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Abstracts

Abstract

The multidisciplinary approach to problem solving involves
drawing appropriately from different viewpoints to redefine
problems outside of normal boundaries and reach solutions
based on a new understanding of complex situations. So-
cial and economics science have always borrowed and em-
braced tools and instruments from mathematics and physics
to develop their theories. Historically a real multidisciplinary
methodology to economic and social issues has been neglect-
ed by the academic researchers due to a widespread gap in
their formal approach. Recently a new interdisciplinary frame-
work has been developed connecting together social and eco-
nomics theories with the complex systems analysis; this ap-
proach reveals new conceptual prospectives and methodolo-
gies thanks to its multiple-level viewpoint, which are able to
disclose novel challenges and problems. This thesis collects
three different multidisciplinary approaches to social and eco-
nomic behaviors formalized with the complex systems tools.

Chapter 2

We introduce a statistical agent based model to describe the
phenomenon of drug abuse and its dynamical evolution at
the individual and global level. The agents are heterogeneous
with respect to their intrinsic inclination to drugs, to their
budget attitude and social environment. The various levels
of drug use were inspired by the professional description of
the phenomenon and this permits a direct comparison with
all available data. We show that certain elements have a great
importance to start the use of drugs, for example the rare
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events in the personal experiences which permit to overcome
the barrier of drug use occasionally. The analysis of how the
system reacts to perturbations is very important to under-
stand its key elements and it provides strategies for effective
policy making. The present model represents the first step of
a realistic description of this phenomenon and can be easily
generalized in various directions.

Chapter 3

We characterize the statistical law according to which Ital-
ian primary school-size distributes. We find that the school-
size can be approximated by a log-normal distribution, with
a fat lower tail that collects a large number of very small
schools. The upper tail of the school-size distribution de-
creases exponentially and the growth rates are distributed
with a Laplace PDF. These distributions are similar to those
observed for firms and are consistent with a Bose-Einstein
preferential attachment process. The body of the distribution
features a bimodal shape suggesting some source of hetero-
geneity in the school organization that we uncover by an in-
depth analysis of the relation between schools-size and city-
size. We propose a novel cluster methodology and a new
spatial interaction approach among schools which outline the
variety of policies implemented in Italy. Different regional
policies are also discussed shedding lights on the relation be-
tween policy and geographical features.

Chapter 4

By analyzing the distribution of revenues across the produc-
tion sectors of quoted firms we suggest a novel dimension
that drives the firms diversification process at country level.
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Data show a non trivial macro regional clustering of the di-
versification process, which underlines the relevance of ge-
opolitical environments in determining the microscopic dy-
namics of economic entities. These findings demonstrate the
possibility of singling out in complex ecosystems those micro-
features that emerge at macro-levels, which could be of par-
ticular relevance for decision-makers in selecting the appro-
priate parameters to be acted upon in order to achieve desir-
able results. The understanding of this micro-macro informa-
tion exchange is further deepened through the introduction
of a simplified dynamic model.
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Chapter 1

Introduction

1.1 Complex Systems apply to Economic & So-
cial Science

Over the past twenty years the multidisciplinary approach of complex
systems in the physical and social-economic sciences has been devel-
oped. It has led to new conceptual perspectives and methodologies that
are of value not only to researchers but also to professionals and policy-
makers [1]. Complex systems approaches enable researchers to study as-
pects of the real world in which events and actions have multiple causes
and consequences, and where order and structure coexist at many differ-
ent scales of time and space. The specificity of complex systems, gener-
ally under investigated or simply not addressed by traditional science,
resides in the emergence of non-trivial superstructures that often domi-
nate the system’s behavior and cannot be easily traced back to the prop-
erties of the constituent entities [1]. The interdisciplinary approach of
Complex Systems can raise universal questions that can be expressed
across a broad spectrum of disciplines from biology to computer net-
works to human societies [2]. The methods to disentangle these ques-
tions also belong to different disciplines which spread between computer
science, mathematics and physics. This research approach can overcome
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1.2. Introduction to chapter 2

the standard methods in specialized domains which rarely takes in con-
sideration the multiple-level viewpoint. The complexity portrays econ-
omy and social systems not as deterministic, predictable, and mechanis-
tic, but as process dependent, organic, and always evolving mechanism
[3]. Statistical Physics in the Complexity framework has then evolved
towards the application to specific problems, many of them in inter-
disciplinary areas. The explosion of the complex network analysis has
shown that many phenomena, even those not closely related to the origi-
nal physical area, can be represented with these tools. The importance of
this and other applications now has to be evaluated with respect to the
impact these ideas and methods have in other fields where there are ap-
plied. This situation poses new challenges and problems that have been
discussed in various articles and editorials [4, 5, 6]. This thesis is the
collection of three different complex systems approaches to the socio-
economic systems introduced in the following paragraphs.

1.2 Introduction to chapter 2

This chapter (reproduction of [7]) consists in the development of an Agent
Based Model (ABM) for the phenomenon of drug abuse. It is an interdis-
ciplinary piece of work in which the concepts and methods of statistical
physics are applied to investigate the socially relevant phenomenon of
drug abuse.

The model we developed is part of the class of the Agent Based Mod-
els (ABMs), which have recently been used in many socio-economic ar-
eas [8, 9]. The relation of ABM models with statistical physics and social
behaviors is clear because one attempts to describe the competition be-
tween interaction and noise, the heterogeneity of the agents, the origin
of large fluctuations and the spontaneous development of critical situa-
tions. The available literature presents only highly simplified and pre-
liminary approaches on the drug abuse subject [10, 11] and we believe
our model provides a basis for a scientific approach to this problem, its
understating and possibly its optimal control. Our ABM has a much

2
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higher level of complexity and realism and it provides information on all
elements of the phenomenon both at the individual and global level. To
this end, it is important to note that our main conclusions could not have
been achieved from these previous models.

The model proposed is directly related to the concepts and the pa-
rameters used by professionals in the field at the international level and
it makes optimal use of all the available information. This allows for a
direct comparison to the present and future data and can be easily gener-
alized to explain more complex and realistic environment. At the present
level, the model permits to identify the crucial, most important param-
eters, and as well as those that play a minor role. In this respect one,
of the critical parameters to overcoming the natural barrier to start drug
consumption, for the first time, is the tail fluctuations of personal experi-
ence (environment and interactions). On the contrary the economic bar-
rier plays a relatively minor role with an appreciable importance only at
the beginning of the consumption. Our model permits to track the indi-
vidual history of an agent and in turn, this information could be directly
compared with medical and other data. We stress our model to analyze
the response of the consumption to external changes of some parameters
(consumers behaviors, environment and price). All this informations can
help to optimize the control, to define a suitable policy, and to lead to a
basic understanding of the complexity of the phenomenon.

1.3 Introduction to chapter 3

This chapter (reproduction of [12]) investigates the statistical distribu-
tion of the sizes of Italian primary schools. It is an interdisciplinary work
in which the concepts and methods of complex systems are applied to
investigate the Italian school distribution according to geographical fea-
tures and population density. Many scholars have shown surprisingly
complex features governing cities, firms, or social groups, uncovering
power law distributions, fat tails and other properties incomprehensi-
ble in the scope of orthodox approaches. This framework proposes new
challenges in this respect and problems in studying socio-economic sys-
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tems that have been discussed in various articles in the most impor-
tant journals, such as Nature, Science, and American Economic Review
[13, 14, 15].

We introduce a definition of school-size as the number of students
currently enrolled in each school and we show that the PDF can be well
approximated by a lognormal distribution. School system shares certain
elements with firms and cities [16, 17, 18] such as too many small schools
in the left tail of the size distribution comparatively to its left tail which
exponentially decays. But it also has specific and important puzzles: the
body of the PDF distribution manifests a bimodality characteristic. The
evidence of the bimodality underlies the interplay between different pro-
cesses that define thresholds and boundaries that are very peculiar for
the Italian primary school-size distribution.

Motivated by the absence of any territorial constraint in school choice,
and despite the fact that the fat left tail of the school-size distribution has
been particularly targeted in the past years by political interest and leg-
islative attempts [19, 20], there is no evidence in the rising of the size of
the schools in the lower quantiles. To disentangle the bimodality source
we introduce a measure of the average spatial interaction intensity be-
tween a school and the surrounding ones in different Italian regions. We
find that interactions are very weak, on average, for small schools, espe-
cially for countryside-based regions. This pattern involves small villages,
with only one school, whose closeness coincides with the proximity of
schools.

Our conclusions indicate that the bimodality of the Italian primary
school-size distribution is very likely to be due to a mixture prevalently
driven by the population density and, in turn, by the geographical fea-
tures of the territory. This empirical work is directly aimed to address
policy schooling decision, providing a first formal complex system ap-
proach to develop a better education system. Our analysis can be easily
generalized to other countries and many other complex systems such as
hospitals and other facilities that are strongly related to the city-size.
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1.4 Introduction to chapter 4

There is a growing literature on benefit of diversification at firm level in
emerging as well as developed economies [21, 22, 23]. The effects of in-
stitutions, policies and economic environments under which diversifica-
tion has an impact on firm performances have been extensively studied
[23, 24, 25]. In some cases diversification in less developed economies
has been claimed to be related to the difficulty of stipulating effective
contracts at firms level. On the other hand, in economies with well es-
tablished capital markets, diversification may have limited value due to
the fact that the institutional context enables smaller, specialized firms to
raise capital. Mainstream literature tends to relate firms diversification
to such economic statements. It has also been suggested [26] that di-
versification can originate from group affiliation strategies used to create
internal market.

In the present work we propose a different perspective according to
which the market maturity plays a secondary role with respect to en-
trepreneurial culture. In particular we show empirical evidences of a
clear difference between western (Anglo-Saxon) markets and the rest of
the world, independently of the degree of development of the market
itself.

In the framework of economic Complexity first [27] and then [28] in-
troduce a new metrics for comparing the competitiveness of countries
through a fitness model based on countries’ products complexity. This
analysis take in consideration the binary export matrix M built thanks to
the Revealed Comparative Advantage (RCA) [29].

The rearrangedM matrix, ordering rows and columns with respect to
the fitness and complexity metrics shows a almost-triangularity shape. It
appears that the higher specialization is not a suitable strategy for coun-
tries. Analyzing the distribution of the M , we can see that the poorest
countries are those which are specialized in the export of few products.
On the contrary, the more developed countries are the ones with the more
diversification of exports.

Within the Economic Complexity framework we analyzed the firm
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differentiation process. In fact Countries and firms are fundamental ac-
tors sharing complex economic and social ecosystems, but while firms
are specialized entities, countries display diversified features which have
been demonstrated to be crucial in understanding their competitiveness.
This raises a question on the mechanisms driving specialized entities to
organize themselves into diversified super-structures which are a quite
ubiquitous question in natural and social sciences. Coherently with the
evidence of a triangular structure of country-product matrix in [27, 28,
30, 31], in the present analysis the same triangular feature is also found
in the country-sector matrix obtained by aggregating firms on the basis of
its legal address. In the particular case of firm diversification we identify
in this chapter a novel country-dependent micro signature, the revenue
diversification barrier, which we indicate to be the factor governing the
diversification dynamics.

In this chapter (reproduction of [32]) we analyze the Bloomberg data
of the distribution of revenues across production sectors of quoted firm
aggregated by country. This distribution manifests a peculiar (country
dependent) triangular shape, in which a clear lower boundary appears,
indicating that firm diversification is positively correlated with revenues:
to increment its diversification a firm must increase its incomes by a min-
imum critical amount which is country-dependent. We design a simple
mathematical model to shed new light on these dynamics. The model
suggests that the diversification process develops over time and depends
on the competitive environment in which the firms are embedded.

The country dependence of the firm diversification barrier shows a
non trivial geographic clustering, possibly reflecting different cultural
and entrepreneurial patterns. Our findings show that within the frame-
work of economic complexity it is possible to identify the mechanism
responsible for micro-macro information exchange.
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Chapter 2

Statistical Agent Based
Modelization of the
Phenomenon of Drug
Abuse

2.1 Introduction

The ambition to develop a quantitative description of people’s behav-
ior and introduce novel ideas and methods in socio-economic disciplines
[4, 5, 6] (see also the future ict project www.futurict.eu) is one of the main
challenges of statistical physics and complexity theory. Agent based mod-
els (ABMs) [8, 9] represent a broad framework to address these questions.
They can describe some of the most important properties that get inspira-
tion from physical phenomena. These are for example the importance of
heterogeneity, large (critical) fluctuations, self-organized criticality and
the lack of cause-effect relation. The the key features of ABM is the suit-
able choice of the nature of the agents, their interactions and their dy-
namical evolution.

In this chapter, we present an Agent Based Model which aims to

7
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2.1. Introduction

describe, at a reasonably microscopic level, the phenomenon of drug
abuse, its evolution and control. The scheme of the model was inspired
by the participation the authors to the national initiative PREVO.LAB
[33, 34, 35] whose objective is to analyze and control the phenomenon
of drug abuse in Italy. Therefore, the model is closely aligned with the
professional analysis in this field and permits a direct comparison of con-
cepts and parameters with those actually observed and analyzed in re-
ality. In this respect, the model is rather realistic and suitable for direct
applications, including control, forecast of the phenomenon and for poli-
cymaking. The information in this field is very scattered and ranges from
highly accurate information about people who become hospitalized to
the little known detail about those at the beginning of the process. The
model aim is to provide a complete framework to describe the phenome-
non, whose parameters are fixed by the best known facts. In this way,
the model is able to extrapolate the knowledge of the less known sub-
merged elements. This Agent Based Model, with its parameters fixed by
real observations, exhibits the following features:

• The tail fluctuations of personal experience (environment and in-
teractions) are critical components for overcoming the natural bar-
rier to start drug consumption, for the first time. This also implies
that the heterogeneous nature of the social-network is very impor-
tant and cannot be represented by an average situation.

• The economic barrier plays a relatively minor role with an appre-
ciable importance only at the beginning.

• The model permits to track the individual history of an agent and
in turn, this information could be directly compared with medical
and other data.

• One can analyze the response of the system to external changes of
some parameters. This can help optimizing the control and defin-
ing a suitable policy.

• The model is flexible and can be easily improved by introducing
specific elements that may be inspired by new observations. For
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example, it could be implemented in a specific social complex net-
work [36] and one can also introduce different drugs with different
market socioeconomic characteristics, related for example to the
age, the economic background or the gender.

In summary, we introduce an ABM with variables and parameters
defined in a way that makes efficient use of all data and information
available in the field. This permits us to achieve a complete description
of the phenomenon both at the individual and global level, and to iden-
tify its crucial elements and its responsiveness to changes in any of its
parameters.

The study of drug consumption and trend predictions began in the
’70s with the analysis of trend historical data of New York City [37]. In
the ’90s Everingham and Rydell [38] proposed a Markovian process to
analyze and predict cocaine consumption in the USA. The first ABM mo-
del introduced was Drugmart by Agar and Wilson [10, 39], revised by the
UK Office of Science and Technology report [40], which is a simple net-
work model. Another more complex model is the Australian SimDrug
[11] which simulates the consumption of heroin in Melbourne with ac-
curate people’s dynamic reconstruction.

With respect to these preliminary models, our ABM has a much higher
level of complexity and realism and it provides information on all ele-
ments of the phenomenon both at the individual and global level. To
this end, it is important to note that our main conclusions could not have
been derived from these previous models.

