, one can determine the number of iterations that
can be computed within the sampling period. Finally, using the
results in [78] one can formulate the MPC problem with stability
and recursive feasibility guarantees.

162

5.6. SIMULATIONS

5.6 Simulations

The following simulations are aimed to investigate the closed-loop
behavior when a controller based on the proposed MPC setup is
connected to a spacecraft simulated with the nonlinear model of
Section 5.1.

5.6.1 Sinusoidal References Tracking

In this simulation the controller is required to track sinusoidal
references,with varying amplitudes and frequencies, for the attitude
of a spacecraft simulated according to the nonlinear model of
Section 5.1. The MPC parameters are the reported in Table 5.1.

The maneuver of tracking sinusoidal references, despite not
being of particular interest in a real-world scenario, becomes useful
to test whether the controller is properly designed, with a reduced-
order prediction model which is able to capture the plant significant
dynamics.

Figure 5.3 shows the result of the closed-loop simulation with
trajectories of the control inputs and wheels rotational speeds
(top plot), and of the spacecraft orientation compared to reference
trajectories (bottom plot).

The closed-loop behavior is consistent with the references, de-
spite the fact that the controller relies on a reduced systemmodel for
predictions. It has to be noted that, in the current MPC formulation,
the controller is not aware of future references. If such information
is available, it can be incorporated into the prediction model further

163

CHAPTER 5. AEROSPACE APPLICATIONS

improving the controller performance.

164

5.6. SIMULATIONS

−1

0

1

C
on

tr
ol

A
ct

io
n

[N
m

]

Control action and wheel rotational speeds

−0.4

−0.2

0

0.2

0.4

0.6

W
he

el
sp

ee
ds

[r
ad

/s
]

0 2 4 6 8 10

−0.5

0

0.5

Time [min]

O
rie

nt
at

io
n

[d
eg

]

Spacecraft orientation

roll pitch
yaw reference

Figure 5.3: Closed-loop simulation of sinusoidal reference tracking.
Top plot: trajectories of control inputs and reaction wheel speeds.
Bottom plot: spacecraft orientation and reference signals.

165

CHAPTER 5. AEROSPACE APPLICATIONS

5.6.2 Rest-to-Rest Orientation Maneuver

The purpose of this simulation is to show the closed-loop behavior
when performing a rest-to-rest orientation, a common maneuver in
real-world scenarios. Simulations are repeated for varying actuator
constraints.

The controller is set to track a reference step change, where
φr (t)
θr (t)
ψr (t)


:


0
0
0


→


0.08
−0.03
−0.1


[rad].

All the parameters are as in Table 5.1, with the only difference
that the maneuver is repeated for loose input constraints, u(t) ∈
[−3, +3]Nm, and for tight input constraints, u(t) ∈ [−0.2, +0.2]Nm.

Simulation results are depicted in Figure 5.4. The controller
is able to react to the different input constraints and complete
the rest-to-rest orientation maneuver, even in the case of strongly
constrained actuators.

166

5.6. SIMULATIONS

0 1 2 3 4 5 6

−0.1

−0.05

0

0.05

0.1

Time [min]

O
rie

nt
at

io
n

[r
ad

]

reference
tight input constraints
loose input constraints

Roll Yaw

Pitch

Figure 5.4: Rest-to-rest orientation maneuver with tight input con-
straints (green curves) and loose input constraints (black curves).

167

CHAPTER 5. AEROSPACE APPLICATIONS

0 1 2 3 4 5 6 7 8 9 10

−6

−4

−2

0

·10−3

Time [min]

Er
ro

r[
de

g]

roll
pitch
yaw

Figure 5.5: Fixed-point and 64-bit floating-point comparison. Dis-
crepancy in spacecraft attitude trajectories during the rest-to-rest
maneuver when using different controllers based on the two arith-
metics.

5.6.3 Fixed-Point Accuracy

The goal of this simulation is to evaluate the robustness of the
proposed QP solver with respect to finite-precision number repre-
sentations.

We ran the closed-loop simulation of Section 5.6.2 (rest-to-rest
orientation maneuver) first with 32-bit fixed-point arithmetic, of
which 16 bits for the fractional part, then switching to 64-bit, double
precision floating point arithmetic. The plots in Figure 5.5 show the
discrepancy in the resulting spacecraft orientation.

168

5.6. SIMULATIONS

The orientation discrepancy due to fixed-point computations
reaches its peak at the beginning of the maneuver where actuator
effort is larger (possibly saturated) and therefore the algorithm
generally requires more iterations to compute the solution. Nev-
ertheless, the magnitude of the discrepancy remains small, in the
order of 10−3 degrees for the whole maneuver.

169

CHAPTER 5. AEROSPACE APPLICATIONS

5.7 Reaction Wheels Desaturation by Gravity
Gradients

5.7.1 Background

The gravity gradients are torques caused by the Earth gravitational
field effects on the spacecraft body; since the gravity force decreases
proportionally to the square of the distance, the spacecraft sections
closer to the Earth receive a slightly larger pull with respect to
sections farther away.

By including the gravity gradients effects into the spacecraft
and reaction wheel kinematic and dynamic equations, one is able
to derive a completely controllable state-space model; this means that
is possible, in principle, to steer both the spacecraft attitude and the
reaction wheel speeds to specified set-points.

Thanks to the adoption of anMPC-based controller, desaturation
of thewheels is achievedbyoptimally exploiting the torques induced
by the gravity gradients, while maintaining the spacecraft attitude
constrained in a specified set.

5.7.2 Nonlinear Model

The spacecraft rotational kinematics equations that include gravity
gradient effects, assuming that the body fixed frame is the principal

170

5.7. REACTION WHEELS DESATURATION BY GRAVITY GRADIENTS

frame with the origin at the center of mass, become

(5.13)


φ̇(t)
θ̇(t)
ψ̇(t)


�

1
c(θ)


c(θ) s(φ)s(θ) c(φ)s(θ)
0 c(φ)c(θ) −s(φ)c(θ)
0 s(φ) c(φ)



ω1(t)
ω2(t)
ω3(t)


+

+n


c(θ)s(ψ) + c−1(θ)

(
σ2s(φ)s(θ) − σ1c(φ)s(θ)

)

σ2c(φ) + σ1s(φ)
c−1(θ)

(
σ2s(φ) − σ1c(φ)

)


,

where
σ1 , c(ψ)s(φ) − c(φ)s(ψ)s(θ),

σ2 , c(φ)c(ψ) + s(φ)s(ψ)s(θ),

n ,

√
µ

R3
0
,

and µ is the gravitational constant, R0 is the nominal orbital radius.

The spacecraft rotational dynamics equations become
(5.14)

J1ω̇1 � (J2 − J3)
(
ω2ω3 − 3n2s(φ)c(φ)c2(θ)

)
− J̃1 (α̈1 + ω̇1) ,

J2ω̇2 � (J3 − J1)
(
ω1ω3 + 3n2c(φ)c(θ)s(θ)

)
− J̃2 (α̈2 + ω̇2) ,

J3ω̇3 � (J1 − J2)
(
ω1ω2 + 3n2s(φ)s(θ)c(θ)

)
− J̃3 (α̈3 + ω̇3) .

