
IMT Institute for Advanced Studies

Lucca, Italy

Supporting Autonomic Management of Clouds:
Service-Level-Agreement, Cloud Monitoring

and Similarity Learning

PhD Program in Computer Science and Engineering

XXVII Cycle

By

Rafael Brundo Uriarte

March, 2015

http://www.imtlucca.it
mailto:rafael.uriarte@imtlucca.it

Contents

List of Figures vi

List of Tables viii

Acknowledgements x

Publications xii

Abstract xiii

1 Introduction 1
1.1 Research Questions and Objectives 6
1.2 Scientific Contributions . 8
1.3 Thesis Organization and Use Case 10

2 Autonomic Clouds and SLAs: The State of the Art 13
2.1 Cloud Computing . 14
2.2 Autonomic Computing . 22
2.3 Autonomic Clouds . 26
2.4 Service-Level-Agreements . 27
2.5 System Monitoring . 38
2.6 Knowledge Discovery Process 40
2.7 Summary . 43

3 SLAC: A Language for the Definition of SLAs for Clouds 45
3.1 Existing Definition Languages and the Clouds 46
3.2 SLAC: Service-Level-Agreement for Clouds 52

iii

3.3 Extensions . 64
3.4 Software Tool . 72
3.5 Summary . 81

4 Panoptes: An Architecture for Monitoring Autonomic Clouds 82
4.1 From Data to Knowledge In the Autonomic Cloud Domain 83
4.2 Role of the Monitoring System and Domain Requirements 85
4.3 Related Works . 86
4.4 Panoptes Architecture . 88
4.5 From SLA Metrics to Monitoring Modules 93
4.6 Implementation . 96
4.7 Experimental Evaluation . 97
4.8 Summary . 103

5 Similarity Learning in Autonomic Clouds 104
5.1 Problem Formulation . 105
5.2 Requirements of Clustering Techniques in Clouds 108
5.3 Management using Clustering and Similarity Learning . . 110
5.4 Experiments . 119
5.5 Related Works . 130
5.6 Summary . 131

6 Polus: Integration and Use of SLAC, Panoptes and Similarity
Learning 133
6.1 Polus Framework . 134
6.2 Integration of the Proposed Solutions 138
6.3 Use Case: Scheduling in Hybrid Clouds 139
6.4 Summary . 153

7 Conclusions 155
7.1 Thesis Summary . 155
7.2 Research Findings . 157
7.3 Limitations on the Study . 159
7.4 Future Works . 161

iv

A Overview of the Existing SLA Definition Languages 163
A.1 WSOL . 163
A.2 WS-Agreement . 168
A.3 SLA* . 169
A.4 SLAng . 171
A.5 CSLA . 173
A.6 Overview of the Languages 174

References 176

v

List of Figures

1 Autonomic functions. 2
2 Foundations of the decision-making 4
3 This thesis from the autonomic and SLA perspectives . . . 5
4 Thesis structure and the dependencies among chapters. . . 10

5 The major cloud deployment models. 17
6 Cloud delivery models . 19
7 MAPE-K loop of the autonomic managers. 24
8 Example of an autonomic cloud 25
9 SLA life cycle. 31
10 Structure of SLAs defined in the SLA* language. 32
11 Structure of SLAs defined in the SLAng language. 34
12 Structure of SLAs defined in the CSLA language. 36
13 Classification of monitoring systems properties by type. . . 39

14 A term which defines a metric in the SLAC language. . . . 55
15 A term which instantiate a group in the SLAC language. . 56
16 Evaluation of a variable auction pricing scheme. 70
17 SLA Evaluator Framework. 74
18 Delay of the communication of two VMs of a cluster group. 80

19 Panoptes Agents and the DIKW Hierarchy 91
20 SLA Term to Monitoring Module 96
21 Integration between Panoptes and the self-protection system. 98
22 Tests of scalability and timeliness of Panoptes. 102

vi

23 Management architecture of autonomic clouds. 106
24 Training and prediction phases of the developed RF+PAM. 118
25 Example of a distributed set-up of RF+PAM. 121
26 Total run time of the scheduling algorithms. 130

27 Knowledge extraction component in Panoptes. 135
28 Architecture of Polus. 138
29 Detailed Polus architecture for the use case. 141
30 Main steps of the autonomic scheduling of a new service . 142
31 Average number of SLA violations on the first scenario. . . 144
32 Risk-Aware scheduler scenario. 145
33 Main steps of the Risk-Aware Scheduling of new services. 147
34 Average Number of SLA violations on the second scenario 149
35 Unexpected expenses on the second scenario 153

36 Structure of SLAs in the WSOL language. 165
37 Structure of SLAs in the WSLA language. 166
38 Relations of the Components in WSLA 167
39 Structure of SLAs defined in the WS-Agreement language. 169
40 Structure of SLAs defined in the SLA* language. 170
41 Structure of SLAs defined in the SLAng language. 172
42 Structure of SLAs defined in the CSLA language. 174

vii

List of Tables

1 Example of SLA metrics . 28

2 Comparison of the SLA definition languages. 48
3 Syntax of the SLAC language. 53
4 Example of a simple SLAC SLA. 58
5 Semantics of the SLAC language. 60
6 Semantics at work on the academic cloud case study. . . . 63
7 Pricing schemes support in the SLA. 68
8 Syntax of the business aspects for the SLAC language. . . . 69
9 Auction Scheme example in SLAC 71
10 Syntax of the extensions to support PaaS in SLAC. 72
11 PaaS Example in SLAC . 72
12 Guarantee specification used in the test. 76
13 Extended Use Case in SLAC 77

14 Main Characteristics of Panoptes 94
15 Equivalence between a SLA term and monitoring metrics . 95
16 Messages exchanged in the described scenario. 101

17 Domain characteristics and clustering requirements 108
18 Quality of clustering with RF+K-means. 124
19 Clustering agreement results. 126

20 Results of the Random and Dissimilarity schedulers 144
21 Results of the Dissimilarity and Risk-Aware schedulers . . 148

viii

22 Unexpected Costs with different penalties ranges 152

ix

Acknowledgements

When starting this thesis, I asked myself whether to use “I” or
“we” pronouns; the answer came straight to my mind. No one
does anything alone. In my case, this work would never be
accomplished without the invaluable support and dedication
of many.

I have no idea how to express my gratitude to the people, who
were part of this journey. First, I want to thank Francesco
Tiezzi for his endless patience and for the uncountable hours
discussing problems and solutions, which were essential for
this work. Rocco De Nicola for his guidance, his availability
and for being always open to new ideas. Also, to Sotirios
Tsaftaris, who has contributed immensely, not only to the tech-
nical aspect of the thesis but also for my (ongoing) maturation
process as a researcher. I really appreciate their efforts and
patience to teach and advice a stubborn person like me. Profes-
sor Carlos Westphall (and his students in LRG), which, even
from Brazil, always made everything possible to help. Finally,
I am grateful to my dissertation committee members, Carlos
Canal, Michelle Sibilla and Mirco Tribastone for their time,
interest, encouragements and helpful comments.

I gratefully acknowledge the funding sources that made my
Doctorate work possible. I was funded by the Italian Govern-
ment, by the Cassa di Risparmio di Lucca Foundation, by the
EU project ASCENS and by the CINA project.

Words cannot express how grateful I am to my wife, my
friends and my family. They support me every time I needed,
even sometimes only with a smile or a small joke which would
cheer me up. Specially, to Yesim for her help with the thesis

x

and mainly for being my beloved and inspiration. Through
her love, caring, patience and her (sometimes unjustified) un-
wavering belief in me, I was able to complete this journey.
Also, special thanks to my friends, in particular to my life-
long friend Gustavo, who is always there when necessary. My
time in Lucca was made enjoyable not only by this wonder-
ful city but also by its inhabitants and friends in IMT, thank
you Sahizer, Oznur, Omar, Michelle, Ajay, Alberto, Carlo,
Francesca, Massimo, Elio and Bernacchi.

Finally, I would like to dedicate this thesis to my mother, father
and sister. It is incredible that the distance does not diminish
their importance. To them, I dedicate this thesis.

You all make me feel the luckiest person in the world. Thank
you.

xi

List of Publications

1. R. B. Uriarte, S. Tsaftaris and F. Tiezzi. Service Clustering for Autonomic
Clouds Using Random Forest. In Proc. of the 15th IEEE/ACM CCGrid [In
Press], 2015.

2. R.B. Uriarte, F. Tiezzi, R. De Nicola, SLAC: A Formal Service-Level-Agreement
Language for Cloud Computing. In IEEE/ACM 7th International Conference
on Utility and Cloud Computing (UCC 2014), 2014.

3. R.B. Uriarte, C.B. Westphall, Panoptes: A monitoring architecture and
framework for supporting autonomic Clouds, In Proc. of the 16th IEEE/IFIP
Network Operations and Management Symposium (NOMS), 2014.

4. R.B. Uriarte, S.A. Chaves, C.B. Westphall, Towards an Architecture for
Monitoring Private Clouds. In IEEE Communications Magazine, 49, pages
130-137, 2011.

5. R. Willrich, L. H. Vicente, A. C. Prudłncio, V. S. N. Alves, R. B Uriarte, F.
B. Teixeira. Estabelecimento de Sessoes SIP com Garantias de QoS e sua
Aplicaçao em um Dominio DiffServ. In Proc. of the 29th Simpsio Brasileiro de
Redes de Computadores, 2011.

6. R. B. Uriarte, S. Chaves, C. Westphall, P. Vitti. Projeto e Implantaçao de
um Arcabouço para o Monitoramento de Nuvens Privadas. In Proc. of 37th
Conferencia Latinoamericana de Informatica, 2011.

7. S. A. de Chaves, R. B. Uriarte, C. B. Westphall. Implantando e monitorando
uma nuvem privada. In Proc. of the 8th Workshop em Clouds, Grids e Aplicaçoes,
2010.

8. R. Willrich, L. H. Vicente, R. B. Uriarte, A. C. Prudencio, J. J. C. Invocaçao
Dinamica de Serviços com QoS em Sessoes Multimidia SIP. In Proc. of the
8th Int. Information and Telecommunication Technologies Symposium, 2009.

xii

Abstract

Cloud computing has grown rapidly during the past few
years and has become a fundamental paradigm in the Infor-
mation Technology (IT) area. Clouds enable dynamic, scalable
and rapid provision of services through a computer network,
usually the Internet. However, managing and optimising
clouds and their services in the presence of dynamism and
heterogeneity is one of the major challenges faced by indus-
try and academia. A prominent solution is resorting to self-
management as fostered by autonomic computing.

Self-management requires knowledge about the system and
the environment to enact the self-* properties. Nevertheless,
the characteristics of cloud, such as large-scale and dynamism,
hinder the knowledge discovery process. Moreover, cloud sys-
tems abstract the complexity of the infrastructure underlying
the provided services to their customers, which obfuscates
several details of the provided services and, thus, obstructs
the effectiveness of autonomic managers.

While a large body of work has been devoted to decision-
making and autonomic management in the cloud domain,
there is still a lack of adequate solutions for the provision of
knowledge to these processes.

In view of the lack of comprehensive solutions for the provi-
sion of knowledge to the autonomic management of clouds,
we propose a theoretical and practical framework which ad-
dresses three major aspects of this process: (i) the definition
of services’ provision through the specification of a formal
language to define Service-Level-Agreements for the cloud do-
main; (ii) the collection and processing of information through

xiii

an extensible knowledge discovery architecture to monitor
autonomic clouds with support to the knowledge discovery
process; and (iii) the knowledge discovery through a machine
learning methodology to calculate the similarity among ser-
vices, which can be employed for different purposes, e.g. ser-
vice scheduling and anomalous behaviour detection. Finally,
in a case study, we integrate the proposed solutions and show
the benefits of this integration in a hybrid cloud test-bed.

xiv

Chapter 1

Introduction

Cloud computing has grown rapidly during the past few years and has
become a key paradigm in the Information Technology (IT) area. The
IT analysis firm IDC confirms the importance of cloud computing with
a market analysis. It predicted that by the end of 2014 the spending on
cloud computing will reach over 100 billion dollars, with a remarkable
growth of 25%, while the total IT expenditures will grow only around 5%
[Gen13].

The popularity of cloud is due to the fact that it enables dynamic,
scalable and rapid provision of services through a computer network,
usually the Internet. Moreover, cloud systems abstract the complexity of
the infrastructure underlying the provided services to their customers.
However, due to these layers and its features along with its distributed
and large-scale nature, managing clouds is considerably more complex
than traditional data centres [NDM09].

A prominent approach to cope with this complexity is Autonomic Com-
puting [Hor01], which aims at equipping such systems with capabilities
to autonomously adapt their behaviour and/or structure according to dy-
namic operating conditions. To effectively achieve such self-management,
the system entities in charge of enacting autonomic strategies, the so-
called autonomic managers, require knowledge about the system. Ma-
nagement is performed through the well-known MAPE-K (Monitoring,

1

Figure 1: Autonomic functions.

Analysis, Planning, Execute based on Knowledge) [IBM05] control loop.
The analyses and decisions of this control loop rely on knowledge and
the status of the system, which are perceived through sensors. Figure 1
[DDF06] depicts the major functions of autonomic managers and some
solutions that support these functions.

Differently from the standard autonomic approach, autonomic clouds
emphasise the management of services since clouds are service-oriented.
As a result, the application of the autonomic concepts in the cloud domain
must also consider the objectives of the services being provided.

In light of the characteristics of the domain, different types of know-
ledge are required by the decision-making of autonomic managers. In
particular, three types of knowledge are common to all implementations
of autonomic clouds: high-level policies, which describe the objectives of
the system and are commonly defined by the cloud administrator; the
definition of the cloud services’ provision and their objectives; and the status
of the cloud. Moreover, depending on the capacity and on the methods
employed by decision-making process, the autonomic managers need
specific types of knowledge about the cloud or services.

The overall aim of this thesis is to design a theoretical and practical

2

framework tailored for the cloud domain for the definition of services,
monitoring information gathering and the generation of knowledge. In
what follows, we describe the types of knowledge addressed by this thesis.
Nevertheless, it should be noted that among the types of knowledge
required by the autonomic managers, we do not cover the specification of
high-level policies since they rarely change and the policies defined for
the cloud domain have little or no difference to other domains.

The first type of knowledge concerns the definition of services and
their objectives. The use of Service-Level-Agreements (SLAs) is a possible
solution for the provision of such definitions to the autonomic managers.
SLAs are the formalization of the characteristics and objectives of the ser-
vices and are employed to regulate the service. In autonomic clouds, the
SLAs serve as a guide for the decision-making process of the autonomic
managers, i.e. they provide performance goals of the service. However,
SLAs must enable the definition of cloud services with their specificities
and, in particular, they have to be both human-readable, in order to facili-
tate the task of specifying and maintaining them, and machine-readable,
to be used a as source of knowledge by autonomic managers.

The second type of knowledge refers to the status of the system. To gen-
erate this knowledge, a monitoring system needs the ability to correlate
signals and facts, potentially expressed as event messages, to determine
what is occurring in the cloud environment [Ste02]. Combinations and
correlations of facts and signals are used to generate higher abstractions
of the system, which are provided to autonomic managers in order to
empower their decision-making process.

The third category refers to the types of knowledge required by specific
implementations of autonomic managers. These types of knowledge vary
considerably according to the implementation and scope of the autonomic
managers and can assume many forms; for example, the risk of violation
of a SLA, a model to find a robust similarity measure among services or
the prediction that the computing load of a cloud will be reduced in the
next hours. Due to its generality and broad scope, we define and analyse
the process of discovering knowledge in autonomic clouds and focus on
a specific type of knowledge which can be used in different scenarios: the

3

Figure 2: Foundations of the decision-making in the autonomic management
which are addressed in this thesis.

similarity among services.
Figure 2 depicts the decision-making process of the autonomic man-

agers and the main pillars that feed it with knowledge from the cloud.
To illustrate the importance of the knowledge provision in the auto-

nomic management, we list the requirements of a common objective of
cloud autonomic managers: the enforcement SLA terms. Most models
that predict possible violations on the SLA require: (i) the SLA objectives,
(ii) monitoring information of the service, (iii) the model to generate this
knowledge and (iv) the timely delivery of this knowledge. Only with this
knowledge, the autonomic managers can pro-actively adapt the system
and avoid such violations.

However, the characteristics of cloud computing, such as large-scale,
dynamism and the measures used to improve security in the domain,
hinder the knowledge discovery processes. Moreover, the autonomic
management of clouds must manage different levels of abstraction of
the system components, such as services, clusters and external providers,
which also complicate these processes. Therefore, these difficulties should
be considered in the development of solutions for the domain.

Nevertheless, to the best of our knowledge, no work deals at once
with various aspects of the knowledge discovery process in the autonomic
cloud domain. Although several works provide a high-level account
of the autonomic components and of the MAPE-K loop, also for the

4

Figure 3: The relation of the thesis with the autonomic and SLA management
perspectives.

cloud domain, they focus on the decision-making and assume that the
knowledge for the autonomic decisions is available1.

Similarly to autonomic management, the foundations of the SLA ma-
nagement are based on three pillars. These pillars are the same as the
ones of the autonomic computing but their scope is limited to the defi-
nition, knowledge and status only of the services of the cloud. In fact,
these requirements are a subset of the knowledge that is necessary for the
autonomic management; therefore, we also consider the works regard-
ing the SLA management and present the proposed solutions from this
standpoint as well. However, also from the SLA perspective, to the best
of our knowledge, no work focuses on the provision of knowledge for its
management. Figure 3 relates the types of knowledge addressed by this
thesis with the autonomic and the SLA perspectives.

Although big strides have been made in recent years in the field of

1Many works discuss solutions for a single aspect of the provision of knowledge for the
autonomic management. These works will be analysed in the chapter where we specifically
address the particular aspect.

5

autonomic clouds and SLA management, there remain open questions
on the foundations of these two processes: how the knowledge is pro-
vided to managers and how multiple sources of knowledge are integrated.
Therefore, to address this gap in the literature, we analyse the domain
and design Polus, which is a theoretical and practical framework to inte-
grate multiple sources of knowledge provisions. In particular, we focus
on the definition of services, on the monitoring of the domain, on the
knowledge discovery process and on the discovery of similarity among
services, which are the foundations of the decision-making of autonomic
clouds.

In addressing the lack of comprehensive solutions for the provision of
knowledge for the autonomic management of cloud systems, we provide
the necessary means to define services, collect information and transform
it into knowledge, which enables the accurate decision-making and, con-
sequently, the enactment of the self-management properties in autonomic
clouds.

1.1 Research Questions and Objectives

Based on the knowledge required by the decision-making process of
autonomic clouds, we specify the main research questions addressed by
the thesis as follows:

Research Question 1
How to describe services and their objectives in the cloud domain?

Clouds have a unique set of characteristics, some of which are inher-
ited by the services that are provided by this paradigm. These characteris-
tics make the description and objectives of services difficult to grasp in
SLAs. In particular, SLAs provide to autonomic managers knowledge,
such as the aims of the services, the penalties in case of violation (which
can help the autonomic manager to evaluate when it is convenient to
violate a SLA) and priorities. Thus, a language for the definition of SLAs,
which is able to capture the characteristics of the domain, is a requirement

6

for the autonomic and the SLA management. This question is addressed
in Chapter 3.

Research Question 2
What is data, information, knowledge and wisdom in the autonomic cloud

domain?

Knowledge is the foundation of the decision-making process of au-
tonomic clouds. Yet, knowledge has different definitions according to
the context. Therefore, robust definitions of the concepts and levels of
the knowledge hierarchy are essential to analyse and build a conceptual
framework to support autonomic clouds with the necessary knowledge.
This question is addressed in Chapter 4.

Research Question 3
How to collect and transform the enormous amount of operational data into

useful knowledge without overloading the autonomic cloud?

Collecting and processing data in the autonomic cloud domain is a
major challenge due to its dynamism, scale and elasticity. Moreover, a
cloud has many abstraction levels, which can be independent of physical
or logical location (e.g. service, node, cluster). Therefore, designing a
non-intrusive monitoring system, which provides the status of the system
and services in a timely manner, is important. This question is addressed
in Chapter 4.

Research Question 4
How to produce a robust measure of similarity for services in the domain and

how can this knowledge be used?

Different knowledge types are essential for the decision-making pro-
cess. Similarity among services is a type of knowledge which can be used
for various aims, such as anomalous behaviour detection, application
profiling and scheduling. However, clouds are heterogeneous, dynamic
and large-scale, which hinder this task. Therefore, new techniques are
necessary to discover a robust measure of similarity among services in
the domain. This question is addressed in Chapter 5.

7

Research Question 5
How to integrate different sources of knowledge and feed the autonomic

managers?

The knowledge that is employed to manage autonomic clouds is com-
monly generated from different sources. Managing requests and the
provision of such knowledge might require a complex interaction be-
tween the autonomic managers and these sources. Therefore, integrating
these components to feed the autonomic manager is a necessity. This
question is addressed in Chapter 6.

1.2 Scientific Contributions

The overall contribution of this thesis to the state-of-the-art in the auto-
nomic cloud management is the design and implementation of a theo-
retical framework (named Polus) and software tools to define services,
collect data from the system and transform this data into knowledge.

Below, we the list the major contributions of this thesis in different
areas2 . Although the proposed solutions are independent and can be
exploited separately, they can also be integrated as demonstrated in Chap-
ter 6.

• SLAC: A Language for the Definition of Service-Level-Agreement
for Clouds - A SLA definition language tailored for clouds and it
includes the vocabulary for the specification of SLA in this domain.
Other contributions on the area are:

– The analysis of the requirements for a SLA definition language
for the domain;

– A survey considering existing solutions;

– The implementation of a software framework which supports
this language.

2The software implementation of the proposed solutions are free and open source. They
are available on:
http://sysma.imtlucca.it/tools/slac/
http://code.google.com/p/unsupervised-randomforest/

8

http://sysma.imtlucca.it/tools/slac/
http://code.google.com/p/unsupervised-randomforest/

The details of this language are presented in Chapter 3 and has been
published in [UTD14].

• Knowledge Discovery Process - The definition of the knowledge
discovery process in the autonomic cloud domain. These definitions
are presented in Section 4.1.

• Panoptes: A monitoring System for Autonomic Clouds - The de-
sign of an architecture of a multi-agent monitoring system, which
considers the knowledge discovery processes and can be integrated
with autonomic systems. Other contributions in this area are:

– The implementation of this monitoring solution;

– The support for the conversions of SLAC terms into low-level
monitoring metrics.

The details of this solution are presented in Chapter 4 and has been
published in [UW14].

• Service Similarity Discovery - The development of a methodo-
logy based on machine learning techniques to discover similarities
among services considering the specificities of the domain. This
methodology can be used for, e.g. application profiling and service
scheduling. Below we list other contributions of the chapter:

– The implementation of this methodology;

– The development of a novel scheduler using the concept of
similarity.

The methodology is discussed in Chapter 5 and has been published
in [UTT15].

• Integration of the Sources of Knowledge - The integration of the
solutions proposed in this thesis which form Polus, which is a frame-
work to provide knowledge to autonomic manager. Moreover, we
develop an autonomic cloud use case which provides an overview
of the use of Polus with an autonomic scheduler for services in a

9

Figure 4: Thesis structure and the dependencies among chapters.

cloud test-bed based on the OpenNebula [Ope14] solution. The
integration and the use case are presented in Chapter 6.

1.3 Thesis Organization and Use Case

The thesis is divided into seven chapters as illustrated in Figure 4. The
core of the thesis concerns the foundations of the autonomic management,
i.e. Chapters 3, 4 and 5, as represented in Figure 4 by a dotted rectangle.
The arrows among chapters (or among the core of the thesis and other
chapters) represent their dependencies. However, these dependencies do
not indicate a compulsory reading and are only a guide to illustrate the
relations among them. In the following, we detail the chapters.

• Chapter 2 - Autonomic Clouds and SLAs: The State of the Art -
Several concepts and paradigms are essential to understand the
autonomic cloud domain and the solutions proposed in this thesis.
Chapter 2 provides these ground concepts, discusses the works with
a similar scope and overviews the most important SLA languages
and the monitoring properties in the cloud domain.

• Chapter 3 - Service-Level-Agreements in the Cloud Domain - In
Chapter 3, we discuss the requirements of the domain for the defini-
tion and formalisation of services and propose SLAC, a language
which we developed to fulfil these requirements. In particular, we

10

describe its syntax, the formalisation of the SLA evaluation seman-
tics and introduce an extension to support the business aspects.
Moreover, we describe a software framework developed to support
SLAC and discuss a use case employing this implementation.

• Chapter 4 - Autonomic Clouds Monitoring - This chapter presents
the knowledge discovery process in the domain. Considering this
process, we devise a monitoring solution for autonomic clouds,
which focuses on the integration of the monitoring system with
autonomic management and on monitoring properties that are par-
ticularly important in the autonomic cloud domain.

• Chapter 5 - Similarity Learning in Autonomic Clouds - We pro-
pose a methodology to provide a robust similarity measure based
on the definition of services or on the monitoring data. Similarity
knowledge can be used in different areas, such as optimisation of
resources, service scheduling and anomalous behaviour.

• Chapter 6 - Polus: Integration and Use of SLAC, Panoptes and
Similarity Learning - This chapter discusses the integration of the
solutions proposed in the other chapters. Moreover, we provide
a real-world use case which demonstrates the benefits of our ap-
proach. Despite having the scope restricted to the definition of SLAs
and the provision knowledge to the autonomic management, i.e.
not covering the management of these systems, we implement ser-
vice scheduler algorithms to illustrate the potential benefits of our
solutions.

• Chapter 7 - Conclusion - In this chapter, we summarise the findings
of this study, relate the research questions with the contributions
and describe possible directions for future work.

We conclude this section by presenting a scenario which will be used
throughout the thesis to illustrate the presented concepts. It is based on a
real-world cloud implementation employing the OpenNebula platform.
We set up this platform in a cloud test-bed in IMT Lucca as an academic
cloud.

11

The scenario concerns the provision of computational resources to the
students of the institute and is used for research purposes, employing the
Infrastructure-as-a-Service model. Two standard versions of the service
are available: (i) a single and powerful virtual machine (VM); and (ii) a
cluster of smaller VMs. The first service aims at supporting centralized
research applications, while the second one targets applications which
require distributed environments.

As an extension of this scenario, we employ a third party cloud to form
a hybrid cloud and overcome the resource limitations of our OpenNebula
test-bed. Thus, the IMT cloud offers to the researchers a third kind of
service with more powerful machines, outsourcing its provision to an
external cloud.

12

Chapter 2

Autonomic Clouds and
SLAs: The State of the Art

This chapter presents the ground concepts and an overview of the fun-
damental paradigms that constitute the basis of this thesis. In particular,
it describes the cloud computing domain, demonstrates the importance
of autonomic computing for clouds, explains the essential role of the
SLA in the context of autonomic systems and of cloud management, and
discusses the monitoring system properties in the cloud domain.

The overall contributions of this chapter consist of:

• A description of the cloud paradigm with its taxonomy, major chal-
lenges and benefits, which is essential to understand the problem
addressed by this thesis and provides the basis of the design choices
for the solutions presented in other chapters;

• A comprehensive analysis of the autonomic computing vision and
the use of its main concepts, applied to the cloud domain;

• An introduction to fundamental concepts of SLAs and their relation
with the management of complex systems, such as clouds. SLAs
are the core of this thesis, serving as the starting point of all the
proposed solutions in various areas that this thesis addresses;

13

Notably, this chapter focuses on the works related to the thesis as a
whole. The works on specific aspects of the knowledge provision are
discussed in their respective chapters.

2.1 Cloud Computing

Cloud computing is a new paradigm that uses principles, techniques and
technologies from different fields [CWW11]. The idea behind the cloud
is not new. In fact, Professor John McCarthy said at MIT’s centennial
celebration in 1961 that “...computing may someday be organized as a
public utility just as the telephone system is a public utility... The computer
utility could become the basis of a new and important industry” [Gar99].

Despite this early definition, it took almost four decades to develop
the ground technologies which make cloud viable. Among the most signi-
ficant evolutions there are: the growth of Internet and the consolidation
of the virtualization paradigm.

Nevertheless, several definitions of cloud computing exist. Among
them, the most cited and widely accepted definition of clouds is provided
by the United States National Institute of Standards and Technology
(NIST) in [MG09]:

Cloud computing is a model for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of config-
urable computing resources (e.g. networks, servers, storage,
applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction. This cloud model promotes availability and is
composed of five essential characteristics, three service mod-
els, and four deployment models.

2.1.1 Essential Characteristics

The five essential characteristics that define cloud computing cited by
NIST are presented below:

14

• On-demand self-service - A consumer can require the provision of
computing capabilities (such as, storage and server time) without
human interaction with the provider;

• Broad network access - The services are delivered over a network
(e.g. Internet) and used by various clients and platforms;

• Resource Pooling - The cloud providers “pool” computing resources
together in order to serve multiple consumers using the virtualiza-
tion and multi-tenancy models. Virtualization refers to the partition-
ing of a resource into multiple virtual resources, which, e.g. enables
isolation of resources, leverages security and provides hardware-
independence. Multi-tenancy refers to a single software that pro-
vides multiple independent instances of the service to different
consumers. The information on the location of the data centres or
the details on the management of this pool of resources are trans-
parent for the consumers, which rely on a high-level abstraction of
these details (when available);

• Rapid Elasticity - Cloud providers should offer virtually infinite
resources, always matching the consumers’ needs. Moreover, these
resources have to be rapidly, elastically and possibly automatically
scale in and out;

• Measured Service - Providers should autonomously manage and
optimize resources usage. This usage should be monitored, con-
trolled and reported to assure transparency for the provider and
consumer of the service.

Both consumers and providers can benefit from this paradigm. Provi-
ders can reduce operational costs through economy of scale, since they
serve several consumers with a range of standard services. Cloud con-
sumers can, instead, (i) have low upfront cost, which reduces the required
investments to start a new business or to migrate to the cloud; (ii) can opt
for the pay-as-you-go model, i.e. consumers pay only for used resources;
(iii) have elasticity and agility for their service and rapidly in and out

15

scaling according to their needs; and (iv) focus on their business instead
of focusing on managing IT infrastructure. These benefits help consumers
to attain reductions on IT-related costs, which attracted a great deal of
attention from industry and academy.

Despite the popularity of cloud computing, a number of challenges
and risks are inherent to this model. We describe some of the most
important:

• Security, trust and privacy are the biggest barriers for the adoption of
cloud computing [RCL09, CZ12, ZZX+10] as consumers’ data is out
of their control. For example, the lack of standard procedures, regu-
lations and guarantees contributes to the fear to execute sensitive
operations and to store sensitive data in clouds.

• Legal and regulatory issues need attention as the services can be any-
where in the world and the location of the resources might deter-
mine the laws which regulate that service. For instance, apart from
exceptional cases, transfers of personal data outside of European
Economic Area is prohibited.

• Another important challenge is the vendor lock-in. Providers might
require applications and data in non-standard formats, which may
not be portable to other providers or in-house deployment unless
a costly conversion process is carried out. Consequently, this lock-
in might prevent the consumers from switching provider, even in
cases, such as when the provider does not meet the consumers’
requirements any more or in cases in which the price of the service
is raised.

2.1.2 Deployment Models

The cloud infrastructure is not necessarily deployed by a third party
that provides services to consumers. Figure 5 presents the four major
deployment models used in the cloud domain, which are:

• In private clouds the infrastructure that enables the cloud is ded-
icated to a single organisation, being hosted and managed by a

16

Figure 5: The major cloud deployment models.

third-party or by the consumer himself. This model provides greater
control and security, since it is accessible by a single organization
and, normally, is deployed behind the organization’s firewall. Fre-
quently, private clouds are used in large organizations to benefit
from the cloud characteristics and, at the same time, to keep sensi-
tive data under the organization’s premisses;

• The goal of a community cloud is to share the infrastructure of the
involved partners to build a multi-tenant cloud for specific purposes.
Intuitively, it is a cloud formed by resources of all the participants,
making these resources available on-demand to the participants.
This model provides an additional level of privacy and security due
to internal policies, which are approved by the involved partners
and which do not permit access to the general public;

• In public clouds, services are provided to the general public over
a network, usually the Internet. The infrastructure is operated by
the provider and service offers are, commonly, fixed. The main
advantages of this model is the reduction of complexity, up-front
costs and the attractive service cost due to the economy of scale
afforded by cloud providers;

• The resources of a private cloud can also be combined with resources
of a public cloud to form a Hybrid cloud. In this model, commonly,

17

private clouds execute sensitive tasks and are employed to store
sensitive data, while the public cloud is used for non-sensitive oper-
ations as they are less secure but cost efficient and scalable.

Though not a deployment model, another relevant concept in the field
is the one of federated clouds. Federated cloud is an organizational model
to transparently (to the consumer) integrate multiple clouds. Rochwerger
et al. [RBL+09] argue that infrastructure providers could take advantage
of their aggregated capabilities to provide seemingly infinite computing
utility only through federation and interoperability .

Just as clouds enable users to cope with unexpected demand loads, a
federated cloud enables single clouds to cope with unforeseen variations
of demand [GVK12]. However, they require cross-site agreements of coop-
eration regarding the provision of capacity to their clients [EL09]. Other
important requirements for federated clouds are: standard interfaces,
interoperability and solutions for integrated management.

2.1.3 Service Models

Regardless of the deployment model, cloud providers deliver computa-
tional resources as services. In this context, “service” has a broad meaning
and, virtually, everything can be provided as an on-line, on-demand
service [TNL10]. Such generic service delivery model is called Every-
thing/Anything as a Service (XaaS) and the most well-known instances
of this model are [MG09]:

• Software-as-a-Service (SaaS): It is a software distribution model de-
livered over a network, in which consumers use applications hosted
by a cloud provider. Sometimes referred to as on-demand software,
this model frees the consumers from the management of the cloud
infrastructure, platform and software. However, commonly, the
services made available by a provider are restricted to few appli-
cations with little customization capabilities. From the provider’s
perspective, the applications are executed in multi-tenant virtual
environments, which provide scalability and elasticity.

18

Figure 6: Cloud delivery models, examples of applications and their target
consumers.

• Platform-as-a-Service (PaaS): This model delivers operating system,
application development tools and a framework for application’s
deployment to consumers over a network without requiring the
installation or download of extra tools. Thus, consumers deploy
their own applications (home-grown or acquired) into the cloud
infrastructure without the cost and complexity of acquiring and
managing the underlying layers.

• Infrastructure-as-a-Service (IaaS): It provides storage, network, pro-
cessing and other infrastructure resources to consumers. In these
resources, consumers can deploy arbitrary software, ranging from
applications to operating systems. This model offers more control to
consumers but, as a trade-off, requires also the management and op-
eration of the software components of the stack. For instance, when
a consumer requests a VM from a provider, he is the responsible to
operate, install and configure the operating system, platform to sup-
port the deployment of the software and the software configuration.

Figure 61 illustrates the hierarchy of the service models, their com-
monly provided services and their typical target users. The width of

1Figure based on:
http://blog.samisa.org/2011/07/cloud-computing-explained.html

19

http://blog.samisa.org/2011/07/cloud-computing-explained.html

the layers in the figure is related to the target audience: SaaS is easier to
deploy and manage, thus has a higher number of potential users. PaaS
targets application developers and experts that are able to deploy services.
Finally, IaaS requires planning and installation of the whole software
stack, which is executed by system administrators and network architects.

These models do not restrict the concept of service to a single resource
or provider; therefore, a service can be composed of several other services
and regulated by the same agreement, which, from the perspective of the
consumer, is a single service.

