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di quanto avessi capito in oltre un quarto di secolo. Grazie per

aver smontato tutti i miei preconcetti, i miei rancori, grazie per
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sono con te. Grazie perché mi permetti di amarti, grazie per
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Abstract

Over the last decades, the Internet has grown from a small-

scale academic network linking few universities, to a large-

scale complex system, reaching out to billions of people and

enabling communications and computing worldwide. While

the number of persons connected to the Internet 24/7 is grow-

ing exponentially, particularly through smartphones, most

of them are unaware of the real Internet infrastructure. Re-

cently, researchers have attempted to discover details about

the characteristics of the Internet in order to create a model

of its infrastructure, which could be exploited both to im-

prove the performances and to identify and address possible

weaknesses of the network. Despite several efforts in this di-

rection, currently no model is known to represent the Internet

effectively, especially due to the lack of understanding of the

true driving forces behind the Internet evolution, and the ex-

cessively coarse granularity applied by the studies done to

date. This thesis seeks to scientifically understand the driving

forces lying behind the exponential growth of the “network

of networks”, through a fine-grained analysis of the available

topological data. In the first instance, we show that the large-

scale Internet can be broken down into a not-so-large core,

which captures the most important structural properties of the

Internet, and a periphery, representing the “tendrils” of the

topology. The proposed decomposition technique is general

and can be extended to other networks: multi-layer network

analysis, a hot topic in the area of complex networks, can

benefit from it as well. We point out the key role of Internet

eXchange Points within the core of the Internet, and reveal

through an economic analysis the emerging competition be-
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tween them and the classical Network Service Providers. This

analysis serves as ground truth to devise a network model

able to represent the Internet’s core effectively and potentially

forecast its evolution. The model takes into account multi-

layer interaction mechanisms, and can be further extended to

the whole Internet, by devising simple attaching mechanisms

for the periphery. Since the prediction properties of the model

are based on data from real measurements, it is important to

remove the biases introduced by the measuring infrastructure,

in order to predict the future evolution of the real Internet

topology. In the end, we show through a meaningful set of

metrics, how the model is able to successfully capture the In-

ternet’s statistical and structural properties, outperforming

existing topology generators in the literature.
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Chapter 1

Introduction

This chapter introduces the area of investigation, the motivation behind

this work and its contributions. At the end it presents an overview of the

thesis’ structure.

1.1 Research Area

The Internet has become more and more part of the everyday life of

billions of people. The spreading of smartphones, together with the

deployment of high-speed wireless data networks such as LTE [STB09;

AAMS13; AAMS12], allowed the pervasive growth of a huge variety of

Internet-related services. Nowadays, wherever he is and with just few

clicks, a person can perform a broad variety of tasks, such as sending

an email, paying a bill or watching the last episode of some definitely

unmissable tv show. Nevertheless, very little is known, by the majority

of people, about what happens through their clicks, and how data flows

through the network to and from their computer. In order to enlighten

this aspect, we need to grasp the real meaning of the word “Internet”, and

its underlying physical infrastructure.

The Internet is a global system of interconnected computer networks.

A computer network is a collection of computers (hosts) and dedicated

3



Figure 1.1.1: Basic internetwork

hardware components (NICs1, switches, etc..) interconnected by com-

munication channels that allow sharing of resources and information. A

special device called router allows internetworking by forwarding packets

between different computer networks. Two routers form an IP2 [Pos81]

connection to exchange data between them, and in such case are said to be

adjacent. An Autonomous System (AS) [HB96] is a set of IP networks and

routers, which operates under control of a single and well-defined admin-

istrative authority. Actually, the number of operators running inside an

AS might be more than one, however from the perspective of an external

observer, they must act as one, exhibiting a unique routing policy. Two

ASes form a connection between them if they agree to exchange traffic

and routing information through two or more directly connected routers.

Figure 1.1.1 shows a small-scale example of how all these building blocks

are linked to each other.

This “network of networks” is growing on a daily basis through the

addition of new computer networks and new connection lines, however,

since ASes are independently administered, this growth is not controlled

1NIC: Network Interface Card, used to connect a computer to a network
2IP: Internet Protocol, part of the TCP/IP protocol suite
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by any central authority and thus the Internet can be considered as a

self-organizing complex system. This phenomenon can result in major

issues, since structure affects functioning, and a lack of knowledge of

the former, can result in several unforeseen problems for the latter, like

misfunctioning or even outages. Several researchers started to analyze

the Internet in the hope of understanding its topological structure and

evolutionary principles.

The first task carried out by researchers consists of measuring and

mapping the Internet topology. This is accomplished by inferring a graph3,

which represents how the different entities interconnect to each other

within the global Internet. Depending on the building block used, studies

and ongoing projects focus on different level of abstractions, at least four:

IP interface-level: each node is represented by an IP interface, while

edges are IP connections between pair of interfaces. Data is typically

gathered via Traceroute probes [cai; Dim; Ipl; Por].

Router-level: each node is represented by a router, while edges are IP con-

nections between pair of routers. Data is typically gathered by ap-

plying an heuristic to aggregate IP interfaces on the IP interface-level

graph [GS06; Key10], by setting peculiar IP options in Traceroute

probes [SBS08], by exploiting ad-hoc probes [GT00] and analyzing

the IP ID values of the probes sent [BSS08; KYLC].

PoP-level: each node is represented by a collection of routers located in

the same points of presence (PoPs), while edges are connections be-

tween pairs of PoPs. Data is typically gathered by applying reverse

DNS4 lookups [SMW02] or by looking for peculiar characteristics in

the IP interface-level graph [FS08].

AS-level: each node is represented by an Autonomous System, while

edges are connections between pairs of ASes, established via Border

3Graph: abstract representation of a set of objects where some object pairs are connected
by links

4DNS: Domain Name System, translates domain names to numerical IP addresses
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Gateway Protocol (BGP-4)5 [RLH06]. Data is typically gathered via

Route Collectors (see Section 2.2.1 of Chapter 2) or by applying IP-

to-AS techniques to infer an AS-level topology from the IP interface-

level graph [CSW01; MRWK03; MJR+04].

Once the Internet has been mapped through one of the above method-

ologies, the second task consists of analyzing and modeling the inferred

topology. Indeed, a proper understanding of the Internet properties and

the laws governing its growth, can result in a model able to foresee the net-

work evolution, and tackle most of the problems shown above. The task of

Internet modeling is made difficult by several problems [CHK+09; OW10],

here we list the three identified key problems:

1. The Internet is exponentially growing and so is the number of its

components. Moreover, being a “network of networks”, the Internet

is highly heterogeneous, so such components can be very different

from each other, in sizes, purposes, policies, etc.

2. The network evolution is not dictated by a central authority, but is

mainly the outcome of local economic and technical constraints.

3. Information about the structure and interconnections of an AS is

not public, because publishing it might favor competitors, and cur-

rent techniques used for data gathering are incomplete and often

unreliable.

The first two problems are specific for the modeling part, while the last

one is more related to the task of Internet mapping. Nevertheless, it is

important to keep in mind this problem when analyzing data or validat-

ing models with data, because scientific discoveries might be biased by

incorrect data and need to be rethought as our knowledge of it becomes

more accurate.

Several studies have been made in the field of Internet modeling,

at each of the level of abstractions previously shown (e.g. [ZLWX09]).

Although it represents the Internet at a coarser level, the AS level of

5BGP: Exterior gateway protocol designed to propagate routing information between
ASes
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abstraction is probably the most interesting to study. On the one hand, it

represents real-life interactions between organizations; on the other hand,

available data tends to be more reliable than in the other cases. Despite

of this, currently developed models (see Section 2.3 of Chapter 2) are

rather crude, fail in properly considering such interactions as the driving

forces behind the Internet evolution, and are becoming more and more

questioned as data gets more accurate [RWM+11].

1.2 Contribution

The final goal of this thesis is a deeper understanding of the driving forces

that are governing the growth of the Internet at the Autonomous System

level. The path towards this goal is hindered by the three key problems

which have been outlined in the previous section, and which are tackled

throughout the work.

The first contribution of the thesis is a novel methodology to partition

the Internet topology into two distinct blocks: the core and the periph-

ery. The former is a small, densely connected component, which collects

together the most important nodes of the network and captures the under-

lying community structure of the Internet. The latter is made up of most

of the Internet nodes, and represents “tendrils” of the topology, outside of

the central network backbone. This method uses one side of key problem

#1 against the other, as it tackles the large-scale nature of the Internet

by exploiting its heterogeneity. By showing that most of the interesting,

structural aspects of the Internet are captured by the core, we achieve a

huge complexity reduction for subsequent analyses.

The second contribution is an economic analysis of the different in-

teractions between the agents taking part into the core, using a game

theoretical framework to tackle key problem #2. More specifically, we fo-

cus on the dichotomy between the peering6 and transit7 interconnection

6Peering: interconnection policy through which two ASes agree to mutually exchange
traffic for free

7Transit: interconnection policy through which a customer AS pays is upstream provider
to access the Internet
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policies and point out the key role of Internet eXchange Points8 and the

emerging competition between them and Network Service Providers9 (all

these concepts will be detailedly introduced in Chapter 2).

The main achievement of the thesis combines the above results, which

are used as ground truth to devise a novel model for the Internet’s core.

The model embodies an innovative dynamic which reflects the driving

forces behind the evolution of the core, and is able to capture both statis-

tical and structural characteristics of the Internet’s core. Moreover, the

model is versatile and capable of accurately predicting the evolution of

the Internet’s core as long as we are able to foresee the growth of the

modeling parameters. As will be shown later, key problem #3 becomes

of crucial importance for this aspect: since the prediction properties are

based on data from real measurements, it is important to remove the

biases introduced by data incompleteness, in order to accurately predict

the future evolution of the Internet topology.

In the last part, the model is extended to the whole Internet by devising

simple attaching mechanisms for the periphery, and it is shown how it

outperforms existing topology generators.

1.3 Motivation

In a continuously growing environment, modeling and understanding

the Internet topology is a fundamental task from which many areas can

benefit:

1. The performance of algorithms and protocols is often influenced

by the underlying physical structure of the network. A better un-

derstanding of the Internet topology could help in the design of

structure-aware algorithms, exploiting the topology knowledge for

their advantage. Content Delivery Networks (CDN), for example,

are distributed computer networks that spread contents (especially

multimedia contents) to other users. Since these contents can ac-

8IXP: physical facility that allows ASes to interconnect directly
9NSP: high-level Internet Service Provider, part of the backbone
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count for thousands of Gigabytes, a CDN exploits proxies10 dis-

tributed around the globe to optimize data spreading. A better

understanding of the Internet structure could help in the optimal

placement of these proxies and boost the performances for final

users (for example by reducing the hop distance).

2. Since networks are supposed to perform reasonably well even in the

face of occasional malfunction of some components, fault-tolerant

network design is a very important task. This issue is particularly

difficult in the Internet environment, since there is no central au-

thority overseeing its growth but it is instead the reflection of local

efforts performed by individual ASes. A proper understanding of

the Internet topology could therefore give a huge insight to engi-

neers, helping them in the task of optimizing the Internet’s fault

tolerance.

3. As any other communication network, the Internet is subject to

the spreading of infections by malicious programs that replicate

and propagate themselves (worms11). An effective approach in

facing this kind of epidemics is the containment strategy, obtained

by placing firewalls12 in strategic network points. It is obviously

much easier to identify the optimal placement for these defense

mechanisms if the structure of the network is accurately known.

4. Internet Traffic Engineering deals with the issue of performance eval-

uation and performance optimization of operational IP networks. A

proper understanding of the network topology could help engineers

in many tasks: reaching the highest level of capacity in the Internet

backbone by optimizing link utilization, load balancing, manage-

ment of SLAs13 for granting and delivering the desired Quality of

10Proxy: server that acts as an intermediary for requests from clients seeking resources
from other servers

11Worm: self-replicating malware computer program
12Firewall: device designed to permit or deny network transmissions based upon a set of

rules
13SLA: Service Level Agreement, a service contract defining an agreement between a

customer and one or more service providers
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Service (QoS).

5. While new mechanisms (algorithms, protocols, firewalls, etc..) and

services are deployed, it is important to ensure that current mecha-

nisms and services will continue to operate. The ability to provide

such guarantees can heavily rely on the knowledge of the under-

lying topology. For example, CDN services cannot be envisioned,

made feasible, evaluated and optimized without intimate under-

standing of the topology.

To sum up, knowing the Internet structure is a very important point be-

cause structure affects functionality. Nevertheless, a point that is possibly

even more important is that of foreseeing network growth. As a matter

of fact, the Internet has an ever-changing topology. The ability to foresee

network growth is the only way to predict if both currently operating and

newly deployed mechanisms and services will continue to operate in the

future.

1.4 Structure of the Thesis

The remainder of the thesis is structured as follows:

Chapter 2 describes the Internet structure and its evolution up to now,

highlights the tools commonly used to analyze the topology and the

state of the art in Internet topology modeling.

Chapter 3 illustrates our first contribution, a novel methodology to par-

tition the Internet topology into core and periphery. Moreover, it

highlights the growing importance of exchange points within the

core. The Chapter is based on [AGL13].

Chapter 4 describes our second contribution: an economic analysis of

the different interactions between the agents taking part into the

core, using a game theoretical framework. This Chapter is based on

[AAGL14b; AAGL14a].
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Chapter 5 gives our evolving model for the Internet’s core, analyzes its

prediction capabilities and the biases introduced by the measuring

infrastructure. The Chapter is based on [AGL14b].

Chapter 6 extends the core model to the whole Internet, and compares

results obtained through it with existing topology generators. This

Chapter is partly based on [AGL14a].

Chapter 7 concludes, summarizing important results obtained and giv-

ing an overview of the future works.
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Chapter 2

Background

This chapter is split in three sections. In the first one we describe how

the Internet evolved through time to reach its current structure. In the

second section we illustrate how the network is being measured, and

current techniques used for the analysis of the Internet topology. In the

last section we describe the state of the art in Internet topology modeling,

taking into account static, dynamic and agent-based models.

2.1 The Global Internet Ecosystem

The Internet ecosystem is made of tens of thousands Autonomous Sys-

tems, interconnected together in a complex and dynamic manner. In this

section we illustrate how the Internet evolved through time to reach its

current structure, and who are the entities involved in such evolution.

2.1.1 The birth of the Internet

The Internet originated in the late 1960s when the United States Defense

Department developed ARPAnet (Advanced Research Projects Agency

network), the first experimental network of computers and the progen-

itor of what was to become the global Internet. ARPAnet was the first

successful experiment of a packet switching network, to which many
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others followed (NPL, CYCLADES, Merit, etc.). With so many different

networks, something was needed to unify them: in 1974, the TCP proto-

col was proposed [VCDS74], containing the first attested use of the term

internet, as a shorthand for internetworking. At that time, an internet was

any network using TCP/IP.

In 1986, the National Science Foundation (NSF) created the NSFnet

backbone network to allow access to supercomputer sites in the U.S. from

geographically spread organizations for research and education. It was

around the time when ARPAnet was interlinked with NSFNET in the late

1980s, that the term “Internet” was first used as the name of the large

and global TCP/IP network. By 1990, ARPAnet had been phased out,

while NSFnet continued to grow, and more and more countries around

the world connected to this Internet backbone [LCC+09].

The Autonomous Systems operating within the Internet at the NSFnet

epoch can be distinguished in the following categories [Nor11]:

Transit ASes, that provide connectivity through themselves to other net-

works. These ASes typically correspond to large backbones and

service providers, allowing Internet access to smaller ASes.

Stub/Multihomed ASes, that do not allow external traffic to pass through

them. While stub ASes are connected to only one other AS, multi-

homed ASes can be connected to multiple of them, so as to increase

fault-tolerance.

This paradigm produces as output a tree-like hierarchical structure for

the Internet topology [PSV04], shown in Figure 2.1.1.

2.1.2 From NSFnet to the beginning of 21th century

Around 1992 the government-funded NSF determined that the Internet

could and should be operated by the private sector, and devised a model

composed of a set of competing commercial backbones. The progressive

dismantlement of NSFnet gave rise to an early version of the commer-

cial Internet model as we know it, with the emergence of economical

relationships between ASes.
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Figure 2.1.1: NSFnet-like hierarchical structure

The late twentieth-century Internet ecosystem was largely dominated

by a hierarchical structure made of customer and provider Autonomous

Systems. The customer AS pays its upstream provider for the traffic

flowing on the link, both incoming and outgoing; in return, the provider

grants to all its customer access to the entire Internet. This “customer-

to-provider” relationship is also known as “transit”: the upstream AS is

called “transit provider”, and the resulting interconnection between the

ASes is known as transit link [Nor11].

The beginning of twenty-first century brought a new paradigm into

the environment, since more and more ASes found it beneficial to establish

“settlement-free” interconnections. This agreement envisages that neither

party pays the other for accessing its customers. In this case the two ASes

mutually agree to exchange traffic for free between them, and the only

cost they incur is that of laying out the physical link. The relationship is

also known as “peering”, and the two ASes establishing the peering link

are known as peers. Note however that, by exploiting a peering link, an

AS cannot reach all the Internet routes, but just the customers of its peer
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[GIL+11; Nor10a].

It is worth noting that there exists a third kind of relationship between

ASes, denoted as “sibling-to-sibling” [Gao00]. This type of connection is

typically applied between ASes owned by the same organization, there-

fore, from an economic standpoint, it is the same as peering. However,

differently from peering, two sibling ASes may use each other to reach

their respective providers (and therefore all the Internet routes). The focus

of this study is the relationship between organizations, and this kind of

connection does not capture this phenomenon. A possible way of dealing

with sibling-to-sibling connections could be grouping the involved ASes

in a single one, resulting in an AS that is under control of a single organi-

zation. Unfortunately, many times sibling tags are detected even if two

ASes are not part of the same organization. This could happen if one AS is

the customer of another AS but is also used as a transit backup, in case of

BGP misconfigurations, and many others [MWA02]. Therefore, applying

the grouping procedure described above could introduce more errors

than benefits. Since the number of sibling connections in the measured

Internet graph is very low, it is not expected to impact the obtained results,

thus we are not dealing with sibling relationships in this thesis.

The primordial hierarchical structure, together with the emerging

economical relationships, led to a decomposition of the Internet into tiers1.

Although there is no authority that defines tiers of networks participating

in the Internet, the most common definitions are the following [Nor11;

Wikb]:

Tier-1 ASes, standing at the highest level in the hierarchy. They form an

“elite club” of ASes able to reach the whole Internet without paying

any other Autonomous System. To reach this goal, Tier-1 ASes are

interconnected to each other through a full-mesh2 of peering links.

While this definition of Tier-1 can be separately applied to smaller

Internet regions (e.g. Europe, America, and so on), we will always

refer to the global Internet. In this context, the number of Tier-1

1Tier: level of a network
2Full-Mesh: interconnection such that each node is connected to any other node in the

network
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ASes is quite small (15-20) compared to the total number of ASes

[Wikb].

Tier-2 ASes, which buy transit from higher-level ASes (typically Tier-1).

Differently from Tier-1 ASes, they can engage in peering to reach

a portion of the network, but they still have to purchase transit to

reach the entire Internet. With a little abuse of terminology, in the

following we equivalently refer to Tier-2 ASes as Internet Service

Providers (ISP). For Tier-3 ISPs see the keyword Access Provider.

Tier-3 ASes, which solely purchase transit from other networks in order

to reach the Internet.

Depending on the belonging organization and the offered services, ASes

can be further categorized into [pee]:

Network Service Providers (NSP): high-level transit providers [Nor10b],

located in either Tier-1 or Tier-2. While all Tier-1 ASes can be consid-

ered NSPs, this is true for Tier-2 only if the AS sells transit to lower

level ASes. Like Tier-1 ASes, NSPs typically span several geographic

regions, and can be reached by smaller, regional ASes through their

Points of Presence (PoPs).

Access Providers (AP): low-level regional providers, giving eyeballs (i.e.

the end users) access to the Internet and its contents. They are

typically located in Tier-3. An access provider AS wishing to grant

Internet access to its users, needs to establish a link with a transit

provider, and pay for the traffic flowing on this link. For the sake of

conciseness, we use the term AP also to refer to all other kinds of

Tier-3 ISPs (Mailbox Providers, Hosting Providers, etc.), since many

APs provide these services themselves.

Content Providers (CP): responsible for the creation and management

of contents, and the relationships with those who use, enhance, or

support this content. Content providers are typically located in

Tier-3, since network operations are outside the objectives of their

mission. As shown in the next section, this is changing nowadays.
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Figure 2.1.2: The 20th century Internet

Research Networks (EDU): used by universities and/or other research

institutes.

The structure resulting from this new economic model, together with the

above categorization, is illustrated in Figure 2.1.2.

2.1.3 Towards a Flat Structure

Recent years have shown an exponential growth of peering links, with its

number approaching if not overtaking the number of transit links. The

introduction of peering meshes, as reported in [DD10], is responsible for

the evolution of the Internet from its previous, hierarchical structure, to a

flatter one. The emergence of such phenomenon has to be sought after the

birth of a new interconnection paradigm known as “public peering”, as

opposed to the classical one, referred to as “private peering”. In particular,

we have that [Nor11]:

Private Peering is the direct interconnection between the two parties

establishing the settlement-free agreement. The involved ASes lay
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out a point-to-point link to connect to each other. Tier-1 ASes use

this kind of agreement.

Public Peering is, again, a settlement-free interconnection between the

two parties, however in this case the involved ASes utilize a multi-

party shared switch fabric. The public, physical facilities provid-

ing this technology are known as Internet eXchange Points (IXPs)

[Eur].

The main benefit of establishing peering links, is that peer ASes can reach

each other without passing through their respective upstream providers,

thus saving transit money. However, since peers can only reach each

other’s customers, reaching multiple destinations requires the establish-

ment of many peering links. For example, if hundreds of ASes want to

exchange traffic between themselves without buying transit, they need

to establish a full-mesh of peering links. Under private peering, each

Autonomous System has to lay out physical interconnections one by one,

therefore establishing the peering mesh requires it to build hundreds of

links. This can result in high costs, possibly worse than establishing few

transit links.

The growth of IXPs, in number and in size, made it easy to establish

more and more peering meshes. In fact, when one AS joins an IXP, it can

publicly peer with all (usually a subset) of the other ASes connected to the

same IXP. This allows the Autonomous System to connect with hundreds

of ASes at a cost given only by a single public peering link, plus the

cost for joining the IXP. This last cost is related to hardware maintenance

and shared by all the parties, as will be shown after. Therefore, the

establishment of peering meshes through IXPs is an effective way of

reaching many other participants without passing through upstream

providers, thus saving lots of money. Moreover, this shortcut can also be

an effective way of shortening the path between two ASes, thus increasing

the overall network performances [Nor10c].

All these advantages are making the presence of IXPs a dominant

factor inside the Internet’s structure, transforming its past hierarchical

structure into a flatter one [GILO11; ACF+12; AG10]. As shown in Figure
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Figure 2.1.3: The 21th century Internet

2.1.3, large-scale Content Providers (e.g. Google) benefited from this

architecture as well, since by establishing peering sessions over IXPs, they

can effectively reduce the amount of traffic sent through costly transit

connections [Nor11].

2.2 Internet as a Complex System

2.2.1 Measuring the Internet Topology

There are two main measurement techniques for gathering information

about the Internet AS-level topology, based on active or passive probing.

The former, exploits a tool named traceroute to inject into the network

special packets able to discover the path between two endpoints. Active

probing is typically used when inferring router-level maps [GS06; Key10;

SBS08; GT00; BSS08; KYLC], while there are several drawbacks when

trying to obtain the AS-level topology, mainly due to dealiasing and

router-to-AS mapping issues [CSW01; MRWK03; MJR+04]. Moreover,

currently available datasets are incapable of giving an accurate view of
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Figure 2.2.1: Measuring infrastructure

the topology evolution, something which is needed for this research work

[cai; Dim; Ipl; Por].

The passive probing method consists in collecting inter-AS routing

information (i.e. BGP messages) from the routers composing the Internet

itself. The most common data sources exploited in this latter technique

are provided by several research projects [rip; Rou; PCH; BGP] which

deployed a set of route-collectors (RC) around the world aimed at collect-

ing as much information as possible about the Internet routing. A Route

Collector is a device that behaves like a BGP router, with the purpose of

gathering BGP messages from cooperating ASes, refereed to as feeders.

These projects make publicly available dumps of the BGP messages re-

ceived by their RCs. The main source of information in BGP data about the

AS-level topology is represented by the well-known mandatory AS PATH

attribute, which contains the sequence of ASes that the traffic crosses to

reach some destination [RLH06]. Figure 2.2.1 shows a RC receiving a BGP

message from the feeder AS 3549, highlighting the AS PATH attribute

contained in the message.