Finally, the reaction wheels rotational dynamics equations are
α̈1 � nα̇3 + u1 ,

α̈2 � u2 ,

α̈3 � −nα̇1 + u3 ,(5.15)

where ui , i � (1, 2, 3), are the rotational accelerations induced on
the wheels by the electric motors.

171

CHAPTER 5. AEROSPACE APPLICATIONS

5.7.3 Control Model

Due to its nonlinear nature, the model described in Section 5.7.2
is not a good prediction model for an embedded MPC implemen-
tation. We therefore obtain a simpler state-space control model by
linearizing (5.13)-(5.14) around the nominal conditions

(5.16) φ̄ � 0, θ̄ � 0, ψ̄ � 0, ω̄1 � 0, ω̄2 � −n , ω̄3 � 0,

The resulting linearized model model is

(5.17)

ẋ(t) � ACx(t) + BC
[
u1(t) u2(t) u3(t)

] ′
,

x �
[
φ(t) θ(t) ψ(t) ωi (t) α̇i (t)

] ′ , i � (1, 2, 3),

AC ,



0 0 n
0 0 0
−n 0 0
c1 0 0
0 c2 0
0 0 0

1 0 0
0 1 0
0 0 1
0 0 c3
0 0 0
c4 0 0

06×3

03×3 03×3
0 0 n
0 0 0
−n 0 0



,

BC ,



03×3

−σ1 0 0
0 −σ2 0
0 0 −σ3

I3


,

172

5.7. REACTION WHEELS DESATURATION BY GRAVITY GRADIENTS

Table 5.3: Spacecraft (Ji) and wheels (J̃) moments of inertia used in
the reaction wheels desaturation simulations.

J1 J2 J3 J̃

1400 1700 1000 50

where

(5.18)

σi , J̃i
(
Ji + J̃i

)−1
,

c1 , −3σ1n2(J2 − J3),

c2 , 3σ2n2(J3 − J1),

c3 , −σ1n(J2 − J3),

c4 , σ3n(J1 − J2).

The controllability matrix of the pair (AC , BC) is full rank; this
property does not hold if the gravity gradient effects are neglected.

5.7.4 Simulation Results

The wheel desaturation process exploiting gravity gradients is
shown in Figure 5.6. The simulation covers a period of 22 hours. The
controller is set to regulate spacecraft attitude and reaction wheel
speeds, operating at a sampling time of 0.5 s and using a discretized
version of (5.17) as prediction model over a 10 steps horizon. The
control horizon is 2 steps. The resulting QP has 6 decision variables
and 72 constraints.

The system in initialized with the spacecraft body frame aligned
with the LVLH (Local Vertical/Local Horizontal) frame, and all the

173

CHAPTER 5. AEROSPACE APPLICATIONS

3 reaction wheels spinning at 10 rad/s. Roll, pitch and yaw angles
are constrained in the set [−0.5, 0.5] rad. The values of the chosen
spacecraft and wheels moments of inertia are given in Table 5.3.

Simulation results show how the controller drives the space-
craft to perform oscillations along the roll and yaw angles, while
maintaining an offset in the pitch angle. As a result, the wheels
are desaturated while maintaining the spacecraft attitude within
the specified constraints. The whole process takes about 8 hours to
halve wheel speeds, and 16 hours to bring them close to zero rad/s.
We note that similar results are obtained for different initial speeds,
and it is not necessary to bring the wheel speed all the way to zero
during practical desaturation maneuvers.

174

5.7. REACTION WHEELS DESATURATION BY GRAVITY GRADIENTS

−0
.50

0.
5

Attitude[rad]
ro
ll

pi
tc
h

ya
w

co
ns
tr
ai
nt
s

0
2

4
6

8
10

12
14

16
18

20
22

−1
0010

Ti
m
e
[h

rs
]

Wheels[rad/s]

α̇
1

α̇
2

α̇
3

Fi
gu

re
5.
6:

C
lo
se
d-
lo
op

si
m
ul
at
io
n
w
ith

M
PC

fo
rr

ea
ct
io
n
w
he

el
sd

es
at
ur
at
io
n
us

in
g
th
e
gr
av

ity
gr
ad

ie
nt
s,
st
ar
tin

g
fr
om

10
ra

d/
s.
To

p:
sp

ac
ec
ra
ft
ro
ll,

pi
tc
h
an

d
ya
w

an
gl
es
.B

ot
to
m
:r
ea
ct
io
n

w
he

el
ss

pe
ed

.

175

CHAPTER 5. AEROSPACE APPLICATIONS

5.7.5 Comparison with LQR

It is interesting to compare the behavior and performance of MPC
with respect to a standard LQR controller. The latter does not
allow imposing constraints on the spacecraft attitude through the
desaturation process. Instead, one is forced to tune properly weights
in the cost function for the spacecraft orientation and wheel speeds.
A fast desaturation is obtained by increasing the wheel weights;
however, this subjects the spacecraft to large oscillations (see dashed
lines in Figure 5.7). This behavior is not desirable, as the controller
is based on a model linearized for small angles (and the model
mismatch may become intolerable). The other option is to increase
the weights on spacecraft attitude (see solid lines in Figure 5.7): now
its oscillations are smaller, but the wheels desaturation performance
is significantly degraded.

176

5.7. REACTION WHEELS DESATURATION BY GRAVITY GRADIENTS

−0
.50

0.
51

Attitude[rad]
ro
ll

pi
tc
h

ya
w

0
2

4
6

8
10

12
14

16
18

20
22

−1
0010

Ti
m
e
[h

rs
]

Wheels[rad/s]

α̇
1

α̇
2

α̇
3

Fi
gu

re
5.
7:
C
lo
se
d-
lo
op

si
m
ul
at
io
n
w
ith

LQ
R
fo
rr

ea
ct
io
n
w
he

el
sd

es
at
ur
at
io
n
us

in
g
th
e
gr
av

ity
gr
ad

ie
nt
s.
Tw

o
co
nt
ro
lle

rs
,o

ne
tu
ne

d
fo
rf
as
td

es
at
ur
at
io
n
(d
ot
te
d
lin

es
),
on

e
fo
rs

lo
w

de
sa
tu
ra
tio

n
(s
ol
id

lin
es
).
To
p:

sp
ac
ec
ra
ft
ro
ll,

pi
tc
h
an

d
ya
w

an
gl
es
.B

ot
to
m
:r
ea
ct
io
n
w
he

el
ss

pe
ed

.

177

CHAPTER 5. AEROSPACE APPLICATIONS

5.8 Reaction Wheels Desaturation by Magnetic
Moments

5.8.1 Background

The desaturation by magnetic moments is possible when the space-
craft is equipped with magnetic actuators (usually three, aligned
with the body frame axes). These devices are composed by a mag-
netic core and a coil; when current flows through the latter, a
magnetic dipole is generated which interacts with the Earth mag-
netic field, resulting in a control torque on the spacecraft.