2.1.4 Roles

In [LTM+11], the authors identified the major actors who carry out unique
and specific roles in the cloud activities. The provision of cloud services
can include more than one actor with the same role and more than one
role for a single actor. These roles are:

• Cloud Consumer is an entity that uses services from providers;

• Cloud Provider is an organization or entity that makes a single or
multiple services available to interested parties. Examples of well-
known commercial cloud providers are Amazon, Rackspace and
Google;

• Cloud Carrier is a third party involved in the provision of the ser-
vice that provides connectivity and transports the services from
the providers to consumers. Many carriers are telecommunication
companies such as Telecom Italia or Telefonica;

• Cloud Auditor is an independent party that assesses the service pro-
vided in term of, e.g. security level, performance, SLA;

• Cloud Broker is an entity that negotiates relationships between pro-
viders and consumers, and manages the service use and delivery.
Due to its importance in our work, we detail this role in the next
section.

20

2.1.5 Cloud Broker

The increasing interest in cloud computing led to the development and
creation of many service offers from multiple vendors. With the advent of
these offers and many options for similar services, the role of the broker
has also grown in importance. The broker is an entity that intermediates
the interaction between one or multiple providers and the consumers. It
can be of four types in the cloud domain [LTM+11]:

• Matching - The broker searches for services compatible with the
needs of consumers and returns a list of providers that are able to
meet the consumers’ requirements;

• Intermediation - The broker enhances a given service, offering value-
added services (e.g. identity management, performance reporting,
extra security mechanisms);

• Aggregation - Multiple services are combined into one or more new
services. The broker provides the integration of the services (e.g.
data and identity). The information about which atomic services are
used to fulfil the consumers request are transparent to the consumer;

• Arbitrage - This type is similar to the aggregation brokerage. The
main difference is that the broker has the flexibility to choose the
providers of services during the provision, i.e. the providers are not
fixed.

The business model for the brokerage may vary and the brokers can
gain their share in several ways, for instance: (i) reducing the costs of the
service through economy of scale and then selling the service to end users
including its profit. For example, a provider offers 20% discount to con-
sumers that use more than 1000 hours per month. A broker can purchase
these hours and re-sell it for the same price as the provider, making a
maximum of 20% profit; (ii) charging extra for value-added services or for
combining different services; (iii) charging for each operation (e.g. a list
of the IaaS providers available); or (iv) matching consumers to a specific
provider, who gives commission for indicating his services.

21

2.2 Autonomic Computing

One of the biggest challenges in the system management is the growing
complexity of computer systems and new paradigms [IBM05]. Cloud
computing is an instance of complex systems, in which its characteristics,
such as the dynamism, large-scale and heterogeneity, emphasise the com-
plexity of the management process. Moreover, as previously discussed,
the automation of the management is one of the essential characteristics
of the cloud.

A prominent approach to cope with this complexity is Autonomic
Computing [Hor01], which aims at equipping computer systems with
capabilities to autonomously adapt their behaviour and/or structure
according to dynamic operating conditions.

In order to effectively achieve self-management, a system needs the
following properties:

• Self-Configuration - Installation and configuration of complex sys-
tems is an expensive and a fallible process. The self-configuration
is executed according to high-level policies. For example, if a new
node is added to a cloud infrastructure, an autonomic cloud must
install and configure the necessary software stack to integrate this
node in the cloud and add agents into this node to collect monitoring
information;

• Self-Optimization - Provides the capacity of the system in tuning
and adjusting policies and configurations to maximize system’s
performance and resources;

• Self-Healing - Assures the effective and automatic recovery when
failures are detected;

• Self-Protecting - This characteristic enables the system to defend
itself from malicious and accidental attacks. For instance, when a
user tries to delete an important file of the operating system, the
system forbids the operation;

22

• Self-Awareness - Computing systems are composed of a collection
of “smaller” systems, such as single computers or processors, de-
pending on the level of abstraction. Therefore, the system has to
know itself, i.e. it requires the detailed knowledge of its components
and of itself as a whole. For example, a cloud should retrieve data
of single nodes but also process the data and extract information,
such as the cloud usage and the total number of users;

• Context-Awareness - An autonomic system should collect informa-
tion about important aspects of the environment and the interac-
tion with other systems in order to optimize and react to changes
[SILM07];

• Openness - Autonomic systems can not exist in hermetic environ-
ments. While independent in its self-management, it must function
in heterogeneous environments and implement open standards;

• Anticipatory - The system must manage itself pro-actively, antici-
pating, when possible, the needs and behaviours of the system itself
and of the context [PH05].

Autonomic systems use concepts of multi-agent systems in order
to manage complex systems. An autonomic element is composed of a
managed element and an autonomic manager. Managed elements can be
any computing entity that requires self-management. The system entities
(or agents) in charge of enacting autonomic strategies, the autonomic
managers, rely on the MAPE-K loop to guarantee the above properties of
the system. Figure 72 shows these phases, which are described below:

• Monitoring - Manages sensors and gauges that capture the proper-
ties (either physical or virtual) from the target system and the con-
text. These properties represent an abstraction of the current state of
the system, which are, then, stored in the knowledge database and
sent to the analysis phase.

2Figure borrowed from
http://www.ibm.com/developerworks/autonomic/library/ac-edge6/

23

http://www.ibm.com/developerworks/autonomic/library/ac-edge6/

Figure 7: MAPE-K loop of the autonomic managers.

• Analysis - The information and knowledge produced in the moni-
toring phase are processed, generating high-level knowledge. After-
wards, the policies of the system and the produced knowledge are
analysed and diagnostics of specific components and of the whole
system are produced.

• Planning - The agent selects appropriate plans to adapt the system
and maintain the autonomic properties according to the results of
the analysis executed in the previous phase and the evaluation of
the implications of using a specific strategy on the system.

• Execution - It defines the strategy to execute the selected plan during
the previous phase. It includes also the choice of the actuators (the
agent that will apply the defined actions).

• Knowledge - All the phases of the MAPE loop depend on know-
ledge. In the knowledge database, the status of the system is stored
along with its polices, historical information and various types of
knowledge defined by experts.

Moreover, this loop communicates with the managed element through
sensors and effectors. The former collects information and knowledge
from the managed element while the latter enables the autonomic man-
ager to perform adaptations to the managed resource.

In light of these properties, a system can be defined as autonomic
when agents manage the system’s components (managed elements) using

24

Figure 8: Example of an autonomic cloud; the agents employ the MAPE-K loop and communicate among themselves
to enact the self-management properties.

25

the MAPE-K loop and interact with other agents to generate the local
and the global view of the system, thus enforcing the self-* properties.
Figure 8 illustrates a possible scenario for an autonomic cloud (IaaS), with
multiple nodes (servers, routers, storage) and the autonomic agents.

2.3 Autonomic Clouds

The management of cloud computing is a crucial and complex process
which needs to be automated [BCL12]. The key characteristics of cloud
computing, such as dynamism, scalability, heterogeneity and the vir-
tualization layer make clouds considerably more complex than legacy
distributed systems [NDM09, BCL12], thus hindering the management
and integration of its resources.

Autonomic clouds exhibit the ability to implement the self-* properties
in accordance with the policies of the system and the SLAs of the provided
services; however, achieving overall autonomic behaviour is still an open
challenge [PH05]. In this section, we discuss solutions developed to enact
the application of the properties of autonomic computing to clouds.

Buyya, Calheiros and Li [BCL12] propose an architecture for the SaaS
delivery model considering multiple aspects of autonomic systems. In
particular, they designed an application scheduler that considers aspects,
such as energy efficiency, dynamic resources and QoS parameters. More-
over, the architecture has a mechanism that implements an algorithm for
detection of DDos attacks. However, these aspects partially provide only
the self-protection and the self-optimization properties and at the software
level (SaaS), i.e. other autonomic properties and layers are not addressed.
Similarly, most of the works in the literature apply autonomic computing
concepts to the management of specific tasks in the domain, e.g. to service
scheduling [RCV11, LC08, SRJ10, SSPC14, QKP+09], to multi-cloud frame-
works [KRJ11] and to security [WL12, KAC12, MWZ+13, WWZ+13].

An exception is the work of Solomon et al [SILI10] that describes a
software architecture to enable autonomic clouds, which are divided into
eight loosely coupled components (each of the self-* properties needs to
implement these components): sensors, filters, coordinator, model, esti-

26

mator, decision maker, actuator and adaptor. This division is based on the
authors’ previous work [SI07], which was devised for self-optimization
in a real-time system. However, as most works in the area, see e.g.
[Bra09, MBEB11], the authors give only a high-level account of the ar-
chitecture due to the heterogeneity of the domain; leave the fine-grained
details unspecified; and they neither implement nor validate this architec-
ture. Moreover, the architecture is not specific for clouds and, hence, does
not reflect important characteristics of the domain, such as, virutalization,
elasticity, heterogeneity.

In light of these limitations and of the broad scope of autonomic solu-
tions for clouds, we focus on the following areas of the management of
autonomic clouds: (i) the service definition using SLAs; (ii) data collec-
tion and integration with the autonomic system; and (iii) the knowledge
discovery process, which transforms operational data into knowledge to
feed the autonomic managers and improve the decision-making.

2.4 Service-Level-Agreements

A SLA is the formalization of the performance goals and the description
of a service, being an essential component of legal contracts between
parties (in most cases being the contract itself). It typically identifies the
parties involved in the business processes and specifies the minimum
expectations and obligations among them [BCL+04]. In particular, it
contains the obligations, permissions, quality of service, scope, objectives
and the conditions under which a service is provided. This contract can
either be informal, which is valid only between parties, or legally binding.

The reasons for using SLAs are manifold. They can range from process
optimization and decision support, to the definition of measurable and
legally enforceable contracts [PSG06]. It can be expressed in several forms
but large-scale and dynamic systems, such as cloud, require machine-
readable and non-ambiguous contracts to verify the compliance of the
provided service and to apply the duly penalties in case of violation.
Table 1 exemplifies the terms of a SLA.

27

Table 1: Example of SLA metrics

SLA Metric Objective
Response Time < 5 ms
Availability > 99 %
Price < 0.4 EUR / Hour

2.4.1 Life Cycle

The SLA has no widely accepted life cycle. In this subsection, we discuss
some well-known life cycles in light of the cloud computing domain,
highlighting their aspects and differences.

SLAs are not employed exclusively in clouds. They are used to other
types of services, such as software development and network provision.
Therefore, many definitions of SLA life cycles, mainly related to software
development, include pre-installation phases, e.g. design and develop-
ment of the software. In the cloud domain, these pre-installation phases
are not considered in the SLA as they affect exclusively the provider.
From the consumer perspective, the service already exists (services are
not developed for single consumers) or the consumer is responsible for
the development and deployment of his own software (e.g PaaS model),
which also is not included in the SLA. Hence, life cycles that include or
focus on these pre-installation phases are not considered in this work.

Specifically for web services, Ron and Aliko [RA01] divided the SLA
life cycle into three major phases: (i) creation phase, in which the con-
sumers search for a compatible provider, negotiate the service and define
a SLA; (ii) operation phase, in which the agreed service is provided and
monitored; and (iii) removal phase, in which the SLA is terminated and
service is removed from the resources.

A more detailed life cycle was presented in [WB10]. The author di-
vided it into six phases:

1. Discovery - Consumers and providers search and match parties
that are able to fulfil their requirements. In environments, such as
clouds, a large collection of various services is available. Moreover,

28

offers are dynamic (a provider can change, remove or add offers)
and, therefore, finding the most adequate service is challenging in
the area;

2. Definition - The parties negotiate and formalize the terms of the
agreement (e.g. QoS parameters);

3. Establishment - The parties commit themselves to the agreement
and the provider deploys the service. The first three phases of this
definition correspond to the first phase in Ron and Aliko’s life cycle;

4. Monitoring - The compliance of the service performance with the
specification of the SLA is verified. This phase plays an essential
role in the SLA life cycle as it is necessary to detect whether a SLA
is violated or achieved;

5. Termination - The services and the associate configurations are
removed from the providers with the termination of the SLA. A SLA
can terminate due to a violation, its expiration or by an agreement
between the parties;

6. Enforcement of Penalties - If the SLA was terminated due to a
violation, the corresponding penalties are invoked.

The presented SLA life cycles define the sequence of changes of the
SLA from the perspective of all parties involved in the contract. However,
in the work of Keller and Ludwig [KL03], the authors define a SLA mana-
gement life cycle from the perspective of the provider of the services. The
main difference to the previous models is the inclusion of service manage-
ment definitions, such as corrective actions which are not specified in the
SLA but are employed by the provider to avoid violations. The life cycle
is defined as follows:

• Negotiation and Establishment - Consumers retrieve the SLA of-
fers (or request a service), the parties negotiate, and the SLA is
established. The result of this phase is a single document, which
comprises the service’s description, characteristics and the obliga-
tions of the involved parties;

29

• Deployment - It validates the SLA and distributes the obligations
and permissions to all parties. Moreover, the service is deployed on
the resources and included in the SLA management framework;

• Measurement and Reporting - The information about the system
and its behaviour is retrieved. Then, such information is evaluated
and, if a threshold is met, the involved parties are notified;

• Corrective Management Actions - Once a SLA has been violated
or the system detects that the SLA could be eventually violated, it
plans corrective management actions to avoid these violations. It is
worth noticing that the SLA is non-modifiable and, consequently,
the actions taken to avoid violations affect exclusively the provider’s
system;

• Termination - The SLA terminates when a breach on the SLA occurs,
on mutual agreement or when expired.

A similar approach is defined in the scope of the SLA@SOI project
[WBYT11]. Figure 9 [WBYT11] shows the phases of this life cycle. The
design and development of the service is executed by the provider. In the
Service offering phase providers and brokers define SLA specifications,
e.g. templates. When a consumer finds a service compatible with his
needs, the parties negotiate. The SLA is the result of this negotiation and,
according to this agreement, the provider prepares the resources for the
service (provisioning). Then, the service is instantiated and the operations,
such as monitoring and adjustments to enforce the SLA, are executed.
Finally, when the SLA is terminated, the service is decommissioned.

The management of the service being provided is the focus of the
life cycles proposed by [WBYT11, KL03]. However, in this thesis, we
opt to take into account the life cycle proposed in [WB10]. This approach
abstracts the management of the service from the life cycle, which does not
concern the consumer of the service. Moreover, the independence from a
single party’s standpoint enables auditors to supervise the provision of
the service.

30

Figure 9: SLA life cycle.

2.4.2 Specification Languages

Most providers in the cloud domain make available only a description
in natural language of the general terms and conditions of their services.
Not providing machine-readable or formal semantics for SLAs has many
drawbacks. For instance, it creates ambiguity on the SLA interpretation
and makes the automation of the SLA’s life cycle impracticable.

Nevertheless, several languages to specify and to automatize the SLA
life cycle were proposed [WB10]. In Appendix A we summarise the
most important SLA definition languages and, in this section, we present
the most important SLA definition languages from the cloud domain
standpoint, highlighting their strengths and weaknesses. These languages
and the ones included in Appendix A are the base for Chapter 3, in which
we further analyse them in light of the requirements of SLA in the cloud
domain.

SLA*

The SLA* [KTK10] language is part of the SLA@SOI project, which aims
at providing predictability, dependability and automation in all phases of
the SLA life cycle.

31

Figure 10: Structure of SLAs defined in the SLA* language.

SLA* is inspired by WS-Agreement and WSLA and, in contrast to the
described languages that support only web services, aims at supporting
services in general, e.g. medical services. To achieve this aim, the authors
specified an abstract constraint language which can be formally defined
by plugging-in domain specific vocabulary.

Agreements in SLA* comprise: the involved parties, the definition
of services in terms of functional interfaces and agreement terms. The
agreement terms include: (i) variables which are either a “convenience”
to be used in place of an expression (shorthand label) or a “customisable”
which expresses “options” (e.g. <4 and <10); (ii) pre-conditions that
define the cases in which the terms are effective (e.g. week days, business
hours); and (iii) guarantees that describe states that a party is obliged
to guarantee (for example, a SLO) or an action should be taken. This
structure is depicted in Figure 10.

The benefits of the language are: it supports any kind of service; it is
extensible; it is expressive; has a framework which covers all phases of the
SLA life cycle and; was tested in different domains. Nevertheless, the SLA*
specification lacks precise semantics due to its multi-domain approach
and the support to brokerage. Moreover, it requires the development of
specific vocabulary for each domain.

32

SLAng

The first version of SLAng is presented in [LSE03]. However, in [Ske07],
Skene, one of the authors of the original paper, claims that this language
was highly imprecise and open to interpretation. Hence, Skene decided to
continue the development of SLAng to addresses these issues. Therefore,
in this work, we review the SLAng developed by Skene, i.e. the improved
version of the language (we refer to his doctoral thesis [Ske07] for the full
specification of the language).

SLang specification is presented as a combination of an EMOF [Obj04b]
structure, OCL [Obj03] constraints and natural language commentary. A
SLA defined in SLAng is the instantiation of the EMOF abstract model,
which can be concretely instantiate in several ways, for example, using
Human-Usable Textual Notation (HUTN) [Obj04a] or XML Metadata
Interchange (XMI) [Obj14] (it can also include comments in natural lan-
guage to facilitate the understanding). The OCL constraints are used to
refine the model and define, to some degree, the semantics of the SLA.

To illustrate the OCL use in SLAng, Listing 2.1 presents the specifica-
tion of the total down time for an operation of a service. The constraint
selects and sums all non-scheduled events in which an operation failed or
which the latency is higher than the specified maximum latency.

Listing 2.1: Extract of a SLA specified in OCL.

1 --Total downtime observed for the operation
2 let totalDowntime(o : Operation) : double
3 o.serviceUsage -> select(u (u.failed or u.duration >
4 maximumLatency) AND schedule -> exists(s |
5 s.applies(u.date))) -> collect(u | downtime(u.date,
6 o)) -> iterate(p : double, sumP : double | sumP + p)

As depicted in Figure 11, the EMOF model consists of:

• Administration Clauses, which define the responsibilities of parties
in the SLA administration. This administration sets constraints to
define how the SLA is administrate and which party is in charge

33

Figure 11: Structure of SLAs defined in the SLAng language.

of this administration, for example, they express who can submit
evidences of SLA violations;

• Service’s Interface Definitions, including the operations available for
this service;

• Auxiliary Clauses, which are abstract constructs composed of: Con-
ditions to associate the behaviour of the service to a constraint; Be-
haviour Definition; and Accuracy Clause which establishes the rules to
assess the accuracy of service measurements. Then, these measure-
ments are employed to verify violations and apply penalties. Also,
conditions, behaviours, penalties and parties are used to create con-
straints on the service behaviour (e.g. availability), named Behaviour
Restrictions;

• Penalty Definitions, which defines the actions that should be enforced
in case of violation;

• Parties Description, which describe the involved parties.

In contrast to the previous languages, SLAng is domain-specific, de-
vised for Application-Service Provision (ASP). Its main strengths are: low

34

ambiguity due to the correspondence between elements in an abstract
service model and events in real world [LF06]; emphasis on compatibility,
monitorability and constrained service behaviour; and domain-specific
vocabulary for IT Services.

The main limitation of SLAng is the complexity to: fully understand
its specification; create SLAs using this specification; and extend the lan-
guage. Its limitation is due to: the combination of techniques as OCL and
EMOF, which require technical expertise to use [Ske07]; its expressibility;
and its formal nature. Moreover, considering the heterogeneity of the
IT services domain, the language requires an extensive analysis effort
by experts and the definition of extensions of similar size to SLAng core
language itself [Ske07] to be deployed in real-world cases. These efforts
and complexity lead not only to difficulties to users but also to high costs
for its adoption.

CSLA

Cloud Service Level Agreement3 [Kou13, SBK+13] is a specification lan-
guage devised for the cloud domain.

Its structure is similar to WS-Agreement and is presented in Figure 12.
Validity describes the initial and expiration dates for the SLA. The parties
are defined in the Parties Section of the agreement while the template
is used to define the service, the associated constraints, the guarantees
related to these constraints, the billing scheme and the termination condi-
tions.

A novelty of the language is, in addition to the traditional fixed price
billing model, the possibility to use the pay-as-you-go model. Moreover,
CSLA introduces the concept of fuzziness and confidence. The former
establishes an error margin for a metric in the agreement. The latter
defines the minimum ratio of the enforcements that the metric values do
not exceed the threshold, permitting the remaining measures to exceed
the threshold but not the fuzziness threshold. For example, the threshold
for the response time of a service is 3 seconds, the fuzziness value is 0.5

3The language was presented in a short paper [KL12] but it is not available on-line.

35

Figure 12: Structure of SLAs defined in the CSLA language.

and the confidence is 90%. In every 100 requests, minimum 90 need to
have values between 0 and 3 and maximum 10 can be between 3 and 3.5
without violating the SLA.

As drawbacks, the language is neither formally defined, nor supports
parties with important roles (e.g. the broker), nor comprehends other
dynamic aspects of the cloud.

Overview

In the present subsection, we describe the machine-readable solutions to
define SLAs for services. Apart from SLA*, which enables the specifica-
tion of SLA for electronic services, other analysed languages target web
services or a specific subgroup of this area.

Major challenges for the adoption of abstract languages for SLA speci-
fication (e.g. SLA*) are the creation of the vocabulary for a domain (e.g.
metrics) [LF06], and to assure that all parties share and understand the
definitions in that vocabulary.

SLAng and CSLA are domain-specific and this problem has a lower
impact. Nevertheless, SLAng is rather complex and requires experts to
understand the specification and adapt it to each use case. CSLA, instead,
provides neither the formalism for the SLA specification, nor captures

36

important characteristics of the domain, e.g. broker support.

In light of these considerations and of the cloud requirements (investi-
gated in Chapter 3), we propose a SLA specification language for cloud
computing in Chapter 3.

2.4.3 SLA Management Solutions

Several projects propose different degrees of SLA-aware management
of resources. Follows the analyses of the most relevant ones. SLA@SOI
[SLA14] focus on service-oriented architectures, including non-IT services
(e.g. medical services). From the life cycle standpoint, the project empha-
sises the SLA prediction and risk analysis. However, they also proposes a
SLA definition language and a monitoring architecture, solutions which
are detailed and analysed in Chapter 3 and Chapter 4. Yet, the target plat-
form of SLA@SOI is not cloud computing; therefore, they do not account
important particularities of the domain, such as data incongruence, the
amount of operational data and virtualization.

Cloud-TM [Clo15] focuses in data centric cloud applications and does
not consider other cloud models. BonFIRE [Bon15] project neither consid-
ers the management of heterogeneous resources and applications, nor the
autonomic components of clouds. Due to the broad scope and complexity
of the SLA life cycle, most works in the literature propose solutions which
cover only a specific phase of SLA life cycle. The works related to this
thesis which cover only a specific aspect of the life cycle will be analysed
in their respective chapter.

The SLA management is fundamental for the autonomic management
of cloud. Therefore, although we focus in autonomic clouds, the solutions
here proposed cover also some important phases of the life cycle. In
particular, we address the SLA definition, monitoring and the knowledge
discovery for the evaluation and enforcement of SLAs.

37

2.5 System Monitoring

The information collection process is essential to analyse the status of the
system and of the service; thus, it is necessary to verify compliance of
SLAs. Moreover, this processes play an important role in the information
and knowledge generation in clouds and autonomic systems. Therefore,
in this section, we list the basic concepts of the system monitoring area,
including the properties of the system, which are used in Chapter 4 for
the proposed monitoring solution.

Monitoring systems continuously collect information, verify the state
of its components and of the system as a whole. It provides the data,
information and knowledge, which are necessary to measure, assess
and manage the hardware and software infrastructure. Moreover, these
measures are also used by auditors and users to verify the performance
and correctness of a system, enabling, for instance, the SLA conformance
check.

There are various approaches to collect information from a system. The
most common are the active and passive monitoring. Active monitoring
simulates the usage of the system, monitors this simulation and collects
the monitored data. Passive monitoring does not generate extra load to
the system since it retrieves and analyses the data available in the system,
typically generated by its users. For instance, to test whether a route
of a network is available, using passive monitoring would require the
interception or a copy of a package to be analysed and to assess whether it
follows the target route. On the other hand, using the same example, with
the active approach, the monitoring system would generate and send a
package which uses this route and test whether it has arrived.

To provide the status of the system to the decision-makers the moni-
toring system has to maintain some properties. Considering our context
and in accordance with the definitions of Aceto et al [ABdDP13], we
selected twelve properties. For the sake of simplicity we divided these
properties into two big categories: the ones related only to the monitor-
ing system itself, named System, and the ones associated to the collected
data/information, named Data. The System category was further divided

38

Figure 13: Classification of monitoring systems properties by type.

according to their areas: (i) Security and Availability; (ii) Dynamism; and
(iii) Compatibility. The only property belonging to more than one group
is Autonomicity, which is related to all groups under the System category.
Figure 13 depicts this classification, which is discussed below.

2.5.1 System

Autonomicity is related to autonomic computing, which is detailed in
Section 2.2. In particular, a monitoring system has this property if it
implements all the self-* properties and, therefore, manages itself.

Dynamism: Adaptability is the capacity of the monitoring system to
adapt to the host system load to avoid degradation of the performance of
the system’s aim activities due to the monitoring system’s workload (non-
invasiveness). This workload consists of the operational functions, such as
collecting, processing, integrating, storing and transmitting information.
To be non-invasive in dynamic environments, the monitoring process
must tune and relocate its components according to the policies of the
system, reacting or operating pro-actively. Moreover, the monitoring
system not only has to adapt itself but also has to support drastic changes
in its topology and organization. This property is called elasticity. Finally,
the scalability property is related to the capacity of supporting a large
number of probes and, at the same time, being non-invasive [CGM10].

39

Security and Availability: A system is said resilient if the monitoring
process is still functional to critical activities even after a high number
of component’s fail; the system is reliable if it can perform its functions
under specific conditions for a period of time; and is available in case it
responds to the requests whenever required (according to the system’s
specification).

Compatibility: Monitoring components should support different types
of resources (both virtualized and physical), types of data and multi-
tenancy [HD10]. The property that considers this support is named com-
prehensiveness, while extensibility enables easy extensions of such support
(e.g. through plug-ins). Finally, intrusiveness measures the significance of
the modifications required in the system to integrate with the monitoring
system.

2.5.2 Data

This category is linked to the way that the data is collected and delivered
to the interested party.

Monitoring data is fundamental to assist the system to achieve its goals.
However, the data should reach the system on time for an appropriate
response (e.g. to replace a disk in case of failure). The property that
enables the monitoring system to provide such information on time, in
case of need, is named Timeliness.

Accuracy is also a desired property and is achieved when the monitor-
ing system provides the information as close as possible to the real value
in the configured abstraction of the system. The accuracy is essential for
the management and decision making of the system.

2.6 Knowledge Discovery Process

Knowledge is one of the foundations of the decision-making process of
autonomic clouds. Therefore, in this section, we review the literature that
defines the knowledge hierarchy.

The origin and nature of knowledge are investigated by Epistemology,

40

which is a branch of philosophy. However, the definition of knowledge is
a matter of ongoing debate and may assume different forms according to
the context. Therefore, after summarising some of the common interpreta-
tions of knowledge, we propose a definition from the autonomic cloud
domain perspective and analyse the process of discovering knowledge
into operational data.

A well known definition of knowledge was created by Wright in
[Wri29]. It emphasizes the fact that knowledge is domain specific and
that it must be based on solid foundations:

“Knowledge signifies things known. Where there are no
things known, there is no knowledge. Where there are no
things to be known, there can be no knowledge. We have
observed that every science, that is, every branch of know-
ledge, is compounded of certain facts, of which our sensations
furnish the evidence. Where no such evidence is supplied, we
are without data; we are without first premises; and when,
without these, we attempt to build up a science, we do as those
who raise edifices without foundations. And what do such
builders construct? Castles in the air.”

In light of this statement, it can be claimed that we need to understand
the difference between simple facts and knowledge to discover know-
ledge. A well-established framework which attempts to capture the rela-
tion between “what we see” and “what we know” is the “DIKW” [Zel87] 4

hierarchy, which divides the knowledge discovery process into data, infor-
mation, knowledge and wisdom.

Data, in this context, represents the observable evidences, symbols and
stimuli of physical states, acquired from inspection of the world [Sch11].
Typically, data denotes confusing and disconnected facts, which restricts
their use.

The information has a descriptive nature and is able to answer ques-
tions, such as “who”, “what”, “how many” and “when”. Intuitively,
information can be defined as meaningful and useful data [BKC00].

4Its origin is not clear, but seems that it first appeared in the work of Zeleny.

41

Knowledge is a set of expectations or rules, which provides a clear
understanding of aggregate information. It represents the recognition of
patterns in the information together with experience and interpretation. It
answers questions, such as “how” and “why”. Another commonly cited
definition for knowledge is the one of Devenport and Prusack [DP98]:

“Knowledge is a fluid mix of framed experience, values,
contextual information, expert insight and grounded intuition
that provides an environment and framework for evaluating
and incorporating new experiences and information.”

Finally, wisdom is knowledge that, when in a framework, can be em-
ployed to generate new knowledge or to take decisions. It provides the
ability to judge based on knowledge and is composed of proved know-
ledge, heuristics and justifications.

The knowledge discovery process selects, aggregates, filters and uses
learning and other models to produce knowledge from data. The trans-
formation of operational data into knowledge for autonomic clouds is
detailed in Chapter 4, while in Chapter 5 we propose a methodology to
discovery knowledge.

In autonomic cloud domain, knowledge plays a major role. The MAPE-
K loop depends on knowledge to feed the decision-making system and
enact the self-* properties. However, the scale of clouds, the incongruence
of the data and the characteristics of autonomic clouds, such as dynamism,
virtualization and the measures to improve the security of the data, which
obfuscate information, hinder the knowledge discovery process.

Several techniques were devised to handle a single or a subset of
these characteristics. For instance, machine learning techniques, such
as [AHWY04, GRS00], which can cope only with the scale of the clouds,
while [SLS+09, GMR04] focus on handling its dynamism, updating the
models on-line to adapt to new services. However, to the best of our
knowledge, the knowledge discovery process has not been analysed in
the context of autonomic clouds, considering all its characteristics; and
therefore, there remains a need for such analysis and for the development
of a solution able to cope with these characteristics.

42

Furthermore, several solutions require knowledge about the environ-
ment to generate new knowledge for specific applications. For instance,
to identify services with anomalous behaviour, a solution needs the know-
ledge of the similarity among services. However, most solutions in the
cloud domain implicitly assume the: homogeneity of the resources and
services; preparation and normalisation of the data; or good representa-
tion of the relations of data features. However, these assumptions are not
valid for autonomic clouds.

To address this gap in the literature, later in Chapter 5 we define the
requirements of the domain and propose a methodology to generate a
specific type of knowledge, which can be applied in different context: the
similarity among services.

2.7 Summary

We provide an overview of the main paradigms related to autonomic
clouds and on works with a similar scope.

In the first part of the chapter, we have defined the most important
aspects of cloud computing. Then, we described autonomic computing,
which is employed to address the complexity of clouds. Next, we analysed
the existing solutions for the management of our target domain, i.e. auto-
nomic clouds. Due to the broad scope of the domain and the complexity
of its management, few works cover all models and levels of the domain.
Commonly they discuss only a high-level account of an architecture to
the management of autonomic clouds and leave the fine-grained details
unspecified.

As clouds are service-oriented; hence, we also presented the service
management perspective and describe the existing proposals for the SLA
life cycle. Considering the broad scope of the life cycle, there is a lack
of fine-grained specification of its phases, mainly from the knowledge
collection and discovery standpoint.

Additionally, we discussed the approaches and concepts which pro-
vide the foundations for understanding the works specifically related to
the types of knowledge covered in this thesis (definition of SLA, informa-

43

tion collection and knowledge discovery).
Regarding the definition of SLAs, we described the existing works,

which have significant gaps, such as lack of: support for brokerage, formal
specifications and mechanisms to support the dynamism of clouds.

Related to the information collection, we presented the monitoring
system properties required by the cloud domain, which will later assist the
analysis of the existing solutions and to define the scope of our solution
in the area.

Finally, we presented definition for knowledge, information and data,
and discussed the knowledge discovery process. Moreover, we described
the works related to the knowledge discovery process in the domain.

Despite the fact that many works design solution for the management
of autonomic clouds, they assume that the knowledge is already avail-
able. Therefore, to address this gap in the literature, this thesis focuses
on the generation and provision of this knowledge for the autonomic
management of clouds.

44

Chapter 3

SLAC: A Language for the
Definition of SLAs for
Clouds

The cloud computing paradigm provides to consumers elastic and on-
demand services over the Internet. Hence, an important aspect of the
clouds regards the management of services, which requires the definition
of the deployed services to feed the decision-making process (e.g. to
activate the monitoring of these services, to evaluate their performance
and to adapt the cloud to provide the promised quality of service).

With the recent commercial growth of the cloud paradigm, several
new service offers emerged. However, the vast majority of providers
offer only simple textual description of the terms and conditions of their
services. This approach has many drawbacks; for instance, ambiguity
and unfeasibility of the automation of the SLA’s evaluation, of the search
for services and of the negotiation of contract terms. The importance of
a machine readable agreement is highlighted also by the need of formal
guarantees that the delivered services are compliant with the agreed terms
since cloud users may outsource their core business functions onto the
cloud [DWC10].

Several languages to specify machine readable SLAs and to autom-

45

atize their evaluation and negotiation were proposed [WB10]. Yet, we
argue that these languages are not able to cope with the set of distinctive
characteristics of clouds, such as multi-party agreements, deployment
models and the growing importance of the broker role.

Considering this gap in the SLA definition languages, we propose
SLAC [UTD14], which is a language to define SLAs specifically devised
to the cloud computing domain. Our approach supports the broker role
and multi-party agreements. Moreover, SLA is easy to use and provides
vocabulary for clouds.

In order to present this language, in this chapter, we: (i) define the
requirements of the domain and compare the existing languages to SLAC;
(ii) describe its syntax and semantics; (iii) discuss business extensions; (iv)
detail the implementation of a framework that supports this language;
and (iv) examine a use case employing this framework.

3.1 Support to Cloud Requirements in the Exist-
ing SLA Definition Languages

Cloud computing services have a distinctive set of characteristics, as detail
in Chapter 2. In this section, we analyse the requirements of SLAs in the
domain and their impact on the contracts which define services. Moreover,
we evaluate the existing languages for the definitions of SLA based on
their support for these requirements and examine the differences among
these languages and our proposed language.

3.1.1 SLA Requirements in the Cloud Domain

In order to support all deployment models and express real-world agree-
ments, a SLA language in the cloud domain must support the definition
of multiple parties. This feature is not restricted only to the roles present
in cloud computing (detailed in Section 2.1.4) but needs also to support
multiple roles for a single party and multiple parties with the same role.
Among these roles, the broker requires special attention due to its impor-
tance in the domain. Therefore, the language must support different types

46

of brokers, which are described in Section 2.1.5.
A SLA definition language should consider that many consumers and,

possibly, other parties are not domain experts; therefore, the language for
the definition of SLA should be easy to understand and tools should be
available to facilitate this process. Moreover, an important characteristics
in a SLA definition language is the extensions necessary to support the
domain and the availability of domain specific vocabulary, i.e. if a language
needs to be adapted to the context. This adaptation to the context needs
experts and development time, which has an impact on the cost of the
solution. Therefore, a SLA language for the domain, not only needs to be
simple for all the parties but also needs to support the domain.