2.2 Results

2.2.1 The Model

In our model, an agent i, with i ∈ [1;N ], is characterized by a number of
parameters and interacts with the environment and with the other agents
at each time t ∈ [1;T ]. In the dynamic the unit time step will correspond
to one week. We now briefly introduce the key elements of the model,
which are described in more detail in the section 2.4.

9
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Age yi(t) = [10 : 100] years. The starting distribution of the agents’
age at t0 is taken from the Italian data of ISTAT. In a first stage, we con-
sider the property of a static situation yi(t) = yi(t0). Later, we also intro-
duce the dynamic evolution of the system by increasing the agents’ age
with time.

Consumers type Si(t) = 0; 1; 2; 3; 4 defines the consumption stage
and the level of dependence reached by a consumer: non users (Si =

0); mini user with age yi(t) < 26 (Si = 1); occasional user (Si = 2);
frequent user not pathological (Si = 3); heavy user pathological (Si = 4).
These categories are inspired by the professional classification of drug
abuse from “Diagnostic and Statistical Manual of Mental Disorders” [41].
The mini user with yi < 26 are agents with low income that can be in
contact with the normal dose and with a lower quantity of drug, the
mini dose. This mini dose, as we will see later, was introduced by drug
cartel with the purpose of stimulating in the young consumers a possible
future dependency on drug [33, 34].

Personal budget and saving behavior. Behavioral analysis [34] has
shown that the money a person would spend on initial drug consump-
tion is rather related to personal saving attitude for leisure opportuni-
ties, than to the total personal budget. Therefore, the only variation we
make in the budget mi(yi(t)) refers to the difference between the adult
working population with age yi(t) ≥ 26 with mi(yi(t)) = 1, and young
unemployed or student population with age yi(t) < 26 with mi(yi(t)) =

0.2. The threshold of age 26 represents the average age of the change of
spending and work habits [34]. The crucial point will be the parameter
γi ∈ [0;∞] (saving behavior), which describes the tendency of an agent
to save or spend money. Inspired by various indicators of social behav-
ior, we assign to it a lognormal distribution [42] with variance Γσ and
average Γµ. A value of γi ≈ 0 means that the agent is inclined to spend
his leisure budget while γi ≥ 1 corresponds to a strong willingness to
save money and do not use it for buying drugs.

Personal exposure ei describes every possible contact between the
agent and the drug world, in particular the input the agent receives about
drug consumption. In the present model we adopt a simplified model
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of interaction among agents but the generalization to a complex social
network would be a natural extension in the model [36, 43, 44].

Inclination to drug βi controls the intrinsic (genetic, educational, cul-
tural, etc.) agent’s barrier towards drugs. Also in this case, inspired by
the social studies [45], we adopt lognormal distribution with σ = Bσ, µ =

Bµ. For every agent we define the barrier to be overcome in order to start
using drugs: b∗i (t) = βi/α(yi(t)); where α(yi(t)) is a function dependent
on the agent’s age and it has the characteristic to increase the barrier
for older agents. This function is described by a simple analytical form
which reproduces the data of Prevo.Lab [33].

Drug addiction: describes how an agent becomes addicted to drugs
and how this modifies her behavior. This property is defined by the func-
tion di(πi(t), Si(t)) which can increase or decrease b∗i (t), depending on
the persistence of the agent in a given stage, where πi(t) is an exponen-
tial function of consecutive drug assumption. The inclusion of this effect
redefines the drug dependence function: bi(t) = b∗i (t)− di(πi(t), Si(t)).

In the drug market there are two different dose levels: mini-dose and
dose. The first has a lower quantity and a cheaper price. It is used for at-
tracting young people to drug consumption while the second represents
the normal dose for adults and for young usual users. The mini-dose is
very important for the analysis of drug consumption because it is often
the way in which the young generations start the drug use. Moreover it
represents the cheapest and easiest way of transmission of drug among
young people [33]. In our model the mini-dose could symbolize a light
drug that can lead to the intake of the normal one. The mini-dose price
pm(t) is supposed to be substantially smaller than a dose. We have cho-
sen an lower magnitude order as reasonable estimation of the mini dose
price which is about one tenth of the dose [34]. The price of the dose
pd(t) is based on a simplified relation between supply and demand. In
our case we assume that the total supply is fixed so the price is simply
due to the total number of users.

pd(t) =

N∑
k=1

δ(Sk(t)=1,2,3,4)

N pm(t) = pd(t)
10

(2.1)

This relation could be easily made more realistic with a variable level of
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total drug amount.
The agents interact and evolve through the comparison of the two

major barriers: the Economic Barrier “EB”. and the Socio-Emotional Barrier
“SEB”. The first barrier compares the price of the drug with the buying
capacity and it is defined by:{

pm(t)
mi(yi(t))

< 1− γi if yi(t) < 26
pd(t)

mi(yi(t))
< 1− γi if yi(t) ≥ 26

(2.2)

The second barrier has the role of describing the social opportuni-
ties and the emotional process involved in drug consumption. The so-
cial opportunities are defined in terms of the events by which the agents
are subjected during a time unit. We describe this “daily noise” by ri(t),
random number drawn each time for each agent from a Gaussian dis-
tribution, Rµ = 0 , Rσ . Our choice to use the Gaussian distribution is
due in large part to the lack of quantitative information that is avail-
able. It was also chosen because of the symmetric shape that could lead
to a daily event that could generate a positive or negative effect in the
drug intake. When more information becomes available, it will be easy
to modify accordingly. The condition to overcame the SEB is defined by:
bi(t) + ri(t) < ei(t).

We have now all the elements that define the dynamics and the inter-
action between the agents. In summary the most important parameters
of the model are γi, ri(t) and βi which are respectively money saving
behavior, daily noise and intrinsic inclination to drug.

We can define the transition probability of each agent from the stage
Si(t) to Si(t+ 1) as indicated in Figure 2.1a. The corresponding rates are
described in detail in the section 2.4.2.

2.2.2 Tuning the parameters

The first point we consider is to tune the model parameters to a realis-
tic description of the observed data. A crucial parameter in this respect
is the observed fraction of people using drugs. In order to address this
question we have made several simulations withN = 1000 and T = 1000
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(the time unit t is one week). The strategy is to fix two distributions and
examine the change of drug using population during the variation of the
third one. Then we repeat the operation for all three distributions. In
Figure 2.1b-c-d we see the change depending on the three distributions.
We choose to have in our population about 10% of drug users (a realistic
value considering all different drugs [33, 46, 47], which could be adjusted
when better data is available). When studying the real drug consump-
tion, in addition to these total values, it is important to split the agents in
four age ranges [33] labeled as: young (15 − 25), young-adult (26 − 35),
adult (36 − 45) and senior (45 − 100). Also, the individual percentage
of users within the four age ranges is used to fix our parameters. These
procedures define the three distributions, which we name “Usual Distri-
butions”, UD: βi 99K lognormal(Bµ = 1.2, Bσ = 2.7)

γi 99K lognormal(Γµ = 0.6,Γσ = 0.9)
ri(t) 99K gaussian(Rµ = 0, Rσ = 0.6)

(2.3)

Therefore, these optimized distributions provide a complete and real-
istic parametrization of our model which can now be used to investigate
a variety of problems. We start by considering the individual personal
history per agent.

2.2.3 Individual agent history

It is interesting to note that the individual history can be vastly different
in reality and we are going to observe that our ABM is able to repro-
duce a dynamic variety of agent’s history. The Table 2.1 shows ∆t = 68

consecutive iterations of eight users, and it outlines some of the different
users typology that can be produced by the model:

• #64 is a senior agent that never tested drugs;

• #141 is a young agent that, as an occasional consumer, tries the
normal dose;

• #1(young-adult) and #343(young) are two agents that are occa-
sional consumers;
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Figure 2.1: Stage transitions and parameter settings. a. All possible stage
transitions for an agent at stage Si(t). b. c. d. Simulations intended to
select the main parameter of the model in relation to the realistic stage of
the phenomenon (see text for more details). In particular in b. we show
the effect of the parameter βi (inclination to drug) distribution (Bm;Bσ),
in c. effect of a parameter γi (saving behavior) distribution (Γm; Γσ) and
in d. ri (daily noise) distribution (Rm = 0;Rσ). The blue circles identify
the realistic areas to fix the values of the three distributions so that they
correspond to a total of 10% of users. This parameter optimization refers
also to the age ranges discussed in the text.

• #15(young-adult) and #130(young) are both heavy consumers that
evolve into addicted;

• #45(adult) and #494(young) are two agents that try drugs on ex-
tremely rare occasions.

The fact that our model reproduces a realistic heterogeneity of agents’
history is a very important element. This realistic variability is in fact
crucial to have an accurate description of the phenomenon that could
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#Agent Age Personal History

1 26 00020000000020000000000000000000000002000220200002020200000000020002
15 29 22202002000000020022333333333333333333333333333333444444444444444400
45 36 00000000000000002000000000000000000000000000000000000000000000000000
64 68 00000000000000000000000000000000000000000000000000000000000000000000

130 16 33333333012333333330101233333333333333333333333334444444444444444444
141 20 11100101010110111100001001111100011101000101010012000110111111110101
343 23 01101110010000100010101001110100001101010100110110100100000011010111
494 25 00000000000000000000000100000000000000000000010000000000000000010000

Table 2.1: Individual agent histories. a. The table shows the histories of
eight agents for ∆t = 68 consecutive times (One time unit corresponds to
one week). One can see that our model is able to reproduce a variety of
a realistic heterogeneity in agents’ history. This history ranges: from the
agent #64, who never tried drugs, to agents characterized as heavy users
#15; #130.

be compared to a considerable amount of real data. A possible upgrade
would be analyzing and contrasting the real drug user clinical histories.
By means of the above we could provide a probabilistic prediction of
detoxification options for each clinical case. In order to gain more insight
in the individual evolution, we can observe the trend of the barrier for
inclination to drugs use, the Social Emotional Barrier (SEB) and the stage
reached by an individual user i at anytime t. The Figure 2.2a shows the
history of a young user yi = 19 with a low intrinsic inclination barrier
βi, for ∆t = 300 consecutive iterations. The user stage Si(t) is indicated
in red dots, the left term of SEB inequality barrier in green, and in blue
the starting value of inclination to drug b∗i (t). We can see that this agent
develops all the stages with important fluctuations and finally ends up
being an addict. At this level the green barrier line declines strongly and
finally we can also observe that the agent detoxifies. In the case above
the effect of aging is not yet included b∗i (t) = b∗i (t0).

Now we consider a complete dynamic evolution in which aging is
explicitly included. We set the year length τ = 50t, in which one iteration
corresponds to a real week time spend. We elaborate a set of rules to
define the death of an agent due to the aging and the birth of the new
one in order to have a constant number of agents N (sec. 2.4.3). We also
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Figure 2.2: Personal agent history. a. Personal agent history without ag-
ing: the agent becomes a heavy user because after various fluctuations she
reaches the stage Si(t) = 4. The green line describes the left term of Social
Emotional Barrier and one can see that this barrier is drastically lower when
the stage of dependence is reached. b. Personal agent history with aging. In
this case the agent is a casual user, meaning that agent has frequently used
drugs at a younger age. Then the barrier of inclination to drug use (blue
line) b∗i (yi(t)) increases with the age. We can see that, in this way, the use of
drugs Si(t) = 2 becomes more and more rare. Finally when the agent gets
older the use of drug is completely eliminated. This example shows that the
model provides a detailed description of individual histories, which could
be directly compared to real data.

define a simple process, from the data [11, 35, 46], which describes the
possibility that an agent can die of overdose and be replaced by a new
one. In Fig. 2.2b we reproduce the personal history of an agent in the
aging process. The figure shows the increase of the barrier to b∗i (t) due to
the agent’s aging. The agent starts with a high value of βi (low tendency
to use drug) but the daily noise induces to try several drugs (Si(t) =

2). However, when the agent grows up, b∗i (t) rises, so the daily noise
becomes less effective and finally the agent no longer uses drugs. This
example shows that the possibility to monitor a single agent’s history can
be an important tool to compare with real medical data. Once again the
future analysis could study the probability of stage change and compare
it with real data from detoxification centers.
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Figure 2.3: Fluctuation of the life style. Here we test how the system reacts
to increased fluctuations for the rare events (tail of the ri(t) distribution)
that induce the starting of abuse. During the period 4τ < t < 8τ the distri-
bution of daily noise increased (Rm = 0.1;Rσ = 1.3), the various ranges of
population are affected by this change. In the insert we show how the total
number of drug users is distributed among the various age ranges. From
these studies, one can conclude that the system is strongly sensitive to this
tail fluctuations, which represents a very important point for the control of
this phenomenon.

2.2.4 Global property and effects of perturbations

Our model also allows us to examine how the users population reacts
to various sources stress, ranging from a different opportunity to be in-
volved in drug use (ri), a new agent’s intrinsic education (βi) or a change
in saving behavior (γi). With the purpose of analyzing the agent’s dy-
namic under these social modifications, we fixed two of the UD and ana-
lyzed the effect of changing in-time of the third one. We will activate the
in-time modification between the time steps, t+ < t < 2t+.

In Figure 2.3 we change the daily noise distribution from the UD to
Rµ = 0.3, Rσ = 1.6, with t+ = 4τ . The Figure shows how an increase of
noise leads to an increase in the number of agents in the drug stage. As it
is shown from the insert of Figure 2.3 the ri(t) distribution has different
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Figure 2.4: Cultural fluctuations. Here we show the effect of the changes
in the genetic cultural barrier of inclination to drugs. We change the dis-
tribution of inclination to drug βi for the new agent during the period
20τ < t < 40τ with (Bm = 1.2;Bσ = 2.7). The lower intrinsic barrier
leads to a creation of a new users generation more inclined to drugs abuse.
We can see that the effect is not instantaneous and we can follow how it de-
velops over the years. Also in this case, as we show in the insert, one can
see the large difference of age effect between the various age ranges. The
pattern revealed can be directly compared to real data and is important for
monitoring and controlling the phenomenon.

impact for each age range, given the dependency of b∗i (t) on age.

Figure 2.4 exhibits the change of the population stages Si(t) due to
the modification of the intrinsic inclination toward drug use distribution
(Bµ = 1.2, Bσ = 2.7) for the new born agent between 20τ < t < 40τ . The
agents who are born during the perturbation periods are more inclined
to use drugs than the others. The insert of Figure 4 shows the trends
between the age ranges and how the aging of the new agents increases
temporally the number of drug users.

In Figure 2.5 we change the tendency of agent spending behavior. We
replace the distribution of γi from the UD with (Γm = 0.1; Γσ = 0.3) for
the new born between 20τ < t < 40τ . During this perturbation period
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Figure 2.5: Fluctuations of saving money behavior. Here we examine
the effect of the change of the saving behavior. We change the distri-
bution of γi for the new agent during the period 20τ < t < 40τ with
(Γm = 0.1; Γσ = 0.3). A lower value of γi means that an agent tends to
spend money easily. In particular a value near to zero for an agent means
that she has no problems for drug purchase. We can see that the effect is
similar to the cultural fluctuation but it is of minor impact. The effect of
spending capacity decreases with the age and in particular it does not affect
the senior agents.

the new born agents are more inclined to spend money for leisure, in this
case drug. One can see from the insert of the picture the different trend
among age ranges. According to the analysis, the saving behavior does
not appear to have an important role in explaining drug assumption.
The decrease in-time the γi distribution produces a limited impact in the
number of users compared to the effect βi.

