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Abstract

Among the several applications of fuzzy set theory, fuzzy-rule
based systems (FRBSs) have proven to be extremely success-
ful in a wide range of fields, including, for instance, control,
classification, regression, and pattern recognition. In particu-
lar, FRBSs have raised attention for their twofold nature, i.e.,
for their ability to handle linguistic concepts and, at the same
time, to perform an accurate modeling of input-output rela-
tions. Hence, several researchers and practitioners have de-
veloped learning algorithms for the automatic identification
of FRBSs from real-world data. Such algorithms include the
hybridizations of FRBSs with other popular soft computing
techniques, i.e., artificial neural networks and evolutionary al-
gorithms. In this framework, context adaptation of fuzzy sys-
tems is considered as an emerging paradigm which has been
analyzed only in a few works. In a nutshell, context adap-
tation consists in tuning some of the features of an already
existing FRBS, so as to adapt it to a new configuration of the
external environment. This task has usually been approached
in the literature as scaling fuzzy sets from a universe of dis-
course to another. The basic idea presented here is to achieve
context adaptation by exploiting a set of operators which al-
low performing a more flexible tuning than scaling-function-
based techniques, while keeping the semantics and the inter-
pretability of the original FRBS unaltered. Nonetheless, this
work collects previous approaches and organizes them in a
common framework, thus providing a reference study on the
topic. In the development of the thesis, we first recall funda-
mentals of fuzzy set theory, fuzzy logic, and fuzzy systems.
We survey previous work on related subjects and introduce

xix



the context adaptation problem in detail. Second, we develop
a novel context adaptation approach. To this aim, we intro-
duce a flexible non linear scaling function and four orthogo-
nal fuzzy modifiers which allow adapting an FRBS to any con-
text. Since the modeling capabilities of the operators may neg-
atively affect the semantics of the FRBS, we study two novel
indices to properly measure interpretability and prevent such
degradation. The proposed learning approach is based on
evolutionary algorithms and takes both the flexibility intro-
duced by the operators and the interpretability assessed by
the indices into account. We test our context adaptation tech-
nique on four different data sets, providing detailed examples
and comparisons. Finally, we draw concluding remarks and
we discuss future extensions and possible research lines.

xx



Chapter 1

Introduction

Fuzzy set theory (FST) was introduced by Zadeh in his seminal work Fu-
zzy sets, published on Information and Control in 1965 (Zad65). The origi-
nal idea that lies behind fuzzy sets is that, while some concepts are easily
represented by classical set theory, other are difficult to express within
such framework, because they intrinsically involve some degrees of un-
certainty and vagueness.

For instance, consider the set comprising the “people under 18 years in
Lucca” and the one comprising “young people in Lucca”. The former set
can be easily and exclusively identified by computing the age of all the
inhabitants of Lucca, as in Figure 1(a), while the latter is quite imprecisely
defined and difficult to identify with traditional mathematical tools. To
take such uncertainty and vagueness into account, Zadeh introduced the
notion of fuzzy set.

Typically, the characteristic function of a set has only two possible val-
ues: zero, if the element does not belong to that set, or one, if the element
is part of the set. Zadeh’s idea is to allow the values of the characteris-
tic function varying in the continuous range [0, 1], thus giving to the set
a much more effective expressive power in representing imprecise con-
cepts. Indeed, using a fuzzy set, we may define the set of “young people in
Lucca” as in Figure 1(b), i.e., giving the maximum degree of membership
of 1 to people with age under 25, and decreasing the degree of member-
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(a)

(b)

Figure 1: (a) Characteristic function of the set “people under 18 in Lucca” and
(b) a possible MF for the fuzzy set “young people in Lucca”

ship until reaching 0 for people over 40. This can be linguistically inter-
preted as “people under 25 are young to the maximum degree, people from 25
to 40 are still young but not completely, people over 40 are not young anymore”.
Such real-valued characteristic functions are known as membership func-
tions (MFs).

Extending the idea of fuzzy membership to logic is straight forward:
rather than using just false and true as truth degrees, we consider a whole
set of continuous truth values ranging in the interval [0, 1]. Fuzzy logic
(FL), differently from classical two-valued logics, aims to model the im-
precise way of reasoning of human brain and its ability to make rational
decisions based on uncertainty and imprecision. FL is often related to
computing with words by its creator (Zad96), because, in fuzzy inference
systems, fuzzy logic is commonly employed to perform computation over
linguistic variables.
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FST and FL have proven to be very effective in commercial and indus-
trial applications, including biomedical engineering, robotics, data anal-
ysis and regression, pattern recognition, image processing, and, more in
general, in several kinds of filtering, modeling and control applications
(KY95; KY96; BKKP99; DLJ00; Ros04).

We remark that FST and FL are building blocks of the wider frame-
work of soft computing (SC), a collection of techniques designed to handle
extremely hard problems in which the application of traditional appro-
aches fails. As stated by Zadeh (Zad94),

Soft computing is not a homogeneous body of concepts and
techniques. Rather, it is a partnership of distinct methods that
in one way or another conform to its guiding principle. At
this juncture, the dominant aim of SC is to exploit the toler-
ance for imprecision and uncertainty to achieve tractability, ro-
bustness, and low solution cost. The principal constituents of
SC are fuzzy logic, neurocomputing, and probabilistic reason-
ing, with the latter subsuming genetic algorithms, belief net-
works, chaotic systems, and parts of learning theory. [...] In
large measure, fuzzy logic, neurocomputing, and probabilis-
tic reasoning are complementary, not competitive. [...] It is
advantageous to combine them.

A number of techniques have been developed to ease the develop-
ment of systems based on fuzzy techniques from real-world data, includ-
ing hybrid systems built upon the combination with other SC techniques
such as artificial neural networks (Jan93; Hay94; Abr01) and evolutionary
algorithms (Mic99; CGH+04; Her08).

Getting back to the example on young people, it is worth noting that
the concept of “young people in Lucca” is not only intrinsically fuzzy and
imprecise, but, also, it cannot be uniquely and universally defined. In-
deed, different people could define different fuzzy sets to represent the
same shared concept of youth. To better illustrate this idea, let us refer to
a clear example provided by Cordón et al.
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In (CHMV01), the authors state that people tend to set the upper limit
of the support of the fuzzy set young not at any fixed value, like 40 in the
previous example, but rather to a value equal to own age + 5. In other
words, the exact definition of the fuzzy set depends on an external factor
(i.e., own age) which is strongly user-dependent. Although funny, this is
a typical example of context adaptation of a fuzzy set.

Basically, context adaptation of fuzzy systems refers to a set of tech-
niques that are used to generate specialized instances of fuzzy systems
from generic models. In the past fifteen years, context adaptation has
been considered a promising approach to the development of algorithms
for the automatic identification of fuzzy systems from data, but it has
never been deeply explored.

Hence, the primary objective of this thesis is to serve as a reference for
the topic of context adaptation of fuzzy system. To this aim, we collected
and surveyed previous work and provided a general framework for con-
text adaptation which is coherent with existing approaches. Further, we
introduced novel operators and studied interpretability issues related to
context adaptation. Finally, we exploited evolutionary algorithms to per-
form automatic adaptation from real-world data.

The rest of the thesis describes our research in detail and is organized
as follows.

• Chapter 2 (Backgrounds and Previous Work) is divided in two
main Sections. In Section 2.1, we recall fundamentals and references
of FST, FL, and fuzzy systems. In Section 2.2, we first introduce the
concept of context and its relation with FST. Then, we survey pre-
vious work on related topics and, finally, we develop a common
framework that serves as a reference for the following Chapters.
Part of the work of Section 2.2 has been published in (BLMS07b).

• In Chapter 3 (Novel Operators for Context Adaptation of Fuzzy
Partitions), we introduce some novel operators that have been care-
fully designed to perform a flexible context adaptation of fuzzy sets.
For each operator, we provide a detailed analysis and sample appli-
cations. Preliminary versions of these operators have been intro-
duced in (BLM06a; BLM06b; BLMS08; BLM08).
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• In Chapter 4 (Interpretability Issues in Context Adaptation of Fu-
zzy Systems), we deal with the accuracy-interpretability trade-off
of fuzzy systems. We analyze the effects of a flexible context adap-
tation on the interpretability of a fuzzy partition and we develop
two alternative approaches to provide countermeasures. Part of
the work of Chapter 4 has been published in (BLMS07a; BLM08;
BLMS08; BDLM08).

• In Chapter 5 (Evolutionary Algorithms for Automatic Context Ad-
aptation of Fuzzy Systems), we introduce three evolutionary algo-
rithms that, exploiting the operators introduced in Chapter 3 and
the approaches to preserve interpretability developed in Chapter
4, can be used for the identification of context-adapted genetic fu-
zzy systems. Preliminary versions of the proposed algorithms have
been developed in (BLM06a; BLM06b; BLMS07a; BLM08; BLMS08).

• In Chapter 6 (Experimental Results), we assess the proposed oper-
ators and algorithms on four different context-aware data sets.

• Finally, in Chapter 7 (Conclusion and Future Work), we draw fi-
nal conclusions. Moreover, we analyze possible extensions of the
current work and we hypothesise future research trends on context
adaptation of fuzzy systems.

5



Chapter 2

Backgrounds and
Previous Work

In this Chapter, we recall fundamentals and references on fuzzy set the-
ory, fuzzy logic, and fuzzy systems. Further, we survey previous work on
context adaptation of fuzzy systems and provide a general introduction
on the topic.

2.1 Backgrounds

FST and FL are well-estabilished topics that have been studied and ap-
plied for decades. In this Section, we provide a short reference of typical
definitions and concepts that will be particularly useful in the rest of the
thesis.

The interested reader can find several authoritative resources related
to backgrounds of FST and FL, for instance in (Zad65; Zad73; Mam76;
Zad94; KY95; KY96; DLJ00; CS02; CCHM03; Ros04).

2.1.1 Fundamentals of Fuzzy Set Theory

This Section introduces some common definitions about FST that will be
exploited in the following Chapters. Similar definitions can be found in
(dO99; DLJ00; Coc01; CK02).
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Definition 1 (Fuzzy set) Let U be a space of points (objects), where a generic
element of U is denoted by x. Thus, U = {x}. A fuzzy setA in U is characterized
by a membership function A(x) : U → [0, 1], where [0, 1] ⊂ R and µA(x̂)
denotes the degree of membership to which x̂ belongs to A.

For the sake of readability, we will often use the universally accepted
notation that identifies a fuzzy set with its MF, i.e., we will denote µA(x)
as A(x). It can be observed that the definition of fuzzy set extends the
traditional definition of set: in the following, we will refer to traditional
sets as crisp sets.

Definition 2 (Crisp set) A crisp set A is a fuzzy set where ∀x ∈ U , A(x) =
0 ∨A(x) = 1.

Two useful concepts that will be exploited in Chapter 3 are those of
support and core of a fuzzy set.

Definition 3 (Support of a fuzzy set) The support of a fuzzy setA is the crisp
set S(A) = {x ∈ U|A(x) > 0}.

Definition 4 (Core of a fuzzy set) The core of a fuzzy set A is the crisp set
C(A) = {x ∈ U|A(x) = 1}.

FST extends the basic concepts and operators of equivalence, comple-
ment, subsetting, intersection and union defined in traditional set theory.
To define FST operators, we first have to introduce the concepts of t-norm
and t-conorm.

Definition 5 (T-norm) A t-norm t is a function t : [0, 1] × [0, 1] → [0, 1]
such that, ∀a, b, d ∈ [0, 1], (i) t(a, 1) = a, (ii) b ≤ d ⇒ t(a, b) ≤ t(a, d),
(iii) t(a, b) = t(b, a), and (iv) t(a, t(b, d)) = t(t(a, b), d). A t-norm is usually
continuous and such that t(a, a) ≤ a ∀a ∈ [0, 1].

Definition 6 (T-conorm) A t-conorm s is a function s : [0, 1]× [0, 1]→ [0, 1]
such that, ∀a, b, d ∈ [0, 1], (i) s(a, 0) = a, (ii) b ≤ d ⇒ s(a, b) ≤ s(a, d), (iii)
s(a, b) = s(b, a), and (iv) s(a, s(b, d)) = s(s(a, b), d). A t-conorm is usually
continuous and such that s(a, a) ≥ a ∀a ∈ [0, 1].

We remark that a t-conorm can be defined in terms of a t-norm, as

s(a, b) = 1− t(1− a, 1− b), ∀a, b ∈ [0, 1]. (2.1)
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Definition 7 (Empty fuzzy set) A fuzzy setA is empty iff ∀x ∈ U ,A(x) = 0.

Definition 8 (Equivalence of fuzzy sets) Two fuzzy sets A and B in U are
equal iff ∀x ∈ U , A(x) = B(x).

Definition 9 (Fuzzy subset) Given two fuzzy sets A and B, A ⊆ B holds iff
∀x ∈ U , A(x) ≤ B(x).

Definition 10 (α-cut) Given α ∈ [0, 1], the α-cut Aα of a fuzzy set A is the
crisp set Aα = {x|A(x) ≥ α}.

Given Definitions 2 – 4 and 9, we observe that the support and the
core of a fuzzy set A can be interpreted as the smallest crisp superset
and the largest crisp subset of A, respectively. Also, we remark that, in
light of Definition 10, C(A) and S(A) are the 1-cut and the 0+-cut of A,
respectively.

Definition 11 (Complement of a fuzzy set) The complement Ā of a fuzzy
set A is characterized by the MF Ā(x) = 1−A(x).

Definition 12 (Intersection of fuzzy sets) Given two fuzzy sets A and B,
their intersectionC = A∩B is characterized by the MFC(x) = t (A (x) , B (x)),
where t(a, b) is a t-norm.

Definition 13 (Union of fuzzy sets) Given two fuzzy sets A and B, their
union C = A ∪ B is characterized by the MF C(x) = s (A (x) , B (x)), where
s(a, b) is a t-conorm.

In the rest of the thesis, the min and the max operators are used as
t-norm and t-conorm to compute intersection and union of fuzzy sets,
respectively. Indeed, these functions are widely accepted as standard FST
operators in the literature.

The following definitions will be useful to measure and classify fuzzy
sets in the rest of the thesis.

Definition 14 (Cardinality of a fuzzy set) The cardinality of a fuzzy set A

is given by |A| =
∫
U
A(x) dx.

Definition 15 (Height of a fuzzy set) The height of a fuzzy set A is given by
h(A) = sup

x∈U
A(x).
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Definition 16 (Normal fuzzy set) A fuzzy set A is normal iff h(A) = 1, sub-
normal iff h(A) < 1.

Definition 17 (Convex fuzzy set) A fuzzy set A is convex iff ∀l, r, x ∈ X ,
l ≤ x ≤ r ⇒ A(x) ≥ min(A(l), A(r)).

Definition 18 (Unimodal fuzzy set) A fuzzy set A is unimodal iff it is nor-
mal and its core C(A) is a convex set.

Definition 19 (Continuous fuzzy set) A fuzzy setA is continuous iff its MF
is continuous in U .

Definition 20 (Fuzzy number) A fuzzy number is a normal and convex fuzzy
set defined on the universe R of real numbers.

We remark that fuzzy numbers are usually defined on a bounded uni-
verse U = [umin, umax] ⊂ R. The following concepts related to fuzzy mod-
ifiers will be of particular interest in Chapter 3. Some of these definitions
are taken by (CK00; Coc01; CK02).

Definition 21 (Fuzzy modifier) Let F(U) be the set of all fuzzy sets on U . A
fuzzy modifier is any general mapping m : F(U)→ F(U).

Definition 22 (Expansive fuzzy modifier) A fuzzy modifier m is expansive
iff ∀A ∈ F(U), A ⊆ m(A).

Definition 23 (Restrictive fuzzy modifier) A fuzzy modifierm is restrictive
iff ∀A ∈ F(U), A ⊇ m(A).

Definition 24 (Inclusive fuzzy modifier) A fuzzy modifier is inclusive if it
is either expansive or restrictive.

Definition 25 (Pre- and post-modifier) A fuzzy modifier m in U is decom-
posable in a pre- and a post-modifier iff there exists a mapping p : U → U and
a mapping q : [0, 1] → [0, 1] such that ∀A ∈ F(U), m(A(x)) = q(A(p(x))).
Relations p and q are called the pre-modifier and the post-modifier of m, respec-
tively.

Definition 25 can be detailed as follows.

Definition 26 (Pure pre-modifier) A fuzzy modifier m is said to be a pure
pre-modifier iff it is decomposable and q is the identity relation, i.e. iffm(A(x)) =
A(p(x)).
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Definition 27 (Pure post-modifier) A fuzzy modifier m is said to be a pure
post-modifier iff it is decomposable and p is the identity relation, i.e. iffm(A(x)) =
q(A(x)).

Finally, we define the concept of fuzzy relation, which will be exploited
in the following Section to define fundamentals of fuzzy logic and in
Chapter 4 to derive an interpretability index based on fuzzy ordering re-
lations.

Definition 28 (Fuzzy relation) Given a set of crisp sets U1, ...,Un, a fuzzy
relationR : U1× ...×Un → [0, 1] is a fuzzy set defined on the Cartesian product
of crisp sets U1, ...,Un, where tuples belonging to the Cartesian product may have
varying degrees of membership within the relation.

2.1.2 Fundamentals of Fuzzy Logic

The idea of a multi-valued logic was not completely new at the time
Zadeh introduced it (Bru92). Indeed, Plato, Heraclitus and other ancient
Greek philosophers had already noted that the law of the excluded middle,
which states that every proposition must either be true or false, is some-
how faulty.

At the beginning of the 20th century, Łukasiewicz introduced a multi-
valued logic with a third unknown value, together with new axioms and
an alternative logic theory (Bor70). After that first attempt, a number of
multi-valued logics have been developed: among them all, the infinite-
valued logic introduced by Zadeh is by far the most well-known and ap-
plied. The interested reader can find an historical perspective of fuzzy
logic in (Ros04).

Fuzzy logic is isomorphic to fuzzy set theory in the same way as tradi-
tional two-valued logic is isomorphic to crisp set theory (KY95). Roughly
speaking, the isomorphism follows from the fact that the logic operations
have the same mathematical form as the corresponding operations on fu-
zzy sets. Since fuzzy operators can be implemented in different ways, a
variety of fuzzy set theories and, therefore, of fuzzy logics can be derived.

This Chapter introduces the concepts of fuzzy logic that are exploited
to develop the fuzzy systems which will be shown in Section 2.1.3.
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Definition 29 (Linguistic variable) A linguistic variableX is a variable whi-
ch takes linguistic terms as values. A linguistic variable is defined by a quintuple
(X, T (X), U , R,M), where X is the name of the variable (e.g., Age), T (X) is
the set of linguistic terms of X (e.g., T (X) = {young,old}), U is the universe
of discourse of the base variable, R is a syntactic rule for generating composed
linguistic terms of X (e.g., very cold or not young), and M : T (X) → F(U) is
a semantic rule mapping each element in T (X) with a fuzzy set defined over the
universe of discourse U of the base variable.

Most of the times, fuzzy numbers are used as meanings of linguistic
terms. Once we have defined linguistic variables, it is possible to derive
an approximate reasoning process, by introducing fuzzy logic connectives
and inference rules.

Definition 30 (Fuzzy proposition) A proposition P in fuzzy logic takes the
form P : x is A, where x is a variable defined on the universe U and A is a
linguistic term bound to a fuzzy set A(x) ∈ F(U). The degree of truth of P is
T (P ) = A(x).

Definition 31 (Negation) Given a proposition P : x is A, the degree of truth
of ¬P is T (¬P ) = Ā(x) = 1−A(x).

Definition 32 (Conjunction) Given two propositions P : x is A and Q : y is
B, the degree of truth of P ∧Q is T (P ∧Q) = t(A(x), B(y)), where t(a, b) is a
t-norm.

Definition 33 (Disjunction) Given two propositions P : x is A and Q : y is
B, the degree of truth of P ∨Q is T (P ∨Q) = s(A(x), B(y)), where s(a, b) is
a t-conorm.

Definition 34 (Implication) Given two propositions P : x is A and Q : y is
B, the degree of truth of P → Q is T (P → Q) = I(A(x), B(y)), where I :
[0, 1] × [0, 1] → [0, 1] is any fuzzy relation which extends boundary conditions
of classical implication, i.e. I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.

As in the previous Section, we refer to min and max as standard t-
norm and t-conorm to implement the conjunction and disjunction logical
operators, respectively. On the contrary, there is no standard definition
of implication on which authors widely agreed. Surprisingly, one of the
most popular choice for fuzzy implication, which has been introduced by
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Mamdani in (Mam76), does not comply with all of the four constraints.
Indeed, Mamdani proposed the use of the min function also to implement
implication, i.e.

