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Abstract

This thesis aims at the definition of foundational techniques driving
the design and implementation of a programming middleware sup-
porting the full adoption of a MDD framework for Service Oriented
Computing. Our main contribution is the definition of a composi-
tional model for services in the spirit of choreography. Our model
takes the form of two-level process calculus that lays at two different
levels of abstraction. The local view of coordination is represented
by the Signal Calculus, which is tailored to support the formal de-
sign of services. The global view of the coordination is supported
by the Network Coordination Policies Calculus. The Network Co-
ordination Policies Calculus is the formal machinery we introduced
to specify choreography. Distinguished features of our approach are
given by the adoption of the event notification paradigm as basic
mechanisms to manage service interactions and by the usage of mul-
ticast communication. To fill the gap between the local and global
views, we relate the semantics of the two calculi by a correctness
result that allows us to verify if a design respects a specification. Fi-
nally, to highlight the benefit of our approach, we address the issue
of defining Long Running Transactions via the Signal Calculus and
we provide some sound refactoring rules in the spirit of the MDD
approach to software design. The main advantage of these results
consists in guaranteeing that the designer can refine the reference
implementation without altering the intended meaning.
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Chapter 1

Introduction

In the last years, the wide spread of the Internet has made possible entirely new
forms of communication among people, companies, and institutions. The open
nature of the Internet combined with fast growing of network technologies al-
lowed to design and implement applications (as World Wide Web, peer-to-peer
file sharing, and multimedia content distribution to cite a few) that can be pro-
vided independently of the location and the underlying platform. Nowadays, the
key role played by information technologies suggests to extend these forms of
digital communication directly to the information systems of enterprises. How-
ever, these new kinds of interactions introduce a wide range of challenging issues:

• Software systems have to be interoperable and rely on heterogeneous net-
working infrastructures.

• The size of up-to-date distributed applications is orders of magnitude larger
than in the past. Moreover, systems are not monolithic entities and require
a high level of modularity to support customization and dynamic reconfig-
urations.

• System maintenance has to became a “lightweight” task, thus allowing
applications to be robust to (possibly remote) faults.

• Designers have to make minimal assumptions on external components,
thus reducing the risk that changes (be they local or remote) force extensive
changes in the application.

One of the emerging approaches in software engineering is the so called Ser-
vice Oriented Computing and its corresponding architectural style known un-
der the name of Software Oriented Architecture (SOA) [1]. The main building
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blocks of SOA applications are services. Intuitively, a service is an autonomous
agent (or a component) that provides a functionality by interacting over a net-
work. Machine and platform independence are obtained by exploiting standard
protocols for interactions. The most widely used form of services are Web Ser-
vices [2; 3; 4; 5]. This kind of services are based on the SOAP [6] protocol
stack. Web Services relay on the existing Internet protocols to exchange XML
Documents [7]. The adoption of XML allows services to exploit an extensible
syntax to exchange structured data. Moreover, the usage of the existing Internet
protocols simplifies the adoption of services. In fact, Web Service frameworks
can delegate to the existing infrastructures the management of network commu-
nications. The technological openness of Web Service specifications allows the
design and the implementation of loosely coupled systems capable of minimizing
the impact of a change in the business relationships.

A service can be considered as a distributed procedure that can be invoked
using the classical remote procedure call style. However, SOA focuses on a more
structured scenario [3; 4; 5], in which several service providers are involved to
achieve a common goal.

The development of SOA applications cannot be achieved by simply equip-
ping existing programming languages with the RPC style of service invocation.
In fact, the methodologies supporting the development of SOA applications must
consider and handle some specific issues:

• Since SOA applications are developed on top of a suite of interoperable
networks protocols, the development methodology must reduce the effects
of architectural changes.

• System complexity cannot be governed by a monolithic structure manag-
ing all aspects.

• The definition of the process logic must be clearly separated from the ser-
vice implementations. Indeed, a service should be easily replaced in order
to tackle changes that may be required during the application lifetime.

• Services must be flexible and be invokable by possibly many other ser-
vices. In a sense, a single service may be part of several applications at the
same time.

• To minimize the assumptions on other components, usually services are
developed as stateless systems. However, when several services collabo-
rate in a structured scenario, it is necessary to track the distributed progress
of the overall computation.
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1.1 Developing SOA Applications
It is widely recognized that the complexity of developing of SOA applications
can be significantly reduced by the adoption of the Model Driven Development
(MDD) approach [8]. MDD suggests to model different aspects of a system
using several domain specific languages (DSL). Since the domain of a DSL is
confined, the language can be more expressive in its specific domain than general
purpose languages. Thus, the designer can manage more efficiently a specific
subset of the aspects of a SOA application. The models thus obtained are then
repeatedly transformed in order to reflect more concrete aspects. A key feature
of the MDD approach is that the abstract specifications can be reused when the
software architecture changes.

Also, new design patterns are required since the specification of applications
in a SOA context must be clearly separated from the implementations of the
services applications consist of. A main challenge is given by the definition of
patterns for service coordination. Two main approaches have emerged: orches-
tration and choreography. Both styles of coordination describe the so called
business processes1 by a global point of view. Thus, the software designer can
model structured interactions even if the involved services are stateless. However,
the two approaches exploit different strategies.

Orchestration is an executable representation of the coordination required by
business processes. The orchestration manages the execution order of services
by introducing a controller engine, called orchestrator. The standard technology
to implement orchestration is WS-BPEL [9].

Choreography is a collaborative style of coordination. It describes the ob-
servable behavior of services by constraining the messages exchanged among
them. A choreography resembles a contract among parties and provides a speci-
fication of the coordination. It must be projected over each participant and locally
implemented. The standard to design choreography is WS-CDL [10].

Recently, several vendors have proposed their own solutions to implement
and compose services. However, both standards and proprietary solutions are
informal specifications, making difficult to provide reasoning techniques. It is
worth noting the adoption of a MDD approach requires the introduction of suit-
able techniques based on formal ground. In particular, we argue that supports are
required:

• To statically verify if the implementations respect the coordination poli-

1 The term business process denotes domain dependent functionality of applications or their com-
ponents. Namely, it represents the structure of inter-company activities required to reach a common
intent.
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cies.

• To define the core set of primitives of new DSLs, to study their expressive-
ness and to evaluate if the resulting programming model is suitable for a
specific domain.

• To define the semantics of coordination languages, allowing to express
unambiguous specifications that represent contracts among parties.

• To verify the correctness of MDD activities like refinements, transforma-
tions and refactoring of models, ensuring that the resulting models respect
the more abstract specifications.

1.2 Formalizing Service Oriented Computing

Arguably, the strict interplay between formal approaches and standards can pro-
vide the way to greatly increase robustness of SOA applications.

In the last few years, several approaches have been proposed to formalize
SOA technologies and languages. These approaches extend the techniques de-
veloped to deal with concurrent and distributed systems. We briefly classify the
existing approaches into two main groups:

Interaction based calculi Several process calculi have been introduced to study
the foundation of service orchestration and choreography, see [11; 12; 13;
14; 15; 16; 17; 18; 19] to cite a few. These approaches aim at formalizing
various aspects of service coordination, e.g. BPEL [11; 12; 13]. Other
approaches [14; 15; 16; 17; 18; 19] advocate the notion of session as the
correct abstraction mechanism for enclosing an arbitrarily complex inter-
action between services in order to guarantee e.g., that, during a service
conversation, messages are routed as desired. A different programming
model for service orchestration has been adopted by Orc [20]. The basic
computational entities orchestrated by Orc expressions are sites. A site
computation can start other orchestrations, locally store the effects of a
computation, and make them visible to clients. Orc provides three basic
composition operators, that can be used to model some common workflow
patterns, identified by Van der Aalst et al. [21]. Finally, the functional pro-
gramming paradigm has been extended to support SOA issues. In particu-
lar λrec [22] behavioral types have been used to statically enforce security
policies of service orchestration.
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Flow based models These approaches are centered around the notion of activi-
ties, which are threat as black box, namely their behaviors are not specified.
Flow languages describe concurrent systems by defining the temporal de-
pendencies among the activities. Well known examples of this approach
are YAWL [23], saga [24; 25] and SRML [26] to cite a few. Flow based
models permit to describe the core of the business process abstracting from
the distribution of activities and communication involved

1.3 Main contributions
The problem of supporting the development of SOA applications (from require-
ment and design to implementation and maintenance) is at the edge of research in
software engineering. Independently from the underlying technological supports,
we argue that software engineering methodologies and related programming mid-
dleware must properly support the shift from traditional architectural styles of
distributed systems to SOA to better accommodate the constraints posed by this
new computational paradigms. The present thesis intends to address this issue.

A major contributing of the thesis is the design of an innovative MDD method-
ology and its supporting middleware relying on a formal programming model.
This thesis presents the formal aspects of a research that has nevertheless been
applied. In fact, most of the theoretical achievement constitute the basis for the
development of a Java API presented in [27] with further refinements and exam-
ples of the applicability of our theoretical framework.

Our main contribution is the definition of a compositional model for services
that takes inspiration from existing process calculi. To better understand the tech-
nical choices at the basis of our approach we focus on choreography based pro-
cess calculi. Usually, these approaches (e.g. [19; 28]) manage choreography by
two different levels of abstraction, referred as local and global view. Intuitively,
the global view of a system specifies the choreography by constraining the order
of service interactions. Instead, the local view designs and models each service
by describing its behavior. The formal relation between the two views of a system
allows to:

• verify if independently developed services respect a choreography,

• generate the skeleton implementation of services starting from a choreog-
raphy,

• provide semantic techniques to search from a registry the services that can
collaborate to satisfy a choreography.
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In the spirit of choreography, our model takes the form of a two-level process
calculus laying at two different levels of abstraction. The local view of coordina-
tion is represented by the Signal Calculus (SC), which is tailored to support the
formal design of services. The global view of the coordination is supported by the
Network Coordination Policies calculus (NCP), which provides the formalism to
specify the choreography.

A distinguished feature of our approach is given by the adoption of the event
notification paradigm as basic mechanism to manage service interactions. In
our proposal, services are components that interact by issuing/reacting to events.
Components represent the main computational units emboding behavior. In order
to provide a design language that abstracts from platform constraints, we exploit
the non-brokered event-notification pattern [29]. Each component is responsible
to manage the subscriptions for its events, thus not requiring any centralization
point.

A further distinguished feature of our approach is the adoption of multicast
communication. When a component raises an event, it is notified to all sub-
scribers, transparently to the emitter. Furthermore, notification relies on an asyn-
chronous communication mechanism. Namely, the emitter does not wait for the
reception of the raised event by the subscribers.

To highlight the benefits of an event-based programming model with multi-
cast notification, we informally discuss an example. Let us consider a service
named “s” that requires a certain amount of resources to provide its functionality.
The service maybe invoked by several clients named “ci” to achieve a common
goal. In other words, all clients permit the execution of the service by providing
their resources.

The business process is summarized as follows:

1. when the negotiation phase starts, the service notifies to all clients its re-
source requirements,

2. each client can issue its offer of resources or ignore the service demands,

3. if no client responds to the service demand, negotiation fails and the service
functionality is not provided,

4. if the service receives a sufficient amount of resources the negotiation
phase terminates, otherwise it restarts,

5. if the negotiation phase successes, the service activates its functionality.

This pattern can be used in several contexts to model a collaborative appli-
cation. The system can be implemented using the event-notification paradigm as
follows. We start classifying the exchanged events into two groups:
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Figure 1.1: Services that collaborate to supply a resource set

• Offering events: An “offering event” represents the offer of a new resource
from a client. Upon the reception of an offer, the service activates its func-
tionality if the required amount of resources has been reached. Otherwise
the service forwards a new request to the clients, restarting the negotiation
phase.

• Requesting events: A “requesting event” represents that the resources ac-
quired by the service has changed, but the required amount has not been
reached. Upon the reception of a request notification, a client can discard
service demand or offer a new amount of resources.

Figure 1.1 illustrates the instance of this scenario where three clients are involved.
Component inter-connections represent the subscriber relations, which define the
multicast routing policy. For example, if the service raises requesting event mul-
tiple copies are delivered to all involved clients. If a client raises offering event
only one copy is delivered and targeted to the service.

Event notification and multicast communication can be implemented on top
of channel based process calculi (e.g. π-calculus [30]). However, this approach
mixes the management of the subscription relations among components with
their behaviors. If we focus on our running example we note that, if the num-
ber of involved clients changes, the service must be explicitly reprogrammed to
support the new situation. Instead, a native multicast model hides communica-
tion complexity and permits to program the behavior of the service independently
from the number of involved clients.

Several patterns of event notification [29] exist and they mainly differ for the
way components subscribe to and filter events. We classify event-notification
patterns into three main classes:

• topic based event-notification classifies events into topics which subscriber
register too
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• content-based event-notification allows subscriber to filter events in term
of the structured data contained into them.

• type-based event-notification allows subscribers to register for events that
satisfy a given property, expressed as a type.

Our first contribution is the definition of the design language: the Signal Cal-
culus (SC). The programming model of SC has inspired the design and the devel-
opment of a programming language (SCL) and the implementation of its run-time
(JSCL). The three forms of event notification discussed above have led to the def-
inition of three SC dialects. The topic based dialect is the simplest version of SC,
allowing us to focus on the main concepts of the calculus. The content based di-
alect is introduced to extend our framework with session handling. Namely, SC
permits to track the progress of a process by allowing components to specialize
their behaviors for events having a specific structure. This approach to the man-
agement of the control flow is inspired by the notion of correlation sets. Finally,
the type based dialect has been developed to extend our approach to deal with
properties of events. The basic intuition is that the programmer can exploit types
to drive the service activation and to model coordination policies.

Our second contribution is the definition of the choreography model: the
Network Coordination Policies calculus (NCP). Both NCP and SC support event
based interactions and multicast communication. However, they lay at different
levels of abstraction and therefore some key differences between the two mod-
els exist. While each SC component is responsible to manage its subscription,
NCP models this information by a global point of view, introducing the notion of
network topologies. Informally, a network topology represents the subscriptions
of all components involved by a coordination. Moreover, NCP and SC involve
components in a different way. Computations of SC are boxed into components
and represent the threads executed by the services. Instead, computations of NCP
represent global policies by specifying the order of execution of component ac-
tions. For example NCP can express the policy “Upon the reception of an event
X by the component A, the component B must raise an event Y ”.

Although NCP is reminiscent of the asynchronous π-calculus, its semantics
is centered on network topologies, that are the environment of the computation.
In fact, the observational semantics of a NCP choreography depends on and can
affect the network topology in which it is evaluated. The abstract semantics al-
lows us to reason about the behavior of systems and provides a formal definition
of choreography satisfaction. More in detail, we developed a theory of weak
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bisimilarity for NCP and we studied its compositionality properties.
To fill the gap between the local and global abstraction levels, we relate the

semantics of the two calculi by a correctness result: for each SC design, there
is an NCP choreography that reflects all the properties of the design. We estab-
lish this result by the introduction of a semantics-based transformation, mapping
an SC design into an NCP choreography. We say that a SC design implements
the NCP choreography if their translations to the global level of abstraction are
weakly bisimilar. This is a semantic notion of satisfaction and can be mechani-
cally checked in the finite-state case.

This notion of satisfaction has the main benefit of supporting the develop-
ment of systems in a Model Driven Development fashion. The designer can
define successive SC models that implement the system, each of them is obtained
refining the previous one to add more details. The conformance of each model
with respect to an NCP specification can be formally verified.

The SC and NCP calculi are intended to provide a formal framework on top
of which more abstract languages can be formally implemented and verified.
We investigated this topic for an existing flow language. In particular we con-
sider the saga calculus [24; 25] to model the control flows of business processes
and to handle their transactional aspects. The saga calculus has been also used
to provide a formal interpretation of the semantics of the a subset of the Busi-
ness Process Modeling Notation [31] (BPMN). We show how SC can be used to
formally represent Long Running Transactions (LRT) designed in saga. The se-
mantic based encoding of saga into SC enables designers to specify LRTs using
a flow language and to mechanically obtain a reference SC design that respects
the transactional requirements. Then, the designer can enrich the SC model to
care about relevant aspects that cannot be described using saga, which is a more
abstract than SC. The correctness of the refined SC models can be checked with
respect to the reference implementation, by using our definition of satisfaction.

Finally, our theoretical results have provided the basis to define a methodol-
ogy to refine SC models implementing saga processes. In particular, we studied
some refactoring rules that address some crucial issues of the deployment phase,
that are the possible alterations that one would like to apply at the SC level where
they can be more suitably tackled. Arguably, refactoring does not have to alter
the intention of the designer, namely, refactoring rules must preserve the intended
semantics. Our refactoring rules are proved sound by showing that they preserve
weak bisimilarity.

To summarize this thesis has shown process calculi techniques can be adopted
and scale-up to give semantic definition of a full-fledged programming methodol-
ogy and its supporting middleware. This “language complexity” has led to proofs
quite involved even if the proof strategy is intuitive and easy to follow.
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1.4 Structure of the thesis

The thesis presents a two-level process calculus to model local and global views
of service choreography. We study the interplay between the two levels of ab-
straction to provide effective reasoning techniques

In Chapter 2, we review the technological and theoretical backgrounds that
will be used by our framework. We introduce the idea of SOA and we review the
main features of the π-calculus. We also introduce the BPMN notation. BPMN
provides a compact and graphical notation of transactional aspects of business
processes. We also describe the saga calculus, a flow language designed to deal
with long running transactions.

In Chapter 3, we present the Signal Calculus family of process calculi. Signal
Calculus (SC) is the formal machinery we propose to design service coordination
using the event notification paradigm. We develop three dialects of SC in order
to deal with the different styles of event notification: topic based, content based
and type based. The SC programming model has inspired the definition of the
SCL programming language and the its reduction semantics has driven the im-
plementation of the language run-time, called JSCL.

In Chapter 4, we develop the choreography model of SC. In particular, we
introduce the syntax and the observational semantics of Network Coordination
Policies calculus (NCP). We also relate the semantics of NCP and SC, in order
to formalize when an SC design respects an NCP specification. To emphasize
the properties of our approach we first introduce a semantic based transformation
that provides a reference SC design starting from a saga model. Then, we study
the formal properties of some refactoring rules applied to transactional behaviors,
verifying that the refactoring transformation preserve weak bisimilarity.

In Chapter 5, we illustrate the usage of our framework through a case study [32]
borrowed by the SENSORIA project [33]. We address the problem of developing
a service oriented application for an automotive system that involves several ser-
vices. We focus on implementing the transactional properties of the example and
we exploit our refactoring rules to address the deployment phase of the scenario.

In Chapter 6, we describe the Event based Service Coordination (ESC) frame-
work and we focus on the interplay between the actual programming primitives
and our theoretical constructions. We briefly introduce the three main compo-
nents of ESC: the programming language, the run-time that implements the com-
munications and the integrated development environment.
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1.5 Origin of the chapters
Many chapter of this thesis are based on already published papers. In particular:

• The design of the SC family of process calculi described in Chapter 3 ap-
pears in [34; 35]

• The definition of our choreography model described in Chapter 4 is based
on [36; 37]

• The refactoring methodology presented in Chapter 4 appears in [38]

• Chapter 5 extends and develops the experimental results presented in [39]

• Chapter 6 is based on the idea presented in [34; 39; 40]

Notice that the above list points out the papers where the results of this thesis have
been introduced and described for the first time. However, there are some results
which are contained in this thesis and have never written before. Most of these are
contained in Chapter 4, which is a significant extension of the results presented
in [36; 37; 38]. Moreover, experimental results for heterogeneous networks are
reported [41]. Finally, a presentation of some of the results of this thesis targeted
for IT professionals has been published in [42].
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This research has been supported by the EU FET-GC2 IST-2004-16004 Inte-
grated Project Sensoria and by the Italian FIRB Project Tocai.it.
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Chapter 2

Preliminaries

This Chapter reviews the main concepts and notions that will be used throughout
the thesis. We first start by introducing the Service Oriented Architecture (SOA)
paradigm. We also highlight some challenging issues of the SOA paradigm. Fi-
nally, we review the main features of the formal techniques of the basis of our
work.

This Chapter is organized as follows. In Section 2.1, we introduce the idea
of Service Oriented Architecture (SOA). We summarize the standard technolo-
gies and languages developed deal with SOA. We highlight the open issues in
the development of service oriented applications. In Section 2.2, we describe
the Business Process Model Notation (BPMN), an emerging standard to model
business processes through a graphical notation. In Section 2.3, we review the
syntax and semantics of the π-calculus, probably the most acknowledged calcu-
lus to design and reason about concurrent systems. Finally, in Section 2.4, we
describe the SAGA calculus, one of the first proposal to deal with SOA notion of
long running transactions.

2.1 Service Oriented Architectures

Usually, the term service refers to a system that supports interoperable machine-
to-machine interactions over a network. This definition covers many different
approaches, but the most widely used form of services are Web services [43].
Technically, a Web service is a system that handles XML [7] based messages.
Interest in Web services has rapidly grown for several reasons. The exploiting of
XML as a platform agnostic formalism to deliver inputs and outputs of services
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Figure 2.1: Web service stack

allows systems to collaborate independently by their platforms, their implemen-
tation languages and their machine architectures. Any programming language
able to manage plain text messages can handle XML documents. Moreover, Web
services use existing Internet protocols to deliver their documents, thus simpli-
fying the adoption of services and the integration of systems using the existing
information technology infrastructures. For example, services that exploit the
HTTP [44] protocol can be consumed and deployed using the existing and af-
fordable HTTP clients and servers [45; 46].

Web services rely on the SOAP [6] protocol stack depicted in Figure 2.1.
XML is used to share structured data in a machine independent form. The main
feature of XML is that it is extensible. In fact, it can be used to create a custom
markup languages for specific scopes. The XML Schema [47] is used to spe-
cialize XML by defining new document types. They are expressed in terms of
constraints on the structure and content of documents that should be compliant.

Several types of document has been standardized using XML Schema. For
example the Scalable Vector Graphics [48] (SVG) and the Universal Business
Language [49] (UBL) define standard file formats to represent two-dimensional
graphics and purchase orders respectively.

XML and XML Schema simplify the sharing of data among heterogeneous
systems. Before the adoption of XML as standard to share data, a designer had
to define special file formats, requiring to write informal specifications and had
hoc parsers for all whooshed formats. In the last years several tools has been
developed to simplify the management of XML documents and XML schemata.
One of their main features is the automatically serialization and deserialization
of language data structures to and from XML documents [50; 51].

The Web Service Description Language [52] (WSDL) permits to specifies the
interfaces of Web services. It is an XML description language that defines, using
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XML Schema, the syntax of documents that can be sent to and received from a
web service. Moreover, a WSDL document specifies all network requirements to
communicate with the service. It defines which application protocol must be used
to transport request and responses and the address of the service. WSDL clearly
separates the definition of the structure of the exchanged documents from the
application protocol used to deliver them. The formal definition of service inter-
faces using a standardized language simplifies the usage and the implementation
of services. Tools can automatically generate the skeleton source code to invoke
and to implement a Web service starting from its WSDL [45]. On the other hand,
a web service framework can directly generate the WSDL of a service starting
from its implementation.

The simplest way to invoke web services is by resorting the standard Remote
Procedure Call (RPC) style. This considers a service as a distributed procedure,
in the style of the Object Oriented Programming (OOP) interaction pattern. To
activate the procedure, a client must send a well formed request to the service
and then wait for the corresponding response, terminating the interaction.

A more complex usage scenario of services is the Software Oriented Ar-
chitecture [1] (SOA). In the SOA approach several services provided by many
companies are involved to achieve a common goal. The collection of structured
activities required to accomplish the intent is called Business Process. In this sce-
nario the simple RPC style is not suitable anymore. A more complex approach
must be exploited to coordinate many services involved into a single business
process. SOA suggests two main style of service coordination; Orchestration
and Choreography.

The term orchestration refers to an executable business process that may in-
teract with Web services. This process drives the interaction among services
and manages their execution order. The standard adopted to implement service
orchestration is Business Process Execution Language for Web Services (WS-
BPEL [9]). It is a business language specifically designed to deal with com-
position of services. The language permits to specify the roles of each of the
participants and the logical flow of the messages exchanged from the perspective
of the process. WS-BPEL provides programming language constructs (sequence,
switch, while, pick) to specify the logic of the message flow. The language is de-
signed to define processes that are executable by an orchestrator, which is the
application that manages the whole sequence of the service invocations.

The term choreography refers to a more collaborative style of coordination,
where each participant describes the part it plays in the interaction. For this
reason, choreography requires the federation of business parties. The standard
language adopted to define service choreography is Web Services Choreogra-
phy Description Language [10] (WS-CDL). It describes the messages exchanged
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among services that participate in a collaborative environment. A key aspect
of WS-CDL is that it specifies only the observable behavior of the involved ser-
vices. It does not address the definition of an executable business process. In fact,
there is no single “controlling” process managing the interactions. WS-CDL can
be viewed as a layer on top of the existing Web service stack, since the overall
description of the behavior must be projected over each participant and locally
implemented (exploiting either an RPC style framework or an orchestration en-
gine).

It is worth noticing that, while WS-BPEL describes an executable process
from the perspective of one of the partners, WS-CDL takes more of a collabora-
tive and choreographed approach, requiring that each participant guarantees that
the message exchanges satisfied the specified business process.

We conclude this start review by highlighting We highlight the main require-
ments and the main features that must be handled by a service oriented architec-
ture:

• The architecture must clearly separate the process logic from the imple-
mentation of the services involved. This separation is usually achieved
through an orchestration engine that handles the process flow or by an
inter-business contract that specifies the business process in the choreog-
raphy style. The separation of the coordination logic from the internal
service implementation permits to an organization to change services as
business requirements change.

• The business processes should be recursively composed. Namely, the ser-
vice coordination that implements the business process can itself be pro-
vided as a service, allowing processes to be composed by a higher-level
process.

• Systems must be able to maintain state across service requests. The lan-
guage and the underlying infrastructure would provide session handling
mechanisms to correlate requests in order to build complex conversations.

• Architectures must deal with exception handling and transactions. In a
loosely coupled environment, resources cannot be locked in a transaction
that runs over long period of time. More relaxed form of atomicity must
be provided and guaranteed.

• Organizations should formalize and agree on standard formats to describe
shared concepts
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• Changes in the underling network infrastructures should not affect the ser-
vice implementations and the business processes. Moreover, the deploy of
systems should be optimized to take benefit from available network set-
tings.

The developing of distributed and loosely coupled systems like SOA must
handle a wide variety of aspects. This task can take benefit from the so called
Model Driven Development approach [8]. MDD suggests to implement systems
by exploiting several domain specific languages (DSL). Each of them should be
suited to describe different aspects of the applications. The models developed
by using these languages are then transformed into others exploiting less abstract
languages, which implement the previously defined aspects of the system. The
designer can then enrich the application by describing the lower abstract details,
which will be implemented by lower languages

Adoption a MDD strategy systems are repeatedly transformed so that specific
concerns are confined at different stages. In fact, MDD typically starts from a
(semi)formal system specification that focuses on the core business process and
neglects other aspects (e.g., communication mechanisms or distribution) tackled
by subsequent transformations.

Software companies have developed several standards to implement and com-
pose services. However, the majority of the proposals are informal specification,
making difficult to provide reasoning techniques. For example, the composition
of services and their verification are still manually obtained. A formal approach
to deal with service architecture can supply middlewares that simplify the build-
ing and the composition of Web Services. Moreover, a formal methodology can
provide proof techniques to statically verify local (participant view) and global
(choreography view) properties. The adoption of the SOA paradigm allows or-
ganizations to reduce the cost of maintaining their IT-structure. This benefits can
be further extended with the adoption of formal development techniques, allow-
ing the organizations to focus on proprietary business processes and verify their
interactions.

A key aspect of model driven framework is the refactoring capability. The
refactoring rules address some crucial issues of the development phase, that is the
possible alterations that one would like (or has) to apply at the lower abstract level
where they can be more suitably tackled. Arguably, refactoring does not have to
alter the intention of the designer, namely, refactoring rules must preserve the
intended semantics.
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2.2 The Business Process Modeling Notation
The Business Process Modeling Notation (BPMN [31]) is an emerging standard
to describe business processes through a graphical notation. A key aspect of
BPMN is that the notation abstracts from all details that are out of the scope of
business process modeling. In other words, BPMN permits to design the depen-
dencies among processes regardless their implementation, data carried in com-
munications, communication paradigm and distribution.

The main building blocks of a BPMN design are the flow objects, which
represent activities and events involved by the business process. Flow objects are
connected by arrows, which define the dependencies among this entities. In this
section we briefly introduce by some running examples the key features of the
BPMN notations.

The BPMN process depicted in Fig. 2.2a describes a simple business process
that specifies the execution of the task A. Circles represent events, something
that happens and that have to be treated by the system. All BPMN processes
involve two special events: the starting point of the business process, represented
by the single edge empty circle on the left, and its termination, represented by
the double edge empty circle on the right. The rounded corner box A represents
the task to be executed. The model depicted in Fig. 2.2b describes a sequence of
two tasks. The arrows connecting the flow elements define their temporal order
and their dependencies. In the example, the task B can be executed only after the
termination of A. The temporal order of execution, defined by the dependencies
among elements, is usually referred to as forward-flow.

The model depicted in Fig. 2.2c describes a concurrent process, consisting of
activities A and B. When the process starts, both the task A and B can be executed
independently. The crossed box represents a synchronization barrier, waiting
for the termination of all elements connected by an incoming arrow before to
propagate the forward-flow execution. The activation of the task C can start only
after the termination of both A and B.

A BPMN process can involve several sub-processes. Each of them must con-
tain its own start and end events and can be used as any other flow element by
other business processes. The model depicted in Fig. 2.2d is semantically equiva-
lent to the one described in Figure 2.2c, but the concurrent execution of the tasks
A and B has been grouped into a sub-process.

BPMN can also be used to model transactional properties of processes. Since
the execution of a business process can continue for long time, the traditional
methodologies to ensure atomicity are not suitable. Instead of exploiting lock-
ing and rollback mechanisms to fully undo incomplete executions a more relaxed
form of atomicity is granted. Each task is equipped with a compensation that
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(a) Task

(b) Sequence

(c) Concurrency

(d) Sub-process

Figure 2.2: Examples of BPMN processes

is responsible to partially recover the task effects if the execution of the whole
process cannot be completed. BPMN compensations are represented by tasks
connected to the exception events by dotted dashed lines. A key aspect of long
running transactions is the order in which compensation must be executed, com-
monly referred to as backward-flow. Intuitively, the backward-flow is the inverse
of the temporal order of the corresponding tasks (forward-flow). If the execution
of a task fails, the forward-flow has to be interrupted and the backward one starts.

The BPMN specifications depicted in Fig. 2.3a and Fig. 2.3c employ the
transactional facilities of BPMN to represent sequential and parallel composi-
tion of compensable tasks. Since backward-flow has to be executed reversely
to the forward-flow, the parallel composition requires a synchronization of the
compensations CompB and CompC. In particular, if the whole business process
fails, the compensation CompA can be executed only after that both previous
compensations have terminated. BPMN permits to design nested transactions,
as depicted in Fig. 2.3b. A double edge box represents a sub-transaction. The
start and termination events of sub-transactions are private, namely they are not
visible outside the sub-transaction. Intuitively, this scoping mechanism allows
sub-transactions to hide any fault of a contained task to external processes.

In summary, a BPMN specification describes the work-flow of a distributed
system and its transactional properties by a global point of view. The software
architect can abstract from the distribution of the activities, the communication
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(a) Sequence (b) Sub-transaction

(c) Concurrency

Figure 2.3: Examples of BPMN transactional processes
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mechanisms and the technologies that will implement each activity. However,
converting BPMN models to executable entities is not direct. An implementation
of a BPMN model must be enriched with details regarding the communication
paradigms and protocols used to coordinate distributed tasks and the data ex-
changed among them.

2.3 The π-calculus
The π-calculus [30] is probably the most acknowledged formal mechanism to
design and reason about concurrent systems. We introduce this calculus because
our formal framework takes inspiration from the techniques developer for the
π-calculus.

The basic entities of the language are processes and names. Processes are
autonomous agents that communicate by exploiting names. The π-calculus ex-
tends ccs [53] with the ability to dynamically allocate names and exchange them
among processes, permitting to describe concurrent systems whose configura-
tions evolve at run-time.

Names can represent communication channels or ports. The set of names N
is assumed to be infinite and ranged over by a,b,c, .... Names let processes to
communicate and exchange information: more precisely, π-calculus processes
can exchange names in point-to-point fashion. Processes define the behaviors of
systems and are denoted by P,Q,R, .... Guards are special processes that perform
an action before to continue their execution, they are ranged by G,H, .... The
π-calculus syntax is given in Table 2.1.

P,Q ::= P | Q | (νx)P | !G | G
H,G ::= 0 | xy.P | x(y).P | τ.P | G+H

Table 2.1: π-calculus syntax

The parallel composition P | Q represents the concurrent execution of P and
Q. The restriction (νx)P declares a new unique name x that will be used by P,
this name is distinct from all external names. The bang !G represents an unbound
concurrent replication of the guard G.

The nil process (0) is a process that cannot perform anything and represents
an inactive system. In the process π.P (where π ∈ {τ,x(y),xy}), the prefix π

represents the atomic action that has to be performed before the execution of
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the continuation process P. The so called silent action τ represents an internal
computation. The input action x(y) represents the input of a value (a name) on
the name x and binds the received value with y. The output action xy represents
the output of the value (the name) y over the name x. The notion of π-calculus
name differs from the standard notion of socket or port; a name is not owned
by a process but can be shared among several processes. More precisely sev-
eral processes can both output and input values on the same name. The choice
G + H represents a process that either behaves a G or as H. Notice that both in-
put and output can guard a continuation process, that is executed only after that
the communication occurs. For this reason this version of the calculus is called
synchronous π-calculus.

The free and bound names of a process (denoted by f n(P) and bn(P) respec-
tively) are naturally defined, according to the only two binders of the language:
restriction (νy)P and input prefix x(y).P, which bind y in P.

