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Abstract

Despite the variety of tools and techniques deployed in order
to protect sensitive data, ranging from security types in pro-
gramming languages to anonymity protocols, data sanitisa-
tion, cryptographic algorithms, . . . , real-world systems tend
to disclose part of the information they are meant to pro-
tect. This happens either by design - when the output of the
system is public (e.g. a password checker) - or for reasons
depending on their actual deployment and implementation
(e.g. side-channel attacks against cryptographic devices).

Our work aims to study methods for analysing from a quanti-
tative point of view the behaviour of information flow in com-
puting systems, that is, the leakage of sensible information
via public outputs. In general, we are interested in studying
systems with a probabilistic behaviour, in situations where
the attacker is allowed to run these systems several times,
while the secret is kept fixed.

We analyse quantitative information flow in various scenar-
ios characterised by an increasing power of the adversary. We
start from the case of a single, passive attacker, attempting to
break the system solely based upon observed data. Then we
examine more complex settings, where we are faced with ad-
versaries that collect sequential observations, up to consider-
ing active adversaries, capable of directly interacting with the
system. In all cases, we consider one-try re-execution attacks,
where the adversary can make a single guess after observing
a certain number of independent executions of the system.
In particular, we define suitable security metrics and study
their asymptotic behaviour as the number of observations in-
creases, as well as their rate of convergence. We also consider
a number of applications of our analysis techniques.
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Chapter 1

Introduction

In this introductory chapter, we outline the motivations at the basis of
our research. We then survey the relevant literature in Quantitative In-
formation Flow and related fields. We finally discuss the contributions
provided by our study.

1.1 Quantitative Information Flow

Protecting the confidentiality of information manipulated by computer
programs is a long-standing problem. The standard way to protect con-
fidential data is (discretionary) access control, in which some privileges
are required in order to access files or objects containing confidential in-
formation (SM03). Only some legitimate users will be able to access to
the high, secret variables, while the low, public ones will be accessible to
all. The question at stake is whether, due to a program execution, some
information contained in high variables could flow into low outputs.

The ideal case is achieving non-interference, a security property stating
that high information does not interfere with low data output from the
system. In language-based security, Information Flow is a well-established
area with roots in this concept of non-interference (GM82; SM03). How-
ever, avoiding all possible information flows from secret inputs to public
outputs is often not achievable. Sometimes this loss is inevitable, since
it is the program itself that is forced to release a certain amount of in-
formation, in order to achieve its goals. This is, for instance, the case of
a password checker, which is forced to reveal that the password is not
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correct, if a wrong password is entered:

h=password;
i=input;
if i=! h then
print("Password Incorrect");

In other cases, information leakage is related to the physical implemen-
tation of a system, e.g. to execution times or termination behaviour, or
even to the emission of physical signals from a device (electromagnetic
radiations, power consumption, . . . ). This flow of information is a cru-
cial concern for security, since such signals are fairly easy to detect for
an eavesdropper and contain an amount of information about the secret
that can be valuable for an adversary.

Recent years have seen the emergence of Quantitative Information
Flow (QIF), aiming to measure information flowing from confidential to
public data, by comparing the difference between the prior and the pos-
terior attacker’s uncertainty, after collecting some observations related to
the secret:

information leaked = prior uncertainty − posterior uncertainty.

QIF relies on tools from Information Theory and is related to sev-
eral fields, such as information flow in programming languages, side-
channels analysis in cryptographic hardware and software, anonymity
protocols and so on. The basic idea is tolerating small leaks of infor-
mation, below an accepted predefined threshold, and, at the same time,
ensuring that safety guarantees and security requirements are met. This
may result in more flexible analysis than the rigid safe/unsafe classifica-
tion provided by traditional Information Flow techniques.

This thesis aims to study methods for analysing from a quantitative
point of view information flow in various attack scenarios, characterised
by an increasing power of the adversary. To have an overview of the
different scenarios one can be faced with, let us see some examples. Con-
sider a program, or protocol, P , which receives a high input H and pro-
duces a low output L. An adversary, observing L, might be able to learn
information about H . The point is quantifying the amount of informa-
tion that can be inferred by the adversary. The high input H and the low
output L can be represented as two random variables, taking values re-
spectively in H and L. Assume that the probability distribution of H is
known to the attacker. If P is a deterministic program, then the output L
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can be seen as a function of H : L = P (H), with P : H → L. For example,
supposeH = {0, 1}32 and consider the program

P1: l = h mod 4

that, taken h as input, a 32-bit unsigned integer, outputs its two least
significant bits. The set of observations is L = {00, 01, 10, 11}. This way,
the attacker, through the observation of the output l, can learn the two
least significant bits of the high value h.

For deterministic programs, once fixed the input, the output is de-
termined. Hence, there is no reason to consider the case of re-execution,
where we allow the attacker to re-run a program several times, main-
taining fixed the secret input. However, in Security, programs are of-
ten probabilistic, either because of the presence of noise or by design. In
this case the analysis of the multi-run case is fundamental. In real-world
situations, indeed, re-execution may happen either when forced by the
attacker (as in the case of an adversary querying several times a smart-
card), or by design (as in the case of routing paths established, repeatedly,
between a sender and a receiver in anonymity protocols like Crowds
(RR98)). A probabilistic program can be modeled by a conditional pro-
bability matrix, containing all probabilities of the form Pr(L = l|H = h).
Consider, for instance, the following program:

P2: l = h +rnd(-1,1) mod 4

where rnd(1,-1) denotes a random number taking values in the set
{−1, 0, 1}. Intuitively, if the program can be ran just once, the informa-
tion leaked is not much. However, if we consider the case of re-execution,
the amount of information leaked increases. In the program above, for
instance, after one execution, an attacker can only eliminate, from the set
of possible values, those that present the last two bits differing by 2 from
the output. Re-running the program several times, instead, with high
confidence he can determine the last two bits of the input.