Finally we focus on the role that mini users have on the introduction
of drug among the new generations. This is an important point because
it is hard to monitor and as an appreciable effect only after a long time. In
Figure 2.6, we compare two situations of a population evolution. For the
first 15τ years the simulation does not consider the mini-dose. Consec-
utively we included the mini user. We can see that the existence of mini
user stage leads after many years to a large increase in the total number
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Figure 2.6: Mini dose activation. We consider a population of N = 7000

agents. At the beginning the market is without the mini dose, at a time
t = 15τ the mini dose is introduced in the system for young people. We
only show the drug user stages and one can see an immediate change of
the global users followed by a further increase of addict population. The
results show that the effect of mini dose for young generation represents
and extremely important element for the dynamics of the system.

of drug users.

2.3 Discussion

In conclusion, we have developed an agent based model for the phenom-
ena of drug use, which is relatively simple, but at the same time rather
realistic. Its concept and parameters have been established in close re-
lation with the professional studies of the real phenomenon. The model
permits the study of the problem at the individual and global level. The
individual histories of the agents can be extremely diverse and appear to
provide a realistic description of the real situation which could be easily
compared to medical data directly. At the global level we can identify
the crucial most important parameters, as well as those that play a minor
role. This leads to a basic understanding of the complexity of the phe-
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nomenon and to the possibility of analyzing how the situation changes
if the parameters are modified. This point is essential in defining the
strategies for controlling and reducing the phenomenon.

One of the main conclusions of our studies is the fact that drug use
is usually trigged by a rare event in the personal experience. This shows
the importance of the tail of these heterogeneous experiences, which al-
lows us to predict that the introduction of additional heterogeneity in
the structure of the society will lead to important effects. In particular,
our model’s interactions among agents are assumed to be similar on av-
erage. Therefore we expect that the introduction of a complex network
distribution of this iteration will be relevant. In this perspective we can
already predict that the hubs of this distribution will be very important
for policymaking.

The model is meant to represent a realistic basis of analysis and dis-
cussion, and can be easily generalized with a complex network of social
interactions and with multiple drugs with different social characteristics.
We believe that these studies can lead to a higher level of understand-
ing of these phenomenona and can be useful for a more effective policy
making.

2.4 Methods

2.4.1 Model parameters specification

Following we explain in detail the parameters that characterize the agents.

Personal exposure

The personal exposure ei, describes every possible contact between the
agent and the drug world and in particular describes how agents feel
about drugs in general and their consumption in particular. It is defined
by:

ei(t) =

[
N∑
k=1

δ(Sk(t)=1,2,3,4)

]
− δ(Si(t)=1,2,3,4)

N − 1
(2.4)
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This expression simply counts the fraction of drug users within the entire
population, but does not include the single agent under observation. The
latter represents a type of mean field interaction, which could be easily
generalized to complex network situations [36, 43, 44].

Age function

The function α(yi(t)) is dependent on the agent’s age and its purpose is
to increase the barrier for older agents:

α(yi(t)) =
exp

(
−(−c+lg(yi(t)))

2

2d2

)
ad

(2.5)

The values of a = 1; d = 0.5; c = 3 are chosen in order to outline the
importance of age in the consumption of drugs [34]. This expression is a
simple mathematical representation of how age influences the probabil-
ity of drug assumption Fig. 2.7a. The main characteristic of this function
is that the peack of this function is located between sixteen and twenty-
four years and then it slowly decreases, as it has been shown by the stud-
ies of Prevo.Lab. As we can see from the Figure 2.7b the α(yi(t)) increases
the average value of the b∗i due to age behavior.

Drug addiction

The drug addiction describes how an agent becomes addicted to drugs.
This property is defined by the function dependence di(πi(t), Si(t)) which
has the purpose to decrease the barrier b∗i (t). The function πi(t) “stage
permanence” is an experience counter:{

πi(t) = 1 if Si(t) 6= Si(t− 1)
πi(t) = πi(t− 1) + 1 if Si(t) = Si(t− 1)

(2.6)

and the function dependence is:

di(πi(t), Si(t)) = l(t)(exp(πi(t)Si(t) ∗ χ(z))− 1) + di(πi(t− 1), Si(t− 1)) (2.7)

This expression represents an exponential growth of the addiction pa-
rameter with the persistence of the certain drug user stage. The term
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Figure 2.7: Studies of barrier age dependence. a. The function age co-
efficient (α(yi)) is described by a simple analytical form which is a repro-
duction of Prevo.Lab’s data. b. This is an example of a distribution of the
intrinsic agent barrier with age dependence b∗i (yi) for a simulation of 10000

agents.

χ(z) represents the drug coefficent, which describes how addictive the
drug of type z is. In this regard, it would be easy to introduce drugs
of different types. For the present study we consider a single case in
which χ(z) = .0001. This parameter could be changed for increasing or
decreasing the effect of the drug addiction. The parameter li(t) is the
first experience coefficient, which describes the quality of the agent’s first
experience in using the given drug:{

li(t) = −2 if ki(t) > 0, 75 & Si(t) < 3

li(t) = 1 Otherwise
(2.8)

where ki(t) is a random number with uniform distribution between [0 :

1]. The two possible values of li(t) are chosen to give a mathematical
representation of the social hypothesis, that a negative experience has
more psychological impact than an equivalent positive one [48]. We can
redefine the barrier of inclination to drugs with:

bi(t) = b∗i (t)− di(πi(t), Si(t)) (2.9)

in order to outline the role of dependence and first experience in the drug
consumption and addiction.
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2.4.2 Rules for the stage transitions

We define the rules that enable agents to have stage transitions from
stage Si(t) to Si(t+ 1). The Figure 2.1a in the chapter shows all the pos-
sible transition stages. Each transition has some different condition due
to the initial stage Si(t).

From Si(t) = 0

From the stage Si(t) = 0 we can have stage transitions into:

• Si(t+1) = 1 if the EB and SEB barrier are verified for an agent with
age yi(t) < 26;

• Si(t+1) = 2 if the EB and SEB barrier are verified for an agent with
age yi(t) ≥ 26;

• otherwise the agent remains in the stage of non user Si(t) = 0.

As we can see from Eq.2.10 the difference between the final stage reached
by the agent is dependent only on age:


Si(t+ 1) = 1 if [yi < 26 & pm(t)

mi(yi)
< 1− γi & bi(t) + ri(t) < ei(t)]

Si(t+ 1) = 2 if [yi ≥ 26 & pd(t)
mi(yi)

< 1− γi & bi(t) + ri(t) < ei(t)]

Si(t+ 1) = 0 Otherwise
(2.10)

From Si(t) = 1

Only an agent with yi(t) < 26 can reach this stage. The possible transi-
tions as we show in Eq.2.11 are:

• Becomes non-user, if EB or SEB are not verified;

• Persists in the stage of mini-user if the agent gets the sufficient daily
noise (opportunity) and has a budget;

• Change in Si(t + 1) = 2 if the agent has funds to purchase the
full dose and the SEB is verified without need of the daily noise.
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The possibility for an agent to get in contact with the full dose is
dependent on personal behavior associated with dependence level
rather than the daily occasions.


Si(t+ 1) = 2 if [pd(t)mi(yi) < 1− γi & bi(t) < ei(t)]

Si(t+ 1) = 0 if [pm(t)mi(yi) > 1− γi or bi(t) + ri(t) > ei(t)]

Si(t+ 1) = 1 Otherwise
(2.11)

An agent becomes Si(t + 1) = 2 when the function dependence and
the first experience coefficient decreases the SEB.

From Si(t) = 2

In this stage the agent is an occasional user of normal dose, the agent can:

• Return to non-user stage, if EB or SEB are not verified;

• Stay in Si(t+ 1) = 2 if both conditions are verified;

• Become a frequent user if the agent’s inclination barrier to drug is
reduced by the dependence (SEB without daily noise).

The following equation shows the transition possibilities:


Si(t+ 1) = 0 if [ pd(t)

mi(yi)
> 1− γi or bi(t) + ri(t) > ei(t)]

Si(t+ 1) = 3 if [ pd(t)
mi(yi)

< 1− γi & bi(t) < ei(t)]

Si(t+ 1) = 2 Otherwise
(2.12)

As we can see, the transition rules are quite similar to the previous stage.
We have considered that the stage Si(t) = 2 is reachable by all agents
without being contingent on age.

From Si(t) = 3

The agent is a frequent user. She does not care about the EB because
the addiction raises the necessity of a dose and the money becomes a
negligible constraint. She can become:
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• Heavy user, pathological, if her inclination barrier to drug decreases
by a factor 5 or more;

• She can decide to stop using drugs if the social environment changes
drastically, or with the 10% probability, which represents the possi-
bility to stop using drugs due to exogenous environmental factors.

• Otherwise the agent i continues to take drug as a frequent user.

Here we show the transition rules:
Si(t+ 1) = 4 if 5bi(t) < ei(t)

Si(t+ 1) = 0 if [bi(t) > ei(t) or ci(t) > 0.9]

Si(t+ 1) = 3 Otherwise
(2.13)

Where ci(t) is a random number from uniform distribution [0 : 1]. There
is no more the daily noise ri(t) and the transitions depend on the vari-
ation of bi(t) due to the dependence function and the stage persistence.
The factor 5 of the first condition is based on our decision [33, 34, 35] to
discriminate in a significant way the difference between the two stages
Si(t) = 3 and Si(t + 1) = 4. The bi(t) > ei(t) therefore represents the
decreasing possibility of the exposure factor due to a sudden change in
the social interactions.

From Si(t) = 4

When an agent becomes a heavy user, she has only two possible choices
according to the transition table showed in the Fig. 2.1a. The possibilities
are:

• The agent can leave drug with the probability of 5%;

• The agent can persist in the stage Si(t+ 1) = 4.

At this stage, the situation of the agent is independent of the condition
EB and SEB due to every addiction. Therefore we assume only a simple
probabilistic transition:{

Si(t+ 1) = 0 if li(t) > 0.95

Si(t+ 1) = 4 Otherwise
(2.14)
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Where li(t) is a random number from uniform distribution [0 : 1]. The
probability of the 5% is an estimation suggested by the Prevo.lab studies
and is related to the possibility of recovering from drug addiction.

In this way we have defined all the rules that allow an agent to evolve
and reach all possible stages of consumption. So far, the agent cannot
die and the age yi(t) is extracted at the beginning of the simulation and
remains constant for every t. Later we define the rules that describe the
death and birth of the agent and its aging dynamics.

2.4.3 Aging

Here we show the rules that define the process of an agent’s vital cycle
(death and birth), and the dynamic that leads an agent to overdose.

Death and birth condition

Based on the 2007 ISTAT data we consider the probability of death in a
given year for a person of a given age. We label this probability Pyi(t)
and every τ = 50t consecutive iteration we check this rule for each of N
agents: {

ui(t) < Pyi(t) yi(t+ 1) = yi(t) + 1

Otherwise i dies yi(t+ 1) = 10
(2.15)

Where ui(t) is a random number from uniform distribution [0 : 1]. When
the agent i dies, she will be replaced by another agent with age yi(t+1) =

10 and she will be characterized by the new extraction of the parameters
βi, γi from the current value of the distributions at time t. Instead, if she
lives, she will be one year older.

Overdose rule

By adding the possibility of death, it is possible to improve also some
rules of the Si(t) = 4 stage transition. An agent in Si(t) = 4 can become
a non-user by either detoxifying in a treatment center or by dying of
overdose. When the agent dies of an overdose, the agent will be replaced
by a new agent with the new extraction of the parameters βi, γi from
the current value of the distributions at time t. The following equation
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expresses the overdose death condition:{
Si(t+ 1)→ 0 if gt(i) > 0.1 lives
Si(t+ 1)→ 0 Otherwise dies

(2.16)

Where gi(t) is a random number from uniform distribution [0 : 1]. The
agent with the probability of 10% dies. Otherwise she lives. The proba-
bility to survive after an overdose is taken from the data of SimDrug and
Sert [11, 35]. With our dynamics we can replicate the same overdoses
trend of SimDrug model too (see the following section 2.5.1).

2.5 Other analysis

2.5.1 Overdoses Comparison

One of the main achievement proposed by the SimDrug model [11] is the
study of the amount of fatal and non-fatal overdoses among the simu-
lated population. Thanks to the SimCity like framework SimDrug model
is able to reproduce the trend of overdoses within Melbourne city. Fig.
2.8a shows the results of SimDrug for fatal and non-fatal overdoses. This
simulation was carried out with 3000 agents for 1400t time step itera-
tions. Each time step t represents a single day and one simulated years
is defined by 350t.

We set up our parameters to have the same environment of SimDrug
model: N = 3000 agents for 4τ iterations with τ = 350t. For our sim-
ulations we keep the main three distribution tune to the UD except for
the average value of the intrinsic inclination to drug βi that we set up at:
Bm = 1. Fig. 2.8b shows that our model is able to reproduce the same
trend of a more complicate and time-consuming simulation defined by
more complex rules.

2.5.2 Probability Studies

Detoxify probability

Drug addiction studies and report [33, 34, 35] always try to quantify the
correct amount time, needed for a person, to stop the drug abuse depend-
ing of its current stage of addiction. In our model is possible to analyze
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SIMDRUG – EXPLORING THE COMPLEXITY OF HEROIN USE IN MELBOURNE 
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Figure 2.8: Overdoses Comparison. a. SimDrug [11] simulation with 3000

agents for 1400t time step. The SimDrug model is able to reproduce the
same trend of the overdoses within Melbourne city. b. Overdose study of
our model. Here we show the our model is able to reproduce the same
result of more complicate and time-consuming simulation defined by more
complex rules. The simulation was made with N = 3000 agent for 4τ , with
the UD except for the average value of the intrinsic inclination to drug βi
set up at: Bm = 1.

the probability for an agent i in a particular stage Si(t0) 6= 0 at time t0
to come back for the first time to the stage Si(t0 + t) = 0 after t model
iteration. Considering the agent’s path though the addiction stages as a
Markov process, we can define this probability as:

P (Si(t0 + t) = 0|Si(t0) 6= 0) = P (Si(t0 + t) = 0|Si(t0 + t− 1) 6= 0)×

×
t−1∏
k=1

P (Si(t0 + n) 6= 0|Si(t0 + n− 1) 6= 0)

(2.17)

It is very difficult to calculate rigorously the entire transition matrix of
the Markov chain except for the values of S(t0) = 4. Straightforward
we have already defined from Eq. 2.14 the value of the P (Si(t0 + t) =

0|Si(t0) = 4) = 0.05 for t = 1.
Fig. 2.9 shows the empirical prediction of this probability. To have

a good statistics we carried out 10 simulations of N = 50000 agents for
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Figure 2.9: Detoxify probability. Here we show the probability for an agent
i in a particular stage Si(t0) 6= 0 at time t0 to come back for the first time to
the stage Si(t0+t) = 0 after tmodel iteration. One can see the three different
pattern outline by the color fit depending of the current addict stage of the
agent in consideration. The black fit represents the Si(t0 + t) = 1, 2, the
yellow Si(t0 + t) = 3 and the red Si(t0 + t) = 4. The red line fitted is in
agreement with the Markov model define by 2.14

20τ , with τ = 50t time iterations. One can see that the transition prob-
ability of return in Si(t0 + t) = 0 for the first time with S(t0) = 4 is in
agreement with the expected data (red fit line). Furthermore the figure
highlights three distinctive pattern depending on the agent stages in t.
The changes of the fitting coefficient in the probability outline the chang-
ing in the stage of the agent depending of t. The black line fit is the
peculiar coefficient for agents at the stage Si(t0 + t) = 1, 2, the yellow fits
line represent the behavior of the agents in the stage Si(t0 + t) = 3. As
we can see the agent in Si(t0) = 1, 2 after approximately 30t will reach
the stage Si(t0 + t) = 4, if they dod not detoxify before, as outlined by
the red fit line.