I (A (x) , B (y)) = min (A (x) , B (y)) . (2.2)

Trivially, min(0, 1) = 0 and, therefore, the boundary conditions are not
satisfied. Nonetheless, the cases in which we haveA(x) = 0 andB(y) = 1
are pretty exceptional in real-world applications. Moreover, Mamdani’s
implication is computationally cheap and, therefore, it is widely applied
to fuzzy systems. In the rest of this thesis, we will consider Mamdani’s
implication as the standard form of implication.

The essential concept of approximate reasoning is that, given an infer-
ence rule and an uncertain value for the premise, a new consequent can
be derived. This can be achieved by several different inference engines,
including the well-known generalized modus ponens.

Definition 35 (Generalized modus ponens) Given a rule

r : if x is A then y is B,

and a premise
x is A′,

where x ∈ U , y ∈ V , A,A′ ∈ F(U), and B ∈ F(V), we can derive a new
consequent B′ via the generalized modus ponens as

B′(y) = sup
x∈U

t (A′ (x) , I (A (x) , B (y))) , (2.3)

where t is a t-norm and I is a fuzzy implication.

Obviously, the generalized modus ponens can be implemented in several
different ways, depending on the choice of the t-norm and of the impli-
cation. As stated above, we make use of the min operator to implement
both t and I .

2.1.3 Fuzzy Systems

Generically speaking, any system based on FST and/or FL techniques
may be considered as a fuzzy system. Hence, fuzzy systems may in-
clude, for instance, clustering applications (DLJ00; XI05; CLM06), filters
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Figure 2: The architecture of a Mamdani-type FRBS

for image processing (BKKP99), linguistic models (PV99), fuzzy-logic-
enabled data bases (BKP05), service agreement frameworks (BBM07), etc.
Nonetheless, the term fuzzy system is commonly employed to refer to a
given class of expert systems characterized by a linguistic rule base and
by an FL-based inference engine. To avoid confusion, in the following we
will often refer to such expert systems as fuzzy rule based systems (FRBSs),
or fuzzy inference systems (FISs).

Due to the increasing popularity of FST-based techniques, different
kinds of FRBSs have been developed to cope with several applications,
including FRBSs for classification, regression, and control. Specifically,
we refer to Mamdani-type FRBSs (MA75), which are, by and large, recog-
nized as the most transparent (i.e., human-interpretable) kind of FRBSs.

Formally, a Mamdani-type FRBS is a mathematical model that, given
n inputs x1, ..., xn, computes an output y, exploiting the knowledge coded
in a rule base (RB) and in a data base (DB), and an inference process based
on fuzzy logic.

The RB is composed of R linguistic rules in the form

r : if X1 is Ar1(x1) and ... and Xn is Arn(xn) then Y is Br(y). (2.4)

A linguistic variable Xi is defined for each input xi, and, therefore,
Ari (xi) are the fuzzy sets associated with the linguistic terms of Xi by
the semantic rule M , as explained in Definition 29. In the following, we
will blur the distinction between linguistic terms and associated fuzzy
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sets. Similarly, a linguistic variable Y is also defined for the output y.
The knowledge represented by the linguistic variables is comprised in the
DB. The DB and the RB are globally referred to as the knowledge base (KB).
The output y is computed by the FL-based inference engine, which, in a
nutshell, consists in the aggregation of the consequents of all the rules that
match with the inputs. The overall structure of a Mamdani-type FRBS is
depicted in Figure 2.

The steps performed by the inference engine to compute the output
are the following.

1. Fuzzification: compare the crisp input variables with the MFs of the
antecedent part of each rule, so as to compute the membership de-
grees of the inputs for each linguistic term.

2. Evaluation of antecedents: for each rule, compute its firing strength by
combining the membership values of each term in the antecedent
with the conjunction operator.

3. Implication: apply the generalized modus ponens to compute the
consequent of each fired rule.

4. Aggregation of consequents: aggregate the consequents of the fired
rules with the union of fuzzy sets.

5. Defuzzification: compute the crisp output by applying a defuzzifica-
tion operator to the aggregated consequent.

For the sake of readability, we skip the formal description of the fu-
zzy inference process. Detailed analysis of the architecture and of the
inference process of Mamdani-type FRBSs can be found in (MA75; Bab02;
Ros04).

As stated by Zadeh in (KY96), a Mamdani-type FRBS has two different
levels of interpretation.

• A surface structure, i.e. the RB, which represents the pure symbolic
and logical meaning of the rules.
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• A deep structure, i.e. the whole KB, which comprises the specific
computation-oriented definition of the rules, including their math-
ematical formulation given by the fuzzy sets associated with the
linguistic terms.

Also, we remark that, as stated in (Gui01),

The strength of fuzzy inference systems relies on their twofold
identity. On the one hand, they are able to handle linguistic
concepts. On the other hand, they are universal approxima-
tors able to perform non linear mappings between inputs and
outputs.

Indeed, FRBSs are usually considered as both interpretable, i.e., their struc-
ture and reasoning process can be easily understood by humans, and
accurate, i.e., when applied to real-world problems, they achieve perfor-
mance which are comparable with other state-of-the-art modeling and
control techniques, such ad PID controllers, artificial neural networks,
Bayesian classifiers, Kalman filters, etc.

2.1.4 Hybrid Fuzzy Systems

The most well-known drawback of FRBSs consists in the fact that they
are somehow static, i.e., FRBSs are not intrinsically suitable to perform
adaptive modeling of real-world data. Hence, recognizing the extremely
interesting properties of FRBSs in terms of interpretability, readability and
human-oriented representation, various researchers have tried to aug-
ment FRBSs with learning and adaptation capabilities.

As stated in Chapter 1, two of the most successful approaches in this
field have been the hybridizations achieved in the framework of soft com-
puting, using artificial neural networks and evolutionary algorithms. This
hybridization process led to the development of a whole branch of lit-
erature in which FRBSs are used as classification, regression and pre-
diction tools built from data. In these solutions, however, the original
nice properties of readability and interpretability of FRBSs are usually
lost to achieve better accuracy. Indeed, in the past, several researchers
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have considered FRBSs as black boxes, aiming to obtain perfect models
of the training data rather than to extract significant general rules and
concepts. This issue, which is extensively addressed in Chapter 4 with
a specific focus on CA-related algorithms, is usually referred to as the
accuracy-interpretability trade-off (CCHM03; CGH+04).

In the last years, this trend has been reversed, and the development of
approaches based on interpretability-oriented algorithms has become an
extremely popular topic (dO99; Gui01; JGSRB01; CCHM03; Nau03; BS03;
CGH+04; PD04; MJG05; WKJ+05; CDLM07; GRP+07; IN07; Ish07).

In the following two Sections, we briefly review neuro-fuzzy systems
and genetic fuzzy systems. For detailed surveys of hybrid fuzzy systems,
we refer the interested reader to (Abr01; CGH+04; Her08).

2.1.4.1 Neuro-Fuzzy Systems

Artificial neural networks (ANNs) are computational models that, akin to
the structure of human brain, are composed of a network of simple inter-
connected nodes called artificial neurons (Hay94). ANNs have proved to
be useful in typical applications performed by the human brain, such as
image perception, pattern recognition, regression, classification and pre-
diction. Typically, ANNs are able to learn from data, thanks to learning
algorithms which adapt the structure of the network such that the outputs
fit the examples given as training set.

As stated above, ANNs are also used in hybridization of fuzzy sys-
tems to provide them with learning capabilities. Usually, the hybridiza-
tion maps the FRBS into an ANN composed of several layers of neurons,
where each layer implements a step of the inference process described in
Section 2.1.3. Then, standard or ad-hoc learning algorithms are used to
modify the parameters of the system so as to model the training data.

The changes induced in the system can simply regard the parame-
ters of the MFs or, in more complex approaches, the overall structure of
the system, including the rules and even the implementation of the im-
plication function (Abr01). One of the most popular neuro-fuzzy system
is ANFIS (Jan93), which implements a Sugeno-type FRBS, a kind of FR-
BSs particularly suited for regression applications. Indeed, in a Sugeno-
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type FRBS, the consequents of the rules are not fuzzy propositions ex-
pressed by linguistic terms, as in Mamdani-type FRBSs, but rather n-th
order polynomial functions. Further, thanks to their architecture, Sugeno-
type FRBSs can be seamlessly trained by means of backpropagation-like
algorithms.

2.1.4.2 Genetic Fuzzy Systems

Genetic algorithms (GAs) are a gradient-free, general-purpose and po-
pulation-based meta-heuristic technique employed to solve optimization
problems (MS96; HLV98; Mic99; Jon06). GAs evolve solutions to complex
problems by imitating natural selection, i.e., the process of adaptation to
the environment performed by living beings. Among their most interest-
ing features, we remark the following.

• GAs are a population-based search strategy, i.e., they do not find a
look for a single solution to a problem, but rather explore the search
space with a set of candidate solutions.

• GAs are able to find “good solutions” to an unconstrained problem
in a reasonable time, and they always find at least one “good” sub-
optimal solution.

• GAs do not require a differentiable objective function and can be
tailored to handle any kind of constraint.

• GSs can solve real-, binary-, or integer-valued problems by choosing
a proper representation schema for the chromosome.

• GAs can be adapted in given meta-parameters (e.g., number of in-
dividuals in the population), so as to scale well as the problem size
increases.

• GAs can be customized to include some heuristics and experts kn-
owledge in the generation of the initial population and in the design
of the genetic operators.
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Figure 3: The steps of the SGA

As stated above, a GA determines, rather than a single solution, a
whole population consisting of individuals, which are all candidate so-
lutions to the problem. The distinctive features of each individual are
mapped into a structure called chromosome. The chromosome is a string
of genes, whose values can be chosen in a set of symbols. An application-
dependant process generates the individual by decoding its chromosome.
Depending on the nature of the problem, the symbols used as values of
the genes can be binary, integer or real numbers. Once an individual is
generated, a fitness function is employed to evaluate its goodness as a so-
lution to the problem. Usually, low fitness values are given to the best
individuals (minimization problem). The chromosome is sometimes also
called genotype, while the decoded version of the solution is referred to as
the phenotype. For the sake of simplicity, in the following we will blur the
definitions of individual and chromosome.

A GA starts at time t = 0 with an initial population generated either
randomly, or with some heuristic approach that exploits the knowledge of
an expert in the problem domain. The algorithm then proceeds in steps
called generations. At each generation t, a new population P (t + 1) is
evolved from P (t). As generations pass, the population should improve
globally thanks to the application of genetic operators that mimic the nat-
ural evolution mechanisms. To this aim, the best individuals are chosen
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from P (t) (selection) to be mated (crossover) and slightly modified (muta-
tion), so as to create the new population P (t+ 1).

The selection operator is used to decide which individuals in P (t)
should be chosen to generate P (t+ 1). Optionally, an elite of the selected
individuals (i.e. a small subset of the best performing individuals) sur-
vives and is moved from P (t) to P (t+ 1) without any change.

The rest of the population is obtained through a crossover operator
which chooses some of the individuals and mates them, that is, substi-
tutes them with their offspring, which are newly generated individuals
obtained by mixing the genetic material in the parents’ chromosomes.
The actual implementation of a crossover operation very much depends
on the coding schema of the chromosome.

Finally, the mutation operator is invoked to introduce some new ge-
netic material in the population by randomly modifying the values of
some genes. Again, different kinds of mutation operators can be defined
to handle different sets of symbols.

The population continues to evolve until a stopping criterion is ful-
filled, the simplest being a maximum number of generations.

The overall algorithm described above is known as the simple genetic
algorithm (SGA) and is also depicted in Figure 3.

Note that, while some classes of problems can be solved by directly
applying the SGA, more often the development of such an algorithm for
a specific problem requires an elaborated engineering process involving
a good amount of design and tailoring. Indeed, the typical design of a
GA for a given problem includes at least finding suitable representation
schemata, coding strategies, genetic operators, and values of parameters.

Recently, sophisticated algorithms based on the paradigm of evolu-
tionary computation have gained popularity for hybridization with FR-
BSs. For instance, multi-objective evolutionary algorithms (MOEAs) like NS-
GA-II (DAPM02) and PAES (KC00), and cooperative coevolutionary strate-
gies (PJ00) have been largely explored. To refer to the set of all evolutiona-
ry-inspired techniques such as GAs, MOEAs, cooperative coevolutionary
strategies, etc, we will sometimes use the generic term of evolutionary al-
gorithms (EAs).
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Figure 4: The architecture of a GFRBS

A genetic fuzzy system (GFS) is a fuzzy system modified by a learning
process based on a EA. Similarly, we talk of a genetic FRBS (GFRBS) when
the hybridized fuzzy system is an FRBS. Figure 4, taken by (CGH+04),
shows the typical architecture of a GFRBS.

In a GFRBS, the learning process based on EAs may concern different
parts of the FRBS. For instance, some approaches exploit the EA to iden-
tify the overall structure of the FRBS (KB and even operators employed
in the inference engine), whilst some other just perform a parameter opti-
mization of the MFs comprised in the DB. Obviously, such choice reflects
in both the encoding of the individuals (i.e., in the schema of the chro-
mosome) and in the computational complexity of the genetic operators.
In (Her08), Herrera proposed a taxonomy of GFRBSs composed by two
classes.
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• Genetic tuning is performed if the RB of the FRBS is previously ex-
isting and, therefore, the DB is the only part to be optimized.

• Genetic learning is performed if the overall KB has to be identified.

We remark that, as stated by Cordón et al. in (CGH+04), GFRBSs are
often preferable to neuro-fuzzy systems. Indeed,

In some cases, genetic optimization of a fuzzy system is prefer-
able rather than using a neuro-fuzzy approach, because GAs
permits a deeper control of the optimization process: to some
extent, we could say that, while neuro-fuzzy systems are usu-
ally transparent to the designer, in that he/she can neither
control the training process nor interpret the final result, GFSs
are usually easier to deal with and can be modeled also to
cover aspects of user-defined constraints and interaction (in-
cluding, e.g., interpretability).

GFRBSs have proven to be extremely effective in a number of appli-
cations (SR00; RP01; CGH+04; WKJ+05; CDLM07). Hence, several dif-
ferent approaches have been developed in the literature. Whilst early
approaches like (Kar91) were based on the SGA described above, in the
last years other evolutionary techniques have been applied to GFRBSs so
as to handle constrained learning (SR00; CCdJH05), multi-objective opti-
mization (WKJ+05; GRP+07; IN07; Ish07; CDLM07), and even coopera-
tive coevolution (PRS01; DZG04; ZYYLY+06; BDLM08).

As it will be clear in Chapter 4, the shift toward more complex and in-
novative GFRBSs based on state-of-the-art EAs has mainly been driven by
the need for algorithms which could be able to enforce the interpretability
constraints usually required in the automatic identification of FRBSs from
data.
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2.2 Context Adaptation of Fuzzy Systems

Context is an extremely influential factor in many areas of science and
engineering. A detailed analysis of the possible definition of context was
performed by Bazire and Brézillon in (BB05). In their conclusion, they
state that

The context acts like a set of constraints that influence the be-
havior of a system (a user or a computer) embedded in a given
task.

Obviously, such a general definition of context allows for a wide range
of research studies in the fields of psychology, linguistic, computer sci-
ence, and system engineering (Bré02). In this thesis, we focus on the
relations between context and system identification, and more precisely
on the topic of context adaptation of fuzzy rule based systems. Hence,
a detailed analysis of the multi-disciplinary approaches to context that
can be found in the literature are out of the scope of the current work.
For a survey of existing applications of the notion of context in several
areas, we refer the interested reader to the latest proceedings of the In-
ternational and Interdisciplinary Conference on Modeling and Using Context
(DKLT05; KRRBV07).

In a sense, context adaptation (CA) can be regarded as a knowledge
engineering technique that deals with the generation of context-adapted
systems from universal models, and vice-versa. A universal model rep-
resents versatile knowledge that can be reused in several different envi-
ronments. On the other hand, a context-adapted system is a specialized
version of the model which is properly suited to work in a specific envi-
ronment.

It can be easily observed that several real-world systems exhibit com-
mon behaviors in different environments (PGG97; Tur97). For instance,
let us consider the well-known cart and pole balancing problem shown in
Figure 5. This problem is a common benchmark for control techniques:
a cart has an inverted pendulum hinged on its top which need to be bal-
anced by applying lateral forces to the cart. The cart moves over a track,
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Figure 5: The cart-pole system

and thus the pole has one degree of freedom on the vertical plane parallel
to the cart (Flo05). A proper controller is needed to automatically perform
this task, i.e., to select the amount and direction of the lateral force that is
needed to balance the pole. The problem can be made more complex by
adding a concurrent second goal, i.e., moving the cart to the center of the
track.

The physical behavior of the cart and pole system can be described by

θ̈ =
g sin θ + cos θ

(
−F−mlθ̇2 sin θ

mc+mp

)
l
(

4
3 −

mp cos2 θ
mc+mp

) , (2.5)

where θ is the angle between the pole and the vertical, F is the force ap-
plied to the cart, mc and mp are the mass of the cart and of the pole,
respectively, and l is the half-lenght of the pole.

Although simple, this toy system provides an hard benchmark for
learning algorithms due to its strong non linearities. Hence, several ap-
proaches based on fuzzy logic controllers have been developed in the lit-
erature to solve this problem. It is also remarkable that this system has
been one of the first applications of GFRBSs (Kar91).
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In the simple version of the problem described by Equation 2.5, the
controller usually takes the current values of θ and θ̇ as inputs and gives
the direction and the value of F as output.

Obviously, the development of a controller for such system must rely
on the actual values of the physical parameters, i.e., gravity, length of the
pole, and masses. Thus, for each different scenario identified by a spe-
cific setup of physical parameters, a different controller is needed or, at
least, an existing one has to be properly tuned to respond to the mutated
environmental conditions. A different solution may involve the charac-
terization of the four physical parameters as input variables. However,
the latter approach seems not convenient for at least two reasons: first,
by adding four additional input variables, the problem becomes much
more complex than the original two-input one and, second, physical pa-
rameters usually change much less frequently than other variables, and,
therefore, should be approached differently.

Actually, the physical parameters of the system represent the external
context where the FLC should operate. From the point of view of a human
controller, there is no need to know exactly the values of such parameters:
indeed, the rules exploited by a human controller are mostly derived from
experience and are independent of the external context. Further, such
rules can be expressed, as it is common in FRBSs, via linguistic terms. For
instance, typical rules that might be exploited in a cart-pole FLCs are

if θ̇ is strongly positive and θ is strongly positive (2.6)

then F is strongly positive,

and

if θ̇ is small positive and θ is strongly negative (2.7)

then F is negative.

Obviously, a human controller will adapt the force applied to the cart
with respect to the external context, but still following the intuitive rules
that are universal and completely context-independent. Therefore, the
external context affects just the meaning associated with the degrees of
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intensity (e.g., strongly positive in the example of Equation 2.6) associated
with the force.

Depending on the application, context may be determined by several
factors, including the external environment, the capabilities or the fea-
tures of the observer/controller, the interaction with other systems, etc.

Another significant example of how context affects the behavior of a
system can be found in (PGG97). Let us consider how humans learn to
drive a car. Once one has learnt to drive a given model of car in a given
weather condition, he/she is able to drive various other models of cars
in different weather and traffic conditions, without having to learn again
from scratch all the driving rules. Rather, he/she will just have to adapt
his/her driving style to the new context determined by the environment.

As an example, suppose one has learnt to drive in normal weather
conditions and at an average speed of 30 mph. Hence, when the weather
is rainy, he/she will use the same set of rules (e.g., crisp rules such as if
light is red then stop and fuzzy rules such as if speed is high then pressure
on throttle is small), but will adapt the range of speed around the aver-
age value of, for instance, 20 mph. Similar adaptations may occur when
driving during nighttime or when changing model of car.

Other examples of CA could be found in popular applications of fuzzy
systems in embedded systems, such as auto-focus devices in cameras,
anti-lock braking systems and cruise controllers in cars, etc.

Hence, the concept of context is critical to assess the reuse of already
existing controllers or models, thus leading to a speed-up in the devel-
opment of new systems when a different version of the same system is
already available for another context. Indeed, learning the RB is usually
the most expensive process of FRBS automatic identification. To sum up,
as stated by Pedrycz et at. in (PGG97),

the key point [...] is that the rules [...] are expected to be uni-
versal to a high extent.