So far, we have considered attack scenarios where the adversary is a
passive eavesdropper, attempting to break the system solely based upon
observed data. The situation changes if we consider an active adversary,
for example able of controlling part of the input (untrusted input). In
this scenario, the re-execution case concerns also deterministic programs,
since at each run the attacker can alter the untrusted input and observe
the effect on the output. Consider the following program (& denotes the
bitwise AND operator):
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P3: l = h & u

that takes as inputs two 32-bit integers h and u, where h is the high input,
while u is the untrusted one. Let U = {2i|i = 0, . . . , 31} be the set of un-
trusted inputs. Then, if u = 2j for a certain j ∈ {0, . . . , 31}, this program
outputs the jth bit of h. After one run, an attacker can only learn this
value, discovering just a bit of h. Trying all possible values u ∈ U , he can
completely determine h. In this case, we try to prevent the attacker from
learning sensitive information by re-running the program with modified
untrusted inputs and observing the public output.

1.2 Literature Review

In this section, we survey the literature in QIF and in related fields.

1.2.1 Quantitative Information Flow

The last few years have seen a flourishing of research on quantitative
models of information flow. In the context of language-based security,
Clark et al. (CHM01) first motivated the use of mutual information to
quantify information leakage in a setting of imperative programs. Bo-
reale (Bor09) extended this study to the setting of process calculi and
introduced a notion of rate of leakage (albeit with a different technical
meaning than that we have studied in this thesis). In both these works,
the considered systems do not exhibit probabilistic behaviour.

The work by Chatzikokolakis, Palamidessi and their collaborators
(CPP08a; CPP08b; BCP09) is closely related to our approach. (CPP08a)
examines information leakage mainly from the point of view of Shan-
non entropy and capacity, but also contains results on asymptotic error
probability, showing that, independently from the input distribution, the
ML rule approximates the MAP rule. (CPP08b) studies error probability
mainly relative to a single observation, but also offers a lower-bound in
the case of repeated observations.

Smith shows in (Smi09) that the concept of mutual information is not
very suitable for modeling the information leakage in scenarios where
the adversary attempts to guess the value of the secret in one single try.
As an alternative, he proposes to use another metric, based on Renyi
min-entropy.

Compositional methods based on process algebras are discussed in
(BCP09). In this case, the average ML error probability is characterised
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in terms of MAP error probability under a uniform distribution of inputs.
(BCP09) introduces the notion of additive leakage, comparing it to the
min-entropy based leakage considered by Smith (Smi09), but again in
the case of a single observation.

A model of “unknown-message” attacks is considered by Backes and
Köpf in (BK08). This model is basically equivalent to the information hid-
ing systems considered in (CPP08a; CPP08b; BCP09). Backes and Köpf
too consider a scenario of repeated independent observations, but from
the point of view of Shannon entropy, rather than of error probability.
Similarly to our studies, they rely on the information-theoretic method
of types in order to determine the asymptotic behaviour of the consid-
ered quantities. An application of their setting to the modular exponen-
tiation algorithm is the subject of (KD09), where the effect of bucketing
on security of RSA is examined. This study is extended to the case of
one-try attacks by Köpf and Smith in (KS10), that also offer a general
lower bound on the attacker’s error probability after a certain number of
observations.

A drawback of most of the approaches so far considered is that they
focus exclusively on the quantitative aspect of the analysis (how much
is leaked), while ignoring the qualitative aspect (what is leaked) at all.
Bérard, Mullins and Sassolas in (BMS10) study the notion of probabi-
listic opacity. Nevertheless, (BMS10) is based on Shannon entropy and
considers observations consisting on a single run of the system, rather
than repeated observations, hence it does not tackle statistical attacks.

Focusing on more powerful attacks, Köpf and Basin in (KB07) con-
sider a scenario of adaptive chosen-message attacks. They offer an algo-
rithm to compute conditional Shannon entropy in this setting. However,
they do not study its asymptotic behaviour, which seems, indeed, very
difficult to characterise. Their analysis is conducted essentially on the
case of uniform prior distributions and is limited to deterministic mech-
anisms.

Information flow in interactive systems is studied by Alvim et al. in
(AAP12). They describe these systems as probabilistic automata where
secrets and observables alternate in the execution. Information theo-
retically, they characterise them as channels with feedback, giving a
Shannon-entropy based definition of leakage.

Birgisson and Sabelfeld in (BS11) tackle the concept of multi-run secu-
rity of a system. Through the use of policies, they set a lower bound on the
attacker’s uncertainty, by partitioning the set of states into classes. They
then verify the robustness of programs, including in the case of several
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runs, varying all possible secret inputs, according to their policy com-
pliance. They consider imperative programs, ignoring the probabilistic
case.

A quantitative model of integrity is discussed by Clarkson and
Schneider in (CS10). They study what happens when the adversary can
control a part of the input. In particular, they focus on the concepts of
contamination and suppression, respectively related to the amount of un-
trusted information that contaminates the output, flowing from the un-
trusted input to the output, and to the amount of trusted information
that is totally suppressed. Even here, they study the problem mainly for
non probabilistic scenarios.