Cloud computing has a key role in industry and academia. Many
offers of cloud services are available and their number is expanding.
Moreover, clouds considers multiple billing models (e.g. pay-per-use) in
its definition. Therefore, a SLA definition language for the domain should
support its main business aspects, including such billing models.

Considering that, in cloud, virtually anything can be provided as a
service, the service delivery models in cloud computing are many. The most
important models, i.e., IaaS, PaaS and SaaS (we refer to Section 2.1.2 for
further details), should be supported in the SLAs.

Ambiguity in SLAs (and contracts in general) is a major challenge
since a SLA is the formalisation of the guarantees of a service. Hence, a
SLA language must have formal definitions (semantics) to avoid disputes
over the interpretation of contracts.

Finally, a SLA definition language requires tools for evaluating and
processing SLAs to support the language in the management of autonomic
clouds.

3.1.2 Comparison Between SLAC and the Existing Lan-
guages

In view of such requirements, we carried out a survey on the existing
languages and verified their support for these requirements (please, see
Section 2.4.2 and to Appendix A). The comparison among the existing

47

Table 2: Comparison of the SLA definition languages according to the do-
main requirements.

Features WSOL WSLA SLAng WSA SLA* CSLA SLAC

G
en

er
al

Cloud Domain - - - - - ∎ ∎

Cloud Service Models - - - - - ∎ ◻

Multi-Party - - - - - ◻ ∎

Broker Support - - - - - - ∎

Ease of Use ◻ ◻ - ◻ ◻ ◻ ∎

Bu
si

ne
ss Business Metrics ◻ ◻ ◻ ◻ ◻ ◻ ∎

Price schemes ◻ ◻ - ◻ ◻ ◻ ∎

Fo
rm

al

Syntax ∎ ∎ ∎ ∎ ∎ ∎ ∎

Semantics - - ◻ - - - ∎

Verification - - ◻ - - - ∎

To
ol

s Evaluation ∎ ∎ ∎ ∎ ∎ ◻ ∎

Free and Open-Source ∎ ◻ ∎ ∎ ∎ ∎ ∎

SLA definitions is summarised in Table 2.
For the sake of simplicity and standardization, we classify the lan-

guages in three levels: the ∎ symbol represents a feature covered in the
language, ◻ stands for a partially covered feature and - represents a not
covered feature. The criteria used for their classification in each character-
istics is detailed as follows:

• Cloud Domain - This criterion defines when a language was devised
for the cloud domain. Languages for a broader domain (e.g. IT
Services) are not considered to cover the criterion;

• Cloud Delivery Models - Fully supported when a language covers
IaaS, PaaS and SaaS, and partially supported when only one of these
models is covered;

• Multi-party - Fully supported when the language enables the use
of: (i) all roles defined in Section 2.1.5; (ii) multiple-parties with

48

the same role; and (iii) multiple roles for the same party. Partially
supported when at least one of the characteristics is present;

• Broker support - To support the broker, a SLA definition language
should enable the specification of: (i) the parties involved in each
term, which define the parties in charge of providing and consum-
ing the service; (ii) offers and requests, which enable the creation of
specification of services needed by consumers and of services avail-
able by providers; (iii) the role of the broker in the party’s definition;
and (iv) the actions and metrics which enable the parties to state
who is the responsible for the service, who consumes it, who pays
for it and the parties involved in each action. When at least two of
these characteristics are supported we determine that the language
partially fulfils this criterion;

• Ease of Use - This criterion is considered fully supported when a
language is ready to be used in the domain (without or with minimal
extensions) and, at the same time, it is easy to understand, also for
human actors. If a language has only one of these characteristics it
is considered as partially supported;

• Business Metrics and Actions - Fully supported when the language
provides metrics related to the business aspects, such as perfor-
mance indicators (KPIs) and enables the use of actions which ex-
press common business behaviours, for example the payment of
penalties. It is partially supported if at least one of them is available
in the language;

• Price schemes - The language should consider flat and variable pric-
ing schemes and the main models of the domain, which are fixed
pricing, bilateral agreement, exchange, auction, posted price and
tender (detailed later in Section 3.3.1). A language offers partial
support when it includes at least one type of variable pricing;

• Formal Syntax - Supported only when a formal definition of the
syntax, e.g using BNF, is available;

49

• Formal Semantics - Fully supported if a formal definition of the SLA
evaluation process is available. By formal we intend the use of any
recognized formal tool (e.g. operational or denotational semantics)
to avoid ambiguity on its interpretation. It is partially supported if
possibly ambiguous tools are used in its definition;

• Formal Verification - Fully supported when the formal verification
of agreement exists before execution time. We consider as partially
supported if only the syntax is verified;

• Evaluation Tools - A language fully supports it when an implementa-
tion of a tool which evaluates the SLAs against the services’ mon-
itoring information is available. If only design time verification is
available this characteristic is only partially supported;

• Open Source and Freely Available - Defines how the tools that support
the language are made available to the users. The main options
of software distribution are: free and commercial. Moreover, inde-
pendently of the distribution model the tools can be open source
or closed source. Thus, it is categorized as fully supported if a lan-
guage is open source and free, and partially supported if a language
has one of these characteristics.

Although we specify the criteria for the comparison of the languages,
their classification is subjective since they are not quantitative. However,
this comparison provides the base to understand to which extent the
existing languages support the domain.

The results of the comparison among the language show that the
existing languages do not support some of the main requirements of the
domain. Among the major gaps for the definition of SLAs, there is the
lack of support for multi-parties, the broker, the vocabulary of the domain
and the formal specification of the SLA evaluation. In Section 2.4.2 we
overview the general features of the languages that support most of the
characteristics of clouds, i.e. SLA*, SLAng and CSLA. In this section, we
analyse these approaches in light of the results of this comparison.

50

SLA* is a language-independent model for the specification of SLA.
It supports the definition of SLAs in different domains and, at the same
time, specifies, to a certain degree, the fine-grained level of details of the
contract. However, the model does not support multi-party agreements,
does not provide the formal semantics of the language and requires the
definition of the vocabulary for the cloud domain.

SLAng, instead, is domain specific (IT services) and provides a for-
malism inherited from the tools used to specify the language. However,
SLAng only considers two parties in the SLA, i.e. the consumer and the
provider, which limits its use in the cloud domain (e.g., SLAng cannot be
applied to scenarios involving the community cloud model or brokers).
Moreover, the specification of SLAs using SLAng is rather complex, and
requires the full comprehension of the model and technologies used in
the specification of the language [Ske07]. Also, SLAng needs extensions
(e.g. definition of the vocabulary) to be employed in the domain, which,
as shown in [Ske07], requires extensive analysis efforts by experts and
these extensions are of size that is similar to SLAng core language itself.

Finally, CSLA is a language devised for clouds. This SLA language
covers all three cloud delivery models and proposes the definition of
SLAs using a mechanism to support fuzziness in the numeric specifica-
tion of metrics. However, this approach does not consider multi-party
agreements, the deployment models (e.g. community cloud) or the promi-
nent role of broker in the domain. Moreover, the support of CSLA for
the delivery models is restricted to a few metrics and terms, which also
requires extensions for real-world deployment.

In summary, our work differs considerably from the ones mentioned in
the comparison table: it emphasizes the formal aspects of SLA; considers
the particularities of the cloud computing domain (e.g. multi-party and
brokerage); specifies the semantics of the SLA conformance verification;
supports some of the most important business aspects of the SLA; and
provides the base for dynamism in SLAs.

51

3.2 SLAC: Service-Level-Agreement for Clouds

In this section, we present the core of the SLAC language from the tech-
nical perspective. This core-language provides the basic ingredients that
enable the description of a simple SLA for the cloud computing domain.
Moreover, we discuss the semantics of the SLA consistency check and the
SLA conformance verification with respect to the monitoring information
of a deployed service.

3.2.1 SLAC Syntax

In this section, we present the syntax of SLAC, which is inspired by WS-
Agreement and shares many features with the definitions and structure
of this language.

The main elements of a SLA are: the description of the contract, the
specification of terms and the definition of the guarantees for these terms.
Differently from most of the existing SLA definition languages, SLAC
does not differentiate service description terms and quality requirements.

Table 3 shows the formal definition of the syntax of the core language,
which is defined in the Extended Backus Naur Form (EBNF). In this
notation, the italic denotes non-terminal symbols, while teletype denote
terminal ones. As usual, ∣ indicates choice, ? after a symbol (or a group
of symbols, when parenthesis are used) indicates an optional object, +
requires at least one of the marked objects and * represents zero or more
occurrences of the selected objects. A sequence of objects represented
by + requires commas between each pair of instances of these objects,
which were omitted in the syntax for the sake of simplicity (e.g. Role+

stands for role1, . . . ,rolen). Also, some objects are prefixed by a related
keyword that is omitted whenever the object is missing. Thus, e.g. the
SLA (id: Id . . . terms: Term guarantees:) would be written as
(id: Id . . . terms: Term), i.e. if no guarantee is specified then the
keyword guarantees: is also omitted.

The non-terminal symbols Id, Date, PartyName and GroupName

are implementation specific, hence, their details are intentionally left
unspecified in the syntax of Table 3.

52

Table 3: Syntax of the SLAC language.

SLA ::= id: Id parties: PartyDef PartyDef + Expiration
term groups: Group∗ terms: Term+ guarantees: Guarantee∗

Expiration ::= valid from:Date expiration date:Date

PartyDef ::= PartyName? roles: Role+

Role ::= consumer ∣ provider ∣ carrier ∣ auditor ∣ broker

Group ::= GroupName: Term+

Term ::= Party -> Party+:Metric ∣ [Expr,Expr] of GroupName

Party ::= Role ∣ PartyName

Metric ::= NumericMetric not? in Interval Unit ∣ BooleanMetric is Boolean
∣ ListMetric has not? {ListElement+} or {ListElement+}∗

NumericMetric ::= cCPU ∣ RT delay ∣ response time ∣ RAM ∣ availability ∣ jitter ∣ . . .
Interval ::=]Expr,Expr[∣]Expr,Expr] ∣ [Expr,Expr[∣ [Expr,Expr]

Expr ::= Literal ∣ infty ∣ NumericMetric(Parameter) ∣ GroupName ∣ Expr Operator Expr

Parameter ::= min ∣ max

Operator ::= + ∣ - ∣ * ∣ / ∣ > ∣ >= ∣ < ∣ <= ∣ and ∣ or

Unit ::= gb ∣ mb/s ∣ ms/min ∣ minute ∣ seconds ∣ ms ∣ month ∣ . . .

BooleanMetric ::= back up ∣ replication ∣ data encryption ∣ . . .

ListMetric ::= operating systems ∣ jurisdiction ∣ hypervisor ∣ . . .

ListElement ::= occi ∣ ec2 ∣ kvm ∣ xen ∣ . . .

Guarantee ::= on Event of (Party => Party+:)? GuaranteeMetric : ConditionAction

GuaranteeMetric ::= (GroupName:)∗ NumericMetrics ∣ (GroupName:)∗ ListMetrics
∣ (GroupName:)∗ BooleanMetric ∣ (GroupName:)∗ GroupName ∣ any

Event ::= violation

ConditionAction ::= (if Expr then Action+)+ (else Action+)? ∣ Action+

Action ::= (Party => Party+:)? ManagementAction

ManagementAction ::= notify ∣ renegotiate

53

The description of a SLA comprises a unique identification code (Id),
the definition of at least two parties and the specification of the period of
validity of the SLA through its Expiration definition. A party is constituted
of an optional PartyName and one or more Roles. The definition of multiple
roles for a single party enables the support of scenarios, such as commu-
nity clouds, in which a provider can be also a consumer. Furthermore, the
definition of only roles, instead of a specific party, enables the creation
of templates, both for the definition of offers and for the definition of
requests.

The terms of the agreement express the characteristics of the service
along with their respective expected values. Each SLA requires the def-
inition of at least one term, which can be either a Metric or a Group of
terms. We illustrate the definition of a term in two figures (abstracting
some details for the sake of comprehension). Terms composed of a metric
are represented in Figure 14, while terms composed of the instantiation
of a group in Figure 15. In this figure, a white arrow represents choice, a
line with a black diamond head stands for a contained element and a line
with a white diamond head represents an existing contained element.

In the SLAC language the parties involved should be defined in each
term, i.e. the party responsible to fulfil the term (a single party) and the
consumers of the service (one or more). This explicit definition contributes
to support multi-party agreements, to reduce ambiguity for the definition
of the monitoring responsibilities and to leverage the role of the broker
in the agreements. Moreover, it can be used for improving the security
aspects of the agreement, such as the integration with the authorization
control; for instance, only parties involved in the term have access to it.

A metric can be of three types: (i) NumericMetric, which is constrained
by open or closed Intervals of values (that can be defined explicitly in the
SLA or inferred from the evaluation of an expression) and a particular
Unit (e.g. milliseconds, gigabytes); (ii) BooleanMetric, which can assume
true or false values; and (iii) ListMetric, whose values are in a list.

The metrics and the way to measure them are pre-defined in the
language in light of the requirements of the cloud domain. As discussed
in Section 5.6, they can be extended according to the needs of the involved

54

Figure 14: The definition of a term which defines a metric in the SLAC
language.

parties. We have also pre-defined a set of valid items for each list metric
available in the language; this helps avoid ambiguity or spelling errors
in their specification. We refer the interested reader to [UTN14] for a
complete account of metric definitions.

Expressions (Expr) have two main uses: the specification of interval
values in numeric metrics and the specifications of conditions in guaran-
tees. An expression can be a Literal, a NumericMetric with a parameter
indicating if its upper or lower interval should be used, infinity (infty)
that does not set a lower or upper constraint in the metric, or the composi-
tion of sub-expressions by means of mathematical Operators. For example,
the numeric metric RAM in [(2 + 4 * cCPU(min)), 20] sets the
minimum amount of memory RAM in the context as 4 times the lower
bound of the cloud CPU unit required in the SLA plus 2. Notably, group
instantiations cannot use the infinity value in the interval definitions.

Another feature of the language is the specification of granularities
for terms using groups. A group of terms (Group) is identified by a name
(unique in the contract) and is composed of one or more terms. Groups
enable the re-use of the same term in different contexts. For example, in
the use case presented in Chapter 1, let us suppose that a consumer needs

55

Figure 15: The definition of a term which instantiate a group in the SLAC
language.

a centralized and two distributed VMs. In this case, the characteristics
of each VM could be defined in a group, for example: Centralized VM

is a group defining 99% of availability, 4 cores and 16 GB of RAM for a
machine, while Small VM is a group specifying an availability of only
90%, 1 core and 1 GB of RAM. In this case, the two VMs have the same
metrics but these are only valid in the context of the group.

Additionally, groups can include the instantiation of other groups.
Continuing with the example above, to define a cluster that is constituted
of the two less powerful VMs previously defined and specifying the max-
imum round-trip delay to the server as 0.6 milliseconds, the SLA could
have a third group, named Cluster, which instantiate two Small VM

and the RT delay. However, recursive definitions are not allowed, that
is, a group cannot (directly or indirectly) refer to itself.

Notably, to use a group in a SLA definition, it is not sufficient to define
it, as illustrated above, but it is also necessary to instantiate the group by
specifying the number of instances. For example, previously we defined
the group Small VM that specified the characteristics of a type of VM; to
actually deploy 2 instances of this group in the SLA, the term [2, 2]

of Small VM must be specified in the Terms section.
The concept of groups enables the use of the same term in multiple

levels. When a group or the terms section employs a term that is also
used in an instantiated group (the same involved parties and metric),

56

only outer term definition is valid. For example, let us suppose that
in the terms section a response time metric is defined and 2 Small VM,
which also include a term to define the response time, are instantiated.
In this scenario, the definition of response time within the Small VM

is not taken into account, i.e. the response time in the terms section
defines the response time of the service. When two groups at the same
level are instantiated, the term definitions of both groups are valid only
within the group. For example, if a Small VM and a Centralized VM

are instantiated in the terms section of a SLA (without any response time
specification) the response time will be different for each type of VM.

The final section of the SLA, the Guarantees, is optional in the agree-
ment. Yet, it can play a significant role in the contract as it ensures that the
terms of the agreement will be enforced or, in case of violation, it defines
the actions that will be taken. Specifically, a guarantee refers to a term
defined in Terms section of the agreement, i.e. a single term (i.e. Numeric-
Metric, ListMetric, BooleanMetric), an instantiation of a group (GroupName)
or to any term (using the reserved keyword any).

When an event occurs (e.g. a violation), the specified conditions are
tested (defined by an Expr) and the execution of one or multiple Actions
is requested (ConditionAction). This mechanism enables the definition of
flexible conditions which can range from simple user defined thresholds
to the percentage that each metric was violated. Notably, actions may
require the specification of the involved parties according to the type of
action.

In Table 4 we present a basic example of a SLA written in SLAC. In
the example we define:

• Two parties, the IMT as provider and Rafael as consumer;

• The date in which the agreement starts to be valid and its expiration
date;

• A group named Tiny VM , which represents a VM with exactly 1
cCPU and 1 GB of memory;

• A single term with the instantiation of 1 Tiny VM .

57

Table 4: Example of a simple SLAC SLA.

SLA
id: 123
parties:
IMT
role: provider

Rafael
role: consumer

valid from: 12/02/2012
expiration date: 13/03/2015
term groups:

Tiny VM:
IMT→ Rafael:cCpu in [1,1] #
IMT→ Rafael:RAM in [1,1] gb

terms:
[1,1]of Tiny VM

3.2.2 SLAC Semantics for the Evaluation of SLAs

The semantics of the evaluation of a SLA is formulated as a Constraint
Satisfaction Problem (CSP) that verifies: (i) at negotiation-time, whether
the terms composing the agreement are consistent; and (ii) at enforcement-
time, whether the characteristics of the service are within the specified
values.

More specifically, the formal semantics of SLAC is given in a denota-
tional style. Denotational semantics [NN07] is based on the recognition
that the elements of the syntax are symbolic realizations of abstract math-
ematical objects or functions. Although originally developed to describe
the behaviour of imperative programming languages, the denotational
approach is also appropriate for declarative languages (as required for
SLAs) due to its capacity to translate the static and dynamic elements of
the domain [Ske07]. This use of the semantics provides the formalism
that is needed to express the meaning of the elements of a SLA definition
language. The semantics is defined in Table 5.

The semantics of a SLA is a function JSLAK that sends a pair com-
posed of a set of group definitions and a constraint representing the

58

semantics of SLA’s terms. This pair constitutes the CSP associated to the
agreement, that will be solved by means of a standard constraint solver,
in our implementation, the Z3 solver [MB08] as shown in Section 3.4.

In a SLA, a group is defined by an identifier and a set of terms. The
semantics of a Group is defined by a function JGroupKD that is param-
eterised by the set D of all group definitions previously determined by
the SLA translation. Intuitively, every time a groups is translated, it is
included in D, which is passed as parameter for the translation of the
next group. This parameter is used in order to enable the instantiation of
other groups in the current group. Due to its simplicity and readability,
this approach was chosen instead of pre-parsing techniques; however,
it implies that only ordered instantiation is permitted, i.e. within each
group, only groups defined previously in the SLA (i.e. belonging to D)
can be instantiated.

The semantics of a collection of terms Term+ is defined by the logical
conjunction of the constraints corresponding to each term. These con-
straints are generated by function JTermKDg , which takes as parameters
the set D of group definitions and the parameter g, which is a group
name, which is used to identify the context of the term and to generate
the appropriate constraint identifier for term translation. Notably, the
value Ø for parameter g is used for evaluating terms specified in the terms
section of the agreement. The group definitions are initially added only
to the set of definitions in the first field of the SLA pair, i.e. the Group,
which serve as parameter to the Terms of the SLA. Therefore, a group is
effectively considered in the SLA only if instantiated in the terms section
or used by a group, which is instantiated in the terms section.

Terms, used both by groups and in the terms section of the SLA, can be
of two types: metric instantiations Party − > Party+ ∶Metric and group
instantiations [Expr,Expr] of GroupName.

In case of metric instantiation, the parties are used as a parameter
for the evaluation of the metric to avoid ambiguity (the same metric
can be used in the same context for different). Notably, we opt for a
compact notation to define metric and group names (e.g. NM stands for
NumericMetric) in the term translation.

59

Table 5: Semantics of the SLAC language.

JSLAK = ⟨ JGroup∗K, JTerm+KJGroup∗K
Ø

⟩

JGroup1 . . . GroupnK = { JGroup1KØ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D1

, JGroup2KØ∪D1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D2

, JGroup3KD1∪D2

´¹¹¸¹¹¹¶
D3

, . . . , JGroupnKD1∪...∪Dn−1}

JGroupName: Term+ KD = GroupName
def
= JTerm+KDGroupName

JTerm1 . . . T ermnKDg = JTerm1KDg ∧ . . . ∧ JTermnKDg
JParty − > Party+ ∶MetricKg = JMetricKg, (Party→JParty+K)

JParty1 . . . PartynK = Party1, . . . , Partyn

JNM in [Expr1,Expr2] UnitKg,p = con(JExpr1K, JUnitK) ≤ JNM Kg,p ≤ con(JExpr2K, JUnitK)
JNM not in [Expr1,Expr2] UnitKg,p = (con(JExpr1K, JUnitK) > JNM Kg,p) ∨ (JNM Kg,p > con(JExpr2K, JUnitK))

JBM is BooleanKg,p = JBMKg,p == Boolean
JLM has {LE+} (or {LE+}i)i∈IKg,p = {LE+} ⊆ JLMKg,p ∨⋁i∈I {LE+}i ⊆ JLMKg,p

J[Expr1,Expr2] of GN K{GN
def
= c} ∪ D′

g = (JExpr1K ≤ JGN Kg ≤ JExpr2K) ∧ ⋀0<n≤JExpr2K c ↓g,n

JNMKg,p = g ∶ p ∶ NM

JBMKg,p = g ∶ p ∶ BM

JLMKg,p = g ∶ p ∶ LM

JGNKg = g ∶ GN

60

Eight definitions of numeric metrics are possible, differing only for the
type of interval (e.g open and closed, closed and closed, etc.) and for
the presence of the not operator. We have reported in Table 5 only the
two definitions for the closed interval; the other definitions follow the
same idea and, hence, has been omitted. Essentially, a numeric metric
is translated into a numeric constraint. This translation follows these
steps: (i) the expressions are evaluated as numeric values; (ii) these values,
together with the specified unit, are converted by the con function into
values in the standard unit of that metric; (iii) the name of the constraint
variable is composed by using the group name, the involved parties and
the name.

Boolean metrics are the simplest case, which the value of the defined
metric has to be equal to the one specified in the SLA.

A list metric is translated into a constraint that checks whether all
elements of at least one of the lists {LE+} are contained in the set of
values of the specified metric. For example, in our use case let us suppose
that a consumer has three different software products and each needs a
different cloud interface to work. This consumer can use the software
product that requires the EC2 interface for a task or he can use the other
two software together to complete the same task, i.e. he needs both OCCI
and UCI interfaces for the second option. Therefore, the consumers can
specify the interface as interface has {OCCI, UCI} or {EC2}, which
verifies whether the provider supports EC2, or both OCCI and UCI.

Finally, the group instantiation corresponds to the conjunction of a
constraint concerning the number of instances being run on the system
and a collection of constraints regarding the specification of each instances.
In particular, the constraint corresponding to each instance n (with n ∈ N)
of the group is obtained from the constraint c of the group definition
by applying the function c ↓g,n; it replaces each constraint variable v
occurring in c by g ∶ v ∶ n. Intuitively, this function specifies exactly
to which instance the metric refers to and, thus, avoids ambiguity on
the evaluation of the metrics. Notably, we add a number of instance
constraints corresponding to the maximum number of defined instances.
For example, if two instances of a group are the upper bound of the

61

defined interval, the constraint of that group is added twice (with the
variables properly renamed).

The drawback of using the maximum number of instances for the cre-
ation of constraints is that the semantics related to groups might generate
a large number of constraints, in particular if many groups refer to other
groups. However, considering that SLAs are usually of limited size, the
computational capacity and the efficiency of constraint solvers, this does
not represent a problem in practice.

We have seen so far how a SLA is translated into a CSP. This CSP
can be used directly for checking the consistency of the terms within the
SLA, at design time. Similarly, at run-time, data representing the status
of the system is collected by the monitoring system of the cloud and,
then, translated to a CSP. This translation gives a high-degree of flexibility;
for example, in case the monitoring measures are not exact or consist of
multiple values from a specific period, they can be specified as intervals.
The SLA and monitoring CSPs are then combined for the evaluation at
enforcement time.

After this evaluation of the SLA, the guarantees specified in the SLA
are also evaluated. In particular, when a metric of the SLA is violated
(Event), a Condition might be verified and the corresponding list of Actions
is sent to the manager responsible for executing them. For instance, in
case of a violation of a response time (Event), if this is higher than 10 ms
(Condition) the provider has to notify the consumer (Action).

3.2.3 SLAs in SLAC: An Example

To illustrate the developed semantics, Table 6 shows an excerpt of a
SLA and the corresponding constraints generated using the semantics
presented in the previous section. This example is related to the use case
presented in Chapter 1 and employs all types of metrics and three groups.

In this SLA, it is specified that IMT must provide a Cluster to the
consumer (Rafael), support a list of interfaces and that the service must
have replication. The service named Cluster is a group of 2 VMs with
minimum 1 and maximum 2 CPUs and 1 Gigabyte of RAM. Moreover, the

62

Table 6: Semantics at work on the academic cloud case study.

SLA Constraints:
term groups: #SLA Terms
Small VM: 1 ≤ Cluster ≤ 1 ∧
IMT→ Rafael:cCpu in [1,2] # imt,rafael:replication == True ∧

IMT→ Rafael:RAM in [1,1] gb
({OCCI,UCI} ⊆ imt,rafael:interface ∨ {EC2}) ⊆
imt,rafael:interface) ∧

Centralized VM:
IMT→ Rafael:cCpu in [2,4] # #Constraints of the Cluster group
IMT→ Rafael:RAM in [8,16] gb 0.0 ≤ Cluster:imt,rafael:RT delay:0 ≤ 0.6 ∧
Cluster: 2 ≤ Cluster:Small VM:0 ≤ 2 ∧
IMT→ Rafael:RT delay in [0.0,0.6] ms

[2,2] of Small VM
#Constraints of Small VM, instantiated in
#Cluster Group

terms: 1 ≤ Cluster:Small VM:imt,rafael:cCpu:0:0 ≤ 2 ∧
[1,1] of Cluster 1 ≤ Cluster:Small VM:imt,rafael:RAM:0:0 ≤ 1 ∧
IMT→ Rafael:interface has {OCCI, UCI} or {EC2} 1 ≤ Cluster:Small VM:imt,rafael:cCpu:1:0 ≤ 2 ∧

IMT→ Rafael:replication is True 1 ≤ Cluster:Small VM:imt,rafael:RAM:1:0 ≤ 1

63

response time between this machines must be lower that 0.6 milliseconds.

The generated constraints include the instantiated metrics, the duly
renamed metrics in the Cluster group and the ones in the Small VM

group added twice as the Cluster group makes use of maximum 2 of
this group. The Centralized VM group is never used but is part of
the example to demonstrate that SLAs can contain groups which are not
instantiated. This feature is used for several reasons, e.g offers and legal
aspects.

3.3 Extensions

In this section, we discuss two extensions for the SLAC core-language.
The first discuss the support for business aspects while the second adds
support to the PaaS model.

3.3.1 Business Aspects

The cloud market has grown considerably in the past few years. Yet,
in the SLA specification field, few works deal with the business aspects
of the provided services. In fact, the main existing SLA languages, par-
tially cover at most partially these aspects [KK07]. This gap represents a
significant barrier for the adoption of such languages since they require
non-standard and non-trivial extensions to support important charac-
teristics of the SLA, such as pricing models or metrics required for the
management of the service.

To analyse and design the support for the business aspects in SLAC, we
adopt the scheme of Karanke and Kirn [KK07] that divides the SLA into
three phases from the business standpoint: (i) Information Phase, in which
the details about the services, consumers and providers are browsed and
collected; (ii) Agreement Phase, in which the participants negotiate and
define the terms and the pricing model; and (iii) the Settlement Phase,
which is related to the evaluation and enforcement of the SLA.

In this section, we define the requirements of these three phases and
describe the mechanisms used in the SLAC language to fulfil these needs.

64

To this end, we produce an extension of the SLAC language devised for
the business aspects of the SLA.

The information phase requires formalization of the desired or offered
services. Also, a repository or a protocol to search for compatible offers or
requests is necessary. The core language of SLAC natively supports the
definition of offers and requests of services through the specification of
parties by means of their roles, the use of groups without instantiation
(which enable the formalization of different options for the services avail-
able) and intervals for numeric metrics (for example, a VM with memory
between 4 and 8 GB). Such features enable the definition of templates of
services that, when accepted, fulfil the missing data generating a SLA.
However, the repository for offers and requests is part of the definition
and implementation of the negotiation among parties, which is out of the
scope of this thesis.

The agreement phase encompasses the negotiation and the support
for different pricing models in the agreement. As previously stated, the
negotiation is not part of the scope of this thesis. However, the pricing
models impact on the definition of the service and, thus, should be ad-
dressed by the SLA definition languages. These models are classified as
flat or variable pricing. Flat pricing indicates that the price of a service
is the same for the whole duration of the agreement. Considering that
dynamic markets - as cloud computing - vary considerably, the price
might change in the period the SLA is active. Therefore, a variable pricing
model is often used to allow fluctuations and changes in the price during
the agreement. This variation occurs in fixed intervals and is commonly
used in the pay-per-use model.

To illustrate the differences between the flat and variable models we
exemplify with a commercial solution that employs both models: the
Amazon Cloud Service[Ama15]. It provides on-demand VM instances,
in which customers pay a pre-defined price for each hour of use. In
this case the price is the same for the duration of the service, i.e. flat
pricing model. However, Amazon also provides a service named Spot
Instances that employs an auction scheme using the variable price model
to offer multiple resources. The price of the services fluctuates according

65

to the customers offers1. Hence, a consumer makes an offer and, when
his bid exceeds the current price of the requested service, the service is
provided to this consumer. Then, if the current service price becomes
higher than the consumer’s bid, the service is interrupted and resumed
when it becomes lower again. In this way, the consumer always pays
the bid price or less for the specified service, but he might not have the
service continuously available.

These two models, flat and variable, can use different pricing schemes.
Table 7 lists these schemes (based on [BAGS02]). In this table, they are
marked in the respective columns if the model is available in that scheme
and the requirements to support the variable model are described in the
last column. Below, we provide a brief account on these schemes:

• Fixed Price - In this schema, the service price is not subject to bar-
gaining. It uses the variable mode when the validity of the price is
shorter than the expiration time, otherwise it uses the flat model. If
the model is variable, the new price after the expiration date can be
set by a party involved in the agreement or an external party, e.g. a
regulatory agency;

• Bilateral Agreement - The only difference between this schema and
fixed price is that the price is subject to bargaining, i.e. the involved
parties must agree on the price. The same assumption is valid if
the contract uses the variable pricing. However, if the parties do
not agree on the price after the price expiration the agreement is
terminated;

• Exchange - The parties involved in the SLA exchange resources with-
out involving monetary terms. The SLA must define the resources
or services offered by each party. It also supports the variable model
and, after the “price” expiration, the participants must agree on the
resources to be exchanged or the agreement is terminated;

1Although Amazon claims that the price is market driven (demand vs idle capacity), the
algorithm is not public. Agmong et al [ABYST13] showed that this is not completely true,
since (dynamic) reserve prices and other factors are used to control the prices.

66

• Auction - In this model, an offer or a request of service is proposed
and the interested parties bid for it. Several types of auction exist.
For example, in the English auction, the bids are visible to anyone,
consumers can make multiple bids and the highest offer wins the
auction. This scheme also supports the variable model and on the
expiration of the price, a new auction occurs. If the involved parties
do not win in this auction, the contract is deactivated till the next
auction (defined by the price expiration date);

• Posted Price - The consumer searches in a directory for services
compatible with his needs and chooses the best offer. It is not
variable during the contract unless, after the choice of the provider,
other schema is agreed;

• Tender - A request for a service is defined and interested providers
can offer their services at a price. Typically, the combination of most
suitable service (respecting the minimal defined in the request) and
lowest price wins the tender. This schema does not support the
variable model.

The SLAC language needs extension of some terms to support these
schemes. To enable the specification of SLA using the flat model, the
language should enable the specification of standard service offers and
requests. The support of the variable model requires the specification
of a dynamic function in the SLA to retrieve information (the current
price) and, in some cases, to specify a price expiration date (or frequency),
which enables the modification of the price after its expiration without
terminating the SLA.

Finally, the settlement phase regards the enforcement, accounting and
billing of the SLA. It encompasses the definition of the billing period
(that, in turn, depends on the scheme), new metrics and business related
actions. The metrics for the business aspects also include Key Performance
Indicators (KPIs), such as the response time of the provider’s support
service (support RT or support response time) and the Mean Time To
Repair failures on the system (MTTR). Business related actions enable the
parties, for example, to reserve resources for future instantiation, to

67

Table 7: Pricing schemes and their support in the flat and variable models.

Pricing scheme Flat Var. Flat Support Variable Support

Fixed pricing ✓ ✓ Offer, Request Price Expiration,
Current Price

Bilateral Agreement ✓ ✓ Offer, Request Price Expiration
Exchange ✓ ✓ Offer, Request Price Expiration

Auction ✓ ✓ Offer, Request Price Expiration,
Current Price

Posted Price ✓ Offer, Request
Tender ✓ Offer, Request

offer financial credits for service use, to provide additional services
without costs to a party (bonus), and to define payments (pay) to the
involved partners. For the complete list of them, we refer the reader to
[UTN14].

Table 8 summarizes the modifications on the syntax of the core lan-
guage to support the business aspects discussed above. In this table, the
symbol ∶∶= stands for a new definition, while + = adds the elements to the
core language’s definition that shares the same name.

These aspects are extensions of the core language, hence, all additions
to the SLA are optional and can be used in both at top level on the
SLA specification (in this case, they are valid for the whole agreement)
and within the definition of a Group. The possibility of specifying the
pricing model and the billing for groups gives the flexibility for defining
independent business aspects for multi-party agreements.

The main novel feature with respect to the syntax in Table 3 is the
possibility of using a function. Indeed, the SLA needs to retrieve external
information to support the pricing schemes, in particular the current price
of the service. This is achieved through the function from, which takes
as parameter the Address (e.g. an URL) from which the information is
retrieved.

The pricing model and schemes are particularly useful for searching
compatible services and for negotiation. Concerning the evaluation of
SLAs with pricing models defined, when the flat model is used, no specific

68

Table 8: Syntax of the business aspects for the SLAC language.

SLA += PricingBilling

Groups += Party -> Party:pricing and billing:PricingBilling

PricingBilling += pricing model:Model pricing scheme: Scheme
Pricing billing: Billing?

Model ::= flat ∣ variable

Scheme ::= fixed pricing ∣ exchange ∣ ...

P ricing ::= PricingExpi current price: from(Address)?

PricingExpi ::= pricing expiration date:Date?

∣ pricing expiration frequency: Frequency?

Billing ::= pre-paid till: ExpirationDate ∣ yearly ∣ . . .

Actions += pay Interval Unit ∣ reserve: Expr Unit of (Term+
)

∣ credit Interval Unit ∣ bonus: Expr Unit of (Term+
)

NumericMetric += offer ∣ support RT ∣ MTTR ∣ . . .