This analysis gives us a snapshot of the agents addiction timing of our
model and it could be easily compared directly to medical data. The mo-
del is now tuned thanks to the national macro data provide by Prevo.lab.
The fine microscopic set up,thought this analysis, could improve consid-
erably the model performance and reliability.
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Chapter 3

The Italian primary
school-size distribution and
the city-size: a complex
nexus

3.1 Introduction

There is a growing literature that nowadays sheds light on complex-
ity features of social systems. Notable examples are firms and cities
[16, 17, 18, 49], but many others have been proposed [50, 51]. These sys-
tems are perpetually out of balance, where anything can happen within
well-defined statistical laws [52, 53]. Italian schools system seems to not
escape from the same characterization and destiny. Despite several at-
tempts of the Italian Ministry of education to reduce the class-size to
comply with requirements stated by law [47, 54, 55], no improvements
have been made and still heterogeneity naturally keeps featuring the size
distribution of the Italian primary schools.

In this chapter we characterize the statistical law according to which
the size of the Italian primary schools distributes. Using a database pro-
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3.1. Introduction

vided by the Italian Ministry of education in 2010 we show that the Ital-
ian primary school-size approximately distributes (in terms of students)
as a log-normal distribution, with a fat lower tail that collects a large
number of very small schools. Similarly to the firm-size [56, 57], we
also find the upper tail to decrease exponentially. Moreover, the distri-
bution of the school growth rates are distributed with a Laplassian PDF.
These distributions are consistent with the Bose-Einstein preferential at-
tachment process. These results are found both at a provincial level and
aggregate up to a national level, i.e. they are universal and do not de-
pend on the geographic area.

The body of the distribution features a bimodal shape suggesting
some source of heterogeneity in the school organization. The evidence of
the bimodality underlies the interplay between different processes that
define thresholds and boundaries that are very peculiar for the Italian
primary school-size distribution. The question that we attempt to ad-
dress in this chapter is whether such regularity might depend on the
complex geographic features of the Country that in turn determines the
way population (and in particular young people) distributes. We ad-
dress these questions by analyzing in depth the spatial distribution of
the schools, with particular regard to the areas where commuting is more
effortful. We then proceed by investigating the complex link between
schools and comuni, the smallest administrative centers in Italy, address-
ed by the introduction of a new binning methodology and a new spatial
interaction analysis. Our conclusions indicate that the bimodality of the
Italian primary school-size distribution is very likely to be due to a mix-
ture of two laws governing small schools in the countryside and bigger
ones in the cities, respectively.

Several examples of different regional schooling organizations are an-
alyzed and discussed. We use GPS code positions for schools in two very
different Italian Regions: Abruzzo and Tuscany. We introduce a measure
of the average spatial interaction intensity between a school and the sur-
rounding ones. We show that in regions like Abruzzo, that are mainly
countryside, a policy favoring small schools uniformly distributed across
small comuni has been implemented. Abruzzo small schools are gener-
ally located in low density populated zones, in correspondence of very
small comuni. They are also very likely to have another small school as
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closest and the median distance between them is 8 km that is also the
distance between small comuni. In Tuscany, a flatter region with a very
densely populated zone along the metropolitan area composed by Flo-
rence, Pisa and Livorno, we conversely find:

• higher school density;

• stronger interaction between small and big schools;

• greater average proximity among schools.

We address these stylized facts by arguing that the Italian primary school
organization is basically the result of a random process in the school
choice made by the parents. Primary education is not felt so much deter-
minant to drive housing choice, like in US, because of the absence of any
territorial constraint in school choice. Even if there is a certain mobility
within a comune toward the most appealing schools, primary students
generally do not move across comuni to attend a school. As a result,
school density and school-size are prevalently driven by the population
density and then by the geographical features of the territory. This gen-
erates a mixture in the schooling organization that turns into a bimodal
shape distribution.

3.2 Results

Empirical evidence

We analyze a database on the primary school-size distribution in Italy
that provides information on public and private schools, locations, and
the number of classes and students enrolled. Data are collected, at the
beginning of every academic year, by the Italian Ministry of education
to be used for official notices. Our dataset covers N = 17187 primary
schools in 2010 of which 91.31% were public. Almost seven thousands
are located in mountain territories, (which represent the 40%) and 4101

are spread among administrative centers (provincial head-towns).
In Italy primary education is compulsory for children aged from six

to ten. However, the parents are allowed to choose any school which they
prefer, not necessarily the school closest to their home, [55]. We define xi
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Figure 3.1: School-size distribution. a. Italian primary school-size dis-
tribution according to the number xi of student per school i ∈ [1, . . . , N ]

for the year 2010. The empirical distribution is drawn in blue (each cir-
cle is a bin); the red line stands for the Gaussian fit with mean µ̂ = 4.77

(µ̂/ ln(10) = 2.07) and standard deviation σ̂ = 0.85 (σ̂/ ln(10) = 0.37). On
a non-logarithmic scale, exp(µ̂) = 118 and exp(σ̂) = 2.34. N = 17187.
Statistical errors (SE) are drawn in correspondence of each bin, according
to
√
Nbin. SE are bigger in the body of the distribution and tinier in the

tails. Nevertheless, central bins space from the two peaks, m1 = 1.7 and
m2 = 2.3, at least 6 times the SE, equals on average to

√
103 = 32. In this

case the probability to have a non bimodal shape under our distribution is
4×10−15. b. Italian primary school-size distribution in log-log scale. As ex-
pected, the theoretical distribution has drawn as a perfect parabola (the red
curve), y = ax2 + bx+ c, such that µ̂ = −b/2a and σ̂ = −1/2a. Conversely,
the empirical distribution does not plot as a parabola, at least for what re-
gards to the tails which deviate from the log-normal. The inset figure shows
a functional form of the right tail of the empirical distribution. We plot the
cumulative distribution, P (X > xi) = exp(−αxi), of school sizes in semi-
logarithmic scale with characteristics size α = 0.0084. This in turn means
that there are approximately 120 students per school.

the size of the school i ∈ [1, . . . , N ] as the number of students enrolled in
each school. Fig. 3.1(a) shows the histogram of the logarithm of the size
of all primary schools in Italy. The red solid curve is the log-normal fit to
the data
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P (lnx) = exp

(
− (lnx− µ̂)2

2σ̂2

)
1√
2πσ̂

(3.1)

using the estimated parameters µ̂ = 4.77 (µ̂/ ln(10) = 2.07), the mean of
the lnx of the number of students per school, and its standard deviation,
σ̂ = 0.85 (σ̂/ ln(10) = 0.37). On a non-logarithmic scale, exp(µ̂) = 118

and exp(σ̂) = 2.34 are called the location parameter and the scale pa-
rameter, respectively [58]. The histogram in Fig. 3.1a suggests that log-
normal fits data quite well. However, even a quick glance reveals that
there are too many schools with a small dimension and much less mass
in the upper tail with respect to the fit, suggesting that the number of
students of the largest schools is smaller than would be the case for a
true log-normal. In other words, similarly with firms-size distribution
[59], tails seem to distribute differently from the log-normal distribution.
Also Fig. 3.1a reveals a bimodal shape of the school-size distribution that
we will extensively investigate below.

These findings can be detected in a more powerful way by plotting
the histogram in a double logarithmic scale, comparing the tails of the
log-normal distribution with those of the empirical one. We do this in
Fig. 3.1b where y-axes represents the logarithm of the number of schools
in the bins whereas in the x-axes the logarithm of the number of stu-
dents stands. The empirical distribution differs significantly from the
theoretical distribution which is a perfect parabola (the red curve), both
in the tails and in the central bimodal part. A functional form of the
right tail of the empirical distribution is revealed in the inset of Fig. 3.1b
where we plot the cumulative distribution P (X > x) of school sizes in
semi-logarithmic scale. The straight line fit suggests that the right tail
decreases exponentially P (X > x) = exp(−xα) with a characteristics
size α = 1

120 . This in turn means that there are approximately 120 stu-
dents per school and also that the distribution of large schools declines
exponentially. The exponential decay of the right tail of size distribution
is consistent with Bose-Einstein preferential attachment process and is
observed in the distribution of sizes of universities and firms.

Next we investigate the growth rates of elementary schools. Since
temporal data are not currently available, we look at the single academic

35



3.2. Results

year, the 2010, and define the growth rate gi as follows:

gi ≡
x1
i − x5

i∑5
j=1 x

j
i

= λi − µi, (3.2)

where xji stands for the number of students attending the j-th grade in
school i, with j ∈ [1, 5]; λi ≡ x1

i /
∑5
j=1 x

j
i is the fraction of students

that have been enrolled in the first grade at six years old in school i,
whereas µi ≡ x5

i /
∑5
j=1 x

j
i is the fraction of students that exit the school

after the 5-th grade. Fig. 3.2a shows the relation between growth rate
gi and school-size xi. The numbers of grades j provided by each school
i, named Ji, is defined by the color gradient bar on the right side of the
Fig. 3.2a. Blue circles identify schools with Ji = 1. Such a group collects
schools just established only providing the 1-st grade, i.e. with λi = 1

and µi = 0, or that are going to close providing only the 5-th grade, i.e.
with µi = 1 and λi = 0. As soon as more grades are provided (colors
switching to the warm side of the bar) schools tend to cluster around a
null growth rate.

In Fig. 3.2b we investigate the growth/size relationship in depth.
We demonstrate the applicability of the Gibrat law that states that the
average growth rate is independent on the size [60, 61]. We define the
average of the school size in each bin c as 〈xi〉c. The number of school in
each bin nc is represented by the size of the circle and the average number
of grades 〈Ji〉c is depicted according to the color gradient on the right
side (the same of Fig. 3.2a). Independently from the size and the number
of grades provided, schools do not grow on average. Nevertheless, we
find more variability in smaller schools, apart from schools with xi < 10,
namely hospital-based schools mostly similar to one another, and the
standard deviation of the growth rate σg(〈xi〉c) is found to be decreasing
as 〈xi〉−βc with school-size by a rate of β ≈ .60 (subFig. 3.2b inset). This
is consistent with what has been found for other complex systems like
firms or cities [13, 14, 56, 62, 63, 64].

In Fig. 3.3a we study the growth rate distribution, where the prob-
ability density function P (g = gi) of growth rate has been plotted. The
blue line represents the full sample (all the schools) distribution. Black
and red colors identify the full capacity schools (Ji = 5) and the schools
with Ji < 5, respectively. Regardless of the number of grades provided,
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Figure 3.2: The growth rate and school-size relationship. The growth rate
gi is defined according to Eq. (3.2). a. Colors, according to the vertical bar
on the right-hand side of the graph, are the number of grades Ji provided
by the school i. Smaller schools (in blue) with Ji = 1 are both the newest
one (just created, with λ = 1) and schools that are going to close (with
µ = 1). They can also be schools that do not grow yet providing just one
grade (i.e. j = 3). b. The mean growth rate clusters around zero across
different subsets c that are differently populated by nc schools according to
the size of the circles. The color of the circles stand for the average number
of grades Ji (the same gradient color bar of Fig. 2(a) is used here). The
variability within each cluster c is shown in the inset figure. Apart from
schools with xi < 10, namely hospital-based schools mostly similar to one
another, the standard deviation is found to be decreasing with school-size
by a rate of β ≈ .60.

the growth distribution underlines a Laplace PDF in the central part of
the sample [65]. The not-fully covered schools show a three peak behav-
ior, where the left peak represents schools which are going to close, the
central peak gathers schools that provide several grades but still in equi-
librium phase, and the right peak is made up by the growing schools.
Fig. 3.3b reports empirical tests for the tails of the PDF of the growth rate
of the full sample (the upper one in blue, and the lower one in black).
The asymptotic behavior of g can be well approximated by power laws
with exponents ζ ≈ 4 (the magenta dashed line), bringing support to the
hypothesis of a stable dynamics of the process [62]. All these findings are
consistent with the Bose-Einstein process according to which the size dis-
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Figure 3.3: The growth rate distribution of the Italian primary schools
in 2010. a. The probability density function P (g = gi) of growth rate
has been plotted underlying a Laplace PDF in the body around P (g) = 1

and P (g) ≈ 10−1.5. Blue triangles (4) stand for the full sample distribu-
tion, black circles (◦) indicate mature schools with Ji = 5, and red stars (∗)
schools with Ji = 1. b. The plot reports empirical tests for the tails parts of
the PDF of growth rate, the upper one in blue (◦), and the lower one in black
(�). The asymptotic behavior of g can be well approximated by power laws
with exponents ζ ≈ 4 (the magenta dashed line).

tribution has an exponential right tail, a tent-shaped distributed growth
rate gi, with a Laplace cap and power law tails, the average growth rate
is independent of the size, and the size-variance relationship is governed
by the power law behavior with exponent β ≈ 0.5 [66].

3.2.1 City size and school size

Fig. 3.1a features the coexistence of two peaks, the first peak correspond-
ing to log10 xi ≡ m1 = 1.7 and the second one to log10 xi ≡ m2 = 2.3,
divided by a splitting point in correspondence of log10 xi ≡ m̄ ≈ 2.1.
The school sizes corresponding to these features are µ1 = 10m1 = 50,
µ2 = 10m2 = 200, and µ̄ = 10m̄ = 128, with µ̄ approximately equal to
the average school size. 39% of the Italian primary schools distribute on
the right of µ̄, and more than 60% distribute on the left side. We test the
alternative hypothesis of unimodality by looking at the probability that
the numbers of schools in the two central bins n1, n2 are not smaller and
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the numbers of schools in the next three bins n3, n4, n5 are not larger than
a certain number n∗ provided that the standard deviation of the number
of schools in these bins due to small statistics is

√
n∗. This probability

is equal to p(n∗) =
∏
i erfc(|ni − n∗|/

√
2n∗)/2 and it reaches maximum

pmax ≈ 4 × 10−15 at n∗ = 980. Accordingly, we establish the bimodality
with a very high confidence. This is also consistent with the bimodality
index that we find to be equal to δ = (µ1 − µ2)/σ = .45, [67].

In this section we investigate the source of this heterogeneity that we
find to be related to geographical and political features of the country and
remarkably to the size of the comuni, the smallest administrative centers
in Italy (information on comuni are provided by the Italian statistical in-
stitute, ISTAT), also here referred interchangeably as cities regardless of
the size, pk. A particular treatment is devoted to the nexus between the
school-type (private versus public) and the geographical features of the
comuni in the supplementary information, where we show that private
schools are much less variable in size than public schools and have a nar-
row unimodal distribution peaked at approximately 100 students which
contributes to the left peak of the entire school size distribution (Figure
3.14).