1.2.2 Side-channel analysis

Side-channel attacks against cryptographic algorithms aim at breaking
cryptographic systems by exploiting information that is revealed by the
physical execution of the algorithm. As proved by several works, by re-
peatedly measuring either the time needed by the algorithm to execute
a certain computation (Koc96), or the power consumption (JO05; KJJ99),
or electromagnetic radiation emitted by the device (GMO01; AARR02),
it is possible to get information about the secret key, thus narrowing the
search space, or even discover the key itself.

Timing (Koc96) and power analysis (KJJ99) are two flavours of
side-channel correlation attacks against cryptographic devices (BCO04;
SMY09). Another example of such attacks is given by Hamming weight
attacks, where the adversary can determine the Hamming weight of
the secret input. An application of this attack to DES is discussed in
(KSWH00). These attacks presuppose, explicitly or implicitly, that the
adversary knows the inputs processed by the target device 1.

The effectiveness of side-channel attacks represents a serious threat
to the security of devices like smart-cards, that are subject to various
kinds of measurements. This threat is not addressed by traditional no-
tions of cryptographic security. Consider, for example, attacks based on
time measurements, the so-called Timing attacks, where the attacker tries
to reconstruct the secret by sampling the duration of several independent
executions of the system. According to Kocher (Koc96), by this kind of
attack an eavesdropper is able to determine the secret exponent used in

1In some circumstances, this knowledge is granted by the application. For example, in
attacks against the final round of any Feistel cipher, the left hand of the output is also the
input of the target round function (see (KSWH00)).
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the modular exponentiation algorithm, consequently identifying Diffie-
Hellman exponents, or the factorization of RSA keys, and can break sev-
eral other encryption systems depending on such algorithm. The reason
is that the time needed to perform various computations is not fixed, but
depends on the input.

Models to quantify the resistance of a system against this kind of at-
tacks are currently being studied (BK08; KD09; KB07; SMY09). Backes
and Köpf in (BK08) analyse the case of unknown message attacks, where
the attacker does not know the input that is encrypted/decrypted by
the system. As already mentioned, they propose a model to quantify
the information leakage, depending on the number of observations col-
lected by the attacker. Köpf and Dürmuth in (KD09) consider timing
attacks and propose a countermeasure to apply to them. As a case study,
they analyse an implementation of an algorithm for 1024 bit RSA decryp-
tion. Köpf and Basin in (KB07) consider a scenario of adaptive chosen-
message attacks.

In the context of side-channel cryptanalysis, Standaert et al. propose
a framework to analyse side-channel correlation attacks (SMY09). Both
a Shannon entropy based metric and a security metric are considered.
Since correlation attacks are inherently known-message, their model pre-
supposes the explicit or implicit knowledge of the plaintext on the part
of the attacker.

1.2.3 Anonymity Protocols

Anonymous Routing is a collection of techniques that are meant to allow
users to communicate, over public networks, without revealing their
identity. Their main goal is obfuscating relations between the sender
and detectable observations, by routing the message in a random fashion
through the nodes of the network. A protocol well known of this kind is
Crowds, firstly proposed by Reiter and Rubin in (RR98) and then studied
in (CPP08a; CPP08b). Crowds is designed for protecting the identity of
the senders of messages in a network where some of the nodes may be
corrupted, that is, under the control of an attacker.

Omitting the functioning of the protocol that will be described
later on, as proved by (RR98), Crowds offers very good guarantees of
anonymity, if it is executed for only one time. The strength of the protocol
decays in presence of re-executions, when the protocol is executed sev-
eral times, either forced by the attacker himself (e.g. if corrupted nodes
suppress messages) or by some external factor, and the sender is kept

7



fixed through the various executions. As showed by Reiter and Rubin
(RR98), in the case of re-execution it is recommended to use static paths,
that is, when sending a message several times to a same receiver, it is
recommended to follow the same path instead of randomly choosing it.
The increasing dynamism of the paths, indeed, tends to decrease the pro-
tections of anonymity offered by the system against the corrupted set of
collaborating users.

Concerning the level of anonymity offered by Crowds, both (RR98)
and (CPP08a) analyse it, showing that, with respect to a corrupted user
the so-called Strong Anonymity is no longer guaranteed, that is, it is no
longer true that observations give no information about the secret, i.e.
the identity of the sender. However, if the number of corrupted nodes is
not too big, the protocol can still satisfy the Probable Innocence, meaning
that the probability that the detected user coincides with the real sender
is not greater than the sum of the individual probabilities corresponding
to each other user.

In order to guarantee anonymity to both sender and receiver and
at the same time hide the content of the message, Goldschlag, Reed
and Syverson in (GRS96) propose Onion Routing. The idea is to protect
the transmitted information, including sender and receiver’s IP address,
through a series of cryptographic layers, that can be removed only by
certain users and in a precise order.

1.3 Structure of the thesis and contributions

This thesis aims to analyse, mainly from a quantitative point of view, the
information leaked during a system implementation, addressing several
attack scenarios, through which the adversary’s power is refined. We
start from the case of a single passive attacker, that can only passively
collect observations related to system executions and attempt statistical
attacks, to arrive to active adversaries, able to directly interact with the
system. In particular, we study what happens when the system presents
a probabilistic behaviour, in the case of one-try attacks and system re-
execution, where the adversary can make a single2 guess after observ-
ing several independent executions of the system, throughout which the
secret is kept fixed.