ListMetric += currency ∣ support type ∣ . . .

check at run-time is required. Instead, the variable model requires the
retrieval of the current price and time. Then, the SLA is evaluated accord-
ing to the pricing scheme. The steps of this evaluation are pre-defined for
each scheme and are performed separately from the CSP evaluation. To il-
lustrate this evaluation, in Figure 16 we show the pseudo-code employed
in the evaluation of SLAs which use the auction pricing model. Intuitively,
the provision of the service is interrupted when, after the expiration of the
price, the current price of the service (offer of other clients or a minimum
price for the auction) exceeds the consumer’s offer.

Though on-demand self-service is one of the key characteristics of the
cloud paradigm [MG09], it does not imply immediate payments. Thus,
different billing models are available in SLAC, which can be pre-paid or
post-paid. The agreement can be specified as post-paid by defining the
billing frequency (e.g., monthly) and as pre-paid by not specifying any
price nor billing model in the SLA or specifying an ExpirationDate, for
instance pre-paid till: 10/05/2015.

69

1 auct ion var iab le model (e x p i r a t i o n d t , o f f e r , address) :
2 i f e x p i r a t i o n d t <= c u r r e n t d a t e :
3 e x p i r a t i o n d t = c a l c u l a t e e x p d t ()
4 c u r r e n t p r i c e = from (address)
5 i f o f f e r < c u r r e n t p r i c e :
6 re turn i n t e r r u p t s e r v i c e
7 e l s e :
8 re turn c o n t i n u e s e r v i c e

Figure 16: Evaluation of a variable auction pricing scheme.

3.3.2 Variable Auction Example in SLAC

To illustrate the use of the business aspects of the language, we define an
example of a SLA for the Amazon Spot Instances service, a commercial
solution previously described.

Table 9 shows a SLAC specification of this scenario which uses the
variable pricing model and the auction pricing scheme. In particular, the
consumer bids for a large VM offered by Amazon. The metric offer
indicates the bid of the consumers (i.e. the price that the consumer is
willing to pay for that service) and the function from is used to retrieve the
final price. The price expiration frequency is set according to the frequency
the provider updates the current price. If the consumer’s bid wins the
auction and the service is provided (or continue to be provided) to him,
the offer metric is transformed into the price metric. Otherwise, the
service is interrupted till the next expiration date, when a new auction
takes place.

3.3.3 PaaS Extension

The core of the SLAC language focuses on the IaaS level. In addition to
this model, we extend the language to support also PaaS, which provides
two major types of services to the consumers: (i) a development and
deployment platform, mainly focused on web services; or (ii) a platform
for the execution of applications, commonly used for scientific purposes
(e.g. weather forecast, calculations).

The modifications required to support such scenarios in the SLAC
language are the specification of metrics, such as load balancing, time

70

Table 9: Example of the use of SLAC to describe a service using the variable
model and the auction scheme.

SLA
. . .
term groups:
XLarge VM:
Amazon→ consumer:cCpu in [8,8] #
Amazon→ consumer:RAM in [30,30] gb
broker→ Amazon:offer in [0.56, 0.56] per hour
Amazon→ broker: pricing and billing:
pricing model: variable
pricing scheme: auction
pricing expiration frequency: 1 min
current price: from(http://spoinstance)
billing: hourly

terms:
[3,3] of XLarge VM

to deploy, types of database, programming languages, and support to
metrics which enable the specification of an open value (textual values).

Table 10 shows the additions on the syntax of the SLAC language to
support this model. Apart from the definition of new metrics, the main
novelty of this extension is the inclusion of the DescriptionTerm in the
existing types of terms. These terms are composed of an OpenMetric and
a value (which, in most cases, are implemented as a String). These metrics
are also pre-defined in SLAC.

The description terms do not impact on the formal semantics of the
language since they are not considered during the evaluation of the SLA.
However, they are necessary for the description of the service and for its
deployment. For instance, in the execution of scientific applications, the
users commonly need to send arguments or parameters to the application,
or a script must be executed before the application itself.

Notice that the type of service provided (IaaS, Paas or SaaS) is not
explicitly defined in the SLA since some metrics are specific for a single
software model. Therefore, the model is inferred by the SLA manager
according to the metrics.

71

Table 10: Syntax of the extensions to support PaaS in SLAC.

Term += DescriptionTerm?

ListMetrics += database type ∣ programming language ∣ ...

DescriptionTerm = OpenMetric Value

OpenMetric = command ∣ pre script ∣ app name

Table 11: Example of a PaaS SLA.

SLA
. . .
term groups:
AppGear:
IMT→ consumer:RAM in [512,512] mb
IMT→ consumer:storage in [1,1] gb
IMT→ consumer:programming language has {python}
DBGear:
IMT→ consumer:RAM in [512,512] mb
IMT→ consumer:storage in [1,1] gb
IMT→ consumer:database type has {redis}

terms:
[2,2] of AppGear
[1,1] of DBGear

Table 11 shows an example of a simple SLA using the PaaS model. In
this example, the parties agreed on the provision of two types of platform.
One with support to the developed of applications in Python and another
that includes a database, in this case the Redis [Red14] database.

3.4 Software Tool

We designed a framework to support the definition and deployment
of services using the SLAC language. This management framework is
divided into two main components: the Service Scheduler and the SLA
Evaluator. The former is context specific and was designed to exemplify

72

and test the integration of the evaluator in real-world scenarios. The latter
is context independent and can be integrated in the solutions for any type
of cloud problem.

3.4.1 Service Scheduler

The service scheduler relies on external systems to deploy and monitor
services. Intuitively, it just coordinates the request, deployment and
evaluation of the SLA.

It works as follows. The scheduler receives and processes requests
from the customers after the negotiation phase. In the first step, the sched-
uler sends the SLA to the parser, which converts the SLA into constraints
and sends them to a consistency checker to verify its consistency.

After the consistency check, the scheduler requests to the cloud plat-
form to start the new services. If the request is accepted, the scheduler
is responsible to set up the monitoring system to collect the information
concerning the metrics related to the SLA in the system. From this point
onward, it repeats the following phases till the end of the agreement: it
receives the monitoring data, sends it to the SLA evaluator and reports
the results to the interested parties.

3.4.2 SLA Evaluator

The SLA evaluator parses the SLA and the monitoring information, and
evaluates the SLA according to this information.

Figure 17 illustrates the SLAC evaluator. The SLA evaluator receives
the SLA written in SLAC language, parses it and generates a set of con-
straints corresponding to the specification along with the service defini-
tion. Then, the consistency of these constraints is checked and the results
are sent to the interested parties. Next, the constraints are stored (orga-
nized by the ID of the SLA) and the evaluator yields the service definition
to the sender of the agreement.

Then, when new monitoring information is received, it is transformed
into a set of constraints and, together with the constraints generated from
the SLA, are passed to a constraint solver that verifies their satisfiability.

73

Figure 17: SLA Evaluator Framework.

In case of non-satisfiability, which means violation of a metric, the SLA
guarantees are evaluated and the due actions will be returned to the
sender to be enacted.

Notably, not all monitoring data may be required for the evaluation
of the constraints. This feature enables the evaluation of the SLA even
with partial observation of the system. For instance, in case one of the
monitoring components fails, even if the data of a metric is not collected,
the satisfiability of the SLA can be tested with the available information.

3.4.3 Implementation of the SLAC Framework

The SLAC framework2 was implemented using the Python programming
language and it focuses on the core of the SLAC language.

The scheduler is to the monitoring system, which collects the necessary

2The SLAC Management Framework is a free, open-source software; it can be down-
loaded from:
http://code.google.com/p/slac-language/

74

http://code.google.com/p/slac-language/

information to evaluate the SLA. For the deployment of services, the
scheduler was integrated with the OpenNebula cloud platform.

The SLA Evaluator parses the SLA with the Simpleparse library [Fle15],
by relying on the EBNF grammar reported in Table 3. The constraints, in
turn, are handled by the Evaluator using the Z3 solver [MB08].

We also developed an editor to define SLAs in the SLAC language
based on a plug-in for the Eclipse platform. This editor provides features,
such as syntax highlighting and completion to assist the SLA definition.
Since several agreements in the cloud domain are still manually defined
by the parties, this tool promotes the adoption of the SLAC language,
mainly in scenarios where non-experts are involved.

3.4.4 Testing the SLAC Framework

In this section, we present the results of a series of tests on the academic
cloud case study described in Chapter 1. These tests aim at showing
expressiveness of the SLAC language and at illustrating the practical
benefits of using the management framework.

Since negotiation protocols are not part of this work, in the proposed
scenario, the researchers (consumers) select the offered IaaS cloud services
according to a list of pre-defined SLAs. These SLAs are specified in SLAC
and enforced with its framework. The cloud system, resulting from the
integration of our framework with OpenNebula, when prompted by
a request, automatically deploys the virtual machines, configures the
monitoring system and periodically evaluates the SLAs.

To compare the impact of different SLAs on the system, we collected
information of five hours of system use by the researchers. This informa-
tion was then used to create a dataset which was employed in all tests. The
creation of a dataset is crucial for guaranteeing an appropriate comparison
as it enables us to repeat the tests with different SLAs and the same input
information.

In the tests, we use a definition of a SLA and the generated dataset in
order to simulate the behaviour of the service, i.e. we send the monitoring
information collected to create the dataset as monitoring data and describe

75

Table 12: Guarantee specification used in the test.

guarantees:
on violation of any:
if cluster < 1
renegotiate
else
bonus: 1 hour of ([1,1] of Cluster)

the behaviour of the SLAC framework.

The first test concerns with the SLA presented in Table 6, which in-
stantiates a service without guarantees. Due to their absence, the users as
well as the system administrator receive no information concerning the
service provision, i.e. they are not even notified if a SLA is violated.

In the second test, we extend the SLA to include guarantees for the
quality of service and business aspects. In particular, as shown in the
excerpt of the SLA reported in Table 12, if the SLA is violated, the user is
guaranteed to receive a compensation. Indeed, in this scenario, in which
the service is not paid (as the provider is an academic institution), the
provider offers extra credits to the consumer for future use of the service
(i.e. one hour of bonus in case of cluster service).

In the second test, using the same dataset employed for the first test,
the SLA was violated six times. To depict the behaviour of the services,
Figure 18 shows the RT delay (with 0.6 ms as upper bound) of a clus-
ter group running during the test. Analysing the notifications and the
enforcement information of the framework, we found out that the main
reasons for the violations in the SLAs were the slow network and the lack
of proactive management by the cloud system. The insights from the SLA
enhanced with guarantees allow both users and the cloud administrator
to be notified of the violations and, thus, to take the appropriate actions
in order to deal with the issue. Actually, guarantees pave the way for the
development of self-managing cloud systems, as well as for the definition
of dynamic SLAs (i.e. contracts that enforce different conditions according
to the evolution of the system).

76

Table 13: Example based on the extended use case, in which part of the
service is outsourced.

SLA
. . .
term groups:
. . .
XLarge VM SS:
Amazon→ consumer:cCpu in [4,4] #
Amazon→ consumer:RAM in [16,16] #
broker→ Amazon:price in [0.32, 0.32] hour
Amazon→ broker: pricing and billing:
pricing model: flat
pricing scheme: fixed price
billing: hourly

terms:
[2,2] of XLarge VM SS
Amazon→ consumer:interface has EC2

Finally, we describe a possible extension of the case study that aims at
demonstrating the expressiveness of SLAC. In fact, taking advantage of
the compatibility of the OpenNebula tool with the Amazon EC2, we can
integrate the IMT cloud with the Amazon EC2 service. Using SLAC, this
scenario can be expressed in different ways depending on the business
processes of the hosting institution. Table 13 shows possible definition
of a SLA for this scenario. Notably, in this SLA, IMT is at the same time
a provider and a broker, i.e. it offers the local resources and is also the
responsible for the payment of the resources used in the public cloud.

An Overview on the Frameworks Performance

Clouds are elastic and commonly serve a large number of consumers.
Therefore, we analysed the scalability and performance of the SLA ma-
nagement framework implementation. To this end, we defined a SLA
in SLAC with 20 metrics (including groups), a SLA with 100 metrics, a
test set of monitoring information and evaluated the SLAs considering
this information. The experiments were carried out using a 2.8 GHz i7

77

processor.
The framework evaluates in average 35 SLAs with 20 metrics per

second, while with 100 metrics this number is reduced to 12. These results
suggest that the tool can cope with clouds with a considerable number
of consumers. However, it may not cope with the requirements of larger
clouds.

Nevertheless, it should be stressed that our implementation is a proof-
of-concepts developed to test its feasibility and the applicability of the
language in the domain. Therefore, more efficient and distributed im-
plementations can be envisaged to cope with the requirements of larger
clouds.

3.4.5 Discussion

Now that the technicalities of our approach have been introduced, we
can discuss its main features, our design choices and illustrate possible
uses and extensions of the functionalities provided by the developed
framework.

An important decision while defining a SLA specification language is
the appropriate level of granularity and the trade-off between expressive-
ness and specificity [DWC10]. Most of the related works aim at creating
generic models and specifications, which require the creation of exten-
sions of the language, i.e. the domain specific vocabulary. However, these
extensions are costly and require expertise. In clouds, a wide range of ser-
vices is available and the domain has an uncommon set of characteristics,
which are difficult to grasp in a high-level SLA specification language
(e.g. dynamism, multi-party agreements). In view of these particularities,
we opt to define SLAC as a domain specific language for cloud comput-
ing, thus capturing the most important aspects of the domain and, at the
same time, defining the low level of detail (including, e.g. metrics of the
cloud domain). As a result, we provide a ready-to-use language for the
definition of SLA for clouds.

However, if the required metrics are not available, providers and
consumers can extend the metrics of the language according to their

78

needs, i.e. the language and the architecture of the framework permit
both the addition and redefinition of metrics. Extending the language
might create incompatibility between SLAs using non-standard metrics
and SLAs written in the standard language. To alleviate the impact of
such extensions, the user can configure a translation function of the new
metric using one or more built-in metrics.

The main features of the language are the support for brokerage and
multi-party. The broker takes an important part in the SLA since it has
a key role in the domain. We enable the use of the broker in the SLA
with the definition of groups, specification of the involved parties on each
term and action, the inclusion of all roles of the domain in the SLA and
the possibility to define multiple roles for the same party. The support
to multiple party, in turn, enables the users of the language to define
SLA of all deployment models and to express real-world scenarios in the
SLA. To enable this feature, we define groups, which set the scope for
metrics; definition of the parties in each metric to explicitly express the
involved parties; support of all roles involved in the SLA in the cloud;
and the support for multiple roles for the same party. Notably, all terms
and business aspects can be contextualised in groups, which entails a
high-degree of flexibility and expressibility.

The core of SLAC focuses on IaaS but we have also specified an exten-
sion to support PaaS. However, since most requirements of SaaS are also
taken into account, we do not envisage any major issue in extending SLAC
to cover it. The main extensions needed to support this model regards the
generality of the types of metrics available in the SaaS model. We plan
to specifically address the support of SaaS in future works, considering
the concrete and ready-to-use nature of SLAC, i.e. avoiding high-level
abstractions which may become a source of ambiguity, and which require
lengthy and complex extensions.

Although negotiation is out of the scope of this thesis, the SLAC
language and its business extension already took into account the needs
of this process. For instance, the concept of groups allows the providers to
specify all services available in their offers without actually instantiating
them in the SLA. The definition of roles also leverages the negotiation

79

Figure 18: Delay of the communication of two VMs of a cluster group.

process, as offers and requests can refer to the other involved parties
without specifying them.

Despite the fact that several works regarding the service negotiation
include priorities for the metrics, we opted for not including them in the
SLAC language. For instance, in [GVB11] the authors define a framework
in which the metrics are paired with a weight, which are then ranked
according to this weight. Afterwards, this ranking is used to search for
compatible services. However, we believe that the importance of each
metric is implicitly established in the guarantees section which can
be used also for negotiation. Intuitively, in an offer or request, as more
important is a metric the higher the associated penalty; therefore, the
SLAC does not implement such a feature.

Finally, security is a priority in the domain. Nevertheless, currently,
the language and the framework have no mechanism to check the veracity
of the monitoring information related to the specified metrics (monitora-
bility of the SLA). When the framework receives a request, it extracts the
specification of the service to be deployed and configures the monitoring
system to provide the monitoring data necessary to test the conformance
of the SLA. Consequently, the data that is made available by the parties
might not correspond to the collected data. Two possible solutions are fol-

80

lowing: include a party that audits the information (it should be a trusted
party); or integrate the participant parties with the framework, thus allow-
ing the framework to collect the data directly on the infrastructure. The
latter approach requires access to the infrastructure of the parties, an inde-
pendent management framework (not associated with the provider), and
the development of non-invasive and platform-independent monitoring
solutions.

3.5 Summary

In this chapter, we covered the first pillar of the autonomic management
in the autonomic cloud domain: the definition of services. In autonomic
cloud, where the provision of services is a priority, the service definition
provides the high-level objectives of each service, which are then used as
a guide for their management and for the cloud itself.

In view of this need, in this chapter we proposed SLAC, a language
for the definition of SLAs tailored for the cloud domain. In particular, we
specified the syntax of the core of the language as well as the semantics of
the conformance check of SLAs, which is defined in terms of constraint
satisfaction problems. Moreover, we implemented the core language in a
framework and deployed it in an academic cloud case study, which was
used to illustrate the applicability of the approach.

The other existing solutions do not cover important aspects of the do-
main, such as brokerage, multi-party agreement, specification of multiple
composed services and the vocabulary for clouds. The SLAC language
successfully addresses this gap and, additionally, provides support to
significant business aspects of the domain, such as pricing models, billing
and business actions. Thus, we enable the use of the language in real-
world autonomic cloud implementations.

81

Chapter 4

Panoptes: An Architecture
for Monitoring Autonomic
Clouds

In the previous chapter, we proposed a language to define services in
clouds. This definition is one of the main pillars of the self-management
of autonomic clouds. However, to enact the self-management, autonomic
managers need to know the status of the services being provided in the
cloud, of the autonomic cloud itself, and of the environment.

This provision of this knowledge to autonomic managers is another
pillar of the autonomic management and should be available in real-time.
These characteristics and the specificities of autonomic clouds, such as
heterogeneity, scalability and dynamism, represent significant challenges
for the collection and processing of data.

In this chapter, we argue that these processes should be carried out by
a monitoring system devised for autonomic clouds and, therefore, they
should be external to the autonomic managers. In the case of autonomic
clouds, this monitoring system must provide the knowledge about the
state of the system and the environment, considering different abstractions
used in the system (e.g. services, virtual machines, cluster).

In light of these needs, in this chapter, we focus on the definition of the

82

knowledge discovery process. In particular, we define data, information,
knowledge and wisdom in the autonomic cloud domain, analyse the
autonomic cloud requirements for such tasks and, considering also the
monitoring properties presented in Chapter 2, we design a multi-agent
architecture to collect and process the collected data. This architecture
is devised to be integrated with the autonomic system and to take into
account the services defined using the SLAC language. Finally, we vali-
date this framework through its integration with a simple self-protection
framework and with experiments that test its scalability and invasiveness.

4.1 From Data to Knowledge In the Autonomic
Cloud Domain

In Section 2.6, we define the meaning of knowledge, information and data
based on the DIKW hierarchy. In this section, we define these concepts
considering the specificities of autonomic cloud.

Data represents sequences of observations collected in the system. Also
known as operational data, it consists of local measurements, such as CPU
usage, which are of little utility to the decision-making process if neither
specifically requested, nor processed to fulfil the needs of managers.

Information can be defined as data used in the decision-making process
(useful data). The requested data is selected in the information layer
(filtering process) or transformed into information through aggregation,
filtering and simple inferences. Nevertheless, the real value of information
depends on its accessibility, reliability and timeliness.

Knowledge is the specific interpretation of (aggregated) information,
which feeds the decision-making. This interpretation is discovered through
models, inference, machine learning and analyses of historical informa-
tion. Also, we borrow a concept from epistemology which defines two
types of knowledge: (i) procedural knowledge, which is used to model
and produce more knowledge; and (ii) propositional knowledge, which
is the knowledge produced from these models.

Wisdom is closely related to the decision-making process and the defi-
nition of the heuristics to discover new knowledge in the autonomic cloud

83

domain. In contrast to knowledge which produces new knowledge based
on information, the discovery of new knowledge from wisdom is based
exclusively on existing knowledge.

Much research has been conducted to explore the nuances of the
levels in the DIKW hierarchy [Sch11]. To clarify these nuances in the
domain, we propose two scenarios in which we relate these definitions
with elements of the domain: the application of autonomic computing
to the management of the infrastructure of a cloud; and the autonomic
service management in clouds based on enforcement of SLA.

In the first scenario, the data, which are the measures of the use of the
resources (CPU load, memory usage, network bandwidth), is collected
from all resources. Information, in this context, has different abstractions
depending on the type of resources that the target autonomic manager
coordinates. For example, the autonomic manager of a cloud cluster might
require the information of the average load of the cluster in the last hour.
To discover this information, the data is filtered (selecting the data from
resources only of that cluster) and aggregated, forming the information.
Finally, the same autonomic manager predicts the future load of the
cluster, thus creating knowledge. To create this propositional knowledge,
the managers need to transform historical information and the current
measures into a prediction through a model (procedural knowledge).

In the second scenario, concerning the SLA, the data is collected from
the (physical and virtual) resources, as in the previous case. Then, for the
evaluation of simple metrics of the SLA (e.g. CPU load), the data is filtered
and sent to evaluation, thus becoming information. In the case of com-
pound metrics (e.g. response time), the data is filtered, aggregated and
contextualised to create the information, which is used for the evaluation
of these metrics. For example, to test the availability metric, it is necessary
to apply a function on the previous availability information and the cur-
rent state of the system. Finally, let us suppose that the managers need to
know how similar two services are. This knowledge can be created from
the information about the services, which are then aggregated and used
as input to an inference model (created by a machine learning algorithm)
to generate the measure of similarity among the services. In this case,

84

the model which defines how to calculate the similarity among services
is a procedural knowledge, while the similarity among the services is
propositional knowledge.

4.2 Role of the Monitoring System and Domain
Requirements

The autonomic cloud domain presents significant differences to traditional
data centres, such as heterogeneity, elasticity, virtualization, large-scale
and dynamism. These characteristics hinder its management; hence,
solutions to collect and process data to discover knowledge and assist the
autonomic decision-making are required.

The monitoring system is the entity in charge of capturing the state
of the system. However, the monitoring task can be seen from multi-
ple standpoints. In the autonomic cloud domain, the most important
perspectives are the data hierarchy, autonomic computing and service
management, and we describe them below.

From the data hierarchy standpoint, the scope of the monitoring system
is restricted to the transformation of operational data into knowledge.
Therefore, these systems neither generate nor use wisdom as the latter
is employed to assist the decision-making process, which is not part of
monitoring. Indeed, monitoring systems can be autonomic and, in such
cases, they also execute the decision-making process task. However, in
these cases the decision-making and the wisdom are managed by an inde-
pendent component of the system which, might require the knowledge
discovery to take decisions but is not directly related to the monitoring
task.

In autonomic computing, the autonomic managers use sensors, which
are software or hardware components, to collect data from the environ-
ment. In this regard, there exist two main approaches: the autonomic
managers collect facts from the environment themselves or they rely on
other applications, such as a monitoring system, which feeds the control
loop of these managers with knowledge [HM08].

85

The autonomic systems must focus on the decision-making process,
which adapts the system to enact the self-* properties. Therefore, the use
of an external monitoring system is preferred to remove the complexity
of such process from the autonomic system. However, an external moni-
toring solution does not replace the monitoring phase of the autonomic
control loop which must still, e.g. verify the status of the autonomic
agents and evaluate the knowledge received through sensors.

Nevertheless, the employment of this approach requires the integra-
tion of the monitoring system with the autonomic managers, which re-
quest the necessary knowledge to the monitoring system and receive it
through sensors. Therefore, the monitoring component must be capable
of providing fine-grained data as well as a general overview of the state
of the system.

Finally, we also consider the service management perspective as clouds
are distributed systems that are employed to provide services to their
consumers. From this perspective, the system that is in charge of collect-
ing the status of the service is a part of the monitoring phase of the SLA
life cycle, which retrieves the status of each metric for the SLA compli-
ance verification. Moreover, the monitoring system should also report
the status of the provided services to the consumers, according to the
configurations in the SLA.

In light of these perspectives and multiple functions of the monitoring
systems in this domain, such as feeding the autonomic system, reporting
to consumers and having multiple abstractions of the domain (services,
nodes, clusters), we argue that the monitoring system must be an inde-
pendent entity which enables the discovery of knowledge in the domain.
With this vision in mind, we designed and implemented a monitoring
system to cope with the requirements of autonomic clouds.

4.3 Related Works

Few other works address specifically the monitoring of clouds, and none
considers also the needs of autonomic systems. In [CUW11], a monitoring
architecture and a framework, named PCMONS, for private clouds are

86

defined. However, its main drawback is limited scalability due to its
centralized approach.

In [ABdDP13], an extensive survey on the cloud monitoring area is
presented, including many cloud deployment models. The authors dis-
cuss the properties of monitoring systems, present the current commercial,
open source platforms and cloud services for cloud monitoring, and con-
front these solutions with the cloud monitoring properties. Furthermore,
they identify open issues, challenges and future directions within the field.
Among the listed open issues, they highlight resilience as a fundamental
property but none of the existing solutions focus on it. Timeliness was
also highlighted and has been only implicitly addressed by works that
focus on other properties, such as scalability and adaptability, but is only
explicitly considered in the work of Wang et al. [WST+11]. In view of
these gaps, Aceto et al. state that the particularities of cloud computing re-
quire new monitoring techniques and tools specifically devised for cloud
computing.

Many monitoring solutions for distributed systems are available. How-
ever, commonly they assume homogeneity of monitored objects and are
not scalable due to their centralised architectures [EBMD10]. Below, we
discuss some works which do not have these restrictions.

Monalytics [KST+10] is devised for the monitoring of large-scale sys-
tems and shares many design choices with the solution proposed in Sec-
tion 4.4, such as the Publish/Subscribe (Pub/Sub) communication model
and data analyses close to the source. In [WST+11], the authors emphasise
the analytical perspective of monitoring solutions through timeliness and
different granularities. They make use of a hybrid topology, which can
dynamically adapt to different paradigms. However, both proposals do
not address the monitoring properties discussed in this work, and they fo-
cus on generic data centres, while we address the particularities of clouds
and autonomic system.

In [CGCT10], the authors define Lattice, an open source monitoring
framework, to enable the monitoring of federated clouds. However, all
parties involved in the cloud must deploy this framework, which is hardly
feasible in commercial clouds. Furthermore, this solution is not scalable

87

since the filtering and processing of data occurs only after the data of
whole cloud is collected.

Finally, in [EBMD10], the authors focus on the equivalence between
SLA metrics and low-level monitoring metrics. In our work, the con-
version of SLAC metrics into low-level monitoring metrics employs an
approach based on [EBMD10]. However, to collect data from the system,
they employed the Ganglia [Gan14] which focuses on distributed sys-
tems. Therefore, they neither consider the particularities of clouds, nor
integrate the monitoring and autonomic systems, nor tackle specifically
any monitoring system property.

To our knowledge, apart from the previously analysed works, no other
monitoring architecture has considered the requirements of autonomic
systems and cloud computing. Moreover, only few novel works have
applied the concepts of multi-agent systems and autonomic computing
in the monitoring area [SILI10, Ant10] and none specifically addresses
clouds.

4.4 Panoptes Architecture

The existing monitoring solutions cannot cope with the needs of auto-
nomic clouds, such as strong integration of the monitoring system with
the autonomic managers and cloud dynamism. Therefore, in this sec-
tion we present Panoptes1 [UW14], a multi-agent monitoring architecture
tailored for autonomic clouds.

In Chapter 2, we describe the properties of monitoring systems related
to clouds. The scope of properties is broad and range from scalability to
resilience; therefore, we focus on the most relevant properties of the do-
main and the properties which had not been implemented before. These
properties are: (i) scalability, due to the large-scale of clouds; (ii) timeli-
ness, since the real value of the knowledge for the autonomic managers
depends on its timing; (iii) resilience, as the nodes of the cloud are loosely

1The framework was named after Argus Panoptes, a giant from Greek mythology with
one hundred eyes. In the legend, he was considered an effective sentinel because he never
closed all his eyes. Even while sleeping half of his eyes were kept open.

88

coupled and the monitoring system is essential for the decision-making;
(iv) adaptability, since the autonomic clouds should focus on services; and
(v) extensibility, to support the heterogeneity of the resources and services
of the clouds.

Autonomic clouds commonly have four high-level management roles:
cloud, cluster, nodes and storage controllers [CUW11]. Storage controllers
are similar to node controllers from the monitoring perspective. However,
for other components of the cloud, e.g. routers, switches and UPSs, no
specific management role exists. Yet, in autonomic clouds, also these
components need to be monitored.

Considering the management hierarchy and these particularities, we
define the roles of the agents in the monitoring systems as four:

• Cloud Agents do not collect data on the resources but receive coarse-
grained information/knowledge from other agents. At this level,
complex operations, such as data mining algorithms and analytical
tools are employed. As cloud have a service-oriented nature and
these agents have a broad view of the system, they are the responsi-
ble to manage the monitoring of services since they can be executed
in multiple locations at the same time.

• Clusters are typically deployed in geographically restricted areas;
therefore, Cluster Agents generate information and knowledge and,
at the same time, filter the collected data to reduce network traffic
and to avoid unnecessary processing at the cloud level.

• Monitoring Agents filter, aggregate and contextualize fine-grained
data. In this architecture, they are employed in storages and cloud
nodes.

• Probe Agents target devices with low processing power to compre-
hend also other components apart from servers and storages, which
commonly have low processing power. This role is designed to
consume as less resources as possible and, consequently, it does not
process the collected data.

89

Figure 19 illustrates the roles of the agents from the knowledge discovery
standpoint (DIKW hierarchy). Probe agents collect data and send it to
the monitoring agents. Monitoring agents collect data or receive from the
probe agents and generate information through filtering and aggregation
of this data. Cluster agents transform information into knowledge and
generate more knowledge from existing knowledge. Finally, cloud agents
produce knowledge and do not collect any type of data.

The agents of all roles are deployed in the cloud resources. Monitoring,
cluster and cloud agents are typically placed in cloud nodes and probe
agents are intended for resources with low processing, such as routers
and VMs. These agents are executed in the resources according to the
structure of the cloud and the needs of the autonomic managers, and each
resource can have multiple agents with different roles. To decide about
the placement of the agents, the structure of the cloud resources should
be explicitly configured or the monitoring system should be integrated
with a cloud provision solution that make this information available.

The main advantage of such a monitoring structure is its scalability
since it organizes the agents according to the cloud. This architecture
also prevents the dissemination of unnecessary information through the
cloud due to different abstraction levels of agents, whereas it still provides
flexibility for in-situ analysis.

Nevertheless, the monitoring system should prevent the performance
deterioration of the target system (the autonomic cloud) caused by the
monitoring tasks. To prevent this deterioration, the system should adapt
itself. To this end, each request of monitoring data, information or know-
ledge at any level requires the specification of its priority. As a result,
agents can adapt the number of active tasks (e.g. deactivate low-priorities
tasks) according to its usage on the resource. Another valid strategy to
prevent the invasive behaviour is to change role or to move to another
resource. For instance, let us suppose that a cluster agent requires a high
CPU load algorithm to generate knowledge and the node where it is
being executed is overloaded. In this case, the cluster agent finds a more
powerful node, migrates and activates a probe agent only to collect data
in its place. These features are configured using simple Event-Condition-

90

Figure 19: Relation between the roles of agents in the monitoring system and
the DIKW hierarchy.

Actions rules, e.g. defining the threshold to the CPU usage which would
result in the migration of the agent.

The communication among agents is primarily performed by topic
(classes of messages). They register in topics they are interested to (e.g.
cluster01, probeagents, nodeIP). Then, agents publish their messages to a
specific topic and these messages are delivered only to agents subscribed
to this topic. This model, named Publish/Subscribe, enables any num-
ber of publishers to communicate with any number of subscribers asyn-
chronously via event channels on particular topics, thereby preventing
broadcasting. We opt for this model due to its high-scalability, flexibility
and performance [FHAJ+01].

The agents must also have an independent communication server;
therefore, they can also communicate with each other by sending direct
messages. This type of communication among agents serves two pur-
poses: the transmission of critical messages, which are sent directly to the
requester skipping the other phases of the knowledge discovery processes

91

to reduce latency; and the improvement of availability, resilience and relia-
bility of the monitoring system, in case of failures in the Publish/Subscribe
architecture. To carry out this direct communication, the agents need to
be updated about their respective addresses of upper-layer agents, which
keep a list of the agents in lower-layers and a list of the topics that these
agents are subscribed.

The requests of the interested party and their integration with the
monitoring system is performed through the agents’ interface that enables
the on-line configuration of the monitoring system. This interface is used
to create, remove and modify modules of the system (monitoring tasks),
which consist of the definition of what should be monitored and how to
discover knowledge with the collected data.

The results of the configured modules are sent directly to the interested
party by the agent which produced the result. Notably, considering that
the monitoring system is independent from the autonomic system, the
produced knowledge is sent to the interested party as this knowledge
can not be directly added to the knowledge database of the autonomic
managers due to security reasons.

Transforming operational data into useful knowledge and accurately
capturing the state of the system are challenging in large-scale paradigms
due to the amount of operational data generated in the domain [VHKA10].
As a result of the large-scale and of the amount of operational data gener-
ated in autonomic clouds, the autonomic agents should rely on techniques
to process data on-line. Therefore, the monitoring system does not have a
knowledge database. However, the discovery of knowledge might require
local storage of data, information or knowledge for operations, such as
aggregation and inference.

Considering this need of temporary storage to perform such opera-
tions, we propose a simple database model based on associative arrays
(also known as dictionary data structures). Intuitively, they are a collec-
tion of (key, value) pairs where keys are unique in the database. This
model is known as key/value model and we have chosen it since it has no
strict structure, it is horizontally scalable (particularly suitable for clouds)
and it does not require the set of properties which guarantee that the trans-

92

actions in databases are processed reliably (known as ACID, Atomicity,
Consistency, Isolation, Durability).

Panoptes architecture was designed to be modular and easily modifi-
able. Therefore, its components can be replaced according to the needs
of the systems (for example, the manager can replace the communication
server or role of the agents). This modular design motivates the adoption
of this architecture for research purposes (e.g. when a single part of the
monitoring is the subject of a study) and in the industry.

The main features of the Panoptes architecture are summarised in
Table 14. With this architecture, we address the properties as follows:

• scalability with multiple levels of agents and on-line data filtering,
aggregation and inference close to the source;

• adaptability with activation and deactivation of modules according
to their priorities and change of roles;

• resilience with the multi-agent architecture and direct communica-
tion among agents;

• timeliness with definition of priorities and the possibility to skip data
processing;

• extensibility with the architecture itself, the creation of scripts, the
on-line addition and removal of modules, and the use of monitoring
templates.

Moreover, the integration between Panoptes and the autonomic sys-
tem is leveraged by the urgency mechanism, the on-line configuration of
the monitoring modules, the adaptation capabilities of Panoptes and the
centralisation of the collection and processing of multiple data abstrac-
tions in a single system.

4.5 From SLA Metrics to Monitoring Modules

SLAs provide a high-level account of the description of services, which
commonly does not have a direct correspondence to the low-level metrics

93

Table 14: Summary of the main characteristics of the Panoptes Architecture.

Type Description / Example Characteristic
R

ol
es

Cloud Agent Produces only knowledge High-level view of the system
Cluster Agent Produces information and knowledge Keeps the data and information local

Monitoring Agent Collects and processes data Low-level view of the system
Probe Agent Only collects data Low resource consumption

K
no

w
.D

is
co

.