Since each feeder provides a representation of the network from its spe-

cific point of view, collected data has to be aggregated to obtain the com-

plete Internet topology. The ISOLARIO dataset [Iso], created by a team

of researchers at IIT-CNR, is generated using data collected by the RIS

[rip], RouteViews [Rou], BGPmon [BGP] and PCH [PCH] route collector
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projects. The data gathered is processed in order to obtain monthly-based

AS-Level topology graphs [CGJ+02]. The routing information gathered

by this methodology is considered reliable since it is collected directly

from devices that are effectively participating in the inter-domain routing,

and represents the result of the BGP decision process of each feeder. It

is known that, due to the limited number of feeders, the inferred AS-

level topology is incomplete [OW10]. Nevertheless it is a useful source

of information, that can be used provided that one takes into account the

incompleteness of available data when drawing any inference.

2.2.1.1 The Enriched Internet Graph

The dataset provided by ISOLARIO consists of several (one per month)

AS-level Internet topology graphs, where nodes represent ASes, and

edges are the BGP connections between them. Furthermore, the dataset is

enriched through the following additional information:

Node Type: each node, as shown in Section 2.1.2, can be either a Network

Service Provider, an Internet Service Provider, an Access Provider, a

Content Provider (CP) or something else (Non-Profit, Educational,

Research, etc..) [pee].

Node Peering Policy: each node has a specific peering inclination, or

policy, indicating its willingness to participate in peering agreement.

Each node publishes its peering policy, which can fall into one of

the following categories: open, selective or restrictive. An “Open”

peering inclination is a willingness to peer with any other AS in

the ecosystem, while a “Selective” peering inclination reflects the

existence of requirements for establishing peering sessions. Finally,

a “Restrictive” peering inclination reflects a desire not to peer with

anyone other than existing peers. As an example, Tier-1 ASes all

have restrictive peering policies, because they peer with each other

but refrain from doing so with any other AS [Nor10a].

IXP Participation Lists: each IXP provides through its website a publicly

available list of ASes participating into the IXP. Therefore, for each
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node, we can infer the IXPs it is participating into.

Link Type: as shown in Section 2.1.2, relationships between ASes can be

either transit or peering. Unfortunately, this kind of information

is typically hidden by network operators, due to its key role in

economic agreements. Despite this, researchers have developed

algorithms aimed at capturing such relationships [GIL+11; Gao00].

Thanks to this, the dataset can be enriched by “tagging” each edge

in the graph with the appropriate relationship, either transit or

peering.

Please note that while the first three piece of information are publicly

available and collected on websites, such as [pee], the last one is the

result of an a posteriori analysis, since network operators are typically

reluctant to publicly reveal such information, and thus it is far less reliable.

Nonetheless, when looking at the network from a high-level perspective,

it is still a valid and useful piece of information.

2.2.2 Understanding the Internet Topology

With over forty-thousand nodes and hundreds of thousands links, it is

definitely impossible to study the Internet AS-level topology via direct

graphical representation. It is however feasible to obtain a statistical and

structural description of it, using topological measures. Here we review

the topological measures used for Internet topology analysis, typically

borrowed from the framework of graph theory [PSV04; SLH06].

2.2.2.1 Graph Measures

Formally, we represent the AS-level Internet topology as a graph G =

(N,E). N is the set of nodes and E ⊆ N × N is the set of edges in

the graph. As previously said, in the graph (or network) a node (or

vertex) represents an Autonomous System, while edges (or links) are

BGP connections between ASes: all these terms are used interchangeably

through the thesis. We indicate with |N | the number of nodes in the

graph, and with |E| its number of edges. Two nodes of the graph, say
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i, j ∈ N, i 6= j, are said to be adjacent if they are linked by an edge, that

is if (i, j) ∈ E. In this case the edge is said to be incident to the nodes it

joins. If G is an undirected graph, than edges (i, j) are unordered pairs,

meaning that (i, j) is identical to (j, i). If G is directed, than (i, j) are

ordered pairs, and represent the “from i to j” relationship.

Unless otherwise stated, in the following we will always refer to

undirected graphs, therefore, when we say that (i, j) ∈ E, we implicitly

say that so does (j, i). As any undirected graph, G can be represented by

means of an adjacency matrix A, such that:

aij =

{

1 if (i, j) ∈ E

0 otherwise

The number of node pairs in the graph can be written using Newton’s

Binomial coefficient as:

(

|N |
2

)

=
|N |(|N | − 1)

2
.

Please note that this is also the maximum possible number of edges in

the graph, representing a full-mesh. The global network density d is given

by the ratio of the number of edges in the network, and its maximum

possible number, therefore:

d =
|E|

1/2 · |N |(|N | − 1)
.

A clique is a subset of nodes in a graph such that each node is adjacent

to any other node. The clique is a full-mesh structure, since it has an edge

for any node pair. Therefore, using the previous formula, a clique of k

nodes has k(k − 1)/2 edges.

The topological measures typically used in this field, can be divided

in two groups, namely: local and global measures.

a) Local Measures A topological measure is local if it takes into account

only node interconnections and interconnections between node neighbors.

The set of neighbors of a node n can be formally expressed as:
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N(n) = {j s.t. (n, j) ∈ E}

Therefore, given a node n, a local measure only considers pairs of

edges (i, j) ∈ E such that either i or j belong to n ∪ N(n) . The most

common local measures are:

Degree The degree kn of the n− th node of the graph is the total number

of edges incident to it, therefore it is also equal to its number of

neighbors |N(n)|. The interpretation of the degree is immediate, as

it tells the propensity of a node to establish relationships with others.

For directed graphs, it is possible to obtain two different degrees

for each node: the in-degree is the number of links “terminating”

in node n (from N(n) to n), the out-degree is the number of links

“originating” in node n (from n to N(n)).

Average neighbor degree The average degree of the neighbors of node

n, written knn(n), is formally defined as:

knn(n) =
1

kn

∑

j

Anjkj =
1

kn

∑

j∈N(n)

kj .

A high (low) value of knn indicates that the neighbors of a node

are high (low) degree nodes. Therefore, this measure can be inter-

preted as the attitude of nodes to establish connections with highly

connected zones, i.e. hubs of the network.

Clustering The clustering coefficient cn of the n− th node of the graph

is defined as the ratio of the number of edges between its neighbors

to its maximum possible number, similarly to the network density.

Formally, we write:

cn =
|E(n)|

1/2 · kn(kn − 1)
.

where E(n) = {(i, j) s.t. i, j ∈ N(n)} is the set of edges between the

neighbors of n, and kn is its node degree. Please note that cn ∈ [0, 1]:

when cn = 0, the topology is a star, and the neighbors of n are
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Figure 2.2.2: Local properties of a graph

all disconnected from each other; when cn = 1, all the neighbors

are interacting with each other in full-mesh, thus forming a clique.

Therefore, this measure can be interpreted as the attitude of nodes

to form densely connected groups, i.e. clusters.

Figure 2.2.2 illustrates an example of computation for the described local

measures. Please note that {A,B,C,D} is a full-mesh (the clustering of B

is 1), while node E is the hub of a star topology (its clustering is 0).

b) Global Measures A topological measure is global if it takes into

account all the possible nodes and interconnections of the graph.

Shortest Path Length The shortest path length (or geodesic) lij is equal

to the number of edges forming the shortest path from node i to

node j. The higher the shortest path length, the higher the number

of hops between two nodes of the graph, therefore this measure

can be immediately interpreted as indicator of the distance between

any two nodes of the graph. Shortest paths are the “best” paths

that can be used by two nodes to reach each other. Even if it is

not always the case (due to economic and technical constraints

[Gao00]), they are typically interpreted as the paths actually used

by the nodes, therefore it is reasonable to think that a node crossed

by many shortest paths is highly utilized, and therefore “central” in

the network.
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Figure 2.2.3: Global properties of a graph

Betweenness Centrality The betweenness centrality bn of the n−th node

of the graph is the number of shortest paths passing through it

among all possible ones. Since a high (low) value of betweenness,

indicates that many (few) geodesics pass through a given node, this

metric can be interpreted as the “centrality” of such node. Another

betweenness measure is the edge betweenness, which counts the

number of shortest paths passing through a given link.

Closeness Centrality Another centrality measure is the closeness central-

ity ccn, which measures the average distance of of the n− th node

of the graph, to all the other nodes. Both betweenness and closeness

can be normalized to represent values between zero and one.

Coreness [AHDBV06] The coreness of a node is defined as the highest

k-core to which the node belongs. A k-core is a maximal connected

subgraph in which all nodes have degree at least k, where maximal

means that we cannot include another node to the subgraph without

violating the minimum degree property (see Figure 2.2.4 in the next

section). Coreness is a global measure similar to clustering, as it

reveals the existence of densely connected zones in the network.

Figure 2.2.3 shows an example of computation for the described global

measures. Note that the betweenness centrality of E is zero, as it is

not crossed by any shortest path, however its closeness centrality is not

infinity, as it is connected to the topology.

The topological measures just outlined, both local and global, can be

used to statistically describe the graph at different levels of granularity.
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Specifically, we use the following classification [RFT13]:

Coarse-grained Measures are those that concisely represent the graph

with a unique scalar value. The average degree, knn, clustering

coefficient, shortest path, betweenness and closeness, are all coarse-

grained measures, obtained by averaging results obtained for a

single node (or node pairs), to the whole graph. We use the notation

〈·〉 to denote average values, e.g. 〈k〉 is the average degree of the

network. Another coarse-grained measure typically used is the

network diameter D, indicating the maximum geodesic considering

all possible node pairs.

Medium-grained Measures are those that represent the graph using dis-

tributions of values. For example, the degree distribution P (k) is

the probability distribution of the degree measure over the whole

network. The probability of observing a given degree k can be ex-

pressed as the ratio of the number of nodes with degree k, to the

total number of nodes in the network. If the network has |N | nodes

and nk of them have degree k, then we have:

P (k) =
nk

|N | .

We can apply the same reasoning to the shortest path length. In this

case, P (l) is the probability distribution of the geodesic measures

over the whole network. If the network has |N | nodes and nl of

them have geodesic l, we have:

P (l) =
nl

1/2 · |N |(|N | − 1)
.

In the same way, we can define probability distributions for all the

other local and global measures of the graph.

As will be shown later on, both coarse and medium-grained graph met-

rics have been extensively used for analyzing and modeling the Internet

topology [PSV04], due to their ability to compactly represent its statistical

characteristics. Nevertheless, they show several limitations, like the im-

possibility to study through them the existence of tiers and the interaction
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between different network tiers. These aspects are crucial for a proper

understanding of many real networks such as the Internet.

In order to tackle this problem, new fine-grained measures were in-

troduced. The goal of this class of measures is capturing the structural

characteristics of the network through the identification of their underly-

ing community organization.

2.2.2.2 Community Structure

Most real networks typically contain parts in which the nodes are more

tightly connected to each other than to the rest of the network. Although

there is no unique definition, the sets of such nodes are usually called

clusters or communities. They are a signature of the hierarchical nature of

the system. Community detection has attracted much attention in recent

years, and the literature on community detection is huge [For10]. Probably,

the most famous method for community detection is based on modularity3

maximization [New04]. However, this method has several drawbacks

which bring to degeneracy for networks with highly hierarchical structure

[GMC10], such as the Internet. Therefore, here we focus only on the most

important methods which have been successfully applied to the Internet

AS-level graph.

There are two main categories of community detection methods, pro-

viding either a partition or a cover of the network. A partition is a division

of the graph in clusters, such that each node belongs to only one clus-

ter, while a cover is a division of the graph into overlapping (or fuzzy)

communities [For10].

Partition Methods divide the graph in clusters, such that each node be-

longs to only one cluster. The most important methods in this class

are the k-core decomposition [CHK+07] and the k-dense method

[GLO11b; SYK09]. The former relies on the previously defined

concept of k-core, while the latter uses the concept of k-dense. A

k-dense is a maximal connected subgraph in which each pair of

3Modularity: benefit function that measures the quality of a particular division of a
network into communities
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adjacent nodes has at least k common adjacent nodes. Both methods

define nested communities, i.e. a k-core (k-dense) community is

contained in a (k − 1)-core ((k − 1)-dense), and it is not possible for

communities at the same k level to overlap.

Cover methods divide the graph into a set of overlapping communities.

The most important methods in this class are the Clique Percolation

Method (CPM) [PDFV05], the Greedy Clique Expansion (GCE) al-

gorithm [LRMH10] and the agglomerativE hierarchicAl clusterinG

based on maximaL cliquE (EAGLE) algorithm [SCCH09]. All of

them detect communities starting from maximal cliques, and com-

bine them to form communities using chains (CPM), fitness-based

expansions (GCE) or clique-based modularity measure (EAGLE).

Anyways, the basic building block for these methods are maximal

cliques: a clique is maximal if it is not a subgraph of a larger clique,

that is, it cannot be extended by including an adjacent vertex.

Figure 2.2.4 shows examples of k-cores, k-denses and maximal cliques

according to above definitions. Please note how the granularity becomes

finer as we go from k-core to cliques. Note also that while {A,B,C},

{A,B,D}, {A,C,D}, {B,C,D} are cliques of size 3, they are not maximal

since we can always add one more adjacent node and obtain a maximal

clique of size 4.

2.2.2.3 State of the Art for the Internet Topology Analysis

The topological measures outlined in Section 2.2.2.1, both coarse and

medium-grained, have been extensively used for analyzing the statistical

characteristics of the Internet topology. Table 2.1 shows the behavior of

coarse-grained topological measures for the Internet AS-level graph as a

function of time.

Indeed, we observe that most of the average values do not show large

fluctuations and seem to be more or less stable in time. The first feature

that can be inferred through this table is the so called “Small-World”

property, first observed in [WS98]. This characteristic, to be precise, refers

to networks in which:
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Figure 2.2.4: k-cores, k-denses and maximal cliques

Average Values 2006 2008 2011 2013

Nodes 22,634 27,896 37,278 44,900

Edges 65,268 85,185 122,799 179,770

Degree 5.77 6.11 6.58 8.00

Clustering 0.32 0.30 0.29 0.32

Knn 506.61 542.73 567.67 695.25

Shortest Path 3.71 3.72 3.76 3.72

Betweenness 30731.6 38003.8 51616.0 61141.9

Closeness 0.27 0.28 0.27 0.27

Coreness 3.00 3.17 3.40 4.15

Table 2.1: Internet average graph metrics

i. the average shortest path length 〈l〉 scales logarithmically (or slower)

with the number of nodes, despite of the low global network density;

ii. the average clustering coefficient 〈c〉 is several orders of magnitude

larger than the corresponding value for a graph where nodes are

randomly interconnected (see next section).

Figure 2.2.5 shows the shortest path length frequencies observed for
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Figure 2.2.5: Internet shortest path frequencies - 2013

the Internet in April 2013. We observe that not only the average shortest

path length is very small, even smaller than the logarithm of the number

of nodes, but also the network diameter is pretty small, indicating that

even in the worst-case scenario, each two nodes of the network can com-

municate in few steps. The small-world property can be interpreted as

follows. The Internet has a low number of edges compared to its number

of nodes; despite of this aspect, it is well connected, in the sense that two

nodes of the network can reach each other in few hops, and there is a

non-negligible presence of local clusters.

The second feature of the Internet topology, first observed in [FFF99], is

the “Scale-Free” property. This property is based on the observation that

some medium-grained measures, mainly the degree, are characterized

by a heavy-tailed probability distribution, that can be reasonably approx-

imated by power-law forms. In practice, heavy tail means that there is

a non-negligible probability of getting very large values. A Gaussian

distribution, for example, does not exhibit the heavy tail property, since

the probability of obtaining large values becomes exponentially small as

we leave the mean value. In this sense, heavy tail distributions typically

represent wild as opposed to mild randomness. A power-law form, is a

specific type of heavy-tailed distribution, whose density function follows

the law:
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Figure 2.2.6: Internet degree ccdf - 2013

P (k) ∼ k−γ

where γ > 1 is the power-law exponent. As typically done in the

literature, we study the Complementary Cumulative Distribution Func-

tion (CCDF), which has the advantage of dealing with cumulative values,

therefore it is considered much less noisy [PSV04]. We recall that the

CCDF of a continuous random variable (e.g. the degree) can be expressed

as the integral of its probability density function P (k) as follows:

Pc(k) = 1− Pcdf (k) = 1−
k
ˆ

−∞

P (k′)dk′ =

∞̂

k

P (k′)dk′

where Pcdf (k) is the cumulative distribution function (CDF). The

CCDF is also known as the tail distribution, since its value at point k

represents the probability that a random variable (e.g. the degree) has

value greater than k. For power-law forms, it is easy to find that:

Pc(k) ∼ k1−γ

With a little abuse of terminology, in the following we will sometimes

refer to the degree CCDF as “degree distribution”. Figure 2.2.6 shows the
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CCDF of the degree observed for the Internet in April 2013. The scale-

free property can be observed by visualizing the plot in a log-log scale4,

where the power-law becomes a straight line, and the measured degree

distribution approximately follows this line. Please note that while the

exact definition of scale-free property refers to networks whose degree

distribution follows, at least asymptotically, a power law, the term scale-

free informally refers to the fact that the degree distribution maintains the

same shape at all scales.

The small-world and the scale-free properties just outlined have been

deeply investigated, and researchers exploited them in order to build

models exhibiting such properties (see next section). However, several

works have shown that they are incapable of accurately representing

the most important properties of the Internet. First of all, we have to

consider that more recent arguments made in [CGWJ02; WGJ+02], state

that the power law behavior observed in [FFF99] is only evocative. This

theory is also supported by the evidence that today, with data getting

more accurate, the heavy-tailed degree distribution deviates substantially

from an ideal power law. Second, but probably most important, these

topological measures are inadequate to describe the hierarchical structure

of the Internet [HRI+08], made of tiers and communities.

In order to understand the structural and functional properties of

the Internet, it is fundamental to interpret the overall organization of

the graph as the coexistence of different building blocks. Community

detection methods have been applied to the Internet AS-level graph with

the purpose of discovering such building blocks, or communities. There

are many studies on the structural properties of the Internet’s graph which

partition the network into communities with techniques such as k-core

decomposition [CHK+07] and the k-dense method [GLO11b; SYK09].

However, we believe that, within the Internet environment, each com-

munity shall identify dense subgraphs, and overlapping communities

should be allowed. Take, for example, an AS participating into multiple,

different, Internet eXchange Points. If we can represent each IXP with a

community, it is obvious that such communities will overlap. Therefore,

4Log-Log: vertical and horizontal axis of the plot are logarithmically scaled
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Figure 2.2.7: Internet maximal cliques distribution - 2013

cover methods better fit the topology under consideration. In this context,

Internet-related works typically refer to the CPM method or to its vari-

ations [PDFV05; GLO11a; GLM12; LRMH10; SCCH09]. Anyways, as we

have shown in the previous section, the most important cover methods

detect communities starting from maximal cliques.

Cliques are a useful fine-grained tool to identify communities, because

they identify full-mesh structures (e.g. peering meshes generated by IXPs)

in the network, typically indicating the presence of high cohesion between

the nodes. Figure 2.2.7 shows the maximal clique frequencies for the Inter-

net topology as of April 2013. Each dot in the plot represents the number

of maximal cliques of size k. With a little abuse of terminology, in the

following we will also refer to this plot as “maximal clique distribution”,

even if it is not normalized. The high number of large cliques is an im-

portant, quantitative indicator of the underlying community structure

of the Internet. In particular, the figure compares the clique distribution

of the Internet topology, with that observed for a graph of the same size

whose nodes are randomly interconnected, revealing how much the two

structures differ. Although this distribution is highly sensitive to the

addition/deletion of a small part of the network, we believe that a mo-

del aimed at representing the Internet realistically must take cliques into

account, if it wants to properly grasp structural properties of the Internet.
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2.3 The Art (and State) of Internet Modeling

The modeling of the Internet focuses, at the large-scale level, on the con-

struction of graphs that reproduce the topological properties observed in

the Internet AS-level map. Here we review the models known in the liter-

ature, highlighting their strengths and weaknesses. We divide the models

in two main classes, depending on the used approach: complex networks

based models, rooted in statistical physics, and strategic optimization

based models, rooted in game theory [Wika].

2.3.1 Static and Dynamic Models

The simplest conceivable model for any complex network is that of static

random graph, where nodes of a fixed size network are randomly con-

nected with some probability. This model is characterized by a complete

lack of knowledge of the principles guiding the creation of edges between

nodes. The availability of the data and results shown in previous sections,

led researchers to propose models better capturing the statistical charac-

teristics of the Internet. Complex networks based models can be further

divided in two classes: static models, which consider a graph of fixed size,

and dynamic models, which focus more on the evolution, by dynamically

adding new nodes to an initially small network [PSV04].

2.3.1.1 Random Graph Models

Erdős–Rényi The first theoretical model for random networks was pro-

posed by Erdős and Rényi [ER60; Gil59]. This static model has been

commonly used to describe complex networks with no apparent regulari-

ties, and was applied to the Internet as well. The random graph model

assumes that the graph G = (N,E) has a fixed set of |N | different nodes

and each of the possible |N |(|N |−1)
2 edges is present with probability p.

In order for the model to be an accurate representation of the Internet,

the first thing to do is to check if it reproduces the small-world and the

scale-free properties observed for the measured topology. To this end, we

can compute:
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Degree: the average number of edges in the graph is given by:

〈|E|〉 = 1

2
|N |(|N | − 1)p.

Since each edge contributes to the total network degree by 2, we can

obtain the average degree as:

〈k〉 = 2 〈|E|〉
|N | ≃ |N |p

In order to obtain the degree distribution, we observe that each node

has degree k if it is connected to k other nodes and not connected

to the N − 1− k others. Given that the wiring probability p is fixed

and independent for each edge, the degree distribution is binomial:

P (k) =

(

N − 1

k

)

pk(1− p)N−1−k.

Clustering: for any node, the probability that two of its neighbors are

connected to each other is given by the wiring probability, therefore

the average clustering is p. Using above formulas we can rewrite

the clustering as a function of the network size:

c = p =
〈k〉
|N |

note that at fixed values of the degree, as the network grows in size

the clustering coefficient becomes increasingly smaller.

Shortest Path: Given the random position of edges and neglecting cycles,

starting from node i we can reach, on average in one step, 〈k〉 nodes.

Since each of these nodes is connected on average to other 〈k〉 nodes,

we can reach in two steps 〈k〉2 nodes, therefore in l steps, we can

reach on average 〈k〉l nodes. In order to reach the whole graph in l

steps we require that 〈k〉l = N , therefore the average shortest path

length is [New03]:

l =
log |N |
log 〈k〉

note that this quantity grows logarithmically with respect to the size

of the graph.
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These results show how the random graph model exhibits one side of the

small-world property, namely the “small” shortest path length, but fails

to reproduce both the high clustering levels and the scale-free property

observed for the Internet.

Watts-Strogratz The empirical observation of large and stationary clus-

tering coefficient in real world networks, led to the construction of models

that allow a tuning of this parameter. The Watts-Strogratz [WS98] mo-

del starts with a set of |N | nodes placed on a ring, where each node is

connected to its 2m nearest neighbors5, half on the clockwise sense and

the other half on the counterclockwise sense. For each node, each edge

connected to a clockwise neighbor is preserved with probability 1− p and

randomly rewired6 with probability p. The following model exhibits the

following properties [BW08]:

Degree: the degree distribution is binomial, similar to that of the Erdős-

Rényi graph:

P (k) =

min(k−m,m)
∑

n=0

(1− p)npm−n (pm)k−m−n

(k −m− n)!
e−pm k ≥ m

Clustering: the clustering coefficient takes advantage of the regular struc-

ture of the initial graph, and can be tuned by adjusting parameters

p and m. It is possible to compute:

〈c〉 ≃ 3m(m− 1)

2m(m− 1)
(1− p)3

note that, for p ≪ 1, the clustering coefficient is finite and indepen-

dent of the network size.

Shortest Path: the initial network of this model is similar to a regular

grid, therefore it can be shown that the shortest path length grows

linearly with the network size. Thanks to the shortcuts introduced

5The “near” property refers to the euclidean distance between the nodes
6Rewire: delete the link and generate a new link between different node pairs
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by the rewiring steps, the average shortest path length reduces dra-

matically. In particular, for a sufficiently large rewiring probability

p ≫ 1/|N | it can be shown that:

l ∼ log |N |

therefore the average shortest path length has values similar to that

of random graphs.

These results show that, at least in the interval 1/|N | ≪ p ≪ 1, the Watts-

Strogratz model yields both sides of the small-world property, as it is

able to produce high values of clustering. Unfortunately, even this model

is unable to produce the scale-free degree distribution observed for the

Internet and many other complex networks.

2.3.1.2 Evolving Network Models

Barabási-Albert Model As we said before, dynamic models focus more

on modeling network growth rather than statically reproducing the graph.

The first growing network model is due to Barabási and Albert [AB99;

AB02], and is also known as BA-model. Following its introduction, many

different models have been proposed, based on the same intuition. Ba-

sically, the network grows from an initial core of m0 nodes to its final

size |N | by a sequence of time steps. Each time step t = m0, .., |N | a new

node is added, and establishes connections with pre-existing nodes. This

means that the “age” t of a network is equal to the number of vertices

in the graph, and each vertex is uniquely identified by the time of its

appearance. The system can be described by means of a “master equation”

that dictates the time evolution of p(k, s, t), the probability that node s has

degree k at time t. In the large size limit, the stationary degree distribution

can be obtained as:

P (k) = lim
t→∞

P (k, t)

where P (k, t) is the degree distribution at time t, obtained by averag-

ing p(k, s, t) over all the nodes:
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P (k, t) =
1

t

t
∑

s=0

p(k, s, t).