2.3.1 Examples

It has been widely recognized that the π-calculus provides suitable mechanisms
to model several coordination patterns for services. Here we exploit its capa-
bilities to implement the business processes of Figure 2.2. Let A be a BPMN
task, hereafter, we denote with PA the π-calculus process implementing it. Each
process PA owns a globally known name fA, that triggers its execution. This
assumption is strictly related with SOA core features. Indeed, we model each
BPMN task as a service that is reachable through a unique name globally known.
We assume the existence of a distinguished name f that is used to represent
requests to start the whole business process. We present two possible implemen-
tations: one exploiting the orchestration paradigm and the other one the chore-
ography. This will be also useful to highlight the main difference between the
two approaches. In the orchestration paradigm, tasks are modeled as passive
agents, with no knowledge regarding the collaboration. The collaboration is im-
plemented by an external agent (the “orchestrator”) that is informed by all other
participants about their termination (we will use the name cA to deliver the mes-
sages informing the termination of the task A). In the choreography paradigm,
each agent is directly involved in the coordination, performing itself the required
communication to satisfy the collaboration demands. Without loss of generality
we model the behavior of a BPMN activities as an internal action (τ), assuming
that it does not affect the control flow.
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O, (νcA,cB)(PA | PB | D)
where PA , fA(y).τ.cAy

and PB , fB(y).τ.cBy
and D, f (y). fAy | cA(y). fBy

(a) Orchestration

C , (PA | PB | f (y). fAy)
where PA , fA(y).τ. fBy

and PB , fB(y).τ
(b) Choreography

Figure 2.4: π sequential composition

Sequential composition: orchestration

The process O (for Orchestration) in Figure 2.4a implements the sequential busi-
ness process of Figure 2.2b. The system is composed by the three processes
PA, PB and D, implementing the BPMN tasks A, B and the “orchestrator”, re-
spectively. The processes PA and PB represent two services which interact with
a simple communication protocol; each process waits for a request to start the
computation, performs an internal action representing the BPMN task and then
communicates to the requester its termination.

It is easy to see that the coordination is totally performed by the “orchestrator”
D. It waits for a request of activation of the whole business process on the global
name f . When it is activated, it sends a message on the name fA to activate
the process implementing the task A. Concurrently, the orchestrator waits for
the termination of the activated process, by performing an input on the name
cA. When this notification is received, a message on the name fB is sent, to
activate the implementation of the task B. The orchestrator does not regard about
messages on the name cB, since there are no activities in the business process
depending by the task B. Both processes PA and PB have no knowledge of the
whole business process. They should be involved in other collaboration and used
by other “orchestrator” Notice that names cA and cB are restricted, to represent
that notifications of the termination of processes PA and PB are responses that are
visible only to the requester (the orchestrator).

Sequential composition: choreography

The process C (for Choreography) in Figure 2.4b implements the sequential busi-
ness process of Figure 2.2b. The system is obtained starting from the implemen-
tations of the two tasks PA and PB and a “intermediate process”. The intermediate
process f (y). fAy is used only to start the process PA when the whole business
process is activated. The intuitive idea is that the “intermediate process” acts as
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O, (νcA,cB,cC)(PA | PB | PC | D)
where Pi , fi(y).τ.ciy i ∈ {A,B,C}

and D, f (y). fAy | fBy | cA(y).cB(y). fCy
(a) Orchestration

C , (PA | PB | PC | f (y).( fAy | fAy))
where PA , fA(y).τ. fcy

and PB , fB(y).τ. fcy
and PC , fC(y). fC(y).τ

(b) Choreography

Figure 2.5: π parallel composition

proxy of request. Notice that processes PA and PB hard-wire in their behavior the
collaboration in which they are involved. In particular, the process PA, after its
termination, sends a message directly on the name fB to start the execution of the
task B. Moreover the process PB does not send any message after its termination,
since there are no dependent activities on the business process.

Parallel composition: orchestration

The π process O in Figure 2.5a implements the business process described in 2.2c:
As done above, we restrict the names cA, cB and cC to allow the orchestrator D
to directly manage task termination. All tasks are implemented in the same way,
with the exception of the name used to receive the requests and to notify termi-
nation.

The orchestrator D waits for the request to execute the whole business pro-
cess, then it sends concurrently the notification to start on the names fA and fB,
to permit the independent executions of both implementations of A and B. When
both tasks terminate their execution and the orchestrator receives the correspond-
ing notifications and, therefore, sends the request of activation to the implemen-
tation of the last task C.

Parallel composition: choreography

The π process C in Figure 2.5b implements the sequential business process of
Figure 2.2c: The system is obtained starting from the implementations of the
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three tasks (PA, PB and PC) and a “intermediate process”. The intermediate pro-
cess ( f (y).( fAy | fAy)) plays the role of started: it activates processes PA and
PB when the whole business process is activated. The intuitive idea is that the
“intermediate process” acts as proxy of requests and represent the start event of
BPMN. Notice that the processes PA, PB and PC hard-wire in their behavior the
collaboration in which they are involved. In particular, PA, and PB directly in-
form the process PC of their termination ( by sending a message on the name fC).
Moreover, process PC works as synchronization barrier, waiting for two notifi-
cations on its activation channel fC. Notice that process PC does not send any
message after its termination. In fact, there are no further dependent activities on
the business process.

2.3.2 Reduction semantics

We now review the reduction semantics of π-calculus. First, we introduce a struc-
tural congruence (denoted by ≡), The structural congruence is the smallest con-
gruence relation over processes that satisfies the rules presented in Table 2.2.

• (G,0,+) and (P,0, |) are commutative monoids:

G+H ≡ H +G G+(H + I)≡ (H +G)+ I G+0≡ G

P | Q≡ Q | P P | (Q | R)≡ (P | Q) | R P | 0≡ P

• !G≡ G | !G

• (νx)0≡ 0, (νx)(νy)P≡ (νy)(νx)P and if x /∈ f n(P) then
(νx)(P | Q)≡ P | (νx)Q

Table 2.2: π structural conguence rules

The reduction relation P→ P′ describes the evolution of the process P to P′

by a single computational step. The reduction relation is defined by the inferences
rules of Table 2.3.

We briefly comment on the key aspects of the semantics of the π-calculus.
If a non-deterministic choice involves non-internal actions, the behavior of the
process is determined by the context in which it is executed:

• 0+P always behaves as P
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P→ P′
(PAR)

P | Q→ P′ | Q

P→ P′
(RES)

(νx)P→ (νx)P′

Q≡ P→ P′ ≡ Q′
(ST RUCT )

Q→ Q′
(TAU)

τ.P+G→ P

(COM)
(x(y).P+G) | (xz.Q+H)→{z/y}P | Q

Table 2.3: π reduction rules

• τ.P + τ.Q performs an internal choice. The process can choose indepen-
dently by the context one of the two branches, executing in both cases an
internal action.

• x(z).P + y(z).Q , where x 6= y, cannot autonomously choose whether to
activate the input on the name x or the input on the name y. In fact, the
rule (COM) can be applied only when the process is executed in a context
having at least an output for one of this names. For example, if the process
is executed concurrently with xw.R, only the branch waiting on the name x
is enabled. Hence, the parallel composition will perform a communication
and will be reduced to {w/z}P | R.

The interplay between the reduction relation and the structural congruence per-
mits to express the so called scope extrusion: the capability of a process to
discover, through the input primitive, a name that was restricted by a different
process. For example, the parallel composition ((νy)xy.P) | x(z).Q contains a
process restricting the name y. To enable the communication among the two pro-
cesses, the input must “enter” inside the restriction, using α-renaming and the
structural congruence:

y 6∈ f n(x(z).Q)xy.P | x(z).Q→ P | {y/z}Q

((νy)xy.P) | x(z).Q≡ (νy)(xy.P | x(z).Q)→ (νy)(P | {y/z}Q)

2.3.3 The asynchronous π-calculus
Languages using the message passing paradigm can be classified in asynchronous
and synchronous languages. In the synchronous approach the delivery and the
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reception of a message are treat like happening at the same time. In the asyn-
chronous approach the message is sent by an agent, that can perform other task.
From the standpoint of language design, the difference between the two paradigms
is rather important. Asynchronous communications are closer to the standard dis-
tributed system infrastructures and are easier to be implemented. The version of
the π-calculus described in the previous section is called synchronous π-calculus,
since the semantics permits to express processes (e.g. xt.P) that send a message
and whose continuation (P) is executed only after the reception of the message
by a consumer. The asynchronous version of the π-calculus (in the following πa)
can be easily defined as a subset of the synchronous language that respects the
following requirements:

1. outputs have no continuation,

2. output actions cannot be involved in a non-deterministic choice.

More precisely, the syntax of the πa calculus is defined in Table 2.4.

P,Q ::= xy | P | Q | (νx)P | !G | G
H,G ::= 0 | x(y).P | τ.P | G+H

Table 2.4: Asynchronous π calculus: syntax

The reduction semantics of the πa calculus can be obtained by the synchronous
one, since the new language is obtained by only syntactic constraints.

2.3.4 Asynchronous π-calculus: behavioral semantics
In the literature, several abstract behavioral semantics for the asynchronous π-
calculus have been proposed [54]. We now briefly describe the “direct HT-
transition system” [55], since it is the basic building block of the abstract se-
mantics we will develop in this thesis (Section 4.1).

The direct HT semantics is obtained by a labeled transition system, whose
labels are of the form

α ::= τ | xy | x(y) | x(y)

Label τ models the unobservable actions. xy is a free output action and represents
the communication of y over x. x(y) is a bound output and represents the delivery
of a message containing a value (y) that has been restricted. Finally, x(y) is the
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input action, and represents the reception of a message on the name x carrying
the value y. All names of actions are free, with the exception of the value of the
bound output. n(α) is used to denote the union of free and bound names of the
action α.

P≡ P′ α−→ Q′ ≡ Q
(cong)

P α−→ Q

(in0)
P

x(y)−−→0 P | xy
(in1)

x(y).P
x(z)−−→1 {z/y}Q

(τ)
τ.P τ−→ P

(out)
xy

xy−→ 0

P
xy−→ P′x 6= y

(outex)
(νy)P

x(y)−−→ P′

P α−→ P′x 6∈ n(α)
(ν)

(νx)P α−→ (νx)P′

P
xy−→ P′Q

x(y)−−→1 Q′
(sync)

P | Q τ−→ P′ | Q′
P

x(y)−−→ P′Q
x(y)−−→1 Q′y 6∈ f n(Q)

(syncex)
P | Q τ−→ (νy)(P′ | Q′)

P α−→ P′bn(α)∩ f n(Q) = /0
(comp)

P | Q α−→ P′ | Q

G α−→ P
(rep)

!G α−→ P | !Q

Table 2.5: HT labelled transition system

The direct HT transition system is defined by the rules in Table 2.5, where
the relation ≡ is the syntactic identity modulo α-conversion. As usual, we omit
the symmetric rules for sync, syncex, comp and sum We comment on the most
interesting rules. Rule in1 models input actions; notice that the behavior is de-
fined in the early instantiation style, since the rule can be applied for any name
(z) that can be received by the process. Rule in0 permits to perform an input,
simply storing the received message for subsequent usages, thus allowing to ar-
bitrarily delay the communication. Rule sync allows the communication of a
non-restricted name. Rules synxex and outex model the scope extrusion of the
name y. Notice that the rules sync and syncex depend on the input transitions
x(y)−−→1 corresponding to input guards, while the rule in0 cannot be involved into
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the communication.
The notion of weak transition system is defined in the standard way as fol-

lows:

P τ=⇒ Q iff P τ−→
∗

Q P α=⇒ Q iff P τ=⇒ .
α−→ .

τ=⇒ Q andα 6= τ

The weak transition systems abstract from the interactions performed by pro-
cesses, hiding they internal actions.

2.3.5 Bisimulation semantics
We now introduce the abstract notion of bisimilarity. The behavioral semantics
is important since it not only describes how a set of processes interact with each
other, but also permits to reason about isolated subsystems. Bisimulation allows
one to check for properties that have to be satisfied by the implementation of
a system against its design expressed in a high-level language. Sometimes the
implementation is slightly modified in order to verify a subset of the system re-
quirements, e.g. by inserting the implementation in a suitable controlled context
or environment, where it can be formally shown that, by construction, only prop-
erties of interest can lead to violation of the design. Honda Amadio etc [54; 55]
have studied bisimulation for asynchronous π-calculus. We now introduce the
direct HT bisimulation. In the Honda-Tokoro vision, in the bisimulation game,
any process can act as a buffer that reads any possible message and stores it, thus
effectively not consuming the message. This is done by the rule in0 of the labeled
transition of Figure 2.5. On the other hand, processes that actually can consume
a message are not observed at all in the bisimulation. The intuitions is that, in an
asynchronous settings, an observer has not direct way of knowing if a message
he sent has been received or not.

Definition 1 The Direct HT bisimulation (∼) is the largest symmetric relation
on πa-terms such that if P∼ Q then:

• if P α−→ P′, α ∈ {τ,xy,x(y)} and bn(α)∩ f n(Q) = /0 implies that Q α−→ Q′

and P′ ∼ Q′.

• if P
x(y)−−→0 P′ then Q

x(y)−−→0 Q′ and P′ ∼ Q′.

The notion of weak bisimulation (≈) is obtained substituting in the above
definition the transition relation with the weak one.

The π-calculus bisimulation can be used to check properties of systems. The
standard methodology consists of checking if an implementation (modeled as a
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π-calculus process) is bisimilar respect to a specification (sometimes modeled
as a magic π-calculus process). In asynchronous distributed systems is usually
preferred the check of weak bisimilarity, since it permits to compare processes
regardless their internal actions.

In Section 2.3.1 and 2.3.1 we presented two π-calculus implementations of
the BPMN business process depicted in Fig. 2.2b. Checking the weak bisimilarity
of the two processes (O≈C) ensures that the two systems perform the same be-
havior. In this case both processes have finite states and the proof is easy. Clearly,
the bisimilarity check is not always decidable if the processes have infinite states.
We refer to [56] for a comprehensive discussion about this topic.

2.4 The saga calculus
We highlighted that enforcing transactional properties of service composition is
a challenging issue. Saga [24; 25] is basically the most accepted proposal to
deal with long running transactions. Also in this case we stress the role formal
techniques may have to standardize the semantics of error recoveries and verify
the correctness of the implementation of a process.

The main building blocks of saga are activities, which are short-term trans-
actions that can exploit traditional ACID techniques to ensure their atomicity.
Atomic activities are uniquely identified by a name A,B, . . . ∈ Act . Each activity
A can have a corresponding activity B, called compensation, that can be executed
to undo its effects. The pair containing the atomic activity and its compensation
is called step.

Activities, with their compensation, can be composed to build complex pro-
cesses and transaction (also called saga). Informally, the difference between a
process and a transaction is that the latter is considered atomic: it can be success-
fully executed (committed) or no effect can be observed if it fails (aborted).

X ::= 0 | A | A÷B
P ::= X | P;P | P|P | S
S ::= {|P|}

Table 2.6: Syntax of steps (X), processes (P) and sagas (S)

The syntax of the saga calculus is defined in Table 2.6. A saga step X is an
atomic task to be performed. The step 0 represents an inactive task, which cannot
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raise errors. The step A÷B represents a compensate task, where A is the atomic
activity and B the compensation that can undo the effects produced by A. The
step A models an atomic activity having no compensation.

Steps can be composed to build processes. The operators “;” and “|” permit to
represent the sequential and the parallel composition of processes, respectively.
Notice that sagas, which represent transactions, can be nested. Intuitively, this
nesting mechanism allows sub-transactions to hide any fault of a contained activ-
ity to external processes. The root level of a hierarchy of sagas is referred as the
top-level saga.

2.4.1 Big step semantics
The intuition underlying the operational semantics of saga calculus is that partial
execution of a saga must be compensated, to guarantee atomicity. The possi-
ble behaviors of the sequential composition of activities clarify this idea. Let
A1, . . . ,An be activities (having compensations B1, . . . ,Bn); their sequential com-
position can

• execute entirely the sequence A1; . . . ;An, if the whole saga successfully
terminates

• execute the compensated sequence A1; . . . ;A j;B j, . . . , ;B1 for j < n, if the
activity A j+1 fails, recovering the activities already completed (A1; . . . ;A j)
by executing in reverse order the corresponding compensations (B j; . . . ;B1)

In literature, the temporal order of execution of activities is usually called to as
forward-flow, while the order in which compensation must be executed is com-
monly referred to as backward-flow.

Now we review a simplified version of the operation semantics of saga. We
focus on executions of a saga that can only commit or compensate all completed
steps. This requires that all compensations always terminate with success (relax-
ing this assumption requires to model executions of sagas that can abnormally
terminate.) The full semantic of the saga calculus can be found in [24]. The pos-
sible results of the execution of a saga belong to the set R = {�,�}, where �
represents the successful execution, while� stands for the occurrence of a failure
and the full compensation of all terminated activities. We will use � to denote
an arbitrary element of R .

The semantic of saga is given up to a structural congruence over terms, which
is defined by the axioms of Table 2.7.

Since sagas abstract from the inner structure of the atomic activities, the se-
mantics of the calculus exploits a context Γ that expresses if an atomic activities
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A÷0≡ A 0;P≡ P;0≡ P (P;Q);R≡ P;(Q;R)
P|0≡ P P|Q≡ Q|P P|(Q|R)≡ (P|Q)|R

Table 2.7: saga structural congruence rules

successful terminates or fails. Formally, Γ : Act → R is a partial function that
maps activities to “commit/fail”.

The semantics of top-level sagas is defined by the relation Γ : S α−→ �, given
by inference rules displayed in Table 2.8. Intuitively, the transition Γ : S α−→ �
states that the saga S produces the result � if its atomic activities terminate as
prescribed by Γ. Observations α are defined as follows:

α ::= 0 | A | α;α
′ | α|α′

An observation α represents uncompensated processes, and α|α′ represents all
possible interleaving executions of α and α′.

The auxiliary relation Γ : 〈P,β〉 α−→ 〈�,β′〉 defines the behavior of a process P
within a saga that already have installed the compensation β, which syntactically
stands for a process without compensations. When a process is executed inside a
saga, it can commit or fail, but it can also change the installed compensations.

We now comment on the rules in Table 2.8. The rule (ZERO) states that an
inactive process can only commit, without changing the installed compensations.
The rule (ACT − S) describes the successful execution of the main activity of
A÷B; since A is the last executed activity, the compensation B is installed in front
of β, so that A will be the first activity to be compensated if the next one fails. The
rule (ACT −C) describes the failure of the execution, inferred from the context
gamma, of the step A÷B. The rule activates the execution of the compensation
β that was already installed. As described above, we present a simplified version
of the saga semantics that require that all compensations never fail ( Γ : 〈β,0〉 α−→
〈�,0〉). Since A is an aborting atomic activity, A had no effect. For this reason
its compensation B is not activated and the observed flow is the one obtained by
executing the compensations (β). The rule (SEQ− S) describes the execution
of a sequential composition when the first process P commits. The continuation
process Q is executed taking into account the compensations produced by P; the
result of the sequential composition is obtained according to the execution of Q.
The rule (SEQ−C) describes the execution of a sequential composition when
the first process compensates. In this case, the next process Q is not executed.
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(ZERO)
Γ : 〈0,β〉 0−→ 〈�,β〉

Γ(A) = �
(ACT −S)

Γ : 〈A÷B,β〉 A−→ 〈�,B;β〉
Γ(A) =� Γ : 〈β,0〉 α−→ 〈�,0〉

(ACT −C)
Γ : 〈A÷B,β〉 α−→ 〈�,0〉

Γ : 〈P,β〉 α−→
〈
�,β′′

〉
Γ :
〈
Q,β′′

〉 α′−→
〈
�,β′

〉
(SEQ−S)

Γ : 〈P;Q,β〉 α;α′−−→
〈
�,β′

〉
Γ : 〈P,β〉 α−→ 〈�,0〉

(SEQ−C)
Γ : 〈P;Q,β〉 α−→ 〈�,0〉

Γ : 〈P,0〉 α−→
〈
�,β′

〉
Γ :
〈
P′,0

〉 α′−→
〈
�,β′′

〉
(PAR−S)

Γ : 〈P|Q,β〉 α|α′−−→
〈
�,β′|β′′;β

〉
Γ : 〈P,0〉 α−→ 〈�,0〉 Γ : 〈Q,0〉 α′−→ 〈�,0〉 Γ : 〈β,0〉 α′′−→

〈
�,β′′

〉
(PAR−C1)

Γ : 〈P|Q,β〉 α|α′;α′′−−−−→ 〈�,0〉

Γ : 〈P,0〉 α−→ 〈�,0〉Γ : 〈Q,0〉 α′−→
〈
�,β′

〉
Γ :
〈
β
′;β,0

〉 α′′−→ 〈�,0〉
(PAR−C2)

Γ : 〈P|Q,β〉 α|α′;α′′−−−−→ 〈�,0〉

Γ : 〈P,0〉 α−→
〈
�,β′

〉
(SAGA−S)

Γ : 〈{|P|} ,β〉 α−→
〈
�,β′;β

〉 Γ : 〈P,0〉 α−→ 〈�,0〉
(SAGA−C)

Γ : 〈{|P|} ,β〉 α−→
〈
�,β′

〉
Γ : 〈P,0〉 α−→ 〈�,β〉

(SAGA−TOP)
Γ : {|P|} α−→�

Table 2.8: Semantics of sagas
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A key aspect of saga is its treatment of compensations of parallel activities.
Usually, flow languages [57] state that all compensations must be executed in the
reverse order of the completed corresponding activities. However, this require-
ment is too strong to be suitable for SOA. Enforcing the execution order of the
compensations to reflect the order of the main activities executed necessarily re-
quires synchronizations among all performed actions. In the saga approach, the
compensation of parallel activities can be executed independently.

The rule (PAR−S) describes the successful execution of the parallel compo-
sition, when both processes commit. Since parallel branches and their recover-
ies are executed independently, the parallel composition of the compensations is
installed on the head of ready compensations. Finally the observed flow is ob-
tained by the possible interleaving of the flow of P and Q. The rule (PAR−C1)
describes the behavior of the parallel composition when both processes compen-
sate. The execution is stopped and the compensation β installed. Notice that the
compensation is started only after both parallel branches terminate their failure
recovery, namely a synchronization of the backward-flow is performed. The rule
(PAR−C2) describes the execution of a parallel composition when one of the
parallel branches commits and the other one fails and compensates. The execu-
tion of the successful branches is aborted by executing its compensation β′ before
activating the original compensation. Notice that the aborting procedure for the
successful terminated branches is activated only after that the fault branches have
totally recovered their execution.

The rule (SAGA−S) and (SAGA−C) describe the execution of a nested saga.
Independently by the termination status of the boxed process P, the saga always
commits. This permits to hide the failures of the activities in P to any external
process. The successful completion of {|P|}, rule (SAGA−S), is analogous to the
case of a successful execution of P. In stead, if P fails the abort is hidden to the
parent, but the observed flow corresponds to the execution of P and the installed
compensation β is not modified. Finally, the rule (SAGA−TOP) describes the
execution of a top-level saga in terms of the contained process with an empty
installed compensation.

2.4.2 Examples

The saga calculus can be used to formally describe BPMN work-flows. We il-
lustrate the semantics of the saga calculus by showing the possible executions of
saga processes modeling the BPMN designs depicted in Figure 2.3.
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{|A÷CA;B÷CB|}

Figure 2.6: The saga representing the BPMN design 2.3a

Sequential composition

The saga encoding of the BPMN process 2.3a is illustrated in Figure 2.6. The
saga is simply obtained by the sequential composition of two steps, each of them
containing an atomic activity (e.g. A) and the corresponding compensation (e.g.
CA). The forward-flow prescribes that the execution of the activity B can start
only after the termination of activity A. Since the activities and compensations
are not described in the saga calculus, we use the context to infer if the activities
success or fail. We recall that compensations are assumed to always success.

Suppose that the activity A fails its execution, namely Γ(A) = �. The exe-
cution trace of the saga is obtained by exploiting the saga operational semantics
and is reported in Figure 2.7a. Since A is an aborting atomic activity, A had no
effect on the system. For this reason its compensation CA is not activated. The
forward-flow is stopped and the whole observed execution is empty .

Suppose now that the activity A successfully terminates and B fails, namely
Γ(A) = � and Γ(B) = �. The trace of the saga is reported in Figure 2.7b. Ini-
tially, the activity A is successfully executed and its compensation pushed on the
stack of compensations. When the activity B fails, the backward-flow is acti-
vated, executing the installed compensations. The whole trace of execution is the
sequence A;CA.

Finally, suppose that both activities successfully terminate, namely Γ(A) = �
and B(�). The trace of the sagais reported in Figure 2.7c. The whole saga
successes and A;B is observed. Notice that the last compensation installed is
CB;CA. If this saga is composed with a process that fails, the compensation CB
should be executed before CA.

Parallel composition

The BPMN process 2.3c is encoded by the saga reported in Figure 2.8. The
saga composes the three atomic activities and their compensations. Suppose that
all activities successfully terminate, namely Γ(A) = Γ(B) = Γ(C) = � The trace
of the saga is reported in Figure 2.9a. The whole saga successes, observing
A;(B|C). The trace does not care about which parallel branch is first executed or
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Figure 2.7: Example traces of the saga sequential composition
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{|A÷CA;(B÷CB|C÷CC)|}

Figure 2.8: The saga representing the BPMN design 2.3c

terminated. In fact, the last compensation installed is (CB|CC);CA, meaning that
if a further failure occurs, the compensations of B and C can be independently
executed, but they must terminate before activating the compensation of A.

Now, let us assume that only one branch fails, e.g. C, namely Γ(A) = Γ(B) =
� and Γ(C) =�. The trace of the saga is reported in Figure 2.9b. The two par-
allel branches are executed independently. The execution of the branch B is not
stopped by a failure on the branch C, respecting the naive semantics. After that
both branches terminates their forward-flow, the compensation CB is activated.
Notice that the compensation CA can start only after that the parallel composition
has terminated its recovery, synchronizing the backward-flow.

Finally, suppose that the activity A successfully terminates, while both B and
C fail, namely Γ(A) = � and Γ(B) = Γ(C) =�. The trace of the saga is reported
in Figure 2.9c. The two parallel branches are executed independently. The exe-
cution of the branch B is not stopped by a failure on the branch C and vice versa.
Notice that the compensations CB and CC are not executed, since we assume that
the activities B and C support ACID transactions and then their failure does not
have any side effect. After that both branches terminates, failing, the compensa-
tion CA is executed, to undo the effects of the committed activity A.
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Figure 2.9: Example traces of the saga parallel composition
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Chapter 3

The SC family of process
calculi

In this Chapter we introduce the Signal Calculus (SC). The SC calculus has been
designed and developed to provide formal machineries supporting service ori-
ented applications. Our main goal is to provide a small set of basic primitives
to drive the implementation of a middleware (See Chapter 6) tailored to program
service coordination policies. However, the SC programming paradigm is suit-
able to deal with other contexts, such as grid and clouds computing [58].

The starting point of our work is the event notification paradigm. The build-
ing blocks of SC are called components, which interact by issuing/reacting to
events. A component represents a “simple” service interacting through an asyn-
chronous signal passing mechanism, inspired from the asynchronous π-calculus [30].
Components are the basic computational units: they perform internal operations
and can be composed and distributed over a network. Each component is iden-
tified by unique name, which, intuitively, can be through of as the URI of the
published service.

The adoption of the event notification paradigm, for managing service coor-
dination has two main advantages

• it is a well known programming model

• it permits the distribution of coordination activities and of the underlying
computational infrastructure.

In the literature event based architectures can be classified as brokered and non-
brokered [29]. The two approaches differ for the way they notify events. The
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brokered pattern exploits a centralized support that is responsible for implement-
ing the subscriptions and the notification forwarding. Such solution is closely
related to the ideas of tuple space based systems [59]. Instead, the non-brokered
approach suggests that each component acts both as publisher or subscriber for
other components and the delivering of signals is implemented through peer-to-
peer like structures. The SC calculus adopts the non-brokered approach since it
better fits with service oriented paradigm.

In the following we assume as given the set of names of the components
involved into a system with no assumption on the mechanisms adopted to retrieve
them (e.g. UDDI service directories [60]).

Communications can be performed by the rising and the handling of events.
They are tagged with a meta type representing the class of events they belong to.
Such meta type information is often referred to, in the literature (e.g. [61]), with
the term topic.

Each component provides an event flow, namely the collection of component
names that must be notified about the emitted events. Hence, flows define the
component view of the coordination policies. A key feature of SC is that it pro-
vides a multicast notification structure. When an event is raised by a component,
several envelopes are generated to notify all components in the flow. Each enve-
lope contains the event itself and the address of the target component. Envelopes
are called signals.

Each component own a set of signal handlers associated to topics. This han-
dlers, called reactions, are responsible of the management of the reception of
an event notification. Indeed, the reception of a signal acts like a trigger that
activates the execution of a new behavior described by the compatible reaction
within the component.

The SC component interface is defined by its reactions and flows. The lan-
guage primitives allow one to dynamically modify the topology of the coordina-
tion by adding new flows and reactions to components, namely the component
interface can by updated at run-time. Finally, components are structured to build
a network of services. A network provides the facility to transport signals con-
taining the events exchanged among components.

The structure of the chapter is organized as follows: In Section 3.1 we present
the syntax and the reduction semantics of the simplest version of the calculus.
Our goal is to introduce smoothly the main concepts of SC. In Section 3.2 we
extend the syntax and the semantics of the calculus to manage sessions. We also
provide some examples to highlight the expressiveness of the resulting calculus.
In Section 3.3 we present a type-based approach to event notification. We equip
our calculus with simple types for events. Intuitively, types drive the coordina-
tion of components. We conclude in Section 3.4 by reviewing the distinguished
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R ::= 0 | τ m B | R1|R2

(a) Reactions

F ::= 0 | τ ~a | F |F
(b) Flows

B ::= 0 | rupd(R) ;B | fupd(F) ;B | out〈τ〉;B | ε;B | B | B
(c) Behaviors

N ::= /0 | a [B]RF | N ‖ N | 〈τ〉@a
(d) Networks

Table 3.1: SC syntax

features of SC comparing our calculus with other proposals.

3.1 Signal Calculus: SC

The Signal Calculus (SC) is a process calculus specifically designed to describe
coordination of services distributed over a network. We start introducing the
syntax of the calculus together with some notational machinery. We assume a
finite set of topics ranged over by τ1, ...,τk ∈ T and a finite set of component
names ranged by a,b,c... ∈ A . We use ~a to denote a set of names a1, ...,an.

The calculus is centered around the notion of component, written as a [B]RF
and representing a service uniquely identified by a name a, the public address
of the service, having internal behavior B, reaction R and outgoing connection F
called flow.

Reactions (R) are described by the syntax in Table 3.1a. A reaction is a mul-
tiset (R1|R2), possibly empty (0), of unit reactions. A unit reaction τ m B triggers
the execution of the behavior B upon reception of a signal tagged by the topic τ.
The syntax of behaviors will be given later. The reactions R1 and R2 are called
sub-reactions of the reaction composition R1|R2.

Each component has a flow (Table 3.1b) that describes addresses of events.
A flow is a set (F1|F2), possibly empty (0), of unit flows. A unit flow τ ~a
describes the set of component names ~a where raised events having τ as topic
have to be delivered.

Reactions and flows are defined up-to a structural congruence (≡). Indeed,
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we assume that (F, |,0) and (R, |,0) are commutative monoids, meaning that:

F |0≡ F F |F ′ ≡ F ′|F F |(F ′|F ′′)≡ (F |F ′)|F ′′
R|0≡ R R|R′ ≡ R′|R R|(R′|R′′)≡ (R|R′)|R′′

Moreover we assume that τ ~a|τ ~b≡ τ ~a∪~b. Notice that this assumptions
implies that F |F ≡ F . This structural congruence allows us to freely rearrange
reactions and flow.

Component behaviors (B) are defined in Table 3.1c. Intuitively, the syntax of
behaviors defines the programming interface that the middleware should provide.
A reaction update rupd(τ) ;B extends the reaction part of the component inter-
face, providing the ability to change the reactive part of a component. Similarly,
a flow update fupd(F) ;B extends the component flows. An asynchronous event
emission out〈τ〉;B first spawns into the network a set of envelopes containing
the event, one for each component name declared in the flow having topic τ, and
then activates B. The behavior ε;B represent an internal action performed by the
component (at the end of its execution, the component activate the continuation
behavior B). Finally, the inactive behavior 0 and the parallel composition B | B
have the standard meanings. We assume that (B, | ,0) is a commutative monoid,
allowing to rearrange the parallel composition. We omit the trailing occurrences
of 0.

Networks (N) describe the distribution of components and carry signals ex-
changed among them. Networks are defined in Table 3.1d. A component is
defined as a [B]RF . A signal envelope 〈s〉@a describes a message containing the
signal having the topic τ whose target component is the component named a. The
empty network /0 and the parallel composition have the standard meanings. In the
following we will use ∏bi∈~b 〈τ〉@bi, with~b a finite set of component names, to
represent the parallel composition of messages having topic τ. Hereafter, we
assume that components are uniquely identified by their names.

Definition 2 A SC network is well formed if the names of the components it
declares are all different.

3.1.1 Reduction Semantics
SC operational semantics is defined in the reduction style and states how com-
ponents, at each step, communicate and update their interface. The reduction
relation over SC networks (→) is defined by the rules in Table 3.3. We also intro-
duce a projection function F ↓τ that returns the set of component names linked
by the flow F through the topic τ. The projection is defined in Table 3.2.
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0 ↓τ= /0 τ ~a ↓τ=~a τ
′ ~a ↓τ= /0 F |F ′ ↓τ= F ↓τ ∪F ′ ↓τ

Table 3.2: SC flow projection function

Rule (SKIP) describes the execution of an internal action, namely an action
that has no side effect on the system. Rule (RUPD) extends the component reac-
tions with a further unit reaction (the parameter of the primitive). Rule (FUPD)
extends the component flows with a unit flow. Rule (OUT) first takes the set of
component names~a that are linked to the component for the conversation topic τ

and then spawns into theEach client can raise its offer or ignore the demand. net-
work an envelope for each component name in the set. This rule implements the
multicast feature of SC. Rule (IN) allows a signal envelope to react with the com-
ponent whose name is specified inside the envelope. Notice that signal emission
rule (OUT) and signal receiving rule (IN) do not consume, respectively, the flow
and the reaction of the component. Namely, flows and reactions are persistent. In
Section 3.1.2 we describe how exploit these features to implement a simple form
of recursion using SC. Finally, rules (STRUCT) and (PAR) are standard. In the
following, we use N→∗ N1 to represent a network N that is reduced to N1 after a
finite number of steps.