The magnetic moments are stronger than the moments due to
gravity gradients, allowing for faster wheel desaturation. However,
they require additional equipment on the spacecraft and they are
based on the interaction with the Earth magnetic field, which varies
along the orbit. Moreover, the spacecraft/wheels system is not
completely controllable, since it is not possible to generate magnetic
torques along the Earth magnetic field direction. However, since
this direction varies as the spacecraft moves along its orbit, an MPC
controller can still achieve wheel desaturation.

178

5.8. REACTION WHEELS DESATURATION BY MAGNETIC
MOMENTS

5.8.2 Nonlinear Model

The spacecraft rotational kinematics and the wheel dynamics are as
in (5.13) and (5.15) with n � 0.

The spacecraft dynamics equations are

(5.19)

J1ω̇1 � (J2 − J3) ω2ω3 − J̃1 (α̈1 + ω̇1) + MB
1 ,

J2ω̇2 � (J3 − J1) ω1ω3 − J̃2 (α̈2 + ω̇2) + MB
2 ,

J3ω̇3 � (J1 − J2) ω1ω2 − J̃3 (α̈3 + ω̇3) + MB
3 ,

where MB
i denote the torques generated by the magnetic actuators.

Those can be computed as
M ,

[
MB

1 MB
2 MB

3

] ′
� m × B,(5.20)

m ,


NxAx ix

NyAy iy

NzAz iz


�


uB
1

uB
2

uB
3


,(5.21)

where B is the Earth magnetic field vector, expressed in the space-
craft body fixed frame; N(·) , A(·) , i(·) are, respectively, the number of
coil turns, their areas, and the currents flowing through them, for
each of the three magnetic actuators mounted along the x, y and z
axes of the spacecraft body frame.

179

CHAPTER 5. AEROSPACE APPLICATIONS

5.8.3 Control Model

The control model is obtained by linearizing the nonlinear model
of Section 5.8.2 around the origin. The state vector is the same as in
(5.17), while the input vector takes the form
(5.22) u �

[
u1 u2 u3 uB

1 uB
2 uB

3

] ′
.

The resulting model is

(5.23)

ẋ(t) � ACx(t) + BC (t)u(t),

AC ,

03×3 I3 03×3

06×3 03×3 03×3

 ,

BC (t) ,



03×3 03×3

−σ1 0 0
0 −σ2 0
0 0 −σ3

0 −η1 η2
η1 0 −η3
−η2 η3 0

I3 03×3


,

σi , J̃i
(
Ji + J̃i

)−1
,

η1 , B lon gθ − B latφ − Bv ,

η2 , B latψ − Bvθ − B lon g ,

η3 , Bvφ − B lon gψ − B lat ,

where B lon g , B lat , Bv are, respectively, the longitudinal, latitudinal
and vertical components of the Earth magnetic field.

Model (5.23) is linear time-varying (LTV); therefore, an ad-
ditional computational effort is required to form the quadratic
programming problem at each sampling step.

180

5.8. REACTION WHEELS DESATURATION BY MAGNETIC
MOMENTS

Table 5.4: Test orbit parameters.

Parameter Value

Type Low-Earth Orbit
Altitude (min.) 419 km
Altitude (max.) 427 km

Eccentricity 5.66 × 10−4
Inclination 67 de g

Period 1.55 hrs

Figure 5.8: Test orbit (black line) and Earth magnetic vector field (red
arrows) used for desaturation by magnetic model.

181

CHAPTER 5. AEROSPACE APPLICATIONS

5.8.4 Simulation Results

Figure 5.8 shows the test orbit used to simulate magnetic desatu-
ration. Orbit parameters are detailed in Table 5.4. The QP solved
to compute the control action has 12 decision variables and 84
constraints. The system is initialized with reaction wheels spinning
at 100 rad/s. The goal is to lower their speed below 30 rad/s.

The Earth magnetic field is generated with data from the World
Magnetic Model [146].

Figure 5.9 shows the results of the simulation obtained with
MPC based on the LTV model (5.23). Within 2.5 hours (less than
two orbit revolutions) the desaturation process is completed, with
all the reaction wheel speeds below the target of 30 rad/s. Then,
in 1.5 additional hours, the spacecraft attitude is driven to the rest
position, with the controller waiting for favorable Earth magnetic
field directions to steer the roll, pitch and yaw angles. Note that, for
the whole process, the attitude has been constrained within a small
box of side 0.1 rad.

182

5.8. REACTION WHEELS DESATURATION BY MAGNETIC
MOMENTS

−0
.10

0.
1

Attitude[rad]
ro
ll

pi
tc
h

ya
w

co
ns
tr
ai
nt
s

0
0.
5

1
1.
5

2
2.
5

3
3.
5

4
4.
5

5
2040608010
0

Ti
m
e
[h

rs
]

Wheels[rad/s]

α̇
1

α̇
2

α̇
3

Fi
gu

re
5.
9:

C
lo
se
d-
lo
op

si
m
ul
at
io
n
w
ith

LT
V-
M
PC

fo
r
re
ac
tio

n
w
he

el
s
de

sa
tu
ra
tio

n
us

in
g
th
e

Ea
rt
h
m
ag

ne
tic

fie
ld
.T

he
go

al
is
to

lo
w
er

w
he

el
sp

ee
d
be

lo
w

30
ra

d/
s,
st
ar
tin

g
fr
om

10
0

ra
d/

s.
To
p:

sp
ac
ec
ra
ft
ro
ll,

pi
tc
h
an

d
ya
w

an
gl
es
.B

ot
to
m
:r
ea
ct
io
n
w
he

el
ss

pe
ed

.

183

C
h

a
p

te
r

6
Conclusions

This thesis addressed the problem of extending the feasibility
ofModel PredictiveControl approaches to applicationswhere
fast system dynamics is paired with scarce computational

resources, such as in automotive and aerospace industries.

The thesis contributions covered both the theoretical aspects,
with analysis of algorithms specifically tailored for embedded opti-
mization, as well as the implementation aspects, with experimental
tests on hardware platforms and a case study on spacecraft control.
Their impact is summarized in the following section.

185

CHAPTER 6. CONCLUSIONS

6.1 Summary

In Chapter 2 a Dual Gradient Projection algorithm tailored for im-
plementations in finite precision arithmetic was proposed. Despite
being a dual method, detailed convergence rates for the primal
cost and feasibility that take into account round-off errors coming
from fixed-point arithmetic were provided. Moreover, concrete and
theoretically-proven guidelines for selecting the minimum number
of fractional and integer bits that guarantee favorable convergence
properties were given. Theoretical results were then validated in
simulations.

In Chapter 3 an implementation with fixed-point arithmetic of
a Newton-based QP solver for embedded MPC applications was
investigated. The propagation of the round-off error coming from
the quantization of the number representation space was analyzed,
and design guidelines to avoid overflow errors were derived. For
ill-conditioned problems, an optimal scaling method to hinder
them was proposed. Finally, simulation were conducted to assess
algorithm performance.