2As proved by Smith in (Smi09), this is not a limitation and we can easily adjust the
result of a one-try case to another one where the adversary has more possibilities to guess.
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We outline the structure of the rest of the thesis and the contributions
we provide as follows.

• In Chapter 2 we recall some basic notions of Information Theory,
required to introduce the security metrics we will use in the fol-
lowing chapters.

• In Chapter 3 we analyse two attack scenarios, where we are faced
with a passive attacker. In the first scenario, the attacker di-
rectly targets the secret, while in the second one he targets some
predicates of the secrets. We define a security metric, we study
its asymptotic behaviour as the number of collected observations
(system re-executions) increases, and provide simple and tight
bounds, showing that the convergence is exponential. The second
scenario allows us to analyse the previous scenario from a quali-
tative point of view, aiming to discover not only how much infor-
mation is leaked, but also what is leaked. This chapter is based on
(BPP11a; BPPar; BPP11b).

• In Chapter 4 we analyse a more sophisticated eavesdropping sce-
nario, where the attacker is still passive, but this time is able to
collect sequential observations, one for each computation step. We
extend the model described in the previous chapter, introducing
Hidden Markov Models, and propose an algorithm to characterise
the asymptotic behaviour of the security metric. This chapter is
based on (BPP11a; BPPar).

• Turning to scenarios with more powerful adversaries, in Chapter 5,
we propose a model to analyse threats posed to confidentiality and
integrity of probabilistic systems by a class of active adversaries.
Akin to (BS11), we assume an attacker that can control part of the
input, which we deem as untrusted. We focus on the non-adaptive
case, studying the asymptotic behaviour of the attacker’s uncer-
tainty. Given the computational difficulty of directly computing
bounds and rate, we propose a sub-optimal, but reasonably effi-
cient, attack strategy, that allows one to compute a lower bound
of the rate. Moreover, we analyse the problem of declassification
policies (used to state what information can be released) and quan-
tify how serious is a violation of the policy, if any. Concerning the
issue of integrity, then, we assess the inherent risk of any decision
strategy to determine whether a system is under attack or not. This
chapter is based on (BP12a).
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• The case of adaptive active adversaries, capable to adaptively query
the system according to the passed observations, is addressed in
Chapter 6. We present a general information-theoretic model to
study the limits of adaptive adversaries. A central theme of our
study is the comparison of adaptive and non-adaptive attack strate-
gies. Relative to a generic uncertainty function, we: (1) characterise
the maximum information leakage achievable by adaptive adver-
saries and show that it can be also achieved with non-adaptive
strategies; (2) in terms of strategies length, contrast the efficiency
of adaptive against non-adaptive adversaries; (3) point out that
maximum information leakage over a given finite horizon can be
expressed in terms of a Bellman equation, which can be used to
compute optimal finite strategies recursively. All in all, our re-
sults indicate that, for reasonably powerful adversaries, there is no
dramatic difference between adaptive and non-adaptive strategies,
even from the point of view of analysis. These results are based on
(BPar).

• Chapter 7, finally, contains some concluding remarks and discus-
sion of future works.
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Chapter 2

Preliminaries on
Information Theory

In this chapter we recall some preliminary notions of Information Theory,
such as Shannon and Rényi entropy, mutual information and Kullback-
Leibler distance, necessary to understand the content of this thesis.

In the following, let X be a discrete random variable taking value in
a finite set X and let p(·) be its probability density function (denoted as
X ∼ p(·)), that is:

for all x ∈ X p(x) , Pr(X = x).

From now, on all the logarithms are taken with base 2.

2.1 Shannon Entropy

Definition 2.1.1 (Shannon Entropy) Let X be defined as above. Then,
Shannon Entropy of X , denoted as H(X), is defined by:

H(X) , −
∑
x∈X

p(x) log p(x).

By convention, 0 · log 0 = 0. 1

1Such convention is consistent with the fact that limx→0 x log x = 0.
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Measured in bits, H(X) quantifies the a priori uncertainty on the value
taken by X . That is, it expresses the number of bits that are missing to
completely determine this value.

Remark 2.1.2 By definition, Shannon entropy only depends on the distribution
p(·) of X. So, we can rewrite it in the following way:

H(X) = H(p) = −
∑

i∈{1,...,|X |}

pi log pi,

where pi , p(xi), with xi ∈ X .

Example 1 Consider a coin flipping. Suppose that we know the probability of
obtaining head (H) or tail (T ). The result of the coin flipped can be represented
as a random variable X taking values in {H,T}. If the coin is fair, then our
uncertainty is maximum, since we can obtain either outcome with the same
probability, 1

2 . In this case, therefore, we have the maximum entropy, given by
H(X) = 2( 1

2 · log 2) = 1. This means that we need 1 bit of information to
identify the result. Suppose now that the coin is unfair. For example, assume
that it gives value H with a probability q > 1

2 . In this case, it is more likely
that the result is head and so the entropy will be smaller: H(X) = −q log q −
(1 − q) log(1 − q) < 1. This means that, on average, we need less than one
bit of information to determine X . The extreme case happens when the coin is
totally biased, e.g. it yields H with probability 1. In this situation there is not
uncertainty on the value of X , because there is only one possible result and so
the entropy is 0.