3.1.2 Examples
We now present some examples to better explain the SC programming model.
These examples focus on the management of the control flow of composition of
components. For this reason, we will model behaviors that does not affect the
coordination via the internal action ε.

Multicast notifications

The following example highlights how the multicast notification of SC simpli-
fies the design of component coordination. Let us consider a component s that
requires a set of resources to provide a certain functionality. This component
is exploited by several clients ci, with i = 1, ..,n, to achieve a common goal.
Namely, all clients collaborate to permit the activation of the service supplied by
s, providing the required resources. The process is summarized as follows:

1. the bid phase starts, the service notifies to all clients its requirement of
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(SKIP)
a [ε;B1 | B2]

R
F → a [B1 | B2]

R
F

(RUPD)
a [rupd(R1);B1 | B2]

R
F → a [B1 | B2]

R|R1
F

(FUPD)
a [fupd(F1);B1 | B2]

R
F → a [B1 | B2]

R
F |F1

F ↓τ=~b
(OUT )

a [out〈τ〉;B1 | B2]
R
F → a [B1 | B2]

R
F ‖ ∏

bi∈~b
〈τ〉@bi

(IN)
〈τ〉@a ‖ a [B1]

R|τmB2
F → a [B1 | B2]

R|τmB2
F

N→ N1
(PAR)

N ‖ N2→ N1 ‖ N2

N ≡ N1→ N2 ≡ N3
(ST RUCT )

N→ N3

Table 3.3: SC reduction rules

resources,

2. each client can raise its offer of resources or ignore the service demand,

3. if no client responds to the service demand, the bid fails and the function-
ality is not provided,

4. if the service receives a sufficient amount of resources the bid phase termi-
nates, otherwise it restarts,

5. if the bid phase successes, the service activates its functionality.

The network N in Figure 3.1 illustrates the instance of this scenario where
three clients are involved. We use the topics τo to represent the bid of a new
resource from a client. The occurrence of an event τr represents that the re-
sources acquired by the service has changed, but the required amount has not
been reached. We do not model quantitative aspects related to the requirements
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N = s [out〈τr〉]
τomout〈τr〉 | τomB
τr {c1,c2,c3} ‖C(1) ‖C(2) ‖C(3)

where C(i) = ci [0]τrmout〈τo〉 | τrm0
τo {s}

Figure 3.1: SC components that collaborate to supply a resource set

of the service and the availabilities of the clients. We also abstract from the func-
tionality supplied, which is simply modeled as a behavior B. Initially, the service
issues an event to notify its demand of resources. The component s uses the pro-
jection function to discover the three resource providers and then spawns into the
network the three corresponding envelopes:

(τr {c1,c2,c3}) ↓τr= {c1,c2,c2}

s [out〈τr〉]
τomout〈τr〉 | τomB
τr {c1,c2,c3} → s [0]τomout〈τr〉 | τomB

τr {c1,c2,c3} ‖ 〈τr〉@c1 ‖ 〈τr〉@c2 ‖ 〈τr〉@c3

Upon the reception of a resource request, a client non-deterministically activates
one of its two reactions. The execution of τr m0 models that the client don’t want
offer resources, so it simply consume the received envelope. The execution of
τr m out〈τo〉 represents that the client is able to offer a resource. Anyhow, the
client reactions are not consumed and persist on its interface:

ci [0]τrmout〈τo〉 | τrm0
τo {s} ‖ 〈τr〉@ci→ ci [out〈τo〉]

τrmout〈τo〉 | τrm0
τo {s}

Client raise events tauo to notify their agreement to provide a resource. Since
each client is connected only to the component s, the envelope spawned is only
one:

(τo {s}) ↓τr= {s}

ci [out〈τo〉]
τrmout〈τo〉 | τrm0
τo {s} → ci [0]τrmout〈τo〉 | τrm0

τo {s} ‖ 〈τo〉@s

Upon the reception of a resource bid, the service non-deterministically activates
one of its two reactions. The execution of τo mB models that the required amount
of resources has been reached, then the functionality B can be provided:

s [0]τomout〈τr〉 | τomB
τr {c1,c2,c3} ‖ 〈τo〉@s→ s [B]τomout〈τr〉 | τomB

τr {c1,c2,c3}

The execution of τo m out〈τr〉 represents that the service still need more re-
sources. It forwards a new request to the clients, restarting the bid phase. Now,
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Nseq , e [Be]
f mout〈 f 〉
f a ‖ a [Ba]

f mε;out〈 f 〉
f b ‖ b [Bb]

f mε;out〈 f 〉
Fb

Figure 3.2: SC implementation of the BPMN design 2.2b

assume that the involved clients are four. The model of the service s must be
substituted with

s [out〈τr〉]
τomout〈τr〉 | τomB
τr {c1,c2,c3,c4}

Notice that only the flows of the component has been changed, connecting the
service to the new component c4. In fact, the SC multicast notification of events
and the component flows permits hide communication complexity and permit to
program the behavior of the service independently from the number of involved
clients.

Sequential composition

We now provide an implementation of the BPMN business process 2.2b. We
map each BPMN task to a distinguished SC component. Notice that this is an
arbitrary choice and that is not prescribed by the BPMN model, since BPMN
does not regard the distribution of task over the network. Moreover, we must
directly implement the communications and synchronization required to guaran-
tee the dependencies of BPMN flow. Clearly, the SC programming model is less
abstract than the BPMN one. We now provide a naive implementation of the
business process. The mapping from BPMN designs (formally saga processes)
to SC models will be given in Section 4.3.

We implement each BPMN task A of the business process via an SC com-
ponent aA. Without loss of generality, we assume that task names are all differ-
ent. This will also ensure that the corresponding network is well formed. The
forward-flow is propagated through forward events, which are signals having
topic f . When a component that implements a BPMN task receives a forward
signal, it assumes that all previous stages have been completed. Hence, the com-
ponent starts its internal computation and, upon termination, raises a forward
event to inform other components. We also adopt a special component e to imple-
ment the entry point of the business process. The SC network Nseq in Figure 3.2
represents the business process depicted in Figure 2.2b.

The SC component e simply implements the entry point of the business pro-
cess. It waits for the request of activation via a notification of a forward event.
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The component simply delivers the notification to the components in the business
process that have no dependencies. Hence, the flow is f  a.

The SC components a and b implement the BPMN tasks A and B, respec-
tively. The behavior of these components is straightforward. These components
wait for the termination of all their dependencies ( f m . . .), perform an internal
action (ε), representing the execution of the corresponding task, and finally no-
tify their termination (out〈 f 〉). We remark that we focus on the managing of the
control flow and that we do not deal with the action performed by the BPMN
tasks. Hence, we assume that the a BPMN task does not have any side effect and
we model it as an internal action. Notice that the component a and b change only
for their flows. This allow us to highlight how component can be exploited as
building block that are composed into complex coordination using their peer to
peer flow structure.

Finally, the active behaviors Be, Ba and Bb represent active threads executed
inside the component,

In order to have a snapshot of the execution, we send a request to the entry
point e of the business process. Namely, we spawn into the network an envelope
〈 f 〉@e. The entry point can consume the pending envelope, activating the proper
behavior:

(IN)
〈 f 〉@e ‖ e [Be]

f mout〈 f 〉
f a → e [Be | out〈 f 〉]

f mout〈 f 〉
f a

Now, the entry point raises an forward event (out〈 f 〉) to notify the request to
the next task in the forward-flow. The component examines its flows (( f  
{a}) ↓ f ) to discover its subscribers ({a}) and then spawn into the network the
corresponding envelopes:

( f  {a}) ↓ f = {a}
(OUT )

e [Be | out〈 f 〉]
f mout〈 f 〉
f a → e [Be]

f mout〈 f 〉
f a ‖ 〈 f 〉@a

The component a can consume the envelope. Notice that this kind of notification
characterizes that all previous stages of the business process have completed their
executions. Since the component a has no predecessor, the envelope signals that
the work-flow started:

(IN)
〈 f 〉@a ‖ a [Ba]

f mε;out〈 f 〉
f b → a [Ba | ε;out〈 f 〉] f mε;out〈 f 〉

f b

The internal action (ε) performed by the component a represents the execution of
the BPMN task A. Notice that the execution of an internal action preserves the
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overall structure of the network:

(SKIP)
a [Ba | ε;out〈 f 〉] f mε;out〈 f 〉

f b → a [Ba | out〈 f 〉]
f mε;out〈 f 〉
f b

After the termination of the task A the component raises a forward event, to in-
form the other components involved in the business process about its successful
termination. As usual, the event notification exploits the component flow to dis-
cover the actual subscribers:

( f  {b}) ↓ f = {b}
(OUT )

a [Ba | out〈 f 〉]
f mε;out〈 f 〉
f b → a [Ba]

f mε;out〈 f 〉
f b ‖ 〈 f 〉@b

The component b can consume the pending notification,
which ensures that all previous stages of the work-flow (A) have completed

their execution:

(IN)
〈 f 〉@b ‖ b [Bb]

f mε;out〈 f 〉
Fb

→ b [Bb | ε;out〈 f 〉] f mε;out〈 f 〉
Fb

Finally, the component b executes the internal action corresponding to the BPMN
task B. Notice that the component raises an event to notify its termination. This
notification will be delivered according to the flow of the component (Fb).

Consumer and Producer

Let us assume that a producer p and a consumer c have access to a shared data
space. The consumer c can get resource only after the producer p has produced it.
This design pattern can be suitably applied in a wide range of systems, including
SOA multi-threaded applications, Grid and Cloud computing.

The problem can be specified as displayed in Figure 3.3a. The component
p starts its execution performing the (internal) behavior that modifies the state
of the data space that has to be read by c. When the data have been modified,
the producer p raises an event (out〈produced〉) in order to inform c that the
required resources are now available. Upon the notification of the event, the
consumer c automatically starts its execution and takes the resource in the data
space performing its internal behavior. After its termination, the consumer raises
a response event (out〈consumed〉) in order to inform p that it can produce a
new resource. As usual, we omit to model the internal actions performed by the
components to produce and consume the data. These operations does not affect
the coordination and then can be modeled as internal actions ε.
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Np , p [ε;out〈produced〉]consumedmε;out〈produced〉
produced c

Nc , c [0]producedmε;out〈consumed〉
consumed p

Net , Np ‖ Nc

(a) Statically linked components

N′p , p

 fupd(produced c) ;
rupd(consumed m ε;out〈produced〉) ;
ε;out〈produced〉

0

0
N′c , c [fupd(consumed p) ;rupd(produced m ε;out〈consumed〉)]00

Net ′ , N′p ‖ N′c
(b) Components connecting at the start up phase

Figure 3.3: Producer and consumer in SC

We provide an outline of the execution of the example given in Figure 3.3a.
As a shorthand, we write τp for the topic produced and τc for consumed. Initially,
only the component p contains an active behavior. It emits the event τp, spawning
into the network an envelope for the consumer c:

(τp c) ↓τp= {c}

p [ε;out〈τp〉]τcmε;out〈τp〉
τp c →∗ p [0]τcmε;out〈τp〉

τp c ‖ 〈τ〉@c

The envelope can be handled by the consumer, activating the behavior of the
corresponding reaction:

〈τ〉@c ‖ c [0]τpmε;out〈τc〉
τc p → c [ε;out〈τc〉]

τpmε;out〈τc〉
τc p

In a similarly way, the consumer c sends an envelope to the producer p, thus
activating the proper internal behavior:

p [0]τcmε;out〈τp〉
τp c ‖ c [ε;out〈τc〉]

τpmε;out〈τc〉
τc p →∗ p [ε;out〈τp〉]τcmε;out〈τp〉

τp c ‖ c [0]τpmε;out〈τc〉
τc p

The producer-consumer example given above exploits a static linkage. How-
ever, dynamic configuration can be easily handled with our framework. For ex-
ample, the consumer and the producer can be dynamically linked together (e.g.
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a [out〈τ+〉]τ+mB1|τ+mB2
τ+ a

(a) Non-deterministic choice

a [out〈τ!〉]τ!mout〈τ!〉 | B
τ! a

(b) Unbound replication of B

Figure 3.4: SC encoding of primitives

at the start up phase) using the reaction update and flow update primitives (Fig-
ure 3.3b). Now, both components have an active internal behavior. The producer
can update its flows by adding the link to the consumer for signals of topic τp, as
follows:

p

 fupd(τp c) ;
rupd(τc m ε;out〈τp〉) ;
ε;out〈τp〉

0

0

→ p
[
rupd(τc m ε;out〈τp〉) ;
ε;out〈τp〉

]0

τp c

Then we apply the reduction rule for the reaction update of the producer:

p [rupd(τc m ε;out〈τp〉) ;ε;out〈τp〉]0τp c→ p [ε;out〈τp〉]τcmε;out〈τp〉
τp c

After these reductions the producer component has created a link to the consumer
for signals of topic τp and can receive signals of topic τc. In a similar way, the
consumer updates its reactions and flows.

Non-deterministic choice

The SC calculus is not directly equipped with an operator to handle non-deterministic
choice. However, it can be model as reported in Figure 3.4a. Assume that the
topic τ+ is only known by the component a, which notifies the topic to itself:

a [out〈τ+〉]τ+mB1|τ+mB2
τ+ a → a [0]τ+mB1|τ+mB2

τ+ a ‖ 〈τ+〉@a

Now, both reactions are able to consume the spawned envelope 〈τ+〉@a. Op-
erationally, this results in a non-deterministic choice; only one of them will be
activated.

Replication

SC does not provide a primitive to handle unbound replication of a behavior
(e.g. the π-calculus !G construct). This feature can be encoded exploiting the
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persistence of reactions (the reduction rule (IN) does not consume the reaction
that is involved in the communication). For instance, the component depicted in
Figure 3.4b replicates the behavior B. We have the following reductions:

a [out〈τ!〉]τ!mout〈τ!〉 | B
τ! a → a [0]τ!mout〈τ!〉 | B

τ! a ‖ 〈τ!〉@a →

a [out〈τ!〉 | B]τ!mout〈τ!〉 | B
τ! a → a [B]τ!mout〈τ!〉 | B

τ! a ‖ 〈τ!〉@a →

a [out〈τ!〉 | B | B]τ!mout〈τ!〉 | B
τ! a → a [B | B]τ!mout〈τ!〉 | B

τ! a ‖ 〈τ!〉@a →∗

3.2 Managing Sessions
The SC calculus allows modeling a wide range of coordination policies for service-
oriented applications. However, high-level abstractions for programming such
policies are still required. In particular, information associated to signals is not
structured and topics cannot be created dynamically. Furthermore, the notion of
session is missing: components cannot keep track of concurrent event notifica-
tions. We now introduce a first extension of the basic SC calculus to manage
sessions. Sessions are a sort of “virtual communication links” among publishers
and subscribers. In our approach, a session identifies the scope within an event
is significant: partners that are not in this scope cannot react to events of the ses-
sion. Furthermore, our session handling mechanism can deal with multi-party
sessions in a natural way.

First, we extend the notion of events. Events become pairs including a topic
and a session. We extend the syntax of behaviors modifying the signal emission
primitive and adding the capability to generate new topics (see Table 3.4a) The
signal emission out〈τ©τ′〉 raises an event. Now the event is characterized by
the topic τ and the session identifier τ′. Notice that both topics and sessions
are names and are freely interchangeable. Moreover, topics and sessions can be
dynamically created using the generation primitive (ντ)B.

The reactive parts of the component interface (reactions) are extended to han-
dle this new notion of events (see Table 3.4b) A lambda reaction τ λ τ′m B han-
dles all signals with topic τ, regardless of their session. In the behavior B, τ′ is
bound by the lambda reaction. A check reaction τ©τ′mB can handle only signals
having the topic τ issued for the session τ′ and does not declare bound names.
For simplicity, the syntax of flows has not modified (Table 3.4c), components
declares their connections filtering on the topics of events. This implies that the
topology of connections cannot be specialized for a specific session. Neverthe-
less, extending the calculus with flows specialized on sessions is straightforward.

Table 3.4d describes the syntax of networks. The envelope 〈τ©τ′〉@a now
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B ::= 0 | ε;B | B | B | rupd(R) ;B | fupd(F)B;B |
out〈τ©τ′〉;B | (ντ)B

(a) Behaviors

R ::= 0 | R|R | τ λ τ′m B | τ©τ′m B
(b) Reactions

F ::= 0 | τ ~a | F |F
(c) Flows

N ::= /0 | a [B]RF | N ‖ N | 〈τ©τ′〉@a | (νn)N
where n ∈ A ∪T

(d) Networks

Table 3.4: SC syntax to handle sessions

f n((ντ)B) = f n(B)\{τ} bn((ντ)B) = bn(B)∪{τ}
f n(τ λ τ′m B) = f n(B)\{τ′}∪{τ} bn(τ λ τ′m B) = bn(B)∪{τ′}
f n((νn)N) = f n(N)\{n} bn((νn)N) = bn(N)∪{n}

Table 3.5: SC free and bound names

carries both the topic τ and the session τ′. We also introduce a primitive to gen-
erate names over a network. Indeed, the restriction (νn)N provides a scoping
mechanism for names of components, of sessions and of topics. Notice that,
since component names cannot be communicated, the restriction of a component
allows to hide behavior of part of a network.

Free ( f n) and bound (bn) names are defined in the standard way. We require
that for each term the intersection between free and bound names is empty. The
rules for terms containing binders are given in Table 3.5.

The structural congruence over reactions, flows, behaviors and networks is
the smallest congruence relation that satisfies the laws given in Table 3.6. Notice
that the first statements guarantee that (R, |,0), (F, |,0), (B, | ,0) and (N,‖, /0) are
commutative monoids.

3.2.1 Reduction Semantics
The reduction relation→ is depicted in Table 3.7. The intuitive interpretation of
the reduction rules is straightforward. Rules CHECK and LAMBDA describe the
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0|R≡ R R1|R2 ≡ R2|R1 R1|(R2|R3)≡ (R1|R2)|R3

0|F ≡ F F1|F2 ≡ F2|F1 F1|(F2|F3)≡ (F1|F2)|F3

0 | B≡ B B1 | B2 ≡ B2 | B1 B1 | (B2 | B3)≡ (B1 | B2) | B3

/0 ‖ N ≡ N N1 ‖ N2 ≡ N2 ‖ N1 N1 ‖ (N2 ‖ N3)≡ (N1 ‖ N2) ‖ N3

τ ~a|τ ~b≡ τ ~a∪~b
(ντ)0≡ 0 (ντ)(ντ′)B≡ (ντ′)(ντ)B ((ντ)B) | B′ ≡ (ντ)(B | B′) if τ /∈ f n(B′)

(νn) /0≡ /0 (νn)(νn′)N ≡ (νn′)(νn)N ((νn)N) ‖ N′ ≡ (νn)(N | N′) if n /∈ f n(N′)

(ντ)a [B]RF ≡ a [(ντ)B]RF if τ /∈ {a}∪ f n(F)∪ f n(R)

Table 3.6: SC structural congruence laws

activation of check reactions, that require the exact match of the session identifier,
and of lambda reactions, receiving the session identifier as argument. Notice that
the reduction relation permits to consume check reactions and to maintain lambda
reactions installed. Informally, a lambda reaction can be used by a service to
publish a public interface that establishes a session with the consumer. Instead,
a check reaction permits a service to handle only signals that belong to a given
session. For example, if the session is used to identify an instance of a work-flow,
this mechanism allows the service to specialize its behavior for each instance and
to track the progress of the control flow.

3.2.2 Examples

Private events

We have already pointed out in Sections 3.1.2 and 3.1.2 how the non-deterministic
choice and replication can be naively encoded in SC. Figure 3.5 illustrates a more
general approach.

A component named a can exploit the +a primitive to represent a non-deterministic
choice. The restriction over the name τ+ ensures that the topic used by the en-
coding is fresh, meaning that no other component can initially know this name.
The constraint τ+ 6∈ f n(B1)∪ f n(B2) guarantees that the encoding will never be
used or communicated later.
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(SKIP)
a [ε;B1 | B2]

R
F → a [B1 | B2]

R
F

(RUPD)
a [rupd(R1);B1 | B2]

R
F → a [B1 | B2]

R|R1
F

(FUPD)
a [fupd(F1);B1 | B2]

R
F → a [B1 | B2]

R
F |F1

F ↓τ=~b
(OUT )

a
[
out〈τ©τ

′〉;B1 | B2
]R

F → a [B1 | B2]
R
F ‖ ∏

bi∈~b
〈τ©τ

′〉@bi

N→ N1
(PAR)

N ‖ N2→ N1 ‖ N2

N ≡ N1→ N2 ≡ N3
(ST RUCT )

N→ N3

(CHECK)
〈τ©τ

′〉@a ‖ a [B1]
R|τ©τ′mB2
F → a [B1 |B2]

R
F

(LAMBDA)
〈τ©τ

′〉@a ‖ a [B1]
R|τ©τ′′mB2
F → a

[
B1 | {τ′/τ

′′}B2
]R|τ©τ′′mB2

F

N→ N′
(NEW )

(νn)N→ (νn)N′

Table 3.7: SC semantic rules
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B1 +a B2 , (ντ+)

 rupd(τ+©τ+ m B1|τ+©τ+ m B2) ;
fupd(τ+ a) ;
out〈τ+©τ+〉


!aB, (ντ!,τ)

 rupd(τ! λ τ mout〈τ!©τ〉 |B) ;
fupd(τ! a) ;
out〈τ!©τ〉


where τ+ 6∈ f n(B1)∪ f n(B2) and τ!,τ 6∈ f n(B).

Figure 3.5: SC encoding of the primitives +a and !a

We now discuss the behavior of this encoding. Let us consider the following
network:

a
[
(B1 +a B2) | B′

]R
F

Since the name τ+ is fresh, it can be extruded outside the component through
α−renaming. Then, the component is rewritten as follows:

(ντ+)a

 rupd(τ+©τ+ m B1|τ+©τ+ m B2) ;
fupd(τ+ a) ;
out〈τ+©τ+〉

 | B′
R

F

The reaction and flow update the component interface as follow:

(ντ+)a
[(

out〈τ+©τ+〉
)
| B′
]R|τ+©τ+mB1|τ+©τ+mB2

F |τ+ a

The component raises an event of kind τ+. The spawned envelope depends by the
flow of the component for the corresponding topic. Since the topic is restricted,
the starting flow F cannot contain the name τ+, then (F |τ+ a) ↓τ+= {a}:

(ντ+)a
[
B′
]R|τ+©τ+mB1|τ+©τ+mB2

F |τ+ a ‖ 〈τ+©τ+〉@a

Both reactions can consume the envelope. One of them will be activated non-
deterministically, executing the behavior B1 or B2:

(ντ+)a
[
B′ | B1

]R|τ+©τ+mB2
F |τ+ a

The other reaction is not activated and consumed. However, it will not be acti-
vated later, since the condition τ+ 6∈ f n(B1)∪ f n(B2) ensures that the topic τ+
will not be used anymore.

54



Similarly, the primitive !aB can be used by a component a to implement the
unbound replication of the behavior B. The two generated names τ! and τ are used
to represent the request of execution and a dummy session for the replication. The
two names can be extruded outside the component:

a
[
!aB | B′

]R
F ≡ (ντ!,τ)a

 rupd(τ! λ τ mout〈τ!©τ〉 |B) ;
fupd(τ! a) ;
out〈τ!©τ〉

 | B′
R

F

The interface of the component is updated according with the flow and reaction
update constructs:

(ντ!,τ)a
[
out〈τ!©τ〉 |B′

]R|τ! λ τmout〈τ!©τ〉 |B
F |τ! a

The component notifies itself the private event τ!©τ, representing the request of
execution and the session of the recursion:

(ντ!,τ)a
[
B′
]R|τ! λ τmout〈τ!©τ〉 |B

F |τ! a ‖ 〈τi©τ〉@a

The component activates the recursion handler, executing the behavior B and a
new notification to continue the unbound replication. Since the recursion handler
is a lambda reaction, it is not consumed and is able to react to the further requests.

(ντ!,τ)a
[
B′ | out〈τ!©τ〉 |B

]R|τ! λ τmout〈τ!©τ〉 |B
F |τ! a

Notice that both +a and !a require to know the component name (a). This
name is used by the encoding in the flow update primitive. However, extending
the language with a meta-component name self is immediate.

Joining events

Since SC components are autonomous entities communicating through asyn-
chronous primitives, it could be useful to introduce a lightweight synchronization
mechanism. We now present an SC process that can be used to encode a form of
join synchronization among concurrent tasks. It allows us to express that a task
can be executed whenever other concurrent tasks have been completed. Fig-
ure 3.7 depicts an emitter e, two intermediate components c1 and c2, and the join
service j. The emitter e starts the communications raising two events of different
topics towards c1 and c2. Components c1 and c2 perform their internal compu-
tations and then notify their termination by issuing an event to the join service.
The component j waits for both the intermediate services have completed their
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Figure 3.6: Graphical representation

Ne , e [(ντ)out〈τ1©τ〉;out〈τ2©τ〉]0
τ1 c1|τ2 c2

Nci , ci [0]τi λ τmε;out〈τi©τ〉
τi j i = 1,2

N j , j [0]τ1 λ τmrupd(τ2©τmB)
0

N join , Ne ‖ Nc1 ‖ Nc2 ‖ N j

Figure 3.7: SC model

tasks and then executes its internal behavior B. The signals sent to c1 and c2 are
both related to the same session τ that is used later by j to apply the synchro-
nization on the same work-flow. Clearly, the two intermediate services c1 and
c2 can concurrently perform their tasks, while the execution of the service j can
be triggered only after the completion of their execution. This example can be
modeled by the SC network N join depicted in Figure 3.7.

As usual we focus on the management of the control flow. For this reason we
do not deal on the behavior currently executed inside the components. Moreover,
we assume that the action performed by the two intermediate services c1 and c2
have not side effects, allowing us to represent them as internal actions ε.

The join component has only one active reaction installed for signals hav-
ing topic τ1. The reception of the τ1 envelope triggers the activation of the join
lambda reaction. This reads the session of the signal τ1 and creates a new special-
ized reaction for the signal topic τ2. This reaction can be triggered only by signals
that refer to the session received by the τ1 signal. When such kind of signal is
received, the proper behavior B is executed. This synchronization mechanism
exploits the asynchronous nature of SC event notification. If c2 is faster than c1
to notify its termination, the spawned envelope containing the τ2 event remains
pendent over the network. It will be handled as soon as the component j installs
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Npar = (νd)
(

Ni ‖ Nd ‖
Task(a, f  {d}) ‖ Task(b, f  {d}) ‖ Task(c,0)

)
where Ni = i [0] f λ τmout〈 f ©τ〉 | out〈n©τ〉

f {a,b}|n {d}

and Nd = d [0]n λ τmrupd( f ©τmrupd( f ©τmout〈 f ©τ〉))
f {c}

and Task(i,F) = i [0] f λ τmε;out〈 f ©τ〉
F

Figure 3.8: SC models of the BPMN design2.2c

the specialized reaction for the topic τ2. Notice that the reactive part of the join
component is not symmetric. However, the order used by the component j to
handle notifications of c1 and c2 is not relevant. Modifying the reactions of j to
τ2 λ τ mrupd(τ1©τ m B) does not affect the synchronization mechanism.

BPMN Parallel composition

Figure 3.8 presents the SC network Npar, which models the BPMN business pro-
cess depicted in Figure 2.2c. The example uses the SC session handling mech-
anism to distinguish concurrent executions of the process. We assume that any
execution of the business process is identified by an unique session. Namely,
all event raises during the forward-flow will be annotated with the correspond-
ing topic. The notification to a component of an forward event (having topic
f ) represents that all previous stages of the forward-flow have completed their
execution.

We implement each BPMN task A with an SC component named a defined
as Task(a,F), where F are its flows. The Task component has a lambda reaction
to handle forward signals. When the reaction is activated, the component binds
the session, performs its internal action and then raises a new event of topic f to
inform all dependent tasks about its termination. Since the reaction is a lambda,
it is not consumed when it is activated by a signal, thus permitting a component
to satisfy concurrent demands of the business process. Notice that Task com-
ponents are implemented independently from the BPMN design, meaning that
their reactions and behavior are always the same. These components represent
the main building blocks of the system. The only difference among these com-
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ponents is represented by their flows. They describe the component view of the
coordination.

This example highlights how coordination are implemented using SC

1. the logic of a component is implemented via reaction and behavior primi-
tives,

2. the component view of the coordination is obtained by connecting the its
flows.

The BPMN tasks A, B and C are implemented via the components a, b and c.
To guarantee that the dependencies among tasks satisfy the BPMN design, we ex-
ploit the flows of the building blocks and two “special” components named i and
d. The former represents the entry point of the business process, while the latter
is in charge of synchronizing the executions of the components a and b, before
activating the component c. Intuitively, the components i and d have the same
roles of the components e and j of the example discussed in Section 3.2.2. How-
ever, they employ a slightly different synchronization mechanism. In the join
example, the component j synchronizes two notifications having different topics
(τ1 and τ2). Instead, the component d has to synchronize notifications having
always the same topic ( f ). For this reason, the component d cannot comply its
role by installing a check reaction for signal having topic f after the reception, by
a lambda reaction, of a first signal with the same topic. In fact, it is not ensured
that the further notification will trigger the check reaction, since the lambda reac-
tion is persistent. Both f signals must be consumed by check reactions, that are
installed after a notification of the work-flow session by the component i.

Notice that the name of the component d is restricted. This represents that it
is not visible from components living outside the work-flow implementation. In
fact, the role of the component is to synchronize the internal notifications raised
by the components a and b.

In order to have a snapshot of the execution, we send a request to the entry
point i of the business process. We spawn into the network an envelope 〈 f ©s〉@i,
where s represent the session of this execution:

〈 f ©s〉@i ‖ Npar
↓

The entry point consumes the envelope, binds the received session and activates
the corresponding behavior. The reaction is not consumed, thus permitting to the
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entry point to serve other concurrent requests:

↓

(νd)

(
i [out〈 f ©s〉 |out〈n©s〉] f λ τmout〈 f ©τ〉 | out〈 f ©τ〉

f {a,b}|n {d} ‖
Nd ‖ Task(a, f  {d}) ‖ Task(b, f  {d}) ‖ Task(c,0)

)
↓∗

The entry point notifies the events f and n. The former forwards the request to
the implementations of the tasks A and B, while the latter delivers the session to
the join component. Since i has two components connected by the flow f , the
envelopes spawned by the emission of event f are two:

↓

(νd)
(

Ni ‖ Nd ‖ Task(a, f  {d}) ‖ Task(b, f  {d}) ‖ Task(c,0)
〈 f ©s〉@a ‖ 〈 f ©s〉@b ‖ 〈n©s〉@d

)
↓∗

The components a, b and d can consume concurrently their envelopes, activating
the behaviors of their lambda reactions:

↓

(νd)


Ni ‖
d [rupd( f ©s mrupd( f ©s mout〈 f ©s〉))]n λ τmrupd( f ©τmrupd( f ©τmout〈 f ©τ〉))

f {c} ‖
a [ε;out〈 f ©s〉] f λ τmε;out〈 f ©τ〉

f {d} ‖
b [ε;out〈 f ©s〉] f λ τmε;out〈 f ©τ〉

f {d} ‖
Task(c,0)


↓∗

The component d installs a check reaction to implement the synchronization of
tasks A and B. This reaction can be activated only by events raised exactly for this
instance of the business process, in other words having session s. Concurrently,
both component a and b can perform their internal behavior, which represents the
execution of the corresponding BPMN task.

↓

(νd)


I ‖
d [0]n λ τmrupd( f ©τmrupd( f ©τmout〈 f ©τ〉))| f ©smrupd( f ©smout〈 f ©s〉)

f {c} ‖
a [out〈 f ©s〉] f λ τmε;out〈 f ©τ〉

f {d} ‖
b [out〈 f ©s〉] f λ τmε;out〈 f ©τ〉

f {d} ‖
Task(c,0)


↓∗
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The components a and b inform the dispatcher about their termination, rising an
event with topic f . The two spawned envelopes are identical, so the component
d cannot distinguish who raised the signal it consumes:

↓

(νd)


Ni ‖
d [0]n λ τmrupd( f ©τmrupd( f ©τmout〈 f ©τ〉))| f ©smrupd( f ©smout〈 f ©s〉)

f {c} ‖
‖ Task(a, f  {d}) ‖ Task(b, f  {d}) ‖ Task(c,0) ‖
〈 f ©s〉@d ‖ 〈 f ©s〉@d


↓∗

The component d activate the check reaction consuming non-deterministically
one of the two envelopes. The behavior installs a new check reaction for the
same kind of events, to implement the synchronization of the two branches of the
forward-flow.

↓

(νd)


Ni ‖
d [0]n λ τmrupd( f ©τmrupd( f ©τmout〈 f ©τ〉))| f ©smout〈 f ©s〉

f {c} ‖
‖ Task(a, f  {d}) ‖ Task(b, f  {d}) ‖ Task(c,0) ‖
〈 f ©s〉@d


↓∗

Notice that, at run-time, the component d can have several check reactions in-
stalled. Each of them represents a pending synchronization of the forward-flow
for different instances of the business process. Now, d can terminate its synchro-
nization, consuming the pending envelope and notifying c that all previous stages
have terminated their execution:

↓

(νd)
(

Ni ‖ Nd ‖ Task(a, f  {d}) ‖ Task(b, f  {d}) ‖ Task(c,0) ‖
〈 f ©s〉@c

)
Finally, the component c consumes its envelope and performs the BPMN corre-
sponding task C.

3.3 Dynamic types: xSC
The SC dialects illustrated in the previous sections can be classified as a topic-
based event-notification [62]. In topic-based systems, events are categorized into
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topics which subscribers register to. When an event belonging to a topic τ is
emitted, all the components subscribed for τ will eventually react to the event.
Notice that publishers and subscribers have to know the topics at hand.

In the event notification paradigm, component decoupling can be enforced by
allowing subscribers to register for events satisfying a given properties. When an
event is emitted, it is dispatched to all the subscribers whose property holds on
that event. In literature, this approach is called type-based event-notification [62]
where topics are replaced by types (in a suitable type language). Usually, typed
events are used to let programmers to specify properties through the public inter-
face of events described by their type.