The Barabási-Albert model uses a mechanism known as “preferential

attachment” (PA)7. According to this mechanism, at each time step t a

new node appears in the network, and is linked to older nodes with a

probability proportional to their degrees. Note that if m0 = 0 then the

total network degree is 2t. The connectivity distribution of sites obeys to

the master equation:

p(k, s, t+ 1) =

[

k − 1

2t

]

p(k − 1, s, t) +

[

1− k

2t

]

p(k, s, t)

In [DM03] it is shown that, given the proper boundary conditions8, the

equation above can be rewritten, after transition to the continuous-time

approximation, as:

P (k) +
1

2
[kP (k)-(k − 1)P (k − 1)] = 0

whose solution is:

P (k) =
4

k(k + 1)(k + 2)

Interestingly enough, this distribution is scale-free. In particular it

follows a power-law with exponent 3:

P (k) ∼ k−γ γ = 3

Starting from this basic model, many other models have been proposed

by varying the attachment mechanism. Interestingly enough, the power-

law degree distribution is retained only in the case of linear preferential

attachment, and the addition of constants leads to a modification of the

exponent. In [DMS00] the authors generalize the BA-model with the

following assumptions:

7Preferential attachment is also known in literature as the rich-get-richer phenomenon
8i) the initial degree of nodes and ii) the initial network size

40



t > s

t < s

s

m

q(s)

k(s)

Customers

Providers

Figure 2.3.1: Generalized preferential attachment

i. Node s has an attractiveness proportional to its in-degree, and given

by: As = A(0) + qs.

ii. At each time step t a new node appears and links to other m nodes

with a probability proportional to their attractiveness.

iii. If we define a = A(0)
/m and m0 = 0, then the total network attrac-

tiveness at time t is AΣ = (m+A0)t = (1 + a)m.

Figure 2.3.1 shows the generalized PA mechanism.

The connectivity distribution p(q, s, t) obeys to this master equation:

p(q, s, t+ 1) =

m
∑

l=0

P(m,l)
s p(q − l, s, t)

where P(m,l)
s is the probability that node s of starting in-degree q − l

receives exactly l links out of a total of m added in the time step (therefore

obtaining in-degree q):

P(ml)
s =

(

m

l

)[

As

AΣ

]l [

1− As

AΣ

]m−l
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Note that the probability that a node receives more than 1 link for each

new node entering the network is vanishingly low for t → ∞. Given

the proper boundary conditions, after transition to the continuous-time

approximation, the above equation can be solved and yields the following

degree distribution:

P (q) ∼ q−γ γ = 2 + a

As with previous models, in [KE02] and [CH03] the authors tackle the

problem of measuring the average shortest path length and the clustering

coefficient of the BA-model, with the following results:

Clustering The clustering coefficient can be computed, in the continuous

approximation, by integrating the probability that any two nodes

are connected over all the neighbors of a given node. The result

states that:

c =
m

8|N | (log |N |)2

Shortest Path The power law degree distribution implies that there are

nodes in the network with a very large degree. These nodes act as

hubs, therefore it is natural to expect a small shortest path length. It

has been proven analytically that the average shortest path length

of the Barabási-Albert network scales as:

l ∼ log |N |
log log |N |

The strength of this model is that of yielding, with simple dynamical rules,

the scale-free property observed for the Internet topology. In particular,

with an accurate choice of the power-law exponent 2 < γ < 3, the model

is able to reproduce the degree distribution observed in many real world

networks. However, as far as the small-world property is concerned, the

model is only able to reproduce the small shortest path length. In fact,

these results reveal that the clustering coefficient decreases as the network

size grows, which is an evident weakness of the model.
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Newer Models Since both the Barabási-Albert model and the Watts-

Strogratz model achieve good results with respect to some metrics but

lack in others, more recent attempts in modeling the Internet focused on

the extension of one or the other, in order to achieve the missing properties.

The author of [New03] highlights a technique to generalize the random

graph model by plugging inside it a specific degree distribution. This

technique has been extended in [CZH07] to obtain a Watts-Strogratz

model with tunable degree distribution. This technique is rather crude, as

it simply reproduces observed properties without actually understanding

the principles that lie behind them, therefore it is useless if we want to

grasp the principles driving the growth of the Internet.

In [HK02], the BA-model is extended by the addition of a “triad forma-

tion step” in order to achieve higher and tunable clustering. The method

is based upon the realization that in many real networks the probability

of linking two nodes grows with the number of their common neighbors,

as shown in [New01]: basically “friends of my friends tend to become my

friends as well”. An analytical formulation of this property and deriving

consequences is described in [V0́3]. The realization of this phenomenon

led to the construction of many other models based on the same consid-

erations, like Community Guided Attachment [LKF05] and the Forest

Fire Model [LKF05]. A new research branch intends to model the evo-

lution of the Internet by taking advantage of existing economic models.

The Wealth-based Internet Topology model (WIT) [WL10] captures the

dynamics of open market competition between ASes by using a wealth

function and forms new links by increasing the degree of ASes on the

basis of their wealth. By using different wealth-exchange models, WIT

can construct graphs with various degree distributions (among which

the power law) and reproduce both the small-world effect and a high

clustering.

While trying to reproduce coarse and medium-grained measures ob-

served for the AS-level topology via reasonable considerations, all these

models lack in explaining the driving forces responsible of the Internet’s

structure. As observed in Section 2.1.2, and further shown through the

fine-grained measures of Section 2.2.2.3, the Internet has a hierarchical
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structure made of tiers and communities [HRI+08]. Nevertheless, none of

the proposed models generates this kind of structure. The importance of

it can be understood through an enlightening story. Based on the preferen-

tial attachment mechanism, researchers claimed that the Internet displays

a high degree of tolerance against random failures, but is extremely vul-

nerable to targeted attacks due to the presence of important hub nodes in

the network [AJB00]. Reality is that Internet is extremely robust by design

thanks to its multi-tiered structure and the ability to re-route traffic in case

of failures [WAD09]. Moreover, a critical examination of the principles on

which new ASes attach to old ones reveals that the mechanism is quite

different from a preferential attachment [RWM+11], and the observed

power law behavior is only evocative.

An interesting suggestion on the topic of modeling with communi-

ties comes from [LJKL09], where the authors try to obtain a community

structure by exploiting the social similarity of nodes. The work however

only hints at how this parameter should be set without giving a gen-

eral definition. Moreover, the resulting community structure is tested

using modularity measures that, as we have explained, poorly fit the data

observed for the Internet’s topology.

To sum up, empirical evidence shows that hierarchy and structure

play a fundamental role in the shaping of the Internet, therefore, any

realistic attempt to model this network has to deal with such features

[PSV04; HRI+08]. This is a difficult but fundamental step if we want to

avoid wrong inferences like the ones which have been made in the past.

2.3.2 Network Formation for the Internet

Static and dynamic models analyzed so far seek to model the network

using approaches rooted in statistical physics. Network formation seeks

to model how a network evolves by identifying mechanisms upon which

nodes interact using strategic optimization. This kind of models where

pioneered by Jackson and Wolinsky [JW96]. Basically, at the beginning

of time, a network with a fixed number of nodes, also called agents or

players in this context, is created. Every agent has a utility function,
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which represents the benefits and costs of interconnecting with another

player. Usually, forming or maintaining a link will have a cost, but having

connections to other nodes will have benefits, such as the decreased

distance to them. Each agent tries to maximize, in a myopic and selfish

manner, its utility function. Since this utility function does not depend

exclusively on himself, but also on the behavior of the other players, this

task is classified as a game theoretical problem. The method seeks to

understand, given some initial setting (parameters and utility functions),

what kind of network structure will emerge as an equilibrium of this

game.

Models based on this intuition where enhanced to take into account

dynamic settings and evolution [CAAP06; Jac10]. An Internet model

that finds its root in this kind of intuition is the heuristically optimized

trade-off (HOT) model [FKP02], which shows how power-law forms can

emerge as the result of trade-off mechanisms, i.e. the optimization of

conflicting objectives for the different nodes.

Network formation models can be divided in two sub-classes, depend-

ing on their objectives and the tools used for the analysis: agent-based

and game theory-based models.

Agent-Based Approach This approach typically relies on simulations to

understand the dynamic of network formation and the resulting structure

of the network. The main advantage of this method, is that it is possible

to drastically reduce analytical considerations for the model, and once the

initial setting and the utility function of each agent have been established,

the outcome of the game can be found by simulating their behavior.

Several agent-based computational models have been applied to the

Internet, such as GENESIS [LDD12]. Despite of its interesting advantages,

this approach has several drawbacks. First of all, in general it is not

guaranteed that the simulation will converge, and it not known “where”

it will converge: the simulation goes on in the hope of finding one of the

possibly many equilibria. Second, even if it is possible to include more

realistic considerations, this impacts on the analytical tractability of the

model. As a matter of fact, analytical analysis can yield more interesting
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results on the dynamic and the laws governing the interaction between

the agents, something that is typically hidden by pure simulation.

Game Theoretical Approach The realm of network formation games

(see [Jac10; Goy07]) investigates existence and properties of equilibria in a

network created by rational players, each one with their costs and utility

functions. Unfortunately these models can rarely be applied to study the

Internet or any other real life network, due to the simplifications needed

for mathematical tractability. An interesting advancement on this field

comes from [MMO13], where it is shown that even very simple rules are

able to provide properties which were measured on the topology and

are not captured by notable models such as the BA-model. Despite of

the impossibility to reproduce the whole Internet topology, this approach

is very interesting since it makes it possible to deal with economic and

technical constraints which are usually ignored by classical dynamic mod-

els. Thanks to this aspect, it is possible to model and capture important

interaction mechanisms between the players that are typically hidden by

other models, as we will do later (see Chapter 4).

2.3.3 Topology Generation

As already stressed in the introduction, one of the main goals for which

a proper modeling of the Internet topology is important, is the ability to

design topology-aware algorithms and routing protocols. To this end, it is

fundamental that the graphs constructed by the models correctly repro-

duce the topological properties observed for the Internet. The computer

science community has developed a series of Internet Topology Generators,

which are based on the models previously described. Since the hier-

archical nature of the Internet has been shown to play a fundamental

importance, some of them try to embed structural properties based on

this aspect. The most famous topology generators are:

ORBIS [MHK+07] is a topology generator which exploits the concept

of dK degree distributions to construct the network. The 1K dis-

tribution corresponds to the degree distribution, while the 2K dis-
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tribution is known as the joint degree distribution: P (k1, k2). This

distribution represents the probability that a randomly selected

edge will be between nodes of degree k1 and k2. The maximum

implemented mode is the 2K, which constructs the topology using

as input the joint degree distribution. As the number d increases,

the generated topology is more similar to the original one, however

the input distribution size becomes impossible to manage.

GT-ITM [ZCD97] is the Georgia Tech Internetwork Topology Model. It

is a hierarchical generator which uses the concepts of transit and

stub so as to generate a topology made up of multiple levels, which

can be either transit or stub domains. There are multiple attachment

mechanisms (Random, Waxman, Exponential) dictating how to gen-

erate links within each domain, and it is possible to configure the

number of transit-stub and stub-stub links. While this generator is

unable to produce the scale-free Internet property, it is still inter-

esting as it is one of the most configurable ones when it comes to

reproducing hierarchical structures.

INET [WJ02] is an Autonomous System level topology generator devel-

oped by the University of Michigan. It uses a technique to combine

the benefits of generalized random graphs, such as the small-world

property, with a pre-built, tunable, degree distribution to also pro-

vide the scale-free property. Despite of this, it is unable to properly

capture the hierarchical, community-structure of the Internet.

BRITE [MLMB01] is the Boston university Representative Internet Topol-

ogy gEnerator. It is based on the Barabási-Albert model and, as such,

it is able to reproduce the scale-free property.

The ORBIS generator is the most recent and complex, since it reconstructs

the topology by exploiting a large amount of input data. The other three

generators were presented around ten years ago, however, as reported

by Haddai et Al. in their more recent survey [HRI+08], they are still the

reference generators in the literature.
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The main goal of the thesis, as already stressed, is developing a mo-

del which reflects the driving forces responsible for the structure of the

Internet. The goodness of the model has to be validated, and we will do

so by showing that it is able to both capture the statistical measures of

the Internet topology, its community structure (in the form of maximal

cliques) and outperforms the existing topology generators (see Chapter

6).
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Part II

The Internet Core:
Structure, Agents,

Relationships
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Chapter 3

The Twofold Internet
Structure: Defining a Core

We tackle here the first problem stressed in the introduction: the large-

scale heterogeneous nature of the Internet. Due to the high heterogeneity

of the Internet topology, any model relying on a uniform class of nodes

which all exhibit the same behavior is deemed to fail. Therefore, the first

step that needs to be carried out is a deeper analysis of the topology,

using concepts such as communities to identify and discover the different

building blocks of the network.

We propose a technique that partitions the network topology into

two distinct blocks: the core, which captures the underlying community

structure of the Internet, and the periphery, representing the “tendrils” of

the topology. The benefits of this innovative technique are twofold. First,

it deals with the high heterogeneity of the Internet by highlighting a small

yet well-structured core. This leads to a huge reduction in complexity and

shows that the core of the large-scale Internet is not that large, and can

further be broken down into a two-layer graph. Second, thanks to the

simplifications introduced by the topology layering, it gives us the ability

to deeply analyze the core, in order to discover statistical, structural and

behavioral properties of its participating nodes. This second step will lay

the groundwork for the subsequent chapters and for defining a proper
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network model, first at the core level and then for the whole Internet

[AGL13; AGL14a].

3.1 Introduction and Related Work

The Internet topology at the Autonomous System level, as stressed in

Chapter 2, has been deeply analyzed in the past using several graph met-

rics to capture its statistical characteristics. The most important features

observed as a result, are the small-world and scale-free properties. While

these metrics have been widely used due to their ability to compactly

represent statistical characteristics of the topology, they are unable to

capture the structural characteristics of the network, such as the existence

of tiers or the presence of communities.

Works dealing with the heterogeneity of the Internet using a

community-based approach are the “jellyfish” and the “medusa” model

[STF06; CHK+07]. Using different approaches, both models break down

the full Internet map into different components exhibiting different be-

haviors, highlighting the existence of a central, strongly connected, com-

ponent. The jellyfish model defines the core as a full-mesh, and then

partitions the topology into layers by checking how far a node is w.r.t. the

core. The medusa model uses instead the concept of k-core communities

to define the “nucleus” of the network and separate it from the other

components.

The methodology proposed here provides as well a partition of the

Internet topology, dividing it into two main blocks. This is accomplished

through two main steps. First of all we use real data to extract a small part

of the topology which well represents what we call the “core”, separating

it from the rest of the network which we call the “periphery”. Thanks to

the extraction procedure, we show that although at first glance the Internet

can be thought of as a large-scale complex system, its true nature is

different, given that it is possible to extract a small core network exhibiting

its most important structural properties. In the second step, the core is

split into two layers, by observing that the emergence of cliques lies in

the presence of two differently dense zones, and exploiting these different
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densities.

The aims and tools used for this decomposition are quite different

from the medusa and jellyfish methodologies which were described above.

In particular, the main aims of that methodologies were to quantify the

importance of nodes and checking if network models (e.g. the BA-model)

produce the different levels highlighted for their model. Our purpose

instead, is to understand which agents are responsible for the evolution of

the Internet’s core, and discover their statistical, structural and behavioral

properties. In fact, with these in mind, it is possible to study the possi-

ble interactions between these agents and define mechanisms reflecting

the driving forces of the Internet’s growth, thus producing an accurate

model for the Internet evolution. In addition, the main tool used for

our partitioning are the maximal cliques, which have been shown to be

more representative of the other techniques when applied to the Internet

topology, due to the admitted overlaps (see Section 2.2.2.3 of Chapter 2).

Last, but not least, the power of our decomposition is also shown in

[AGL13], where even a simple, data-driven analysis, is able to provide a

fairly good model of the core. We skip that model here, since our main

interest throughout the thesis is the proper understanding of the true

driving forces behind the Internet’s evolution.

The remainder of the chapter is organized as follows: in Section 3.2 we

present our core definition, its extraction and decomposition techniques.

Section 3.3 presents an in-depth analysis of the core, highlighting the

importance of IXPs in its flat, community structure.

3.2 Topology Decomposition

In this section we provide our definition of the core of the Internet, in

terms of the properties which it is assumed to fit. We then describe our

extraction procedure, and decompose the core network into two layers by

observing their different natures.
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3.2.1 Core Extraction

Given our claims at the end of Section 2.2.2.3 in Chapter 2, here our aim is

to identify the component of the Internet’s topology that best represents

its structure in the form of maximal cliques. We identify this component, a

preferably small, densely connected subgraph, as the core of the Internet.

Our core is thus made up of the minimum number of “important nodes”

that grant a good fit for the maximal clique distribution of the graph of

the whole Internet, according to the χ2 test. The importance of a node is

assigned through a weight, which depends on the number and size of the

maximal cliques it participates in.

We extract the core of the Internet’s measured graph using the dataset

provided by ISOLARIO [Iso]. As already stressed, this dataset gathers

data by several route collectors and processes it so as to obtain monthly-

based AS-Level topology graphs. Our analysis covers almost eight years,

from January 2006 to June 2013. Unless stated otherwise, for the sake of

conciseness, we will refer to the time step of April 2013. However, the

analysis was actually carried out for all of the time steps, and the results

presented here are valid for the whole time span considered.

The extraction heuristic builds a graph Ĝ starting from an empty graph.

It then makes it grow month by month in order to fit the maximal clique

distribution of the graph of the Internet through the steps described in

Algorithm 3.1. For each month m, the procedure starts by building a list L

of nodes ordered by weight. We preserve the nodes of the previous graph

Ĝ by putting them in the list with the highest possible weight (lines 3-5).

Then, we observe the current (i.e. at month m) Internet graph and build

a matrix Cnum[k][i] which reports the number of maximal cliques of size

k for each node i. This matrix is used to assign a weight w to each node

before inserting it into L (lines 6-14). We then perform a binary search

on L to determine the minimum number of nodes h which provides

a good fit for the maximal clique distribution, where the goodness of

the fit is evaluated via Pearson’s chi-squared test (lines 18-28). The test

compares the maximal clique distribution of the Internet graph with the
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Algorithm 3.1 Core Extraction

1: Ĝ = ∅
2: for all m ∈ Months do
3: for all i ∈ nodes(Ĝ) do
4: insert(L, < i,∞ >)
5: end for
6: G = get topology(m) ⊲ AS map/month m
7: Cnum = get maximal cliques(G)
8: kmax = sizeof(Cnum) ⊲ Largest Clique Size
9: for all i ∈ nodes(G) do

10: wi =
∑kmax

k=2 k ∗ Cnum[k][i] ⊲ Weight
11: if i /∈ L then
12: insert(L, < i,wi >)
13: end if
14: end for
15: C = maximal clique distribution(G)
16: order descending(L,w)
17: inf = 0; sup = sizeof(L)
18: while sup 6= inf do
19: h = inf + sup−inf

2
20: Gh = tag subgraph(G, get subset(L,h))
21: Ch= maximal clique distribution(Gh)
22: chi = chi test(C, Ch, kmax/2, kmax)
23: if chi > chi limit(kmax/2, p) then
24: sup = h
25: else
26: inf = h
27: end if
28: end while
29: Ĝ = tag subgraph(G, get subset(L,sup))
30: end for

one obtained by the subgraph induced by the h highest nodes in L, in

the upper half of the distribution (the interval [kmax/2, kmax]) with the

statistical significance parameter set to p = 0.1.

The test is performed on the upper part of the distribution because

we believe that low values of k do not correspond to the network’s core
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but to less central parts, connected via Multi-Homed ASes and tree-like

structures. The statistical significance parameter p influences the goodness

of the fit. As p → 1 the fit is more precise at the cost of an increasing

core size, while for p → 0 the core becomes smaller but the fit is less

precise. Given the high variability of the maximal clique distribution, we

are satisfied by a curve which exhibits the same trend, while an extremely

precise fit is not needed. The experiments reported in Figure 3.2.1 show

that a value of p = 0.1 gives a small core with a sufficiently precise fit.

The output Ĝ = (N̂ , Ê) is the core graph, which passed the χ2 test
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with the minimum value of h. The obtained core Ĝ is a small, relatively

dense network. Figure 3.2.2 shows the evolution of the number of nodes

and edges within the core.

As of April 2013, the core has only |N̂ | = 956 nodes and |Ê| = 50, 440

links, a heavy-tailed degree distribution (Figure 3.2.3), and a wide mul-

timodal maximal clique distribution. Figure 3.2.4 shows how this distri-

bution matches almost perfectly the one observed for the whole Internet.

This behavior is stable throughout the whole considered time span.
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3.2.2 Emergence of Maximal Cliques

The extraction procedure and the results described in the previous section

highlight that although the Internet is a large scale complex system, it

is still possible to identify a very small, dense, central component that

captures its structural properties very well in terms of communities, ex-

pressed through a high number of maximal cliques. Here we outline the

driving forces behind the emergence of such a huge number of cliques.

In 1969 Moon and Moser [MM65] showed that a network of |N | nodes

has at most 3|N |/3 maximal cliques. This number can be achieved by

complementing the graph which has |N |/3 disjoint triangles. More gen-

erally, a graph with a high number of maximal cliques can be obtained

by partitioning the network into n sets and connecting each node of a set

to all the other nodes in a different set. Each set is thus an independent

vertex set (IVS), that is, a set of nodes where no two are adjacent. Figure

3.2.5 depicts a graph obtained by applying the Moon-Moser technique to a
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network of 9 nodes, thus leading to 39/3 = 27 cliques. Basically each node

of an IVS forms a clique with any couple of nodes taken from different

IVSs; in Figure 3.2.5 node 1 forms the following cliques: {1, 4, 7}, {1, 4, 8},

{1, 4, 9}, {1, 5, 7} (dashed blue), {1, 5, 8} (dotted red), {1, 5, 9}, {1, 6, 7},

{1, 6, 8}, {1, 6, 9}.

Clearly this network has a huge number of links resulting in an ex-

tremely high density. Now consider the following two-layer random graph

model:

• There are n “important” nodes. Each node is connected to any other

node with high probability q.

• The remaining |N | − n nodes are partitioned into n IVSs, each of

which has an important node and other less-important nodes.

• Each less-important node is connected with an important node of

another IVS with probability p ≪ q.

Basically, in this model we draw |N | nodes, out of which n are impor-

tant, and n(n−1)
2 q+ (|N | − n)(n− 1)p edges: the first part of the sum is for

important nodes, the other for less-important nodes.

This network is a subset of the Moon-Moser graph shown previously,

where the network was separated into two components: a very dense

one responsible for the generation of large cliques and a less dense com-

ponent which generates smaller cliques. Figure 3.2.6 shows how this

model generates a high number of cliques for various values of |N |, n,

p, q. By changing the parameters we can generate all kinds of bimodal

distributions: boosting the important nodes number n or their connection

probability q results in a bigger right mode (Figures 3.2.6a and 3.2.6c),

while doing the same for less-important ones strengthens the left mode

(Figure 3.2.6b). As p increases, the left-hand mode can jump higher than

the right-hand one, therefore in order to obtain coherent distributions

with those observed for the Internet’s topology, it is crucial that p and q

remain far apart.

Our experiments show that in order to reproduce maximal clique

distributions similar to that of Internet’s topology, we need n ≈ 60÷ 70
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Figure 3.2.6: Maximal clique distribution for 2-Layer Random Model

important nodes connected with a very high probability q ≈ 0.9 ÷ 0.95

(these values depend on the actual year, of course).

3.2.3 Core Decomposition

The emergence of the high number of network conglomerates within

the core seems to be tightly connected with the presence of zones with

different densities inside it. As we have just shown, one possible reason

for the high number of maximal cliques in the core is the coexistence of

one very dense zone of the network and another less dense zone. This

leads us to the analysis of the density d of the network. We recall from

Chapter 2 that network density is defined as the ratio between its number

of edges e and its maximum possible number: d = 2e/(n(n− 1)), where

n is the number of nodes.

Our main focus here is thus to analyze the density of the core just
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Figure 3.2.7: Network density as a function of n for the Core - 2013

extracted, in order to understand if such different dense zones exist. A

well-known method for network decomposition is the k-core [CHK+07];

however, when applied to our core network this technique very soon

stops yielding as result a large network of 183 nodes, corresponding

to the 83-core, with density d ≈ 0.65. Our goal instead is to extract a

smaller and hopefully denser network. The problem of extracting the

densest subgraph of a given size (DalkS, Densest at-least-k Subgraph

[KBS09]) is known to be NP-Complete, however there exists a simple

2-approximation algorithm which solves it iteratively. At each step the

method computes the degree of each node and removes the node with

the minimum degree and all its links. Thanks to this procedure, the

core can be decomposed by removing all its nodes one by one, until we

obtain a clique, which of course has the maximum density d = 1. These

techniques have been applied to the Internet, with different aims from

ours in [WS04], where the authors searched for subgraphs of a specific

density and highlighted the geographical locality of the obtained clusters.

