
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

Information-Theoretic Models
of Confidentiality and Privacy

PhD Program in Computer Science and Engineering

XXVI Cycle

By

Michela Paolini

2014

http://www.imtlucca.it
mailto:michela.paolini@imtlucca.it

The dissertation of Michela Paolini is approved.

Program Coordinator: Prof. Rocco De Nicola, IMT Institute for Advanced
Studies, Lucca

Supervisor: Prof. Michele Boreale, University of Florence

Tutor: Dr. Francesco Tiezzi, IMT Institute for Advanced Studies, Lucca

The dissertation of Michela Paolini has been reviewed by:

Dr. Boris Köpf, IMDEA Software Institute

Prof. Geoffrey Smith, Florida International University

IMT Institute for Advanced Studies, Lucca

2014

http://www.imtlucca.it

Contents

List of Figures viii

List of Tables ix

Acknowledgements x

Vita and Publications xii

Abstract xv

1 Introduction 1

1.1 Motivations and literature review 1

1.2 Terminology and structure of the thesis 6

2 Preliminaries on QIF and Information Theory 10

2.1 Information hiding systems and randomization mechanisms 10

2.2 Quantifying uncertainty via entropy 13

2.2.1 Shannon entropy . 14

2.2.2 Guessing entropy . 17

2.2.3 Min-entropy . 18

2.3 Security guarantees . 20

2.4 More Information Theory 23

2.4.1 Kullback-Leibler divergence and method of types . 23

2.4.2 Rate of convergence 27

v

3 Information flow under repeated observations 30
3.1 Motivations . 30
3.2 Attacker targets the entire secret 31

3.2.1 Bounds and asymptotic behaviour 33
3.2.2 Some simple applications 38

3.3 Attacker targets a property of the secret 44
3.3.1 A model with views 45
3.3.2 Asymptotic error probability 47
3.3.3 Some simple applications 52

3.4 Further and related work . 57

4 Worst- and average-case information flow 60
4.1 Motivations . 60
4.2 Semantic security of randomization mechanisms 63

4.2.1 The worst-case scenario 64
4.2.2 The average-case scenario 66

4.3 Worst-case security vs. differential privacy 69
4.4 Discussion . 74
4.5 Privacy under repeated observations 76

4.5.1 Worst-case scenario 77
4.5.2 Average-case scenario 79

4.6 Utility under repeated observations 81
4.7 Further and related work . 87

5 Estimating information flow 89
5.1 Motivations . 89
5.2 Statistical set up . 91
5.3 Limits of program capacity estimation 94
5.4 A weak estimator . 97
5.5 Searching for good input distributions 101

5.5.1 A Metropolis Monte Carlo method 102
5.5.2 An Accept-Reject method 103
5.5.3 Methodology . 104

5.6 Numerical experiments . 106
5.6.1 Unbalanced classes 106

vi

5.6.2 Cache side-channels in sorting algorithms 108
5.7 Further and related work . 111

6 Conclusion 114

References 116

A Additional proofs and tables 122
A.1 Proofs of Chapter 2 . 122

A.1.1 Proof of Theorem 2.3.1 122
A.2 Proofs of Chapter 4 . 123

A.2.1 Proof of Lemma A.2.1 123
A.2.2 Proof of Theorem 4.5.2 123
A.2.3 Proof of Lemma A.2.2 126

A.3 Proof of Chapter 5 . 126
A.3.1 Proof of Lemma 5.4.1 126

A.4 Additional code for Section 5.6 127
A.5 Additional tables for Chapter 5 128

vii

List of Figures

1 An information hiding system 12
2 Slow convergence rate is not enough in order to guarantee

security . 28

3 The conditional probability matrix of Crowds for 20 honest
nodes, 5 corrupted nodes and pf = 0.7. 39

4 Plots of PWe (n) depending on two different parameters. . . 53

5 Balanced and unbalanced equivalence relations. 101

viii

List of Tables

1 Three different programs and the corresponding leakage. . 3

2 Summary of results for the different privacy notions. . . . 63

3 Capacity lower bounds Jt with different sampling methods. 107
4 Capacity lower bounds log Jt (in bits) for BubbleSort and

several cache configurations and vector lengths. 110
5 Capacity lower bounds log Jt (in bits) for InsertionSort and

several cache configurations and vector lengths. 111

6 Lower bounds on program capacity, with CMC and m =
5× 105, δ = 0.001. 128

7 Lower bounds on program capacity, with MCMC and m =
5× 105, δ = 0.001. 128

8 Lower bounds on program capacity, with AR and m =
5× 105, δ = 0.001. 129

ix

Acknowledgements

At the end of any experience, we often feel in a cloud of sensa-
tions, that contains teaching and richness of the journey and
that ranges from joy for the reached destination to uncertainty
about the future. It is, therefore, natural, stop for a moment
and look back towards the path, consisting, as all paths, of
curves, climbs and descents, but, in my case, made up mostly
of faces and people.

At first I would like to express my sincere gratitude to Prof.
Michele Boreale for his continuous patience and loyalty, for his
guidance, advices and help in these years and, moreover, for
his support in every situations, even in my (several) downs.

My sincere thanks also goes to Prof.ssa Catuscia Palamidessi
and to both Comète and Parsifal groups, that offered me the
opportunity to meet new friends and to take part on very inter-
esting projects. I thank Dr. Boris Köpf and Prof. Geoffrey Smith
for their careful reading and suggestions about the present the-
sis. I thank also Prof. Fabio Corradi for his advices.

The results presented in this thesis are based on joint works
with Prof. Michele Boreale, University of Florence, and Francesca
Pampaloni, PhD awarded at IMT Institute for Advanced Stu-
dies, Lucca. In particular, Chapter 3 is based on (BPP11a;
BPPar; BPP11b), joint works with Prof. Michele Boreale and
Francesca Pampaloni. Chapter 4 is based on (BP12; BPb),
joint works with Prof. Michele Boreale. Finally, Chapter 5
is based on the results presented in (BPa), a joint work with
Prof. Michele Boreale.

Moving to people that shared with me everyday life, I spent
just a few words (not because I have nothing to say, but because,

x

maybe, this is not the most appropriate forum). At first, I think
with love to Giovanni, for being my living “miracle” (you know
what I mean) and giving me hope and strength, even when I
have not.

I refer also to my family and, in particular, to my parents,
able, nevertheless, to make me feel always surrounded by that
warmth, which is, at the same time, unconditional love and
fruitful comparison. Many thank to Benni, that, with his joyful
exuberance, always provides me affection and walks.

An affectionate thought goes to Francesca, my traveling com-
panion, for her closeness and support, for our phone calls and
mails, that, I think, we miss to both.

Last, but not the least, I would like to thank my guides in Assisi
and the other students and friends, that have shared with me
part of the street.

xi

Vita

August 12, 1986 Viareggio (LU), Italy

October 2005 - October 2010 Bachelor and Master Degree
in Mathematics
University of Florence, Italy
Final mark: 110/110 cum laude

March 2011 - Present PhD Student
IMT Lucca, Italy

October 2012 - December 2012 Visiting Student
INRIA, École Polythecnique,
Palaiseau, France

xii

Publications

Journal papers:

1. M. Boreale, F. Pampaloni, M. Paolini. Asymptotic information leakage under
one-try attacks (full version). MSCS, in press.

2. M. Boreale, M. Paolini. Worst- and average-case privacy breaches in ran-
domization mechanisms (full version). Submitted.

Conference papers:

3. M. Boreale, F. Pampaloni, M. Paolini. Asymptotic information leakage under
one-try attacks. Proc. of FoSSaCS 2011, LNCS 6604: pp. 396-410, 2011.

4. M. Boreale, F. Pampaloni, M. Paolini. Quantitative information flow, with a
view. Proc. of ESORICS 2011, LNCS 6879: pp. 588-606, 2011

5. M. Boreale, M. Paolini. Worst- and Average-Case Privacy Breaches in Ran-
domization Mechanisms. IFIP TCS 2012: pp. 72-86, 2012.

6. M. Boreale, M. Paolini. On formally bounding information leakage by
statistical estimation. Submitted.

xiii

Presentations

Conference talks:

1. Worst- and Average-Case Privacy Breaches in Randomization Mechanisms,
IFIP Theoretical Computer Science 2012, CWI Amsterdam, Holland, Septem-
ber 2012.

Meeting and project talks:

1. Worst- and Average-Case Privacy Breaches in Randomization Mechanisms.
CINA Kick-off Meeting, Pisa, February 2013.

2. Formal bounds for information leakage by statistical estimation. CINA
Second General Meeting, Bologna, February 2014.

3. On formally bounding information leakage by statistical estimation. AS-
CENS Meeting, Modena, March 2014.

xiv

Abstract

In a variety of contexts, involving execution of software or
hardware manipulating sensitive data, one would like that
public observables do not leak information that should be
kept secret. Since it is practically impossible to avoid leakage
entirely, there is a growing interest in the quantitative aspects of
information flow analysis. This is also related to privacy, that is
to protection of sensitive information concerning individuals.

In this context, we first study methods to measure the average
amount of leakage due to system execution, quantifying the
possibility of inferring the secret information from observables.
We assume an attacker that can make a single guess after ob-
serving a certain number of independent executions of the
program. We study the asymptotic behaviour of information
leakage and the dichotomy between protection of the whole
secret and of a property of the secret.

An average measure of leakage may not be adequate when
privacy of individuals is at stake. To study this issue, we in-
troduce a strong semantic notion of security, that expresses
absence of any privacy breach above a given level of serious-
ness, irrespective of any background information. We then
analyze this notion according to two dimensions: worst vs.
average case, single vs. repeated observations, and clarify its
relation to differential privacy.

Finally, motivated by the complexity of exact computation of
quantitative information leakage, we study statistical appro-
aches to its estimation, when only a black-box access to the
system is provided, and little is known about the input genera-
tion mechanism.

xv

Chapter 1

Introduction

In this chapter we first survey certain aspects of sensitive information
protection that have motivated our studies; at the same time, we provide a
literature review of the consolidated results related to our work, mainly
in the area of Quantitative Information Flow (QIF). Finally, we present an
overview of our contributions and the structure of the thesis.

1.1 Motivations and literature review

The problem of preventing the leakage of secret information is a paramount
concern in the design and analysis of all kinds of computational systems.
Ideally, the goal is to ensure Noninterference (GM82), which means com-
plete absence of leakage. That is by observing the output of a system,
one learns nothing about the corresponding input. It soon became evi-
dent, though, that non-interference is a too strong requirement for real
systems. Indeed, sometimes one needs or wants to reveal information that
depends on the secret input. For example, in a password checker, one
needs to reject a wrong password, although this reveals information about
what the secret password is not. And in medical research, one wants to
collect personal medical information of a large population, while main-
taining the privacy of single individuals. These and other examples have
prompted researchers to consider weaker notions of security. By now, a

1

popular approach is Quantitative Information Flow (QIF): the aim is not
providing a yes-or-no answer about system security, but rather trying to
quantify the amount of leakage using techniques from Information The-
ory, see (CHM01; CPP08a; CPP08b; Bor09; Smi09; BCP09; KS10; Mal10;
BPP11a; BPP11b). This idea lays the basis for analyses that are far more
flexible than the rigid safe/unsafe classification provided by the classical
Noninterference approach.

A general situation is that of a program, protocol or device carrying
out computations that depend probabilistically on a secret piece of in-
formation, such as a password, the identity of a user or a private key.
We collectively designate these as information hiding systems, following
a terminology established in (CPP08a). During the computation, some
observable information related to the secret may be disclosed. This might
happen either by design, e.g. if the output of the system is directly re-
lated to the secret (think of a password checker denying access), or for
reasons depending on the implementation. In the latter case, the obser-
vable information may even take the form of physical quantities, such
as the execution time or the power consumption of the device: think of
timing and power attacks on smart cards (Koc96; KJJ99). The observable
information can be exploited by an eavesdropper to reconstruct the secret,
or at least to limit the search space. The goal of QIF is to quantify how
much, if any, information about the input is leaked by the program in the
output, namely how much information about the input can be deduced
observing the corresponding output, tolerating, possibly, small leakages.
More precisely, we would like to measure the amount of information in the
secret (adversary’s prior uncertainty), the amount of leaked information
(leakage) and the amount of unleaked information (adversary’s posterior
uncertainty). Intuitively, these quantities satisfy the following equation:

leakage = prior uncertainty− posterior uncertainty. (1.1)

Example 1.1.1 The following example is found in (Smi09). Assume x is a 32
bit integer input variable. The program P1 is a constant function, with just one
possible output. In this case, each input is mapped in the same output and, looking
at it, we are not able to infer anything about the secret. Hence there is no leakage
and Noninterference holds. The program P2 is the identity function: here each

2

Program Initial uncertainty Remaining uncertainty Leakage
P1(x) = 0 32 32 0
P2(x) = x 32 0 32
P3(x) = x & 03716 32 27 5

Table 1: Three different programs and the corresponding leakage.

input is mapped to itself and the leakage is total. P3 is an intermediate case, where
the program copies the last 5 bits of input to the output: P3 leaks 5 out of the 32
bits of input (in Table 1 & is the bitwise-and operator and 037 is a hexadecimal
constant).

Note that, in the case of deterministic programs, once the input is fixed,
the output is determined. Therefore, even if the adversary is allowed
to run a program several times, while keeping the secret input fixed,
he/she does not benefit from the collection of these repeated observations.
However, in security applications, programs are often probabilistic, either
due to the presence of noise or by design. Indeed, in a variety of contexts,
randomization is regarded as an effective technique to conceal sensitive
information. For example, anonymity protocols like Crowds (RR98) or
the Dining Cryptographers (Cha88) rely on randomization to “confound”
the adversary as to the true actions undertaken by each participant. In a
probabilistic scenario, the analysis of repeated observations may be crucial.
Indeed, in real-world situations, re-execution may happen either forced
by the attacker (as in the case of an adversary querying several times
a smart card), or by design (as in the case of routing paths established,
repeatedly, between a sender and a receiver in anonymity protocols like
Crowds (RR98)). Intuitively, if the program can be ran just once, the
information leaked is not much, but, if one is allowed with repeated
observations, the amount of leaked information increases. This intuition
finds application in statistical attacks against secrecy, anonymity, privacy
and other confidential properties in systems that handle sensitive data. In
these attacks, the adversary gets to know a sample of observations of a
target system – such as timing or power traces of a smart-card (Koc96),
attribute values in a dataset (NS08a), etc. – and, exploiting some form of

3

correlation existing between the secret and the observables, tries to infer
the secret – the private key, the identity of an individual, etc.

When the sensitive information meant to be protected concerns in-
dividuals, we enter the realm of privacy. Here, considering an average
notion of leakage may not be adequate. Indeed, one may argue that there
are systems that on average appear to be secure, but from the point of
view of specific users are not, since those users may be easily exposed
to eavesdropping. For instance, an anonymity protocol which groups
users into a small number of “indistinguishability” classes is considered
as secure on average. However, it might well be the case that, while the
vast majority of users belong to large classes, few individual users belong
to singleton classes, hence being exposed to eavesdropping. These issues
are well-known in the area of databases, where often the goal is to learn
properties of the population as a whole, while maintaining the privacy of
individuals. In medical research, it is desirable to collect personal medical
information of a large number of individuals. Researchers or public au-
thorities can calculate a series of statistics from the sample and decide, for
instance, how much money the health care system should spend next year
in the treatment of a specific disease. It is desirable that the participation in
the sample will not damage the privacy of any individual: usually people
do not want to have disclosed their specific status with respect to diseases,
or other personal matters. The fact that the answer is publicly available
constitutes a threat for the privacy of the individuals. For instance, assume
that we are interested in the query “what is the percentage of individuals
with a given disease?”. The addition of an individual to the database will,
in general, modify the percentage, and reveal whether the individual has
the disease or not to anyone who is informed about the insertion of the
individual in the database.

A proposed solution to the above problem is to introduce some output
perturbation mechanism based on randomization: instead of the exact
answer to the query, a noisy answer is reported. For example, in the field of
Data Mining, techniques have been proposed by which datasets containing
personal information that are released for business or research purposes
are often perturbed with noise, so as to prevent an adversary from re-

4

identifying individuals or learning sensitive information about them (see
e.g. (EGS03)).

The notion of differential privacy, due to Dwork and her collaborators
(DMNS06; Dwo06), is a proposal for controlling the risk of violating pri-
vacy. The idea is that a randomization mechanism satisfies ε-differential
privacy (for some ε > 0) if the ratio between the probability of obtaining
any answer is bounded by eε “in two adjacent databases”. Here by “ad-
jacent” we mean that the databases differ for only one individual. Often
we will abbreviate “ε-differential privacy” as ε-DP. Note that the smaller
is ε, the greater is the degree of privacy protection. In particular, when
ε is close to 0 the output of the randomization mechanism is nearly in-
dependent from the input. Unfortunately, such mechanism is practically
useless. The utility, i.e. the capability to providing accurate information in
the reported answers, is the other important feature of a randomization
mechanism. It is clear that there is a trade-off between utility and privacy.
These two notions are not exactly one against the other: utility concerns
the relation between the reported answer and the real answer to the query,
while privacy concerns the relation between the reported answer and the
information in the database. This makes the problem of finding a good
compromise between the two aspects very interesting.

At this point, we can make an analogy between the area of differen-
tial privacy (DP) and the one of quantitative information flow (QIF), or,
more precisely, between the concept of DP and the quantitative notions of
information-flow. First of all, note that a randomized mechanism can be
seen as an information-theoretic channel, and that the limit case of ε = 0,
for which the privacy protection is total, corresponds to the case in which
the answer to the query does not reveal any information about the input
distribution, and therefore the leakage is 0. Furthermore while information-
theoretic leakage, analyzed with QIF techniques, is mainly concerned with
quantifying the degree of protection offered against an adversary trying to
guess the whole secret, DP is rather concerned with the protection of individ-
ual bits of the secret, possibly in the presence of background information,
like knowledge of the remaining bits (BK11; AACP11b). The investigation
about the relation between the quantitative notion of leakage and DP is

5

not yet concluded, but our studies suggest that another important aspect
concerns the difference between worst- and average-case privacy breaches.
Indeed, as discussed above, when privacy is at stake, an average analysis
may not guarantee protection of single individuals.

Another important aspect of the QIF area is that of computational
methods for actually computing information leakage. Recent develop-
ments show that the problem of exactly computing information leakage of
programs in general, or even that of giving nontrivial bounds that hold
with certainty, turns out to be computationally intractable, even in the
deterministic case (YT11). For this reason, there has been recently much in-
terest towards methods for calculation of approximate information leakage
(CCG10; CG11; CKN13; CK13; KR13). In many fields of Computer Science,
a viable alternative to static analysis is represented by simulation. In the
case of QIF, this prompts interesting research issues: to what extent, can
one dispense with structural properties and adopt a black box approach,
in conjunction with statistical techniques? What kind of formal guarantees
can such an approach provide? And under what circumstances, if any, is
it effective?

1.2 Terminology and structure of the thesis

Since there is no universal agreement on the exact meaning of terms like
confidentiality, leakage and so on, in order to avoid confusion on the usage
of such terms, we fix some terminology that we will use throughout the
thesis. Next we outline the main contributions and the structure of the
subsequent chapters.

Terminology. Information flow is concerned with the leakage of secret
information through computer systems. QIF is a class of techniques that
analyzes the dissemination of this secret information and the attribute
“quantitative” refers to the fact that we are interested in measuring the
amount of leakage, not only in detecting its presence. Confidentiality and
privacy are two security properties that we can summarize as follows:
confidentiality requires that no secret information is given to unauthorized

6

parties, while privacy is a special case of confidentiality, where the secret
information is related to individuals. Hence both leakage (with respect to
some notion of entropy) and DP are instances of confidentiality properties.
Finally, we use the term security with a very general meaning, referred,
according to the context, to both confidentiality and privacy issues. In the
case where confusion might arise, the particular context will be explicitly
specified.

Structure of the thesis. This thesis deals with issues concerning pro-
tection of confidentiality and privacy of sensitive information and, more
specifically, with methodologies to analyze the information flow of the
systems that process this information. We consider programs whose out-
puts probabilistically depend on a secret piece of information and the case
of a passive attacker, that can observe repeatedly the outcomes of system
executions and attempt statistical attacks.

The thesis is organized as follows.

• In Chapter 2 we introduce a simple model for QIF and the main
concepts from Information Theory that we will use throughout the
subsequent chapters. In particular, we compare the effectiveness
of Shannon entropy and Rényi min-entropy as information leakage
measures. Furthermore we review the main tools from Information
Theory that we will use in the subsequent chapters.

• In Chapter 3, we propose a general analysis for assessment of system
security against passive eavesdroppers under repeated, independent
observations. We consider two attack scenarios: in the first case
the adversary targets the secrets, while in the second one he/she
targets some property related to it (named view). In both situations,
we explore a security metric based on min-entropy and analyze its
asymptotic behaviour as the number of observations collected by the
attacker increases. We provide simple and tight bounds, showing
that the convergence rate is exponential. The second scenario allows
one to consider, not only how much information is leaked, but also
what is leaked. We note that certain known statistical attacks can be

7

viewed as a direct application of our model. In particular, viewing
privacy properties as a special case of views, we consider statistical
attacks against privacy in sparse datasets. This chapter is based on
(BPP11a; BPPar; BPP11b).

• In Chapter 4 we study privacy. We provide a semantic notion of
security, that expresses the absence of any privacy breach above a
given level of seriousness. We examine this notion according to two
dimensions: worst vs. average case, single vs. repeated observations.
In each case we characterize the security level achievable in a simple
fashion. We next clarify the relation between our worst-case security
notion and differential privacy, showing that, while the former is in
general stronger, the two coincide in important special cases. Finally,
we turn our attention to expected utility in the case of repeated in-
dependent observations. We characterize the exponential growth
rate of any reasonable utility function. In the particular case of me-
chanisms providing differential privacy, we study the relation of the
utility rate with the security level: we offer either exact expressions
or upper-bounds for utility rate that apply to practically interesting
cases, such as the (truncated) geometric mechanism. This chapter is
based on (BP12; BPb).

• In Chapter 5, we study the problem of giving formal bounds on
information leakage, when only a black-box access to the system is
provided, and little is known about the input generation mechanism.
After introducing a formal notion of information leakage estimator,
we prove that, in the absence of significant a priori information about
the output distribution, no such estimator can in fact exist that does
significantly better than exhaustive search. Moreover, we show that
the difficulty mostly lies in obtaining accurate upper bounds. This
motivates us to consider a relaxed scenario, where the analyst is
given some control over the input distribution: an estimator is intro-
duced that, with high probability, gives lower bounds irrespective
of the underlying distribution, and accurate upper bounds if the
input distribution induces a “close to uniform” output distribution.

8

We then define sampling methods that ideally compute one such
input distribution, and discuss a practical methodology based on
those. We finally demonstrate the proposed methodology with a few
simulations, which give encouraging results. This chapter is based
on (BPa).

• In Chapter 6 we draw some concluding remarks.

• Appendix A contains some additional technical material.

9

Chapter 2

Preliminaries on QIF and
Information Theory

In this chapter we introduce a simple model for QIF and review a few
important notions from Information Theory. In particular, we present
measures for quantifying information leakage and discuss their actual
usage. Next, we review some tools from Information Theory that will be
used throughout the subsequent chapters.

2.1 Information hiding systems and randomiza-
tion mechanisms

We consider a program or protocol that receives some secret inputs and pro-
duces public outputs. An adversary, observing the output, can infer some
information about the secret. We assume an input set X = {x1, x2, ...} and
an output set Y = {y1, y2, ...}, which are both finite and nonempty. The
goal of QIF is to quantify the security threat to the secret input caused by
disclosing the corresponding output. Starting from (1.1), one can formalize
this intuition both in the case of deterministic and probabilistic programs.

Deterministic programs. We view a deterministic program P simply as
a function P : X → Y . For simplicity, we restrict our attention to termi-

10

nating programs, or, equivalently, assume termination is an observable
value in Y . We model the program’s input as a random variable X taking
values in X and distributed according to some distribution p, written
X ∼ p(x). Once fed to a program P , X induce an output Y = P (X). We

let p(x|y)
4
= Pr(X = x|Y = y) denote the a posteriori input distribution

after observation of output.
Note that P induces an equivalence relation ∼ on X

x ∼ x′ iff P (x) = P (x′)

Hence program P partitions X in |Im(P)| equivalence classes induced by
∼. We denote with Xy the equivalence class P−1(y) for any y such that
P−1(y) 6= ∅:

Xy = {x ∈ X |P (y) = x} = P−1(y).

Note that the classes Xy bound the knowledge of the adversary. Indeed if
the attacker sees an output y, he knows only that the corresponding input
belongs to the equivalence class Xy . But how much this equivalence class
reveals about the secret?

Example 2.1.1 Consider the situation described in Example 1.1.1 and in Tab. 1.
In this case of P1 there is only an equivalence class that coincides with the entireX .
Concerning P2, the equivalence classes are all singletons and we experiment total
leakage of information1. Finally, in P3, the equivalence relation ∼ has 25 = 32
different classes, each containing 227 elements.

Probabilistic programs. More generally, P could be a probabilistic pro-
gram. In this case fixed a given input, we can obtain different outputs each
with a certain probability. This means that P does not partition X as in
the deterministic case. Following (CPP08a), we can model a probabilistic
program using a conditional probability matrix p(·|·) ∈ [0, 1]X×Y , whose
rows represent the inputs and whose columns are indexed by the output
and each entry specifies the conditional probability of obtaining a certain
output given a fixed input, namely p(Y = y|X = x). Note that each row

1As argued by Smith in (Smi09), the adversary might not be able to efficiently compute
the equivalence classes. But here we are adopting a worst-case, information-theoretic point
of view, ignoring the computational aspect.

11

of the matrix sums up to 1. Deterministic programs are a special case of
probabilistic ones, where each row has one entry equal to 1 and all the
others equal to 0.

Definition 1 (Information Hiding System) An information hiding system
is a quadruple H = (X ,Y, p(·), p(·|·)), composed by a finite set of inputs X re-
presenting the secret information, a finite set of observable outputs Y , an a priori
distribution on X , p(·), and a conditional probability matrix, p(·|·) ∈ [0, 1]X×Y ,
where each row sums up to 1.

p(y|x)X Y

Figure 1: An information hiding system

In some scenarios, it may happen that the prior distribution on X is
unknown. Then we speak about randomization mechanism, instead of
information hiding systems.

Definition 2 (randomization mechanism (BP12; BPb)) A randomization
mechanism is a tripleR = (X ,Y, p(·|·)), composed by a finite set of inputs X
representing the secret information, a finite set of observables Y representing
the observable values, and a conditional probability matrix, p(·|·) ∈ [0, 1]X×Y ,
where each row sums up to 1.

For each x, the x-th row of the matrix is identified with the probability
distribution y 7→ p(y|x) on Y , denoted by px. We say R is non-singular if
x 6= x′ implies px 6= px′ , and strictly positive if p(y|x) > 0 for each x and y.

Example 2.1.2 The following example is inspired by (EGS03). The secret in-
formation is represented by the set of integers X = {0, ..., 5}, and Y = X . We
consider a mechanism that replaces any x ∈ X by a number y that retains some
information about the original x. More precisely, we let Y = bX + ξc mod 6,
where with probability 0.5 ξ is a chosen uniformly at random in {− 1

2 ,
1
2}, and

with probability 0.5 it is chosen uniformly at random inX . We can easily compute

12

the resulting conditional probability matrix
0.2500 0.2500 0.0833 0.0833 0.0833 0.2500
0.2500 0.2500 0.2500 0.0833 0.0833 0.0833
0.0833 0.2500 0.2500 0.2500 0.0833 0.0833
0.0833 0.0833 0.2500 0.2500 0.2500 0.0833
0.0833 0.0833 0.0833 0.2500 0.2500 0.2500
0.2500 0.0833 0.0833 0.0833 0.2500 0.2500

 .

Leakage and capacity. We provide a general definition of information
leakage and capacity. Consider a randomization mechanism R, as defined
in Def. 2, and two (joint) random variables: X , representing the input, and
the corresponding output Y . The probability distribution p on X and the
conditional probability p(y|x) together induce a probability distribution
q on X × Y defined as q(x, y) , p(x) · p(y|x), hence a pair of random
variables (X,Y) ∼ q, with X taking values in X and Y taking values in Y .

Following (1.1), we can measure information leakage as reduction in
the adversary’s uncertainty, where the prior uncertainty is modeled as a
function of the secret X , U(X), while the posterior uncertainty, U(X|Y),
takes into account the observation of Y . In the following section, these
uncertainty functions will be instantiated using some forms of entropy.

The maximum leakage we can have is called capacity. Formally, we
have the following definition.

Definition 3 (Information leakage, Capacity) The information leakage due
to an input distribution p and a randomization mechanismR be defined as

L(R; p) , U(X)− U(X|Y).

The entropy capacity ofR is C(R)
4
= supp L(R; p).

Note that in the case of an IHS, we simply write L(H), since the prior
probability is already included in the definition ofH (see Def. 1). Finally
when we deal with a deterministic program P , we write L(P ; p). We study
different forms of uncertainty functions in the following sections.

2.2 Quantifying uncertainty via entropy

Given a (deterministic or probabilistic) program P , we discuss how to
measure the amount of information leaked. In literature different measures

13

exist, each one relying on an underling notion of entropy.
Each entropy notion is related to the type of attacker that we want to

model, and to the way we measure its success. Widely used is Shannon
entropy (Sha), which counts the average number of binary questions ne-
cessary to determine the exact value of the secret with an optimal strategy.
Another popular notion of entropy is the min-entropy, proposed by Rényi
(R6́1). It corresponds to a one-try attack and it is precisely the negative
logarithm of the probability of guessing the true value of the secret, with
an optimal strategy. The latter consists, of course, in selecting the element
x ∈ X with the highest probability. Below we review these measures
and another one: the Guessing Entropy discussed by Massey in (Mas94),
which will serve as a trait d’union between the first two.

Notation. Let X be a finite nonempty set. A probability distribution on
X is a function p : X → [0, 1] such that

∑
x∈X p(x) = 1. The support of p

is defined as supp(p)
4
= {x ∈ X |p(x) > 0}. Given a random variable X

taking values in X , we write X ∼ p(x) if X is distributed according to
p(x), that is for each x ∈ X , Pr(X = x) = p(x). We shall only consider
discrete random variables. We shall use abbreviations such as p(y|x) for
Pr(Y = y|X = x), whenever no confusion arises about the involved
random variables X and Y . Finally, when convenient, we shall denote
the conditional probability distribution on Y given x, p(·|x), (x ∈ X) by
px(·). Note that, in what follows, we use log for the log2, unless differently
specified.