Filtering Selects only the data required to
discover knowledge

Reduces the amount of data to be
processed

Aggregation Groups data or information High-Level view of the data

Inference Produces knowledge through, e.g.
machine learning and data mining

Requires resources and complex
models

A
da

pt
at

io
n

Priorities Deactivates or activates modules Adapts the load of the monitoring
system

Change of Role Agents change their roles according to
the load of the monitoring tasks

Enables the self-organization of the
agents

C
om

m
un

ic
at

io
n

Publish/Subscribe Communication based on topics Efficient multicast communication

Direct Messages Based on topics but requires the
addresses of the agents Point-to-point communication

Knowledge Delivery Agents can send the processed
knowledge directly to the requesters Distributed approach

Critical Messages
Skips the data processing and sends
the message directly to the interested

party
Reduces latency

94

Table 15: Example of the equivalence between a SLA term and low-level
metrics.

SLA Metric Mapping Required Monitoring Data

Availability Uptime
(Uptime+Downtime)

The invocation of the service
through the Internet to test

whether the services are available,
possibly from multiple locations.
Then, it requires the aggregation
of the results to calculate the up

and down times.

Boot Time availabilityDate−
startingDate

The exact date and time of the
request (or approval) of the

service and the date and time this
service is available.

collected by the monitoring system. Therefore, there is the need to find
this correspondence in order to accurately measure whether a SLA has
been enforced. Table 15 illustrates this concept with two SLA metrics and
the low-level metrics necessary to calculate them.

In the case of the SLAC language, we propose an approach based on
[EBMD10], which provides mapping rules for each metric. The advantage
of direct mapping between SLA metrics and monitoring modules (as they
are called in the Panoptes framework) is the simplicity of the approach
which facilitates the automation of the process. Moreover, the SLAC
language already provides a description of the metrics for the domain
which are used to form the pre-defined rules.

The mapping rules are stored in a database and organised by context.
Therefore, a mapping request requires also the information about context
of the SLA or metric, i.e. the name of the metric, the type of service
and the platform in use. In particular, in each mapping request must be
specified: the cloud platform (e.g. OpenNebula, Eucalyptus and generic),
the location and IP of the resource in which the service is deployed (e.g
VM X, cluster Y), the service model (e.g. IaaS and PaaS) and the operating
system (e.g. Linux and Windows). Consequently, a module that can

95

Figure 20: Mapping of a SLA term to a (simplified) module of Panoptes
architecture.

be directly employed by the monitoring agents is returned. Figure 20
illustrates the mapping process with a request and the result for that
specific platform. In this example, an agent requests the mapping of the
availability metric and sends the parameters necessary for the mapping of
this metrics. In this specific case, the resulting module defines that this
monitoring component runs in agents which are not in cluster A (Agents
of CLusters != Cluster A) and defines the command as a SSH request to test
whether the VM is accessible.

4.6 Implementation

In order to demonstrate the feasibility of the architecture, we developed
a monitoring framework in Python. The reasons for opting for this pro-
gramming language are its simplicity and readability, which motivate the
development of extensions and scripts for the framework.

The agents of the framework are generic entities that assume roles
according to the needs of the system and can change during their life cycle.
They collect data from log files, using the SNMP protocol or executing
specific commands that are configured by the manager. The adaptability
is implemented considering the physical resources employed to run the
agents (RAM and CPU usage). The agents monitor their resource usage
and compare it with the defined policies. In case of violation of the
policies, the agents can change role or reduce the number of modules

96

(deactivate the low-priority ones).
The database chosen to support the data processing function and the

SLA metric mapping is Redis (REmote DIctionary Server [Red14]), which
is an open source project for Key/Value storage. Moreover, we also use
the implementation of the Publish/Subscribe that is included in the Redis
database for the communication among agents. Finally, for the direct
communication, the agents have embedded their own communication
server, which is developed using TCP network sockets.

The specification of modules defines the granularity, metrics, host ad-
dresses and regular expression for matching patterns of critical messages.
To support the development of monitoring scripts, the framework pro-
vides a basic API for the Python with functions such as aggregate, send and
urgent message. This support to scripts in Python enables the managers to
personalise the knowledge discovery process.

Finally, we integrate the framework with the OpenNebula [Ope14]
solution through the automatic injection of probe agents in its VMs.

4.7 Experimental Evaluation

In order to evaluate the Panoptes monitoring implementation, we present
a use case which proposes the integration of Panoptes with a self-protection
framework. Moreover, we evaluate the monitoring properties, such as
scalability and timeliness through analytical experiments.

4.7.1 Use Case

We developed a simple multi-agent framework that is devised for the
self-protection of clouds in order to validate the concepts and to offer an
insight into the integration between an autonomic system and Panoptes.

Design and Implementation of the Self-Protection Framework

The framework is a multi-agent system that allows the definition of mo-
dules for self-protection. It provides the essential infrastructure to execute
the MAPE-K control loop.

97

Figure 21: Integration between Panoptes and the self-protection system.

The self-protection functions are defined in the form of modules. These
modules guide the MAPE-K loop for the decision-making. Follows the
description of this loop. The Monitoring phase receives information from
Panoptes, and collects information on the updates the system policies and
the other agents of the framework. The analyses phase relies on a utility
function defined for each module. This function calculates the security
risk of each module. In case of high-risk (defined by high-level policies)
an action needs to be taken. The Planning phase chooses which action will
be taken to avoid the risk. In particular, the available (pre-defined) plans
are evaluated using an Event-Condition-Action rules database. Finally,
the chosen plan is executed in Executing phase by the agents of the system.

Figure 21 depicts the interaction among the cloud, Panoptes and the
self-protection system. The self-protection system adds new modules or
configures the modules of Panoptes in an on-line fashion, and executes
plans on the cloud carrying out corrective and preventive actions.

98

Use Cases: The benefits of integrating Panoptes and the Self-Protection
Framework

In order to understand the implications of the integration of the monitor-
ing system and an autonomic system in real-world clouds, we propose
the integration between Panoptes and the self-protection framework in
the academic cloud presented in Chapter 1. In this cloud, the students
can employ VMs for research purposes and access them through the
Secure SHell (SSH) interface. To provide these VMs, we employed the
OpenNebula tool in six physical machines divided into two clusters.

Listing 4.1: Configuration of Panoptes for the
use case.

1 Host = VMs
2 MonitoringType = Log
3 Reference = /var/log/sshd
4 Frequency = newEvent
5 Filtering = Monitoring
6 Pattern = failed password
7 Filter = (dateTime)(IP)
8 Aggregation = Cluster
9 Maximum Aggregation = 5

10 Priority = medium
11 Critical = (Ip) != (10.0.0.*)
12 Destination = localhost:100

In this scenario, we developed a module to protect such interfaces from
password guessing attacks. The protection framework was configured
with a utility function that analyses the failed login attempts considering
historical information and, in case there is a high probability of an attack,
it blocks the connections from the suspect IPs.

Listing 4.1 presents a summary of the configuration of the module
defined for the use case. The host keyword defines the monitored re-
sources, which are, in this case, all the VMs running in the cloud. The
log verifies the file of the SSH server and checks it on every modification
(frequency). Filtering and aggregation can be performed in different levels
(monitoring, cluster, cloud); therefore, it is defined in their configurations.

99

In the filtering, only events that match the pattern are filtered and only the
filtered part of the events is used for the processing of the collected data.
In this case, only the IP, date and time of the occurrence are processed
(which is specified using regular expressions but was omitted here for the
sake of simplicity). The aggregation enables the accumulation of a number
of events before sending it to upper-level agents or the final destination.
The priority is used by the adaptation component of the Panoptes. The
keyword critical denotes the pattern of messages that are urgent, in this
case, the IP addresses that are not from the local network. Finally, the
interface address of the interested party is set by the destination keyword.
Most of the configurations support more than a single option, for exam-
ple, multiple critical patterns can be added according to the needs of the
system (as occurs in our use case).

The monitoring system was manually configured to provide the results
to the self-protection framework. It aggregates the information of the login
attempts from the cloud, cluster, monitoring and VM perspectives, and
sends this information to the framework. However, the module developed
for this framework updates the configuration of Panoptes on-the-fly. In
particular, when the risk of invasion is higher than 50%, the framework
configures Panoptes to mark the modules as high-priority. Thus, for all
new events related to the suspect IPs, it skips the data processing to reduce
the latency of the process.

For the tests, we developed a script that randomly selects an origin IP
from a list and attacks a VM. It was executed in 30 minutes periods in a
cloud with 50 monitoring agents divided into two clusters, each with a
single cluster agent and only a cloud agent in the system.

Table 16 presents the significant reduction in the number of message
processed by the self-protection system from the monitoring system in
comparison to the number of messages collected directly by the self-
protection agents in the same case. Panoptes reduces 87% of the number
of messages processed by the autonomic manager and 84% of the volume
of the messages. In the same test, we also counted the number of messages
exchanged by the monitoring system which amounted to 148130. This
indicates that the total number of messages, i.e. the ones exchanged in

100

Table 16: Messages exchanged in the described scenario.

Number of Messages Volume of Messages

Panoptes 160450 19.0 MB

Autonomic Agents 1160229 117.6 MB

the monitoring system related to the module plus the ones sent to the
autonomic agents, was reduced by 73%.

In addition to this significant improvement, all the complexity of
collecting, filtering, aggregating and inferring the data is handled by
the monitoring system, which is devised for the domain. Therefore, the
autonomic system can focus on the self-management process, which
includes the analyses, decision-making, and pro-active and corrective
actions.

4.7.2 Experiments of the Scalability and Invasiveness of
Panoptes

In this section, we propose analytical tests focused on the scalability and
invasiveness of the solution. Therefore, the experiments evaluate the
resource usage of the solution and the number of messages processed per
second.

More specifically, the first experiment evaluates the CPU usage of a
probe agent and of a monitoring agent both executed on an Intel Core2
Duo T7500 2.00GHz, while the second experiment compares the timeliness
of the normal messages with the critical ones.

The chart in the left side of Figure 22 demonstrates the average CPU
usage of a monitoring agent (in blue or dark grey colour when on black
and white) and the usage of a probe agent (in orange or dark grey colour
when on black and white). Both agents use less than 5% of CPU till 200
events per second, and less than 3% with a normal load (less than 100
events/s). These results suggest that our solution scales well and that the
probe agents consume less resources since in the test they used less than
2% of CPU even with a high number of new events.

101

Figure 22: Tests of scalability and timeliness of Panoptes.

The second chart depicts the average latency of messages, calculated
from the detection of the event until the end of the processing by the cloud
agent. In particular, the monitoring agent notices the event, processes the
message, sends it to the cluster agent which, in turn, also processes the
message and sends it to the cloud agent. All the agents are in the same
machine.

The blue line represents messages marked as not critical and the or-
ange line indicates urgent messages that are sent directly to the autonomic
managers by the monitoring agent. The drastic increase of latency, be-
tween 400 and 500 messages per second regarding normal messages is
due to the hardware limitations of the host. Additionally, the results
clearly show the usefulness of the urgency mechanism that presents al-
most constant and low latency compared to normal messages, even with
large number of messages per second.

The results demonstrate the scalability and low invasiveness of our
monitoring solution. Moreover, our adaptive approach provides flexibility
to the agents to change role, migrate or alter the quantity of active metrics,
to prevent message-processing bottlenecks and high latency.

102

4.8 Summary

In this chapter, we define the knowledge discovery process from multiple
perspectives, specify the role of the monitoring system in autonomic
clouds and devise an architecture to effectively monitor autonomic clouds,
including the infrastructure and the services provided to consumers. This
architecture focuses on the integration with the autonomic managers and
on the following monitoring properties: scalability, adaptability, resilience,
timeliness and extensibility. Nevertheless, the main requirement of such
an architecture is its configuration, which needs intelligent autonomic
managers to take advantage of all its potential.

Based on this architecture, we implemented a framework and demon-
strated its benefits through the integration with a self-protection frame-
work and through the analysis of its scalability and timeliness.

The experiments and the features of Panoptes demonstrate the benefits
of our architecture in the domain. It drastically reduces the number of
messages processed by the autonomic manager, enables the integration
of the monitoring system with the autonomic system, externalises the
complexity of monitoring and data processing, reduces the total number
of messages processed by both systems and considers the characteristics
of autonomic clouds.

103

Chapter 5

Similarity Learning in
Autonomic Clouds

In the previous chapter, we described the knowledge discovery process
and presented the second pillar of the self-management of autonomic
clouds, i.e. a monitoring and data processing system. In this chapter, we
employ this discovery process to generate a specific type of knowledge
from monitoring data or SLA definitions in the cloud domain, namely the
similarity among services as this knowledge is flexible and can be used in
various scenarios.

The characteristics of a service consist of several types of data (called
features in the field of machine learning), such as CPU load, memory and
service duration, which form a one dimensional vector (the observation)
describing this service. To transform data into useful knowledge, we
assume no prior knowledge about services or their relations, as the infor-
mation available is restricted in cloud environments. Nevertheless, the
multi-dimensional correlations are difficult to extract from raw data and
performance features, due to the heterogeneity of resources and services
in clouds. Hence, we employ machine learning techniques to obtain such
knowledge from data describing the service, in order to measure the si-

104

milarity of services and to cluster1 them using this measure. The clusters
and the measure of similarity can be used in all phases of the MAPE-K
loop for different purposes. For example, for optimisation of resources
and anomalous behaviour detection.

First, we formulate the problem, then discuss the requirements of the
clustering techniques in the autonomic domain and present our solution.
Next, to illustrate the use of the proposed solution, we carry out experi-
ments and describe a use case. Finally, we present the related works and
the summary of the chapter.

5.1 Problem Formulation

Figure 23 describes the typical architecture of autonomic management
in cloud environments and clarifies in which modules (highlighted in
grey) our approach provides a novel contribution. Customers interact
with the cloud system through an interface to request the execution of
custom services, which are then deployed in the cloud resources, e.g. in
Virtual Machines (VMs). The monitoring system uses sensors to collect
raw data from the managed resources used by services. Such data are then
elaborated in order to produce knowledge. The elaboration of the data
follows the knowledge hierarchy defined in Chapter 4, i.e. the raw data is
processed by the monitoring system, generating information which is then
used as input for the inference. This inference discovers knowledge in
the information and is the scope of our solution. Continuing the MAPE-K
loop, the manager uses the produced knowledge in the decision-making
process, which yields a plan of possible adjustments to be applied on the
cloud resources and services via the actuators.

The abstraction layer created by cloud computing obfuscates several
details of the provided services, which, in turn, hinders the effectiveness
of autonomic managers. Moreover, the abstraction provided by clouds
restricts the amount of knowledge available to autonomic managers, and

1Differently from previous chapters where cluster meant a group of machines (computer
cluster), in this chapter, the term cluster follows the jargon used in machine learning and
means groups of observations.

105

Figure 23: Management architecture of autonomic clouds.

consequently limits their range of actions.

Data-driven approaches to discover knowledge, without human know-
ledge and intervention, can assist the operation of autonomic managers.
Therefore, we employ machine learning techniques to obtain knowledge
from data describing the service. In particular, we provide a measure of
similarity among services and cluster them using this measure. Machine
learning techniques, such as clustering, also generate knowledge consist-
ing of groups (clusters) of services with similar resource usage patterns.
These measures of similarity and clusters can be used in all phases of the
MAPE-K loop for different purposes, such as optimisation of resources,
service scheduling and anomalous behaviour detection.

We illustrate the use of such knowledge with a motivating scenario.
A provider enables its consumers to deploy any application in the cloud.
Due to security concerns, in this scenario, the autonomic manager relies
exclusively on the service description and quality of services defined in
the SLA and on the monitoring information of the service. Let us assume
that the autonomic manager notices that service A, which had only one

106

available CPU, violated its SLA (for example, the completion time). Then,
a new incoming service B is clustered in the same group with service A
(or presents a high similarity). Instead of assigning only one CPU for
service B, the autonomic manager assigns two CPUs to avoid violations
of its SLA, as occurred with service A.

A critical aspect that complicates this approach is that the information
provided by the monitoring contains both categorical (e.g. virtual machine
instance type) and continuous (e.g. CPU load) types of data. Current
approaches address this problem in a heuristic fashion: they either use
only one data type, which reduces distinguishability, or construct com-
binations of data types by human expert intervention. Both do not cope
well with the dynamism of autonomic cloud: when new types of services
are introduced they may not be distinguishable or a human intervention
would be necessary again.

In this chapter, to provide a truly autonomic and effective management
of services in clouds, we propose the use of the Random Forest (RF) algo-
rithm [Bre01] to learn similarities among services by using all data types.
We learn from services already deployed in the cloud system and provide
the extracted similarities to a clustering algorithm. In particular, for the
sake of efficiency and meeting the dynamism requirement of autonomic
clouds, our methodology consists of two steps: (1) off-line clustering, to
learn similarities and obtain the clusters; and (2) on-line prediction, to pre-
dict to which of the computed clusters an incoming new service belongs.

While on-line clustering algorithms exist, they are computationally
demanding. In our context, this is mainly due to the need to update
the clustering as soon as a new service arrives prior to predicting its
cluster. Our solution, instead, skips this updating phase, but retains
and leverages in the best way possible all knowledge of the off-line step
without increasing computational demand.

More specifically, the main contributions of this chapter are: (i) the
analysis of the specificities of the autonomic cloud domain and the defini-
tion of the requirements of a clustering approach for cloud services; (ii) an
off-line approach that relies on the RF algorithm to learn the similarities
between all observed services, essentially a matrix, which is then provided

107

Table 17: Correspondence between autonomic cloud characteristics and the
requirements for clustering algorithms.

Characteristics Requirements
Security, Heterogeneity, Dynamism Mixed Types of Features

Large-Scale, Dynamism On-line Prediction
Large-Scale, Multi-Agent Loosely-Coupled Parallelism

Heterogeneity Large Number of Features
Security, Heterogeneity,

Dynamism, Virtualization Similarity Learning

to an off-the-shelf clustering algorithm to identify clusters; (iii) a cluster
parsing to reduce the size of the matrix; which is then used by (iv) the
on-line prediction to reduce computational requirements; (v) performance
and accuracy analysis of the proposed methods using real-world datasets;
and (vi) a use case employing the proposed on-line solution on a novel
scheduling algorithm implemented in a cloud test-bed.

5.2 Requirements for Clustering Techniques in
the Autonomic Cloud Domain

Designing or adapting machine learning algorithms to the autonomic
domain is challenging [PH05]. Moreover, the cloud domain has a unique
set of characteristics, which hinders the clustering task.

Table 17 presents the characteristics of the domain and the require-
ments for service clustering related to them. We describe below the most
relevant characteristics of the domain and their impact on service cluste-
ring.

Data security is one of the biggest barriers for cloud adoption. Concer-
ning the knowledge generation, Pearson and Azzedine [PB10] state that
even embedded functionality for tracking and profiling the behaviour
of individual services in clouds brings potential risks for privacy. Com-
monly, approaches to improve security are based on data cryptography

108

and control of cross-layer transmission of information. To process the
data converted with these security measures, a clustering algorithm needs
to support different types of features (e.g. discrete, continuous, symbolic).
Moreover, as these techniques obfuscate the features of the data, they
hinder the manual combination of data types. Therefore, a data-driven
similarity learning approach is required.

To offer seemly infinite pool of resources, cloud providers deploy large-
scale clouds with distributed resources. The massive operational data
generated in these environments might require a considerable amount of
resources to be processed. Therefore, the knowledge discovery process
should not be invasive, i.e. should not impact on the performance of the
cloud services provision. Accordingly, a clustering algorithm should run
in parallel to cope with the large quantity of services in acceptable time
(low overhead), to divide its computational load and to operate close
to the data sources, thus reducing the impact on single resources and
avoiding unnecessary network traffic.

Clouds are inherently dynamic from the providers’ perspective. New
resources are constantly added and removed from the infrastructure and
the types of services and the requested resources vary over time (also due
to the pay-per-use business model employed in the clouds). Considering
the number of services in the domain (large-scale clouds), the number of
clustering requests and their inconstant arrival rate, it is impracticable to
re-cluster all observations on each request. Hence, on-line prediction for
new observations is a requirement for clustering algorithms. Moreover,
this dynamism is enabled also by the loosely coupled nature of the cloud
infrastructure; therefore, the parallelisation of the clustering algorithms
should also be loosely coupled.

Cloud systems contain a virtualization layer. A potential risk that
this layer brings to the domain is the fine-control over the monitoring
of resources [FZRL08], hindering the management of such systems. In
light of this loose control and of the uncertainty added by virtualization,
the data is heterogeneous and also often incongruent [CFR13]. These
characteristics pose significant challenges towards manual combination
of data types.

109

Virtually everything can be provided as a service in the cloud domain.
Due to such heterogeneity, some types of services might require monitoring
data types that may not be easily converted to continuous numerical data
types, which are commonly accepted by the clustering algorithm. This is-
sue could be alleviated by human expert intervention and pre-processing,
such as discretisation, normalisation and standardisation. However, these
techniques are hindered by security restrictions, virtualization and the
variety of services in the cloud domain. To overcome these limitations
and, most of all, to avoid manual expert intervention, mixed types of
features should be handled by the clustering algorithm.

Moreover, due to the heterogeneity and complexity of the available
services (e.g. services with 100 features), the clustering algorithm should
process them in an acceptable time and should not be invasive on the
system. A possible solution is the use of techniques which reduce the
number of features of the data (e.g. [CBQF10]). However, reducing the
number of features also implies in loss of information which reduces the
quality of the generated knowledge. Therefore, a large number of features
needs to be supported by the clustering algorithm.

Autonomic computing employs the multi-agent architecture to enact
the self-* properties. A clustering algorithm can benefit from this arrange-
ment by parallelizing its workload.

5.3 Autonomic Management of Clouds Using
Clustering Techniques and Similarity Learn-
ing

To achieve a meaningful measure of similarity among services in the con-
text of autonomic clouds, we use clustering methods to learn similarities
and identify usage patterns. This renders our proposed methodology
versatile to deal with a wide range of application scenarios and enables
the adaptation of the clusters to evolving services, which is required by
the dynamic context of the domain. From the range of available clustering
algorithms, we seek those that: (i) can handle mixed data types (continu-

110

ous and categorical) without expert intervention; (ii) are fast both in the
training and prediction phases; and (iii) offer superior performance. In
the following, we first provide some background on clustering algorithms
and how they are related to the above mentioned requirements, and then
we proceed in defining our methodology for learning similarities based
on the Random Forest algorithm and for clustering services using such
obtained similarities.

Notably, the content of this section may result sometimes too techni-
cal for a reader non-familiar with concepts from the machine learning
field. However, such readers can easily understand the overall approach,
without going into detail of its technicalities. Moreover, this reader can
appreciate the experiments carried out to demonstrate the effectiveness of
the proposed solution. On the other hand, the reported technical details
can be appreciated by the reader interested on a more precise idea of the
functioning of the approach.

5.3.1 Background: Clustering as Unsupervised Machine
Learning

Machine learning techniques are categorized as supervised and unsuper-
vised. The supervised approach infers a function from a labelled training
set, i.e. a group of examples containing observations whose class member-
ship are known. Classes are the “group” of the observations; for instance,
“small” and “large” for virtual machines. Finally, the function inferred
on the basis of the training set is then used to determine the class of
non-labelled observations. Evidently, the reliance on a training set, its size
and labelling quality directly affect the performance of the supervised
technique. This dependency hinders the adoption of supervised learning
techniques in the context of autonomic clouds, as manually labelling ser-
vices is particularly difficult to perform due to the domain heterogeneity,
dynamism and security aspects.

On the other hand, unsupervised learning does not require labelled
training data and is used to find structures and patterns in data.

Clustering solutions are classified in batch methods, which require

111

all data available a priori, and on-line methods, which process the data
sequentially as they are received. For an extensive review on them we refer
to [XW05] and, specifically on on-line clustering, to [QPGS12, GZK05].

Few clustering solutions handle mixed types of data (e.g. [AD07,
YHC04, YZ06]). HClustream [YZ06], an extension of the Clustream algo-
rithm [AHWY03], supports mixed data types. However, it cannot handle
cases where a large number of features are used (even with 10 dimensions
the algorithm presents poor results) [AHWY04]. In fact, the majority of
the existing on-line clustering algorithms, which handle mixed data types,
share the same limitation.

When the features are purely numerical or categorical, several cluste-
ring solutions exist (e.g. [AHWY04, GRS00]). However, this implies that
some information (i.e. one of the data types) will not be utilized appropri-
ately. Using only categorical or continuous data types while possible, may
lead to clusterings that cannot distinguish between services and thus may
provide inferior performance. Another approach would be to hand craft
new data types that combine categorical and continuous data types. This
requires full understanding of the dataset, the domain and the relation-
ships among data types. This heuristic approach is problem-specific and
determines the quality of the clustering results. Moreover, devising such
heuristic solutions in the autonomic cloud domain is even more complex,
considering that clouds are dynamic2, heterogeneous, use virtualization
and have strong security requirements.

Another approach to deal with mixed data types is to devise data-
driven solutions that can learn similarities among the observations (we
refer to [YJ06] for a detailed review on them). Some of these solutions
require information a priori about the data (known as supervised simila-
rity learning), which is not available in our context. On the other hand,
manifold learning approaches do not need such a priori information but
are computationally intensive and do not scale well.

Thus, in this chapter, we propose a combination of a similarity learning
step to discover a proper measure of similarity among observations and a

2In our context, this would imply building new heuristics every time the autonomic
manager faces a new service type.

112

clustering algorithm to group the observations according to this measure
of similarity. In light of the domain requirements, as the means to obtain
such notion of similarity, we adopt the Random Forest algorithm.

5.3.2 Proposed Methodology: Service Clustering with Ran-
dom Forest in the Autonomic Cloud Domain

The Random Forest algorithm relies on an ensemble of independent de-
cision trees and was initially developed for regression and classification.
It has a training and a prediction step. In its training step, RF uses boot-
strapping aggregation (i.e. re-sampling from the dataset) and random
selection of features to train T decision trees (where T is a number defined
by the user). In the prediction step, the observations are parsed through
all T trees and the classes of the observations are defined aggregating
the decision of each tree. For details on the classification and regression
algorithms, we direct the reader to [Bre01]. The main characteristics of RF
are:

• It can handle mixed features in the same dataset;

• Due to feature selection, it effectively handles data with a large
number of features;

• It is one of the most accurate learning algorithms [CNM06];

• It is efficient and scales well [CNM06];

• The algorithm is easily parallelizable;

• Generated forests can be saved for future use (in our case for on-line
prediction).

What is particularly relevant to our purpose is that this algorithm
generates an intrinsic similarity measure. Intuitively, the principle used is
the following: the more times two observations end up on the same leaf,
the more similar they should be.

In [BA03], Breiman and Cutler proposed an unsupervised version of
RF. Intuitively, the algorithm works as follows: (i) the training dataset

113

(original data) is labelled as class one; (ii) the same number of synthetic
observations are generated by sampling at random from the univariate
distributions of the original data (synthetic data); (iii) the synthetic data
is labelled as class two; (iv) the trees are trained with the original and
synthetic data; and (v) the original data is parsed through the trees, which
yield the references of the leaves in which the observations ended up.

More formally, the similarity between two observations xm, xn (m,n
are the indices of the observations) is calculated as follows. Each obser-
vation is parsed through all T trees of the forest; the leaves in which the
observations end up are annotated as lim and lin respectively, where i is
the index of the tree. Let I represent an indicator function, which yields
1 if two observations end in the same leaf in that tree and 0 otherwise.
Thus, the similarity between two observations is defined as:

S(xm, xn) =
1

T

T

∑
i=1

I(lim = lin) (5.1)

The similarity of all pairs of observations is calculated, which results
in an N ×N matrix, named SIM , where N is the number of observations.
The dissimilarity matrix (which is generated from the similarity matrix
by applying DISSIMnm =

√
1 − SIMnm) is symmetric, positive and lies

in the interval [0,1]. This matrix requires a considerable amount of fast
memory when dealing with large datasets. To address this issue, Breiman
proposed the use of the references of the leaves in which the observations
ended up in each tree, generating a N × T matrix (where N is the number
of observations and T the number of trees, where usually N >> T). There-
fore, the forest can be build in parallel and the system can generate the
dissimilarity matrix when necessary.

To cluster the observations, the dissimilarity matrix is used as input
to a compatible clustering algorithm, for example, the PAM clustering
algorithm [KR90]. Otherwise, the dissimilarity matrix can be transformed
into points in the Euclidean space to be used as input to other cluste-
ring algorithms, e.g. the standardized version of K-means [Llo82]. The
disadvantages of this extra step is the computational cost and the time
necessary to perform the transformation operation.

114

Due to the scale of autonomic clouds and the possible high arrival rate
of new observations, the domain requires very low prediction time. The
unsupervised RF algorithm (successfully used in [AHT+03, SSB+05, SH06,
BA03]) needs to re-execute the whole clustering process for each new
observation, which is impracticable in the domain because of the high
overhead of this process. The alternative is to use online RF algorithms,
which learn similarities and cluster observations in an instantaneous
fashion without requiring all data a priori. Unfortunately, the most known
adaptations of this approach ([Has08, SLS+09, ASMC07, HH07], and even
the most recent one [LRT14]) are computationally demanding and cannot
make a fast prediction3. Finally, RF has been used for similarity learning
in [XJXC12] but this solution requires labelled data, which is not available
in autonomic clouds.

Therefore, we propose a novel on-line prediction algorithm based on
RF, to fulfil the requirements of the domain.

5.3.3 Proposed Methodology: On-Line Prediction with RF

To enable fast prediction with an implementation that has minimal mem-
ory footprint, we propose a novel on-line prediction solution tailored to
fulfil the requirements of autonomic clouds (summarized in Table 17).
This solution takes advantage of the design of the clustering algorithm
and pre-processes the trees in order to permit a fast and low memory
implementation.

The outcome of the RF similarity learning is theN ×T matrix, whereN
is the number of observations and T is the number of trees. As N grows,
this matrix may grow significantly and have a large memory footprint.

3Notably, we use a batch mode RF implementation for training and, thus, we need
all the observations a priori. We find this to be an adequate solution since the training
happens in parallel and when the system has available resources. However, as the amount
of monitoring data increases, off-line training can be demanding. We could adapt an on-line
RF algorithm for the training phase and still use the on-line prediction algorithm we propose.
However, adapting such algorithms is not trivial, as they create intermediate leaves on the
trees, which are split when a minimum gain is reached. This approach is incompatible
with unsupervised learning as: (i) it creates pruned trees with maximum depth; and (ii)
the observations in intermediate leaves should be re-parsed on every new split and the
observations re-clustered.

115

We propose a solution which, instead, requires an M × T matrix, where
M is the number of clusters. Since M << N (typically M ≤ 20), this matrix
has a very small memory footprint.

Our solution, termed RF+PAM, combines the strengths of similarity
learning of RF with the computational benefits of Partitioning Around
Medoids (PAM) [KR90] and is divided in off-line training and on-line
prediction. The training phase consists of the following steps: (i) the
forest is built using the training set, which is composed of the original
and synthetic data (as described in the previous section); (ii) the original
data is parsed through the resulting forest, which yields the dissimilarity
and the N × T matrices; (iii) this matrix is given as an input to the PAM
clustering algorithm, which yields the M medoids for the dataset, i.e. the
observation of each cluster which maximise the inter-cluster dissimilarity;
and (iv) only the results of the medoids are selected from theN ×T matrix,
enabling us to store only the forest and this smaller M × T matrix, which
consists of the references to the leaves where the medoids ended up in
each tree.

In the prediction phase of RF+PAM, the new observation is parsed
through the forest. Then, the M × T matrix and the results of the previous
step, i.e. the leaves in which the observation ended up in each tree, are
used to calculate the dissimilarity of the new observation with respect to
each medoid. Finally, the new observation is assigned to the cluster whose
medoid has the least dissimilarity to the new observation. Intuitively,
a new observation is assigned to the cluster of the medoid which this
observation ended up in the same leaf most times, considering all trees,
i.e. the most similar medoid. Figure 24 illustrates the training and the
prediction steps.

Since we separate training from prediction, and our training happens
off-line, naturally we would expect to retrain the forest at some point. The
retraining requires the definition of a mechanism to recognize when a
forest should be rebuilt. However, this mechanism is problem-specific
and depends on the available resources and accuracy requirements. In
our context, we propose a simple but effective threshold: a user-defined
ratio between the number of new observations and the total number of

116

observations used to train the forest.

The benefits of RF+PAM are several: (i) it can be trained fast and
in parallel; (ii) it handles, in a data-driven fashion, mixed data types;
and (iii) it can provide predictions in a rapid and efficient manner. In
Section 5.4, we will demonstrate the accuracy and effectiveness of our
approach by comparing it with clustering based approaches that have
been used in the context of job management, but adapted to the problem
of service clustering. Since these methodologies rely mostly on the K-
means clustering algorithm, to isolate and quantify the exact benefit of
similarity learning, we also considered a version of our RF based approach,
termed RF+K-means, which utilizes the K-means algorithm for clustering
services and a similarity measure obtained by RF. Note that we do not
necessarily advocate the use of RF+K-means, but we explained it below
for completeness and for the purpose of providing a fair comparison with
methodologies in the literature. We also use it as a way to showcase
the superiority of relying on PAM in the context of autonomic service
management.

The training phase of RF+K-means uses the same initial steps of
RF+PAM to obtain the dissimilarity matrix. However, it needs an ex-
tra step before clustering. Since the standardized version of K-means uses
the Euclidean distance to cluster observations, the dissimilarity matrix
is first transformed into a set of points in the Euclidean space using the
Multidimensional Scaler (MDS) algorithm [CC94]. Thus, the distances
between the observations are approximately equal to their dissimilar-
ity. Next, the observations are clustered using K-means, which returns
the cluster assignments of the observations. The outcomes of this phase
which need to be stored are the N ×T matrix, the forest and the clustering
assignments.

The on-line prediction phase of RF+K-means is composed of the fol-
lowing steps: (i) parse the new observations through the trees; (ii) cal-
culate the dissimilarity between the new observations and all original
data using the N × T matrix of the original data and the result of step (i),
which consists of the references of the leaves in which the new observa-

117

Figure 24: Training and prediction phases of the developed RF+PAM.

118

tions ended up4; and (iii) assign each new observation to the cluster with
the least average dissimilarity between the new observation and all the
observations in that cluster.

Although the differences between RF+K-means and RF+PAM are
subtle, the impact is significant. RF+PAM is faster and has lower memory
requirements as it uses the M × T matrix, which is much smaller than the
N × T matrix used by RF+K-means. Moreover, our RF+K-means requires
the MDS step, which can be computationally demanding5.

5.4 Experiments

To understand the implications of the solutions described in the previous
section, we carry out several experiments. These experiments are pur-
posely designed to: (i) demonstrate the importance of similarity learning
and appreciate the clustering quality compared to other methodologies us-
ing the same dataset; (ii) validate the quality of on-line prediction through
the comparison of a setting with all data available a priori and a setting
with less data; and (iii) present a use case to demonstrate the applicability
of our solution in the domain.

For datasets, we use the first 12 hours of a publicly available dataset
released by Google [RWH11] and a dataset from a grid.

Specifically, the Google dataset contains traces from one of Google’s
production clouds with approximately 12500 servers. The data consists
of monitoring data of services6 in 5 minutes intervals. To illustrate the
content of the dataset, we list some of the available features: CPU and
memory usage, number of tasks, assigned memory, unmapped page cache
memory, disk I/O time, local disk space, task’s requirements and priority.
The complete list of the dimensions can be found in [RWH11].