It is remarkable to notice that context can be actually expressed in sev-
eral different ways. For instance, Brézillon in (Bré02) defines it in terms
of patterns, as
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Figure 6: The conceptual framework of CA

Each model describes a problem that recurs the environment
and thus describes the heart of the solution to this problem
in a way that permits the reuse of the solution without to do
it twice exactly in the same way [...] A pattern is a proven
solution to a problem in a context.

On the other hand, Gudwin et al. in (GGP98) address context from the
observer’s point-of-view, relating the effect of context to the perception
of stimuli.

The same stimulus information in different contexts can pro-
duce different perceptual events [...] The main effect of a con-
text can be related with some sort of filtering. That is, the same
base concept can be perceived in different situations, provided
it is filtered to suit the context particularities.

Finally, another interpretation, introduced by Magdalena in (Mag02), re-
lates context to actions.

(These) actions [...] in some sense are generic actions. The
context [...] will translate those generic actions into specific
actions adapted to the situation.

In the framework of system identification, the idea that stands behind
context adaptation is the extraction of universal models from each system
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or from domain knowledge, so as to use them, in adapted form, when
facing a similar problem in another environment.

The overall conceptual framework of CA is depicted in Figure 6. Here,
the universal model and the context-adapted systems are represented by
rounded rectangles, whereas the knowledge related to the application do-
main is depicted by a box. The four arrows represent the following pro-
cesses.

1. Abstraction: an application-dependent process, typically data-driven,
that is used to extract a universal model from given systems.

2. Knowledge elicitation: a heuristic process in which domain experts
explicitly translate their expertise into a universal model for a given
pattern of problems.

3. Instantiation: the inverse process of abstraction, in which a univer-
sal knowledge is augmented with context-dependent knowledge in
order to suit it to the target environment.

4. Tuning: the simple reuse of existing knowledge from a context to
another one, without employing a universal model.

The four processes listed above are employed to generate context-adapted
systems and universal models. Obviously, the actual techniques and al-
gorithms used to implement the processes are strongly application-de-
pendent.

FST, FL, and fuzzy systems provide a fertile background for the ap-
plication of the proposed CA framework. The knowledge elicitation and
the instantiation processes depicted in Figure 6 have been successfully
applied to the development of fuzzy systems and, more specifically, to
Mamdani-type FBRSs. Indeed, in Mamdani-type FRBS identification, the
RB is often derived from heuristic knowledge, which is usually valid in-
dependently of the real environment where the FRBS will work. Hence,
as we will detail in the following Sections, the RB can be considered as a
context-free model. In other words, the real environment does not affect
the RB (i.e., the surface structure of the FRBS), but rather influences the
DB, and, more specifically, the meaning associated with each linguistic
term used in the rules.
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Figure 7: Examples of application of different types of scaling functions to a
normalized partition

2.2.1 Previous Work

In the literature, the majority of papers on CA of FRBSs have focused
on the use of scaling functions (Bas94; GG94; Mag97; PGG97; GGP98;
CHMV01; Mag02; CdJH+03). A scaling function serves to adapt a fuzzy
partition by mapping an existing universe of discourse to the context-
adapted universe, possibly modifying the distribution and the shape of
fuzzy sets. Usually, the scaling function is applied to a normalized parti-
tion, i.e., a partition defined over theN = [0, 1] universe of discourse and
uniformly partitioned into triangular, trapezoidal or Gaussian fuzzy sets.
The number of fuzzy sets for each partition coincides with the number
of linguistic terms defined for the linguistic variable corresponding to the
universe of the partition.

The scaling functions used in the literature can be classified into linear
(Bas94; GG94; Mag02) and non linear (Mag97; PGG97; GGP98; CHMV01;
CdJH+03; Kla06). Non linear scaling functions can be applied on the
overall universe of discourse, thus modifying the shape of fuzzy sets,
as in (Mag97; PGG97; GGP98; Kla06), or just on some points (e.g., on
breakpoints in the case of triangular and trapezoidal fuzzy sets), as in
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Figure 8: Two possible meanings of the linguistic term hot: in Greenland
(dotted) and in South Europe (solid)

(CHMV01; CdJH+03), so as to maintain the original shape of the fuzzy
sets and the interpretability of the partition. The different possible types
and applications of scaling functions are summed up in Figure 7.

The first approaches to CA of fuzzy systems date back to mid 1990’s
(Bas94; GG94). In (GG94), Gudwin and Gomide stated that the concept
of context mainly relies on the idea of restriction. Indeed, the terms of a
linguistic variable are intrinsically relative if not instantiated to a specific
context, i.e., if the universe of discourse U of the variable is not clearly
defined. The actual binding between terms and context is given by the
restriction of the working range of the universe of discourse. In other
words, by setting the actual bounds of the universe of discourse of a lin-
guistic variable, we also fix the parameters of its fuzzy sets and, thus, we
define the exact meaning of the linguistic terms. This operation can be
performed by a linear mapping from a context-free universe of discourse
to the context-adapted one. In the former universe, terms are defined
only by implicit linguistic relations among them.

For instance, the linguistic term hot can have different meanings (i.e.,
different associated fuzzy sets), depending on the geographical and cul-
tural context. Obviously, an Eskimo and a South European would per-
ceive the concept of heat in different ways. However, both of them will
agree that the linguistic term hot is somehow “greater” than the linguis-
tic term cold, independently by the context. Figure 8 shows two possible
instances of the term hot at different latitudes.
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Figure 9: An FLC in a simple feedback control system

Gudwin and Gomide proposed some techniques to determine the wo-
rking range of a linguistic variable in a specific context from real-world
data, namely the absolute limit context determination, the elastic limit context
determination, the statistic context determination and a neural-network-based
context generation. Each of the proposed techniques can be used for an off-
line adaptation (in the case all the data are available simultaneously) and
for an on-line adaptation (in the case data are temporally distributed).

We can represent the context-free meaning of linguistic terms by fuzzy
sets defined in the normalized N = [0, 1] universe of discourse. After the
identification of the actual bounds U = [umin, umax] of the linguistic vari-
able, the fuzzy sets are fixed in the context-adapted universe of discourse
by means of a linear scaling function

ϕ0(x, umin, umax) : [0, 1]→ U = umin + (umax − umin)x. (2.8)

A similar approach based on linear scaling of linguistic variable was
used by Bastian in (Bas94) to heuristically develop an ad-hoc controller
for automatic gear selection on cars, where the different contexts are de-
fined by the drivers style (sporty or average). Bastian made use of flexible
linguistic variables, i.e., linguistic variables defined over a universe of dis-
course without predefined bounds.

Determining the bounds of a linguistic variable is topic widely ex-
plored also in fields different from context adaptation, such as FLC iden-
tification. A typical use of an FLC in a simple feedback control system,
taken from (Ros04), is shown in Figure 9.

Since an FLC is usually developed to work on a fixed range of inputs
and outputs (either in the [0, 1] or in the [−1, 1] universes of discourse), in-
puts coming from the plant and/or from the external environment need
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to be normalized in order to let the FLC compute the output. The multi-
pliers that are used to perform the normalization are called scaling factors
(WCL00; CHMV01; Ros04; DW05). Even though there is no explicit con-
cept of CA in this process, determining the values of the scaling factors
for a specific physical scenario is equivalent to instantiating the actual
universe of discourse of the input and output variables (DW05) and so
to context-adapting the FLC. Remarkable contributions on this topic can
be found in (MP99; WCL00; DW05), where self-tuning approaches to the
identification of scaling factors are proposed.

In (Mag97), Magdalena introduced a non linear scaling function to
instantiate an FRBS to a specific context. Unlike linear scaling functions,
non linear scaling functions not only fix the parameters of the fuzzy sets
so as to change the working range of the universe of discourse, but also
modify their shape and distribution in the space.

Unfortunately, an infinite number of non linear scaling functions may
be used to perform such adaptation. To achieve a more efficient explo-
ration of the search space, Magdalena proposed to restrict the candidates
to set of functions belonging to the family identified by

ϕ1(x, umin, umax, a) : U → [−1, 1] = sign(x′)|x′|a, (2.9)

where x′ = 2 x−umin
umax−umin

− 1, and a > 0 is a sensitivity parameter which
determines the intensity of the concentration (a < 1) or of the dilation
(a > 1) of the fuzzy sets. The parametrized function ϕ1 first performs a
linear mapping from the context-adapted universe U to the normalized
universe N , and then introduces the non linear distribution by concen-
trating or dilating the fuzzy sets around 0.

Note that a scaling function can either be defined as N → U (like ϕ0),
if it acts on the normalized universe of discourse, or as U → N (like ϕ1),
if it acts on the universe of discourse of inputs and outputs.

To instantiate a context-adapted Mamdani-type FRBS, Magdalena ex-
ploited a genetic learning process (CGH+04) that, aiming to minimize the
error with respect to real-world data, is able to concurrently find an op-
timal set of rules and the optimal values of the parameters of the scaling
function for each input and output linguistic variable.
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(a) Linguistic variable (b) Scaling function ϕ2

Figure 10: Application of ϕ2 with a = 0.5 to a fuzzy partition: to the whole
universe (solid) and only to breakpoints of the fuzzy sets (dashed)

An augmented version of ϕ1, denoted ϕ2 in the following, was intro-
duced in (CHMV01; CdJH+03). Function ϕ2 : U → [−1, 1] allows the
concentration and dilation of fuzzy sets not only around the center of the
normalized universe of discourse, but also around the extremes −1 and
1. The function, which is described by a four-step process, takes two pa-
rameter as input: the binary parameter S ∈ {0, 1}, used to determine the
chosen point for concentration or dilation, and the real-valued parameter
a > 0, which has the same role as in ϕ1.

In (CHMV01), ϕ2 was not applied to each input and output value of
the system, but rather just to the breakpoints of the triangular fuzzy sets.
Thus, the distortion introduced in the universe of discourse changes the
distribution of the fuzzy sets, but not their shape. This is equivalent to
applying a piece-wise linear scaling function, which changes slope in cor-
respondence of the breakpoints of the fuzzy sets. Figure 10 shows a com-
parison of the application of ϕ2 with sensitivity a = 0.5 to the whole
universe and only to the breakpoints of fuzzy sets.

The concepts of CA of linguistic variables introduced in (GG94) has
been later expanded by Pedrycz et al. in (PGG97; GGP98). In (PGG97),
the authors developed two relevant contributions to CA of FRBSs.
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First, in an FRBS, the RB should be considered as universal know-
ledge, independently of the specific context, and thus should be reused
in a number of similar situations. Indeed, rules express a logical relation
between terms, whose meaning depends on the context, but whose valid-
ity is absolute. As an example, let us consider the following rule

if temperature is hot then fan speed is high.

Although the meaning of the terms hot and high is strongly context-de-
pendent, the rule has a universal meaning because it expresses a logi-
cal relation between terms of linguistic variables. Also, the terms show
an implicit ordering that is context-free. For instance, as already stated
above, the term cold must always precede the term hot. Therefore, the
knowledge coded in the RB should be carefully chosen so that it can be
considered universal and, thus, should not be modified by, e.g., the in-
stantiation process. It follows that CA of FRBSs should concentrate on
linguistic variables and on fine tuning of the fuzzy sets so as to optimally
fit a specific context. To this aim, the authors initially considered a lin-
guistic variable in the normalizedN = [0, 1] universe of discourse, where
linguistic terms are instantiated to uniformly distributed fuzzy sets. Like
in (Mag97), the mapping from the context-free universe of discourse to
the context-adapted one was performed by means of non linear scaling
functions ϕ, that act as ϕ : U → N .

Second, the authors introduced a set of requirements for the defini-
tion of proper scaling functions, so as to preserve ordering and normality
of the original linguistic variable. In particular, they required continu-
ity, non-decreasing monotonicity, and the boundary conditions ϕ(0) = umin

and ϕ(1) = umax. Furthermore, differentiability is required when a learn-
ing algorithm is used to determine the optimal parameters of the scaling
function.

In (PGG97), the scaling function was implemented by a two-layered
feed-forward neural network trained with contextualized real-world data.
In (GGP98), a genetic learning process is used to find the optimal parame-
ters of scaling function ϕ3, defined as a linear combination of c sigmoidal
functions
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ϕ3(x,k,m, s) : U → [0, 1] = α

c∑
i=1

ki

1 + e
−(x−mi)

si

+ β, (2.10)

where k = (k1, ..., kc), m = (m1, ...,mc), s = (s1, ..., sc), and ki ≥ 0, si > 0,
and mi ∈ U ∀i = 1, ..., c. Values α and β are chosen so as to respect the
boundary conditions defined above.

Some of the CA techniques introduced in (GG94; PGG97; GGP98)
were applied to the development of a fuzzy controller for an elevator
group in (GGN98).

As regards scaling functions, Klawonn (Kla06) proposed a hybrid learn-
ing algorithm to adapt zero-order Sugeno-type FRBSs (Ros04) using a
scaling function defined as

ϕ4(x, a, b) : R→ R =
1

1 + e−b(x−a)
. (2.11)

The learning algorithm introduced by Klawonn can concurrently opti-
mize the parameters a and b of ϕ4 and the consequents of the rules in the
FRBS. Klawonn remarked that the use of scaling functions can help to re-
duce the number of parameters of the FRBS that have to be identified in a
learning algorithm. Indeed, scaling functions act on the overall universe
of discourse, rather than on single parameters of the fuzzy sets. Thus, dif-
ferently from other fuzzy system tuning techniques, such as, for instance,
(Gui01; CCHM03), the number of parameters that have to be optimized
scales linearly with the number of input and output variables.

Besides the formulation of CA as scaling-function-based tuning of
linguistic variables, other approaches have been developed in the liter-
ature. A remarkable contribution by Turner (Tur97; Tur98) introduced
concepts related to CA of fuzzy sets into the more general approach of
context-mediated behavior (CMB). CMB is an approach to the control of in-
telligent agents that heavily relies on context-related knowledge. Turner
used CMB to develop a controller for an autonomous underwater vehi-
cle, named Orca. In CMB, context is presented to the agent via c-schemas,
that are structures which encode the knowledge needed to solve a spe-
cific class of problems. The knowledge is coded into rules, and fuzzy sets
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Figure 11: The hierarchical system proposed in (Mag02)

are used to represent linguistic terms. Again, in Turner’s approach the
rules are considered to code a behavior that is general and context-free,
while the specific meaning of a term is context-dependent and can be de-
fined by setting the parameters of the associated fuzzy set. For instance,
the term nominal of linguistic variable Depth can take different values in a
harbor or in open ocean. C-schemas provide both a way to characterize
each context, that is initially described by some expert’s static knowledge,
and to derive new contexts from the aggregation of existing ones.

Another approach to the dynamic generation of context was devel-
oped by Magdalena in (Mag02). Starting from a simple linear scaling
function adaptation, the author proposed the use of a two-level hierar-
chical FRBS model (Figure 11), where the first level defines scaling factors
used in the universes of the input variables of the second level. A related
technique can be found in (DW05). In a sense, the FRBS in the first level
represents a model of the context itself: indeed, it is able to interpolate
the parameters of unknown contexts by evaluating a subset of the input
variables that strongly influence the context.

Finally, it is remarkable to note that a different notion of context, not
strictly related to CA of FRBSs, has also been explored in FST literature
for the definition of context-aware linguistic hedges (CK02; HN04).

2.2.2 A Common Framework

As we have described in Section 2.2.1, a standard approach to CA of FR-
BSs has emerged from previous work.

1. The RB is considered as a context-free and universal knowledge.
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2. The linguistic variables in the DB are context-adapted (i.e., instan-
tiated) by means of some parameterized operators (scaling func-
tions and/or fuzzy modifiers) that act on the overall universe of
discourse.

To determine the optimal configuration of the parameters used in the
scaling functions, evolutionary algorithms have been extensively applied
(Mag97; GGP98; CHMV01). Most of the earliest approaches rely on heuris-
tic methods (Bas94; GG94; Tur97; Tur98; Mag02), whereas few works ex-
plored the use of other soft computing techniques, such as neural-network-
like learning (PGG97; Kla06).

Based on the elements and processes comprised in the general frame-
work of Figure 6, we can summarize CA of FRBSs as follows.

1. The universal model can be represented by an RB (i.e., by the surface
structure of an FRBS), or by a deeply structured FRBS, where fuzzy
sets are uniformly distributed and normalized in the context-free
N = [0, 1] universe of discourse.

2. The context-adapted systems can be represented by deeply structured
FRBSs, where linguistic variables are tuned with a global approach
so as to coherently model the effects of context and to reduce the
search space.

3. The knowledge elicitation process can be heuristically performed by
asking domain experts to select general rules to be included in the
RB of the universal model.

4. The abstraction process can be performed by applying a learn-by-
example algorithm, such as the popular one introduced in (WM92),
to a (set of) context-adapted systems.

5. The instantiation process, on which most of the previous work has
concentrated, can be performed by a learning algorithm that finds a
proper configuration of parameters of adaptation operators.
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6. The tuning process can be considered as a special case of instantia-
tion, in which the initial surface structure is not derived from the
universal model but rather from another context-adapted system.

The above-mentioned assumption about universality of the RB triv-
ially implies that the RB should not be modified during the adaptation
process. Besides this requirement, the semantic relation existing between
the RB and the DB forces more constraints on the instantiation of the DB.

First, since each linguistic term is bound to a fuzzy set, each fuzzy set
is useful and meaningful only if the associated linguistic term is used in
the RB. Thus, the number of fuzzy sets in each partition is directly deter-
mined by the number of linguistic labels defined in the RB and, therefore,
should not change during CA.

Second, when experts define the RB, they use an implicit semantic or-
dering of linguistic terms that is significant to humans. For instance, the
linguistic term high will always follow low, and cold will always precede
hot. The ordering of linguistic terms is usually modeled in fuzzy parti-
tions by some ordering of fuzzy sets. Consequently, to preserve seman-
tics, the post-CA ordering of fuzzy sets should reflect the pre-CA ordering
of linguistic terms.

To summarize, each CA approach should comply with the following
guidelines.

1. CA should not modify the RB.

2. CA should not change the number of linguistic terms defined in the
RB and, consequently, the number of corresponding fuzzy sets.

3. CA should not affect the semantic ordering of linguistic terms.

As we will show in the following Chapters, scaling-function-based
approaches do not provide enough modeling capabilities to achieve an
effective CA. Therefore, in Chapter 3 we introduce a novel CA technique
based on improved adaptation operators. By augmenting the modeling
capabilities, the instantiation of the fuzzy sets is performed with a higher
degree of freedom. On the other hand, such augmented flexibility may
generate uneasily interpretable linguistic variables. Hence, in Chapter 4
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we discuss how interpretability of an FRBS can be affected by CA and
how this issue can be overcome.

We remark that, among the four processes described in Figure 6, only
the instantiation process was substantially addressed by previous work.
Since this thesis aims to develop a common framework for existing ap-
proaches and to expand the original definition of CA of FRBSs, in the
following Chapters we will restrict our analysis to the specific process of
instantiation. Therefore, we will sometimes blur the difference between
the overall framework and instantiation and, in line with the literature,
we may cite CA of FRBS to refer to the instantiation process. However, in
Chapter 7, we will discuss future work which we intend to carry on so as
to develop algorithms to automate the abstraction process.
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Chapter 3

Novel Operators for
Context Adaptation of
Fuzzy Partitions

In this Chapter, we introduce five novel tuning operators used to perform
the instantiation of a universal FRBS to a specific context. The first oper-
ator is a non linear scaling function which performs an adjustment of the
universes, so as to cover all possible input and output values and, possi-
bly, to make granularity finer in some parts of the universe and coarser
elsewhere. As explained in Chapter 2.2, this adjustment is necessary be-
cause CA starts from a normalized FRBS, where the universe of each vari-
able is defined in [0, 1], and uniformly partitioned with trapezoidal MFs.

The other four operators belong to the family of fuzzy modifiers (see
Definition 21): they modify the core, the support, and the shapes of each
MF. The modifiers are chosen and formulated in such a way that the ef-
fects on the resulting fuzzy sets are independent of the order in which
modifiers are applied. Thus, modifiers can be applied without interfering
with each other. As we will detail in Chapter 5, in our adaptation process
we first apply the scaling function, and then the fuzzy modifiers.

Our modifiers are enough flexible to be used in a wide range of tuning
applications, not necessarily related to CA, and might be applied to a
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single fuzzy set. However, in line with previous work, we apply each
modifier with the same intensity to the overall partition. This allows us
to use a very small number of parameters to represent a wide range of
configurations through the combined effects of the five operators.