2.2.1 Shannon entropy

One of the more fundamental concepts in Information Theory is entropy. In
the context of Security, one’s aim is to formalize and quantify the adversary
uncertainty, intended as the number of missing bits, in order to completely
disclose a result of interest. Let X be a generic random variable, taking
values in a finite set X , then the entropy of X , H(X), measures the prior
uncertainty on the result of X (CT06; Sha). Intuitively, the larger and more
uniform is X , the higher will be the uncertainty about X .

14

Definition 4 (Self-information) The self-information i(x), for p(x) > 0, is
defined as:

i(x) , − log p(x) = log
1

p(x)

Def. 4 represents the information content of the event x. Notice that the
more the event x is unlikely, the larger is i(x)2.

Definition 5 (Shannon-entropy) Let X be a random variable taking values in
X . The Shannon entropy of X , denoted as H(X), is defined by:

H(X) ,
∑

x∈supp(p)

p(x)i(x) = −
∑

x∈supp(p)

p(x) log p(x).

We can interpret the entropy as the average information conveyed by
the observation of outcome of X . Indeed H(X) is defined as the average
of the self-information over all possible results of X . Notice that the value
of H(X) only depends on the distribution p of X . For this reason, we also
use the notation H(p). The entropy is measured conventionally in bits:
H(X) = n means that the adversary needs n information bits in order
to determine the value of X . In this sense, the entropy provides a lower
bound for the number of binary questions needed to find out the X value,
that is the questions of the form“is X ∈ X ′?”, where X ′ ⊆ X . Clearly the
strategy of the adversary in choosing the sets X ′ will have an influence on
the number of queries necessary to determine the value of X . Intuitively
the best strategy is to choose X ′ so that its mass probability is as close as
possible to that of X ′′\X ′, where X ′′ is the set of values that are currently
determined as possible for X .

Example 2.2.1 Let X be a six faces dice. We throw the dice, without seeing
the result. Our uncertainty can be quantified in the following way. We need
log 6 ' 2, 58 bits in order to encode a number between 1 and 6. In other words:

H(X) = −
6∑
i=1

p(i) log p(i) = log 6

2The use of the logarithm is also motivated by its additive properties. Indeed, we want
that, given the conjunction of two independent events, x, y, the equation i(x, y) = i(x)+ i(y)
holds, true.

15

since p(i) = p(X = i) = 1
6 , for all i = 1, . . . , 6. Thus in this case, we are totally

uncertain, since outcomes are equiprobable.

Recall that supp(p) = {x ∈ X |p(x) > 0}. We recap some of the proper-
ties of the entropy (CT06).

Proposition 1 LetX be a random variable, with values inX andN = |supp(p)|
be the total number of possible results. Then:

0 ≤ H(X) ≤ logN.

In particular:

• H(X) = 0⇐⇒ X is a constant;

• H(X) = logN ⇐⇒ X is uniformly distributed on X .

So far we have focused on the prior uncertainty. However uncertainty
might sensibly change after some observations. In this case we speak of
posterior uncertainty, that represents the residual uncertainty on X , after
the observation of a certain event Y (jointly distributed withX). Intuitively
the conditional entropy H(X|Y) measures the uncertainty of X given Y ,
as formalized by the following definition.

Definition 6 (Conditional Entropy) The conditional entropy of X given Y
is defined as:

H(X|Y) ,
∑
y∈Y

p(y)H(X|Y = y)

where H(X|Y = y) , −
∑
x∈X p(x|y) log p(x|y) and we only sum over the y

such that p(y) > 0.

So, the conditional entropy of X given Y is defined as the expected
value of H(X|Y = y) over all the possible y ∈ Y and, therefore, it is a
measure of the average number of residual possibilities for X , once Y has
been observed. Note that if X is a function of Y , then H(X|Y) = 0.

Example 2.2.2 Consider the previous Example 2.2.1, but suppose that we know
whether x is odd or even. This way, we have eliminated half of the possibilities,
gaining one bit of information. Therefore:

H(X|X is even) = H(X)− 1 = log 6− 1 = log 3.

16

We summarize some important properties (CT06).

Proposition 2 Let X , Y be (joint)random variables, then:

1. 0 ≤ H(X|Y) ≤ H(X), with equality on the right iff X,Y are indepen-
dent;

2. H(X,Y) = H(Y,X) = H(X) + H(Y |X) = H(Y) + H(X|Y) (chain
rule).

The first statement says that the uncertainty onX decreases, on average,
after the observation of a generic event Y or, in the worst case, it remains
unchanged (H(X) = H(X|Y)) if X and Y are dependent. The second
statement shows how we can decompose the uncertainty of the pair (X,Y)
as the sum of the Y uncertainty with the X residual uncertainty after the
observation of Y .

In order to quantify the X uncertainty reduction after the observation
of Y , we introduce the mutual information.

Definition 7 The mutual information between X and Y is the difference be-
tween the entropy of X and the conditional entropy of X given Y :

I(X;Y) , H(X)−H(X|Y).

Hence I(X;Y) measures the quantity of information that X and Y

share, that is the quantity of information gained by an adversary that can
observe Y . Note that mutual information is symmetric.

Remark 2.2.1 Note that in the case of deterministic programs, Y is determined
by X . Then H(Y |X) = 0, which implies that I(X;Y) = I(Y ;X) = H(Y)−
H(Y |X) = H(Y). This means that, with deterministic programs, the mutual
information I(X;Y) can be simplified to the entropy H(Y).

2.2.2 Guessing entropy

Another interesting notion is the guessing entropy, that is, the expected
number of questions of the form “is X equal to x?” required to determine
the value of X .

17

Definition 8 (Guessing entropy) Assume that the elements of X are indexed
in order of probability. The guessing entropy is defined as:

G(X) ,
∑

1≤i≤|X|

i · p(xi).

We can interpret the guessing entropy as the average effort necessary
to guess a secret through an exhaustive research in a brute force attack.

Similarly to Shannon entropy, we can define the conditional guessing-
entropy that represents the expected number of guesses necessary to
determine X , once that Y is known.

Definition 9 (Conditional Guessing-Entropy) Let X , Y random variables
distributed according to pX and pY respectively. Then the conditional guessing
entropy of X given Y is:

G(X|Y) ,
∑
y∈Y

pY (y)G(X|Y = y).

2.2.3 Min-entropy

In this subsection we introduce an alternative way of measuring informa-
tion leakage, whose security implications we discuss in the next section.
In QIF scenario, min-entropy corresponds to a one-try adversary that can
ask exactly one question of the form: “is X = x?”. Before defining the new
metric, we introduce some useful concepts related to the success/error
probability of a one-try adversary, namely an attacker that is granted with
only one attempt to guess the secret. This scenario can be formalized in
terms of Bayesian hypothesis testing, as follows. The attacker’s strategy is
represented by a guessing function g : Y → X . The success probability after 1
observation (relative to g) is defined as by

P (g)
succ

4
= Pr(g(Y) = X) . (2.1)

Correspondingly, the error probability is

P (g)
e
4
= 1− P (g)

succ. (2.2)

18

It is well-known (see e.g. (CT06)) that optimal strategies, that is strate-
gies maximizing the success probability, are those obeying the following
Maximum A Posteriori (MAP) criterion.

Definition 10 (Maximum A Posteriori rule, MAP) A function g : Y → X
satisfies the Maximum A Posteriori (MAP) criterion if for each y ∈ Y and
x ∈ X

g(y) = x implies p(y|x)p(x) ≥ p(y|x′)p(x′) ∀x′ ∈ X .

Intuitively, the above definition says that the best strategy for the adversary
is to guess the secret that maximizes the posterior probability given the
observation y. In what follows, we shall always assume that g is MAP and
consequently omit the superscript (g). The quantity Psucc admits a number
of equivalent formulations. For example, it is straightforward to check that
(cf. e.g. (Smi09; BPP11a; BPP11b); the sums below run over y of positive
probability)

Psucc =
∑
y

p(y) max
x

p(x|y) (2.3)

=
∑
y

max
x

p(y|x)p(x) . (2.4)

Equation (2.3) shows clearly that Psucc results from an average over all
observations y ∈ Y .

We convert the above probability measures to an entropy, using Rényi’s
min-entropy (R6́1), defined below.

Definition 11 (Min-entropy) The min-entropy of X is given by

H∞(X) , − logPsucc(X) = − log max
x∈X

p(x). (2.5)

Min-entropy leakage is employed by Smith in (Smi09) as a measure for
information flow. It was already adopted to quantify anonymity provided
by mix networks (SM03; CPP08a) and discussed in relation to crypto-
graphic guessing attacks by Cachin in (Cac97).

Min-entropy is an instantiation of Rényi entropy, introduced in (R6́1), as
a one-parameter family of entropy measures, intended as a generalization
of Shannon entropy:

Hα(X) ,
1

1− α
log
∑
x∈D

p(x)α, α ≥ 0, α 6= 1

19

Min-entropy is obtained when α → ∞, while Shannon entropy when
α→ 1. Again, we can introduce the conditional version of min-entropy.

Definition 12 (Conditional min-entropy) The conditional min-entropy of
X given Y is

H∞(X|Y) , − log
∑
y

p(y) max
x

p(x|y). (2.6)

Note that from the above definition it follows that

Psucc(X|Y) = 2−H∞(X|Y) (2.7)

that provides a strong security guarantee, since it states that the adver-
sary’s success probability, given a certain observation, decreases exponen-
tially fast with the conditional min-entropy.

With min-entropy, we measure the initial uncertainty with H∞(X),
the remaining uncertainty as H∞(X|Y) and the leakage as the difference
between the two. This last quantity expresses how much, on the average,
one observation increases the success probability of the attacker. The
intuition is that a gain of one bit of min-entropy leakage corresponds to
doubling the a priori success probability.

2.3 Security guarantees

In this section we clarify how effective the introduced entropy notions are
at expressing information leakage. In particular, using Guessing entropy
as an intermediate notion, we compare the guarantees offered by Shannon
entropy and by min-entropy.

Let us start by considering Shannon entropy first. Following the analy-
sis developed by Smith in (Smi09), the key question is whether the value
of H(X|Y) (the remaining uncertainty) accurately reflects the threat to X .
A result by Massey (Mas94) seems to justify the use of H(X|Y).

Proposition 3 (Massey) Let X be a random variable. If H(X) ≥ 2, then:

G(X) ≥ 2H(X) + 1
e

.

20

Basing on previous proposition, Clark et al. in (CHM01) state that
G(X|Y) satisfies a similar bound.

Proposition 4 If H(X|Y) ≥ 2, then

G(X|Y) ≥ 2H(X|Y)−2 + 1. (2.8)

Example 2.3.1 Consider the program introduced in Example 1.1.1

P(x) = x & 037

where X is uniformly distributed in X = {0, . . . , 232 − 1}. Then, as already
discussed, H(X|Y) = 27 since each equivalence class contains 227 elements,
uniformly distributed. Using (2.8) we obtain G(X|Y) ≥ 225 + 1, which is an
acceptable bound of the real expected number of guesses that is 227+1

2 .

The problem is that the expected number of guesses is not directly
related to the adversary’s probability of guessing the secret in just one try.

Fano’s inequality provides such a direct relation. In particular it pro-
vides a lower bound, in terms of H(X|Y), for the probability of error of
the adversary, that is the probability that he/she fails the guess of correctly
identify X in one try, given the value of Y .

Proposition 5 (Fano’s inequality) Let X , Y random variables with values in
the sets X and Y respectively, with |X | > 2. Let g : X → Y , then

Pe = Pr(X 6= g(Y)) ≥ H(X|Y)− 1
log(|X | − 1)

. (2.9)

Example 2.3.2 Consider the program of Example 2.3.1. On this program Fano’s
inequality gives Pe ≥ 27−1

log(232−1) ≈ 0.8125. This bound is in fact quite loose,
since here the adversary has no knowledge of 27 bits of X , which implies that
Pe ≥ 227−1

227 ≈ 0.9999999925.

Although there exist cases where the Fano’s bound and the real value
of the error probability are very close, Example 2.3.2 shows that, in general,
Fano’s inequality does not provide accurate bounds.

As Smith noticed in (Smi09), Shannon and Guessing entropies do not
consider the possibility that, even if the needed guessing effort is, on the
average, arbitrarily high, the probability to guess the secret in just one try
might be significant. The following example, borrowed by Smith (Smi09),
clarifies this difference.

21

Example 2.3.3 Assume that X is an 8k-bits integer, with k ≥ 2, uniformly
distributed in {0, . . . , 28k − 1}. This implies that H(X) = 8k. Consider the two
following programs

P1(x) : if x mod 8 == 0 then y=x else y=1

P2(x) : y=(x & 07k−11k+1)

where P1 outputs the input if it is multiple of 8, otherwise it outputs 1, while P2

returns the last k + 1 bits of the input (indeed 07k−11k+1 is a binary constant).
Let us now compare the two programs. Let Y = P (X). Concerning P1, since it is
deterministic, its leakage is H(Y) as observed in Remark 2.2.1. Note that the else
branch is executed on 7/8 of the values of X . This means that Pr(Y = 1) = 7

8
and Pr(Y = 8n) = 2−8k for each 0 ≤ n < 28k−3. Then

H(Y) =
7
8

log
8
7

+ 28k−32−8k log 28k ≈ k + 0.169.

This implies that H(X|Y) ≈ 7k − 0.169. This suggests that about 7/8 of the
information contained in X remains unleaked. But the problem is that the then
branch is taken 1/8 of the time, meaning that the adversary correctly guesses the
value of X at least 1/8 of the time, that is a value unacceptably high.

Concerning P2, here H(Y) = k + 1 and H(X|Y) = 7k − 1. Note that, once
Y is learned, the adversary’s probability of correctly guessing X is just 1/27k−1.

So, basing on the Shannon entropy, P2 is worse that P1, even if in P1 X is
highly vulnerable while in P2 it is not.

To stress the differences between Shannon-entropy and min-entropy,
we consider again Example 2.3.3.

Example 2.3.4 Since both P1 and P2 are deterministic and X is uniformly
distributed, we only care about |X | and |Y|. Since |X | = 28k, thenH∞(X) = 8k
as before. While on program P2 we obtain the same results, on program P1 we
have |Y| = 28k−3 + 1, that implies that the leakage is about 8k − 3 and the
remaining uncertainty is about 3. Therefore the min-entropy approach reflects
more faithfully our intuition about leakage.

Remark 2.3.1 Note that if X is uniformly distributed on X then H∞(X) =
log |X |. Hence Shannon entropy and min-entropy coincide on uniform distribu-
tions. As previous example showed, in general, Shannon entropy can be arbitrarily
grater that min-entropy, since H(X) can be arbitrarily high even if X has a value
whose probability is close to 1.

22

We conclude this section with a standard result, that characterizes max-
imum information leakage for deterministic programs, for both Shannon
and min-entropy leakage. Recall that the image of a program (function) P
is the set Im(P) , {y ∈ Y : P−1(y) 6= ∅}. Let us denote by [x] the inverse
image of P (x), that is [x] , {x′ ∈ X : P (x′) = P (x)}. The proof can be
found in Appendix A.1.

Theorem 2.3.1 Let i ∈ {Sh,∞} and k = |Im(P)|. Then Li(P ; g) ≤ Ci(P) =
log k. In particular, if g(x) = 1

k×|[x]| for each x ∈ X , then Li(P ; g) = Ci(P) =
log k, for i ∈ {Sh,∞}.

In the light of the above result, a crucial security parameter is therefore
the image size of P , k = |Im(P)|: with a slight language abuse, we will
refer to this value as to program capacity. Note that program capacity is
especially relevant to min-entropy, because it coincides with actual leakage
under the uniform input distribution, which is quite common in practice.

2.4 More Information Theory

In this section we introduce some other useful concepts from Information
Theory.

2.4.1 Kullback-Leibler divergence and method of types

In this subsection we develop the relation linking information theory and
statistics. We start by first presenting the method of types, introduced by
Csiszàr and Körner (Csi98).

Definition 13 (Kullback-Leibler Divergence) Given two probability distri-
butions p, q, defined on the same set X , the Kullback-Leibler divergence be-
tween p and q is:

D(p‖q) ,
∑
x∈X

p(x) log
p(x)
q(x)

with the proviso that 0 · log 0
q(x) = 0 and that p(x) · log p(x)

0 = +∞ if p(x) > 0.

23

Suppose that the real distribution p is unknown, but that we know
an approximation q. Then the Kullback-Leibler divergence quantifies the
inaccuracy that we have when we assume that the distribution of X is the
approximated one, q, rather than the real one p. Similarly to a real distance,
the Kullback-Leibler divergence is always non negative as stated by the
following property (CT06).

Lemma 2.4.1 (Gibbs inequality) The Kullback-Leibler divergence is always
non-negative. In particular

D(p‖q) ≥ 0 (2.10)

and we achieve the equality iff p = q.

Let us now introduce the method of types. It is based on the classification
of the sequences based on their empirical distribution. The goal is, on one
hand, to establish an upper bound for the number of possible sequences
with such a distribution and, on the other hand, to estimate this probability.

LetX1, . . . , Xn be a sequence of n random variables i.i.d. (independent,
identically distributed) with distribution pX . Then we give the following
formal definition (CT06).

Definition 14 (Type) The type tx of a sequence x = (x1, . . . , xn) ∈ Xn is the
relative proportion of occurrences of each symbol x ∈ X . In other worlds, it is
a probability distribution on X defined as tx(a) = N(a|x)

n , where N(a|x) is the
number of times that the symbol a occurs in the sequence x ∈ Xn.

Definition 15 Let Tn denote the set of types with denominator n:

Tn = {(x1

n
, . . . ,

xk
n

)|xj ≥ 0,
∑
i

xi = n}.

Definition 16 (Type class) Suppose t ∈ Tn, then the set of n-length sequences
of type t is said type class of t and is denoted by:

T (t) = {x ∈ Xn|tx = t}.

We clarify the concepts introduced so far with a concrete example.

Example 2.4.1 Let X = {1, 2, 3} be an alphabet and x = 13323 a sequence of
length 5. Then the type Px is:

tx(1) =
1
5
, tx(2) =

1
5
, tx(3) =

3
5
.

24

The type class of tx is the set of 5-length sequences with a single occurrence of the
symbol 1, a single occurrence of the symbol 2 and three occurrences of the symbol
3. In total we have 20 sequences that satisfy this constraint and

T (tx) = {12333, 21333, 13233, . . . , 33321}.

The number of elements of T (t) is given by:

|T (t)| =
(

5
1, 1, 3

)
=

5!
1!1!3!

= 20.

The strength of this method is that the number of types is polynomial
in n, as shown by the following result (CT06).

Theorem 2.4.1 The cardinality of the set Tn over an alphabet X is bounded in
this way:

|Tn| ≤ (n+ 1)|X |. (2.11)

The crucial point here is that there are only a polynomial number of
types of length n. Since the number of sequences is exponential in n, it
follows that at least one type has exponentially many sequences in its type
class. In fact, the largest type class has essentially the same number of
elements as the entire set of sequences, to first order in the exponent.

We define the following sets: let U (n)
ε (pX) be the set of sequences of

length n, whose type is far at most ε from pX in the Kullback-Leibler sense,
and let U (n)c

ε (pX) be the complementary set, that is:

U (n)
ε (pX) , {x ∈ Xn|D(tx‖pX) ≤ ε}, U (n)c

ε (pX) , Xn\Uε(pX).

The following result (CT06) shows that, under a probability distribu-
tion pX on X :

1. all the sequences with the same type have the same probability;

2. the probability of a sequence of events (or a set of sequences of events,
respectively) decrease exponentially fast with the Kullback-Leibler
divergence between its type and the distribution pX

Theorem 2.4.2 (Csizàr-Körner (Csi98)) LetX1, . . . , Xn be i.i.d. random vari-
ables distributed according to pX . Then, setting pnX =

∏n
i=1 pX(xi), we obtain

that:

25

1. the probability of a sequence x = (x1, . . . , xn) only depends on its type and
is given by:

pnX(x) = 2−n(H(pX)+D(tx‖pX))

2. the probability of the set U (n)c
ε (pX) decreases exponentially fast as ε in-

creases:
pnX(U (n)c

ε (pX)) ≤ (n+ 1)|X |2−nε.

Note that if the sequence x belongs to the type class of pX , then pnX(x) =
2−nH(pX).

We conclude this subsection introducing some important results, (CT06),
regarding this method: the first one provides an estimation of the type
class amplitude, while the second one bounds its probability.

Proposition 6 (Type Class Size) For each type t ∈ Tn, we obtain that:

1
(n+ 1)|X |

2nH(t) ≤ |T (t)| ≤ 2nH(t).

Proposition 7 (Type Class Probability) For each type t ∈ Tn and distribu-
tion pX , the probability if a type class T (t) governed by pnX is bounded in the
following way:

1
(n+ 1)|X |

2−nD(t‖pX) ≤ pnX(T (t)) ≤ 2−nD(t‖pX). (2.12)

So, to summarize, the previous equations state that there are only a
polynomial number of types and that there are an exponential number of
sequences of each type. We also have an exact formula for the probability of
any sequence of type t under distribution pX and an approximate formula
for the probability of a type class. These equations allow us to calculate
the behavior of long sequences based on the properties of the type of the
sequence. For example, for long sequences drawn i.i.d. according to some
distribution, the type of the sequence is close to the distribution generating
the sequence, and we can use the properties of this distribution to estimate
the properties of the sequence.

26

2.4.2 Rate of convergence

Once we have chosen a security metric, it is interesting to analyze, not
only its limit value, but also how fast this value is reached as the number
of observation grows. For this reason, we introduce the following concept.

Definition 17 (rate) Let f : N → R+ be a nonnegative, monotonically non-
increasing function. Let γ = limn→∞ f(n). The rate of f is defined as the
nonnegative quantity

ρ(f)
4
= − lim

n→∞

1
n

log(f(n)− γ) . (2.13)

We further say that f reaches δ at rate ε if there is a nonnegative, monotonically
non-increasing function h s.t. limn→∞ h(n) ≤ δ, ρ(h) ≥ ε and f(n) ≤ h(n) for
each n large enough.

When f reaches γ at rate ρ, we write this as

f(n) .= γ − 2−nρ .

Intuitively, for large values on of n, .= can be interpreted as ≈.
Note that we admit rates of 0, as well as of +∞. The following example

shows that slow rate of convergence does not always guarantee security.

Example 2.4.2 Consider f(n) = α+ β2−nλ1 + γ2−nλ2 , for some nonnegative
α, β and γ, and 0 < λ1 < λ2. Then f(n) → α and ρ(f) = λ1. Since
f(n) ≤ h(n) = α+β+γ2−nλ2 , one has that f reaches α+β at a rate of λ2. The
picture below displays a plot of three functions, characterized by identical values
of α = 0.1, γ = 0.01, λ1 = 0.01, and λ2 = 2, and by three different values of β:
β = 0.1 (top curve), 0.01 (middle curve) and 0.001 (bottom curve). One can see
that although the convergence to the limit value, 0.1 for all of them, is extremely
slow, convergence to the value 0.11, which is only slightly higher, in the third
case is very fast. A system with an error probability function of this shape would
not be considered as secure.

Definition 18 (Chernoff information) Consider two distributions p and q on
Y . The Chernoff information between them is the non-negative quantity

C(p, q) , − min
0≤λ≤1

log
∑

y∈supp(p)∩supp(q)

pλ(y)q1−λ(y) (2.14)

with the convention that C(p, q) = +∞ if supp(p) ∩ supp(q) = ∅.

27

Figure 2: Slow convergence rate is not enough in order to guarantee security

0 100 200 300 400 500 600 700

0.1

0.12

0.14

0.16

0.18

0.2

n

f(
n)

β=0.1
β=0.01
β=0.001

Chernoff Information can be thought of as a sort of distance3 between p
and q: the more p and q are far apart, the the less observations are needed
to discriminate between them.

Consider the case of an IHS with |X | = 2, where X = {x1, x2}, and let
px1 = p, px2 = q. A well-known result gives us the rate of convergence
for the probabilities of success and error, with the proviso that p > 0 and
q > 0 (cf. (CT06)):

Pnsucc
.= 1− 2−nC(p,q) (2.15)

Pne
.= 2−nC(p,q) (2.16)

where we stipulate 2−∞ = 0. We stress again that this rate does not depend
on the prior distribution, but only on the probability distributions p and q.

3Note that C(p, q) = 0 iff p = q and that C(p, q) = C(q, p). However C(·, ·) fails to
satisfy the triangle inequality.

28

This result extends to the general case |X | ≥ 2. Indeed it is enough to
replace C(p, q) by minpx 6=px′ C(px, px′), thus (see (BPP11a; LJ97)):

Pnsucc
.= 1− 2−nminpx 6=px′

C(px,px′) (2.17)

Pne
.= 2−nminpx 6=px′

C(px,px′). (2.18)

We end this section with a relation between KL-divergence and Cher-
noff Information, that we will exploit in the subsequent chapters. Let p1

and p2 be two distributions on Y and let Ip1p2 = {q |D(q||p1) = D(q||p2)}.
If supp(p1) = supp(p2), then there exits a unique q∗ ∈ Ip1p2 that minimizes
D(·||q1) in Ip1p2 and such that (see (CT06, Ch.11))

C(p1, p2) = D(q∗||p1) = D(q∗||p2) . (2.19)

29

Chapter 3

Information flow under
repeated observations

This chapter consists of two main parts, based on two different attack
scenarios, reflecting respectively (BPP11a; BPPar) and (BPP11b).

3.1 Motivations

In the first scenario, we consider an adversary that aims to recover the
secret from the collected observations. We study the asymptotic behaviour
of (a) information leakage and (b) adversary’s error probability in informa-
tion hiding systems modeled as noisy channels. Specifically, we assume
the attacker can make a single guess after observing n independent execu-
tions of the system, throughout which the secret information is kept fixed.
We show that the asymptotic behaviour of quantities (a) and (b) can be
determined in a simple way from the channel matrix. Moreover, simple
and tight bounds on them as functions of n show that the convergence
is exponential. We also discuss feasible methods to evaluate the rate of
convergence. Our results cover both the bayesian case, where a prior
probability distribution on the secrets is assumed known to the attacker,
and the maximum-likelihood case, where the attacker does not know such
distribution. In the bayesian case, we identify the distributions that max-

30

imize the leakage. We consider both the min-entropy setting studied by
Smith (Smi09) and the additive form proposed by Braun et al. (BCP09),
and show the two forms do agree asymptotically.

Secondly we enrich the proposed model, studying the security of the
system, not only quantitatively (how much is leaked), but also qualitatively
(what properties are leaked). To this purpose, we extend information hid-
ing systems (IHS) with views: basically, partitions of the state-space. Given
a view W and n independent observations of the system, one is interested
in the probability that a Bayesian adversary wrongly predicts the class of
W the underlying secret belongs to. We offer results that allow one to ea-
sily characterize the behaviour of this error probability as a function of the
number of observations, in terms of the channel matrices defining the IHS

and the view W . In particular, we provide expressions for the limit value
as n→∞, show by tight bounds that convergence is exponential, and also
characterize the rate of convergence to predefined error thresholds. We
then show a few instances of statistical attacks that can be assessed by a
direct application of our model: attacks against anonymity in protocols
re-executions and against privacy in sparse datasets.

3.2 Attacker targets the entire secret

Consider an information hiding system H = (X ,Y, p(·), p(·|·)), as defined
in Def. 1, where X and Y represent a finite set of, respectively, inputs and
outputs, p(·) is a probability distribution on X and p(·|·) ∈ [0, 1]X×Y is the
conditional probability matrix. We start considering the attack scenario
considered in (BPP11a; BPPar). Given any n ≥ 0, we assume the adversary
is a passive eavesdropper that gets to know the observations correspond-
ing to n independent executions of the system, yn = (y1, ..., yn) ∈ Yn,
throughout which the secret state x is kept fixed. Formally, the adversary
knows a random vector of observations Y n = (Y1, ..., Yn) such that, for
each i = 1, ..., n, Yi is distributed like Y and the individual Yi are condi-
tionally independent given X , that is, the following equality holds true for

31

each yn ∈ Yn and x ∈ X s.t. p(x) > 0

Pr
(
Y n = (y1, . . . , yn) |X = x

)
= Πn

i=1p(yi|x) .

We will often abbreviate the right-hand side of the above equation as
p(yn|x).

Below we extend the definitions of error probability (2.2) and MAP
rule (introduced in Def. 10) to the case of repeated observations. For any
n, the attacker strategy is modeled by a guessing function g : Yn → X ,
that represents the single guess the attacker is allowed to make about the
secret state x, after observing yn.

Definition 19 (error probability) Let g : Yn → X be a guessing function.
The probability of error after n observations (relative to g) is given by

P (g)
e (n)

4
= 1− Psucc(n), where P (g)

succ(n)
4
= Pr(g(Y n) = X).

Even in the case of repeated observations, the optimal strategy for
the adversary, that is the one that minimizes the error probability, is the
Maximum A Posteriori (MAP) rule, defined in Def. 10 and extended below.

Definition 20 (MAP rule with repeated observations) A function g : Yn →
X satisfies the Maximum A Posteriori (MAP) criterion if for each yn and x

g(yn) = x implies p(yn|x)p(x) ≥ p(yn|x′)p(x′) for each x′

In the above definition, for n = 0, it is convenient to stipulate that
p(yn|x) = 1: that is, with no observations at all, g selects some x maximiz-
ing the prior distribution. With this choice, P (g)

e (0) denotes 1−maxx p(x).
It worth to notice that MAP guessing functions for a given n and p(x) are
not in general unique. It is readily checked, though, that Pe(n) does not
depend on the specific MAP function g that is chosen. Hence, throughout
the paper we assume w.l.o.g. a fixed guessing function g for each given n
and probability distribution p(x). We shall omit the superscript (g), except
where this might cause confusion.

Another widely used criterion is Maximum Likelihood (ML), which given
yn selects a state x maximizing the likelihood p(yn|x) among all the states.
ML coincides with MAP if the uniform distribution on the states is assumed.

32

ML is practically important because it requires no knowledge of the prior
distribution, which is often unknown in security applications. Our main
results will also apply to the ML rule (see Remark 3.2.2 in the next section).