In Chapter 4 experimental tests on hardware platform were
shown. Both the Dual Gradient Projection method and the Prox-
imal Newton method presented in the previous chapters were
implemented on low-power, low-cost embedded platforms based
on the ARM Cortex-M3 general purpose processing unit. Test re-
sults showed that despite the scarce computational capabilities,
QP solution times could be computed in the milliseconds range,

186

6.1. SUMMARY

with a significant positive impact in performance coming from the
adoption of fixed-point arithmetic. Moreover, an FPGA implemen-
tation of the DGP method was detailed, and was shown to achieve
solution computation times in the order of microseconds.

In Chapter 5 a fixed-point Model Predictive Control framework
for spacecraft attitude tracking with reaction wheels actuators was
presented. Optimizations to the controller structure to reduce com-
putational load were detailed, including a modified cost function,
an external integral action on the reference to guarantee offset-free
tracking, and a fixed-point QP solver. As a result, an efficient and
lightweight ANSI-C implementation was obtained, with minimal
memory and computational requirements, suitable for deployment
on low-power embedded devices. Moreover, special MPC formula-
tions that ensure reaction wheel desaturation capabilities, without
relying on thrusters actuation, were introduced. Theywere obtained
by either exploiting the gravity gradient effect, i.e., the torque gen-
erated by an uneven distribution of the gravity force, or the Earth
magnetic field. Both of them were shown to be viable solutions in
simulations, with the constraint handling property of MPC being a
key factor in enhancing controller performance.

187

CHAPTER 6. CONCLUSIONS

6.2 Future Work

Model Predictive Control for fast embedded implementations is
an open and vibrant research topic, and many of the ideas and
contributions proposed in this thesis can be refined and extended.
Here follow some considerations on possible future work for each
of the topics covered in the thesis chapters.

The convergence analysis of the fixed-point Dual Gradient Pro-
jection method in Chapter 2 can be extended to the accelerated
version of the algorithm. Modifications to the procedure can be
introduced to achieve an optimal trade-off between convergence
rate and round-off error accumulation.

In Chapter 3, the considerations on the round-off error accumu-
lation in the single iteration of the Proximal Newton algorithm can
be embedded in the convergence proof to give theoretical conver-
gence results in the presence of fixed-point arithmetic. Moreover,
the performance and error accumulation of other methods for the
solution of the linear system can be investigated.

The hardware implementations on ARM Cortex and FPGA de-
vices detailed in Chapter 4 can be exploited to conduct a real process
control experiment. Following the results on spacecraft attitude
control shown in Chapter 5, one can implement the proposed MPC
formulation on air bearing testbeds, which are commonly used to
enable a variety of ground testing for spacecraft development.

188

Bibliography

[1] J. M. Maciejowski, Predictive control: with constraints. Pearson
education, 2002.

[2] J. B. Rawlings and D. Q.Mayne,Model predictive control: Theory
and design. Nob Hill Pub., 2009.

[3] E. F. Camacho and C. B. Alba, Model predictive control.
Springer, 2013.

[4] J. B. Rawlings, “Tutorial overviewofmodel predictive control,”
Control Systems, IEEE, vol. 20, no. 3, pp. 38–52, 2000.

[5] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert,
“Constrained model predictive control: Stability and opti-
mality,” Automatica, vol. 36, no. 6, pp. 789–814, 2000.

[6] S. J. Qin and T. A. Badgwell, “A survey of industrial model
predictive control technology,” Control engineering practice,
vol. 11, no. 7, pp. 733–764, 2003.

189

BIBLIOGRAPHY

[7] A. Bemporad, “Model predictive control design: New trends
and tools,” in Proc. IEEE Conference on Decision and Control,
2006, pp. 6678–6683.

[8] R. Bellman, “Dynamic programming,” Princeton University
Press., 1957.

[9] E. B. Lee and L. Markus, “Foundations of optimal control
theory,” DTIC Document, Tech. Rep., 1967.

[10] R. R. Bitmead, M. Gevers, and V. Wertz, Adaptive optimal
control: The thinking man’s GPC. Prentice-Hall, 1990.

[11] J. B. Rawlings and K. R. Muske, “The stability of constrained
receding horizon control,” Automatic Control, IEEE Trans-
actions on, vol. 38, no. 10, pp. 1512–1516, 1993.

[12] M. Alamir and G. Bornard, “Stability of a truncated infinite
constrained receding horizon scheme: the general discrete
nonlinear case,” Automatica, vol. 31, no. 9, pp. 1353–1356,
1995.

[13] F. Allgöwer, R. Findeisen, and E. Christian, Nonlinear Model
Predictive Control, 2000.

[14] S. J. Qin and T. A. Badgwell, “An overview of nonlinear
model predictive control applications,” in Nonlinear model
predictive control. Springer, 2000, pp. 369–392.

[15] R. Findeisen, L. Imsland, F. Allgöwer, and B. A. Foss, “State
and output feedback nonlinear model predictive control:

190

BIBLIOGRAPHY

An overview,” European journal of control, vol. 9, no. 2, pp.
190–206, 2003.

[16] L. Grüne and J. Pannek, Nonlinear model predictive control.
Springer, 2011.

[17] A. Bemporad and M. Morari, “Control of systems integrating
logic, dynamics, and constraints,”Automatica, vol. 35, no. 3,
pp. 407–427, 1999.

[18] M. Lazar,W.Heemels, S.Weiland, andA. Bemporad, “Stabiliz-
ingmodel predictive control of hybrid systems,”Automatic
Control, IEEE Transactions on, vol. 51, no. 11, pp. 1813–1818,
2006.

[19] A. Bemporad, F. Borrelli, M. Morari et al., “Model predictive
control based on linear programming˜ the explicit solu-
tion,” IEEE Transactions on Automatic Control, vol. 47, no. 12,
pp. 1974–1985, 2002.

[20] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos,
“The explicit linear quadratic regulator for constrained
systems,” Automatica, vol. 38, no. 1, pp. 3–20, 2002.

[21] J. Richalet, A. Rault, J. Testud, and J. Papon, “Model predictive
heuristic control: Applications to industrial processes,”
Automatica, vol. 14, no. 5, pp. 413–428, 1978.

[22] J. Allwright, “On min-max model-based predictive control,”
in Proc. Oxford Symposium on Advances in Model Based
Predictive Control, 1993, pp. 6678–6683.

191

BIBLIOGRAPHY

[23] H. Genceli and M. Nikolaou, “Robust stability analysis of
constrained l1-norm model predictive control,” AIChE
Journal, vol. 39, no. 12, pp. 1954–1965, 1993.

[24] Z. Q. Zheng and M. Morari, “Robust stability of constrained
model predictive control,” in American Control Conference,
1993. IEEE, 1993, pp. 379–383.

[25] G. De Nicolao, L. Magni, and R. Scattolini, “Robust predic-
tive control of systems with uncertain impulse response,”
Automatica, vol. 32, no. 10, pp. 1475–1479, 1996.

[26] A. Bemporad, L. Puglia, and T. Gabbriellini, “A stochastic
model predictive control approach to dynamic option
hedging with transaction costs,” in Proc. American Control
Conference. IEEE, 2011, pp. 3862–3867.

