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Abstract

This thesis is focused on the study of new techniques of analy-
sis coming from diverse fields (Complex Networks Analysis,
Data Mining, and Big Data). Main aim is to better understand
systems characterized by a high level of complexity. Markets
are the chosen application scenario. In these complex systems,
to find the right balance between the forces of demand and
supply is very challenging, especially considering that they are
characterized by imperfect but massive and fast information.
In this context, the thesis presents approaches to face several
open questions: how to find the general pattern of shopping
behavior, how to mine the product space to find the best pro-
duct/service that meets the demand, what is the role of the
social influence between customers, and so on. The methods
and techniques, belonging to the field of Complex Networks
Analysis, are complementary to the usual ones of Data Mining.
While in Data Mining the purpose is to search patterns and
special distributions in a large dataset, here the purpose is to
give a focus to the relations between entities of the markets,
looking more to the whole system than to the single behavior.
The thesis, finally, presents results of experiments performed
on real world high quality datasets, providing, in addition to
the theoretic results, practical application scenarios.

xxi



Chapter 1

Introduction

The increasing efficiency and availability of information and communi-
cation technologies in the last decade brought all actors in markets to
focus their attention in the use and management of information. This task
became of primary matter for them in order to protect and develop their
business.

There exist a whole discipline, indeed, that study methods and measures
to extract useful information from large repositories of data: the data
mining. Unfortunately, nowadays the simple extraction of information
from “static” datasets is not enough. There is the need to have a dynamic
framework, that not only captures behaviors and pattern from the past,
but that can study relations among entities, in order to early discover
how and when these behaviors change. In other words, there is the need
to study the network of entities that is established in markets. For this
reason, the main aim of this thesis is to apply advanced methods and
techniques belonging to complex networks analysis on big data to discover
knowledge useful to better understand markets.

First, it is important to define precisely what we mean with big data,
complex networks and markets:

• with big data we mean the ensemble of huge amount of data coming
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from different sources (data warehouses, query logs, online social
networks, and so on) and optimized algorithms, methods and data
structures able to manage it.

• with complex networks we refer to all these methods and measures
of analysis developed in the recent years with the aim of studying
and better understand real complex systems representing them with
the mathematical model of graph. In this way we can model and
study complex interacting phenomena such as social interactions
among human beings, cause-and-effect phenomena in technological
systems, biological reactions in organisms and so on.

• with markets we mean the actual or nominal place where forces of
demand and supply operate, and where buyers and sellers interact
to trade goods, services, contracts or instruments, for money or
barter. In particular, we are interested in imperfect markets; or,
better, in the following two features: (i) the object of the trade
(goods, services, and so on) aren’t homogeneous, and (ii) there is no
single price in the market.

The problem of extracting information from data in order to better
understand markets is one of the main application fields in data min-
ing. Problems like churn and retention analysis, market basket analysis
and customer segmentation represents natural application of standard
methods of the discipline. These three applications are, in a certain sense,
the primordial need for market actors to start understanding in a semi-
automated way their business. With churn analysis we refer to the activity
with the objective to predict when the loyalty of a certain customer is
decreasing [8, 62, 124]. The objective of market basket analysis, instead,
is to find recurring patterns over the sales data that a significant amount
of customers have in common [14]. The customer segmentation, finally,
has the objective to split customers in groups with a certain character-
istic in common, usually linked to the purchase behavior [63, 70, 125].
The algorithms and methods that the three applications above use are
all well known in data mining literature, in particular we refer to fre-
quent [1, 2, 85, 95] and sequential [3, 116] pattern mining, classification
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[17, 66, 105], clustering [10, 15, 40, 84], and so on.

This very powerful collection of methods has, unfortunately, one im-
portant downside: to perform it the analyst always needs to project over
one dimension, losing important information about the composition of the
other one. More precisely, by projecting on one dimension, one can lose
coherence or contingency. For example, we can perform market basket
analysis searching for frequent patterns among baskets, but we are not
considering the dimension of the customer (we are losing in coherence,
splitting the set of baskets belonging to the same customer and consider-
ing them as completely unrelated). To solve this problem, we can perform
the analysis over the whole set (or an approximation) of purchases of each
customer, but in that case we are representing a customer with only one
purchase behavior, while he/she can behave in several different ways (in
this case, we lose in contingency).

In addition, there is another important factor brought from the ex-
ponential increase of availability and cheapness of ICT: the enhancing
of social interactions and information spreading that makes the above
mentioned kind of analysis less useful, at least in these three scenarios:

• due to online social networks, dedicated forums, and special search
engines, the spread of information in the market became almost
instantaneous, and this phenomenon affects the analysis performed
statically making the assumption done on the customers’ vision
of the world quickly obsolete (anyone has access at hundreds of
“suggested prices” or at thousand of reviews and opinions for each
different product)

• the increased level of social interaction between people enhanced
the importance of the “social factor” in the choice function of a
product/service (while before the choice function was dominated
by the “personal factor”). In addition, automatic recommendation
systems give even more priority at what our connections and people
similar to us choose. This means on one hand that we can observe
flows of changes of behavior (due to the chains of influence that the
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so called “leaders” have on the other people), and so the analysts
need to tackle this continuous change of the customers’ purchase
behavior; but on the other hand in this scenario the idea of targeted
marketing become achievable: by identifying the leaders of any
bunch of products, the seller would just needs to advertise few cus-
tomers in order to spread the information about new or interesting
products throughout his set of customers.

• the immediacy with which each person can communicate with
his/her “neighbors” changed also in a radical way the same concept
of person, that is not only a container of personal behaviors and
knowledge, but can be seen also as a combination of the previous
personal factor plus behaviors and knowledge that its connections
transmit to him/her. This phenomenon, in a system where people
are the object of the market (e.g. job markets), has a very large im-
pact. The usual mining techniques that just investigate the personal
sphere of skills and features are not enough, and there is the need
of a methodology to better evaluate the supply in the market.

In some of the above cases, the goals of the analysis can be achieved
modeling the interplay between actors in markets and studying the prop-
erties of these relations (first two scenarios) or using novel algorithms
able to mine information taking into consideration both static features
and relations among entities (third scenario).

The thesis is divided in two parts: in part I we focus the attention on
retail market, where we try to build relations among customers and prod-
ucts, in order to easily perform analysis considering both of them. After a
presentation of the dataset (we have access at the selling data of one of
the largest Italian retail company), we talk about the customer behavior.
By building a bi-partite graph customer-product (see Chapter 4), it is
possible to notice an interesting scheme of the purchases (modeled with
the links between customers and products), called triangular structure.
This structure allows to calculate a new measure called “sophistication
degree”, that is a new interesting measure that finds ground of applica-
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tion in psychology (Section 4.3.3), targeted marketing (Section 4.3.4) and
geomarketing (Section 5). In Chapter 6 we show how, even focusing on
just one dimension (in the case the product), a network approach can give
interesting results not achievable with usual data mining tools.

In Part II, instead, we study the role of social networks in markets.
Here the main differences with respect to the previous Part are that (i) the
nodes are always people, and (ii) the links between people are explicit
(or, better, explicitly reported by them). As we saw, markets are complex
systems where people can have different roles: one can be the object of the
trade (e.g. market of jobs) or an actor (e.g. a customer in retail market ). In
Chapter 7 we discuss the first case, showing a way to better rank and find
people (modeled as a container of skills) in an expert finding application,
where we take into consideration not only the personal dimension of
skills, but also the interconnection that one can have with its personal
network (and with skills not directly possessed, but easily accessible by
him/her). In Chapter 8, instead, we consider another very important
phenomenon in trade of goods: the influence that people have on other
people’s choice about products and services. More generally, we can
say that the experience of a product/service made by a friend (or an
acquaintance) we trust can be a very strong added value (sometimes
more than the real features/conditions of the good/service). Going up
through the chain of influence, we can find the root (or leader), opening the
doors at the real dream of any communication strategist: exploit the word
of mouth to let a new product/service reach all customers focusing the
resources just on the leaders. In this section, we provide a real example
based on the music listening made on Last.FM social network.

Finally, Chapter 9 concludes the thesis, by presenting the future re-
search directions opened by this study.
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Chapter 2

Related Works

One of the purposes of this thesis is to find interesting findings on markets
starting from complex networks analysis and big data methods. The most
efficient and interesting algorithms in literature belong to data mining
field. For example, in Chapter 4 is described a complementary approach
to the classical data mining task of the association rule mining. In data
mining, association rule mining is a tool developed to find correlations
between the appearances of products in shopping carts [1]. Association
rule algorithms are able to uncover the most frequent and interesting rules
by efficiently cutting the search space (or even without [30]). Recently,
many step forwards have been proposed in association rule mining as
mining multidimensional rules [92]. When we try to find the general
pattern of shopping behavior, we differ from the works presented as we
are not focused on finding all the particular rules in a transactional dataset,
but in exploring the pattern characterizing it as a whole. This pattern can
also be used to design better heuristics for the classical association rule
mining algorithm, since it unveils novel relationships among products.

There are also works that aim to use association rule mining to obtain a
general picture of the system [24]. However, also in this case our approach
is different. In [24], only the associations between products are considered,
leaving the customers undescribed. Then, the general picture in [24]
is based on the aggregation of the local patterns, while in our paper
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we employ a complementary approach, creating the general picture by
analyzing the entire set of transactions as a complex system, expressing
properties at the global level that are not necessarily given by the sum of
the properties at the local level.

Other relevant literature dealing with the problem of extracting knowl-
edge from customer behavior can be found in business intelligence. In
this field, many data mining and OLAP techniques have been developed,
enriching the analytic tools [72, 79], not only for marketing purposes but
also to detect frauds [47] or public health surveillance [121]. Data mining
and customer behavior has gone also one step forward, by exploiting
sentiment analysis as a prediction tool for a product success/failure [20].

Our approach is a combination of the application and the evolution of
some tools present in literature. First, for some specific tasks during the
whole Part I we make use of the lift measure. The lift (as the conviction,
collective strength and many more) is one criterion used in association
rule mining to evaluate the interestingness of a rule [48]. Second, we make
use of concepts related to ecology literature [11] and macro economics
[57, 58]. While in Chapter 4 and 5 we use similar techniques (as the
eigenvector factorization of the customer-product matrix to calculate the
sophistication levels of both customers and products), our paper differs
from the ones presented on two axis: the first is the quality of the data to
which we apply our framework (micro purchases against macro world
trade or ecosystem presence/absence of animal species); the second is the
quantity of data, as we work with matrices with a number of cells ∼ 109

while related works do not scale beyond ∼ 105 and therefore cannot be
used with big data.
The customer behavior is not just driven by personal preferences and
endogenous needs of the single persons. There are many other factors that
affect the choice of products by the customers. One of these exogenous
factors is the distance (in terms of space and time) to be traveled by the
customer to the shop selling the product she wants to buy (see Section 5).
Again, we need to refer to studies of customer behavior and data mining
for marketing and for the analysis of spatial data.

The first field has been tackled mainly in the economics literature:
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behavioral economics has focused its attention on the rational choices of
the entities in the market [37, 41, 60]. Customer behavior study is also
a classical marketing problem [117]. However, the recent studies about
the customer movements and purchases are more focused on visually in-
specting the movements of people inside a shop [89]. This line of research
is present also on the computer science side [109]. In computer science,
there are also examples of GIS approaches to business intelligence [103],
of recommender systems for customer retention [52] and spatial analysis
of customer-to-business communications [55]. In computer science [38] is
a comprehensive book explaining the relations between economics and a
network-based analysis.

Marketing applications are historically one of the most natural testing
ground for data mining [1, 14]. The main aim of Part I, understanding
the links between customers and products, has been deeply tackled in
this discipline: by analyzing them in a multidimensional space [80], by
mining frameworks to understand customer behavior [44, 75, 114] and by
defining a data-driven customer segmentation [39]. However, these works
have in common the aim of the specific description of single customers,
rather than finding a broader and general pattern in the data. Data
mining has been widely used also in other generic problems related to
geographical systems. For example, a network mining approach has been
used to detect the borders of human mobility [34], of tweet’s topics [61]
and trajectory pattern analysis [25, 83].

The bipartite graph customer X product is not the only way to mo-
del a market in order to be analyzed with complex networks analysis
techniques. We can also think at a easier representation, like customers
or products networks, for example in [59], the authors build a network
connecting customers based on communication frequency, while one first
attempt to build a network of products is in [24] (that is at the basis of
the work descibed in Chapter 6), where the authors use a dataset coming
from an university store over the time span of a year (660K transactions,
2200 products). Authors build a directed network (where relationships
are not symmetrical) connecting product A to product B if B is frequently
purchased when A is purchased. Their approach is based on association
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rules discovery [1]. Anyway, in [24] the authors are interested not at the
composition of the communities, but at their overall quality, measured
with an aggregation of the confidence attached to the edges.

Moving to the other central aspect of Chapter 6 , one classical prob-
lem definition in complex network analysis is how to detect functional
modules in the network. This is usually known as “community discov-
ery”, borrowing from the social network literature [33]. Given the high
relevance of this branch of studies, we examine this problem with higher
depth in Section 6.2. In general, community discovery is a very popular
research field in complex network analysis, with hundreds of papers on
the topic and an almost equal number of developed algorithms [45]. The
amount of relevant literature is due to the lack of a proper and unique
definition of “community” [127] and the potential high impact of research
in the field [42]. Historical approaches such as defining a particular qual-
ity function (like modularity) for community discovery or the detection
of semi-cliques in the network (the k-clique percolation algorithm) have
been widely used but are of no interest here given their theoretical down-
sides and/or their inability to scale for large networks [33]. Successful
modern approaches can be divided in two classes, that we will explore
in depth in Sections 6.2.1 and 6.2.2: partition-based algorithms such as
infomap [110], agent-based [65] or label propagation based [108]; and
overlap-based like DEMON [35], Hierarchical Link Clustering [4] and
overlap label propagation [77, 126].

As stated above, markets are not only to be intended as retail markets.
In Part II we discuss some application for markets where we can exploit
the knowledge of the social relation among agents of the market. In
Chapter 7 we present an application for markets of expertises and skills
(or, more generally, for job markets), where there’s a huge space for
improvements in order to help human resources management people.
This is not the first work pointing out that social network analysis is a
useful tool in this area, as [16] starts from the assumption that the value
of a person is not only determined by the extent of what she knows, but
also to her position in a social network, that is exactly our starting point.
However, [16] only uses a centrality concept, without looking at the skills
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of the nodes of the network, nor it builds a computer science framework to
solve the problem. The social dimension enters in the problem of human
resources management not only as an evaluation tool of the skills of a
person, but also on how much she can influence the behaviors of other
employees [43].

To rank nodes according to their importance in a network structure is
a classical problem in complex network analysis [120]. The final aim here
is to have multiple rankings over a multidimensional network. To the best
of our knowledge, no algorithm is able to perform this task. The current
state of the art in this research branch can be divided in four categories.

• In the first category, there are popular ranking algorithms (PageR-
ank, SALSA and related [78, 93, 115]) which provide a single ranking
in a monodimensional network.

• In the second category, we have ranking algorithms that can pro-
vide multiple rankings, but on a non-multidimensional network.
The oldest and best-known approach is HITS [71], which provides
only two rankings (hub and authorities). Another example is topic-
sensitive PageRank [56], that can provide an arbitrary number of
rankings. However, in the topic-sensitive PageRank there is no way
to exploit different kinds of relations, so it cannot perform the task
requested.

• In the third category, the ranking algorithms deal with multidimen-
sional network, but they provide a simple ranking, much like the
PageRank does for monodimensional networks. This branch has
been thoroughly tackled in recent years, for example in [81, 91, 119].

• Finally, multidimensional approaches to the multi-ranking prob-
lem. There is already one method in literature in this category,
namely TOPHITS [74]. However, just like HITS, TOPHITS provides
only two different rankings, hubs and authorities, therefore its ap-
plication to real world scenarios in the evaluation of many skills
is questionable. The work described in Chapter 7 belongs to this
category.
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Another very important factor, talking about markets, is the spreading
of information and influence among customers. The study of diffusion
processes has reached, in the last decade, a very central role in complex
systems analysis field, while before was especially a biological problem.
This is due to the increasing complexity and density of personal and social
links in society made possible by technology (cheaper and more accessible
flights, online social network services, etc.), that provide: a) a very easy
way for people to connect and spread information, and b) a collection of
huge datasets to be analyzed by the data experts.

Two phenomena related to the networks are tightly linked to the
concept of diffusion: the spread of biological [31] or computer [123]
viruses, and the spread of ideas and innovation through social networks,
the so-called “social contagion” [19]. In both cases, the patterns through
which the spreading takes place are determined not just by the properties
of the pathogen/idea, but also by the network structures of the population
it is affecting.

In the SIR epidemic model [68] each individual transits between three
stages in the life cycle of a disease: a node may pass from Susceptible (S) to
Infected (I), and from Infected to Recovered (R). Initially, some nodes are
assumed to be infected, while the others are susceptible to infection. Dur-
ing the infectious period, people can pass the disease to their neighbors
with a certain probability. After a healing time, these nodes become inert
in the contact network (recovered state). SIS models [96] allow to model
illnesses able to infect people multiple times, with individuals alternating
only between susceptible and infectious states. SIRS models [96] confer
temporary but not permanent immunity on infected individuals. Indeed,
a recovered person can return to a susceptible state after a certain amount
of time. Recently, the availability of big data conveying information about
human interactions and movements encouraged the production of more
accurate data-driven epidemic models.

Colizza et al. [31] modeled the spatio-temporal diffusion of the avian
pathogen H5N1 through a SIR-like model, exploiting the global air mo-
bility network. For each city covered by an airport, they simulated the
epidemic evolution by solving a set of differential equations, revealing

11



how the strong small-world effect of air mobility networks makes air
travel limitations useless. Wang et al. [123] analyzed a mobile phone
dataset to study the spreading patterns that characterize a mobile virus
outbreak. They predicted that, if the largest mobile OS reaches a critical
point, a virus will be able to reach the entire network of phones.

Christakis and Fowler studied the role of social networks in the spread
of obesity [27], smoking [28] and happiness [46]. Their results suggest
that these health conditions may exhibit some amount of “contagion” in
a social sense: although the dynamics of diffusion are different from the
biological virus case, they nonetheless can spread through the underlying
social network via the mechanism of social influence.

The main difference between biological and social contagion lies in the
fact that while the transmission of a disease obeys mostly to deterministic
mechanics, people do make conscious or unconscious decisions to adopt a
new idea. Empirical evidences of this observation come from the observed
tendency to adopt behaviors of neighbors, detected in several real-life
[86, 111] and online [7, 9, 22] contexts. On the basis of this difference,
different models from the ones presented before have to be adopted. In
threshold models [54] a node decides to adopt an idea if a given fraction
of his neighbors adopted it. In cascade models [50] an “active” individual
has a single chance to activate or not each currently inactive neighbor.
Some authors [67] proposed a general framework that simultaneously
includes both kinds of models as special cases. They also provided a
greedy solution for the NP-hard optimization problem of finding the best
set of individuals for maximizing the cascade of innovation adoptions.
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Part I

Building a Network over a
Retail Market: the Purchase

Behavior
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Chapter 3

Data

The dataset we used is the retail market data of Coop, one of the largest
Italian retail distribution company.

The whole dataset contains retail market data in a time window that
goes from January 1st, 2007 to April, 7th 2013. The active and recognizable
customers in that interval are 1, 659, 028. A customer is active if she
has purchased something during the data time window, while she is
recognizable if the purchase has been made using a membership card.
The 138 stores of the company cover an extensive part of Italy, selling a
total of 2, 732, 531, 951 items. The geographical distribution of shops and
customers is depicted in Figure 3.1.

The conceptual data model of the piece of the data warehouse mean-
ingful for the purposes of this thesis storing the retail data is depicted in
Figure 3.2, where the fact table (Sold) contains a row representing each
single product scanned in each checkout point of the supermarket chain.

The information contained in the dimensions of the data warehouse is
the following:

• Item: contains information about items: a natural language de-
scription, the brand, and a list of flag for “special” products (for
coeliacs, organic, Protected Designation of Origin (PDO), Protected
Geographical Indication (PGI), and so on). The table contains infor-
mation about 439, 619 different products.
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Figure 3.1: The location of stores (blue dots) and customers (yellow dots)
over the Italian territory.

• Customer: contains information about customers: card number,
name, date of birth, and geographical information about the resi-
dence (address and coordinates).

• Store: contains information about the stores. In particular, geo-
graphical informations (address and coordinates) and the kind of
the store. A store can be classified as:

– Iper: larger shops: they sell everything (food, cleaning product,
but also TVs, scooters, appliances, and so on)

– Super: medium size shops: they have a medium-high assort-
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Figure 3.2: The conceptual data model (star schema) of the data warehouse.

ment (w.r.t. Ipers they don’t sell appliances, TVs and expensive
products)

– GestIn: smaller shops: they sell food products and just some
not-food (house and body cleaning, cutlery, batteries, and so
on)

• Date: contains information about the day of the year and the kind
of the day (if it is a working day or not)

• Marketing: this dimension is used to classify products: it is orga-
nized as a tree and it represents a hierarchy built on the product
typologies, designed by marketing experts of the company (see Fig-
ure 3.2 for a list of hierarchy levels). The top level of this hierarchy
is called “Area” and it is split in three fundamental product areas:
Food, No Food and Other. The bottom level of the marketing hierar-
chy, the one directly on top of the leaves of the tree, is called Segment
and it contains 7, 003 different values. Each item has a classification
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in this hierarchy and, thus, we can exploit such tree to choose the
most suitable level of aggregation of products. The main difference
between item level and Segment level consists in packaging, size and
brand. For example, the three items: half-liter sugar free coca cola
bottle, 6X1.5 liter sugar free coca cola bottle’s box, and two liters
pepsi cola bottle, belong all at the same segment (sugar free cola
drinks).
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Chapter 4

Discovering the General
Pattern of Shopping
Behavior

This chapter is mainly based on [98] and [101].

Every day, millions of people use supermarkets and shops to fulfill
their needs. They buy water, food, products for housework, electronic
equipment, cars. Many of these purchases are electronically registered.
The stores usually provide loyalty cards to their customers and they
are able to connect their customers’ purchases with a very high level of
detail (i.e. any single item sold separately) to the data the customers had
provided when obtaining the card. Thus, not only we have very large
amount of data, but also the quality of the data is very rich. We can know
everything about the single products, whether they are food or not, the
brand, the price, the weight and so on; and we can know many things
about the customers, their age, profession, when they usually purchase
things.

In such a data rich environment, data mining arose as an useful tool to
extract knowledge about customer behavior. Usually, the amount of data
is huge. Very large databases and data warehouses are needed to handle
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this kind of data. In this setting, to apply standard statistical and analytic
techniques is hopeless. The need for efficiently extract knowledge from
these databases has favored the development of many techniques such as
association rule mining [1], fast data clustering [118], OLAP techniques
supporting business intelligence tasks [23, 72] and many more.

Many instances of useful knowledge have been extracted with these
data mining techniques. However, so far the knowledge extracted was
very specific and particular, and it lacked a general big picture about
the data. Let us consider association rule mining. In association rule
mining the general output is a rule stating that if a customer purchased
itemset A (for example diapers) then he/she has also purchased itemset
B (for example beer). The correlation between the appearances of the
two itemsets is interesting, but it regards only the items included in them
and the remaining of the purchase data have been left undescribed. If
we describe the dataset with a bipartite network connecting customers
to products, the classical association rule mining starts considering the
degree of a product, i.e. its support. Then, products are grouped into sets
maximizing the number of customers connected to each product of the
set. However, rarely these product sets include more than ten products,
while the entire bipartite network is composed by thousands products,
and millions customers that are reduced to a number (the support value).
The output of association rule mining is composed by thousands rules,
each describing a single particle of the customer behavior, and selecting
the most representative ones is usually a problem [64]. Moreover, usually
many products are left undescribed, as they are not frequently purchased,
causing this description to be incomplete.