Figure 3.2.7, which we refer to as the “density curve”, shows the den-

sity of the graph Ĝ as the number of nodes decreases. The figure also

shows the density of the various k-cores obtained via k-core decompo-

sition. This pictures refers to the single time step of November 2012,

however, the same behavior applies to all the other considered time steps.

It is clear that the densities of the k-cores adhere to those obtained with
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the above method (up to the 83-core, composed of 183 nodes, where the

k-core decomposition terminates).

Although there is no clear distinction between the two zones as con-

jectured in the previous section, Figure 3.2.7 highlights two main points:

the existence of a very dense central zone made up of very few nodes,

and the exponential decrease in density as the network size grows. Figure

3.2.8 shows the first derivative of network density, zoomed in the interval

[30; 300]: the curve has a unique minimum for n̄ ≈ 70, indicating an inflec-

tion point for the density curve. Consequently the exponential decrease

is not a constant behavior, but something that happens only for n > n̄,

while for a smaller value of n, the density decrease is slower.

We believe that the different behavior of the density curve reflects a

different nature of the network before and after n̄. We thus separate the

nodes of graph Ĝ into the following partitions:

The Centrum contains N1 = n̄ nodes obtained by applying DalkS to Ĝ

up to the inflection point obtained at d̄.

Layer-1 contains N2 nodes with a direct connection to centrum nodes.

The second layer contains all the other nodes.

The second layer consists of very few nodes and has a negligible contribu-

tion to the metrics of interest, so this part can be discarded. Thanks to the
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partitioning, we can now decompose the core into three networks:

The centrum network with N1 nodes and E1 edges, consists of all cen-

trum nodes and their mutual connections.

The vertical network with N1 +N2 nodes and E2 edges, consists of the

centrum network plus all layer-1 nodes and their vertical connections

(that is, connections to the centrum).

The horizontal network with N2 nodes and E3 edges, consists of only

layer-1 nodes plus their horizontal connections (that is, connections

to other layer-1 nodes).

Figure 3.2.9 depicts our network. Interestingly, while the density curve

changes at each time step, the inflection point n̄ varies slowly from about

50 to 70 over the analyzed time span, therefore while the size of layer-1

grows, the centrum is almost static or slowly growing. Moreover, the

value of d̄ at the inflection point is about 0.9÷ 0.95. This value is in 1 to 1

correspondence with the connection probability of a random graph (see

Section 3.2.2), and the values of n̄ and q̄ therein used to obtain maximal
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clique distributions akin to that of Internet’s topology, agree almost exactly

with those just obtained.

3.3 Core Analysis

The decomposed network is further examined to better characterize its

participants and their interconnections, and lay the groundwork for defin-

ing a core network model.

3.3.1 Structural Analysis

As shown in Figure 3.2.9, our core is a 2-layer graph made up of three

different networks. We can now study the properties of these networks in

terms of the degree and maximal clique distributions. The centrum is a

network of very few well connected nodes. Figures 3.3.1 and 3.3.2 show

that the main characteristic of this network is not the degree, which is

similar for all nodes, but the formation of a small number of fairly large

maximal cliques.

As shown in Figure 3.3.1, the vertical network has a very particular

degree distribution, with a turning point at pv (pv ≈ 65 as of November

2012). If we split the curve into two parts, for k < pv we have the distribu-

tion of the N2 layer-1 nodes, while for k > pv we have the distribution of

the N1 centrum nodes. Since the layer-1 nodes are not connected to each

other in the vertical network (these links have been placed, by construc-

tion, in the horizontal graph), the distribution for k < pv tells us exactly

how many links each node should inject in the vertical network. Figure

3.3.3 zooms in on the first part and reveals that this distribution is approx-

imately uniform U (1, pv). As well as the centrum size n̄, parameter pv is

also approximately constant, just slowly growing, during the analyzed

time span.

The horizontal network (Figures 3.3.1 and 3.3.2) provides a small contri-

bution in terms of large cliques. On the other hand, its degree distribution

is similar to that of a scale-free network with a smooth cutoff, just like the

networks obtained via classic preferential attachment modeling.
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3.3.2 Impact of IXPs within the Core

In order to better characterize the core, we exploited the enriched dataset

shown in Section 2.2.1.1 of Chapter 2, and labeled nodes and links:

Links were labeled by adding the economic relationship between ASes.

We recall that relationships can be either customer to provider (C2P,

or transit), when the former pays the latter for the service, or peer

to peer (P2P, or peering) when two ASes agree to exchange traffic

for free.

Nodes were labeled according to the following data, publicly available

from PeeringDB [pee]:

Node Type, either Network Service Provider (NSP), Internet Ser-

vice Provider (ISP), Content Provider (CP) or Other (Non-Profit,

Educational, Research, etc..);

Number of IXPs a node is attached to, which can be directly com-

puted by exploiting IXP participation lists;

Node Peering Policy, either open, selective or restrictive, according

to the willingness of the node to participate in peering sessions

over an IXP.
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Link/Network Core Centrum Vertical Horizontal

C2P 20.7% 2% 16.2% 28.5%

P2P 79.3% 98% 83.8% 71.5%

Table 3.1: Link types - 2012

Network NSP ISP CP Other

Centrum 70% 18.3% 0.1% 11.6%

Layer-1 37% 27.8% 16.1% 19.1%

Table 3.2: Node types - 2012

Network kInternet kP2P #AttachedIXPs

Centrum 525.5 444.6 8.35

Layer-1 112.5 55.8 3.48

Table 3.3: Node properties - 2012

Figure 3.3.4 summarizes the labels available. Our core network is

predominantly made up of peering links (Table 3.1), especially the centrum

which is nearly exclusively made up of P2P links. The vast majority of

the nodes within the core are Network Service Providers (Table 3.2),

which is expected given that these ASes provide backbone access to the

Internet, and participate in IXPs. There are few Content Providers in the

core, probably due to the incompleteness of the Internet graph, especially

concerning peering links [RWM+11]. A comparison between the two

layers of our decomposition highlights that centrum nodes typically have

a higher degree (indicated with k in Table 3.3) and participate in more

IXPs.

If we just consider the ASes which are NSPs, participate in four or

more IXPs and have a peering degree that is higher or equal to 100, we

find that 33 nodes of the centrum (55%) lie in this category, while only

28 nodes (3.8%) of layer-1 nodes adhere to these kinds of specifications.

A further analysis, reveals that centrum nodes falling into this category
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typically have an Open/Selective peering policy, while all but one of the

layer-1 nodes have a Restrictive/Selective policy.

In summary, peering links are the glue that keeps the core well con-

nected. The main difference between centrum and layer-1 nodes is that

while the former have a general tendency to establish well connected clus-

ters by participating in many IXPs with a generally open peering policy,

the latter (unless small ASes) tend to be more restrictive in establishing

peering connections. Interestingly, Tier-1 nodes are located inside layer-1

due to their restrictive peering policies (they do not peer at IXPs).

3.4 Conclusions

The decomposition technique enables us to shrink the large scale Internet,

with over forty thousand nodes, to a relatively small network of only a

hundred nodes. The benefits of this are twofold: on the one hand, while

keeping the most interesting structural properties of the network intact,

we are able to perform a very simple analysis of a two-layer graph. On

the other, this analysis enlightens some important aspects related to the

current structure of the Internet.

Although the core extraction and decomposition technique has been

specifically applied to the Internet environment, it can be used, mutatis

mutandis, on many other networks (e.g. social networks). Depending

on the specific characteristics of the network under investigation, a core

might emerge or not. The more regular the structure of the network is, the

larger the core will be, otherwise (i.e. for heterogeneous networks such

as the Internet) a smaller core will show up. Depending on the internal

core density, multiple layers might emerge. The tool is thus fairly general,

and can be used to gain insight on the internal structure of many different

multi-layer networks.

The in-depth analysis carried out in Section 3.3.2, illustrates the key

role of IXPs within the core, both in the centrum, where there is a high

participation and a general openness, and in the layer-1, where nodes are

still participating to IXPs, but with more restrictions. The core embodies

perfectly the Internet flattening and the emergence of communities, two
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intertwined phenomena leading the network growth.

The emerging key role of IXPs poses some questions: what is the

relationship between IXPs and backbone service providers (NSPs), his-

torically responsible for the Internet connectivity? And what is the rela-

tionship between other nodes, i.e. Internet Service Providers and Content

Providers, and these two facilities (i.e. IXPs and NSPs) enabling them to

communicate? Answering those questions will enable us to understand

the mechanisms used by nodes to establish links between each other.
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Chapter 4

Peering or Transit: IXPs vs
NSPs

The second problem shown in the introduction, is tackled here. As we

stressed, network evolution is not dictated by a central authority, but is

mainly the outcome of local economic and technical constraints. Therefore,

we have to understand the behavior and the decision of the Autonomous

Systems living in the Internet ecosystem by taking them, rather than the

network, as the main characters of the system, and study their reciprocal

interactions. Here, we propose a model to analyze the decisions taken by

ASes living in an Internet environment. In particular, due to the outcome

of the analysis from the previous chapter, we focus on the core and on the

key role of IXPs as an alternative to the old paradigm using NSP backbone

providers [AAGL14b; AAGL14a].

4.1 Introduction and Related Work

The Internet, as stressed in the first chapter, consists of thousands of

Autonomous Systems, independently administered networks that dynam-

ically connect together to provide end-to-end reachability. Depending on

their importance and the offered services, ASes can be sorted in different

tiers and categories: content providers, access providers, transit providers
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and so on [Nor11]. During the past century, Internet’s structure was pre-

dominantly hierarchical, with customer ASes paying their providers to

carry their traffic, and the latter providing default gateways to reach any

requested destination. The pricing strategy for this transit policy is typ-

ically volume-based, metered using the 95th percentile traffic sampling

technique (this allows customer ASes to burst, for a limited time period,

beyond their committed base rate) [Nor10b].

Nowadays Internet, as already stated, is evolving from its previous

structure and becoming flatter through the introduction of peering meshes,

with ASes establishing bilateral agreements to exchange traffic between

them for free. Peers must agree to each other’s policy, which is used to

avoid abuse of the peering relationship. Typical clauses include prohibi-

tion of using the peer as default gateway (therefore peers cannot be used

to reach other Internet’s routes) and traffic ratio balancing, meaning that

the ratio between incoming and outgoing traffic over the link must not

exceed some value (e.g. 2:1) [Nor10a].

The massive diffusion of peering meshes was mainly achieved thanks

to the increasing deployment of Internet Exchange Points (IXPs) [GILO11].

The pricing strategy of an IXP, with respect to its customers, is typically

flat. Each one of them pays a monthly-based fee, depending on the

size (speed) of the port they are using and the cost of maintaining the

equipment. Thanks to this mechanism, the IXP can share maintenance

costs among all its participants [Nor10c]. It is worth noting that this

pricing strategy doesn’t allow standard cost function modelization (like in

[ORS93]), since the addition of new participants potentially brings down

the costs of an IXP customer.

ASes joining the Internet face the complex question of what is the

best strategy for offering their services (e.g. traffic delivery) at the lowest

possible cost. While the answer was easy in the past century, due to the

existence of transit as the unique interconnection policy, today’s answer

is much more complex. In fact, peering policies and IXPs brought new

variables to the problem, such as the fact that the outcome of an AS

decision also depends on what other ASes, dealing with the same problem,

do: due to this aspect, we believe that a game-theoretical analysis of the
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problem would be highly insightful. Realistic modeling of the whole

decision space of an AS is an extremely difficult task, therefore in our

work we restrict our analysis to the problem of peering versus transit.

As a matter of fact, a proper understanding of this problem is crucial

if we really want to grasp the behavior of ASes living in the Internet

ecosystem, and answer the two questions that arose in the last part of

previous chapter.

In order to keep the problem analytically tractable we do not aim

at modeling the whole network formation process. We rather study

the interaction between ASes which connect to an existing network in

order to serve some demands. In this context, a possible modelization

of a network where access providers need to select a subset of content

providers and fetch traffic from them in a cost-efficient manner is given in

[JHA12]. However, the aim of this work is quite different from ours, as it

concentrates on the economic analysis of neutral/non-neutral network

features, without taking into account the difference between traffic and

peering agreements. The models in [CRT00; N06] focus on the competition

between backbone providers and on the conditions under which they

agree or refuse to establish bilateral peering connections with each other.

In [SS06], authors perform an interesting analysis on network pricing and

analyze the economics of private Internet exchanges. However, as already

explained in Section 2.1.3 of Chapter 2, private peering has different rules

and costs compared with public peering. Nowadays Internet is largely

dominated by public peering, occurring at IXPs, therefore in our work we

concentrate on this last phenomenon, which allows us to give different

insights on the present difference between transit and peering.

The work carried out in this chapter brings contributions both from

a game theoretic perspective and an engineering perspective. First of all

this is, to the best of our knowledge, a novel model to analyze the strategic

choices of ASes living in an Internet environment with both technological

and economic constraints. The modelization takes into account many

realistic elements, which do not fall into standard frameworks, yet tries

to keep the problem mathematically manageable. From a game-theoretic

perspective, we prove that our game falls in a specific category for which
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we both demonstrate the existence of equilibria and provide an algorithm

for computing stable solutions. From an engineering perspective, the out-

come of the analysis is highly insightful as it shows both the suboptimality

of the decentralized solution and the emerging competition between the

two facilities enabling either transit or peering connectivity: Network

Service Providers and Internet Exchange Points.

In Section 4.2 we define the general model, in Section 4.3 we analyze a

simplified “minimal complexity” model, derive the existence of equilibria

and the algorithm to compute them, and in Section 4.4 we show ineffi-

ciencies of the decentralized solution. Section 4.5 extends convergence

results to the general model, then Section 4.6 shows simulative results for

both converging and non-converging cases.

4.2 General Scenario

In the following we describe the general scenario under investigation and

derive the cost function.

4.2.1 Description

Using once again our enriched dataset (Section 2.2.1.1 of Chapter 2), we

group ASes in their different categories. We concentrate on the following

main categories present within the core of the Internet, and assign a

specific role to each of them, so as to derive a game theoretic decision

model:

Internet Service Provider (ISP)1 this node gives to eyeballs (i.e. the end

users) and lower tiers, access to the Internet and its contents. Each service

provider has a traffic demand, hereafter demand, which represents the

amount of traffic (uplink+downlink) that it handles.

1ISPs, NSPs and CPs are typically ASes. IXPs are not ASes, even if their infrastructure is
under a single administrative control.
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Content Provider (CP)1 this node has physical access to the contents

users are looking after, therefore an ISP with a demand for his specific

content, has to connect to it in order to serve this demand.

Internet Exchange Point (IXP)1 this is the facility that provides peering

connection to all its participants. This means that all the nodes connected

to a given IXP can potentially communicate with each other.

Network Service Provider (NSP)1 this node is located at the highest

hierarchical level of the network, meaning that each CP can be reached

through it. ISPs can reach CPs by establishing a transit connection with

an NSP. In particular, here NSPs can be either Tier-1 ASes, or high-level

backbone service providers, whose main interest is to sell transit to lower

tiers.

We consider a network with i ∈ {1, ..., I} ISPs, n ∈ {1, ..., N} CPs and

l ∈ {1, ..., L} transmit facilities (TF), that can be either the NSPs or the

IXPs. Without loss of generality, we impose that TFs j1 ∈ {1, ..., l1} are

NSPs, while TFs j2 ∈ {l1 + 1, ..., L} are IXPs.

The main difference between transmit facilities is that while links

to NSPs are established through transit connections, links to IXPs are

established through peering connections.

In a transit connection, or customer-to-provider (C2P) connection, the

cost to the customer is a function of the amount of traffic that crosses the

link (typically expressed as $/Mbps).

In a peering connection, the price is generally flat and depends on the

size of the port the customer buys. Moreover, when peering connections

are maintained by an IXP, the costs are shared among all the participants.

Each ISP i has a demand for a CP n, which we indicate as φn
i . The

players of our game are the ISPs, which need to decide how to split their

demand among all possible transmit facilities. Figure 4.2.1 depicts our

network scenario.

We indicate with xn
i,l the flow from ISP i to CP n via TF l. The strategy

of ISP i is given by the vector xi = (x1
i,1, ..., x

n
i,l, ..., x

N
i,L) ∈ R

L×N , while

the strategy of all the other players is expressed as x−i ∈ R
(I−1)×L×N . The
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Figure 4.2.1: General model

goal of each player is to serve, at the minimum possible cost, his demand

φi = (φ1
i , ..., φ

N
i ) ∈ R

N by splitting it into several flows xn
i,l. Please note

that we are not dealing with the issue of complete connectivity for the

ISPs (in which case, it is sufficient to deploy a single transit connection):

our aim is just to enable them to serve their specific demands.

We also indicate as:

• xi,l =
∑N

n=1 x
n
i,l the total flow from ISP i to TF l;

• xl =
∑I

i=1

∑N
n=1 x

n
i,l the total flow at TF l.

Each player, say i, for each transmit facility (NSP or IXP) it connects to,

incurs some costs:

TF usage cost this cost depends on the transmit facility used. If it is an

NSP, then it is a function of xi,l, the flow from the player to the NSP. Oth-

erwise the TF is an IXP and the cost is shared among all the participants,

therefore it also depends on the other players, in the form of xl, the total

flow at the IXP. Consequently, this cost can be written as a function:

tl(xi,l, xl) (4.2.1)
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TF capacity cost each link between an ISP and a TF has a fixed capacity

ci,l; this means that we have a constraint of the form xi,l ≤ ci,l. While

we may introduce it in the problem “as is”, this would make the model

less manageable. Moreover, due to performance and congestion issues,

network operators typically avoid reaching the capacity limit and keep a

margin for traffic fluctuations. We can think of this performance degra-

dation as a “virtual cost” for the ISP, and therefore model the constraint

as a cost, that increases as the flow over the link approaches the capacity

limit (as is typically done in the literature for M/G/1 Processor Sharing

queues [ORS93]):
1

ci,l − xi,l
xi,l (4.2.2)

We are aware that, in reality, network operators adjust this capacity

when there is more demand for it, and the interconnection cost grows

accordingly. However, this situation can be avoided as long as our work-

ing region is sufficiently far away from the saturation point. We will

always assume that capacities are symmetric w.r.t. the players, therefore

ci,l = cl ∀i. Typically the capacity of the NSP can be assumed to be much

larger than that of IXPs: cNSP ≫ cIXP (see [Nor10b] and [Nor10c]).

CP reachability cost let’s indicate with bnl the cost of transporting one

unit of flow from TF l to CP n. This cost is not relevant from the player’s

perspective (it is paid by the CP), however it can be used to express the

reachability of a given CP. In fact, while all the CPs are connected to the

NSPs, an IXP can be connected only to a subset of CPs. This phenomenon

can be expressed by putting:

bnl =

{

0 if l ≤ l1 or IXPl → CPn

∞ otherwise
(4.2.3)

Thanks to all these considerations, the cost function for player i can be

expressed as the sum of (4.2.1), (4.2.2) and (4.2.3):

Ci(xi,x−i) =

L
∑

l=1

(

tl(xi,l, xl) +
1

cl − xi,l
xi,l

)

+

L
∑

l=1

N
∑

n=1

xn
i,lb

n
l (4.2.4)
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In order to serve all the demands, each player i has to satisfy the flow

constraint: for every CP, the total flow has to be equal to the demand φn
i .

Therefore player i’s best response BRi(x−i) is obtained by minimizing

cost function (4.2.4), subject to the flow constraints (4.2.5):

{

BRi(x−i) = argminxi
Ci(xi,x−i)

s.t.
∑

l x
n
i,l = φn

i ∀n (4.2.5)

The vector x∗ = (x∗
1
, ...,x∗

I
) ∈ R

I×L×N is an equilibrium of the game

if and only if x∗
i
∈ BRi(x

∗
−i
) ∀i, that is, if the strategy of each player is a

best response to the strategies of other players.

Throughout the chapter we will always refer to the description of

Figure 4.2.1, however, mutatis mutandis, the results are still valid for

scenarios where players are CPs or a mix of CPs and ISPs, as long as the

demands are changed accordingly.

4.2.2 Transmit Facility Usage Cost

The TF usage cost is different between the NSPs and the IXPs. More

specifically the NSP usage cost is linear in the amount of flow that each

player sends to it [Nor10b]. Therefore we can write:

tl(xi,l, xl) = alxi,l l ≤ l1 (4.2.6)

where al, l ≤ l1 represents the transit price of NSP l per unit of

flow. We are aware that, due to economies of scale in the traffic delivery,

transit costs are subadditive in reality. However, introducing this aspect

would overcomplicate the model, hiding the truly interesting differences

between transit and peering. Nevertheless, we are able to show that some

of our results still hold for more generic transit cost functions (see below,

Theorem 5).

For the IXP usage [Nor11], each player has to pay a share of the total

cost of IXP maintenance. This share can be expressed as the ratio between

the flow sent by player i on IXP l and the total flow crossing that IXP:
xi,l

xl
.

Assume we can write the cost of maintenance of IXP l as a function hl of
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Figure 4.2.2: IXP port costs for MIX (log-log scale)

the total flow through the IXP, therefore the usage cost is:

tl(xi,l, xl) =
xi,l

xl
hl(xl) l > l1 (4.2.7)

The cost of maintaining the equipment of an IXP is, in general, a

non-linear function of several parameters. In order to keep the problem

manageable, we will approximate this cost with that of a single port which

handles xl, the entire flow over the IXP. The cost of a port is a step-wise

increasing function, as shown in Figure 4.2.2 for the MIX2, an Italian IXP.

This type of cost functions can be modeled (see [MDFL12]) by using a

function like xα with α ∈ [0.4; 0.7]. For simplicity, we take α = 0.5 as this

value provides a fairly accurate fit (shown in Figure 4.2.2). Therefore, we

express the maintenance cost as:

hl(xl) = al
√
xl (4.2.8)

where al, l > l1 is a constant relating the total flow through IXP l with

its maintenance cost. By putting together definitions (4.2.6), (4.2.7) and

2Milan IXP - public peering costs available online: http://www.mix-it.net
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(4.2.8), the cost function (4.2.4) can be rewritten as:

Ci(xi,x−i) =

l1
∑

l=1

alxi,l +
L
∑

l=l1+1

(

al√
xl
xi,l

)

+

+

L
∑

l=1

(

1

cl − xi,l
xi,l

)

+

L
∑

l=1

N
∑

n=1

xn
i,lb

n
l (4.2.9)

Now, we define these new functions:















f l
(

∑

i

∑

n x
n
i,l

)

=

{

a1 l ≤ l1
al√∑

i

∑
n
xn
i,l

l > l1

gl
(

∑

n x
n
i,l

)

= 1
cl−

∑
n
xn
i,l

(4.2.10)

By using (4.2.10) and recalling that xi,l =
∑

n x
n
i,l and xl =

∑

i

∑

n x
n
i,l

, we can rewrite (4.2.9) as:

Ci(xi,x−i) =
∑

l

∑

n

xn
i,l

[

f l

(

∑

i

∑

n

xn
i,l

)

+ gl

(

∑

n

xn
i,l

)

+ bnl

]

(4.2.11)

Equation (4.2.11) is the most general expression of the cost function for

each player. Please note that (4.2.11) is in general a non-convex function of

xi,l, and therefore we cannot directly establish existence of pure equilibria.

In particular it does not comply with the general assumptions used for

link cost functions in the framework described in [ORS93]. Nevertheless,

we cannot avoid dealing with functions of this shape if we want to prop-

erly grasp the difference between transit and peering strategies offered,

respectively, by NSPs and IXPs.

4.3 Minimal Complexity Model (MCM)

In order to gain insights on the problem solution, in this section we

analyze a simpler model, which we call Minimal Complexity Model

(MCM), where I, L,N = 2. The MCM has two ISP players, two CPs

(therefore each player only has two demands, namely φ1
i and φ2

i ) and two
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Figure 4.3.1: Minimal complexity model

transmit facilities available, either the NSP (l = 1) or the IXP (l = 2), as

depicted in Figure 4.3.1. With some algebraic manipulations, explicitly

shown in Appendix 4.8.1, we can rewrite cost function (4.2.11) for player

1 of the MCM as:

C1(x1, x2, y1, y2) = (4.3.1)

=
(

φ1
1 + φ2

1 − x1 − x2

)

(

a1 +
1

c1 − (φ1
1 + φ2

1 − x1 − x2)

)

+

+ (x1 + x2)

(

a2√
x1 + x2 + y1 + y2

+
1

c2 − (x1 + x2)

)

+

+
(

φ1
1 − x1

)

b11 +
(

φ2
1 − x2

)

b21 + x1b
1
2 + x2b

2
2

where xn is the flow sent from player 1 to CP n through the IXP and

φn
1 − xn is, by constraint, the flow sent through the NSP. The same applies

to yn for player 2.