[27] M. Bichi, G. Ripaccioli, S. Di Cairano, D. Bernardini, A. Bempo-
rad, and I. V. Kolmanovsky, “Stochastic model predictive
control with driver behavior learning for improved pow-
ertrain control,” in Proc. IEEE Conference on Decision and
Control. IEEE, 2010, pp. 6077–6082.

[28] D. Bernardini and A. Bemporad, “Scenario-based model
predictive control of stochastic constrained linear systems,”
in Proc. IEEE Conference on Decision and Control. IEEE,
2009, pp. 6333–6338.

[29] S. Boyd and L. Vandenberghe, Convex optimization. Cam-
bridge university press, 2009.

192

BIBLIOGRAPHY

[30] D. P. Bertsekas, “Nonlinear programming,” 1999.

[31] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex analysis
and optimization. Athena Scientific, 2003.

[32] D. P. Bertsekas, Convex optimization theory. Athena Scientific,
2009.

[33] M. Frank and P. Wolfe, “An algorithm for quadratic program-
ming,” Naval research logistics quarterly, vol. 3, no. 1-2, pp.
95–110, 1956.

[34] H. Markowitz, “The optimization of a quadratic function sub-
ject to linear constraints,” Naval research logistics Quarterly,
vol. 3, no. 1-2, pp. 111–133, 1956.

[35] C. Hildreth, “A quadratic programming procedure,” Naval
research logistics quarterly, vol. 4, no. 1, pp. 79–85, 1957.

[36] D. Goldfarb andA. Idnani, “A numerically stable dualmethod
for solving strictly convex quadratic programs,” Mathe-
matical programming, vol. 27, no. 1, pp. 1–33, 1983.

[37] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright,
“Procedures for optimization problems with a mixture of
bounds and general linear constraints,” ACM Transactions
on Mathematical Software, vol. 10, no. 3, pp. 282–298, 1984.

[38] P. E. Gill, N. I. Gould, W. Murray, M. A. Saunders, and
M. H. Wright, “A weighted gram-schmidt method for con-

193

BIBLIOGRAPHY

vex quadratic programming,”Mathematical Programming,
vol. 30, no. 2, pp. 176–195, 1984.

[39] C. Schmid and L. T. Biegler, “Quadratic programming meth-
ods for reduced hessian sqp,” Computers & chemical engi-
neering, vol. 18, no. 9, pp. 817–832, 1994.

[40] R. A. Bartlett and L. T. Biegler, “Qpschur: A dual, active-set,
schur-complement method for large-scale and structured
convex quadratic programming,” Optimization and Engi-
neering, vol. 7, no. 1, pp. 5–32, 2006.

[41] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active
set strategy to overcome the limitations of explicit mpc,”
International Journal of Robust and Nonlinear Control, vol. 18,
no. 8, pp. 816–830, 2008.

[42] A. V. Fiacco and G. P. McCormick, Nonlinear programming:
sequential unconstrained minimization techniques. Siam,
1990, vol. 4.

[43] J. E. Dennis Jr and R. B. Schnabel, Numerical methods for
unconstrained optimization and nonlinear equations. Siam,
1996, vol. 16.

[44] J. M. Ortega andW. C. Rheinboldt, Iterative solution of nonlinear
equations in several variables. Siam, 2000, vol. 30.

[45] W. Murray, “Analytical expressions for the eigenvalues and
eigenvectors of the hessian matrices of barrier and penalty

194

BIBLIOGRAPHY

functions,” Journal of Optimization Theory and Applications,
vol. 7, no. 3, pp. 189–196, 1971.

[46] F. A. Lootsma, “Hessianmatrices of penalty functions for solv-
ing constrained optimization problems,” Philips Research
Reports, vol. 24, pp. 322–331, 1969.

[47] N. Karmarkar, “A new polynomial-time algorithm for lin-
ear programming,” in Proc. ACM symposium on Theory of
computing. ACM, 1984, pp. 302–311.

[48] P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and
M. H. Wright, “On projected newton barrier methods for
linear programming and an equivalence to karmarkar’s
projective method,” Mathematical programming, vol. 36,
no. 2, pp. 183–209, 1986.

[49] Y. Nesterov, A. Nemirovskii, and Y. Ye, Interior-point polynomial
algorithms in convex programming. SIAM, 1994, vol. 13.

[50] A. Forsgren, P. E. Gill, and M. H. Wright, “Interior methods
for nonlinear optimization,” SIAM review, vol. 44, no. 4,
pp. 525–597, 2002.

[51] J. Rosen, “Nonlinear programming. the gradient projection
method,” Bull. Amer. Math. Soc, vol. 63, pp. 25–26, 1957.

[52] J. B. Rosen, “The gradient projection method for nonlinear
programming. part i. linear constraints,” Journal of the
Society for Industrial & Applied Mathematics, vol. 8, no. 1,
pp. 181–217, 1960.

195

BIBLIOGRAPHY

[53] J. Rosen, “The gradient projection method for nonlinear pro-
gramming. part ii. nonlinear constraints,” Journal of the
Society for Industrial & Applied Mathematics, vol. 9, no. 4,
pp. 514–532, 1961.

[54] Y. Nesterov, “A method of solving a convex programming
problem with convergence rate o(1/k2),” in Soviet Mathe-
matics Doklady, vol. 27, no. 2, 1983, pp. 372–376.

[55] ——, “On an approach to the construction of optimalmethods
of minimization of smooth convex functions,” Ekonomika i
Mateaticheskie Metody, vol. 24, pp. 509–517, 1988.

[56] ——, Introductory lectures on convex optimization: A basic course.
Springer, 2004, vol. 87.

[57] ——, “Smooth minimization of non-smooth functions,”Math-
ematical programming, vol. 103, no. 1, pp. 127–152, 2005.

[58] J. L. Hennessy and D. A. Patterson, Computer architecture: a
quantitative approach. Elsevier, 2012.

[59] E. C. Kerrigan, J. L. Jerez, S. Longo, and G. A. Constantinides,
“Number representation in predictive control,” in Proc.
IFAC Conference on Nonlinear Model Predictive Control, 2012,
pp. 60–67.

[60] J. H. Wilkinson, Rounding errors in algebraic processes. Courier
Dover Publications, 1994.

196

BIBLIOGRAPHY

[61] M. Urabe, “Roundoff error distribution in fixed-point multi-
plication and a remark about the rounding rule,” SIAM
Journal on Numerical Analysis, vol. 5, no. 2, pp. 202–210,
1968.

[62] S. Kim and W. Sung, “Fixed-point error analysis and word
length optimization of 8× 8 idct architectures,” Circuits
and Systems for Video Technology, IEEE Transactions on, vol. 8,
no. 8, pp. 935–940, 1998.

[63] M. Ogawa et al., “Overflow and roundoff error analysis via
model checking,” in Proc. IEEE Conference on Software
Engineering and Formal Methods, 2009, pp. 105–114.