In this section, we propose a methodology aiming at the description
of this bipartite structure as a whole, representing a complementary al-
ternative to the classical approach of association rule mining. We want
to use the entire set of all customer-product connections to better un-
derstand the hidden knowledge governing the interplay between our
desires and needs on one side, and the offered goods and products on
the other side. Moreover, what we propose is not only a description of
interesting product patterns, as in association rule mining, but also of
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customer patterns.

To do so, we implement a data analysis framework which mainly
operates on the characteristics of the customer-product bipartite structure.
This framework takes as input the bipartite customer-product network,
it considers its adjacency matrix and it operates on this matrix with the
aim of extracting its general defining pattern. The framework returns:
(i) the characteristic function of the matrix, which divides the adjacency
matrix in expressed and not expressed connections; and (ii) a ranking
of both customers and products, which describes how much basic or
sophisticated is a product, or the needs of a customer. We apply our
framework on a unique transaction database, described in Section 4.2.1.

We propose it as a novel analytic paradigm for market basket analysis.
This paradigm is challenging conceptually, because we are analyzing a
complex system of millions of customers and thousands of products as a
whole, in the search of its defining characteristics. Given the cardinality
of the data, this novel paradigm is also challenging computationally.

Our results shows that the framework is able to exploit (and quantify)
the defining characteristic of the customer-product matrix. Here, we show
three possible results that can be extracted from transactional dataset
applying our framework. First, we define mathematically the connection
pattern between the volume of sales of products and customers. The
potential applications of such a general pattern may represent an advance-
ment in many fields: in data mining, as it could provide a new tool to
mine product association rules; in economics, as it may represent a better
description of economic dynamics; in marketing, as it could be used to
define better viral and targeted promotion strategies; in social psychology,
as it may constitute a data driven definition of the hierarchy of needs of
large groups of people.

Second, we provide one empirical observation of Maslow’s hierarchy
of needs [87]. We find that we can measure how sophisticated are the
shopping behaviors (and, indirectly, the needs) of customers, and the same
holds for products. Highest ranked customers, with more sophisticated
needs, tend to buy niche products, i.e., low-ranked products; on the
other hand, low-ranked, low purchase volume customers tend buy only
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high-ranked product, very popular products that everyone buys.
Third, we propose a simple marketing application useful for targeted

advertising. Given the characteristic function classifying the likelihood
of a customer-product connection and a function characterizing how ba-
sic/sophisticated are the needs/characteristics of a customer/product, a
target marketing campaign may spot more precisely the smallest customer
set that is likely to start buying a given product.

To sum up, our contributions are the following. First, we develop an
analytic framework able to analyze a transactional dataset as a whole,
providing the general picture that association rule mining cannot define.
Then, we apply this framework to a vast real world dataset, extracting
some useful knowledge from it.

4.1 Transactional Data as a Complex System

Before building our framework we need to justify the choice on which
it is founded. Our assumption is that the traditional data approach in
association rule mining leaves undescribed a great amount of valuable
data. This data can be described by looking at the entire transactional
dataset as a complex system, and therefore it can be described as such. A
complex system is a system of small units who influence each other. The
complex system as a whole expresses properties and characteristics that
are not embedded in its parts, but emerge only when looking at the global
picture.

In Figure 4.1 we have a possible representation of the purchase data.
It is a bipartite graph with two types of nodes: customers and products.
Customers are connected to the products they buy. What association rule
mining does is to count the in-degree of each product and remove the
products with a degree lower than a given threshold. It then combines
the remaining products in set of two (and more) products and removes
the couples with insufficient in-degree until no further combination of
product with sufficient degree can be found. At the end of the procedure,
the result consists usually of thousands of sets of products.

However, this set of patterns cannot describe the entire dataset. Firstly,
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Figure 4.1: A representation of the bipartite purchase graph, connecting
customers to the product they buy.

it excludes customers, that are used only for counting the support of prod-
ucts. Secondly, as many natural phenomena, also purchasing behavior is
characterized by uneven distributions.

In Figure 4.2 we depict the two cumulative degree distributions of a
transactional dataset, one for each node type: the products (left) and the
customers (right). The data comes from one of the geographical areas
of the supermarket dataset (namely Lazio), which will be described in
details in Section 4.3. At the left we have a plot describing the probability
(y axis) of a product being bought by at least a given number of customers
(x axis), while at the right we have the probability (y axis) of a customer
of buying at least a given number of products (x axis). We can see that
the distribution in both cases is log-normal (please note the logarithmic x
axis): the 20% of the least popular products are being bought only by at
most 10 customers while the 20% most popular products are being bought
by more than 100k customers (almost a million); the 20% of the customers
bought 10 or less distinct products while 10% of the customers bought
1,000 distinct products or more.
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Figure 4.2: The cumulative degree distributions of products (left) and cus-
tomers (right) in the bipartite network.

The consequence is that a large amount of products are not considered
in association rule mining, simply because they fail to meet the support
threshold requirement. Also, the customer degree distribution gives us
a further intuition that will be confirmed in the following sections: the
number of products that are really bought by almost everybody is very
low (in the order of 10, we need more evidences of this as the distribution
is an aggregation and the 10 products bought by the bottom 20% of
the customers may be different, but we will see that they are not). In
other words, the connections between the most popular products are not
randomly distributed into the dataset, but they tend to be connected to the
same set of customers, the ones that buy everything. This is an additional
limitation of association rule mining: not only it ignores many products,
but the products considered are always being bought by the same set of
big buyers, leaving out different purchase behaviors. We can conclude
that a methodology able to include customers and less popular products
into a global picture can be useful as a complementary part of association
rule mining.

4.2 The Framework

In this section we describe our framework. The input of the framework
is the weighted bipartite graph G = (C,P,E) connecting the customers
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Figure 4.3: The Mcp purchase matrix. For layout purposes, the matrix has
been transposed, thus we have customers as columns and products as rows.
The red line is the isocline of the matrix (see Section 4.2.2). Color image.

c ∈ C to the products p ∈ P they buy. The weight wi on the edge
(ci, pi, wi) ∈ E is the number of times customer ci bought product pi.
The output of the framework is a description of the global and the local
properties of the bipartite structure. The global description is a function
f∗ connecting the volume of sales of products with the set of customers
buying them and the volume of purchases of customers with the set of
products they are buying. The local description is an evaluation of how
much a product, and a customer’s need, is basic or sophisticated and we
call it product (or customer) sophistication. To go from the input to the
output we need to apply a three-step process: (i) pre-process the data,
by filtering out the not significant purchases (Section 4.2.1); (ii) evaluate
the consistency of the data through a null model check (Section 4.2.3);
(iii) apply two different algorithms to obtain f∗ (Section 4.2.2) and the
product/customer sophistication (Section 4.2.4).

4.2.1 Preprocess

To analyze the bipartite customer-product structure, we decide to deal
with the adjacency matrix representing its connections. Since we want to
analyze the aggregate behavior of customers and verify whether some
patterns emerge on the relation between customers and products, we need
to arrange the rows and the columns of the adjacency matrix in a logical
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way. Hence we sorted the matrix with the following criterion: fixing the
top-left corner of the matrix M as the origin, we sorted the customers on
the basis of the sum of the items purchased in descending order (the top
buying customer at the first row and so on), and the products with the
same criteria from left to right (the top sold product at the first column
and so on). In this way, at the cell (0, 0) we can find the quantity of
top sold product purchased by the top buying customer. Using this
criterion, we exploit the log-normal degree distributions of the bipartite
structure, showing that the best sold products are bought by all kinds of
customers, while products with a low market share are bought exclusively
by customers who buy everything. This consideration is at the basis of
the f∗ function estimation in Section 4.2.2.

The final step of data preparation is to binarize the matrix, by identify-
ing what purchases are significant and what are not. We cannot simply
binarize the matrix considering the purchase presence/absence of a cus-
tomer for a product. A matrix with a 1 if the customer cj purchased the
product pi and 0 otherwise will result in a certain amount of noise: it
takes only a single purchase to connect a customer to a product, even if
generally the customer buys large amounts of everything else and the
product is generally purchased in larger amount by every other customer.

We need a mechanism to evaluate how meaningful is a purchase
quantity for each product pi for each customer cj . This evaluation is done
using the concept of lift [1], that is related to association rule mining.
Given a couple of itemsets (X,Y ), the lift of the couple is defined as
follows:

lift(X,Y ) =
supp(X,Y )

supp(Y )× supp(X)
,

where supp(I) is the relative support of the itemset I . The relative
support of itemset I is the number of times all i ∈ I are purchased together
over all the transactions present in the dataset.

In our case, we force a particular condition: the itemset X always
contains one item (the customer cj); the itemset Y always contains one
element (the product p) and the support of (cj , pi) is given by the corre-
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sponding entry in the matrix. In other words, supp(cj , pi) is the relative
amount of product pi bought by customer cj , supp(pi) is the relative
amount sold of product pi to all customers and supp(cj) is the relative
amount of products bought by customer cj .

Lift takes values from 0 (when supp(cj , pi) = 0, i.e. customer cj never
bought a single instance of product pi) to +∞. When lift(cj , pi) = 1,
it means that supp(cj , pi) is exactly the expected value, i.e. the connec-
tion between customer cj and product pi has the expected weight. If
lift(cj , pi) < 1 it means that the customer cj purchased the product pi
less than expected, and viceversa. Therefore, the value of 1 for the lift
indicator is a reasonable threshold to discern the meaningfulness of the
quantity purchased: if it is strictly higher, then the purchases are mean-
ingful and the corresponding cell in the binary matrix is 1; otherwise the
purchases are not meaningful, even if some purchases are actually made,
and the corresponding cell in the binary matrix is 0. The Mcp matrix is
built accordingly to this rule:

Mcp =

{
1 if lift(cj , pi) > 1;
0 otherwise.

This is the final output of the preprocess phase, hence from now on
it will be referred as the purchase matrix and Mcp(cj , pi) is the entry of
Mcp of row j and column i. We provide an example of an Mcp matrix
in Figure 4.3, that is the Mcp matrix extracted in the Livorno2007-2009
dataset (see Chapter 3). In Figure 4.3, the columns of the matrix are the
317, 269 customers and the rows are the 4, 817 products. We depicted a
compressed view of the matrix, where each data dot represent a 50× 50

square of the original matrix and the gray gradient represents how many
1s are present in that section of the matrix, for space constraints.

We can observe in Figure 4.3 the phenomenon we described in Section
4.1: only a small amount of popular products are bought by everyone, but
a smaller and smaller set of customer purchases the rest of the products
(going from the right to the left columns) and it is always composed by
the same set of big buyers. This particular distribution of ones is used
in Section 4.2.2 to define f∗. Before doing that, we need to verify if this
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particular distribution is telling something interesting or it is expected,
and we tackle this problem in the next stage of the framework.

4.2.2 The f∗ Function

Customers behavior is not random: as we have seen in Chapter 2 there are
many studies dealing with the problem of finding correlations between
products frequently bought together [1]. However, our framework is
based on a stronger assumption than the presented consideration: it
requires that these correlations are actually organized following a general
law that regulates retail purchases. In other words, we are not dealing
with a set of correlations limiting their effects on two or three products.
There exists a general pattern, stating that it is possible to define the set of
products bought by a customer as a function of the amount of products
he/she buys.

In other words, the assortment of products bought by any given cus-
tomer cj is determined by cj ’s volume of purchase, and the population
of customers that buy any given product pi is determined by pi’s volume
of sales. More precisely, the f∗ function that is being extracted relates the
rank of products with the rank of customers, where the rank i of a product
pi (or j for customer cj) stands for the fact that pi is the i-th highest sold
product (or cj is the j-th customer with the largest volume of purchases).
The function f∗ is a systematic map from the rank j of a customer cj to the
rank i = f∗(j) of a product pi, such that the assortment of products bought
by cj is {p1, . . . , pi}with high probability. The mapping can be inverted,
so we can map the rank i of any product pi into the rank j = f−1

∗ (i) of a
customer cj .

We help to understand the intuition behind the f∗ function using
the graphic argument provided by Figure 4.3. The Mcp purchase matrix
presents a very particular shape, i.e. it has a triangular structure. The
first rows and columns present a very high density of points while, in
comparison, the rest of the matrix is almost empty. The f∗ function is the
equation of the line dividing the black area of Figure 4.3 (the one with
the high density of ones) from the white area. After generating a null
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model, based on the null hypothesis that this structure is expected given
the distribution of products bought by customers, we can say that this
structure is not expected and therefore it is carrying some meaning.

Figure 4.3 suggests what is the shape of f∗. For any customer cj
we denote assortment(cj) = {p1, . . . , pf∗(j)} and, for any product pi,
customer base(pi) = {c1, . . . , cf−1

∗ (i)}. The mathematical shape of the
f∗ map appears to be, from Figure 4.3, anti-monotonic, i.e., i1 < i2 im-
plies that f∗(i1) > f∗(i2), which in turn implies that assortment(c2) ⊆
assortment(c1). In other words, if c1 is customer purchasing more in
terms of product quantities than c2, then it is very likely that c1 buys the
same set of products c2 buys, plus something more.

Matrices with triangular structures have been already studied in ecol-
ogy literature. In ecosystems, simpler organisms are ubiquitous and more
complex organisms appear iff simpler organisms are already present [11].
In these works, authors define nestedness as a measure to understand
how much triangular is the structure of the matrix representing the con-
nections between species and ecosystems. The nestedness is calculated
by identifying the border dividing the matrix in two areas containing
respectively most ones and most zeroes, that is exactly the role of the f∗
function we want to define. This function is known as isocline.

In literature there are several algorithms tackling the problem of com-
puting the isocline of a matrix [6]. The general approach is usually made
in two steps: a reordering of the rows and columns of the matrix, such
that the ones tend to be clustered in the upper-left corner of the matrix;
and an estimate of the isocline function on the reordered matrix.

In our framework we are implementing an alternative way to calculate
the isocline. We have chosen to do so for two reasons. Firstly, all algo-
rithms explicitly reorder the matrix. We do not want to reorder our matrix,
since the order we defined in Section 4.2.1 is a fundamental prerequisite
for the f∗ function, as it has been defined above to connect the ranks of cus-
tomers and products calculated on their volumes of purchases and sales,
respectively. These ranks are obtained by the matrix ordering during the
preprocessing stage and cannot be modified. Secondly, the state-of-the-art
algorithms are designed to deal with ecology data, with a number of cells
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in the order of 104 or 105. Since our cells are ∼ 109, we need to define
a new procedure, enabling the application of our framework to large
datasets.

We need an evaluation measure to understand if a proposed isocline
is good or not. We use the following formulation:

N(Mcp, f∗) =
1

2

(
fl(Mcp, 1)

fl(Mcp, ∗)
+
fr(Mcp, 0)

fr(Mcp, ∗)

)
,

where fl(Mcp, ∗) counts the number of cells at the left of the isocline
in Mcp where we expect to find the ones (and fl(Mcp, 1) counts the ones)
and where fr(Mcp, ∗) counts the number of cells at the right of the isocline
in Mcp where we expect to find the zeroes (and fr(Mcp, 0) counts the
zeroes). In practice, we take the average of the one-density at the left
and zero-density at the right of the isocline. In an ideal case, where all
the ones are at the left of the isocline and all the zeroes are at the right,
N(Mcp, f∗) = 1, while in the worst case (all zeroes at the left and all ones
at the right), N(Mcp, f∗) = 0. Therefore, the more N(Mcp, f∗) is close to
1, the more the matrix is nested. We used this measure because simply
counting unexpected presences and absences of ones at the right/left of
the isocline is not a fair measure, being our matrix very sparse.

We now need to find the isocline. To find it, we estimate where the
isocline should pass to maximize the division of ones at the left and
zeroes at the right. We consider our matrix as a Cartesian space. For
each discrete x axis value (customer) we get an estimate of where the
isocline should pass (y axis). We do so by summing the ones of the
corresponding matrix row (kc,0 =

∑
pMcp(c, p)). Then, for each discrete

y axis value (product) we get an estimate of where the isocline should
pass (x axis). We do so by summing the ones of the corresponding matrix
column (k0,p =

∑
cMcp(c, p)). We average these two values and we

obtain a pair of coordinates. This procedure is linear in the number of
customers and products and therefore it can scale with very big matrices.
We fit these coordinates using a non-linear least squares optimization with
the Levenberg-Marquardt algorithm to obtain the best function able to
represent the isocline and, therefore, the f∗ function. For the Livorno2007-
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f∗ N(Mcp, f∗)
ax+ b 0.616106811666
ax2 + bx+ c 0.628533747603
a log(x) + b 0.623911138356
axb 0.572996769269
a
x 0.609588181022
−ax+b
cx+d 0.632547410976

Table 4.1: The N(Mcp, f∗) for the different f∗ tested.

2009 dataset (317, 269 customers and 4, 817 products) the whole procedure
took seconds.

To fit a function with the non-linear least squares optimization, it is
needed the shape of the function. Our framework tries several different
shapes, memorizing the N(Mcp, f∗) value and then choosing the best
performing one. We chose the functions that, at the best of our knowledge,
could be a good approximation of the isocline (line, parabola, hyperbola,
logarithmic function, and so on). The results of each shape we tried for
the Livorno2007-2009 dataset is reported in Table 4.1. The simple non-
rectangular hyperbola (last line of Table 4.1) is the best option for our f∗ in
this dataset. Then, the relation linking the volume sale rank i of a product
pi to the volume purchase j of the last customer of the customer base(pi)

set is hyperbolic. The two relations are i = −αj + δ

γj + β
and j = − βi+ δ

γi+ α
.

4.2.3 Null Hypothesis

The triangular structure of the matrix in Figure 4.3 gives an important
information: a customer that purchased few products is expected to have
bought just products that are best seller (base-products as bread, fruit and
pasta). This disagrees with the expected presence of “cherry pickers”, i.e.
customers that are particularly sensible and responsive to sales, especially
if the sales are placed on expensive goods. Instead, looking at Figure 4.3,
it seems that the customers follow a general pattern.

Starting from this consideration, we need to validate the model, in
particular we want to control that the triangular structure is meaningful.
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Figure 4.4: One instance of the null purchase matrix. To be consistent with
Figure 4.3, also the null matrix has been transposed.

We need, thus, a null model definition with which compare the real world
data. We identify three important features that our null model must hold:
(1) the purchases are distributed randomly; (2) customers must preserve
the total amount of their purchases; and (3) each product must preserve
its sale volume on the market.

Given these assumptions, we need to generate a random matrix where
the observed sums of rows and columns are preserved. In literature there
is an algorithm providing this feature [97], but it is not designed to work
on very large matrices. Therefore, we proceed to define our null model
with the following relaxed formulation.

We use two sets (PLeft and CLeft) to keep trace of the rows and
columns that are not yet full (customers that have not yet reached their
sum of products bought and products that have not yet reached their
diffusion among the customers). Vector R (C), instead, keeps trace in
each cell of the respective residual in the row (column). The integer
NItemsLeft contains the total number of purchases.

We start from an implicit empty matrix, with the same dimensions
of our real data matrix and with all cells initialized at 0. We iterate until
we have a product left to place. At each iteration we extract randomly
a position from the set of cells that are still increasable (stored in CLeft
and PLeft). At this point, we just increase by 1 the value of the cell
extracted, we decrease the residual of the row and the column selected
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and of the total number of products. Finally, we check if the column (the
row) selected has become full and, in this case, we remove the column
(row) index from the set Pleft (CLeft). After building this null adjacency
matrix, we calculate the lift for each cell and then we apply the same
binarization strategy described in Section 4.2.1. We obtain a null Mcp

matrix and we can then confront it with the original one to understand if
they are similar or not (and therefore if the shape of the original matrix is
meaningful or not).

To make our procedure more scalable in terms of memory and disk
occupation, we used temporary data files storing the temporal null matrix
in a sparse format.

We depict in Figure 4.4 one of the null models generated for the
Livorno2007-2009 dataset Mcp matrix. We can see that Figure 4.4 still
presents some of the characteristic of the original Mcp matrix. How-
ever, in Figure 4.4 popular customers/products tend to have randomly
distributed lifts (therefore their columns/rows appear white in the com-
pressed view) and, while preserving some triangularity, the null model
matrix have a tendency to display more ones on the top-left to bottom-
right diagonal than the original Mcp matrix (look at Figure 4.4).

Anyway, we need to show a formal proof that helps us to reject the
Null Hypothesis. We evaluate the nestedness of the null models using
the very same procedure described in Section 4.2.2 for the original matrix
(estimate of the isocline coordinates, fit of different function and calcula-
tion of the nestedness value). We found that the average nestedness value
for 30 null models was 0.5892564877, with a very low standard deviation
(around 2× 10−5) and a normal distribution. The absolute value of the
nestedness is still high (we can see that the matrix in Figure 4.4 is some-
what nested) so the null hypothesis explain part of the nestedness. But
given the standard deviation value, the null models present a nestedness
value that is remarkably lower than the observed value in the original
matrix (more than 2,000 standard deviations are needed to get to the
observed values), in fact, taking the nestedness value of our function from
Table 4.1, we get:
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0.632547410976− 0.5892564877

2× 10−5
= 2164.5211638

We then reject the null hypothesis stating that the observed nestedness
can be only partly explained by the null hypothesis, but it is intrinsically
more complex than what is generated by the distributions of volume of
sales for the products and volume of purchases for the customers.

4.2.4 Product and Customer Sophistication

In this step of the framework, we want to quantify the sophistication level
of the products sold and of the customers buying products. The basic
intuition is that more sophisticated products are by definition less needed,
as they are expression of a more complex need. One may be tempted to
answer to this question by trivially returning the products in descending
order of their popularity: the more a product is sold, the more basic it is.
However, this is not considering an important aspect of the problem: to be
sold to a large set of costumers is a necessary condition to be considered
“basic”, but it is not sufficient. Another necessary condition is that the set
of customers buying the product should include the set of costumers with
the lowest level of sophistication of their needs. The conjunction of the
two properties is now sufficient to define a product as “basic”.

This conjunction is not trivial and it is made possible by the triangular
structure of the adjacency matrix. Consider Figure 4.3: the columns in the
right part of the matrix are those customers buying only few products.
Those products are more or less bought by everyone. In a world where
our null hypothesis of Section 4.2.3 holds, instead of buying the products
at the top row of the matrix they would buy random products (it is not
possible to spot their purchases in Figure 4.4 due to the image compression
as they are very few).

For this reason, we need to evaluate at the same time the level of
sophistication of a product and of the needs of a customer using the data
in the purchase matrix, and recursively correct the one with the other. We
adapt the procedure of [58], adjusting it for our big data.
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We calculated the sums of the purchase matrix for each customer
(kc,0 =

∑
pMcp(c, p)) and product (k0,p =

∑
cMcp(c, p)) to estimate the

isocline in Section 4.2.2. To generate a more accurate measure of the
sophistication of a product we need to correct the sums recursively: this
requires us to calculate the average level of sophistication of the customers’
needs by looking at the average sophistication of the products that they
buy, and then use it to update the average sophistication of these products,

and so forth. This can be expressed as follows: kN,p =
1

k0,p

∑
cMcpkc,N−1.

We then insert kc,N−1 into kN,p obtaining:

kN,p =
1

k0,p

∑
c

Mcp
1

kc,0

∑
p′

Mcp′kN−2,p′

kN,p =
∑
p′

kN−2,p′

∑
c

McpMcp′

k0,pkc,0

and rewrite this as:

kN,p =
∑
p′

M̃pp′kN−2,p′ ,

where:

M̃pp′ =
∑
c

McpMcp′

k0,pkc,0
.