We now come to information leakage, which measures the information
leaked by the system by comparing the posterior (to the observations) and
prior success probabilities. Indeed, two flavours of this concept naturally
arise, depending on how the comparison between the two probabilities is
expressed. If one uses subtraction, one gets the additive form of (BCP09),
while if one uses the ratio between them, one gets a multiplicative form. In
the latter case, one could equivalently consider the difference of the log’s,
obtaining the min-entropy based definition considered by Smith (Smi09).

Definition 21 (Additive and Multiplicative Leakage (Smi09; BCP09)) The
additive and multiplicative leakage after n observations are defined respectively
as

L(n) , Psucc(n)−max
x

p(x) and L×(n) ,
Psucc(n)

maxx p(x)

In an information hiding system, it may happen that two secret states
induce the same distribution on the observables. An important role in
determining the fundamental security parameters of the system is hence
played by an indistinguishability equivalence relation over states, which
is defined below, following (BK08). Recall that, for each x ∈ X , we let px
denote the probability distribution p(·|x) on Y .

Definition 22 (Indistinguishability) Given x, x′ ∈ X , we let x ≡ x′ iff
px = px′ .

Concretely, two states are indistinguishable iff the corresponding rows
in the conditional probability matrix are the same. This intuitively says that
there is no way for the adversary to tell them apart, no matter how many
observations he performs. We stress that this definition does not depend
on the prior distribution on states, nor on the number n of observations.

3.2.1 Bounds and asymptotic behaviour

In (BPP11a; BPPar), it is proven that Pe(n) converges exponentially fast
to a quantity that depends on an indistinguishability relation on states.

33

This relation is defined as follows: x ≡ x′ if p(·|x) = p(·|x′). Assume ≡
partitions X into K equivalence classes C1, ..., CK . For each i, let:

x∗i , argmaxx∈Cip(x) and πi , p(x∗i) and p∗i (·)
4
= p(·|x∗i) . (3.1)

We can assume w.l.o.g. that p∗i > 0 for each i.
For each i, j ∈ {1, . . . ,K}, let

cij , C(pi, pj)

where C(·, ·) is the Chernoff Information (see Def. 18). By adapting the
proof for the case |X | = 2 that is given in (CT06) (see also (LJ97)), it is
not difficult to prove the following result, which gives the exact rate of
convergence for Pe(n), in the case where the distributions p1(·), ..., pK(·)
all have the same support1. Recall the definition of rate given in Def. 17.

Proposition 8 Suppose that supp(p1) = · · · = supp(pK). Then ρ(Pe) =
mini 6=j C(pi, pj).

More generally, the result below provides a means to tradeoff bounds
on error probability with bounds on the rate of convergence. The next
theorem has the following interpretation. The attacker focuses on the
representative states, {x∗i |i = 1, . . . ,K}, and tries to identify one of them
as X . This strategy can fail for two reasons: either X is not in the target
subset (first term in the error expression), or it is, but the attacker mistakes
one state in the subset for another (second term in the error expression).
The latter probability decreases exponentially fast with n, at a rate ρ.

Theorem 3.2.1 Let I a nonempty subset of {1, . . . ,K}. Let ρI , mini,j∈I,i6=j cij .
Let πmax = maxi πi. Then, for all n ≥ 1

(1−
∑
i∈I

p∗i) ≤ Pe(n) ≤ (1−
∑
i∈I

p∗i) +
|I|2

2
p∗max2−nρI (3.2)

As a consequence, Pe(n) reaches (1−
∑
i∈I p

∗
i) at a rate of ρi. In particular, by

taking I = {1, ...,K}, we obtain that ρ(Pe) ≥ ρI .
1In the case where the distributions have different supports, the argument of (CT06) does

not apply. The ultimate reason is that that D(p||q) is not continuous in the first argument if q
has not full support; see also (BV08) for a discussion on this issue.

34

Proof Fix n ≥ 1. Let R = {x∗i |i ∈ I} and g : Yn → R be a function
satisfying: g(yn) = x∗i implies p(yn|x∗i)πi ≥ p(yn|x∗j)πj for each j ∈ I .
Note that g need not be MAP for H, and that g−1(x) = ∅ for x /∈ R. For
each i ∈ I , let Ai = g−1(x∗i) be the acceptance region for x∗i . Then we have
(the sums below run over x’s s.t. pX(x) > 0)

P ge (n) =
∑
x∈X

Pr(g(Y n) 6= x|X = x)pX(x)

=
∑
x/∈R

Pr(g(Y n) 6= x|X = x)pX(x) +
∑
i∈I

Pr(g(Y n) 6= x∗i |X = x∗i)πi

= (1−
∑
i∈I

πi) +
∑
i∈I

pi(Aci)πi

≤ (1−
∑
i∈I

πi) +
∑
i∈I

∑
j∈I,j 6=i

pi(Aj)πi

= (1−
∑
i∈I

πi) +
∑
i∈I

∑
j∈I,j>i

pi(Aj)πi + pj(Ai)πj (3.3)

where the inequality follows from Aci = ∪j∈I\{i}Aj and a simple union
bound, while the last equality is simply a rearrangement of summands.
Now, we evaluate pi(Aj)πi + pj(Ai)πj for each i, j ∈ I and i 6= j.

Essentially by the same derivation given in (CT06, eqn.(11.239)–(11.251)),
one finds that pi(Aj)πi+pj(Ai)πj ≤ πλi π

1−λ
j 2−ncij , for a suitable λ ∈ [0, 1].

Since πλi π
1−λ
j ≤ πλmaxπ

1−λ
max = πmax and cij ≥ ρI , we obtain

pi(Aj)πi + pj(Ai)πj ≤ πmax2−nρI (3.4)

Now, if we plug the bound (3.4) in (3.3), and then factor out πmax2−nρI

and reorder the summands, we get

P ge (n) ≤ (1−
∑
i∈I

πi) +
(∑
i∈I

∑
j∈I,j>i

1
)
πmax2−nρI .

Now, use the fact that
(∑

i∈I
∑
j∈I,j>i 1

)
= |I|(|I|−1)

2 ≤ |I|
2

2 , which shows
that the wanted inequality holds for P ge (n). But, from optimality of MAP,
Pe(n) ≤ P ge (n), which completes the proof. �

35

Remark 3.2.1 (a) In the practically important case where the prior p(·) on X is
uniform, the term |I|2

2 πmax2−nρI is bounded above by K
2 2−nρI .

(b) Computation of the Chernoff Information (2.14) is an optimization problem
that may be difficult to solve exactly. In practice, setting λ = 1

2 in the argument
of the min often yields a good lower bound of C(p, q), known as Bhattacharyya
distance. Another lower bound that we will find useful in the case of distributions
with sparse support (see Section 3.3.3), is obtained by taking the min limited
to the cases λ = 0 and λ = 1. Letting σ = supp(p) ∩ supp(q), this quantity
amounts to −min{log p(σ) , log q(σ)}.

Corollary 3.2.1 If the a priori distribution on X is uniform, then Pe(n) con-
verges exponentially fast to 1− K

|X | .

Remark 3.2.2 (on the ML rule) (BCP08) shows that the probability of error
under the ML rule, averaged on all distributions, coincides with the probability
of error under the MAP rule and the uniform distribution. From Corollary 3.2.1
we therefore deduce that the average ML error converges exponentially fast to the
value 1− K

|X | as n→∞.

We discuss now some consequences of the above results on information
leakage. Recall that for i = 1, ...,K, we call x∗i a representative of the
indistinguishability class Ci that maximizes the prior distribution p(x) in
the class Ci, and let p∗i = p(x∗i). Assume w.l.o.g. that p∗1 = maxx p(x).
In what follows, we denote by pmax be the distribution on X defined by:
pmax(x) = 1

K if x ∈ {x∗1, ..., x∗K} and pmax(x) = 0 otherwise.

Corollary 3.2.2 Fix any prior distribution p(x).

1. L(n) converges exponentially fast to
∑K
i=2 πi. This value is maximized by

the prior distribution pmax, which yields the limit value 1− 1
K .

2. L×(n) converges exponentially fast to
∑K
i=1 πi
π1

. This value is maximized
by the prior distribution pmax, which yields the limit value K.

Proof

1. The value of the limit follows directly from the definition of L(n)
and Theorem 3.2.1. Concerning the second part, for any fixed p(x),
it is easily checked that

∑K
i=2 πi ≤ 1− 1

K (this is done by separately
considering the cases maxx p(x) ≥ 1

K and maxx p(x) < 1
K). But the

value 1− 1
K is obtained asymptotically with the distribution pmax.

36

2. Again, the value of the limit follows directly from the definition of
L×(n) and Theorem 3.2.1. Concerning the second part, for any fixed
p(x), of course we have

∑K
i=1

πi
π1
≤
∑K
i=1 1 = K. But the value K is

obtained asymptotically with the distribution pmax.

�

Remark 3.2.3 A consequence of Corollary 3.2.2(2) is that, in the case of uniform
distribution on states, the multiplicative leakage, as n goes to infinity, coincides
with the number of equivalence classes K. If one considers deterministic systems,
that is systems where the channel matrix defines a function f : X → Y , the
leakage does not depend on the number of observations: L×(n) = K for n ≥ 1.
Moreover k equals the number of distinct counter-images of f ; in particular
K ≤ |Y |. In this way we re-obtain a result of Smith in (Smi09) for deterministic
systems.

In (BCP09) additive is contrasted with multiplicative leakage in the
case of a single observation (n = 1). It turns out that, when comparing two
systems, the two forms of leakage are in agreement, in the sense that they
individuate the same maximum-leaking system with respect to a fixed
prior distribution on inputs. However, (BCP09) also shows that the two
forms disagree as to the distribution on inputs that maximizes leakage with
respect to a fixed system. This is shown to be the uniform distribution in
the case of multiplicative leakage, and a function that uniformly distributes
the probability on the set of “corner points” in the case of additive leakage
(see (BCP09) for details). Here, we have shown that, despite this difference,
additive and multiplicative leakage do agree asymptotically at least on
one maximizing distribution.

Remark 3.2.4 In (KS10), Köpf and Smith observe that, in the case of uniform
distribution on X , multiplicative leakage is upper-bounded by the number of types
of n-sequences of Y :

L×(n) ≤ Tn. (3.5)

It is interesting to compare this upper-bound, which depends on n, with our
upper-bound, the value K given by Corollary 3.2.2(2). It is clear that, since
as n → ∞ one has Tn → ∞ as well, (3.5) ceases to be useful for large values
of n. Recalling that Tn ≤ (n + 1)|Y | (as stated in Theorem 2.4.1 in Chapt. 2

37

and in (CT06)) and using some algebra, one sees that (3.5) is sharper than our
upper-bound K at least as long as

n ≤ K
1
|Y | − 1.

So it appears that the upper-bound (3.5) is useful only when the number of rows
of the matrix is very large compared to the number of observables.

3.2.2 Some simple applications

We apply the results stated before in three concrete examples: the anonymity
protocol Crowds, the mix-net scenario and the S-box scenario (a funda-
mental component of the DES coder).

Protocol re-execution in Crowds The Crowds protocol (RR98) is de-
signed for protecting the identity of the senders of messages in a network
where some of the nodes may be corrupted, that is, under the control of
an attacker. Omitting a few details, the functioning of the protocol can
be described quite simply: the sender first forwards the message to a
node of the network chosen at random; at any time, any node holding
the message can decide whether to (a) forward in turn the message to
another node chosen at random, or (b) submit it to the final destination.
The choice between (a) and (b) is made randomly, with alternative (a)
being assigned probability pf (forwarding probability) and alternative (b)
probability 1− pf . The rationale here is that, even if a corrupted node C
receives the message from a node N (in the Crowds terminology, C detects
N), C, hence the attacker, cannot decide whether N is the original sender
or just a forwarder. In fact, given that N is detected, the probability of N
being the true sender is only slightly higher than that of any other node
being the true sender. So the attacker is left with a good deal of uncertainty
as to the sender’s identity. Reiter and Rubin have showed that, depending
on pf , on the fraction of corrupted nodes in the network and on a few
other conditions, Crowds offers very good guarantees of anonymity (see
(RR98)).

Chatzikokolakis et al. have analyzed Crowds from the point of view
of information hiding systems and one-try attacks (CPP08a; CPP08b). In

38

d1 d2 · · · d20

x1 0.468 0.028 · · · 0.028
x2 0.028 0.468 · · · 0.028
...

...
x20 0.028 0.028 · · · 0.468

Figure 3: The conditional probability matrix of Crowds for 20 honest nodes,
5 corrupted nodes and pf = 0.7.

their modelling, X = {x1, ..., xm} is the set of possible senders (honest
nodes), while Y = {d1, ..., dm} is the set of observables. Here each di

has the meaning that node xi has been detected by some corrupted node.
The conditional probability matrix is given by p(dj |xi) is given by the
probability that xj is detected, while xi is the true sender and some honest
node has been detected (see (RR98) for details of the actual computation
of these quantities). An example of such a system with m = 20 users2,
borrowed from (CPP08b), is given in Figure 3.

The interesting case for us is that of re-execution, in which the protocol
is executed several times, either forced by the attacker himself (e.g. by
having corrupted nodes suppress messages) or by some external factor,
and the sender is kept fixed through the various executions. This implies
the attacker collects a sequence of observations yn = (y1, ..., yn) ∈ Yn,
for some n. The repeated executions are assumed to be independent,
hence we are precisely in the setting considered in this chapter. This case
is also considered in (CPP08b), which gives lower bounds for the error
probability holding for any n. Our results in Section 3.2.1 generalize those
in (CPP08b) by providing both lower- and upper- bounds converging
exponentially fast to the asymptotic error probability. As an example, for
the system in table above, we have Pe(n)→ 0, independently of the prior
distribution on the senders. An achievable convergence rate, estimated
with the method proposed in Theorem 3.2.1, is ρ ≈ 0.4482. This implies
that already after observing n = 30 re-executions the probability of error

2 Note that, following (CPP08b) this conditional probability matrix is obtained condition-
ing on the event that some node has been detected.

39

is < 0.001.

It is worth to stress that protocol re-execution is normally prevented in
Crowds for the very reasons that it decreases anonymity, although it may
be necessary in some cases. See the discussion on static vs. dynamic paths
in (RR98).

Unlinkability in threshold mix-nets. Statistical attacks against anonymity
protocols may take advantage of sender-receiver relationships that remain
fixed through repeated rounds of the protocol. In this section, we consider
the case of a mix network, a concept due to Chaum (Cha81). In a mix-
network, messages are relayed through a sequence of trusted intermediary
nodes, called mixes, in order to hide sender-receiver relationships (unlink-
ability). In the scenario we consider, a single mix is used by a number of
senders and receivers. The threshold of the mix is b+ 1: at each round, the
mix waits for b + 1 messages from the senders and then distributes the
messages to the corresponding receivers. We consider the situation where
one of the senders is always Alice, with her receiver being always a node
Bob, initially unknown to the attacker. The recipients of the remaining b
messages are assumed be chosen at random in a set of nodes R1, ..., RN . A
similar scenario is at the basis of the statistical disclosure attack by Danezis
(Dan03). We analyse the situation of a local eavesdropper that observes
one fixed receiver, say Rj , and after each round is able to tell whether at
least one message has reached Rj . More sophisticated forms of eavesdrop-
ping could be easily accommodated (e.g. attacker observing all the nodes),
but would not change significantly the outcome of the analysis. The task
of the attacker is to discover which node is Bob; or at least, to tell if Bob is
or not the observed node, Rj .

We can model the scenario described above by an IHS H where: the
set of states is given by all possible nodes (potential receivers of Alice’s
messages), that is X = {R1, . . . , RN}, with pX(Ri) = 1

N for each i =
1, ..., N ; the set of observations is Y = {0, 1}, where y = 1 iff Rj has
received at least one message at the end of the round.

The conditional probability matrix p(·|·) is then given by the following

40

equalities:

p(0|Rj) = 0 p(1|Rj) = 1
p(0|Ri) = (1− 1

N)b p(1|Ri) = 1− (1− 1
N)b for all i 6= j.

Here, the first row means that, if Bob=Rj , then the attacker will observe at
least one message with certainty. The second row means that, in case Bob
is any node different from Rj , then the attacker will observe 0 messages
only if all the b messages – other than the one sent to Bob – are not sent
to Rj (Alice surely does not send to Rj). In other words, except for a
permutation of the rows, we have the matrix below.

(1− 1
N)b 1− (1− 1

N)b

...
...

(1− 1
N)b 1− (1− 1

N)b

0 1

Here the last row refers toRj . This means that there are only two classes of
indistinguishability: X/≡ is {C1, C2}, with C1 = {Rj} and C2 = X \{Rj}.

We apply apply Theorem 3.2.1 toH, which will tell us what is the error
probability in case the attacker wishes to know exactly who is Bob. We can
set I = {i, j}, for any i 6= j, and get the following bound:

Pe(n) ≤
(

1− 2
N

)
+

2
N

(
1−

(
1− 1

N

)b)n
.

As expected, the limit value 1− 2
N is > 0, and the security of the system

increases as N increases. The corresponding asymptotic information lea-
kage is log(N · 2

N) = 1, that is, the attacker gains 1 bit of min-entropy on
the limit about the identity of Bob.

Hamming weight attacks against S-boxes. Timing (Koc96) and power
analysis (KJJ99) are two flavours of side-channel correlation attacks against
cryptographic devices (BCO04; SMY09). These attacks presuppose, ex-
plicitly or implicitly, that attacker knows the inputs (messages) processed

41

by the target device3. Basically, the attack is carried out by simulating
the device’s computations under the different candidate keys, each time
using as inputs the same messages processed by the device. This way, the
attacker obtains different samplings of the leakage from the side-channel,
one for each candidate key. He will then choose the key that generates the
sampling that is most correlated with the one obtained from the device.

Here, we wonder to what extent knowledge of the messages is neces-
sary to extract significant amount of information from the side-channel.
Differently from correlation attacks, will therefore assume that input mes-
sages have a nonzero, moderate redundancy, but not that they are known
to the attacker. We analyze the case of DES S-boxes. Similar analyzes
could be conducted against different types of symmetric keys devices. Our
analysis applies to any round, in fact, to any context where an adversary
may get to observe the Hamming weight of the S-box output. A DES S-box
can be described as a function that takes as an input a pair of a message
and a key and yields as an output a block of ciphertext, SB : K ×M→ C,
where: K = {0, 1}6 is the set of keys,M = {0, 1}6 is the set of messages
and C = {0, 1}4 is the set of ciphertexts. The internal details of the device
are unimportant for the purpose of this illustration. We assume a uniform
prior distribution on K and some known prior distribution onM, say pM .
Given a block of bits B, let us denote by B[i1, ..., ik] the block obtained by
concatenating the bits of position i1, ..., ik in B. Let use denote by B ⊕B′

the bitwise XOR of B and B′.
Concisely, we can describe a DES S-box as a function SB : K ×M →

{0, 1}4. The input bits are used to index a 4× 16 matrix T of integers; each
row of T consists of a distinct permutation of the integers from 0 to 15.
More precisely, we have

SB(m, k)
4
= T (i, j) where i = (m⊕ k)[5, 0] and j = (m⊕ k)[4, 3, 2, 1] .

In other words, once the message and the key have been XOR-ed, the
most and least significant bits of the resulting block yield a row index i,

3In some circumstances, this knowledge is granted by the application. For example, in an
attack against the final round of any Feistel cipher, the left half of the output is also the input
of the target round function (see (KSWH00)).

42

while the four central bits yield a column index j, which are used together
to access the matrix T . Similarly to (KSWH00), we assume the attacker
can create a side-channel delivering him the Hamming weight of a S-box’
output. To the S-box thus described there corresponds an information
hiding system where: X = K, Y = {0, 1, 2, 3, 4} is the set of observables,
i.e. the Hamming weights, and p(y|k) is defined as

p(y|k)
4
=

∑
m∈M:W (SB(m,k))=y

pM (m)

where W (·) is the Hamming weight function.
We report here on our results about the first of the eighth S-boxes of DES.

Analysis of other S-boxes leads to similar conclusions. The distribution
of the plaintext, pM , plays a crucial role here: the lower the redundancy,
the less information is expected to be extracted from the side-channel.
For example, pM is the uniform distribution (0% redundancy), then it
is easy to see that all the rows of the matrix p(y|k) are the same, hence
Pe(n) = 1 − 1/64 for each n: the adversary cannot do any better than
random guessing. For our analysis, we have chosen a plaintext with a
redundancy of about 27% (H(pM) = 4.39 bits), obtained by sampling
ASCII text from some web pages. In the resulting matrix, p(y|k), all the
rows are different, which implies that Pe(n)→ 0. Concerning the rate of
convergence, Theorem 3.2.1 yields ρ ≈ 1.6 · 10−3. This means that with
n ≥ 7.2 · 103 observations the error probability is < 0.011. Discarding
the keys corresponding to the shortest norm-1 distances, one would get
ρ ≈ 2 ·10−3. Applying Theorem 3.2.1, one gets an error probability≤ 0.011
already with n = 5.4× 103 observations.

In a more realistic scenario, the attacker could not directly measure
the Hamming weight of the target S-box, but rather the global weight of
the eight S-boxes composing the round function of DES. This scenario
can be modeled as a noisy version of the previous one. The Hamming
weight of the target S-box, Y , is now disturbed by the noise N , the sum
of the Hamming weights of the remaining seven S-boxes, say W2, ...,W8.
Assuming that the variables Wi are independent from each other and
from Y and identically distributed – this is not strictly true, but seems

43

a reasonable approximation – the central limit theorem would tell us
that their sum N =

∑8
i=2Wi has approximately a gaussian distribution.

Here, for simplicity we have modeled N as a random variable having
binomial distribution B(n, p) with n = 28 and p = 1

2 . What is observed

by the attacker now is Y ′
4
= Y +N . Hence the new set of observables is

Y ′ = {0, ..., 32}. Explicitly, for each i ∈ Y ′ and k ∈ K, the entries of the
new conditional probability matrix p′(·|·) are given by

p′(i|k)
4
= Pr(Y +N = i |K = k) =

min{i,4}∑
j=0

p(j|k) ·
(

28
i− j

)
· 2−28 .

Theorem 3.2.1 applied to the matrix p′(·|·) yields a rate of ρ ≈ 5.963 · 10−6.
Theorem 3.2.1 gives Pe(n) < 0.011 for n ≥ 1.9295 · 106. As expected, the
convergence rate is lower than in the noiseless case. However, the effort
needed to break the system is certainly in the reach of a well determined
attacker.

Our simple analysis confirms that unprotected implementations of
DES S-boxes are quite vulnerable to attacks based on Hamming weights.
Software simulations have reinforced this conclusion, showing that, in
practice, a good success probability for the adversary is achieved with a
relatively small n. For instance, in the noiseless case, already with n = 103,
we have obtained an experimental success rate of 98%.

3.3 Attacker targets a property of the secret

A drawback of the QIF approach so far is that it focuses exclusively on the
quantitative aspect of the analysis (how much is leaked), while ignoring
the qualitative aspect (what is leaked) at all. In (BPP11a) it is shown that,
when a uniform distribution on the secrets is assumed, the asymptotic
information leakage of a system corresponds to the log of the number
of indistinguishability classes in the system – where two states are in-
distinguishable if they induce the same probability distribution on the
observables. To make an extreme example, consider the two small impera-
tive procedures P1 and P2 below. Both of them receive as an argument a

44

confidential variable h that can take on a value in the set X = {0, ..., 15},
possibly corresponding to user identifiers or other sensitive information.
Part of the information about h is disclosed by the procedures through the
public variable l.

P1(h): l=-1; if (h==0) then l=0;

P2(h): l=h mod 4;

In the case of P1, there are two possible observables, -1 and 0, hence X
is partitioned into two indistinguishability classes: thus, assuming h is
uniformly distributed, P1 leaks 1 bit of information about h. In the case of
P2 there are four classes, hence P2 leaks two bits. From a global point of
view, P1 is therefore more secure than P2. Needless to say, though, from the
point of view of user 0, P2 is preferable over P1. One would like to conduct
the analysis both at a quantitative and at a qualitative level, revealing not
only how much is leaked, but also what. This is particularly relevant in
relation to the privacy of individuals or groups.

In (BPP11b) we propose a framework to deal with this issue by exten-
ding the IHS’s considered in (BPP11a; BPPar) and elsewhere with views.

3.3.1 A model with views

A view is, in short, a partition of the states, representing perhaps a sub-
division in ”buckets” of a large population (in fact, we are more general
and also admit probabilistic partitions). In the example above, the view of
interest to user 0 is the partition of X into ({0},X \ {0}). Given a view W ,
one is interested in the adversary’s probability of wrongly predicting the
class of W the secret belongs to, after observing n independent executions
of the system, throughout which the secret state is kept fixed: call this
quantity PWe (n). In the example above, the involved systems are deter-
ministic, hence a single observation is all the attacker needs. One easily
finds that PWe (1) equals 0 in the case of P1, and 1

16 in the case of P2. In
the general case of probabilistic systems, computation of the limit value of
PWe (n) is not as obvious.

45

Definition 23 (views) LetH = (X ,Y, p(·), p(·|·)) be a IHS. A view ofH is a
pair (W, q(·|·)), whereW is a finite alphabet and q(·|·) ∈ [0, 1]X×W is a matrix
where all rows sum to 1.

Informally, q(w|s) is the probability that the property w holds when in
state x. The probability distribution p on X and the conditional probability
matrices p(y|x) and q(w|x) induce a probability distribution r onW×X×Y ,

defined as r(w, x, y)
4
= p(x)·p(y|x)·q(w|x). This distribution induce a triple

of discrete random variables (W,X, Y) ∼ r, taking values inW ×X × Y .
We shall denote the marginal probability distributions of this triple for X ,
W and Y by pX , pW and pY , respectively. Of course, pX(·) coincides with
the prior p(·) given in the IHS, while the marginal distributions pW and pY
can be computed from the given data, p(·), p(·|·) and q(·|·).

Let us now discuss the observation scenario. Given any n ≥ 0, we
assume the adversary is a passive eavesdropper that gets to know the
observations corresponding to n independent executions of the system,
yn = (y1, ..., yn) ∈ Yn, throughout which both the secret state x and the
corresponding view w are kept fixed. Formally, the adversary knows
a random vector of observations Y n = (Y1, ..., Yn) such that, for each
i = 1, ..., n, Yi is distributed like Y . Moreover, the individual Yi and
the view W are conditionally independent given X . This means that the
following equality holds true for each yn ∈ Yn, w ∈ W and x ∈ X s.t.
p(x) > 0

Pr
(
Y n = (y1, . . . , yn), W = w |X = x

)
= Πn

i=1Pr(Yi = yi|X = x) Pr(W = w|X = x) .

Note that the right-hand side of the above equality can be equivalently
written as Πn

i=1p(yi|x)q(w|x).
In the following we shall drop the subscripts from the above defined

(conditional) probability distributions when no ambiguity can arise. We
will often abbreviate Πn

i=1p(yi|x) as p(yn|x). Moreover, by slightly abusing
notation, we will freely identify a view (W, q(·|·)) ofH with the induced
random variable W .

We discuss now the goal of an attacker that targets a property of states
represented by a view W . Similarly to the case considered in (BPP11a;

46

BPPar), the attacker’s strategy corresponds to a guessing function, which
this time is of the form g : Yn →W . The corresponding error probability
(after n observations, relative to g) is

P g,We (n)
4
= Pr

(
g(Y n) 6= W

)
. (3.7)

A function g minimizes this quantity if it is W -MAP, that is if satisfies
the following condition. For each yn ∈ Yn and w ∈ W

g(yn) = w implies p(yn|w)p(w) ≥ p(yn|w′)p(w′), for each w′ ∈ W .

Unless otherwise stated, given a view ofH, we shall assume an underlying
guessing function that is W -map. Consequently, we shall normally omit
the indication of g from P g,We (n).

In many systems, the practically important views are those that par-
tition the state-space into equivalence classes. A view W is called a par-
tition of H if W is a function of X , that is W = f(X) for some function
f : X → W . Equivalently, the matrix q(·|·) has a single entry ’1’ for each

row. LetW = {w1, ..., wL}, and let Ei
4
= f−1(wi) for 1 ≤ i ≤ L. Of course

E1, ..., EL forms a partition of X , in the set-theoretic sense.
Accordingly to this scenario, we can extend the definition of informa-

tion leakage as follows.

Definition 24 (Information leakage relative to a view) The information lea-
kage after n observations relative to a view W is defined as

LW× (n)
4
= log

(PWsucc(n)
maxw pW (w)

)
.

3.3.2 Asymptotic error probability

We analyze now the case of PWe , where W is a generic view of an IHS

H. We follow the notation and terminology established in the previous
section. It would be tempting to proceed as follows: build a new IHS, say
HW , where the states are W and the channel matrix is pY |W . The error
probability function for HW would then coincide with PWe (n). It would
then be enough to apply Theorem 3.2.1 to HW . This approach however

47

is doomed to failure. In fact, the assumption that the observations Yi are
conditionally independent given W is in general false:

p(y1 · · · yn|w) 6= p(y1|w) · · · p(yn|w) .

As a consequence, the IHS HW is meaningless for what concerns our
purposes. However, conditional independence of the Yi’s given W is
guaranteed, and the approach outlined above does work, in the special
case where W is a partition finer than ≡. This intuition leads us to develop
to the method illustrated below for PWe in the general case.

Some more notation first. For notational simplicity, assumeW is a set
of integers {1, ..., |W|}. Let q(·|·) be the matrix defining the view W .

Definition 25 (Indistinguishability with views) We denote by∼W the equi-
valence relation on X induced by q(·|·), that is

x ∼W x′ iff for each y ∈ Y : q(y|x) = q(y|x′) . (3.8)

In other words, two states are ∼W -equivalent if the corresponding rows of
q(·|·) are equal. Let X/∼W be {E1, ..., EL}, the equivalence classes of ∼W .
The intersection ≡ ∩ ∼W is still an equivalence relation on X , that is finer
than both ≡ and ∼W . Recall that X/≡ is {C1, ..., CK}. For 1 ≤ i ≤ K and
1 ≤ j ≤ L, we let the equivalence classes of ≡ ∩ ∼W be denoted as

Fij
4
= Ci ∩ Ej (3.9)

and furthermore

F ∗i
4
= max

j
pX(Fij) and q∗j

4
= max

w
q(w|x), for an arbitrary x ∈ Ej .