Remark 2.1.3

• The uncertainty increases as the number of possible values that X can
take on increases and as its distribution approaches the uniform one over
X ;

• clearly we can define the entropy also for a vector of variables,
(X1, . . . , XN ), defined respectively over X1, . . . ,XN . In this case, we
consider the joint distribution p(·), such that p(x1, . . . , xn) , Pr(X1 =
x1, . . . , Xn = xn):

H(X1, . . . , XN ) , −
∑

(x1,...,xn)∈X1×...×Xn

p(x1, . . . , xN ) log p(x1, . . . , xN ).
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Proposition 2.1.4 For each random variable X taking values in X , we have:

0 ≤ H(X) ≤ log |X |

where on the left the equality holds if and only if X is a constant, while on the
right if and only if X is uniformly distributed.

Example 2 Let X be the random variable corresponding to the result obtained
throwing a die. Suppose we cannot see the outcome. Let us compute our uncer-
tainty, that is, the number of bits we need to exactly determine the result. If the
die is fair, there are 6 equiprobable outcomes, so the uncertainty is maximum:

H(X) = 6
(1

6
· log 6

)
= log 6 ≈ 2.58 bits.

If the die is heavily loaded, in such a way to yield always the same outcome, for
example 5, in this case the uncertainty is 0, because

H(X) = 1 · log 1 = 0 bits.

Finally, consider an intermediate case, where the outcome 5 has probability 1
2 ,

while all the others have probability 1
10 . Here, the uncertainty is lower than in

the fair case (log 6 = log |X |), but greater than in the previous one. Indeed we
have:

H(X) =
1

2
· log 2 + 5

( 1

10
· log 10

)
≈ 2.16 bits < log 6.

As mentioned before, entropy quantifies the concept of a priori un-
certainty. Let us now consider the a posteriori uncertainty, that is, the
uncertainty left after the observation of a certain event. Let Y be the ran-
dom variable that represents this event and let Y be its set of values. In
the following, we will denote by p(x|y) the conditional probability that
the event X = x occurs, given the event Y = y, that is:

p(x|y) , Pr(X = x|Y = y).

Definition 2.1.5 (Conditional Shannon entropy) Given two random vari-
ables X and Y defined on the same probability space, the conditional Shannon
entropy of X , given Y , denoted by H(X|Y ), is given by:

H(X|Y ) ,
∑
y∈Y

p(y)H(X|Y = y),
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where:
H(X|Y = y) , −

∑
x∈X

p(x|y) log p(x|y).

H(X|Y ) expresses the average uncertainty that remains on the value
of X , once Y is known.

Proposition 2.1.6 Let X and Y be two random variables. Then:

• 0 ≤ H(X|Y ) ≤ H(X), with equality on the right if and only if X and Y
are independent;

• H(X,Y ) = H(Y ) +H(X|Y ) (chain rule);

• H(Y,X) = H(X,Y ).

The first item states that the uncertainty about X , on average, de-
creases after the observation of Y . Moreover, the uncertainty stays the
same if and only if the two variables are independent each other. The
second item, called chain rule, allows us to decompose the uncertainty
about a pair of variables (X,Y ) into two parts: the a priori uncertainty
about Y and the uncertainty that remains about X , given the value of Y .
The chain rule is very useful, mainly because it often allows one to deter-
mine the entropy relative to a pair of variables (X,Y ) without having to
directly compute their joint distribution. The third item, finally, allows
one to exchange the roles of the two variables in the chain rule.

Remark 2.1.7 In general, the relation H(X|Y = y) ≤ H(X) does not hold.
For example, if X represents a loaded die that with probability 0.99 returns 1,
otherwise a value different from 1, then H(X) ≈ 0. Assume we throw the
die, without being allow to see the outcome, and assume to be informed that the
number obtained is different from 1. Then, H(X|X 6= 1) = log 5 > H(X).
However, since the event that increases the uncertainty is very unlikely, when
we compute the average it has a very little weight.

Example 3 Let us come back to Example 2, where X is the variable represent-
ing the outcome of a fair coin toss. Let Y be another random variable, taking
values in {0, 1}, representing the parity of the outcome, such that Y = 0 if the
outcome is even, otherwise Y = 1. Suppose we get to know the value of Y .
Then, it is easy to see that the average uncertainty that remains about X , after
observing the value of Y , is less than the a priori one. Intuitively, indeed, when
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we get to know, for example, that the outcome is even, that is Y = 0, the possible
values of X are reduced to 3:

H(X|Y = 0) = 3(
1

3
· log 3) = log 3.

The same result is obtained when Y = 1. Let us compute now the conditional
entropy:

H(X|Y ) =
1

2

(
H(X|Y = 0) +H(X|Y = 1)

)
=

1

2
(2 · log 3)

= log 3 ≈ 1.58 bit < H(X) = log 6.

We can now define the mutual information, linking entropy and condi-
tional entropy.

Definition 2.1.8 (Mutual Information) Given two variables X and Y , the
mutual information of X and Y, denoted by I(X;Y ), is:

I(X;Y ) , H(X)−H(X|Y ).

I(X;Y ) expresses the reduction of uncertainty that we have aboutX ,
once Y is known.

Example 4 Let us come back to Example 3 and compute the reduction of un-
certainty we have about X, the outcome of the die, after observing the value of
Y , representing its parity.

I(X;Y ) = H(X)−H(X|Y ) = log 6− log 3 ≈ 1 bit.