We note in the last formulation kN,p is satisfied when kN,p = kN−2,p

and this is equal to a certain constant a. This is the eigenvector of which
is associated with the largest eigenvalue (that is equal to one). Since
this eigenvector is a vector composed by the same constant, it is not
informative. We look, instead, for the eigenvector associated with the
second largest eigenvalue. This is the eigenvector associated with the
variance in the system and thus it is the correct estimate of product
sophistication.

However, this formulation is very sensitive to noise, i.e. products
that are bought only by a very narrow set of customers. To calculate
the eigenvector on the entire set of products generates a small amount
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of products whose sophistication level is seven orders of magnitude
larger than the rest of the products. This variance provokes the other
sophistication estimates to be flattened down to the same values and
therefore not meaningful. However, we do not want to simply cut the
least sold products, as we aim to create a full product hierarchy, including
(especially) also the least sold products. To normalize this, we employ
a three step strategy. First, we calculate the eigenvector on a restricted
number of more popular products (purchased by at least a given threshold
δ of customers). Then we use the estimate of the sophistication of these
products to estimate the sophistication of the entire set of customers (that
is, as defined before, the average sophistication of the restricted set of
products they buy). Finally, we use the estimated sophistication of the
customers to have the final sophistication of the entire set of products,
again by averaging the sophistication of the customers buying them.
Hence, we define the product sophistication index (PS) as:

PS = −K− µ(K)

σ(K)
,

where K is the eigenvector of M̃pp′ associated to the second largest
eigenvalue, normalized as described above; µ(K) is its average and σ(K)

its standard deviation. The customer sophisticationCS is calculated using
the very same procedure, by estimating kc,N instead of kN,p.

4.3 Experiments

In the previous section we have defined a framework employing a strategy
whose aim is to extract the general pattern governing user behavior, by
analyzing the adjacency matrix of the bipartite structure connecting the
customers to the products they are buying. In this section, we apply
our framework to real world data. We firstly describe the data selection
process in Section 4.3.1. Then, we apply the framework, obtaining the f∗
function, that is the general pattern of our data, and the sophistication
levels of the data we selected, in Section 4.3.2. Finally, we show the
usefulness of the framework’s outputs providing an empirical observation
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of Maslow’s theory in Section 4.3.3 and a possible marketing application
in Section 4.3.4.

All the analysis presented in this section are performed with regular
user-end computers. No mainframes or parallel computing techniques
have been used. The f∗ function fitting of Section 4.2, Sections 4.3.4 analy-
sis and the eigenvector computing for Section 4.3.3 have been performed
each one in less than one hour on a Dual Core Intel i7 64 bits @ 2.8 GHz
laptop, equipped with 8 GB of RAM and with a kernel Linux 3.0.0-12-
generic (Ubuntu 11.10), using a combination of Octave, Numpy and Scipy
Python libraries. Data preparation pipeline (Section 4.3.1) and null model
generation and evaluation (Section 4.2.3) have been computed on a Quad
Core Intel Pentium III Xeon @ 2 GHz, equipped with 8 GB of RAM and
with Windows Server 2003, using Java 1.6. The most memory and time
consuming operation was the null model generation: each null model
required 6 GB of memory and 4 hours of computing. The conclusion is
that our framework is able to scale and to analyze large data quantities.

4.3.1 Data Preprocessing

Considering that the dataset contains more than 1, 5 million customers
and almost 440k items, to build a matrix “customers × items” would
generate ∼ 660 billions of cells, that is redundant for our purposes; hence
we need a sort of reduction on both the dimensions (customers and items).
There are two main criteria to select the customers: on the basis of their
purchase behavior (e.g. excluding from the analysis all the people that
did not purchased at least a total number x items) or geographically (e.g.
considering just the customers of an area). We decided to apply the latter
filter, since we do not want to exclude any customer behavior apriori.
We select a subset of shops in the dataset belonging to the same areas
of Italy. The number of customers per area is presented in Figure 4.5.
We generated different views of the dataset for different purposes. Our
main dataset is Livorno2007-2009, that is including all the purchases of
the customers located in the city of Livorno during the period from 2007
to 2009. We use only this view for the applications of the framework’s
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Figure 4.5: Customer distribution per city in our dataset.

output. We also generated the dataset Lazio2007-2009 (same period,
different geographical location, the sum of the cities of Rome, Viterbo,
Latina, Rieti and Frosinone) and Livorno2010-2011 (different period, same
geographical location). These two views are generated to prove that the
fundamental properties of the adjacency matrix needed for our framework
are not bounded to a particular place or time. The following steps of data
preparation are applied equally to the different datasets extracted.

The second issue, as introduced above, regards the cardinality of
products. There is a conceptual problem in using the level of detail of
“item”: the granularity is too fine, making the analysis impractical as it
would consider a very low detail level. The distinction between different
packages of the same product, e.g. different sizes of bottles containing the
same liquid, is not interesting here. A natural way to solve this problem
is to use the marketing hierarchy on the products, substituting the item
with the value of the marketing Segment. In this way, we reduce the
cardinality of the dimension of the product by 98% (from 439, 619 to
7, 004), aggregating at the same time products that are equivalents.

The last step in data selection is to exclude from the analysis all the
products (segments) that are either too frequent (e.g. the shopper) or
meaningless for the purchasing analysis (e.g. discount vouchers, errors,
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Figure 4.6: The Mcp matrices for Livorno2010-2011 (top) and Lazio2007-2009
(bottom).

segments never sold, etc.). After this last filter (and consequently the dis-
charge of the customers that bought exclusively products classified under
the removed segments), we got our adjacency matrix, ready to be pro-
vided as input of our framework. Livorno2007-2009 matrix has 317, 269

customers and 4, 817 segments, with 182, 821, 943 purchases; Livorno2010-
2011 has 326, 010 customers and 4, 807 segments, with 183, 679, 550 pur-
chases; and Lazio2007-2011 has 278, 154 customers and 4, 641 segments,
with 135, 517, 300 purchases.

4.3.2 Framework Application

In this section, we apply our framework on the three views of the dataset
extracted. We report the application of each step.
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Mcp N(Mcp, f∗)
Livorno2007-2009 0.632547410976
Lazio2007-2009 0.622983174602
Livorno2010-2011 0.615276275848
Null Model Average 0.5892564877

Table 4.2: The N(Mcp, f∗) for the different views of the dataset.

1) Calculation of the Mcp matrices from the adjacency matrices. The re-
sults is three Mcp matrices for Livorno2007-2009, Livorno2010-2011 and
Lazio2007-2009. The number of rows and columns of the matrices are
not changed, and the total number of ones (i.e. significant purchases
according to the lift) are 37, 338, 591 for Livorno2007-2009, 43, 982, 774 for
Livorno2010-2011 and 45, 410, 992 for Lazio2007-2009. Livorno2007-2009
matrix is depicted in Figure 4.3, Livorno2010-2011 and Lazio2007-2009
matrices are depicted in Figure 4.6, top and bottom respectively (the
legend for both Figures is the same as Figure 4.3 legend).

2) Calculation of the null model. We already depicted one null matrix for
Livorno2007-2009 in Figure 4.4, that is an accurate depiction also of the
typical null matrix for Livorno2010-2011 and Lazio2007-2009.

3) Calculation of the f∗ function. We obtained a simple hyperbola in all
the three cases in exam. The evaluation via the N(Mcp, f∗) function of
the goodness of the division operated by the isocline is provided in Table
4.2. In the last row of Table 4.2 we also provided the average isocline
evaluation for the null models that were generated (around 30). As we
can see, the average value for null model is lower, and given a standard
deviation of the order of 10−5, we can conclude that the difference is also
significant. The three views provide a proper input for our framework
and we are able to extract knowledge through its application. For the
Livorno2007-2009 dataset, the value of the parameters has been estimated
as: α = 11318.559, β = 94.2526, γ = 0.2834, δ = −16866558, and the
corresponding hyperbola has been drawn in red in Figure 4.3 (please
remember that the matrix in this Figure has been rotated clockwise of
90 degrees). We do not report the values of the parameters for the other
datasets as we are not using them in the rest of the section.
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pi PS

Regular Bread -4.41
Natural Still Water -4.19
Yellow Nectarines (Peaches) -3.84
Semi-Skimmed Fresh Milk -3.81
Bananas -3.53

Table 4.3: A selection of the more basic products according to their PS
values.

pi PS

LCD 28”/30” Televisions 2.91
DVD Music Compilations 2.86
Sauna clothing 2.66
Jewelry Bracelets 2.53
RAM Memories 2.33

Table 4.4: A selection of the more sophisticated products according to their
PS values.

4) Calculation of the product and customer sophistication. We present
the most and least sophisticated products only for the Livorno2007-2009
dataset, for the same reason of the previous point. Also we do not report
the customer sophistication for privacy concerns. In table 4.3 we report a
selection of the least sophisticated products, i.e. to ones with the lowest
PS values, in the purchase matrix. The less sophisticated products should
be intuitively the ones covering the most basic human needs, and this
intuition is confirmed by the reported products: bread, water, fruits and
milk. On the other hand, table 4.4 reports the most sophisticated prod-
ucts, i.e. the ones with the largest PS values, that intuitively should be
products satisfying high-level non-necessary, probably luxury, needs. In
fact, what we find in Table 4.4 are hi-tech products (LCD televisions, DVD
compilations, computer accessories), jewelry and very specific clothing.
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4.3.3 Hierarchy of Needs

In this section we want to use the information provided by the product
sophistication index to reconstruct the hierarchy of needs of the super-
market customers, and therefore provide an empirical observation of the
theory of Maslow [87].

Two caveats need to be specified. First: we are not claiming that this
hierarchy of needs is universal. The result we are presenting in this section
has been reached with data from one city of Italy (Livorno) and therefore
it describe the hierarchy of needs of that particular city. However we
showed that the triangular structure of the purchase matrix is present
even in different areas of Italy (Figure 4.6) and therefore our framework
probably may be applied to different world regions and it may help to
create a picture of different hierarchies of needs. The confront of hierar-
chies of needs of different cities and the evaluation of different cultural
perspectives of customers over their needs is left as future development.
Further, this hierarchy is a valuable marketing tool for that particular city:
products at the basis of the hierarchy are more needed, thus no marketing
strategies are required for them as they will be sold anyway.

The second caveat is that we built the hierarchy of needs using the
product category classification defined by the supermarket owners (see
Section 4.3.1). To use this classification introduces the bias of a precise set
of people, with a given culture and marketing aims. We plan to use for
future developments standard product classifications.

With this intuition in mind, we now build the hierarchy. To build the
hierarchy we need to divide products in classes according to their PS
value. Formally, we need to do a segmentation of the PS sorted values.
We decided to perform a one-dimensional clustering using the ck-means
algorithm (an evolution of the k-means algorithm which guarantees the
optimality of clustering [122]). We set k = 5, as we follow Maslow’s
hierarchy of needs classification [87] and we want to obtain roughly the
following classes of products: fundamental for survival, basic needs,
complementary needs, accessory needs and luxury needs. The results of
the ck-means clustering have been depicted in Figure 4.7. In Figure 4.7 for
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Newborn/Child Garments (20%), School & O�ce Supplies (12%)
Informatics (3%), Childcare (3%), Education & Entertainment (2%)

Fruit & Vegetables (24%), Fresh Food (14%), Liquids (9%), Delicatessen (8%),
Bread (8%), Disposables (4%), Red Meat (3%), Poultry & Rabbit (2%)

Grocery (15%), Canned Food (9%), Personal Care (7%),
Sanitation (4%), Pastry(2%), Fish (2%)

Do-it-yourself (10%), Articles for Cars (4%), Sport Out�ts (4%)
Toys (3%), Plants & Garden (3%), Furnishing (3%), Shoes (2%)

Adult Garments (2%), Pet Food & Care (2%)

Frozen Food (5%), Free Time (4%), House Cleaning (3%)

Figure 4.7: Our data-driven pyramid of needs with the most basic products at
the bottom and the most sophisticated at the top. For each product category
we report its share among all purchase at that level of the hierarchy.
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each level of the hierarchy we report its main composition according to the
product categories. The share values between the parenthesis tells, given
the total amount of products purchases at that level of the hierarchy, how
many of those belong to that particular category. For instance, skimmed
and semi-skimmed milk may belong to two different hierarchy levels, say
0 and 1, and they have respectively been sold 4,000 and 2,000 times. Let us
say that the total amount of products sold in hierarchy levels 0 and 1 are
respectively 4,000,000 and 1,500,000. Then, skimmed milk contributes to
level 0 as 0.1%, while semi-skimmed milk contributes to level 1 as 0.13%.
We report only categories representing at least 2% of the hierarchy level.
We did not report the single product segment, as they are too specific and
too many: for instance apples, pears, bananas, tomatoes, potatoes and so
on have been aggregate in the product category “Fruits & Vegetables”.
Of course, products in the same category may fall in different hierarchy
levels: in Figure 4.7 we chose to put the category where it occupies the
largest share of the level purchases.

Figure 4.7 is clear depiction of what are the priorities in the mind
of the customers of Livorno. Figure 4.7 is telling some expected and
some unexpected things. First there are the basic needs: drinking and
eating, particularly fruit, vegetables, bread and meat. Then, there are
more sophisticated eating products and what is needed to take care of the
body hygiene. At the middle of the hierarchy we start to have product not
strictly necessary for survival: house cleaning and simple products for the
free time. The two most sophisticated needs are schooling, entertainment
(both for children and adults), more complex garnishment; and, climbing
at the top of the pyramid, newborn childcare and unnecessary equipment.
The basis of the pyramid is expected: most basic needs are food and
personal hygiene. Up until now we have basic confirmation about human
needs. The top of the pyramid, instead, contains information that could
be biased by the fact that we have only information coming from one
retail company. Some specific (highly sophisticated) product could be
bought in other contexts, just because there exist very specialized shops
(or because can be bought at a lower price). Anyway, the products at the
top of the pyramid seems to be good candidates for “high sophisticated
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products in a retail shop”, but we leave a better and deep analysis of this
aspect as a future work.

4.3.4 Marketing

We now describe a possible targeted marketing strategy based on the
outputs of our framework. Suppose the supermarket wants to promote
a product pi and it wants to limit its target to the smallest subset with
the highest probability of actually buying the product advertised. The f∗
function can be used in the following way: given the amount of products
bought by customer cj we use its index j to obtain the index f∗(j) = i

of the most sophisticated product pi that cj is buying, and therefore the
entire set of products he/she is expected to buy, that is assortment(cj),
defined as all the products that have an index i′ ≤ i. The same applies
considering as input a product pi, we obtain the index delimiting the set
of customers buying it (for which j′ ≤ f−1

∗ (i)).
One concern needs to be addressed before continuing: how well is the

f∗ function dividing the ones from the zeros w.r.t. what we expect? How
much is a customer more likely to buy a product following the f∗ function
evaluated on our real world data (Pf ) over any random product (P )?

As presented in Section 4.3.2, the purchase matrix Livorno2007-2009
has∼37 millions ones out of∼1.5 billions cells, thus given a random prod-
uct pi and a random customer cj the baseline probability P (pi, cj) that cus-
tomer cj is buying product pi in a significant amount (i.e. lift(cj , pi) > 1)
is the ratio of these two numbers, or P (pi, cj) = 2.44%. If we consider
only the portion of the matrix at the left of the calculated isocline, i.e. the
area of the matrix for which the f∗ function tells us that the customers
are very likely to buy exactly that products, we count 16,748,048 ones
and 60,025,000 total cells. Thus, the probability Pf (pi, cj) for a customer

cj to buy significant amounts of a product pi for which i ≤ −αj + δ

γj + β
(i.e. pi ∈ assortment(cj)) is 27.9%. Using the f∗ function, we can nar-
row of two orders of magnitude the set of combinations of products and
customers to analyze and still capturing almost half of the significant
purchases. In other words, customers are 11.43 times more likely to buy a
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pi pi−1 P (pi) P (pi|pi−1)

Dishwasher Salt Dishwasher Soap 8.39% 30.41%
Asparagus Olive 8.00% 26.12%
Peppers Chicory 7.31% 23.73%
Canned Soup Preserved Anchovies 9.96% 32.23%
Wafers Sugar Candies 11.30% 21.67%

Table 4.5: The probabilities of buying product pi in general (P (pi)) and given
that a customer already buys product pi−1 (P (pi|pi−1)).

product pi if i is lower than, or equal to, the index limit predicted by the
f∗ function. We refer to this ratio as Pf (pi,cj)

P (pi,cj)
, i.e. the f∗ function based

probability of connecting customer cj with product pi over the baseline
probability. We also calculated the same ratio, this time by counting at
the right side of the isocline, where we expect to find many zeros. The
number of ones is 37 millions minus 16 millions, and it is divided by
the number of cells, 1.5 billions minus 60 millions. The probability of
obtaining a one is 1.39%, less than one twentieth of the left side of the
isocline.

Now that we have addressed the main concern about the f∗ func-
tion, we can safely assign to product pi a corresponding customer index

j = − βi+ δ

γi+ α
that is its current “border”: all indexes j′ ≤ j represents

customers who buy product pi (i.e. ∀j′ ≤ j, cj′ ∈ customer base(pi)),
while the indexes j′′ > j are customers not buying pi. By definition, the
higher the value of j′′, the more unlikely is the customer buying pi. Thus,
the set of customers the law is suggesting to target is the one immedi-
ately after index j. Since the f∗ function is an interpolation, it is safe to
define a threshold ε1. Then, we define the set TC, the target customers
set, as the set of all customers for which, given their index j′, it holds:
j − ε1 ≤ j′ ≤ j + ε1 and Mcp(cj , pi) 6= 1 (the last condition is necessary to
exclude from TC all customers who are already buying large quantities
of product pi, as it is useless to advertise pi to them).

How can we evaluate how many elements of TC will be likely to
start buying pi? Given our considerations in the previous paragraph, it
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pi |TC∗| |TC| |TCr|
|TC|

Tomino Cheese 58 137 7.51095
Raw Ham 78 144 5.81250

Apricot Jam 66 127 4.66142
Anchovies 83 144 4.06250

Table 4.6: The comparison between the size of the target customer sets
identified by the f∗ function against random target customer sets with the
same number of customers likely to buy pi.

holds that having a 1 in the product of index i − 1 makes the customer
very likely to buy the next more sophisticated product pi, i.e. to have
purchased large amounts of the product immediately to the left in the
matrix to pi increase to probability of purchase this product. For instance,
customers buying “Dishwasher Soap” have 30.41% probability of buying
product “Dishwasher Salt” against a baseline probability of 8.39%, some

instances of this are provided in Table 4.5. On average, the
P (pi|pi−1)

P (pi)
ratio is 1.993 for the 500 most sold product, and no single product has a
ratio lower than 1 (the lowest is 1.05 for Fresh Bread). Therefore, for each
tc ∈ TC element we check if ∃x,Mcp(tc, px) = 1, with i− ε2 ≤ x < i, thus
looking not only at the direct left neighbor of product pi, but at his ε2 left
neighbors. If the condition holds, we have identified TC∗ as the subset of
TC composed by those customers who are likely to buy pi.

The question now is: how large should be a TCr set to obtain an
equally large TC∗r set if TCr has been populated without knowledge
about the f∗ function, i.e. at random by picking customers who are not
already buying product pi? We address this question by looking at several
different products. For each of them we identified the TC set using
the f∗ function and then we calculated 500 random TCr sets. In Table
4.6 we report, for each product pi, the following statistics: the number
of customers likely to purchase pi (|TC∗| column), the total number of
targeted customers (|TC| column) and the average ratio between the
targeted customers without and with using the f∗ function ( |TCr||TC| ), by
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fixing ε1 = 100 and ε2 = 2. As we can see, the knowledge provided
by the f∗ function reduces the number of customers to be targeted by
a marketing campaign of four or more times, with the same return of
investment (as our procedure fixes |TC∗| = |TC∗r |). Table 4.6 reports only
a few products, but we tested these 500 random sets for 800 different
products and the average of the averages of the |TCr||TC| ratio is 3.55594, i.e.
on average using the f∗ function the marketing campaign can target three
times less customers or less. For none of the 800 products the average of
the ratio was less than 1.

4.4 Conclusion

In this section we analyzed large quantities of data extracted from the
retail activity of the customer subset of an Italian supermarket chain. Our
aim was to build a framework able to take advantages of some properties
of the data which undermines the completeness of association rule mining
results, thus providing an alternative and complementary methodology
to mine purchase data. These properties are the uneven distributions of
connections in the customer-product bipartite structure and the triangu-
lar structure of its adjacency matrix. We found that customers usually
start buying the same set of basic products and the more sophisticated
products are only bought by customers buying everything, providing a
triangular adjacency matrix for the bipartite structure. Our framework
is able to analyze this structure as a whole, instead of looking at the lo-
cal patterns like classical rule mining, returning the general pattern of
shopping behavior. From this consideration, we were able to define a
function that can identify the set of customers buying a specific product
by looking simply at how much the product is sold (and vice versa); and a
way to rank the sophistication level of both products and customer needs.
We showed some possible applications of these results: a data driven
empirical observation of Maslow’s theory of needs and an efficient way
to identify a small set of potentially very interested customers for a given
product pi.

Our paper opens the way to several different future developments.
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The first one concerns the validation of our observation of the hierarchy
of needs, as it is based on a narrow geographical set of people and on a
non-standard product category classification. Also, with more data we
can extend our pyramid of needs to fully cover the entire spectrum of
human needs. Another interesting track of research may be to investigate
what is the minimum time window needed to observe the prerequisites
of the f∗ function, maybe linked with the cyclic behavior of customers
[113] and/or with the stability of customer and product ranking order
in the matrix [112]. Another application scenario may be to fully exploit
the purchase matrix as a complex system: to analyze products not only
based on their product sophistication index, but by looking at the product-
product relationship level; or to try to find the way of controlling the
complex system [82].
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Chapter 5

Explaining the Product
Range Effect in Purchase
Data

This chapter is mainly based on [100].

In the economic literature, market society is considered driven by
rationality and the expression of this rationality is the price system. Ac-
cording to this view customers are rational beings: they try to minimize
the amount of money they are spending, while at the same time maximiz-
ing the amount of goods they are purchasing [60]. Therefore, price is a
generic utility function that each customer tries to minimize, and it is the
same for everybody. However, customers are also driven by their own
personal needs and desires [41]. Many of these needs are shared with
other customers, such as the basic needs for survival, but many others
are intimately bound to each individual and possibly different from the
ones of everybody else. A customer is driven both by a generic utility
function (cost minimization) and by a personal utility function (fulfillment
of unique desires).

If we are able to quantify the personal utility function for each cus-
tomer, then we can address a question with repercussions on a seller’s
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market strategy: which function will win the arms race in influencing the
purchase behavior of a customer, the generic one or the personal one? If
the generic one is stronger, then a seller is forced to compete mostly on
the price; while if a customer’s needs are more important, then it is the
quality of the choice that matters the most.

Here, we develop an analytic framework based on mining big cus-
tomer transaction data, aimed to quantify the strength of both utility
functions. We test the customer behavior in terms of distance traveled,
under the assumption that customers want to minimize their travel length.
We observe that customers do not always go to the closest supermarket:
there is a range effect for each product, due to the intrinsic characteristics of
the product. To explain and predict the range effect we propose a method
to compare the strength of the generic and the personal utility function
in the customer’s mind. This comparison boils down to the question:
given that customers travel on average xmeters to buy product p, are they
doing that because p is expensive or because p satisfies very particular
needs?

While the price is an explicit information of the product, the needs the
product itself is satisfying are not. We quantify them by evaluating the
sophistication of each product and customer, following Chapter 4. We find
that the sophistication of a product is better than the price in explaining a
customer’s behavior.

We provide empirical evidence of these claims with real world data
about customer behavior. We analyze digital traces of customers pur-
chases in our sales dataset considering a single Italian city.