Assume now that the topology is fully connected, meaning that bnl =

0 ∀l, n. In this case, from the player’s perspective, the cost does not

depend on the facility used for a specific CP, but rather on the total

amount of flow going through a specific TF, independently from the

destination. Once again, with some algebraic manipulations (shown in

Appendix 4.8.1) we rewrite cost function (4.3.1) for both players as:






C1(x, y) = (φ1 − x)
(

a1 +
1

c1−(φ1−x)

)

+ x
(

a2√
x+y

+ 1
c2−x

)

C2(x, y) = (φ2 − y)
(

a1 +
1

c1−(φ2−y)

)

+ y
(

a2√
x+y

+ 1
c2−y

) (4.3.2)
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where x is the cumulative flow of ISP1 through the IXP and φ1 is its

cumulative demand. The same applies to y and φ2 for ISP2. The best

response of player i is thus obtained by minimizing Ci(x, y) defined in

(4.3.2).

While simple, the MCM is interesting on its own as it provides a clear

way to study the fundamental difference between transit and peering

agreements, shedding light on the emerging competition between NSPs

and large IXPs, first observed in [ACF+12].

4.3.1 Theoretical Results

Definition 1. Supermodular games [Yao95]

Consider a generic game G, where user’s payoffs are given by an

utility function u : Rk → R. The game is said supermodular if the utility

function is supermodular, that is:

u(x ∨ y) + u(x ∧ y) ≥ u(x) + u(y) ∀x, y ∈ R
k

where x ∨ y denotes the componentwise maximum and x ∧ y the com-

ponentwise minimum of x and y. If u is twice continuously differentiable,

this property is given by the following condition:

∂2u

∂zi∂zj
≥ 0 ∀i 6= j

In our case we consider costs rather then utilities and minimization

instead of maximization, therefore a game like ours is supermodular iff:

∂2C(x)

∂xi∂xj
≤ 0 ∀i 6= j (4.3.3)

When the strategy space can be expressed using just two variables, as

in the MCM case, we can write:

∂2C(x, y)

∂x∂y
≤ 0 (4.3.4)

Theorem 1 of [AA03] proves the existence of equilibria for supermod-

ular games, moreover it provides a way of computing them. The proof
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is based on showing that best response sequences are monotone and

therefore converge to a limit which is then shown to be a Nash Equilib-

rium Point (NEP). The monotonicity is a consequence of the “strategic

complementarity” of the players: if one of them chooses a strategy x that

decreases its own cost, this decision is beneficial for the cost of the other

players too.

Here we relax the results on the existence of equilibria and convergence

of best response sequences in supermodular games.

Definition 2. Symmetric supermodularity
We define as symmetric supermodular games, those for which (4.3.4)

holds for all strategies x = y, meaning that the property holds along the
symmetric axis.

Definition 3. Symmetric best response sequence
We call symmetric best response sequence a path (x0, y0), (x1, y1), . . .,

where x0 = y0 and ∀i, (xi, yi) satisfies xi = yi.

Theorem 4. In symmetric supermodular games, pure equilibria exist and are
given as the limit of symmetric best response sequences.

Proof. Consider a sequence of best responses (x0, y0), (x1, y1), . . .. Due
to symmetry we can choose this path to be a symmetric best response
sequence. From definition 2 and by applying the same reasoning as in the
original proof [AA03], we shall get monotone sequences whose limits are
equilibria.

Theorem 4 not only proves the existence of equilibria for symmetric

supermodular games, but also gives an algorithm for computing them.

Please note that, for this theorem to hold, the game does not need to

satisfy (4.3.4) for all possible strategies, but just along the symmetric path.

This result can be applied to our game thanks to Theorem 5 and Corollary

6.

Theorem 5. The game defined in (4.3.2) is symmetric supermodular.

Proof. Consider the cost function of our game. We compute the mixed
second derivatives:







∂2C1(x,y)
∂x∂y = − a2

2(x+y)
3
2
+ 3a2x

4(x+y)
5
2

∂2C2(x,y)
∂x∂y = − a2

2(x+y)
3
2
+ 3a2y

4(x+y)
5
2

(4.3.5)
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Since we are interested only in their sign, we can multiply both derivatives

in (4.3.5) by (x + y)
3
2 , which is always positive as long as the flows are

positive. Therefore we have:







sgn
(

∂2C1(x,y)
∂x∂y

)

= sgn
(

a2

4 · x−2y
x+y

)

sgn
(

∂2C2(x,y)
∂x∂y

)

= sgn
(

a2

4 · y−2x
x+y

) (4.3.6)

Consider now the symmetric axis, where x = y. With this equality
both mixed second derivatives in (4.3.6) become negative, therefore due
to condition (4.3.4) the game is symmetric supermodular.

It is interesting to note that, as long as the transit cost function tl of one

ISP does not depend on the other ISP, the mixed second derivative (4.3.5)

does not change. Therefore, symmetric supermodularity can be applied

to game (4.3.2) even for more general transit cost functions (as outlined

in Section 4.2.2). Please note that without the symmetric assumption, the

game is neither supermodular, nor submodular, because we cannot say

anything about the sign of the mixed derivatives.

Corollary 6. The game defined in (4.3.2) has at least one pure equilibrium for
symmetric demands, given as the limit of a symmetric best response sequence.

Proof. By hypothesis the demands satisfy φ1 = φ2. If we put this condition
in system (4.3.2), the two players become symmetric, therefore we get this
result combining Theorems 4 and 5.

4.3.2 Cost Function Analysis

In order to gain insights on the outcome of the best response sequence

algorithm, here we analyze the cost function. Consider the cost function

of player 1 and suppose that the strategy y of player 2 is fixed, so:

C1(x) = (φ− x)

(

a1 +
1

c1 − (φ− x)

)

+ x

(

a2√
x+ y

+
1

c2 − x

)

(4.3.7)

Lemma 7 and Theorem 8, whose proofs can be found in Appendix

4.8.2, tell us the shape of the cost function.
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Figure 4.3.2: Cost function

Lemma 7. The second derivative of the cost function (4.3.7) is a monotonically
increasing function.

Theorem 8. The cost function (4.3.7) can be either: always concave, always
convex, or first concave and then convex.

Figure 4.3.2 shows the possible cases. Please note that the shape

depends both on the parameters and the strategy y of the other player:

while for specific values of y the function might be convex as in Figure
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Algorithm 4.1 Best Response Sequence

1: startingpoint = ... ⊲ Initial strategies
2: tolerance = ... ⊲ NEP stationariety tolerance
3: newx = startingpoint

4: repeat
5: oldx = newx ⊲ current step game strategies
6: for i = 1; i < I; i++ do
7: x−i = oldx−i ⊲ other players strategy
8: xi = argminxi

Ci(xi,x−i) ⊲ i strategy
9: s.t.

∑

l x
n
i,l = φn

i ∀n
10: newxi = xi ⊲ next step game strategies
11: end for
12: until ||newx− oldx|| < tolerance

4.3.2b, it can also be concave (Figure 4.3.2a) and in general is neither

convex nor concave, as shown in Figure 4.3.2c.

4.3.3 The Simulator

The analysis of the cost function, performed in Section 4.3.2, suggests

that in our game (4.3.2), even if the best response procedure converges

to a NEP, there might be multiple equilibria, because of the presence of

multiple local minima. This assumption can be verified via simulation,

where we show a specific case in which the NEP reached can change,

depending on the starting point of the algorithm.

We implemented in MATLAB [Mat] the general model (4.2.11) de-

scribed in Section 4.2. Iteratively, each player performs its best response

to the set of other players’ strategies as shown in algorithm 4.1. If the

simulation converges (this has not yet been proven for the general game

(4.2.11)), the output newx is the NEP for the given input parameters,

which are:

• The number of ISPs, TFs and CPs, respectively I , L, N .

• The cost function parameters al, cl, b
n
l and demands φn

i .

• The tolerance and the startingpoint.
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We can use the implemented algorithm on the MCM, which has fully

connected topology and symmetric demands, by putting I = 2, L = 2,

N = 2, bnl = 0 ∀l, n and φn
i = φn. Given the selected scenario and the best

response sequence algorithm, Theorem 6 ensures the convergence of the

simulation for whatever cost function coefficients. Moreover, thanks to

the symmetric property, we can just investigate the strategy of player 1

(x), because player 2 will show exactly the same behavior.

We simulate the following parameters: a1 = 4, a2 = 5, φ1 + φ2 = 4,

c1 = 10, c2 = 5. In this case, as previously shown in Figure 4.3.2c, the

cost function could present multiple local minima, depending on the

players’ strategies. The simulation has multiple outcomes: if we start

from the mean point (x = 2, φ−x = 2) we end up in an equilibrium where

traffic is split between the IXP and the NSP: x∗ = 3.64; φ − x∗ = 0.36.

The IXP is preferred because the usage cost is shared among the two

players, however it is not used exclusively due to its smaller capacity not

being able to serve all the traffic. With a bigger capacity, all the traffic

would have been routed through the IXP. Otherwise, if we start from a

strategy where the majority of traffic is routed through the NSP (x = 0.4,

φ − x = 3.6), we end up in an equilibrium where all the traffic flows

through the NSP: x∗ = 0; φ−x∗ = 4. This happens because when the IXP

is routing a small amount of traffic, the flat port cost is too high to justify

its use, therefore the players prefer the NSP. Once the NSP is serving all

the traffic no player has an incentive to deviate, because he would pay the

whole IXP cost by himself.

As we see, the outcome of the game is highly dependent on the starting

point: the IXP is preferred only if it already has, at the beginning, a good

amount of flow passing through him, otherwise all players will stick to the

NSP. This result is consistent with reality, in fact, the necessary condition

for an IXP to emerge is that it has a critical mass (represented by a fraction

of the traffic/users in the Internet) which makes the value perceived by a

potential participant greater than the cost he would incur in by joining

the facility [Nor10c].
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Figure 4.3.3: BRI - Case 1: a1 = 2, a2 = 2, φ = 2, c1 = 10, c2 = 3

4.3.4 The best response behavior

With the purpose of understanding the number and position of NEPs, we

draw the Best Response Intersection (BRI) picture. In this graph, shown

in Figure 4.3.3, the line with tick marks represents the best response x of

player 1 as a function of player 2’s strategy y, while the line with cross

marks does the exact opposite. The intersection points on the graph

mean that both players are playing their best responses, therefore they

are Nash Equilibrium Points. As we can see, there are three NEPs and,

as expected due to the symmetric property, they are all on the symmetric

axis [fCRVW04]:

Left Equilibrium is in x = x∗
L = 0 and corresponds to the scenario

where all the traffic is routed through the NSP.

Right Equilibrium is for x = x∗
M = 1.43 and is the one where traffic is

split between the IXP and the NSP.

Middle Equilibrium happens for x = x∗
M = 0.31. This is however a

repulsive equilibrium, in fact, as soon as one of the two players deviate,

they will never return to this point and reach instead one of the two others

equilibria.
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These three equilibria can be understood by observing Figure 4.3.2c:

x∗
L and x∗

R are attractive, and correspond to the minima of the cost func-

tion, while x∗
M corresponds to the maximum of the cost function, and is

thus repulsive. Of course, the last picture corresponds to the cost func-

tion for a specific strategy, therefore it cannot assert the position or the

existence of equilibria, however it gives an insight on their meaning.

As we change the game parameters we observe that the shape of the

best response is always the same, while the position of x∗
M and x∗

R changes.

In particular, as shown in Figure 4.3.4, If the ratio a2/a1 increases (meaning

that IXP cost w.r.t. NSP cost increases) then x∗
M gets nearer to x∗

R, making

the left equilibrium is easier to reach. Moreover, we observe that if the

capacity c2 of the IXP is large enough, than in the right equilibrium all the

traffic will flow through him.

4.4 Price of Anarchy, Stability and Fairness

4.4.1 Social Optimum

We now compare the performance of the distributed system, where each

Service Provider acts on its own, with that of an ideal centralized system

where decisions are took by some external entity. In this case the objective

is to minimize the total cost of the two players, given by the summation
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of the two costs in (4.3.2):

C(x, y) =
∑

i

Ci(x, y) = (φ1 + φ2 − x− y) a1 +
φ1 − x

c1 − (φ1 − x)
+

+
φ2 − y

c1 − (φ2 − y)
+

x+ y√
x+ y

a2 +
x

c2 − x
+

y

c2 − y
(4.4.1)

Theorem 9 and Corollary 10, whose proofs can be found in Appendix

4.8.2, explain how to optimize this cost function.

Theorem 9. The cost function (4.4.1) has a global minimum point. For sym-
metric demands this minimum point is attained at symmetric strategies, and it is
either the left endpoint of the strategy space or the unique local minimum point
of its convex part.

Corollary 10. The global minimum point of (4.4.1) is, for symmetric demands,
either the left endpoint of the strategy space or the output of a standard algorithm
for convex function optimization that starts from the right endpoint.

The globally optimal solution to problem (4.4.1) can thus be computed

by comparing the two candidate points highlighted in Corollary 10.

4.4.2 Alpha-Fair solution

Another metric for comparison comes from the theory of fairness. A

unifying mathematical formulation, known as α-fairness [LKCS], says

that given a set of users and utility functions Ui(x), the α-fair solution to

the problem of maximizing their utilities is given by:

max
x

(

∑

i

U i(x)(1−α) − 1

1− α

)

For α = 0, this is the same as maximizing the sum of the utilities, thus

it gives the social optimum for the problem. The case α → 1 yields the

proportional fair share assignment, however this solution is not feasible

when we have to deal with cost function rather then utilities, and for

α → ∞ it is equivalent to the max-min fairness. For α = 2, the formula
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gives us the “harmonic mean fair” solution, which we investigate here:

max
x

(

∑

i

U i(x)(1−α) − 1

1− α

)

= min
x

(

∑

i

−1− 1

Ci(x)

)

The solution is computed numerically in the next subsection.

4.4.3 PoA/PoS/PoF Comparison

As is usually done in the literature [JHA12; LKCS], we define the Price

of Anarchy (PoA) as the ratio between the worst decentralized solution

(equilibrium) and the social optimum. Similarly, the Price of Stability

(PoS) is defined as the ratio between the best equilibrium and the social

optimum:

PoA =
C (x∗

worst)

C (xopt)
≥ 1 PoS =

C (x∗
best)

C (xopt)
≥ 1

In our case we have just two attractive equilibria, therefore the best

and worst equilibria are either x∗
L or x∗

R. Following the same path, we

define the price of fairness as the ratio between the fair and the optimal

solution:

PoF =
C (xfair)

C (xopt)
≥ 1

Algorithm 4.1 has been extended to include numerical computation

of the above-defined Prices of Anarchy, Stability and Fairness. We use as

general configuration: a1 = 3, a2 = 4, φ = 2, c1 = 10, c2 = 3 (except for

Figure 4.4.1c, where c2 increases as φ increases), and show PoA, PoS and

PoF as parameters a1, a2 and φ change. Results are reported in Figure

4.4.1. As we see, it is always the case that PoF = 1, meaning that the

harmonic mean fair solution is equal to the social optimum.

The PoA almost always corresponds to the left equilibrium. An excep-

tion to this is the case where there is a small amount of total traffic, shown

in Figure 4.4.1c for φ = 1: in this case the left equilibrium outperforms the

right one, meaning that for small amounts of flow it is not convenient to

share costs at the IXP. As φ increases, the advantages of sharing become
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Figure 4.4.1: Price of anarchy, stability and fairness

obvious. Figures 4.4.1a and 4.4.1b show that the PoA increases as a1

increases and decreases as a2 increases. An exception to this is the case

a2 = 1 of Figure 4.4.1b: with these parameters the cost function resembles

that of Figure 4.3.2b, therefore we have only one equilibrium. The PoS

is almost always very low, and it is always caused by the fact that the

competition between ISPs reduces the amount of traffic through the IXP,

thus reducing their opportunities to share costs.
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4.5 Generalizations

While the results obtained by the MCM are interesting on their own, as

they shed light on the competition between an Internet Exchange Point

and a Network Service Provider, driven by the clear differences between

transit and peering, one might argue that this topology is quite small and

simplified to represent the Internet. Here we explicitly tackle this problem

by both extending the convergence results to more general scenarios,

and using simulation to cover other cases for which we couldn’t obtain

analytic results, thus analyzing a broad variety of general cases.

4.5.1 Extended Analytical Results

We consider a system with I ISPs, N CPs, and L TFs, with l1 = 1, in a

possibly disconnected topology. While having multiple IXPs is funda-

mental for understanding how players aggregate around exchange points,

especially in presence of reachability constraints (IXPs may be connected

to only a subset of CPs), this is not the case for NSPs, due to the fact that

their cost is independent from other players’ choice, and they are neces-

sarily connected to all possible CPs. Therefore, without loss of generality

for our problem, it is safe to consider only a single NSP for l = 1, and

L− 1, for l = 2..L, IXPs as we do here. In the following we will always

refer to this system, which is a single NSP version of Figure 4.2.1.

The cost function of Section 4.2 can thus be rewritten separating the

NSP component from the IXPs, therefore:

Ci(xi,x−i) =
∑

n

xn
i,1

(

a1 +
1

c1 −
∑

n x
n
i,1

)

+ (4.5.1)

+
∑

l 6=1

∑

n

xn
i,l





al
√

∑

i

∑

n x
n
i,l

+
1

cl −
∑

n x
n
i,l

+ bnl





where the CP reachability cost for the NSP has been removed since we

know from (4.2.3) that bn1 = 0 ∀n.

Theorem 11 and Corollary 12, whose complete proofs can be found in

Appendix 4.8.2, demonstrate existence of equilibria and convergence of
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the symmetric best response algorithm for the general case just formal-

ized.

Theorem 11. The game defined in (4.5.1) is symmetric supermodular.

Sketch of the Proof. The proof is based on showing that (4.3.3) holds along
the symmetric axis for any possible combination of indexes:

∂2Ci(xi,x−i)

∂xn̄
j,l̄
∂xn

i,l

∣

∣

∣

∣

∣

xn
i,l

=xn
j,l

≤ 0 ∀i 6= j, ∀l, l̄, n, n̄ (4.5.2)

Corollary 12. The game defined in (4.5.1) has at least one pure equilibrium for
symmetric demands, given as the limit of a symmetric best response sequence.

4.5.2 Subcases Analysis

After proving existence of equilibria for the general case, here we analyze

some subcases in order to understand what kind of equilibria we should

expect for specific scenarios. We have two main categories:

Fully Connected Topologies Suppose that we have a fully connected

topology, meaning that bnl = 0 ∀l, n. In such a case, we can take the

summation over n and consider cumulative flows and demands:

{

xi,l =
∑

n x
n
i,l cum. flow ISPi → TFl

φi =
∑

n φ
n
i cum. demand ISPi

We can now substitute these two variables inside cost function (4.2.11),

thus obtaining an equivalent problem where the strategy of each player

is a vector xi = (xi,1, ..., xi,l, ..., xi,L) ∈ R
L. This means that, in fully

connected topologies, our system is equivalent to another one where we

only have a single CP, and each player has to serve a cumulative demand

φi for that CP. This happens because there are no reachability constraints,

therefore from a player’s perspective the specific CP from which he has

to fetch data is not relevant.
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Figure 4.5.1: BRI for 3 players: a1 = 2, a2 = 2, φ = 2, c1 = 10, c2 = 3

Symmetric IXPs Suppose that all the IXPs have the same costs, capaci-

ties and reachability matrix: al = aIXP , cl = cIXP , bnl = bnIXP ∀l 6= 1. Due

to their symmetry, there is an equilibrium where traffic is split equally

among them [fCRVW04], therefore we might think of transforming this

problem in an equivalent one having a single IXP with the same reachabil-

ity matrix and transformed costs and capacities. Unfortunately, we were

unable to perform this conversion due to the form of the cost function for

the IXPs. In fact, as we see from (4.2.11) and (4.2.10), the non linear port

cost hl makes it quite different for players to share small traffic quantities

rather then large ones.

The analysis of the two categories highlights that scenarios with mul-

tiple CPs can be highly simplified with fully connected topologies, while

in the case of multiple IXPs, even if symmetric, the analysis can be quite

difficult. To conclude this section, we analyze in more detail the simplified

case where we have fully connected topology and just one IXP. Due to the

fact that we can handle the multiple CPs as if there was just a single one,

this scenario is quite similar to the MCM, except that we have a generic

number I of players. However, thanks to Corollary 12, we now know that

for symmetric demands φi = φ ∀i we can compute equilibria as the limit

of symmetric best response sequences. Just like it was done for the MCM,

we can use algorithm 4.1 to compute the equilibria.
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With the purpose of analyzing number and position of equilibria, for

the case of I = 3 (it would be difficult to represent more dimensions), we

can draw the Best Response Intersection (BRI) graph, shown in Figure

4.5.1. Just like in the MCM, the picture shows three equilibrium points,

obtained by the intersection of the three surfaces representing the players’

best responses. As we see from the straight line crossing all such points,

the three equilibria are symmetric, with the leftmost (traffic split between

NSP and IXP) and the rightmost (all flows through the NSP) being the

stable ones.

4.6 Simulations

In this section, we use our MATLAB implementation to test the behav-

ior of the system. As a matter of fact, thanks to Theorem 11, we have

proven convergence for symmetric scenarios, showing that symmetric

supermodularity holds for the general scenario of Section 4.2. We do

not have convergence guarantees for asymmetric topologies. However,

we know that if the best response sequence algorithm converges, then it

converges to an equilibrium [AA03]. Therefore we can use our simulator

both to study our system in general cases, and to assess convergence for

specific cases.

Simulations have been performed using the symmetric best response

algorithm 4.1: iteratively, each player performs its best response to the set

of other players’ strategies. If the simulation converges, the output is the

equilibrium for the given input parameters, which are:

• the number of ISPs, TFs and CPs, respectively I , L, N ;

• the cost function parameters al, cl, b
n
l and demands φn

i .

Moreover, it is important to set a startingpoint, because, as we saw, on

startup IXPs need a critical mass, represented by a share of the total traffic

in the system, in order to be able to attract players.
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Figure 4.6.1: Traffic ratios and equilibrium breakpoint as I grows

4.6.1 Growing Number of ISPs/IXPs

We start with showing the behavior of system for symmetric cases, for

which convergence has been proven, and checking what happens as the

number of agents in the system grows. The base configuration used is

I = 2, L = 2, N = 2, bnl = 0 ∀l, n and φn
i = φn = 2, and all tests have been

performed with fully connected topology and symmetric demands. The

cost coefficients used are: a1 = 1, a2 = 1.5, c1 = 10, c2 = 6. As long as

flows and capacities are properly balanced, the existence of multiple CPs

does not seem to affect the results of the simulations, therefore here we

check what happens when we have either more ISPs or IXPs.

Generic Number of ISPs When the number I of players increase, the

benefits of joining an IXP increases as well, due to the fact that costs are

shared among multiple participants: in fact, as shown in Figure 4.6.1 on

the y1 axis, the fraction of traffic flowing through the IXP at the equilib-

rium increases with I . We recall from Section 4.3.3 that IXPs need a critical

mass to be used, which in our case corresponds to a fraction of the total

traffic in the system. Very interestingly, the y2 axis of Figure 4.6.1 shows

that this fraction decreases as the number of player grows.

Generic Number of IXPs In order to have an interesting case study as L

grows, we test a scenario where the global IXP capacity does not change,
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Figure 4.6.2: Traffic ratio as L grows

therefore cl = c2/(L− 1) ∀l 6= 1. This means that instead of having one

“large” IXP with a high capacity, we have multiple IXPs with less capacity.

In order to have meaningful capacities for the small IXPs, we increased

global flows and capacities to: c1 = 50, c2 = 25, φn
i = φn = 10. As shown

in Figure 4.6.2 the fact that IXPs only offer small ports is detrimental for

the players, and after a certain point they will all stick to the NSP.

Simulations show that while the IXP critical mass decreases with a

larger player base, this effect is counterbalanced by the fact that the critical

mass increases with the number of IXPs. Therefore, the results found in the

two player case still hold in more realistic scenarios: IXPs need a critical

mass to emerge even in scenarios with more ISPs and IXPs, otherwise we

still end up in an equilibrium with dominant NSP connectivity.

4.6.2 Flow Path Analysis

In this section we show results of simulations regarding the path followed

by traffic flows. The simulations were performed both for symmetric

scenarios, for which convergence has been proven in the general case,

and asymmetric scenarios, for which we have no proofs. In fact, as we’ll

see later on, in this last case it is possible for players to never reach an

equilibrium.
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4.6.2.1 Symmetric Case

We simulate a scenario with I = 10 ISPs, L = 4 TFs (L−1 symmetric IXPs)

and N = 4 CPs. The connectivity matrix is:

bnl =

{

∞ (l, n) = (2, 2) ∨ (l, n) = (4, 1) ∨ (l, n) = (4, 4)

0 otherwise

The cost parameter al has been chosen in order to be similar to present

reality [Nor10b], therefore we choose a1 = aNSP = 3 and ∀l 6= 1,

al = aIXP = 30 as seen in the fit performed for the MIX (Figure 4.2.2).