We denote a comune with letter k = [1, . . . ,K]. In 2010,K = 8, 092 co-
muni have been counted in Italy, the 40% of which located in the moun-
tains. We define M the set of mountains comuni and, accordingly, we
call school i a mountain school iff it resides in a comune k ∈ M (in the
sec. 3.5 we explain the mechanism according to which Italian comuni
are classified as mountains). Each city k has nk ≥ 0 schools (more than
15% of the cities have no schools) and population pk, which distributes
approximately as a log-normal PDF (see Fig. 3.4a), except for the right
tail that is distributed according to a Zipf law, i.e. pk ∼ r(pk)−ξ with
slope ξ ≈ 1 [15, 16, 18, 68, 69]. In Fig. 3.4b we find ξ ≈ .80, in Italy,
that is exactly the slope of the power law pk ∼ r(nk)−ζ which links the
population pk with the rank of this city in terms of number of schools nk
(blue circles in Fig. 3.4b), i.e. ζ = ξ ≈ .80. This means that the first city,
Rome, has almost the double number of schools than Milan, and triple of
Naples, while Rome has almost the double of inhabitants of Milan, and
the triple of Naples. This amounts to say that nk is a good proxy for the
city-size.
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Figure 3.4: Cities features. a. The Italian city-size distribution for K =

8092 observations. Blue circles stand for each city-bin whereas the red solid
line draws the log-normal fit of the data. Conversely to the school-size dis-
tribution depicted in Fig. 3.1a, the city-size PDF features single-peakedness,
but similarly it has a power-law decay in the upper tail. b. Zipf plot for Ital-
ian cities according to the size pk and the number of schools nk. The black
line draws the classical Zipf plot pk ∼ r(pk)−ξ, with cities ranked accord-
ing to population pk. Blue circles instead depict the Zipf plot pk ∼ r(nk)−ζ ,
with cities ranked according to the number of schools nk. Consequently, the
sample reduces to M = 6726 over N = 8092 since more of the 15% of the
cities have no schools.

We use the number of schools to assign comuni to different clusters
h ∈ [1, . . . ,H], according to

h = {∀ k ∈ [1, . . . ,K] : 2h−1 ≤ nk < 2h}. (3.3)

Accordingly, the first bin h = 1 gathers all the comuni with only one
school; the second one collects all the comuni with nk = [2, 3], and so on.
Though we find the average population 〈p〉h to increase across different
city-clusters h, less comuni Kh lie in more populated clusters (the ma-
genta and black lines in Fig. 3.5a). Interestingly, we find the interaction
term Kh〈p〉h, the green line in Fig. 3.5a, to distribute uniformly across
different comuni-clusters, meaning that in small comuni with nk = 1

live the same population than in bigger ones with much more schools.
Nevertheless, population is differently composed across city-clusters

and a smaller fraction of young people is found in smaller comuni. To
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Figure 3.5: Population features. a. Each comune is assigned to 8 clusters,
according to Eq. 3.3, and scattered against population, the magenta line (◦)
and the number of cities Kh, the black line (�). The interaction term, Kh ∗
〈p〉h, the green line (4), represents the total population living in each city-
cluster h. b. According to Eq. 3.4 K cities are assigned to C = 16 clusters.
In the x-axis the number of inhabitants in cluster c = {7, 22} is scattered
against the average number of schools (magenta line (4)) and the average
school-size 〈x〉c (the black line (�)). The interaction term (◦), representing
the typical number of schooling-aged population in cluster c, s̃c = 〈x〉c∗〈n〉c
distributes as a power law with coefficient β ≈ 1 for cities bigger than 103

inhabitants, and it is drawn in green. For smaller comuni, instead, the line
drops meaning that a smaller fraction of young people features them.

see that we also introduce a clusterization of comuni according to popu-
lation. Each comune is assigned to a cluster c ∈ [1, . . . , C] composed by
all the comuni k with population pk ranging from ψc−1 to ψc, i.e.

c = {∀ k ∈ [1, . . . ,K] : ψc−1 < pk ≤ ψc}. (3.4)

Setting the parameter1 ψ = 2 yields C = 23 clusters. Although the first
seven sets are empty because no comuni in Italy has less than 128 inhab-
itants, the first (non-empty) cluster, c = 8, collects very small comuni
with pk ∈ (128, 256]. The last one, c = 23, conversely, is composed by the
biggest cities with pk ∈ (222, 223]. In Fig. 3.5b we plot the average number

1It is possible to change the value of ψ without having any effect on the shape of the
distributions
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Figure 3.6: City vs. number schools. School-size distribution for differ-
ent city-samples clustered according to the number of schools, i.e. to Eq.
3.3. Only comuni with nk = 1 show a single peak school-size distribution,
clustered aroundm1 (the +-red line on the top). They have an average pop-
ulation of 2000 inhabitants and the 81% are located in mountain territories.

of schools 〈n〉c (magenta line) and the average school-size 〈x〉c (the blue
line) against the comuni size pc for each non-empty cluster c. We find
that the average number of schools increases as a power law with coef-
ficient β = 0.88. This is consistent with the literature [15, 16, 18, 69] that
has stressed the emergence of scale-invariant laws that characterize the
city-size distribution. The average school-size increases with the popu-
lation of the city reaching an asymptotic value at 〈x〉c ' 230 students per
school in the large cities. As expected, the interaction term, representing
the average number of school-aged population in comuni belonging to
cluster c, s̃c = 〈x〉c ∗ 〈n〉c, behaves linearly with the comuni size except
for small comuni with pc < 103, for which the school-aged population
constitutes a smaller fraction of the total population than in large cities.

In Fig. 3.6-3.7 we investigate the school-size distribution according
to the comuni features. To this end, Fig. 3.6 draws the distributions of
log10 xi conditionally on the number of schools, nk, in the comune k.
It yields 8 curves, one for each cluster h defined in Eq. 3.3. The first
cluster is drawn in red (+) distributing all the schools located in comuni
where only one school is provided. The orange line (◦) distributes all
the schools provided in comuni with two or three schools (i.e. h = 2);
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and so on. The interesting point of Fig. 3.6 is that only the school-size
distribution of the smallest comuni (with nk = 1) features a unimodal
shape. The reason for that relies on the fact that comuni with only one
school are geographically similar: they are the 57% of the total, with little
more than 2000 inhabitants, the 81% of which are located in mountain
territories.

The relationship between school-size and altitude is investigated in
Fig. 3.7a. Instead of conditioning on M, here we propose a more con-
sistent exercise according to which comuni are assigned to different bins
on the basis of the altitude. In such a way, we can analyze comuni with
1,000 meters above the sea differently to those with 600 meters of altitude
that would be gathered in the same clusterM throwing away informa-
tive heterogeneity. It yields 5 bins: the first bin (drawn as a blue + line)
gathers all the comuni whose altitude is lower than 125 meters above the
see level (labeled 125 in Fig. 3.7a). Comuni with an altitude between 125

and 250 meters above the sea level composed the second bin (the green
◦ line). These two distributions cluster around the second mode m2 and
in the Supplementary Information we additionally demonstrate that the
hypothesis of bimodality can be rejected for the latter distribution. How-
ever, the greater the altitude of the comuni the greater is the shift of the
correspnding school-size distribution toward the small schools and the
greater is the contribution of these comuni to the first mode m1. Such
a shift becomes evident for comuni with an altitude between 250m and
500m (red 4 line). Comuni located between 500m and 1000m (cyan ×
line) and above 1000m (purple � line) clusterize around m1.

Even the largest cities are very different from each other in terms
of their school size distribution. This heterogeneity is very likely to be
driven by geographical features. where we restrict our interest on the
largest Italian cities belonging to cluster h = 8 (and to the first two bins
in terms of altitude in Fig. 3.7a). These cities provide a number of schools
nk between 127 and 255, whose overall size distribution shows a three-
peak shape with a third peak around 300 students absent in smaller cities
(the bottom violet 4 line in Fig. 3.6). The presence of the three peaks
around 100, 200 and 300 students might suggest the presence of archi-
tectural standards of school buildings supporting these particular sizes.
However, by plotting the distribution by city, Fig. 3.7b, we show that
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Figure 3.7: School-size distribution conditional on comuni features. a.
School-size distribution for different city-samples clustered according to
the altitude. The altitude of the comune shift the school-size distribution
(shift location effect) as higher comuni are generally smaller schools. b.
School-size distribution in the six biggest Italian cities. With the excep-
tion of Rome, the hypothesis of unimodality may not be rejected in none
of the biggest cities. In particular, flatter cities, such as Milano and Torino,
mostly contribute to second mode m2, whereas in Genova, Italian city built
upon mountains that steeply ended on the sea, all the school-size distribu-
tion stands on the left side.

all the traces of trimodality disappear. In particular flatter cities, such
as Milano and Torino, mostly contribute to second mode m2, whereas in
Genova, an Italian city built upon mountains that steeply slope towards
the sea, the school-size distribution is unimodal contributing mostly to
the first mode m1.

Another way to look at the effect of geography on the comunal school-
size is to compute the fraction of large schools on the total within each
comune k:

Pk(xi > µ̄|∀ i ∈ k) ≡ nk(xi > µ̄)

nk
∀ i ∈ k, (3.5)

where nk(xi > µ̄) stands for the number of schools that, in each comune
k, are larger than the minimum µ̄ of the school-size distribution shown in
Fig. 3.1a. It can also be interpreted as the contribution rate of a comune
k to the second mode m2. The upper panel of Fig. 3.8 diagrammatically
explains how Pk(·) is computed.
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Figure 3.8: Fraction of large schools in comune k. The panel above shows
the process according to which each comune, with population pk defined by
the size of the the black circles, is assigned to either patterns on the basis of
the size of the schools provided in there (the small blue circles). The panel
below shows that more populated clusters of cities are, on average, more
likely to have schools sized around m2. The relationship, depicted in blue,
is however non monotonic. In correspondence of each bin h, the standard
deviations has been computed, underlining the outstanding variability in
very small cities (the green line).

We firstly study the relationship between Pk(·) and population, then
looking at the spatial distribution across the Italy. In Fig. 3.8, we clus-
terize comuni according to Eq. 3.3, and for each bin h we compute the
average 〈Pk(xi > µ̄|∀ i ∈ k)〉h and population 〈pk〉h. Interestingly, the
plot shows that Pk(·) does not increase monotonically with population,
demonstrating the existence of two city-patterns. More precisely, cities
with less than 104 inhabitants follow a pattern according to which the
fraction of big schools, with xi > µ̄, increases, on average, with popula-
tion at a rate of β1 ≈ .22; in cities with more than 105 we find the effect
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Figure 3.9: Spatial distribution of cities according to Pk(xi > µ̄|∀ i ∈ k).
Warmer territories stand for cities more likely of having schools distributed
around m2. The two figure inset underline the region around Milan (in the
North), on the top, and the regions of Basilicata (mostly mountain, at the
left side) and of Apulia (mostly flat, at the right side), on the bottom. Maps
generated with Matlab.

of population to be smaller, corresponding to β2 ≈ .15. For the cities
with population between 104 and 105, the fraction of large schools does
not increase with size suggesting that exogenous shocks such as altitude,
rugged terrain and age might shift a city in this transition zone to either
mode m1 or mode m2.

Overall, the distribution of Pk(xi > µ̄|∀ i ∈ k) is strongly correlated
with the geographical features of the comuni territory. The map in Fig.
3.9 clarifies this point; all the mountain territories, Apennines that repre-
sent the spine of the peninsula and the Alps on the northern side, turns to
be comuni with small schools, since the share of small schools in moun-
tain comuni is equal to P (xi ≤ µ̄|k ∈ M) = 0.72. As soon as the proba-
bility to contribute to m2 increases the colors get warmer; but this is very
unlikely to be in mountain territories, because less than 30% of moun-
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tain comuni contribute to the antimode. Some regional patterns are also
shown in the insets. The first upper panel depicts the area around Milan,
which is surrounded by warm colors that mostly dye the Pianura Padana
around. On the south side, Apennines approach and colors get blue with
a lot of comuni with no schools (depicted in white). This pattern is more
evident in the lower panel, which maps the region of Apulia, flat and
mostly red, and the Basilicata on the left side, mountainous and mostly
blue colored.

3.2.2 Countryside versus dense regions

In this last section, we bring more evidence on the effect of geography
and comuni organization on the school-size by restricting our attention
at two Italian regions: Abruzzo and Tuscany. But same results stand by
looking at regions with the same geographical features. The two regions
have very peculiar and representative geographical and administrative
characteristics. Abruzzo is a mostly mountain region with a little flat
seaside; it has four main head towns divided from each other by moun-
tains. Conversely, Tuscany has many flat zones in the center and the
mountain areas shape the region boundaries. Remarkably, it has a very
high densely populated zone along the metropolitan area composed by
Florence, Pisa and Livorno.

These two regions also differ in terms of administrative organiza-
tions, Abruzzo favoring the establishment of comuni with a smaller size
due to the presence of mountains. Fig. 3.10 shows the comuni popula-
tion distributions in Tuscany and Abruzzo. We clusterize comuni using
the algorithm in Eq. 3.4. As Fig. 3.10a makes clear, comuni distribute
approximately as a log-normal pdf in both regions, i.e. as a parabola in
a log-log scale (the green-◦ line stands for Abruzzo pdf, the magenta-4
for Tuscany). Nevertheless, Tuscany has bigger cities. Figure 3.10a also
shows the average number of schools as function of the population. The
fact that 〈nK〉 is less than one for small comuni reflects the fact that many
of these comuni do not provide schools. Abruzzo has a larger number of
small comuni that do not provide schools. The first bin collects comuni
with a bit more than 100 inhabitants. They are 7 in Abruzzo (none in Tus-
cany), none of them providing any school services. The second bin accu-
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Figure 3.10: Regional analysis I. a. The figure distributes the city-size in
Abruzzo (◦-green) and Tuscany (4-magenta) by plotting the number of co-
muni, Kc, against the number of inhabitants, pc. Also shown is the average
number of schools in a comune in Abruzzo and Tuscany, belonging to a bin
c defined by Eq. 3.4, by the circled- and triangled-connected lines respec-
tively. b. School-size distribution in Abruzzo (◦-green) and Tuscany (4-
magenta). Both pdf are approximately lognormal and bimodal with split-
ting point equal to 128 and 151 students per school respectively.

mulates 10 comuni in Abruzzo with 300 inhabitants (none in Tuscany), of
which only one has a school. Comuni with about 600 inhabitants are 40

in Abruzzo and only 7 in Tuscany. Only 30% of them have one school in
Abruzzo while 80% of them have at least one school in Tuscany. Overall,
there are 53 comuni in Abruzzo without schools; only 3 in Tuscany.

Such a differences reflects on the school-size distribution, depicted in
Fig. 3.10b. Although primary schools distribute in both regions in terms
of size with two peaks, both Abruzzo m1 and m2 are shifted on the left
w.r.t. the Tuscany ones. The average school-size is smaller in Abruzzo
(µ̂ABR = 4.56 (µ̂ABR/ ln(10) = 1.98) versus µ̂TOS = 4.91 (µ̂TOS/ ln(10) =

2.13)), and, remarkably, the lower tail is fatter in the former region. The
cutoff for splitting the mixed distributions amounts to 128 in Abruzzo
and 151 in Tuscany, and 31% of the schools are clustered in the second
peak in the former region; P (xi > µ̄TOS |∀ i ∈ TOS) = 0.38 in the latter.