We show how our proposed product sophistication index is a better
explanatory variable of a product range than the price. The more sophis-
ticated is the need a product satisfies, the longer a customer will travel
to purchase it on average, almost regardless of its price. Intuitively, this
means that to buy bread people will just settle with the closest shop where
it is available, while to buy blank DVDs, with roughly the same price and
available in all the supermarkets of the chain, a customer will travel a
significantly longer distance. While the product range concept may be
quite intuitive, in this section we provide a system able to quantify it
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better than just assuming that it is proportional to the product price.
There are many consequences for sellers from the ability of predicting

a product’s range. For instance, to know the range of all the products
of a supermarket implies that the supermarket’s marketing strategies
can be tailored according to the distance of a customer from the nearby
points of sales. Customers far away from a point of sale need to be
stimulated on more sophisticated needs, while nearby customers may be
more susceptible to more basic needs.

A second application is in point of sale placement, as we can use our
methodology in conjunction with the central place theory [29]. Besides
the construction costs, each point in the city space is altering the mini-
mum distance between a customer and a product. Therefore, given the
range effect, each point in the city space has one optimum in its product
assortment. Here, we provide the proof that this problem can be formally
addressed to find a good approximate solution.

The final contribution is to show how to accurately predict how long a
customer will travel (or which shop she will choose) to buy a given prod-
uct, as a function of the product’s sophistication. In other words, product
sophistication reveals as a powerful predictor feature for a challenging
predictive task, because most people shop preferably at the closest store
for most products, so it is difficult to accurately characterize for which
products a customer will travel more.

These applications have to cope with the enormous amount of data
flowing every day in the real world. For this reason, we create a scalable
framework, using a data mining approach similar to the one at the basis
of the PageRank [93], that is able to analyze networks with hundreds of
million of nodes. To increase the interpretability of our results, we narrow
our questions to the customer base of a city, making possible to let emerge
from the data the knowledge about the actual range of each product.

5.1 Data Selection

Since our analysis is based on distances between customers and stores,
we focus our presentation only on one metropolitan area, to be able to
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interpret more easily the results and avoid the problem of people in the
border of more cities. Again, it is important to notice that our framework
can easily scale for larger data collections [98]. We chose a city motivated
by the strong penetration of customers for our retail distribution company.
The customer base is not only large, but very committed to the brand,
being “members” of COOP, and not just getting discounts: we can fairly
assume that the people we are studying make most of their purchases in
this chain. For each of the five stores we selected all the customers within
a radius of 5km from each store.

The resulting dataset contains 60, 366 customers and 4, 567 segments,
with 107, 371, 973 total purchases1.

Again, we used the same method based on lift described in Section
4.2.1.

The purchase matrix Mcp is depicted in Figure 5.1, where rows and
columns are sorted according to the volume of sales: from left to right
customers are sorted according to how many products they bought and
from top to bottom products are sorted according to how much they are
sold.

In Figure 5.1, the columns of the matrix are the 60, 366 customers and
the rows are the 4, 567 products. We depicted a compressed view of the
matrix, where each data dot represent a 30 × 30 square of the original
matrix and the gray gradient represents how many 1s are present in that
section of the matrix, for space constraints.

5.2 The Range Effect

The assumption is that customers modify their shopping behavior accord-
ing to their relative position w.r.t the shop they are going to. A customer
may decide to buy or not buy a given product because it is close enough
or too far away from the shop. We call this phenomenon the range effect of
a product. Table 5.1 reports the average distance traveled for purchasing

1This dataset has been made available along with all the framework coding at http://
www.michelecoscia.com/?page_id=379. Customer and product IDs are obfuscated
for privacy and business protection reasons.
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Figure 5.1: The purchase matrix Mcp.

Product AVG Distance (in meters)
Pizza 809
Packed Salads 1, 576
Frozen Side Dishes 2, 437
School Notebooks 3, 511
Travel Books 5, 523

Table 5.1: A selection of the more basic products according to their PS
values.

a product. We can find products for which customers traveled more than
5 kilometers on average, other products for which the average distance
is less than 1 kilometer and many other products generated a variety of
average distances. There are two trivial explanations of this fact: it is
driven by price and/or by the frequency with which a product needs to
be purchased.

We expect that customers will travel more to purchase products that
are more expensive, for many possible reasons (they require higher qual-
ity, they may be not available around them, and so on). We check this
hypothesis by plotting for each purchase the price of an item against the
average distance that a customer traveled to get the product. This plot
is depicted in Figure 5.2: the price is on the x axis (in logarithmic scale),
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Figure 5.2: Average distance traveled to get a product with a given price.

while the distance traveled is on the y axis. The price is recorded in Euros.
Each dot is a purchase and we color it accordingly to how many purchases
are represented by the same price and by the same distance.

Intuitively, it would make sense to plot just one point per product, as
we want to know the average distance traveled by customers given a prod-
uct price. However, this would disproportionately weigh the purchases
of products sold less frequently, or the purchases made by customers who
buy only a handful of products. Filtering out these purchases also would
not make sense, as our purchase matrix is triangular: there are many
products sold in small quantities and many customers who purchase
only few products. Therefore the behavior of these shoppers is important.
By plotting each single purchase, we know that we are weighing each
customer behavior by its fair proportion of purchases.

The connection of a customer to a product is created with the proce-
dure described in Chapter 4, therefore we are only considering connec-
tions generated when the quantity of product p bought by customer ci is
significant. A customer ci may have bought product pj in different shops,
say s1, s2, s3, s4. In this case, we weigh each distance traveled with the
amount of purchases made using the following formula:
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d(ci, pj) =
∑
∀s∈S

pj(ci, s)× d(ci, s)

pj(ci, ∗)
,

where S is the set of all shops, d(ci, s) is the distance between customer
ci and shop s, pj(ci, s) and pj(ci, ∗) is the amount of purchases of product
pj made by customer ci in shop s and in general, respectively. This
procedure has been done for the plots depicted in Figures 5.2, 5.3, 5.4(a)
and 5.4(b).

Products with the same price are bought by customers placed at dif-
ferent distances w.r.t the shop. Given a price, we average the distance
traveled by the customers buying the products with that exact price. By
averaging, we lose the ability of describing each single customer and we
just describe the behavior of the system in its entirety. We do so because
the single customer is bounded by the place where she lives, thus each
single customer carries a noisy information, and we can make sense of it
only by looking at the global level.

From Figure 5.2 we can conclude that price plays a role in driving cus-
tomer decisions of traveling a given distance for a product. The correlation
here looks weak, but positive: customers travel more if they need to buy
a more expensive product. We calculate a log-normal regression2 using
the function f(x) = a log x+ b. In this regression, R2 = 17.25%, meaning
that we can explain 17.25% of the variance in the distance traveled using
the price.

To check if the frequency of purchase can explain the distance traveled
by customers, we repeated the same analysis, using the number of pur-
chases of a product instead of the price. We depicted the plot in Figure
5.3. The correlation here is negative: the more frequently a product needs
to be bought, the smaller the distance a customer will travel for it. We
calculate a regression with the function f(x) = a log x+b and we obtained
R2 = 32.38%.

As a conclusion of this section, we can state that the price plays a small
role in predicting the distance a customer will travel for purchasing a

2This and all other regressions have been calculated with the leastsq function of the SciPy
module for Python.
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Figure 5.3: Average distance traveled to get a product with a given popular-
ity.

Figure 5.4: Sophistication and customer behavior against the distance from
the shop.
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product, by increasing it. If a product is needed more frequently then it
drives (down) the distance a customer will travel to buy it, regardless
of the price. However, there is a large amount of variance that remains
unexplained. In the next section, we provide one possible explanation.

5.3 Explaining the Range Effect

In this Section we tackle the problem of explaining the range effect for
products. Our theory states that customers travel more to buy a product
if the product can satisfy a more sophisticated need and/or they have
sophisticated needs in general. To do so, we use the formal definition
of what exactly product and customer sophistication are, as explained
in Chapter 4. Then, we provide evidences that the product and the
customer sophistication are variables able to better explain the distance
traveled by customers, in Section 5.3.1. Finally, in Section 5.3.2 we provide
explanations of why our product sophistication index is better predictor
of customer behavior.

5.3.1 Sophistication and Range

To understand if the product and/or the customer sophistication is influ-
encing the distance a customer will travel to purchase the product she
needs, we generate the same plots shown in Section 5.2. The plots are
depicted in Figure 5.4(a-b). We recall that in these plots each data point is
a purchase.

In Figure 5.4(a) we test the relationship between the distance traveled
and the customer sophistication: we calculate the average distance trav-
eled by customers (y axis) to get to the shop against their sophistication
value (x axis). In this case, the x axis has not a logarithmic scale, as the
relationship is linear.

We can see that the relationship between distance traveled and cus-
tomer sophistication looks non-linear. From a value of sophistication of
0 to around 0.2 the relationship is negative, while it is clearly positive
afterwards. The sole conclusion we have is that there is some kind of
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relation, but we do not have an explanation for it.

For this reason, we move on in depicting the product sophistication (x
axis) against the average distance traveled by the customers to purchase
the given product (y axis) in Figure 5.4(b). In this case, the relationship
is clear: the more a product is sophisticated, the more customers will
travel to buy them. The product sophistication has a normal distribution,
but less sophisticated products are more sold, given the triangular shape
of the matrix. This fact explains why most of the data points are in the
left part of the plot: most purchases are generated for low sophistication
products. We calculated a linear regression, for which R2 = 85.72%. This
R2 is more than twice higher than the R2 obtained with the purchase
frequency, explaining much better the variance in the distances traveled
by customer.

A possible objection is that the distance is influencing the number of
products purchased by a particular customer, and this would invalidate
the explanatory power of the product sophistication index. We already
saw in Section 5.2 that the distance and the frequency of purchase are
somewhat related, but this relationship cannot fully explain what we see
in Figure 5.4(b). However, this objection is focused on the customer, not on
the product: it states that the customer-shop distance may have a strong
positive or negative correlation with the number of items purchased on
average by he customer.

We depict this relationship in Figure 5.4(c): the x axis is the distance of
a customer from the shop and on the y axis we have its average number of
products purchased. Customers at the same distance may have purchased
different quantities of products, so we average them and we color the data
point accordingly to how many customers it represents. As we can see,
there is no relationship at all between distance and number of products
purchased. For this reason, we can reasonably state that customers tend
to travel more to purchase more sophisticated products.
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5.3.2 Customer Behavior

We now provide a possible explanation of customer behavior. Customers
tend to buy products with a low sophistication level in the closest possible
shop. However, when they are in need to buy a more sophisticated
product, they do not choose the closest shop even if the shop has the
product they look for (and, given the fact that we are considering shops
of the same chain, the quality level of the products is identical).

We provide a visual argument for this explanation. In Figures 5.5(a-c)
we generated three maps representing the purchases of three different
products. We chose products with different sophistication level: in Figure
5.5(a) we focus on a very low sophisticated product (pasta), in Figure 5.5(b)
we focus on a medium-low sophisticated product (breaded frozen fish)
and in Figure 5.5(c) we focus on a medium-high sophisticated product
(health testers, like pregnancy or insulin indicators). Each dot in the map
is a location in which we found one or more customers that has bought
the given product. The color of the dot represent the shop type in which
the customer went for her purchase. The colored circles are centered on
the position of the given shop and their radius is the median distance
traveled by customers to purchase the product in that shop.

As we saw in Chapter 3, shops have an attribute “type”, that encodes
the category of the shop, a proxy of its size. In Figures 5.5(a-c), the
customers in red went to the “iper” shop (the largest in our data), the
customers in green went to the “super” shop (smaller than the “iper”),
while customers in blue went to one of the three “gestin” shops (smaller
than a “super”). As we can see, the smaller shops have quite some
range in attracting customers who need the lowest sophisticated product.
However, as the sophistication of the product increases, the number of
customers going at those shops becomes lower and lower. The red circle
keeps its radius, while the green and blue circles tend to shrink.

Instead of relying on three examples out of the 4, 567 products, we
report this trend in Table 5.2. For each shop, we record the average product
sophistication of the products sold in that shop in significant quantities
(column “AVG PS”). We also record the average distance traveled by
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Figure 5.5: The customer-shop distribution for customers buying different
products.

Shop Type AVG PS AVG Distance
Iper 0.49 2, 392
Super 0.46 1, 721
Gestin 0.43 869

Table 5.2: Average PS values and average customer distance for the shops
in our dataset.
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customers to buy products in significant quantities in that shop (column
“AVG Distance”). The “shop type” column refers to the shop classification
explained in Chapter 3.

We can see that indeed there is a difference between the complexity
of the “iper” (red) shop with the “super” (green) shop, and another sig-
nificant difference between the “super” shop and the rest of the “gestin”
shops. This significant difference is also reflected in the average distance
traveled by customers: almost 2.4 kilometers to get to the “iper” shop,
more than 1.7 kilometers for the “super” shop and less than 900 meters for
the “gestin” shops. Table 5.2 proves that large shops are objectively more
sophisticated than smaller ones and suggests that are also subjectively
considered so by customers.

The conclusion we draw is that the average sophistication of the prod-
ucts in a shop is influencing customers’ decisions: when they need a more
sophisticated product they are prone to decide to go to a larger shop with
higher sophistication even if that product is also present in the smaller
shops.

In the next section, we put our finding into practice.

5.4 Customer Behavior Prediction

In the previous sections we showed how the product sophistication can be
used to describe the average customer behavior better than the price of a
product or how frequently the product is needed. However, as noted, the
average customer and all the separate individual customers are different
entities. If the knowledge about the average customer cannot be used for
predictions, then the product sophistication cannot be used in practice.
Aim of this section is to show that predictions based on the product
sophistication can achieve a significant improvement over the ones based
on price and frequency of purchase.

To do so, we provide the following problem definition:

Definition 5.1 Let D be a set of triplets (c, p, s). Each triplet represent the
purchases of product p made by customer c, and s ∈ {s1, s2, s3, s4, s5} is the

61



Figure 5.6: Lift charts showing the increase in predicting performance ob-
tained using product sophistication.

target shop. We want to build a classifier that, given some features of c and p,
returns the value of s.

In other words, for each customer c and product p we know the shop
s in which c usually goes to buy p, and we want to predict s using infor-
mation about c and p. For each customer, the feature we calculated is the
weighted average distance that c usually travels to buy all the products
she needs. We used the formula:

d̄(ci) =
1

W (ci)

∑
p∈P (ci)

wp × d(ci, s),

wherewp is the weight of product p, P (ci) is the set of products bought
by customer ci and W (ci) =

∑
p∈P (ci)

wp. We used three different classes
of weights, based on the product price, quantity and sophistication, thus
generating three attributes for each customer. We repeated the same
procedure for the products, by using the same weighted average distance,
using C(pj) (the set of customers buying product pj) instead of P (ci). In
the end, we obtained three features also for the product, based again on
price, frequency of purchase and product sophistication.

Our dataset is heavily unbalanced on the larger shop, that attracts
most of the purchases and contains products that are not present in any
other shop. We then filter the data, to focus only on those cases where
the prediction task is harder. For this reason, we defined three constraints
that each entry in our test data has to satisfy.
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Shop ID Shop Type Row Share
s1 Iper 53.67%
s2 Super 32.08%
s3 Gestin 7.62%
s4 Gestin 2.91%
s5 Gestin 3.72%

Table 5.3: The distribution per shop of the filtered dataset for the classifier.

1. If the product is sold only in one shop, the prediction task is trivial.
Thus, we want to consider only the products that are sold at least
once in each of the five shops.

2. We consider only customers with a diversified shopping behavior.
If the customers always went to the same shop, the prediction of
its movements is trivial. For this reason, we select only the cus-
tomers who purchase significant quantities of products in at least
two different shops.

3. If a customer purchased the same product in two different shops we
only kept the entry corresponding to the shop where he purchased
the largest quantity of the product, as the classifier will output only
one shop and therefore could not achieve a perfect accuracy.

The entries in our dataset, the triplets (customer, product, shop), satis-
fying all three constraints are 10, 412, 391. In Table 5.3 we report the share
of the rows of our filtered dataset whose target variable takes one of the
possible five values, corresponding to the five shops. From Table 5.3 we
know that we can build a naive classifier that always returns “s1” as a
result, and we would get an accuracy of 53.67%.

Given the size of the dataset, we extracted samples containing 5%

of the entries (around 500, 000) and we performed our prediction tasks
on these samples. The results we show are consistent in our samples.
We created our classifier using the c4.5 algorithm [106]. To validate our
results, we used the k-fold cross-validation method, by setting k = 10. We
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divided our data sample by putting two thirds of the data in the training
set and the remaining data in the test set.

We depicted the lift charts of our classifiers in Figures 5.6(a-c). In
the lift chart, on the x axis we have to total population fraction and
on the y axis we have the population fraction that has been classified
correctly. Since the correctly classified population has as upper bound the
population itself, the perfect predictor that achieves a 100% accuracy is
the bisector that goes from (0, 0) to (1, 1), and we depict it in all Figures
with a blue line. The naive classifier, that always returns s1 as result is
depicted with a black line. The area between the blue line and the black
line is where a model that improves over the baseline should lie.

In Figure 5.6(a) we consider as first model a classifier based on the
product price. The red line shows that this classifier makes only an
incremental improvement over the baseline, with an overall accuracy of
59.03%. We added the product sophistication information to this classifier
(green line) showing a further accuracy improvement, ending up with an
overall value of 65.87%.

We repeated the same analysis, this time using a classifier based on
the frequency of purchase of a product. We can see that Figure 5.6(b)
looks very similar to Figure 5.6(a): again the classifier based on on the
frequency (red line) improves to an overall accuracy of 60.09%, while
adding the product sophistication information (green line) bring to an
overall accuracy of 67.91%.

We also point out in Figure 5.6(c) that a classifier including all the
available information does not significantly improve the accuracy. Espe-
cially comparing to the frequency of purchase and product sophistication
classifier (green line in Figure 5.6(c)), the increased accuracy of the clas-
sifier including also the price information (purple line) is very low. The
overall accuracy of this model is 69.33%.

As a conclusion, we saw that the product sophistication adds signif-
icantly to the accuracy of the predictions based on price (+6.84%) and
on the frequency of purchase (+7.82%). Adding the price information to
this last classifier provides too a marginal improvement, but lower than
the one provided by the product sophistication itself (+1.42%). Therefore,
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the product sophistication is a very strong factor that not only explains
on average customer movements, but can be effectively used to increase
customer behavior predictions at the level of the single customers.

5.5 Conclusion

In this Section we addressed the problem of explaining and predicting
customer behavior when shopping to large retailers. We showed that
products have what we call a range effect: for some products, customers
travel long distances, while for other products they settle down with the
closest shop. We ruled out as possible explanations of this phenomenon
the price of a product and the frequency of purchase. We introduced a new
measure, namely the product sophistication, that is able to better explain
customer movements: it is because products satisfy more complex needs,
not because they are more expensive or they are needed less often, that
customers travels more. We also showed as this additional information
provides a significant boost of the accuracy in predicting in which shop a
given customer will go buying a given product.

In this context there’s place for many future developments. First,
our prediction accuracy is good, but it may be improved, by using more
sophisticated measures such as the radius of gyration [51, 94] of customers
and products. Second, we analyzed a static snapshot of retail, but it would
be interesting to analyze the evolution of customer behavior. Finally,
following [58], to create a network of products based on the customers
buying them may lead to further insights.
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Chapter 6

A Complex Network
Approach to Marketing
Classification and Customer
Profiling: Overlap versus
Partitioning

This chapter is mainly based on [99].

What we presented in the previous two Chapters is a useful set of
techniques to build a very complex structure over a retail market chain
data (the bipartite graph customer-product). Actually, we can find very
interesting insights from the data also using a less complex (but still
complex) structure. For example two products can be connected if they
are frequently co-purchased by the same customers [107]. The topological
properties of this complex structure are informative about how customers
perceive product relations, just like the collaborative filtering of Amazon
and Netflix, but on a broader product typology set. For instance, sets of
products may be very densely connected the one with the other, because
customers always buy them together.
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The task of finding sets of nodes densely connected in a complex net-
work is known as “community discovery” [33]. Community discovery is
one among the most prolific sub-branches of complex network analysis.
Hundreds of papers have been written on the subject, and dozens of
algorithms have been proposed to solve it. As a result, the scientific com-
munity has come to agree that there is no unique solution to community
discovery, given the many different possible definitions of “community”
that can be accepted in different applications.

In particular, one of the most important distinction between commu-
nity discovery algorithms is about a node’s membership to a community
[45]. In some methods, a node is forced to belong only to the community
it is closest to. This is a partition approach to community discovery (often
called “hard clustering”, or “disjoint community discovery”). In other
methods, a node may be free to join as many communities as necessary.
If an algorithm allows this type of output, then it is said to return over-
lapping communities (also known as “soft clustering” or “community
coverage”).

Historically, overlapping algorithms were developed as a critique to
the partition approach. The theory was that “actual communities” are
overlapping, and therefore the partition approach was obsolete. Our
point is that the two approaches are not mutually exclusive. In the same
context, they yield different results because the problem they address is
different and there is no “better” or “worse” method.

The aim is to investigate the typology of results that different appro-
aches to community discovery can achieve while analyzing a complex
network of products. When applied to a network created connecting
products if they are co-purchased by the same customers, community dis-
covery will return groups of products that are “related” to each other. Our
aim is to understand what “related” means under different community
definitions, in particular when our aim is to find a community partition
vis-à-vis when our aim is to find an overlapping community coverage.

To prove our point, we collected data about more that 24 thousand
products, co-purchased by a million customers in more than 80 millions
shopping sessions from four regions in the center of Italy. Using their
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purchases, we created a product-product network connecting products
if they were co-purchased during the same shopping session. We then
applied two state-of-the-art community discovery algorithms on this
structure: one yielding a disjoint community partition (Infomap [110]),
the other yielding an overlapping community coverage (Hierarchical Link
Clustering [4]).

Our results confirmed that the different community definitions re-
turned two very different sets of results. We observed that there is no
clear ranking in the quality of these results, i.e. there is no clear way
to determine which algorithm performed “better”. On the other hand,
both the partition and the overlapping approach returned results that
can be utilized for different tasks. The disjoint communities proved to
be useful for the redefinition of the product marketing classification. The
overlapping communities, instead, represent specific customer behaviors,
and therefore provide useful data for the task of customer profiling.

To sum up, the contributions of this Section can be summarized as
follows:

• To the best of our knowledge, this is the first empirical test able
to provide an insight about the practical usefulness of different
community discovery approaches in a real-world analytic scenario,
in particular about the difference between a partition approach
versus an overlapping approach. As a consequence,

• We showed how partition-based community discovery is useful as
a novel approach to the construction of marketing, and possibly
general purpose, classifications;

• We provided a novel approach to customer profiling, via overlap-
ping community discovery of product co-purchase networks.

6.1 Data Preparation

As claimed in Chapter 3, the dataset contains information about 439, 619

different objects sold in the shops. The main bias introduced by this huge
cardinality of products are two:
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1. we have information about products that are meaningless for our
purposes (e.g. shoppers, discount coupons, etc.), and

2. due to some exception, we have distinct products that have the very
same semantic (e.g. 6-bottles regular coca cola box and 6-bottles
regular coca cola box with Santa Claus in the package for Christmas
time).

We solved (1) by filtering data using semantic information in the mar-
keting hierarchy. We solved (2) by including in our analysis dataset at
most the top 5 sold products (or less, if there are not enough products) for
each marketing Segment. Notice that, for each item exception, there al-
ways is a product that is top seller over the others with the same semantic.
After this filtering phase, the dataset contains 26, 862 different items, that
are the nodes of our network, belonging to 5, 510 marketing Segments.