4This solution calculates the dissimilarity between each new observation and the original
data, producing only a dissimilarity row for each observation.

5In some cases, the use of MDS is beneficial from a flexibility standpoint, since it can
open the road to the wide range of clustering algorithms that require a Euclidean distance
for clustering.

6Notably, the traces of the dataset use the terms “jobs” and “tasks”. Since this notion of
job is fully compliant with our concept of service, in the rest of the paper we will only use
the term “service”.

119

The second dataset contains the traces of a grid of the Dutch Univer-
sities Research Testbed (DAS-2) [Sur15] with approximately 200 nodes.
This dataset consists of the requests of resources to run services and has
over 1 million observations. Among the features available in the dataset
there are: Average CPU Time, Required Time, User ID, Executable ID and
Service Structure.

5.4.1 Implementation

In order to validate the methodology described in this chapter, we im-
plemented the RF+PAM methodology in an open-source multi-agent
framework written in Python7.

This implementation is flexible and supports different needs. It en-
ables the clustering of a dataset; the training and storage of a forest for
on-line prediction; the prediction of the cluster of new observations; the
calculation of the dissimilarity matrix; and the calculation of the dissimi-
larity among two services.

To access these functions, we provide three interfaces: a standalone
implementation which can be used locally; a library with these functions
to be integrated in the development of other tools; and a distributed
version, which enables the parallel training of a forest.

The architecture of the implementation is a multi-agent framework
with support to distributed training where each agent has three indepen-
dent components. Figure 25 illustrates the architecture of the agents and
a training request.

The top component provides an interface for the agent’s interaction.
All agents, when initiated, register in a reference manager (an agent),
which coordinates the distributed training autonomously. When a train-
ing request is received, the manager requests to each registered agent the
training of a specific number of trees. When the registered agents finish
building the trees, they sent these trees to the manager, who merges the
results of all agents and execute the functions required by the request

7The source code is available in http://code.google.com/p/
unsupervised-randomforest/.

120

http://code.google.com/p/unsupervised-randomforest/
http://code.google.com/p/unsupervised-randomforest/

Figure 25: Example of a distributed set-up of RF+PAM.

(e.g. predict new observations using that forest). Notably in our imple-
mentation, the whole process is managed by a central agent and the only
action required by the cloud manager (human or autonomic) is starting
the agents in the resources.

The second component of the hierarchy receives the dataset from the
top layer in the distributed version or reads the dataset from a file in the
standalone version. This layer prepares the data and creates the synthetic
class required by the unsupervised RF (for details see Section 5.3.2).

Finally, the base of the hierarchy, namely the RF core, performs the
operations related to the RF algorithm. Intuitively, it builds the forest,
predicts observations and calculates the dissimilarity matrix.

For the experiments, all three versions of the RF+PAM implementation
were used: the standalone to demonstrate the importance of RF; the library
to illustrate the on-line prediction quality; and the distributed version for
the cloud use case.

121

5.4.2 Demonstrating the Importance of RF Based Simila-
rity Learning

In this section, we evaluate the use of RF for unsupervised similarity
learning in the autonomic cloud domain in an off-line setting, i.e. all
observations are available for the training of the forest. In particular, we
compare the clustering quality of our solution with two methodologies
that used the Google’s cloud dataset. Since these methodologies (Mt1 and
Mt2) use K-means, for a fair comparison and to illustrate the importance
of similarity learning, we use here RF+K-means.

Mt1 [MHCD10] is divided into four steps: (i) selection and preparation
of the features; (ii) application of the off-the-shelf K-means clustering
algorithm to construct preliminary classes; (iii) definition of the break
points for the qualitative coordinates based on the results of the second;
phase and (iv) merging of close adjacent clusters.

While applying Mt1 in the Google dataset, the authors selected the
CPU and memory features, transformed into normalised per hour val-
ues, and the duration was normalised and converted into seconds. In
the second step, they heuristically defined 18 classes that represent the
combination of: Small, Medium, Large for CPU and Memory, and Small and
Large for Duration, and clustered the data points using K-means. In the
third step, they employed these definitions and the clustering results to
define the break points to separate the observations and, in the fourth
step, they merged adjacent classes ending up with 8 clusters. Evidently,
Mt1 cannot be deployed as a general solution for autonomic clouds given
the necessary man-made interventions. However, since it uses the same
dataset, it was considered here for comparison.

Mt2 [CG10] is defined as follows: (i) selection of the continuous (nu-
merical) features; (ii) creation of new features based on the existing ones
(even if redundant); (iii) normalisation of the data and (iv) clustering the
data using K-means. Also Mt2 defined the number of clusters as 8. It is
clear that, in Mt2, the categorical values are ignored and that the careful
selection of the features is critical; this deviates from the approach pro-
posed in this chapter, which aims at offering a robust and flexible solution

122

that can accommodate many different settings.

Both methodologies employ K-means for clustering. Therefore, for a
fair comparison and to demonstrate the gain from defining a dissimilar-
ity matrix (i.e. learning the similarity between observations), we use as
clustering algorithm K-means rather than PAM. Hence, we used the dis-
similarity matrix, generated by the unsupervised RF similarity learning,
as the input for the MDS algorithm, and the resulting Euclidean points as
input for K-means clustering.

For all experiments, we defined the number of clusters as 8 (as did Mt1
and Mt2). We considered two variants of the original dataset, dropping
certain features in each case: Dataset 1 prepared for Mt1 (see the methodo-
logy definition); and Dataset 2 which contains only all continuous features
of the original dataset (i.e. categorical ones are excluded), which is used
by Mt2. Then, we applied our methodology based on RF to both datasets
to compare its cluster quality with the other two methodologies.

Clustering quality measures: Notably, unlike supervised classifica-
tion where several measures to evaluate performance exist, clustering has
no widely accepted measure. For Mt1, the authors used the Coefficient
of Variation (CV), i.e. the ratio of the standard deviation to the mean.
However, since each data dimension has a different CV, this requires
an unwieldy multi-dimensional comparison with large dimensions, the
interpretation of which is far from straightforward [CG10]. Therefore, in
alignment with approaches in the clustering literature, here we report
some of the most popular indicators for the comparison of clustering
results. Connectivity indicates the degree of connectedness of the clusters.
The measure has a value between 0 and ∞, with 0 being the best. Dunn
index is the ratio of the shortest distance between data points in different
clusters by the biggest intra-cluster distance (a high Dunn index is desir-
able). Silhouette measures the degree of confidence in the assignment of
an observation; better clustering has values near 1, while bad clustering -1
(in the literature some works point out that over 0.75 is the best class for
an observation). These indicators (and others) are analysed in [HKK05],
which recommends the silhouette measure for the evaluation of noisy
datasets.

123

Table 18: Comparison of RF+K-means with Mt1 [MHCD10] and Mt2 [CG10]
on two differently processed versions of the Google dataset.

Dataset 1 Dataset 2
Mt1 RF+K-means Mt2 RF+K-means

Connectivity 53.33 33.42 32.26 25.89
Dunn Index 0.01 0.08 0.06 0.15
Silhouette 0.67 0.98 0.89 0.99

Table 18 summarises the results of the experiments on the method-
ologies detailed above. These results show that RF+K-means performed
significantly better on both datasets, considering any of the evaluation
criteria. Similarity learning here outperforms the other approaches, lead-
ing to better defined clusters, even when projected to the Euclidean space
with MDS. These results also demonstrate that our approach works well
in the considered application domain. We should also note that, for a
fair comparison, only the continuous features of the datasets were used,
although our RF solution is able to handle also categorical features.

5.4.3 Evaluating the RF Based On-line Prediction

To assess the performance of the on-line prediction of RF+PAM, we con-
ducted experiments to verify the agreement between two set-ups of the
algorithm: a benchmark set-up, where all the data are available for train-
ing/prediction, and another set-up, with only a subset available for train-
ing and the remaining set used for testing. We use the set-up with all the
data to obtain a ground truth cluster assignment, since all information is
available and we cannot expect the algorithm (with less data to train) to
perform better than that. We evaluate the on-line prediction by measuring
whether unseen observations (not included in the training set) ended up
in the same cluster as assigned by the benchmark set-up. Thus, accuracy
in this context is measured with rand index as the agreement in the cluster
assignment.

In the experiment, we first use all observations and obtain the cluster

124

assignments for the benchmark set-up, which we accept as the ground
truth. We proceed carrying out a K-Fold cross-validation strategy to eval-
uate the agreement. K-Fold cross-validation divides the dataset into K
partitions. It reserves one partition for testing and uses the other K − 1 for
training the trees and learning the similarities and clusters. We execute
the following steps K times, every time using a different K-th partition:

1. Train a forest using the data in theK−1 partitions and obtain cluster
assignments;

2. Predict the cluster assignment of the observations belonging to the
K-th partition using the on-line RF methodologies;

3. Compute the Adjusted Rand Index (see below for details) between
the results of steps 2 and the ground truth of the benchmarks set-
ups.

To illustrate the power of PAM, we compare the results of the above
process, using RF+PAM and RF+K-means. A measure of quality for com-
parison of clustering methodologies is the Adjusted Rand Index (ARI),
which quantifies the agreement of the clusters produced by each metho-
dology. The maximum value, 1, indicates that two results are identical
(complete agreement); value 0 indicates that the results are equivalent to
random; the minimum value, -1, indicates completely different results
(for more details, we refer to [HA85]).

Table 19 presents the results of the experiments considering both
Google and DAS-2 datasets. The results are averaged over all K-Folds
and presented along with the standard deviation (reported within paren-
thesis).

RF+PAM performs significantly better in the tests. This difference is
due to the reliance of the K-means version on MDS to lower the dimen-
sions and construct a Euclidean distance. Since many features are used,
the dimensionality reduction step and embedding the observations in
linear space (from unfolding the higher dimensional manifold), achieved
with MDS, lead to poorer separability of the clusters.

125

Table 19: Clustering agreement results.

Google Dataset DAS-2 Dataset

K RF+PAM RF+K-means RF+PAM RF+K-means

100 0.81 (0.32) 0.50 (0.37) 0.70 (0.23) 0.52 (0.21)

50 0.75 (0.19) 0.45 (0.19) 0.68 (0.17) 0.54 (0.18)

20 0.73 (0.09) 0.43 (0.11) 0.67 (0.11) 0.47 (0.08)

10 0.70 (0.06) 0.43 (0.13) 0.63 (0.09) 0.44 (0.09)

5 0.69 (0.05) 0.42 (0.06) 0.61 (0.07) 0.41 (0.01)

Notably, these datasets are examples of real-world monitoring data
from the cloud domain and are not (manually) prepared (e.g. transfor-
mation or removal of features). When comparing the results of the two
datasets, we see clear improvements with high dimensional data (Google’s
dataset). It indicates that RF is able - without heuristic or manual expert
intervention to prepare the dataset - to benefit from the additional infor-
mation contained in the features to obtain clustering (through similarity
learning) and can, dynamically, adapt to scenarios where the relation
among features change.

5.4.4 Cloud Use Case

To demonstrate the applicability of the on-line RF+PAM methodology in
the domain, we propose a scheduling algorithm based on the similarity
between services. Intuitively, the scheduler assigns an incoming service
to the node executing the most dissimilar services, thus avoiding race
conditions for the node’s resources. For each node, the scheduler averages
the dissimilarity between the new service and the services running in
that node, then it assigns the service to the node with highest average
dissimilarity.

The scheduling steps are detailed in Algorithm 1. The scheduler
receives the new service and the list of nodes as parameters, which also
contains the list of the services running in each node. Then, it clusters

126

Algorithm 1 Calculate the dissimilarity between a new service and the
services running in the nodes of the cloud.

1: procedure CALCULATE DISSIMILARITY(new Service, node list):
2: new Service.cluster← CLUSTER SERVICE(new Service.SLA)
3: for node in node list do
4: node dissimilarity← 0
5: for service in node do
6: dissimilarity servs← dissimilarity(new Service, service.cluster)
7: node dissimilarity← node dissimilarity + dissimilarity servs
8: if node dissimilarity > 0 then #Average Dissimilarity
9: node dissimilarity← node dissimilarity/len(node.services)

10: else #No Services in the node, best case
11: node dissimilarity← 1.1
12: nodes dissimilarity.append([node, node dissimilarity])
13: ASSIGN SERVICE TO NODE(new Service, nodes dissimilarity)

the new service and calculates, for each node, the dissimilarity between
the new service and all services running in that node. According to the
RF+PAM methodology, this dissimilarity is calculated between the new
service and the cluster medoids of the running services. Then, if there is at
least one service running in the node, the total dissimilarity is divided by
the number of services. Otherwise, since no service will compete for the
same resources, the dissimilarity for the node is defined as 1.1 to prioritize
it in the assignment phase (as the maximum dissimilarity is 1).

In the assignment phase, the scheduler assigns the service to the node
with most dissimilar services, after verifying whether it has enough re-
sources to run the service. Algorithm 2 illustrates this process. In parti-
cular, the nodes are sorted by their dissimilarity, i.e. the most dissimilar
services have priority in the list. Then, the algorithm verifies whether a
node has the resources to run these services till it finds a compatible node
or it test all nodes always prioritising the nodes on the top of the list. If
there is no node with available resources, the service joins a waiting list.

Finally, when a service terminates, the scheduler selects the compatible
service from the queue (a waiting list) with the highest dissimilarity to the

127

Algorithm 2 Assigns the new service to the node with enough resources
and the most dissimilar services.

1: procedure ASSIGN SERVICE TO NODE(new Service, nodes dissi):
2: nodes dissi ← SORT BY DISSIMILARITY(nodes diss)
3: for node in nodes dissi do
4: if node.available resources > new Service.resources then
5: start Service(new Service, node)
6: return node
7: return ’Not enough resources, service added to the Q’

services running in this node (not considering the terminated one). More
specifically, the algorithm tests the dissimilarity between the services in
the waiting list with the services running in the node. Then, it executes
the most dissimilar service, verifying first whether enough resources
are available. Moreover, to avoid long waiting times on the selection,
the manager can set a maximum number of services to test, which are
randomly selected from the waiting list (e.g. randomly select 25 services
and executes the most dissimilar).

We employed these concepts in a framework that coordinates the
execution of services. In our use case, services are applications defined by
a SLA, which are executed in a cloud. We carried out experiments using a
cloud test bed with 9 VMs.

To assess the performance of the dissimilarity scheduling, two other
scheduling algorithms were used in addition to the Dissimilarity algo-
rithm. In the first, named Isolated, each service runs without any other
service in the same VM, thus having all resources available for the exe-
cution of the service. The second (named Random) assigns the services
randomly to the nodes. Moreover, the Random and Isolated algorithms
also have a queue for services and, when a services finishes, a compatible
service is assign to the node using the same algorithm. Notably, all three
algorithms (Random, Isolated and Dissimilarity) have the resource admis-
sion control and services are assigned only to machines that have enough
resources to run them.

In the experiments, services are generated randomly at the beginning

128

of every round of tests and the same services are executed using all
three described algorithms. Each service has an associated SLA, which
is created along with the service based on an estimation of the resources
necessary to finish the service within the completion time. The created
dimensions are: CPU, RAM, requirements, disk space, completion time
and network bandwidth. The services in the experiments are of different
types, such as web crawling, word count, machine learning algorithms,
number generation and format conversion, which are close to real-world
applications [NMRV11].

To measure the performance of the three algorithms, we compare the
sum of the overall runtime of the services given the same input services.
In particular, we vary the number of input services (from 50 to 250) for
each algorithm and sum up the runtime of the services. This procedure
was repeated 10 times for every input, averaging the results.

Figure 26 presents the results of the experiments. Dissimilarity algo-
rithm performs significantly better than the Random algorithm, reducing
in 25% the total run time. The best case8 in our experiment, the Isolated
algorithm, is around 20% better than the Dissimilarity. However, in this
algorithm, each service runs alone in the resource, which is impracticable
in real world deployments as it would lead to low resource usage (idle
resources) and long waiting times for services.

With the Dissimilarity scheduler, we illustrated the potential benefits
of a metric learning and clustering algorithm in the autonomic cloud
domain. Indeed, in real-world deployments, other aspects of the incoming
services, such as service priority or SLA violation probability, must be
considered for designing a scheduler. Yet, considering the results of
the experiments, more complex schedulers can benefit from integrating
dissimilarity scheduling in their solutions.

8The results of the Isolated algorithm have been calculated and reported in the chart
to offer the reader a comparison of the performance of our approach with respect to the
minimal total run time possible in this setting, i.e. the best case.

129

Figure 26: Total run time of the scheduling algorithms.

5.5 Related Works

In this section, we discuss the relevant literature in the cloud domain that
uses a notion of similarity to support decision systems with knowledge.
In the service scheduling field, several works, e.g. [LC08, SRJ10, SSPC14,
QKP+09], use a measure of similarity. However, they consider only nu-
merical features and, as discussed in Section 5.1, the domain requires
the support of different types of features. In our use case, we propose a
service scheduling algorithm, which uses the knowledge on similarities
among services to avoid race conditions in the cloud resources. A similar
approach was presented in [NMRV11]; the authors manually combine
features and employ a supervised Incremental Naive-Bayes classifier to
assign a service. However, this approach depends on the hand-crafted
combination of features, which is problem-specific, and on several para-
meters defined by the administrators.

Regarding the application profiling field, most approaches are problem-
specific, e.g. [WSVY07, DCW+11] focus only on VMs. Hence, they cannot
cover the diversity of the services and the heterogeneity of clouds. The

130

solution of Kahn et al. [KYTA12] on workload characterisation clusters work-
load patterns by their similarity. However, their similarity clustering
algorithm is based on simple heuristic metrics to accommodate VMs,
which does not cope with the dynamism of the autonomic cloud domain.

In the anomalous behaviour detection field, [MWZ+13] uses a heuristic
notion of similarity to cluster service requests and detect anomalous
behaviours. Similarly, Wang et al. [WWZ+13] propose a methodology to
detect anomalies for Web applications in which the similarity among the
workloads is used to detect problematic requests. However, both works
do not consider different types of features.

In summary, most works in cloud, which employ a notion of similarity,
implicitly assume: homogeneity on the resources and services; prepara-
tion and normalisation of the data for the clustering process; and good
representation of the relations of data features. Our clustering solution,
instead, does not rely on these assumptions and is not problem-specific.
Thus, it can be used with any kind of service. Therefore, we advocate
that our solution, or an adaptation of our approach, could significantly
improve the decision-making in autonomic clouds.

5.6 Summary

The characteristics of autonomic clouds hinder their management and the
decision-making process as they obfuscate several details of the provided
services and of the infrastructure. In order to assist the autonomic man-
agers in the decision-making, we devised a machine learning solution
to learn the similarity among services since the existing solutions do not
cope with the characteristics of clouds. This knowledge has a wide range
of applications in the domain, both to provide the similarity knowledge
to the autonomic managers and to serve as the basis for other solutions
which generate new knowledge using the similarity notion, e.g. for the
detection of anomalous behaviour or for application profiling.

In particular, we devise a novel clustering methodology based on
Random Forest and PAM. We validate it through several experiments.
The first experiment, regarding the clustering quality, shows the superi-

131

ority of our solution in comparison to two other methodologies devised
specifically for the used dataset, which is a real-world cloud dataset. The
second experiment shows a high-agreement between set-ups where all
data is available a priori, and set-ups in which only a part of the dataset
is available a priori and the remaining is predicted on-line. It confirms
the quality of our on-line prediction. Finally, in the last experiment we
illustrate the applicability of the solution in the domain devising a novel
scheduling algorithm, which uses the notion of similarity to assign in-
coming services to cloud resources with most dissimilar services, thus
avoiding race conditions for the nodes’ resources.

The results of all experiments demonstrate significant benefits of our
methodology: superior performance, low memory footprint, support to
mixed types of features, support to a large number of features and fast on-
line prediction. Moreover, these encouraging results offer insights into the
potential of approach as it not only provides a valuable knowledge to feed
the autonomic managers but can also be used by other methodologies to
discover new knowledge (e.g. anomalous behaviour detection).

132

Chapter 6

Polus: Integration and Use
of SLAC, Panoptes and
Similarity Learning

In the previous chapters, we have described the design of: (i) a domain-
specific language, SLAC, which provides the support for the definition
of SLAs in the cloud domain; (ii) an extensible monitoring architecture
devised for the autonomic cloud domain; and (ii) a machine learning me-
thodology to determine the similarity among services devised to fulfil the
requirements of the domain. In this chapter, we discuss the integration of
all these solutions and present the application of the resulting framework,
named Polus1, to a use case.

In particular, in order to support this integration, we design know-
ledge extraction component, which enables the discovery of knowledge
from multiple sources and on-demand. The advantages of adding this
artefact to Panoptes in autonomic clouds are:

• It centralises the knowledge generation into a single system;

1The framework was named after Polus (latin equivalent for Coeus), one of the titans
in the Greek mythology. He was the titan god of intellect and represents wisdom and
intelligence.

133

• It processes data close to the source, which reduces the number of
messages exchanged in the cloud and the amount of data analysed;

• It facilitates the integration with autonomic managers as it provides
a single interface for monitoring and knowledge generation.

We also describe the adoption of our solutions in a use case which
employs a hybrid cloud. This cloud consists of the academic cloud of IMT
and complementary resources from a public cloud. In the use case, we
develop service schedulers which employ the Polus framework to decide
where to allocate new services.

The results of the use case show that Polus brings many benefits
for the autonomic management of clouds. Moreover, they also indicate
that our architecture would be appropriate for other scenarios in cloud
environments.

6.1 Polus: A Framework for Providing Know-
ledge for the Cloud Autonomic Management

In the first part of this section, we discuss an extension of Panoptes to
support the knowledge generation process, which may include informa-
tion that is not related to the monitoring of the cloud. Then, in the second
part, we present the architecture of Polus. Moreover, we discuss the role
of each component of this architecture and the interaction among them.

6.1.1 Knowledge Extraction Components

The knowledge generation process of Panoptes is performed exclusively
through monitoring modules, which transform monitoring data into
knowledge. However, the knowledge necessary for autonomic mana-
gement of clouds is provided by multiple sources and is not restricted to
monitoring data.

In view of this limitation, we design Knowledge Extraction Components
(KECs) for Panoptes. These components generate knowledge from multi-

134

Figure 27: Knowledge extraction component in Panoptes.

ple sources and enable the use of different methodologies to extract this
knowledge.

In Figure 27, we show the main steps performed by KECs in Panoptes.
The process can be triggered by:

• a request, in which the requester can send parameters for the know-
ledge extraction analysis;

• on events, such as the arrival of new monitoring data (retrieved by
monitoring modules of Panoptes);

• on a specific frequency, with defined intervals (for instance, every 20
minutes).

This process supports the following sources of data, information and
knowledge: external, which can be read from datasets or text files; monitor-
ing, i.e. the results of Panoptes monitoring modules; and parameters sent
with the request for the execution of the component.

135

After the process is triggered, the multiple sources of data are inte-
grated and formatted in the pre-processing phase. Next, the analysis of the
data is performed. The analysis can use functions that are available in
Panoptes or external tools, based on, e.g. machine learning and statistics
techniques. Finally, in the post-processing phase, the results of this analysis
are filtered, aggregated, processed and then delivered to the interested
parties.

Furthermore, many algorithms and methodologies for knowledge
extraction require a preparation phase (e.g. building the model or training
the algorithm), which is executed before the knowledge extraction process.
This preparation is performed through a command. For example, in the
case of the RF+PAM methodology, the forest needs to be trained before
the prediction phase (for details we refer to Chapter 5). Therefore, in a
KEC this training is performed before use, i.e. in the preparation phase.
Moreover, in the RF+PAM methodology as well as other methodologies
the model used by the knowledge extraction component needs to be
updated. Hence, a frequency and a specific command can be defined for
updating the model.

Listing 6.1 demonstrates the configuration of a KEC, which was de-
veloped to integrate the RF+PAM methodology with Panoptes and will
be used later in this chapter for the analysis of services. It calculates, on
request, the dissimilarity between a new service and the service running
in a node.

In the general description section of the configuration, we define:
the name as Service Analyser, a textual description and how often it
should be executed. Then, we define the preparation phase that specifies
the command to train the algorithm. Next, we present the updating
frequency and the command to perform this update. The data sources
of this component are two parameters and a monitoring module, which
are integrated in the pre-processing as shown in Figure 27. The first
parameter has the characteristics of the service which will be used by the
RF+PAM algorithm to cluster the service and to calculate the dissimilarity.
The second parameter is used to select the module, which is another data
source. This module retrieves the list of services running in the nodes

136

and sends them (their IDs) as parameters to the RF+PAM methodology.
The knowledge extraction (the analysis phase) is then performed through
the command line. In this configuration, the results are filtered (only the
numbers, i.e. the total dissimilarity), which is part of the post-processing,
and, finally, sent to the specified destination. Note that the configurations
which are not determined in the component take the default value, e.g.
when no aggregation is defined, no aggregation is set.

Listing 6.1: Configuration of the Service Analyser KEC.

1 General
2 Name = Service Analyser
3 Description = Unsupervised Random Forest...
4 Frequency = OnRequest
5 Prepare
6 Command = RF+PAM 100, 100 --file=training.cvs
7 Update
8 Frequency = 30 min
9 Command = RF+PAM -id 12 -retrain

10 DataSources
11 Parameter = newService
12 Parameter = nodeID
13 Module = ServicesNode_$nodeID
14 Analysis
15 Command = RF+PAM -dissimilarity -new
16 $newService -services ServicesNode_$nodeID
17 Filter = *Numbers*
18 Destination = localhost:100

The design of KECs aims at closing the gap between the knowledge
discovery process, the monitoring system and the autonomic managers.
Integrating them in Panoptes combines the knowledge discovery and
one of the main sources of data for this process: the operational data.
Moreover, it centralises two important sources of knowledge for the
autonomic manager in the cloud domain and facilitates the integration of
these two systems.

Moreover, integrating this process with the monitoring system has
many potential advantages. For instance, the complexity of the know-
ledge generation is centralised in the monitoring system, it enables the

137

Figure 28: Architecture of Polus.

application of such algorithms in different data abstractions (e.g. service,
node, cluster), it provides a single interface and, if the source of data is the
monitoring itself, the knowledge discovery process is executed close to the
source of data and the number of messages are reduced. Also, Panoptes
architecture is devised to support the collection and transformation of
data into knowledge in the cloud domain, which leverages this process.

6.2 Integration of the Proposed Solutions

In this section we present the integration of the solutions proposed in
this thesis for autonomic clouds and discuss their role in the resulting
framework (i.e. Polus). Figure 28 illustrates the interaction between the
components of Polus, the autonomic manager and the resources.

The SLA of the services accepted by the provider are sent to the SLAC
Framework, which parses the SLA and generates the constraints of the SLA
and the definition of the service. The results of the former process are sent
to the autonomic manager for the deployment of the service, while the
results of the latter are used to evaluate the conformance of the service
and the SLA using also the monitoring results. Moreover, it sends reports
about the enforcement of the SLA to the autonomic manager and the
parties involved in the agreement.

Panoptes plays a central role in Polus. It monitors the cloud and ser-

138

vices, processes the operational data and delivers knowledge to the auto-
nomic managers of the cloud and only the service monitoring information
to the SLAC Framework. It also supports requests for specific knowledge.
In particular, we defined KECs to support the RF+PAM methodology
developed in Chapter 5 and named the component implementing this
methodology as Service Analyser.

The Autonomic Manager manages the resources as services using the
information and knowledge provided by Polus. It also configures mo-
dules and KECs for the provision of the knowledge necessary for the
execution of its functions and for the provision of monitoring information
of the services to the SLAC Framework. The latter configuration uses the
automatic conversion of SLA terms into low-level metrics and the support
in Panoptes to generate the monitoring results in the format supported by
the SLAC Framework.

Notably, the Polus framework neither covers the autonomic manage-
ment of the cloud, nor the SLA negotiation and nor the service admission.

Although Panoptes and the SLAC framework are compatible and in-
teract with each other, we opt for not including the SLAC Framework into
Panoptes. This decision was taken since the evaluation of SLA should be
independent (and auditable) and as it may be performed by independent
entities, such as an auditor.

6.3 Use Case: Scheduling in Hybrid Clouds

In this section, we present a use case employing the SLAC Framework and
language, Panoptes and the Service Analyser to demonstrate the benefits
of the solutions proposed in this thesis. We design a service scheduler,
which uses our solutions to generate the information and knowledge for
the decision-making process and decides where to allocate new services.
The scheduling process is a component of the autonomic management;
therefore, this use case also provide insights into the integration of our
solutions with the autonomic managers.

The use case is divided into two parts:

139

• An extension of the use case presented in Section 5.4.4, which in-
cludes the support to SLAs. For this scenario, we performed exper-
iments in the IMT cloud to compare an approach that schedules
services randomly with the Dissimilarity scheduler developed in
Chapter 5. The results show that, with the support of the knowledge
generated by our solutions, the Dissimilarity scheduler can achieve
significant reductions in the number of SLA violations (up to 48%).

• The second scenario uses a public cloud to mitigate the SLA viola-
tion risks. This setting, where a private cloud uses a public cloud
to complement its capacity, is called hybrid cloud. In this cloud, be-
fore assigning a node to allocate a new service, the scheduler must
decide whether to execute this new service in the local cloud or in
the public cloud. To take this decision, we propose two schedulers:
a Risk-Aware, which considers only the SLA violation risk; and a
Cost-Aware scheduler, which also considers and compare the cost of
allocating the service locally and in the public cloud. We performed
experiments which demonstrate the benefits of these schedulers
and, mainly, the benefits of using Polus to provide the necessary
knowledge to autonomic scheduling.

The two schedulers of the second scenario differ only in the decision-
making aspect. The first scheduler considers only the violation risk of the
SLA and, when the risk is higher than a threshold set by the policies of the
system, the service is sent to be executed in the public cloud. The second
variant, considers also the financial aspects of executing the service in the
public cloud. It analyses the cost of executing service locally, of executing
it in the public cloud, the violation risk and penalties for SLA violation.
The novelty of these approaches for scheduling in hybrid clouds is the
inclusion of the risk of SLA violation in the model for the decision-making.

Figure 29 details Figure 28 by showing the elements of each component
that are employed in our use case scenarios.

The autonomic manager schedules2 new services only locally (in the

2In this use case, we propose solutions for the decision-making process of the autonomic
scheduling of services to demonstrate the benefits of our solutions with concrete examples.

140

Figure 29: Detailed Polus architecture for the use case.

first scenario) or decides whether to allocate the service locally or in the
public cloud (second scenario). The SLAC Framework parses and evalu-
ates the SLAs which contain the service specification and requirements.
Panoptes provides the status of the system (Monitoring) and knowledge
about the service (Service Analyser), e.g. dissimilarity, violation risk.

6.3.1 Dissimilarity Scheduler and SLAs

In this first scenario, we employ the Dissimilarity scheduler, presented
in Chapter 5.4.4, to automatically assign new services to cloud nodes.
More specifically, we define a scheduler that receives service requests
and assigns them to nodes based on the compatibility of the service’s
requirements and descriptions (defined in the SLA) with the SLAs of the
services being executed in each node. This process requires knowledge
on the dissimilarity among services and the status of the cloud, which
are provided by Panoptes. Additionally, the SLAC framework is used to
parse and evaluate the SLAs of the services and the SLAC language to
define such SLAs.

Intuitively, the scheduler uses the dissimilarity knowledge to decide
in which node to allocate the new service, and requests the autonomic
manager to deploy the service in the chosen node. Then, it configures the

However, the decision-making is not the focus of this thesis, instead, the emphasis is on the
provision of knowledge to base such decisions.

141

Figure 30: Main steps of the autonomic scheduling of a new service and the
components which feed or interact with the scheduler in each step.

monitoring system to collect information about this new service and to
send the monitoring information to the SLAC Framework, which periodi-
cally evaluates the SLA. Figure 30 depicts the main steps of the scheduling
process which are described as follows.

The service is defined using the SLAC language. The scheduler re-
quests to Panoptes which nodes have available resources to execute the
service. With the list of nodes in the local cloud that have available re-
sources, the scheduler requests to Panoptes the dissimilarity between the
SLA of the new service and the services running in each node of this list.
With the dissimilarity knowledge, the scheduler assigns the new service
to the node with most dissimilar services (i.e. the node with the highest
dissimilarity) and deploys the service in that node.

To assess the advantage of this methodology, we define a Random
scheduler that assigns the services randomly to the nodes. In both sched-
ulers, i.e. Dissimilarity and Random, the services are assigned only to
nodes that have enough resources to execute them (resource admission
control based on the SLA).

In order to evaluate the performance of our solution, we conducted
experiments using 9 VMs of the IMT cloud. The services were generated
and executed in this cloud to test the number of SLA violations of both
schedulers, i.e. Random and Dissimilarity. For the tests, different types
of services were dynamically generated, e.g. web crawling, word count,
learning algorithms, number generation and format conversion, which
are close to real-world applications [NMRV11]. For each service, an asso-
ciated SLA is created based on an estimation of the resources necessary to

142

complete the service within the specified completion time. This estimation
was performed beforehand through the benchmarking of each type of
service using different resources of the cloud. The metrics in the service
definition are: CPU, RAM, Requirements, Disk Space, Completion Time
and Network Bandwidth.

In real-world clouds, new services arrive in variable intervals. In our
scenario, we assume that the services’ arrival is a Poisson process with
parameter λ, which defines the intensity of these arrivals. Intuitively, the
higher the λ, the more often new services are requested, e.g. for λ set to
0.2 a service arrives in average every 5 seconds, while for λ set to 1 the
same happens on every second. We vary the value of λ in the experiments
to analyse the performance of the cloud with different loads. On every
experiment, we generate 100 services and run both algorithms to schedule
these services. Finally, we repeat this procedure 5 times for every λ.

The results of the experiments are shown in Table 20 and graphically
plotted in Figure 31. Using the Dissimilarity methodology, the SLA vio-
lations were reduced up to 48% and, on average, 33%. The Dissimilarity
scheduler performs better when the cloud is not overloaded since it has
more options to allocate services in the node with the most dissimilar
ones. However, even with high arrival rates (worst case for this scheduler),
our solution performs significantly better as it allocates the services that
use different resources together. This approach reduces the competition
for the resources of the node, thereby improving the performance of the
cloud.

6.3.2 SLA Risk Management in Hybrid Clouds

The IMT cloud used in the previous scenario has limited amount of
resources and, as seen in the results of the experiments, the performance
of the cloud declines with higher arrival rates. Consequently, the number
of SLA violations raises. In order to reduce this number, we extend the
previous scenario to support hybrid clouds, i.e. to use a public cloud to
complement the resources of the local cloud.

Since we want to show how the performance of the hybrid cloud is

143

Table 20: Average Number of SLA violations and standard deviation (in
brackets) using the Random and Dissimilarity schedulers with different
arrival rates (λ).

λ Random Dissimilarity Violation Reduction
0.2 12.4 (3.78) 6.4 (2.88) 48%
0.4 15.8 (3.27) 9.4 (2.07) 40%
0.6 24 (4.00) 16.6 (2.51) 30%
0.8 31.2 (2.58) 20.8 (3.70) 33%
1 32.8 (1.92) 26.8 (3.56) 18%

Figure 31: Average number of SLA violations with different arrival rates (λ).

affected by the latency and the impact of limited access to the remote
infrastructure, we use a cloud offered by one of our partners in Brazil,
the Federal University of Santa Catarina (UFSC), for the role of public
cloud. The UFSC cloud provides IaaS. However, for the sake of simplicity,
i.e. to abstract the management of the services and resources in such an
environment, we simulate a public PaaS provider that runs services in
their cloud. In this cloud: we employ 10 large VMs using the Apache
CloudStack [Apa15] and execute the services using the same solutions
as the ones in the local cloud (which uses SLA as formalisation of the
services and its guarantees).