In Fig. 3.11a we show, following the same clustering technique used
in Fig. 3.8, that in both regions the fraction of big schools within comune
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Figure 3.11: Regional analysis II. a. Average fraction of big schools in
each comuni bin, defined by Eq. 3.3, in Abruzzo (◦-green) and Tuscany 4-
magenta). The plot shows that more populated comuni are, on average,
more likely to have schools sized around m2, in both regions. Yet, in moun-
tain regions, such as Abruzzo, smaller comuni have also smaller schools
on average. b. The conditional probability is plotted in the y-axis, for an
arbitrary school size x∗, as function of x∗ against the cumulative probabil-
ity P (xi ≤ x∗). The conditional probability is equal to the cumulative in
correspondence of the black line. Along these points, there is no attraction
between schools of the same size. This is not the case in both the two re-
gions.

k, Pk(xi > µ̄|∀ i ∈ k), increases monotonically with respect to the number
of inhabitants for 〈pk〉h < 20000.

In this interval, a comparison with figures for entire Italy, plotted in
Fig. 3.8, reveals that both regions follow the same national pattern. Yet,
mountain regions, such as Abruzzo, have a significantly smaller concen-
tration of big schools. In particular in Abruzzo, only about 1/10 of co-
muni with just one school, with an average population of roughly 2000,
have a school with more than 125 students. In Tuscany, they are the 25%,
about the same as national ratio. In larger comuni, with an average popu-
lation of 5000 and two schools provided (the second bin), the probability
of having big schools raises to 0.2 in Abruzzo, still smaller than Tuscany
where 〈Pk(xi > µ̄|∀ i ∈ k)〉h=2 = 0.3.

Small schools are mainly located in the countryside, and for that rea-
son they cluster together, i.e. it is more likely to find a small school near
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a small one. In Abruzzo this clustering effect is stronger than in Tus-
cany. We investigate this point in Fig. 3.11b, where we compute, and
plot on the x-axis, the cumulative probability P (xi ≤ x∗), as function of
x∗, and the correspondent conditional probability P (xt ≤ x∗|xi ≤ x∗), on
the y-axis, which is the fraction of schools with the size smaller than x∗

among the schools closest to a school of size x∗. This quantity is equal to
74% and 65% for x∗ ≡ µ̄reg in Abruzzo and Tuscany respectively, mean-
ing that there is a greater probability that a small school matches with
another of the same kind in the former region. If the conditional proba-
bility were equal to the cumulative, as indicated by the black line in Fig.
3.11b, the sizes of neighboring schools would be independent. This is not
the case in either the two regions. The probability that a small school has
a smaller nearest neighbor is larger than the probability that any school
is smaller than a given one. Indeed, the two curves (green for Abruzzo
and magenta for Tuscany) are significantly above the 45 degree line for
P (xi < x∗) < 0.6 in Tuscany and for P (xi < x∗) < 0.7 in Abruzzo. These
probability values roughly correspond to the probabilities P (xi < µ̄) in
respectively Tuscany and Abruzzo, indicating that in both regions small
schools are likely to belong to the small mountainous comuni, whose
nearest neighbors are of the same class.

We further study the attraction intensity among small schools by dis-
entangling the effect between the countryside and dense zones. To this
end, we analyze the GPS location of the schools in the two regions and,
for each school i, we compute the number of schools nim belonging within
a circle of radius rm centered at each school j. We exclude from nim all
the schools which do not belong to Tuscany or Abruzzo, respectively.
To eliminate the effect of region’s boundaries, we also compute areas
Dj
m as the areas of the intersections of these circles with a given region

(Abruzzo or Tuscany). Thus Di
m ≤ π(rim)2, because these areas do not

include the seaside and administrative territories of other regions. The
difference between two subsequent circles yields the area of the annulus
Aim = Di

m−Di
m−1. The density of schools in the area Aim is then defined

as:

ρim =
nim − nim−1

Aim
, (3.6)

and the average density of schools as function of a distance to a randomly
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selected school is

〈ρm〉i =

∑
N n

i
i −
∑
N n

i
m−1∑

N A
i
m

. (3.7)

In Fig. 3.12a red lines represent the average school-density around
all the schools in Tuscany and Abruzzo, which are 472 in the former and
1037 in the latter region. Green lines describe the average school den-
sity around a small school with xi ≤ µ̄, named S1, whereas the blue
lines describe the density around large schools, S2. 64% of the schools in
Abruzzo belong to the S1 group, 53% in Tuscany. Fig. 3.12a collects evi-
dence about the fact that small schools S1 are located in low school den-
sity zones and, accordingly, have a smaller probability to be surrounded
by competitor schools than large schools (S2) located in densely popu-
lated areas. In both regions, in fact, the green line goes under the blue
one, for at least first 50km. In particular, within this distance, in Abruzzo
the density stays almost constant at approximately 0.053 meaning that 1

school is provided every 20km2. In Tuscany, this figure goes up to 0.07,
because of a generally higher population density, but yet small.

The correlation coefficients between the school size and the distance
to it nearest neighbor are negative in both regions, but the magnitude is
quite different, equal to 0.34 in Abruzzo, that is 1.7 times greater than in
Tuscany (0.20). To reduce the noise, we proceed by clusterizing schools
according to their size. Fig. 3.12b confirms this pattern by showing that
small schools have on average more distant nearest schools. We look at
the size of each school in both regions, and we define the geodesic eu-
clidean distance between the school i and its nearest neighboring school
(which we denote by subscript t) as d(xi, xt). The binning algorithm used
is to base 2:

l = {∀ i ∈ [1, . . . , N ] : 2l−1 ≤ xi < 2l}. (3.8)

This clusterization yields 8 bins, with different average sizes plotted on
the x-axis of Fig. 3.12b. On the y-axis, we plot the average distance be-
tween the school i, that belongs to the bin l, and its nearest, i.e. 〈d(xi, xt)〉l.
Each school-bin l is depicted by green circles for Abruzzo and magenta
triangles for Tuscany. The average distance between the closest schools
decreases with respect to the average school size 〈xi〉l for 〈xi〉l > 32 in
both regions meaning that, in general, small schools are sparser than

51



3.2. Results

101 102
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Distance r i
m (Km)

⟨ρ
m
⟩ i

 

 
Abruzzo
Abruzzo S 1
Abruzzo S 2
Tuscany
Tuscany S 1
Tuscany S 2

101 102 10310−1

100

101

School Size ⟨xi⟩l

d
is
ta
n
ce

⟨d
(x

i,
x
t)
⟩ l

 

 
Abruzzo
Tuscany

b)a)

Figure 3.12: Regional spatial analysis. a. 〈ρm〉i has been plotted, based
on Eq. 3.6, and 3.7, for the region of Abruzzo (�) and Tuscany (4). The red
line draws the trajectory averaging among all the schools in Italy. Green and
blue lines stand for small schools, i.e. xi ≤ µ̄, called S1, and big schools, i.e.
xi > µ̄, called S2, respectively. b. The average distance, in km, between
the closest schools, 〈d(xi, xt)〉l, is plotted in Abruzzo (◦-green) and Tuscany
(4-magenta) with respect to the average size, 〈xi〉l. Each cluster l has been
obtained by aggregating schools with near size according to Eq. 3.8. In
Tuscany, the schools provided in small islands, at least 20km far from the
coast, have been removed in order to eliminate any artificial bias from the
spatial analysis, whereas the 18% of the schools, with no address provided
in the MIUR dataset, have been geocoded in Tuscany according to the GPS
localization of the city hall of the comune in which they stand. The average
distance between the closest schools decreases in both regions with respect
to the average size meaning that, in general, small schools are sparser than
large schools that are more likely to be located in very dense zones, like
cities.

large schools that are more likely to be located in very dense zones, like
cities. The non-monotonic behavior of this quantity for 〈xi〉l < 32 in
Tuscany can be explained by the fact that such small schools in Tuscany
are usually hospital schools which are located in densely populated ar-
eas. Whereas the schools provided in small islands, at least 20km far
from the coast, have been removed in order to eliminate any artificial
bias from the spatial analysis. The three first magenta bins are all below
the green ones, confirming, in accordance with the geographical features
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of the two regions, that in Abruzzo small schools are sparser and more
likely to be located in the countryside where the school density is low
(see Fig. 3.12a). Moreover, small schools on average have a distance to
the nearest neighbor of 4− 5km which is the average distance between a
small comune and a more school-dense one (see the Methods section).

The two regions then outline very different patterns of the school
system in the countryside. In Abruzzo small schools are uniformly dis-
tributed across small comuni, as a result of a policy favoring the dis-
aggregation of the comuni and school organization, due to a tight ge-
ographical constraint. In Tuscany, instead, a different system has been
implemented, according to geographic features and a higher population
density, where small comuni are larger and do not necessarily have small
schools, especially if they stand in very populated zones.

3.3 Discussion

We have studied the main features of the size distribution of the Italian
primary schools, including the sources of the bimodality, and we have
investigated its relation to the characteristics of the Italian cities. The fat
left tail of the distribution is the consequences of political decisions to
provide small schools in small (mostly countryside) comuni, instead of
increasing the efficiency of public transportations. This is most probably
caused by the topographical features of the hilly terrain making trans-
portation of students dangerous and costly. The evidence of this conclu-
sions is that hilly cities like Palermo, Napoli, an, above all, Genoa, with
steep mountains that end up into the sea, have higher fraction of small
schools than mainly flat cities like Torino and Milano.

The analysis of schools growth rates highlights that the schools dy-
namics follows the Gibrat law, and both the growth rate distribution and
the size distribution are consistent with a Bose-Einstein process. Alter-
natively, the exponential decay of the upper tail can be explained by a
constraint by the size of the building or a traveling distance and trans-
portation cost.

Despite our results are conducted using data on Italian primary
schools, they predict that schooling organization would be different in
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another country with different geographical features. Flat territory would
lead to open schools in the main villages allowing the children residing in
the smallest ones to travel daily. This result is additionally supported by
the fact that no territorial constraint has been imposed to the schooling
choice. Despite parents can enroll children in the most preferred school,
primary students generally do not move across comuni to attend a school.
Accordingly, we find that school density and school-size are prevalently
driven by the population density and then by the geographical features
of the territory, as a result of a random process in the school choice made
by the parents. This goes in the opposite direction with what has been
found in other countries such as USA where school choices influence res-
idential preferences of parents and drive the real estate prices in town-
ships depending on the quality of their schools [70].

The availability of new longitudinal school data will be relevant to a
more in-depth analysis and further discussions. Moreover, the availabil-
ity of data for other similar countries would favor comparison and would
be useful to assert our theory. We believe that this study, and future re-
search, can lead to a higher level of understanding of these phenomena
and can be useful for a more effective policy making.

3.4 Methods

In this section we propose a novel algorithm for the analysis of spatial
distribution of primary schools in entire Italy. This algorithm is needed if
the exact coordinates of individual schools are not available, but instead,
the centers and the territories of all the comuni are known. For each co-
mune k, we define a gravity center gk of its territory corresponding to
the GPS location of its city hall, and tk as the area of the comune admin-
istration. In Italy the city hall is located in the center of the densely pop-
ulated part of the administrative division, in order to be easily reachable
by the majority of inhabitants. We develop a novel spatial-geographical
approach consisting of a sequence of geographic regions bounded by
two concentric circles, that we exemplified in Fig. 3.13a for a comune in
Abruzzo. First we define a set Zkm of comuni whose city halls are within
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a circle of radius rkm and the center at the city hall of comune k. Formally,

Zkm = {∀ j ∈ [1, ..,K] : d(gk, gi) ≤ rkm}. (3.9)

Next we compute the number of schools provided by the comuni which
are members of set Zkm that is defined by

nkm =
∑
j∈Zk

m

nj (3.10)

and their area
Dk
m =

∑
j∈Zk

m

tj , (3.11)

where tj is the area of comuni j. Next we compute the area associated
with all the comuni in the m-th concentric annulus surrounding comune
k as the difference between the area associated with the larger circle m
of radius rkm and the area associated with the smaller circle m − 1 of
radius rkm−1, i.e. Akm = Dk

m −Dk
m−1. In Fig. 3.13a, each comune territory

is colored with different colors according to the annulus in which they
belong.

The density of schools in the area Akm is then defined as:

ρkm =
nkm − nkm−1

Akm
(3.12)

Then we compute the average density of schools around any school in
Italy as:

〈ρm〉k =

∑
K n

k
m −

∑
K n

k
m−1∑

K A
k
m

(3.13)

In Fig. 3.13b, we plot 〈ρm〉k averaged over all the K = 8092 Italian
comuni as a function of the radius rm that goes up to 103 Km across the
entire Italy. The red line represents the average school-density among all
the cities in Italy. On average, Italian comuni stand within very dense
zones providing almost 1 school per 10km2. The dense zones generally
last for 10km and, after that, a smoothed depletion zone is experienced.
However, the average distance between a comune k and a very large city
with many schools is about 100km, accordingly we see a second peak in
the average school density at distance 100km.
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Figure 3.13: Spatial analysis. a. Graphical example for a small comune
in Abruzzo of the algorithm used in Fig. 3.13b, based on the Eq. 3.11, 3.12,
and 3.13. Different comuni are colored according to the annulus in which
they belong. b. 〈ρm〉k has been plotted for a radius rkm of length 103 across
Italy. The red line draws the trajectory averaging among all the cities in Italy.
Green and blue lines stand for cities with probability Pk(xi > µ̄|∀i ∈ k) ≤
1/2, labeled M1, and Pk(xi > µ̄|∀i ∈ k) > 1/2, labeled M2, respectively.
Maps generated with Matlab.

The full sample analysis basically averages heterogeneous charac-
teristics that feature different types of comuni. The interaction among
schools can be better understood by splitting the sample according to
Pk(xi > µ̄|∀i ∈ k). In Fig. 3.13b, comuni with Pk(xi > µ̄|∀i ∈ k) ≤ 1/2,
i.e. with predominantly small schools, are named M1. The others, with
predominantly big schools, are called M2.

• M2-comuni, the blue line, are (on average) more likely to be sur-
rounded by school-dense cities. They are cities located in densely
populated areas (depicted in red in Fig. 3.9) where the school den-
sity is large (1.3 schools stand on average within 10km2). As far as
the distance increases mountainous areas (and hence M1-comuni)
are encountered and, as a result, the density of schools is found to
dramatically decrease.

• The green line describes instead cities labeled M1 where a smaller

56



3.5. Supplementary Information

school density is found. Within 10km, in fact, almost 1 school ev-
ery 20km2 are encountered on average, about the half of what we
find for the M2-comuni. This is because M1-comuni mainly stand
along the countryside (those depicted in blue in Fig. 3.9) where
school density slowly increases with distance and reach a maxi-
mum at approximately 40km, which can be interpreted as a typical
distance to a densely populated area in a neighboring mountain
valley. After this distance the density of schools around M1 and
M2 comuni behave approximately in the same way.

3.5 Supplementary Information

3.5.1 Italian private primary schools versus public primary
schools: a comparison.

In this chapter we addressed the source of the bimodality by consider-
ing all the Italian primary schools. Here we focus on the potential ef-
fect of school type on the school-size distribution. Our dataset collects
N = 17, 187 primary schools in Italy. The fraction of private schools was
always low during the past century. In Italy only the 9% of the total of
primary school are private.