This means that the observation of the event Y has reduced uncertainty by 1 bit.

Lemma 2.1.9 Mutual information is symmetric, that is:

I(X;Y ) = I(Y ;X).

This shows that I(X;Y ) is also a measure of the information that is shared
by the two variables. In other words, the reduction of uncertainty that
we have about any of them, once we know the other one.

The worst case, that is the the maximum mutual information we can
have, is called capacity and defined as follows.
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Definition 2.1.10 (Capacity) Given the variables X and Y , let P be the set of
possible distributions p(·) on X . Then the capacity is given by:

C , max
p∈P

I(X,Y ).

Capacity measures the maximum rate at which the information can be
transmitted.

Let us consider now the case when we have more than two variables.
The following theorem is an important result, that allows one to express
the joint entropy as the sum of the corresponding conditional entropies.
It also gives an upper bound of it, as the sum of the marginal entropies.

Theorem 2.1.11 Let X1, . . . , Xn be random variables, taking values respec-
tively in X1, . . . ,Xn. Then:

H(X1, . . . , Xn) =

n∑
i=1

H(Xi|Xi−1, . . . , X1), (2.1)

H(X1, . . . , Xn) ≤
n∑
i=1

H(Xi), (2.2)

with equality if and only if the variables Xi’s are independent.

Shannon entropy is not the only measure to express uncertainty.
Moreover, it measures the average number of binary questions we should
ask to completely determine the value of the considered variable. In the
following sections, we will introduce two other metrics, related to differ-
ent notions of uncertainty.

2.2 Guessing Entropy

A metric that is directly connected to the difficulty of correctly guessing
the value of a random variable, through an exhaustive search (“brute
force” attacks) is given by the guessing entropy, discussed by Massey in
(Mas94), albeit not under this name.

Definition 2.2.1 (Guessing Entropy) LetX be a random variable taking val-
ues in X and with distribution p(·). Without loss of generality, assume that
the elements of X are ordered by decreasing probability, such that for each
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xi, xj ∈ X , we have p(xi) ≥ p(xj) if i ≤ j. Then, the guessing entropy
of X , denoted by G(X), is defined by:

G(X) ,
∑

1≤i≤|X|

p(xi) · i.

G(X) measures the average number of questions of the form “Is
X = x?” we have to ask to completely determine the value of X , fol-
lowing an optimal strategy (Mas94), that is, starting with the most likely
value and proceeding in this way, up to the one with the least probability.
Differently from Shannon entropy, it is not measured in bits.

An important result that links the two kinds of entropy we have just
seen is the following, due to Massey (Mas94).

Theorem 2.2.2 Let X be a random variable. If H(X) ≥ 2, then

G(X) ≥ 2H(X)−2 + 1.

If we think of X as a secret information to be protected, then G(X)
says us how many optimal questions, like “IsX = x?”, the attacker needs
on average to ask in order to break the system, starting from the most
likely values. The above theorem shows us that such number increases
exponentially with H(X), the a priori Shannon entropy of the secret.

Example 5 Reconsider the case of the loaded die of Example 3. Recall that, with
probability 1

2 , the outcome is 5, while, with probability 1
10 , any of the other val-

ues. Following an optimal strategy, we will start asking if the outcome coincides
with 5, then we will try the other values. The guessing entropy is then:

G(X) = 1 · 1

2
+ (2 + 3 + 4 + 5 + 6) · 1

10
=

1

2
+ 20 · 1

10
= 2.5 questions.

Let us check Theorem 2.2.2. Since H(X) = 2.16 > 2, we obtain

2(H(X)−2) + 1 = 20.16 + 1 ≈ 2.12 ≤ 2.5 = G(X).

Definition 2.2.3 (Conditional Guessing Entropy) Let X and Y be two
random variables, taking values respectively inX and Y . Then, the conditional
guessing entropy of X , given Y , denoted by G(X|Y ), is:

G(X|Y ) ,
∑
y∈Y

p(y)G(X|Y = y),
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where
G(X|Y = y) ,

∑
1≤i≤|X|

p(xi|y) · i.

G(X|Y ) represents the average number of optimal questions we need
to ask in order to correctly determine the value of X , once known the
value of Y . Theorem 2.2.2 can be extended to the conditional entropies
via the following proposition.

Proposition 2.2.4 Given two random variables X and Y , assuming values re-
spectively in X and Y, with Y = F (X) for some function F : X → Y , then, if
H(X|Y ) ≥ 2, we have:

G(X|Y ) ≥ 2(H(X|Y )−2) + 1.

2.3 Min-entropy

Shannon and guessing entropies provide strong bounds about the av-
erage effort needed by a potential attacker to completely determine the
secret information. But as Smith points out in (Smi09), they do not take
into account the fact that, in some cases, such effort can be arbitrarily
high, even if the probability itself of guessing the secret with only one
question (one-try attacks) is quite high. This fact is demonstrated in the
following example.