(3.10)
The next theorem has the following interpretation. The attacker focuses
on a subset of the representative states, {x∗i |i ∈ I}. He tries to identify first
the class Ci of X , then guesses the class Fij – this is given by the j that
maximizes pX(Fij). Finally he guesses the view w that is most likely in Ej .
This strategy can fail for two reasons: either w is wrong (first term in the
expression), or Fij is wrong (second + third term).

48

Theorem 3.3.1 Let I and ρI be chosen as in Theorem 3.2.1. Let W be a view of
H. Let Πmax = maxi∈I F ∗i . Then

PWe (n) ≤
L∑
j=1

(1− q∗j) + (1−
∑
i∈I

F ∗i) +
|I|2

2
Πmax2−nρI . (3.11)

Proof Denote a pair of indices (i, j) ∈ {1, ...,K} × {1, ..., L} as ij. For each
x ∈ X , define ind(x) = ij iff x ∈ Fij . Fix n ≥ 1 and any function g′ : Yn →
{1, ...,K} × {1, ..., L}, and let Succ′ be the event (g′(Y n) = ind(X)). That
is, Succ′ is the event that g′ correctly classifies the index (of the equivalence
class Fij) of X . Now define a guessing function for H, g : Yn → W , as

g(yn)
4
= w, where g′(yn) = ij and w = argmaxw q(w|x) for any x ∈ Ej

(note that the information about i provided by g′ is ignored by g). Let Err
be the event (g(Y n) 6= W). We have

PWe (n) = Pr(Err, Succ′) + Pr(Err|¬Succ′) Pr(¬Succ′) (3.12)

≤ Pr(Err, Succ′) + Pr(¬Succ′) . (3.13)

Let us estimate Pr(Err, Succ′) and Pr(¬Succ′) separately. It is an easy
matter to prove that

Pr(Err, Succ′) =
L∑
j=1

(1− q∗j) Pr(X ∈ Ej , Succ′)

≤
L∑
j=1

(1− q∗j) . (3.14)

We now estimate Pr(¬Succ′). Consider the new IHS H′ 4= ({1, ...,K} ×
{1, ..., L},Y, p′(·), p′(·|·)), where p′(ij)

4
= pX(Fij) and p′(y|ij) 4= pi(y).

Note that ij ≡ i′j′ iff i = i′. Hence we have K distinct classes in this
system, whose representatives are elements x′1 = 1j1, ..., x′K = KjK

such that ji = argmaxj pX(Fij), hence p′(x′i) = F ∗i , for i = 1, ...,K. The
corresponding representative distributions (rows of the matrix p′(·|·)) are
p′1(·) = p1(·), ..., p′K(·) = pK(·).

Now take the function g′ above to be a MAP guessing function forH′.
Call P ′e(n) the error probability of H′: clearly, Pr(¬Succ′) = P ′e(n). Take

49

I ⊆ {1, ...,K} and apply Theorem 3.2.1 toH′ and I to get

Pr(¬Succ′) ≤ 1−
∑
i∈I

F ∗i +
|I|2

2
Πmax2−nρI . (3.15)

When we plug the bounds (3.14) and (3.15) into (3.13), we get the wanted
result. �

Note that the determination of the upper-bound in (3.11) is compu-
tationally practical: the partitions induced by ≡ ∩ ∼W can be directly
computed by inspection of the matrices p(·|·) and q(·|·). Their intersection
(3.9), and the probability mass of the corresponding classes pX(Fij), are
then straightforward to compute. Theorem 3.3.1 only provides an (expo-
nential) upper bound to PWe (n). The following theorem provides the exact
limit of PWe (n) in the special, but important case when W is a partition.

We recall a few concepts of the method of types introduced in Section
2.4.1. that will be used in the proof. Fix n ≥ 1. Given a sequence yn ∈ Yn

and y ∈ Y , denote by n(y, yn) the number of occurrences of y inside yn.
The empirical distribution or type of yn is the distribution on Y defined

as tyn(y)
4
= n(y, yn)/n, for each y ∈ Y , as defined in Def. 14. The “balls”

of center pi(·) and radius ε > 0 in Yn are defined as Unε (pi)
4
= {yn :

D(tyn ||pi) ≤ ε}. From Theorem 2.4.2 of Csizàr and Körner, it follows that,
as n → +∞, pi(Unε (pi)) → 1, while, for any p 6= pi there is ε > 0 small
enough s.t. p(Unε (pi)) → 0. Moreover, the convergence is exponential in
both cases.

Theorem 3.3.2 LetW be a partition ofH. Then PWe (n) converges exponentially
fast to 1 −

∑K
i=1 F

∗
i . More precisely, with the same notation of Theorem 3.3.1,

for each n ≥ 1,

1−
K∑
i=1

F ∗i ≤ PWe (n) ≤ (1−
K∑
i=1

F ∗i) +
K2

2
Πmax2−nρI ,

where I = {1, ...,K}.

Proof First, note that for W a partition, the first term in (3.11) vanishes, as
each q∗j equals 1. The upper bound is then a consequence of Theorem

50

3.3.1 with I = {1, ...,K}. We now seek for a lower bound of PWe (n). We
equivalently focus on an upper bound of PWsucc(n). Assume without loss
of generality thatW = {1, ..., L}. For any n ≥ 1, let g : Yn → {1, ..., L} be
a W -MAP guessing function, and let Aj = g−1(j), for j ∈ {1, ..., L}, be the
acceptance region in Yn for j. It is a routine task to check that

PWsucc(n) =
K∑
i=1

L∑
j=1

pi(Aj)pX(Fij) . (3.16)

Now, fix any i ∈ {1, ...,K}, and let ji = argmaxj=1,...,L pX(Fij), that is
pX(Fiji) = F ∗i . We claim that pi(Aji)→ 1 as n→ +∞. In fact, fixed ε > 0
small enough, for any n large enough Aji contains the “ball” Unε (pi) of
center pi(·) and radius ε in Yn. To see that this is true, note that a sufficient
condition for yn ∈ Aji is that for each j 6= ji

pY n|W (yn|ji)pW (ji) =
K∑
l=1

pl(yn)pX(Flji)

>

K∑
l=1

pl(yn)pX(Flj) = pY n|W (yn|j)pW (j). (3.17a)

Now from results of the method of types it follows that, for yn ∈ Unε (pi),
we have that all the pl(yn) with l 6= i go exponentially fast to 0 as n grows.
Thus the condition (3.17a) reduces, for n large enough, to F ∗i = pX(Fiji) >
pX(Fij): this is satisfied by definition of ji4. Now Aji ⊇ Unε (pi) implies
that pi(Aji) goes to 1 exponentially fast as n grows; for the same reason,
pi(Aj) goes to 0 for each j 6= ji as n grows (recall that the Aj ’s form a
partition of Yn). This way, and taking (3.16) into account, we have proved
that

lim
n→∞

PWsucc(n) =
K∑
i=1

F ∗i .

4If there is more than one index j maximizing pi(Fij), then the choice of ji gets more
involved: among those j’s that maximize pX(Fij), one chooses the one that maximizes
pX(Fi′j), where pi′ (·) is the distribution closest to pi(·) in terms of KL-distance, if this j is
unique; otherwise one must look at the second closest distribution pi′′ (·), and so on. We
omit the details here.

51

Since PWsucc(n) is monotonically non-decreasing, we have proved that
PWsucc(n) ≤

∑K
i=1 F

∗
i holds true for each n ≥ 1. This implies in turn the

wanted statement. �

3.3.3 Some simple applications

Below we consider two applications of the above model. In the first one
we apply the result of this section to the mix-net scenario, introduced in
Section 3.2.2. Secondly we introduce a statistical attack, related to privacy
protection in sparse datasets.

Unlinkability in threshold mix-nets Consider the scenario described in
Section 3.2.2. To see qualitatively what the single bit gained by the attacker
corresponds to, we analyse the error probability with respect to the view
W ∈ {0, 1} given by:

W = 1 iff X = Rj .

That is,W yields 1 iff Bob isRj . The partition induced onX byW coincides
with ≡, hence its classes are C1, C2. Concerning the sets Fij , we note that:
F11 = {Rj}, F12 = F21 = ∅ and F22 = X \ {Rj}. Since the distribution on
the states is uniform, we have: F ∗1 = 1

N and F ∗2 = 1− 1
N . Take I = {i, j} as

defined as above. According to Theorem 3.3.1, the limit of PWe (n) vanishes,
moreover

PWe (n) ≤ 2
N

(
1−

(
1− 1

N

)b)n
.

The attacker’s success probability of guessing whether Rj =Bob or not
approaches very fast 1. It is also interesting to study the behaviour of the
rate ρI = − log

(
1− (1− 1

N)b
)

depending on b and N . It is easy to see
that as b increases, ρI decreases; on the contrary, as N increases and b is
kept fixed, ρI increases. The shape of PWe (n) is illustrated qualitatively by
the plots in the figures 4: very few rounds of the protocols (n < 10) are
sufficient to achieve PWe ≈ 0.

As mentioned above, it is easy to repeat this kind of analysis with more
sophisticated observations on the part of the attacker: we do not do so

52

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 5 10 15 20

P
ew

(n
)

n

N=100, b=20
N=100, b=60
N=100, b=90

(a) P W
e (n) depending on parameter b

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 5 10 15 20

P
ew

(n
)

n

N=100, b=90
N=150, b=90
N=200, b=90

(b) P W
e (n) depending on parameter N

Figure 4: Plots of PW
e (n) depending on two different parameters.

here for lack of space. On the other hand, note that just repeating this
simple attacks for each of the potential Alice’s receivers (that is, setting
Rj = R1, R2, ..., RN−1 in turn), would lead the attacker to uncover the
identity of Bob after a low number of rounds. This is sufficient to show
that the single threshold mix system is totally insecure.

Privacy in sparse datasets. We consider datasets collecting micro-data –
preferences, recommendations, transaction records, health histories and
so on – about a large number of individuals. Datasets of this kind are
sometimes published for commercial or research purposes. Making micro-
data public poses serious threats to the privacy of individuals, even when
the data are released in anonymized form – that is with personal identifiers,
such as SSN’s, removed. The risk is that an attacker, using a little of
background information about a given individual and cross-correlation of
attributes, might re-identify the individual within the dataset, leading to
the disclosure of the whole set of her/his attributes. An example of this
technique is the spectacular de-anonymization attack of Narayanan and
Shmatikov against the Netflix Prize dataset (NS08a)5.

5The Netflix Prize dataset collects anonymous movie ratings of 500,000 subscribers. Using
background information publicly available from the Internet Movie Database, Narayanan
and Shmatikov successfully re-identified known users within the Netflix dataset.

53

In this section, we show that (sparse) datasets naturally arise as in-
stances of IHS, and that assessment of statistical attacks against dataset
privacy is easily accomplished using the general results of Section 3.3.2.

We view a dataset as a table D, with rows and columns corresponding
to individuals (or more generally, records) and attributes, respectively.
Formally, D ∈ VR×A, where V , R and A are finite nonempty sets of values,
records and attributes, respectively. One can view any dataset D as an
IHS HD, as follows. Records are equiprobable states, that is we set X = R

and let pX(·) be the uniform distribution on R. Concerning observables,
there is a variety of sensible choices, depending on the observation power
one wishes to grant the attacker with. For instance, a sensible choice

is Y 4
= A × V . Another choice, if V is a totally ordered, is to observe

attributes and ranges of values. The last choice is more robust than the
former in case the dataset is published in a perturbed form. In fact, even

setting Y 4= A is sensible, as just knowledge of non-null attributes of a
record provides a great deal of information6. In any case, the technical
development presented below does not depend on the specific choice of Y .
Finally, the conditional probability matrix models the process of acquiring
background information about the individuals in the dataset. Depending
on its exact nature, this information might come from various sources,
e.g. personal blogs, Google searches, or even a water-cooler conversation
with a colleague (see (NS08a)). For example, if Y = A, then it is sensible
to assume that the background knowledge consists of randomly chosen
attributes and set, for each record r and attribute a

p(a|r) 4=
{

1
nr

if a is a non-null attribute of r
0 otherwise

where nr is the number of non-null attributes in the row of the dataset
corresponding to r. Of course, non-uniform distributions can be equally
accommodated, e.g. if it is felt that certain attributes are more likely to be
publicly released than others.

Having shown how to model a dataset as a IHS, we have to point out
that, in the formal development below, there is no need to restrict to IHS’s

6See (NS08a) for further considerations on the structure of sparse datasets.

54

of the formHD. To work in full generality, we will just assume a dataset is
simply an IHS.

In a sparse dataset, most of the entries in the table are null. Specifically,
we consider a dataset sparse if, except possibly for a small fraction of
records, for no record there is another ”similar” record in the dataset. To
make the notion of sparsity precise, we have first to make precise the
notion of similarity between records. We will work with a similarity
function Sim : X × X → [0, 1]. The intuition underlying the following
definition, which is different from that proposed in (NS08a), is that the
similarity of x′ to x is related to the fraction of non-null attributes they
share. More precisely, it is the fraction of non-null attributes that can be
inferred on any of the two by looking at the other.

Definition 26 (similarity) Given an IHS H, for any x, x′ ∈ X , let σxx′ =
supp(p(·|x)) ∩ supp(p(·|x′)). We set

Sim(x, x′)
4
= min

{
p(σxx′ |x) , p(σxx′ |x′)

}
.

Note that Sim(x, x′) = 1 iff supp(p(·|x)) = supp(p(·|x′)).
The following notion of sparsity is not related to - not weaker nor

stronger than - the one considered in (NS08a). It seems to be satisfied by
typical sparse datasets, like the Neflix Prize (NS08a). In fact, our results
extend, although in a different form, to the notion of sparsity of (NS08a),
but we shall not give any detail here.

Definition 27 (sparsity) Let H be a IHS with pX(·) the uniform distribution.
Let ε > 0 and δ > 0. We sayH is (ε, δ)-sparse if

Pr
(

max
x:x 6=X

Sim(X,x) ≥ ε
)
< δ . (3.18)

Our results apply to a situation where the attacker gets to know an
entire copy of the dataset.We begin with a result on error probability.

Theorem 3.3.3 LetH be (ε, δ)-sparse, with |X | = N . Then Pe(n) reaches δ at
a rate − log ε. More precisely,

Pe(n) ≤ δ +
1
2

[(1− δ)2N + 2(1− δ) +
1
N

]εn.

55

Proof By definition of sparsity, it is possible to find a subset of the records,
sayR = {x∗i |i ∈ I}, s.t. for each x ∈ R, there is no other record in X which
is ε-similar to x, and such that pX(R) ≥ 1 − δ. Moreover, by uniform
distribution of the probability mass on records, we can choose the size of I
satisfying |I|−1

N < (1−δ) ≤ |I|N , which means (1−δ)N ≤ |I| < (1−δ)N+1.
Next note that, with the notation introduced in Section 3.3.2 and by virtue
of Remark 3.2.1(b), for any i, j ∈ I with i 6= j, the Chernoff information cij
satisfies: cij ≥ − log Sim(x∗i , x

∗
j) ≥ − log ε. Applying Theorem 3.2.1 we get

the thesis. �

In some cases, all the adversary needs to determine about a record is
its “similarity class”. In fact, knowledge of this class already provides him
with almost all the information about the record. If this class is disclosed
then a privacy breach has occurred. The next definition formalizes this
intuition. Recall from (3.8) that ∼W is the equivalence relation induced on
X by W .

Definition 28 ((ε, δ, ρ)-breach) Let H be a IHS. Consider a partition W of H
such that whenever x ∼W x′ then Sim(x, x′) ≥ ε. We say W is an (ε, δ, ρ)-
breach if PWe (n) reaches δ at rate ρ.

The following result establishes strong upper bounds on the resistance
to privacy breaches in sparse datasets.

Theorem 3.3.4 Any (ε, δ)-sparse IHS has an (ε, δ,− log ε)-breach W . In partic-
ular, to PWe (n) the same bound applies as given for Pe(n) in Theorem 3.3.3.

Proof The proof is similar to that of Theorem 3.3.3. Consider the set
R = {x∗i | i ∈ I}. Build the partition W as follows: take as blocks the
singletons {x∗i }, for i ∈ I , plus the blocks obtained by breaking X \ R in
such a way that any two records in the same block are ε-similar. Then
apply Theorem 3.3.1 with W and I , taking into account the bounds for |I|
given in the proof of Theorem 3.3.3. �

Example 3.3.1 Real-world datasets tend to be extremely sparse. For instance,
(0.15, 0.2)-sparsity in a dataset containing N = 5 × 105 records should not

56

be considered as exceptional (cf. (NS08a, Fig.1), referring to the Netflix Prize
dataset). Applying the bound of Theorem 3.3.3 to these figures, we see that
already after coming across n = 10 randomly chosen attribute values of a target
individual, the probability of uncorrect re-identification in the dataset is < 0.201.
This may still seem quite high in absolute terms. Consider, however, that the
success probability prior to the observations was 1

5×105 . In terms of information
leakage, this means that the attacker has obtained L×(10) ≈ 18.6 bits of min-
entropy, out of logN ≈ 18.9. The privacy breach is therefore absolutely relevant.
Note that attacks against real-world datasets can exploit specific features of the
target and get more impressive success probabilities (NS08a).

3.4 Further and related work

The last few years have seen a flourishing of research on quantitative
models of information leakage. In the context of language-based security,
Clark et al. (CHM01) first motivated the use of mutual information to
quantify information leakage in a setting of imperative programs. Boreale
(Bor09) extended this study to the setting of process calculi, and intro-
duced a notion of rate of leakage. In both cases, the considered systems
do not exhibit probabilistic behaviour. Closely related to ours is the work
by Chatzikokolakis, Palamidessi and their collaborators. We have already
mentioned (CPP08a), that examines information leakage mainly from the
point of view of Shannon entropy and capacity. (CPP08a) also contains
results on asymptotic error probability, showing that, independently from
the input distribution, the ML rule approximates the MAP rule. (CPP08b)
studies error probability mainly relative to one observation (n = 1), but
also offers a lower-bound in the case of repeated observations (CPP08b,
Proposition 7.4). This lower-bound is generalized by our results. Composi-
tional methods based on process algebras are discussed in (BCP08); there,
the average ML error probability is characterized in terms of MAP error
probability under a uniform distribution of inputs. (BCP09) introduces the
notion of additive leakage, L+, and compares it to the min-entropy based
leakage, L×, considered by Smith (Smi09), but again in the case of a single
observation.

A model of ”unknown-message” attacks is considered by Backes e

57

Köpf in (BK08). This model is basically equivalent to the information
hiding systems considered in (CPP08a; CPP08b; BCP09) and in the present
chapter. Backes e Köpf too consider a scenario of repeated independent
observations, but from the point of view of Shannon entropy, rather than
of error probability. They too rely on the information-theoretic method of
types to determine the asymptotic behaviour of the considered quantities.
An application of their setting to the modular exponentiation algorithm
is the subject of (KD09), where the effect of bucketing on security of RSA

is examined. As mentioned, this study has been extended to the case of
one-try attacks by Köpf and Smith in (KS10). Earlier, Köpf and Basin had
considered a scenario of adaptive chosen-message attacks (KB07). They
offer an algorithm to compute conditional Shannon entropy in this setting,
but not a study of its asymptotic behaviour, which seems very difficult to
characterize.

In the context of side-channel cryptanalysis, Standaert et al. propose a
framework to reason on side-channel correlation attacks (SMY09). Both a
Shannon entropy based metric and a security metric are considered. This
model does not directly compares to ours, since, as already discussed in
Section 3.2.2, correlation attacks are inherently known-message, that is,
they presuppose the explicit or implicit knowledge of the plaintext on the
part of the attacker.

Our work is also related, at least conceptually, to the notion of proba-
bilistic opacity as studied by Brard, Mullins and Sassolas (BMS10). Indeed,
although their setting is different – they work with finite-state machines –
our partitions could be viewed as a generalization of the binary predicates
they consider. Note however that (BMS10) is based on Shannon entropy,
and considers observations consisting of a single run of the system, rather
than repeated observations, hence not statistical attacks.

Hypothesis testing is at the basis of the analysis considered in the
present paper. The classical, binary case is covered in (CT06, Ch.11). Baign-
res and Vaudenay (BV08) refine these results and characterize the optimal
asymptotic rate of convergence in a number of variations of the basic
setting, including the case where one of the two hypotheses is ”composite”
– that is, consisting of several sub-hypotheses chosen according to a prior

58

probability distribution. They apply these results to study the advantage an
attacker may have in distinguishing the output of a given cipher from a
random output. The optimal asymptotic rate of convergence in the general
case of multiple bayesian hypothesis testing is characterized by Leang and
Johnson in (LJ97).

In the future, we would like to systematically characterize achievable
rates of convergence given an error probability threshold, thus generaliz-
ing the present results. It would also be natural to generalize the present
one-try attack scenario to the case of k-tries attack, for k ≥ 2. Experiments
and simulations with anonymity protocols may be useful to asses at a
practical level the theoretical results of our study. Finally, the application
to sparse datasets prompts a connection to databases privacy issues that
deserves further attention.

59

Chapter 4

Worst- and average-case
information flow

4.1 Motivations

We view a randomization mechanism as an information-theoretic chan-
nel with inputs in X and outputs in Y . The starting point of our study
is a semantical notion of breach. Assume X is a finite set of items con-
taining the secret information X , about which the adversary has some
background knowledge or belief, modeled as a prior probability distribu-
tion p(x). Consider a predicate Q ⊆ X – in a dataset about individuals,
one may think ofQ as gender, or membership in a given ethnical group etc.
The mere fact that X is in Q or not, if ascertained, may convey sensitive
information about X . Henceforth, any observation y ∈ Y that causes a
significant change in the adversary’s posterior belief about X ∈ Q must
be regarded as dangerous. In probabilistic terms, Q is a breach if, for some
prior probability on X , the posterior probability of Q after interaction with
the randomization mechanism exhibits a significant change, compared
to its prior probability. We decree a randomization mechanism as secure
at level ε, if it exhibits no breach of level > ε, independently of the prior
distribution on the set of secret data X . The smaller ε, the more secure the
mechanism. This simple idea, or variations thereof, has been proposed

60

elsewhere in the Data Mining literature – see e.g. (EGS03). Here, we
are chiefly interested in analyzing this notion of breach according to the
following dimensions.

1. Worst- vs. average-case security. In the worst-case approach, one
is interested in bounding the level of any breach, independently of
how likely the breach is. In the average-case, one takes into account
the probability of the observations leading to the breach.

2. Single vs. repeated, independent executions of the mechanism.

3. Expected utility of the mechanism and its asymptotic behavior, de-
pending on the number of observations and on a user-defined loss
function.

To offer some motivations for the above list, we observe that worst-case
is the type of breach considered in DP, while average-case is the type
considered in QIF. In the worst-case scenario, another issue we consider
is resistance to background information. In the case of DP, this is often
stated in the following terms (Dwo06): Regardless of external knowledge,
an adversary with access to the sanitized database draws the same conclusions
whether or not my data is included. A formalization along these lines is in
(GKS08). We investigate how this kind of resistance relates to the notion of
privacy breach we consider, which also intends to offer protection against
arbitrary background knowledge.

Concerning the second point, a scenario of repeated observations seems
to arise quite naturally in many applications. In addition to the examples
discussed in Section 1.1, consider an online, randomized data-releasing
mechanism might offer users the possibility of asking the same query a
number of times, thus potentially allowing an adversary to remove enough
noise to learn valuable information about the secret. This is an instance
of the composition attacks well known in the context of DP, where they are
thwarted by allotting each user or group of users a privacy budget that limits
the overall number of queries to the mechanism; see e.g. (McS09; FS10).
In general, one would like to assess the security of a mechanism in these
situations. In particular, one would like to determine exactly how fast

61

the level of any potential breach grows, as the number n of independent
observations grows.

The third point, concerning utility, has been the subject of intensive
investigation lately – see the related work paragraph. Here, we are inter-
ested in studying the growth of expected utility in the model of Ghosh
et al. (GRS09) as the number of independent observations grows, and to
understand how this is related to security. In summary, the main results
we obtain are the following.

• In the scenario of a single observation, both in the average and in
the worst case, we characterize the security level (absence of breach
above a certain threshold) of the randomization mechanism in a
simple way that only depends on certain row-distance measures of
the underlying matrix.

• We prove that our notion of worst-case security is stronger than DP.
However, we show the two notions coincide when one confines to
background information that factorises as the product of indepen-
dent measures over all individuals. This, we think, sheds further
light on resistance of DP against background knowledge.

• In the scenario of repeated, independent observations, we determine
the exact asymptotic growth rate of the (in)security level, both in the
worst and in the average case.

• In the scenario of repeated, independent observations, we determine
the exact asymptotic growth rate of any reasonable expected utility.
We also give bounds relating this rate to ε-DP, and exact expressions
in the case of the geometric mechanisms. In this respect, we argue
that the geometric mechanism is superior to its truncated version
(GRS09).

Some of the above results are summarized in Table 2, which has the
following notation: πM,y (resp. πm,y) is the maximum (resp. minimum)
in column y of the matrix; px is row x of the matrix; || · ||1 is norm-1;
C(·, ·) is Chernoff Information. In the third column, ε is the DP parameter.

62

Table 2: Summary of results for the different privacy notions.

Security Level Security Level Rate Utility Rate
Worst Case ε = log maxy

πM,y

πm,y
ρ = ε ρ = minx 6=x′ C(px, px′) ≤ ε

Average Case ε = log(
maxx,x′ ||px−px′ ||1

2 + 1) ρ = maxx,x′ C(px, px′) ρ = ε
2 + log 1+2−ε

2 (geometric mechanism)

The interpretation of the results is the following. In the Security Level
column, ε is the maximum level of a breach, hence the lower ε, the more
secure the system. Note that ε is a logarithmic measure. In the Security
Level Rate column, ρ is the positive exponent governing the growth of the
insecurity level after n observations, εn: approximately, this means that
2εn ≈ τ − 2−nρ, for a certain limit value τ . The third column is about the
growth rate of expected utility and its relation with ε-DP. The third column
is about the growth rate of expected utility and its relation with ε-DP.

4.2 Semantic security of randomization mecha-
nisms

We shall consider two scenarios. In the worst-case scenario, one is in-
terested in the seriousness of a breach, independently of how much the
breach is likely; this is also the scenario underlying differential privacy,
which we will examine in Section 4.6. In the average-case scenario, one
considers, so to speak, the seriousness of the breach averaged on the prob-
ability of the observed Y . The definitions of semantics security involve a
universal quantification over all possible priors. In each scenario, our aim
is to characterize when a randomization mechanism is secure in a concrete
way, which only depends on the channel matrix at hand. We fix a generic
randomization mechanismR = (X ,Y, p(·|·)) for the rest of the section, as
defined in Def. 2.

63

4.2.1 The worst-case scenario

In the worst-case scenario, we compare the probability of a predicate Q ⊆
X of the inputs, before and after one observation y ∈ Y : a large variation
in the posterior probability relative to some y implies a breach. Note that
even the situation when the posterior probability is small compared to the
prior is considered as dangerous, as it tells the adversary that X ∈ Qc is
likely.

Definition 29 (worst-case breach) Let ε ≥ 0. A ε-breach (privacy breach
of level ε) for R is a subset Q ⊆ X such that for some a priori probability
distribution p(x) on X , we have p(Q) > 0 and

max
p(y)>0

| log
p(Q|y)
p(Q)

| > ε .

R is ε-secure if it has no breach of level ε. The security level ofR is defined as

εR
4
= inf{ε ≥ 0 : R is ε-secure}.

If | log p(Q|y)
p(Q) | > ε, we say y causes a Q-breach of level ε.

Remark 4.2.1 The use of | log(·)| in the definition of worst-case breach has the de-
sired effect that a large variation between the prior probability p(Q) and the poste-
rior p(Q|y) results in a breach. Equivalently, the condition maxy | log p(Q|y)

p(Q) | > ε

could be reformulated as maxy max{p(Q|y)
p(Q) ,

p(Q)
p(Q|y)} > 2ε.

We give the following concrete characterization of worst-case security:
it requires that any two elements of the matrix in the same column be
of similar magnitude. The intuition behind this condition is as follows.
Assume that, for some column y, an element in row x is much larger than
an element in row x′. Suppose there is a prior that assigns almost all the
probability mass to x′, and the rest to x: the predicate Q = {x} has then a
very low (prior) probability. Now, assume y is observed: the probability
of Q becomes quite high. Intuitively, this is the case because y is much
more likely to have been generated by x than by x′. This large variation
in probability makes for a breach. A similar property (amplification) was
considered as a sufficient condition for the absence of breaches in (EGS03).

64

Let us introduce some notation to state the formal result. For each y ∈ Y ,
let πM,y and πm,y be the maximum and the minimum in the column y

of the matrix p(·|·), respectively. In the theorem below, we stipulate that
πM,y
πm,y

= +∞ if πM,y > 0 and πm,y = 0.

Theorem 4.2.1 R is ε-secure iff log maxy
πM,y
πm,y

≤ ε.

Proof Let y ∈ Y be the column which achieves the maximum of πM,yπm,y
,

and let πM = πM,y and πm = πm,y . First, suppose that log πM
πm

> ε: we shall
exhibit a breach Q of level > ε. To this purpose, let x1 = argmaxx p(y|x)
and x2 = argminx p(y|x) be two rows achieving the maximum and min-
imum values in column y. Consider the subset Q = {x1} and a generic
prior distribution p(x) such that p(x1), p(x2) > 0. Then we have

p(Q|y)
p(Q)

=
p(x1|y)
p(x1)

=
p(y|x1)p(x1)
p(x1)p(y)

=
πM
p(y)

. (4.1)

Now observe that: p(y) = p(y|x1)p(x1) + p(y|x2)p(x2) = p(x1)πM +
p(x2)πm. Note that this term can be made arbitrarily close to πm, as
p(x1) → 0, hence p(Q|y)

p(Q) →
πM
πm

> 2ε. Thus there exists a certain value

of p(x1) for which p(Q|y)
p(Q) > 2ε, showing that the subset Q actually is an

ε-breach.
Consider now the opposite implication. Suppose there are Q and an a

priori distribution p(x) s.t. p(Q) > 0. Then we have (the sums below run
over those x’s s.t. p(x) > 0):

p(Q|y)
p(Q)

=

∑
x∈Q p(y|x)p(x)
p(y)p(Q)

≤ πM,yp(Q)
p(y)p(Q)

≤ πM
πm
≤ 2ε

where in the last step we have exploited p(y) =
∑
x p(x)p(y|x) ≥ πm,y.