We now want to connect these nodes, to create the product complex
networks. Given the big amount of data considered, almost all products
have been sold at least once with all the other products. We need to
filter out these connections, to focus only on relevant and significant
relationships. To this end, we discovered all possible pairs of products
sold together (using Apriori [1]), and we calculated, for each of them,
the lift measure (in a very similar way than in Chapter 4). We recall the
definition:

lift(X,Y ) =
supp(X,Y )

supp(Y )× supp(X)

where X and Y are products, and supp(i) is the number of baskets
containing the item i divided the total number of the baskets in the dataset.
supp(i) is the “Relative Support” of i, i.e. the observed likelihood of
having i in a basket. Lift measures how much a pair of items is interesting,
calculating how its distribution is related with the distribution of the
single items. If lift is equal to 1 we are under the hypothesis of stochastic
independence, and the greater lift is, the greater the occurrence rate of the
pair is significant.

Since lift is a relative measure, we need also to take under control the
popularity of the products composing the pair. In fact, the supports of
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1 2 5 8 10
10 20,042,602 11,784,927 1,962,699 825,644 577,954
50 9,141,753 5,356,930 640,933 264,156 187,341
100 5,874,000 3,433,601 376,367 160,049 115,033

Table 6.1: Number of edges in the product network after filtering with
minimum absolute support (rows) and lift (columns).

1 2 5 8 10
10 16,910 16,769 16,152 15,402 14,949
50 12,268 12,035 11,401 10,797 10,392
100 10,578 10,347 9,734 9,158 8,784

Table 6.2: Number of nodes in the product network after filtering with
minimum absolute support (rows) and lift (columns).

the single items composing the pairs are in the denominator of the lift
formula, and multiplying each other. This implies that the smaller the
supports are the greater the lift is inflated, by exaggerating the relevance
of products rarely sold and thus not really meaningful. For this reason,
we also use the “Absolute Support” of the pair, measuring how many are
the occurrences of the couple in the dataset, i.e. the number of baskets
containing both products.

To sum up, lift tells us how interesting the pair occurrence is, the
absolute support tells us how relevant the pair occurrence is. A pair to
be included in our network has to be interesting and relevant at the same
time. In tables 6.1 and 6.2 we show the cardinalities of the edge set and the
node set of different product networks, built using different thresholds
on absolute support (in rows) and lift measure (in columns) of the pairs.

To obtain a manageable network, with edges representing associations
not very infrequent but strongly reliable, we chose to set the minimum
absolute support at 10 and the minimum lift at 10. The resulting product
network contains 14, 949 nodes and 577, 954 edges, and that is the network
we use hereafter, for our case study in Section 6.3.
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6.2 Community Discovery

The branch of Community Discovery in network science is very prolific,
with hundreds of papers proposing new approaches to the detection of
network communities [33]. Given the extensive attention on the subject,
two issues have been deeply studied. The first is the notion that there is
not a single best method to extract communities from complex networks.
It is possible to define “communities” in different ways and different
approaches are more or less efficient for a particular community definition
[33].

The second issue is the one at the center of investigation of this part
of the thesis. The assumption that communities are dense subsets of
nodes isolated from the rest of the network has been questioned. There
is a growing evidence that communities are not really isolated from the
rest of the network, but rather overlap the one with the other, sharing
nodes. Given this issue, two mutually exclusive approaches to community
discovery can be implemented: the partition approach, that follows the
main assumption here presented; and the overlap approach, that allows
nodes to be classified in more than one community.

It is one of the assumption here that both approaches can yield en-
lightening, and different, results even in the very same network. For this
reason, we briefly present the two community discovery algorithms, that
we use in our case study of analysis of a co-purchase product network.
In Section 6.2.1 we present Infomap, a community discovery algorithm
employing the partition approach; and in Section 6.2.2 we describe the
Hierarchical Link Clustering (HLC), an overlap community detector.

6.2.1 Partition Approach

As we discussed, in the partition approach the main assumption is that
densely connected nodes are separated from the rest of the network by
nodes with sparser connections. We show a simplified example of this
assumption in Figure 6.1(a). In Figure 6.1(a) we clearly need a partition
of the graph, separating nodes 0 to 4 from nodes 5 to 9 and from nodes
10 to 14. As a consequence, algorithms seeking a node partition have to
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minimize the number of edges between communities, while maximizing
the number of edges inside communities. Many non-trivial measures have
been proposed. One of the proved most successful is the compression
factor allowed by the partition, and it has been proposed in the Infomap
algorithm.

The Infomap algorithm [110] is based on a combination of information
theoretic techniques and random walks. It uses the probability flow
of random walks on a graph as a proxy for information flows in the
real system and decomposes the network into clusters by compressing
a description of the probability flow. The algorithm looks for a cluster
partition M into m clusters so as to minimize the expected description
length of a random walk.

In Figure 6.1(b) we have depicted the same example of Figure 6.1(a)
where the edge width is proportional to the amount of redundant infor-
mation shared by the two connected nodes.

The intuition behind the Infomap approach for the random walk
compression is the following. The best way to compress the paths is to
describe them with a prefix and a suffix. Each node that is part of the same
cluster M of the previous node is described only with its suffix, otherwise
with prefix and suffix. Then, the suffixes are reused in all prefixes, just
like the street names are reused in different cities. The optimal division in
different prefixes represent the optimal community partition. We can now
formally present the theory behind Infomap. The expected description
length, given a partition M , is given by:

L(M) = qH(Q) +

m∑
i=1

piH(Pi).

L(M) is made up of two terms: the first is the entropy of the move-
ments between clusters and the second is entropy of movements within
clusters. The entropy associated to the description of the n states of a ran-
dom variableX that occur with probabilities pi isH(X) = −

∑n
1 pi log2 pi.

In (1) entropy is weighted by the probabilities with which they occur in
the particular partitioning. More precisely, q is the probability that the
random walk jumps from a cluster to another on any given step and pi is
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Figure 6.1: Example of the partition approach to community discovery.

the fraction of within-community movements that occur in community
i plus the probability of exiting module i. Accordingly, H(Q) is the the
entropy of clusters names, or city names in our intuition presented before,
and H(Pi) the entropy of movements within cluster i, the street names in
our example, including the exit from it. Since trying any possible partition
in order to minimize L(M) is inefficient and intractable, the algorithm
uses a deterministic greedy search and then refines the results with a
simulated annealing approach.

6.2.2 Overlapping Approach

The overlap class of algorithms rejects the fundamental assumption of
the partition approach. Here, nodes are allowed to be in multiple com-
munities, therefore they are densely connected also to nodes that are
not part of the community, removing the sparser areas of the network
outside the community. A simplified example representing this concept is
depicted in Figure 6.2(a). Here, nodes are grouped in cliques of 6 nodes,
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connected the one with the other by cliques of three nodes. So the nodes
{0, 1, 2} form a 3-clique with each other and two separated 6-cliques with
nodes {3, 4, 5} and {9, 10, 11}. Similar structures are generated by all
other 3-node groups on the diagonals.

It appears clear that even in this simple case there is no reasonable
partition of the graph. There is no reason for which we should prefer
clique {0, 1, 2, 3, 4, 5} over clique {0, 1, 2, 9, 10, 11}, and we cannot merge
them either, ignoring the fact that the other nodes are densely connected
to them too. That is when an overlapping approach like HLC [4] proves
its usefulness.

HLC assumes that communities should group together edges, not
nodes. The relationship is part of a community and the node is part of
all the communities its relationships are part of. In the case of a social
network, a person knows other people for one main reason (work together,
study together, spend together the free time, and so on) and therefore
she is part of a different community for each “relationship environment”.
As a consequence, these communities overlap. Figure 6.2(b) depicts an
example of HLC output for the graph presented in 6.2(a): each link is
colored according to the link cluster it belongs to, and therefore we obtain
as communities both {0, 1, 2, 3, 4, 5} and {0, 1, 2, 9, 10, 11}.

For an undirected, unweighted network, we denote the set of node
i and its neighbors as n+(i). HLC considers only link pairs that share a
node, under the assumption that they are more similar than disconnected
pairs. The similarity S between links eik and ejk in the set E of all links in
the network is computed as:

S(eik, ejk) =
n+(i) ∩ n+(j)

n+(i) ∪ n+(j)
.

Shared node k does not appear in S because it provides no additional
information and introduces bias. This is basically the jaccard index of the
set of nodes one step away from edges eik and ejk. HLC then builds a
link dendrogram from the presented equation (ties in S are agglomerated
simultaneously). The dendrogram is cut at a S threshold that maximizes
a quality function called “partition density”. For each community, the
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Figure 6.2: Example of the overlap approach to community discovery.

partition density is defined as:

Dc =
mc − (nc − 1)

nc(nc − 1)/2− (nc − 1)
,

where mc is the number of links in the community c and nc is the
number of induced nodes in the community (nc =

⋃
eij∈c{i, j}). The

overall partition density of a given set of link partition is the average of
all partition densities, normalized over the total number of edges in the
network:

D =
2

|E|
∑
c

mc
mc − (nc − 1)

(nc − 2)(nc − 1)
.

6.3 Case Study

We now take a look at the characteristics of the results provided both by
the partition and by the overlap approach. We consider the following list
of characteristics:
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Figure 6.3: The log binned distribution of the number of nodes per commu-
nity, both for the partition and the overlapping approach.

• The distribution of community size, to understand if one method
privileges larger or smaller communities, in Section 6.3.1;

• The community entropy w.r.t. the marketing classification, i.e. if
the results of an algorithm are substantially overlapping with the
known product classes, in Section 6.3.2;

• Some community extracts, to provide examples of the typical com-
munities returned by an algorithm, in Section 6.3.3.

We then put together the discovered differences of community results
in Section 6.3.4.

6.3.1 Community Size

We start by providing one of the most basic information about a commu-
nity coverage: the distribution of the community size, i.e. the number of
nodes per community. The distribution is depicted in Figure 6.3. On the x
axis we report the number of nodes and on the y axis the probability that
a community contains the given number of nodes, both for Infomap (red
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line) and HLC (green line). The distribution is log binned, i.e. each x axis
value is grouped in bins of increasing size.

As we can see, the two distributions have different asymptotic be-
havior. Infomap provides a community size distribution that resembles
a power-law, with more than 30% communities containing 4 nodes or
less, and one community containing more than 3000 nodes. On the other
hand, HLC communities have a very different size distribution: just above
3% of communities have 4 nodes or less, and 10% of them have around
2000 nodes. So the first difference between the two approaches can be
summarized as: “The overlap approach returns larger communities than
the partition approach”.

6.3.2 Community Entropy

We now want to describe what is the actual content of these communities.
In particular, we are interested in how homogeneous the communities are
w.r.t. the marketing classification of the supermarket. In practice, we want
to know if in a given community we grouped the products that belong
to the same marketing classification. For the marketing classification, we
use the segment level, as presented in Chapter 3. A good measure to do
this is to calculate their information entropy. The information entropy is
formally defined as the average unpredictability in a random variable,
which is equivalent to its information content. In our case, a community c
of |c| nodes is viewed as |c| outcomes of a random selection of a marketing
classification. The possible outcomes of the extraction are |M |, the number
of marketing classifications. The information entropy of a community
c ∈ C is then calculated as:

H(c) = −
∑
m∈M

p(cm) log2 p(cm),

where p(cm) is the number of nodes in the community c that belongs
to the marketing category m, over the total number of nodes inside com-
munity c. The average entropy value, calculated for all communities in
C that is the community set, for Infomap is 1.8302, while the average for
HLC is equal to 5.66305. The average entropy could not be an accurate
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Figure 6.4: The log binned distribution of the entropy per community, both
for the partition and the overlapping approach.

information, as it may be driven by extreme values. For this reason, we
depict in Figure 6.4 the probability (y axis) that a given community takes
a given entropy value (x axis) for the communities extracted by Infomap
(red line) and by HLC (green line). Again, the distributions are log binned.

Also in this case, the entropy distribution for Infomap and HLC look
different. Most communities returned by Infomap have entropy lower
than 3, and the number of communities with entropy larger than 6 is not
significant. On the other hand, the majority of HLC communities have
entropy larger than 3, with 20% of the communities having an entropy
around 9.

One could think that the higher entropy of the HLC communities is
due exclusively to the fact that HLC communities are larger on average.
To disprove the objection, for each community of size |c| we normalize
the obtained entropy value over the description length required to code a
random community, that is log2 |c|. We then sum up all the normalized
values and take the community average, as:

H̄(C) =
1

|C|
∑
c∈C

H(c)

log2 |c|
.
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The H̄(C) values are interpreted in the following way. If H̄(C) = 1,
then it means that, on average, for each community c it holds H(c) =

log2 |c|, i.e. the distribution of marketing classifications in the community
is practically random. If H̄(C) = 1, then for each community c we have
H(c) > log2 |c|, then the communities separate products of the same
marketing category even if it would be expected to find them in the same
community. If H̄(C) < 1, then on average we find products of the same
marketing category in the same community.

The lower the H̄(C) value, the more homogeneous the communities
are on the marketing classification, independently on their number of
nodes. We found that in Infomap H̄(C) = 0.60180796763, while for HLC
H̄(C) = 0.814926005465. We can conclude that HLC communities have a
20% higher entropy than Infomap, independently on community size. So
the second difference between the two approaches can be summarized as:
“The overlap approach returns communities that contains more diverse
typologies of products than the partition approach”.

6.3.3 Community Extracts

The aim of this section is to provide some concrete instances of the findings
described in the previous subsections. We provide two examples of small
communities extracted using the Infomap partition method and two
examples of communities extracted with the HLC overlap community
detection.

Figures 6.5(a) and 6.5(b) are the two extracts from the Infomap com-
munity partition. Given that most Infomap communities are small (see
Figure 6.3) it is easy to find representative communities of limited size. In
this case, we limit ourselves to communities containing 8 nodes. These
two communities are identified as community #37 and #80 respectively.

In Figures 6.5(a) and 6.5(b), the node color refers to the node marketing
Segment (see Chapter 3). Colors are not consistent across Figures, i.e. even
if nodes from different Figures have the same color it does not mean they
are in the same segment. Edge width and color are proportional to edge
weight, that is the number of times the two products were bought in
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Figure 6.5: Extracts from the non-overlapping communities.

the same shopping session. In Section 6.1 we refer to this quantity as
“Absolute Support” of the pair and the minimum value is equal to 10,
i.e. each connected pair of products in the community has been sold at
least 10 times. In the edge color map, orange indicates high weight, blue
indicates low weight.

By inspecting communities #37 and #80 we can observe the following
characteristics:

• The communities are very dense: in fact, they are cliques, where
every node is connected to every other node, meaning that different
customers have bought all possible combinations of these products
at least once;

• Most links have high weight, meaning that the amount of customers
buying these products in the same shopping session is high;

• All products in the communities are part of a very homogeneous
class of products: in community #37 we have only biological jams,
while in community #80 we have only liquid yogurts.

We now turn to examine communities extracted with the overlap HLC
approach. They are depicted in Figures 6.6(a) and 6.6(b) and they are
identified with IDs #239 and #590. Again, the edge width and color is
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Figure 6.6: Extracts from the overlapping communities.

representative of edge weight in the same scale of Figures 6.5(a) and
6.5(b), while node color indicates the marketing segment and it is not
consistent across Figures, due to the high amount of segments present in
each community. We had to choose communities with a larger number of
nodes, given the relative scarcity of small communities returned by HLC
(see Figure 6.3).

By inspecting communities #239 and #590 we can observe the opposite
characteristics we observed for the Infomap communities:

• The communities are dense but they are not cliques: they are rather
cliques joint together by some products (for example, the arm sphyg-
momanometer plays a central role in community #239);

• Almost all links have low weight, meaning that the amount of
customers buying these products in the same shopping session is
low;

• Almost all products in the communities are part of a different mar-
keting segment.

So we can summarize the results of this section by saying that: “exam-
ples shows that characteristics and topology of communities returned by
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the overlap approach are very different from the results of the partition
approach”.

6.3.4 Community Interpretation

In this section we wrap up the results we presented in the previous
sections, providing a tentative explanations that takes into account all of
them. The conclusions of each section were:

• The overlap approach returns larger communities than the partition
approach;

• The overlap approach returns communities that contains more di-
verse typologies of products than the partition approach;

• Examples shows that characteristics and topology of communities
returned by the overlap approach are very different from the results
of the partition approach.

Our explanation is then that the overlap approach mostly reflect cus-
tomer behaviors and possible expansions of them, while the partition
approach returns a refined marketing classification. We support our ex-
planation by noticing that customers usually buy products for different
marketing segments because they have to satisfy different needs, this also
implies that a community grouping together a “customer profile” should
be larger and more diverse on marketing classifications. Being less dense,
overlap communities also put together products that some customers
bought together and some others, who bought similar products, did not
buy together, identifying possible customized product suggestions to the
marketing department.

On the other hand, the partition approach is more homogeneous on
the existing marketing classification, but the disagreement points may be
interesting to explore to refine it. The small communities suggest a fine
grained marketing description and the high density and edge weight of
them implies that the products have really something to do with each
other. It is worthwhile to notice that Infomap can also be used with a
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hierarchical approach, by merging related communities at different levels.
In this way, it is possible to reconstruct a full marketing hierarchy. Also
HLC by nature returns a hierarchy, but of a different kind: it is a hierarchy
of extended customer profiles, with different, but nevertheless useful,
classification of customers’ behaviors and sub-behaviors.

6.4 Conclusion

In this Section, we investigated the different application scenarios that
it is possible to tackle with community discovery using different com-
munity definitions. We focused on the analysis of networks of products
co-purchased in a supermarket. In particular, we have showed that there
is not a quantitative difference in how good or bad are the results obtained
by searching for a disjoint community partition and the results obtained
from an overlapping coverage search. There is rather a qualitative differ-
ence, i.e. different problem definitions. A partition approach has proven
to be useful as an approach to a marketing product classification. An
overlap approach, instead, can shed some light over a novel technique for
customer profiling.

The present paper can be extended along several other lines of re-
search. First and foremost, the distinction between partition and overlap
based approaches is just one of the many in the field of community dis-
covery. Some review works [33] have come as far as to identifying more
than seven macro definitions of communities in complex networks. It is
possible that each of these definitions is going to provide answers for ad-
ditional problem definitions. As a second point, the empirical study about
the different practical applications of alternative methods of community
discovery can be separated from the application scenario we considered
in this paper. Instead of focusing on product networks, we can consider
many different typologies of networks, covering a wider set of kind of
markets, human activities and natural phenomena.
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Part II

Exploiting the Social
Networks for Applications

in Markets
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Chapter 7

“You Know Because I
Know”: a
Multidimensional Network
Approach to Expert Finding
Problem in the Market of
Skills

This chapter is mainly based on [36].

Finding talents is one among the most difficult challenges for organi-
zations. Hiring talents means performing better, get more revenue and
evolve the business. Where hiring talents is relatively easy, the biggest
challenge for organizations today is to find talents they have already
hired: finding and creating knowledge is important, but so it is to be able
to search and mine knowledge that is already owned. These complex
requirements (that are essential for companies in order to “stay in the
market”) create an interplay between demand and offer where as quick a
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company can find her own “expert”, as more chanches she’s gonna have
to survive and/or succeed. The social networking revolution allowed
the creation of tools to evaluate competencies, expertise and skills, like
Linkedin1. Before social networks, talent management activities were
restricted to a marketing oriented approach: to discover talents among
their employees, organizations promote internal contests or invest into
assessment activities and campaigns. However, during the last few years,
organizations started also to put efforts on social talent management,
often connected to wider social related initiatives (social CRM, enterprise
social networking, etc.). Social talent management is nowadays based
on dedicated pages or applications whose aim is to discover interesting
professionals. Social networks are also used by organizations to get un-
official information about their employees or candidates, to understand
what they do and who they really are.

To understand where and how an employee is positioned on a skill
network will enable organizations to find previously hidden sources of
knowledge, innovation and know-how. Resumes can provide structured
information about studies and working experiences, but they are not
useful to understand skills and experiences that do not belong directly to
the employee, but to his friends and colleagues. If a candidate does not
master a topic but has a strong relationship with somebody who does,
then he is an important gateway in that topic, although different rela-
tionships allow for different gateway values (i.e. two friends in the same
company represents a stronger connection than two friends in competing
companies).

If an employee is involved on specific tasks, and she has always been
involved only on those tasks, this does not mean she could not have
strong competencies and skills on completely different subjects: hobbies,
passions, interests can be worth some, sometimes a lot of, value in the
prosumers age. People are digitally involved throughout their life and
there is not a clear separation between personal and professional net-
work. Understanding the position of somebody among different skills
and knowledge networks or rankings can let this value emerge. This data

1http://www.linkedin.com/
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richness and hidden knowledge demands for a multidimensional and
multiskill approach to the employee ranking problem: the definition of a
ranking algorithm on networks, able to capture the role of different kinds
of relations and the importance of different skill sets.

Given a person with a set of skills and a neighborhood of friends in
a social network, the skills of the friends to some extent are accessible
through that person, and therefore they should be considered when eval-
uating her. More formally, each node n in a network has some skills S
each with a given intensity, and it is connected, with different kinds of
edges, to other nodes (n2, n3, ...) with their own skill set (S2, S3, ...). The
real value of node n is then defined by a function f that takes as input
not only S, but also S2, S3, ..., by accounting for the different dimensions
connecting n to n2, n3, .... This idea has been proven in the economic
field at the macro level: in [88] the author proved that the social return of
higher skill levels is higher than the personal return, i.e. higher skilled
people make their colleagues to be more valuable as well.

Current ranking algorithms can only provide multiple rankings on
monodimensional networks, or simple rankings in multidimensional net-
works. Herer we propose an algorithm whose aim is to provide multiple
rankings (one for each skill) for nodes in a multidimensional network, a
network with multiple types of edges. Our approach is called “you (U)
know Because I Know”, or UBIK. We test UBIK on real world networks,
showing that its ranking is less trivial and more flexible than the current
state-of-the-art methods.

Our contribution can be then summarized as follows. We introduce a
novel ranking algorithm for multidimensional networks with multiple
node attributes, able to provide a different ranking for each skill. We
provide a fast implementation able to scale linearly in the number of
edges of the network. We provide a new ranking for real world scenarios,
including co-authorship in computer science and corporate emails.
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7.1 Network-Based Human Resources

7.1.1 Problem Definition

Our problem definition is the following:

Definition 7.1 Let G = (V,E,D, S) be a multigraph where each node v ∈ V
is connected to its neighbors through multiple edges e ∈ E, each carrying a label
d ∈ D; and S be a skill set, such that each node v is labeled with one or more
skills s ∈ S, each with a given weight w ∈ R+. Given a query q containing
a set of skills Sq ⊆ S and the importance r(d)∀d ∈ D, we want to rank nodes
accordingly to the weight of each s ∈ Sq they posses directly or indirectly through
their connections.

The intuition behind our idea is the following. Suppose we have a
set of people, each with her own skills and acquaintances, and a task to
be performed. In a world without social knowledge interaction, the best
way to perform the task is to assign it to the person, or to a set of people
(i.e. a team), possessing the highest value of the related skill. However,
each person can access to the external knowledge of their acquaintances,
thus possibly modifying her skill set value, and therefore the decision of
the composition of the team. Each person can also access to the acquain-
tances’ acquaintances skills, but with an increasing cost at each degree of
separation, causing at some point the external skill to be useless.

Now, we need to define the social connections, and their different
types. We need to formally define the skills carried by each individual as
the initial state of the system and how the expertise propagates through
social connections.

7.1.2 The Model

Following [13] we model our problem with a multidimensional network
(also studied in [18]). We now present the basics of multidimensional
networks and then the extensions we apply to the basic model.