[64] I. Pultarova, “Error propagation formula of multi-level
iterative aggregation-disaggregation methods for non-
symmetric problems,” Electron. J. Linear Algebra, vol. 25,
pp. 9–21, 2012.

[65] K.-V. Ling, B. F. Wu, and J. Maciejowski, “Embedded model
predictive control (mpc) using a fpga,” in Proc. 17th IFAC
World Congress, 2008, pp. 15 250–15 255.

[66] G. Knagge, A. Wills, A. Mills, and B. Ninness, “Asic and fpga
implementation strategies for model predictive control,”
in Proc. IEEE European Control Conference, 2009.

[67] E. N. Hartley, J. L. Jerez, A. Suardi, J. M. Maciejowski, E. C.
Kerrigan, and G. A. Constantinides, “Predictive control

197

BIBLIOGRAPHY

of a boeing 747 aircraft using an fpga,” in Proc. IFAC
Confereince on Nonlinear Model Predictive Control, 2012.

[68] ——, “Predictive control using an fpga with application to air-
craft control,” Control Systems Technology, IEEE Transaction
on, vol. 22, no. 3, pp. 1006–1017, 2013.

[69] J. L. Jerez, G. A. Constantinides, and E. C. Kerrigan, “Towards
a fixed point qp solver for predictive control.” in Proc. IEEE
Conference on Decision and Control, 2012, pp. 675–680.

[70] S. Richter, C. N. Jones, and M. Morari, “Real-time input-
constrained mpc using fast gradient methods,” in Proc.
IEEE Conference on Decision and Control. IEEE, 2009, pp.
7387–7393.

[71] A. Bemporad andP. Patrinos, “Simple and certifiable quadratic
programming algorithms for embedded linear model
predictive control,” in Proc. IFACNonlinearModel Predictive
Control Conference, vol. 4, no. 1, 2012, pp. 14–20.

[72] V. Nedelcu and I. Necoara, “Iteration complexity of an inexact
augmented lagrangian method for constrained mpc,” in
Proc. IEEE Conference on Decision and Control. IEEE, 2012,
pp. 650–655.

[73] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C.
Kerrigan, and M. Morari, “Embedded predictive control
on an fpga using the fast gradient method,” in Proc. IEEE
European Control Conference. IEEE, 2013, pp. 3614–3620.

198

BIBLIOGRAPHY

[74] S. Richter, C. N. Jones, andM.Morari, “Certification aspects of
the fast gradientmethod for solving the dual of parametric
convex programs,” Mathematical Methods of Operations
Research, vol. 77, no. 3, pp. 305–321, 2013.

[75] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides,
E. C. Kerrigan, and M. Morari, “Embedded online opti-
mization for model predictive control at megahertz rates,”
arXiv:1303.1090, 2013.

[76] P. Patrinos and A. Bemporad, “An accelerated dual gradient-
projection algorithm for embedded linear model pre-
dictive control,” Automatic Control, IEEE Transactions on,
vol. 59, no. 1, pp. 18–33, 2014.

[77] V. Nedelcu, I. Necoara, and Q. Tran-Dinh, “Computational
complexity of inexact gradient augmented lagrangian
methods: application to constrained mpc,” SIAM Journal
on Control and Optimization, vol. 52, no. 5, pp. 3109–3134,
2014.

[78] M. Rubagotti, P. Patrinos, and A. Bemporad, “Stabilizing
linear model predictive control under inexact numerical
optimization,” Automatic Control, IEEE Transactions on,
vol. 59, no. 6, pp. 1660–1666, 2014.

[79] I. Necoara and V. Nedelcu, “Rate analysis of inexact dual
first-order methods application to dual decomposition,”
Automatic Control, IEEE Transactions on, vol. 59, no. 5, pp.
1232–1243, 2014.

199

BIBLIOGRAPHY

[80] I. Necoara, L. Ferranti, and T. Keviczky, “An adaptive con-
straint tightening approach to linear mpc based on approx-
imation algorithms for optimization,” J. Optimal Control:
Applications and Methods, vol. 10, pp. 1–19, 2014.

[81] H. Kwakernaak and R. Sivan, Linear optimal control systems.
John Wiley & Sons, New York, 1972.

[82] P. J. Campo and M. Morari, “Robust control of processes
subject to saturation nonlinearities,” Computers & Chemical
Engineering, vol. 14, no. 4‚Äì5, pp. 343–358, 1990.

[83] M. V. Kothare, P. J. Campo, M. Morari, and C. N. Nett, “A
unified framework for the study of anti-windup designs,”
Automatica, vol. 30, no. 12, pp. 1869–1883, 1994.

[84] L. Magni, G. De Nicolao, and R. Scattolini, “Output feedback
and tracking of nonlinear systems with model predictive
control,” Automatica, vol. 37, no. 10, 2001.

[85] L. Magni and R. Scattolini, “Tracking of non-square nonlinear
continuous time systems with piecewise constant model
predictive control,” Journal of Process Control, vol. 17, no. 8,
pp. 631–640, 2007.

[86] K. R. Muske and T. A. Badgwell, “Disturbance modeling
for offset-free linear model predictive control,” Journal of
Process Control, vol. 12, no. 5, pp. 617–632, 2002.

200

BIBLIOGRAPHY

[87] G. Pannocchia and J. B. Rawlings, “Disturbance models
for offset-free model-predictive control,” AIChE Journal,
vol. 49, no. 2, pp. 426–437, 2003.

[88] G. Pannocchia, “Robust disturbance modeling for model
predictive control with application to multivariable ill-
conditioned processes,” Journal of Process Control, vol. 13,
no. 8, pp. 693–701, 2003.

[89] G. Pannocchia and E. C. Kerrigan, “Offset-free receding hori-
zon control of constrained linear systems,” AIChE journal,
vol. 51, no. 12, pp. 3134–3146, 2005.

[90] G. Pannocchia and A. Bemporad, “Combined design of distur-
bance model and observer for offset-free model predictive
control,” IEEE Transactions on Automatic Control, vol. 52,
no. 6, pp. 1048–1053, 2007.

[91] U. Maeder, F. Borrelli, and M. Morari, “Linear offset-free
model predictive control,” Automatica, vol. 45, no. 10, pp.
2214–2222, 2009.

[92] M. Morari and U. Maeder, “Nonlinear offset-free model pre-
dictive control,” Automatica, vol. 48, no. 9, pp. 2059–2067,
2012.

[93] A. Bemporad, M. Morari, and N. Ricker, Model Predic-
tive Control Toolbox for MATLAB 5.0. The Math-
works, Inc., 2014, http://www.mathworks.com/access/
helpdesk/help/toolbox/mpc/.

201

http://www.mathworks.com/access/helpdesk/help/toolbox/mpc/
http://www.mathworks.com/access/helpdesk/help/toolbox/mpc/

BIBLIOGRAPHY

[94] G. Pannocchia and J. B. Rawlings, “The velocity algorithm
LQR: a survey,” Technical Report 2001-01, TWMCC, Tech.
Rep., 2001.

[95] L. Wang, “A tutorial on model predictive control: Using
a linear velocity-form model,” Developments in Chemical
Engineering and Mineral Processing, vol. 12, no. 5-6, pp.
573–614, 2004.