The fuzzy modifiers are defined so as to act on a trapezoidal fuzzy
set A defined by C(A) = [cl, cu] and S(A) = [sl, su] on U = [umin, umax],
where sl and su, and cl and cu are the left and right bounds of the support
and of the core, respectively, with sl ≤ cl ≤ cu ≤ su. A trapezoidal fuzzy
set A is characterized by the following MF

A(x; sl, cl, cu, su) = max
(

min
(
x− sl
cl − sl

, 1,
su− x
su− cu

)
, 0
)
. (3.1)

This definition includes the special case of triangular fuzzy sets, i.e. cl =
cu. Further, we admit the special case sl = cl = cu = su, in which the
trapezoidal MF degenerates into a singleton, i.e. an MF such that

A(x; sl, cl, cu, su)
{

1 if x = sl = cl = cu = su
0 elsewhere. (3.2)

Although we use trapezoidal fuzzy sets, we remark that the proposed
modifiers can be easily adapted to work on any other shape of fuzzy sets.

3.1 Scaling Function

The covering of the universe can be obtained by using any scaling func-
tion that satisfies the continuity, monotonicity and boundary requiremen-
ts suggested in (PGG97). As stated in Section 2.2.1, the first scaling func-
tions proposed in the literature simply performed a linear mapping from
the normalized initial universe to the real universe, as in (GG94; Bas94).
Though this approach maintains the interpretability of the normalized
partition, its modeling capabilities are quite limited.

In (Mag97; CHMV01), the authors propose non linear scaling func-
tions which can concentrate/dilate the MFs around a single point, which
can be either the center of the universe or one of the two extremes. Since
the choice is limited to only three points, the adaptation capability of
these scaling function is restricted to few cases.
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In (Kla06) and (GGP98), non linear scaling functions are implemented
by a sigmoidal function and a linear composition of sigmoidal-like func-
tions, respectively. While the first approach does not guarantee to pre-
serve normality of fuzzy sets, the second requires several parameters,
whose identification can be a long and difficult task.

To overcome these limits, we introduce a scaling function which, ex-
tending the approach proposed in (CHMV01), can both map the universe
of discourse from a normalized interval N = [0, 1] to any context-specific
interval U = [umin, umax] and non uniformly distribute the MFs, allowing
to select any point in U as center of gravity.

Definition 36 (Non linear scaling function) The non linear scaling function
ψ is defined as

ψ(x) : N → U ={
umin +(umax−umin)(λ1−kSF xkSF ) if x ≤ λ
umin +(umax−umin)[1−(1−λ)1−kSF (1−x)kSF ] if x > λ,

(3.3)

with λ ∈ [0, 1] and kSF > 0.

Parameter λ identifies the center of gravity in the normalized parti-
tion, whilst parameter kSF defines the degree of dilation (kSF > 1) or
compression (kSF < 1) of fuzzy sets around λ.

We observe that, when λ = 0, λ = 0.5 and λ = 1, the adjustments
carried out by Equation 3.3 are similar to those presented in (CHMV01).
To maintain the original trapezoidal shape of MFs, we do not apply the
scaling function to all points of the universe, but rather only to the break-
points of the MFs, as in Figure 10.

An as example, let us consider the partition PN = {A1, ..., A5}, shown
in Figure 12, composed of N = 5 uniformly distributed trapezoidal fuzzy
sets onN . Each fuzzy set, except for the first and the last, is characterized
by a width of the core and of the support equal to 1

2(N−1) and 3
2(N−1) ,

respectively. The first and the last fuzzy sets are characterized by a width
of the core and of the support equal to 1

4(N−1) and 3
4(N−1) , respectively.

We applied the non linear scaling function ψ(x) with U = [0, 1] and
with different values of λ and kSF to PN , namely λ = 0.5 and kSF = 2,
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Figure 12: The normalized fuzzy partition PN composed of five uniformly
distributed trapezoidal MFs

λ = 0.25 and kSF = 0.3, λ = 1 and kSF = 1.5, and λ = 0.5 and kSF = 0.5.
Figures 13 – 16 show the shape of ψ(x) with the chosen values and the
effects of its application on the partition.

Figures 17 and 18 show how the behavior of the non linear scaling
function changes with different values of kSF and λ. More precisely, Fig-
ure 17 depicts the effects of varying kSF in {0.25, 0.75, 1.5, 3} for λ = 0.5
and λ = 1, whilst Figure 18 depicts the effects of varying λ in {0.25, 0.5,
0.75, 1} for kSF = 0.5 and kSF = 2.

3.2 Fuzzy Modifiers
In this Section, we introduce the four novel fuzzy modifiers that we de-
signed to perform the instantiation of a universal FRBS to a specific con-
text. To define the fuzzy modifiers, we analyzed the possible variations
undergone by the MFs in order to adapt themselves to a context.

We realized that these variations could be reproduced by applying
four simple operations: core shifting, core expanding/shrinking, support
expanding/shrinking and shape modifying. Thus, we defined four dif-
ferent fuzzy modifiers so as to reproduce these simple operations.

Though the definition of fuzzy modifiers as any mapping F(U) →
F(U) allows for the definition of very powerful modifiers, we tried to
introduce mappings that model the effects of the context without affecting
the interpretability of the final partitions and the ordering of the linguistic
values.

42



(a)

(b)

Figure 13: The non linear scaling function ψ and its application to PN with
λ = 0.5 and kSF = 2

43



(a)

(b)

Figure 14: The non linear scaling function ψ and its application to PN with
λ = 0.25 and kSF = 0.3
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(a)

(b)

Figure 15: The non linear scaling function ψ and its application to PN with
λ = 1 and kSF = 1.5
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(a)

(b)

Figure 16: The non linear scaling function ψ and its application to PN with
λ = 0.5 and kSF = 0.5
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(a) λ = 0.5

(b) λ = 1

Figure 17: Evaluations of ψ with kSF = {0.25, 0.75, 1.5, 3} and (a) λ = 0.5
and (b) λ = 1
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(a) kSF = 0.5

(b) kSF = 2

Figure 18: Evaluations of ψ with λ = {0.25, 0.5, 0.75, 1} and (a) kSF = 0.5
and (b) kSF = 2
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We recall that Definitions 22 – 27 introduced in Chapter 2 provide a
detailed taxonomy of fuzzy modifiers. To sum up, a fuzzy modifier may
be either inclusive or not. Inclusive modifiers may be either expansive
or restrictive. Moreover, depending on its formulation, a fuzzy modifier
may be decomposed into a pre- and post-modifier. Further subclasses of
decomposable fuzzy modifiers are those of pure pre- and post-modifiers.

Various preliminary versions of the modifiers introduced in the fol-
lowing Sections have been defined in our earlier papers (BLM06a; BLM06b;
BLMS08; BLM08).

Other remarkable previous work about fuzzy modifiers can be found
in (CK00; Coc01; BS01; SWK01; HHN02; CK02; BS03). Recently, an ap-
proach similar to the core-width and the support-width modifiers has
been proposed in (BDHA+07).

3.2.1 Core-Position Modifier

The core-position modifier acts on the core of a fuzzy set, shifting its posi-
tion within the support while maintaining the original width. The effect
of its application produces a shift of the center of mass of fuzzy sets. This
shift can, for instance, model the drift of a sensor, which moves the overall
distribution of the measures from an initial fixed point to another.

Definition 37 (Core-position modifier) Given a trapezoidal fuzzy set A(x;
sl, cl, cu, su) defined on the universe of discourse U , the core-position modifier
mCP : F(U)→ F(U) is given by

A′(x; sl′, cl′, cu′, su′) = mCP (A(x; sl, cl, cu, su)), (3.4)

where

sl′ = sl, (3.5)

cl′ =
{
cl − (sl − cl)kCP if kCP < 0
cl + (su− cu)kCP if kCP ≥ 0, (3.6)

cu′ =
{
cu− (sl − cl)kCP if kCP < 0
cu+ (su− cu)kCP if kCP ≥ 0, (3.7)

su′ = su, (3.8)

with kCP ∈ [−1, 1].
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(a) kCP = −1

(b) kCP = −0.5

(c) kCP = 0.5

(d) kCP = 1

Figure 19: Application of the core-position modifier to PN
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(a) kCP ≤ 0

(b) kCP ≥ 0

Figure 20: Effects produced by the core-position modifier when applied to a
simple SISO Mamdani-type FRBS
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As it can be trivially observed in Equations 3.5 and 3.8, the bounds
of the support are not changed by the application of the modifier, while
parameter kCP determines the intensity of the left shift (kCP < 0) or right
shift (kCP > 0) of the core. Null values of kCP do not modify the original
fuzzy set. The core-position modifier is a pure pre-modifier and it is not
inclusive.

Figure 19 shows sample applications of the core-position modifier to
the fuzzy partition PN , with kCP = {−1,−0.5, 0.5, 1}.

To better understand the effects of the application of the core-position
modifier to an FRBS, we show a very simple application. Let us consider
a single-input single-output (SISO) Mamdani-type FRBS, with three uni-
formly distributed MFs in N , both for the input and for the output. The
RB is composed of three simple rules, all in the form

if x is Ai then y is Ai.

We applied the core-position modifier with different values of kCP on
both the input and output variables to highlight the effects on the relation
identified by the FRBS. Figure 20 shows the results of this sample applica-
tion. We can easily observe how the shift of the center of mass produced
by the application of the modifier reflects into a shift of the breakpoints
of the overall input-output relation.

3.2.2 Core-Width Modifier

The core-width modifier acts on the core of a fuzzy set, dilating or shrink-
ing its width within the support. The effect of the modifier is to increase
or decrease the number of points that belong to the fuzzy set with full
degree. Consequently, the modifier affects the uncertainty modeled by
the fuzzy set. A side effect of the application of this modifier on all the
fuzzy sets of a fuzzy partition is the change of the level of coverage of the
partition.

Definition 38 (Core-width modifier) Given a trapezoidal fuzzy set A(x;
sl, cl, cu, su) defined on the universe of discourse U , the core-width modifier
mCW : F(U)→ F(U) is given by

A′(x; sl′, cl′, cu′, su′) = mCW (A(x; sl, cl, cu, su)), (3.9)
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where

sl′ = sl, (3.10)

cl′ =
{
cl + w(sl − cl)kCW if kCW < 0
cl + (sl − cl)kCW if kCW ≥ 0, (3.11)

cu′ =
{
cu+ w(su− cu)kCW if kCW < 0
cu+ (su− cu)kCW if kCW ≥ 0, (3.12)

su′ = su, (3.13)

with kCW ∈ [−1, 1] and

w =
cu− cl

cl − sl + su− cu
. (3.14)

As in the case of the core-position modifier, the bounds of the support
are not modified, and parameter kCW ∈ [−1, 1] determines the intensity
of dilation (kCW > 0) or shrinking (kCW < 0) of the core. Null values
of kCW do not modify the original fuzzy set. The core-width modifier
is an inclusive pure pre-modifier, restrictive when kCW is negative and
expansive when kCW is positive.

We remark that, when the modifier is applied to trapezoidal MFs with
kCW = −1, the fuzzy sets degenerate into triangular MFs. On the other
hand, when kCW = 1, the fuzzy sets degenerate into crisp sets, thus aris-
ing some interpretability issues because the MFs overlap too much.

Figure 21 shows sample applications of the core-width modifier on the
fuzzy partition PN , with kCW = {−1,−0.5, 0.25, 0.5}. As stated above,
the application of the core-width modifier might produce some inter-
pretability problems. Indeed, when applied with kCW > 0.5 on PN , the
level of coverage of the modified partition gets to 1.

Figure 22 shows the effects of the application of the core-width mod-
ifier to the simple SISO described above with different positive values
of kCW (in this trivial example, negative values of kCW do not produce
meaningful effects on the input-output relation of the FRBS). As stated
above, the application of the modifier increases or decreases the uncer-
tainty (i.e., the stepwise behavior) of each single fuzzy set in the partition.
Indeed, smaller values of kCW produce a smooth input-output relation,
whilst when kCW = 1 the curve becomes completely crispified.
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(a) kCW = −1

(b) kCW = −0.5

(c) kCW = 0.25

(d) kCW = 0.5

Figure 21: Application of the core-width modifier to PN
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Figure 22: Effects produced by the core-width modifier when applied to a
simple SISO Mamdani-type FRBS

3.2.3 Support-Width Modifier

The support-width modifier acts on both the support and the core of a fu-
zzy set, scaling their widths with respect to the center of the support and
preserving the ratio between the widths of the core and the support. The
application of the modifier, therefore, increases or reduces the number of
points belonging to the fuzzy set to some extent.

The support-width modifier is inspired by the concentration hedge
CON introduced in (BS03). Like the core-width modifier, the support-
width modifier might change the level of coverage of a partition to a high
extent.

Definition 39 (Support-width modifier) Given a trapezoidal fuzzy set A(x;
sl, cl, cu, su) defined on the universe of discourse U , the support-width modifier
mSW : F(U)→ F(U) is given by

A′(x; sl′, cl′, cu′, su′) = mSW (A(x; sl, cl, cu, su)), (3.15)

where
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sl′ = sm+ (sl − sm)kSW , (3.16)
cl′ = sm+ (cl − sm)kSW , (3.17)
cu′ = sm+ (cu− sm)kSW , (3.18)
su′ = sm+ (su− sm)kSW , (3.19)

with kSW > 0 and

sm =
sl + su

2
. (3.20)

Parameter kSW determines the negative (kSW < 1) or positive (kSW >

1) scaling of the fuzzy set. When kSW = 1, no change is determined.
The support-width modifier is an inclusive pure pre-modifier, restrictive
when kSW < 1 and expansive when kCW > 1.

Figure 23 shows a sample application of the support-width modifier
on the fuzzy partition PN , with kSW = {0.5, 0.75, 1.5, 2}. Since the appli-
cation of the operator can reduce the support of all the MFs of a partition,
coverage problems might occur, i.e., some parts of the universe might be
covered by no fuzzy set, as in Figure 23(a). This is a well-known problem
in fuzzy modeling, especially for the input linguistic variables (dO99),
which can be simply resolved by restricting the range of possible values
for parameter kSW .

Figure 24 shows the effects of the application of the support-width
modifier to the simple SISO with different values of kSW . As expected,
the larger the value of kSW , the more the FRBS gives an uncertain (i.e.,
averaged) output. On the other hand, the smaller the values of kSW , the
more crispified is the output, i.e., the more the input-output relation has
a stepwise behavior. Note that, differently from the core-width modifier,
which affects uncertainty of each fuzzy set, the support-width modifier
modifies the smoothness of the overall curve.

3.2.4 Generalized Positively Modifier

The three modifiers introduced so far act on the core and the support of
the MFs, without modifying the type of function that defines the mem-
bership degrees of the boundary elements. In the fuzzy partition PN ,
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(a) kSW = 0.5

(b) kSW = 0.75

(c) kSW = 1.5

(d) kSW = 2

Figure 23: Application of the support-width modifier to PN

57



Figure 24: Effects produced by the support-width modifier when applied to
a simple SISO Mamdani-type FRBS

this function is linear. As shown in Figures 19, 21, and 23, the function
remains linear also after applying the three modifiers.

The linear type of function, however, might not be the most appropri-
ate to correctly model the effects of the context. Thus, we need to intro-
duce a fuzzy modifier that allows adapting the shape of the MFs. To this
aim, we generalize the linguistic hedge positively defined in the literature
as (Zad73)

mP (A(x)) : F(U)→F(U) =
{

2A2(x) if A(x) < 0.5
1− 2[1−A(x)]2 if A(x) ≥ θ. (3.21)

In (SWK01), the modifier has been modified by introducing a parame-
ter kGP for customizing the contrast intensification. We further generalize
the modifier by inserting a parameter θ ∈ [0, 1] to control the membership
value in which the MF changes concavity.

Definition 40 (Generalized positively modifier) Given a fuzzy set A de-
fined on the universe of discourse U , the generalized modifier mGP : F(U) →
F(U) is defined as

A′(x) = mGP (A (x)) , (3.22)
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where

A′(x) =
{
θ1−kGPAkGP (x) if A(x) < θ
1− (1− θ)1−kGP [1−A(x)]kGP if A(x) ≥ θ, (3.23)

with kGP > 0 and θ ∈ [0, 1].

This modifier is extremely powerful: it can generate a large number
of different shapes, using a compact notation and just two parameters.
Further, with particular values of kGP and θ, it can reproduce the effects
of the original linguistic hedges positively (θ = 0.5, kGP = 2) and of other
three linguistic hedges introduced by Zadeh (very, more-or-less, and nega-
tively).

We remark that, differently from the other modifiers defined in this
Chapter, the generalized positively modifier is a pure post-modifier, since
it applies to the membership degrees of the fuzzy set rather than to the
universe of discourse. The generalized positively modifier is not inclu-
sive, except for the special cases θ = 0 and θ = 1: in these cases, it is
either restrictive (if kGP < 1) or expansive (if kGP > 1). When kGP → 0
or kGP � 1, the modifier can generate strange shapes which, eventually,
may degenerate into crisp or singleton MFs.

Figures 25 – 26 show sample applications of the generalized posi-
tively modifier on the fuzzy partition PN , with kGP = {0.5, 2.5} and
θ = {0.25, 0.5, 1}.

Figure 27 shows the effects of the application of the generalized pos-
itively modifier to the simple SISO with different values of kGP , namely
kGP = {0.25, 0.5, 1, 2, 4}, and with θ = 0.25 and θ = 0.75. The application
of this modifier enhances the smoothness (thanks to the contrast intensi-
fication) and, concurrently, can move the breakpoints of the input-output
relation (thanks to the tuning of θ). As expected, the larger the value of
kSW , the more the FRBS gives an uncertain (i.e., averaged) output. On
the other hand, the smaller the values of kSW , the more crispified is the
output, i.e., the more the input-output relation has a stepwise behavior.
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(a) kGP = 0.5, θ = 0.25

(b) kGP = 0.5, θ = 0.5

(c) kGP = 0.5, θ = 1

Figure 25: Application of the generalized positively to PN
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(a) kGP = 2.5, θ = 0.25

(b) kGP = 2.5, θ = 0.5

(c) kGP = 2.5, θ = 1

Figure 26: Application of the generalized positively to PN
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(a) θ = 0.25

(b) θ = 0.75

Figure 27: Effects produced by the generalized positively modifier when
applied to a simple SISO Mamdani-type FRBS
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3.2.5 Orthogonality of Fuzzy Modifiers

An important mathematical property of the fuzzy modifiers introduced
in the previous Sections is that they are orthogonal with respect to each
other, i.e., their composition is commutative and associative and, hence,
the order in which they are applied to a fuzzy partition is not relevant.

To prove the orthogonality of the fuzzy modifiers, we have to check
whether all the possible combinations in different orderings produce the
same modified fuzzy set. Given the complex and/or conditional formu-
lation of most of the modifiers, the computation required for this proof
is extremely hard. However, such difficult task can be simplified by the
following observations.

• The generalized positively modifier is a pure post-modifier which
changes the membership degree of boundary elements without af-
fecting the breakpoints. On the contrary, the other modifiers are
pure pre-modifiers which act on the breakpoints of the trapezoidal
MFs. Hence, we do not need to include the generalized positively
modifier in the test, because its application does not interfere with
the application of the other modifiers. Formally speaking, it can be
easily verified that

(A′ = mGP (A))⇒


sl′ = sl
cl′ = cl
cu′ = cu
su′ = su.

(3.24)

• Not all of the combinations of compositions have to be checked for
equivalence. Indeed, by carefully choosing a minimal set of tests
and by exploiting the commutativity and associativity properties,
we can avoid to assess some equivalences.

Given a trapezoidal fuzzy set A(x; sl, cl, cu, su), the chosen minimal
set of equations to check is composed of
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mCP (mCW (A)) = mCW (mCP (A)) , (3.25)

mCP (mSW (A)) = mSW (mCP (A)) , (3.26)

mCW (mSW (A)) = mSW (mCW (A)) , (3.27)

mSW (mCP (mCW (A))) = mCP (mCW (mSW (A))) , (3.28)

mCW (mCP (mSW (A))) = mCP (mSW (mCW (A))) , (3.29)

mCP (mCW (mSW (A))) = mSW (mCP (mCW (A))) . (3.30)

Although the complete set of tests should comprise twelve more ex-
pressions, the minimal set of Equations 3.25 – 3.30 can be used to check
all possible combinations. For instance, if Equations 3.25 and 3.28 are
verified, it follows that

mSW (mCW (mCP (A))) = mCP (mCW (mSW (A))) , (3.31)

is verified as well.
Equations 3.25 – 3.30 were solved with the aid of the Matlab Symbolic

Math Toolbox (Mat06), and all the equivalences were correctly verified.
The complete report of the analytical steps of the computation is out of the
scope of the current work. For the sake of completeness, in the following
we show an example of some steps, performed to assess Equation 3.25 in
the case kCP > 0 and kCW > 0.