In the case of a multidimensional setting, a convenient way to model
a network is a labeled multigraph. Intuitively, a labeled multigraph is a
graph where both nodes and edges are labeled, and where there can exist
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two or more edges between two nodes. Just as any regular labeled graph,
also labeled multigraphs may be directed and undirected, thus we allow
edges to be both directed and undirected, when the analytic aim requires
it. Such a graph is denoted by a triple G = (V,E,D) where: V is a set
of nodes; D is a set of labels representing our dimensions; E is a set of
labeled edges, i.e., it is a set of triples of the form (u, v, d) where u, v ∈ V
are nodes and d ∈ D is a label. We assume that given a pair of nodes
u, v ∈ V and a label d ∈ D it may exist only one edge (u, v, d).

In [13], the previous paragraph fully describes a multidimensional
network. We need to add several things in order to fit into our problem
definition. First, we need to introduce weighted node labels. In other
words, each node v ∈ V is a collection of couples in the form (s, w) where
s is the label and w ∈ R+ is the value of label s for node v. Therefore,
v = {(s1, w1), (s2, w2), . . . , (sn, wn)}. The set of node labels describes
what in our data are the skills of the node, along with their value. The set
of all possible skills is fixed for the network, and we refer to it as S.

In [13], dimensions are considered distinct but equal. In our case,
each dimension can have a different importance: in the real world a
friendship tie may be more or less strong than a working collaboration,
given the social environment where this tie may play its role. Therefore,
each dimension d ∈ D is represented not only by its label, but also by a
value r(d) ∈ R+, quantifying how much relevant is a relation expressed
in dimension d, according to the query requested.

At this point we have all the building bricks of the static part of our
model. Next, we define how the knowledge exchange dynamics takes
place in the model itself, generating the flow that allows us to rank the
nodes in the network. The idea is that each node passes the entire set
of its skills to each one of its neighbors. This procedure is similar to
the one employed by the classical PageRank formulation, but with a
few distinctions. First, our method is not based on random walks, but
on the percolation of the various skills without random jumps. Second,
the amount of skill value passed to the neighborhood of a node is not
equally divided and assigned to each neighbors. The amount of value
that node u passes to the neighbor v is proportional to the importance of

89



8 7

6

9
5

1

1 1

1 2

1 0

3

4

2

Node Skill-Value
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2 (a, 100), (b, 0), (c, 0), (d, 0)
3 (a, 100), (b, 0), (c, 0), (d, 0)
4 (a, 100), (b, 0), (c, 0), (d, 0)
5 (a, 100), (b, 0), (c, 0), (d, 0)
6 (a, 0), (b, 0), (c, 0), (d, 80)
7 (a, 0), (b, 90), (c, 20), (d, 0)
8 (a, 0), (b, 20), (c, 90), (d, 0)
9 (a, 100), (b, 0), (c, 0), (d, 0)
10 (a, 100), (b, 0), (c, 0), (d, 0)
11 (a, 100), (b, 0), (c, 0), (d, 0)
12 (a, 100), (b, 0), (c, 0), (d, 0)

(a) (b)

Figure 7.1: Our toy example. (a) The multidimensional network structure
(each line style represents a different network dimension; (b) The skill table,
recording the values of each skill (a, b, c and d) for each node.

the dimensions connecting u and v. It is also inversely proportional not
only to the degree of the node passing the skill, but also to the degree of
the node receiving the skill. Third, the knowledge exchange may be or
may be not mutual, i.e. we are not narrowing our model only to directed
graphs, but to general graphs.

We use also the range parameter α, commonly used for centrality
scores, handling the following situation. If u and v are connected through
a node v2, then the amount of knowledge they exchange is lower than a
direct connection, just like the resistance loss in an electric circuit. If x is
the amount of value passed by a direct connection, the amount of skills
received from nodes ` degrees away is corrected as x

1
`α . Traditionally,

directly connected nodes should be at zero degrees of separation, because
no other nodes should be crossed to reach them. For practical purposes,
in this paper we assume ` = 1 for neighboring nodes, as we need to
cross one edge to reach them. The introduction of α is due both to logical
and practical reasons. Logically, it makes our model more realistic, as a
person is a gateway of her friends’ skills, thus she is to some extent also a
gateway for her friends’ friends’ skills, but of a much lower importance.
Without the α parameter the skill percolation could potentially continue
indefinitely, and the computation may not be able to stop.
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In Figure 7.1 we represented a simple toy example. The network
structure of social connections is depicted in Figure 7.1(a), while Figure
7.1(b) is the skill table associated with the structure. From the skill table
we know that all nodes start with some global skill value (not equal for
everybody, as it happens in reality), distributed along four skills (a, b, c
and d). The social connections do not have all the same value: solid line
has a 50% efficiency in the knowledge transfer, dashed line has a 33%

efficiency, while the dotted line has only a 17% efficiency. By looking
only at the network structure, node 1 is the most central node. It also
has the highest global skill value. According to the closeness centrality,
also nodes 5 and 9 are more central than 6. However, our algorithm will
propagate skills a, b and c to 6 with the maximum efficiency, while 6 will
retain also its unique d skill. At the end of the process, node 6 ends up as
the most valuable node in general in the network, while node 1 can only
specialize in skill a. With relaxed values for the α parameter (like α = 1)

node 1 can still get some parts of skill d (
√

1
6

1
280 from node 5 and

√
1
6

1
380

from node 9, that is ∼ 4.69017) and even less of b and c. If α = 3 then the
contributions to node 1 of skills different from a is negligible.

7.1.3 The Data

Our model is describing, according to our hypothesis, how knowledge
flows in a face-to-face social environment, following the proven macro
level mechanism of the social effect of schooling [88]. However, the data
about the face-to-face interactions are usually part of the tacit realm of
knowledge. If we cannot find direct or proxy data sources about these
interactions, any algorithm solving the problem of evaluating people
on the basis of our hypothesis is practically useless. In this section, we
present how we use two real-world datasets, adapting them to our model
and problem definition, and providing an interpretation of the knowledge
that our model can unveil. Of course in both cases we are in front of
an approximation. Table 7.1 provides the general statistics about the
extracted networks for each dataset.
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Network |V | |E| |D| |S| |Dr|
DBLP 38,942 100,983 16 50 1,187
Enron 5,913 49,058 7 8 0

Table 7.1: The statistics of the extracted networks.

DBLP2 is an online bibliography containing information about scien-
tific publications in the field of computer science. Using the data from this
dataset, our problem definition may be adapted as follows: we want to
evaluate the actual knowledge possessed by scientific authors in different
topics and sub-topics, focusing on different branches of their disciplines.
Being our aim to rank authors, they should be the nodes of our network.
The link is the co-authorship relation: two authors are connected if they
have written together a paper. The dimension of the connection should
represent the “quality” of their relation, in this case the venue where
the publication appeared (we chose 16 top-tier conferences in computer
science, including VLDB, SIGKDD, CIKM, ACL, SIGGRAPH and others).
The set of skills should describe the expertise of the author, therefore we
chose to represent them as the keywords used in their publications. We
eliminated stopwords, we applied a stemming algorithm [104] on the
remaining words and then we selected the 50 most commonly used key-
words in a paper title. The number of times author u used the keyword s
is used to evaluate how much the author considers himself an expert over
s, i.e. it is used as its w value for s.

Enron dataset3 is a collection of publicly available emails exchanged
by the employees of the energy company, distributed after the well known
bankruptcy case. We are interested in ranking the employees, that are the
nodes of our network. With this network we are able to unveil who are
the real knowledge gateways in an organization, by looking at the internal
communication even in the absence of more structured social information
(see Section 7.3.2 for the results). Therefore, to apply our algorithm is not
necessary for an organization to actually create a social media platform for
their employees (or to download information from other social media). We

2http://www.dblp.org/db/
3http://www.cs.cmu.edu/˜enron/
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Algorithm 1 The pseudo-code of UBIK.
Require: G = (V,E,D, S);α ∈ [0 . . .∞]; r(D)
Ensure: Node set V with updated skill values.

1: `← 1
2: while ` < δ do
3: for all u ∈ V do
4: for all v ∈ N(u) do
5: for all s ∈ S do

6: w′u,s ← wu,s +
∑
d∈D

(f(v,s)×r(d))
1
`α

|N(u)|+|N(v)|
7: end for
8: end for
9: end for

10: UPDATE(V, u′(s))
11: `← `+ 1
12: end while
13: NORMALIZE(V )
14: return V

took only the email addresses ending with “@enron.com”. We connected
two employees if they wrote to each other at least once. Then we used
as dimensions the day of the week when the communication took place
(ending up with seven dimensions from Monday to Sunday). For the set
of skills, we considered the 8 most used keywords in the subject field of
the emails (again eliminating stopwords and stemming the remaining
words and directly evaluating the relation between an employee and the
keyword by the number of times she used the word in an email subject).

7.2 The UBIK Algorithm

In this section we discuss the implementation details of our algorithm.
We called it UBIK (“you (U) know Because I Know”). UBIK requires
the following input: a network G = (V,E,D, S) with the characteristics
presented in Section 7.1.2; a range parameter α regulating how much
information is lost after each degree of separation; and a set specifying,
for each d ∈ D, what is the relevance r(d) of d (defined by the analyst
accordingly to the ranking aims).
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Aim of UBIK is to update ∀s ∈ S and ∀u ∈ V the value w, i.e. how
much node u possesses of skill s. The pseudocode of UBIK is Algorithm
1. UBIK cycles for each node, using the following master equation:

f(u, s) =
∑
d∈D

∑
v∈N(u,d)

(f(v, s)× r(d))
1
`α

|N(u)|+ |N(v)|

where N(u, d) is a function returning all the neighbors of u that are
reachable through dimension d (if a dimension is not specified, it returns
the entire neighborhood). Notice that the contribution of each d is differ-
ent, corrected with the value r(d), i.e. the relevance of dimension d. Also
note that, at the first iteration, f(v, s) (i.e. how much node v possesses of
skills s) is equal to just the weight wv,s, but at the second iteration it will
be updated with the master equation.

One important caveat must be discussed about the ` parameter. In our
model (Section 7.1.2) we said that ` represent the degrees of separation
of the nodes u and v, exchanging their skill values. Therefore, the exact
implementation of our model would require to scan for each u each
node of the network, calculate the shortest path between the two, and
then update the contribution accordingly to the ` value. However, this
implementation is inefficient, as it is an equivalent of finding all the
shortest paths in the network (that is a cubic problem in terms of the
number of nodes, or |V |3 [5]) and then apply our calculation. Instead,
Algorithm 1 provides an approximation of the result. The approximation
reduces the main loop time complexity as linear in terms of number of
edges, usually approximated as |V | log |V |.

We set ` = 1 and we apply the master function to every node and
every skill. Then, we increase ` by 1 and we apply the master function
again, using not the original skill values of nodes, but the ones updated
at the first iteration. In this way, all the neighbors of u are passing to u
also the skills that they have inherited from their neighbors. We avoid to
pass back to u the skills that u itself passed to its neighbors at the previous
iteration. At the n-th iteration, the neighbors of u pass to u the skill values
obtained by the nodes n− 1 degrees away.

The stop criterion is dependent on the ` value. On average, nodes
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that are beyond three or four degrees of separation cannot influence
significantly the skills accessible from one node. Therefore, in Algorithm
1, at step 2 we stop if ` ≥ δ, with 3 ≤ δ ≤ 6, dependent on the application.

When we calculate the new skill values at step 6, we store the result in
a temporal variable for each node. Then, we apply the UPDATE function
at step 10 to update the value of skill s for node u in the node set V . Each
element of the master equation is either fixed (α, D, r(d), N(u) and N(v)

are always the same) or it only depends on the previous iteration (`, u(s)

and v(s)). By forcing this condition, UBIK becomes order-independent:
the computed value of each u(s) at a particular iteration is always the
same, regardless if u was considered as the first node of the iteration or as
the last.

The NORMALIZE function at step 13 scales for each skill the values
obtained for each node in the [0, 1] interval. Moreover, it combines all the
skill values in a general network ranking. The general value of node u
is evaluated by simply extending the u(s) function in the following way:
u(∗) =

∑
s∈S u(s), where ∗ symbolizes the sum of all s1, s2, . . . , sn ∈ S.

This function is run at the end of the main UBIK loop and does not add
any complexity to it.

7.2.1 Time Complexity

Algorithm 1 has five nested loops. From the inner to the outer, they cycle
over: the set of dimensions (the sum at step 6), the set of skills (step 5), the
neighbors of a node (step 4), the nodes of the network (step 3) and until
the ` < δ. Since cycling over the nodes and their neighbors (steps 3-4)
is equivalent to cycle twice over the edges, the complexity of those two
loops is O(|E|). Steps 5-6 have complexity of O(|S|), while the outer loop
generally terminates after very few iterations: in real world networks,
usually δ = log |V |. The final estimate for the time complexity is then
O(log |V |× |E|× |S|). We also report that usually for real world networks,
the number of skills and dimensions (both in the order of 101 or 102) is
usually much lower than the number of edges (usually ranging from 105

to 108 and more), making the average case complexity in the order of
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Figure 7.2: Running times in milliseconds for different random networks
with given number of edges, dimensions or skills.

Θ(log |V | × |E|).

7.3 Experiments

We tested our Java implementation of UBIK4, on a Dual Core Intel i7 64
bits @ 2.8 GHz, 8 GB of RAM and a kernel Linux 3.2.0-23-generic, using
as virtual machine the Java OpenJDK version 1.6.0 24. Our implemen-
tation took on average 22 seconds on DBLP and less than 2 seconds on
Enron. Our networks are small in scale, thus we created some benchmark
networks to show how UBIK scales in terms of number of nodes, average
degree, dimensions and skills. The results are depicted in Figures 7.2a
and 7.2b.

First, we fixed the number of dimensions and of skills at 5. Then for
the “increasing nodes” series we fixed the average degree at 3 and we
increased the number of nodes; while for the “increased AVG degree”
series we fixed the number of nodes at 50k and we increased the average
degree of the nodes. Both techniques increase the number of edges: UBIK
is able to scale linearly in this dimension. UBIK is able to analyze a
network with 455k nodes and 1.3M total edges over all dimensions in less

4Freely available with our test datasets at http://www.michelecoscia.com/
?page_id=480
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than a minute and a half, or with 50k nodes and the same number of edges
in less than 40 seconds. The difference in the linear slope between the
two is given by the increasing of both nodes and edges. We can conclude
that UBIK is scalable and applicable to large scale networks, as it is linear
on the number of edges. In Figure 7.2b we fixed the number of nodes at
25,000 and the average degree at 3. Then for the “increasing dimensions”
series we increased the number of dimensions from 1 to 40, while for
the series “increasing skills” we increased the number of skills from 1 to
40. Our implementation, paying a preprocessing phase, is independent
from the number of dimensions, the runtime increases linearly with the
number of skills5.

We now proceed to evaluate the results of UBIK, comparing its results
with some of the state-of-the-art node rank approaches (in Section 7.3.1)
and presenting some knowledge extraction from real world networks (in
Section 7.3.2).

7.3.1 Comparison with other methods

We compare the rankings provided by UBIK with some state-of-the-art
algorithms. The algorithms used for comparison are the personalized
PageRank [56] and TOPHITS, a tensor eigenvector-based approach to
ranking. Personalized PageRank is implemented in the R statistical soft-
ware, TOPHITS is part of the Tensor Toolbox for MatLab [74], freely
available for download6. For our comparison, we used the DBLP net-
work.

We used UBIK without giving to any dimension any particular value
of r(d) and we took the global ranking of the nodes without selecting any
particular skill. In this way, the comparison with PageRank and TOPHITS
is fair, because we are evaluating the general rank of our nodes without
using anything else than the network structure, that both the Personalized
PageRank and TOPHITS can handle. Also, we set α = 2 and δ = 6.

The task of confronting different ranking methods is not easy, as it is

5To assure repeatability, also the random network generator is provided at the same page
of the algorithm and the networks

6http://www.sandia.gov/˜tgkolda/TensorToolbox/index-2.5.html
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not explicit why a ranked list is better than a different one on absolute
terms. However, there are several properties that we would like to have in
the results of a ranking algorithm. We evaluate the results of the algorithm
based on quantitative tests on the following properties:

1. Ranking results should not be trivial: if the results are highly corre-
lated with a trivial ranking method, then the algorithm is not telling
us something interesting.

2. Ranking results should not be trivially boosted: if there is a simple
mechanism to increase one’s rank, the flaw of the algorithm makes
its results less important.

3. Given a gold standard calculated in an independent way, a ranking
algorithm is good if it is quantitatively similar, to some extend, to
the gold standard.

Let us start from the first element of the list. One of the most trivial
criterion for ranking nodes in a network is to check their degree: the
more edges are connected to a node, the more important it is. Of course,
this ranking method is not optimal, as it takes only an artificial creation
of many edges centered on a node to obtain the maximum rank (as it
happens in the World Wide Web). Therefore, the most similar to the
degree ranking are the results of the algorithm, the less interesting they
are. This is only the first test to be satisfied, but it is necessary to satisfy
also the other two. For example, a ranking method that uses the inverse
of the degree to rank node will pass this test, as it anti-correlates with
the trivial degree ranking method, but it will not satisfy the other two
conditions.

Figure 7.3 depicts the q-q plots of UBIK, PageRank and TOPHITS
against the degree ranking for the 1,000 nodes with highest degree. Each
point x(i, j) of a q-q plot corresponds to some node x. The coordinates of
the point (i, j) mean that the node is ranked at the i-th position by the first
algorithm (x-axis) and at the j-th position by the second algorithm (y-axis).
In Figure 7.3, the y axis is the degree rank, while on the x axis we have
UBIK (Figure 7.3a), PageRank (Figure 7.3b) and TOPHITS (Figure 7.3c).
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Figure 7.3: The q-q plots of various ranking algorithms against the ranking
obtained ordering the nodes by degree.

R Degree PageRank UBIK
1 Jiawei Han Jiawei Han Philip S. Yu
2 Philip S. Yu Philip S. Yu Jiawei Han
3 Christos Faloutsos Christos Faloutsos Qiang Yang
4 Qiang Yang Qiang Yang Hans-Peter Kriegel
5 Divesh Srivastava Divesh Srivastava Gerhard Weikum
6 Zheng Chen Jian Pei Divesh Srivastava
7 Jian Pei Zheng Chen Zheng Chen
8 Raghu Ramakrishnan Hector Garcia-Molina Elke A. Rundensteiner
9 Beng Chin Ooi Beng Chin Ooi C. Lee Giles

10 Hector Garcia-Molina Gerhard Weikum Christos Faloutsos
11 Haixun Wang Raghu Ramakrishnan Wei-Ying Ma
12 Wei-Ying Ma Haixun Wang Yong Yu
13 Gerhard Weikum Wei-Ying Ma Tao Li
14 Michael J. Carey Michael Stonebraker Ming-Syan Chen
15 Jeffrey Xu Yu Rakesh Agrawal Jian Pei

Table 7.2: The top 15 researchers according to different ranking criteria.
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Algorithm (1) (2) (3) (4) (5)
UBIK 0.0204 1% 1.2% 4% 5.5%
PageRank 0.0166 0% 0.8% 2% 5.3%
TOPHITS 0.0857 39% 33.6% 34.8% 37.5%

Table 7.3: The share of high clustering nodes in the top rankings per algo-
rithm.

The interpretation of the picture is clear: especially for the 300 highest
ranked nodes, having a high degree implies having a high PageRank,
while this consideration does not hold for UBIK and TOPHITS results.
We also report the top 15 researchers in Table 7.2 for UBIK and PageRank
(TOPHITS omitted due to lack of space, but the interesting confront of
the table is with the PageRank algorithm, as TOPHITS does not show the
rank-degree correlation). Again, we can easily see the correlation between
the Degree and the PageRank column. The rank-degree correlation for
PageRank is not our finding, as it has already been studied in literature
[49]. In practice, the logic of the degree centrality is “The more collabo-
rators a researcher has, the more important he is”. Both PageRank and
UBIK modify this philosohpy in “The more important collaborators a
researcher has, the more important he is”. However the “important” in
PageRank is still a quantitative measure on the number of collaborations,
while UBIK uses more qualitative information. For the first criterion, we
conclude that UBIK rankings are less trivial than the ones returned by
PageRank.

So far we have shown the main defect of PageRank, i.e. it provides a
trivial ranking. What is the main defect of TOPHITS? In literature, it is
studied as the Tightly-Knit Community (TKC) effect: being the TOPHITS
rank self-enforced through eigenvector calculation, if we highly clustered
nodes in the network, it may happen that all members of this group are
ranked high by TOPHITS, even though the nodes are not particularly
central. This is the second point we want to prove: UBIK rankings are not
prone to these easily applicable ranking boost strategies.

Table 7.3 reports the share of high clustering nodes for the top k ranked
nodes, accordingly to UBIK, PageRank and TOPHITS. The column (2)
reports the percentage of nodes in the top 100 ranked by the algorithm
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App. Search Stream Obj. Analysis Sys. User Model Network Context
P. S. Yu 1 3 4 7 4 7 5 6 2 6
J. Han 5 1 3 5 3 6 4 3 3 4
Q. Yang 11 15 1 13 5 14 8 18 7 10
H-P. Kriegel 3 2 5 1 7 12 6 10 16 2
G. Weikum 7 9 15 2 1 17 2 11 5 5
D. Srivastava 18 5 24 21 11 1 12 2 11 7
Z. Chen 17 17 2 20 6 22 1 14 20 17
Rundensteiner 2 7 11 14 9 15 14 1 8 11
C. Lee Giles 14 16 16 16 10 19 7 23 1 14
C. Faloutsos 21 6 34 30 15 28 15 20 30 1

Table 7.4: The top 10 researchers according to the general UBIK ranking and
their rank for 10 different skills.

that have a local clustering k > .1, the column (3) reports the same statistic
for the top 250 nodes, and so on. The local clustering k(i) of a node i is
defined as:

k(i) =
2|{(u, v) | u, v ∈ N(i) ∧ (u, v) ∈ E}|

|N(i)| × (|N(i)| − 1)

(note that we calculate the monodimensional clustering, without spec-
ifying a d for N(i)). We can see that both UBIK and PageRank tend not
to return high ranks for nodes with a high local clustering value. On the
other hand, in the TOPHITS ranks 39 nodes out of the most important
100 have high clustering values. Table 7.3 also reports the average local
clustering value for the top ranked 100 nodes in column (1) and again
this value is > 4× higher for TOPHITS. We conclude that both UBIK and
PageRank are not affected by the TKC, and that UBIK is the only example
that is not dependent both on degree and local clustering.

Let us now address the third important feature that a ranking algo-
rithm should have: the comparison with a quantitative gold standard. In
scientific publishing, a useful indicator about the quality and the impact
of a researcher is quantified using several different indexes. One of them,
the h-index, measures both the amount of publications and citations of
an author, and it is logically not related to the co-authorship network. A
researcher has an h-index of h if he has at least h publications cited at least
h times. We use the h-index as our ground truth.
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For this comparison we could use a q-q plot, but we need a more
quantitative and objective measure than simply looking at the plot. There-
fore, we follow [115] and we use a function computing the distance of the
points in a q-q plot from the line y = x that represent identical rankings.
The distance of point (i, j) from the line y = x is equal to |i−j|√

2
. Thus, the

distance measure D of two rankings r1 and r2 is:

D(r1, r2) =
1

|V |
∑
∀v∈V

|r1(v)− r2(v)|
|V |

where rx(v) is the rank of v according to the ranking rx.
We calculate this function for UBIK, PageRank and TOPHITS against h-

index ranking. We obtained the h-index values from an updated webpage
who is collecting data from Google Scholar7. From that list, we removed
the authors that have not published a single paper in the set of conferences
with which we have built our multidimensional network, because they
are not part of the network structure at all. UBIK’s ranking is closer to
the ground truth, computed independently from the network structure,
provided by the h-index ranking, with a score of 22.43. Therefore, not only
UBIK is not affected by the biases of PageRank and TOPHITS, but it also
yields results closer to an independent ground truth, as they scored 23.50
and 37.54 respectively. We can now take a look to the actual multiskill and
multidimensional rankings provided by the algorithm, as the comparison
section is over and we can use the features, not handled by PageRank nor
TOPHITS.