This section recasts SC into a type-based framework, called the eXtended
Signal Calculus (xSC). The xSC is a “typed version” of SC where events are emit-
ted with types that coordinate publishers/subscribers interactions. For instance,
an xSC publisher can emit an event with type τ× τ′ that should be received by
subscribers that can react to events of type τ and τ′. xSC types have a twofold
role. First, typing allows subscribers to filter their events of interest (as usual
in type-based event-notification). Second, publishers exploit type information to
specify which (kind of) subscribers should react to events. For instance, in the
previous example, a subscriber that is able to react only to events of type τ will
not be capable of reacting to an event τ× τ′. The way types are used is indeed
the main original contribution of xSC with respect to standard type-based EN
systems.

In this section we develop this idea by introducing some operators on topics
that induce an algebraic structure on events. We then show how the algebraic
structure on events can be used to have a finer control over the coordination ac-
tivities of components.

The syntax of signal topics t is defined in Table 3.8a. The constant topics •
and ? are used to define the empty and the global event kinds, respectively. Intu-
itively, a signal having an empty topic can be consumed by a reaction having an
empty behavior. A signal having a global topic can be handled by any component,
activating any reaction. Signal topics can be composed using the constructors ×
and +. A signal having topic t× t ′ can be consumed only by components that
can handle both event kinds t and t ′. Moreover a signal having topic t + t ′ can be
consumed by any component that can handle event kinds t or t ′. The constructors
+ and × can be informally interpreted as logical disjunction and conjunction.

The formal definition of the meaning of structured topics is given algebraically
by introducing a structural congruence over them (see Table 3.8b). Notice that
the × and + are associative, commutative and idempotent. Also, × distributes
over +, moreover, ? and • are their respective neutral elements. For instance,
t × ? ≡ t and t + • ≡ t states that a signal of topic t × ? or t + • activates the
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t ::= • | ? | τ | t× t | t + t
(a) SC syntax of topics

t ′× t ′′ ≡ t ′′× t ′

t× t ≡ t
t ′× (t ′′× t ′′′)≡ (t ′× t ′′)× t ′′′

t×?≡ t
t×• ≡ •

t ′+ t ′′ ≡ t ′′+ t ′

t + t ≡ t
t ′+(t ′′+ t ′′′)≡ (t ′+ t ′′)+ t ′′′

t +• ≡ t
t +?≡ ?

t× (t ′+ t ′′)≡ (t× t ′)+(t× t ′′)
(b) SC structural congruence over topics

t v •, ?v t, t v t, t v t× t ′, t + t ′ v t
(c) SC subtype relation over topics

Table 3.8: SC topics

same reactions activated by signals having topic t; similarly t×• ≡ • states that
a signal of topic t×• cannot activate any reaction, while t + ? ≡ ? states that a
signal of topic t +? activates any reaction. Formally, the algebraic structure over
topic takes the form of a C-Semiring [63]. This interpretation induces a natural
preorder relation over topics.

Definition 3 The binary relation v over topics is the least preorder satisfying
the axioms in Table 3.8c

Intuitively the preorder t1 v t2 formalizes the idea that the topic t1 is less
restrictive than the topic t2. For example, a signal having topic τ1 + τ2 triggers
either a reaction for τ1 or one for τ2. Hence, the coordination policy expressed
by τ1 + τ2 is less restrictive than the one expressed by τ1.

The algebraic structure over topics allows us to define policies to aggregate
events. The xSC syntax of behaviors can be extended to deal with the structure
of topics by simply refining the signal emission primitive as out〈t©τ〉, where t
represents the signal topic. We have now to specify the way a component may
react upon the reception of a signal of a certain topic. In other words, a main
question, here, is to understand which reactions a component may dynamically
activate to match the policy specified by the topics of events. We will answer this
question by introducing a suitable type system over component reactions. The
type system allows us to precisely identify the set of reactions matching a given
event topic.
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T ::= t©τ | (Session conversation type)
t©? (Generic conversation type)

(a) SC syntax of conversation types

t ≡ t ′

t©τ≡ t ′©τ

t ≡ t ′

t©?≡ t ′©?
(b) SC structural congruence over
conversation types

t v t ′
(1)

t©τv t ′©τ

t v t ′
(2)

t©τv t ′©?

t v t ′
(3)

t©?v t ′©?
(c) SC subtype relation over conversation types

Table 3.9: SC conversation types

First, we introduce the notion of Conversation Types (ranged over by T ).
Conversation Types classify signals by their topic structures (policies) and ses-
sions. The syntax is defined in Table 3.9a. A session conversation type t©τ char-
acterizes signals (of a topic t) within a session τ. A generic conversation type t©?
captures the notion of signals (of a topic t) not belonging to a specific session.
Two conversation types are equivalent if the structures of their topics and their
sessions are equivalent. Formally, equations in Table 3.8b are extended with rules
in Table 3.9b.

Conversation types can be equipped with a subtype relation which will be
used to formalize how signals are consumed by reactions. The intuition is that if
T v T ′ then reactions capable to consume signals with conversation type T ′ can
consume signals with conversation type T as well.

Definition 4 The subtype relation T v T ′ over conversation types is defined as
the smallest preorder relation that satisfies the inference rules in Table 3.9c

Rules (1) and (3) have a clear interpretation in terms of the preorder over top-
ics. Rule (2) is controvariant with respect to the session part of the conversation
type and formalizes the idea that a lambda reaction can be activated by signals
independently by their session.

A reaction type is a (possibly empty) set of conversation types and describes
the set of signals that can be consumed by a reaction. We use ` R : T to say that
the reaction R has reaction type T. The type of a reaction is inferred from the
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T ∈ P(T )
(a) SC syntax of reaction types

T1 ⊆ T

T1 v T
(b) SC subtype relation over reaction types

(1)
` 0 : /0

(2)
` τ©τ

′m B : {τ©τ
′}

(3)
` τ λ τ

′m B : {τ©?}
` R1 : T1 ` R2 : T2

(4)
` R1|R2 : T1∪T2

(c) SC typing tules for reactions

T = {τ1©r1, . . . ,τn©rn : ri ∈ Λ∪{?} for i = 1, . . . ,n}
×T = τ1× ...× τn T× = r1× ...× rn
+T = τ1 + ...+ τn T+ = r1 + ...+ rn

T = /0

×T = ? = T×
+T = •= T+

(d) Operators over reaction types

Table 3.10: SC reaction types

rules in Table 3.10c Rules (1÷ 4) are quite natural. For instance, rule (3) states
that the type of a lambda reaction τ λ τ′mB is the singleton {τ©?}. Reaction types
have a natural subtype relation given by the subset inclusion. We use T v T′ to
denote that the subtype yields.

In Table 3.10d we introduce some auxiliary operators over reaction types.
These operators simply merge the topic and session parts of a reaction type. The
following properties trivially hold.

×T = ?⇔ T = /0 T× = τ⇒ (T 6= /0 ∧ ∀ri.ri ∈ {τ,?})
T+ = •⇔ T = /0 T× = ?⇔ (T = /0 ∨ ∀ri.ri = ?)
T+ = ?⇔ (T 6= /0 ∧ ∃ri.ri = ?) T+ = τ⇔ (T 6= /0 ∧ ∀ri.ri = τ)

After having defined the preorder on topics and the subtype relation for con-
versation types, we define a formal mechanism that establishes when a reaction
is enabled to handle a signal reception. This definition is the basic tool that will
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Conversation Type t©τ Reaction Type T t v ×T T× v τ Cond. 2
τ1 + τ2©τ {τ1©τ}

√ √ √

τ1× τ2©τ {τ1©τ,τ2©?}
√ √ √

τ1× τ2©τ {τ1©τ} ×
√ √

τ1©τ {τ1©τ′}
√

×
√

τ1 + τ2©τ {τ1©τ,τ2©?}
√ √

×
τ1× τ2©τ {τ1©τ,τ2©?,τ3©?}

√ √
×

Figure 3.9: Reaction enabling examples

be exploited at run-time to activate the reaction matching an event notification.

Definition 5 Let T ≡ t©τ be a conversation type and T a non empty reaction type.
We say that reactions with type T can be activated by signals with conversation
type T , and we write T m T, if the following conditions hold:

1. t v ×T and T× v τ

2. 6 ∃T′ ⊂ T | T′ 6≡ /0 ∧ (t v ×T′ and T′× v τ)

Figure 3.9 gives examples where conditions 1 and 2 hold or not.
Condition 1 expresses that the topic of the signals is less restrictive than the

conjunction of the topics of the reactions (t v× T). Notice that, since T is not
empty then it is of the form

{τ1©r1, . . . ,τn©rn : ri ∈ Λ∪{?} f or i = 1, . . . ,n}

Also, reactions waiting for a session topic different from τ cannot be activated.
In fact, to ensure T× v τ, must hold that ∀i.ri ≡ τ ∨ ri ≡ ?. Intuitively, any
subreaction must be a lambda reaction (ri ≡ ?) or check reaction waiting for the
signal session (ri ≡ τ).

Condition 2 ensures that enabled reactions are minimal, namely, that each
subreaction (∀T′ ⊂ T) cannot be activated by signals having signal type T .

Definition 6 Given a reaction R, the set of enabled subreactions by a conversa-
tion type t©τ, written Rt©τ, is defined as:

Rt©τ = {R′.R≡ R′|R′′ ∧ ` R′ : T ∧ t©τm T}
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Conversation Type t©τ Reaction R Rt©τ

τ1 + τ2©τ R1 {R1}
τ1× τ2©τ R1 /0

τ1 + τ2©τ R1|R2 {R1,R2}
τ1× τ2©τ R1|R2 {R1|R2}

Figure 3.10: Enabled reaction set example

We illustrate the notion of the set of enabled subreactions by a conversation type
by a simple example in Table 3.10, where R1 is τ1©τ m B1 and R2 is τ2 λ τ′m B2.
Notice that in the last row of the table only one reaction (R1|R2) is enabled.
Upon the reception of a signal having conversation type τ1× τ2©τ, both subre-
actions R1 and R2 will be concurrently activated. Also, in the third row of the
table two different reactions (R1 and R2) are enabled. Upon the reception of a
signal having conversation type τ1 + τ2©τ, only one of them will be activated
non-deterministically.

Definition 7 Let R be a reaction and t©τ be a session conversation type. The set
of preferred reactions in R wrt t©τ is defined as:

Rt©τ↓ =

R1 ∈ Rt©τ. ` R1 : T1⇒∀R2 ∈ Rt©τ. ` R2 : T2⇒

 T+
1 ≡ τ

∨
T×2 v T×1

 
Basically, each reaction R1 ∈ Rt©τ↓ satisfies the one following properties:

• it consists only of check sub-reactions for the τ session (T+
1 ≡ τ)

• it consists of at least a lambda sub-reaction, but any other candidate (∀R2 ∈
Rt©τ. ` R2 : T2) is less specialized (T×2 v T×1 )

The topic structures can be adopted to model the join example described in
Section 3.2.2, refining the emitter component as

N′e , e [(ντ)out〈τ1 + τ2©τ〉]0
τ1 c1|τ2 c2

The operational semantics of xSC is given in the classical reduction style
and exploits the structural congruences defined in Section 3.2. Some auxiliary
functions on flows and reactions are introduced for simplifying the definition of
the reduction relation on networks.
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τ ~a ↓τ=~a τ ~a ↓τ′= τ a ↓•= 0 ↓t= /0

τ ~a ↓?=~a F1|F2 ↓t= F1 ↓t ∪F2 ↓t
F ↓t1+t2= F ↓t1 ∪F ↓t2 F ↓t1×t2= F ↓t1 ∩F ↓t2

(a) Flow projection function

(0)↓?= (0,0)
(τ′©τ′′m B)↓t©τ= (B,0)
(τ′ λ τ′′m B)↓t©τ= ({τ/τ′′}B,τ′ λ τ′′m B)
(R1|R2)↓t©τ= (B′ | B′′,R′|R′′), if (R1)↓t©τ= (B′,R′) and (R2)↓t©τ= (B′′,R′′)

(b) Reaction projection function

Table 3.11: xSC projection functions

In Table 3.11 we extend the flow projection function and we introduce the re-
action projection function. The former, F ↓t , takes a flow and a topic and yields
the set of target component names for the topic t. The latter, (R)↓s:T , takes a
reaction R and a signal s typed by T and returns a pair (B,R′) such that B is
the behavior of R instantiated with s and R′ is the reaction to be installed. No-
tice that reaction projection permits to consume check reactions and to maintain
lambda reactions installed. Also, reaction projection is applied, by construction,
to reactions that can consume the signal s. This assumption is guaranteed by the
reduction rules using the type system.

The reduction relation → over networks is defined in Table 3.12. We com-
ment on the two reduction rules specific for this dialect of SC. The rule (EMIT)
defines dispatching of notifications. At emission time, component a spawns into
the network a signal targeted to all the components (ci ∈~b) subscribed for the
signal type (according to the F ↓t projection). On the other hand, rule (REACT)
substitute the SC reduction rules (LAMBDA) and (CHECK). Once an envelop
has been spawn into the network the rule (REACT) can be applied to the target
component; the application of this rule activates, non deterministically, a reaction
among the ones in the reaction projection R′ ∈ Rt©τ↓. Then, the activated reaction
is replaced in the interface of a by R′′ reaction obtained by applying the reaction
projection.
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(SKIP)
a [ε;B1 | B2]

R
F → a [B1 | B2]

R
F

(RUPD)
a [rupd(R1);B1 | B2]

R
F → a [B1 | B2]

R|R1
F

(FUPD)
a [fupd(F1);B1 | B2]

R
F → a [B1 | B2]

R
F |F1

t ↓τ=~b
(OUT )

a
[
out〈t©τ

′〉;B1 | B2
]R

F → a [B1 | B2]
R
F ‖ ∏

bi∈~b
〈t©τ

′〉@bi

N→ N1
(PAR)

N ‖ N2→ N1 ‖ N2

N ≡ N1→ N2 ≡ N3
(ST RUCT )

N→ N3

R≡ R′|R0 R′ ∈ Rt©τ↓ (R′)↓t©τ= (B2,R′′)
(REACT )

〈t©τ〉@a ‖ a [B1]
R
F → a [B1 |B2]

R0|R′′
F

N→ N′
(NEW )

(νn)N→ (νn)N′

Table 3.12: Operational semantics

3.4 Related works

In this Chapter we have introduced three dialects of the SC calculus. These di-
alects have been designed around the adoption of the event notification paradigm
to coordinate distributed components.

The SC dialect presented in Section 3.1 illustrates the main features of the
SC programming model. The distinguished feature of SC is multicast notifica-
tion. Even though multicast notification can be encoded using the existing pro-
cess calculi, we argue that its integration into the programming model simplifies
the design of complex systems (see Section 3.1.2). The adoption of a notifica-
tion style different from the unicast message passing was already investigated by
SCCS [64] and CBS [65]. However, these calculi feature broadcast communi-
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cation patterns that are not suitable for distributed and loosely coupled systems.
Broadcast requires the definition of broadcasting domains to confine its scope
on wide networks. Furthermore, multicast communication mechanism of SC is
asynchronous and that the envelopes generated by an event rising are delivered
independently.

The notion of SC component is strictly related to ambients of the ambient
calculus [66] and agent of the Nomadic PICT [67] to cite a few. However, we do
not allow locations to be nested and to migrate. Nested locations are usually used
to model hierarchical networks (i.e. VPN) and to restrict the access privileges to
services. These notions are out of the scope of our programming model and
should be delegated to a different level of abstraction. We also do not allow
component migration because we want provide a coordination framework free
from platform constraints. In fact, component migration requires to establish a
reference platform that all parties must comply.

The idea of exploiting a peer-to-peer like structure (SC flows) to coordinate
agents has been already investigated by Reo [68]. Reo is a coordination model
based on connections among components that allows dynamic reconfiguration.
Our work mainly differs from Reo on the communication model adopted for
composition. Reo is a channel based framework, while SC is an event based
one. Hence, Reo handles component migration and channel management as basic
notions, while SC focuses on the activities performed and on the coordination
over dynamic network topologies.

The SC calculus can be classified as a non-brokered approach to the event
notification paradigm. In fact, each component is responsible to manage its sub-
scribers and to deliver the raised events to them. A different approach is the
so called brokered event notification. The Linda coordination language [59] has
been one of the first formalism able to model this kind of systems. Basically,
Linda permits to model process coordination by the production and consumption
of tuples from a global memory, called tuple space. The tuple space can be used
to represent the subscriptions among components by a global point of view. How-
ever, the implementation of this solution usually requires a centralization point
that can represent a key issue in SOA [69]. Klaim [70] is a distributed version of
Linda that has been developed to model and reason about code mobility. Klaim
locations resembles SC components.

The dialect of SC presented in Section 3.2 extends our programming model
with primitives to manage sessions. Session handling is a key issue of SOA. In
fact, services involved into a business process must be able to correlate messages
(SC events) that belong to the same instance of the process. The SC session
handling is quite simple: we annotate events with a session identifier and we
extend reactions with a simple form of pattern matching. They can filter mes-
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sages by their sessions (i.e. check reactions) and can acquire the session of a
received event (i.e. lambda reactions). This session handling mechanism take
inspiration from the Correlation Sets, which have been used by WS-BPEL [9]
and COWS [71]) to represent properties of message structures and exploit these
properties to correlate distinguished messages.

Other approaches (e.g. SCC [14] and Muse [18] and the π-calculus extension
given in [72]) exploit the notion of session to identify the scope of interactions.
Sessions are first order entities and calculi can provide primitives to create, com-
municate and fuse sessions.
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Chapter 4

Reasoning with SC

SOA applications require methodologies to clearly define the coordination of
involved services. Unambiguous specifications of the service interactions permit
to verify correctness of systems and avoid unattended behavior. In this Chapter
we introduce our reasoning techniques for SC.

In Section 4.1 we introduce the syntax and the observational of a process cal-
culus, called Network Coordination Policies (NCP), which extends and equips
our framework with a choreography model. The SC and NCP lay at two differ-
ent levels of abstraction. The former is tailored to support the (formal) design of
services, the latter is the specification language to declare the coordination poli-
cies. Policies take the form of processes that represent the behavior as observed
from a global point of view, namely by observing all the public interactions tak-
ing place on the network infrastructure. Hence, an NCP process describes the
interactions that are expected to happen and how these are interleaved. Indeed,
certain features can be described at both levels: the NCP specification declares
what is expected from the service network infrastructure, the SC design specifies
how to implement it.

NCP and SC share the same computational paradigm and the two semantics
are related by a correctness result: for each SC network, there is an NCP pol-
icy that reflects all the properties of the network. In Section 4.2 we establish
this result by the introduction of a semantics-based transformation, mapping a
SC design into NCP network. We show that the transformation is fully abstract
with respect to an abstract semantics notion. The converse is not true: not every
NCP coordination policy that one can specify is implementable in SC. We also
formalize when an SC design respect an NCP policy. These results allow us to
exploit the choreography model to check consistency of SC designs and suggest
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a model driven development approach. The designer can define successive SC
models that implement a system, each of them is obtained refining the previous
one to add more details. Moreover, the consistency of each model with respect
to a NCP specification can be formally verified.

In Section 4.3, we use SC to implement LRT designed in saga. The encoding
enables designers to specify LRTs using a flow language and to mechanically
obtain a reference SC design that respects the transactional requirements. Then,
the designer can enrich the SC model to care about relevant aspects that cannot
be described using saga, which is a more abstract than SC. The correctness of the
refined SC models can be checked respect to the reference implementation, by
using the results presented in Sections 4.1 and 4.2.

Our theoretical results inspired a more practical methodology to refine the SC
models, without break their correctness. Section 4.4 illustrates some refactoring
rules that address some crucial issues of the deployment phase, that is the possible
alterations that one would like (or has) to apply at the SC level where they can be
more suitably tackled. Arguably, refactoring does not have to alter the intention
of the designer, namely, refactoring rules must preserve the intended semantics.
Our refactoring rules are proved sound by showing that they preserve (weak)
bisimulation. The proof relies on a bisimulation preserving mapping from SC to
its choreographic view expressed in NCP.

4.1 Network Coordination Policies
The Network Coordination Policies (NCP) calculus has been specifically de-
signed to provide the choreography model for SC. We developed NCP to specify
systems that can be implemented by SC components and to provide a verification
methodology to reason about SC designs. For these reasons, the primitives sup-
plied by NCP are inspired by the SC programming model; the language specifies
the computation of components, which communicate via the event notification
paradigm. We start introducing the syntax of NCP.

We assume that components are uniquely identified by names a,b, . . . ∈ A,
which can be infinite. NCP classifies events analogously to the SC dialect pre-
sented in Section 3.2; namely, an event is couples of names, which represent its
topic and its session identifier. We assume that topic names are τ1,τ2, . . . ∈ T .

The NCP calculus is equipped with the same multicast notification mech-
anism of SC. However, the different goals of NCP and SC have induced two
separate approaches to model the subscription relation among components. SC
exploits the flows of components, while NCP model this information by a global
point of view, introducing the notion of network topologies. Informally, a net-
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work topology represents the flows of all components involved by the coordina-
tion.

An NCP specification is composed by two entities: a policy and a network
topology. The former describes the actions that should be performed by compo-
nents, the latter describes the component inter-connections.

A network topology is a structure G = (V,E), where V ⊆ A consists of the re-
stricted component names of the network and E ⊆A×T ×A are the flow connec-
tions among components; (a,τ,b) ∈ E, representing that component a has a flow
towards b for signals of topic τ. Notice that, G induces a directed labeled graph
whose vertexes are the names of the network components (the restricted ones of
which are highlighted in V ) and whose edges are the elements in E. Abusing of
notation, hereafter we will confuse G with its associated graph. We also intro-
duce the notion of topicgraph, ranged by T , which is an unlabeled directed graph
having component names as nodes. Figure 4.1 depicts some network topologies
that will be used in the following as illustrative examples.

It is useful to define the auxiliary notations in Table 4.1, where |G | denotes
the set of vertexes of graph G , G = (V,E) is a network topology, and a ∈ A and
τ ∈ T . We report some examples of the NCP auxiliary notations, exploiting the
network topologies depicted in Figure 4.1.

G1(a) = G2(a) = {(τ,b)} G5(a) = /0

G3(a) = {(τ,b),(τ,c)} G4(a) = {(τ,b),(τ,c),(τ′,b)}
G1∩a = G2∩a = G1

G4(τ′) = G1(τ) = G6(τ′) = G7(τ′) = {(a,b)}
G4(τ) = G3(τ) = {(a,b),(a,c),(b,c)}
G6(a,τ) = G7(a,τ) = G3(a,τ) = {b,c}
a� (τ,b) = G1 G4]G5 = G7

The following statements over NCP network topologies holds trivially:

G]G = G

G] /0 = G G]G′ = G′]G

T = G(τ)

G\ τ�T ] τ�T = G

T = G(τ)

τ 6∈ f n(G\ τ�T )

T = T1∪T2

T (τ) = T1(τ)∪T2(τ)

G = G1]G2

G(a) = G1(a)∪G2(a)
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G1 = {(a,τ,b)} G2 =
{

(a,τ,b),
(b,τ,c)

}

G3 =

 (a,τ,b),
(b,τ,c),
(a,τ,c)

 G4 =


(a,τ,b),
(b,τ,c),
(a,τ,c),
(a,τ′,b)



G5 = {(c,τ,a)} G6 = {(a,τ′,b)}

G7 =


(a,τ,b),
(b,τ,c),
(a,τ,c),
(a,τ′,b)
(c,τ,a)

 G8 =
{

(a,τ,b),
(a,τ′,b)

}

τ connections
τ′ connections

Figure 4.1: Examples of NCP network topologies

An NCP process is called a coordination policy. We use the word policy to
emphasize the fact that the calculus has been introduced to specify and constrain
the behavior of SC networks. The syntax of coordination policies is defined in
Table 4.2. Non-deterministic (guarded) choice is denoted as ∑; a policy p@a.P
represents an action p executed by the component a with continuation P; prefix
τ(τ′) allows to receive on τ ∈ T and is called lambda input since it corresponds
to SC lambda reactions; τ τ′ allows to receive signals having topic τ and session
τ′ and is therefore called check input. Since a lambda input can handle events
regardless their sessions. the name τ′ represents a binder for the received session
identifier. The policy τ τ′ raises an event on session τ′ with topic τ. The compo-
nent delivers the corresponding notifications to all services that are subscribed on
the topic τ. The envelope 〈τ©τ′〉@a represents a pending message/notification on
the network targeted to a. Notice that only the target of the envelope is declared.
The communication model of NCP is strictly related to SC. In fact, the emission
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• G(a) are the flows emanating from a in G, namely
G(a) = {(τ,b) | (a,τ,b) ∈ E};

• G∩a is the sub-topology of G involving a, namely
G∩a = {(a,τ,b) ∈ E}∪{(b,τ,a) ∈ E}

• G(τ) is the topic graph of τ in G, namely the unlabeled directed graph
such that |G(τ)|= |G| and the edges are {(a,b) ∈ A×A | (a,τ,b) ∈ E}
(hereafter, we let T range on such graphs for which
τ�T = {(a,τ,b) | (a,b) ∈ T});

• G(a,τ) = {b | (τ,b) ∈ G(a))} is the flow projection of τ for a in G.

• a�F = {(a,τ,b) | (τ,b) ∈ F}), for F ⊆ T ×A;

• if G′ = (V ′,E ′) is a network topology, G]G′ = (V ∪V ′,E ∪E ′) and
G\G′ = (V,E \E ′).

• the free names of G ( f n(G)) and its bound names (bn(G)) are defined as:

– bn(G) = V

– f n(G) =
{a | (a,τ,b) ∈ E}∪{τ | (a,τ,b) ∈ E}∪{b | (a,τ,b) ∈ E}\bn(G)

Table 4.1: NCP auxiliary notations

of an event and its reception are performed by two phases. Initially, the emitter
spawns into the network the proper envelopes, according with the actual network
topology. Subsequently, a subscriber can react to the envelope targeted to him.
The policy fupd(F) adds F to the flows departing from a. Prefix ι.P represents
the execution of an internal activity before the execution of P. The name restric-
tions, namely (ν τ : T )P and (ν a : G)P restrict τ and a in P; noteworthy, graph
T permits to extend the topology with the connections among components for the
fresh topic τ, while the network topology G yields the flows from/to a. Finally,
coordination policies can be composed in parallel. (Free names f n(P) and bound
names bn(P) are defined as expected.) Notice that, differently from SC, the NCP
policies involves components, but are not boxed inside them, to permit to express
coordination from a global point of view. For example τ τ′@a.τ τ′@a is a valid
NCP policy.
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P ::= ∑i∈I pi@ai.Pi | τ τ′@a.P | 〈τ©τ′〉@a

| fupd(F)@a.P | ι.P | P ‖ P

| (ν τ : T )P | (ν a : G)P

wherep ::= τ(τ′) | τ τ′

where τ,τ′ ∈ T , a ∈ A, T is a topic graphs and I is a finite index set and
∑i∈I pi@ai.Pi = 0 when I = /0

Table 4.2: NCP policies syntax

Let G be an NCP topology and P an NCP policy, then the pair 〈G ; P〉 is
called NCP state. Free and bound names of NCP states are defined trivially:

f n(〈G ; P〉= f n(P)∪ f n(G)\bn(G)
bn(〈G ; P〉) = bn(P)\ f n(G)∪bn(G)

NCP states can represent the specification of a system. Several states can be
defined starting from a policy, according with the topology in which the policy is
embedded.

A key feature of NCP is that network topologies are first order entities. Many
other process calculi have been designed to deal with process distribution. The
novel feature of NCP is given by the capability to naturally restrict a part of the
network topology. The following examples clarify the intuition of NCP name
restriction:

• 〈G1 ; (ν τ : {(a,b)})(P) ‖ P′〉, where G1 is the network topology of Fig-
ure 4.1, represents a specification composed by two concurrent policies.
The policy P′ know only the linkage described by G1 and have no notion
regarding τ′, because it is restricted. Instead, the policy P know both the
topic τ′ and the corresponding topic graph. Informally, the specification
will evaluate P under the extended network topology G8]G1 of Figure 4.1.

•

〈
G8 ;

ν c :

 (a,τ,c)
(b,τ,c)
(c,τ,a)


(P) ‖ P′

〉
, where G8 is the network topol-

ogy of Figure 4.1, represents a specification with two concurrent policies.
P′ knows the linkage G8 and has no knowledge about the component c.
Instead, P knows both the component c and all connection departing from
or targeted to it. Informally, P will be evaluated under the topology G7 of
Figure 4.1.
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Sb j((~b,E)) = {a | ∃c,τ.(a,τ,c) ∈ E}

Sb j(0) = /0 Sb j(ι.P) = Sb j(P)
Sb j(P1 ‖ P2) = Sb j(P1)∪Sb j(P2) Sb j(fupd(F)@a.P) = Sb j(P)∪{a}
Sb j(〈τ©τ′〉@a) = /0 Sb j(τ τ′@a.P) = Sb j(P)∪{a}
Sb j(τ τ′@a.P) = Sb j(P)∪{a} Sb j(τ(τ′)@a.P) = Sb j(P)∪{a}
Sb j((ν τ : T )P) = Sb j(P)∪{b | ∃c.(b,c) ∈ T}
Sb j((ν a : G)P) = Sb j(G)∪Sb j(P)\{a}

Sb j(〈G ; P〉) = Sb j(G)∪Sb j(P)

Table 4.3: NCP subjects

The network topology G in the component name restriction should contain
only linkage departing from or targeted to the restricted component. We intro-
duce a well formed constraint.

Definition 8 An NCP policy is well formed is each contained component name
restriction (ν a : G)P satisfies G∩a = G.

For example, (ν a : {(b,τ,c)})P is not a well formed policy.
The NCP states, policies and network topologies can involve component

names in two different ways: either by describing the behavior of the compo-
nent (e.g. the policy τ τ′@a) or by describing which event are notified to it (e.g.
the policy 〈τ©τ′〉@a). We refer to the components whose behavior is described
as subject.

Definition 9 The subjects (Sb j(∗)) of a network topology G = (~b,E), of a policy
P and of a NCP state 〈G ; P〉 is the set component names obtained by the rules
in Table 4.3.

Definition 10 Let X and Y range over NCP terms (states, policies and network
topologies). We say that they predicate on distinct subjects (and we write X ⊥Y )
if Sb j(Y )∩Sb j(Y ) = /0.
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4.1.1 Semantics of NCP

Though NCP is reminiscent of the asynchronous π-calculus, its semantics is cen-
tered on network topologies, that is the environment of the computation (while
in the π-calculusit is implicit in the knowledge about channels). This enables us
to model in a natural way multi-cast communication: for example, in order to
receive τ τ′, it is not sufficient to listen on τ, but it is necessary that the network
topology has a “τ-connection” between listener and emitter.

The semantics of NCP is specified by a labeled transition system (LTS) in-
spired by the HT-LTS presented in Section 2.5. The labels α are defined by the
following grammar:

α ::= ε | τ τ′@a | (τ τ′@a) | 〈τ©τ′〉@a | 〈τ©(τ′ : T )〉@a

where τ,τ′ ∈ T , a ∈ A and T is a topic graph

Table 4.4: NCP actions

The action ε is the silent action, representing unobservable activities like in-
ternal communications. The action τ τ′@a is a free reaction activation . The
action (τ τ′@a) represents the reception of a message that will be spawned in
parallel with the current process (this action is observable in any system, includ-
ing the empty policy). The action 〈τ©τ′〉@a is the free (asynchronous) event
notification of kind τ, session τ′ and destination a. A key feature of NCP is the
interplay between restriction of topics and multi-cast communications. Indeed, in
NCP the extrusion of a topic τ′ enriches the receiver policy with topologies that
were absent before. Hence, further emissions of signals on τ′ from the policy
itself will generate envelopes according with the inherited linkage. The action
〈τ©(τ′ : T )〉@a is a bound event notification on τ of a topic τ′ with network graph
T . The linkage T is exploited to inform the receiver about the actual state of the
network topology for the extruded topic τ′. Hereafter, n(α) will denote the names
of α.

The observational semantics of NCP is given by the transitive closure of
≡ α−→≡ where α−→ is the smallest relation closed under the rules in Tables 4.6
and 4.7 (where ~a,~b, . . . range over subsets of A), which rely on the congruence
rule in Table 4.5.

The structural congruence rule permits scope extrusion of component name.
Notice that the side condition G′ ⊥ P′ ensures that the network topology (G′)
involving the component name restricted (b) must not contain any component as
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b /∈ f n(G)∪ f n(P′) G′ ⊥ P′〈
(~a∪{b},G∪G′) ; P ‖ P′

〉
≡
〈
(~a,G) ;

(
ν b : G′

)
P ‖ P′

〉

Table 4.5: NCP congruence rule

starting edge whose behavior is described in P′.
The observational semantics of an NCP policy depends on and can affect the

network topology. We use 〈G ; P〉 α−→ 〈G′ ; P′〉 to represent that the coordination
policy P, plugged into the topology G, by performing the action α evolves to the
policy P′ and changes the topology to G′.

Rule skip trivially fires the silent action. Rule fupd changes the network
topology, by appending the sub-network a�F to the environment G; notice that
newly added flows departs only from a. Rule emit allows multi-casting commu-
nications: it spawns in the network an envelope for each subscriber in G(τ)(a);
notice that the continuation policy P is executed regardless the reception of en-
velopes as typical in asynchronous communications. Notification of envelopes
is ruled by notify as much like as the output in the asynchronous π-calculus.
Rules lambda and check model input actions. In the former, the selected input
p j reads any signal with topic τ and binds τ1 to τ′1 in an early-style semantics.
When a check input is selected, only envelopes of topic τ in session τ1 can be
consumed. Notice that the reception by a check reaction of a topic cannot change
the network topology, because the two topics involved by the communication are
already known. The reception of a fresh name (τ′1) by a lambda reaction, instead,
can extend the environment knowledge of the component; namely the receiver
can discover all the existing linkage involving the received name τ′1. In the spirit
of early-style semantics, we allow the rule to extend the topology with any pos-
sible graph (T ). Differently from SC, this two rules permit to express external
non-deterministic choice and can involve several components. Notice that, after
the communication has occurred, all competitor inputs are garbaged and that a
lambda inputs is a singleton; it is not removed after the reception of an envelope.

Rule async permits to any NCP state to perform an input, simply storing
the received message for subsequent usages, allowing to arbitrarily delay the
communication. This rule is inspired by the rule in0 presented in Section 2.5.