A′(x; sl′, cl′, cu′, su′) = mCP (mCW (sl (x; sl, cl, cu, su)))

A′′(x; sl′′, cl′′, cu′′, su′′) = mCW (mCP (sl (x; sl, cl, cu, su)))
sl′ = sl
cl′ = (su− cu− (su− cu)kCW )kCP + cl − (cl − sl)kCW
cu′ = cu+ (su− cu) kCW + (su− cu− (su− cu) kCW ) kCP
su′ = su,
sl′′ = sl
cl′′ = cl + (su− cu) kCP − (cl + (su− cu) kCP − sl) kCW
cu′′ = cu+ (su− cu) kCP + (su− cu− (su− cu) kCP ) kCW
su′′ = su.
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It can be trivially verified that cl′ = cl′′ and cu′ = cu′′, and, therefore,
Equation 3.25 is verified for kCP > 0 and kCW > 0. Similar tests have
been repeated for kCP > 0 and kCW < 0, kCP < 0 and kCW > 0, and
kCP < 0 and kCW < 0 to check the validity of the equivalence in Equation
3.25.
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Chapter 4

Interpretability Issues in
Context Adaptation of
Fuzzy Systems

As we have stated in the previous Chapters, CA of an FRBS consists in
tuning the fuzzy sets corresponding to the linguistic terms used in the
RB. The approach proposed in this thesis exploits a non linear scaling
function and four fuzzy modifiers that are able to reproduce the effects of
the context on each considered fuzzy partition.

Even though the operators are designed to reproduce the designer’s
choice when modeling linguistic concepts, their combined effects may
sometimes lead to the generation of a fuzzy partition which is poorly
human-readable. Usually, this happens when we exploit the augmented
flexibility provided by fuzzy modifiers to achieve good performances of
context-adapted systems. As it is well-known in the field of FRBS learn-
ing from data, interpretability and accuracy are conflicting objectives and,
therefore, identification algorithms must carefully take their trade-off into
account (CdJH+03; CGH+04; IN07; Her08).

In this Chapter, we first define the relation between interpretability of
FRBSs and CA. Then, we develop two approaches to preserve integrity
of fuzzy partitions based on the evaluation of crossing-points and fuzzy
ordering relations, respectively.
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4.1 Interpretability of FRBSs

The issue of balancing interpretability and accuracy has been widely ad-
dressed in the field of FRBS generation from data (dO99; CCHM03). In-
terpretability of an FRBS cannot be defined in a unique way and, there-
fore, several different approaches have been developed in the literature.
Related work has been surveyed in (Gui01; CCHM03; CdJH+03; Men04).

Typically, we distinguish between interpretability of fuzzy partitions (i.e.,
of the DB), sometimes also called integrity or transparency, and inter-
pretability of rules (i.e., of the RB), also known as complexity.

Complexity is often defined in terms of simple measures, such as num-
ber of rules in the RB and number of linguistic terms in their antecedents.

On the other hand, integrity depends on some intrinsic properties of
the fuzzy partitions contained in the DB, such as, for instance, coverage,
ordering, continuity, and normality, which may be difficult to measure
directly. Indeed, in the majority of existing approaches, interpretability
of fuzzy partitions is typically measured indirectly by exploiting simple
similarity indices that cannot always completely capture the actual se-
mantics of the partitions (SBKvNL98; SR00; MCFB04; ZYYLY+06).

For instance, a common way to measure interpretability is to compute
the fuzzy extension of the Jaccard similarity index (CS02) for each couple
of fuzzy sets in the partition.

Definition 41 Given two fuzzy sets A1, A2 ∈ F(U), the Jaccard index is de-
fined as

SJ(A1, A2) =
|A1 ∩A2|
|A1 ∪A2|

. (4.1)

One of the most agreed definition of interpretability of fuzzy partition
can be found in (dO99). Here, de Oliveira stated that a fuzzy partition is
interpretable if it satisfies all of the following properties.

1. The partition should comprise a “moderate” number of fuzzy sets.

2. The fuzzy sets in the partition should all be normal, i.e., for each fu-
zzy set there must exist at least one point with membership degree
equal to 1 (see also Definition 16).
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3. Each couple of fuzzy sets should be distinguishable enough, so that
there is no couple of fuzzy sets that represents pretty much the same
concept.

4. The overall universe of discourse should be strictly covered, i.e.,
each point of the universe should belong to at least one fuzzy set
with a membership degree greater than a given reasonable thresh-
old.

Further, to make a partition interpretable, de Oliveira suggested the
use of a linguistic term to represent the fuzzy number zero, which can be
used as a reference to understand the meaning of the other fuzzy sets.
The natural zero is commonly adopted in control applications, but it is
not suited for many modeling and regression examples which may not
involve a symmetric quantization of the universe of discourse.

Some researchers, like Mencar et al. (MCFB04), suggest to take other
mathematical properties of fuzzy sets into account, e.g., continuity. In this
thesis, however, we focus on general features that are independent of the
actual universe of discourse on which the linguistic variable is defined.

To give an example of the contrast between interpretable and non in-
terpretable fuzzy partitions, let us consider Figure 28, which shows two
partitions composed of five trapezoidal fuzzy sets each. Figure 28(a) re-
ports a sample of a poorly human-readable partition, like the ones that
are typically generated by an accuracy-oriented algorithm, whilst Figure
28(b) shows a clearly readable partition with good distinguishability and
coverage.

With respect to CA of FRBSs, we recall that, as stated in Section 2.2.2,
we start from the assumption that the RB has an universal validity and is
properly selected during the knowledge elicitation and/or the abstraction
processes. Thus, we assume that the RB is already human-readable and
concentrate just on interpretability of the DB.

Besides de Oliveira’s requirements, CA of FRBSs forces other con-
straints on the interpretability of the DB. Indeed, when designing an in-
terpretability index for CA, we should take into account both the three
guidelines defined in Section 2.2.2 and the four properties cited above.
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(a)

(b)

Figure 28: Examples of (a) a non interpretable and (b) an interpretable fuzzy
partitions composed of five fuzzy sets

The number of linguistic terms of a context-free universal model shou-
ld be usually low, because the RB is extracted from existing knowledge by
elicitation, which is a human-driven process, or abstraction, which can be
designed for a proper optimization of the size of the RB (WM92). Hence,
if, as stated by guideline 1, the RB is not modified during instantiation,
then property 1 (low number of fuzzy sets) is enforced as well. Further,
if the operators used for CA do not alter the normality of the context-
adapted fuzzy sets, as the novel ones introduced in Chapter 3, property 2
(normality) is verified as well. On the other hand, properties 3 and 4 are
not so easily satisfiable.

Indeed, the latter two requirements pose interesting challenges to the
designer of a learning method for FRBSs. First, defining a proper metric
to measure them with low computational effort is difficult. Second, it is
hard to find a crisp threshold for the metric so as to separate good from
bad partitions.
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It can be shown that Jaccard’s index does not seem to provide means
for salient evaluation of ordering of fuzzy partitions. On the other hand,
as we detail in Section 4.3, an ordering indices can be used also to suc-
cessfully evaluate distinguishability and coverage from an interpretabil-
ity point-of-view.

4.2 Preserving Interpretability through
Evaluation of Crossing Points

In this Section, we introduce a simple technique to handle interpretabil-
ity of a fuzzy partition during CA of FRBSs. An approach to address this
issue is to consider distinguishability and coverage as conflicting proper-
ties, and to use a metric to assess the trade-off between them. As stated
above, in previous work this is typically performed by the use of a sim-
ilarity index, e.g., Jaccard’s one. However, similarity indices are affected
by two major drawbacks.

First, such an index typically involves the calculation of the cardinality
of one or more fuzzy sets. From a computational point-of-view, this is a
very expensive task, because it includes integrating over the universe of
discourse of the base variable. Second, although similarity can be a good
measure of distinguishability, it is not always well suited to assess the
actual coverage of a partition. Therefore, by assessing interpretability via
a similarity index, we run the risk of spending significant computational
resources and obtaining just a rough estimate of the actual properties of
the partition.

Here, we propose to assess coverage and distinguishability by exploit-
ing the membership values of crossing points between adjacent fuzzy
sets. To this aim, let us consider a partition P = {A1, ..., Ai, ..., AN}which
comprises N trapezoidal fuzzy sets. Two adjacent fuzzy sets in P are two
fuzzy sets Ai and Ai+1. The crossing point x̂i between Ai and Ai+1 is de-
fined as the point where the right spread of Ai equals the left spread of
Ai+1. It can be easily observed that the membership value Ai(x̂i) is a di-
rect measure of the coverage of the partition. We remark that, if either
C(Ai)∩C(Ai+1) 6= ∅ or S(Ai)∩S(Ai+1) = ∅, then x̂i cannot be computed.
In such cases, we set x̂i = 1 or x̂i = 0, respectively.
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(a)

(b)

(c)

Figure 29: Examples of evaluation of crossing points for the assessment of
distinguishability and coverage
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The appropriate definition of the fuzzy modifiers and the choice of
trapezoidal MFs allow us to compute the crossing point of adjacent fuzzy
sets exactly and with minimal computational efforts. Indeed, x̂i is simply
the point that solves the equation

mCP (mCW (mSW (mGP (A (x; sli, cli, cui, sui))))) = (4.2)

mCP (mCW (mSW (mGP (A (x; sli+1, cli+1, cui+1, sui+1))))) .

We remark that the order of application of the modifiers is irrelevant,
as proven in Section 3.2.5. Also, Equation 4.2 can be simplified analyt-
ically and expressed in terms of the parameters of the MFs and of the
modifiers, as

x̂i = fXP (cui, sui, sli+1, cli+1, kCP , kCW , kSW , kGP , θ). (4.3)

We skip the long formulation of fXP because it is not of interest for the
current analysis.

As stated above, Ai(x̂i) is a direct measure of the coverage level achie-
ved by the couple of fuzzy sets (Ai, Ai+1). Hence, assessing the crossing
points of all the couples of adjacent fuzzy sets, we can compute the overall
level of coverage of a partition. On the other hand, Ai(x̂i) is also a good
estimator of the distinguishability of Ai and Ai+1. Indeed, as shown in
the examples reported in Figure 29, high values of Ai(x̂i) typically also
correspond to poor distinguishability.

Taking all these observations into account, we can define a penalty in-
dex for fuzzy partitions that measures how many couples of adjacent fu-
zzy sets violates the distinguishability and the coverage constraints ex-
pressed in terms of a range of allowed values for Ai(x̂i).

Definition 42 (Interpretability index ΦXP ) Given a partition P = {A1, ...,
Ai, ..., AN} consisting ofN fuzzy sets, the interpretability index ΦXP is defined
as

ΦXP (P ) =
N−1∑
i=1

φi, (4.4)

with

φi =
{

1 if Ai(x̂i) < εmin ∨Ai(x̂i) > εmax

0 otherwise, (4.5)
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where εmin, εmax ∈ [0, 1], εmin < εmax, are the thresholds for coverage and
distinguishability penalties, respectively.

Typical values for εmin and εmax are 0.25 and 0.75, respectively.

4.3 Preserving Interpretability through
Fuzzy Ordering Relations

In the previous Section, we have introduced a simple technique to assess
coverage and distinguishability of fuzzy partition during the instantia-
tion process performed in CA of FRBSs. However, since in CA we also
require to preserve ordering of the original fuzzy partition, we choose to
evaluate the interpretability by extending an ordering index. Indeed, it is
extremely difficult to derive useful information about ordering from tra-
ditional interpretability indices. Therefore, in this Section, we introduce a
novel index that, exploiting a fuzzy ordering relation, explicitly takes cover-
age and distinguishability into account, in attempt to reproduce the inter-
pretability perceived by humans and described by de Oliveira in (dO99).

The definition of our index reflects the following observation: humans
associate a semantic ordering with the linguistic terms used as values of a
linguistic variable. This ordering has, by and large, universal acceptance
and has to be observed by the fuzzy sets used to define the meaning of
the linguistic terms employed by the system.

A further condition for interpretability is that fuzzy sets should be
made distinguishable from each other so as to preserve distinction be-
tween linguistic terms. Indeed, humans associate completely different
meanings with different linguistic terms, and these differences are more
marked for linguistic terms which are semantically far. For instance, the
distinction between low and medium is less marked than between low and
high.

Finally, the universe should be covered, that is, there should not exist
members of the universe which are represented by no linguistic term. The
index we propose in this paper considers explicitly these three aspects of
interpretability.
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4.3.1 Fuzzy Sets Ordering

The ordering of fuzzy sets has been widely addressed in the literature
(Wan97; WK01a; CS02). For the sake of simplicity, in the following we
will restrict our analysis to the case of fuzzy numbers (see Definition 20),
which are commonly employed in Mamdani-type FRBSs.

Generally, given two fuzzy numbers A1 and A2 defined on the uni-
verse of discourse R, it may be difficult to determine whether and how
A1 and A2 are ordered.

A trivial approach is to consider basic features of each fuzzy set, such
as the position of modal values or the lower (upper) bound of the sup-
port, and to define the ordering of fuzzy sets based on the ordering of
these metrics. This approach performs correctly when fuzzy numbers are
clearly and intuitively ordered, but it may lead to counter-intuitive results
in the general case. Such disputed cases can be handled, for instance, by
defining a partial order rather than a total one. A partial order of fuzzy
numbers is simply obtained by extending the interval-set theory to α-cuts
of fuzzy sets (Ros04).

Let us consider the eight case studies of couples of fuzzy sets shown
in Figure 30 (case 4 is taken from an example in (WK01a)). Clearly, the
ordering of cases 1-3 is easily identifiable, while the other cases are dis-
putable. As stated above, we could either define a C-partial order of A1

andA2 based on the partial order of their cores C(A1) and C(A2) (i.e., their
1-cuts) or, similarly, an S-partial order based on the partial order of their
supports S(A1) and S(A2) (i.e., their 0+-cuts). For instance, in case 8, the
C-partial order returnsA1 ≤ A2, whilst the S-partial order givesA2 ≤ A1.
In case 7, the C-partial order returns A1 ≤ A2, whilst the S-partial order
cannot be computed. In cases 4 and 5, neither the C- nor the S-partial
orders can be computed. Hence, α-cut-based partial orders do not seem a
proper solution to determine the ordering of fuzzy sets, because, besides
not always being able to compute the actual order, they depend too much
on the choice of the α-cut.

In (WK01a; WK01b), Wang and Kerre reviewed a number of ordering
approaches, and classified them into three categories.
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Figure 30: Case studies for the evaluation of the ordering of fuzzy sets A1

(solid) and A2 (dotted)
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Table 1: Evaluation of A1 ≤ A2 and A2 ≤ A1 on the cases of Figure 30

Kolodziejczyk Yuan Jaccard
K≤(A1, A2) K≤(A2, A1) Y≤(A1, A2) Y≤(A2, A1) SJ (A1, A2)

1 1 0 0.9080 0.0920 0.25
2 1 0 0.7444 0.2556 0.5625
3 1 0 1 0 0
4 1 0 0.5761 0.4239 1
5 0.5 0.5 0.5 0.5 1
6 0.8333 0.1667 0.6576 0.3424 0.4375
7 0.8333 0.1667 0.5737 0.4263 0.9375
8 0.4003 0.5997 0.4730 0.5270 0.6623

1. Methods which extract crisp quantities from fuzzy sets and then
compare them (including the trivial approaches described above).

2. Methods which consider a third reference set.

3. Methods which evaluate the ≤ relation as a fuzzy relation (see Def-
inition 28).

To our aims, methods in the third category are particularly attractive,
since they provide us with enough expressibility to assess that A1 ≤ A2

and A2 ≤ A1 are true at different degrees, for instance 0.6 and 0.2, respec-
tively. In this case, we write R≤(A1, A2) = 0.6 and R≤(A2, A1) = 0.2. If
R≤(A1, A2) +R≤(A2, A1) = 1 holds, the relation is said to be reciprocal.

We remark that, whilst methods in the first and in the second cate-
gories can directly derive a total order among the fuzzy numbers in R,
methods in the third category need an extra defuzzification step to con-
vert the fuzzy relation into a total order. Many properties have been de-
fined for fuzzy ordering relations, but Wang proved that acyclicity is the
only one that is required to derive a total order (Wan97).

All the approaches reviewed by Wang and Kerre were tested with re-
spect to a set of reasonable axioms, and some methods from the first and
third categories proved to be particularly effective.
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We used the case studies of Figure 30 to benchmark the behavior of
Kolodziejczyk’s and Yuan’s indices (Yua91), two reciprocal fuzzy order-
ing relations previously reviewed in (WK01b). Table 1 shows the values
of the two indices for the eight case studies. The value of the Jaccard’s
similarity index is also shown as a reference.

Results highlight that, between the two indices, Yuan’s index is able
to distinguish one case from another in a “fuzzier” fashion, i.e., provid-
ing more information than Kolodziejczyk’s one on the actual perceived
ordering of the two fuzzy numbers.

Indeed, we observe that in cases 1 and 2 the fuzzy sets satisfy both
the properties of distinguishability and coverage, whilst case 3 is lacking
coverage and case 4 is lacking distinguishability. Kolodziejczyk’s index
returns K≤(A1, A2) = 1 in all four cases and, therefore, it cannot be used
to evaluate distinguishability and coverage.

In contrast, Yuan’s index is able to properly discriminate the four cases,
giving a crisp value of 1 only in case 3, in which A1 ∩ A2 = ∅. In the
other cases, different degrees of truth are obtained by the evaluation of
Y≤(A1, A2). Thus, Yuan’s index can be reasonably chosen as a building
block for the definition of an interpretability index based on a fuzzy or-
dering relation.

4.3.2 The Interpretability Index
As we have detailed in the previous Sections, when assessing interpretabil-
ity of a fuzzy partition in CA, we have to take coverage, distinguishability,
and ordering into account. To this aim, we introduce the following novel
index based on fuzzy ordering relations.

Definition 43 (Interpretability index ΦQ) Given a partition P = {A1, ...,
Ai, ..., AN} consisting of N fuzzy sets, let dji = |j− i| be the semantic distance
between Aj and Ai. The interpretability index ΦQ is defined as

ΦQ(P ) =

∑
1≤i≤N−1
i<j≤N

1
dji

µ
dji
Q (Q≤(Ai, Aj))

∑
1≤i≤N−1
i<j≤N

1
dji

, (4.6)
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where Q is a fuzzy ordering index and µdjiQ (x), with x = Q≤(Ai, Aj), are fuzzy
sets defined on the universe [0, 1] of the values of Q.

The semantic distance measures the linguistic proximity of terms. For in-
stance, the semantic distance betweenA3 andA1 is 2. The value of ΦQ(P )
ranges between 0 (the lowest level of interpretability) and 1 (the highest
level of interpretability). Thus, ΦQ(P ) should be close to 1 for uniform
fuzzy partitions.

Fuzzy sets µdjiQ (x) are used to assess, for different values of dji, the
value of the Q index with respect to interpretability. For instance, in case
of dji = 1 and Ai ∩ Aj = ∅, i.e., a situation similar to case 3 in Figure
30, adjacent fuzzy sets are not overlapped and, therefore, coverage is not
verified. It follows that µdjiQ (x) should return a value close to 0. On the
other hand, in case of dji > 1 and Ai ∩Aj = ∅, to enforce distinguishabil-
ity, the fuzzy sets should not be overlapped and, therefore, µdjiQ (x) should
return a value close to 1. Obviously, the definition of the family of fuzzy
sets µdjiQ (x) is a critical step, since these fuzzy sets represent the actual
link between the evaluation of the ordering, coverage and distinguisha-
bility properties. In the following, we describe a procedure to generate
the family of fuzzy sets µdjiQ (x).

We start from the evaluation of the measure of interpretability intro-
duced in Section 4.2, based on the value y of the crossing point between
two fuzzy sets (denoted as XP in the following). We can distinguish two
cases.

• Semantically adjacent fuzzy sets (dji = 1). In this case, y should be
neither too close to 1 nor to 0, so as to preserve, respectively, the
distinguishability and the coverage properties. On the other hand,
the two properties are both verified when y is close to 0.5. These
observations can be modeled by the fuzzy set ν1

XP (y) shown in solid
line in Figure 31(a).