7.3.2 Rankings

We now report some rankings extracted with UBIK. We already saw in
Table 7.2 the top 15 researcher setting no particular dimension weight (i.e.
r(d) is equal for all d ∈ D). However, now we want to take advantage
of the fact that UBIK is able to return different rankings for each skill. In
Table 7.4 we report the list of researchers who can master some skills, and
their ranking for the other skills. As we can see, no researcher dominates

7http://www.cs.ucla.edu/˜palsberg/h-number.html
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over all the skills, and the different rankings can enlighten us about
different leaders in different sectors. We remind that we took only authors
of a very specific set of conferences, thus a possible specialist in one or
more reported skills may not be part of the rankings because she never
published in one of the selected conferences. Also, the skill name is
the substantive of the stemmed form, thus it includes all the possible
declination of the term (e.g. “Stream”, “Streaming”, “Streamed”, and so
on).

UBIK is able to customize the ranking even further, in an additional
degree of freedom. Instead of looking at some skills taken separately, we
can populate our set of dimension relevance functions with different im-
portance r(d) values for different dimensions. A proper definition of the
dimension importance set results in a very specific ranking analysis. To
show this feature, we decide to create two different definition classes for
the Enron network. We recall that in the Enron network each dimension is
the day in the week when the email was sent. In the first variant, we pop-
ulate our set of rules with a 10×multiplier for the dimensions of Saturday
and Sunday; in the second variant we apply the same 10×multiplier, but
this time to each of the weekday, and nothing to the weekend days. The
choice of the 10×multiplier is ad hoc, to represent a query that focuses on
the relations established mainly during weekdays (first case) or during
weekends (second case).

Table 7.5 reports the top 10 employees according to both criteria (please
note that some employees are part of both top 10 and they are not re-
peated). As we can see, the two rankings are quite distinct. There are
three employees very important in both criteria (Jeff Dasovich, Michael
Kass and Chris Germany). We also observe one expected phenomenon:
the important employees during the weekdays are also somewhat impor-
tant during the weekends, while the vice versa is not true. It is expected
that important employees receive emails during the entire week, while
the communications during the weekend may follow a different logic
and promote unexpectedly low ranked employees (maybe because they
perform a weekend shift or due to particular emergencies outside office
hours).
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Employee Weekday Rank Weekend Rank
Victor Lamadrid 1 34
Jeff Dasovich 2 4
Lisa Jacobson 3 39
Michael Kass 4 2
Joannie Williamson 5 37
Bob Ambrocik 6 68
Chris Germany 7 8
Kay Chapman 8 27
Tana Jones 9 23
Drew Fossum 10 18
Forrest Lane 238 1
Jennifer Blevins 1760 3
Shubh Shrivastava 857 5
Kay Mann 14 6
Scott Neal 50 7
Vince Kaminski 18 9
Rosalee Fleming 21 10

Table 7.5: The top 10 employees according to the UBIK for the weekday and
the weekend variants of the ranking.

The most notorious elements of the top management of Enron are not
present in either rankings. Kenneth Lay is ranked 617th in weekdays and
224th in weekends, while Jeffrey Skilling is ranked 725th in weekdays
and 458th in weekends. Joannie Williamson, who worked as a secretary
for both of them8, is instead present in Table 7.5, and highly ranked. This
is an expected result of UBIK, able to unveil who is a knowledge gateway
in an organization.

The same multidimensional ranking can be done for the DBLP net-
work. In this case, we are able to spot the collaboration hubs in several
different conferences. We applied the 10× multiplier to a collection of
conferences. The results for some of our conferences are provided in Table
7.6, where for each conference we record the top ranked author and then
we report also his ranking for the other conferences. We can see that
UBIK is able to identify specialists who are highly ranked only in one
conference. On the other hand, as expected, the top authors in the general

8http://money.cnn.com/2006/04/03/news/newsmakers/enron_defense/index.htm
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Author ACL CIKM ICDE KDD GRAPH VLDB WWW
D. Marcu 1 3893 3511 2606 2309 1608 3327
Boughanem 2768 1 3892 2966 2643 1946 3658
T. Ichikawa 3070 4549 1 3266 2982 2260 3994
Nakhaeizadeh 2606 4036 3709 1 2484 1783 3507
D. Salesin 2101 3538 3149 2304 1 1300 2980
P. Dubey 3093 4570 4198 3274 2988 1 3999
J. Nieh 2976 4453 4134 3185 2865 2158 1
P. S. Yu 574 32 27 10 860 10 684
J. Han 689 106 60 12 999 29 708
Q. Yang 933 634 967 384 1258 232 930
H-P. Kriegel 1024 517 66 330 1304 146 1476
G. Weikum 1100 472 91 888 1348 51 1355

Table 7.6: The top authors for some conferences (taken singularly) compara-
tive rankings.

ranking score average high rank in all conference, but they are rarely in
the top 10 of a specific conference, as their impact is more broad and it
spreads over many different venues (the bottom rows of Table 7.6 records
the ranking for each single conference for the top 5 general authors in the
network taken without any dimension multiplier).

7.4 Conclusion

In this Section we addressed a problem of human resources: the ranking of
employees according to their skills. We did so following an intuition about
the intellectual value of a person: her evaluation should not be based only
on her set of skills, but also on her friends’ set of skills. We created an
algorithm, UBIK, to tackle this problem: UBIK is able to rank nodes in
a multidimensional network, with weighted labels referring to their set
of skills. We applied UBIK to two real world networks, confronting its
output with popular ranking algorithms, showing that our results are
less trivial and more significant. Our contributions are: the creation of a
feasible tool to address a problem in organizations in the real world; the
address of the multiple ranking over multidimensional networks problem,
not tackled in literature; and increased ranking performances over the
current most used methodologies.

Our paper opens the way to a number of future works. First, following
[91], we can extend UBIK to rank also the relations. UBIK can be applied
to several different datasets with different semantics and properties, from
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Linkedin to evaluate people’s expertise; to networks of international
organizations, to detect the most important organizations given a set of
topics. Lastly, we can create a more efficient implementation, confront
with other algorithms and evaluation measures.
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Chapter 8

The Three Dimensions of
Social Influence

This chapter is mainly based on [102].

One of the classic problems in social network analysis is the com-
prehension of percolation and diffusion effects in networks. Modeling
diffusion processes on complex networks enables us to tackle problems
like preventing epidemic outbreaks [31] or favoring the adoption of new
technologies or behaviors by designing an effective word-of-mouth com-
munication strategy, like condom usage in Africa [26]. In this Section,
we are focused particularly on the social influence aspect of the diffusion
problem in networks.

In the setting of favoring social influence, most of the attention of
researchers has been put on how to maximize the number of nodes subject
to the spreading process. Usually, this is done by choosing appropriate
seeds in critical parts of the network, such that their likelihood of influence
diffusion is maximum, in order to achieve as large cascades as possible.
While influencing as many nodes as possible is obviously part of this
problem definition, we argue that the size of cascades is not the unique
dimension of the social influence problem. Three other dimensions are
relevant: the width, the depth and the strength of the social influence of any

107



given node in a network. The width of a node is the ability of influencing
its immediate neighbors; the depth is its ability to cause long cascades, i.e.
of influencing nodes that are socially distant; the strength is the ability to
influence with intensity, so to bring the nodes in the cascade to achieve a
desired result at the highest possible degree.

Indeed, many real-world scenarios focus on a more specific diffusion
pattern that requires a more fine grained understanding of the influence
mechanics at play, along the three mentioned dimensions. Some examples
are:

1. An analyst needs information from the personal acquaintances of
a subject. The important aspect is that many among the subject’s
direct connections respond, ignoring people two steps away or
more.

2. A person is interested in finding another person with a given object.
The important aspect is that some people are able to pass her mes-
sage through a long chain that ends with the desired target (what it
is today known as “crowdsourcing” the search).

3. A music artist wants to influence people in a social network to listen
to her new album. The important aspect is that some people are
influenced above the threshold that will make them actually buy
the album.

These are different scenarios requiring significantly different diffusion
patterns. Scenario 1 requires a broad diffusion in the first degree of
separation. Scenario 2 requires a targeted diffusion similar to a Depth
First Search algorithm on graphs. Scenario 3 requires a high-intensity
diffusion. Different scenarios may require any combination of the three.

Here, we make use of three measures to capture the defining charac-
teristics of these three scenarios: the Width, Depth and Strength of social
influence. The Width measures the ratio of the neighbors of a node that
are influenced by the node’s actions. The Depth measures how many
degrees of separation there are between a node and the other nodes that
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are influenced by its actions. The Strength measures the intensity of the
social influence that a node has over other nodes.

We study what the relations are between these three measures to
understand if we are truly capturing three orthogonal dimensions of
social influence. We also study the relations between the Width, Depth
and Strength measures and different node properties. In this way, we may
be able to predict the typical diffusion patterns of different events given
the characteristics of the nodes that lead their diffusion.

To empirically validate our concepts, we constructed a social network
from the popular music platform Last.Fm1, along with the listening data
of artists for each node of the network, i.e. how many times and when
each user listens to a song performed by a given artist. We create a
procedure to detect who are the “leaders” for each artist, i.e. the users
who start listening to an artist before any of their neighbors. We calculate
for each leader their values of Width, Depth and Strength, along with
their network statistics such as the degree and the betweenness centrality,
looking for associations between them. We then create a case study
to understand what are the different dynamics in the spread of artists
belonging to different music genres, by using the tags users attach to the
songs in the social platform.

To sum up, the contributions are:

• A proof that social diffusion indeed follows at least these three
dimensions, which are uncorrelated or anti-correlated;

• A fast and efficient way to identify leaders in social network and to
calculate their Width, Depth and Strength values;

• The discovery of some significant associations between the three
dimensions of social influence and some traditional network mea-
sures;

• The ability to predict the patterns of diffusion of particular influence
events by looking at the characteristics of the leaders spreading
them.

1http://www.last.fm/
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Figure 8.1: Toy Example. On the top the social graph G and action set A,
where x, y ∈ Ψ are the objects of the actions; in the bottom-left corner the
induced subgraph for the action x; on the bottom-right corner the diffusion
tree for x. In red we highlighted the leader (root) for the given tree.

8.1 Leader Detection

Each diffusion process has its starting points. Any idea, disease or trend,
in order to successfully propagate, needs to be adopted by particular
kinds of actors. Such actors are not like every other actor: they are the
first to perform an action, nobody directly influences them and, due
their network position and influence, they are able to set in motion the
diffusion process. We call such actors leaders. Given a graph, several
interesting problems arise regarding how information spreads over its
topology: can we identify the leaders? Can we characterize them? What
kind of knowledge should we expect to extract from their analysis?

Our approach aims to detect leaders through the analysis of two strictly
correlated entities: the topology of the social graph and the set of actions
performed by the actors (nodes). When discussing the roles of those
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entities, we refer respectively to the following definitions:

Definition 8.1 (Social Graph) A social graph G is composed by a set of actors
(nodes) V connected by their social relationships (edges) E. Each edge e ∈ E is
defined as a couple (u, v) with u, v ∈ V and, where not otherwise specified, has
to be considered undirected. With Γ(u) we identify the neighbor set of a node u.

Definition 8.2 (Action) An action au,ψ = (w, t) defines the adoption by an
actor u ∈ V , at a certain time t, of a specific object ψ with a weight w ∈ R. The
set of all the actions of nodes belonging to a social graph G will be identified by
A, while the object set will be called Ψ.

We identify with Gψ = (Vψ, Eψ), where Vψ ⊂ V and Eψ ⊂ E, the
induced subgraph on G representing respectively the set of all the actors
that have performed an action on ψ, and the edges connecting them. We
depict an example of the social graph and the set of actions in Figure 8.1
(left), where the induced subgraph for the object x is highlighted with a
dashed line.

Given the nature of a diffusion process, we would expect that each
leader will influence its neighbors starting a cascade event that follows
some rigid temporal constraints. Our constraint is that a node u can
influence a neighbor v iff given tu,ψ ∈ au,ψ and tv,ψ ∈ av,ψ is verified that
tv,ψ > tu,ψ and tv,ψ − tu,ψ ≤ δ. Here, δ is a temporal resolution parameter
that limits the influence spread: if tv,ψ − tu,ψ > δ, we say that v executed
action av,ψ independently from u, as u’s influence interval is over.

We transform each undirected subgraph Gψ in a directed one imposing
that the source node of an edge must have performed its action before the
target node. After that, each edge (u, v) will be labeled withmin(tu,ψ, tv,ψ)

in order to identify the starting time of the influence between the nodes.
The directed version of Gψ represent all the possible diffusion paths that
connect leaders with their “tribes” (Figure 8.1 (center) an example for the
object x ∈ Ψ).

From now on, for a given object ψ, we will refer to the corresponding
leader set as Lψ: when no action is specified the set L will be used to
describe the union of all the Lψ for the graph G. In order to be defined
a leader an actor should not have any incoming edges in Gψ. This is
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because a leader cannot be influenced by other nodes (they are, in their
surroundings, innovators), and is a direct consequence to the adoption
of a directed graph to express diffusion patterns. Note that, given this
definition, for each directed connected component Cψ ⊂ Gψ multiple
nodes can belong to Lψ .

One caveat of our problem definition comes from the fact that a leader
may be influenced by exogenous events. Therefore what we are studying
is only the influence endogenous to the social network. Also any other
node influenced by the leader may have had an exogenous stimulus, but
for sure the endogenous stimulus coming from the leader should have
played some kind of role.

In order to study the real path of diffusion given an action a and a
leader l we build a minimum diffusion tree:

Definition 8.3 (Leader’s Minimum Diffusion Tree) Given an action aψ , a
directed connected component Cψ and a leader l ∈ Lψ, the minimum diffusion
tree Tl,ψ ⊂ Cψ is the Minimum spanning tree (MST) having its root in l and
built minimizing the temporal label assigned at the edges.

An example of minimum diffusion tree for the node 1 and object x
is shown in Figure 8.1 (right). For each object the diffusion process on
a given network is independent and that, given temporal dependencies
on its adoption (expressed through actions a∗,ψ ∈ A), it is possible to
identify the origin points of the diffusion. The identified leaders will show
different topological characteristic and will influence their surroundings
in different ways: our aim is to classify diffusion leaders characterizing
some of their common traits.

To sum up, we call our leader extraction procedure EXTRACTLEADERS

and report the pseudocode in Algorithm 2. For all objects ψ ∈ Ψ, we
extract the directed induced subgraph Gψ by filtering all nodes that per-
formed an action a∗,ψ ∈ A and all the edges between them (performed by
INDUCEDSUBGRAPH where δ is the temporal constraint discussed before).
Then, for each connected component Cψ ∈ Gψ we choose as our leaders
all the nodes without incoming edges (performed by INDEGREE). We add
them to the leader set Lψ and we store in Tψ their Minimum Diffusion
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Algorithm 2 The pseudo-code of EXTRACTLEADERS.
Require: G = (V,E);A; Ψ, δ;
Ensure: L, T

1: T ← {}
2: L ← {}
3: for all ψ ∈ Ψ do
4: Gψ ← INDUCEDSUBGRAPH(G, ψ, δ)
5: Tψ ← {}
6: Lψ ← {}
7: for all Cψ ∈ Gψ do
8: for all l ∈ Cψ do
9: if INDEGREE(Cψ, l)==0 then

10: Lψ ← Lψ ∪ l
11: Tl,ψ ←MST (Cψ, l)
12: Tψ ← Tψ ∪ Tl,ψ
13: end if
14: end for
15: end for
16: L ← L ∪ Lψ
17: T ← T ∪ Tψ
18: end for
19: return L, T

Trees (calculating the minimum spanning tree MST with root in l using
only nodes in Cψ). At the end, we return the union of Lψ and Tψ .

We now evaluate the complexity of Algorithm 2. First, we cycle over
all the actions (O(|Ψ|)). Then, we cycle over all the connected components
of Gψ and, for each one, we cycle over the nodes belonging to them:
together the two cycles reach the complexity of O(|Vψ|). Within the inner
loop a minimum spanning tree (O(log |V |), with Kruskal’s algorithm) is
computed for every leader. As a consequence, the final complexity of
EXTRACTLEADERS is O(|Ψ| × |V | log |V |). For large networks, it is fair
to assume that |Ψ| << |V |, so the complexity would be Θ(|V | log |V |).
Moreover, since each action is independent from the others, with |Ψ|
processors the exact complexity would be O(|V | log |V |).
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8.2 Measures

As stated above, we are interested in capturing the three dimensions of
social influence. We need three network measures able to capture these
three dimensions. We call these dimensions Width, Depth and Strength.
Each dimension matches with an intuitive concept:

• The Width is the ratio of neighbors influenced by an action per-
formed by a node;

• The Depth is how many degrees of separation are in between a node
and the most distant of the nodes influenced by it;

• The Strength is how strongly the influenced nodes are engaged.

In Section 8.2.1 we provide the formal definitions of the measures
connected to these intuitions. In Section 8.2.2 we then use our toy example
depicted in Figure 8.1 to provide an example for the calculation of these
measures.

8.2.1 Definitions

Given a leader, with the Width measure we want to capture the direct
impact of her actions on her closest friends. The Width is the degree of
importance that a leader has over all its neighbors.

Definition 8.4 (Width) Let G be a social graph, ψ ∈ Ψ an object and l ∈
Lψ ⊂ V a leader: the function width : Lψ → [0, 1] is defined as:

width(l, ψ) =
|{u|u ∈ Γ(l) ∧ ∃au,ψ ∈ A}|

|Γ(l)|
(8.1)

The value returned is the ratio of all the neighbors that, after the action
of the leader, have adopted the same object.

The second measure, the Depth, is an complementary point of view
over a leader’s influence. Instead of looking at the closest friends, we
want to know what is the length of the longest induced diffusion chain.
The Depth is an evaluation of how much a leader can influence other
influential leaders, which can influence other leaders and so on.
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Definition 8.5 (Depth) Let Tl,ψ be a minimum diffusion tree for a leader l ∈
Lψ and a given object ψ ∈ Ψ: the function depth : Tl,ψ → N computes the
length of the maximal path from l to a node u ∈ Tl,ψ. Likewise, the function
depthavg : Tl,ψ → R computes the average length of paths from l to any leaf of
the tree.

The last proposed measure, the Strength, tries to capture quantitatively
the total weight of the adoption of an object after the leader’s action. A
leader is influential if the nodes influenced by her are very engaged in
adopting what she adopted. Given that the direct influence diminishes
as new adopters become more distant, in the network sense, from the
original innovator. Therefore, we have decided to introduce a distance
damping factor.

Definition 8.6 (Strength) Let Tl,ψ be a minimum diffusion tree for a leader
l ∈ Lψ and an object ψ ∈ Ψ; 0 < β < 1 a damping factor: the function
strength : Tl,ψ × (0, 1)→ R is defined as:

strength(Tl,ψ, β) =
∑

i∈[0,depth(l)]

βiL(Tl,ψ, i) (8.2)

where L : Tl,ψ × N→ R is defined as:

L(Tl,ψ, i) =
∑

{u|u∈Tl,ψ∧distance(l,u)=i}

wu,ψ
wu

(8.3)

and represents the sum, over all the nodes u at distance i from l, of the ratio
between the weight of action ψ and the total weight of all the actions taken.

8.2.2 Examples

We now look at the example in Figure 8.1 and we calculate the Width,
Depth and Strength values for the red node leader and the action x.

For the Width measure, from Figure 8.1(left) we see that Γ(1) =

{2, 4, 7, 8}, i.e. 4 nodes. Given that Γx(1) = {u|u ∈ Γ(1) ∧ ∃au,x} = {2, 4},
we have width(1, x) = |Γx(1)|

|Γ(1)| = 0.5.
We now calculate the Depth measure. The leaves in Figure 8.1(rigth)

are nodes 3, 4 and 6. Node 4 is a direct neighbor of 1, while node 3 is
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two edges away (through node 2). The maximal chain is 1→ 2→ 5→ 6,
therefore we have: depth(T1,x) = 3. We can also calculate depthavg(T1,x),
that is the average path length in the tree from node 1 to all the leaves:
1+2+3

3 = 2.
Finally, for the Strength measure, we need to use the number of times

each node performed action x. We also have to set our damping faction β,
that we keep at 0.5. At the first degree we have nodes 2 and 4, that per-
formed action x 2 and 4 times respectively; they also performed action y 1
and 2 times respectively: their contribution is then β0×( 2

2+1 + 4
4+2 ). Nodes

2 and 5 are at the second degree of separation as they never performed
action y, therefore they add: β1×(1+1). Finally, at the third degree of sep-
aration, node 6 adds β2× 6

6+6 . Wrapping up, strength(T1,x, 0.5) = 2.4583̄.

8.3 Experiments

In this section we present our data extracted from the well known music
social media platform Last.Fm. We use the data to characterize the Width,
Depth and Strength measures, by searching for associations with network
topology measures. Finally, we analyze how different users spread their
influence on different musical genres in the network.

8.3.1 Data

Last.Fm is one of the most popular online social network platforms, where
people can share their own music tastes and discover new artists and gen-
res basing on what they like. Once a user subscribes to an account, she can
either start listening Last.Fm personalized Radio or send data about her
own offline listenings (using an app called scrobbler, that sends metadata
from the media player to the web app). For every single song, an user can
express her preferences (e.g. like or dislike, that helps the recommenda-
tion system of the radio in proposing new music they may like) and add
tags (e.g. genre of the song). Lastly, an user can add friends (undirected
connections, the friendship request must be confirmed) and search her
neighbors w.r.t. musical tastes. An user can see, in her homepage, her
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Figure 8.2: Log-binned distribution of the nodes’ degree, with power law
fitting.

friends’ activities.
Using Last.Fm APIs2, we downloaded a sample of the UK user graph,

starting from a set of nodes and implementing a breadth-first approach.
We decided to explore the graph up to the fifth degree of separation from
our seeds. For each user, we retrieved: (a) her connections, and (b) for
each week in the time window from Jan-10 to Dec-11, the number of single
listenings of a given artist (e.g. in the week between April 11,2010 and
April 18,2010 the user 1234 has listened 66 songs from the artist Metallica).

For each artist we downloaded the list of tags with an associated
counter, representing the number of users that assigned that tag to that
artist (e.g. Metallica has 4 tags: “metal” with counter 50670, “hard rock”
with counter 23405, “punk” with counter 10500 and “adrenaline” with
counter 670). This information has been cleaned as follows: we split all
tags, associating the counter to each single word (in the last example:
(metal, 50670), (punk, 10500), (hard, 23405), (rock, 23405), (adrenaline,

2http://www.last.fm/api/
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Figure 8.3: Log-binned distribution of number of listeners per artist, with
truncated power law fitting.

670)), then we filtered the words referring to a musical genre ((metal,
50670), (punk, 10500), (rock, 23405)). Finally, we assigned a musical genre
to an artist iff the survived tag with the greater counter had the relative
rate ≥ 0.5 (in the example: rmetal(Metallica) = 50670

50670+10500+23405 ' 0.6,
so Metallica are definitely metal).

After the crawl and cleaning stages, we built our social graph G. In G
every node is a user and each edge is generated by looking at the user’s
friends in the social media platform. The total amount of nodes is 75, 969,
with 389, 639 edges connecting them. In Figure 8.2 we depicted the log-
binned degree distribution of G, along with the best fit: as expected, the
social networks present a very broad degree distribution across three
orders of magnitude. We are then in presence of a classical social network
[90].