All users have symmetric flows φn
i = 12.5 ∀i, n and their capacities to

the facilities are c1 = cNSP = 100 and ∀l 6= 1, cl = cIXP = 20, so that

cNSP ≫ cIXP .

As already happened in the MCM, depending on the startingpoint

we notice the existence of multiple equilibria. In fact, if the initial condition

is such that one or more IXPs are underutilized, than at equilibrium those

IXPs will not be used. This phenomenon corroborates the outcomes of

the MCM, showing that indeed even in general scenarios the competition

between NSPs and IXPs, and even between IXP themselves, strongly

emerges. Differently from the MCM, in this case we observe more than

two stable equilibria, since any combination with one or many unused

IXPs can be an equilibrium.

Suppose now that the startingpoint is such that flows are split

equally among the facilities, so that all IXPs have the critical mass to

attract players. Figure 4.6.3 shows the scatterplot at equilibrium. In this

plot, each dot represents the flow quantity that each user sends on a given

path (that is, to a fixed CP through a given IXP). Due to symmetry, we

observe that all users will behave symmetrically on the same path, and

this is exactly what happens in Figure 4.6.3. There is generally a low

utilization of the NSP, which rises a little bit for those CPs with a worse

reachability matrix (CP1, CP4).
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Figure 4.6.3: Symmetric case flows scatterplot: φn
i = 12.5

4.6.2.2 Asymmetric Case

We now show the impact of asymmetric players’ demands. In this case,

convergence of the best response sequence is not guaranteed by Corollary

12, however, we know that if the simulation converges we certainly reach

an equilibrium.

We simulate a scenario with exactly the same parameters as in the

symmetric case, except that now the demands grow linearly from φn
1 =

10 ∀n to φn
I = 15 ∀n. The average demand is still 12.5, but now the

demand of the last player is 1.5 times that of the first one. The scatterplot

at equilibrium is shown in Figure 4.6.4.Very interestingly, even if demands

are asymmetric, paths of flow tend to be almost symmetric for the IXPs,

while they spread apart for the NSP. This happens because the benefits

of sharing costs at the exchange points is bigger when the traffic ratio is

approximately the same between participants, therefore players tend to

“symmetrize” around the IXPs. Due to the fact that flows around the IXPs

are more or less symmetric, players will send the traffic residual through

the NSP, which will see highly asymmetric patterns.

In previous case, the asymmetry in players’ demands was not very

pronounced. Let’s now see what happens when the demands go from

φn
1 = 6.5 ∀n to φn

I = 18.5 ∀n, meaning that last player demand is nearly

three times that of player one. Again, Figure 4.6.5 shows the scatterplot

at equilibrium. Due to the heavily unbalanced demands, the symmetric
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Figure 4.6.4: Asymmetric case flows scatterplot: φn
i = 10 → 15
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Figure 4.6.5: Asymmetric case flows scatterplot: φn
i = 6.5 → 18.5

patterns around the IXPs are still present, but much less pronounced.

While in the previous case equilibrium was driven by the simple rule

of “symmetric behavior”, in this case the outcome is more difficult to

predict. In general, due to the asymmetry, cost benefits of players’ for

using exchange points decrease, therefore we observe, on average, a

higher quantity of flow going through the NSP.

The phenomena emerged through this analysis can provide some

preliminary insight on how to devise optimal policies to handle peering

traffic at IXPs. More specifically, the “symmetric behavior” rule highlights

that it is beneficial to balance traffic as much as possible, therefore IXP

owners should create few classes of traffic (namely, few different port
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sizes), and participants should try to aggregate traffic on these ports, since

unbalanced flows must be handled at NSPs and bring to suboptimality.

While simulations have been carried out with a limited network size due

to computational constraints, the conclusions are fairly general, therefore

we expect similar results to hold for larger-scale scenarios.

4.6.3 Non Convergence

Even quite simple scenarios for which we cannot apply Theorem 11, might

lead to a situation where players’ behavior oscillates, never reaching an

equilibrium. Consider a system with two symmetric IXPs and an asym-

metric starting point s.t. a group of players send more traffic to one of the

IXPs and less to the other, while the other group of players do the opposite.

Due to the asymmetric assumption we cannot apply Corollary 12, and

simulation shows that this scenario might never reach an equilibrium.

This happens when players enter a never-ending oscillation between the

first and the second group, as detailedly shown in the following example.

Example 13. Non-Convergence.

Consider a system with fully connected topology, I = 16 ISPs, L = 3

TFs (one NSP and two symmetric IXPs) and N = 1 CP. Once again we use

cost parameters aNSP = 3 and aIXP = 30. Capacities are cNSP = 200 and

cIXP = 70 and we even take symmetric demands φn
i = 50 ∀i, n. Accord-

ing to Corollary 12, equilibrium can be reached following a sequence of

symmetric best responses. Instead, we set an asymmetric starting point:











xi,l = 24.9 if (l = 1 ∧ i ≤ 8) ∨ (l = 2 ∧ i > 8)

xi,l = 25.1 if (l = 2 ∧ i ≤ 8) ∨ (l = 1 ∧ i > 8)

xi,l = 0 otherwise

Simulation shows that players never reach an equilibrium, and go

through a never-ending oscillation between two points:











x−
i,l = 0 x+

i,l = 50 if (l = 1 ∧ i ≤ 8) ∨ (l = 2 ∧ i > 8)

x−
i,l = 50 x+

i,l = 0 if (l = 2 ∧ i ≤ 8) ∨ (l = 1 ∧ i > 8)

x−
i,l = x+

i,l = 0 otherwise
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This happens because, on each iteration, each player of the first group

sees the second group of players on a different IXP, and finds it beneficial

to deviate on that TF. The same happens for the players of the second

group, which in turn deviate altogether to the IXP of the first group. After

the deviation, situation is reversed, therefore the two groups keep devi-

ating all the time, never reaching an equilibrium. Please note that using

a symmetric starting point would immediately lead to an equilibrium

where xi,l = 25 if l is an IXP, and zero otherwise.

4.7 Conclusions

The proposed model gives insight into the economy of different types of

Autonomous Systems and the driving forces behind the decisions they

make when joining the Internet. The peculiar pricing strategies of players

doesn’t allow standard modelization, however, by exploiting peculiar

properties of the game, we are able to prove analytically the existence of

multiple equilibria, and provide an algorithm to compute the stable ones.

From a game theoretic perspective, while the theory on supermodularity is

well-developed, we relaxed this concept and introduced the new category

of Symmetric Supermodular games. Thanks to this we were able to prove

existence of equilibria and convergence of best response sequences in

our game. This is the first case, to the best of our knowledge, where

results on supermodularity are applied even if the property does not hold

for the game in general, by showing that it holds along the symmetric

path. From an engineering perspective, the outcome of the analysis is

highly insightful as it shows different interesting aspects. First of all,

we observe the suboptimality of the decentralized solution, originated

by the non-cooperative behavior of the ASes, by showing the existence

of a Price of Anarchy and Stability. Second, we have shown that also

for asymmetric cases the system often reaches an equilibrium. Such

equilibrium suggests that players tend to “symmetrize” their traffic as

much as possible with respect to the peering exchange points, and send

their asymmetric traffic quota via the transit service providers. This

observation can provide insights on how to devise optimal policies to
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handle peering traffic at IXPs. Last, but probably most important, we

highlight the growing competition between IXPs, providing customers

the ability to lay out peering connections, and NSPs, high-level providers

selling transit connections, even for large-scale scenarios.

The developed model is a simple yet effective way of analyzing how

Autonomous Systems manage their traffic, and what are the possible

ways to optimize their costs for handling such traffic. Therefore, it is

reasonable to think of simulating the model using as input realistic traffic

demands expected in the Internet environment. Unfortunately, traffic

data between ASes over the Internet is undisclosed, and the few studies

related to this subject rely on private data [ACF+12]. Nevertheless, we

are currently trying to evaluate traffic patterns using available DNS data,

so as to indirectly assess the fraction of traffic flowing between different

ASes.

The growing importance of IXPs is a key aspect in the flattening, com-

munity structure of the Internet. The novel aspect introduced by IXPs, is

that its customers, even when acting in a myopic and selfish manner, can

find benefits in being together on IXPs. These benefits increase for, but

are not limited to, customers with symmetric traffic levels, and hence of

similar importance in the hierarchy. Therefore, an IXP acts as an attractor,

and its participants typically become very well connected between them-

selves to exploit all the benefits of this facility. This interaction paradigm

will be deepened in the next chapter, where we show how IXP partic-

ipants become well “correlated” between themselves, and exploit this

phenomenon as the ground truth for the core network model.

4.8 Appendix

4.8.1 MCM Cost Function Derivation

Consider the model in Figure 4.3.1. Given that we have I, L,N = 2, where

l = 1 is the NSP and l = 2 is the NSP, we can explicitly rewrite the general

cost function (4.2.11) for the two players as in (4.8.1).
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

























































C1(xi,x−i) =
(

x1
1,1 + x2

1,1

)

(

a1 +
1

c1−(x1
1,1+x2

1,1)

)

+
(

x1
1,2 + x2

1,2

)

·

·
(

a2√
x1
1,2+x2

1,2+x1
2,2+x2

2,2

+ 1
c2−(x1

1,2+x2
1,2)

)

+

+x1
1,1b

1
1 + x2

1,1b
2
1 + x1

1,2b
1
2 + x2

1,2b
2
2

C2(xi,x−i) =
(

x1
2,1 + x2

2,1

)

(

a1 +
1

c1−(x1
2,1+x2

2,1)

)

+
(

x1
2,2 + x2

2,2

)

·

·
(

a2√
x1
1,2+x2

1,2+x1
2,2+x2

2,2

+ 1
c2−(x1

2,2+x2
2,2)

)

+

+x1
2,1b

1
1 + x2

2,1b
2
1 + x1

2,2b
1
2 + x2

2,2b
2
2

(4.8.1)

Constraints shown in (4.2.5) can also be rewritten as:

{

x1
1,1 + x1

1,2 = φ1
1

x2
1,1 + x2

1,2 = φ2
1

{

x1
2,1 + x1

2,2 = φ1
2

x2
2,1 + x2

2,2 = φ2
2

(4.8.2)

For the sake of readability, we apply the following variable renaming

to our problem:

{

x1 = x1
1,2

x2 = x2
1,2

{

y1 = x1
2,2

y2 = x2
2,2

(4.8.3)

Meaning that xn is the amount of traffic sent from player 1 to CP n

through the IXP, while yn is the analogous for player 2. Due to constraints

(4.8.2) we have that:

{

x1
1,1 = φ1

1 − x1

x2
1,1 = φ2

1 − x2

{

x1
2,1 = φ1

2 − y1

x2
2,1 = φ2

2 − y2
(4.8.4)

By substituting the variables defined in (4.8.3) and the ones obtained

in (4.8.4), we get system (4.8.5), which gives the cost functions of the two

players for the MCM model.
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





















































C1(x1, x2, y1, y2) =
(

φ1
1 + φ2

1 − x1 − x2

)

(

a1 +
1

c1−(φ1
1+φ2

1−x1−x2)

)

+

+(x1 + x2)
(

a2√
x1+x2+y1+y2

+ 1
c2−(x1+x2)

)

+

+
(

φ1
1 − x1

)

b11 +
(

φ2
1 − x2

)

b21 + x1b
1
2 + x2b

2
2

C2(x1, x2, y1, y2) =
(

φ1
2 + φ2

2 − y1 − y2
)

(

a1 +
1

c1−(φ1
2+φ2

2−y1−y2)

)

+

+(y1 + y2)
(

a2√
x1+x2+y1+y2

+ 1
c2−(y1+y2)

)

+

+
(

φ1
2 − y1

)

b11 +
(

φ2
2 − y2

)

b21 + y1b
1
2 + y2b

2
2

(4.8.5)

We further know that the topology is fully connected, meaning that

bnl = 0 ∀l, n. In this case, from the player’s perspective, the cost does not

depend on the facility used for a specific CP, but rather on the total amount

of flow going through a specific TF, independently from the destination

content provider. Therefore we can consider these cumulative flows and

cumulative demands as new variables of our problem:

{

x = x1 + x2 flow ISP1 →IXP

y = y1 + y2 flow ISP2 →IXP
(4.8.6)

and
{

φ1 = φ1
1 + φ2

1 cum. demand ISP1

φ2 = φ1
2 + φ2

2 cum. demand ISP2

(4.8.7)

By plugging (4.8.6) and (4.8.7) in system (4.8.5), we obtain the final

form of the cost functions for the two players, shown in (4.3.2).

4.8.2 Proofs

Proof of Lemma 7. The second derivative of function (4.3.7) w.r.t. x is:

∂2C1(x)

∂x2
=

2c1

(c1 − (φ− x))
3 +

2c2

(c2 − x)
3 +

3a2x

4 (x+ y)
5
2

− a2

(x+ y)
3
2

(4.8.8)

We have that c1 ≫ c2, φ, therefore the first term is negligible when trying
to check the sign of this derivative. Given that x, y > 0, c2 > x and x ≤ φ,
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the second term is an always positive increasing function. For a fixed
value of y, the summation of the third and forth term is an always nega-
tive increasing function. Therefore (4.8.8) is a monotonically increasing
function, as it is the summation of two increasing functions.

Proof of Theorem 8. According to Lemma 7 the second derivative of (4.3.7)
is monotonically increasing. Therefore we can only have three cases:























∂2C1(x)
∂x2 < 0 ∀x ⇒ C1 always concave

∂2C1(x)
∂x2 > 0 ∀x ⇒ C1 always convex

∃!x̄ s.t. ∂2C1(x)
∂x2

∣

∣

∣

x=x̄
= 0 ⇒ C1 concave in [0;x̄]

and convex in [x̄;c2]

Proof of Theorem 9. The strategy space is x ∈ [0,min(c2, φ1)[ and y ∈
[0,min(c2, φ1)[. Within this set, C is continuous, therefore, by Weierstrass’
theorem, it has a global minimum, which might be either a stationary
point or one of the interval endpoints. In order to find all the stationary
points, we study the function gradient:

{

∂C(x,y)
∂x = −a1 − c1

(c1−(φ1−x))2
+ a2

2
√
x+y

+ c2
(c2−x)2

∂C(x,y)
∂y = −a1 − c1

(c1−(φ2−y))2
+ a2

2
√
x+y

+ c2
(c2−y)2

(4.8.9)

By hypothesis we have symmetric demands: φ1 = φ2 = φ. If we sum the
two equations in (4.8.9) we have that:

− c1

(c1 − (φ− x))
2 +

c2

(c2 − x)
2 = − c1

(c1 − (φ− y))
2 +

c2

(c2 − y)
2

which clearly is true only for symmetric strategies, therefore we must
have x = y.

The capacity of the NSP is typically c1 ≫ φ, x therefore we can simplify
c1

(c1−(φ−x))2
≈ 1

c1
. In order to find the stationary points we need to find

the roots of equation:

− a1 −
1

c1
+

a2

2
√
2x

+
c2

(c2 − x)
2 (4.8.10)
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Unfortunately, this is a fifth-degree polynomial, therefore we don’t have
an explicit solution. Consider now the derivative of equation (4.8.10):

− a2
√
2

8x
√
x
+

2c2
(c2 − x)3

(4.8.11)

This is a monotonically increasing function (as it is the sum of two in-
creasing functions), that goes to −∞ for x → 0 and to +∞ for x → c2,
therefore it has one root. As a consequence, we know that eq. (4.8.10),
representing the first derivative of C, is convex and has limits +∞ for
x → 0, c2. Therefore, it has a unique minimum point corresponding to the
root of equation (4.8.11).

Given the form of its first derivative (4.8.10), the cost function (4.4.1)
is concave in its first part (where the derivative decreases) and convex in
the second part (where the derivative increases). The points of minimum
of the concave part are its two endpoints, while the convex part has a
unique minimum point. The right endpoint of the concave part is inside
the convex part (C is continuous), therefore the convex minimum is an
improvement over it. Henceforth, the global minimum point is either the
minimum point of the convex part, or the left endpoint of the concave
part, which is also the left endpoint for C(x, y).

Proof of Corollary 10. Given such an algorithm, we execute it on the func-
tion giving as initial point the right endpoint of the strategy set, where
we know that the function is convex. The output of the algorithm is the
local minimum of the convex part, therefore according to theorem 10 the
global minimum point is either this point or the left endpoint.

Proof of Theorem 11. First of all, we can use constraint (4.2.5) to reduce the
number of variables of our system. In fact if we perform the summation
over n on left and right member, and separate the NSP component from
the IXPs, we obtain:

∑

n

xn
i,1 +

∑

l 6=1

∑

n

xn
i,l =

∑

n

φn
i (4.8.12)

Now we substitute
∑

n x
n
i,1 taken from (4.8.12) inside (4.5.1) and rear-
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range terms, so as to obtain:

Ci(xi,x−i) =
∑

l 6=1

∑

n

xn
i,l





al
√

∑

i

∑

n x
n
i,l

+
1

cl −
∑

n x
n
i,l



+

+





∑

n

φn
i −

∑

l 6=1

∑

n

xn
i,l







a1 +
1

c1 −
(

∑

n φ
n
i −∑l 6=1

∑

n x
n
i,l

)



+

+
∑

l 6=1

∑

n

xn
i,lb

n
l (4.8.13)

where all the flow variables have l 6= 1. Now we need to compute
the mixed second derivatives of equation (4.8.13). We observe that the
second term, referring to the NSP, has no mixed components, due to the
fact that the cost does not depend on other players’ choice, therefore this
term becomes zero in the computation. The same happens with the last
term, therefore we have:

∂2Ci(xi,x−i)

∂xn̄
j,l̄
∂xn

i,l

=
∂

∂xn̄
j,l̄









al
√

∑

i

∑

n x
n
i,l

+
1

cl −
∑

n x
n
i,l



+

+
∑

n

xn
i,l






− al

2
(

∑

i

∑

n x
n
i,l

)3/2
+

1
(

cl −
∑

n x
n
i,l

)2













∀i 6= j, ∀l, l̄, n, n̄ (4.8.14)

Following the same reasoning previously done, we observe that the
second and forth term in (4.8.14) do not depend on xn̄

j,l̄
, therefore their

contribution in the final derivative is zero. Moreover, we observe that first
and third term only have flow variables with index l, therefore for any
l̄ 6= l the whole derivative becomes zero:

∂2Ci(xi,x−i)

∂xn̄
j,l̄
∂xn

i,l

= 0 ∀i 6= j, ∀l 6= l̄, ∀n, n̄ (4.8.15)

while in the other case we have:
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∂2Ci(xi,x−i)

∂xn̄
j,l∂x

n
i,l

= − al

2
(

∑

i

∑

n x
n
i,l

)3/2
+

3al
∑

n x
n
i,l

(

∑

i

∑

n x
n
i,l

)5/2

∀i 6= j, ∀l, n, n̄ (4.8.16)

Please note that, regardless of the chosen n, n̄, the derivatives are all
the same. In order to prove symmetric supermodularity, we have to show
that property (4.3.3) holds for both (4.8.15) and (4.8.16). While in the first
case this is trivial, for the second one we multiply (4.8.16) by the positive

quantity
(

∑

i

∑

n x
n
i,l

)3/2

, thus obtaining that:

sgn

(

∂2Ci(xi,x−i)

∂xn̄
j,l∂x

n
i,l

)

= sgn

(

al
4

·
∑

n x
n
i,l − 2

∑

j 6=i

∑

n x
n
j,l

∑

i

∑

n x
n
i,l

)

(4.8.17)

Along the symmetric axis we have that xn
i,l = xn

j,l ∀i 6= j, ∀l, n,
meaning that each couple (i, j) of players send, to a fixed CP n through
a given IXP l, the same quantity of flow. With this condition, equation
(4.8.17) is always negative, therefore (4.5.1) is symmetric supermodular.

Proof of Corollary 12. By hypothesis the demands satisfy φn
i = φn

j ∀i 6=
j, ∀n. Therefore ISPs keep playing along the symmetric axis [fCRVW04],
and we obtain this result by combining Theorems 4 and 11.
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Part III

A Novel Model for the
Internet Topology
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Chapter 5

The evolving Internet’s
Core: an IXP-centric
network model

In this chapter, we propose an IXP-centric network model aimed at accu-

rately reproducing the evolving core of the Internet at the Autonomous

System (AS) level. The proposed model, called X-CENTRIC (iXp-Centric

Evolving NeTwoRk model for the Internet’s Core), exploits the results

from previous chapters, that tackled two of the most important problems

faced when modeling the Internet. Therefore, X-CENTRIC focuses on

the Internet’s core, as it is the most interesting and structured part of

the network, and uses an innovative dynamic which reflects the driving

forces behind the evolution of the Internet, with the emerging flattening

of its structure through the massive diffusion of IXPs.

Indeed, the game-theoretic model shown in the previous chapter high-

lights the role of IXPs as “concentrators”, since the benefits of joining

these facilities specifically emerge when there are many well connected

participants. The natural evolution of this mechanism is the formation

and growth of dense peering meshes around the IXPs. This consideration

serves as the basis for the deployment of the dynamic rules of X-CENTRIC,

as detailedly explained in Section 5.2. These dynamic rules are embedded
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in X-CENTRIC through a small set of physically meaningful parameters,

thanks to which the model has the potential to forecast the evolution

of the core network. Results show that X-CENTRIC is able to both cap-

ture the statistical characteristics of the Internet’s core and its community

structure, measured in the form of maximal cliques [AGL14b].

At the end of the chapter, we highlight the crucial importance of the

third key problem stressed in the thesis introduction. Indeed, the predic-

tion properties are based on data from real measurements, therefore it is

important to remove the biases introduced by data incompleteness, in or-

der to accurately predict the future evolution of the Internet topology. We

conclude that the model is versatile and capable of accurately predicting

the evolution of the Internet’s core as long as we are able to foresee the

growth of the modeling parameters, which can be done under a stable

measuring infrastructure.

5.1 Introduction and Related Work

Current efforts to analyze the Internet topology focus on the driving

forces behind its evolution. Many studies have focused on the analysis

of the Internet’s topology evolution [DD11], highlighting the flattening

phenomenon [DD10; LWY12] and the impact of IXPs [GILO11; AG10],

however none have been able to devise a model which reproduces the

evolving Internet topology under such driving forces. Moreover, studies

in this field typically do not take into account the measuring infrastructure

used to infer the Internet topology [GIL+12], and the possible biases

introduced by the fact that this infrastructure changes over time.

The main research contribution of this chapter is X-CENTRIC, a novel

IXP-centric evolving model for the Internet’s core, whose ground truths

are the structural properties of the topology and the awareness of the

IXPs impact on its flattening (see Chapters 3 and 4). X-CENTRIC makes

use of a well-defined service model, able to outline the true driving

forces behind link creation and the Internet’s evolution. Using a set of

correlation parameters, we highlight the importance of IXPs within the

Internet’s core as responsible for its community structure, and define a
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mechanism through which exchange point customers become attached.

The successful validation carried out, using even sensitive metrics such

as maximal cliques, highlights how fundamental our mechanism is if we

want to grasp the true driving forces behind the evolution of the Internet’s

core.

X-CENTRIC reproduces the statistical characteristics of the Internet’s

core, such as the heavy-tailed degree distribution and its community

structure (in the form of maximal cliques). In addition, it also captures

the evolution of the network by looking at the growth of the modeling

parameters, possibly making predictions on the future evolution of the

core.

Unlike growing network models, X-CENTRIC can deal with aggre-

gated events. Specifically, in growing network models, such as the BA-

model, the time evolution is measured with respect to the number of

nodes added to the graph. X-CENTRIC takes a different approach, and

builds different graphs in different time steps: time is measured with

respect to the evolution of modeling parameters at the different steps. The

difference between the two approaches can be easily understood by an

analogy with physics: we study the evolution of the temperature, pres-

sure, etc.. (modeling parameters) of a room, rather than the interaction

of its molecules (nodes). The strength of our method lies in the fact that

modeling parameters are both a high level representation of the system

and a way of reproducing the driving forces behind the node interactions.

Using X-CENTRIC and existing topological data, we highlighted a crit-

ical aspect of the measurement infrastructure: with the existing topologi-

cal data it is impossible to study the long-term evolution of the Internet, as

the measuring infrastructure is too variable over time and generates long-

term fluctuations that hide the real evolution of the topology. However,

the insights provide directions for future research in the field of Internet

measuring and data gathering, and should be considered when trying to

apply evolutionary network models to such data.

X-CENTRIC is thus versatile and capable of accurately predicting the

evolution of the Internet’s core as long as we are able to foresee the growth

of the modeling parameters. Under a stable measuring infrastructure,
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with knowledge of such parameters, the model would be able to predict

the future evolution of the Internet.

The remainder of this chapter is organized as follows: in Section 5.2

we recall the core structure presented in Chapter 3 and illustrate our inno-

vative dynamic, based on considerations from Chapter 4. In Section 5.3

we devise the X-CENTRIC model and compare its results with measured

data, then Section 5.4 analyzes the evolution of the core, compares it with

the measuring infrastructure, and highlights the predictive properties of

our model.