The main source of primary school privatization within the coun-
try is religion. Most of the private schools are venues where education
is strictly connected with the Catholic confession. Among the private
schools more than 73% are of Catholic inspiration. Straightforward his-
torical roots are expected to explain the location of the Italian Catholic
private schools and only marginal are the geographical reasons: private
schools are in fact only the 6.54% of the mountain schools.

We defineM the set of comuni k that are in mountains that, according
to the Law n. 991/1952, are those that have at least the 80% of their ter-
ritories above the 600 meters above the sea and an altitude gap between
the higher and the lower point not least than 600 meters. Each comune k
has nk schools and a fraction of private schools in this comune defined as
P (i ∈ P|∀i ∈ k) ≡ ηk, where i is the school ID. We also define the school-
size of a private school i that resides in a mountain comune as xi∈P,M.
Analogously, xi∈P̄,M̄ stands for the size of a public school residing in a
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Figure 3.14: a. Italian primary school-size distribution disentangled by
school type (private, P , versus public, P̄) and geography (mountain, M,
versus non-mountain, M̄). b. Italian primary school-size distribution by
school-type. The blue pattern replicates Fig. 3.1a.

non-mountain comune.
Figure 3.14a shows that neither private mountain schools (P,M) nor

private schools that reside in flat territories (P,M̄) seem to contribute
significantly to the left tail of the school-size distribution. Both the (◦)
blue and the (�) black lines, respectively, depict two relatively narrow
school-size distributions around 100 students per school, the (+) green
(P̄,M̄) and the (�) red lines (P̄,M). In accordance with the results
shown in the main text, mountain public schools mostly contribute to
the left tail of the distribution. Finally, the distributions of private schools
both for mountain and flat regions are almost identical even though there
are only 449 mountain private schools and one might expect large statis-
tical uncertainty.

Figure 3.14b draws the school-size distribution without considering
geography but only distinguishing with respect to the school-type. Fre-
quencies are then shown for private (red4) and public (green�) schools
and compared with the distribution of all the Italian primary schools (in
blu ◦) that replicates Figure 1a in the main text. It confirms that private
schools play only a slight role in generating the left peak which is still
present in the the size distribution of public schools.

Figure 3.15a plots the fraction ηc = nP,c/nc of private schools among
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Figure 3.15: Private schools analysis II. a. The fraction of private schools,
ηc = nP,c/nc among all schools in bin c with a given altitude above the sea
level, χc, with respect to the total number of schools nc in that bin (∗, blue
lines). The distribution of all the schools among the altitude bins nc/N (�,
magenta lines). b. The fraction of private schools ηc = nP,c/nc among all
schools in bin c, formed by comuni with a given number of inhabitants, pc.
As a robust check we also plot in (�) magenta the distribution of schools
(both private and public) in each bin c, nc/N , versus the population.

all schools (public and private) in each bin c of comuni with given alti-
tude, against their altitude above the sea level, χc. In order to reduce the
noise, we binned comuni according to the altimetry:

c = {∀ k ∈ [1, . . . ,K] : 2c−1 < χk ≤ 2c}. (3.14)

It yields 11 bins, c ∈ [1, . . . , 11], each of them collecting comuni according
to the meters above the sea level. The figure also shows the distribution
nc/N of all the schools among the elevation bins. The figure provides
evidence that the majority of private schools (in ∗ blue) are located in
the comuni with low altitude χc < 128m. In contrast the distribution of
number schools with given altitude (both private and public, in � ma-
genta) reaches the maximum for comuni with altitude χc = 512m. The
hill-shape of this distribution can be explained by the unequal territory
covered by different bins. We conclude that there is a greater fraction of
private schools in the planes than in the mountains.

Finally, using the same binning algorithm in Eq. 3.4, Fig. 3.15b shows
strong positive correlation between the fraction of private schools ηc =
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nP,c/nc among all schools in bin c, ηc, of comuni with given number
of inhabitants, pc (in ∗ blue), confirming that the location of the Italian
Catholic private schools mainly roots in the more populated comuni.f As
a robust check we also plot in (�) magenta the distribution, nc/N , of all
schools (both private and public) among population bins c, which, con-
sistently with the analysis of Fig. 3.4-3.5, yields the Italian city-population
distribution which has a slightly skewed shape. In very small comuni
(pc < 104), where a greater quantity of schools is provided, we count
only a small fraction of private ones. Conversely, the fraction of private
schools in the large comuni is very large (e.g. private schools consti-
tute 30% of all schools located in Rome, in comparison to the 9% nation-
wide).

Large flat comuni are then very likely to be the places where most of
Italian private primary schools are located. We conclude that privatiza-
tion has been driven across the years for religious confessional purposes
rather than following the unmatched education demand in the country-
side due to the lack of the public system.

3.5.2 Testing unimodality in the school-size distributions
of flat comuni.

In this section we address concerns on bimodality on the school-size dis-
tribution of flat comuni. In the section 3.2.2 we have demonstrated that
geography is the main source of bimodality in the school-size pdf show-
ing that mountain schools clusterize aroundm1. Yet there might be other
confounding factors that might keep a second peak, i.e. m1, in the school-
size pdf of the schools that reside in flat comuni.

In Fig. 3.6b we distribute schools according to the number of stu-
dents, xi, conditional on the altimetry of comuni. As we discuss in the
section 3.2.1 this analysis gives five distributions which correspond to
different elevation bins. The PDFs of mountain schools stand on the
left and on the right we have flat schools. The (◦) green line shows the
school-size distribution for N250m = 3, 033 schools that reside in comuni
with around 250 meters from the sea level. Despite this PDF does not
show a sharp peak corresponding to m2, and thus potentially might be
bimodal, here we demonstrate that statistically the hypothesis in favor of
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unimodality can not be rejected.
To see that we use the complementary error function to estimate the

probability that the number of schools in the central bin n1 is not signif-
icantly smaller than and the numbers of schools in the neighboring two
bins n2, n3 are not significantly larger than a certain number n∗ provided
that the standard deviation of the number of schools in these bins due to
small statistics is

√
n∗:

p(n∗) =
1

2
Πierfc

(
|ni − n∗|√

2n∗

)
(3.15)

This is equivalent to test the hypothesis that the distribution is unimodal.
In the school-size distribution for schools that reside in comuni with
around 250 meters above the sea, the central bin collects n1 = 639 schools.
On either sides there are two other bins that collect n2 = 670 and n3 =

646 respectively. The probability that the distribution is not bimodal is
maximum for n∗ = 646 where it is equal to pmax(n∗ = 646) = 0.15.
Fixing a level of confidence of 0.10 we, therefore, cannot reject the hy-
pothesis of unimodality.
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Chapter 4

Diversification versus
specialization in complex
ecosystems

4.1 Introduction

Countries and firms are fundamental actors sharing complex economic
and social ecosystems. Their evolutive paths lead to structurally differ-
ent scenarios: firms are specialized entities while countries, as recently
shown, are diversified [27, 28]. This raises a question on the mecha-
nisms driving specialized entities to organize themselves into diversified
super-structures. Is diversification a matter of size, of time horizon, or
both? Are there other hidden dimensions governing the diversification
process?

A similar scenario holds in biological ecosystems [71]: species (firms)
tend to be substantially specialized, while groups of species competing
on the same ecosystem (countries), appear to be diversified. Inspired
by this argument in this paper we investigate the key mechanisms this
picture is grounded on. It has been recently shown that this kind of anal-
ogy between economic and biological systems could gives rise to fruitful
insights on elementary mechanisms [72].
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Identifying the diversification drivers at the various scales is a chal-
lenging task in all disciplines since diversification processes are ubiqui-
tous in nature [73] and economic systems [74, 75]. In our view economic
ecosystems represent an ideal (paradigmatic) playground for an empiri-
cal investigation.

We therefore analyze the distribution of revenues across production
sectors of quoted firms aggregated by country (Bloomberg database [76]).
Not surprisingly the analysis confirms that country competitiveness is
mainly driven by diversification of productive systems, while firms’ com-
petitiveness is mainly a matter of specialization. The macroscopic signa-
ture of these macro-micro level discrepancies is reflected by the nested
triangular structure of the country-sector binary matrix contrasting the
essential randomness of the firm-sector binary matrix.

We argue that this is a specific observation of a general feature of
complex systems: the shift from the macro to the micro level generally
entails the loss of those features characterizing the former level. As in
biology [77], the emerging diversification at macro level cannot be prop-
erly addressed at the level of individual species/firms. However, the
environment in which the micro level is embedded preserves a sort of a
macro level memory which enables to identify those micro level features
that could emerge at larger scales [78].

Guided by this idea we show that, in the specific case of economic
ecosystems, the microscopic feature emerging ad the macro scale is the
firm’s diversification barrier α (see fig. 4.1). Moreover the α’s of dif-
ferent countries aggregate on macro-regional (multi-country) scale. This
zoom-in zoom-out framework thus enables the identification of the proper
micro-variable selecting the emerging (aggregated) macro-properties.
This is of particular relevance in socio-economic systems, since it may
help decision-makers to select the correct variable to be acted upon at
the (micro) specialized level, in order to achieve desirable results at the
(macro) diversified level.

We are confident that this type of macro/micro level of exchange of
information is a general property of competitive environments, not con-
fined to economic ecosystems. However, in economic ecosystem the em-
pirical identification of diversification drivers is simplerfor the following
reasons:

64



4.1. Introduction

1. Micro and macro level for social ecosystems are the result of an
artificial evolution induced by mankind unlike other ecosystems
driven by Nature’s laws, making it easier to identify the right mi-
cro/macro information exchange.

2. Economic datasets, as a result of the previous consideration, are
very large and highly standardized.

3. From the lowest to the highest level of aggregation (individuals,
firms, industrial districts, regions, countries, macro-regions) there
exists a unique underlying metrics: the economic value conven-
tionally measured in terms of capital.

In this respect the traditional economic literature has extensively stud-
ied the effect of institutions, policies and economic environments un-
der which diversification has an impact on firm performance [23, 24,
25]. However, the general picture which emerges from the standard
approach is usually non conclusive as to whether diversification pat-
terns affect firm performances. Instead as mentioned, in the present
work, we find that firm performances are correlated to diversification,
but the signature of this correlation appears in a highly non-trivial way
as a selection rule which prevents firms from occupying a part of the
diversification-revenues plane. We argue that the subtleness of this de-
pendence - highly diversified firms are necessarily also highly perform-
ing while highly performing, firms can be both diversified or not - is at
the basis of the strongly debated economic literature about this field.

We also propose a simple mathematical model mimicking the firms
diversification dynamics in which firms evolve via a random walk in
a random potential. Firm’s survival rate depends on the values of the
potential in the state reached by a particular firm (firm performance)
through a parameter. This parameter models the toughness of the eco-
nomic environment in which firms compete. Surviving firms tend to
diversify in time with a given probability. Such a minimal model is able
to reproduce the main features observed in the data analysis.
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4.2 Results

The dataset we use consists of annual revenues of quoted firms disaggre-
gated into Bloomberg’s sector code and downloaded in May 2013. The
database contains about 38000 firms and about 2000 sectors.

We proceed similarly to the work of [28] where an archival export
dataset is considered to measure intangible assets determining the com-
petitiveness of countries. It is worth noticing that in both analyses the
datasets were not collected with the purpose of the analyses in which
they were subsequently used.

As previously mentioned, the identification of the diversification driv-
ers at the various scales is a challenging task in all disciplines. In Eco-
nomics, in particular, it is unclear, but crucial, how the dynamics at micro-
level determines the one at the macro-level and vice versa. This paper
aims to shed some light on this very relevant question which affects how
the economy should support the concrete implementation of economic
policy decisions with a more scientific grounding.

The analysis confirms the recent finding [28] that, contrary to classical
predictions [79], country competitiveness is mainly driven by diversifi-
cation of productive systems.

Coherently with the evidence of a triangular structure of country-
product matrix in [27, 28, 30, 31], in the present analysis the same tri-
angular feature is also found in the country-sector matrix obtained by
aggregating firms on the basis of its legal address (see sec. 4.5). The same
matrix constructed at the firm level looses its nestedness and is similar
to a random matrix with the same density (for further discussion see sec.
4.6), reflecting firm specialization. This raises a rather fundamental ques-
tion: what is the mechanism that organizes the information present into
an almost random matrix, at the firm’s level, in a nested matrix, at the
country level?

To address this issue - within the general specialization trend for com-
panies - we investigate whether there exist non trivial and country de-
pendent patterns of diversification. We identify in the revenue diversifica-
tion barrier (hereafter α) the micro signature of these country dependent
patterns. It is interesting to note that this barrier α organizes itself at
even higher level: this barrier tends to reflect geographical vicinity and
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Figure 4.1: a. The worldwide distribution of the revenue diversification bar-
rier α. The α tends to reflect the geographical vicinity and to cluster at macro
regional level. b. The scatter plot of firm revenues against firm diversifica-
tion for thee paradigmatic countries. Except for Italy the data draw a pecu-
liar shape with an evident lower boundary. The angular coefficient of this
linear boundary is what we define as the revenue diversification barrier α. c.
The histogram of α. Colors are consistent with those used in panels a. and
b.

to cluster at macro regional level. This can be observed in Fig. 4.1 panel
a where we report worldwide distribution of α.

In panel b we report the scatter plot of firms’ revenues (measured in
EUR) against the firm diversification for three paradigmatic countries.
With the exception of Italy, for all countries for which data are significant
we observe a peculiar shape in which a clear lower boundary appears
in the scatter plot. This means that while firms with high revenues can
be either diversified or not, revenues of diversified firms are necessarily
higher than non-diversified one. This suggests the existence of a revenue
diversification barrier necessary to successfully diversify in a competitive
market. In the double logarithmic space, the stiffness of this lower en-
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Figure 4.2: Diversification distance against revenue diversification barrier.
The plot shows a clear negative correlation between these two variables.
Blue and Green markets are clearly separated by both variables suggesting
that firms in diversification-prone markets tend to diversify more and more
coherently (i.e. with a smaller diversification distance). South Korea (lighter
blue) appears to be an outlier and removing it from the regression improves
the quality of the fit (PValue decreases and R2 increases)

velope naturally defines the barrier (for further details on the definition
and robustness of the measure of α see sec. 4.7).

In panel c we show the evidence for the nontrivial geographical clus-
tering of the values of α. All the countries with low diversification bar-
riers (blue) appear to belong to the Asian macro area with the notable
exception of India, Hong-Kong and the Philippines. We speculate that
these blue colored markets share a higher tolerance to diversification. In
fact the diversification success of a firm is the result of the evolution in
a competitive environment. The nature of this competition determines
the stiffness of the barrier. On the other hand, the firms competing in
green-colored markets are embedded in an environment which is oper-
ating a stronger selection of firms and consequently are characterized by
a lower survival rate with respect to their diversification opportunities.
Despite the fact that India, Hong-Kong and the Philippines are Asian
countries, it is not surprising to find them among stiff markets because
their value of α may reflect the strong anglo-saxon imprinting of the eco-
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nomic organization of these countries. Italy features an economy with
different diversification dynamics. The substantially 0 value of α char-
acterizing this market may mean that firm diversification is not driven
by market selectiveness but rather by exogenous (with respect to this
scheme) mechanisms.