Rules open and close govern scope extrusion of a topics. We recall that
the input transitions could been generated by the rule lambda om an early-style
semantics. Informally, the session τ′ and the topology carried by the envelope
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(skip) 〈G ; ι.P〉 ε−→ 〈G ; P〉

(fupd) 〈G ; fupd(F)@a.P〉 ε−→ 〈G] (a�F) ; P〉

(emit) 〈G ; τ τ′@a.P〉 ε−→
〈
G ; P ‖∏b∈G(τ,a) 〈τ©τ′〉@b

〉
(notify) 〈G ; 〈τ©τ′〉@a〉 〈τ©τ′〉@a−−−−−→ 〈G ; 0〉

j ∈ I p j = τ(τ1)
(lambda)〈

G ; ∑
i∈I

pi@ai.Pi

〉
τ τ′1@a j−−−−→

〈
G] τ

′
1 �T ; {τ′1/τ1}Pj ‖ p j@a j.Pj

〉
j ∈ I p j = τ τ

′

(check)〈
G ; ∑

i∈I
pi@ai.Pi

〉
p j@a j−−−−→

〈
G ; Pj

〉
(async)

〈G ; P〉 (τ τ′@a)−−−−−→
〈
G ; P ‖ 〈τ©τ

′〉@a
〉

Table 4.6: NCP labelled transition rules

allows the rules open and close to chose between all input transitions.
Rule new permits to extend the topology with a freshly generated topic pro-

vided that it is not extruded (τ /∈ n(α)) and hides the changes to the environment
that involve the name outside the scope G′ \ (τ�T ′). Rule com allows the com-
munication of a free session name τ′. Notice that the rule can choose only the
input transitions that does not affect the topology, because the communicated
session name is free. Finally, Rule par has the standard meaning.

Theorem 1 Let 〈G ; P〉 be a NCP state and G1 a network topology, if P ⊥ G1
then

〈G ; P〉 α−→
〈
G′ ; P′

〉
i f and only i f 〈G]G1 ; P〉 α−→

〈
G′]G1 ; P′

〉
The subjects of a network topology (Sb j(G1)) represents the set of components

80



τ
′ 6∈ f n(G)

〈
G] (τ′�T ) ; P

〉 〈τ©τ′〉@a−−−−−→
〈
G] (τ′�T ; P′

〉
(open)

〈G ; (ν s : T )P〉 〈τ©(τ′:T )〉@a−−−−−−−−→
〈
G] (τ′�T ; P′

〉
τ′ 6∈ f n(〈G ; P1〉)

〈G ; P1〉
τ τ′@a−−−−→ 〈G] τ′�T ; P′1〉

〈G ; P2〉
〈τ©(τ′:T )〉@a−−−−−−−−→ 〈G] (τ′�T ) ; P′2〉 (close)

〈G ; P1 ‖ P2〉
ε−→
〈
G ;

(
ν τ
′ : T

)
(P′1 ‖ P′2)

〉
〈G] (τ�T ) ; P〉 α−→

〈
G′ ; P′

〉
τ 6∈ n(α)∪ f n(G) T ′ = G′(τ)

(new)
〈G ; (ν τ : T )P〉 α−→

〈
G′ \ (τ�T ′) ;

(
ν τ : T ′

)
P′
〉

〈G ; P1〉
τ τ′@a−−−−→ 〈G ; P′1〉 〈G ; P2〉

〈τ©τ′〉@a−−−−−→ 〈G ; P′2〉 (com)
〈G ; P1 ‖ P2〉

ε−→
〈
G ; P′1 ‖ P′2

〉
〈G ; P〉 α−→

〈
G′ ; P′

〉
(par)

〈G ; P ‖ P1〉
α−→
〈
G′ ; P′ ‖ P1

〉

Table 4.7: NCP labelled transition rules

whose the topology specifies the flows. The statement P ⊥ G1 means that the
topology added to the specification (〈G]G1 ; P〉) does not add any flow to the
components whose behavior has been described. This theorem provides a suffi-
cient condition on the semantic context (aka the network topology added), which
guarantees that the behavior of the system is not affected. The theorem is proved
in Appendix A.1 using induction over the NCP transition rules.

Theorem 2 Let 〈G ; P〉 be an NCP state, such that 〈G ; P〉 α−→ 〈G′ ; P′〉. If G′ =
G or α 6= τ τ′@a, then Sb j(〈G′ ; P〉)⊆ Sb j(〈G ; P〉).

The theorem provide a linearity statement for the subjects of policies. Since com-
ponent names cannot be communicated, a new component can be discovered only
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S1 =
〈
G ; τ

(
τ
′)@a.ι.τ1 τ

′@b
〉

Table 4.8: NCP hidden communications

by the extrusion of an hidden network topology by the reception of a fresh topic.
If the input does not affect the network topology (G′ = G) it is straightforward to
verify that the subjects of the specification can be bounded statically.

4.1.2 Examples
In this Section we highlight the main features of NCP semantics with some illus-
trative examples.

Hidden communications

Let G be a topic topology. The NCP state in Figure 4.8 specifies a system having
two components, named a and b. Intuitively, the component a can receive events
having topic τ. After some internal activities, the component b must raise an
event having the same session (τ′) of the one received by a. Notice that a system
implementing this specification must involve a communication of the name of
session τ′ between a and b, however, this communication is not explicitly repre-
sented.

The operational rules lambda, skip and emit detail the required behavior.
The lambda rule handles the early instantiation of the input, allowing the tran-
sition for any name τ′′. Notice that the lambda reaction remains active and that
the envelopes spawned by the component b have the same session of the received
one. The derivation is given below:

〈G ; τ(τ′)@a.ι.τ1 τ′@b〉
(τ τ′′@a)−−−−−→ ε−→ ε−→〈

G ; τ(τ′′)@a.ι.τ1 τ′@b ‖∏c∈G(b,τ1)〈τ1©τ′′〉@c
〉

Scope of topology

Let G = {(a,τ,b)} the topology describing a single connection from the com-
ponent a to the component b for the topic τ. Let us consider the NCP state in
Figure 4.9 Initially, the topology for the topic τ′ is hidden outside the right part
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〈
G ; τ(τ1)@b.τ1 τs@a ‖ (

(
ν τ
′ : /0
)
fupd

(
{(τ′,b)}

)
@a.〈τ©τ

′〉@b)
〉

Table 4.9: NCP scope of topology

of the parallel policy, because τ′ is restricted. The system starts updating the con-
nections of the component a for the topic τ′. Since this update of the network
topology cannot be visible to the left policy, the new linkages are not stored into
G and then are confined into the restriction:

〈G ; fupd({(τ′,b)})@a.〈τ©τ′〉@b〉
ε−→

〈G]{(a,τ,b)} ; 〈τ©τ′〉@b〉
〈G ; (ν τ′ : /0)fupd({(τ′,b)})@a.〈τ©τ′〉@b〉

ε−→
〈G ; (ν τ′ : {(a,b)})〈τ©τ′〉@b〉

〈G ; τ(τ1)@b.τ1 τs@a ‖ ((ν τ′ : /0)fupd({(τ′,b)})@a.〈τ©τ′〉@b)〉
ε−→

〈G ; τ(τ1)@b.τ1 τs@a ‖ ((ν τ′ : {(a,b)})〈τ©τ′〉@b)〉

Now the two parallel policies can communicate, extruding τ′. The reception
of the envelope by the left policy (by the lambda reaction) performs also the
extrusion of the topology associated to τ′. Hence, a can emit signals having τ′ to
the recipient b.

〈G ; τ(τ1)@b.τ1 τs@a〉
τ τ′@b−−−−→〈

G]{(a,τ′,b)} ; τ′ τs@a
〉

〈G]{(a,τ′,b)} ; 〈τ©τ′〉@b〉
〈τ©τ′〉@b−−−−−→

〈G]{(a,τ′,b)} ; 0〉
〈G ; (ν τ′ : {(a,b)})〈τ©τ′〉@b〉

〈τ©τ′:{(a,b)}〉@b−−−−−−−−−−→
〈G]{(a,τ′,b)} ; 0〉

〈G ; τ(τ1)@b.τ1 τs@a ‖ ((ν τ′ : {(a,b)})〈τ©τ′〉@b)〉
ε−→〈

G ; (ν τ′ : {(a,b)})(τ′ τs@a ‖ 0)
〉

Notice that when the rule close is applied, the bound event notification chooses
the right input transition, namely, the one the extends the network topology with
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the right graph for the extruded topic.

4.1.3 Bisimulation Semantics
We introduce the notion of observational equivalence for NCP. Honda-Tokoro
and Amadio et alia have studied bisimilarity for asynchronous calculi [54; 55].
We use these results (in particular, the directed HT labeled transition systems
presented in Section 2.5) to define our bisimulation semantics.

Following this approach, in the bisimulation game, any process can act as
a buffer that reads any possible message and stores it without consuming the
message. This is done, in our case, by rule async. On the other hand, “effective”
inputs that actually consume messages are not observed at all in the bisimulation
game, whereas synchronizations induced by these inputs are. Thus, in defining
bisimilarity, we keep into account the transitions induced by the rule async, but
not those obtained by check or lambda.

Definition 11 A symmetric binary relation B over NCP states is an NCP-bisimulation
if whenever 〈G1 ; P1〉B 〈G2 ; P2〉 and 〈G1 ; P1〉

α−→ 〈G′1 ; P′1〉

• if α∈{ε,〈τ©τ′〉@a,(ττ′@a)} and a /∈ bn(G1), there is 〈G2 ; P2〉
α−→〈G′2 ; P′2〉

and 〈G′1 ; P′1〉B 〈G′2 ; P′2〉

• if α = 〈τ©(τ′ : T )〉@a with τ′ /∈ f n(G2,P2) and a /∈ bn(G1),

there is 〈G2 ; P2〉
〈τ©(τ′:T ′)〉@a−−−−−−−−→ 〈G′2 ; P′2〉 and 〈G′1 ; P′1〉B 〈G′2 ; P′2〉.

The bisimilarity relation is obtained as usual and denoted by ∼. The definition
of weak bisimulation is defined in the standard way by considering the weak
transition relation defined as the union of =⇒ and

S
α 6=ε =⇒ α=⇒=⇒, where =⇒

is the reflexive and transitive closure of ε−→. We define ≈ as the largest weak
bisimulation.

A key difference between NCP and the asynchronous π-calculus is the aware-
ness of topic topologies in the semantics. However, it would be too restrictive to
require that only policies with the same topology can be bisimilar. For example,
the empty network is bisimilar to itself under any topology. This is also reflected
in the definition of the clause for the bound output: when a bound output transi-
tion is matched in the bisimulation relation, the two hidden topologies associated
to the transition are not taken in account, and, therefore, can be different.

The following theorems characterize properties of the NCP bisimulation and
are used to define the compositionality of NCP.
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Theorem 3 Let 〈G1 ; P1〉 and 〈G2 ; P2〉 be two NCP state such that 〈G1 ; P1〉 ∼
〈G2 ; P2〉 and 〈G1 ; P1〉

τ τ′@a−−−−→〈G1 ; P′1〉, then and one of the following two state-
ments must hols:

• 〈G2 ; P2〉
τ τ′@a−−−−→ 〈G2 ; P′2〉 and 〈G1 ; P′1〉 ∼ 〈G2 ; P′2〉

• 〈G2 ; P2〉
ε−→ 〈G′2 ; P′2〉 and 〈G1 ; P′1〉 ∼ 〈G′2 ; P′2 ‖ 〈τ©τ′〉@a〉

We remark that NCP bisimulation does not take into account input transitions,
since it has been studied for an asynchronous calculus. However, the theorem
shows how the bisimulation characterizes two bisimilar states, when one of them
is ready to perform an input. Informally, two cases are possibles; both states
are ready to receive the same event notification, or the receiver one re-spawns
the received notification immediately. The proof of the theorem is given in Ap-
pendix A.3 and exploits the async transition rule to compose the two policies
with the same envelopes an to infer their behavior.

Theorem 4 Let 〈G ; P〉 and 〈G′ ; P′〉 be two NCP states such that 〈G ; P〉 ∼
〈G′ ; P′〉, τ ∈ T be a topic, T = G(τ) and T ′ = G′(τ) be the topic graphs of τ in
the two network topologies G and G′ respectively, then:

1. if G = (~b,E) and G′ = (~b′,E ′) then
〈
(~b∪~a,E) ; P

〉
∼
〈
(~b′∪~a,E ′) ; P′

〉
2. 〈G\ τ�T ; (ν τ : T )P〉 ∼ 〈G′ \ τ�T ′ ; (ν τ : T ′)P′〉

Theorem 4 describes which changes to the network topologies (G and G′) of two
NCP states can be applied without violating their bisimilarity:

1. the restriction of the set of component names~a for both topologies, making
all components ~a not reachable from outside agents,

2. the restriction of a topic name τ, without changing the internal topology,
inhibiting outside agents to notify this kind of events.

The proof of the theorem is reported in Appendix A.4. Our strategy is to check
that the following relations are NCP-bisimulations:

B =
{(〈

(~b∪~a,E) ; P
〉

,
〈
(~b′∪~a′,E ′) ; P′

〉)
|
〈
(~b,E) ; P

〉
∼
〈
(~b′,E ′) ; P′

〉}
B =

{
(〈G\ τ�T ; (ν τ : T )P〉 ,〈G′ \ τ�T ′ ; (ν τ : T ′)P′〉) |

〈G ; P〉 ∼ 〈G′ ; P′〉 ,T = G(τ) and T ′ = G′(τ)

}
∪ ∼

85



Theorem 5 Let SP1 = 〈G1 ; P1〉, SP2 = 〈G2 ; P2〉, SQ1 = 〈I2 ; Q2〉 and SQ2 =
〈I2 ; Q2〉 be NCP states, such that SP1 ∼ SQ2 and SQ1 ∼ SQ2 If SP1 ⊥ SQ1 and
SP2 ⊥ SQ2 then 〈G1] I1 ; P1 ‖ Q1〉 ∼ 〈G2] I2 ; P2 ‖ Q2〉

The composition of two NCP states (representing two formal specifications) is
obtained by the union of their network topologies (G1 ] I1 and G2 ] I2) and the
parallel composition of their policies (P1 ‖ Q1 and P2 ‖ Q2). Starting from two
bisimilar ncp states (SP1 and SP2 ), their compositions with a new specifications
yield their bisimililarity equivalence under the assumption that SP1 ⊥ SQ1 and
SP2 ⊥ SQ2 . The theorem provides the sufficient condition on which relies the core
of compositinality of NCP. We prove the theorem in Appendix A.5 by showing
that the following relation is a bisimulation:

B =


(〈G1] I1 ; P1 ‖ Q1〉 ,〈G2] I2 ; P2 ‖ Q2〉)

| 〈G1 ; P1〉 ∼ 〈G2 ; P2〉 ∧ 〈I1 ; Q1〉 ∼ 〈I2 ; Q2〉
∧ Sb j(〈G1 ; P1〉)∩Sb j(〈I1 ; Q1〉) = /0

∧ Sb j(〈G2 ; P2〉)∩Sb j(〈I2 ; Q2〉) = /0


4.2 Checking Choreography
We introduce a formal methodology to verify correctness of a network of SC
components against global coordination policies as given by NCP specifications.
The first step of our methodology consists of providing an encoding from SC
networks to NCP policies. The basic idea of the encoding is to transform SC
reductions into NCP transitions labeled with ε.

The encoding of an SC network into an NCP state exploits the following
functions:

• the function [[B]]a defined in Table 4.10 , which takes a SC behavior B,
localized within the component a, and maps it into an NCP policy

• the function [[R]]a defined in Table 4.11, which takes a SC reaction R, in-
stalled in the interface of the component a, and maps it into a policy

• the function [[N]] defined in Table 4.12, which takes a SC network N and
maps it into a NCP state.

The correctness of the encoding is ”up-to” bisimilarity as shown by the fol-
lowing theorem.

Theorem 6 Let N and N′ be SC networks. It holds that N → N′ if and only if
[[N]] ε−→ (G,P) and (G,P)∼ [[N′]]
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[[ε;B]]a = ι.[[B]]a

[[0]]a = 0 [[B | B′]]a = [[B]]a ‖ [[B′]]a

[[(ντ)B]]a = (ν τ : /0) [[B]]a [[out〈τ©τ′〉B]]a = τ τ′@a. [[B]]a

[[rupd(R) ;B]]a = ι. [[R]]a ‖ [[B]]a [[fupd(F) ;B]]a = fupd(F)@a. [[B]]a

Table 4.10: Encoding the behavior B executed within the component a: [[B]]a

[[0]]a = 0 [[R|R′]]a = [[R]]a ‖ [[R′]]a

[[τ©τ′©Bm]]a = τ τ′@a. [[B]]a [[τ λ τ′m B]]a = τ(τ′)@a. [[B]]a

Table 4.11: Encoding the reaction R installed in the interface of the component
a: [[R]]a

The proof of the theorem is described in Appendix B.5
The theorem allows us to derive the choreography model of a SC network.

The next step of our methodology consists of making verification to be compo-
sitional. Once a choreography has been verified, it should be possible to “plug”
it into a distributed network of components, without altering verified properties.
This is formalized in the rest of this section.

First, we have to define SC network contexts. We use the notions of occur-
rence of a symbol in a term, and of substitution that can be defined in the standard
way. The set C of one-hole SC network contexts is defined as the least subset of
terms generated by the grammar in Table 4.13, where the number of occurrences
of the placeholder ∗ is one.

Assume that C ∈ C , and let N be a SC network. The application C[N] of C
to N is defined as the syntactic substitution of the single occurrence of ∗ in C
with N. As usual we focus only on C[N] well formed. We have the following
compositionality result.

Theorem 7 Let N1 and N2 be SC networks such that [[N1]]∼ [[N2]]. For all C ∈ C ,
it holds that [[C[N1]]]∼ [[C[N2]]].
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[[ /0]] = 〈0 ; 0〉 [[〈τ©τ′〉@a]] = 〈0 ; 〈τ©τ′〉@a〉

[[N]] = 〈G ; P〉 [[N′]] = 〈G′ ; P′〉[[
N ‖ N′

]]
=
〈
G]G′ ; P ‖ P′

〉 [[N]] = 〈G ; P〉 T = G(τ)

[[(ντ)N]] = 〈G\ (τ�T ) ; (ν τ : T )P〉

[[N]] =
〈
(~b,G) ; P

〉
a 6∈~b

[[(νa)N]] =
〈
(~b∪{a},G) ; P

〉
[[

a [B]RF
]]

= 〈G ; [[B]]a ‖ [[R]]a〉 where G = a�F

Table 4.12: Encoding the network N: [[N]]

C ::= /0 | a [B]RF | C ‖C | 〈τ©τ
′〉@a | (νn)C | ∗

Table 4.13: Context C syntax

The proof of the theorem is straightforward and can be done by induction over
the context structure. If the context is a name restriction ((νn)C), we can directly
exploit the Theorems 4. If the context is a parallel composition (C1 ‖C2) we can
use the Theorem 5. In fact, the subjects of the encodings ([[C1]] and [[C2]]) must
be disjoint, because we assume context well formed.

Putting the contents of this section together, we have a definition of satisfac-
tion of a policy: let N be a SC network, P be a NCP policy and let G denote a
topic-driven topology. We say that N implements the choreography (G,P) pro-
vided that [[N]]≈ (G,P). This is a semantic notion of satisfaction, since we define
it up-to weak bisimulation, and can be mechanically checked in the finite-state
case exploiting bisimulation-checking techniques such as those of [73]. This no-
tion of satisfaction assists the development of systems in a Model Driven Devel-
opment fashion. The designer can define successive SC models that implement
the system, each of them is obtained refining the previous one to add more details.
Moreover, the conformance of each model with respect to a NCP specification
can be formally verified.
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〈
( /0,{(b,τ′,~c)}) ; τ

(
τ
′)@a.ι.τ1 τ

′@b
〉

Figure 4.2: NCP specification

Moreover, the presented characterization of the NCP bisimulation can be used
to formally describe how designs must be updated to reflect changes to the spec-
ifications. For example, the Theorem 4 states that if a component or a topic
is restricted in the specification, the implementation must ensure that external
agents cannot deliver signals targeted to the restricted component or having the
restricted topic. These results provide a starting infrastructure for a refactoring
tools of SC designs and NCP policies. In Section 4.4 we will describe such kind
of tool tailored for long running transactions.

4.2.1 Example of verifying SC designs

As described above, checking if a SC system respect an NCP specification is
performed by verifying the weak bismimilarity between the specification and the
translation of the system. We illustrate this methodology by verifying if some SC
designs satisfy the NCP specification described in Section 4.1.2.

This NCP state specifies a system composed by two components know glob-
ally (a and b). The component a must be able to consume any envelope targeted
to it and having the schema τ, regardless the session of the envelope. More-
over, after some internal computation of the system (ι.), the component b must
raise an event of kind τ1 having the same session of the one received by a. The
topic names τ and τ1 are free, representing that this kinds of event are globally
know. Notice that the specification does not imposes any restriction regarding the
mechanism used by a to inform b about the received session. Finally, the policy
specifies that the flow of the component b does not change for all topic globally
know.
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a [0]τ λ τ′mout〈τ©τ′〉
τ {b} ‖ b [0]τ λ τ′mout〈τ1©τ′〉

τ1 ~c

(a) SC model

〈( /0,{(a,τ,{b}),(b,τ1,~c)}) ; τ(τ′)@a.τ τ′@a ‖ τ(τ′)@b.τ1 τ′@b〉
(b) NCP encoding

Figure 4.3: Wrong implementation

(ντ2)
(

a [0]τ λ τ′mout〈τ2©τ′〉
τ2 {b} ‖ b [0]τ2 λ τ′mout〈τ1©τ′〉

τ1 ~c

)
(a) SC model

〈( /0,{(b,τ1,~c)}) ; (ν τ2 : (a,b))(τ(τ′)@a.τ2 τ′@a ‖ τ2 (τ′)@b.τ1 τ′@b)〉
(b) NCP encoding

Figure 4.4: Correct implementation

The SC network in Figure 4.3a models a system that attempts to implement
the specification. The network is composed only by the two component a and b.
The component a is able to receive the τ envelopes by its lambda reaction, which
simply forwards the envelope to the component b.

It is trivial to verify that the system does not correctly implement the speci-
fication. Intuitively, the lambda reaction of the component b reacts to any signal
having the global topic τ, regardless the notifier component. If an external agent
sends directly to b an envelope having this topic, b raises the event τ1; this be-
havior is not prescribed by the specification. The formal verification is performed
by translating the SC network, obtaining the NCP state in Figure 4.3b. Both the
specification and the translation of the network can perform an asinc action
(τ τ′@b), storing concurrently with the policy the envelope 〈τ©τ′〉@b. However
the resulting policies do not continue in the same way. In fact, the specifica-
tion cannot consume the pending envelope, enabling observable only the action
〈τ©τ′〉@b (corresponding to the signal). Instead, the implementation can con-
sume the envelope via the reaction of b, activates the corresponding behavior and
then deliver τ1 envelopes to the components~c.

The issues of the previous implementation can be solved by using a private
topic, shared between a and b. In the SC network of Figure 4.4a, the component
a employees the private topic τ2 to notify to b the reception of the session. Intu-
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itively, the component b cannot be forced by an external agent to raise a τ1 event
without previously involve a. The SC network is translated to the NCP state in
Figure 4.4b.

4.3 Encoding saga in SC
In Sections 2.2 and 2.4 we described how the BPMN notations and saga processes
can be used to design transactional properties of business processes. Now, we
provide an SC implementation of the saga processes (i.e. the subset of BPMN
transactional designs). The starting point of our work is the implementation of
simple BPMN processes described in Sections 3.1.2 and 3.2.2.

We assume that an execution of the business process is identified by a specific
session, namely all events raised during one execution will be annotated with
the corresponding session topic. The notification to a component of a forward
event (having topic f ) represents that all previous stages of the forward-flow
have completed their execution. Similarly, when an error occurs, the notification
of a rollback event (having topic r) represents that all next stages have completed
their compensation.

Without loss of generality, we assume that each saga atomic activity has a
unique name, ranged by A,B, . . .. Let S be a saga we denote with A(S) the set
of names of all atomic activities in S. We implement each saga step with an SC
component. The mapping function SCname : Act →A retrieves the SC component
name a ∈ A that must implement the saga step containing the atomic activity
A ∈ Act .

The model transformation is provided by the function [[P]] = N,a,b,~a,~b,
which takes the saga process P and returns its implementation. Informally, the
network N is a reference SC implementation of the saga process, the names a
and b (called sequential entry/exit points) are the components that handle the
start and the termination of the process, while the sets of component names~a and
~b (called parallel entry/exit points) are the components that handle the start and
termination of each independent concurrent branch in P. The meaning of sequen-
tial and parallel entry/exit points will be discussed later, when we will describe
the implementation of sequential and concurrent saga processes, respectively.

The auxiliary functions [[A]] and [[A]]c map an atomic activity and a compen-
sation (A) to an SC behavior. We do not directly implement this function, since
the action performed by A are not described in saga. We assume that after the ter-
mination of an atomic activity, the mapped behavior raises an ok event to notify
its successful termination or an ex event to notify its failure. Moreover we as-
sume that after a compensation has been completed, the corresponding behavior
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[[A÷B]],
(νok,ex)SCname(A) [0]

f λ sm
rupd(ok©s mrupd(r©s m [[B]]c) |out〈 f ©s〉)
| rupd(ex©s mout〈r©s〉)
| [[A]]

ok {a}|ex {a}
,a,a,{a},{a}

Where a = SCname(A).

Table 4.14: The transactional component

raises an r event. Formally, let A÷B be a saga step and SCname(A) the component
implementing it, if A 7→� then〈

( /0,E) ; [[[[A]]]]SCname(A)

〉
≈
〈
( /0,E) ; [[out〈ok©s〉]]SCname(A)

〉
, otherwise〈

( /0,E) ; [[[[A]]]]SCname(A)

〉
≈
〈
( /0,E) ; [[out〈ex©s〉]]SCname(A)

〉
Since we assumed that a compensation always successes, the following statement
must holds〈

( /0,E) ; [[[[B]]c]]SCname(A)

〉
≈
〈
( /0,E) ; [[out〈r©s〉]]SCname(A)

〉
Notice that we do not specify the structure of E, meaning that the statements
must hold for any flows of involved components.

4.3.1 The transactional component
We start implementing a single saga step, namely an atomic activity and its com-
pensation. Let be A÷B a saga step, its implementation is obtained by the trans-
actional component [[A÷B]] defined in Table 4.14.

Initially, the component can react only to f events that notify the activation
of the forward-flow of the task. Upon reception of such a signal, the compo-
nent executes [[A]] and installs a check reaction; noteworthy, the lambda reaction
binds the session s that uniquely identifies the envelopes of the current work-flow
instance, to avoid that signals of another instances are intercepted.

The installed check reaction captures the signals ok©s and ex©s from [[A]]. If ex
is emitted, the corresponding reaction simply emits the rollback signal r©s so that
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the backward-flow is initiated. If ok is emitted, the forward flow continues be-
cause f ©s is emitted toward the components of the next stage. Notice that, if [[A]]
emits ok the compensation is installed: in fact, the check reaction handling the
ok events installs another check reaction that waits for rollback notifications r©s.
If the backward-flow is activated, the compensation is executed and the rollback
signal r©s is propagated to the previous stages. According with the semantics
of saga, rollback signals can be consumed only by components that successfully
executed their main activity (and therefore installed their compensation). This
implies that components execute their compensations only if their main activity
ended correctly.

Initially, the transactional component has only two flows, both targeted to it-
self. These are used to notify to the component about the result of the execution
of the main activity. Flows of the transactional component are rearranged later,
when it is used to implement sequential and parallel compositions of saga pro-
cesses. To update the flows of components we define the operator N⊕{~a : F},
which adds to all components ~a contained in the network N the flow F . The
operator is defined as follows:

/0⊕{~a : F} = /0

〈τ©τ′〉@b⊕{~a : F} = 〈τ©τ′〉@b
N1 ‖ N2⊕{~a : F} = N1⊕{~a : F} ‖ N2⊕{~a : F}
b [B]RF1

⊕{~a : F}= b [B]RF1
i f b 6∈~a

b [B]RF1
⊕{~a : F}= b [B]RF1|F i f b ∈~a

Table 4.15: The operator N⊕{~a : F}

4.3.2 Sequential composition
Since the coding of a saga process always produces a sequential entry point and
an exit point, the implementation of sequential composition simply requires to
connect the exit point of the first process with the entry point of the second one.
Figure 4.5a reports a graphical representation of the flows of a sequential com-
position. Formally, let P1;P2 be a saga sequential composition of two processes,
[[P1]] = N1,a1,b1, ~a1, ~b1 and [[P2]] = N2,a2,b2, ~a2, ~b2 be the implementations of
the two processes, we connect the forward-flow of the exit point b1 with the en-
try point a2 and the backward-flow reversely. The rule in Table 4.16 formally
describes the methodology.
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(a) Sequence (b) Parallel (c) Saga

Figure 4.5: Flows created by the coding of saga processes

[[P1]] = N1,a1,b1, ~a1, ~b1

[[P2]] = N2,a2,b2, ~a2, ~b2
N1 ‖ N2 Well f ormed

[[P1;P2]] = N1⊕{{b1} : f  a2} ‖ N2⊕{{a2} : r b1},a1,b2, ~a1, ~b2

Table 4.16: Sequential composition

The constraint N1 ‖ N2 Well f ormed simply requires that the set of compo-
nent names used by the two networks must be disjoint. The sequential compo-
sition acquires the entry points (both sequential and parallel) of the first process
and the exit points of the second one (a1,b2, ~a1, ~b2).

4.3.3 Parallel composition

The encoding of a parallel composition of processes requires auxiliary compo-
nents called dispatcher and collector to model the fork and join of the flow. Dis-
patchers are responsible to collect notifications of the forward flow (signals of
topic f ) and to dispatch them to the parallel entry points. Dispatchers also bounce
rollback signals of topic r when the backward flow is executed. Analogously, col-
lectors propagates forward and backward-flows by sending the signals of topic f
or r as appropriate. Fig 4.5b yields a pictorial representation of the forward and
backward flows; the dispatcher dsp, the collector col and the parallel compo-
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nents a and b are coordinated using the f and r signals. Notice, that a and b
have rollback flows connecting each other; in fact, the semantics of saga imposes
that, when the main activity of a parallel component fails, the other components
must be notified and start their compensations. The rule in Table 4.17 formally
describes the coding of the parallel composition of two processes P1 and P2.

exi

[[P1]] = N1,a1,b1, ~a1, ~b1

[[P2]] = N2,a2,b2, ~a2, ~b2
N1 ‖ N2 ‖ Pardsp ‖ Parcol Well Formed

[[P1|P2]] =

N1⊕{{a1} : r {dsp}}}⊕{~a1 : r ~b2}⊕{{b1} : f  col}
‖ N2⊕{{a2} : r {dsp}}}⊕{~a2 : r ~b1}⊕{{b2} : f  col}
‖ Pardsp ‖ Parcol

,dsp,col,~a1∪~a2,~b1∪~b2
Where :

Pardsp = dsp [0]

f λ sm
rupd(r©s mrupd(r©s mout〈r©s〉))
| out〈 f ©s〉
| out〈n©s〉

f {a1,a2}|n {col}

Parcol = col [0]
n λ smrupd

(
f ©smrupd

(
f ©sm out〈 f ©s〉

| rupd(r©s mout〈r©s〉)

))
r {b1,b2}

Table 4.17: Parallel composition

The last constraint simply requires that all component names of the resulting
network, including the dispatcher and the collector, are different. The dispatcher
and collector are the sequential entry point and exit point of the whole imple-
mentation, respectively. Moreover, the set of component that start (~a1 ∪~b1) and
end (~b1 ∪~b2) concurrent branches are obtained by the union of the concurrent
branches implementing the two saga processes. Notice, that the dispatcher com-
municates to the collector the work-flow session via a event tagged with the topic
n. The session notification is mandatory to perform the synchronization of the
forward-flow. This synchronization mechanism has been previously described in
Section 3.2.2.
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[[P]] = N,a,b,~a,~b
N ‖ Sagadsp ‖ Saga f ‖ Sagar ‖ Sagacol Well Formed

[[{|P|}]] =
(νn, ~cmp)
N⊕{{b} : f  {s f }}⊕{{a} : r {sr}}
‖ Sagadsp ‖ Saga f ‖ Sagar ‖ Sagacol

,sdsp,scol ,{sdsp},{scol}
where :
Sagadsp = sdsp [0] f λ smout〈 f ©s〉 | out〈n©s〉 | rupd(r©smrupd(r©smout〈r©s〉))

f {a}|n {scol}

Saga f = s f [0] f λ smout〈 f ©s〉 | rupd(r©smout〈r©s〉)
r {b}| f {scol}

Sagar = sr [0]r λ smout〈 f ©s〉 | out〈r©s〉
r {sdsp}| f {scol}

Sagacol = scol [0]n λ smrupd( f ©smout〈 f ©s〉 | rupd(r©smout〈r©s〉))
r {s f ,scol}

~cmp = {s f ,sr}∪ ( f n(N)∩A)\{a ∈ A | ∃A ∈ A(P) and SCname(A) = a}

Table 4.18: Nested transaction

4.3.4 Transactions

Finally, we present the implementation of a saga {|P|}. The main goal of the
transformation function is to hide the result of the execution of the contained
process P. Namely, independently by the termination of P, external agents are
always notified of a successful execution of the whole saga. With this purpose,
we use four components; Sagadsp implements the entry point of the whole saga,
Saga f and Sagar verify the result of the internal process P, finally Sagacol repre-
sents the exit point of the whole transaction.

The restriction of the names ~cmp permits to hide to external agents all details
of the implementation of the internal process P. Namely, the transformation
function creates several components to synchronize forward-flow (the parallel
collectors) and backward-flow (the parallel dispatchers) of tasks involved by the
process P. The set of names created for this purpose is represents by ~cmp. In fact,
the set of all component names used to implement the process P is f n(N)∩A ,
while the set of component names the are created to implement the tasks (the
transactional components) is {a | ∃A ∈ A(P) and SCname(A) = a}.