• Semantically non adjacent fuzzy sets (dji > 1). In this case, we do
not care about coverage, since it is already ensured by adjacent fu-
zzy sets, but we stress distinguishability. Thus, y should be close
to 0. Nevertheless, depending on the actual value of dji, we can
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(a) ν
dji
XP (y)

(b) µ
dji
Y (x)

Figure 31: The fuzzy sets νdji
XP (y) and µdji

Y (x) used to assess ΦY
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Figure 32: The empirical relation RY,XP (x, y) used to assess ΦY

still tolerate some overlapping between the two fuzzy sets, and this
tolerance should decrease with the increase of dji. These obser-
vations can be modeled by the fuzzy set νdjiXP (y) shown in dotted
line in Figure 31(a) for different values of dji. We note that, while
ν
dji
XP (0) = 1 ∀dji > 1, the right spread shrinks toward 0 as dji in-

creases, so as to reduce the tolerance.

To obtain µ
dji
Q (x), we project νdjiXP (y) from its original base variable y to

the base variable x. The overall process can be formalized as follows.

1. We choose νdjiXP (y) as triangular membership functions, defined by
the three breakpoints (sldji , cdji , sudji). We set sldji = 0 ∀dji, c1 =
0.5, cdji = 0 ∀dji > 1, su1 = 1, and sudji = 2/dji ∀dji > 1. Fig-
ure 31(a) shows νdjiXP (y), with N = 5 and dji = 1, ..., 4.

2. We empirically identify a relation RQ,XP (x, y) by evaluating x and
y for a number of differently overlapping trapezoidal membership
functions.

3. Using the extension principle andRQ,XP (x, y), we project the fuzzy
sets νdjiXP (y) from the base variable y to the base variable x, thus
obtaining a corresponding µdjiQ (x). More formally, we have
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µ
dji
Q (x) = sup

y∈[0,1]

min(νdjiXP (y), RQ,XP (x, y)), (4.7)

where dji = 1, ..., N − 1.

We illustrate the above process by detailing the sets µdjiY (x) corre-
sponding to Yuan’s fuzzy ordering index. We recall the formula to com-
pute Yuan’s index (Yua91; WK01b).

Definition 44 (Yuan’s ordering index) Given two fuzzy setsA1, A2 ∈ F(U),
Yuan’s ordering index Y≤(A1, A2) : F(U)×F(U)→ [0, 1] is defined as

Y≤(A1, A2) =
Υ(A2, A1)

Υ(A1, A2) + Υ(A2, A1)
, (4.8)

where Υ(A1, A2) is defined as

Υ(A1, A2) =
∫
α|uA1α>lA2α

(uA1α − lA2α)dα+
∫
α|lA1α>uA2α

(lA1α − uA2α)dα,

α ∈ [0, 1] is an α-cut value, Aiα is the crisp set obtained by α-cutting Ai, i =
{1, 2}, and lAiα and uAiα are the lower and upper bounds of Aiα, respectively.

Figure 32 shows the empirical relation RY,XP (x, y) used to project
ν
dji
XP (y) on the base variable x. Figure 31(b) shows the projections µdjiY (x)

obtained by applying the overall process. This family of fuzzy sets can
then be employed in the corresponding interpretability index ΦY (P ). Fi-
nally, in Figure 33, we show the evaluation of the proposed index on four
sample partitions characterized by different degrees of coverage, distin-
guishability and ordering of fuzzy sets.
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(a) ΦY = 1

(b) ΦY = 0.9204

(c) ΦY = 0.7166

(d) ΦY = 0.4512

Figure 33: Evaluation of ΦY on sample partitions with different degrees of
coverage, distinguishability and ordering of fuzzy sets
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Chapter 5

Evolutionary Algorithms
for Automatic Context
Adaptation of
Fuzzy Systems

Thanks to their modeling capabilities, the scaling function ψ and the four
fuzzy modifiers introduced in Chapter 3 allow adapting normalized par-
titions to any context. Indeed, the combination of all the operators is able
to generate a wide range of different context-adapted partitions. In real-
world applications, we first have to determine whether each operator ac-
tually need to be applied to each fuzzy partition and, then, which param-
eter values have to be used for the selected ones. However, as stated in
Section 2.1.4, FRBSs do not provide a native technique for such adaptive
learning.

To the aim of generating context-adapted FRBSs, in this Chapter we
introduce two evolutionary-based learning approches. In the framework
of CA illustrated in Section 2.2, this process is classified as an instantiation
process.

As typically performed in genetic learning of FRBSs, the above choices
are based on the maximization of the accuracy of the GFRBS on real-
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world examples which are a sample of the effects of the context on the
normal operation of the real system (CGH+04; Ish07; Her08). Further-
more, as discussed in Chapter 4, the partition generated by the appli-
cation of the operators should satisfy the ordering and interpretability
constraints.

Let us consider a data set D = {(x̂1, ŷ1), ..., (x̂d, ŷd), ..., (x̂D, ŷD)} of
D = |D| real-world samples, where x̂d = (x̂d1, ..., x̂dv, ..., x̂d(V−1)), x̂d ∈
U1 × ...× Uv × ...× U(V−1), is a vector of V − 1 input values, and ŷd ∈ UV
is the corresponding output. Then, the objective of our genetic learning
process is to find a multi-input single-output GFRBS F which correctly
modelsD and, at the same time, takes the accuracy-interpretability trade-
off into account.

More formally, let us characterize F by its input-output function

fF (x) : U1 × ...× U(V−1) → UV , (5.1)

and by the value of an index I(F ) which measures the overall inter-
pretability of the GFRBS. It follows that the genetic learning process can
be modeled as a constrained optimization problem, as min

D∑
d=1

E (fF (x̂d) , ŷd)

ιmin ≤ I(F ) ≤ ιmax,

(5.2)

where E is an error measure between the model output fF (x̂d) and the
corresponding real-world sample ŷd, and [ιmin, ιmax] is the allowed range
of values for I(F ). Conversely, if a special focus on interpretability is
desired, the genetic learning process can be expressed in terms of a multi-
objective optimization problem, as min

D∑
d=1

E (fF (x̂d) , ŷd)

max I(F ).

(5.3)

From an EA point-of-view, the alternative formulations of the learning
process reflect into the choice between two evolutionary strategies.
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• Constrained single-objective genetic algorithm. As regards Equation
5.2, a well-known solution for single-objective constrained optimiza-
tion via EAs is the use of penalty functions (MS96; Coe02). Hence, in
this approach, while searching for context-adapted GFRBSs which
minimize the performance error, we measure the interpretability
level of the linguistic variables. Then, we penalize individuals that
show a low level of interpretability. This approach is detailed in
Section 5.1.

• Multi-objective evolutionary algorithm. As regards Equation 5.3, we
can perform a multi-objective search, so as to concurrently reduce
the error between the system and the expected outputs and increase
the level of interpretability. Actually, this corresponds to the iden-
tification of a set of (approximated) Pareto-optimal GFRBSs that is
commonly achieved by a MOEA (DAPM02; IN07). This approach
is described in Section 5.2.

Both the alternatives for instantiation can be described by the com-
mon framework depicted in Figure 34. Indeed, we always start from a
normalized FRBS, i.e., an FRBS which adopts linguistic terms associated
with fuzzy sets uniformly distributed on a normalized universe of dis-
course N = [0, 1]. As largely discussed in Section 2.2, the normalized
FRBS can be provided by an expert (via knowledge elicitation) or com-
puted by using some automatic identification method (via abstraction).

The normalized FRBS is input to the Context Adaptation Module. By us-
ing experimental data collected by letting the real system operate in the
context to be modeled (i.e., D), the Optimization Module searches for the
best parameters to be used in the operators so as to adapt the normalized
FRBS to the given context. In this work, the Optimization Module is imple-
mented by one of the two evolutionary approaches detailed in the rest of
this Chapter. Indeed, the individuals comprised in the populations of the
EAs represent the values of the parameters which define the operators
used to adapt Mamdani-type GFRBSs.

Finally, the output of the Context Adaptation Module is a context-adap-
ted FRBS, that is, an FRBS with the same RB as the normalized one, but
with the DB adapted to the given context.
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Figure 34: The overall instantiation process based on evolutionary algo-
rithms

5.1 Constrained Single-Objective
Genetic Algorithm

In this Section, we discuss the development of a GFRBS based on con-
strained single-objective genetic algorithm (SOGA) for context adapta-
tion. Preliminary versions of the proposed technique can be found in
(BLM06a; BLM06b; BLM08).

5.1.1 Chromosome Encoding

The chromosome which represents a context-adapted DB is composed of
V strings of 77 bits, where each string encodes five control genes and nine
8-bit parameters. The five control genes are used to select which operators
have to be applied on the v-th partition, while the other 72 bits are used
to encode the values of the parameters assigned to the tuning operators.
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The first V −1 strings and the last string determine the parameters for the
input variables and for the output variable, respectively.

As shown in Figure 35, each string is characterized by a hierarchical
structure: the first five bits, one for each tuning operator, control whether
the corresponding operator is applied or not on each fuzzy partition. The
other 72 bits are organized in sub-strings of eight bits. Each sub-string
determines the value of a given parameter. The chromosome has the fol-
lowing structure

(CSF1 , CCP1 , CCW1 , CSW1 , CGP1 ,

b (umin1) , b (umax1) , b (λ1) , b (kSF1) ,

b (kCP1) , b (kCW1) , b (kSW1) , b (θ1) , b (kGP1) ,

... (5.4)

CSFV , CCPV , CCWV
, CSWV

, CGPV ,

b (uminV ) , b (umaxV ) , b (λV ) , b (kSFV ) ,

b (kCPV ) , b (kCWV
) , b (kSWV

) , b (θV ) , b (kGPV )) ,

where CSFv , CCPv , CCWv
, CSWv

, and CGPv , with v = 1, ..., V , are the
control genes that determine whether, respectively, the non linear scal-
ing function ψ, and the core-position, the core-width, the support-width,
and the generalized positively modifiers have to be applied to the v-th
partition. The b(uminv ), ..., b(kSFv ) and the b(kCPv ), ..., b(kGPv ) are, re-
spectively, the binary encodings of the values of the parameters of ψ and
of the four fuzzy modifiers for the v-th partition.

Instead of using a mixed binary-real variable coding (with five binary
genes for the choice of the tuning operators and nine real genes for the
parameter values), we decided to adopt a binary-coded GA based on the
following considerations. We observed that the quantization performed
by binary coding does not affect the precision of the choice of the param-
eter values due to the small ranges of these parameters. Furthermore,
binary coding provides a discretization of the search space, thus allowing
the exploration of the solution space with lower computational effort.

However, binary coding suffers from the following problem: mating
can generate descendants which inherit no characteristics of the parents.
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Figure 35: The structure of the chromosome
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Table 2: The structure of the v-th string of the chromosome

Operator Parameter Range

uminv [mind (x̂dv)− δ∆v,mind (x̂dv) + δ∆v]

Scaling umaxv [maxd (x̂dv)− δ∆v,maxd (x̂dv) + δ∆v]

function λv [0, 1]

kSFv [0.4, 2]

CP modifier kCPv [−0.9, 0.9]

CW modifier kCWv [−1, 0.25]

SW modifier kSWv [0.667, 2]

GP modifier
θv [0, 1]

kGPv [0.75, 4]

To solve this problem, we have adopted, as usual when using binary chro-
mosomes, the Gray decoding to generate individuals from chromosomes
(Mic99).

Table 2 shows the lower and upper bounds of the range of possible
values for each parameter coded in the corresponding sub-string. We ob-
serve that these ranges are actually sub-intervals of the domains of defi-
nition of the parameters: the lower and upper bounds of the ranges have
been chosen heuristically so as to avoid values of parameters which make
the final partition non interpretable.

In Table 2, ∆v denotes the difference between the maximum and the
minimum values of the v-th variable in D, i.e.

∆v = max
d=1,...,D

(x̂dv)− min
d=1,...,D

(x̂dv) , ∀v = 1, ..., V − 1, (5.5)

and similarly for v = V (with ŷd in place of x̂dv). Further, δ ∈ [0, 0.5] is a
design parameter. In the experiments, we set δ to 0.15.

Note that some values of the v-th variable inDmight be outside of the
interval [uminv , umaxv ]: actually, these values are probably outliers. Thus,
the appropriate choice of δ avoids that possible outliers affect the context
modeling capabilities of our approach. Anyway, at runtime, if a value of
an input variable is smaller (higher) than the lower (upper) bound of Uv ,
it is assigned to the first (last) MF with membership value equal to 1.
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5.1.2 Phenotype Decoding

The value k of a generic parameter is determined by the following for-
mula

k = kmin + (kmax − kmin)
g (b (k))
28 − 1

, (5.6)

where [kmin,kmax] is the interval of values of parameter k as defined in
Table 2, b(k) is the 8-bit string representing k in the chromosome, and g is
a function that maps an 8-bit sub-string into its Gray integer value.

The context-adapted partitions are instantiated by applying the five
operators to the normalized FRBS, as depicted in Figure 34. In generating
the context-adapted partitions, we first apply the scaling function, and
then the four modifiers, whose order of application is not significant (see
Section 3.2.5).

We remark that, in order to cover the overall universe of discourse,
even when the control gene of the non linear scaling function is off (i.e.,
CSFv = 0), we always perform a linear scaling from the normalized in-
terval [0, 1] to the interval [uminv , umaxv ] encoded in the chromosome. We
remark that this corresponds to applying the scaling function ϕ0 intro-
duced in (GG94). Conversely, if the control gene is on, we apply the non
linear scaling with the value of parameters λv and kSFv determined by
Equation 5.6.

Some problems about the normality of the fuzzy partition may arise
when both the core-position and the core-width modifiers are applied,
because these modifiers may move the core of the first and/or the last
fuzzy set out of the bounds of the universe of discourse, thus leaving
some subnormal fuzzy sets in the partition. To avoid this problem, once
we have applied the modifiers, we adjust the bounds of the universe of
discourse so as to include the upper and lower bounds of the cores of the
first and last fuzzy sets, respectively.
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5.1.3 Fitness Function

Since we adopt a constrained GA based on penalty functions, the fitness
function is defined as

fGA(F,D) =
D∑
d=1

E (fF (x̂d) , ŷd) + PGA(F ), (5.7)

where PGA is a properly defined penalty function employed to enforce
the interpretability constraints. To this aim, we compute the index ΦXP
defined in Section 4.2 for all the partitions of F .

As regards the error measure, we observe that it is strongly applica-
tion-dependent. For instance, in control applications, the integral of time
and absolute error (ITAE) is commonly used (Kar91; Mag02). In regression
and modeling applications, a widely employed accuracy measure is the
mean square error (MSE), defined as

MSE(F,D) =
1

2D

D∑
d=1

(fF (x̂d)− ŷd)2 . (5.8)

Hence, the overall formulation of our fitness function is

fGA(F,D) =
1

2D

D∑
d=1

(fF (x̂d)− ŷd)2 + β
V∑
v=1

ΦXP (Pv), (5.9)

where Pv is the fuzzy partition of the linguistic variable bound to the v-
th variable of the GFRBS F , and β ≥ 0 is a tunable design parameter
which controls the influence of the penalties with respect to the accuracy
measure.

5.1.4 Genetic Evolution

At generation t = 0, we start with an initial population P (0) composed of
Npop individuals generated by a random uniform distribution. At each
generation, the simple uniform crossover and the uniform mutation opera-
tors are applied, with a crossover and a mutation probability of, respec-
tively, 0.8 and 0.05 (see (Mic99) for a review of genetic operators).
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Chromosomes to be mated are chosen by using the well-known deter-
ministic tournament selection method, with a tournament fraction of 1/8 of
the population.

Further, we adopt the following acceptance mechanism: the new pop-
ulation P (t + 1) is composed of offspring, except for a percentage of 5%
of the best individuals of population P (t).

When the average of the fitness values of all the individuals in the
population is greater than 99.9% of the fitness value of the best individual
or a prefixed number of Tmax generations has passed, the GA is consid-
ered to have converged.

5.2 Multi-Objective Evolutionary
Algorithm

In this Section, we approach the instantiation of the Mamdani-type GFRBS
as the multi-objective optimization problem shown in Equation 5.3. This
technique has been firstly introduced in (BLMS07a) and later exploited in
(BLMS08; BDLM08).

5.2.1 The Non-Dominated Sorting Genetic
Algoritm II

To perform the multi-objective search, we adopt a MOEA, namely the
NSGA-II developed by Deb et al. in (DAPM02).

NSGA-II is a fast and elitist EA that evolves a population of possi-
ble solutions to multi-objective problems. The rank assignment of the
algorithm is based on the concept of Pareto-dominance: a solution s1 dom-
inates a solution s2 if and only if s1 is worse than s2 in no objective and
s1 is better than s2 in at least one objective. The set of Pareto-optimal
solutions (i.e., a set of solutions which are not dominated by any another
one) is called Pareto front. Furthermore, to allow a balanced exploration of
the fronts, NSGA-II exploits an ad-hoc density-estimation metric, called
crowding distance.
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NSGA-II starts from an initial random population P (0) of Npop indi-
viduals sorted according to the non-dominance. Each solution is associ-
ated with a rank equal to its non-dominance level (e.g., rank 1 is given
to solutions which are non-dominated, rank 2 is given to the solutions
dominated by just another one, and so on).

At each generation t, t = 0, ..., Tmax, an offspring population Q(t) of
size Npop is produced by selecting mating individuals through the binary
tournament selection, and by applying the crossover and mutation opera-
tors. The parent population P (t) and the offspring population Q(t) are
combined so as to generate a new population R(t) = P (t) ∪ Q(t). Then,
a rank is assigned to each individual in R(t). Based on these ranks, R(t)
is split into different non-dominated fronts, one for each different rank.
Within each front, a specific crowding measure, which represents the sum
of the distances to the closest individual along each objective, is used to
define an ordering among individuals.

The new parent population P (t + 1) is generated by deleting from
R(t) the worstNpop individuals (considering first the ordering among the
fronts and then that among the individuals). The algorithm terminates
when it reaches the maximum number Tmax of generations.

5.2.2 Context Adaptation through NSGA-II

In the last years, NSGA-II has been successfully applied to a number of
GFRBS (IN07). Hence, we exploited it for our MOEA-based CA approach.

Basically, the chromosome, the phenotype decoding, and the crossov-
er and mutation operators are the same of the single-objective version, as
explained in Sections 5.1.1, 5.1.2, and 5.1.4 respectively.

On the other hand, the two objectives of NSGA-II are the minimization
of theMSE shown in Equation 5.8 and the maximization of the averaged
value of the index ΦY (see Section 4.3) computed for all input and output
partitions of the FRBS, as

Φ̄Y (F ) =
1
V

V∑
v=1

ΦY (Pv). (5.10)
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Again, we start with an initial population composed of randomly gen-
erated individuals. In this GRBS, selection is performed by the stan-
dard binary tournament proposed by (DAPM02) in the original version
of NSGA-II.
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Chapter 6

Experimental Results

In the previous Chapters, we have reviewed existing CA techniques and
introduced new tools, indices, and learning approaches to the aim of aug-
menting the instantiation process of GFRBSs.

In the following, we assess the effectiveness of our overall proposal
by applying it to four context-aware data sets. Moreover, we provide an
analysis of the effects of each CA operator and detailed benchmarks with
some of the existing approaches.

6.1 Data Sets

In this Section, we introduce the context-aware data sets that we will ex-
ploit in the remaining of the Chapter for numerical evaluation of CA ap-
proaches. We remark that finding a proper data set to assess CA algo-
rithms is not an easy task, given the very specific kind of application and
since there not exist relevant benchmarks in the literature. Indeed, the
data sets have to be organized in different contexts and, further, the data
collected in different contexts must all resemble a similar instance of the
same system.

In the following, we will describe four data sets which enforces the
above requirements. The first application is the only context-aware bench-
mark existing in the literature that can be used to our aims. This data
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Figure 36: Plot of the context-adapted fuzzy partition data set

set associates points of a universe of discourse to values of arbitrarily
context-adapted fuzzy sets. Although simple, it can be exploited to com-
pare CA approaches on a single partition, without defining an RB and,
thus, an FRBS.

The remaining three data sets are a two-input regression problem, and
two modeling applications: a simple relation between years of experience
and wage contextualized into four different education levels of workers,
and a challenging four-input modeling problem regarding fuel consump-
tion in highway and city.