[96] G. Betti, M. Farina, and R. Scattolini, “An MPC algorithm for
offset-free tracking of constant reference signals.” in Proc.
Conference on Decision and Control, 2012, pp. 5182–5187.

[97] ——, “A robust MPC algorithm for offset-free tracking of
constant reference signals,” Automatic Control, IEEE Trans-
actions on, vol. 58, no. 9, pp. 2394–2400, 2013.

[98] A. Bemporad, A. Casavola, and E. Mosca, “Nonlinear control
of constrained linear systems via predictive reference
management,” Automatic Control, IEEE Transaction on, vol.
AC-42, no. 3, pp. 340–349, 1997.

[99] E. Gilbert, I. Kolmanovsky, and K. T. Tan, “Discrete-time
reference governors and the nonlinear control of systems
with state and control constraints,” Robust and Nonlinear
Control, International Journal of, vol. 5, no. 5, pp. 487–504,
1995.

202

BIBLIOGRAPHY

[100] A. Bemporad, “Reference governor for constrained nonlinear
systems,” Automatic Control, IEEE Transaction on, vol. AC-
43, no. 3, pp. 415–419, 1998.

[101] M. Santillo and A. Karnik, “Model predictive controller de-
sign for throttle and wastegate control of a turbocharged
engine,” in Proc. American Control Conference, 2013, pp.
2183–2188.

[102] A. Richards and J. How, “Performance evaluation of ren-
dezvous using model predictive control,” in Proc. AIAA
Guidance, Navigation, and Control Conference and Exhibit.
American Institute of Aeronautics and Astronautics, 2003.

[103] H. Park, S. Di Cairano, and I. Kolmanovsky, “Model predictive
control for spacecraft rendezvous and docking with a
rotating/tumbling platform and for debris avoidance,” in
Proc. American Control Conference, 2011, pp. 1922–1927.

[104] M. Saponara, V. Barrena, A. Bemporad, E. Hartley, J. Ma-
ciejowski, A. Richards, A. Tramutola, and P. Trodden,
“Model predictive control application to spacecraft ren-
dezvous inmars sample return scenario,” Progress in Flight
Dynamics, Guidance, Navigation, Control, Fault Detection, and
Avionics, vol. 6, pp. 137–158, 2013.

[105] E. N. Hartley and J. M. Maciejowski, “Graphical fpga design
for a predictive controller with application to spacecraft
rendezvous,” in Proc. Conference on Decision and Control,
2013, pp. 1971–1976.

203

BIBLIOGRAPHY

[106] Ø. Hegrenæs, J. T. Gravdahl, and P. Tøndel, “Spacecraft
attitude control using explicit model predictive control,”
Automatica, vol. 41, no. 12, pp. 2107–2114, 2005.

[107] E. Silani and M. Lovera, “Magnetic spacecraft attitude con-
trol: a survey and some new results,” Control Engineering
Practice, vol. 13, no. 3, pp. 357–371, 2005.

[108] U. Kalabic, R. Gupta, S. D. Cairano, A. Bloch, and I. Kol-
manovsky, “Constrained spacecraft attitude control on
SO(3) using reference governors and nonlinear model
predictive control,” in Proc. American Control Conference,
2014, pp. 5586–5593.

[109] C. A. Pascucci, A. Bemporad, S. Bennani, and M. Rotunno,
“Embedded mpc for space applications.”

[110] Z. Ismail and R. Varatharajoo, “A study of reaction wheel con-
figurations for a 3-axis satellite attitude control,” Advances
in Space Research, vol. 45, no. 6, pp. 750–759, 2010.

[111] J. Jin, S. Ko, andC.-K. Ryoo, “Fault tolerant control for satellites
with four reaction wheels,” Control Engineering Practice,
vol. 16, no. 10, pp. 1250–1258, 2008.

[112] G. Creamer, P. DeLaHunt, S. Gates, and M. Levenson, “At-
titude determination and control of clementine during
lunar mapping,” Journal of guidance, control, and dynamics,
vol. 19, no. 3, pp. 505–511, 1996.

204

BIBLIOGRAPHY

[113] X. Chen, W. H. Steyn, S. Hodgart, and Y. Hashida, “Optimal
combined reaction-wheel momentum management for
earth-pointing satellites,” Journal of Guidance, Control, and
Dynamics, vol. 22, no. 4, pp. 543–550, 1999.

[114] P. Camillo and F. Markley, “Orbit-averaged behavior of mag-
netic control laws for momentum unloading,” Journal of
Guidance, Control, and Dynamics, vol. 3, no. 6, pp. 563‚Äì–
568, 1980.

[115] D. Chang, “Magnetic and momentum bias attitude control
design for the hete small satellite,” in Proc. AIAA/USU
Conference on Small Satellites, 1992.

[116] O. Devolder, F. Glineur, and Y. Nesterov, “First-order meth-
ods of smooth convex optimization with inexact oracle,”
Mathematical Programming, pp. 1–39, 2013.

[117] P. Patrinos, A. Guiggiani, and A. Bemporad, “Fixed-point
dual gradient projection for embedded model predictive
control,” in Proc. European Control Conference, 2013, pp.
3602–3607.

[118] ——, “A Dual Gradient-Projection Algorithm for Model Pre-
dictive Control in Fixed-Point Arithmetic,” Automatica,
vol. 55, pp. 226–235, 2015.

[119] P. Patrinos and A. Bemporad, “Proximal Newton methods
for convex composite optimization,” in Proc. 52st IEEE
Conference on Decision and Control, 2013, pp. 2358–2363.

205

BIBLIOGRAPHY

[120] A. Guiggiani, P. Patrinos, and A. Bemporad, “Fixed-Point
Implementation of a Proximal Newton Method for Em-
bedded Model Predictive Control,” in Proc. IFAC World
Congress, 2014, pp. 2921–2926.

[121] M. Rubagotti, P. Patrinos, A. Guiggiani, and A. Bemporad,
“Real-TimeModel Predictive Control Based onDual Gradi-
ent Projection: Theory and Fixed-Point FPGA Implementa-
tion,” International Journal of Robust and Nonlinear Control,
2015.

[122] A. Guiggiani, I. Kolmanovsky, P. Patrinos, and A. Bemporad,
“Fixed-Point Constrained Model Predictive Control of
Spacecraft Attitude,” 2015.

[123] ——, “Constrained Model Predictive Control of Spacecraft
Attitude with Reaction Wheels Desaturation,” 2015.

[124] G.ChenandM.Teboulle, “Convergence analysis of a proximal-
like minimization algorithm using Bregman functions,”
SIAM Journal on Optimization, vol. 3, no. 3, pp. 538–543,
1993.

[125] P. Tseng, “On accelerated proximal gradient methods for
convex-concave optimization,” Department of Mathemat-
ics, University of Washington, Tech. Rep., 2008.

[126] H. Bauschke and P. Combettes, Convex analysis and monotone
operator theory in Hilbert spaces. Springer, 2011.