Each action in the data is one user listening to an artist w times in week
t. In Figure 8.3 we depicted the log-binned distribution of the number of
listeners per artist, along with the best fit. Again, the distribution has a
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Figure 8.4: The runtimes of the EXTRACTLEADERS procedure with growing
number of nodes (left) and objects (right).

Width Strength Degree Clustering Neigh Deg Bet Centr Clo Centr
AVG Depth -0.032126 -0.238019 -0.080574 0.052778 -0.088847 -0.026344 -0.139203
Width - 0.019259 -0.316566 0.133336 0.056522 -0.079626 -0.599064
Strength - - 0.026328 -0.020074 0.031226 0.003966 0.049765
Degree - - - -0.163370 -0.027931 0.771641 0.564162
Clustering - - - - -0.050080 -0.063129 -0.326146
Neigh Deg - - - - - -0.005987 0.399447
Bet Centr - - - - - - 0.226947

Table 8.1: Pearson correlation coefficient ρ between Width, Depth, Strength
and other network statistics for our leaders.

fat tail (with an exponential cutoff), therefore the vast majority of artists
do not have enough listeners. We saw that each artist belongs to a music
genre (coded in its tag) and we want to use this information in Section
8.3.3. For this reason, we decided to focus on 9 main music genres, namely:
dance, electronic, folk, jazz, metal, pop, punk, rap and rock. We want to
focus only on known artists, so we select only artists belonging to one of
these genres and with at least 100 listeners.

Since we are interested in leaders, we need to focus only on new artists
that were previously not existent. If an artist was in activity before our
observation time window, there is no way to know if a user has listened to
it before, therefore nullifying our leader detection strategy. For this reason,
we focus only on artist whose first listening is recorded six months after
the beginning of our observation period. With these two combined filters,
each genre is represented from 9 artists (jazz) to 111 artists (electronic).
With this filter, the cardinality of our action set A is equal to 168, 216

actions, while the object set Ψ contains a total of 402 artists.
On this dataset settings, the time taken to extract leaders and tribes
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was 4.670 seconds, with 10.286 additional seconds to calculate Width,
Depth and Strength (total runtime 14.956 seconds), on a Dual Core Intel i7
64 bits @ 2.8 GHz, 8 GB of RAM and a kernel Linux 3.2.0-23-generic, with
our Python implementation3. In our experimental settings, we set our
damping factor β = 0.5 for the calculation of the Strength measure. We
also set δ = 3, meaning that if a user listened to a particular artist three
weeks or more after its neighbor then we do not consider her to have been
influenced by that neighbor. In Figure 8.4 we give a proof of the scalability
of our approach: by adding nodes (left) and by adding objects (right). The
runtimes of the EXTRACTLEADERS procedure increase linearly.

8.3.2 Characterization of the Measures

For each leader, besides Width, Depth and Strength, we calculated also
the Degree (number of edges connected to the node), the Clustering
coefficient (ratio of triangles over the possible triads centered on the
node), the Neighbor Degree (average degree of the neighbors of the node),
the Betweenness (share of the shortest paths that pass through the node)
and Closeness Centrality (inverse average distance between the node and
all the other nodes of the network).

In Table 8.1 we report the Pearson correlation coefficient ρ between
the computed network measures. We highlighted in bold the correlations
whose p-value was significant or whose absolute value was strong enough
to draw some conclusions. For the significance of p-values, the traditional
choice is to set the threshold at p < 0.01. However, we decided to be
more restrictive, setting our threshold at p < 0.0005. We also consider
a correlation value ρ significant if |ρ| > 0.1. We now highlight the most
interesting associations from Table 8.1.

The Depth measure is associated with low Closeness Centrality. This
means that a deep influence spread is associated to nodes at the margin
of the network. It is expected that nodes with high Closeness Centrality
have also low Depth: being central, they cannot generate long chains of
influence. The eccentricity of all the nodes of the network ranges from 6

3To assure experiment repeatability, we made our cleaned dataset and our code available
at the page http://goo.gl/h53hS
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to 10, meaning that some leaders cannot have a Depth larger than 5 and
some leaders can have a Depth equal to 9. To make a fair comparison,
we recalculate the Depth value capping it at 5, meaning that any Depth
value larger than 5 is manually reduced to 5. Then, we recalculate the
correlation ρ between the Depth capped to 5 and the Closeness Centrality
obtaining as result ρ = −0.1366, with p < 0.0005. We can conclude that
central nodes are not associated with deep spread of their influence in a
social network.

For the Width measure, the anti-correlation with the Degree is not
meaningful, as the Degree is in the denominator of Definition 8.4. On the
other hand, we observe a positive association with Clustering, meaning
that nodes could spread wider their influence in a tightly connected com-
munity; and a negative association with Closeness Centrality, meaning
that central nodes could not spread a wide influence. Both associations
could be explained with the negative correlation with Degree. Therefore,
for both measures we run a partial correlation, controlling for the Degree.
Given three variables X , Y and Z, the partial correlation is the correlation
between the residuals RX and RY resulting from the linear regression of
X with Z and of Y with Z, respectively:

ρXY ·Z =
ρXY − ρXZρZY√
1− ρ2

XZ

√
1− ρ2

ZY

.

In our case, X is the Width, Z is the Degree and Y is either the Clus-
tering or the Closeness Centrality value. In practice, we calculate the
correlation between Width and Clustering (or Closeness Centrality) by
keeping the Degree constant. Results are in Table 8.2: even if significant
according to the p-value, the relationship between Width and Cluster-
ing is very weak and deserves further investigation. On the other hand,
it is confirmed that central nodes are also associated with low Width,
regardless their degree.

From Table 8.1, it appears that the Strength measure is not strongly
correlated with traditional network statistics. As a consequence, hubs that
are associated with low Depth and low Width, do not have necessarily
high Strength, making their usefulness in spreading influence in a net-
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Clustering Clo Centr
Partial ρ 0.087216 -0.536861
p-value 1.57× 10−14 0

Table 8.2: Partial correlation and p-value of Clustering and Closeness Cen-
trality with Width, controlling for Degree values.
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Figure 8.5: Log-binned distribution of the relationship between Depth and
Strength.

work questionable. On the other hand, Strength appears to be negatively
associated with Depth, as shown in Figure 8.5, suggesting a trade-off
between how deeply a node can influence a network and how strong this
influence is on the involved nodes.

The anti-correlation between the Strength and the Depth may be due
to the damping factor β: from Definition 8.6 we see that β decreases nodes’
contributions at each degree of separation (i.e. at increasing Depths). As a
consequence, nodes that are farther from the leader contribute less to its
Strength, i.e. the highest the Depth the smallest are the contributions to the
Strength. We recalculated the Strength values by setting β = 1, therefore
ignoring any damping factor and nullifying this effect. We obtained as
result ρ = −0.4168 and a significant p-value, therefore concluding that
the damping factor β is not causing the anti-correlation between Depth
and Strength.

To sum up, we summarize the associations as follows:

• Central nodes are not necessarily important for spreading influence
in a social network (low Width and Depth), a result already studied
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in [12, 21];

• Longer influence chains (higher Depths) are associated with a lower
degree of engagement (lower Strengths), a phenomenon possibly
related to the role played by “weak ties” [54];

• Influencing a node’s neighbors is probably easier if the node is
in a tightly connected community, but more evidences have to be
brought to reject the role played by the node’s degree.

8.3.3 Case Study

In this Section we present a case study based on Last.Fm data. Our aim
is to use the Leader extraction technique defined in Section 8.1 and the
proposed Width, Depth and Strength measures defined in Section 8.2.1
to characterize the spreading of musical genres among the users of the
service. We recall that, as described in Section 8.3.1, the object set Ψ is
composed by 402 artists, each one having a tag corresponding to her main
music genre.

We organize this case study in three parts: first, in Section 8.3.3 we
describe each tag according to the corresponding leaders, by looking
at their Width, Depth and Strength; second, in Section 8.3.3 we look at
what kind of topological features the leaders corresponding to each tag
have; finally in Section 8.3.3 we look for graph patterns that can give us a
complementary point of view over the influence patterns that we observe
in our network.

Tag Clustering

For each couple leader l and object ψ, we calculate Depth, Width and
Strength values; we compute the size of the Leader’s Minimum Diffusion
Tree (|Tl,ψ|); and we group together the objects with the same tag. Figure
8.6 shows the distribution of the size of the minimum diffusion trees. As
we can see, we obtain approximately the same slope per each tag, with the
exception of the “Pop” tag, for which there are many large diffusion trees.
Most of the leaders influence only one other user in the social network.
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Cluster size dance electronic folk jazz metal pop punk rap rock
0 1822 1.2529 1.1377 1.5488 1.3753 1.5085 0.7654 1.3114 1.1301 1.1063
1 136 1.2822 1.555 1.289 2.353 0.7859 0.7303 0.6458 1.3503 0.7065
2 664 0.5997 0.8702 0.9812 0.4884 0.9517 0.9701 1.5016 1.2075 1.194
3 482 1.2674 1.1611 1.0951 1.1276 0.9187 0.8047 2.4815 1.248 0.8905
4 973 1.1418 1.2031 1.1592 1.4106 0.8034 0.9197 0.6671 0.9724 0.9782
5 512 1.2925 0.9667 0.9570 1.0918 1.1062 0.9775 0.3356 1.0661 1.0199
6 682 0.8903 0.797 0.618 0.6446 1.1303 1.0892 1.0733 1.0822 1.0186
7 124 0.7579 1.4554 0.3507 0.6402 0 1.0958 0 1.0287 0.6279
8 524 0.9308 1.0106 1.1255 0.9131 1.1564 1.0707 0.4386 0.9593 0.8743
9 937 0.4027 0.4603 0.1935 0.2355 0.4589 1.5641 0.1358 0.3712 1.0616
10 232 0.7227 0.5777 0.2736 0.9989 0.3892 1.4467 0.3838 0.463 1.0031
11 612 0.7432 0.9416 0.7186 0.4036 0.7077 1.2753 0.0775 0.6859 0.8388

Table 8.3: The RCA scores of the presence of each tag in each cluster.
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Figure 8.7: The centroids of our clusters.

To characterize the typical values of Width, Depth and Strength for
each tag we cannot use the average or the median. This is because Strength
and Width values are skewed, and because it is the combination of the
three measures that really characterizes the leaders. We decided to cluster
each leader using as features its Width, Depth and Strength values. We
used the Self-Organizing Map (SOM) method [73] instead of a more
classic approach (e.g. k-means) for the following reasons: (i) SOM does
not require to set the number of clusters k; (ii) k-means outperforms SOM
only if the number of resulting clusters is very small (less than 7) [76], but
our study of the best k to be used in k-means with the Sum of Squared
Errors (SSE) methodology resulted in a optimal number of clusters falling
in a range between 9 and 13 (depending on a seed chosen for initial
position of the centroids), so we expect a larger number of clusters; and
(iii) SOM performs better if the data points are contained in a warped
space [69], which is our case.

The centroids of the SOM are depicted in Figure 8.7: Depth on the
x-axis, Strength on the y-axis and the Width as the color (please note
the logarithmic scale both for Strength and Width). In Figure 8.7 we
have another indirect proof of the trade-off between Depth and Strength.
We can identify the clusters characterized by the highest and lowest
Strength (9 and 4 respectively); by the highest and lowest Depth (2 and 9
respectively); and by the highest and lowest Width (11 and 1 respectively).
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There are also clusters with relatively high combinations of two measures:
cluster 10 with high Strength and Width or cluster 5 with high Depth and
Width.

In Table 8.3, we report a presence score for each tag in each cluster.
As we see from the “Size” column, there are larger and smaller clusters.
Also, some tags attract more listeners (and more leaders) than others. For
these reasons, to report just the share of leaders with a given tag in a
given cluster is not meaningful. We decided to correct this ratio with the
expected number of leaders with the given tag in the cluster. This is a
measure known as Revealed Comparative Advantage and it is calculated
as follows:

RCA(i, j) =
freqi,j
freqi,∗

/freq∗,j
freq∗,∗

,

where i is a tag, j is a cluster, freqi,j is the number of leaders who
spread an artist tagged with tag i that are present in cluster j. In Table
8.3, for each cluster we highlighted what is the tag with the highest
unexpected presence.

From Table 8.3 we obtain a description of what values of Width, Depth
and Strength are generally associated with each tag. For space constraints,
we report only a handful of them for the clusters with extreme values.
Jazz dominates clusters 1 (with the lowest Width) and 4 (with the lowest
Strength): this fact suggests that jazz is a genre for which it is not easy to
influence people.

Cluster 9, with the lowest Depth but the highest Strength, is dominated
by pop (that dominates also clusters 10 and 11, both with high Strength
but low Depth). As a result, we can conclude that if a leader can influence
some nodes to listen to a pop artist then these nodes will be very engaged
with the new artist. On the other hand, it is unlikely that they will
influence their friends too.

Finally, cluster 2 with the highest density has a large majority of punk
leaders. From this evidence, we can conclude that punk is a genre that can
achieve long chains of influence, exactly the opposite of the pop genre.
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Figure 8.8: Distribution of number of objects (left) and of tags (right) per
leader.

Tag Topology

In this Section we explore the connection between the Width, Depth
and Strength values that we highlighted in the previous Section and the
topological characteristics of the leaders for each tag. There is one caveat:
a leader is not bounded to be leader just for one object ψ, but she is free
to influence her neighbors with as many ψ as possible. For this reason,
one leader can be counted in more than one tag. To help understand the
magnitude of the issue, we depicted in Figure 8.8 the number of leaders
influencing their neighbors for a given amount of actions (left) and for a
given amount of tags (right). The y axis is logarithmic. Combining the
information of Figure 8.8 with Figure 8.6, we conclude that the typical
leader influences one neighbor for one artist. However, there is a certain
amount of leaders expressing their leadership for at least 8 objects and 4
tags.

In Figure 8.9 we depict the log-binned distributions, for the leaders
of each tag, of four of the topological measures studied in Section 8.3.2:
Degree, Closeness Centrality, Clustering and Neighbor Degree. We omit
Betweenness Centrality for its very high correlation with Degree. Overall,
the distributions of the topological features appear to be very overlapping:
there is no significant distinction between the tags.

The most noticeable information is carried by the Degree distributions
(Figure 8.9, top left). Each one of these distributions appears very different
from the overall degree distribution (Figure 8.2). There are fewer leaders
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Figure 8.9: Distribution of leaders’ Degree (top left), Closeness Centrality
(top right), Clustering (bottom left) and Neighbor Degree (bottom right) per
tag.

Pattern dance electr. folk jazz metal pop punk rap rock

3.62%
(35.42%)

3.04%
(22.50%)

3.94%
(30.30%)

7.25%
(62.50%)

4.14%
(23.08%)

3.69%
(32.01%)

6.56%
(27.59%)

4.01%
(27.97%)

4.22%
(30.43%)

2.55%
(25.00%)

3.92%
(29.00%)

3.15%
(24.24%)

4.35%
(37.50%)

4.83%
(26.92%)

3.61%
(31.29%)

10.66%
(44.83%)

5.60%
(38.98%)

4.12%
(29.71%)

3.40%
(33.33%)

3.79%
(28.00%)

3.94%
(30.30%)

4.35%
(37.50%)

6.90%
(38.46%)

4.73%
(41.01%)

12.30%
(51.72%)

4.99%
(34.75%)

4.52%
(32.61%)

Table 8.4: Presence of different diffusion patterns per tag.
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with low Degree than expected, therefore it appears that a high Degree in-
creases the probability of being a leader. On the other hand, we know that
central hubs have on average lower Depth and Width. As a consequence,
it appears that the best leaders are the ones with an average degree, and
from Figure 8.9 (top left) we see that each tag has an abundance of leaders
with a Degree between 10 and 100.

Tag Patterns

Using our leaders’ Minimum Diffusion Trees, we can extract some pat-
terns that help us obtaining a complementary point of view over the
diffusion of influence of different music genres. Each diffusion tree Tl,ψ
can be viewed as an entry in a graph database, allowing us to check in
how many diffusion trees particular graph diffusion patterns appear. We
use the VF2 algorithm4 [32] to extract this information. To give an exam-
ple, suppose we are interested in counting how frequent is the following
star pattern: a leader influences three of its neighbors in the diffusion trees
of pop artists. In our data, we have 5, 043 diffusion trees for pop artists,
of which 581 have at least four nodes. Since the VF2 algorithm found the
star pattern in 186 of these graphs, we say that it appears in 3.69% of the
trees, or in 32.01% of the diffusion trees that have a sufficient number of
nodes to contain it.

In Table 8.4 we report, for several tags, the results of such kind of
analysis on three different patterns of four nodes: i) the star-like pattern
described above, in which the leader influences three neighbors; ii) a chain
where each node influences one neighbor; iii) a split where the leader
influences a node, which itself influences two other neighbors. Two values
are associated to each pattern and tag pair: the relative overall frequency,
and the relative frequency considering only the trees with at least four
nodes (in parentheses). We added the adjusted relative frequency because,
as we saw in Figure 8.6, most leaders influence only one or two other
users.

Please note that there is no necessary relation between the patterns

4Python implementation in the Networkx package http://networkx.github.io/
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and Width, Depth and Strength measures: a low Depth does not imply the
absence of the chain pattern, nor does a high Width imply a high presence
of the star pattern. However, the combination of the two measures may
provide some insights. For instance, we saw in Table 8.3 that jazz leaders
are concentrated in the lowest Width cluster. However, many jazz leaders
who affect at least three nodes tend to influence their immediate neighbors,
much more than in any other genre (7.25% of all leaders, 62.5% of leaders
who influence at least three other nodes). Therefore, on the one hand jazz
leaders influence on average a small number of friends, however on the
other hand they are likely to have at least three neighbors willing to be
influenced by them.

The chain pattern is more commonly found in pop leaders than in
folk ones, even though the clusters of their leaders described in Table 8.3
would suggest the opposite. It seems that pop leaders are not likely to
influence nodes any further than the third degree of separation, while
folk leaders tend to generate longer influence chains. Also in this case,
punk leaders are commonly found in correspondence with chain patterns,
just as Table 8.3 suggested.

Although pop leaders show a much greater Strength value than metal
ones (by confronting in Table 8.3 their presence in high Strength clusters
like 9 or 10 and low Strength clusters like 8 and 0), the split pattern
tends to be more frequent in the metal genre (6.90% against 4.73% of the
trees). This phenomenon suggests us that metal leaders tend to strongly
influence a selected node, inducing it to spread the music to its neighbors.
Pop leaders, on the other hand, affect more neighbors with higher Width
and Strength, presumably flooding their ego networks with the songs
they like.

8.4 Conclusion

In this Section, we presented a study of the propagation of behaviors in
a social network. Instead of just studying cascade effects and the max-
imization of influence by a given starting seed, we decided to analyze
three different dimensions: how many neighbors a leader can influence,
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how long the chain of triggered influences is and how engaged the influ-
enced nodes are. We characterized each of this concept with a different
measure: Width, Depth and Strength. We then created a scalable pro-
cedure to extract influence tree of action leaders from a social network
and calculate each of these measures. We applied our algorithm to a
real world network, extracted from the social music platform Last.Fm.
Our results show that: (i) central hubs are usually incapable of having a
strong effect in influencing the behavior of the entire network; (ii) there is
a trade-off between how long the influence chains are and how engaged
each element of the chain is; (iii) to achieve maximum engagement it is
better to target leaders in tightly connected communities, although for
this last point we do not have conclusive evidence. We also included a
case study in which we show how artists in different musical genres are
spread through the network.

Many future developments are possible. Here we studied the Width,
Depth and Strength only of leaders who did not have any endogenous
stimulus, but these measures can be calculated also for the influenced
nodes, given that they influenced somebody else. Moreover, the limited
influence that central hubs have on the overall network behavior may be
studied in conjunction with the problem of network controllability [82].
Alternative leader detection techniques, such as the ones presented in
[53], can be confronted with our proposed algorithm. Finally, a deeper
analysis of the properties of the Width, Depth and Strength measures can
be performed, using additional techniques and exploiting data from other
social media services like Twitter and Facebook.
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Chapter 9

Conclusion and Future
Works

In this thesis we tackled the problem of developing techniques for the
analysis and mining of Big Data in the application scenarios of markets.
The outcomes have been achieved using methods coming from different
disciplines: economics, statistics, and computer science. We organized
the technical presentation of the work in two parts.

First, we discussed the implications of building a complex network
over a retail market. Here the main difficulty is that the links between
entities (mainly products and customers) must be built artificially by the
analyst. However, we are dealing with the relatively well understood
field of marketing, so the advantage is that, once the modeling phase
has been done, the outcomes of the analysis can be easily understood
and applied. Second, we considered some particular kind of complex
networks (i.e. social and collaboration networks), where the attention is
focused on people and on their relations with others. People (that are
the nodes of the network) can be actors or objects of the market, and the
analysis and mining over their relations can be used by intermediaries to
better understand demand and supply.

The future research directions of this thesis can be mainly divided in
two tracks. The first track regards the economic complexity. Even if in this
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thesis we considered several aspects of its applications (the hierarchy of
needs, a classic marketing application and a geo-marketing application),
there is a lot of space for other kind of analysis, like exploring the temporal
dimension, by studying the evolution of the sophistication index over
the time. Again, other kind of markets may be good fields of application
for the economic complexity theory (e.g. the market of car pooling, with
the bi-partite graph customer X point-of-interests; the stock exchange
markets, with the bi-partite graph portfolio X stocks; or some service-
based market). Moreover, the sophistication index can be used also for
studies more sociological than marketing based. For example, we can
imagine that the aggregated sophistication index of a community can be
a good proxy of their well-being, and therefore we can build new social
indicators based on this kind of measures.

The second track regards the diffusion models over the social net-
works. For example, the model proposed in Chapter 8 can be used to
identify the leaders in a market. Once we identified these leaders, we
can study their topological and personal characteristics. These findings
can be used to identify new nodes, that can be considered the starting
points of the simulation models typical of influence spreading studies
(like SIR/SIS models). Again, the percolation model can be applied at
several other market dynamics, like the search of innovators in a market
of good/services and the study of their behavior. Finally, another natural
field of application for influence spreading in a network-based market, is
the churn and retention analysis. At the present, the better way to perform
churn analysis is to observe the behavior of a customer and forecast with
some change in this behavior when he/she is leaving the market. We can
imagine a new framework that adds at this typical input of the model the
information about what his neighborhood is doing, capturing beforehand
the exogenous signals coming to the customer, letting the analyst more
efficient in predicting the abandon.

All the future scenarios, anyway, are strongly related to the availability
of data. For this reason it is important to study also the aspects regarding
the incentives for people to share his own data (a recent and interesting
proposal is represented by the personal data store model), and of course
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novel and efficient techniques for preserving the privacy of data maker
(especially when the attributes are very sensitive). These two last points,
that need to be addressed by companies, data scientists, lawyers and
economists, represent the basis for the next inflow of data in this field,
and for this reason they are considered a must for future research in
application of complex networks analysis on big data for economics and
markets.
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influence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 137–146.
ACM, 2003. 12

140



[68] W O Kermack and A G McKendrick. A contribution to the mathematical
theory of epidemics. Proceedings of the Royal Society of London Series A,
115(772):700–721, 1927. 11

[69] M. Y. Kiang and A. Kumar. A comparative analysis of an extended som
network and k-means analysis. Int. J. Know.-Based Intell. Eng. Syst., 8(1):9–15,
2004. 125

[70] Su-Yeon Kim, Tae-Soo Jung, Eui-Ho Suh, and Hyun-Seok Hwang. Customer
segmentation and strategy development based on customer lifetime value:
A case study. Expert Systems with Applications, 31(1):101–107, 2006. 2

[71] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J.
ACM, 46(5):604–632, September 1999. 10
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