Similarly, we have:

p(Q)
p(Q|y)

=
p(y)p(Q)∑

x∈Q p(y|x)p(x)
=
p(Q)

∑
x p(y|x)p(x)∑

x∈Q p(y|x)p(x)
≤ πM
πm
≤ 2ε

as
∑
x∈Q p(y|x)p(x) ≥ πmp(Q) and

∑
x p(y|x)p(x) ≤ πM . �

65

Example 4.2.1 Consider Example 2.1.2. The worst-case security level of the
mechanism is ε = log 0.25

0.083 ≈ 3.0012. It is interesting to note that the utility
of this mechanism is very low. In fact, assume a user does not know anything
initially about the secret - his prior is the uniform distribution - and observes for
example y = 0: he may conclude with equal confidence that x is either 0, 1 or 5.

4.2.2 The average-case scenario

We want to asses the security ofR by comparing the prior and posterior
success probability for an adversary wanting to infer whether the secret is
in Q or not after observing Y . This will give us an average measure of the
seriousness of the breach induced by Q.

Fix a prior probability distribution p(x) on X . For every nonempty
Q ⊆ X , we shall denote by Q̂ the binary random variable IQ(X), where
IQ : X → {0, 1} is the indicator function of Q – in this notation, the
dependence from p(x) is left implicit, as p(x) will always be clear from
the context. An adversary, after observing Y , wants to determine whether
it holds Q̂ or Q̂c. This scenario can be formalized in terms of Bayesian
hypothesis testing, as explained in Section 2.2.3. We recall that information
leakage is defined in terms of min-entropy as follows

L(R; p)
4
= H∞(X)−H∞(X|Y) = log

Psucc
maxx p(x)

. (4.2)

We can express (4.2) focusing on Q̂ in the following way:

L(R; Q̂; p) = H∞(Q̂)−H∞(Q̂|Y).

Definition 30 (Average-case breach) Let ε ≥ 0. A ε-A-breach (average
case breach of level ε) ofR is a Q ⊆ X s.t. for some a priori distribution p(x)
on X , we have that p(Q) > 0 and L(R; Q̂; p) = H∞(Q̂) −H∞(Q̂|Y) > ε. R
is ε-A-secure if it has no average case breach of level ε. The A-security level of

R is defined as εAR
4
= inf{ε ≥ 0 : R is ε-A-secure}.

Of course, since there are only 2 possible secrets (and the vulnerability
can at most increase from 1

2 to 1), Y leaks at most one bit about the truth
of Q: 0 ≤ L(R; Q̂; p) ≤ 1.

66

Remark 4.2.2 Note that, by expanding the min-entropy terms in the definition,
we can equivalently express the information leakage relative to a subset Q and
to a distribution p in the following form, which makes it apparent that we are
dealing with an average-case measure:

L(R;Q; p) = log

∑
y p(y) max{p(Q|y), p(Qc|y)}

max{p(Q), p(Qc)}
.

In the binary Bayesian hypothesis testing, it is well-known that the suc-
cess probability depends on the norm-1 distance between the probability
distributions underlying the two hypotheses – or, more precisely, their total
variation distance, which is one half the norm-1 distance. The next theorem
exploits this fact to show that the security level in the average case is pre-
cisely determined by the (maximal) norm-1 distance between the rows of
the matrix. Recall that, for each x ∈ X , we let px(·) denote the distribution

p(·|x). We denote the norm-1 of a vector q ∈ RY as ||q||1
4
=
∑
y |q(y)|.

Theorem 4.2.2 Let l 4= maxx,x′ ||px − px′ ||1 and ε ≥ 0. ThenR is ε-A-secure
iff log(l2 + 1) ≤ ε.

Note that log(l2 + 1) is actually the maximum min-entropy leakage
on priors whose support has size 2. In order to prove Theorem 4.2.2, we
introduce the following lemma whose proof can be found in Appendix
A.2.

Lemma 4.2.1 In the binary Bayesian hypothesis testing problem with two distri-
butions p1 and p2, having prior probabilities α and β respectively (α+ β = 1),
the success probability Psucc defined in (2.1) satisfies

Psucc =
||αp1 − βp2||1 + 1

2
.

Proof [Theorem 4.2.2] First, assume log(l2 + 1) ≤ ε. Consider any Q ⊆ X
and any prior p(x) onX s.t. p(Q) > 0. The adversary has to decide whether
p(·|Q) or p(·|Qc) is the true distribution, so this is a binary Bayesian hypoth-
esis testing problem. Assume without loss of generality that p(Q) ≥ p(Qc),
and let λ = p(Qc)

p(Q) ∈ [0, 1]. Taking (4.2) into account and using the expres-
sion for Psucc provided by Lemma A.2.1 with α = p(Q) and β = p(Qc),

67

after some algebra we get:

L(R; Q̂; p) = log
||p(·|Q)p(Q)− p(·|Qc)p(Qc)||1 + 1

2 max{p(Q), p(Qc)}

= log
1
2
(
||p(·|Q)− p(·|Qc)λ||1 + 1 + λ

)
. (4.3)

Using the triangle inequality, one has

||p(·|Q)− p(·|Qc)λ||1 = ||p(·|Q)− p(·|Q)λ+ p(·|Q)λ− p(·|Qc)λ||1
≤ ||p(·|Q)− p(·|Q)λ||1 + ||p(·|Q)λ− p(·|Qc)λ||1
= 1− λ+ λ||p(·|Q)− p(·|Qc)||1

which, when plugged into (4.3), yelds

L(R; Q̂; p) ≤ log
1
2
(
λ||p(·|Q)− p(·|Qc)||1 + 2

)
. (4.4)

Now, we note that p(·|Q) is a convex combination of probability distri-
butions on Y : indeed, p(·|Q) =

∑
x∈Q

p(x)
p(Q)p(·|x). Similarly, p(·|Qc) is a

convex combination of probability distributions on Y : indeed, p(·|Qc) =∑
x′∈Qc

p(x′)
p(Qc)p(·|x

′). From the convexity of norm-1 distance in both ar-
guments, or equivalently from the triangle inequality for || · ||1, we get

||p(·|Q)− p(·|Qc)||1 ≤
∑
x∈Q

p(x)
p(Q)

∑
x′∈Qc

p(x′)
p(Qc)

||p(·|x)− p(·|x′)||1

≤
∑
x∈Q

p(x)
p(Q)

∑
x′∈Qc

p(x′)
p(Qc)

l = l

which when plugged into (4.4) yields

L(R; Q̂; p) ≤ log
(λl

2
+ 1
)
≤ log(

l

2
+ 1) ≤ ε .

Conversely, assumeR is ε-A-secure. Let x1 and x2 be the (distinct) rows
of the matrix that achieve l = maxx1,x2 ||p(·|x1)− p(·|x2)||1. Consider the
prior probability distribution on X defined as p(x1) = p(x2) = 1

2 and let

68

Q = {x1}. With this particular Q, Lemma A.2.1 gives us Psucc = l/2+1
2 ,

hence

ε ≥ L(R; Q̂; p)

= log
Psucc

max{p(Q), p(Qc)}

= log(
l

2
+ 1) .

�

Example 4.2.2 Consider again the mechanism of Example 2.1.2. The maximal
norm-1 distance between any two rows is l = 1; hence the average-case security
level of this mechanism is εA = log(1

2 + 1) ≈ 0.584.

4.3 Worst-case security vs. differential privacy

We first introduce DP, then formally relate it to worst-case security. The
exposition in this section is mostly technical; a more general discussion on
the significance of the results we will obtain is deferred to the next section.

The definition of differential privacy (DMNS06; Dwo06) relies on a
notion of “neighborhood” between inputs of an underlying randomization
mechanism. In the original formulation, two neighbors x and x′ are two
database instances that only differ by one entry. More generally, one can
rely upon a notion of adjacency. An undirected graph is a pair (V,E) where
V is a set of nodes and E is a set of unordered pairs {u, v} with u, v ∈ V
and u 6= v. We also say that E is an adjacency relation on V and if v ∼ v′

say v and v′ are adjacent.

Definition 31 (differential privacy) A differentially private mechanism
D is a pair (R,∼) whereR = (X ,Y, p(·|·)) is a randomization mechanism and
∼ is an adjacency relation on X , that is, (X ,∼) forms an undirected graph.

Let ε ≥ 0. We say D provides ε-differential privacy if for each x, x′ ∈ X s.t.
x ∼ x′, it holds that for each y ∈ Y :

max
y
| log

p(y|x)
p(y|x′)

| ≤ ε . (4.6)

69

If x and x′ are two connected nodes in the graph (X ,∼) at distance d
(that is x ∼ x1 ∼ · · · ∼ xd = x′ is the shortest path from x to x′), we note
that (4.6) implies the following condition, for each y ∈ Y :

2−εd ≤ p(y|x)
p(y|x′)

≤ 2εd . (4.7)

Note that condition (4.6) is exactly that given in Theorem 4.2.1 to charac-
terize worst-case security, but limited here to pairs of adjacent rows x and
x′. This prompts the question of the exact relationship between the two
notions of worst-case security and DP. To answer this question, in the rest
of the section we will consider the standard input domain X = {0, 1}n of
databases (for some fixed n ≥ 1), corresponding to the subsets of a given set
of individuals {1, ..., n}. We deem two databases x, x′ adjacent if they dif-
fer for the value of exactly one individual, that is if their Hamming distance
is 1 (DMNS06). Throughout the section, we let D = (R,∼) be a generic
mechanism equipped with this X and this adjacency relation. Moreover,
we will denote by Qi (i ∈ {1, ..., n}) the set of databases {x ∈ X |xi = 1},
that is databases containing individual i.

The following theorem provides a precise characterization of worst-
case ε-security in terms of privacy of individuals: interaction with the
mechanism does not significantly change the belief about the participation
of any individual to the database.

Theorem 4.3.1 R satisfies ε-security iff for each i ∈ {1, ..., n} and prior p(·),
Qi is not an ε-breach.

Proof One direction trivially follows from the definition. Assume now
thatR does not satisfy ε-security: this means there are x and x′ and y such
that p(y|x)/p(y|x′) > 2ε. We shall exhibit a Qi and a prior p(x) such that
Qi is an ε-breach. Assume that x contains the individual i, while x′ does
not. Consider a generic prior concentrating all probability mass on x, x′.
Then

p(Qi|y)
p(Qi)

=
p(y|Qi)
p(y)

=
p(y|x)
p(y)

.

Now, since p(y) = p(y|x)p(x)+p(y|x′)p(x′), we see that the above quantity
can be made arbitrarily close to p(y|x)/p(y|x′): as p(x) → 0, one has
p(Qi|y)
p(Qi)

→ p(y|x)/p(y|x′) > 2ε. �

70

Remark 4.3.1 The above theorem is of course still valid if one strengthens the
“only if” part by requiring that both Qi and Qci are not ε-breach.

We proceed now by linking (worst-case) ε-security to ε-DP. The next
result sets limits to the “arbitrariness” of background information against
which DP offers guarantees: for example, it fails in some cases where an
adversary has sufficient background information to rule out all possible
databases but two, which are substantially different from each other.

Theorem 4.3.2 IfR satisfies ε-security then D = (R,∼) provides ε-DP. On the
contrary, for each n there exist mechanisms providing ε-DP but not ε-security;
in particular, these mechanisms exhibit Qi-breaches (i ∈ {1, ..., n}) of level
arbitrarily close to nε > ε.

Proof The first assertion is obvious in the light of Theorem 4.2.1 and of
the definition of DP. We show the second assertion. Assume D provides
ε-DP. Consider a generic prior that concentrate the probability mass on two
databases x and x′ at Hamming distance n from one another. Equation (4.7)
implies that, for every y, p(y|x)

p(y|x′) ≤ 2nε: but in fact, it is easy to construct
ε-DP mechanisms where this holds with equality (see e.g. (AACP11a)). This
already shows thatR is not ε-secure. In particular, assuming x ∈ Qi:

p(Qi|y)
p(Qi)

=
p(y|x)
p(y)

=
p(y|x)

p(y|x)p(x) + p(y|x′)p(x′)
.

As p(x)→ 0, the above term approaches to p(y|x)
p(y|x′) = 2nε > 2ε. �

Example 4.3.1 Let us consider the mechanism with input domain X = {0, 1}2
corresponding to the following matrix:

00

01

11

10

4
9

2
9

1
9

2
9

2
9

4
9

2
9

1
9

1
9

2
9

4
9

2
9

2
9

1
9

2
9

4
9

 .

This mechanism provides ε-DP with ε = 1. However, it is not ε-secure, as e.g.
4/9
1/9 = 4 > 2ε.

71

We recover coincidence between ε-security and ε-DP if we confine our-
selves to background knowledge that can be factorised as the product of
independent measures over individuals. This provides another charac-
terization of ε-DP. In what follows, for any x ∈ X , we denote by x\i the
element of {0, 1}n−1 obtained by removing the i-th component from x.

Theorem 4.3.3 The following statements are equivalent:

1. D satisfies ε-DP;

2. for each i ∈ {1, ..., n} and p(x) of the form pi(xi)q(x\i), Qi is not an
ε-breach;

3. for each p(x) of the form
∏n
j=1 pj(xj) and for each i ∈ {1, ..., n}, Qi is not

an ε-breach.

Proof We will show that (1)⇒ (2)⇒ (3)⇒ (1).
(1)⇒ (2). Note that the absence of Qi-breaches can be written as

| log
p(Qi|y)
p(Qi)

| ≤ ε . (4.8)

Let X = (X1, ..., Xn), with X distributed according to p(x), be the r.v.
corresponding to the input of the mechanism, and Y be the corresponding
output. Then we can write

p(Qi|y)
p(Qi)

=
p(Xi = 1|Y = y)

p(Xi = 1)
=
p(y|Xi = 1)

p(y)
.

Abbreviating p(y|Xi = j), for j = 0, 1, by p(y|j), we get that, since p(y) =
p(y|0)p(0) + p(y|1)p(1), the above term can be bounded thus:

p(y|Xi = 1)
p(y)

=

{
1 ≤ 2ε if min{p(y|0), p(y|1)} = p(y|1)
p(y|1)
p(y|0) otherwise.

We now prove that p(y|1)
p(y|0) ≤ 2ε (the proof that p(y|1)

p(y|0) ≥ 2−ε is similar).
We can expand both numerator and denominator in the following way,

72

recalling that p(x) = pi(xi)q(x\i) (the index xn−1 runs over {0, 1}n−1):

p(y|1) =
∑
xn−1

p(Y = y,X\i = xn−1, Xi = 1)
p(Xi = 1)

=
∑
xn−1

p(y|X\i = xn−1, Xi = 1)p(X\i = xn−1, Xi = 1)
p(Xi = 1)

=
∑
xn−1

p(y|X\i = xn−1, Xi = 1)q(xn−1)p(Xi = 1)
p(Xi = 1)

=
∑
xn−1

p(y|X\i = xn−1, Xi = 1)q(xn−1) .

Similarly, p(y|0) =
∑
xn−1 p(y|X\i = xn−1, Xi = 0)q(xn−1). Therefore,

abbreviating p(y|X\i = xn−1, Xi = j) as p(y|xn−1, j), we obtain

p(y|1)
p(y|0)

=
∑
xn−1 p(y|xn−1, 1)q(xn−1)∑
xn−1 p(y|xn−1, 0)q(xn−1)

≤ max
xn−1

p(y|xn−1, 1)
p(y|xn−1, 0)

≤ 2ε

where: in the last but one step we use the general inequality
∑
j mj∑
jMj

≤
maxj

mj
Mj

, which holds for nonnegative reals mj ,Mj ; and in the last step
we use the ε-DP provided by the mechanism and the fact that we are
dealing with adjacent databases.

(2)⇒ (3). Any prior of the form in (3) is clearly a prior that factorizes
as required by (2), for any i, hence the thesis.

(3)⇒ (1). Assume D does not provide ε-DP, that is there exist y, x ∼ x′

such that p(y|x)
p(y|x′) > 2ε. Then, for a prior as required by (3), we can build

an ε-breach Qi. Assume w.l.o.g. that x contains i and x′ does not. We can
build a prior of the wanted form that concentrates all probability mass on

x and x′, as follows: p(x)
4
=
∏
j pj(xj) where the pj(·)’s are such that, for

j 6= i, pj(xj)
4
= 1 and pj(xj)

4
= 0. We can then repeat the reasoning in the

proof of Theorem 4.3.1 to show that, as p(x) = pi(xi) → 0, one has that
p(Qi|y)
p(Qi)

→ p(y|x)
p(y|x′) > 2ε; hence Qi is an ε-breach for p(x) as required. �

73

4.4 Discussion

We round off the technical analysis of the previous section with an in-
formal discussion about the significance of the obtained results, and the
relationship between DP and worst-case security. The notion of DP is often
associated with popular claims of robustness in the face of arbitrary back-
ground/external knowledge. The actual meaning of this resistance is best
understood by contrasting the following two properties, which are related
to DP and worst-case security respectively, with one another.

• Property 1: semantical privacy, SP (Dwo06). Regardless of external
knowledge, an adversary with access to the sanitized database draws
the same conclusions about the database whether or not my data is
included in the original data.

• Property 2: no evidence of participation, NEP. Regardless of external
knowledge, adversary’s access to the sanitized database does not
modify his belief about inclusion of my data.

Property 1, SP, is stated in (DMNS06; Dwo06) and formalized in (GKS08),
to which we refer for a formal definition and a proof that it is satisfied
by DP. Basically, SP requires that for any individual i and observation y,
the posterior distributions over X given by p(·|y) and p−i(·|y) be indis-
tinguishable, where p−i(·|y) denotes the posterior induced by a version
of the mechanism that suppresses individual i from the database before
computing the answer. Although SP is an intuitively desirable property, it
is not the same as Property 2, NEP, which is what one would ideally expect
from a privacy-enforcing mechanism.

As seen in Theorem 4.3.1, NEP precisely characterizes worst-case secu-
rity. On the other hand, Theorem 4.3.2 makes it clear that NEP is stronger
than DP, hence SP: a differentially private mechanism may exhibit pri-
vacy breaches of arbitrarily large seriousness, depending on the size of
the database n. An inspection of the proof reveals the reason: NEP con-
veys protection against correlation, whereas DP/SP in general does not.
To see why, assume there is a group G ⊆ {1, ..., n} of highly correlated
individuals, whose size is non negligible with respect to n. Inclusion or

74

exclusion of the whole G from the (sanitized) database can noticeably
affect the statistics, hence the reported answer. Since the adversary knows
about G’s correlation, as encoded by his prior, he can detect inclusion or
exclusion of G given the reported answer. This is equivalent to detect-
ing participation/non-participation of any individual in G, hence to a
violation of NEP. Yet, DP may not be violated in these cases, because insert-
ing/removing a single individual - as opposed to a whole group - does
not significantly change the computed and reported answers. The pur-
pose of the following example is to provide a concrete, if slightly artificial,
illustration of such a situation.

Example 4.4.1 The following background information is available to an adver-
sary. G is a basketball team, say the LA Lakers, that got involved in some accident:
nothing serious, maybe they went to a local hospital for a check up, maybe not.
The adversary now wants to know whether the player Kobe Bryant has been
hospitalized or not at the local hospital, being initially neutral with respect to the
two possibilities. The adversary queries the hospital’s database for the average
height of people hospitalized this week. The answer mechanism enforces ε-DP, for
a small ε: indeed, removing or inserting any specific individual, however tall, does
not change noticeably the statistics and the reported answers. However, including
or removing the whole G does noticeably affect the statistics and the answer. In
particular, if the reported answer is noticeably greater than, say, the U.S. average
height, then with high probability the team has been hospitalized, otherwise it has
not. Hence the adversary learns with high probability if Kobe Bryant is in the
database or not, so NEP is breached.

Examples similar in spirit to the one above are provided also in (KM12;
KM11). For instance, a key role is played by correlation between records, or
correlation induced by previously released exact answers. In all these cases,
DP is not strong enough to guarantee that the changes in the adversary’s
beliefs after interaction with the mechanism are small. It is therefore
natural to seek for natural conditions under which DP provides a form
of NEP. This we have done in Theorem 4.3.3: DP and worst-case security
coincide when removing correlation; that is, when confining to priors that
encode independent participation of individuals to the database. We note
that a partial coincidence is recovered also in other situations: for instance,
assuming ‘informed’ adversaries who know all of the database but the

75

entry of a target individual i, cf. (DMNS06). Intuitively, if the adversary
knows almost everything about the database, under DP the observation of
y cannot significantly change his belief about i’s participation. However,
such informed adversaries seem quite unrealistic in practice. And, as
a matter of fact, an ignorant adversary can potentially gain much more
information about i than an informed one – in particular, an adversary
knowing everything has nothing to learn.

The other side of the coin concerns the tradeoff between privacy and
utility. In fact, results in among others (KM12) - somewhat simplifying
those by Dwork and Naor in (Dwo06; DN10) - imply that it is basically
impossible to guarantee both NEP-like privacy and utility without making
assumptions about the data generation mechanism. This implies that, in
general, worst-case security per se conveys nearly zero utility: it serves
just as a benchmark against which to compare more useful notions of
privacy. From our point of view, zero or low correlation among individuals
seems a good rule of thumb for obtaining strong privacy guarantees from
employing DP.

4.5 Privacy under repeated observations

We assume that the attacker collects a tuple yn = (y1, y2, . . . , yn) ∈ Yn

of observations generated i.i.d from the mechanism R. We expect that,
given Q, as n grows, the breach level approaches a threshold value. In
order to the characterize synthetically the security of the randomization
mechanism, though, it is important to characterize how fast this threshold is
approached. We recall the definition of rate given in Def. 17. Let {an}n≥0

be a sequence of nonnegative reals. Assume that τ = limn→+∞ an exists

and that an ≤ τ for each n. Then the rate of {an}n≥0 is rate({an})
4
=

limn→+∞− 1
n log(τ − an) provided this limit exists. More generally, we

define the upper-rate (resp. lower-rate) rate({an}) (resp. rate({an})) by
replacing the lim by lim sup (resp. lim inf). Again, we distinguish a worst-
from an average-case scenario and, for the rest of the section, fix a generic
randomization mechanismR = (X ,Y, p(·|·)) as defined in Def. 2.

76

4.5.1 Worst-case scenario

We begin with an obvious generalization of the notion of breach.

Definition 32 (n-breach of level ε) A (n, ε)-privacy breach is a subset Q ⊆
X s.t. for some prior distribution p(x) on X , we have that p(Q) > 0 and

max
p(yn)>0

| log
p(Q|yn)
p(Q)

| > ε .

The next proposition says that a notion of security based on bounding
the level of n-breaches is not viable. For the sake of simplicity, we shall
discuss some of the following results in the case R is non-singular (all
rows of the matrix are distinct).

Proposition 9 AssumeR is non-singular. For n large enough,R has n-breaches
of arbitrary level. More explicitly, for any nonempty Q ⊆ X and any ε ≥ 0 there
is a prior distribution p(x) s.t. for any n large enough there is yn (p(yn) > 0)
such that log p(Q|yn)

p(Q) > ε.

The above proposition suggests that, in the case of a large number of
observations, worst-case analysis should focus on how fast p(Q|yn) can
grow, rather than looking at the maximum level of a breach.

Definition 33 (rate of a breach) Let ρ ≥ 0. A breach of rate ρ is a subset
Q ⊆ X such that there exist a prior distribution p(x) on X with p(Q) > 0 and
a sequence of tuples, {yn}n≥0, with p(yn) > 0, such that p(Q|yn) .= 1− 2−nρ

′

with ρ′ > ρ. A randomization mechanism is ρ-rate secure if it has no privacy

breach of rate ρ. The rate security level is defined as ρR
4
= inf{ρ ≥ 0 :

R is ρ-rate secure}.

Theorem 4.5.1 R is ρ-rate secure iff ρ ≥ log maxy
πM,y
πm,y

.

Proof Assume first ρ ≥ log πM
πm

, we show that the mechanism is ρ-rate
secure. Consider any Q and p(x) s.t. p(Q) > 0 and p(Q|yn)→ 1. Assume
w.l.o.g. that p(Qc) > 0. We show that rate(p(Q|yn)) ≤ ρ. We let πM =
p(y∗|x1) and πm = p(y∗|x2), where (y∗, x1, x2) = argmaxy,x,x′

p(y|x)
p(y|x′) . We

77

lower-bound 1− p(Q|yn) = p(Qc|yn) as follows

p(Qc|yn) =

∑
x∈Qc p(y

n|x)p(x)∑
x p(yn|x)p(x)

≥
∑
x∈Qc

p(yn|x)p(x)
p(yn|x∗)

=
∑
x∈Qc

Πn
i=1

p(yi|x)
p(yi|x∗)

p(x) ≥
∑
x∈Qc

p(x)(
πm
πM

)n = p(Qc)(
πm
πM

)n,

where x∗ = argmaxp(x)>0 p(yn|x). Taking the − 1
n log of both sides of the

inequality thus obtained, we get

− 1
n

log(1− p(Q|yn)) ≤ − log p(Qc)
n

+ log
πM
πm

.

As n→ +∞, we get rate(p(Q|yn)) ≤ log πM
πm
≤ ρ.

On the contrary, assume ρ < log πM
πm

: then take Q = {x1}, p(x1) =
p(x2) = 1

2 and, for each n ≥ 0, yn = (y∗, · · · , y∗) (n times). Clearly, p(Q|yn)
reaches 1 at rate log πM

πm
> ρ, so the mechanism is not ρ-rate secure. �

The above theorem says that, for large n, the seriousness of the breach,

for certain yn, can be as bad as ≈ log
1− (πm/πM)n

p(Q)
. This result, however,

does not tell us how likely a serious breach is depending on n. The next
result shows that the probability that some observable yn causes aQ-breach
grows exponentially fast. We premise some notation.

Fix a prior p(x) over X . Recall that we let X ∼ p(x) denote a random
variable representing the secret information, and Y n = (Y1, ..., Yn) be the
corresponding random vector of n observations, which are i.i.d. given X .
Let us fix Q ⊆ X s.t. p(Q) > 0. Then p(Q|Y n) is a random variable. For
any fixed ε > 0, let us consider the two events

Breachεn
4
=
{p(Q|Y n)

p(Q)
> 2ε

}
and Breach

ε

n
4
=
{ p(Q)
p(Q|Y n)

> 2ε
}
.

Clearly, the event Breachεn ∪ Breach
ε

n is the event that Y n causes a Q-
breach of level ε. As n grows, we expect that the probability of this event
approaches 1 quite fast. The next theorem tells us exactly how fast.

78

Theorem 4.5.2 AssumeR is non-singular and strictly positive. Then, with the
notation introduced above

Pr(Breachεn|X ∈ Q) .= 1−2−nC and Pr(Breach
ε

n|X ∈ Qc)
.= 1−2−nC

where C = minx∈Q,x′∈Qc C(px, px′), with the understanding that x and x′ in
the min are taken of positive probability. As a consequence, the probability that
Y n causes a Q-breach reaches 1 at rate at least C.

The proof can be found in Appendix A.2.

Remark 4.5.1 Note that the rate at which the probability of a breach approaches
1 does not depend on the level ε; moreover, it only depends on the support of the
prior distribution. See Appendix A.2 for further details.

4.5.2 Average-case scenario

It is straightforward to extend the definition of average-case breach to the
case with multiple observations. For any nonempty subset Q ⊆ X , and
random variable X ∼ p(x), s.t. p(Q) > 0, we consider Q̂ = IQ(X) and
define the leakage imputable to Q after n observations as

Ln(R; Q̂; p) , H∞(Q̂)−H∞(Q̂|Y n).

An n-breach of level ε ≥ 0 is a Q such that Ln(R; Q̂; p) > ε. Recall from
(2.7) that Pnsucc = 2−H∞(Q̂|Y n) is the success probability of guessing be-
tween p(·|Q) and p(·|Qc) after observing Y n. Provided p(·|Q) 6= p(·|Qc),
(2.17) implies that, as n → +∞ we have Pnsucc → 1, hence Ln(R; Q̂; p) →
− log max{p(Q), 1 − p(Q)} . If p(·|Q) = p(·|Qc) then Pnsucc is constantly
max{p(Q), 1 − p(Q)}, so that the observations give no advantage to the
attacker. These remarks suggest that, in the case of repeated observations,
it is again important to characterize how fast Pnsucc → 1.

Definition 34 (rate of a breach - average case) Let ρ ≥ 0. An A-breach of
rate ρ is a subset Q ⊆ X such that for some prior distribution p(x) on X with
p(Q) > 0 one has that Pnsucc

.= 1 − 2−nρ
′
, for some ρ′ > ρ. A randomization

mechanism is ρ-rate A-secure if it has no privacy breach of rate ρ. The rate

A-security level is defined as ρAR
4
= inf{ρ ≥ 0 : R is ρ-rate A-secure}.

79

Now we can proceed with the following theorem.

Theorem 4.5.3 R is ρ-rate A-secure iff maxx,x′ C(px, px′) ≤ ρ.

In the following proof we use the fact that the Chernoff Information
C(p, q) is a convex function of both p and q. See Appendix A.2 for a
complete proof of this claim.

Proof First assume that maxx,x′ C(px, px′) ≤ ρ, we will show that the
mechanism is ρ-rate A-secure. Assume Q is an A-breach of rate ρ′. This
implies that p(·|Q) 6= p(·|Qc), otherwise Pnsucc 6→ 1. Also assume w.l.o.g.
that p(Qc) > 0. From (2.17) we have:

ρ′ = rate(Pnsucc) = C(p(·|Q), p(·|Qc)) .

Both p(·|Q) and p(·|Qc) can be written as convex combinations of the dis-
tributions px’s: p(·|Q) =

∑
x∈Q λxpx and p(·|Qc) =

∑
x′∈Qc λx′px′ , where

λx = p(x)
p(Q) and λx′ = p(x′)

p(Qc) . Using Lemma A.2.2 and Jensen’s inequality

ρ′ = C(p(y|Q), p(y|Qc)) ≤
∑

x∈Q,x′∈Qc
λxλx′C(px, px′)

≤ max
x∈Q,x′∈Qc

C(px, px′)

≤ max
x,x′

C(px, px′) ≤ ρ .

On the other hand, assume there are x, x′ ∈ X such that C(px, px′) > ρ, let
p(x) = p(x′) = 1

2 and let Q = {x}: clearly p(·|Q) = px and p(·|Qc) = px′ ,
so that rate(Pnsucc) = C(px, px′) > ρ in this case. That is, Q is a breach of
rate ρ. �

We end the section with an example where three different mechanisms
are compared with respect to the various scenarios we have analyzed. This
example also demonstrates another important point: there is no general
implication between the two considered security notions. That is, it may
happen that mechanismA is better thanB according to worst-case security,
but worse than B according to average-case security.