In this setting, we propose two scheduling solutions, which decide

144

Figure 32: Risk-Aware scheduler scenario.

whether to execute a service in the local or in the public cloud. In the
first scheduler, the decision is taken based on the SLA violation risk. To
calculate this risk, we propose the use of a machine learning algorithm
which considers the historical data. The scheduler compares the calculated
risk with a threshold defined in the high-level polices of the system to
decide where to execute the service.

However, in real-world scenarios, executing services in a public cloud
might have a higher cost than the in-house cloud. Considering also the
financial aspect, analysing the risks and deciding where to schedule new
services (locally or in the public cloud) is a significant challenge in the
area. Therefore, we also propose a variant of this scenario, where we
consider the financial terms in the decision-making. In particular, we
design a scheduler, named Cost-Aware, which takes into account the costs
of running the new service in the public cloud, of running this service
locally and the penalties in case of violation for allocating new services.
Notably, we do cover the management of the resources in the public
cloud, which should also manage the elasticity and the placement of new
services and minimise the costs while enforcing the SLA.

Risk-Aware Hybrid Cloud Scheduler

In hybrid clouds, the decision of where to execute the service is influenced
by many aspects, e.g. the confidentiality of the data necessary to execute
the service, the resources available for the execution of the service and

145

the costs involved. In this section, we aim at minimising the number
of SLA violations by sending the SLAs with high violation risk to the
public cloud as depicted in Figure 32. Therefore, we specify a scheduler,
named Risk-Aware, which, to decide where to allocate a new service, also
considers this violation risk. Apart from the scheduler, this setting is the
same as the previous scenario.

The main steps of the scheduling algorithm are shown in Figure 33.
Intuitively, the scheduler requests Panopotes to produce as much know-
ledge as possible to base the assessment of the SLA violation risk. The
steps are detailed as follows.

First, the scheduler requests to Panoptes which nodes have available
resources to execute the new service. Then, it asks to Panoptes (which
uses the Service Analyser component to answer this request) the group
of the service, i.e. its cluster. This knowledge is used not only to calcu-
late the dissimilarity but also as a parameter to assess the violation risk.
Therefore, differently from the previous scenario, the scheduler stores this
knowledge to avoid defining the cluster knowledge of the new service
twice since it is used in two steps: in the dissimilarity step; and in the
violation risk step. This entails the reconfiguration of the dissimilarity
component of Panoptes defined in Listing 6.1. Instead of invoking the
Service Analyser also for clustering, this component receives the cluster
as a parameter and adds it to the command which invokes it. With the
dissimilarity knowledge yielded by this component, the scheduler selects
the node with the highest dissimilarity between the new service and the
services running in that node.

The SLA violation risk assessment is performed using a machine
learning classification algorithm. The idea behind the algorithm is to
define two classes of services; in our case we classify between services
which SLA was violated (or will be violated) and which SLA was not
violated (or will not be violated). Then, the algorithm uses the results of
finished services to learn the patterns of these classes to define whether a
new service might be violated. In particular, we employ the supervised
Random Forest3 algorithm which not only classifies the new service in one

3Notably, the supervised Random Forest algorithm is different from the solution proposed

146

Figure 33: Main steps of the Risk-Aware Scheduling of new services.

of the classes (i.e. the service is likely to be violated or not violated) but
also provides the probability of violation. Although on-line supervised
random forest algorithm exists, for the sake of simplicity, we used the
standard algorithm and re-train it in fixed intervals.

Therefore, to feed the supervised RF algorithm, we send the available
information and knowledge about the service, which in our case are: the
SLA; the node characteristics; the cluster of the service; and the dissim-
ilarity value. These are provided to the supervised RF component of
Panoptes, which returns the SLA violation risk. In case no node has avail-
able resources to run the service in the local cloud, taking into account that
the service can be deployed in a node with similar services, we propose
the assessment of the risks considering the minimum dissimilarity (the
worse case, i.e. 0) and, if the risk of violation is low, the service is added
to a service queue of fixed length in the local cloud. This evaluates the
risk of executing the new service with the worse combination of services
in a node.

The decision of where to deploy the service is based on a risk threshold
defined by the policies of the system. Therefore, if the violation proba-
bility is higher than this threshold, the service is sent to the public cloud,
otherwise it is run locally.

To assess the effectiveness of the risk-management scheduler, we use
the scheduler developed in the previous scenario, namely the Dissimi-

Chapter 5, namely RF+PAM, which was developed for clustering while this is a classification
problem (supervised).

147

Table 21: Average number of SLA violations and standard deviations (in
brackets) using the Dissimilarity and Risk-Aware schedulers with different
arrival rate (λ).

λ Dissimilarity Risk-Aware Violation Reduction
0.2 7.2 (3.03) 4.4 (1.51) 39%
0.4 10.4 (2.96) 5.8 (2.58) 44%
0.6 14.4 (2.60) 9.2 (1.304) 37%
0.8 24.4 (1.94) 17.0 (2.12) 30%
1 25.8 (2.58) 17.4(4.33) 31%

larity scheduler, which assigns all resources to the local cloud. Then, we
compare the number of SLA violations that arise when using the two
schedulers.

As the previous scenario, the experiments were carried out in the same
test-bed by varying the arrival rate as before and by employing a fixed
threshold of 50%, i.e. if the SLA violation risk is higher than 50%, the SLA
is sent to the public cloud.

Table 21 details the results and Figure 34 illustrates the number of
SLA violations. This approach, backed by the knowledge generated by
Panoptes, was able to reduce the SLA violation up to 44% in the best
case, and on average 36%. This improvement is even more significant,
considering the low number of services sent to the public cloud. In this
setting, the reduction of the SLA violations was achieved sending in
average only 6.4% of the services to the public cloud.

Cost-Aware Hybrid Cloud Scheduler

The previous scenario shows the benefits of using a public cloud to execute
services with high-violation risk. However, the extra resources provided
by the public cloud have a cost, which should be considered by the
scheduler to decide whether to send a service to the public cloud. For
instance, if a service has no penalty associated with the violation of its
SLA, it might be more appealing to a provider to risk the violation of this
service, rather than paying for its execution in a public cloud. Therefore,

148

Figure 34: Average Number of SLA violations with different arrival rates
(λ).

instead of deciding on the basis of the violation risk only, we design
a more realistic scheduler, which takes into account also the penalties
defined in the SLA, the cost of executing the service locally and the cost
of using the public cloud to execute the service.

All scheduling steps of this scenario are the same as the previous
scheduler apart from the decision function. Instead of comparing SLA
violation risk with a pre-defined threshold, the scheduler takes into con-
sideration the cost of running the service locally, of executing it in the
public cloud and allocates the service in the cloud with the lowest cost.

We define a model to calculate the total cost of running a service (si)
in the public cloud (Cpublic

si) and in the local cloud (Clocal
si):

Cpublic
si = Pricepublicsi

Clocal
si = Pricelocalsi + Penaltysi × Risksi

(6.1)

In the public cloud, only the price for running the service is considered.
This refers to the instance hour price (commonly a VM instance) and is
used by most commercial cloud providers. On the other hand, the cost of
executing the service in the local cloud (Clocal

si) involves the Penalties, in
case of SLA violations, along with the price for running the service locally
(Pricelocalsi). This refers to the instance hour price of the local cloud.

149

The prices for executing the service locally and in the public cloud
may vary considerably according to the context. In [CHS10], the authors
carried out a study to compare the price of their local cluster and a com-
mercial cloud solution. They calculate the equivalent price of a node
of their cluster and nodes of a public cloud. To this aim, they consider
the performance of the nodes, the prices associated to that cluster and
its usage. However, such a comparison requires benchmarking the local
resources and the public cloud resources, and information on the local
cloud (e.g. upfront cost and usage of the cloud), which are not available
in our context. In [MH13], a similar approach was used and in one of
the benchmarked clusters the specification of the nodes is similar to our
specifications; therefore, we employ the results presented in [MH13] as
the instance price of the local resources, that is $ 0.25. Moreover, the nodes
of the public cloud employed in this scenario are similar to a commercial
offer of the Amazon provider4; consequently we adopt the price for this
commercial offer in our scenario, that is $ 0.405.

We summarise this scenario and its assumptions as follows:

• We assign a (symbolic) price for each service, which is calculated
according to the local cloud instance hour price and which considers
the requested resources, the estimated completion time and a ran-
dom profit margin. This price is used in our experiments to generate
a value for the penalty in case of SLA violation (a percentage of the
price);

• We assume that the price for executing services locally is lower than
the public’s price. In our scenario, the instance hour price in the
local cloud is $ 0.25, while the public cloud price is $ 0.40;

• The price for running the service in both the local and the public
cloud are estimated according to the resources required by the ser-
vice, its estimated completion time and the instance hour price in
the target cloud;

4The similar type of VM is named by the provider as c3.2xlarge.
5Retrieved from http://aws.amazon.com/ec2/pricing/ on 28th December 2014.

150

http://aws.amazon.com/ec2/pricing/

• For the sake of simplicity, we assume that the penalty to be paid in
case of a service violation is covered by the agreement between the
IMT and the public cloud, when a service is allocated in the public
cloud. In this case the penalty foreseen for the SLA violation of a
service executed in the public cloud covers also the penalty to be
paid to the consumer who requested the execution of the service in
the IMT cloud;

• Although SLAC supports the specification of penalties given in
different conditions, for the sake of simplicity, we define a single
penalty for the SLA that covers all possible violations.

With these premises, we carried out experiments to compare all schedul-
ing algorithms developed in this chapter: Random, which runs all services
locally; Dissimilarity, which also executes all services only in the local
cloud; Risk-Aware, which considers only the risk of SLA violation to
decide whether to execute the service locally or in the public cloud; and
Cost-Aware, which considers the costs involved in executing the service
locally and in the public cloud along with the risk of SLA violation. As
the previous experiments, the services were generated synthetically. The
penalty in case of violation of the SLA was generated with the service
and defined within the range specified in each test. This range was a
percentage of an estimated service price and was increased during the
tests to understand the adaptability of the scheduling algorithms.

In these experiments, the arrival rate of the services (λ) was defined
as 0.6 since it was the average case in the previous experiments. We
executed the four algorithms five times for each penalty range (with
100 services) and compared the unexpected expenses of executing these
services. Intuitively, these expenses represent all the extra costs to a
provider, i.e. the sum of penalties of the violated services and/or the sum
of the difference between the cost for executing each service in public
cloud and of executing it in the private cloud.

More formally, the UnexpectedExpense for running a set of services
S is the sum of the unexpected expenses of each si ∈ S as defined in
Equation 6.2. The unexpected expense of a service si (Usi) is calculated

151

Table 22: Comparison of the Unexpected Costs with different penalties
ranges.

Random Dissimilarity Risk-Aware Cost-Aware

Pe
na

lt
ie

s 0 - 40% $ 3.7 $ 2.4 $ 2.0 $ 1.4
20 - 60% $ 6.1 $ 3.5 $ 2.9 $ 2.5
40 - 80% $ 8.8 $ 6.1 $ 5.3 $ 3.4

60 - 100% $ 9.0 $ 6.5 $ 5.6 $ 3.6

depending on the place of execution of the service (locally or in public
cloud) and whether it was violated or not. Therefore, in Equation 6.3 we
show all the four cases. Penalty, as the name suggests, is the amount to
be paid in case of violation of si, Pricelocalsi is the price for running the
service locally and Cpublic

si is the total cost for running si in the public
cloud. Notably, Cpublic

si does not change if the service is violated. This
is due to our assumption that the penalty for the service is paid by the
public cloud.

UnexpectedExpense = ∑
si∈S

Usi (6.2)

Usi =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if si = ¬violated ∧ local

Penalty, if si = violated ∧ local

Cpublic
si − Pricelocalsi , if si = ¬violated ∧ public

Cpublic
si − Pricelocalsi , if si = violated ∧ public

(6.3)

The results of the tests are presented in Table 22 and in Figure 35.
The unexpected expenses represent a relevant cost for the provider and a
reduction in the profit margin. In the case of the Cost-Aware scheduler,
these unexpected expenses were reduced by up to 62% in comparison to
the Random algorithm and up to 36% in comparison to the Risk-Aware
scheduler.

The results show that, with our model, the Cost-Aware algorithm
adapts to different penalties of the services and significantly reduces
the total unexpected costs. Although the Risk-Aware algorithm shows

152

Figure 35: Unexpected expenses of the schedulers proposed in this thesis.

a satisfactory performance with penalties between 20-60% since these
values are compatible with the maximum risk defined in the policies
(50%), its performance is still 14% worse than the Cost-Aware algorithm.
Overall, the Cost-Aware performed significantly better than Random,
Dissimilarity and Risk-Aware algorithms in all tests.

6.4 Summary

In this chapter, we provided an overview of the role of each solution
proposed in the thesis and on how they were integrated in the Polus
framework, which was used to feed the autonomic managers with know-
ledge. In brief, the SLAC language is used to describe services; the SLAC
Framework parses and evaluates SLAs; Panoptes feeds the autonomic
manager with information and knowledge on the cloud and the services;
and the Service Analyser, which uses the RF+PAM methodology, inte-
grated in Panoptes, provides the similarity among services, which has
multiple uses in autonomic clouds.

We also discussed the support of knowledge extraction components
in Panoptes, which enable the integration of this system and knowledge
generation solutions (related to the monitoring and not) and leverages
the utility of these solutions. For instance, the RF+PAM methodology can

153

be used also for finding the similarity or clustering from data not related
to the monitoring and; therefore, included in Panoptes as a knowledge
extraction component.

Finally, we presented a use case employing the IMT cloud and a
public cloud adopted to complement the IMT cloud resources. In this
hybrid cloud, we implemented service schedulers to decide where to
allocate the services. The use of Panoptes in this scenario facilitated
the development of autonomic tasks since the schedulers request the
necessary knowledge to Panoptes and do not need to place agents in the
system, implement knowledge generation algorithms, etc. It reduced
considerably the complexity of developing such solutions, which enables
the focus on the autonomic development. Moreover, the services were
described using the SLAC language and the SLAC framework to evaluate
the SLAs.

The principal objective of this use case was to demonstrate that the
Polus framework was appropriate to a realistic service provisioning sce-
nario. In this respect, Polus provides good support for the needs of the
schedulers, which suggests that this framework should be appropriated
for other scenarios in the autonomic cloud domain.

154

Chapter 7

Conclusions

Autonomic computing is a prominent paradigm to cope with the com-
plexity of clouds. However, most proposals which explore the autonomic
paradigm in clouds, assume that the knowledge for the decision-making
is somehow available. In this thesis, we have discussed the knowledge
generation process in the autonomic cloud domain and designed Polus,
which is a theoretical and practical framework for the provision of this
knowledge to autonomic managers. The results of the research are ex-
pected to directly contribute to: the development of autonomic clouds;
the optimization of the knowledge discovery process from operational
data; the adoption of SLA in the domain; and the employment of machine
learning solutions in the cloud domain.

Below, we summarise the proposed solutions, reconsider the research
questions posed in Chapter 1, examine the limitations of the study and
discuss future research directions that emerged during this research activ-
ity.

7.1 Thesis Summary

The autonomic management in cloud computing is based on three main
pillars: the definition of services, the monitoring of the system and the
generation and exploitation of specific types of knowledge. In this thesis,

155

we address these pillars as follows.

• In Chapter 3, we designed a language for the definition of SLAs,
named SLAC, specifically devised for the cloud domain. This
domain-specific language describes cloud services as well as their
functional and non-functional requirements, while successfully ad-
dressing important aspects of the domain, such as brokerage, multi-
party agreement, specification of multiple services, formalism and
the vocabulary for clouds. Moreover, SLAC has been extended to
incorporate significant business aspects of the domain, such as pric-
ing models, billing and business actions. Finally, we designed and
implemented a framework to parse and evaluate the SLAC SLAs.
Clouds are managed taking into account such definitions (SLA) and
the policies of the system; therefore, with SLAC, we provide know-
ledge about the objectives of the services that must be considered in
the autonomic management;

• Chapter 4 defined and analysed the transformation of operational
data into knowledge. Considering this process and the requirements
of autonomic clouds, we devised an architecture to effectively moni-
tor the infrastructure and the services provided to consumers. This
architecture, termed Panoptes, focuses on the following monitor-
ing properties: scalability, adaptability, resilience, timeliness and
extensibility. It also implements mechanisms to transform data into
knowledge using the filtering, aggregating and processing func-
tions. The results indicate a considerable reduction in the amount of
analysed data since Panoptes process data close to the source and
logically divides the cloud according to its hierarchy;

• In autonomic clouds, the decision-making process is hindered by
the obfuscation of several details of the provided services and of
the infrastructure, which is caused by the characteristics of cloud,
such as virtualization and dynamism. In Chapter 5, in order to
assist autonomic managers in the decision-making, we devised a
novel machine learning methodology to produce a flexible type

156

of knowledge which can be used for different aims in the auto-
nomic management of clouds. Intuitively, we produce a measure
of similarity among services. This knowledge has a wide range
of applications in the domain, provided directly to the autonomic
managers or as the basis for other solutions which generate know-
ledge using the similarity notion, e.g. for the detection of anomalous
behaviour or for application profiling. We validated this methodo-
logy through several experiments. These experiments demonstrate
many benefits of our solution: superior performance, low memory
footprint, support to mixed types of features, support to a large
number of features and fast on-line prediction;

• Chapter 6 provided an overview of the role of the solutions pro-
posed in the thesis in the autonomic cloud domain and their inte-
gration forming the Polus framework. It also proposed the support
of knowledge extraction components in Panoptes, which enables
the integration of this system and knowledge generation solutions.
Finally, it presents a use case employing the IMT cloud and a pub-
lic cloud adopted to complement the IMT cloud resources. In this
hybrid cloud, we implemented service schedulers to decide where
to allocate the services. With this use case, we demonstrate that
Poluswas capable of providing the necessary knowledge to sched-
ulers with different requirements, which suggests that it should
be successfully used for other scenarios in the autonomic cloud
domain.

7.2 Research Findings

In this section, we relate the findings of this thesis with the research
questions posed in Chapter 1 and refer to the relevant sections for further
details.

Research Question 1
How to describe services and their objectives in the cloud domain?

157

The definition of services in autonomic clouds guides the management
of the cloud itself since they are service-oriented. As highlighted in the
comparative analyses presented in Chapter 3, the existing SLA definition
languages are not able to express many important aspects of cloud ser-
vices. To address this question, we developed a SLA definition language,
named SLAC, designed for the cloud domain. Moreover, we implemented
the SLAC framework, which is able to evaluate and interpret SLAs in this
language and provide the service description and the evaluation results
to the autonomic managers.

Research Question 2
What is data, information, knowledge and wisdom in the autonomic cloud

domain?

We address this question in Chapter 4. In particular, we defined data,
information and knowledge, and discussed their specific meaning in au-
tonomic clouds with a particular focus on the monitoring process. To this
aim, we based our approach on the Data, Information, Knowledge and Wis-
dom (DIKW [Zel87]) architecture, specialised its concepts for the domain
and discussed examples of data, information and knowledge. Finally, we
used these concepts to design an architecture to transform operational
data into knowledge and the components to generate knowledge from
multiple sources.

Research Question 3
How to collect and transform the enormous amount of operational data into

useful knowledge without overloading the autonomic cloud?

Autonomic clouds are dynamic, large-scale and elastic. Moreover,
the resources used to provide services are loosely-coupled. To cope with
these characteristics, we devised a monitoring solution, named Panoptes,
which provides adaptive mechanisms to deal with different loads and to
avoid interferences in the service provision. We implemented Panoptes
and, with a number of experiments, we demonstrated the benefits of
this architecture and its capacity to address this research question. This
question was addressed in Chapter 4.

158

Research Question 4
How to produce a robust measure of similarity for services in the domain and

how can this knowledge be used?

It is difficult to extract the similarity knowledge in the autonomic
cloud domain due to its characteristics, such as the virtualization and
security layers, its dynamism and the wide range of available services.
Therefore, we propose a methodology, termed RF+PAM, to generate a
robust measure of similarity. As a concrete example of its utility, we
developed a scheduler which considers the similarity among services to
allocate them. This scheduler reduces the SLA violations up to 48% and
improves performance around 25%. Moreover, the concept of similarity
has a wide range of applications in the domain and can be used to generate
other types of knowledge. This question was addressed in Chapter 5.

Research Question 5
How to integrate different sources of knowledge and feed the autonomic

managers?

This question was addressed in Chapter 6, where we discuss the
role of the proposed solutions in autonomic clouds and the interaction
between them in the Polusframework. To illustrate the integration of these
solutions, we considered a use case where we developed schedulers with
different knowledge requirements and used the proposed solutions to
provide such knowledge. Therefore, we demonstrate that Polusis able to
fulfil the needs of the schedulers, which suggests that it should also work
in different scenarios and with different types of autonomic managers.

7.3 Limitations on the Study

In this section, we outline the limitations of the study:

• Overall, the aim of this thesis was to address the provision of know-
ledge to autonomic managers. Due to the broad scope of this task,
we focused on the description and development of a framework to

159

generate knowledge. Its architecture was designed to be modular, in
order to facilitate reuse and extensions of the solutions to generate
knowledge. Moreover, we implemented a methodology to discover
the measure of similarity in autonomic clouds and integrated it
in our framework. However, due to the wide range of types of
knowledge necessary for the autonomic management, we focused
on the methodology to facilitate the process and on a single type of
knowledge, which provides a concrete example of the use of this
methodology;

• The experiments suggest that Polus integrates and fulfils the needs
of autonomic managers. However, it can be further clarified how
intelligent autonomic managers need to be in order to dynami-
cally request and change the configurations of our framework in
an on-line fashion and, thus, take advantage of all the potential of
Panoptes;

• The SLAC language was developed to be concrete and domain
specific. In this thesis, we support the SLAC variants for IaaS and
PaaS service delivery models. However, we did not include the
SaaS model since it requires the development of linguistic abstrac-
tions to capture the wide range of applications available and their
requirements;

• We implemented a proof-of-concept prototype of Panoptes and car-
ried out experiments to test its benefits. We believe that it could be
applied in large-scale cloud environments thanks to its architecture
and adaptation mechanisms. However, further tests are required in
large-scale clouds;

• Currently, the Panoptes knowledge extraction components are not
optimal, e.g they do not take account of the place for processing
data, which may not be the closest to the data source;

• The RF+PAM methodology was developed with the goal of separat-
ing the training and the prediction phases. Thus, the forest has to

160

be retrained at some point. In this thesis, we proposed a threshold
measure to trigger the retraining of the forest. However, we believe
that the development of heuristics to recognise when to retrain the
forest can improve the performance of the algorithm.

7.4 Future Works

As discussed in the previous section, several aspects of the domain are out
of scope regarding our solutions. Some of these gaps imply open research
challenges in the area. Therefore, further research efforts might consider
the following:

• Although we take into account many aspects of negotiation in the
SLAC language, we did not design negotiation protocols. The nego-
tiation is an important phase of the SLA life cycle and must be fully
considered in future works;

• Cloud computing is an evolving paradigm and the current defini-
tions of SLAC might require extensions to cope with these changes.
Therefore, we plan to define a mechanism to enable and regulate
the definition of extensions.

• The cloud and the needs of providers and consumers change rapidly
in autonomic clouds. Currently, the SLA provides only a static defi-
nition of the obligations of the parties involved; new mechanisms
to support the dynamism of these environments are necessary. A
potential solution for this need is the introduction of pre-defined
changes in the SLA, i.e. of the conditions in which the valid terms
can change. For instance, let us suppose that all consumers who
adopt a new service will have, for the first 6 months of a 1 year
contract, the half of the contracted maximum response time for the
same price. In this situation, the SLA has a temporal constraint and
has to change the response time after 6 months;

• The knowledge generation process consists of many steps and can
have multiple sources. These sources and tasks can have parallel

161

and sequential steps. Therefore, we plan to support workflows for
data collection and knowledge generation, which enable the optimi-
sation of the data retrieval and knowledge generation process;

• The RF+PAM methodology is flexible and has a wide range of ap-
plications. We plan to use this methodology as the base for other
knowledge generation solutions and directly in an autonomic man-
ager.

162

Appendix A

Overview of the Existing
SLA Definition Languages

A.1 WSOL

Web Service Offering Language (WSOL) [TPP02, TPP03, PPT03, Pat03,
TPP+05] is an XML based language and was developed to deal with the
management gaps in the specification and standards of Web Services,
such as Web Services Description Language (WSDL) and Business Process
Execution Language for Web Services (WS-BPEL) [ACD+03].

A SLA in the WSOL language refers to one or more WSDL files, which
contain the service description; therefore, enabling the definition of ma-
nagement features and constraints for the service without modifying the
WSDL files.

Essentially, SLA in the WSOL language are composed of five con-
structs:

• Service Offering (SO) is the central concept of the language, repre-
senting a variation of a service. In particular, it is the instantiation
of a service, including pre-defined constraints and management
statements. To illustrate the concept, let us suppose that an IaaS
provider offers VMs to its consumers with different specifications.
This provider could offer his service in two SO (class of service): the

163

first, named Large VM, with 16 GB of RAM and 99% of availability
and; the second, named Small VM, with the same specification but
97% of availability. Although the SO concept reduces the overhead
and provides advantages in the management due to its limited num-
ber of pre-defined class of services, it hinders the customization of
the service and restricts the negotiation possibilities;

• Constraints are divided into three categories: functional, non-functional
(QoS) and access rights. Functional constraints define conditions
that a correct operation invocation must satisfy. Non-functional con-
straints (QoS constraints) describe properties of the service, such as
performance and reliability. To specify this category of constraints,
WSOL requires the use of external ontologies for metrics, measure-
ment unities and precise definitions of how the metrics are measured
or calculated. Finally, access rights define when a consumer can
invoke a particular operation;

• Three types of Management Statement schemas are specified in the
WSOL language: (i) the definition of the payment models, which
are: pay-per-use, in which the agreement set a price for the invo-
cation of a single operation (pay for the quantity of invocations)
and subscription-based, in which consumers pay to make use of a
service for a period of time; (ii) monetary penalty, i.e. a monetary
recompense in case of violation of the SLA; and (iii) management
responsibility which specifies the party responsible for checking a
particular constraint;

• Considering the use of multiple classes of services and their discrete
variation (two SO can be the same apart from, e.g. the amount of
availability of a VM), the WSOL defines Reusability Elements. This
concept enables the creation of service templates, in which variables
are defined. In the instantiation of a service, these variables are
replaced with the actual values, which are sent as parameters;

• WSOL supports the specification of Service Offering Dynamic Rela-
tionship. Intuitively, it is the definition of alternative SO that can

164

Figure 36: Structure of SLAs in the WSOL language.

replace deployed SO under some conditions. Such construct can be
used, for instance, to replace an SO with a different SO in case of a
violation of a constraint in the first.

Figure 36 depicts the relations amongst the constructs of the WSOL
language. Service offerings refer to WSDL files, which are the description
of the service. A service offer, in turn, comprises constraints, management
statements and reusability elements. Finally, a service offering dynamic
relationship refers to a deployed SO and an alternative SO.

Regarding the implementation of the language, a parser was develo-
ped in [PPT03] and a framework, named Web Service Offering Infrastruc-
ture (WSOI), was presented in [TMPE04].

In summary, the main features of WSOL language are: low overhead
for negotiation and service instantiation, reuse mechanisms, support for
third party monitoring and accounting, and support for the specification
of SO relationships. However, the language has significant limitations.
For instance, it does not support SLA customization, it is not equipped
with a formal semantics, depends on the WSDL files, does not support
dynamic environments and regulates only the quality of service. Thus, it
does not fully capture the relationship between the parties, such as, the
relationship between the carrier and the provider.

165

Figure 37: Structure of SLAs in the WSLA language.

WSLA

Web Service Level Agreement (WSLA) [LKD+03, KL03] is also based on
XML. However, in contrast to WSOL, a SLA in the WSLA language is
self-contained, i.e. it does not refer to other files.

In this language, the SLA is divided into three main sections as shown
in Figure 37. The first section, the Parties Description, contains the details
of the signatory parties, including third parties.

The second section, the Service Description, describes the characteristics
of the service (service objects, parameters and metrics). Service objects
abstract SLA parameters and represent the operations of a service (e.g.
instance VM). SLA parameters are properties of service objects. They
are composed of a name, a type, a unit and metrics. Response time and
availability are examples of these parameters. Finally, metrics refer to
single or an aggregation of metrics. This aggregation can be done in two
ways: using functions to define the formula of aggregation (operands); or
a measurement directive, to define how a metric should be measured.

Figure 38 depicts the components of the Service Description and their
relation. Service Objects have SLA parameters, which are defined by

166

Figure 38: Relations of the components of the service description section in
WSLA.

metrics. Finally, metrics can be composite, i.e. defined by other metrics.

The service-level-objectives (SLOs, i.e. specification of the performance
of the service) and action guarantees are defined in the obligations section,
the last section of the SLA. The SLOs represent a commitment to maintain
a specific quality for the service in a period of time, constraints that may be
imposed to parameters, e.g. response time < 10 ms. Guarantees, instead,
define actions to be perform given a pre-condition [KL03].

The key features of WSLA are: its extensive documentation, the flexible
metrics construct (for instance, it supports composite metrics) and its
extensible. Moreover, the SLA is structured in a way that the monitoring
clauses can be separated from contractual terms, which enables to involve
third parties in the provision of the service (e.g. audition) without the
disclosure sensible information.

The weaknesses of the approach are: it is coupled to the monitoring
infrastructure (commercial solution), does not support pricing schemas,
does not present formal semantics for the language [WB10], has few
reusability features and is based on the XML-Schema, whose semantics
are unsuitable for the constraint-oriented reasoning and optimisation
[KTK10].

167

A.2 WS-Agreement

WS-Agreement [ACDK04] was defined by the Open Grid Forum (OGF)
and, along with WSLA, is the most well-known machine-readable SLA
specification language [KTK10]. Besides the SLA, the OGF also defines a
protocol for negotiation and establishment of SLA.

The structure of a SLA in WS-Agreement comprises an optional name
for the agreement; the context, which describes the involved parties as
well as its expiration time; and the terms which define the service and its
guarantees. Figure 39 depicts this structure. Terms are composed using
the term compositor structure construct, which provides logical operands to
combine them. It enables the specification of alternative branches in the
SLA, which is an important feature in the creation of offers and requests
in the negotiation phase. The terms, in turn, are structured as follows:

• Service Terms describe the functionally delivered under the agree-
ment. The content of this construct depends on the particular do-
main but is formed of Service Description Terms, which provide a
functional description of the service. Service Description Terms are
composed of: Service References, which define the endpoint for the
service, i.e. its interface; and Service Properties, which express SLOs,
such as response time and throughput;

• Guarantee Terms assure that the quality of the service is enforced or
an action will be taken in case of violations. Its definition is divided
into four elements:

– Service Scope defines the service (or part) to which the guarantee
applies;

– The conditions under which the guarantee applies are defined
by Qualifying Conditions;

– Service-Level-Objectives express an assertion over the service
attributes and external factors, such as the date;

– Business Value List provides the evaluation of the guarantee in
terms of rewards and penalties (in arbitrary value expressions,
for instance in Euros).

168

Figure 39: Structure of SLAs defined in the WS-Agreement language.

WS-Agreement supports third parties in the SLA (e.g., auditor or car-
rier) and has different implementations of the framework for monitoring
and evaluation of SLA (e.g., Cremona Framework [LDK04]). Moreover,
many extensions for the negotiation and management have been develo-
ped for the language.

Nevertheless, it provides only the high-level account of SLA content,
thus leaving the fine-grained content unspecified. Although this approach
provides flexibility to the language, it is also a source of ambiguity since
the parties can have different definitions for the same term. Moreover, it
requires the understanding of the ontology of the terms and constructs
of the language, for example, of the metrics in the SLA, by all involved
parties [LF06]. Finally, like WSLA, WS-Agreement is also coupled to XML-
Schema, whose semantics are unsuitable for constraint-oriented reasoning
and optimisation demands of operation research [KTK10].

A.3 SLA*

The SLA* [KTK10] language is part of the SLA@SOI project [SLA14],
which aims at providing predictability, dependability and automation in
all phases of the SLA life cycle.

SLA* is inspired by WS-Agreement and WSLA and, in contrast to the

169

Figure 40: Structure of SLAs defined in the SLA* language.

described languages that support only web services, aims at supporting
services in general, e.g. medical services. To achieve this aim, the authors
specified an abstract constraint language which can be formally defined
by plugging-in domain specific vocabulary.

Agreements in SLA* comprise: the involved parties, the definition
of services in terms of functional interfaces and agreement terms. The
agreement terms include: (i) variables which are either a “convenience”
to be used in place of an expression (shorthand label) or a “customisable”
which expresses “options” (e.g. <4 and <10); (ii) pre-conditions that
define the cases in which the terms are effective (e.g. week days, business
hours); and (iii) guarantees that describe states that a party is obliged
to guarantee (for example, a SLO) or an action should be taken. This
structure is depicted in Figure 40.

The benefits of the language are: it supports any kind of service; it is
extensible; it is expressive; has a framework which covers all phases of the
SLA life cycle and; was tested in different domains. Nevertheless, the SLA*
specification lacks precise semantics due to its multi-domain approach
and the support to brokerage. Moreover, it requires the development of
specific vocabulary for each domain.

170

A.4 SLAng

The first version of SLAng is presented in [LSE03]. However, in [Ske07],
Skene, one of the authors of the original paper, claims that this language
was highly imprecise and open to interpretation. Hence, Skene decided to
continue the development of SLAng to addresses these issues. Therefore,
in this work, we review the SLAng developed by Skene, i.e. the improved
version of the language (we refer to his doctoral thesis [Ske07] for the full
specification of the language).

SLang specification is presented as a combination of an EMOF [Obj04b]
structure, OCL [Obj03] constraints and natural language commentary. A
SLA defined in SLAng is the instantiation of the EMOF abstract model,
which can be concretely instantiate in several ways, for example, using
Human-Usable Textual Notation (HUTN) [Obj04a] or XML Metadata
Interchange (XMI) [Obj14] (it can also include comments in natural lan-
guage to facilitate the understanding). The OCL constraints are used to
refine the model and define, to some degree, the semantics of the SLA.

To illustrate the OCL use in SLAng, Listing A.1 presents the specifica-
tion of the total down time for an operation of a service. The constraint
selects and sums all non-scheduled events in which an operation failed or
which the latency is higher than the specified maximum latency.

Listing A.1: Extract of a SLA specified in OCL.

1 --Total downtime observed for the operation
2 let totalDowntime(o : Operation) : double
3 o.serviceUsage -> select(u (u.failed or u.duration >
4 maximumLatency) AND schedule -> exists(s |
5 s.applies(u.date))) -> collect(u | downtime(u.date,
6 o)) -> iterate(p : double, sumP : double | sumP + p)

As depicted in Figure 41, the EMOF model consists of:

• Administration Clauses, which define the responsibilities of parties
in the SLA administration. This administration sets constraints to
define how the SLA is administrate and which party is in charge

171

Figure 41: Structure of SLAs defined in the SLAng language.

of this administration, for example, they express who can submit
evidences of SLA violations;

• Service’s Interface Definitions, including the operations available for
this service;

• Auxiliary Clauses, which are abstract constructs composed of: Con-
ditions to associate the behaviour of the service to a constraint; Be-
haviour Definition; and Accuracy Clause which establishes the rules to
assess the accuracy of service measurements. Then, these measure-
ments are employed to verify violations and apply penalties. Also,
conditions, behaviours, penalties and parties are used to create con-
straints on the service behaviour (e.g. availability), named Behaviour
Restrictions;

• Penalty Definitions, which defines the actions that should be enforced
in case of violation;

• Parties Description, which describe the involved parties.