6.1.1 Context-Adapted Fuzzy Partition

This data set was introduced in (PGG97) and consists of elements situated
in a segment [2, 18.1] ∈ R that are assigned to five fuzzy sets. In a sense,
such data set can be interpreted as a collection of twelve sampling points
taken from a context-adapted fuzzy partition. The data set is shown in
Table 3 and plotted in Figure 36.

We remark that the algorithms developed in Chapter 5 cannot be di-
rectly applied to this data set. Indeed, differently from the ones intro-
duced in the following Sections, this application does not represent a set
D of input-output pairs.
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Table 3: The context-adapted fuzzy partition data set

x Â1(x) Â2(x) Â3(x) Â4(x) Â5(x)

2.0 1 0.3 0.1 0 0
4.3 0.8 0.5 0.4 0.04 0
4.7 0.7 0.65 0.42 0.06 0
5.6 0.3 0.98 0.6 0.2 0.05
7.9 0.1 1 0.4 0 0
8.2 0 0 0.7 0.6 0.2
9.8 0 0 0.96 0.5 0.3
12.6 0 0 1 0.3 0.2
13.6 0 0.1 1 0.2 0.05
14.1 0.12 0.56 0.87 0.67 0.2
16.3 0.1 0.1 0.25 0.8 0.92
18.1 0 0.05 0.2 0.4 1

6.1.2 The Structure of Wages

In economics, The structure of wages is represented by families of curves
which show how the hourly wage of workers (HW) changes with the
amount of years of experience (YE). In this kind of data, context is well
represented by some common features shared among the people being
interviewed (e.g., age, sex, social conditions, etc).

The four curves shown in Figure 37 represent the structure of wages
for college graduates, college drop-outs, high-school graduates and high-school
drop-outs. Hence, we consider the educational level as the context. This
example is inspired by (MW92): we chose 100 points for each context and
added to the curves some Gaussian noise with zero mean and variance
equal to 1% of the range of HW-values of each curve. Further, the data
set was split into five folds to perform cross-validation. Hence, each fold
is composed of 80 training points and 20 test points.

By observing the common trend of the curves, we can derive a set
of linguistic rules which reproduce the knowledge of an expert. Table 4
shows the chosen set, that includes six linguistic terms in YE (namely, low,
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Figure 37: Plot of the structure of wages data set

low-medium, medium-low, medium-high, high-medium, and high) and five in
HW (namely, low, medium-low, medium, medium-high, and high). The rules
are all in the form “if YE is ... then HW is ...”.

The normalized FRBS that we employ as universal model in our ex-
periments is a single-input single-output Mamdani-type FRBS, with the
RB as in Table 4 and the DB composed of two fuzzy partitions associated
with, respectively, the input variable YE and the output variable HW.

6.1.3 Parametric Function

Let us consider the following parametric function:

g(x1, x2) = κ+ e−(κx1)
2κ−(1+x2)

2κ
− e−x

2κ
1 −x

2κ
2 − e−(1+x1)

2κ−(κx2)
2κ
, (6.1)

where x1, x2 ∈ [−1.5, 0.5]. We generated three different instances of the
curve by varying κ in {2, 5, 7}. Figure 38 shows the isolevel contours
produced by these instances.

98



Table 4: RB for the structure of wages data set

Rule YE HW

R1 low low
R2 low-medium medium-low
R3 medium-low medium
R4 medium-high medium-high
R5 high-medium high
R6 high medium-high

We can observe that, albeit the range of the output variable and the
smoothness of each curve are affected by the value of parameter κ, all of
the instances show a similar shape. In other words, the three curves may
be considered as different context-adapted instances of the same system.
In particular, different contexts are bound to different values of κ. Hence,
we can define a set of rules that linguistically describe this common be-
havior, and regard each of the three curves as a different instantiation of
the same generic shape in a different context, determined by the given
value of κ.

Table 5 shows the RB which describes the κ-independent behavior of
g. In the RB, four linguistic labels are used in each universe, namely low,
medium-low, medium-high and high. The rules are all in the form “if x1 is ...
and x2 is ... then y is ...”.

Again, the universal model is represented by a Mamdani-type FRBS,
with two input variables and one output variable. Since there are four
linguistic labels for each variable in the RB, the normalized universes of
discourse are uniformly partitioned into four trapezoidal fuzzy sets.

The data set was generated by assessing g in a grid of 120 equally
spaced points chosen in the [−1.5, 0.5] × [−1.5, 0.5] region. To avoid bi-
asing the numerical evaluations with respect to a single training set, we
divided the original data set into five subsets of 24 points each. Then, we
generated a cross-validation data set composed of five folds, each with 96
and 24 training and test points, respectively.
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(a) κ = 2

(b) κ = 5

(c) κ = 7

Figure 38: Isolevel contours of the parametric function data set
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Table 5: RB for the parametric function data set

Rule x1 x2 y

R1 low low medium-high
R2 low medium-low medium-high
R3 low medium-high medium-low
R4 low high medium-low
R5 medium-low low medium-high
R6 medium-low medium-low medium-low
R7 medium-low medium-high low
R8 medium-low high low
R9 medium-high low high
R10 medium-high medium-low medium-high
R11 medium-high medium-high medium-low
R12 medium-high high low
R13 high low high
R14 high medium-low medium-high
R15 high medium-high medium-low
R16 high high medium-low

6.1.4 Fuel Consumption

The 2004 new car and truck data set (Joh04) contains the features of a set of
428 different models of cars and trucks, such as engine size (ES), horsepower
(HP), retail price (RP) and fuel efficiency (FE), in city and highway traffic
conditions.

We preprocessed the data set by selecting the 387 vehicles with the
complete set of 19 features. We aimed to model the effects of the traffic
conditions on FE with respect to the other features. By observing such
correlations, we realized that only ES, HP, RP and the ratio AW between
base area and weight are strongly correlated to FE. Actually, AW was
purposely generated by combining three features, namely width, length
and weight. Hence, we decided to use only ES, HP, AW and RP as input
variables and FE as output variable of our model. The city and highway
traffic conditions were considered as two different contexts.
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(a) ES-FE (b) HP-FE

(c) AW-FE (d) RP-FE

Figure 39: Plot of the fuel efficiency data set in the (a) ES-FE, (b) HP-FE, (c)
AW-FE and (d) RP-FE planes

Figure 39 shows the distribution of the car and truck models in the
ES-FE, HP-FE, AW-FE and RP-FE planes, respectively. ES, HP, AW, RP
and FE are measured in liters, horsepower, inches2/pounds, dollars and
miles per gallon (MPG), respectively. The squares and the circles repre-
sent FE in, respectively, city and highway traffic conditions. The plots
clearly show the existing correlation between the input variables and FE.

Figure 40 show the distribution of the car and truck models in the ES-
HP, ES-AW, ES-RP, HP-AW, HP-RP and AW-RP planes, respectively. Note
that, even though the relations between the features are evident, the data
points are quite disperse in all the six planes.
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(a) ES-HP (b) ES-AW

(c) ES-RP (d) HP-AW

(e) HP-RP (f) AW-RP

Figure 40: Plot of the fuel efficiency data set in the (a) ES-HP, (b) ES-AW, (c)
ES-RP, (d) HP-AW, (e) HP-RP and (f) AW-RP planes
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Table 6: RB for the fuel efficiency data set

Rule ES HP AW RP FE

R1 low low medium low high
R2 low low high low high
R3 low medium medium low medium
R4 low medium high low high
R5 medium medium low medium medium
R6 medium medium low high medium
R7 medium medium medium medium medium
R8 medium medium high medium medium
R9 medium high low medium medium
R10 medium high low high low
R11 medium high medium medium medium
R12 medium high medium high low
R13 medium high high medium medium
R14 high medium low medium medium
R15 high medium low high low
R16 high medium medium medium medium
R17 high medium medium high low
R18 high high low medium low
R19 high high low high low
R20 high high medium medium medium
R21 high high medium high low

104



The rules of the normalized Mamdani-type FRBS, shown in Table 6,
were extracted from the following intuitive considerations derived from
experience, as

FE decreases with the increase of ES, HP and RP, and increases
with the increase of AW.

Further, we did not generate rules for meaningless or incompatible cases,
such as high ES and low HP, or low ES and high RP.

We uniformly partitioned the normalized input variables and the out-
put variable into three fuzzy sets, namely low, medium, and high. The
number of fuzzy sets was chosen by interviewing a pool of experts and
asking them for a meaningful partition of the universes. The rules are in
the form “if ES is ... and HP is ... and AW is ... and RP is ... then FE is ...”.

As in the previous data sets, the training and the test sets were ob-
tained by applying a 5-fold cross-validation strategy.

6.2 Numerical Evaluations

In the following, we show extended results of the application of the two
alternative instantiation techniques defined in Chapter 5 to the experi-
mental data sets presented in Section 6.1. In the following, we refer to
the single- and to the multi-objective versions of the algorithm as SOGA
ψ + FM and MOEA ψ + FM, respectively.

The tests were performed by running software implementations of the
GFRBSs. The software has been developed on the Matlab R2006a plat-
form (Mat06), exploiting some library functions of the Genetic Algorithms
and Direct Search Toolbox and of the Fuzzy Logic Toolbox. Further, some
functions of the NSGA-II Matlab implementation (Sch04) were used in the
MOEA-based version of the GFRBS.

To the aim of testing the robustness of our approaches with respect to
changes of the genetic meta-parameters, the experiments were run with
different values of Npop and Tmax. Further, in some cases our approaches
were benchmarked with the following CA techniques inspired by the lit-
erature.
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1. The absolute limit context determination with linear scaling intro-
duced in (GG94), denoted in the following as AL ϕ0.

2. The non linear scaling function ϕ2 proposed in (CHMV01), where
the parameters umin, umax, a, and S are optimized similarly to SOGA
ψ+FM, i.e. by a SOGA with binary representation of parameters in
the chromosome, uniform mutation, uniform crossover and binary
tournament selection. We refer to this approach as SOGA ϕ2.

As regards ϕ2, we remark that we use just the scaling function and
not the overall methodology introduced in (CHMV01) which, unlike our
approach, does not rely on a universally valid RB, but rather identifies
rules by exploiting a quick ad-hoc learn-by-example method similar to
(WM92). Further, we remark that, to guarantee a fair comparison, we
used for SOGA ϕ2 the same chromosome coding, genetic operators, and
parameter values that we applied in SOGA ψ + FM.

6.2.1 Assessment of CA Operators
We exploited the context-adapted fuzzy partition data set to assess the
contribution of each of the five operators introduced in Chapter 3 to the
instantiation of a normalized fuzzy partition.

Since, as detailed in Section 6.1.1, the dataset comprises five linguistic
terms, we started from a normalized uniform partition with five trape-
zoidal fuzzy sets, like the one depicted in Figure 12. Then, we applied
the SOGA defined in Section 5.1 with different combinations of the five
operators.

Obviously, in this application we do not adapt a whole FRBS but,
rather, just a single partition. Hence, we cannot use the fitness function
defined in Equation 5.9 and we have to define a different one.

Let us denote as P̃{Ã1, ..., Ã5} and P̂{Â1, ..., Â5} the context-adapted
fuzzy partition resulting by the application of our SOGA and the original
one sampled in the data set, respectively. The chosen fitness function is
the total MSE, computed as

fGA(P̃ , P̂ ) =
1
ND

N∑
n=1

D∑
d=1

(
Ãn (xd)− Ân (xd)

)2

, (6.2)

where, in this case, N = 5 and D = 12.
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(a) ψ + CP + CW + SW + GP

(b) CP + CW + SW + GP

(c) ψ + CW + SW + GP

Figure 41: Typical partitions obtained by by SOGA ψ + FM for the context-
adapted fuzzy partition data set

107



(a) ψ + CP + SW + GP

(b) ψ + CP + CW + GP

(c) ψ + CP + CW + SW

Figure 42: Typical partitions obtained by by SOGA ψ + FM for the context-
adapted fuzzy partition data set
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Table 7: Results of the assessment of CA operators on the context-adapted
fuzzy partition

Operators
ψ CP CW SW GP MSE

4 4 4 4 4 0.0833 ± 0.0059
8 4 4 4 4 0.1176 ± 0.0032
4 8 4 4 4 0.1008 ± 0.0003
4 4 8 4 4 0.0874 ± 0.0126
4 4 4 8 4 0.1483 ± 0.0045
4 4 4 4 8 0.0873 ± 0.0073
4 8 8 8 8 0.1643 ± 0.0077
8 4 8 8 8 0.2295 ± 0.0000
8 8 4 8 8 0.2288 ± 0.0000
8 8 8 4 8 0.1929 ± 0.0000
8 8 8 8 4 0.1583 ± 0.0000
8 8 8 8 8 0.2295 ± 0.0000

Table 7 shows the results of the assessment. In the Table, the operators
used in each combination are identified by a tick. We repeated the SOGA
five times for each combination and reported the mean MSE ± standard
deviation computed as in Equation 6.2.

As expected, the combination which achieves the lowest MSE is the
one which comprises all the operators. Other combinations, which ex-
clude one of more operators, perform worse even on this extremely sim-
ple data set. Indeed, the fuzzy modifiers were designed to be complemen-
tary with each other, and, therefore, their combined application allows
to fully exploit the provided flexibility. Also, results highlight that, in
this application, the most relevant contributions to adaptation are given
by the non linear scaling function ψ and by the support-width modifier.
Remarkably, these results have been achieved in spite of the fact that
the complete combination of operators is the one which determines the
widest search space for the genetic learning process.
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Figures 41 – 42 show typical context-adapted partitions obtained by
some of the combinations evaluated in Table 7. Again, we can observe
how the combined use of all of the operators (Figure 41(a)) provides an
enhanced flexibility with respect to the other combinations (Figures 41(b)
– 42(c)).

6.2.2 Single-Objective Genetic Algorithm

In this Section, we show and discuss the results of the application of
SOGA ψ + FM to the data sets described in Section 6.1.

6.2.2.1 The Structure of Wages

We applied SOGA ψ + FM to the structure of wages data set. For each of
the four contexts and for each of the five folds, we executed five runs of
the GA, with a population of Npop = 50 individuals and a maximum of
Tmax = 100 generations.

Since in Equation 5.9 we included a tunable parameter β which con-
trols the effects of the interpretability constraints on the fitness function,
we repeated the runs of SOGA ψ + FM with two different values of β,
namely 0 and 0.1. We recall that setting β = 0 corresponds to performing
an unconstrained search, i.e., to generating GFRBSs which do not neces-
sarily enforce the interpretability constraints.

Table 8 shows the experimental results, expressed in terms of mean
MSE ± standard deviation over the 25 runs performed for each context,
both on the training and on the test set. As stated above, the same ex-
periment was repeated on SOGA ϕ2. The results of the simple AL ϕ0

approach are also provided in the Table. Obviously, SOGA-based appro-
aches always perform better than AL ϕ0. We observe that SOGA ψ + FM,
β = 0 outperforms SOGA ϕ2 in all contexts, except for the college drop-outs
one. Actually, the SOGA ϕ2 approach employs fewer bits in the chromo-
some (i.e., 50 against 154), and, therefore, it has a better chance to explore
the search space for a global optimum. This is also testified by the stan-
dard deviations achieved by SOGA ϕ2 on the train set, which are usually
lower than the ones obtained by SOGA ψ + FM. Further, we remark that,
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Table 8: Results of the application of SOGA ψ + FM to the structure of wages
data set

Context Approach MSEtrain MSEtest

High school
drop-outs

SOGA ψ+FM, β = 0 0.0340 ± 0.0033 0.0520 ± 0.0156
SOGA ψ+FM, β = 0.1 0.0414 ± 0.0054 0.0568 ± 0.0071
SOGA ϕ2 0.0413 ± 0.0054 0.0649 ± 0.0181
AL ϕ0 0.3664 ± 0.0497 0.3581 ± 0.0894

High school
graduates

SOGA ψ+FM, β = 0 0.0465 ± 0.0058 0.0632 ± 0.0146
SOGA ψ+FM, β = 0.1 0.0509 ± 0.0070 0.0719 ± 0.0259
SOGA ϕ2 0.0566 ± 0.0048 0.0794 ± 0.0299
AL ϕ0 1.2227 ± 0.2539 1.1981 ± 0.2956

College
drop-outs

SOGA ψ+FM, β = 0 0.0626 ± 0.0082 0.0877 ± 0.0233
SOGA ψ+FM, β = 0.1 0.0685 ± 0.0130 0.0917 ± 0.0283
SOGA ϕ2 0.0649 ± 0.0070 0.0736 ± 0.0295
AL ϕ0 0.9852 ± 0.1208 0.9696 ± 0.2060

College
graduates

SOGA ψ+FM, β = 0 0.0968 ± 0.0184 0.1339 ± 0.0118
SOGA ψ+FM, β = 0.1 0.1227 ± 0.0171 0.1579 ± 0.0269
SOGA ϕ2 0.1247 ± 0.0086 0.1726 ± 0.0372
AL ϕ0 1.7764 ± 0.1432 1.7519 ± 0.3055

though the results of SOGA ψ + FM, β = 0.1 on the training sets are com-
parable to those of SOGA ϕ2, the former approach is able to perform a
better generalization than the latter one on the test sets.

6.2.2.2 Parametric Function

The SOGA ψ + FM was tested on the parametric function data set with
Npop = 100 and Tmax = 200. We repeated the experiment five times for
each fold, as detailed in the previous Section. Further, to analyze how
parameter β affects the accuracy-interpretability trade-off, we run SOGA
ψ + FM with three different values of β, namely 0, 0.1, and 1.

Table 9 shows the aggregated results achieved by the five algorithms
for each context, both on the training and on the test set. As already
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Figure 43: Typical partitions obtained by SOGA ψ + FM, β = 0 for the para-
metric function data set in the κ = 7 context

112



Figure 44: Typical partitions obtained by SOGA ψ + FM, β = 0.1 for the
parametric function data set in the κ = 7 context
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Figure 45: Typical partitions obtained by SOGA ψ + FM, β = 1 for the para-
metric function data set in the κ = 7 context

114



Table 9: Results of the application of SOGA ψ + FM to the parametric func-
tion data set

Context Approach MSEtrain MSEtest

κ = 2

SOGA ψ+FM, β = 0 0.0048 ± 0.0007 0.0058 ± 0.0002
SOGA ψ+FM, β = 0.1 0.0053 ± 0.0005 0.0069 ± 0.0004
SOGA ψ+FM, β = 1 0.0059 ± 0.0002 0.0069 ± 0.0011
SOGA ϕ2 0.0061 ± 0.0004 0.0070 ± 0.0013
AL ϕ0 0.0341 ± 0.0012 0.0344 ± 0.0045

κ = 5

SOGA ψ+FM, β = 0 0.0432 ± 0.0044 0.0566 ± 0.0150
SOGA ψ+FM, β = 0.1 0.0477 ± 0.0035 0.0567 ± 0.0174
SOGA ψ+FM, β = 1 0.0447 ± 0.0043 0.0580 ± 0.0180
SOGA ϕ2 0.0442 ± 0.0031 0.0570 ± 0.0106
AL ϕ0 0.0920 ± 0.0073 0.0919 ± 0.0295

κ = 7

SOGA ψ+FM, β = 0 0.0666 ± 0.0060 0.0852 ± 0.0243
SOGA ψ+FM, β = 0.1 0.0702 ± 0.0061 0.0895 ± 0.0275
SOGA ψ+FM, β = 1 0.0710 ± 0.0065 0.0895 ± 0.0301
SOGA ϕ2 0.0771 ± 0.0056 0.0937 ± 0.0234
AL ϕ0 0.1616 ± 0.0101 0.1615 ± 0.0408

verified in the previous Section, SOGA ψ + FM outperforms AL ϕ0 and,
generally, achieves better results than SOGA ϕ2. Remarkably, the perfor-
mance gaps with respect to SOGA ϕ2 are particularly clear on the context
determined by κ = 7, which, as it can be verified in Figure 38(c), is the
most difficult to reproduce due to its extremely uneven shape. This is
result can be obtained thanks to the modeling capabilities of the fuzzy
modifiers introduced in Chapter 3. Finally, we observe that SOGA ψ +
FM achieves similar results for β = 0.1 and β = 1. Hence, in this exam-
ple, small values of β allow enforcing interpretability.