96



The forward-flow is initiated by the entry point of the transaction (sdsp),
which waits the notification of a f event. The entry point forwards the notifi-
cation to the entry point (a) of the process to isolate (P). The two components s f
and sr handle the termination status of the process P. If the process P successes,
its exit point b notifies the termination to s f , using an f -event, otherwise, the
entry point a notifies the failure to sr, using a r-event. Notice that, independently
by the termination status of the process P, the component scol is notified about
an f -event. This permits to hide failures of the contained process to any external
agent. The forward-flow is completed by the rising of the event to the collector
scol , which represents the end-point of the transaction.

The backward-flow is initiated by the exit point of the transition (scol), which
waits the notification of a r-event. The exit point forward the request notification
to both components s f and sdsp. The component s f is responsible to forward
the compensation demand to the exit point b. Thus the internal implementation
can perform its compensations. Notice that the component sdsp implements a
synchronization of the backward flow. In fact it is notified twice about the r-
events.

• If the internal implementation fails, sdsp is immediately notified by sr.
However, before propagating the backward-flow it waits for a second no-
tification from scol . In fact, also if the internal implementation fails, the
forward-flow must be propagated and the backward-flow delayed until the
occurrence of a failure of external activities.

• If the internal implementation successes, sdsp is notified by sr only after
that the internal compensations have been completed. However, it is also
notified by scol , thus informing the dispatcher that the rollback request is
coming from outside the saga.

4.4 Refactoring LRT
A few aspects of SOC systems evident in SC, such as, the component distribution
on the network, are not explicitly modeled in saga. In fact, either saga processes
are not concerned with such aspects or, more pragmatically, they can more suit-
ably considered at later stages of the development. For example,saga processes
sketches how the overall transaction among transactional tasks should proceed
without making any further assumption on which services implement such com-
ponents (or where they are located). saga processes (i) neglect distribution as-
pects of the transactional activities, (ii) does not specify if activities are atomic
or consisting of hidden sub-activities, (iii) delegate activities or compensations
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(e.g., according to patterns like farm). Arguably, refinement does not have to al-
ter the intention of the designer, namely, refinement must preserve the intended
semantics.

Our aim is to study the formal properties of some refactoring rules applied
to transactional behaviors for which long running transactions (LRT) have been
proposed. Our refactoring rules are proved sound by showing that they preserve
(weak) bisimulation. The proof relies on a bisimulation preserving mapping from
SC to its choreographic view expressed in the NCP. More precisely, we show that
the NCP image of an SC system is weak bisimilar to a refactoring obtained by
applying any of our rules. Albeit the proof could have been given directly at the
SC level, we prefer to deviate through NCP for simplicity and, more importantly,
because NCP provides a choreographic view of the SC system that is closer to
the original BPMN design. Hence, NCP images of SC processes can help to
change the BPMN design if problems spotted at the SC level require to modify
the original BPMN design.

We argue that the translation of saga transactions into SC networks provides
the suitable level of abstraction to which further refactoring steps can be applied.
For example, deployment of distributed components or rearrangement of points
of control can be automatically transformed at the SC level respecting the original
semantics of automatically translated designs.

In the following, we presents some useful refactoring rules by proving, through
bisimulation, that they produce new networks without interfering on their seman-
tics.

4.4.1 Refactoring transactional components
We introduce now our first refactoring rule that can be applied to any SC compo-
nent obtained by translating a saga step as shown in Section 4.3.1.

As said, both the main activity and the compensation of a saga step are em-
bedded into a single SC component that has then to manage ok and ex signals in
order to propagate forward or backward flows. However can be useful to assign
the compensation task to a different agent.

For example, it might be necessary to execute the compensation CompA in
Figure 2.3a on a different host than the one of A, because it involve a remote
service. This cannot be specified in saga. Instead, when the business process is
mapped in an SC network, it is possible to allocate CompA on a different host by
taking advantage of the JSCL (see Section 6.2) implementation, which permits
to distribute the deployment orthogonally to how the network is generated.

The delegation of the compensation of a transactional component a to a com-
ponent b produces the SC in Figure 4.6.
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TC = (νok,ex)


a [0]

f λ sm


rupd

(
ok©s m rupd(r©s m [[CompA]])

| out〈 f ©s〉

)
| rupd(ex©s mout〈r©s〉)
| [[A]]


{ok a,ex a, f ~c1,r ~c2}



DelegatedTC = (νb,ok,ex)

 a [0]
f λ sm

(
rupd

(
ok©s m rupd(r©s mout〈r©s〉)

| out〈 f ©s〉

)
| [[A]]

)
{ok a,ex b, f ~c1,r b}

‖ b [0]Rb
{r ~c2}


where Rb = ex λ s mout〈r©s〉 | r λ s m [[CompA]]

Figure 4.6: Delegate compensation to a new component

The refactoring rule uses a restricted component b (where b ∈ A is fresh) re-
sponsible to perform the compensation and manage the backward flow. For this
reason, the compensation of a is moved on b towards which a directs r and ex sig-
nals as specified in the refactored set of flows of a in Figure 4.6. The refactored
a component needs only to check the successful termination of its main activity.
In fact, the check reaction of a in Figure 4.6 propagates the forward flow and
activates a listener for the rollback signals possibly raised by subsequent trans-
actional components. Notice that a delegates the execution of the compensation
[[CompA]] to the new component b. This permits to the new component to be
informed if something goes wrong either during the execution of the main ac-
tivity (ex signals) or, after a successful execution of [[A]] when r signals may be
delivered by other components.

The initial reactions of b are given by Rb; namely, b waits the notification
of an exception from [[A]] or a rollback signal from subsequent components. In
the former case, b simply activates the backward flow (as per the reaction mi-
grated from a) while, in the latter case, b executes [[CompA]] that, as said, upon
termination starts the backward flow.

Theorem 8 proves that this refactoring rule is safe as it preserves weak bisim-
ulation.

Theorem 8 Let TC and DelegetedTC be as in Figure 4.6 then

[[TC]]≈ [[DelegatedTC]]
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Figure 4.7: Parallel composition and its refactoring

The theorem can be proved verifying that each transition of TC is (weakly)
matched by a transition of DelegatedTC, and viceversa. The proof of the the-
orem is reported in Appendix C.1.

4.4.2 Refactoring parallel composition

Figure 4.7a depicts the flows and components required to implement the parallel
composition of three saga steps.

Two distinct dispatchers (d1 and d2) are involved in the coordination. Dis-
patcher d2 is responsible to forward the received requests to components TC1
and TC2 and results externally the entry point of their parallel composition. As
result, the dispatcher d1 is connected to TC3 and to d2 acting as entry point for
the whole parallel block. Similar considerations can be made for the exit points
c1 and c2. The notification of events to these dispatchers are not relevant to the
semantic of the implementing network (more precisely these are hidden notifica-
tion, since the dispatcher components should be hidden out of the scope of the
network itself). The generation of two different dispatchers can provide a mech-
anism to optimize the communications among components. For example, if the
component d2, TC1 and TC2 reside on the same host, the generated dispatcher
permits to reduce the inter-host communications for the forward and backward
flow, since it receives only one inter-host envelope and then generates two intra-
host envelopes to the components TC1 and TC2. If the distribution of the com-
ponents cannot take advantage from this feature (e.g. TC1, TC2 and TC3 have
to reside on different hosts) the two dispatcher should be fused. The transforma-
tion that we explain hereafter is twofold; (i) it can merge two parallel dispatchers
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into one, simplifying the SC design, (ii) it can split a parallel dispatcher, refin-
ing the communication hierarchy among hosts. In the following we prove the
correctness of this refactoring only for parallel dispatcher. Noteworthy, the same
proof strategy can be applied to provide a similar refactoring mechanism for the
collectors.

Let Syncn(τ©s)(B) be the behavior that synchronizes n reception of signals
τ©s:

Sync0(τ©s)(B) = B and Syncn(τ©s)(B) = rupd(τ©s m Syncn−1(τ©s)(B))

Any SC network with a dispatcher d1 triggering a dispatcher d2 can be written as

Nd1,d2 = (νd1)(νd2)(N ‖ D)
where :

D = d2 [0]

f λ sm
Synck2(r©s)(out〈r©s〉)
| out〈 f ©s〉
| out〈n©s〉

f ~a2|r {d1}|n ~c2
‖ d1 [0]

f λ sm
Synck1(r©s)(out〈r©s〉)
| out〈 f ©s〉
| out〈n©s〉

f ~a1∪{d2}|r ~b|n ~c1
(4.1)

We can merge the two parallel dispatcher, migrating the flows of the component
d2 to the component d1 and adding to it the synchronizations of d2:

N′d1,d2
= (νd1)({d1/d2}N ‖ D′)

where D′ = d1 [0]
f λ smSynck1+k2−1(r©s)(out〈r©s〉) | out〈 f ©s〉 | out〈n©s〉
f (~a1∪~a2)|r ,~b|n (~c1∪~c2)

(4.2)

We start characterizing the behavior of the two systems Nd1,d2 and N′d1,d2
. The

starting system Nd1,d2 consists of dispatchers d1 and d2, namely D, and of all
other components, namely N. Our refactoring changes only the flows of N
by migrating all flows towards d2 onto d1. The resulting network {d1/d2}N
performs the same actions as the original one, but for the notifications to d2, that
are delivered to d1. In this case, we say that for the policy corresponding to N the
name d2 can be fused with d1.

The network D should be refactored according to the changes applied to the
network N. Since the N refactoring will notify the same events respect to the
starting network, the D refactoring should be able to consume the same events of
the starting dispatcher network. However all events that in D where consumed
by the component d1 or d2 will be consumed in the refactoring only by the com-
ponent a. Moreover, the refactored network must deliver the same envelopes to
the network N. If the refactoring is correct, we say that it merges of the behavior
of the two dispatcher.

Theorem 9 Let Nd1,d2 be as in 4.1 and N′d1,d2
as in (4.2) then [[Nd1,d2 ]]≈

[[
N′d1,d2

]]
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The theorem can be proved verifying that each transition of [[Nd1,d2 ]] is (weakly)

matched by a transition of
[[

N′d1,d2

]]
, and viceversa. The sketch of the proof of

the theorem is reported in Appendix C.2.

4.5 Related Works
In this Chapter we presented our reasoning techniques for the SC framework.
The first contribution of this Chapter is the definition of the choreography model,
called Network Coordination Policies calculus (NCP). NCPexploits the interac-
tion pattern of SCby a global point of view. Since NCP is intended as a speci-
fication formalism, we formalize its abstract semantics to provide a verification
strategy. The problem of checking if two specification are compatible is solved
by verifying their weak bisimilarity.

To fill the gap between the choreography model and the system design, we
provided a semantic transformation that derive the NCP state starting from the SC
design. These results provide a formal definition of satisfaction of a specification
in term of weak bisimilarity checking.

To highlight our theoretical approach, we introduced a formal transformation
that provide a reference SC design starting from a saga model. Then we pre-
sented the formal properties of some refactoring rules applied to SC models that
implement saga transactional behaviors. We verified that the refactoring trans-
formation preserve weak bisimilarity of the implementing SC models.

Several other models have been proposed to model choreography (e.g. the
Global Calculus [19] and the work presented in [28]). A distinguished feature
of NCP is that it can handle multicast interaction in a natural way. NCP is cen-
tered around the notion of network topology, which permits to represents the
component subscriptions by a global point of view. The NCP abstract semantics
handles a semantic context (the topology) that affects and can be update by pro-
cesses (NCP policies). Moreover, the interplay between the topologies and the
name restrictions allows NCP to hide non only names, but also a whole part of
the component connections.

A key difference between NCP and the asynchronous π-calculus (presented
in Section 2.3.5) is the awareness of topic topologies in the semantics. However,
it would be too restrictive to require that only policies with the same topology
can be bisimilar. For example, the empty network is bisimilar to itself under any
topology.
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Chapter 5

The SC practice

In this Chapter we illustrate the usage of our framework through a case study [32]
borrowed by the SENSORIA Project [33]. We address the problem of develop-
ing a service oriented application for an automotive system that involves several
services, which should be provided by several providers.

We assume a car equipped with a diagnostic system that continuously reports
on the status of the vehicle. When the car experiences some major failure (e.g.
engine overheating, exhausted battery, flat tires) the on-board emergency service
is invoked to

1. locate a garage,

2. locate a tow truck and

3. locate a rental car service

so that the car is towed to the garage and repaired meanwhile the customer may
continue his/her travel. Moreover, the system informs the customer company
about its delay, so that the company information system can handle the issue.

The inter-dependencies among the services are summarized as follows:

• the first step is to charge the credit card with a security amount;

• before looking for a tow truck, a garage must be found as it poses additional
constraints to the candidate tow trucks;

• if finding a tow truck fails, the garage appointment must be revoked;

• if renting a car succeeds and finding a tow truck appointment fails, the car
rental must be redirected to the broken down car’s actual location;
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Figure 5.1: The BPMN case study model

• if the car rental fails, it should not affect the other services, since the cus-
tomer can be transported by the tow truck to the garage.

• if the truck reservation fails a phone call have to be instantiated between the
customer and his company, so that the customer can requires an additional
support from its company.

• the taxi is ordered to reach the garage location.

• if the truck reservation fails and a taxi has been reserved, it must be redi-
rected to the car location.

5.1 Model transactional properties
We specify the automotive system by exploiting the BPMN design of Figure 5.1.
BPMN permits to design the work-flow of a distributed system and its transac-
tional properties by a global point of view. The software designer can abstract
from the distribution of the processes, the communication mechanisms and the
technologies that are used to implement the processes. The resulting abstract
specification can also be reused if further architectural design changes.

The BPMN design of Figure 5.1 is a semi-formal specification of the system
that describes the transactional requirements and temporal inter-dependencies
among tasks. In Figure 5.2 we exploit the saga calculus to formally describe
this properties of the system. We will use the BPMN task names (e.g. Payment,
PaymentRe f ound, Taxi) to identify the saga atomic activities and compensations.
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PPayment = Payment÷PaymentRe f ound
PGarage = Garage÷RevokeAppointment
PDelayNoti f ication = DelayNoti f ication÷PhoneCall
PTruck = Truck÷CancelTruck
PTaxi = Taxi÷RedirectTaxi

STaxi = {|PTaxi|}

S =
{∣∣PPayment ;PGarage;

(
PDelayNoti f ication|PTruck|STaxi

)∣∣}
Figure 5.2: The saga formalization of the case study

We first formalize each BPMN compensable task by using a saga step, which is
composed by an atomic activity and its compensation. We use the name PA to
identify the step whose main activity is A.

To represent the constraint that a failure of a taxi reservation has no effect on
the system, we “box” the corresponding step PTaxi into the saga STaxi = {|PTaxi|}.
Finally the whole system is formalized by the saga S, which contains the elements
defined in the previous stages.

5.2 The reference SC implementation
We use the encoding of saga into SC described in Section 4.3 to provide a refer-
ence implementation of the saga S. As usual we start describing the implemen-
tation of the main building blocks of the system. We recall that the reference
implementation requires the definition of the mapping function SCname : A → A ,
which retrieves the SC component name a∈A that must implement the saga step
containing the atomic activity A ∈ A . We assume that the function satisfies the
following constraints:

SCname(Payment) = pa SCname(Garage) = ga SCname(Truck) = tr

SCname(DelayNoti f ication) = dn SCname(Taxi) = ta

We use NSCname(A) to identify the SC network implementing the saga step
whose main activity is A. For example Nga represents the network implementing
the saga step Garage÷RevokeAppointment. Let A÷B be a saga step, its SC
reference implementation is obtained by the transformation [[A÷B]] described in
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[[Garage÷RevokeAppointment]] = Nga,ga,ga,{ga},{ga}

where Nga = (νok,ex)ga [0]

f λ sm
rupd

(
ok©s m rupd(r©s m [[RevokeAppointment]])

| out〈 f ©s〉

)
| rupd(ex©s mout〈r©s〉)
| [[Garage]]

ok {ga}|ok {ga}

Figure 5.3: The SC implementation of the step PGarage

[[Sta]] = NSta ,stadsp ,stacol ,{stadsp},{stacol}

where NSta = (νn,sta f ,star)
(

Nta⊕{{ta} : f  {sta f }}⊕{{ta} : r {star}}
‖ Sagatadsp ‖ Sagata f ‖ Sagatar ‖ Sagatacol

)

Figure 5.4: The SC implementation of the saga STaxi

Section 4.3.1. Each step is implemented through a dedicated transactional com-
ponent, which is responsible to implement both the main activity and its com-
pensation. Figure 5.3 illustrates the implementation of PGarage, which models the
booking of a garage and its compensation: revoking the appointment. We as-
sume that the implementation of the main activity ([[Garage]]) raises the ok event
to notify its successful termination or the ex event to notify its failure. Moreover,
we assume that the compensation ([[RevokeAppointment]]) always successes and
terminates its execution by rising the r event. Initially, each transactional compo-
nent has only two flows, both targeted to itself, whose are used to retrieve the ter-
mination status of the main activity. The flows of the component will be updated
later, when the transactional components are composed to implement sequential
and parallel sagas. Since the produced network contains only the component ga,
it represent both entry and exit points of the mapping.

We continue implementing the sub-transaction STaxi, which isolates the ter-
mination status of the taxi activity. The transformation function produces the
reference implementation NSta exploiting the transactional component NTa (see
Figure 5.4). The networks Sagatadsp , Sagata f , Sagatar and Sagatacol contains the
four auxiliary component described in Section 4.3.4, which names are assumed
to be stadsp , sta f , star and stacol , respectively. Notice that the component names
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[[
(PDelayNoti f ication|PTruck)|Staxi

]]
= Npar,dsp2,col2,{dn, tr,stadsp},{dn, tr,stacol}

where Npar =

Ndn⊕{{dn} : r {dsp1, tr,stadsp}}⊕{{dn} : f  {col1}}
Ntr⊕{{tr} : r {dsp1,dn,stadsp}}⊕{{dn} : f  {col1}}
NSta ⊕{{stadsp} : r {dsp2,dn, tr}}⊕{{stacol} : f  {col2}}
‖ Ndsp1 ‖ Ndsp2 ‖ Ncol1 ‖ Ncol2

Ndsp1 = dsp1 [0]

f λ sm
Sync2(r©s)(out〈r©s〉)
| out〈 f ©s〉
| out〈n©s〉

f {dn,tr}|r {dsp2}|n {col1}

Ncol1 = col1 [0]
n λ sm Sync2( f ©s)

(
out〈 f ©s〉
rupd(r©s mout〈r©s〉)

)
f {col2}|r {dn,tr}

Ndsp2 = dsp2 [0]

f λ sm
Sync2(r©s)(out〈r©s〉)
| out〈 f ©s〉
| out〈n©s〉

f {dsp1,stadsp}|n {col2}

Ncol2 = col2 [0]
n λ sm Sync2( f ©s)

(
out〈 f ©s〉
rupd(r©s mout〈r©s〉)

)
r {col1,stacol }

Figure 5.5: The SC implementation of the process (PDelayNoti f ication|PTruck)|Staxi

sta f and star are under the scope of a restriction. The intuition behind this is that
any external component cannot interact with sta f and star . We also need to update
the flows of the transactional component ta, to inform the auxiliary components
about its termination. The graphical representation of the flows of the whole
network is depicted in Figure 5.8a.

The above saga and the two network Ndn and Ntr must be composed to im-
plement the parallel composition PDelayNoti f ication|PTruck|Staxi. We exploit the dis-
tributive property of the parallel operator to transform the starting process into
(PDelayNoti f ication|PTruck)|Staxi. We create four auxiliary components; a parallel
dispatcher and a parallel collector for each saga parallel operator in the process.
We assume that the names dsp1, col1, dsp2 and dsp2 identify the dispatcher
and collector for the first operator (PDelayNoti f ication|PTruck) and the dispatcher and
collector of the second one ((. . .)|Staxi). Let Ni be the SC network containing the
auxiliary component named i, the encoding of the whole process is reported in

107



Nseq, pa,col2,{pa},{col2}

where Nseq =
Npa⊕{{ga} : f  {dsp1}}
Nga⊕{{ga} : f  {dsp2}}⊕{{ga} : r {pa}}
Npar⊕{{dsp2} : r {ga}}

Figure 5.6: The SC implementation of the sequential composition

[[S]] = NS,sdsp,scol ,{sdsp},{scol}

where NS = (νn,dsp1,dsp2,col1,col2,stadsp ,stacol ,s f ,sr)(
Nseq⊕{{col2} : f  {s f }}⊕{{pa} : r {sr}}
‖ Sagadsp ‖ Saga f ‖ Sagar ‖ Sagacol

)

Figure 5.7: The SC implementation of the saga S

Figure 5.5. The flows of the resulting network are depicted in Figure 5.8c. Notice
that the three networks implementing the three concurrent saga processes are in-
terconnected for the backward-flow, to start the compensation of concurrent saga
branches if at least one of them fails.

The sequential process PPayment ;PGarage;
(
PDelayNoti f ication|PTruck|STaxi

)
, is im-

plemented by composing Npa, Nga and the network Npar. The encoding simply
connects the forward-flow and backward-flow of sequential entry/exit points as
depicted in Figure 5.8e. The resulting network Nseq is described in Figure 5.6.

Finally, we can implement the saga S by boxing the network Nseq with the
same technique used for the inner transaction (see Figure 5.7). The networks
Sagadsp, Saga f , Sagar and Sagacol contain the four auxiliary component de-
scribed in Section 4.3.4, which names are assumed to be sdsp, s f , sr and scol .
Notice that the component names {dsp1,dsp2,col1,col2,stadsp ,stacol ,s f ,sr} are
restricted, representing that this components are used to implement the internal
synchronizations and that any external agent cannot interact with them. Finally,
we update the flows of the network to allow auxiliary components to keep track
the forward and backward flows. The graphical representation of the connections
is depicted in Figure 5.8f.
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(a) NSta

⇒
(b) NSre f ta

(c) Npar

⇒
(d) Nre f par

(e) Nseq

(f) Ns

Figure 5.8: Flows of the reference implementation and of its refactoring
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Ntare f = (ν tac,ok,ex)

 ta [0]
f λ sm

(
rupd

(
ok©s m rupd(r©s mout〈r©s〉)

| out〈 f ©s〉

)
| [[Taxi]]

)
{ok {ta},ex {tac}, f {sta f },r {tac}

‖ tac [0]ex λ smout〈r©s〉 | r λ sm[[RedirextTaxi]]
r {star }


(a) Delegate the compensation of taxi

Ndsp2re f
= dsp2 [0]

f λ sm
Sync3(r©s)(out〈r©s〉)
| out〈 f ©s〉
| out〈n©s〉

f {dn,tr,stadsp}|n {col1,col2}|r {ga}

(b) Merge the two parallel dispatchers

Figure 5.9: Refactoring the reference implementation

5.3 Refinement via refactoring

The SC reference implementation exploits a simple strategy to satisfy the busi-
ness process: each activity and the corresponding compensation is managed by a
dedicated transactional component. It handles ok and ex events in order to propa-
gate forward and backward-flows. However, the deployment of the system should
reflect some additional aspects that does not affect the transactional properties of
the process. Let us assume that the reservation of the taxi is performed by the
information system of the taxi company. Moreover, assume that the request to
redirect the taxi (the compensation) must be sent to an on-board system hosted
on the taxi itself. The simplest way to refine the SC implementation is to delegate
the compensation task to a different component, which represents the on-board
service. To this purpose, we use the refactoring rules presented in Section 4.4.1.
Informally, we replace the starting network that implements the task Taxi (Nta)
with the network presented in Figure 5.9a (Ntare f ).

The refactoring yields a restricted component tac that represent the on-board
system. It is responsible to perform the compensation and to manage the backward-
flow. In fact, RedirectTaxy is moved on tac towards which ta directs r and ex
signals, in accordance with this transformation. Now, the information system of
the taxi company (represented by ta) needs only to check the successful termina-
tion of the reservation, delegating to the on-board system any further exception
handling. The refactoring also updates the flows of the components involved in
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the taxi reservation (ta, tac, stadsp , sta f , star , stacol ), producing the connections
depicted in Figure 5.8b.

Now, we focus on the management of the concurrent execution of the activi-
ties DelayNoti f ication, TruckReservation and Taxi. The reference implementa-
tion exploits two distinct dispatchers (dsp1 and dsp2). The notification of events
to these dispatchers are not relevant to the semantic of the network. Indeed, their
names are restricted in the network NS. Let us assume that all components that
implement the three involved activities reside on different hosts. In this scenario,
the usage of two dispatcher cannot reduce the inter-host communications.

We can merge two parallel dispatchers into one to simplify the SC design. We
refine the SC network by exploiting the refactoring presented in Section 4.4.2. We
merge the two parallel dispatcher, migrating the flows of the component dsp1 to
the component dsp2 and adding the synchronizations of dsp1. Then we substitute
the networks Ndsp1 and Ndsp with the network Ndsp2re f

of Figure 5.9. Finally, we
update the flows of the system obtaining the connections depicted in Figure 5.8d.

We recall that the theorems presented in Section 4.4 ensure that the refine-
ment is sound respect to the starting reference implementation.
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Chapter 6

The Event based Service
Coordination framework

The programming model of SC presented in Section 3.2 has driven the prototype
implementation of the framework Event based Service Coordination (ESC). The
name of the framework highlights the adoption of the event notification paradigm
to coordinate distributed services. ESC is composed by three main components:
a programming language, a run-time that implements the communications and
an integrated development environment.

In this chapter we describe the ESC framework and we focus on the interplay
between the actual programming primitives and our theoretical results. The full
description of the implementation details is out of the scope of this thesis and can
be found in [27].

In Section 6.1 we present the Signal Core Language (SCL). SCL is a Domain
Specific Language (DSL) that allows the designer to program distributed sys-
tems using the SC programming model. The language permits to model an SC
network, defining the involved components, their behaviors and their interfaces.

In Section 6.2 we summarize the Java Signal Core Layer (JSCL). It is a Java
API to implement distributed components. JSCL represents the tun-time of ESC.
A key feature of JSCL is its two layer architecture. The more abstract layer pro-
vides the primitives used by the programmer to coordinate components, while
the lower level permits to specialize the system to exploit a specific network
infrastructure. This architecture allows components to abstract from the commu-
nication protocols that are used to deliver event notifications.

In Section 6.3 we briefly describe the programming environment of ESC,
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called JSCL4Eclipse. We implemented the environment on top of the Eclipse
platform [74], in order to integrate the development process with existing pro-
gramming tools. The environment supports the SCL language and provides a
model transformation tool that compiles SCL programs into Java code.

6.1 The language: SCL
The Signal Core Language (SCL) is a textual language to program distributed
systems. We defined the language to provide a Domain Specific Language (DSL)
that exploits the SC programming model. The language is tailored to coordinate
services using the event notification paradigm. We present the syntax of the SCL
language and we highlighting the interplay between the SCL primitives and the
programming model of SC. An SCL file represents an SC network. A file starts
with the declaration of the public topics followed by definition of the involved
components:

1 global SetOfTopics;
2 ListOfComponent

Let~n be the set of free topic names of ListOfComponents, formally

~n = f n(ListO fComponents)∩T

an SCL file represents the SC network:

(ν(~n\SetO f Topics))ListO fComponents

Components are the computational units of the language. A component is defined
using the following SCL primitive:

1 component a {
2 local: SetOfTopics;
3 SetOfFlows;
4 ListOfReactions
5 main {
6 Behavior
7 }
8 }

The relation with the SC model is straightforward. The primitive declares the SC
component

(ν SetO f Topics)
(

a [Behavior]ListO f Reactions
SetO f Flows

)
Notice that topics specified as local represent restrictions, modeling that all other
components does not know these names. The SetO f Flows is simply a set of
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comma separated of unit flows. An SC unit flow topic a is defined by the
primitive [topic−> a]. The ListO f Reactions is a new line separated list of reac-
tions, which are the event handlers installed on the component. According to the
SC model, SCL provide two kind of handlers: the lambda and the check reaction.
The SC check reaction τ©τ′m B is defined by the SCL fragment:

1 reaction check (topic@topic1) {
2 Behavior
3 }

The SC lambda reaction τ λ τ′m B is defined by the SCL fragment:

1 reaction lambda (topic@x) {
2 Behavior
3 }

The semantics of the two handler primitives reflect the semantics of SC 3.7. A
check reaction can be activated only by events having the session topic1. Instead,
a lambda reaction handles events independently by their sessions. Moreover, a
check reaction is consumed when activated, while a lambda reaction is a sin-
gleton that persists on the component interface. The identifier x of the lambda
reaction is a variable name; when an event is consumed, its session identifier is
assigned to x.

Behaviors represent the actions performed by a component. Any SC behav-
ioral primitive has been provided as an SCL operator. The SCL fragment

1 split
2 {Behavior1}
3 || {Behavior2}

represents the behavior B1 | B2, which executes concurrently the two contained
fragments.

The SCL fragment

1 addReaction (
2 Reaction
3 );
4 Behavior

represents the SC reaction update rupd(R) ;B.
The SCL fragment

1 addFlow ( SetOfFlows );
2 Behavior

represents the SC flow update fupd(F) ;B.
The SCL fragment
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Figure 6.1: Architecture of JSCL

1 emit ( topic1@topic2 );
2 Behavior

represents the SC asynchronous signal emission out〈τ1©τ2〉;B.
The SCL fragment

1 with (topic) {
2 Behavior
3 }

represents the SC topic generation (ντ)B.
Finally, the SC internal action ε;B is represented by the SCL fragment

1 nop;
2 Behavior

6.2 The run-time: JSCL
Java Signal Core Layer (JSCL) is the run-time of our framework. It has been
developed using the two-level architecture depicted in Figure 6.1. The more
abstract level is called Signal Based Layer (sbl). It provides to the programmer
the primitives to build and coordinate services. The lower level, called Inter
Object Communication Layer (iocl), manages the network communication. The
role of iocl is to abstract from the network technologies used, in order to hide
network heterogeneity to the higher level.

Table 6.1 summarizes the main API of sbl. According to the SC programming
model, communications are implemented by notification of events. An event
is represented as an instance of the class Signal. Signals are characterized by
their SignalType, which embeds the topic and the session identifier of the event.
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1 SignalType t = new SignalType();
2 t.setTopic(topic);
3 t.setSessionID(topic1);
4 Signal s = new Signal();
5 s.setType(t);
6 component.emit(s);

Figure 6.2: Java implementation of out〈τ©τ′〉

According with the SC model, both topics and session identifiers are instances of
the interface Topic and can be freely interchanged.

The class Component implements both the interfaces Handler and Emitter.
The former defines the structure of objects able to handle notifications, while the
latter specifies objects that can raise events.

A component internally stores its flows, which associate signal types to the
addresses of the subscribers. When a component is created, its flows are initially
empty. The component can change its flows using the method addFlow. Intu-
itively, the execution of addFlow(topic,address) implements the SC behavior
fupd(τ {address}). The SC behavior out〈τ©τ′〉, which raises a new event,
can be implemented by Java code In Figure 6.2. When it is executed, the middle-
ware introspects the flows of the emitter to deliver multiple copies of the event
to all connected. Signals targeted to components that have not yet published be-
come pending over the network. The infrastructure must implement a buffering
mechanism that allows asynchronous communications. This task is delegated to
the iocl. It must ensure that pending signals will be consumed when the target
component become reachable. Delegate this feature to the iocl permits to spe-
cialize the middleware to take advantages of particular IT infrastructure. For ex-
ample, the iocl could guarantee the persistence and reliability of message queues
by serializing them on an available relational database [75].

Each component stores its reactions, which declare how the component han-
dles incoming signals. Analogously to component flows, the set of reactions is
initially empty. A component can update its reactions using the method addReaction(R),
which implements the SC behavior rupd(R). A JSCL reaction embeds a SignalType
and a Task. The former defines which events notification can activate the reac-
tion, while the latter defines the behavior to execute. When a reaction consume a
signal, the method handle of the proper task is invoked by the middleware using
a dedicated thread. Reactions are classified into check and lambda, according
to their signal type. Reactions having an empty session identifier (null) in the
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1 class BTask implements Task {
2 void handle(Signal s) {
3 Topic x = s.getSessionID();
4 B
5 }
6 }
7 SignalType t = new SignalType();
8 t.setTopic(topic);
9 t.setSessionID(null);

10 Reaction r = new Reaction();
11 r.setType(t);
12 r.setTask(BTask);
13 component.addReaction(r);

Figure 6.3: Java implementation of rupd(τ λ x m B)

signal type are considered lambda and will not be deleted after their activation.
We provide an example to illustrate this mechanism. Let ex be the SC behavior
rupd(τ λ x m B) that adds a new lambda reaction. Upon the reception of an event
having topic τ, the reaction can be activated and the received session identifier
is substituted to x in the behavior B. Finally, B is concurrently executed inside
the component. The behavior ex can be implemented by Java code in Figure 6.3.
Notice that the variable binding is implemented by the assignment to the variable
x of the session identifier of the received signal.

The iocl has been introduced to abstract from the peculiarities of the tech-
nologies used to distribute the JSCL components. The iocl defines the minimal
functionalities that a technological infrastructure must provide to allow the in-
teraction of JSCL components. The iocl is responsible of the delivery of events
raised by components. A key feature of JSCL is that several iocls can coexist un-
der the same sbl. Each iocl instance is responsible to manage a specific network
infrastructure. The set of all iocl used by a system represents the SC notion of
network, providing the functionality of publish components, identify them by a
unique name and deliver the signal notifications.

Currently, the prototype implementation supports three iocls, allowing to
deploy components to as many communication technologies: shared memory,
socket and HTTP SOAP. A component must be deployed on at least one iocl in
order to be notified about events.

The iocl is also responsible to serialize messages according to the adopted
network. For example, if components are deployed as web services, notifica-
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tions will be serialized as XML documents and delivered inside a SOAP en-
velopes. The handling of notifications and their serialization/deserialization al-
lows an high degree of interoperability. Components residing on heterogeneous
networks (e.g. mobile phones, sensor networks, web services etc.) can coexist
and inter-operate, under the assumption that these systems adhere to a common
programming model: the one supplied by the sbl. The separation among the as-
pects related to the network infrastructure and the behavior of components allows
to change the iocls without compromising the design of the components.

6.3 The programming environment: JSCL4Eclipse
The JSCL4Eclipse is our programming environment. It provide the development
tools to support the designer to model and implement service oriented applica-
tions on top of the ESC framework. The environment is integrated within the
Eclipse platform [74] in order to simplify the adoption of the framework. The
environment consists of three tools, each of them developed as an independent
Eclipse plug-in:

• a visual editor to graphically model the flows of components

• a textual editor for the SCL language, supporting code completion and syn-
tax error checking

• a model transformation that “compiles” SCL files into Java classes that
exploit the JSCL API.