Example 4.5.1 The mechanisms considered in this example are inspired by ex-
amples in (EGS03). The private information is represented by a set of integers

80

X = {0, ..., 1000}, and Y = X . We consider three mechanisms that replace any
x ∈ X by a random number y = Ri(x) (i = 1, 2, 3), respectively, that retains
some information about the original x. More specifically, given x ∈ X , we let:

1. R1(x) be x with probability 0.2 and some other number (chosen uniformly
at random) with probability 0.8;

2. R2(x) be x + ξ mod 1001, where ξ is chosen uniformly at random in
{−100, . . . , 100};

3. R3(x) be R2(x) with probability 0.5 and a uniformly random number
otherwise.

We can easily compute the conditional probability matrices. In the case of R1, we
have: p1(y|x) = 0.2 if y = x, p1(y|x) = 0.8

1000 if x 6= y. Therefore the diagonal
elements are all equals to 0.2, while the extra-diagonal ones are 0.8

1000 . In the
case of R2, if we let dyx , (y − x mod 1001) and dxy , (x − y mod 1001),
then we have p2(y|x) = 1

201 if {dyx, dxy} ∩ {0, . . . , 100} 6= ∅, p2(y|x) = 0
otherwise. Finally, the matrix form for R3 is easily computed from the previous
one: p3(y|x) = 0.5

1001 + 0.5p2(y|x). The following table summarizes the results
obtained for the mechanisms R1, R2, R3.

R1 R2 R3

ε ρ ε ρ ε ρ

Worst 7.965 7.965 ∞ ∞ 2.58 2.58
Average 0.262 0.278 1 ∞ 0.584 0.339

Recalling that from a pure privacy-preserving point of view the smaller the
better, it is clear that R2 is the worst of the three mechanisms. Whether R1 or R3

should be preferred depends on the chosen notion of security: indeed, R1 is less
reliable than R3 in the worst case, but more reliable in the average case.

4.6 Utility under repeated observations

We next turn to the study of utility. In the rest of the section, we fix
a mechanism R and a prior distribution p(·). Without any significant
loss of generality, we shall assume that R is strictly positive and that
supp(p) = X . Moreover, in this section, we shall work under the more
general assumption that Y is finite or denumerable.

For any n ≥ 1, we are now going to define the expected utility of R,
depending on user-specific belief, modeled as a prior p(·) on X , and on

81

function loss : X × X → R+. Here, loss(x, x′) represents the loss of a user
who interprets the result of an observation ofR as x′, given that the real
answer is x. For the sake of simplicity, we shall assume that loss achieves
a proper minimum when x = x′: for each x 6= x′, loss(x, x) < loss(x, x′).
We also presuppose a guessing function g : Yn → X . The expected utility of
D – relative to g – after n observations is in fact defined as an expected loss
(the lower, the better), thus

Un
4
=
∑
x

p(x)
∑
yn

p(yn|x)loss(x, g(yn)) . (4.11)

Note that this definition coincides with that of Ghosh et al. (GRS09) when
one interprets our guessing function g as the remap considered in (GRS09).
This is also the utility model of Alvim et al. (AACP11a), modulo the fact
they only consider the 0/1-loss, or better, the complementary gain.

Example 4.6.1 When Y is a subset of the reals, legal loss functions include the
absolute value error loss(x, x′) = |x′ − x| and the squared error loss(x, x′) =
(x′ − x)2. The binary loss function defined as 0 if x = x′ and 1 otherwise is
another example: the resulting expected loss is just error probability, Un = Pne .

It is not difficult to argue that g is asymptotically optimal if it respects
the MAP criterion: p(g(yn)|yn) ≥ p(x|yn) for each x ∈ X ; by asymptotically
optimal, we mean that g maximizes the growth rate of success probability,
see (BC13) for details. Henceforth, we just assume that g is a fixed MAP

function. Below, we study the behavior of utility in relation to differential
privacy. The crucial quantity is

ρR
4
= min
x,x′∈X ,px 6=px′

C(px, px′) . (4.12)

We will show that the the asymptotic rate of utility is determined solely
by ρR. Note that this quantity does not depend on the user-defined loss
function, nor on the prior p(·). For the sake of simplicity, below we discuss
the result only in the case whenR is non-singular1.

Remark 4.6.1 We note that the formula (2.14) for Chernoff Information extends
to the case when p(·) and q(·) have the same denumerable support.

1The result carries over to the general case, at the cost of some notational burden: one has
to replace UR with a more complicated expression.

82

Theorem 4.6.1 Assume R is non-singular. Then Un
.= UR + 2−nρR , where

UR
4
=
∑
x p(x)loss(x, x).

Proof Fix n ≥ 1 and let g : Yn → X be the underlying MAP guessing
function. For each x, let An(x) = g−1(x) the subset of Yn corresponding
to choosing x (the acceptance region for x); clearly Acn(x) = ∪x′ 6=xAn(x′),
and the An(x′)’s are pairwise disjoint; note that the probability of error
can be written as Pne =

∑
x p(x)px(Acn). Let G = maxx 6=x′ loss(x, x′). For

each x we have

αn(x)
4
=
∑
yn

p(yn|x)loss(x, g(yn))

=
∑
x′ 6=x

px(An(x′))loss(x, x′) + px(An(x))loss(x, x)

≤
∑
x′ 6=x

px(An(x′))G+ loss(x, x) = px(Acn(x))G+ loss(x, x) .

This, when averaged over all x’s, yields

Un =
∑
x

p(x)αn(x) ≤
∑
x

p(x)px(Acn(x))G+ UR = Pne G+ UR . (4.14)

On the other hand, proceeding similarly to the previous case and letting
H , maxx loss(x, x):

αn(x) ≥ px(An(x))loss(x, x)

= (1− px(Acn(x))loss(x, x) ≥ loss(x, x)− px(Acn(x))H

which, when averaged over all x’s, yields

Un =
∑
x

p(x)αn(x) ≥ UR − Pne H . (4.15)

By (2.18) we know that Pne → 0; therefore (4.14) and (4.15) together im-
ply that Un → UR. Concerning the rate, inequality (4.14) implies that
rate({Un}) ≥ rate({Pne }) = ρR, from (2.18). On the other hand, inequality
(4.15) implies that rate({Un}) ≤ rate({Pne }) = ρR, again from (2.18) (note
that the nonnegativity of UR − Pne H is guaranteed for n large enough).
Therefore rate({Un}) = ρR. In conclusion, Un

.= UR + 2−nρR . �

83

Having established the centrality of ρR in the asymptotic behavior of
utility, we now discuss the relationship of this quantity with the worst-case
security level ε provided by the mechanism. The first result provides us
with a simple, general bound relating ρR and ε.

Theorem 4.6.2 Assume R is worst-case ε-secure. Then ρR ≤ ε. The same
conclusion holds if D = (R,∼) provides ε-DP.

Proof Worst-case security is a special case of DP if one takes as ∼ the
clique topology over X . So we only consider DP below. Let x 6= x′ and let
d denote the length of the shortest path from x to x′ in X . Using (4.7), we
have that for any λ ∈ [0, 1] (below, we stipulate that 0 · px(y)

0 = 0)

∑
y

pλx(y)p1−λ
x′ (y) =

∑
y

px′(y)(
px(y)
px′(y)

)λ ≥
∑
y

px′(y)2−ελd = 2−ελd .

From this it follows − log(
∑
y p

λ
x(y)p1−λ

x′ (y)) ≤ ελd ≤ εd, that achieves the
minimum taking d = 1 (that is x ∼ x′), hence the thesis by definition of
Chernoff Information (2.14). �

In what follows, we will obtain more precise results relating ε to the uti-
lity rate ρR in the case of a class of mechanisms providing ε-DP. Specifically,
we will consider mechanisms with a finite input domainX = {0, 1, . . . , N},
a denumerable Y = Z and a conditional probability matrix of the form
pi(j) = Mc|i−j|, for some positive c < 1. This class of mechanisms includes
the geometric mechanism (a discrete variant of the Laplacian mechanism,
see (GRS09)) and also a version extended to Z of the optimal mechanism
considered by Alvim et al. (AACP11a).

Theorem 4.6.3 LetR be a mechanism as described above. Then

ρR = log(1 + c)− 1
2

log c− 1 .

Proof The statement is proven by the following main steps. In what
follows, we let h, i ∈ X .

84

1. Let j run over Y in the sum below, then∑
j

pλh(j)p1−λ
i (j) = M

∑
j

cλdhj+(1−λ)dij

= M · f(λ) (4.16)

where f(λ)
4
=
∑
j c
λdhj+(1−λ)dij .

2. It is easy to see that f(λ) is a convex and differentiable function of λ
in [0, 1]. Hence, any point λ ∈ (0, 1) in which its derivative vanishes
corresponds to a global minimum of f in [0, 1]. We compute the
derivative df/dλ:

df

dλ
(λ) = ln c

∑
j

cλdhj+(1−λ)dij (dhj − dij). (4.17)

We show that (4.17) vanishes at λ = 1
2 . Indeed, for each j ∈ Y

that is at distance d from h and d′ from i, there is a distinct j′ ∈ Y
that is at distance d′ from h and d from i: in this way the terms
c

1
2 (dhj+dij)(dhj − dij) and c

1
2 (dhj′+dij)(dhj′ − dij′) in the above sum

cancel out with one another. Hence 1
2 is a global minimum for f(λ)

in [0, 1].

3. We compute f(1
2) as follows. We can partition the integers Y into

those in between h and i, and those outside this interval. This gives
rise to the following summations:∑

j∈Y
c

1
2 (dhj+dij) = (|h− i|+ 1)c

1
2dhi + 2

∑
d≥1

c
1
2 (dhi+2d)

= (|h− i|+ 1)c
1
2dhi + 2c

1
2dhi

∑
d≥1

cd

= c
1
2dhi [|h− i|+ 1 + 2(

1
1− c

− 1)] . (4.18)

Using this observation and the fact (4.18) is minimized when |h−i| =
1 we can compute as follows:

f(
1
2

) = c
1
2 (

2
1− c

) . (4.19)

85

4. Note that M = 1−c
1+c . From the definition of Chernoff Information,

(4.18) and (4.19)

C(ph, pi) = max
λ
− log(

∑
j

pλh(j)p1−λ
i (j))

= − log(M · f(
1
2

))

= log(1 + c)− 1
2

log c− 1 . (4.20)

Recalling that ρR = C(ph, pi) we get the wanted equality from (4.20).

�

Example 4.6.2 The geometric mechanism is obtained by equipping the above
described mechanism with the the line topology over X = {0, ..., N}: i ∼ j

iff dij
4
= |i − j| = 1. This is the topology for counting queries in “oblivious”

mechanisms, for example. If we set c = 2−ε, then this mechanism provides ε-DP.
The above theorem tells us that in this case ρR = ε

2 + log 1+2−ε

2 . By setting e.g.
ε = 1, one gets ρR ≈ 0.085.

For any mechanism R with input X = {0, ..., N} and output Y = Z,
we can consider the corresponding truncated mechanism R′: it has X =
Y = {0, 1, . . . , N} and its matrix is obtained fromR’s by summing all the
columns y < 0 to column y = 0, and all the columns y > N to column
y = N .

Corollary 4.6.1 Assume R′ is the truncated version of a mechanism R. Then
ρR′ < ρR.

Proof We prove that the least Chernoff Information between any two
different rows of R′ is strictly less than the least Chernoff Information
between any two different rows of R. We first note that the function
x 7→ xλ is strictly concave in [0, 1] for λ ∈ (0, 1). Then using Jensen’s
inequality, we easily obtain:∑

y

pλx(y)p1−λ
x′ (y) < AλB1−λ +

∑
1<y<N

pλx(y)p1−λ
x′ (y) +A′λB′1−λ

86

where A
4
=
∑
y≤0 px(y), B

4
=
∑
y≤0 px′(y), A′

4
=
∑
y≥N px(y) and B′

4
=∑

y≥N px′(y). We get the wanted result applying − log on both sides of the
above inequality. �

In the case of a single observation case, treated by Ghosh et al. (GRS09),
there is no substantial difference between the geometric mechanism and
the truncated geometric one. Corollary 4.6.1 shows that the situation is
different in the case with repeated observations.

4.7 Further and related work

There is a large body of literature on QIF (BCP09; KS10; BPP11a; BPP11b)
and DP (Dwo06; DMNS06). The earliest proposal of a worst-case security
notion is, to the best of our knowledge, found in (EGS03). As mentioned,
the investigation of the relations between quantitative notions of leakage
and DP has begun recently. Both (BK11) and (AACP11b; AACP11a) dis-
cuss the implication of ε-DP on information leakage guarantees, and vice-
versa, in the case of a single observation. In the present work, we propose
and characterize both worst- and average-case semantic notions of privacy
breach, encoding resistance to arbitrary side-information, and clarify their
relationships with QIF and DP. We also study the asymptotic behavior of
privacy breaches depending on the number of observations.

Concerning the theme of resistance to background information, we
note that results very similar to ours have recently been pointed out by
Kifer et al. (KM12; KM11); this has been discussed in Section 4.4.

The notion of utility has been the subject of intensive investigation in
the field of DP, see e.g. (MT07; GRS09; AAC+11; AACP11b; AACP11a)
and references therein. A general goal is that of designing mechanisms
achieving optimal expected utility given a certain security level ε. Ghosh et
al. (GRS09) propose a model of expected utility based on user preferences,
and show that both the geometric mechanism and its truncated version
achieve universal optimality. Here we provide the growth rate of utility,
and we highlight a difference between a mechanism and its truncated
version, in the presence of repeated observations. Alvim et al. (AAC+11)

87

have shown the tight connection between utility and Bayes risk, hence
information leakage, in the case of a single observation. A different, some-
what stronger notion of utility, called accuracy, is considered by McSherry
and Talwar (MT07). They do not presuppose any user-specific prior over
the set of possible answers; rather, they show that, in the exponential mech-
anism they propose, for any database, the expected score of the answer
comes close to the maximum.

A problem left open by our study is the exact relationship between
our average-case security notion and the maximum leakage considered in
QIF – see e.g. (KS10). We would also like to apply and possibly extend the
results of the present chapter to the setting of de-anonymization attacks on
dataset containing micro-data. (NS08b) has shown that the effectiveness
of these attacks depends on certain features of sparsity and similarity of
the dataset, which roughly quantify how difficult it is to find two rows
of the dataset that are similar. The problem can be formalized in terms of
randomization mechanisms with repeated observations – see (BPP11b) for
some preliminary results on this aspect. Then the row-distance measures
considered in the present chapter appear to be strongly related to the
notion of similarity, and might play a crucial in the formulation of a robust
definition of dataset security.

The definitions of semantic security investigated in this chapter involve
a quantification over all possible priors. In certain contexts, however, it
may be sensible to put constraints on the form of the prior: one case we
have considered is independent participation of individuals to a database,
see Sections 4.3 and 4.4. Another possibility is to assume lower bounds
on the entropy of the prior. Indeed, certain proofs obtained here - and
elsewhere in the literature - exploit in a crucial way the existence of low
entropy priors, where most of the probability mass is concentrated on very
few elements. In several application scenarios (e.g. secret-key cryptogra-
phy), such priors are unrealistic and could be ruled out. This would be in
the line of work in entropic security, see e.g. (DS05).

88

Chapter 5

Estimating information flow

In this chapter, basing on (BPa), we address the problem of estimating
information flow of a deterministic program. We start explaining the
motivations that stimulated our investigation.

5.1 Motivations

The problem of exactly computing the information leakage of programs,
or even that of giving nontrivial bounds that hold with certainty, turns out
to be computationally intractable, even in the deterministic case (YT11).
For this reason, there has been recently much interest towards methods for
approximate calculation of information leakage (CCG10; CG11; CKN13;
CK13; KR13).

Köpf and Rybalchenko method (KR13; KR10) relies on structural prop-
erties of programs: it leverages static analysis techniques to obtain bounds
on information leakage. This method has proven quite successful in spe-
cific domains, like analysis of cache based side-channels (DFK+13). In
general terms, however, its applicability depends on the availability and
precision of static analysis techniques for a specific domain of applica-
tion. In many fields of Computer Science, sometimes a viable alternative
to static analysis is represented by simulation. In the case of QIF, this
prompts interesting research issues. We recall some of the questions that

89

we posed in Section 1.1: can one dispense with structural properties and
adopt a black box approach, in conjunction with statistical techniques?
What kind of formal guarantees can such an approach provide? And
under what circumstances, if any, is it effective? This Chapter, based on
(BPa), is meant as a systematic examination of such questions. We are not
aware of previous work for QIF that systematically deals with such issues.
Most related to ours are a few papers by Tom Chothia and collaborators
(CCG10; CG11; CKN13; CK13; CKNP), which we will discuss in Section
5.7.

Our main object of study is maximum information leakage, known as
capacity, for deterministic programs. For both Shannon- and min-entropy
based QIF, capacity is easily proven to equal log k, where k is the maximum
number of distinct outputs the program can produce, taken over all possible
input probability distributions. Capacity can also be explained in intuitive
terms. An input distribution may be taken to represent the behaviour of
a class of users feeding (secret) inputs to the the program. A program
could come equipped with a synthetic safety guarantee in the form of a
bound about its capacity. Violation of this guarantee implies that, due
to unforeseen input distributions (behaviours of users), surprising or
unexpected outputs can be triggered. In more detail, we give the following
contributions.

1. After introducing a black-box, statistical set-up, we give a formal def-
inition of program capacity estimator (Section 5.2). We then prove
a few negative results (Section 5.3). Depending on the available
knowledge about input generation, either no estimator exists (case
of unknown input distribution); or no estimator exists that is signif-
icantly more efficient than exhaustive search on the input domain
(case of input known to be uniform). Another result indicates that
the source of this difficulty lies essentially in obtaining accurate upper
bounds on capacity.

2. Motivated by the negative results, we introduce a weak estimator,
Jt (Section 5.4): this provides lower bounds with high confidence
under all distributions, and accurate upper bounds under output

90

distributions that are known to be, in a precise sense, close to uniform.
The size of the required samples does not depend on that of the input
domain.

3. We define sampling methods which, ideally, converges to an optimal
input distribution, that is an input distribution under which the cor-
responding output is uniform (Section 5.5). Under such distribution,
Jt can in principle provide both accurate lower and upper bounds
on capacity. We then discuss how to turn this ideal algorithm into a
practical methodology that at least provides good input distributions.
This method is demonstrated with a few simulations (Section 5.6)
that give encouraging results.

All in all, these results demonstrate some limits of the black-box ap-
proach (1), as well as the existence of positive aspects (2,3) that could be
used, we believe, in conjunction with static analysis techniques. For ease
of reading, the proofs of some technical results have been confined in
Appendix A.3.

5.2 Statistical set up

We assume an input set X = {x1, x2, ...} and an output set Y = {y1, y2, ...},
which are both finite and nonempty. As introduced in Section 2.1, we view
a deterministic program P simply as a function P : X → Y . We restrict our
attention to terminating programs, or, equivalently, assume termination
is an observable value in Y . We model the program’s input as a random
variable X taking values in X according to some probability distribution.
Since in the following we mostly focus on the probability distribution of Y ,
for sake of simplicity we denote by g the probability distribution of X and
by p that of Y . For simplicity, we restrict ourselves to input distributions

that have full support, that is supp(g)
4
= {x : g(x) > 0} = X , and denote

by I the set of such input distributions. Once fed to a program P , X
induces an output Y = P (X). We denote the set of outputs of nonzero

probability as supp(Y) or supp(p). We let |Y | 4= |supp(p)| denote the size

of this set. We let g(x|y)
4
= Pr(X = x|Y = y) denote the a posteriori

91

input distribution after observation of an output y. Recall the definition
of leakage in Def. 3, that, in the case of a deterministic program P , can be
written as

Li(P ; p) , Hi(X)−Hi(X|Y)

where i ∈ {Sh,∞}. Consequently the capacity, defined in Def. 3, can

be expressed as Ci(P)
4
= supg Li(P ; g). Finally, recall that the image of a

program (function) P is the set Im(P)
4
= {y ∈ Y : P−1(y) 6= ∅}. Let us

denote by [x] the inverse image of P (x), that is [x]
4
= {x′ ∈ X : P (x′) =

P (x)}. In this setting Theorem 2.3.1 is a crucial result that highlight the
importance of the image size of P , k = |Im(P)| as security parameter.

Example 5.2.1 (cache side-channels) Programs can leak sensitive informa-
tion through timing or power absorption behaviour. Side-channels induced by
cache behaviour are considered a particularly serious threat. The basic observation
is that the lookup of a variable will take significantly more CPU cycles if the
variable is not cached (miss), than if it is (hit). Consider the following program
fragment, taken from (AS01).

if (h>0)
z = x;

else
z = y;

z = x;

Assume an adversary can perform accurate time measurements, so that Y =
{t1, ..., tn}, a discrete set of execution times (or buckets thereof). Following the
terminology of (DFK+13), we refer to this type of adversary as time-based. If
neither x nor y are cached before execution, there are only two possible execution
times for the above program, say tshort and tlong. Observing tshort implies
that the if condition is true, while tlong implies that the if condition is false.
Assuming the value of the variable h is uniformly distributed over signed integers,
this behaviour will actually reveal one bit about h.

In a different scenario, related to e.g. power absorption measurements, the
adversary might be able to detect if each individual memory lookup instruction
causes a miss or a hit. In this case, the set of observables is Y = {H,M}∗,
where actually only a finite subset of these traces will have positive probability.
For the program above, the only two possible traces are trshort = MH and
trlong = MM and, again, they can reveal up to one bit about h. We refer to this
type of adversary as trace-based.

92

In yet another scenario, the adversary might only be able to observe the final
cache state, that is, the addresses of the memory blocks that are cached at the
end of the execution - not their content. We refer to this type of adversary as
access-based. See (DFK+13) for additional details on the formalization of cache
side-channels.

We seek for a method to statistically estimate program capacity k,
based on a sample of the outputs. This method should come equipped
with formal guarantees about the accuracy and confidence in the obtained
results, depending on the size of the sample. We will not assume that the
code of the program is available for inspection. Of course, for any such
method to be really useful, the size of the sample should be significantly
smaller than the size of the input domain. That is, the statistical method
should be substantially more efficient than exhaustive input enumeration.

We define the following statistical set up. We postulate that the input
and output domains, X and Y , are known to the analyst, and that P can
be independently run a certain number of times with inputs generated
according to some probability distribution g. However, we do not assume
that the code of P is accessible for analysis. Moreover, we will typically
assume the analyst has only some very limited or no information about
the input distribution g. These assumptions model a situation where P ’s
code cannot be analyzed, perhaps because it is a “live” application that
cannot be inspected1; or P and its input generation mechanism are just
too complex to fruitfully apply analysis tools. In Section 5.5, we will relax
the assumption on the input distribution, and grant the analyst with some
control over g.

Let D denote the set of all probability distributions on Y . For any

ε ≥ 0, define Dε
4
= {p ∈ D : for each y ∈ supp(p), p(y) ≥ ε}; clearly

Dε ⊆ D = D0. Another useful subset is Du
4
= {p ∈ D : P (Xu) ∼

p for some program P}, where Xu is the uniform distribution over X : this
is the set of output distributions generated by considering all programs
under the uniform input distributions. It is easy to see that Du ⊆ D 1

|X|
.

1Note that we must distinguish the position of the analyst from that of the attacker. The
analyst wishes to estimate capacity of a system he has only a limited, black-box access to.
The attacker wants to recover (part of) the secret, and the black-box restriction may possibly
not apply to him (e.g., he may have access to the source code of P).

93

Program outputs are generated a certain fixed number m ≥ 1 of times,
independently (this number may also depend on predefined accuracy and
confidence parameter values; see below). In other words, we obtain a
random sample of m outputs

S
4
= Y1, ..., Ym with Yi i.i.d. ∼ p(y) (5.1)

for some in general unknown distribution p ∈ D.
Our ideal goal is to define a random variable I that estimates the

capacity k = |Y | = |supp(p)|. This estimator should be a function solely
of the sequence of observed outputs, S: indeed, while the size of the
input and output domains, X and Y , are assumed to be known, both the
program and its input distribution are in general unknown. Formally, we
have the following definition, where the parameters γ and δ are used to
control, respectively, the accuracy of the estimation and the confidence
in it: a good estimator would have γ close to 1 and δ close to 0. The
parameter D′ ⊆ D implicitly encodes any a priori partial information that
may be available about the output distribution p (with D′ = D meaning
no information).

Definition 35 (estimators) Let 0 < δ < 1/2, γ > 1 and D′ ⊆ D be given. We
say a function I : Ym → R (m ≥ 1) γ-approximates program capacity under

D′ with confidence 1 − δ if, for each p ∈ D′, the random variable I 4= I(S),
with S like in (5.1), satisfies the following where k = |supp(p)|:

Pr
(
k/γ ≤ I ≤ γk

)
≥ 1− δ. (5.2)

Note that in the above definition the size of the sample, m, may depend
on the given δ, γ and set D′.

5.3 Limits of program capacity estimation

We will show that, under very mild conditions on γ, the problem of γ-
approximation of program capacity cannot be solved, unless nontrivial a
priori information about the distribution p is available to the analyst. We
first deal with the case where an ε > 0 is known such that p ∈ Dε.

94

Theorem 5.3.1 Assume ε > 0 and γ < min{
√
|Y|,

√
(1− ε)/ε}. Then any I

that γ-approximates capacity under Dε requires a sample size of at least m ≥
ln 2
γ2ε − 1, independently of any fixed confidence level.

Proof Consider two distributions p, q ∈ D defined as follows. The dis-
tribution p concentrates all the probability mass in some y0 ∈ Y . The
distribution q assigns y0 probability 1 − hε, and ε to each of h distinct

elements y1, ..., yh ∈ Y , where h
4
= bγ2c. Note that 1 ≤ h ≤ γ2 < h + 1,

hence hε ≤ γ2ε < 1−ε
ε · ε = 1− ε, and h ≤ γ2 < |Y|, so that the distribution

q is well-defined and in Dε. Of course, p is in Dε as well.
Fix an arbitrary 0 < δ < 1/2, and assume by contradiction there is an

estimator I under Dε with confidence 1− δ that uses m i.i.d. extractions,
and that m < ln(1−δ)

ln(1−γ2ε) . Now consider the sequence ym0 , in which only
y0 occurs m times. Given the above strict upper bound on m, some easy
calculations show that under either p or q, ym0 has probability > 1− δ >
1/2. Let a = I(ym0). By definition of estimator under Dε, we must have
both 1/γ ≤ a ≤ γ (since I is supposed to estimate |supp(p)| = 1) and
(h+1)/γ ≤ a ≤ (h+1)γ (since I is supposed to estimate |supp(q)| = h+1).
From these inequalities, and using the fact that by construction γ2 < h+ 1,
we have: a ≤ γ < (h + 1)/γ ≤ a, which implies a < a, a contradiction.
Hence it must be m ≥ ln(1−δ)

ln(1−γ2ε) . Given that δ is arbitrary, by letting δ → 1
2

we obtain that m ≥ ln(1/2)
ln(1−γ2ε) = − ln 2

ln(1−γ2ε) .
Now by Taylor expansion, one sees that −1/ ln(1 − x) ≥ x−1 − 1 for

x ∈ (0, 1), which implies the wanted result. �

A variation of the above result concerns the case where we know that
the output distribution is induced by a a uniform input distribution.

Theorem 5.3.2 Assume γ < min{
√
|Y|,

√
|X | − 1}. Then any I that γ-

approximates capacity underDu requires a sample size of at leastm ≥ ln 2
γ2 |X |−1,

independently of any fixed confidence level.

Proof Let ε = 1/|X |, h = bγ2c and consider distinct elements x0, x1, ..., xh

in X and y0, y1, ..., yh in Y . The output distributions p and q over Y defined
in the proof of Theorem 5.3.1 are generated, under the uniform distribution

95

over X , by the following two programs (functions) Pi : X → Y , for i = 1, 2,
respectively:

• P1(x) = y0 for each x ∈ X ;

• P2(x) = yi if x = xi (i = 1, ..., h), = y0 otherwise.

Note that by virtue of the condition γ < min{
√
|Y|,

√
|X | − 1}, P2 is well

defined and q ∈ Du. The rest of the proof is identical to that of Theorem
5.3.1. �

Hence, for γ close to 1, approximately |X |/γ2 ≈ |X | i.i.d. extractions
of Y are necessary for estimating capacity when it is known that p ∈ Du:
this shows that no such estimator exists that is substantially more efficient
than exhaustive search. We next give the main result of the section: if
no partial information is available about p, then it is just impossible to
estimate capacity.

Theorem 5.3.3 (non existence of estimators) Assume that γ <
√
|Y|. Then

there is no I that γ-approximates capacity under D, independently of the fixed
confidence level.

Proof Assume by contradiction the existence of one such estimator I , and
let m be the size of the sample it uses. Take now ε > 0 small enough such

that 1−ε
ε > |Y|, so that γ <

√
1−ε
ε , and such that m < ln 2

γ2ε − 1. Since I
is an estimator under D, it is also an estimator under Dε. Now applying
Theorem 5.3.1, we would get m ≥ ln 2

γ2ε − 1, which is a contradiction. �

We end the section with a result indicating that that the difficulty of
estimating k is mostly due to obtaining accurate upper bounds on it. Let us
say that a function I : Ym → R is reasonable if its achieves its minimum for
a string where a single output occurs m times. That is, for some y0 ∈ Y ,
ym0 ∈ argminy∈YmI(y). The meaning of the following theorem is that any
reasonable estimator I can nowhere be significantly smaller than the trivial
upper bound |Y|.

Theorem 5.3.4 Assume there is a reasonable I such that, for some γ > 1 and
0 < δ < 1/2 and for any p ∈ D and k = |supp(p)|, it holds that Pr(I ≥ k/γ) ≥
1− δ. Then it must be I ≥ |Y|/γ.