Figures 43 – 45 show typical partitions obtained by our CA technique
using β = 0, β = 0.1, and β = 1 on the context determined by κ = 7.
We observe that the initial uniform partitions with trapezoidal MFs are
modified into non uniformly distributed partitions, with different fuzzy
set shapes. As expected, the partitions obtained with β = 0 may show
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Table 10: Results of the application of SOGA ψ + FM to the fuel efficiency
data set

Context Approach MSEtrain MSEtest

City

SOGA ψ+FM, β=0 3.8821± 0.3198 2.2519± 0.5463
SOGA ψ+FM, β=0.1 4.2163± 0.4437 2.6471± 0.7005
SOGA ψ+FM, β=1 4.9980± 0.4690 3.4109± 0.7581
SOGA ϕ2 5.6841± 0.3119 4.4560± 0.9636
AL ϕ0 145.5427± 33.5002 151.2866± 35.3240

Highway

SOGA ψ+FM, β=0 4.4373± 0.3491 3.8125± 0.6276
SOGA ψ+FM, β=0.1 4.8899± 0.6598 3.8739± 0.6662
SOGA ψ+FM, β=1 6.9441± 0.5320 6.7319± 0.9976
SOGA ϕ2 7.4895± 0.4978 7.7359± 2.0332
AL ϕ0 88.9757± 35.0451 94.0178± 40.3049

a too high (low) level of coverage with respect to the ones produced by
β = 1, which tries to maintain the membership values of the crossing
points in the [εmin, εmax] interval (see Section 4.2).

6.2.2.3 Fuel Consumption

The last test of SOGA ψ + FM was performed on the fuel consumption
data set. As in the previous applications, we performed five runs for each
traffic condition and for each fold. In this experiment, we set Npop = 50
and Tmax = 50.

Table 10 summarizes the results of the experiments. In this applica-
tion, it can be noted that our SOGA ψ + FM always outperforms the other
approaches. Further, we can observe that the MSE increases with the
increase of β. Since low values of β do not enforce interpretability, we
expect that low values of MSE correspond to low interpretability.

Figures 46 – 48 show the partitions obtained in a trial by our context
adaptation technique for the city context with the three different values
of β. In the Figures, we observe that the fuzzy sets which compose the
partitions corresponding to β = 1 are highly distinguishable and, there-
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Figure 46: Typical partitions obtained by SOGAψ + FM for the fuel efficiency
data set in the city context with β = 0
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Figure 47: Typical partitions obtained by SOGAψ + FM for the fuel efficiency
data set in the city context with β = 0.1
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Figure 48: Typical partitions obtained by SOGAψ + FM for the fuel efficiency
data set in the city context with β = 1
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Table 11: Results of the application of MOEAψ+FM to the structure of wages
data set

Context Solution MSEtrain MSEtest Φ̄Y

High school
drop-outs

Best MSEtest 0.0500±0.0091 0.0531±0.0168 0.0815±0.0618
Best Φ̄Y 0.1919±0.1793 0.1895±0.1192 0.0059±0.0005

High school
graduates

Best MSEtest 0.0523±0.0246 0.0488±0.0302 0.1649±0.0917
Best Φ̄Y 0.1919±0.1793 0.1895±0.1192 0.0062±0.0011

College
drop-outs

Best MSEtest 0.0807±0.0550 0.0753±0.0440 0.1666±0.1242
Best Φ̄Y 0.8527±0.7593 0.7569±0.4536 0.0047±0.0015

College
graduates

Best MSEtest 0.1167±0.0347 0.1312±0.0724 0.2266±0.1330
Best Φ̄Y 0.6888±0.5484 0.7061±0.7299 0.0048±0.0012

fore, guarantee a high degree of interpretability, despite a degradation of
system accuracy. On the contrary, the fuzzy sets generated with β = 0
are less distinguishable and therefore difficultly interpretable. Finally, the
fuzzy sets produced with the intermediate value β = 0.1 show a balance
of the two properties. Obviously, the correct choice of β is application-
dependent: if the user is more interested in interpretability, he/she will
choose high values of β; otherwise, if the user is more interested in per-
formance, he/she will select values of β close to 0.

6.2.3 Multi-Objective Evolutionary Algorithm

In this Section, we show and discuss the results of the application of
MOEA ψ + FM to the data sets described in Section 6.1.

6.2.3.1 The Structure of Wages

We applied the MOEA ψ + FM CA approach to the structure of wages
data set with the same parameters employed in the experiments of Sec-
tion 6.2.2.1, i.e., Npop = 50 and Tmax = 100. To guarantee statistically
valid results, the execution of NSGA-II was repeated for each of the five
folds.

Table 11 shows the results of the application of MOEA ψ + FM to the
structure of wages data set. For each context, we reported the mean ±
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standard deviation of MSEtrain, MSEtest, and Φ̄Y for two selected GFR-
BSs, namely the ones which obtained the best MSEtest and the best Φ̄Y ,
respectively. These GFRBSs correspond to, respectively, the most accu-
rate and the most interpretable among those comprised in the final Pareto
front. We observe that the results obtained on the training set are compa-
rable to those reported in Table 8. Further, the GFRBSs which obtain the
best MSEs perform better than SOGA-based approaches on the test set.
Hence, the MOEA ψ + FM is less prone to overfitting than SOGA ψ + FM
and SOGA ϕ2. Conversely, as expected, the GFRBSs which exhibit the
best interpretability degrees are affected by a significant degradation of
performances.

Figures 49 – 52 show the Pareto fronts obtained for each context on
the train and test set. In the Figures, fronts obtained on the five folds are
marked by different symbols. It can be noted that all the fronts on the
training set are compact and well distributed. Also, we observe that the
fronts obtained on the test set maintain the original shape determined by
the accuracy-interpretability trade-off on the train set.

6.2.3.2 Parametric Function

The application of MOEA ψ + FM on the parametric function data set
was performed with Npop = 50 and Tmax = 200. Again, for each fold, we
executed a run of the NSGA-II.

The MOEA ψ + FM approach was compared with SOGA ψ + FM, β =
0, and with SOGA ϕ2. In both SOGAs, we adopted the same crossover
and mutation probabilities as in NSGA-II. To ensure a fair comparison,
the two SOGAs were tested with Npop = 50 and Tmax = 200 as well.
Moreover, to obtain statistically meaningful results, the experiments on
SOGA ψ + FM and SOGA ϕ2 were repeated five times for each context
and for each fold, as already performed in Section 6.2.2.

Table 12 shows the comparison among the results achieved by the
three techniques taken into account. As regards MOEA ψ + FM, we
selected two GFRBSs: one, denoted as (a) in the Table, with the lowest
MSEtest, and the other, denoted as (b), with the lowest MSEtest among
the solutions dominating the GFRBSs determined by SOGA ϕ2. As ex-
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(a) Training set

(b) Test set

Figure 49: Pareto fronts obtained by MOEA ψ + FM for the structure of
wages data set on the high school drop-outs context
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(a) Training set

(b) Test set

Figure 50: Pareto fronts obtained by MOEA ψ + FM for the structure of
wages data set on the high school graduates context
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(a) Training set

(b) Test set

Figure 51: Pareto fronts obtained by MOEA ψ + FM for the structure of
wages data set on the college drop-outs context
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(a) Training set

(b) Test set

Figure 52: Pareto fronts obtained by MOEA ψ + FM for the structure of
wages data set on the college graduates context
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Table 12: Results of the application of MOEA ψ+FM to the parametric func-
tion data set: (a-b) GFRBSs generated by MOEA ψ+FM, (c) SOGA ψ+FM,
β = 0, (d) SOGA ϕ2

Context Approach MSEtrain MSEtest Φ̄Y

κ = 2

(a) 0.0075 ± 0.0007 0.0066 ± 0.0017 0.9481 ± 0.0443
(b) 0.0075 ± 0.0007 0.0066 ± 0.0017 0.9481 ± 0.0007
(c) 0.0056 ± 0.0004 0.0068 ± 0.0016 0.7003 ± 0.0350
(d) 0.0073 ± 0.0012 0.0094 ± 0.0032 0.8250 ± 0.0155

κ = 5

(a) 0.0526 ± 0.0053 0.0509 ± 0.0139 0.9921 ± 0.0024
(b) 0.0526 ± 0.0053 0.0509 ± 0.0139 0.9921 ± 0.0024
(c) 0.0441 ± 0.0034 0.0554 ± 0.0111 0.7403 ± 0.0484
(d) 0.0462 ± 0.0036 0.0575 ± 0.0153 0.8510 ± 0.0084

κ = 7

(a) 0.0817 ± 0.0125 0.0811 ± 0.0333 0.9533 ± 0.0750
(b) 0.0836 ± 0.0106 0.0812 ± 0.0334 0.9880 ± 0.0115
(c) 0.0684 ± 0.0068 0.0842 ± 0.0273 0.6307 ± 0.0106
(d) 0.0777 ± 0.0056 0.0918 ± 0.0250 0.8899 ± 0.0156

pected, the context-adapted GFRBSs generated by SOGA ψ + FM on the
test set are characterized by a lowMSE, comparable, however, to the best
MSEs obtained by the GFRBSs in the Pareto fronts. Nevertheless, their
interpretability is poor, since the only objective of SOGA ψ + FM with
β = 0 is only to minimize the performance error. SOGA ϕ2 achieves val-
ues of MSE higher than SOGA ψ + FM, but generates more interpretable
GFRBSs, since it is a scaling function-based approach and, therefore, in-
troduces a lower distortion in the fuzzy partitions than SOGA ψ + FM.
MOEA ψ + FM provides the decision maker with a set of GFRBSs with
different trade-offs between accuracy and interpretability. In particular,
the solutions denoted as (a) and (b) achieve an MSE equal to or lower
than MOEA ψ + FM and SOGA ϕ2 on the test set, and are characterized
by higher values of Φ̄Y . Although SOGA ϕ2 performs better than MOEA
ψ + FM on the training set, MOEA ψ + FM outperforms it on test set. In-
deed, due to its simplicity, SOGA ϕ2 can perform a deeper exploration of
the search space than MOEA ψ + FM, but can also easily incur overfit-
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ting problems. On the other hand, MOEA ψ + FM balances MSE with
interpretability and, therefore, is less prone to overfitting than SOGAs.
Further, we observe that, as expected, solutions generated by SOGA ψ +
FM actually lie on a hypothetical extension of the Pareto front in a zone
of low interpretability.

Figure 53 shows the Pareto fronts obtained by MOEA ψ + FM on each
of the five folds for the context κ = 2, both for the training and the test
sets. We observe that the five fronts are quite wide and well distributed.
Further, the fronts are all close to each other on the training set, thus high-
lighting that they do not depend on the particular execution of NSGA-II.
Similar trends have been observed in the other contexts.

Figures 54 – 56 show, for the context corresponding to κ = 2, examples
of the fuzzy partitions of the input and output variables of the GFRBSs
generated by SOGA ϕ2 (Figure 54) and SOGA ψ + FM (Figure 55), and
the fuzzy partitions of the GFRBS (a) which, in this context, corresponds
also to (b) (Figure 56). We note that the GFRBS generated by SOGA ψ +
FM lacks coverage on y, whereas (a) shows a high interpretability degree
and a low MSE.

6.2.3.3 Fuel Consumption

As in the previous example, we applied the MOEA ψ + FM to the fuel
consumption data set and compared it with the SOGA-based CA appro-
aches. Again, we set Npop = 50 and Tmax = 200 and we exploit the 5-fold
cross-validation.

Table 13 summarizes the results obtained by comparing the three ap-
proaches. Figure 57 shows the Pareto fronts obtained for each fold and
for both the training and test sets on the city context. As regards the high-
way context, similar fronts were obtained. Figure 57 and Table 13 confirm
the trend that we observed in Section 6.2.3.2. Indeed, the GFRBSs deter-
mined by SOGA ψ + FM are characterized by a low MSE and a poor in-
terpretability, while SOGA ϕ2 generates GFRBSs with good trade-offs be-
tween accuracy and interpretability that are, however, Pareto-dominated
by some solutions found by our MOEA. Further, on this data set, the GFR-
BSs identified by NSGA-II generalize much better than GFRBSs obtained
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(a) Training set

(b) Test set

Figure 53: Pareto fronts obtained by MOEA ψ + FM for the parametric func-
tion data set in the κ = 2 context

128



Figure 54: Typical partitions obtained by SOGA ϕ2 for the parametric func-
tion data set in the κ = 2 context
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Figure 55: Typical partitions obtained by SOGA ψ + FM, β = 0 for the para-
metric function data set in the κ = 2 context
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Figure 56: Typical partitions obtained by MOEA ψ + FM for the parametric
function data set in the κ = 2 context
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Table 13: Results of the application of MOEA ψ+FM to the fuel efficiency
data set: (a-b) GFRBSs generated by MOEA ψ+FM, (c) SOGA ψ+FM, β = 0,
(d) SOGA ϕ2

Context Approach MSEtrain MSEtest Φ̄Y

City

(a) 3.6916 ± 0.7755 3.6821 ± 2.8287 0.7273 ± 0.0664
(b) 4.6980 ± 0.8700 4.7619 ± 3.5105 0.8987 ± 0.0173
(c) 3.0093 ± 0.5967 3.8554 ± 2.7852 0.4736 ± 0.0640
(d) 5.0259 ± 0.4475 5.4802 ± 3.0011 0.8525 ± 0.0120

Highway

(a) 4.1016 ± 0.3193 4.6426 ± 1.9782 0.7740 ± 0.0402
(b) 6.6064 ± 1.0363 6.3652 ± 2.4641 0.9229 ± 0.0365
(c) 3.8348 ± 0.3534 4.6913 ± 1.7287 0.4778 ± 0.0940
(d) 6.8556 ± 0.9315 7.6167 ± 2.0212 0.8731 ± 0.0108

by SOGA ϕ2 and SOGA ψ + FM, since they achieve similar MSEs on the
training and test sets. This behavior can be explained by the set of CA
operators adopted in our approach, which guarantees a higher modeling
capability than the scaling function used in SOGA ϕ2.

Figures 58 – 61 show, for the city context, sample fuzzy partitions of
the input and output variables of the GFRBSs chosen as in the previous
Section. We note that the partitions of the GFRBS generated by SOGA
ψ + FM (Figure 59), which outperforms the other in terms of accuracy
on the training set, have interpretability difficulties. In particular, dis-
tinguishability among different fuzzy sets is not evident on the ES and
the PR inputs. In contrast, the GFRBS (a) (Figure 60) achieves the lowest
MSE on the test set and it maintains its interpretability, even though the
distinguishability of fuzzy sets on the PR input is not completely evident.
Finally, the GFRBS (b) (Figure 61) outperforms all the other ones in terms
of interpretability and, thanks to the modeling power of fuzzy modifiers,
achieves an MSE lower than SOGA ϕ2.
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(a) Training set

(b) Test set

Figure 57: Pareto fronts obtained for the fuel efficiency data set in the city
context
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Figure 58: Typical partitions obtained by SOGA ϕ2 for the fuel efficiency
data set on the city context
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Figure 59: Typical partitions obtained by SOGAψ + FM for the fuel efficiency
data set on the city context
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Figure 60: Typical partitions obtained by MOEA ψ + FM (solution (a)) for
the fuel efficiency data set on the city context
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Figure 61: Typical partitions obtained by MOEA ψ + FM (solution (b)) for
the fuel efficiency data set on the city context
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Chapter 7

Conclusion and
Future Work

7.1 Conclusion

In this PhD thesis, we have deeply addressed the topic of CA of fuzzy sys-
tems. We started from the analysis and classification of previous appro-
aches, which are mainly based on the use of scaling functions acting on
the overall universe of discourse of normalized linguistic variables. Then,
we introduced a conceptual framework of CA. We specialized our general
proposal for CA of fuzzy systems, and, more precisely, of Mamdani-type
FRBSs.

The RB of a fuzzy system expresses relations among linguistic terms
which can be regarded as universal to a large extent and, therefore, inde-
pendent of the specific application domain where the FRBS works. Con-
versely, the meanings associated with the linguistic terms generally de-
pend upon the context and have to be adapted before being operative.
Thus, once an FRBS has been identified on a given application domain,
by knowledge elicitation or by abstraction, the same system can be used
in a different domain, provided it is context-adapted by undergoing a
proper instantiation or tuning process.
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In line with existing techniques, we concentrated our research on the
process of instantiation of a universal model to a context. To this aim,
we introduced novel operators which allow an extremely flexible adap-
tation of fuzzy partitions. However, when augmenting the modeling ca-
pabilities of CA by using more sophisticated operators than simple scal-
ing functions, techniques to deal with the preservation of interpretabil-
ity must be taken into account. This issue has been addressed in the
framework of the accuracy-interpretability trade-off of FRBSs. Hence, we
proposed two interpretability indices properly suited for CA techniques,
based, respectively, on evaluation of crossing points and on fuzzy order-
ing relations.

We remark that both the operators and the interpretability indices can
be used in a wide range of automatic identification algorithms, not neces-
sarily related to CA, as done, for instance, in (BDLM08), where the mod-
ifiers and ΦY are exploited in a cooperative coevolutionary algorithm for
the identification of Mamdani-type FRBSs from data.

To perform the automatic instantiation of the universal model from
contextualized data, we implemented two GFRBSs based on, respectively,
a constrained GA and the NSGA-II. We extensively applied our algo-
rithms to four data sets and compared them with other existing appro-
aches. Results highlighted that techniques based on the combined appli-
cation of our five operators usually perform better than simpler CA ap-
proaches, despite the larger search space that has to be explored by ours.
The gap becomes particularly significant in case of slightly more complex
data sets (like the fuel efficiency one) or when the context to be repro-
duced is extremely difficult (like κ = 7 in the parametric function data
set). Once again, we remark that these results can be achieved thanks to
the augmented modeling capabilities provided by our novel operators.

Finally, we summarize some of the most relevant theoretical and prac-
tical contributions developed in this work.

• A survey and a taxonomy of existing approaches to context adapta-
tion of fuzzy systems.

• A conceptual reference framework for context adaptation.
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• A set of guidelines for the development of instantiation algorithms
for FRBSs.

• A novel flexible non linear scaling function in the line of previous
approaches.

• A set of parametric orthogonal fuzzy modifiers.

• A novel interpretability index for fuzzy partitions based on fuzzy
ordering relations.

• Two instantiation algorithms based on, respectively, a single- and a
multi-objective GFRBS.

7.2 Future Work

Currently, the major drawback of the CA approach is that the RB is gen-
erated by knowledge elicitation, i.e., by including linguistic rules which
are provided by human experts. In our conceptual framework, we de-
scribed an alternative way to perform such task. Indeed, we believe that
a promising research line related to CA of FRBSs consists in the study of
efficient algorithms to perform abstraction of universal models from data
collected in different contexts.

Such algorithms could be developed by leveraging previous work on
information granules (Ped07), similarity (CS02), and RB learning by ex-
amples (WM92). Indeed, the abstraction task can be roughly divided in
the following steps.

1. Identifying a vocabulary of similar linguistic terms (i.e., granules)
shared by different contexts.

2. For each context, deriving an RB which comprises the terms of the
vocabulary.

3. Merging all contextualized RBs in a context-free universal one by
eliminating conflicting and insignificant rules.
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Algorithms for the abstraction process would naturally fit in our con-
ceptual framework for CA and, together with the different instantiation
techniques described in this work, would provide a completely automatic
approach to the generation of FRBSs from contextualized data.

Finally, a very interesting problem is the one related to modeling con-
text in hierarchical architectures of FRBSs, such as the one proposed by
Magdalena in (Mag02). Indeed, the majority of approaches to CA identi-
fies a set of parameters that represent the effects of a given context on the
linguistic variables. Obviously, for each new context, a different proper
configuration of parameters have to be found. Unlike these approaches,
hierarchical architectures try to capture the relations between the context
variables and the set of parameters which characterize the effects of the
context. In a sense, the context itself is modeled by an FRBS, whose out-
puts determine an on-line dynamic adaptation of the universal model.

To the best of our knowledge, currently in the literature there is no
significative attempt for the development of learning algorithms for such
hierarchical architectures. We believe that this kind of system could be of
particular interest in the field of fuzzy control, i.e., in problems similar to
the simple cart-pole balancing taken as example in Section 2.2. Indeed,
in control systems, context variables can easily be identified and, further,
on-line adaptation is typically required.

We performed some early studies to try to augment Magdalena’s mo-
del with learning capability. Similarly to other hierarchical fuzzy systems,
such as the one in (Wan99), we employed the backpropagation algorithm.
However, our attempts did not show promising results because, due to
the complex structure of the overall system, the learning signal cannot
be properly backpropagated. On the other hand, approaches based on
evolutionary algorithms do not seem suitable for such on-line learning
because the search space grows quickly also for small problems.

Hence, we regard the automatic learning of hierarchical architectures
of FRBSs for CA as a compelling problem with immediate practical appli-
cations.
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