The tools ha been developed with the aid of the Graphical Modeling Framework
(GMF [76]), which provides a generative infrastructure for developing editors
based on the Eclipse Modeling Framework (EMF [77]) and on the Graphical
Eclipse Framework (GEF [78]).

The development cycle of distributed applications using ESC can be summa-
rized as follows:

1. The designer exploits the visual editor to graphically model the set of com-
ponents involved into the coordination. The designer can add reactions,
modeling the kind (check or lambda) and the event topics handled by them.
It also models the flows of the components drawing arrows among them.

2. The environment associates to each graphical model a SCL file. The graph-
ical model and the corresponding SCL file are maintained coherent by the
tools. Every updates, insertion and deletion on a term on the graphical
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model are reflected on the SCL file and vice versa. Therefore, after that
the designer modeled the components on the visual editor, a skeleton SCL
code has been automatically generated. Now, the programmer can imple-
ment the behaviors of the reactions that cannot be graphically represented.

3. When all missing behavior has been implemented in SCL, the program-
mer can generate the Java source code. The output code exploits the JSCL
API to implement the coordination specified by the platform independent
model. Now, the implementation detail that does not affect the coordina-
tion can be directly added into the generated source code using the Java
programming language.

6.4 Related Works
Software companies have promoted frameworks to deal with SOA. Here we only
consider the SCA proposal. The Service Component Architecture (SCA [79])
and its standard specification Composite Services Architecture (CSA [80]) ex-
ploit a component based approach to decouple the service logic from the process
logic. Both SCA and ESC exploit a notion of connections among components,
allowing to implement complex interactions by configuring the component links.
Moreover, both approach exploit a multi-layered architecture to decouple the pro-
gramming interface from the underlying network technologies used to exchange
messages.

However, the distinguished feature of ESC is the strict interplay between the
actual programming primitives and the foundational mechanisms. In Section 4.4
we presented some refactoring rules that handle specific aspects of systems. We
proved that these transformations are sound, namely the semantics of the system
is unchanged. We have already pointed out that the programming frameworks
can greatly increase the benefits of the MDD approach only if the semantics of
the DSLs are formally defined.
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1 class Signal {
2 SignalType getType();
3 void setType(SignalType sigT);
4 }
5
6 class SignalType {
7 Topic getTopic();
8 void setTopic(Topic t);
9 Topic getSesisonID();

10 void setSessionID(Topic s);
11 }
12
13 interface Task {
14 void handle(Signal s);
15 }
16
17 class Reaction {
18 setType(SignalType sigT);
19 setTask(Task t);
20 }
21
22 class Handler {
23 void addReaction(Reaction r);
24 }
25
26 class Emitter {
27 void emit(Signal s);
28 void addFlow (Topic sigT , ComponentAddress target);
29 }
30
31 class Component implements Handler , Emitter {
32 }

Table 6.1: Sketch of main sbl API
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Chapter 7

Concluding remarks and
Future works

In this thesis we presented our framework for service coordination. We focused
on the theoretical aspects of our work and the benefits provided by the formal
methodologies provided to the actual programming environment. The main con-
tribution of this thesis are:

• The definition of the SC family of process calculi. Signal Calculus (SC)
is our proposal to design services coordination using the event notification
paradigm. The calculus is the formal machinery that has driven the SCL
programming language and the its run-time, called JSCL.

• The definition of the choreography model of SC: the Network Coordination
Policy calculus (NCP). We described the observational semantics of NCP
to provide a formal definition correctness. We related the semantics of SC
and NCP to allows SC designs to be verified respect to NCP policies.

• The implementation of saga calculus using SC, which provides a reference
implementation of long running transaction.

• The definition of sound refactoring methodologies that permit to handle
aspects related to the deployment phase of the SC models without affecting
their semantics

Since we focus on service choreography, the thesis handles the issues specific
to the design and the implementation of services. In particular we focus on the
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verification of a local design respect to a global specification. We implement the
saga calculus using SC models to highlight the benefits of a SOA framework with
formal grounds.

Future Work

The SC design language has been equipped with three styles of event notification
interactions, namely topic-based, content-based and type-based. However, some
further investigations are still needed. For example, the type-based SC dialect
uses C-Semiring [63] to represent properties of events. This structures have al-
ready been exploited to represent quantitative aspects of systems. This suggests
that SC can be extended to deal with quality of service issues. Moreover, the
type-based SC dialect could be generalized in order to provide a standard frame-
work to manage type based interactions. For example, the XDuce [81] language
could provide the type system needed to filter events using hierarchical structures
similar to XML.

The NCP calculus is strictly related to the SC programming model, allow-
ing to simplify the reasoning techniques. However, some differences between
the two approaches can be studied. For example NCP could be equipped with
fusion-based interactions [82] to provide a further abstraction mechanism for
choreography. Moreover, we plan to equip the calculus with a variety of veri-
fication mechanisms like model checking and property checking via bisimilarity.

In [40] we proposed a debugging model that exploits causal petri nets to
track of the progress of SC models. The intuitive idea can be used to provide
new tools to simplify the tuning of distributed applications programmed in JSCL.
Moreover, we are investigating the interplay between the debugging model and
long running transactions. Usually, it is not possible to undo all the effects of a
debugging session of a SOA application. Thus, we want to apply the notion of
compensation to recover partial executions of the debugger. We plan to extend
the set of refactoring rules for the SC models that implement saga processes to
deal with this possibility.

Finally, the multicast interaction pattern of SC and NCP can be suitably ap-
plied in a wide range of systems different from SOA, including grid and clouds
computing. We plan to investigate some usage scenario to verify the expressive-
ness of our framework.
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Appendix A

Proof of Theorems in
Section 4.1

A.1 Proof of Theorem 1

Let 〈G ; P〉 be a NCP state and G1 a network topology, if P⊥ G1 then

〈G ; P〉 α−→
〈
G′ ; P′

〉
i f and only i f 〈G]G1 ; P〉 α−→

〈
G′]G1 ; P′

〉
The theorem can be proved by induction over the NCP transition rules. We report
the proof only for the most interesting cases; fupd, emit and open.

Rule fupd

If 〈G ; P〉 performs an action by the rule fupd then

〈G ; P〉= 〈G ; fupd(F)@A.P0〉
ε−→ 〈G]a�F ; P0〉

The state 〈G]G1 ; P〉 can be written as 〈G]G1 ; fupd(F)@A.P0〉. This can
performs the same action using the rule fupd

〈G]G1 ; fupd(F)@A.P0〉
ε−→ 〈G]G1]a�F ; P0〉= 〈G]a�F ]G1 ; P0〉
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Rule emit

If 〈G ; P〉 performs an action by the rule emit then

〈G ; P〉=
〈
G ; τ τ

′@a.P0
〉 ε−→

〈
G ; P0 ‖ ∏

b∈G(τ,a)
〈τ©s〉@b

〉

The state 〈G]G1 ; P〉 can be written as 〈G]G1 ; τ τ′@a.P0〉. This can perform
the same action using the rule emit

〈
G]G1 ; τ τ

′@a.P0
〉 ε−→

〈
G]G1 ; P0 ‖ ∏

b∈(G]G1)(τ,a)
〈τ©s〉@b

〉

Since a∈ Sb j(P) then a 6∈ Sb j(G1). This guarantees that (G]G1)(τ,a)= G(τ,a).

Rule open

If 〈G ; P〉 perform an action involving by rule open then

〈G ; P〉= 〈G ; (ν τ : T )P0〉
〈τ′©(τ:T )〉@a−−−−−−−−→

〈
G] τ�T ; P′0

〉
and 〈G] τ�T ; P0〉

〈τ′©τ〉@a−−−−−→
〈
G] τ�T ; P′0

〉
Since Sb j(〈G ; (ν τ : T )P0〉)= Sb j(〈G] τ�T ; P0〉) then 〈G] τ�T ; P0〉⊥G1.
By the induction hypothesis

〈G] τ�T ]G1 ; P0〉
〈τ′©τ〉@a−−−−−→

〈
G] τ�T ]G1 ; P′0

〉
Then the rule open can be applied to 〈G]G1 ; P〉, obtaining

〈G]G1 ; P〉= 〈G]G1 ; (ν τ : T )P0〉
〈τ′©(τ:T )〉@a−−−−−−−−→

〈
G]G1] τ�T ; P′0

〉
A.2 Lemma 1

Lemma 1 Let 〈G ; P〉 be a NCP state, if 〈G ; P〉 〈τ©τ′〉@a−−−−−→ 〈G ; P′〉 then

〈G ; P〉 ∼
〈
G ; P′ ‖ 〈τ©τ

′〉@a
〉

The lemma can be easily proved by induction over NCP transition rules.
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A.3 Proof of Theorem 3
Let 〈G1 ; P1〉 and 〈G2 ; P2〉 be two NCP state such that 〈G1 ; P1〉 ∼ 〈G2 ; P2〉
and 〈G1 ; P1〉

τ τ′@a−−−−→ 〈G1 ; P′1〉, then and one of the following two statements
must hols:

• 〈G2 ; P2〉
τ τ′@a−−−−→ 〈G2 ; P′2〉 and 〈G1 ; P′1〉 ∼ 〈G2 ; P′2〉

• 〈G2 ; P2〉
ε−→ 〈G′2 ; P′2〉 and 〈G1 ; P′1〉 ∼ 〈G′2 ; P′2 ‖ 〈τ©τ′〉@a〉

Since the transition rules async can be applied to any NCP state, we can compose
the first NCP state with a compatible envelope

〈G1 ; P1〉
(τ τ′@a)−−−−−→

〈
G1 ; P1 ‖ 〈τ©τ

′〉@a
〉

Since 〈G1 ; P1〉 and 〈G2 ; P2〉 are bisimilar, the latter state must perform the same
action and 〈

G1 ; P1 ‖ 〈τ©τ
′〉@a

〉
∼
〈
G2 ; P2 ‖ 〈τ©τ

′〉@a
〉

We can exploit the hypothesis of the theorem to apply the transition rule com and
obtain 〈

G1 ; P1 ‖ 〈τ©τ
′〉@a

〉 ε−→
〈
G1 ; P′1

〉
Then, we use the bisimulation hypothesis to discover that also the other state
performs a silent action〈

G2 ; P2 ‖ 〈τ©τ
′〉@a

〉 ε−→
〈
G′2 ; P′2

〉
The last transition can be obtained by using the rules com or par. We separate
the two cases.

Rule com

If the rule com has been applied, it is trivial to prove

〈G2 ; P2〉
τ τ′@a−−−−→

〈
G2 ; P′2

〉
∧ G′2 = G2 ∧

〈
G1 ; P′1

〉
∼
〈
G2 ; P′2

〉
Rule par

If the rule par has been applied then one of the two involved policy must perform
a silent action. Since this cannot be performed by the envelope, we must conclude〈

G2 ; P′2
〉 ε−→

〈
G′2 ; P′′2

〉
∧
〈
G1 ; P′1

〉
∼
〈
G′2 ; P′′2 ‖ 〈τ©τ

′〉@a
〉

125



A.4 Proof of Theorem 4

Let 〈G ; P〉 and 〈G′ ; P′〉 be two NCP states such that 〈G ; P〉 ∼ 〈G′ ; P′〉, τ ∈ T
be a topic, T = G(τ) and T ′ = G′(τ) be the topic graphs of τ in the two network
topologies G and G′ respectively, then:

1. if G = (~b,E) and G′ = (~b′,E ′) then
〈
(~b∪~a,E) ; P

〉
∼
〈
(~b′∪~a,E ′) ; P′

〉
2. 〈G\ τ�T ; (ν τ : T )P〉 ∼ 〈G′ \ τ�T ′ ; (ν τ : T ′)P′〉

A.4.1 Proof of statement 1 of Theorem 4

We start noticing that if~a∩ f n(α) = /0 then
〈
(~b,E) ; P

〉
α−→
〈
(~b,E1) ; P1

〉
if and

only if
〈
(~b∪~a,E) ; P

〉
α−→
〈
(~b∪~a,E1) ; P1

〉
.

We prove the statement by showing that the following relation is an NCP-bisimulation:

B =
{(〈

(~b∪~a,E) ; P
〉

,
〈
(~b′∪~a′,E ′) ; P′

〉)
|
〈
(~b,E) ; P

〉
∼
〈
(~b′,E ′) ; P′

〉}
All transition observable transitions, except opens

We test the first condition of bisimilarity relations: let〈
(~b∪~a,E) ; P

〉
α−→
〈
(~b∪~a,E1) ; P1

〉
, α ∈ {ε,〈τ©τ

′〉@a,(ττ
′@a)}and a /∈~b∪~a

then 〈
(~b,E) ; P

〉
α−→
〈
(~b,E1) ; P1

〉
The bisimilarity condition of the B relation ensures that〈

(~b′,E ′) ; P′
〉

α−→
〈
(~b′,E ′1) ; P′1

〉
and

〈
(~b,E1) ; P1

〉
∼
〈
(~b′,E ′1) ; P′1

〉
then 〈

(~b′∪~a,E ′) ; P′
〉

α−→
〈
(~b′∪~a,E ′1) ; P′1

〉
and

(〈
(~b∪~a,E1) ; P1

〉
,
〈
(~b′∪~a,E ′1) ; P′1

〉)
∈ B
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Open transitions

Now we test the second condition of bisimulation relations: let〈
(~b∪~a,E) ; P

〉 〈τ©(τ′:T )〉@a−−−−−−−−→
〈
(~b∪~a,E1) ; P1

〉
,τ′ /∈ f n(E ′,P′) and a /∈~b∪~a

then 〈
(~b,E) ; P

〉 〈τ©(τ′:T )〉@a−−−−−−−−→
〈
(~b,E1) ; P1

〉
The bisimilarity condition of the B relation ensures that〈
(~b′,E ′) ; P′

〉 〈τ©(τ′:T ′)〉@a−−−−−−−−→
〈
(~b′,E ′1) ; P′1

〉
and

〈
(~b,E1) ; P1

〉
∼
〈
(~b′,E ′1) ; P′1

〉
then 〈

(~b′∪~a,E ′) ; P′
〉 〈τ©(τ′:T ′)〉@a−−−−−−−−→

〈
(~b′∪~a,E ′1) ; P′1

〉
and

(〈
(~b∪~a,E1) ; P1

〉
,
〈
(~b′∪~a,E ′1) ; P′1

〉)
∈ B

A.4.2 Proof of statement 2 of Theorem 4
We prove the statement by showing that the following relation is an NCP-bisimulation:

B =
{

(〈G\ τ�T ; (ν τ : T )P〉 ,〈G′ \ τ�T ′ ; (ν τ : T ′)P′〉) |
〈G ; P〉 ∼ 〈G′ ; P′〉 ,T = G(τ) and T ′ = G′(τ)

}
∪ ∼

All observable transitions, except opens

We test the first condition of bisimilarity relations: let

〈G\ τ�T ; (ν τ : T )P〉 α−→〈G1 ; P1〉 , α∈{ε,〈τ′©τ
′′〉@a,(τ′ τ′′@a)}and a /∈ bn(G)

The transition can be performed only by applying the new transition rule, since
the policy is a topic restriction. The hypothesis of the rule ensures

〈G ; P〉 α−→〈G2 ; P2〉 ,τ /∈ n(α),T2 = G2(τ) and 〈G1 ; P1〉= 〈G2 \ τ�T2 ; (ν τ : T2)P2〉

The bisimilarity condition of the B relation ensures〈
G′ ; P′

〉 α−→
〈
G′2 ; P′2

〉
and 〈G2 ; P2〉 ∼

〈
G′2 ; P′2

〉
Let T ′2 = G′2(τ), we can apply the transition rule new, obtaining that〈

G′ \ τ�T ′ ;
(
ν τ : T ′

)
P′
〉 α−→

〈
G′2 \ τ�T ′2 ;

(
ν τ : T ′2

)
P′2
〉

=
〈
G′1 ; P′1

〉
and finally (〈G1 ; P1〉 ,〈G′1 ; P′1〉) ∈ B
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Opens Transitions

Now we test the second condition bisimilarity relations: let

〈G\ τ�T ; (ν τ : T )P〉 〈τ
′©(τ′′:T ′′)〉@a−−−−−−−−−→ 〈G1 ; P1〉 ,τ′′ /∈ f n(G′,P′) and a /∈ bn(G)

We distinguish the two possible cases: when τ 6= τ′′ and when τ = τ′′. If τ 6= τ′′

the proof is trivial and exploits the strategy presented above.
If τ′′ = τ then the rule open has been applied and T ′′ = T must holds. The

hypothesis of the rule ensures

〈G ; P〉 〈τ
′©τ〉@a−−−−−→ 〈G ; P2〉 ,τ′ 6= τ and 〈G1 ; P1〉= 〈G ; P2〉

The bisimilarity condition of the B relation ensures that

〈
G′ ; P′

〉 〈τ′©τ〉@a−−−−−→
〈
G′ ; P′2

〉
and 〈G ; P2〉 ∼

〈
G′ ; P′2

〉
We can apply the transition rule open, obtaining that

〈
G′ \ τ�T ′ ;

(
ν τ : T ′

)
P′
〉 〈τ′©(τ:T ′)〉@a−−−−−−−−→

〈
G′ ; P′2

〉
=
〈
G′1 ; P′1

〉
and finally (〈G1 ; P1〉 ,〈G′1 ; P′1〉) ∈ B , since they are bisimilar.

A.5 Proof of Theorem 5

Let SP1 = 〈G1 ; P1〉, SP2 = 〈G2 ; P2〉, SQ1 = 〈I2 ; Q2〉 and SQ2 = 〈I2 ; Q2〉 be
NCP states, such that SP1 ∼ SQ2 and SQ1 ∼ SQ2 If SP1 ⊥ SQ1 and SP2 ⊥ SQ2 then
〈G1] I1 ; P1 ‖ Q1〉 ∼ 〈G2] I2 ; P2 ‖ Q2〉

We prove the theorem by showing that the following relation is a bisimula-
tion:

B =


(〈G1] I1 ; P1 ‖ Q1〉 ,〈G2] I2 ; P2 ‖ Q2〉)

| 〈G1 ; P1〉 ∼ 〈G2 ; P2〉 ∧ 〈I1 ; Q1〉 ∼ 〈I2 ; Q2〉
∧ Sb j(〈G1 ; P1〉)∩Sb j(〈I1 ; Q1〉) = /0

∧ Sb j(〈G2 ; P2〉)∩Sb j(〈I2 ; Q2〉) = /0


We report the proof for the most interesting transition rules that can be applied to
the state 〈G1] I1 ; P1 ‖ Q1〉: the rules par and com
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Rule par

If the state 〈G1] I1 ; P1 ‖ Q1〉 performs an action involving the rule par then
one of the two contained policies performs the same action. We suppose that the
action is performed by P1. The hypothesis of the transition rule ensures

〈G1] I1 ; P1 ‖ Q1〉
α−→
〈
G′ ; P′1 ‖ Q1

〉
∧ 〈G1] I1 ; P1〉

α−→
〈
G′ ; P′1

〉
Since we are checking bisimilarity, we can check only transitions α 6= τ τ′@a.
We exploit the disjunction of the subjects of the states 〈G1 ; P1〉 and 〈I1 ; Q1〉 to
apply the theorem 1, which guarantees

〈G1 ; P1〉
α−→
〈
G′1 ; P′1

〉
∧ G′ = G′1]G

If α ∈ {(τ τ′@a),〈τ©τ′〉@a,ε}, the bisimilarity condition of the realtion B guar-
antees that

〈G2 ; P2〉
α−→
〈
G′2 ; P′2

〉
∧
〈
G′1 ; P′1

〉
∼
〈
G′2 ; P′2

〉
We exploit the disjunction of the subjects of the states 〈G2 ; P2〉 and 〈I2 ; Q2〉 to
apply the theorem 1, proving

〈G2] I2 ; P2〉
α−→
〈
G′2] I2 ; P′2

〉
Now, we apply the transition rule par

〈G2] I2 ; P2 ‖ Q2〉
α−→
〈
G′2] I2 ; P′2 ‖ Q2

〉
Since the subjects of this NCP policies cannot increase (Theorem 2) we argue
that 〈

G′1 ; P′1
〉
⊥ 〈I1 ; Q1〉 and

〈
G′2 ; P′2

〉
⊥ 〈I2 ; Q2〉

then (〈
G′1] I1 ; P′1 ‖ Q1

〉
,
〈
G′2] I2 ; P′2 ‖ Q2

〉
∈ B

)
If α = 〈τ©(τ′ : T1)〉@a, the bisimilarity condition of the relation B guarantees that
exists T2 such that

〈G2 ; P2〉
〈τ©(τ′:T2)〉@a−−−−−−−−→

〈
G′2 ; P′2

〉
∧
〈
G′1 ; P′1

〉
∼
〈
G′2 ; P′2

〉
The end of the proof is trivial, because we can exploit the same strategy used for
α ∈ {(τ τ′@a),〈τ©τ′〉@a,ε}.
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Rule COM

If the state 〈G1] I1 ; P1 ‖ Q1〉 performs an action involving the rule com then
one of the two policies must perform an event notification, while the other one
must contain an input suitable for the same event. We suppose that the input is
performed by the policy P1 and the signal notification by Q1. The hypothesis of
the rule com ensure

〈G1] I1 ; P1 ‖ Q1〉
ε−→ 〈G1] I1 ; P′1 ‖ Q′1〉 ∧

〈G1] I1 ; P1〉
τ τ′@a−−−−→ 〈G1] I1 ; P′1〉 ∧ 〈G1] I1 ; Q1〉

〈τ©τ′〉@a−−−−−→ 〈G1] I1 ; Q′1〉

As usual we can use the theorem 1 to separate the network topologies of the
policies P1 and P2

〈G1 ; P1〉
τ τ′@a−−−−→

〈
G1 ; P′1

〉
∧ 〈I1 ; Q1〉

〈τ©τ′〉@a−−−−−→
〈
I1 ; Q′1

〉
The bisimulation condition of the relation B ensures that

〈I2 ; Q2〉
〈τ©τ′〉@a−−−−−→

〈
I2 ; Q′2

〉
∧
〈
I1 ; Q′1

〉
∼
〈
I2 ; Q′2

〉
Now, the hypothesis of the Theorem 3 are verified for both the states 〈G1 ; P1〉
and 〈G2 ; P2〉. We separate the proof for the two statements of the Theorem 3.

Statement 1

If the statement 1 of the Theorem 3 holds then

〈G2 ; P2〉
τ τ′@a−−−−→

〈
G2 ; P′2

〉
∧
〈
G1 ; P′1

〉
∼
〈
G2 ; P′2

〉
As usual, we use the theorem 1 extend the network topologies of the policies P2
and Q2

〈G2] I2 ; P2〉
τ τ′@a−−−−→

〈
G2] I2 ; P′2

〉
∧ 〈G2] I2 ; Q2〉

〈τ©τ′〉@a−−−−−→
〈
G2] I2 ; Q′2

〉
Now, we apply the transition rule com

〈G2] I2 ; P2 ‖ Q2〉
ε−→
〈
G2] I2 ; P′2 ‖ Q′2

〉
Since the subjects of this NCP policies are not increases (Theorem 2) we argue
that 〈

G1 ; P′1
〉
⊥
〈
I1 ; Q′1

〉
and

〈
G2 ; P′2

〉
⊥
〈
I2 ; Q′2

〉
and finally (〈

G1] I1 ; P′1 ‖ Q′1
〉
,
〈
G2] I2 ; P′2 ‖ Q′2

〉)
∈ B
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Statement 2

If the statement 1 of the Theorem 3 holds then

〈G2 ; P2〉
ε−→
〈
G′2 ; P′′2

〉
∧
〈
G1 ; P′1

〉
∼
〈
G′2 ; P′′2 ‖ 〈τ©τ

′〉@a
〉

As usual, we use the Theorem 1 to extend the context of the policies

〈G2] I2 ; P2〉
ε−→
〈
G′2] I2 ; P′2

〉
∧
〈
G′2] I2 ; Q2

〉 〈τ©τ′〉@a−−−−−→
〈
G′2] I2 ; Q′2

〉
Now, we use the rule par to obtain

〈G2] I2 ; P2 ‖ Q2〉
ε−→
〈
G′2] I2 ; P′′2 ‖ Q2

〉
Since the policy Q2 perform a signal notification, the Lemma 1 ensures〈

G′2] I2 ; P′′2 ‖ Q2
〉
∼
〈
G′2] I2 ; P′′2 ‖ 〈τ©τ

′〉@a ‖ Q′2
〉

Finally, we use the Theorem 2 to verify that the obtained policies are in the rela-
tion B (〈

G1] I1 ; P′1 ‖ Q′1
〉
,
〈
G2] I2 ; P′2 ‖ 〈τ©τ

′〉@a ‖ Q′2
〉)
∈ B
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Appendix B

Proof of theorems in
Section 4.2

B.1 Lemma 2
Lemma 2 Let N = a [B]RF be an SC component and [[N]] its NCP translation. If
[[N]] ε−→ 〈G1 ; P1〉 it holds that:

1. 〈G1 ; P1〉= 〈G1 ; P′1 ‖ [[R]]a〉

2. N→ N′

3. [[N′]] = 〈G1 ; P1〉

First we highlight that the NCP state 〈a�F ; [[B]]a〉 can perform only silent
actions, and that the NCPstate 〈a�F ; [[R]]a〉 can perform only input actions.
These statements can be trivially verified by the transformation rules for behav-
iors and reactions, respectively.

The hipsters of the lemma require that the transformation of the SC network
N performs a silent action, more formally:

[[N]] = 〈a�F ; [[B]]a ‖ [[R]]a〉
ε−→ 〈G1 ; P1〉

The parallel composition of two policies can perform this action exploiting the
transition rules close, com or par. Since 〈a�F ; [[B]]a〉 cannot perform output
actions, only the rule par is suitable. Moreover we remarked that 〈a�F ; [[R]]a〉
cannot perform an internal action, then
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• 〈a�F ; [[B]]a〉
ε−→ 〈G1 ; P′1〉

• 〈G1 ; P1〉= 〈G1 ; P′1 ‖ [[R]]a〉

We prove the theorem by induction over the structure of SC behavior.

Empty

If the behavior B is empty (B = 0) then

〈a�F ; [[B]]a〉= 〈a�F ; 0〉

Nevertheless, the translation of the behavior does not perform an internal action,
making this case not possible.

Skip

If the behavior B is an internal action (B = ε;B1) then

[[N]] = 〈a�F ; ι. [[B1]]a ‖ [[R]]a〉

The NCP state can perform a silent action using the rule skip, ensuring that

[[N]] ε−→ 〈a�F ; [[B1]]a ‖ [[T ]]a〉 ∧ G1 = a�F ∧ P′1 = [[B1]]a

Using the rule (SC−SKIP), the network N can be reduced as follows:

N→ a [B1]
R
F = N′

Finally, the translation of the resultig network is[[
N′
]]

= 〈a�F ; [[B1]]a ‖ [[R]]a〉=
〈
G1 ; P′1 ‖ [[R]]a

〉
New

If the behavior B is the restriction of a topic name τ (B = (ντ)B1), since τ 6∈
f n(F)∪ f n(R), then

[[N]] = 〈a�F ; (ν τ : /0)([[B1]]a ‖ [[R]]a)〉

The translation of the network N perform the internal action via the rule new,
which ensures that

〈G] τ� /0 ; [[B1]]a ‖ [[R]]a〉
ε−→ 〈G2 ; P2〉
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∧ T2 = G2(τ)

∧ [[N]] ε−→ 〈G2 \ τ�T2 ; (ν τ : T2)(P2 ‖ [[R]]a)〉

Let N0 = a [B1]
R
F such that [[N0]] = 〈G ; [[B1]]a ‖ [[R]]a〉

ε−→ 〈G2 ; P2〉 , for the in-
duction hypothesis

N0→ N′0 ∧
[[

N′0
]]

= 〈G2 ; P2〉

Since τ 6∈ f n(F)∪ f n(R) then

a [(ντ)B1]
R
F ≡ (ντ)a [B1]

R
F

The reduction rule (NEW ) can be applied

N→ (ντ)N′0 ∧
[[

(ντ)N′0
]]

= 〈G2 \ τ�T2 ; (τ : T2,P2)〉

Signal emission

If the behavior B is the raising of the event τ©τ′ (B = out〈τ©τ′〉;B1) then

[[N]] =
〈
a�F ; τ τ

′@a. [[B1]]a ‖ [[R]]a
〉

The translation of the network N performs the internal action via the rule emit,
which ensures that

[[N]] ε−→

〈
a�F ; [[B1]]a ‖ [[R]]a ‖ ∏

b∈(a�F)(τ,a)=F↓τ
〈τ©τ

′〉@b

〉
=
〈
G1 ; P′1 ‖ [[R]]a

〉
The reduction rule EMIT can be applied to the network N, obtaining

N→ a [B1]
R
F ‖ ∏

b∈F↓τ
〈τ〉@τ

′b = N′

Finally, by the transformation rules,

[[
N′
]]

=

〈
a�F ; [[B1]]a ‖ [[R]]a ‖ ∏

b∈(a�F)(τ,a)=F↓τ
〈τ©τ

′〉@b

〉
=
〈
G1 ; P′1 ‖ [[R]]a

〉
Reaction update

If the behavior B is a reaction update (B = rupd(R1) ;B1) then

[[N]] = 〈a�F ; (ι. [[R1]]a ‖ [[B1]]a) ‖ [[R]]a〉
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The translation of the network N performs the internal action via the rule skip,
which ensures that

[[N]] ε−→ 〈a�F ; [[R1]]a ‖ [[B1]]a ‖ [[R]]a〉=
〈
G1 ; P′1 ‖ [[R]]a

〉
The rule (SC−RUPD) can be user to reduce the network N, obtaining

N→ a [B]R|R1
F = N′

Finally, by the translation rules,[[
N′
]]

=
〈
G1 ; P′1 ‖ [[R]]a

〉
Flow update

If the behavior B is a flow update (B = fupd(F1) ;B1) then

[[N]] = 〈a�F ; fupd(F1)@a. [[B1]]a ‖ [[R]]a〉

The translation of the network N performs the internal action via the rule fupd,
which ensures that

[[N]] ε−→ 〈a�F ]a�F1 = a�F |F1 ; [[B1]]a ‖ [[R]]a〉=
〈
G1 ; P′1 ‖ [[R]]a

〉
The rule (SC−FUPD) can be user to reduce the network N, obtaining

N→ a [B]RF |F1
= N′

Finally, by the translation rules,[[
N′
]]

=
〈
G1 ; P′1 ‖ [[R]]a

〉
Parallel composition

If the behavior B is a parallel composition (B = B1 | B2) then

[[N]] = 〈a�F ; [[B1]]a ‖ [[B2]]a ‖ [[R]]a〉

Since the translation of the behaviors B1 and B2 cannot perform input or output
actions, their composition cannot communicate internally. The translation of the
network N can performs the internal action only via the rule par, which ensures
that

[[N]] ε−→ 〈G1 ; P2 ‖ [[B1]]a ‖ [[R]]a〉=
〈
G1 ; P′1 ‖ [[R]]a

〉
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∧ 〈a�F ; [[B1]]a〉
ε−→ 〈G1 ; P2〉

Let
[[

a [B1]
R
F

]]
= 〈a�F ; [[B1]]a ‖ [[R]]a〉

ε−→ 〈G1 ; P2 ‖ [[R]]a〉 the parallel branch
that perform the internal action, then by induction hypothesis

a [B2]
R
F → N′2 ∧

[[
N′2
]]

= 〈G1 ; P2 ‖ [[R]]a〉

We highlight that N′1 is of the form

N′2 = (ντ)
(

a
[
B′2
]R|R′

F |F ′ ‖ Nπ

)
Where F ′ and R′ are the flows and reactions, possibly empty, added by the be-
havior B2 and Nπ is the set, possibly empty, of envelope spawned. Translating to
NCP state this kind of processes we obtain[[

N′2
]]

=
〈
G1 ; (ν τ : T )

([[
B′2
]]

a ‖ [[R]]a ‖
[[

R′
]]

a

)〉
Now, we use the SC reduction rule (PAR) to verify that the network N can perform
an action

N = a [B1 | B2]
R
F → (ντ)

(
a
[
B1 | B′2

]R|R′
F |F ′ ‖ Nπ

)
= N′

We translate the network N′ to NCP state exploiting the information known about
the translation of the network N′2[[

N′
]]

=
〈
G1 ; (ν τ : T )

(
[[B1]]a ‖

[[
B′2
]]

a ‖ [[R]]a ‖
[[

R′
]]

a

)〉
We can move the translations of the reaction R and of the behavior B1 out of the
scope of the restriction, since we know that τ 6∈ f n(R)∪ f n(B1)[[

N′
]]

= 〈G1 ; [[B1]]a ‖ P2 ‖ [[R]]a〉=
〈
G1 ; P′1 ‖ [[R]]a

〉
B.2 Lemma 3

Lemma 3 Let N and N′ be SC networks. It holds that if N → N′ then [[N]] ε−→
(G,P) and (G,P)∼ [[N′]]

We prove the theorem by induction over reduction rules of SC networks
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SKIP

If the rule SKIP has been applied, then

N = a
[
ε;B | B′

]R
F → a

[
B | B′

]R
F = N′

The translation of the network [[N]] can perform the empty action by using
the rule (skip):

[[N]] =
〈
a�F ; ι. [[B]]a ‖

[[
B′
]]

a ‖ [[R]]a
〉 ε−→

〈
a�F ; [[B]]a ‖

[[
B′
]]

a ‖ [[R]]a
〉
=
[[

N′
]]

RUPD

If the rule SC−RUPD has been applied, then

N = a [rupd(R1) ;B1 | B]RF → a [B1 | B]R|R1
F = N′

The translation of the network [[N]] can perform an internal action by applying
the rule skip:

[[N]] = 〈a�F ; ι.([[R1]]a ‖ [[B1]]a) ‖ [[B]]a ‖ [[R]]a〉

〈a�F ; ι.([[R1]]a ‖ [[B1]]a) ‖ [[B]]a ‖ [[R]]a〉
ε−→〈a�F ; [[R1]]a ‖ [[B1]]a ‖ [[B]]a ‖ [[R]]a〉

〈a�F ; [[R1]]a ‖ [[B1]]a ‖ [[B]]a ‖ [[R]]a〉=
[[

N′
]]

Fupd

If the rule FUPD has been applied, then

N = a [fupd(F1) ;B1 | B]RF → a [B1 | B]RF |F1

The translation of the network [[N]] can perform an internal action by using
the rule fupd:

[[N]] = 〈a�F ; fupd(F1)@a. [[B1]]a ‖ [[B]]a ‖ [[R]]a〉

ε−→

〈a�F ]a�F1 ; [[B1]]a ‖ [[B]]a ‖ [[R]]a〉= 〈a�F |F1 ; [[B1]]a ‖ [[B]]a ‖ [[R]]a〉=
[[

N′
]]
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Check

If the rule (Check) has been applied, then

N = 〈τ©τ
′〉@a ‖ a [B1]

R|τ©τ′mB2
F → a [B1 |B2]

R
F = N′

The translation of the network can perform an internal action by using the rule
(com):

[[N]] =
〈
a�F ; 〈τ©τ

′〉@a ‖ [[B1]]a ‖ [[R]]a ‖ ττ
′@a. [[B2]]a

〉
〈
a�F ; 〈τ©τ

′〉@a ‖ [[B1]]a ‖ [[R]]a ‖ ττ
′@a. [[B2]]a

〉 ε−→〈a�F ; [[B1]]a ‖ [[R]]a ‖ [[B2]]a〉
〈a�F ; [[B1]]a ‖ [[R]]a ‖ [[B2]]a〉=

[[
N′
]]

Lambda

If the rule (LAMBDA) has been applied, then

N = 〈τ©τ
′〉@a ‖ a [B1]

R|τ λ τ′′mB2
F → a

[
B1 | {τ′/τ

′′}B2
]R|τ λ τ′′mB2

F = N′

The translation of the network can perform an internal action by using the
rule com:

[[N]] =
〈
a�F ; 〈τ©τ

′〉@a ‖ [[B1]]a ‖ [[R]]a ‖ τ
(
τ
′′)@a. [[B2]]a

〉
ε−→

a�F [[B1]]a ‖ {τ
′/τ
′′} [[B2]]a ‖ [[R]]a ‖ τ

(
τ
′′)@a. [[B2]]a =

[[
N′
]]

NEW

If the rule (NEW ) has been applied then:

N = (νn)N1→ (νn)N2 = N′ ∧ N1→ N2

By exploiting the induction hypothesis, we ensure that:

[[N1]]
ε−→ 〈G1 ; P1〉 ∼ [[N2]]

If n∈T , let 〈G0 ; P0〉= [[N1]] and T0 = G0(n) then [[N]] = 〈G0 \n�T0 ; (ν n : T0)P0〉.
The state [[N]] can perform a silent action by using the transition rule new:

[[N]] ε−→ 〈G1 \n�T1 ; (ν n : T1)P1〉

Where T1 = G1(n). The proof is completed using the Theorem 4. The same proof
strategy can be used if n ∈ A .
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B.3 Lemma 4
Lemma 4 Let N1 ‖N2 a well formed network, [[N1]] = 〈G1 ; N1〉 and [[N2]]〈G2 ; P2〉
the translation of the two sub-networks. If 〈G1 ; P1〉

ε−→〈G′1 ; P′1〉 then 〈G1]G2 ; P1〉
ε−→

〈G′1]G2 ; P′1〉

The lemma can be proved exploiting the Theorem 1 , showing that the subjects
of the translations of the two sub-networks are always disjoint. This can be done
trivially, by using the notion of well formed SC network, which requires that the
component names of N1 and N2 are disjoint.