Example 6 ((Smi09)) Let h be a positive integer of 8k bits, for some integer
k ≥ 2, that is 0 ≤ h < 28k, chosen uniformly at random. ThereforeH(h) = 8k.
Let us consider the following program:

if h mod 8 = 0 then
l:= h;

else
l:= 1;

It is possible to prove that the average resistance of such program, that is, the
residual uncertainty, given the value of the output l, is:

H(h|l) = 8k −
(7

8
log

8

7
+ 28k−3 · 2−8k log 28k

)
≈ 7k − 0.169. (2.3)

Let us consider now another program
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l:= h mod (k+1);

Such program leaks k + 1 bits compared to the total 8k bits of h. Therefore the
residual uncertainty is:

H(h|l) = 8k − (k + 1) = 7k − 1. (2.4)

Comparing (2.3) and (2.4), the two programs seem to oppose comparable levels
of resistance against brute force attacks. Taking a closer look, however, we note
that, while in the second program the probability of guessing the value of h with
only one try is 1

27k−1 , in the first one, instead, with probability 1
8 the secret h

will be completely leaked: such probability is unacceptably high. The problem is
due to the fact that Shannon entropy only gives the average number of binary
questions required to break the system. Apparently, this is not tightly related to
the probability of guessing the secret with only one question.

This motivates yet another form of uncertainty, this time related to
the attacker’s error probability in the case of one-try attacks.

Definition 2.3.1 (Error probability) Let X and Y be two random variables,
taking values respectively in X and Y . The a priori error probability of X is:

Pe(X) , 1−max
x∈X

p(x),

while the a posteriori error probability, after observing the event Y , is:

Pe(X|Y ) ,
∑
y∈Y

p(y)Pe(X|Y = y)

where:
Pe(X|Y = y) , 1−max

x∈X
p(x|y).

Concretely, let X represent the secret information to be protected and
Y be an observation related to X , that can be collected by an attacker.
Consider then the complement of Pe, that is the success probability for the
attacker, given by

Psucc = 1− Pe.

The success probability measures the maximum probability that the ad-
versary correctly guesses the value of X in one try.

It is sometimes convenient to use a logarithmic measure.
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Definition 2.3.2 (Min-entropy) Given a random variable X taking values in
X , min-entropy of X , denoted by H∞(X), is given by:

H∞(X) , − log (Psucc(X)) = − log max
x∈X

p(x).

Given another variable Y , taking values in Y , the conditional min-entropy of X
given Y is

H∞(X|Y ) , − log (Psucc(X|Y )) = − log
∑
y∈Y

p(y) max
x∈X

p(x|y).

H∞(X) measures, in bits, the difficulty of a potential attacker to cor-
rectly guess the value of X in one try. The reason why it is denoted with
the letter H , like Shannon entropy, with subscript ∞, is due to the fact
that it is a particular case of the Rényi entropy (Rén61), defined by:

Hα(X) ,
1

1− α
log
(∑
x∈X

(
p(x)

)α)
.

Min-entropy corresponds to the limit case that we have when α → +∞,
while Shannon entropy corresponds to the other limit case, when α→ 1.
By definition, min-entropy satisfies the equality

Psucc(X|Y ) = 2−H∞(X|Y ),

Min-entropy related measures provide a strong security guarantee,
showing us that the attacker’s probability of guessing the secret, given
a certain observation, decreases exponentially with the conditional min-
entropy H∞(X|Y ).

Also in the case of min-entropy we can compute the reduction of un-
certainty that we have after observing some events.

Definition 2.3.3 (Min-entropy leakage) Given two random variables X
and Y , we define min-entropy leakage as the difference between the a priori
uncertainty about X and the a posteriori one, once Y is known, in min-entropy
terms. Denoting such value with I∞(X;Y ), we have:

I∞(X;Y ) , H∞(X)−H∞(X|Y ) = log
Psucc(X|Y )

Psucc(X)
.

As Smith shows in (Smi09), the fact that we are confining ourselves to
a single try may seem unreasonable, because often the attacker has more
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than one possibility. However, if we consider vulnerability against at-
tacks where the adversary can make a certain number n of attempts and
denote with Pnsucc the correspondent success probability, the following
inequalities hold, for all n ≥ 1:

Pnsucc(X) ≤ n · Psucc(X)

Pnsucc(X|Y ) ≤ n · Psucc(X|Y ).

Therefore, we can study what happens in the case of one-try attacks (a
single attempt) and then use the obtained results as an upper bound for
the case of n-tries attacks.

2.4 Kullback-Leibler distance and the Method
of Types

Another very useful concept is the Kullback-Leibler distance.

Definition 2.4.1 (Kullback-Leibler distance) Given a random variable X ,
taking values in X , and two probability distributions p(·) and q(·), both defined
on X , then the Kullback-Leibler distance (or divergence) between p(·) and
q(·), denoted by D(p‖q), is defined by:

D(p‖q) ,
∑
x∈X

p(x) log
p(x)

q(x)
,

with the convention that 0 log 0
q(x) = 0 and p(x) log p(x)

0 =∞ if p(x) > 0.

Note that Kullback-Leibler distance is not a real distance: for example, it
is not symmetric, nor satisfies the triangle inequality. It is also true that,
like real distances, it satisfies the property that it is always non negative
and equals 0 if and only if its two arguments coincide, as expressed by
the following theorem (CT06, Theorem 2.6.3).

Theorem 2.4.2 (Gibbs Inequality) Let p(·) and q(·) be two probability dis-
tributions defined over the set X . Then

D(p‖q) ≥ 0

with equality if and only if p(x) = q(x) for all x ∈ X .
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D(p‖q) measures the inaccuracy, or the information divergence, that we
would have, assuming that the distribution of X is q(·), when the true
distribution is in fact p(·).

Let us now illustrate the Method of Types, a very powerful tech-
nique, introduced by Csiszàr and Körner (Csi98), in order to study the
behaviour of a set of sequences with the same empirical distribution.