5.2 Core Analysis and Correlations

As shown in Figure 3.2.9 of Chapter 3, the core of the Internet is a two-layer

graph made up of three different networks. Here we analyze the three

networks taking into account: i) the structural and behavioral properties

of the nodes (Chapter 3); ii) the role of IXPs as concentrators (Chapter 4).

The rational behind our analysis is the awareness that the core is made

up of many peering links, and its nodes participate in many IXPs. Thus,

links within the core are mainly links between subsets of customers of an

IXP. Internet eXchange Points act as concentrators between participants

of the same IXP, which therefore form a community. We believe that,

due to their role, IXPs naturally generate “correlation” properties in the

three networks, where customers of the same IXP have a high correlation

between them, and a low correlation with nodes participating in other

IXPs. A proper model of the Internet’s core should thus take into account

strategies that avoid the destruction of such correlations, since they are an

important indicator of the community structure (i.e. the massive presence

of maximal cliques) in the core network.

There are two main questions that enable us to build a core model,

and that we need to answer in our analysis: how many links should each

node draw? And what kind of attachment mechanism should it follow?

The answers depend on the reference network, and the mechanisms built

upon those answers should be able to provide the correlations mentioned

above.
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5.2.1 Centrum Network

The centrum is a network of very few nodes (at most 80 in 2013), which

participate in many IXPs and, as such, are very well connected. This

small network has a very high density, therefore it makes no sense to

look for the existence of correlated/non-correlated nodes. The number

of links that each node should draw is well captured by the first part

of the density curve (before the inflection point), shown in Figure 5.2.1.

A further analysis reveals that this curve can be easily modeled using

just three parameters: the size of the largest clique k̄, the size of the

centrum n̄, and the centrum density d̄. In fact, as shown in Figure 5.2.1, the

actual density curve is well approximated by a curve which averages a

linear and a quadratic interpolation between points
(

k̄, 1
)

and
(

n̄, d̄
)

. The

approximated density curve can be used to derive the number of links

drawn per node.

As far as the attachment mechanism is concerned, it is possible to show

that the “directed preferential attachment” mechanism [AGL13] is able

to reproduce the high number of maximal cliques observed. Specifically,

the node has a picture of the directed centrum network, where each edge

goes from the newer connecting node to the older connected node, and

the preferences are [1 : 2]. This means that for each node, an outgoing link

adds a preference of 1, while an incoming link adds a preference of 2. In

any case, the small network size makes the problem of deriving a good
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attachment mechanism far less crucial compared with the same problem

applied to the other networks.

5.2.2 Vertical Network

The vertical network has a very particular degree distribution, shown in

Figure 3.3.3 of Chapter 3. This distribution is in 1 to 1 correspondence

with the number of vertical links towards the centrum. Therefore, from it

we can infer that the number of links that each node should inject to the

centrum is uniformly distributed in U (1, pv).

Vertical links reflect the willingness of a node to connect to the centrum.

We believe that the main mechanism through which a layer-1 node lays

out connections towards the centrum is related to its willingness to join

an IXP. As shown in Chapter 3, centrum nodes participate in many IXPs

with an Open Peering policy. Therefore, when a layer-1 node joins the IXP,

it will connect with many centrum participants. In addition, since these

participants are on the IXP, they are also very well connected with each

other, therefore the addition of a new node will contribute to form new

large cliques.

This assumption can be verified with real data. X(i) indicates the set

of centrum nodes to which layer-1 node i is connected, and EX(i) the set of

edges between such nodes. Therefore, cX(i) = 2|EX(i)|/(|X(i)|(|X(i)|−1))

indicates the density of X(i). If cX(i) → 1 then X(i) tends to a clique,

while for cX(i) → 0 the nodes of X(i) tend to an independent vertex

set. An example of computation for cX(i) is shown in Figure 5.2.2. We

measured cX(i) ∀i ∈ N2, that is, for all layer-1 nodes. Figure 5.2.3 com-

pares the distribution of cX(i) obtained with real data, with the one that

would have been obtained if each layer-1 node had chosen X(i) using a

classic preferential attachment (PA). The huge distance between the two

distributions validates our thesis: the driving force behind the choice of

nodes is far from random, and derives instead from their willingness to

join an IXP, thus forming cliques with other participants.

We studied the distribution in Figure 5.2.3, which we call a “vertical

correlation distribution”, over time and noticed that its structure comes
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from the superposition of a Gaussian distribution with small variance,

and a mirrored power law distribution. We believe that this behavior

derives from the two possible rules that a node can use when joining an

IXP: manually configuring its peers or joining the Route Server [Eur]. In a

manual configuration, the node will typically lay out a small number of

links. Such connections are also fine-tuned by the administrator, therefore

there is a high chance that peers are already part of the same commu-

nity, thus they are already peering with each other. This phenomenon

is reflected in Figure 5.2.4, where the vertical correlation distribution for
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nodes injecting few links (square markers curve), is well fitted by a power

law with an average close to 1 (triangle markers curve). If the node uses

the Route Server, it will automatically peer with all the participants in the

IXP, therefore the number of connections laid out will be typically high.

Peers will not necessarily be part of the same community (there is no

fine-tuning), therefore the correlation will be lower than in the previous

case. Figure 5.2.4 highlights the vertical correlation distribution for nodes

injecting many links (cross markers curve), well fitted by a Gaussian with

small variance (star markers curve).

To sum up, our attachment mechanism for the vertical network still

uses a preferential attachment to ensure a heavy-tailed degree distribution,

however we need a second constraint to ensure that the vertical correlation

follows the distribution highlighted in Figure 5.2.4.

5.2.3 Horizontal Network

We found that the number of links laid out by nodes in the horizontal

network is far less crucial than in the previous networks. In order to

keep the model simple, we use a uniform distribution U (1, ph) for the

horizontal network as well. Parameter ph is easily calculated so that when

the network formation is complete, the total number of links is |Ê|, the

same as the measured core.

As shown in Chapter 3, although their participation is less pronounced
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than that of centrum nodes, layer-1 nodes participate in IXPs as well,

however their peering policy is typically Selective or Restrictive. As such,

we believe that the main mechanism through which a layer-1 node lays

out connections towards other layer-1 nodes is related to a configuration

step, through which two layer-1 nodes already on the same IXP, decide to

create a direct link with each other. Since these nodes are already on the

same IXP, this means that they share a considerable number of neighbors,

therefore this link creation will also heavily contribute to the formation of

cliques.

As with the vertical network, we verified this assumption with real

data. For each edge (i, j) ∈ E3, in the horizontal network, X(i) and X(j)

indicate the sets of centrum nodes to which nodes i and j are connected,

respectively. We compute the Jaccard Similarity between these two sets

Ji,j = |X(i) ∩X(j)|/|X(i) ∪X(j)|. If Ji,j → 1 then i and j have the same

centrum neighbors, while for Ji,j → 0 the nodes have totally different

centrum neighbors. An example of computation for Ji,j is shown in Figure

5.2.2. Figure 5.2.5 compares the distribution of Ji,j obtained with real data,

with the distribution that would have been obtained if each layer-1 node

had chosen its horizontal neighbor using classic preferential attachment.

As in the previous case, the huge distance observed between the two

distributions validates our thesis: even this choice is far from random,

and can be pictured as a configuration step through which layer-1 nodes

on the same IXP create a new direct link, thus contributing to the clique
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formation process.

We studied the distribution in Figure 5.2.5, which we call a “horizontal

correlation distribution”, over time and noticed that its structure is always

a Gaussian distribution. To sum up, our attachment mechanism for the

horizontal network still uses preferential attachment to ensure a heavy-

tailed degree distribution, however we need a second constraint to ensure

that the horizontal correlation follows the distribution highlighted in

Figure 5.2.5.

5.3 X-CENTRIC

The two-layer core structure so far obtained, along with the new dynamic

rules highlighted in Section 5.2, enable us to build a novel model for the

Internet’s core, based both on the observed structural properties and on

behavioral rules for the nodes verified with real data.

In this section we propose X-CENTRIC, a model exploiting our find-

ings aimed at accurately reproducing the Internet’s core, capturing both

its statistical characteristics, such as the heavy-tailed degree distribution,

and its community structure, measured in the form of maximal cliques.

5.3.1 Core Modeling

Thanks to the partitioning of the core, it is possible to generate it in three

different steps, each of which builds a separate part of the network.

X-CENTRIC uses the following parameters, which were highlighted

in the previous section and are summarized here:































|N |, |E| core parameters

n̄, k̄, d̄ centrum parameters

U (1, pv) vertical distribution

Nv

(

µv, σ
2
v

)

vertical correlation

Nh

(

µh, σ
2
h

)

horizontal correlation

and builds the network using a three-step algorithm.

122



1

3

2

4

5

C

BA D

24

23

2 5

61

14

23

2 3

21

1C

B 2

1A

Directed PA

Undirected PA

C
e
n
tr

u
m

 P
A

vbag

cbag

hbag

Figure 5.3.1: Core attachment mechanisms

5.3.1.1 Centrum Network construction (alg. 5.1)

We start with a single node and for each new incoming node i < n̄ we

calculate how many links to add by exploiting the interpolated density

curve (line 2). The new links are drawn according to the mechanism shown

in Figure 5.3.1 for node 5, referred to as “Directed preferential attachment”

(lines 8-13), where preferences are implemented through a bag of nodes as

shown in [CT12]. Basically the node has a picture of the directed centrum

network, where each edge goes from the newer connecting node to the

older connected one, and preferences are [1 : 2], meaning that for each

node an outgoing link adds a preference of 1, while an incoming link

adds a preference of 2 (e.g. node 2 with 2 in-links and an out-link has

preference 5). This choice emulates a [0 : 1] preference mechanism, which

would have been too detrimental for new nodes, and is needed to enforce

PA in a region where a similar degree of all nodes would have neglected

its use. Thanks to the fact that connected nodes have a higher preference

than connecting ones, we have that the more a node leaves the center, the

less the probability of a new node connecting to it.
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Algorithm 5.1 Centrum Construction

1: function DENSITY(i)

2: return 1 + (i−k̄)(d̄−1)(i+n̄−2k̄)

2(n̄−k̄)2

3: end function
4:

5: add to bag(cbag, 0)
6: for i = 1; i < n̄; i++ do
7: e = n edges(i, DENSITY(i)) ⊲ Interpolated density
8: while e 6= 0 do
9: n = cbag[uniform(0, sizeof(cbag))]

10: add edge(i, n)
11: add to bag(cbag, i, n, n) ⊲ Directed PA i → n
12: e = e− 1
13: end while
14: end for

5.3.1.2 Vertical Network construction (alg. 5.2)

Starting from the centrum network, we add new nodes. Each incoming

node n̄ ≤ i < |N | adds e links towards the centrum, where e is extracted

from U (1, pv) (line 6). Note that in this step we do not add links between

layer-1 nodes.

The node extracts a number d from the vertical correlation distribution

Nv

(

µv, σ
2
v

)

(line 7) and then chooses a set X of centrum nodes using the

preferential attachment mechanism (lines 10-17), shown in Figure 5.3.1 for

node D. It then computes cX and checks whether |cX − d| < ǫ, meaning

that cX is near d (lines 18-19). If the condition is true, X is accepted and

the node creates the links (lines 20-23), otherwise it picks a new set X and

repeats the procedure. Thanks to this simple mechanism, we are able to

both use preferential attachment and ensure that the resulting vertical

correlation distribution is akin to Nv

(

µv, σ
2
v

)

.

Although the node knows the vertical links between layer-1 nodes

and the centrum, it is unaware of the internal structure of the centrum. This

means that at the beginning all centrum nodes have an equal preference of

1 (lines 1-3), which changes with the injection of new edges. In order to

inject just vertical links, we compute preferences only for centrum nodes,
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Algorithm 5.2 Vertical Construction

1: for i = 0; i < n̄; i++ do
2: add to bag(vbag, i) ⊲ Equal starting preferences
3: end for
4:

5: for i = n̄; i < |N |; i++ do
6: e = U (1, pv)
7: d = Nv

(

µv, σ
2
v

)

⊲ Requested vertical correlation
8: repeat
9: tbag = vbag, te = e

10: while te 6= 0 do ⊲ Select X with Centrum PA
11: n = tbag[uniform(0, sizeof(tbag))]
12: if edge not exists(i, n) then
13: add to bag(tbag, n)
14: insert(X ,n)
15: te = te− 1
16: end if
17: end while
18: cX = vert correlation(X) ⊲ Test correlation
19: until |cX − d| < ǫ
20: for all n ∈ X do ⊲ Add X neighbors to i
21: add edge(i,n)
22: add to bag(vbag, n) ⊲ Centrum PA → n
23: end for
24: end for

adding a preference of 1 for each undirected incident edge (e.g. node 2

has preference 3 due to its starting preference and the connections with A

and B).

5.3.1.3 Horizontal Network construction (alg. 5.3)

Starting from the previously obtained network, we iterate again over

the nodes n̄ ≤ i < |N |. Each node adds e links towards other layer-1

nodes, where e is extracted from U (1, ph) (line 6). Given that we already

generated the vertical network, it is easy to compute ph knowing both the

current number of nodes and edges, and its total number |N |, |E|.
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Algorithm 5.3 Horizontal Construction

1: for i = n̄; i < |N |; i++ do
2: add to bag(hbag, i) ⊲ Equal starting preferences
3: end for
4:

5: for i = n̄; i < |N |; i++ do
6: e = U (1, ph)
7: while e 6= 0 do
8: Xi=get neighbors(i)
9: d = Nh

(

µh, σ
2
h

)

⊲ Requested horiz. correlation
10: repeat
11: n = hbag[uniform(0, sizeof(hbag))]
12: if edge not exists(i, n) then
13: Xn = get neighbors(n)
14: J(i, n) = horiz correlation(Xi,Xn)
15: end if
16: until |J(i, n)− d| < ǫ
17: add edge(i, n)
18: add to bag(hbag, n, i) ⊲ Undirected PA i− n
19: e = e− 1
20: end while
21: end for

Similarly to the previous step, node i extracts a number d from the

horizontal correlation distribution Nh

(

µh, σ
2
h

)

(line 9), then chooses a

layer-1 node n using the preferential attachment mechanism (line 11),

shown in Figure 5.3.1 for node D. Afterwards, it computes Ji,n and checks

whether |Ji,n − d| < ǫ, meaning that Ji,n is near d (lines 14,16). If the

condition is true, n is accepted and the node creates the links (lines 17-19),

otherwise it picks another node n and repeats the procedure. Thanks

to this mechanism, we are able to both use preferential attachment and

ensure that the resulting horizontal correlation distribution is akin to

Nh

(

µh, σ
2
h

)

.

The preferences are separated: while step 2 uses preferences to the

centrum, step 3 refers to only layer-1 nodes (e.g. node B has preference 2

due to connections with nodes A and C).
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Figure 5.3.2: Core network: degree distribution comparison

5.3.2 Results

We compared the extracted core Ĝ with the results obtained by

X-CENTRIC. Input parameters were extracted according to the proce-

dure outlined in Section 5.2.

Figure 5.3.2 compares the degree distribution of the core Ĝ with the

one obtained from X-CENTRIC, while Figure 5.3.3 compares their max-

imal clique distribution. X-CENTRIC provides a very good fit for the

degree distribution, matching it throughout the whole analyzed time

span, as shown in Figures 5.3.2a, 5.3.2b and 5.3.2c. The fit for the maximal

clique distribution is fairly good, the model is able to match the evolving

structure of the core despite of the evident change in number and size of

the maximal cliques (see Figures 5.3.3a, 5.3.3b and 5.3.3c). We know that

this fit is not perfect, however this is not the main concern, given the high

variability of this distribution observed on real data (see [RWM+11]).

Finally, Table 5.1 compares the core and X-CENTRIC taking into ac-

count other standard graph metrics, and shows how our algorithm is able
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Figure 5.3.3: Core network: maximal clique distribution comparison

to match the statistical characteristics of the Internet.

5.4 Core Evolution

Here we carry out the analysis of the Internet’s core evolution by ob-

serving the growth of the parameters used by X-CENTRIC, listed at the

beginning of Section 5.3.1 and extracted from the measured data using

the guidelines in Section 5.2.

5.4.1 Parameters Evolution

The ability to devise a model with a few scalar parameters, makes it

possible to analyze and predict the future evolution of the Internet. In

fact, if we can understand the time evolution of such parameters, and

predict their future value, then X-CENTRIC is able to construct a topology

matching what the future Internet would be.
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2006 2008 2010

Avg. Values Real Model Real Model Real Model

Degree 66.54 65.32 77.05 76.20 76.85 76.30

Clustering 0.642 0.622 0.628 0.620 0.631 0.644

Knn 156.07 139.54 175.97 161.12 246.13 211.03

Shortest Path 1.843 1.839 1.872 1.844 1.925 1.891

Betweenness 164.01 163.32 202.82 196.15 293.01 281.90

Closeness 0.548 0.548 0.541 0.547 0.525 0.530

Coreness 37.5 36.38 43.28 42.06 42.59 41.66

2012 2013

Avg. Values Real Model Real Model

Degree 93.80 91.63 105.52 104.64

Clustering 0.663 0.678 0.665 0.669

Knn 313.35 319.90 330.77 330.86

Shortest Path 1.984 1.921 1.978 1.910

Betweenness 443.93 409.63 467.18 428.39

Closeness 0.515 0.521 0.521 0.530

Coreness 51.38 49.03 58.37 56.26

Table 5.1: Real vs X-CENTRIC: average metrics comparison

Therefore, here we analyze the time evolution of such parameters,

shown in Figures 3.2.2 (from Chapter 3) and 5.4.1. In general, all the

parameters are growing with time. The number of nodes |N | within the

core grows linearly, while the number of links |E| grows quadratically

(Figure 3.2.2), which keeps the core well connected and highly dense.

Figure 5.4.1a reveals that the centrum is getting bigger, and so is its largest

clique. Like the size of the centrum, the number of vertical links towards

the centrum is also increasing. In fact, Figure 5.4.1a highlights that these

three parameters are strictly correlated: the centrum size n̄, the size of the

largest clique k̄ and the maximum number of vertical links towards the

centrum pv grow similarly, just shifted one from the other.

The centrum density d̄ and the average correlation values µh and µv
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Figure 5.4.1: Evolution of core parameters

are also increasing, as shown in Figures 5.4.1b, 5.4.1c and 5.4.1d. The

growth in correlation values over time seems to indicate the increasing

presence of IXPs within the core. On the one hand, the growth of µv

indicates that the presence of centrum nodes on exchange points is increas-

ing. On the other, the growth of µh reflects the fact that more and more

horizontal links are due to IXPs. While these parameters are all growing

over time, their specific trend is difficult to understand and model. The

centrum density d̄ grows linearly during some time slots, and seems to be

more stable in others (Figure 5.4.1b), as if there were different attitudes
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in different “epochs”. This behavior is clearly confirmed in the evolution

of the average correlation values µh and µv. The vertical correlation µv

(Figure 5.4.1d) grows during 2008-2009 and 2011-2012, but it is almost

stable in the other time slots. A similar trend is exhibited by µh (Figure

5.4.1c) although the growing time slots are slightly different. As shown

in Figures 5.4.1e and 5.4.1f, the variances are almost stable or linearly

growing. In either case, their value is very small and their evolution is

not expected to have a significant impact on the model.

To sum up, while it is difficult to model the trends of the parameters,

they appear to have a sort of semi-stationary behavior: we observe some

time-slots, or epochs, where they are almost stable, and other ones where

they grow. Initially this behavior seems to be directly due to the Internet

itself, but further analysis reveals that it is more related to the perception

of the Internet that we get through its measuring infrastructure.

5.4.2 Measuring Infrastructure

As previously mentioned, the dataset used in our modeling and analysis is

provided by Isolario [Iso], which infers the AS-level topology graph using

data coming from several cooperating ASes, indicate as feeders. Since each

feeder provides a representation of the network from its own specific

point of view, the data collected are aggregated to obtain the complete

Internet topology [GLM12].

As the number of feeders increases, the number of links observed

in the Internet topology increases as well. Therefore, it is difficult to

understand if the growing network topology is an effect of the evolution

in the network itself, or is due to the increased visibility of the Internet

topology obtained through the new feeders. Our aim here is to understand

how much the measuring infrastructure influences our viewpoint of the

Internet’s evolution.

As shown in [GLM12], each feeder provides a different contribution

to route collectors. To better quantify the total contribution of feeders, the

authors of [GLM12] subdivide them in three different categories: minor,

partial and full feeders. Several cooperating ASes are minor feeders and
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Figure 5.4.2: Evolution of core parameters vs number of full feeders

do not provide any relevant information to the route collectors, while a

few are full feeders and are responsible for most of the inferred Internet

topology. In addition, feeders can change over time, as new ASes begin

cooperating in route collector projects, while other ASes terminate their

cooperation.

Figure 5.4.2 shows the number of full feeders over time, highlight-

ing how the Internet’s measuring infrastructure is far from stable. More

specifically, Figures 5.4.2a, 5.4.2b and 5.4.2c compare the evolution of the

measuring infrastructure with that of the main parameters of X-CENTRIC.

As shown in Figure 5.4.2a, the trend of parameter µv is tightly coupled

with the growing number of full feeders: as the number of feeders in-

creases, µv grows as well, while it is almost constant with a stable number

of feeders. Figure 5.4.2b reinforces this claim, showing that it is also true

for pv. Since pv itself is coupled with other centrum parameters (n̄, k̄,

as previously observed in Figure 5.4.1a), also those parameters are indi-

rectly coupled with the evolution of the measuring infrastructure. Unlike
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previous parameters, the correlation between µh and the number of full

feeders, shown in Figure 5.4.2c, is more difficult to grasp. In this case,

there seems to be a time-shift between the two trends, as if the impact of

new feeders on µh is captured a few months after their establishment.

Since the evolution of core parameters is heavily biased by the mea-

suring infrastructure, one possible approach would be to try to find a

sufficiently stable time-slot and analyze the evolving core of the Internet

within that time slot. As shown in Figure 5.4.2, the number of feeders

seems sufficiently stable between the second half of 2008 and the begin-

ning of 2011. Unfortunately, a further analysis highlights that even in this

time-slot, the measuring infrastructure changes considerably: out of the

260 average number of full feeders, only 155 are stable, while there are

250 other feeders that appear/disappear during the time span. A second,

more drastic approach would be to extract a subpart of the topology ob-

tained considering only those feeders that are steadily present along the

analyzed time span. Unfortunately, there are few feeders that are stable

for a sufficiently long period of time, and considering only them would

misrepresent the Internet.

We believe that the insights arising from this analysis shed light on

directions for future research in the field of Internet measuring and data

gathering, and should be kept in mind when trying to apply evolutionary

network models to such data.

5.4.3 Predictive Properties

Despite its negative results, this analysis does not invalidate the main

results for X-CENTRIC and its ability to potentially predict the future

evolution of the Internet under a stable measuring infrastructure. In this

section, we illustrate the prediction properties of the model.

We take as input data the evolution of parameters observed in the 2006-

2009 time span and perform a linear fit of their observed trend (Figure

5.4.1). We suppose that future data are unknown, and use these fits to

“predict” the value of the parameters for the 2010-2012 time span. The

fitted parameters are used as input for X-CENTRIC, so as to generate a
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Figure 5.4.3: Maximal clique distribution for core prediction

prediction on the evolution of the Internet’s core.

While matching the statistical description of the Internet topology is

relatively easy, matching its structure in terms of cliques is far more diffi-

cult, therefore we focus on this task. Figure 5.4.3 compares the predicted

evolution of the maximal clique distribution with its actual evolution

(both from measured data and from our model). As we see, while the

short and medium-term predictions are quite good (Figures 5.4.3a and

5.4.3b), the long-term prediction is far from reality (Figure 5.4.3c). By

looking at the growth of parameters, it is immediately clear that such

behavior must be sought after the sudden change in their trend, especially

for some of them. For example, for d̄ and µv (Figures 5.4.1b, 5.4.1d), the

linear fits are quite different from the actual trend, and the effect of the

wrong estimation of their values is promptly reflected in a bad long-term

prediction of topological properties. As observed in the previous section,

this sudden difference in the parameters’ trend is caused by the changing

measuring infrastructure.

We conclude that X-CENTRIC is capable of accurately predicting the
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evolution of the Internet’s core as long as we are able to predict the

growth in the parameters observed. If we had complete knowledge of

such parameters, the model would be able to reproduce the topology even

in the event of drastic changes to the measuring infrastructure.

5.5 Conclusions

We have proposed X-CENTRIC, an innovative model able to outline

the true driving forces behind link creation and the evolution of the

Internet’s core. X-CENTRIC captures both the statistical characteristics

of the Internet’s core, such as its heavy-tailed degree distribution, and

its community structure, measured in the form of maximal cliques, over

a time span of almost eight years. X-CENTRIC also has the potential to

forecast the evolution of the network, which can be represented by a set

of few well-defined parameters. To the best of our knowledge this is the

first evolving model that achieves both these goals.