96

Proof Assume w.l.o.g. that |Y| > 1. Consider any I satisfying the hypothe-

ses, and let k−
4
= min{I(y) : y ∈ Ym}, with I(ym0) = k−. Choose any

0 < ε < 1 such that ln(1 − δ)/ ln(1 − ε) > m. Consider the distribution
p over Y which assigns y0 probability 1 − ε and divides evenly the rest
among the remaining elements: p(y) = ε/(|Y| − 1) for each y 6= y0; clearly,
|supp(p)| = k = |Y|. Now, since m < ln(1 − δ)/ ln(1 − ε), it is easy to see
that, under p, Pr(S = ym0) > 1−δ > 1

2 . Hence, according to the hypotheses
on I , it must be I(ym0) = k− ≥ |Y|/γ. �

Note that no similar result can hold for lower bounds of program

capacity: the trivial estimator I
4
= n. of distinct elements occurring in S -

which holds even with δ = 0 and γ = 1 - shows that lower bounds exist
that can be arbitrarily larger than the trivial 1. In the next section, we will
concentrate our effort on analysing one such lower bound.

5.4 A weak estimator

The negative results on the existence of general estimators in the preceding
section suggest we should relax our goals, and concentrate our efforts on
lower bounds, and/or assume that some partial information about the
program’s output distribution is available. For example, if the code of P is
accessible for inspection, this information could be derived by employing
abstract interpretation techniques as suggested in (KR13). We seek for an
estimator J that, with high confidence: (a) gives a lower-bound of k under
all output distributions; (b) be close to k under the additional assumption
that the underlying output distribution is “close to uniform”. The last
requirement means that, at least in the ideal situation where all output
values are equally likely to be generated, the estimator should approximate
k accurately. Finally, we would like the estimator be substantially more
efficient than exhaustive search.

In what follows, we define a weak estimator based on the number of
distinct element occurring in our sample. This is of course not the only
statistics one could consider, but it turns out to be easy to analyse and

97

quite effective in practice2. Assume the distribution of Y is uniform, or
close to uniform, on k elements. It is well known that, in this case, the
expected number of distinct elements occurring at least once in a i.i.d.
sample of Y is k

(
1− (1− 1

k)m
)
≈ k(1− exp(−m/k)), where m is the size

of the sample (see below). Viewing this expression as a function of k, say
f(k), this suggests the estimation k ≈ f−1(D), where D is the number
of distinct elements that have actually been observed in S, rather than its
expected value. There are a few points that need to be addressed in order
to prove this a weak estimator in the above sense: mainly, the fact that the
distribution we are faced with is possibly not uniform, and to what extent
one can approximate E[D] via D. We tackle these issues below.

Formally, let S be the sample defined in (5.1), obtained under a generic

output distribution Y ∼ p(y).Consider the function defined as f(x)
4
=

x(1 − (1 − 1
x)m), for x ∈ [1,+∞). It is easy to see that f is an increasing

function of x; hence, its inverse f−1 exists and is in turn increasing on the
same interval. We consider the following random variables, where the
second one depends on a parameter t ∈ R:

D
4
= |{y ∈ Y : y occurs at least once in S}|

Jt
4
= f−1(D − t)

with the proviso that f−1(x)
4
= 1 for x < 1. Let us indicate by Eu[D] the

expected value of D under the distribution that is uniform on supp(p).
Moreover, for each η ≥ 1, let us say that p is η-close to uniform if for each
y ∈ supp(p), p(y) ≥ 1

η|supp(p)| . Note that p is uniform on its own support
iff η = 1. The proof of the next lemma is reported in Appendix A.3.

Lemma 5.4.1 Let k = |supp(p)|. Then: (a) f(k) = Eu[D] ≥ E[D]; (b) if
additionally p is η-close to uniform, then E[D] ≥ f(k)/η.

The next lemma ensures that the measure of D is quite concentrated
around its expected value: roughly, D is unlikely to deviate from E[D] by
more than O(

√
m). The proof is a standard application of McDiarmid’s

theorem, see for example (DP09, Chapter 5).
2In particular, we have found that statistics based on the number of collisions, such the

index of coincidence, although easy to analyse, perform poorly in terms of accuracy

98

Lemma 5.4.2 Let t > 0. Then Pr(D > E[D] + t) ≤ exp(−2t2/m) and
Pr(D < E[D]− t) ≤ exp(−2t2/m).

The next theorem formalizes the fact that Jt is a family of weak estima-
tors.

Theorem 5.4.1 Let k = |supp(p)|. Let m ≥ 1, 0 < δ < 1/2 and t such that
t ≥

√
m ln(1/δ)/2. Then

1. Pr(Jt ≤ k) ≥ 1− δ;

2. assume additionally that p is η-close to uniform. Let t′ 4= ηt+ (η − 1)D.
Then Pr(J−t′ ≥ k) ≥ 1− δ.

Proof Concerning part 1, from Lemma 5.4.1(a), we have that f(k) ≥ E[D].
From Lemma 5.4.2, E[D] ≥ D − t with probability at least 1 − δ; hence,
with probability at least 1− δ, f(k) ≥ D− t. Applying f−1(·) on both sides
of this inequality, the wanted statement follows.

Concerning part 2, from Lemma 5.4.2 we have that, with probability
at least 1− δ, D + t ≥ E[D]. From Lemma 5.4.1(b), E[D] ≥ f(k)/η; hence
D + t′ = η(D + t) ≥ f(k) with probability at least 1− δ. Applying f−1(·)
on both sides of this inequality, the wanted statement follows. �

Part 1 of the above theorem says that Jt is in fact an underestimation of
k. Moreover, under a p η-close to uniform, part 2 allows us to overapproxi-
mate k by J−t′ . Let us stress that the values of t, t′ and m do not depend on
the size of the input domain, X . However, the above result does not give di-
rect indications as to how m and t are related to the error in the estimation.
This is is resolved in the following result, which establishes an explicit
connection between m, t and the absolute error incurred when estimating
k by Jt. This also gives indications as to the number of extractions m that
is necessary to take in order to keep this error under control.

Corollary 5.4.1 Let k = |supp(p)|. Let m ≥ 1, 0 < δ < 1/2 and t such that
t ≥

√
m ln(2/δ)/2. Assume p is η-close to uniform and let t′ as defined above.

Then with probability at least 1− δ,

|k − Jt| ≤
(η − 1)D + (η + 1)t

f ′(J−t′)
≈ (η − 1)D + (η + 1)t

1− e−m/J−t′ (1 +m/J−t′)
.

99

Proof From the previous theorem, we know that with probability at least
1 − δ, it holds that Jt ≤ k ≤ J−t′ . Hence it suffices to bound J−t′ − Jt.
Now, J−t′ − Jt = f−1(η(D + t)) − f−1(D − t); moreover, it is easy to
check that that f−1 is Lipschitzian in the interval [D − t, η(D + t)], with
constant maxz∈[D−t,η(D+t)](f−1)′(z) ≤ 1/f ′(f−1(η(D + t))) = 1/f ′(J−t′).
It follows that J−t′ − Jt = f−1(η(D + t)) − f−1(D − t) ≤ (η−1)D+(η+1)t

f ′(J−t′)
,

hence the thesis. The approximation follows from f(x) ≈ x(1 − e−m/x)
and f ′(x) ≈ 1− e−m/x(1 +m/x). �

The right-hand side expression in the above corollary indicates that
the absolute error will be small provided that the ratio m/J−t′ is not too
small. In practice, one should keep on sampling untilm/J−t′ is sufficiently
high to guarantee the desired accuracy. The relative error |k− Jt|/k can be
bounded with high probability by |k − Jt|/Jt, hence the above corollary
can still be used to this purpose.

Example 5.4.1 Assume we are faced with a distribution p that is uniform on its
own support, that is η = 1 and t′ = t. We set our confidence level to δ = 0.001
and decide to sample until we find m/J−t ≥ 0.2. Suppose we get this ratio
when m = 105 and D = 9× 104. Setting t to the expression in Theorem 5.4.1,
this gives J−t ≈ 4.97 × 105, Jt ≈ 4.38 × 105 and a relative error bound by
(J−t − Jt)/Jt ≤ 0.135. The theoretical bound we would get from Corollary 5.4.1
is slightly higher, about 0.15.

Unfortunately, part 2 of Theorem 5.4.1 and Corollary 5.4.1 cannot be
directly applied when we do not know η. Nevertheless, they do tell us
something useful even in this case. First, Corollary 5.4.1 tells us that
we can decrease the absolute error by decreasing m/J−t′ . Second, both
Theorem 5.4.1(2) and Corollary 5.4.1 imply we can improve the quality
of the estimation by tweaking the input distribution so as to make the
resulting output distribution as close as possible to uniform - that is, η as
close as possible to 1. In the next section, we define a methodology to this
purpose.

100

(a) Balanced (b) Unbalanced

Figure 5: Balanced and unbalanced equivalence relations.

5.5 Searching for good input distributions

For a fixed program P , computing k is the same as counting the number of
classes of the equivalence relation over X given by x ∼ x′ iff P (x) = P (x′)
– that is, counting the number of nonempty inverse images P−1(y), for
y ∈ Y . The weak estimator Jt implements a Monte-Carlo method to
count such classes, based on counting the number of distinct outputs
when inputs x are drawn according to a distribution g(x). It should be
intuitively clear that the accuracy of Jt depends critically on this g. In
particular, if g is the uniform distribution on X , as often found in practice,
the resulting estimator Jt implements what we may call a crude Monte
Carlo (CMC) method. CMC can perform well when the equivalence classes
are more or less all of the same size, like in Fig. 5(a). On the other hand,
consider a situation like in Fig. 5(b): under g, most of the sampled x’s will
fall in the big class, thus giving rise to a low value of D, hence of Jt, that
will lead to severely underestimate the true value of k. In terms of Theorem
5.4.1(2), the resulting output distribution will have an η much higher than
1. In order to rectify this, one should modify g so as to “squeeze” the
probability mass out of the big class and redistribute it on the small classes.
Ideally, one should be able to obtain an optimal input distribution g∗ such
that all outputs (equivalence classes) are equally likely.

These considerations lead us to study a scenario where we grant the

101

analyst with some control over the input distribution. We will define two
methods to search for good input distributions, one based on a Markov
Chain Monte Carlo (MCMC) sampling algorithm, and one based on an
Accept-Reject (AR) criterion. We will then outline a practical methodology
based on these algorithms.

5.5.1 A Metropolis Monte Carlo method

We first note that, once P is fixed, an optimal input distribution g∗ always
exists. For example, denoting by [x] the ∼-equivalence class of each x ∈ X
according to P , we can set

g∗(x)
4
=

1
k × |[x]|

.

Of course, this expression requires knowledge of k, hence does not yield
per se a method for computing g∗. We note, however, that for any two
given x and x′, the calculation of the ratio g∗(x′)/g∗(x) = |[x]|/|[x′]| does
not require k, which is canceled out. Now, it is reasonable to assume that
this ratio can be, at least roughly, approximated. For example, we could
count the number of elements so far found in [x] and [x′] in a random walk
in the state space X (see below); or we could use abstract interpretation
techniques as suggested by (KR13). This puts us in a position to apply the
Metropolis MCMC, as explained below. For a general treatment of MCMC

see e.g. (CR).
The general idea of MCMC is that sampling from X according to a

distribution, say g∗, can be accomplished by defining a Markov Chain
whose (unique) stationary distribution is g∗. Metropolis MCMC, instanti-
ated to our setting, can be described as follows. We fix a proposal distribu-
tion Q(x′|x), according to which candidate next-states will be chosen. In
the version we consider, this is required to be symmetrical and positive:
Q(x′|x) = Q(x|x′) > 0. Starting from an arbitrary initial state x0 ∈ X , a
random walk on X is performed: at each step, starting from the current
state xt, a candidate next state x′ is drawn according to Q(x′|xt). Now,
x′ can be either accepted (xt+1 = x′) or rejected (xt+1 = xt): the first event

102

occurs with probability α(x, x′)
4
= min{1, |[x]|/|[x′]|}, the second one with

probability 1− α(x, x′).
This defines a random walk {Xt}t≥0 on X , which, so to speak, “keeps

off the big classes”: once a a big class [x] is entered, it is likely to be exited
immediately. This will happen indeed provided the proposal distribution
will select a small class [x′] at the next step , as |[x]|/|[x′]| > 1. As a result,
after an initial “burn in” period, the random walk will tend to spend the
same amount of time on each class. The theorem below is an instance of a
far more general result (see e.g. (CR, Th.7.2)).

Theorem 5.5.1 The stochastic process {Xt}t≥0 defined above is a time-homogeneous
Markov chain overX whose stationary distribution is g∗. That is, lettingXt ∼ gt,
one has limt→+∞ gt = g∗.

A practical consequence of this theorem is that, after a burn in period
of T steps, we can use the realizations xt (t ≥ T) of the stochastic processes
as extractions drawn according to g∗. If we insist these extractions to be
independent, we can run independently say m copies of the Markov chain
for T steps each, and only keep the last state of each of the resulting random
walks, say x

(i)
T , for i = 1, ...,m. Next, we can compute m independent

samples of Y as yi
4
= P (x(i)

T), for i = 1, ...,m.

5.5.2 An Accept-Reject method

The Accept-Reject (AR) sampling method is a technique used to generate
independent observations from a certain distribution. It is based on the
observation that, to sample from a random variable, one can sample
uniformly from the region under the graph of its density function.

The AR method generates sampling values from an arbitrary prob-
ability distribution function f(x), by using an instrumental distribution
f̂(x), under the only restriction that f(x) < Mf̂(x), where M > 1 is an
appropriate bound on f(x)

f̂(x)
. This sampling method is usually used in

cases where the form of the distribution f(x) makes sampling difficult.
Instead of sampling directly from the distribution , we use an envelope
distribution Mf̂(x) where sampling is easier. These samples from Mf̂(x)
are probabilistically accepted or rejected.

103

We give a sketch of the procedure:

1. sample x according to f̂(x)

2. generate u uniformly at random in [0, 1]

3. if u < f(x)

Mf̂(x)
accept x and return it; else reject x and repeat from 1.

Note that when simulating the pair (x, v , uMf̂(x)), one produces a
uniform simulation over the subgraph of Mf̂(x). Accepting only pairs
such that u < f(x)

Mf̂(x)
then produces pairs (x, v) uniformly distributed over

the subgraph of f(x) and thus, marginally, a simulation from f(x). For
further details on the correctness of this procedure, see (CR, Ch. 2).

In our case the instrumental distribution is the uniform distribution
on X , namely it is f̂(x) , 1

|X | . The constant M must satisfies the relation
g∗(x) = 1

k|[x]| ≤
M
|X | for any x ∈ X . This means that we take M =

|X |
kminx |[x]| .

5.5.3 Methodology

In order to turn the previous methods into a practical methodology, we
have to take some issues into account.

1. For both MCMC and AR, the values |[x]| cannot possibly be computed
exactly. In practice, we approximate |[x]| during a pre-computation
phase, where inputs are sampled uniformly at random and used to
compute a histogram of the most frequent outputs. In the actual
sampling phase of either methods, the accept rule will make use
of this histogram to ensure that such outputs are, in practice, not
generated too often.

2. For MCMC, convergence to g∗ only holds in the limit: if we fix a
maximum number of steps T , the resulting distribution ĝ can only
approximate g∗. The determination of this “burn in” period T can
be nontrivial and often proceeds by trials and errors.

104

The above approximations imply that, in general, what one can hope
for is to find a “good” input distribution ĝ, that is, one that does signifi-
cantly better than the uniform input distribution, in terms of output’s Jt.
This is not to say, however, that we are not able to give formal bounds on
the program’s capacity. Indeed, Theorem 5.4.1(1) applies to any output
distribution, be it optimal or not. Additional details on the methodology
are reported below.

Two aspects of practical concern of the sampling methodology are the
following.

(a) For MCMC, the choice of the proposal distribution, Q(x′|x).

(b) The ‘waste’ involved in rejecting samples.

Aspect (a) is related to the specific input domain X under consideration. In
our experiments, we have considered X = {0, 1}n, the set of n-bit vectors.
With such a domain, we have found that the random function Q(x′|x) that
computes x′ by flipping independently each individual bit of the current
state x, with a fixed probability 0 < β < 1, has given encouraging results;
in particular, the value β = 0.165 has experimentally been found to give
good results.

Concerning (b) in the case of AR, from step 3 of the algorithm it is
easy to deduce that, for x chosen uniformly at random, the probability

of acceptance is µ k
|X | , where µ

4
= minx′ |[x′]|. Note that, in a perfectly

balanced situation (|[x]| = |X |
k for each x), this probability is 1. In strongly

unbalanced situations (µk << |X |), however, we will observe a high
rejection rate and inefficiency. We can mitigate this problem by formally
replacing M with Mθ, for a parameter θ ∈ (0, 1] that can be tuned by the
analyst. This in practice means that the comparison at step 3 becomes
u < µ

θ|[x]| . This modification will affect the sampled distribution, which
will not be g∗ anymore, but not the soundness of the method, that is, the
formal guarantees provided on lower bounds.

In the case of MCMC, problem (b) mostly occurs when generating the m
i.i.d. extractions, because all but the last state of each of m random walks
should be discarded. We have explored the following alternative method:

105

we first run a single Markov chain for a suitably long burn in time T , thus
reaching a state xT and producing a histogram hT of output frequencies.
We then use xT (as a starting state) and hT to run again m independent
copies of the Markov chain, but each for a much shorter time T ′. The
results thus obtained have been found experimentally to be equivalent to
those obtained by sequentially sampling m times a single same Markov
chain, after the burn in period. One will have often to tune the various
parameters involved in the sampling algorithm (T , β, m, θ) in order to get
satisfactory input distributions and guarantees.

5.6 Numerical experiments

We have tested the methodology introduced in the previous section on
two classes of simple programs. The first class includes programs with
artificially highly unbalanced classes; the second class is about cache side
channels in sorting algorithms, a problem discussed in (DFK+13; AS01).
The Java code used to run these experiments is available from the authors.

5.6.1 Unbalanced classes

We have tested the methodologies introduced in the previous section on
a few instances of a parametric class of programs, Pn,l,r(x), with n ≥ l ≥
r ≥ 1 and x ∈ X = {0, 1}n and output in Y = {0, 1}l, defined as follows.

Pn,l,r(x) :

z=mod(x,2ˆl);

if mod(z,2ˆr)==0 then y=z else y=mod(z,2ˆr);

return y;

The capacity of this program is easy to compute by inspection. In fact,
Pn,l,r(x) divides the input domain into k = 2r−1− 1 + 2l−r distinct classes:
of these, 2r−1 − 1 are “fat” classes with 2n−r elements each (outputs cor-
responding to the else branch); and 2l−r are “small” classes, with 2n−l

elements each (outputs corresponding to the then branch). Once fixed

106

n, depending on the value of l − r, we will have more or less balanced
situations. If l − r is small, we will have a balanced situation, with about
2l classes of similar size. As l − r gets larger, we will have increasingly
unbalanced situations, with relatively few (about 2r) fat classes and a lot
(2l−r) of small classes.

We have put the estimator Jt at work on several instances of this pro-
gram, using input distributions generated according to either Crude Monte
Carlo or Metropolis. Table 3 displays the outcomes of these experiments
for Pn,l,r(x), for m = 5× 105 and δ = 0.001. In each row, the most accurate
obtained outcome is highlighted in boldface. Some more detailed tables
can be found in Appendix A.5. For various values of n, we have tested Jt
on both balanced (l close r) and unbalanced (r small) situations. We have
considered two possible values for the confidence 1 − δ. For simplicity,
we also preferred to just fix an “affordable” sample size of m = 5 × 105

throughout all the experiments. Following Theorem 5.4.1, we have set
t =

√
m ln(1/δ)/2. Finally, the parameters T , of both Metropolis and

Accept-Reject, and β, of Metropolis, have been determined experimentally:
T = 50, 000 and β = 0.165.

n l r k CMC MCMC AR

22 22 4.9143× 106 4.0320× 106 2.8233× 106 4.0101× 106

24 22 20 1.0486× 106 1.0317× 106 8.4025× 105 1.0281× 106

22 2 2.0972× 106 1.1853× 105 4.0384× 105 1.0320× 106

22 1 2.0972× 106 2.8133× 105 7.6395× 105 2.0450× 106

23 23 8.3886× 106 7.7328× 106 4.8261× 106 7.6385× 106

28 23 20 1.0486× 106 1.0339× 106 8.3413× 105 1.0316× 106

23 2 2.0972× 106 1.2232× 105 4.8578× 105 2.0330× 106

23 1 4.1943× 106 2.9472× 105 9.3437× 105 3.9806× 106

26 26 6.7108× 107 3.8772× 107 1.5140× 107 3.8651× 107

32 26 23 8.3886× 106 7.7432× 106 4.7617× 106 7.7312× 106

26 2 1.6777× 107 1.2593× 105 5.9906× 105 1.3683× 107

26 1 3.3554× 107 3.0841× 105 1.1975× 106 2.4993× 107

Table 3: Capacity lower bounds Jt with different sampling methods.

A few considerations on these results are in order. First, Accept-Reject
performs better than Crude Monte Carlo in the unbalanced situations (l−r

107

big); in this scenarios, Metropolis too performs better that Crude MC, but
not as better as AR. Nevertheless Metropolis appears more efficient in
running simulations and it seems reasonable that it could take its revenge
with programs having very irregular equivalence relations, although this
hypothesis will be the subject of further experiments. Both AR and Crude
MC perform very well in the balanced situations (l close to r). Second, save
for the AR method, in the unbalanced cases the absolute error is significant;
this can partly be imputed to the relatively small sample size m used, but
further experimentation in this respect is needed. Third, the quality of
the estimation does not depend at all on the size of the input domain (2n),
but rather on the size of the output domain (approximately, 2l); this fact
is extremely encouraging from the point of view of the scalability of the
methodology. We also notice that in cases with a small k compared to m,
not reported in the tables, using Jt is in a sense overkill, as the the trivial
estimator D performs quite well (see Appendix A.5).

Running each experiment (row of a table) required less than two min-
utes time on a common notebook. The corresponding MATLAB code has
been made available online (BP14).

5.6.2 Cache side-channels in sorting algorithms

Sorting algorithms are fundamental building blocks of many systems. The
observable behaviour of a sorting algorithm is tightly connected with
the (sensitive) data it manipulates. Therefore, designing secure sorting
algorithms is challenging and, as discussed in (AS01), should provide
indications on how other algorithms can be implemented securely. An
additional reason for analysing sorting algorithms is that this is one of the
cases where static analysis alone may fail to provide useful bounds (we
discuss this at the end of this subsection).

To give a flavour of the leaks that may arise in this context, consider
the following code implementing InsertionSort.

108

1. public static int InsertionSort(int[] v){
2. int n = v.length;
3. int i, j, index;
4. for(i = 1; i<n; i++){
5. index = v[i];
6. for(j = i; j>0 && v[j-1]>index; j--){
7. v[j] = v[j-1];
8. }
9. v[j]= index;

10. } }

Suppose all elements of v are distinct, and the secret one wants to protect
is the initial ordering of the elements in v, that is, the sequence of indices
(i1, i2, ...) s.t. v[i1] < v[i2] < · · · . One wonders how much information a
trace-based adversary, capable of detecting the hit/miss sequence relative
to lookups of vector v, can learn about the secret. Assuming for simplicity
a cache that is initially empty and large enough that v could fit entirely in
it, it is clear that the beginning of each innermost for cycle (line 6) will
be marked by a miss, corresponding to the lookup of v[i] in line 5. The
distance between the last miss and the next will reveal the adversary how
many iterations are executed in 6-7 for the current value of i; hence the
value of j (if any) s.t., for the current version of the vector, v[j − 1] > v[i].
It appears the overall execution will give the adversary significant infor-
mation about the secret, although it is far from easy to exactly determine
how much, manually.

We have put our estimator Jt at work on both InsertionSort and
BubbleSort (the code of the latter is reported in the Appendix A.4),
for several values of the vector’s size n and cache configurations. For
simplicity, we have confined ourselves to the AR sampling method. We
have considered increasing values of the sample size m, until observing
Jt getting essentially stable: this indicates that the maximum leakage
has been observed. We have analyzed the case of both access- and trace-
based cache side-channel adversaries, introduced in Example 5.2.1. In
the first case, we have obtained Jt = 1 in all configurations, that is a
leakage of 0, which is consistent with what known from previous analyses
(DFK+13). The outcomes of the experiments for the trace-based adversary
is displayed in Tables 4 and 5, where values are obtained with δ = 0.001
and m = 5 × 103 (for n = 8, 16) or m = 105 (for n = 32). Here, C and B

109

n 8 16 32

log2(n!) 15.3 44.25 117.66

Preload yes no yes no yes no
C B

64 2 4.75 7.51 4.10 11.44 6.22 16.01
64 4 4.75 4.95 3.90 10.05 6.35 14.81
64 8 4.85 4.80 3.80 7.77 6.18 12.88
128 2 4.75 7.51 4.10 11.39 6.28 15.99
128 4 4.75 4.85 4.10 10.04 6.18 14.82
128 8 4.80 4.80 3.90 8.49 6.12 12.89
256 2 4.80 7.46 3.80 11.46 6.20 15.99
256 4 4.75 4.85 3.80 10.06 6.20 14.81
256 8 4.85 4.80 3.70 8.52 6.12 12.89

Table 4: Capacity lower bounds log Jt (in bits) for BubbleSort and several
cache configurations and vector lengths.

are respectively the cache and block size, in words. Preload=no means
the cache is initially empty. Preload=yes means that the entire vector v
is cached before execution of the sorting algorithm. The adopted cache
replacement policy is least recently used (LRU). Lower bounds on capacity
are expressed in bits, that is, log Jt is reported; the size in bits of the secret,
log(n!), is also given for reference. The running time of each experiment
ranges from few seconds to several minutes on a common notebook.

As expected, the observed leakage consistently increases as n increases.
For fixed n, ignoring small fluctuations, the observed values consistently
decrease as B increases, while they appear to be independent from C.
As expected, a preload phase drastically reduces the observed leakage.
Note however that, even when the vector is completely cached, there is
still some variability as to the number of comparison operations, which
depends on the initial ordering of v. This explains the positive leakage
observed with preload. Finally, we note that BubbleSort is consistently
observed to leak less than InsertionSort.

We also note that this is a scenario where current static analysis meth-
ods are not precise enough to give useful results. In particular, the upper
bounds obtained in (DFK+13, Fig.9) for the trace-based adversary are vac-

110

n 8 16 32

log2(n!) 15.3 44.25 117.66

Preload yes no yes no yes no
C B

64 2 4.80 9.76 3.90 16.23 6.32 18.88
64 4 4.80 6.34 4.10 14.91 6.26 18.89
64 8 4.85 4.80 3.80 9.65 6.22 18.70
128 2 4.85 9.68 3.80 16.20 6.06 18.89
128 4 4.80 6.27 3.90 14.88 6.35 18.92
128 8 4.80 4.80 3.80 9.67 6.18 18.69
256 2 4.80 9.79 3.80 16.26 6.14 18.90
256 4 4.85 6.39 4.10 14.81 6.12 18.89
256 8 4.85 4.85 3.80 9.67 6.33 18.67

Table 5: Capacity lower bounds log Jt (in bits) for InsertionSort and several
cache configurations and vector lengths.

uous, since larger than the size in bits of the secret3. A direct comparison of
our results with those of (DFK+13) is not possible, because of the different
experimental settings - in particular, they analyze compiled C programs,
while we simulate the cache behaviour by instrumented Java code. Ne-
vertheless, our results indicate that a black-box analysis of lower bounds
is a useful complement to a static analysis of upper bounds, revealing
potential confidentiality weaknesses in a program. In the future, we plan
to test systematically the examples given in (DFK+13), in a comparable
experimental setting.

5.7 Further and related work

Recent works by Terauchi and collaborators proved serious computational
limits related to both the exact computation and nontrivial bounding of
information leakage of programs even in the deterministic case (YT11).
For this reason, a growing research interest towards methods for approxi-
mate calculation of information leakage (BDKR05; CCG10; CG11; CKN13;

3The authors there also analyse a third sorting algorithm, which gives results identical to
BubbleSort.

111

CK13; KR13) developed.

Besides the already discussed Köpf and Rybalchenko’s (KR13; KR10),
our work is mostly related to some recent papers by Tom Chothia and
collaborators. In (CCG10; CK13), methods are proposed to estimate,
given an input-output dataset, confidence intervals for information lea-
kage, and therefore test whether the apparent leakage indicates a sta-
tistically significant information leak in the system, or whether it is in
fact consistent with zero leakage. The LEAKIEST and LEAKWATCH tools
(CKN13; CKNP13; CKNP) are based on these results. Issues related to the
existence of estimators in our sense are not tackled, though. Moreover,
while handling also probabilistic systems, the resulting analysis methods
and tools are essentially based on exhaustive input enumeration. In prac-
tice, they can be put into use only when the input space is quite small
(Cho14).

Batu et al. (BDKR05) consider the problem of estimating Shannon
entropy. Their negative results are similar in spirit to ours in Section 5.3.
Technically, they mainly rely on birthday paradox arguments to prove
lower bounds of (approximately) Ω(

√
|Y|) on the number of required

samples, for a class of “high entropy” distributions; these arguments could
be easily adapted to our case. On the positive side, they provide, among
others, an estimator based on the observed number of collisions for the
special case of distributions that are uniform on their own support, where
Shannon and min entropy coincide. In our experience, collision-based
estimators perform poorly in unbalanced situations.

Estimation of program capacity is related to the problem, considered in
applied Statistics, of estimating the number of classes in a population, by
some form or another of sampling. There exists a large body of literature on
this subject, and a variety of estimators have been proposed, see e.g. (CL92)
and references therein. To the best of our knowledge and understanding,
though, the settings considered in these works are quite different from
ours. Indeed, either a parametric approach is adopted, which requires the
class probabilities to fit into certain families of distributions, which cannot
be assumed for programs; or the focus is rather on obtaining practical
estimations of the number of classes, which at best become exact when the

112

sample is infinite. Issues concerning formal guarantees achievable using
finite samples, and the circumstances under which these guarantees can
or cannot actually be obtained, are scarcely considered. Another crucial
difference is that, in our setting, there is an input distribution the analyst
can be assumed to exercise some control on, which of course is not the
case for population classes.

The present chapter has mostly focused on theoretical issues. In the
future, it would be interesting to investigate to what extent the proposed
methodology scales to sizeable, real-world applications. Our results in-
dicates that accurate estimators could be obtained if taking advantage of
prior or subjective knowledge about the program: it would be interesting
to investigate Bayesian versions of our methodology to this purpose.