In contrast to the previous languages, SLAng is domain-specific, de-
vised for Application-Service Provision (ASP). Its main strengths are: low

172

ambiguity due to the correspondence between elements in an abstract
service model and events in real world [LF06]; emphasis on compatibility,
monitorability and constrained service behaviour; and domain-specific
vocabulary for IT Services.

The main limitation of SLAng is the complexity to: fully understand
its specification; create SLAs using this specification; and extend the lan-
guage. Its limitation is due to: the combination of techniques as OCL and
EMOF, which require technical expertise to use [Ske07]; its expressibility;
and its formal nature. Moreover, considering the heterogeneity of the
IT services domain, the language requires an extensive analysis effort
by experts and the definition of extensions of similar size to SLAng core
language itself [Ske07] to be deployed in real-world cases. These efforts
and complexity lead not only to difficulties to users but also to high costs
for its adoption.

A.5 CSLA

Cloud Service Level Agreement1 [Kou13, SBK+13] is a specification lan-
guage devised for the cloud domain.

Its structure is similar to WS-Agreement and is presented in Figure 42.
Validity describes the initial and expiration dates for the SLA. The parties
are defined in the Parties Section of the agreement while the template
is used to define the service, the associated constraints, the guarantees
related to these constraints, the billing scheme and the termination condi-
tions.

A novelty of the language is, in addition to the traditional fixed price
billing model, the possibility to use the pay-as-you-go model. Moreover,
CSLA introduces the concept of fuzziness and confidence. The former
establishes an error margin for a metric in the agreement. The latter
defines the minimum ratio of the enforcements that the metric values do
not exceed the threshold, permitting the remaining measures to exceed
the threshold but not the fuzziness threshold. For example, the threshold
for the response time of a service is 3 seconds, the fuzziness value is 0.5

1The language was presented in a short paper [KL12] but it is not available on-line.

173

Figure 42: Structure of SLAs defined in the CSLA language.

and the confidence is 90%. In every 100 requests, minimum 90 need to
have values between 0 and 3 and maximum 10 can be between 3 and 3.5
without violating the SLA.

As drawbacks, the language is neither formally defined, nor supports
parties with important roles (e.g. the broker), nor comprehends other
dynamic aspects of the cloud.

A.6 Overview of the Languages

In the present subsection, we describe the machine-readable solutions to
define SLAs for services. Apart from SLA*, which enables the specification
of SLA for electronic services, all analysed languages target web services
or a specific subgroup of this area.

WSOL, WSLA and WS-Agreement are compatible with the main stan-
dards but unsuitable for the constraint-oriented reasoning optimisation
demands for the decision making [KTK10]. Moreover, the structure of
agreements written in most languages is similar and rely on XML. The ex-
ceptions are SLA* which provides a higher abstraction of service but also
has its implementation using XML, and SLAng, which has a completely
different approach, as it is domain-specific and uses EMOF and OCL.

Despite the similarities, all specification languages have unique charac-

174

teristics. For example, WSOL is less expressive than WSLA, WS-Agreement,
SLAng and SLA* but provides the concept of service offerings. Conse-
quently, it is easy to implement in different scenarios and provides low
overhead in the negotiation and deployment processes. However, WSOL
is neither flexible, nor fully equivalent to the other SLAs definition lan-
guages, as it capture only the QoS aspects of the agreement.

Major challenges for the adoption of abstract languages for SLA speci-
fication (e.g. SLA*) are the creation of the vocabulary for a domain (e.g.
metrics) [LF06], and to assure that all parties share and understand the
definitions in that vocabulary.

SLAng and CSLA are domain-specific and this problem has a lower
impact. Nevertheless, SLAng is rather complex and requires experts to
understand the specification and adapt it to each use case. CSLA, instead,
provides neither the formalism for the SLA specification, nor captures
important characteristics of the domain, e.g. broker support.

In light of these considerations and of the cloud requirements (investi-
gated in Chapter 3), we propose a SLA specification language for cloud
computing in Chapter 3.

175

References

[ABdDP13] Giuseppe Aceto, Alessio Botta, Walter de Donato, and Antonio
Pescapè. Cloud monitoring: A survey. Computer Networks, 57(9),
June 2013. 38, 87

[ABYST13] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan
Tsafrir. Deconstructing Amazon EC2 Spot Instance Pricing. ACM
Transactions on Economics and Computation, 1(3):1–20, September 2013.
66

[ACD+03] T. Andrews, F. Curbera, H. Dholakik, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.
Business Process Execution Language for Web Services Version 1.1.
Technical report, IBM, 2003. 163

[ACDK04] A Andrieux, K Czajkowski, A Dan, and K Keahey. Web services
agreement specification (WS-Agreement). Global Grid Forum, 2004.
168

[AD07] Amir Ahmad and Lipika Dey. A k-mean clustering algorithm for
mixed numeric and categorical data. Data & Knowledge Engineering,
63(2):503–527, November 2007. 112

[AHT+03] Elena Allen, Steve Horvath, Frances Tong, Peter Kraft, Elizabeth Spi-
teri, Arthur D Riggs, and York Marahrens. High concentrations of
long interspersed nuclear element sequence distinguish monoalleli-
cally expressed genes. In Proc. of the National Academy of Sciences of the
United States of America, pages 9940–5, August 2003. 115

[AHWY03] Charu Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A
framework for clustering evolving data streams. In Proc. of the 29th
VLDB, pages 81–92, 2003. 112

176

[AHWY04] Charu Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A
framework for projected clustering of high dimensional data streams.
In Proc. of the 30th VLDB, volume 30, pages 852–863, 2004. 42, 112

[Ama15] Amazon. Amazon Web Services. http://aws.amazon.com/, 2015. 65

[Ant10] Gabriel Antoniu. Autonomic Cloud Storage: Challenges at Stake.
Proc. of the International Conference on Complex Intelligent and Software
Intensive Systems, pages 481–481, 2010. 88

[Apa15] Apache. Apache CloudStack. http://cloudstack.apache.org/, 2015.
144

[ASMC07] Hanady Abdulsalam, David B. Skillicorn, Patrick Martin, and O N
Canada. Streaming random forests. In Proc. of the 11th IDEAS, pages
643–651, 2007. 115

[BA03] Leo Breiman and Adele Cutler. Random forests Manual V4, 2003.
113, 115

[BAGS02] Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz
Stockinger. Economic models for resource management and schedul-
ing in Grid computing. Concurrency and Computation: Practice and
Experience, 14(13-15):1507–1542, November 2002. 66

[BCL+04] M. J. Buco, R. N. Chang, L. Z. Luan, C. Ward, J. L. Wolf, and P. S. Yu.
Utility computing SLA management based upon business objectives.
IBM Systems Journal, 43(1):159–178, 2004. 27

[BCL12] Rajkumar Buyya, RN Calheiros, and Xiaorong Li. Autonomic cloud
computing: Open challenges and architectural elements. In Proc.
of 3rd International Conference on Emerging Applications of Information
Technology (EAIT), pages 3–10, 2012. 26

[BKC00] Paul E. Bierly III, Eric H. Kessler, and Edward W Christensen. Orga-
nizational learning, knowledge and wisdom. Journal of organizational
change management, 13(6):595–618, 2000. 41

[Bon15] Bonfire. Bonfire Project. http://www.bonfire-projectt.eu/, 2015. 37

[Bra09] Ivona Brandic. Towards Self-Manageable Cloud Services. 2009 33rd
Annual IEEE International Computer Software and Applications Confer-
ence, pages 128–133, 2009. 27

[Bre01] L Breiman. Random forests. Machine learning, 45:5–32, 2001. 107, 113

177

[CBQF10] Jong Youl Choi, Seung-Hee Bae, Xiaohong Qiu, and Geoffrey Fox.
High Performance Dimension Reduction and Visualization for Large
High-Dimensional Data Analysis. In Proc. of the 10th IEEE/ACM
CCGrid, pages 331–340. IEEE, 2010. 110

[CC94] TF Cox and MAA Cox. Multidimensional scaling. Chapman & Hall,
London;UK, 1994. 117

[CFR13] Alfredo Cuzzocrea, Giancarlo Fortino, and Omer Rana. Managing
Data and Processes in Cloud-Enabled Large-Scale Sensor Networks:
State-of-the-Art and Future Research Directions. In Proc. of the 13th
IEEE/ACM CCGrid, pages 583–588. IEEE, May 2013. 109

[CG10] Yanpei Chen and AS Ganapathi. Analysis and lessons from a publicly
available google cluster trace. ECS Department, University of California,
Berkeley, Tech Rep., 2010. 122, 123, 124

[CGCT10] Stuart Clayman, Alex Galis, Clovis Chapman, and Giovanni Toffetti.
Monitoring Service Clouds in the Future Internet. In Future Internet
Assembly, pages 115–126, 2010. 87

[CGM10] Stuart Clayman, Alex Galis, and Lefteris Mamatas. Monitoring virtual
networks with Lattice. In Proc. of the 12nd IEEE/IFIP NOMS Wksps,
pages 239–246. IEEE, 2010. 39

[CHS10] Adam G. Carlyle, Stephen L. Harrell, and Preston M. Smith. Cost-
Effective HPC: The Community or the Cloud? In Proc. of the 2nd IEEE
International Conference on Cloud Computing Technology and Science,
pages 169–176. Ieee, November 2010. 150

[Clo15] CloudTM. CloudTM Project. http://www.cloudtm.eu, 2015. 37

[CNM06] Rich Caruana and Alexandru Niculescu-Mizil. An empirical com-
parison of supervised learning algorithms. In Proc. of the 23rd ICML,
pages 161–168, New York; USA, 2006. ACM Press. 113

[CUW11] Shirlei Aparecida Chaves, Rafael Brundo Uriarte, and Carlos Becker
Westphall. Towards an Architecture for Monitoring Private Clouds.
IEEE Communications Magazine, 49(December):130–137, 2011. 86, 89

[CWW11] Shirlei Aparecida De Chaves, Carlos Becker Westphall, and
Carla Becker Westphall. Customer Security Concerns in Cloud Com-
puting. In Proc. of the 10th International Conference on Networks, pages
7–11, 2011. 14

178

[CZ12] Deyan Chen and Hong Zhao. Data Security and Privacy Protection
Issues in Cloud Computing. In Proc. of the 1st International Conference
on Computer Science and Electronics Engineering, pages 647–651. IEEE,
March 2012. 16

[DCW+11] Anh Vu Do, Junliang Chen, Chen Wang, Young Choon Lee, Albert Y.
Zomaya, and Bing Bing Zhou. Profiling Applications for Virtual
Machine Placement in Clouds. Proc. of the 4th IEEE Cloud, pages
660–667, July 2011. 130

[DDF06] Simon Dobson, Spyros Denazis, and A Fernández. A survey of
autonomic communications. ACM Transactions on Autonomous and
Adaptive Systems, 1(2):223–259, 2006. 2

[DP98] TH Davenport and Lawrence Prusak. Working Knowledge : How
Organizations Manage What They Know. Harvard Business School
Press, 1998. 42

[DWC10] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud Computing:
Issues and Challenges. Proc. of the 24th IEEE AINA, pages 27–33, 2010.
45, 78

[EBMD10] Vincent C. Emeakaroha, Ivona Brandic, Michael Maurer, and
Schahram Dustdar. Low level Metrics to High level SLAs - LoM2HiS
framework: Bridging the gap between monitored metrics and SLA
parameters in cloud environments. In Proc. of the 8th HPCS, pages
48–54. IEEE, June 2010. 87, 88, 95

[EL09] Erik Elmroth and Lars Larsson. Interfaces for Placement, Migration,
and Monitoring of Virtual Machines in Federated Clouds. In Proc. of
the 8th GCC, pages 253–260. Ieee, August 2009. 18

[FHAJ+01] F. Fabret, Hans-Arno, Jacobsen, F. Llirbat, J. Pereira, and K. Ross. Fil-
tering algorithms and implementation for very fast publish/subscribe
systems. In Proc. of the 41st ACM SIGMOD, volume 30, pages 115–126,
June 2001. 91

[Fle15] Mike Fletcher. Simple Parser. http://simpleparse.sourceforge.net/,
2015. 75

[FZRL08] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud Computing
and Grid Computing 360-Degree Compared. In Proc. of the 4th Grid
Computing Environments Workshop, pages 1–10. IEEE, 2008. 109

[Gan14] Ganglia. Ganglia. http://ganglia.sourceforge.net/, 2014. 88

179

[Gar99] S Garfinkel. Architects of the information society: 35 years of the Laboratory
for Computer Science at MIT. Mit Press, 1999. 14

[Gen13] Frank Gens. IDC Predictions 2014: Battles for Dominance and Sur-
vival on the 3rd Platform. Technical report, International Data Cor-
poration, 2013. 1

[GMR04] J Gama, Pedro Medas, and R Rocha. Forest trees for on-line data. In
Proceedings of the 19th ACM Symposium on Applied Computing., pages
632–636, 2004. 42

[GRS00] S Guha, R Rastogi, and K Shim. ROCK: A robust clustering algorithm
for categorical attributes. Information systems, 25(5):345–366, 2000. 42,
112

[GVB11] Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. SMI-
Cloud: A Framework for Comparing and Ranking Cloud Services. In
Proc. of the 4th IEEE UCC, pages 210–218. IEEE, December 2011. 80

[GVK12] ER Gomes, QB Vo, and Ryszard Kowalczyk. Pure exchange markets
for resource sharing in federated clouds. Concurrency and Computation:
Practice and Experience, pages 977–991, 2012. 18

[GZK05] MM Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining
data streams: a review. ACM Sigmod Record, 34(2):18–26, 2005. 112

[HA85] Lawrence Hubert and P Arabie. Comparing partitions. Journal of
classification, 218:193–218, 1985. 125

[Has08] Osman Hassab Elgawi. Online random forests based on CorrFS
and CorrBE. In Proc. of IEEE Computer Vision and Pattern Recognition
Workshops, pages 1–7. Ieee, June 2008. 115

[HD10] Peer Hasselmeyer and Nico D’Heureuse. Towards holistic multi-
tenant monitoring for virtual data centers. In IEEE/IFIP Network
Operations and Management Symposium Workshops, pages 350–356. Ieee,
2010. 40

[HH07] Osman Hassab Elgawi and Osamu Hasegawa. Online incremental
random forests. In Proc. of the 1st International Conference on Machine
Vision, pages 102–106. Ieee, December 2007. 115

[HKK05] Julia Handl, Joshua Knowles, and Douglas B Kell. Computational
cluster validation in post-genomic data analysis. Bioinformatics (Ox-
ford, England), 21(15):3201–12, August 2005. 123

180

[HM08] Markus Huebscher and Julie Mccann. A survey of autonomic
computing-degrees, models, and applications. ACM Computing Sur-
veys, 40(3):1–28, 2008. 85

[Hor01] P Horn. Autonomic Computing: IBM’s Perspective on the State of
Information Technology, 2001. 1, 22

[IBM05] IBM White Paper. An architectural blueprint for autonomic comput-
ing. Quality, 36(June):34, 2005. 2, 22

[KAC12] Kenichi Kourai, Takeshi Azumi, and Shigeru Chiba. A Self-Protection
Mechanism against Stepping-Stone Attacks for IaaS Clouds. In 11,
pages 539–546. IEEE, September 2012. 26

[KK07] P Karaenke and Stefan Kirn. Service level agreements: An evaluation
from a business application perspective. In Proc. of 5th eChallenges,
2007. 64

[KL03] A Keller and H Ludwig. The WSLA framework: Specifying and
monitoring service level agreements for web services. Journal of
Network and Systems Management, 2003. 29, 30, 166, 167

[KL12] Yousri Kouki and Thomas Ledoux. CSLA: a Language for improving
Cloud SLA Management. In Proc. of the 2nd International Conference on
Cloud Computing and Services Science, 2012. 35, 173

[Kou13] Yousri Kouki. Approche dirigée par les contrats de niveaux de service pour
la gestion de lélasticité du ”nuage”. PhD thesis, L’Université Nantes
Angers Le Mans, 2013. 35, 173

[KR90] Leonard Kaufman and PJ Rousseeuw. Finding groups in data: an
introduction to cluster analysis. John Wiley and Sons, New York, NY,
wiley seri edition, 1990. 114, 116

[KRJ11] Hyunjoo Kim, Ivan Rodero, and Shantenu Jha. Autonomic Manage-
ment of Application Workflows on Hybrid Computing Infrastructure.
Scientific Programming, 19:1–23, 2011. 26

[KST+10] Mahendra Kutare, Karsten Schwan, Vanish Talwar, Greg Eisenhauer,
Matthew Wolf, and Chengwei Wang. Monalytics: Online Monitoring
and Analytics for Managing Large Scale Data Centers. In Proc. of the
7th ICAC, pages 141–150. ACM Press, 2010. 87

[KTK10] K.T. Kearney, F. Torelli, and C. Kotsokalis. SLA*: An abstract syn-
tax for Service Level Agreements. In Proc. of the 11th IEEE/ACM
International Conference on Grid Computing, 2010. 31, 167, 168, 169, 174

181

[KYTA12] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. Workload
characterization and prediction in the cloud: A multiple time series
approach. In Proc. of the 14th IEEE/IFIP NOMS. IEEE, 2012. 131

[LC08] Bin Lu and Juan Chen. Grid resource scheduling based on fuzzy
similarity measures. In Proc. of the 2nd IEEE Cybernetics and Intelligent
Systems, pages 940–944, 2008. 26, 130

[LDK04] H Ludwig, A Dan, and R Kearney. Cremona: an architecture and
library for creation and monitoring of WS-agreents. In Proc. of the 2nd
international conference on Service Oriented Computing, 2004. 169

[LF06] André Ludwig and Bogdan Franczyk. SLA Lifecycle Management in
Services Grid-Requirements and Current Efforts Analysis. In Proc. of
the 3rd Grid Service Engineering and Management, pages 219–233, 2006.
35, 36, 169, 173, 175

[LKD+03] H Ludwig, A Keller, A Dan, RP King, and R Franck. Web service level
agreement (WSLA) language specification. IBM Corporation, 2003. 166

[Llo82] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on
Information Theory, 28(2):129–137, March 1982. 114

[LRT14] Balaji Lakshminarayanan, DM Roy, and YW Teh. Mondrian forests:
Efficient online random forests. ArXiv e-prints. Preprint arXiv:
1406.2673, 2014. 115

[LSE03] DD Davide Lamanna, James Skene, and Wolfgang Emmerich. SLAng:
A language for service level agreements. In Proc. of the 9th IEEE
Workshop on Future Trends in Distributed Computing Systems, volume
34069, 2003. 33, 171

[LTM+11] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badge,
and Dawn Leaf. NIST cloud computing reference architecture. Tech-
nical report, National Institute of Standards and Technology, 2011. 20,
21

[MB08] Leonardo De Moura and Nikolaj Bjorner. Z3: An efficient SMT solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Proc. of the 15th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer Berlin Heidelberg, 2008.
59, 75

[MBEB11] Michael Maurer, I. Breskovic, V. C. Emeakaroha, and I. Brandic. Re-
vealing the MAPE loop for the autonomic management of cloud
infrastructures. In Proc. of the 6th IEEE Symposium on Computers and
Communications, pages 147–152, 2011. 27

182

[MG09] Peter Mell and Timothy Grance. The NIST Definition of Cloud Com-
puting. Technical Report 6, National Institute of Standards and Tech-
nology (NIST), 2009. 14, 18, 69

[MH13] A Marathe and Rachel Harris. A comparative study of high-
performance computing on the cloud. In Proc. of the 22nd International
Symposium on High-performance Parallel and Distributed Computing,
pages 239–250, 2013. 150

[MHCD10] Asit K. Mishra, Joseph L. Hellerstein, Walfredo Cirne, and Chita R.
Das. Towards characterizing cloud backend workloads. ACM SIG-
METRICS Performance Evaluation Review, 37(4):34, March 2010. 122,
124

[MWZ+13] Haibo Mi, Huaimin Wang, Yangfan Zhou, Michael Rung-Tsong Lyu,
and Hua Cai. Toward Fine-Grained, Unsupervised, Scalable Perfor-
mance Diagnosis for Production Cloud Computing Systems. IEEE
Transactions on Parallel and Distributed Systems, 24(6):1245–1255, June
2013. 26, 131

[NDM09] Hien Nguyen Van, Frederic Dang Tran, and Jean Marc Menaud. Au-
tonomic virtual resource management for service hosting platforms.
In Proc. of the 1st Workshop on Software Engineering Challenges of Cloud
Computing. Ieee, 2009. 1, 26

[NMRV11] Radheshyam Nanduri, Nitesh Maheshwari, A. Reddyraja, and Va-
sudeva Varma. Job Aware Scheduling Algorithm for MapReduce
Framework. In Proc. of the 3rd IEEE CloudCom, pages 724–729. Ieee,
November 2011. 129, 130, 142

[NN07] Hanne Riis Nielson and Flemming Nielson. Semantics with Applica-
tions: An Appetizer: An Appetizer. Springer, 2007. 58

[Obj03] Object Management Group (OMG). UML 2.0 Object Constraint Lan-
guage (OCL) Final Adopted specification, 2003. 33, 171

[Obj04a] Object Management Group (OMG). Human-Usable Textual Notation
(HUTN) Specification, 2004. 33, 171

[Obj04b] Object Management Group (OMG). MOF 2.0 Core Final Adopted
Specification, 2004. 33, 171

[Obj14] Object Management Group (OMG). XML Metadata Interchange (XMI)
Specification, 2014. 33, 171

[Ope14] OpenNebula. OpenNebula. http://opennebula.org, 2014. 10, 97

183

[Pat03] K Patel. XML Grammar and Parser for the Web Service Offerings Language.
PhD thesis, Carleton University, 2003. 163

[PB10] Siani Pearson and Azzedine Benameur. Privacy, Security and Trust
Issues Arising from Cloud Computing. In Proc. of the 2nd IEEE Cloud-
com, pages 693–702. IEEE, November 2010. 108

[PH05] Manish Parashar and Salim Hariri. Autonomic computing: An
overview. In Unconventional Programming Paradigms, pages 247–259.
Springer Berlin Heidelberg, 2005. 23, 26, 108

[PPT03] K Patel, B Pagurek, and V Tosic. Improvements in WSOL grammar
and premier WSOL parser. Technical report, Carleton University,
2003. 163, 165

[PSG06] Adrian Paschke and E Schnappinger-Gerull. A Categorization
Scheme for SLA Metrics. Service Oriented Electronic Commerce 80,
pages 25–40, 2006. 27

[QKP+09] Andres Quiroz, Hyunjoo Kim, Manish Parashar, Nathan Gnanasam-
bandam, and Naveen Sharma. Towards autonomic workload provi-
sioning for enterprise Grids and clouds. In Proc. of the 10th IEEE/ACM
International Conference on Grid Computing, pages 50–57. IEEE, October
2009. 26, 130

[QPGS12] Andres Quiroz, Manish Parashar, Nathan Gnanasambandam, and
Naveen Sharma. Design and evaluation of decentralized online cluste-
ring. ACM Transactions on Autonomous and Adaptive Systems, 7(3):1–31,
September 2012. 112

[RA01] S Ron and P Aliko. Service level agreements. Internet Next Generation
project (1999-2001), 2001. 28

[RBL+09] B Rochwerger, David Breitgand, Eliezer Levy, Alex Galis, Kenneth
Nagin, Ignacio M. Llorente, and Rubén Montero. The reservoir model
and architecture for open federated cloud computing. IBM Journal of
Research and Development, 53(4):1–17, 2009. 18

[RCL09] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A Taxonomy and
Survey of Cloud Computing Systems. In Proc. of the 5th International
Joint Conference on INC IMS and IDC, NCM ’09, pages 44–51. Ieee, 2009.
16

[RCV11] Massimiliano Rak, Antonio Cuomo, and Umberto Villano. CHASE:
An Autonomic Service Engine for Cloud Environments. In Proc. of

184

the 20th IEEE International Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises, pages 116–121. Ieee, June 2011.
26

[Red14] Redis. Redis Database. http://redis.io, 2014. 72, 97

[RWH11] Charles Reiss, John Wilkes, and Joseph L Hellerstein. {Google}
cluster-usage traces: format + schema. Technical report, Google Inc.,
Mountain View, USA, November 2011. 119

[SBK+13] Damian Serrano, Sara Bouchenak, Yousri Kouki, Thomas Ledoux,
Jonathan Lejeune, Julien Sopena, Luciana Arantes, and Pierre Sens.
Towards QoS-Oriented SLA Guarantees for Online Cloud Services.
In Proc. of the 13th IEEE/ACM CCGrid, pages 50–57. IEEE, May 2013.
35, 173

[Sch11] Robert P Schumaker. From Data to Wisdom : The Progression of
Computational Learning in Text Mining The DIKW Framework. Com-
munications of the International Information Management Association,
11(1):39–48, 2011. 41, 84

[SH06] Tao Shi and Steve Horvath. Unsupervised Learning With Random
Forest Predictors. Journal of Computational and Graphical Statistics,
15(1):118–138, March 2006. 115

[SI07] Bogdan Solomon and Dan Ionescu. Towards a real-time reference
architecture for autonomic systems. In Proc. of the 2nd International
Workshop on Software Engineering for Adaptive and Self-Managing Sys-
tems, 2007. 27

[SILI10] Bogdan Solomon, Dan Ionescu, Marin Litoiu, and Gabriel Iszlai. De-
signing autonomic management systems for cloud computing. In
Proc. of the International Joint Conference on Computational Cybernetics
and Technical Informatics, pages 631–636. IEEE, 2010. 26, 88

[SILM07] Bogdan Solomon, Dan Ionescu, Marin Litoiu, and Mircea Mihaescu.
A real-time adaptive control of autonomic computing environments.
In Proc. of the 17th International Conference on Computer Science and
Software Engineering, pages 1–13, 2007. 23

[Ske07] James Skene. Language support for service-level agreements for application-
service provision. Doctor of philosophy, University of London, 2007.
33, 35, 51, 58, 171, 173

[SLA14] SLA@SOI. SLA@SOI Project. http://sla-at-soi.eu/, 2014. 37, 169

185

[SLS+09] Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, and
Horst Bischof. On-line Random Forests. In Proc. of 12th IEEE ICCV,
pages 1393–1400. IEEE, September 2009. 42, 115

[SRJ10] Kunfang Song, Shufen Ruan, and Minghua Jiang. A Flexible Grid Task
Scheduling Algorithm Based on QoS Similarity. Journal of Convergence
Information Technology, 5(7):161–166, September 2010. 26, 130

[SSB+05] Tao Shi, David Seligson, Arie S Belldegrun, Aarno Palotie, and Steve
Horvath. Tumor classification by tissue microarray profiling: random
forest clustering applied to renal cell carcinoma. Modern pathology :
an official journal of the United States and Canadian Academy of Pathology,
Inc, 18(4):547–57, April 2005. 115

[SSPC14] Hongyang Sun, Patricia Stolf, Jean-Marc Pierson, and Georges Da
Costa. Multi-objective Scheduling for Heterogeneous Server Systems
with Machine Placement. In Proc. of the 14th IEEE/ACM CCGrid, pages
334–343. Ieee, May 2014. 26, 130

[Ste02] Roy Sterritt. Towards Autonomic Computing: Effective Event Ma-
nagement. In Proc. of the 27th Software Engineering Workshop, 2002.
3

[Sur15] SurfNet. The Distributed ASCI Supercomputer 2.
http://www.cs.vu.nl/das2/, 2015. 120

[TMPE04] V Tosic, W Ma, B. Poprrek., and B. Esfnndiari. Web Service Offerings
Infrastructure (WSOI) - A management infrastructure for XML Web
services. In Proc of the 4th NOMS, volume 1, pages 817–830, 2004. 165

[TNL10] Stefan Tai, Jens Nimis, and Alexander Lenk. Cloud Service Engineer-
ing Categories and Subject Descriptors. In Proc. of the 32nd ACM/IEEE
ICSE, pages 475–476, 2010. 18

[TPP02] V Tosic, B Pagurek, and K Patel. WSOL - A language for the formal
specification of various constraints and classes of service for web
services. In Proc. of the 9th International Conference On Web Services,
volume 3, pages 375–381, 2002. 163

[TPP03] V Tosic, K Patel, and B Pagurek. Reusability Constructs in the Web
Service Offerings Language. In Web Services, E-Business, and the Se-
mantic Web, pages 105–119. Springer Berlin Heidelberg, 2003. 163

[TPP+05] V Tosic, B Pagurek, K Patel, B Esfandiari, and W Ma. Management ap-
plications of the web service offerings language (WSOL). Information
Systems, 2005. 163

186

[UTD14] Rafael Brundo Uriarte, Francesco Tiezzi, and Rocco De Nicola. SLAC:
A Formal Service-Level-Agreement Language for Cloud Computing.
In Proc. of the 7th IEEE/ACM UCC (In Press), 2014. 9, 46

[UTN14] Rafael Brundo Uriarte, Francesco Tiezzi, and Rocco De Nicola. Defi-
nition of the Metrics and Elements of the SLAC Language. Technical
report, IMT Institute for Advanced Studies Lucca, Lucca, Italy, 2014.
55, 68

[UTT15] Rafael Brundo Uriarte, Sotirios Tsaftaris, and Francesco Tiezzi. Service
Clustering for Autonomic Clouds Using Random Forest. In Proc. of
the 15th IEEE/ACM CCGrid [Accepted with Shepherd], 2015. 9

[UW14] Rafael Brundo Uriarte and Carlos Becker Westphall. Panoptes: A
monitoring architecture and framework for supporting autonomic
Clouds. In Proc. of the 16th IEEE/IFIP NOMS, Krakow, Poland, 2014.
IEEE. 9, 88

[VHKA10] A. Viratanapanu, A. K. A. Hamid, Y. Kawahara, and T Asami. On de-
mand fine grain resource monitoring system for server consolidation.
Kaleidoscope: Beyond the Internet?-Innovations for Future Networks and
Services, 2010. 92

[WB10] Linlin Wu and Rajkumar Buyya. Service Level Agreement (SLA)
in Utility Computing Systems. Technical report, The University of
Melbourne, 2010. 28, 30, 31, 46, 167

[WBYT11] Phili Wieder, Joe M. Butler, Ramin Yahyapour, and Wolfgang Theil-
mann. Service Level Agreements for Cloud Computing. Springer New
York, New York, NY, 2011. 30

[WL12] Aurélien Wailly and Marc Lacoste. VESPA : Multi-Layered Self-
Protection for Cloud Resources. In Proc. of the 9th ACM ICAC, pages
155–159. ACM, 2012. 26

[Wri29] Frances Wright. Course of Popular Lectures. Office of the Free Enquirer,
1829. 41

[WST+11] Chengwei Wang, Karsten Schwan, Vanish Talwar, Greg Eisenhauer,
Liting Hu, and Matthew Wolf. A flexible architecture integrating
monitoring and analytics for managing large-scale data centers. Proc.
of the 8th ACM international conference on Autonomic computing, page
141, 2011. 87

[WSVY07] Timothy Wood, PJ Shenoy, Arun Venkataramani, and MS Yousif.
Black-box and Gray-box Strategies for Virtual Machine Migration. In
Proc. of the 4th NSDI, 2007. 130

187

[WWZ+13] Tao Wang, Jun Wei, Wenbo Zhang, Hua Zhong, and Tao Huang.
Workload-aware anomaly detection for Web applications. Journal of
Systems and Software, March 2013. 26, 131

[XJXC12] Caiming Xiong, David Johnson, Ran Xu, and JJ Jason J. Corso. Ran-
dom forests for metric learning with implicit pairwise position de-
pendence. Proc. of the 18th ACM SIGKDD, page 958, 2012. 115

[XW05] Rui Xu and Donald Wunsch. Survey of clustering algorithms. IEEE
Transactions on Neural Networks, 16(3):645–78, May 2005. 112

[YHC04] Miin-Shen Yang, Pei-Yuan Hwang, and De-Hua Chen. Fuzzy cluste-
ring algorithms for mixed feature variables. Fuzzy Sets and Systems,
141(2):301–317, January 2004. 112

[YJ06] Liu Yang and R Jin. Distance metric learning: A comprehensive
survey, 2006. 112

[YZ06] Chunyu Yang and Jie Zhou. HClustream: A Novel Approach for
Clustering Evolving Heterogeneous Data Stream. In Proc. of the 6th
IEEE ICDMW, pages 682–688. IEEE, 2006. 112

[Zel87] M Zeleny. Management support systems: towards integrated know-
ledge management. Human systems management, 7(1):59–70, 1987. 41,
158

[ZZX+10] Minqi Zhou, Rong Zhang, Wei Xie, Weining Qian, and Aoying Zhou.
Security and Privacy in Cloud Computing: A Survey. In Proc. of the
6th International Conference on Semantics, Knowledge and Grids, pages
105–112. Ieee, November 2010. 16

Unless otherwise expressly stated, all original material of whatever
nature created by Rafael Brundo Uriarte and included in this thesis,
is licensed under a Creative Commons Attribution Noncommercial
Share Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:rafael.uriarte@imtlucca.it

	List of Figures
	List of Tables
	Acknowledgements
	Publications
	Abstract
	1 Introduction
	1.1 Research Questions and Objectives
	1.2 Scientific Contributions
	1.3 Thesis Organization and Use Case

	2 Autonomic Clouds and SLAs: The State of the Art
	2.1 Cloud Computing
	2.2 Autonomic Computing
	2.3 Autonomic Clouds
	2.4 Service-Level-Agreements
	2.5 System Monitoring
	2.6 Knowledge Discovery Process
	2.7 Summary

	3 SLAC: A Language for the Definition of SLAs for Clouds
	3.1 Existing Definition Languages and the Clouds
	3.2 SLAC: Service-Level-Agreement for Clouds
	3.3 Extensions
	3.4 Software Tool
	3.5 Summary

	4 Panoptes: An Architecture for Monitoring Autonomic Clouds
	4.1 From Data to Knowledge In the Autonomic Cloud Domain
	4.2 Role of the Monitoring System and Domain Requirements
	4.3 Related Works
	4.4 Panoptes Architecture
	4.5 From SLA Metrics to Monitoring Modules
	4.6 Implementation
	4.7 Experimental Evaluation
	4.8 Summary

	5 Similarity Learning in Autonomic Clouds
	5.1 Problem Formulation
	5.2 Requirements of Clustering Techniques in Clouds
	5.3 Management using Clustering and Similarity Learning
	5.4 Experiments
	5.5 Related Works
	5.6 Summary

	6 Polus: Integration and Use of SLAC, Panoptes and Similarity Learning
	6.1 Polus Framework
	6.2 Integration of the Proposed Solutions
	6.3 Use Case: Scheduling in Hybrid Clouds
	6.4 Summary

	7 Conclusions
	7.1 Thesis Summary
	7.2 Research Findings
	7.3 Limitations on the Study
	7.4 Future Works

	A Overview of the Existing SLA Definition Languages
	A.1 WSOL
	A.2 WS-Agreement
	A.3 SLA*
	A.4 SLAng
	A.5 CSLA
	A.6 Overview of the Languages

	References