X-CENTRIC is versatile and capable of accurately reproducing the

core, and even predicting its evolution as long as we are able to predict

the growth of its parameters. The analysis carried out reveals that, to

date, our perception on the evolution of the Internet is tightly connected

with that of its measuring infrastructure, which fluctuates over time and

biases possible conclusions. Therefore, despite the potential predictive

properties of the model, it cannot be fully exploited to this end until the

measuring infrastructure is sufficiently stable.

In conclusion, X-CENTRIC is able to generate an evolving topology

which well represents the core of the Internet, and provides great insights

that could be exploited for future research. Since the model uses data

derived from real measurements, it is important to remove the biases

introduced by the measuring infrastructure, in order to observe the true

nature of the evolving network parameters, understand their real trend

and predict the future evolution of the Internet’s topology.

X-CENTRIC is able to only reproduce the core of the Internet. In

the last part of the thesis, we show how to add the periphery, so as

to obtain a model for the whole Internet. We anticipate that adding
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the periphery is a far easier task than modeling the core. In fact, this

periphery is represented by a sparse graph, with nodes not participating

in communities and exhibiting no correlation properties. Therefore, we

expect that properly corrected BA-like models are sufficient for describing

link creation outside of the core.
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Chapter 6

Modeling and Validation
for the Internet Topology

Thanks to the model proposed in the previous chapter, we have been

able to accurately reproduce the evolving core of the Internet at the Au-

tonomous System level. The model is based on several insights regarding

both the structure and the dynamical rules responsible for the interconnec-

tion of ASes, thus highlighting the driving forces behind the evolution of

the core network. The last compulsory step to obtain a topology generator

for the whole Internet is the addition of peripheral nodes to the core: here

we propose a simple dynamic for node attachment with this purpose

[AGL14a].

The generator, called X-CENTR-ITE (X-CENTRIC Internet Topology

gEnerator), is validated against the measured Internet graph, and it is

shown how it outperforms the reference generators in the literature when

looking at both coarse and medium-grained metrics such as the degree

distribution, and fine-grained metrics, quantitatively captured, in our

case, by the maximal cliques distribution. To the best of our knowledge,

this is the first model able to match, with good accuracy and for such a

long time span, the statistical and structural metrics of the Internet.
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6.1 Introduction and Related Work

We use as ground truth for this work, the X-CENTRIC model proposed in

the previous chapter. In order to add the periphery to the obtained core,

we first exploit existing data so as to analyze the behavior of peripheral

nodes and define the criteria in order to attach them to the previously

obtained core.

In Section 6.2 we complete the previously obtained model for the In-

ternet’s core by adding the periphery. Section 6.3 presents the final results,

comparing our model with the four reference generators, described in Sec-

tion 2.3.3 of Chapter 2: ORBIS [MHK+07], GT-ITM [ZCD97], INET [WJ02]

and BRITE [MLMB01]. These generators were tuned using available data,

so that they could yield their best possible results.

6.2 Adding the Periphery

The X-CENTRIC model shown in the previous chapter is a first important

step for the development of our topology generator. In this section we

analyze the periphery, i.e. the partition outside the core, in order to define

the rules followed by peripheral nodes joining the Internet. Our final

result is obtained by putting all the pieces together, so as to obtain a

topology generator for the whole Internet.

6.2.1 Periphery Analysis

Following a similar path to the one used for the core, we try to understand

how to model the periphery by once again analyzing the dataset provided

by Isolario [Iso]. The analysis, as usual, reports results with specific

reference to the time step of April 2013. While some of the numbers

are changing in time, as will be shown in the next section, the general

behavior is the same throughout the whole analyzed time span of eight

years.

We recall some notations from previous chapters: G = (N,E) is the

graph of the whole Internet and Ĝ = (N̂ , Ê) is the graph of the Internet’s
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core, where N̂ and Ê are the core nodes and links, which we indicate

here as c-nodes and c-links. Furthermore, we define as Ñ = N\N̂ and

Ẽ = E\Ê all the Internet nodes and links lying outside the core, in the

periphery, which we indicate as p-nodes and p-links.

In order to include p-nodes and p-links in our topology generator, we

need to define the behavior of the peripheral nodes joining the Internet.

More specifically, we need to answer two questions:

1. How many p-links does each p-node draw when entering the graph?

2. What kind of attachment mechanism should each p-node follow?

According to the analysis performed throughout the thesis, the most

complex, structured, and interesting part of the Internet is the core, while

the periphery is made up of a large number of nodes mainly organized

into trees, with a negligible contribution to the community structure of

the Internet. A straightforward approach to modeling this part of the

Internet would be to use the standard Barabási-Albert method. In this case,

the answer to the above questions would simply be to draw a constant

number of p-links for each p-node, using classic preferential attachment.

Our analysis reveals that this approach, without proper corrections, is

wrong, both from an engineering standpoint and when looking at raw

data.

Question 1 The first step to answer Question 1 lies in understanding

the hierarchical structure of p-nodes. Once we have a core, in fact, we can

hierarchically organize the peripheral nodes, according to their “distance”

from the core. More specifically, for each p-node, we define its distance

from the core as the shortest path length between the peripheral node

and any of the c-nodes. Figure 6.2.1 represents the layering obtained with

this definition, where a p-node lies in layer x if it has distance x from the

core. Figure 6.2.1 highlights that the majority of links are up-directed,

connecting different layers, while only 16% of the links connect nodes

in the same layer, which therefore lie in the same hierarchical level. In

order to “break the tie” between them, we hierarchically order nodes from

the same layer so that the higher the degree, the higher the node level.
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Figure 6.2.1: Periphery layering as of April 2013

Therefore, if nodes A and B are in the same layer and have degrees kA

and kB with kA > kB respectively, the up-directed link goes from node B

to node A. This “weak” hierarchical definition is very powerful, because

now each p-node only has up-directed links, which can be mapped in

a 1:1 correspondence with the p-links that the node draws in the graph,

thus answering our first question. We know that the tiebreak rule is not

rigorous, however the number of links for which it is applied is quite low

and does not affect the results too much. Figure 6.2.2 shows the CCDF of

the up-directed degree distribution for our dataset, where the degree kup

of each node is equal to the sum of its up-directed links. The distribution

is heavy-tailed, and can be roughly approximated by a power law P1,

with exponent γ1 = 2.2 and a sharp cut-off at k1 = 60. Although the

real distribution is not exactly a power-law, the simple approximation we
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Figure 6.2.2: kup degree ccdf - 2013

make here yields good results, as will be shown later.

Question 2 Given the nature of the peripheral network and the lack of

community structure, it is clear that the preferential attachment mecha-

nism could be used. When p-nodes are added to the graph, we already

have an existing core network, therefore we need to set some initial pref-

erence for the c-nodes, in order for the p-nodes to attach themselves to

these c-nodes. In the classic PA definition, each node’s preference is equal

to its existing degree. However, as we saw in the analysis in Section 3.3.2

from Chapter 2, while the core is mainly made up of peering links, the pe-

riphery is dominated by customer-to-provider links. From an engineering

standpoint these two phenomena are completely different, therefore we

cannot use degrees obtained though peering links to set up preferences

for customer-to-provider links. For example, within the core Tier-1 ASes

and big Network Service Providers, attracting many customer p-nodes,

coexist with other nodes (Content Providers, etc.) which are mainly inter-

ested in keeping peering relationships with core nodes, and care much

less about customer connectivity. Therefore the high degree of some core

nodes, typically obtained by joining many IXPs, is a bad indicator of their

willingness to attract customers (and therefore have a high preference for

them), thus we have to use a different criteria to set preferences. Determin-

ing the correct preferences for core nodes entails exploiting our dataset in

order to understand what happens to the core after peripheral nodes have
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Figure 6.2.3: Vertical/Sole core degree ccdf - 2013

been added. Figure 6.2.3 shows the “vertical-core degree distribution”,

which is the degree distribution of c-nodes obtained by only considering

the p-links, coming from the periphery (mainly C2P links, represented

by the bold arrow in Figure 6.2.1). This distribution, as shown in Figure

6.2.3, is very different from the “sole-core degree distribution”, which is

the degree distribution of c-nodes obtained by only considering c-links

(mainly P2P links). Due to the fact that we need to lay out the vertical,

customer-to-provider links between the periphery and the core, it is much

more appropriate to extract preferences from a distribution which approx-

imately fits the vertical-core degree distribution, rather than the sole-core

distribution. Figure 6.2.3 shows that a good fit is obtained from a power

law P2 with exponent γ2 = 2 and cut-off k2 = 4000.

6.2.2 P-nodes Addition Algorithm

By answering questions 1 and 2 we now have all the ingredients to under-

stand what happens when a peripheral node joins the graph. The p-nodes

addition algorithm takes as input the core network as generated in Sec-

tion 5.3.1 of previous chapter, and builds as output the whole Internet

topology by adding the periphery.

It is well known that preferential attachment by itself is unable to

generate the “Small-World” effect, as it yields a small diameter but is

unable to produce high values for the clustering coefficient. In order to
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Algorithm 6.1 P-node Addition

1: for n = 0;n < |N |;n++ do ⊲ Set Preferences
2: x =(int)get plaw number(k2,γ2); ⊲ P2

3: add to bag(bag, x, n);
4: end for
5:

6: for n = |N |;n < tot nodes;n++ do ⊲ Attach
7: e =(int)get plaw number(k1,γ1); ⊲ P1

8: while e 6= 0 do
9: m = bag[uniform(0, sizeof(bag))]

10: add edge(m, n)
11: add to bag(bag, m, n)
12: e−−
13: if uniform(0,1) < p then ⊲ Triangle
14: h = select neighbor(m);
15: add edge(h, n)
16: add to bag(bag, h, n)
17: e−−
18: end if
19: end while
20: end for

solve this problem, we exploit an idea that is often used in the literature

(see [LKF05; New01]) and add a further step to the attachment mechanism.

After drawing a link to a c-node, the peripheral node tries to link with

one of its neighbors. This technique ensures the formation of triangles,

which are quite common in the Internet’s graph (e.g. multi-homed ASes),

and produces high clustering values.

The algorithm needs two distributions as further input, which we

both approximate with power laws: the up-directed link distribution P1,

with exponent γ1 and cut-off k1, and the preference distribution P2, with

parameters γ2 and k2.

Algorithm 6.1 performs the following steps:

• assign a preference to each of the c-nodes, extracted from distribu-

tion P2(γ2, k2);

• for each new p-node, assign a number of p-links to be drawn, ex-
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tracted from P1(γ1, k1);

• for each link to be drawn:

– select a node m from the graph according to its preference and

connect to it;

– with probability p choose a neighbor of m and connect to it;

– update preferences for the inserted p-node.

The algorithm terminates when the generated graph has size |N |, same as

the Internet’s graph.

6.3 Results

6.3.1 X-CENTR-ITE

The X-CENTR-ITE topology generator is obtained by the serial execution

of the three-step core generation algorithm (X-CENTRIC) presented in the

previous chapter, and the p-node addition algorithm just shown. While

we already carried out a time analysis for the core and its parameters,

here we have to check the behavior of the new parameters introduced. A

temporal analysis of the distributions P1 and P2 reveals that:

• the up-directed link distribution P1 is approximately constant until

2011, then the cutoff grows from 40 up to 60;

• the preference distribution P2 is time-dependent in both the expo-

nent γ2 and cutoff k2. The exponent γ2 is slowly increasing over

time from 1.6 to 2, while the cutoff is approximately constant until

2011, then almost doubles.

This apparently strange behavior, as already stressed in Section 5.4.2 of

Chapter 5 can be attributed to the changing measuring infrastructure. In

the next subsection we test our generator showing how a fine-tuning of

these parameters yields good results. As a matter of fact, the generated

topologies match graph metrics measured for the Internet, thus confirm-

ing the robustness of our method through the analyzed eight-year period.
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We recall that the maximal clique distribution is virtually unaffected by

the addition of p-nodes (except for small cliques), therefore this new step

is irrelevant for this metric. Furthermore, we compare our results with

that of the reference generators in the literature.

6.3.2 Comparison with existing Topology Generators

We compare the measured Internet graph with the results obtained with X-

CENTR-ITE and those obtained using four Internet Topology Generators:

ORBIS, GT-ITM, INET and BRITE. Parameters for X-CENTR-ITE were

chosen as previously described, while for the other generators:

ORBIS [MHK+07] is a topology generator which exploits the concept of

dK degree distributions to construct the network. We extracted the

2K distribution from the measured Internet topology, and directly

used it as input for the generator, so that the generator could yield

its best possible results.

GT-ITM [ZCD97] is a hierarchical generator, which uses the concepts of

“transit” and “stub” so as to generate a multi-tiered topology. The

available parameters enable us to reproduce the network partition-

ing into core/periphery, and to properly configure their sizes and

the edges between them. Therefore we used them to reproduce the

observed Internet structure as accurately as possible.

INET [WJ02] is another hierarchical topology generator, using a pre-built

degree distribution to provide a good fit for this metric. This gener-

ator can be configured through a small set of parameters related to

topological metrics, while it is not possible to configure the network

structure.

BRITE [MLMB01] uses the AS-Level Barabási-Albert model, and can be

configured by modifying the parameters already highlighted for the

generalized BA-model presented in Section 2.3 of Chapter 2.

Figure 6.3.1 compares the degree distribution, while Figure 6.3.2 com-

pares the maximal clique distribution. GT-ITM is unable to produce
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Figure 6.3.1: Degree distribution comparison

scale-free degree distributions, therefore this metric is always wrong

with such generator. The BRITE generator is able to reproduce scale-free

distributions, however it is not possible to configure a distribution for

the up-directed links. Therefore, all the produced distributions (Figure

6.3.1a to 6.3.1d) have a correct shape but wrong starting and ending point.

The INET generated topologies provide a fairly good fit for the degree

distribution, especially in the first year (Figure 6.3.1a), while in the last

year (Figure 6.3.1d) the degree can assume very large values that are not

observed in the actual topology. Of course, by using as input the 2K

degree distribution, ORBIS matches perfectly the degree distribution. The

X-CENTR-ITE model is able to produce very good fits for the degree distri-

bution, if appropriately tuned. In particular, to generate above results we

used γ1 = 2.2, while other parameters are growing so as to match the in-

creasing average degree of the Internet: k1 = 40 → 60, k2 = 2000 → 4000

and γ2 = 1.6 → 2.

As for the maximal cliques (Figure 6.3.2), BRITE produces tree-like

graphs, therefore the number of maximal cliques produced is negligible.
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Figure 6.3.2: Maximal clique distribution comparison
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Even GT-ITM, when used to generate the whole Internet, is unable to

build large cliques. However, it is also possible to apply GT-ITM to just

build the core, by setting the appropriate parameters. In this case we

obtain better results, shown in Figure 6.3.3. Even if it is able to generate a

bimodal clique distribution more similar to that of the Internet, GT-ITM
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2006 Real X-CNTR-ITE ORBIS INET GT-ITM BRITE

Degree 5.77 6.05 5.77 5.56 6.02 6.00

Clustering 0.32 0.30 0.13 0.39 0.034 0.003

Knn 506.61 464.65 503.86 1156.73 27.29 23.42

Shortest Path 3.71 3.57 3.44 3.05 4.36 4.53

Betweenness 30731.6 29087 27505 23163.3 37979.2 39944.9

Closeness 0.27 0.28 0.29 0.33 0.23 0.22

Coreness 3.00 3.09 2.96 2.81 3.58 3.00

2008 Real X-CNTR-ITE ORBIS INET GT-ITM BRITE

Degree 6.11 6.15 6.11 6.18 6.29 6.00

Clustering 0.30 0.29 0.12 0.49 0.03 0.002

Knn 542.73 534.12 539.49 1802.88 30.51 23.86

Shortest Path 3.72 3.60 3.48 2.96 4.35 4.60

Betweenness 38003.8 36245.9 34440 27339.7 46832.1 50172.6

Closeness 0.28 0.28 0.29 0.34 0.23 0.22

Coreness 3.17 3.29 3.14 3.15 3.79 3.00

2010 Real X-CNTR-ITE ORBIS INET GT-ITM BRITE

Degree 6.58 6.55 6.21 7.34 6.91 6.00

Clustering 0.29 0.27 0.11 0.61 0.03 0.002

Knn 567.67 540.26 529.56 3698.65 41.94 24.54

Shortest Path 3.76 3.71 3.52 2.83 4.18 4.69

Betweenness 51616.0 50578.8 43136.4 34054.8 59619.6 68800.1

Closeness 0.27 0.27 0.29 0.36 0.24 0.21

Coreness 3.40 3.39 3.18 3.84 4.18 3.00

2013 Real X-CNTR-ITE ORBIS INET GT-ITM BRITE

Degree 8.00 8.05 8.01 8.25 8.43 8.00

Clustering 0.32 0.31 0.13 0.65 0.03 0.002

Knn 695.25 724.20 692.25 6317.73 70.58 30.00

Shortest Path 3.72 3.67 3.45 2.72 3.83 4.33

Betweenness 61141.9 59842.1 54928.0 38725.6 63708.3 74865

Closeness 0.27 0.28 0.29 0.37 0.26 0.23

Coreness 4.15 4.20 4.11 4.45 5.07 4.00

Table 6.1: Real vs Models: average metrics comparison

is still way far from the actual maximal clique distribution. Moreover,

this tool is still incapable of capturing the scale-free degree distribution

of the Internet. The INET generator is able to produce larger cliques,
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however the fit is almost always wrong. In particular, the number of

cliques produced in 2008 is very low (Figure 6.3.2a), and while in 2010

it would seem that the distribution is similar to what observed for the

Internet (Figure 6.3.2b), our further analysis reveals that this conjecture is

wrong. In fact, the maximal clique distribution for INET is bell-shaped,

centered around a single value, while the distribution for the Internet is

wider, and with more modes. Furthermore, after 2010 the distribution

for INET starts growing uncontrollably: as shown in Figure 6.3.2c, the

number of cliques is way too high, while in 2013 we were even unable

to perform the computation, due to memory limits, using the algorithm

in [CT12] on a computer with 128-GB RAM. Finally, ORBIS is capable

of fitting a little better the left mode of the clique distribution, however

it is totally unable to capture the existence of large cliques belonging to

the right mode. X-CENTR-ITE provides a fairly good fit for the maximal

cliques, generating a multimodal maximal clique distribution akin to

that of the Internet throughout the whole analyzed time span. This is an

important quantitative indicator of the presence of a community structure

in the model itself.

Even when compared to generators using a far more complex input

such as the joint degree distribution, X-CENTR-ITE provides an almost

perfect fit for the degree, and outperforms other models when looking

at the maximal cliques. Finally, Table 6.1 illustrates how our model is

able to match the graph metrics of the Internet’s topology through time,

outperforming previous generators.

To sum up, although classical models produce topologies that fit well

one metric or the other, none of them provides a good fit for all the ob-

served metrics. These results would seem to confirm that our topology

generator successfully addresses the problem of both representing the

Internet’s structure, in the form of maximal cliques, and matching statisti-

cal metrics such as the degree distribution, clustering coefficient, shortest

path length, and so on. To the best of our knowledge, this is the first

model that has achieved both these goals.
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Chapter 7

Conclusions

The Internet is a complex system that evolved during the past few decades

from a small research network to a worldwide multipurpose network.

A proper understanding of the characteristics and key factors driving

the evolution of the Internet and its structure is a fundamental task from

which many areas can benefit: deployment of CDNs, topology-aware

routing algorithms, prediction of outages and traffic engineering. Being

driven by a mix of technological and economic constraints, the character-

istics of the Internet are hard to be revealed. Despite several attempts by

researchers, much is still unknown and a proper model for the evolving

Internet topology has yet to be given. In this thesis we have addressed

three key problems related to the Internet modeling, since we believe that

any model overlooking them is deemed to fail.

The first key problem is the large-scale heterogeneous nature of the

Internet. Due to the high heterogeneity of the Internet topology, a mo-

del cannot rely on a uniform class of nodes which all exhibit the same

behavior. Therefore, we carried out an in-depth analysis of the topology,

using the concept of maximal clique to identify and discover the different

building blocks of the network. This methodology enabled us to partition

the Internet topology into a small core and a periphery. On the one hand,

the core is a small, very dense network which well represents the most in-

teresting structural properties of the network. On the other, the periphery
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a sparse network of many nodes loosely connected between each other,

representing the “tendrils” of the topology. Please note that while this

technique has been applied specifically to the Internet topology, it is fairly

general and can be applied to any complex network, thus revealing the

existence of heterogeneous zones in the graph.

The second key problem is that network evolution is not dictated

by a central authority, but is mainly the outcome of local economic and

technical constraints. This problem is intertwined with the previous one,

since heterogeneous nodes will have heterogeneous local goals. We high-

lighted the peering/transit dichotomy as the outcome of the emerging

importance of Internet eXchange Points within the core, which are be-

coming the main antagonists of backbone Network Service Providers (e.g.

Tier-1 Networks). Our analysis covers several sides of this aspect, reveal-

ing how good IXP policies enforce cooperation even in an environment

where agents act in a myopic and selfish manner. This analysis enabled

us to think of novel IXP-centric interaction mechanisms that were never

conjectured in previous Internet topology models.

The proposed model for the Internet’s evolving core, X-CENTRIC, uses

as ground truth both the structural and behavioral patterns previously

outlined. The model is based on data from real measurements, so it

has to deal with the third key problem: techniques for data gathering

are incomplete and often unreliable. In this sense, we have shown the

robustness of the model through a long time span, highlighting how

changes of the measuring infrastructure are correctly reflected in similar

changes to the modeling parameters. In addition, X-CENTRIC is able

to correctly predict the evolution of the core, in terms of the measured

metrics, in temporal windows where the measuring infrastructure is

stable.

Once the important structural and behavioral patterns within the core

have been captured, the task of adding the periphery becomes relatively

easy, since this part is still characterized by simple transit mechanics

that are well-captured by the preferential attachment mechanism. In the

last part of the thesis we devised a topology generator exploiting the

previously obtained core model together with a simple mechanism for
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attaching the periphery. The generator is able to successfully capture

the Internet’s structure, measured in the form of maximal cliques. As a

matter of fact, this metric captures very well the emerging role of IXPs

in the Internet topology. In addition, the model takes into account all

the other statistical graph metrics, among which the heavy-tailed de-

gree distribution, and outperforms existing topology generators in the

literature.

The ability to represent the Internet as a multi-layer network, study the

interactions between these layers, and deploy a model which takes into

account such interactions, give to the thesis added value, since the analysis

of multi-layer networks is a hot topic of several on-going European and

worldwide projects [CON; MUR].

7.1 Future Work

Revealing the basic driving forces of the Internet is a first important step

for modeling its growth. In this sense, the outcomes of this thesis are of

utmost importance. Nevertheless, many aspects of the inferred model,

such as the network partitioning, the dual layered core, and the different

correlations are “given from above” through the analysis of existing data,

rather than being the result of some kind of direct interaction between the

nodes.

The first possible enhancement for the X-CENTRIC model, is trying

to obtain the multi-layered structure of core and periphery as the result

of a direct interaction between nodes, optimizing a tangled fitness func-

tion which might spontaneously lead to the formation of different tiers,

hopefully similar to those measured for the real Internet. Alternatively,

it might be advantageous to utilize concepts brought from evolutionary

game theory. These tools utilize mix strategies and might be used to

obviate the need to artificially separate the core into multiple layers.

Another important aspect, is deepening the economic analysis carried

out in Chapter 4. First of all, the problem of peering vs transit can be

enhanced using hierarchical Stackelberg models. In this case, we can set

up a scenario where in one level ISPs compete for the best transit, and on

155



the second level they try to form coalitions at IXPs. Moreover, while we

currently examine a static situation, both transit and peering costs can be

renegotiated over time. In order to keep into account this phenomenon,

we could add as players the NSPs and IXPs, and then analyze a dynamic

game where their strategies are intertwined with that of ISPs. Finally, in

the model we only focus on the strategic complementarity that ISPs have

by sharing costs at IXPs. Actually, it has been shown that, especially in

asymmetric cases, peering might be detrimental, due to effects of business

stealing [AG09]. This can induce a trade-off between the benefits of

sharing the costs of connectivity and the costs of losing final demand, or

having to charge a lower price for it, that would be interesting to analyze.

Furthermore, a very important point to analyze is network formation

around IXPs. While we studied the contribution of IXPs in fixed topolo-

gies, it is interesting to understand the dynamic that brings customers

to attach to IXPs, so as to devise a model where nodes directly attach to

exchange point customers without a superimposed correlation metric. A

preliminary work on an agent-based model that we are developing to

study network formation around IXPs can be found in [AMG+14].

Finally, we believe that the different network models should be com-

pared using an impartial, standard framework.

In conclusion, the dependence of modeling from accurate data is

indisputable. In the case of X-CENTRIC, removing the biases introduced

by the measuring infrastructure would enable us to predict the future

evolution of the Internet topology, therefore we believe that enhancements

in the field of data gathering are much needed.
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