113

Chapter 6

Conclusion

In this thesis we have analyzed the problem of quantifying information
flow in terms of both confidentiality and privacy. QIF is mainly concerned
with quantifying the degree of protection offered against an adversary
trying to guess the whole secret. For this reason, QIF analysis of informa-
tion leakage mainly follow an average approach. DP is rather concerned
with protection of individual bits of the secret, possibly in the presence
of background information, like knowledge of the remaining bits. In this
case, an average notion of leakage may not be adequate, because there are
systems that, even if appear secure on average, they reveal easily exposed
to eavesdropping. Hence it is necessary to consider a worst-case notion.
In both scenarios we develop a model intended for assessment of system
security against passive eavesdropper.

In Chapter 3 we have characterized the asymptotic behaviour of error
probability, information leakage and indistinguishability in a scenario of
one-try attacks, in the case of repeated independent observations. We
refine the proposed model, studying the security of the system not only
quantitatively (how much is leaked), but also qualitatively (what proper-
ties are leaked). To this purpose, we extend information hiding systems
with views. This model allows to analyze a variety of statistical attacks in
a uniform fashion. This permits the assessment of systems security against
passive eavesdroppers both at the global level and at the level of specific

114

partitions of the secrets. In particular, we give precise bounds for the
probability of misclassification on the part of the attacker, characterizing
both the limit value and the rate of convergence of the error probability as
a function of the number independent observations. Particular interesting
are statistical attacks against privacy in sparse datasets.

In Chapter 4 we propose a semantic notion of security, that expresses
absence of any privacy breach above a given level of seriousness, irre-
spective of any background information We have analyzed security of
randomization mechanisms (viewed as information theoretic channels)
against privacy breaches with respect to various dimensions (worst vs.
average case, single vs. repeated observations, utility). Whenever appro-
priate, we have characterized the resulting security measures in terms of
simple row-distance properties of the underlying channel matrix. We have
clarified the relation our worst-case measure with DP.

Unfortunately, whether we speak of privacy or confidentiality, recent
studies show that exactly computing or bounding the information leakage
turns out to be computationally prohibitive, even in the deterministic
case. For this reason, we finally focus on the problem of formally bound-
ing information leakage by statistical estimation. In Chapter 5 we have
studied this problem in a set up where little is known about the program
under examination and the way its input is generated. We have provided
both negative results on the existence of accurate estimators and positive
results, the latter in the terms of a methodology to obtain good input
sampling distributions. This methodology has been demonstrated with a
few simulations that have given encouraging results.

115

References

[AAC+11] Mário S. Alvim, Miguel E. Andrés, Konstantinos Chatzikokolakis,
Pierpaolo Degano, and Catuscia Palamidessi. Differential privacy:
On the trade-off between utility and information leakage. In Formal
Aspects in Security and Trust, pages 39–54, 2011. 87

[AACP11a] Mário S. Alvim, Miguel E. Andrés, Konstantinos Chatzikokolakis, and
Catuscia Palamidessi. On the relation between differential privacy
and quantitative information flow. In ICALP (2), pages 60–76, 2011.
71, 82, 84, 87

[AACP11b] Mário S. Alvim, Miguel E. Andrés, Konstantinos Chatzikokolakis, and
Catuscia Palamidessi. Quantitative information flow and applications
to differential privacy. In FOSAD, pages 211–230, 2011. 5, 87

[AS01] Johan Agat and David Sands. On confidentiality and algorithms. In
IEEE Symposium on Security and Privacy, pages 64–77, 2001. 92, 106,
108

[BC13] Michele Boreale and Alessandro Celestini. Asymptotic risk analysis
for trust and reputation systems. In SOFSEM, pages 169–181, 2013. 82

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In CHES, pages 16–29, 2004. 41

[BCP08] Christelle Braun, Konstantinos Chatzikokolakis, and Catuscia
Palamidessi. Compositional methods for information-hiding. In
FoSSaCS, pages 443–457, 2008. 36, 57

[BCP09] Christelle Braun, Konstantinos Chatzikokolakis, and Catuscia
Palamidessi. Quantitative notions of leakage for one-try attacks. Electr.
Notes Theor. Comput. Sci. 2009, vol. 249:pp. 75–91, 2009. 2, 31, 33, 37,
57, 58, 87

116

[BDKR05] Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld.
The complexity of approximating the entropy. SIAM J. Comput.,
35(1):132–150, 2005. 111, 112

[BK08] Michael Backes and Boris Köpf. Formally bounding the side-channel
leakage in unknown-message attacks. In ESORICS, pages 517–532,
2008. 33, 58

[BK11] Gilles Barthe and Boris Köpf. Information-theoretic bounds for differ-
entially private mechanisms. In CSF, pages 191–204, 2011. 5, 87

[BMS10] Béatrice Bérard, John Mullins, and Mathieu Sassolas. Quantifying
opacity. In QEST, pages 263–272, 2010. 58

[Bor09] Michele Boreale. Quantifying information leakage in process calculi.
Inf. Comput., 207(6):699–725, 2009. 2, 57

[BPa] Michele Boreale and Michela Paolini. On formally bounding informa-
tion leakageby statistical estimation. submitted. x, 9, 89, 90

[BPb] Michele Boreale and Michela Paolini. Worst- and average-case privacy
breaches in randomization mechanisms (full version). submitted. x, 8,
12

[BP12] Michele Boreale and Michela Paolini. Worst- and average-case privacy
breaches in randomization mechanisms. In IFIP TCS, pages 72–86,
2012. x, 8, 12

[BP14] Michele Boreale and Michela Paolini. Matlab code available at http:
//rap.dsi.unifi.it/˜boreale/metropolis.m. 2014. 108

[BPP11a] Michele Boreale, Francesca Pampaloni, and Michela Paolini. Asymp-
totic information leakage under one-try attacks. In FOSSACS 2011,
pages pp. 396–410, 2011. x, 2, 8, 19, 29, 30, 31, 33, 44, 45, 46, 87

[BPP11b] Michele Boreale, Francesca Pampaloni, and Michela Paolini. Quan-
titative information flow, with a view. In ESORICS 2011, pages pp.
588–606, 2011. x, 2, 8, 19, 30, 45, 87, 88

[BPPar] Michele Boreale, Francesca Pampaloni, and Michela Paolini. Asymp-
totic information leakage under one-try attacks (full version). In Math.
Struct. in Computer Science, to appear. x, 8, 30, 31, 33, 45, 47

[BV08] Thomas Baignères and Serge Vaudenay. The complexity of distin-
guishing distributions (invited talk). In ICITS, pages 210–222, 2008.
34, 58

117

http://rap.dsi.unifi.it/~boreale/metropolis.m
http://rap.dsi.unifi.it/~boreale/metropolis.m

[Cac97] Christian Cachin. Entropy measures and unconditional security in
cryptography. PhD thesis, Swiss Federal Institute of Technology, 1997. 19

[CCG10] Konstantinos Chatzikokolakis, Tom Chothia, and Apratim Guha. Sta-
tistical measurement of information leakage. In TACAS 2010, pages
pp. 390–404, 2010. 6, 89, 90, 111, 112

[CG11] Tom Chothia and Apratim Guha. A statistical test for information
leaks using continuous mutual information. In CSF 2011, pages pp.
177–190, 2011. 6, 89, 90, 111

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Commun. ACM, 24(2):84–88, 1981. 40

[Cha88] David Chaum. The dining cryptographers problem: Unconditional
sender and recipient untraceability. J. Cryptology, 1(1):65–75, 1988. 3

[CHM01] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative
analysis of the leakage of confidential data. Electr. Notes Theor. Comput.
Sci., 59(3):238–251, 2001. 2, 21, 57

[Cho14] Tom Chothia. Personal communication to Michele Boreale. 2014. 112

[CK13] Tom Chothia and Yusuke Kawamoto. Statistical estimation of min-
entropy leakage. manuscript available at http://www.cs.bham.
ac.uk/research/projects/infotools/leakiest/. 2013. 6,
89, 90, 112

[CKN13] Tom Chothia, Yusuke Kawamoto, and Chris Novakovic. A tool for
estimating information leakage. In CAV 2013, pages pp. 690–695, 2013.
6, 89, 90, 111, 112

[CKNP] Tom Chothia, Yusuke Kawamoto, Chris Novakovic, and David Parker.
Leakwatch: Estimating information leakage from java programs. 90,
112

[CKNP13] Tom Chothia, Yusuke Kawamoto, Chris Novakovic, and David Parker.
Probabilistic point-to-point information leakage. In CSF, pages 193–
205, 2013. 112

[CL92] Anne Chao and Shen-Ming Lee. Estimating the number of classes via
sample coverage. In Journal of the American statistical Association 1992,
volume vol. 87, pages pp. 210–217, 1992. 112

[CPP08a] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash
Panangaden. Anonymity protocols as noisy channels. Inf. Comput.
2008, vol. 206(2-4):pp. 378–401, 2008. 2, 11, 19, 38, 57, 58

118

http://www.cs.bham.ac.uk/research/projects/infotools/leakiest/
http://www.cs.bham.ac.uk/research/projects/infotools/leakiest/

[CPP08b] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash
Panangaden. On the bayes risk in information-hiding protocols. Jour-
nal of Computer Security 2008, vol. 16(5):pp. 531–571, 2008. 2, 38, 39, 57,
58

[CR] George Casella and Christian Robert. Monte carlo statistical methods.
Springer Verlag, Second Edition 2004. 102, 103, 104

[Csi98] Imre Csiszár. The method of types. IEEE Transactions on Information
Theory, 44(6):2505–2523, 1998. 23, 25

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of information theory,
2/e. 2006. 14, 16, 17, 19, 24, 25, 26, 28, 29, 34, 35, 38, 58

[Dan03] George Danezis. Statistical disclosure attacks. In SEC, pages 421–426,
2003. 40

[DFK+13] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and
Jan Reineke. Cacheaudit: A tool for the static analysis of cache side
channels. In USENIX Security, pages 431–446, 2013. 89, 92, 93, 106,
109, 110, 111

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.
Calibrating noise to sensitivity in private data analysis. In TCC, pages
265–284, 2006. 5, 69, 70, 74, 76, 87

[DN10] Cynthia Dwork and Moni Naor. On the difficulties of disclosure
prevention in statistical databases or the case for differential privacy.
In JPC, volume 2(1), 2010. 76

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Mea-
sure for the Analysis of Randomized Algorithms. Cambridge University
Press 2009, 2009. 98

[DS05] Yevgeniy Dodis and Adam Smith. Entropic security and the encryp-
tion of high entropy messages. In TCC, pages 556–577, 2005. 88

[Dwo06] Cynthia Dwork. Differential privacy. In ICALP (2), pages 1–12, 2006.
5, 61, 69, 74, 76, 87

[EGS03] Alexandre V. Evfimievski, Johannes Gehrke, and Ramakrishnan
Srikant. Limiting privacy breaches in privacy preserving data mining.
In PODS, pages 211–222, 2003. 5, 12, 61, 64, 80, 87

[FS10] Arik Friedman and Assaf Schuster. Data mining with differential
privacy. In KDD, pages 493–502, 2010. 61

119

[GKS08] Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, and Adam
Smith. Composition attacks and auxiliary information in data privacy.
In KDD, pages 265–273, 2008. 61, 74

[GM82] Joseph A. Goguen and José Meseguer. Security policies and security
models. In IEEE Symposium on Security and Privacy 1982, pages 11–20,
1982. 1

[GRS09] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Uni-
versally utility-maximizing privacy mechanisms. In STOC, pages
351–360, 2009. 62, 82, 84, 87

[KB07] Boris Köpf and David A. Basin. An information-theoretic model for
adaptive side-channel attacks. In ACM Conference on Computer and
Communications Security, pages 286–296, 2007. 58

[KD09] Boris Köpf and Markus Dürmuth. A provably secure and efficient
countermeasure against timing attacks. In CSF, pages 324–335, 2009.
58

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In CRYPTO, pages 388–397, 1999. 2, 41

[KM11] Daniel Kifer and Ashwin Machanavajjhala. No free lunch in data
privacy. In SIGMOD Conference, pages 193–204, 2011. 75, 87

[KM12] Daniel Kifer and Ashwin Machanavajjhala. A rigorous and customiz-
able framework for privacy. In PODS, pages 77–88, 2012. 75, 76,
87

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems. In CRYPTO, pages 104–113, 1996. 2, 3, 41

[KR10] Boris Köpf and Andrey Rybalchenko. Approximation and random-
ization for quantitative information-flow analysis. In CSF, pages 3–14,
2010. 89, 112

[KR13] Boris Köpf and Andrey Rybalchenko. Automation of quantitative
information-flow analysis. In SFM, pages 1–28, 2013. 6, 89, 97, 102,
112, 122

[KS10] Boris Köpf and Geoffrey Smith. Vulnerability bounds and leakage
resilience of blinded cryptography under timing attacks. In CSF 2010,
pages pp. 44–56, 2010. 2, 37, 58, 87, 88

[KSWH00] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side
channel cryptanalysis of product ciphers. Journal of Computer Security,
8(2/3):141–158, 2000. 42, 43

120

[LJ97] Charles C. Leang and Don H. Johnson. On the asymptotics of m-
hypothesis bayesian detection. IEEE Transactions on Information Theory,
43(1):280–282, 1997. 29, 34, 59

[Mal10] Pasquale Malacaria. Risk assessment of security threats for looping
constructs. Journal of Computer Security, 18(2):191–228, 2010. 2

[Mas94] James Lee Massey. Guessing and entropy. In IEEE Symposium on
Information Theory (ISIT) 1994, volume vol. 204, 1994. 14, 20

[McS09] Frank McSherry. Privacy integrated queries: an extensible platform
for privacy-preserving data analysis. In SIGMOD Conference, pages
19–30, 2009. 61

[MT07] Frank McSherry and Kunal Talwar. Mechanism design via differential
privacy. In FOCS, pages 94–103, 2007. 87, 88

[NS08a] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization
of large sparse datasets. In IEEE Symposium on Security and Privacy,
pages 111–125, 2008. 3, 53, 54, 55, 57

[NS08b] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization
of large sparse datasets. In IEEE Symposium on Security and Privacy,
pages 111–125, 2008. 88

[R6́1] Alfréd Rényi. On measures of entropy and information. In Proceedings
of 4th Berkeley Symposium on Mathematics, Statistics and Probability,
volume 1, page 547561, 1961. 14, 19

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web
transactions. ACM Trans. Inf. Syst. Secur., 1(1):66–92, 1998. 3, 38, 39, 40

[Sha] Claude E. Shannon. A mathematical theory of communication. Bell
System Technical Journal. 14

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communications, 21(1):5–
19, 2003. 19

[Smi09] Geoffrey Smith. On the foundations of quantitative information flow.
In FOSSACS, pages 288–302, 2009. 2, 11, 19, 20, 21, 31, 33, 37, 57, 122

[SMY09] François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified
framework for the analysis of side-channel key recovery attacks. In
EUROCRYPT, pages 443–461, 2009. 41, 58

[YT11] Hirotoshi Yasuoka and Tachio Terauchi. On bounding problems
of quantitative information flow. Journal of Computer Security, vol.
19(6):pp. 1029–1082, 2011. 6, 89, 111

121

Appendix A

Additional proofs and
tables

A.1 Proofs of Chapter 2

A.1.1 Proof of Theorem 2.3.1

Theorem A.1.1 (Theorem 2.3.1) Let i ∈ {Sh,∞} and k = |Im(P)|. Then
Li(P ; g) ≤ Ci(P) = log k. In particular, if g(x) = 1

k×|[x]| for each x ∈ X , then
Li(P ; g) = Ci(P) = log k, for i ∈ {Sh,∞}.

Proof The result for i = ∞ (min entropy) is in see e.g. (KR13; Smi09).
For the case i = Sh (Shannon entropy) first note that, denoting by I(·; ·)
mutual information and exploiting its symmetry, we have, for each g:
LSh(P ; g) = I(X;Y) = HSh(Y) −HSh(Y |X) = HSh(Y) ≤ log k, where in
the last but one step we use H(Y |X) = 0 (output is entirely determined
by input for deterministic programs), and the last step follows from a well
known inequality for Shannon entropy. Now, taking the input distribution
g specified in the first item of the theorem, we see that all inverse images
of P have the same probability 1/k, hence Y is uniformly distributed on k
outputs. This implies HSh(Y) = log k. �

122

A.2 Proofs of Chapter 4

A.2.1 Proof of Lemma A.2.1

Lemma A.2.1 In the binary Bayesian hypothesis testing problem with two dis-
tributions p1 and p2, having prior probabilities α and β respectively (α+ β = 1),
the success probability Psucc defined in (2.1) satisfies

Psucc =
||αp1 − βp2||1 + 1

2
.

Proof Taking (2.4) into account, and considering that we are in the
binary case |X | = 2, we have

Psucc =
∑
y

max{p1(y)α, p2(y)β)}. (A.1)

The wanted result follows by noting that:

1.
∑
y |αp1(y)− βp2(y)| =

∑
y max{αp1(y), βp2(y)}

- min{αp1(y), βp2(y)};

2.
∑
y max{αp1(y), βp2(y)} + min{αp1(y), βp2(y)}=

∑
y αp1(y)+βp2(y)=α+

β = 1.

After some algebra, we obtain that

2
∑
y

max{p1(y)α, p2(y)β} =
∑
y

|αp1(y)− βp2(y)|+ 1

that is
∑
y max{p1(y)α, p2(y)β} = ||αp1−βp2||1+1

2 . �

A.2.2 Proof of Theorem 4.5.2

Theorem A.2.1 (Theorem 4.5.2) AssumeR is non-singular and strictly posi-
tive. Then, with the notation introduced Section 4.5

Pr(Breachεn|X ∈ Q) .= 1−2−nC and Pr(Breach
ε

n|X ∈ Qc)
.= 1−2−nC

where C = minx∈Q,x′∈Qc C(px, px′), with the understanding that x and x′ in
the min are taken of positive probability. As a consequence, the probability that
Y n causes a Q-breach reaches 1 at rate at least C.

123

Proof Let n ≥ 1 and let us abbreviate Breachεn as Breachn in the rest
of the proof. We will show that both p(Breachn|Q) .= 1− 2−nC and that
p(Breachn|Qc)

.= 1−2−nC , where C = minx∈Q,x′∈Qc C(px, px′) is the rate:

from this the result will follow, indeed αn
4
= Pr(Breachn ∪ Breachn) ≥

p(Breachn|Q)p(Q) + p(Breachn|Qc), which implies rate({αn}) ≥ C. We
focus on p(Breachn|Q), as the case of p(Breachn|Qc) follows by symmetry.
Consider the set of sequences in Yn

Wn = {yn ∈ Yn : p(Q|yn) > 2εp(Q) } .

Clearly, Pr(Breachn|Q) = Pr(Y n ∈ Wn|X ∈ Q)
4
= p(Wn|Q). Observe

that p(Wn|Q) =
∑
x∈Q px(Wn) p(x)

p(Q) . We show that, for each x ∈ Q of
positive probability, px(Wn) → 1 at rate minx′∈Qc C(px, px′), from which
the result will follow: indeed, the rate of a summation – in our case∑
x∈Q px(Wn) p(x)

p(Q) – is the least of the summands’ rates. Fix any x ∈ Q of
positive probability. It is easy to show that, for certain constants κx′ that
depend on p(x′) (x′ ∈ Qc), p(Q) and ε, the set

Bn(x)
4
= {yn : D(tyn ||px) ≤ D(tyn ||px′) +

κx′

n
∀x′ ∈ Qc}

is included in Wn, for n large enough:

Bn(x) ⊆Wn

(informally, Bn(x) contains the set of sequences yn whose type is closer to

px than to any px′ with x′ ∈ Qc). Also note that, defining Πn(x, x′)
4
= {yn :

D(tyn ||px) > D(tyn ||p′x) + κx′
n for each x′ ∈ Qc}, the complement of Bn(x)

can be written as
Bcn(x) = ∪x′∈QcΠn(x, x′) .

We examine the convergence of 1− px(Wn) = px(W c
n). We have

px(W c
n) ≤ px(Bcn(x)) ≤

∑
x′∈Qc

px(Πn(x, x′)) (A.2)

Now, fix x′ ∈ Qc. From (2.19), we know that there is a unique distribution
q∗ ∈ Ipxpx′ s.t. C(px, px′) = D(q∗||px) = D(q∗||px′). We choose now a

124

sequence of n-types {ξn} s.t. ξn = argminζ∈Πn(x,x′)∩Tn D(ζ||px′). For any
n large enough, (2.11) and (2.12) imply

px(Πn(x, x′)) ≤ (n+ 1)|X |2−nD(ξn||px) . (A.3)

Moreover, as n→ +∞ we have ξn → q∗; this follows because: (i) q∗ is the
unique minimizer of D(·||px) and D(·||px′) in Ipxpx′ ; (ii) the set of types is
dense among the set of distributions; and (iii)D(·||px) andD(·||px′) are con-
tinuous. Now, again by continuity, we get that D(ξn||px)→ D(q∗||px) > 0,
which implies, from (A.3), that px(Πn(x, x′)) → 0 for each x′, hence
px(W c

n) → 1. Concerning the rate, take the − 1
n log of both sides of (A.3).

For any n large enough, we get

− 1
n

log px(Πn(x, x′)) ≥ −|X | log(n+ 1)
n

+D(ξn||px) .

This, on the limit, yields

rate(px(Πn(x, x′))) ≥ D(q∗||px) = C(px, px′) .

Since this holds for each x′ ∈ Qc and the rate of a sum is the minimum
rate of the summands, from (A.2) we get

rate(px(Wn)) ≥ min
x′∈Qc

C(px, px′) .

Concerning the reverse inequality, note that for each n large enough, from
(2.12) we get

px(Πn(x, x′)) ≥ px(Tn(ξn)) ≥ (n+ 1)−|X|2−nD(ξn||px) . (A.4)

Again, taking the − 1
n log of both sides and then taking the limit we obtain

rate(px(Wn)) ≤ min
x′∈Qc

C(px, px′)

from which the thesis follows. �

Remark A.2.1 Consider Remark 4.5.1. We have seen that the rate at which the
probability of a breach approaches 1 does not depend on the level ε and it only
depends on the support of the prior distribution. Moreover, in principle, it should
be possible to give a more precise lower-bound for Pr(Breachn|Q) than the one
implied by (A.2) and (A.3), by explicitly taking p(x) and ε into account. We shall
not investigate this issue here, though.

125

A.2.3 Proof of Lemma A.2.2

Lemma A.2.2 The Chernoff Information C(p, q) is a convex function of both p
and q.

Proof We only look at the first argument, p, as the function is symmetric.
Suppose that p = µp1+(1−µ)p2, with µ ∈ [0, 1]. Note that for any λ ∈ [0, 1],
the function c 7→ cλ is concave in [0, 1], therefore:∑

x

pλ(x)q1−λ(x) ≥
∑
x

(
µpλ1 (x) + (1− µ)pλ2 (x)

)
q1−λ(x)

=
∑
x

µpλ1 (x)q1−λ(x) + (1− µ)pλ2 (x)q1−λ(x)

= µ
∑
x

pλ1 (x)q1−λ(x) + (1− µ)
∑
x

pλ2 (x)q1−λ(x) .

Now exploiting the monotonicity of log and the above inequality, and then
concavity of log, we have:

log
∑
x

pλ(x)q1−λ(x) ≥ log(µ
∑
x

pλ1 (x)q1−λ(x) + (1− µ)
∑
x

pλ2 (x)q1−λ(x))

≥ µ[log(
∑
x

pλ1 (x)q1−λ(x))] +

+(1− µ)[log(
∑
x

(1− µ)pλ2 (x)q1−λ(x))].

Now, we take the minλ of both sides of the above inequality and then
exploit the fact that, for any two functions of λ, say f1(λ) and f2(λ), one
has

min
λ

(f1(λ) + f2(λ)) ≥ min
λ
f1(λ) + min

λ
f2(λ).

From this, it is immediate to conclude. �

A.3 Proof of Chapter 5

A.3.1 Proof of Lemma 5.4.1

Lemma A.3.1 (Lemma 5.4.1) Let k = |supp(p)|. Then: (a) f(k) = Eu[D] ≥
E[D]; (b) if additionally p is η-close to uniform, then E[D] ≥ f(k)

η .

126

Proof Concerning (a), note that:

Eu[D] = Eu[
∑
y

I{y∈S}] =
∑
y

Eu[I{y∈S}] =
∑
y

(1− (1− 1
k

)m)(A.5)

= k(1− (1− 1
k

)m) = f(k)

where in (A.5) (1− 1
k)m is the probability that y does not occur in the sample

S under a uniform on k outputs distribution. Furthermore Eu[D] ≥ E[D],
indeed

E[D] =
∑
y

1− (1− p(y))m = k −
∑
y

(1− p(y))m

= k − k
∑ 1

k
(1− p(y))m ≤ k − k(1− 1

k
)m = Eu[D] (A.6)

where in (A.6) we have applied the Jensen’s inequality to the function
x 7→ (1− x)m which is convex in [0, 1].

Concerning (b), we have

E[D] =
∑
y

1− (1− p(y))m = k −
∑
y

(1− p(y))m

≥ k(1− (1− 1
kη

)m) =
1
η
f(kη) ≥ 1

η
f(k) (A.7)

where in (A.7) we use the fact that p is η-close to uniform and that the
function x 7→ (1− x)m is decreasing, while f(x) is increasing, in [0, 1]. �

A.4 Additional code for Section 5.6
public static int BubbleSort(int[] v){

int n = v.length; int swap;
for(int i=0; i<n-1; i++){

for(int j=0; j<n-i-1; j++){
if(v[j]>v[j+1]){

swap = v[j];
v[j] = v[j+1];
v[j+1] = swap;

}
}

}
}

127

A.5 Additional tables for Chapter 5

We give below some more detailed tables, containing the outcomes of some
experiments with the three considered sampling methods in Chapter 5
(Crude Monte Carlo, Metropolis Monte Carlo, Accept-Reject). These tables
also contain information on D, the number of distinct outputs actually
observed during simulation.

Table 6: Lower bounds on program capacity, with CMC and m = 5 × 105,
δ = 0.001.

n l r k Crude Monte Carlo
D Jt

23 23 8.3886× 106 4.8592× 105 7.7328× 106

28 23 20 1.0486× 106 3.9776× 105 1.0339× 106

23 2 2.0972× 106 1.2158× 105 1.2232× 105

23 1 4.1943× 106 2.4201× 105 2.9472× 105

26 26 6.71088× 107 4.9810× 105 3.8772× 107

32 26 23 8.3886× 106 4.8551× 105 7.7432× 106

26 2 1.6777× 107 1.2487× 105 1.2593× 105

26 1 3.3554× 107 2.4912× 105 3.0916× 102

Table 7: Lower bounds on program capacity, with MCMC and m = 5× 105,
δ = 0.001.

n l r k Metropolis
D Jt

23 23 8.3886× 106 4.7629× 105 4.8261× 106

28 23 20 1.0486× 106 3.7740× 105 8.3413× 105

23 2 2.0972× 106 3.1354× 105 4.8578× 105

23 1 4.1943× 106 3.8851× 105 9.3437× 105

26 26 6.71088× 107 4.9315× 105 1.5140× 107

32 26 23 8.3886× 106 4.7617× 105 4.8040× 106

26 2 1.6777× 107 3.4036× 105 5.9906× 105

26 1 3.3554× 107 4.1006× 105 1.1975× 106

128

Table 8: Lower bounds on program capacity, with AR and m = 5 × 105,
δ = 0.001.

n l r k Accept-Reject
D Jt

23 23 8.3886× 106 4.8530× 105 7.6385× 106

28 23 20 1.0486× 106 3.9756× 105 1.0316× 106

23 2 2.0972× 106 4.4457× 105 2.0330× 106

23 1 4.1943× 106 4.7118× 105 3.9806× 106

26 26 6.71088× 107 4.9809× 105 3.8651× 107

32 26 23 8.3886× 106 4.8548× 105 7.7312× 106

26 2 1.6777× 107 4.9228× 105 1.3683× 107

26 1 3.3554× 107 4.9634× 105 2.4993× 107

129

Unless otherwise expressly stated, all original material of whatever
nature created by Michela Paolini and included in this thesis, is li-
censed under a Creative Commons Attribution Noncommercial Share
Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:michela.paolini@imtlucca.it

	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	1 Introduction
	1.1 Motivations and literature review
	1.2 Terminology and structure of the thesis

	2 Preliminaries on QIF and Information Theory
	2.1 Information hiding systems and randomization mechanisms
	2.2 Quantifying uncertainty via entropy
	2.2.1 Shannon entropy
	2.2.2 Guessing entropy
	2.2.3 Min-entropy

	2.3 Security guarantees
	2.4 More Information Theory
	2.4.1 Kullback-Leibler divergence and method of types
	2.4.2 Rate of convergence

	3 Information flow under repeated observations
	3.1 Motivations
	3.2 Attacker targets the entire secret
	3.2.1 Bounds and asymptotic behaviour
	3.2.2 Some simple applications

	3.3 Attacker targets a property of the secret
	3.3.1 A model with views
	3.3.2 Asymptotic error probability
	3.3.3 Some simple applications

	3.4 Further and related work

	4 Worst- and average-case information flow
	4.1 Motivations
	4.2 Semantic security of randomization mechanisms
	4.2.1 The worst-case scenario
	4.2.2 The average-case scenario

	4.3 Worst-case security vs. differential privacy
	4.4 Discussion
	4.5 Privacy under repeated observations
	4.5.1 Worst-case scenario
	4.5.2 Average-case scenario

	4.6 Utility under repeated observations
	4.7 Further and related work

	5 Estimating information flow
	5.1 Motivations
	5.2 Statistical set up
	5.3 Limits of program capacity estimation
	5.4 A weak estimator
	5.5 Searching for good input distributions
	5.5.1 A Metropolis Monte Carlo method
	5.5.2 An Accept-Reject method
	5.5.3 Methodology

	5.6 Numerical experiments
	5.6.1 Unbalanced classes
	5.6.2 Cache side-channels in sorting algorithms

	5.7 Further and related work

	6 Conclusion
	References
	A Additional proofs and tables
	A.1 Proofs of Chapter 2
	A.1.1 Proof of Theorem 2.3.1

	A.2 Proofs of Chapter 4
	A.2.1 Proof of Lemma A.2.1
	A.2.2 Proof of Theorem 4.5.2
	A.2.3 Proof of Lemma A.2.2

	A.3 Proof of Chapter 5
	A.3.1 Proof of Lemma 5.4.1

	A.4 Additional code for Section 5.6
	A.5 Additional tables for Chapter 5