To further characterize blue and green markets and consequently firm
diversification patterns, we analyze the relation between α and the aver-
age diversification coherence of firms. The average diversification coher-
ence is related to the typical distance among occupied sectors by a firm:
the greater this typical distance, the lower the coherence (mathematical
details of the definition of this measure are provided in sec. 4.8). These
two variables prove to be anti-correlated as shown in Fig. 4.2, indicating
that the difference between blue and green markets is not only a matter
of diversification barrier but also of diversification structure: firms oper-
ating in green markets tend to have revenues in sectors which are closer
than those of firms living in blue markets. In terms of diversification,
green markets are characterized by more coherent firms supporting the
argument that selection rules are stricter in these economic systems.

4.3 Model

We propose an extremely simplified model that embodies in our view
the minimal traits necessary to shed light on the meaning of the revenue
diversification barrier α. Firms are mimicked as random walkers moving
in a potential, seeking local minima. The height of such minima is rep-
resentative of a firm’s performance: the lower the value of the potential,
the better the performance. Markets (countries) differ in their tolerance
(τ ) with respect to poor performances, i.e. in the probability of a firm to
fail given its level of performance. Surviving firms, i.e. those with good
performances, have the chance (Pdiv) to diversify, while failed firms are
replaced with new ones with the lowest possible level of diversification.
Mathematical details on the implementation of the model are provided
in the sec. 4.9. By making an analogy between the performance as de-
fined in the present model and the revenues of a firm, we can observe in
Fig. 4.3 how the model produces patterns very similar to those observed
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Figure 4.3: Performance versus diversification in the model. It is possible
to observe a lower boundary extremely similar to those observed in the real
data, even in its functional form. The numbered labels indicate respectively
the phase zone in Fig. 4.4

in the real dataset. Interestingly there is still a linear lower bound in the
doubly logarithmic diversification vs. performance scatter plot. Within
this model the diversification is clearly proportional to the life span of
a given firm. The similarity between real data scatter plot and the mo-
del produced data can thus be interpreted in view of the question raised
in the introduction: diversification is a dynamic process that develops
over time and the boundary in the diversification-performance relation
is set by the competitiveness of the environment in which the economic
entities are immersed. In other words what we observe in real data is
compatible with diversification being a dynamic process that goes on as
long as a firm is able to survive. How long it will survive given its profits
depends on the tolerance of the ecosystem. The differences in tolerance
generates the differences in the diversification boundaries that we ob-
serve across countries.

The values of α have a clear dependence on τ andPdiv as shown in the
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Figure 4.4: The phase diagram of the model obtained numerically. The di-
versification barrier α decreases in tolerant ecosystems and with increasing
easiness of diversification Pdiv . The numbers indicate the phase diagram
zones explored by the model ”countries” whose scatter plot of performance
versus diversification are reported in figure 3. As green zone are populated
by high diversification barrier ”countries”, while purple zone by the lower
barrier ”countries”.

phase diagram in Fig. 4.4. In particular α decreases when the ecosystem
tolerance increases. Pdiv acts as a simple multiplier of the life span of a
firm in determining its diversification.

4.4 Conclusions

The analysis of the distribution of firm revenues across production sec-
tors aggregated by country manifests a peculiar triangular shape. This
enables us to define a country dependent revenue diversification barrier
“α”, which represents a novel macroscopic dimension driving the micro-
scopic diversification process.
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We have shown that this new macro feature shows a non trivial geo-
graphical clustering, which points out the importance and implication of
the geo-political environment in the diversification patterns. α can be in-
terpreted as the microscopic signature responsible for micro-macro infor-
mation exchange showing that though the economic complexity meth-
ods it is possible to single out the microscopic variables governing the
macroscopic dynamic.

Within our finding the microscopic firms’ differentiation dynamics
can be interpreted as a ”Darwinan” competitive process in which the
firms survival to diversification depends on the characteristics of the
macroscopical (country like) environment. To further confirm this pic-
ture, a time dependent analysis on similar data is called for. Moreover,
to better understand the meaning of this newly introduced dimension
α, a comparison with other economic country indicators could also be
implemented in the future.

4.5 Data definition

4.5.1 BICS hierarchical Classification system

The Bloomberg Industry Classification Systems (BICS) is a proprietary
hierarchical classification system, which classifies firms’ general business
activities.

BICS for stock companies contains 10 macro sectors, which represent
the broadest classification of general business activities. Each sector is
further broken down into a hierarchical system of sectors (up to 8 levels
of detail), which are classified into more narrowly defined business activ-
ities. The whole classification system counts up to 2294 unique sectors.
Each macro sector is defined by a code composed by two digits. Sectors
(or subsectors) are hierarchically defined by attaching further couples of
digits to a parent element code. The deepest sector is defined by a 16-
digits code. The figure 4.5 shows the first two levels of the Bloomberg
BICS stocks hierarchical classification system for stock companies. The
figure 4.6 shows the hierarchical tree system of BICS.
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CODE Macro*Sector CODE First*Level*Microsector
1010 Media(Content
1011 Telecom
1110 Apparel(&(Textile(Products
1111 Automotive
1112 Consumer(Discretionary(Srvcs
1113 Distributors
1114 Home(&(Office(Products
1115 Leisure(Products
1116 Recreation(Facilities(&(Srvcs
1117 Retail(Discretionary
1118 Travel,(Lodging(&(Dining
1210 Consumer(Products
1211 Dist/Whsl(P(Consumer(Staples
1212 Retail(Staples
1310 Oil,(Gas(&(Coal
1311 Renewable(Energy
1410 Asset(Management
1411 Banking
1412 Institutional(Financial(Srvc
1413 Insurance
1414 Real(Estate(Oper(&(Srvcs
1415 REIT
1416 Specialty(Finance
1510 Biotech(&(Pharma
1511 Health(Care(Facilities/Srvcs
1512 Medical(Equipment/Devices
1610 Aerospace(&(Defense
1611 Electrical(Equipment
1612 Engineering(&(Const(Srvcs
1613 Industrial(Distribution
1614 Machinery
1615 Manufactured(Goods
1616 Transportation(&(Logistics
1617 Transportation(Equipment
1618 Waste&Envrnmt(Srvc(Equip&Fac
1710 Chemicals
1711 Construction(Materials
1712 Containers(&(Packaging
1713 Forest(&(Paper(Products
1714 Iron(&(Steel
1715 Metals(&(Mining
1810 Design,(Mfg(&(Distribution
1811 Hardware
1812 Semiconductors
1813 Software
1814 Technology(Services

19 Utilities 1910 Utilities

Level(1 Level(2

10 Communications

11
Consumer(

Discretionary

12
Consumer(
Staples

13 Energy

14 Financials

18 Technology

15 Health(Care

16 Industrials

17 Materials

Figure 4.5: first two levels of the Bloomberg BICS stocks hierarchical Clas-
sification system for stock companies.
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Figure 4.6: The Figure shows the reconstruction of BICS hierarchical tree
system with its 2294 hierarchical Sectors. The colored lines show the classi-
fication levels.

4.5.2 Dataset

The Bloomberg platform collects data about firms’ revenues categorized
using BICS. The data used in this work have been downloaded from
Bloomberg platform on May 2013. The data contains information on an-
nual revenues of 38274 traded firms broken down in 2294 sectors. The
dataset covers 99 stock markets. Each firm is associated to its country
of domicile, as reported by Bloomberg. the country of domicile is the
country where the firm senior management is established legally. All
the analyses have been performed on countries where at least 100 traded
companies are domiciled. Those countries are listed in Table 4.1.

4.5.3 Data sanitation

We organize our data in a firm-sector rectangular matrix. Most of the
elements of this matrix are 0s. We perform various data sanitation pro-
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Country # Companies Country #Companies
USA 4415 SWE 272

JPN 3366 POL 250

CHN 3112 ITA 245

TWB 1433 CHE 231

KOR 1341 GRC 213

IND 1338 LKA 210

HKG 1115 ZAF 198

CAN 1035 SRB 176

GBR 970 PHL 170

AUS 834 EGY 154

MYS 794 CHL 154

DEU 620 KWT 153

VNM 605 UKR 152

RUS 567 DNK 142

SGP 554 JOR 140

THA 483 NOR 135

IDN 439 ESP 122

FRA 437 NDL 118

ISR 406 PAK 115

TUR 297 PER 113

BRA 276 SAU 109

Table 4.1: Countries where at least 100 traded companies are domiciled.

cedures in order to extract relevant information from such matrix.
From a total of 216888 non-0 entries we eliminate 7333 negative rev-

enues, since their meaning appears unclear. In particular we notice an
abnormal number of repeated identical values, which clusterize on a na-
tional basis but span on different firms. The dataset provides for each
subsector the aggregate of the firms’ revenues on that particular subsec-
tor plus the sum of the revenues of the full hierarchy of subsectors below
it. We perform the necessary subtractions to ensure that only the pertain-
ing revenue is assigned to each subsector.

4.6 Triangularity vs. randomness

The firm diversification level is the number of sectors developed by the
firm. The real binary firm-sector matrix has a density close to 0.05. We
generate a random matrix with same size and density of the real one. In
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Figure 4.7: Comparison between the real data (red) and a random realiza-
tion with same density (green). a. The firm-sector matrix exhibits a pat-
tern similar to a random case emphasizing the firm’ specialization. b. On
the contrary aggregating the data on country level a non-random pattern
emerges, corresponding to the presence of a nested structure.

figure 4.7a we show a comparison of the firm diversification, sorted by
fitness [28], between the real data (depicted in red) and the random case
(green). The two diversification trends show a similar pattern. This out-
lines the firms’ high specialization and the absence of triangular struc-
ture in the matrix. Instead, in Fig. 4.7b, the real country-sector matrix,
generated aggregating firms at country level on the basis of the legal ad-
dress, exhibits a clearly nested (triangular) structure such as the country-
product matrix [28].

4.7 Definition of the revenue diversification bar-
rier and its robustness

The diversification barrier α is measured as the slope of the lower bound-
ary of the scatter plot of diversification vs. revenues in logarithmic space.
The lower boundary is defined as the lower 5th percentile of the distri-
bution of revenues for a given diversification level.

We check the sensitivity of α with respect to a variation of the per-
centile used to define the lower bound.
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Figure 4.8: Dependency of α on different percentile cut-offs for two sample
countries. The decay is well fitted by an exponential law y = Aeβx for all
the countries examined. Values of β from regressions are shown in fig. 4.9

Figure 4.9: Each blue dot represents the coefficient β and its standard error
for a specific country. The solid red line is the average value of β on all
countries with more than 100 quoted firms. The shaded area in the plot
marks one standard deviation. Most of the countries display a consistent
decay of α with the percentile used thus making the particular choice of a
percentile not relevant.

In fig. 4.8 different values of α for different percentiles are shown, for
each country with at least 100 quoted firms. The plot clearly shows a de-
cay trend which is common to (almost) all the countries. We then study
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in detail this decay of α. In figure 4.9 we show the angular coefficient
(β) of a linear regression between the logarithm of α and the percentile,
together with the respective standard error, for each country. For the ma-
jority of the countries β lies within one standard deviation from the aver-
age (red solid line). This shows that the consistency of our analysis is not
affected by a particular choice of the percentile. Italy shows an anoma-
lous sensitivity dependence with respect to other countries. The χ2 test
over the β regressions in the fifth percentile accept the linear hypothesis
at 95% for all the countries.

4.8 Diversification coherence

As mentioned, the BICS classification itself defines a topological distance
between the codes, more precisely a tree. Each node in the tree corre-
sponds to a more fine specification of the parent element.

Relying on this information we want to develop a measure of how co-
herently a firm is diversified. In particular we want to be able to weight
diversification by a distance among the BICS categories in which diver-
sification occurs: a company diversified in many very close subsectors
might be considered less diversified than a company which has revenues
only in two very distant sectors.

To this purpose we must take into account the fact that having rev-
enues in a given sector and in one of its subsectors, at any level, does
not add to the diversification. For this reason we cannot use the simple
topological distance defined by the hierarchical tree implied by the BICS
codes. Our approach is to define a new directed network, which is de-
rived from the relations present in the BICS categorization, but with ap-
propriate distances (or link weights). On such a network we use the total
weight of the minimal (directed) spanning tree between all the nodes in
which a company has revenues as a measure of its coherency.

To this end we need to define a distance (or link weights) that needs
to have the following properties:

1. The distance between a sector and one of his subsectors must be 0
(producing pens and red pens does not add to diversification)

2. The distance between two subsectors of the same sector is propor-
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Figure 4.10: Network distance. Examples of network distance as defined in
Eq. 4.1

tional to the depth of the two subsectors (red pens and blue pens
are more far apart than red pens with wooden body and red pens
with plastic body)

3. As a consequence of the first property the distance between two
sectors (A and B) and two of their respective subsectors (Aa and
Bb) must be the same (pens are as distant from rulers as red pens
are from metal rulers)

4. The distance between a subsector and its parent element sector
must be infinite (to avoid 0 cost spanning trees between subsec-
tors).

As depicted in Fig. 4.10 this translates in the fact that the distance
between two nodes must be a function of depth of the nearest common
parent element, except when one of the two nodes is a subsector of the
other one, in which case the distance is asymmetric (0 or∞). In formulae
the distance is written as follows:
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Figure 4.11: Network examples. The resulting networks with link weights
equal to di,j for two hypothetical situations are shown in panels a and b.
On these networks minimal spanning trees are determined via the Chu-
Liu/Edmond’s algorithm

di,j =


H − h(Ai,j) if Ai,j 6= i ∧Ai,j 6= j

0 if Ai,j = i

∞ if Ai,j = j

(4.1)

where Ai,j is the nearest common janitor to the nodes i and j, h(Ai,j)

is its depth in the tree and H is the total depth of the tree plus 1. The
application of this definition is illustrated in Fig. 4.11 where the resulting
networks, with link weights equal to di,j , for two hypothetical situations
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are shown in panels a and b. On these networks minimal spanning trees
are determined via the Chu-Liu/Edmond’s algorithm [80, 81, 82].

4.9 Mathematical model for the diversification
barrier

The model described in the main text provides a very simple mechanism
that can explain the emergence of the diversification barrier α together
with its functional form. A firm is depicted as a random walker seeking
local minima in a random potential. The random potential is a realiza-
tion of a simple gaussian discrete random walk, with 0 mean and unit
variance. We generate 100 equally spaced discrete points of the poten-
tial. The potential V (x) is then made periodic via a reflection, and is
made continuous via a linear interpolation, the period being 200. Thus
V (x) = V (x+ k ∗ 200) holds for any real x and for any integer k. Finally
V (x) is scaled to have maximum equal to 1 and minimum equal to 0.

The firms’ dynamics is implemented as follows. Each firm starts at
a random x0 coordinate and is made to evolve as a brownian particle in
the potential defined by V (x). It seeks for local minima by evolving with
the Metropolis-Hastings algorithm.

At each time step a proposal x(p)
t for a new value of xt is drawn from

a gaussian distribution N(xt, σ). The parameter σ needs to be chosen
such that the typical jump distance for a firm will be inside a typical
local minima. This typical width is of order 1, by construction, thus we
have chosen σ = 0.1. The proposal is then accepted with probability
P = e(V (xt−1)−V (x

(p)
t ))/T . If the proposal is accepted we set xt = x

(p)
t else

xt = xt−1.
We define the performance of a firm as P (t) = 1 − V (xt). Every 100

time-steps we compute the average performance P in such time window:
the firm either survives with probability 1 − P τ or fails. If the firm sur-
vives it has the chance to increase its diversification of 1, with probability
Pdiv .
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