206

BIBLIOGRAPHY

[127] A. d’Aspremont, “Smooth optimization with approximate
gradient,” SIAM Journal on Optimization, vol. 19, no. 3, pp.
1171–1183, 2008.

[128] O. Devolder, “Stochastic first ordermethods in smooth convex
optimization,” CORE Discussion Papers 2012, vol. 9, 2012.

[129] S. Richter, M. Morari, and C. Jones, “Towards computational
complexity certification for constrained MPC based on
Lagrange relaxation and the fast gradientmethod,” in Proc.
Conference on Decision and Control and European Control
Conference, 2011, pp. 5223–5229.

[130] P. Patrinos and A. Bemporad, “An accelerated dual gradient-
projection algorithm for linear model predictive control,”
in Proc. Conference on Decision and Control, 2012, pp. 662–
667.

[131] Y. Wang and S. Boyd, “Fast model predictive control using
online optimization,” Control Systems Technology, IEEE
Transactions on, vol. 18, no. 2, pp. 267–278, 2010.

[132] A. van der Sluis, “Stability of solutions of linear algebraic
systems,” Numerische Mathematik, vol. 14, no. 3, pp. 246–
251, 1970.

[133] S. Boyd, Linear matrix inequalities in system and control theory.
Siam, 1994, vol. 15.

207

BIBLIOGRAPHY

[134] S. Richter, C. N. Jones, and M. Morari, “Computational Com-
plexity Certification for Real-Time MPC With Input Con-
straints Based on the Fast Gradient Method,” Automatic
Control, IEEE Transactions on, vol. 57, no. 6, pp. 1391–1403,
2012.

[135] P. Kapasouris, M. Athans, and G. Stein, “Design of feedback
control systems for unstable plants with saturating ac-
tuators,” in Proc. IFAC Symp. on Nonlinear Control System
Design, 1990, pp. 302–307.

[136] H. F.-W. Sadrozinski and J. Wu, Applications of field-
programmable gate arrays in scientific research. CRC Press,
2012.

[137] K. Compton and S. Hauck, “Reconfigurable computing: a
survey of systems and software,” ACM Computing Surveys
(csuR), vol. 34, no. 2, pp. 171–210, 2002.

[138] M. Baleani, F. Gennari, Y. Jiang, Y. Patel, R. Brayton, and
A. Sangiovanni-Vincentelli, “System partitioning and tim-
ing analysis: Hw/sw partitioning and code generation
of embedded control applications on a reconfigurable
architecture platform,” in Proc. International Symposium on
Hardware/software Codesign, 2002, pp. 151–156.

[139] K.-V. Ling, S. Yue, and J.Maciejowski, “A fpga implementation
of model predictive control,” in Proc. American Control
Conference, 2006, pp. 1930–1935.

208

BIBLIOGRAPHY

[140] L. G. Bleris, P. D. Vouzis, M. G. Arnold, and M. V. Kothare, “A
co-processor fpga platform for the implementation of real-
time model predictive control,” in Proc. American Control
Conference, 2006, pp. 6–12.

[141] P. Vouzis, M. Kothare, L. Bleris, and M. Arnold, “A system-
on-a-chip implementation for embedded real-time model
predictive control,” Control Systems Technology, IEEE Trans-
actions on, vol. 17, no. 5, pp. 1006–1017, 2009.

[142] M. S. Lau, S. Yue, K. Ling, and J. Maciejowski, “A comparison
of interior point and active set methods for fpga imple-
mentation of model predictive control,” in Proc. European
Control Conference, 2009, pp. 157–161.

[143] N.Yang,D. Li, J. Zhang, andY.Xi, “Model predictive controller
design and implementation on fpga with application to
motor servo system,” Control Engineering Practice, vol. 20,
no. 11, pp. 1229–1235, 2012.

[144] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC
for tracking piecewise constant references for constrained
linear systems,” Automatica, vol. 44, no. 9, Sep. 2008.

[145] A. Weiss, I. Kolmanovsky, M. Baldwin, and R. Erwin, “Model
predictive control of three dimensional spacecraft relative
motion,” in Proc. American Control Conference, 2012, pp.
173–178.

209

BIBLIOGRAPHY

[146] S. Maus, S. Macmillan, S. McLean, B. Hamilton, A. Thomson,
M.Nair, andC. Rollins, “The us/ukworldmagneticmodel
for 2010-2015,” NOAA Technical Report NESDIS/NGDC,
2010.

210

	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	Notation and Abbreviations
	Introduction
	Model Predictive Control
	Linear Tracking Formulation
	Extensions

	Quadratic Programming for Model Predictive Control
	Lagrangian Duality
	Methods
	From Model Predictive Control to Quadratic Programming

	Fixed-Point Computations
	Overflow Errors
	Round-off Errors
	Errors due to Mathematical Operations

	Embedded Model Predictive Control
	Offset-Free Model Predictive Control
	Methods for Offset-Free Model Predictive Control
	Simulation

	Model Predictive Control for Aerospace Applications
	Motivation and Contribution

	Gradient Projection Methods in Finite Precision Arithmetic
	Inexact Gradient Projection
	Inexact Dual Gradient Projection
	Modified Primal-Dual Pair
	Inexact Oracle
	Primal Convergence Rates
	Optimal Choice of for Fixed Oracle Errors z,
	Bound of the Number of Iterations
	Maximum Admissible Oracle Errors z,

	Fixed-Point Dual Gradient Projection for Quadratic Programs
	Fixed-point Implementation
	Guidelines for the Number of Fractional Bits
	Guidelines for the Number of Integer Bits

	Simulations
	Sample Evolutions
	Infeasibility and Suboptimality Bounds
	Target Infeasibility
	Bounds on Iteration Count
	Masses Serially Connected Example

	Proximal Newton Methods in Finite Precision Arithmetic
	Problem Setup
	Proximal Newton Algorithm
	Fixed-Point Proximal Newton Algorithm
	Round-off Error Analysis
	Avoiding Overflow Errors

	Optimization of the Algorithm
	Preconditioning
	Division-free Computations

	Simulations
	Computational Complexity
	Solution Accuracy
	Control of a F16 Aircraft Example

	Experimental Tests
	Embedded Optimization on ARM Cortex
	The ARM Cortex-M3 Processing Unit
	Gradient Projection Methods on ARM Cortex
	Proximal Newton Methods on ARM Cortex

	Embedded Optimization on FPGA
	Introduction to FPGA Devices
	Fixed-Point Dual Gradient Projection on FPGA

	Aerospace Applications
	Spacecraft Nonlinear Model
	Control Objective
	Control Model
	MPC Formulation
	Computational Complexity
	Simulations
	Sinusoidal References Tracking
	Rest-to-Rest Orientation Maneuver
	Fixed-Point Accuracy

	Reaction Wheels Desaturation by Gravity Gradients
	Background
	Nonlinear Model
	Control Model
	Simulation Results
	Comparison with LQR

	Reaction Wheels Desaturation by Magnetic Moments
	Background
	Nonlinear Model
	Control Model
	Simulation Results

	Conclusions
	Summary
	Future Work

	Bibliography