B.4 Lemma 5
Lemma 5 Let N and N′ be SC networks. It holds that if [[N]] ε−→ (G,P) then
N→ N′ and (G,P)∼ [[N′]]

We prove the lemma by induction over the structure of the SC network N.
If the N is the empty network ( /0) or an envelope (〈τ©τ′〉@a), its translation [[N]]
does not perform an empty action, then we check only the other primitives.

Topic Restriction

If the network is a topic restriction (N = (ντ)N1), let [[N1]] = 〈G1 ; P1〉 be the
translation of the network N1 and T = G1(τ) the projection of the topology G1
respect to the topic τ, then the translation of the network N is

[[N]] = 〈G1 \ τ�T ; (ν τ : T )P1〉

The state [[N]] can perform a silent action only by using the rule (NCP− new.
The rule ensures that:

[[N]] ε−→ 〈G ; P〉 ∧ 〈G1 ; P1〉
ε−→
〈
G′1 ; P′1

〉
∧ T ′ = G′1(τ)

then
〈G ; P〉=

〈
G′1 \ τ�T ′ ;

(
ν τ : T ′

)
P′1
〉

The induction hypothesis ensures that if

〈G1 ; P1〉= [[N1]]
ε−→
〈
G′1 ; P′1

〉
then

N1→ N′1 ∧
[[

N′1
]]

= 〈G2 ; P2〉 ∼
〈
G′1 ; P′1

〉
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The network N can be then reduced by using the rule SC−NEW , which ensures
that:

(ντ)N1→ (ντ)N′1
Let be T2 = G2(τ), the translation of the resulting network is[[

(ντ)N′1
]]

= 〈G2 \ τ�T2 ; (ν τ : T2)P2〉

which is bisimilar to 〈G ; P〉 by exploiting the Theorem 4.
The same proof strategy can be exploited also for the component name re-

striction.

Component

If the network is simply a component a [B]RF then the Theorem 2 can be directly
exploited.

Parallel composition, rule PAR

If the network N is the parallel composition of two sub-networks N1 and N2 and
their translation are [[N1]] = 〈G1 ; P1〉 and 〈N2 ; P2〉, then the translation of N is

〈G1]G2 ; P1 ‖ P2〉

We check one of the three possible NCP transition rules (par,com,close) that
permit to the state to perform a silent action. If the rule par has been applied,
then

〈G1]G2 ; P1 ‖ P2〉
ε−→
〈
G ; P′1 ‖ P2

〉
= 〈G ; P〉 ∧ 〈G1]G2 ; P1〉

ε−→
〈
G ; P′1

〉
Since 〈G1 ; P1〉 ⊥ G2 then the Theorem 1 can be applied, ensuring that

[[N1]] = 〈G1 ; P1〉
ε−→
〈
G′1 ; P′1

〉
∧ G = G′1]G2

The induction hypothesis ensure that

N1→ N′1 ∧
[[

N′1
]]
∼
〈
G′1 ; P′1

〉
Then, the starting parallel composition of the two sub-networks can be re-

duced using the rule SP−PAR:

N1 ‖ N2→ N′1 ‖ N2

Finally we can use the Theorem 5 to guarantee that[[
N′1 ‖ N2

]]
∼
〈
G′1]G2 ; P′1 ‖ P2

〉
= 〈G ; P〉
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Parallel composition, rule COM

If the network N is the parallel composition of two sub-networks N1 and N2 and
their translation are [[N1]] = 〈G1 ; P1〉 and 〈N2 ; P2〉, then the translation of N is

〈G1]G2 ; P1 ‖ P2〉

We check one of the three possible NCP transition rules (par,com,close)
that permit to the state to perform an internal action. If the rule com has been
applied and by Theorem 4, then ∃a,τ,τ′ such that

[[N1]]
〈τ©τ′〉@a−−−−−→

〈
G′1 ; P′1

〉
∧ [[N2]]

τ τ′@a−−−−→
〈
G′2 ; P′2

〉
∧ 〈G ; P〉=

〈
G′1]G′2 ; P′1 ‖ P′2

〉
It is trivial to prove that one of the two sub-networks must contains the envelope
〈τ©τ′〉@a and the other one the component a able to consume the envelope. The
component a must have a lambda reaction for topic τ or a check reaction for
signals τ©τ′. We prove the theorem only for the first case, since the second one
can be proved involves the same strategy. This statement is formalized by

N1 = 〈τ©τ
′〉@a ‖ Na ∧ N2 = a [B]R|τ λ τ′′mB1

F ‖ Nb

Let [[Na]] = 〈Ga ; Pa〉 and [[Nb]] = 〈Gb ; Pb〉 the translations of the two networks
Na and Nb, the translation of the starting network N can perform an internal action
using the rule (COM) as follows:

[[N]] =
〈
Ga]Gb]a�F ; Pa ‖ Pb ‖ 〈τ©τ

′〉@a ‖ [[B]]a ‖ [[R]]a ‖ τ
(
τ
′′)@a. [[B1]]a

〉
ε−→〈

Ga]Gb]a�F ; Pa ‖ Pb ‖ [[B]]a ‖ [[R]]a ‖ τ
(
τ
′′)@a. [[B1]]a ‖ {τ

′/τ
′′} [[B1]]a

〉
= 〈G ; P〉

The starting SC network can be reduced by the rule SC−LAMBDA obtaining:

N→ Na ‖ Nb ‖ a
[
B | {τ′/τ

′′}B1
]R|τ λ τ′′mB1

F = N′

Finally, it is trivial to verify that N′ = 〈G ; P〉.
The same proof strategy can be exploited for the transitions involving the rule

close.

B.5 Proof of Theorem 6
Let N and N′ be SC networks. It holds that N→ N′ if and only if [[N]] ε−→ (G,P)
and (G,P)∼ [[N′]]

The theorem is directly implied by the two Lemmas 3 and 5.
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Appendix C

Proof of theorems in
Section 4.4

C.1 Proof of Theorem 8
Let be TC and DelegatedTC such that

TC = (νok,ex)


a [0]

f λ sm


rupd

(
ok©s m rupd

(
r©s m [[CompA]]c

)
| out〈 f ©s〉

)
| rupd(ex©s mout〈r©s〉)
| [[A]]


{ok a,ex a, f ~c1,r ~c2}



DelegatedTC = (νb,ok,ex)

 a [0]
f λ sm

(
rupd

(
ok©s m rupd(r©s mout〈r©s〉)

| out〈 f ©s〉

)
| [[A]]

)
{ok a,ex b, f ~c1,r b}

‖ b [0]Rb
{r ~c2}


where Rb = ex λ s mout〈r©s〉 | r λ s m [[CompA]]c

then [[TC]]≈ [[DelegatedTC]]
The proof is constructive. We construct a relation B including the pair

([[TC]] , [[DelegatedTC]])

and, then, we prove that B is a NCP weak-bisimulation. The crucial part of
the proof consists of the construction of the relation B . Notice that our notion
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of bisimilarity takes into account asynchrony, hence, B will contains bags of
envelopes because of the transition rule async.

Before constructing the relation B , we state again which are the hypothesis
we did on [[A]] and [[CompA]] (see Section 4.3). Without loss of generality, we
can assume that for any component name n and linkage E:

• if A 7→� then [〈( /0,E) ; [[[[A]]]]n〉 ≈ 〈( /0,E) ; [[out〈ok©s〉]]n〉

• if A 7→� then 〈( /0,E) ; [[[[A]]]]n〉 ≈ 〈( /0,E) ; [[out〈ex©s〉]]n〉

•
〈
( /0,E) ; [[[[CompA]]c]]n

〉
≈ 〈( /0,E) ; [[out〈r©s〉]]n〉

Hence, hereafter we work up-to this assumptions. We start translating the
two SC networks into NCP policies. By definition (Section 4.2), the mapping of
the transactional component becomes:

[[TC]] = 〈a�F ; (ν (n,))P1〉
where F = f  ~c1,r ~c2
and n = ok : (a,a)ex : (a,a)
and P1 = f (s)@a.(P2(s) ‖ P3(s) ‖ [[[[A]]]]a)
and P2(s) = ok s@a.(P4 ‖ f s@a)
and P3(s) = ex s@a.r s@a
and P4(s) = r s@a. [[[[CompA]]c]]a

Similarly, we have:

[[DelegatedTC]] = 〈a�F ′ ; (ν n1)(Q1 ‖ Q2)〉
where F ′ = f  ~c1
and n1 = b : (b,r,~c2),(a,r,b),(ok : (a,a),ex : (a,b))
and Q1 = f (s)@a.Q3(s) ‖ [[[[A(s)]]]]a
and Q2 = Q4 ‖ Q5
and Q3(s) = ok s@a.(Q6 ‖ f s@a)
and Q4 = ex(s)@b.r s@b
and Q5 = r (s)@b. [[[[CompA(s)]]c]]a
and Q6(s) = r s@a.r s@a

Notice that both [[TC]] and [[DelegatedTC]] can perform a transition only reacting
to events for the topic f . Intuitively, this corresponds to saying that the forward-
ing event f is the only mean to activate their behavior. Technically, this constraint
results in expressing the other topics under the scope of a restriction. Also the
subject of policies Q4 and Q5 (i.e. the component b) is restricted.

However, because of asynchrony, [[TC]] and [[DelegatedTC]] can perform an
async transition, thus buffering a new envelope. We have several cases.
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Assume that the buffered envelope is of the form:

〈 f ©s′〉@a

In this case, it is easy to see that both policies can start their behavior.
Notice that one can repeatedly apply the async rule, yielding to a multiset of

envelopes. To deal with this possibility, we introduce some notational machin-
ery. In particular, we equip the multiset of envelopes with a total order. To this
purpose we exploit the index-set N f of integers (possibly empty) associating an
integer to each envelope f consumed be the transactional component. Intuitively,
the cardinality of N f identifies the number of execution of the activity A by the
transactional component. Also:

• If i ∈N f then F (i) is the session of the envelope

• If i ∈N f then A(i) is the result status of the activity A

Similarly, we introduce a total order Nr, whose cardinality states the number of
compensations executed by the transactional component. Without loss of gener-
ality we can assume that

Nr ⊆ {i | i ∈N f ∧ A(i) = �}

because the transactional component reacts to an event r only if the component
has previously received:

• the corresponding forward event

• the event ok from the main activity A

In the following, we will use the following notations

• OK = {i | i ∈N f ∧ A(i) = �}

• EX = {i | i ∈N f ∧ A(i) =�}

• F (N ) = {s | ∃i ∈ N ∧ F (i) = s}

Our proof strategy consists of characterizing the possible execution of the trans-
actional component.

At first, the transactional component is the NCP state:

〈a�F ; (ν n1)P1〉
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Now, if N f forward-flow instances have been invoked then the transactional com-
ponent becomes〈

a�F ; (ν n)
(

P1 ‖ PF(F (OK )) ‖ PR(F (EX ))
‖∏s∈F (OK ) P4(s)

)〉
PF(~s) = ∏s∈~s ∏c∈~c1 〈 f ©s〉@c ‖∏s∈~s P3(s)
PR(~s) = ∏s∈~s ∏c∈~c2 〈r©s〉@c ‖∏s∈~s P2(s)

For each executed forward request (i ∈ N f ), the transactional component can
produce PF or PR, depending on the result of the internal activity A.

• If the activity A successes (all sessions in the multiset F (OK )) the compo-
nent spawns the envelopes (∏c∈~c1 〈 f ©s〉@c) to propagate the forward-flow
and installs its check reaction (P4(s)) to activate its compensation handling
possible failures. Notice that the local check reactions for the topic ex are
not consumed (P3(s)), because the main activity A sent an envelope con-
taining the topic ok.

• If the main activity A fails (all sessions in the multiset F (EX )), the com-
ponent spawns the envelopes (∏c∈~c2 〈r©s〉@c) to start the backward-flow
and the check reactions for the compensation are not installed. Notice that
in this case, the pending reactions wait for ok events (P2(s)), because the
main activity A has notified the topic ex.

This characterizes the state of the transactional component when i ∈ N f have
been consumed. Now, we characterize the state of the transactional component
after executing the compensations identified by Nr.

We assumed that Nr ⊆{i | i∈N f ∧ A(i) = �}. The state of the transactional
component becomes:

〈a�F ; (ν n)P〉

P =

 P1 ‖ PF(F (OK )) ‖ PR(F (EX ))
‖∏s∈F (OK )−F (Nr) P4(s)
‖∏s∈F (Nr) ∏c∈~c2 〈r©s〉@c


The number of instances of pending compensations (i.e. P4(s)) has decreased in
term of Nr. Since Nr ⊆ OK , we can always match the right reaction to perform
the compensation request. Moreover, the envelopes (required to propagate the
backward-flow) are spawned ∏c∈~c2 〈r©s〉@c.

Similarly, we can characterize the states of the delegated transactional com-
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ponent. We have:

〈a�F1 ; (ν n1)Q〉

Q =

 Q1 ‖ Q4 ‖ Q5 ‖ QF(F (OK )) ‖ QR(F (EX ))
‖∏s∈F (OK )−F (Nr) Q6(s)
‖∏s∈F (Nr) ∏c∈~c2 〈r©s〉@c


QF(~s) = ∏s∈~s ∏c∈~c1 〈 f ©s〉@c
QR(~s) = ∏s∈~s ∏c∈~c2 〈r©s〉@c ‖∏s∈~s Q3(s)

To prove the theorem, we show that the relation B defined below is a NCP
weak-bisimulation:

B =

{(〈
a�F ; (ν n)P ‖∏

i∈S
〈τ©τ

′〉@c

〉
,

〈
a�F ′ ; (ν n1)Q ‖∏

i∈S
〈τ©τ

′〉@c

〉)}
where P and Q are two policies having the structure described above. Notice
that we compose the two policies with the same envelopes ( ∏i∈S 〈τ©τ′〉@c). It is
straightforward to verify that ([[TC]] , [[DelegatedTC]]) ∈ B . It is sufficient to fix
N f = /0 and S = /0.

We check only that the NCP state 〈a�F ′ ; (ν n1)Q ‖∏S 〈τ©τ′〉@c〉 mimics
the transitions performed by 〈a�F ; (ν n)P ‖∏S 〈τ©τ′〉@c〉. In fact, verifying
that the NCP state 〈a�F ; (ν n)P ‖∏S 〈τ©τ′〉@c〉 mimics the transitions per-
formed by the NCP state 〈a�F ′ ; (ν n)Q ‖∏S 〈τ©τ′〉@c〉 can be done by sym-
metric reasoning.

Notice that we have only four type of transitions, depending on the rule ap-
plied: namely notify , async , com and close .

In the case of notify and async the proof is easy. The notify transitions
performed by the contained envelopes are matched, because the two states con-
tains the same envelopes. All async transitions appends the same envelope to
the two states.

The other transitions are the synchronizations between one of the pending en-
velopes (∏S 〈τ©τ′〉@c) and P. These communications can occur via the transition
rules com and close. We report the proof only the transition com, because the
close case is similar.

Since the topics ok and ex are restricted, the communications can occur only
for envelopes having topics f or r. We consider these two cases separately.

Case 1) events f

If the envelopes contain an event f , the transition rule com can be applied to the
envelope and the policy P1 contained in P. Since P1 is a lambda reaction, we
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obtain the transition:

S1 = 〈a�F ; (ν n)P ‖∏S 〈τ©τ′〉@c〉
ε=⇒

〈a�F ; (ν n)(P ‖ P2(s) ‖ P3(s) ‖ [[[[A(s)]]]]a) ‖∏S−1 〈τ©τ′〉@c〉= S2

Two cases are possible. The activity A either successes of fails. We prove them
separately.

We know that if the activity successes, then it raises the event ok. Then

S2
ε=⇒ 〈a�F ; (ν n)(P ‖ P2(s) ‖ P3(s) ‖ 〈ok©s〉@a) ‖∏S−1 〈τ©τ′〉@c〉= S3

This envelope is not handled by the bisimulation game, since the topic ok is
restricted. However, it can react with the policy P2(s), activating its behavior

S3
ε=⇒
〈
a�F ; (ν n)

(
P ‖ P4(s) ‖ f s@a ‖ P3(s)

)
‖∏S−1 〈τ©τ′〉@c

〉
= S4

Now, the transactional component raises the event f to propagate the forward-
flow. The resulting envelopes are delivered to ~c1 by exploiting the flow F .

S4
ε=⇒

〈
a�F ; (ν n)

(
P ‖ P4(s) ‖ ∏

c∈~c1

〈 f ©s〉@c ‖ P3(s)

)
‖∏

S−1
〈τ©τ

′〉@c

〉
= S5

We have to verify that the delegated transactional component can perform silent
actions up to the emission of the same envelopes for ~c1. Initially, the pending
event f can react only to the lambda reaction of a, because all other reactions
wait for restricted topics or are performed by the restricted component b.

R1 = 〈a�F ′ ; (ν n1)(Q1 ‖ Q2) ‖∏S 〈τ©τ′〉@c〉
ε=⇒

〈a�F ′ ; (ν n1)(Q1 ‖ Q2 ‖ Q3(s) ‖ [[[[A]]]]a) ‖∏S−1 〈τ©τ′〉@c〉= R2

Since the main activity terminates, the event ok is raised. Notice that ok is deliv-
ered to a itself in accordance with the flow F ′.

R2
ε=⇒
〈
a�F ′ ; (ν n1)

(
Q1 ‖ Q2 ‖ ok s@a.(Q6(s) ‖ f s@a) ‖ 〈 f ©s〉@a

)
‖∏S−1 〈τ©τ′〉@c

〉
= R3

The resulting envelope can activate the check reaction of a

R3
ε=⇒
〈
a�F ′ ; (ν n1)

(
Q1 ‖ Q2 ‖ Q6(s) ‖ f s@a

)
‖∏S−1 〈τ©τ′〉@c

〉
= R4
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Now, the delegated transactional component raises the event f to propagate the
forward-flow. The resulting envelopes are delivered to ~c1 by exploiting the flow
F ′.

R4
ε=⇒

〈
a�F ′ ; (ν n1)

(
Q1 ‖ Q2 ‖ ∏

c∈~c1

〈 f ©s〉@c ‖ Q6(s)

)
‖∏

S−1
〈τ©τ

′〉@c

〉
= R5

Notice that by construction (S5,R5) ∈ B .

We exploit the same reason in the case of failure of the main activity A. The
main activity raises the event ex that is directly delivered to a

S2
ε=⇒ 〈a�F ; (ν n)(P ‖ P2(s) ‖ P3(s) ‖ 〈ex©s〉@a) ‖∏S−1 〈τ©τ′〉@c〉= S3

The envelope can react with the policy P3(s), activating the corresponding be-
havior

S3
ε=⇒ 〈a�F ; (ν n)(P ‖ r s@a ‖ P2(s)) ‖∏S−1 〈τ©τ′〉@c〉= S4

The transactional component raises the event r to start the backward-flow. In
accordance with the flow F , the envelopes are delivered to ~c2

S4
ε=⇒
〈
a�F ; (ν n)

(
P ‖∏c∈~c2 〈r©s〉@c ‖ P2(s)

)
‖∏S−1 〈τ©τ′〉@c

〉
= S5

We verify that the delegated transactional component can perform silent actions
up to the emission of the same envelopes for ~c2. Since the main activity A cor-
rectly fails, the event ex is issued and, according to the flow F ′, delivered to b.

R2
ε=⇒ 〈a�F ′ ; (ν n1)(Q1 ‖ Q4 ‖ Q5 ‖ Q3(s) ‖ 〈ex©s〉@b) ‖∏S−1 〈τ©τ′〉@c〉= R3

Now, the envelope can activate the check reaction declared by b

R3
ε=⇒ 〈a�F ′ ; (ν n1)(Q1 ‖ r s@b ‖ Q2) ‖∏S−1 〈τ©τ′〉@c〉= R4

Finally, the component b raises the event r to start the backward-flow. According
to the flow F ′, the resulting envelopes are delivered to ~c2

R4
ε=⇒
〈
a�F ′ ; (ν n1)

(
Q1 ‖∏c∈~c2 〈r©s〉@c ‖ Q2 ‖ Q3(s)

)
‖∏S−1 〈τ©τ′〉@c

〉
= R5

Also in this case (S4,R5) ∈ B by construction.
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Case 2) events r

If the envelopes contain an event of the form 〈r©s′〉@a, the transition rule com
can be applied to the envelope and the policy P4(s′) contained in P. However,
since P4 is a check reaction for a specific session, to enable the communication
the following property must be satisfied:

s′ ∈ F (OK )−F (Nr)

Intuitively, this corresponds to saying that

• an event f with the same session have been handled by the transactional
component

• the main activity A successfully terminates

• the backward-flow (for this instance) was not already invoked.

Now, we have the following transition

S1 = (ν n)

 P1 ‖ PF(F (OK )) ‖ PR(F (EX ))
‖∏s∈F (OK )−F (Nr) P4(s)
‖∏s∈F (Nr) ∏c∈~c2 〈r©s〉@c

 ‖∏S 〈τ©τ′〉@c

ε=⇒

(ν n)

 P1 ‖ PF(F (OK )) ‖ PR(F (EX ))
‖∏s∈F (OK )−F (Nr)−{s′}P4(s)
‖∏s∈F (Nr) ∏c∈~c2 〈r©s〉@c ‖ [[[[CompA(s)]]]]a

 ‖∏S−1 〈τ©τ′〉@c = S2

The transactional component activates the compensation and, by construction,
the compensation raises the event r to propagate the backward-flow. According
to the flows F , this signal is targeted to ~c2. Therefore, we have

S2
ε=⇒

(ν n)

 P1 ‖ PF(F (OK )) ‖ PR(F (EX ))
‖∏s∈F (OK )−F (Nr)−{s′}P4(s)
‖∏s∈F (Nr) ∏c∈~c2 〈r©s〉@c ‖∏c∈~c2 〈r©s′〉@c

 ‖∏S−1 〈τ©τ′〉@c = S3

We verify that the delegated transactional component can perform silent actions
up to the emission of the same envelopes for ~c2. Initially, the pending event r
can activate only one of the checks reaction of a (Q6), because all other reactions
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wait for restricted topics or are performed by the restricted component b. By con-
struction we have that component a includes a reaction for the received session
because s′ ∈ F (OK )−F (Nr)

R1 =

〈
a�F1 ; (ν n1)

 Q1 ‖ Q4 ‖ Q5 ‖ QF(F (OK )) ‖ QR(F (EX ))
‖∏s∈F (OK )−F (Nr) Q6(s)
‖∏s∈F (Nr) ∏c∈~c2 〈r©s〉@c

 ‖∏S 〈τ©τ′〉@c

〉
ε=⇒〈

a�F1 ; (ν n1)

 Q1 ‖ Q4 ‖ Q5 ‖ QF(F (OK )) ‖ QR(F (EX ))
‖∏s∈F (OK )−F (Nr)−s′Q6(s)
‖∏s∈F (Nr) ∏c∈~c2 〈r©s〉@c ‖ r s@a

 ‖∏S−1 〈τ©τ′〉@c

〉
= R2

The raised event is targeted to b, according to the flows F1,

R2
ε=⇒〈

a�F1 ; (ν n1)

 Q1 ‖ Q4 ‖ Q5 ‖ QF(F (OK )) ‖ QR(F (EX ))
‖∏s∈F (OK )−F (Nr)−s′Q6(s)
‖∏s∈F (Nr) ∏c∈~c2 〈r©s〉@c ‖ 〈r©s′〉@b

 ‖∏S−1 〈τ©τ′〉@c

〉
= R3

Now, the component b can consume the pending envelope, activating its lambda
reaction (Q5)

R3
ε=⇒〈

a�F1 ; (ν n1)

 Q1 ‖ Q4 ‖ Q5 ‖ QF(F (OK )) ‖ QR(F (EX ))
‖∏s∈F (OK )−F (Nr)−s′Q6(s)
‖∏s∈F (Nr) ∏c∈~c2 〈r©s〉@c ‖ [[[[CompA(s′)]]]]a

 ‖∏S−1 〈τ©τ′〉@c

〉
= R4

The compensation is activated and, by construction, the event r is raised by the
component b. Notice that the spawned envelopes are targeted to c2.

R4
ε=⇒〈

a�F1 ; (ν n1)

 Q1 ‖ Q4 ‖ Q5 ‖ QF(F (OK )) ‖ QR(F (EX ))
‖∏s∈F (OK )−F (Nr)−s′Q6(s)
‖∏s∈F (Nr) ∏c∈~c2 〈r©s〉@c ‖∏c∈~c2 〈r©s′〉@c

 ‖∏S−1 〈τ©τ′〉@c

〉
= R5

Finally, by constriction (S3,R4) ∈ B .
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C.2 Proof of Theorem 9
Let Nd1,d2 be as in 4.1 and N′d1,d2

as in (4.2) then [[Nd1,d2 ]]≈
[[

N′d1,d2

]]
First, we describe the structure of the two networks:

Nd1,d2 = (νd1)(νd2)(N ‖ D)
N′d1,d2

= (νd1)({d1/d2}N ‖ D′)

The proof of the theorem follows the same strategy we adopted for the proof
of Theorem 8. However, in this case one cannot simply prove that D is weak
bisimilar to D′. In fact, we need to consider more refined information on the
network context (e.g. N and {d1/d2}N). For instance, N is basically equivalent
to {d1/d2}N just by suitably updating the flows. Pictorially, we can represent the
two networks as in Figure C.1.

(a) Nd1 ,d2 (b) N′d1,d2

Figure C.1: The example networks

Since N is the translation of a saga process, it is easy to prove, by structural
induction, that cannot exist a component that delivers signals to both dispatcher
d1 and d2. Hence, the network Nd1,d2 can be rewritten as

(νd1)(νd2)(N1 ‖ N2 ‖ D)

where the network N1 does not contains flows to d2 and N2 does not contains
flows to d1.

In the example, N1 is the network containing TC3 and c1, while N2 is the
network containing TC1, TC2 and c2.

Again, by structure induction we obtain that

{d1/d2}N1 = N1
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and by induction over the transition rules it is technically easy (even if elaborated)
to prove the following statement:

[[N2]]
α−→
[[

N′2
]]

i f and only i f [[{d1/d2}N2]]
{d1/d2}α−−−−−→

[[
{d1/d2}N′2

]]
The key observation is that

• N2 does not contain any reference to d1

• the name d2 can occur only inside envelopes in the network N2

To guarantee week-bisimilarity we have to check that any component in-
volved into the coordination raises the event r only once for each session. This
follows from the observation that

• The network N1 has one component connected to d1, then it will deliver up
to one envelope 〈r©s〉@d1 for each s ∈ T .

• The network N2 has two components connected to d2, then it will deliver
up to two envelopes 〈r©s〉@d2 for each s ∈ T .

Indeed, the structural properties detailed above allows one to constraint the mul-
tisets of envelopes that characterize successes and failures of behavior.

To better understand this requirement, we report a portion of the NCP policy
representing a possible state of a dispatcher

P1(s) = r s@a.r s@a. f s@a

The policy P1 represents the check reaction installed by the dispatcher to syn-
chronize a backward-flow. A dispatcher can have multiples copies of the policy
P1, depending from the number of forward-flow executed:

∏
s∈F(N f )

P1(s)

Each copy of P1 is intended to operate on a distinguished session, otherwise
two instances of P1 compete to handle the same events r. For this reason, it
is necessary to constraint the behavior of components in the network context to
deliver forward events only once for each session s. This constraint, that can
be proved by induction over the structure of SC networks implementing sagas,
ensures that sessions of envelopes identified by F (N f ) and unique.

The statement follows as done for the proof in C.1, substituting the policies
P and Q with the translations of the networks D and D′.
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[85] M. Bravetti, M. Núñez, and G. Zavattaro, eds., Web Services and For-
mal Methods, Third International Workshop, WS-FM 2006 Vienna, Austria,
September 8-9, 2006, Proceedings, vol. 4184 of Lecture Notes in Computer
Science, Springer, 2006. 154, 155

159

http://www.eclipse.org/
http://download.oracle.com/docs/cd/B19306_01/server.102/b14257/jm_create.htm
http://download.oracle.com/docs/cd/B19306_01/server.102/b14257/jm_create.htm
http://www.eclipse.org/modeling/gmf/
http://www.eclipse.org/modeling/gmf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/gef/
http://www.eclipse.org/gef/
http://www.oasis-opencsa.org/sca
http://www.oasis-opencsa.org/sca
http://www.oasis-opencsa.org/
http://www.oasis-opencsa.org/

	List of Figures
	List of Tables
	1 Introduction
	1.1 Developing SOA Applications
	1.2 Formalizing Service Oriented Computing
	1.3 Main contributions
	1.4 Structure of the thesis
	1.5 Origin of the chapters
	1.6 Acknowledgments

	2 Preliminaries
	2.1 Service Oriented Architectures
	2.2 The Business Process Modeling Notation
	2.3 The -calculus
	2.3.1 Examples
	2.3.2 Reduction semantics
	2.3.3 The asynchronous -calculus
	2.3.4 Asynchronous -calculus: behavioral semantics
	2.3.5 Bisimulation semantics

	2.4 The saga calculus
	2.4.1 Big step semantics
	2.4.2 Examples


	3 The SC family of process calculi
	3.1 Signal Calculus: SC
	3.1.1 Reduction Semantics
	3.1.2 Examples

	3.2 Managing Sessions
	3.2.1 Reduction Semantics
	3.2.2 Examples

	3.3 Dynamic types: xSC
	3.4 Related works

	4 Reasoning with SC
	4.1 Network Coordination Policies
	4.1.1 Semantics of NCP
	4.1.2 Examples
	4.1.3 Bisimulation Semantics

	4.2 Checking Choreography
	4.2.1 Example of verifying SC designs

	4.3 Encoding saga in SC
	4.3.1 The transactional component
	4.3.2 Sequential composition
	4.3.3 Parallel composition
	4.3.4 Transactions

	4.4 Refactoring LRT
	4.4.1 Refactoring transactional components
	4.4.2 Refactoring parallel composition

	4.5 Related Works

	5 The SC practice
	5.1 Model transactional properties
	5.2 The reference SC implementation
	5.3 Refinement via refactoring

	6 The Event based Service Coordination framework
	6.1 The language: SCL
	6.2 The run-time: JSCL
	6.3 The programming environment: JSCL4Eclipse
	6.4 Related Works

	7 Concluding remarks and Future works
	A Proof of Theorems in Section 4.1
	A.1 Proof of Theorem 1
	A.2 Lemma 1
	A.3 Proof of Theorem 3
	A.4 Proof of Theorem 4 
	A.4.1 Proof of statement 1 of Theorem 4
	A.4.2 Proof of statement 2 of Theorem 4

	A.5 Proof of Theorem 5 

	B Proof of theorems in Section 4.2
	B.1 Lemma 2
	B.2 Lemma 3
	B.3 Lemma 4
	B.4 Lemma 5
	B.5 Proof of Theorem 6 

	C Proof of theorems in Section 4.4
	C.1 Proof of Theorem 8
	C.2 Proof of Theorem 9

	Bibliography