Definition 2.4.3 (Type) Let x = (x1, . . . , xn) ∈ Xn one of their realisations.
The type tx(·) (or empirical distribution) of x is the relative proportion of oc-
currences of each symbol of X in x. That is, for each symbol x ∈ X , we have:

tx(x) ,
n(x,x)

n
,

where n(x,x) denotes the number of times the symbol x occurs in x.

From now on, given the number n of considered random variables,
we will denote with Pn the set of types with denominator n.

Definition 2.4.4 (Type class) Let Pn be defined as above and let p(·) be one
of its element. Then, the set of sequences of length n and whose type is p(·) is
called type class of p(·) and denoted with T np :

T np , {x ∈ Xn|tx(·) = p(·)}.

Example 7 Given X = {1, 2, 3}, a ternary alphabet, let x = (2, 1, 3, 3, 2).
Then, the type of x is:

tx(1) =
1

5
, tx(2) =

2

5
, tx(3) =

2

5
.

The type class of tx is the set of sequences of length 5 with one occurrence of 1,
two occurrences of 2 and two occurrences of 3, that is:

T np = {(1, 2, 2, 3, 3), (1, 2, 3, 2, 3), . . . , (3, 3, 2, 2, 1)}.

The cardinality of T (p) is 5 ·
(

4
2

)
= 30: we have 5 possibilities of choosing the

position of 1, each of which has to be multiplied by
(

4
2

)
, that are the possibilities

of choosing the positions of 2. The remaining positions will be occupied by 3.

One of the results which makes the Method of Types so powerful is
given by the following theorem, that shows that the number of types
with a certain fixed length n is at most polynomial in n.
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Theorem 2.4.5 (Theorem 11.1.1, (CT06)) Let Pn and X be defined as above.
Then:

|Pn| ≤ (n+ 1)
|X |
.

This theorem says that there exists only a polynomial number of types
of length n. Since the number of sequences of such length is exponential
in n, it means that there exists at least one type class containing an expo-
nential number of sequences.

Let us finally see other three important results that will be useful in
the next chapters:

Theorem 2.4.6 (Theorem 11.1.2, (CT06)) Let x = (x1, x2, . . . , xn). Then,
the probability of x under q(·) is given by

q(x) ,
n∏
i=1

q(xi) = 2−n
(
H(tx)+D(tx‖q)

)
.

The probability q(x) depends only on the type of x, tx(·), and de-
creases exponentially with the Kullback-Leibler distance between this
type and the real distribution q(·).

Theorem 2.4.7 (Theorem 11.1.4, (CT06)) For any p(·) ∈ Pn and any distri-
bution q(·), the probability of the type class T np under q(·) is

1

(n+ 1)|X |
2−nD(p‖q) ≤ q(T np ) ≤ 2−nD(p‖q).

Theorem 2.4.8 (Equation (11.67), (CT06)) Let ε be a positive real and Unε (q)
be the set containing the sequences of length n whose type is distant from q(·)
less than the value ε, that is:

Unε (q) , {x ∈ Xn : D(tx‖q) ≤ ε}.

Then, the probability of obtaining sequences whose type is distant from q(·) more
than ε decreases exponentially respect to the considered length n:

q((Unε (q))
c
) ≤ (n+ 1)

|X |
2−nε, (2.5)

where by (Unε (q))
c we denote the complement set of Unε (q) in Xn.
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2.5 Chernoff Information and rate of conver-
gence

Another important concept that will be useful later on is the rate of con-
vergence, defined as follows.

Definition 2.5.1 (rate) Let f : N→ R+ be a nonnegative, monotonically non-
increasing function. Let γ = limn→∞ f(n). The rate of f is defined as the
nonnegative quantity

ρ(f) , − lim
n→∞

1

n
log(f(n)− γ) (2.6)

whenever this limit exists. We further say that f reaches δ at rate ε if
there is a nonnegative, monotonically non-increasing function h such that
limn→∞ h(n) ≤ δ, ρ(h) ≥ ε and f(n) ≤ h(n) for each n large enough.

Note that we admit rates of 0, as well as of +∞. In our case, the
study of the rate of convergence is fundamental. Indeed, once chosen
a resistance metric to measure the security of a system, the knowledge
of its limit value is important to have an upper bound of the amount
of information that can be leaked, but we are also interested in the rate
at which this value is reached. The following example will clarify the
reason.

Example 8 Consider f(n) = α+ β2−nλ1 + γ2−nλ2 , for some nonnegative α,
β and γ, and 0 < λ1 < λ2. Then f(n)→ α and ρ(f) = λ1. On the other hand,
since f(n) ≤ h(n) = α+ β+ γ2−nλ2 , one has that f reaches α+ β at a higher
rate of λ2. Figure 1 displays a plot of three functions, characterised by identical
values of α = 0.1, γ = 0.01, λ1 = 0.01, and λ2 = 2, and by three different
values of β: β = 0.1 (top curve), 0.01 (middle curve) and 0.001 (bottom curve).

One can see that although the convergence to the limit value, 0.1 for
all of them, is extremely slow, convergence to the value 0.11, which is
only slightly higher, in the third case is very fast. A system with an error
probability function of this shape should not be considered secure. It
is for this reason that, when we analyse the asymptotic behaviour of a
system, we cannot simply compute the limit values of the uncertainty
function and, according to it, decide if the system is secure or not.

When we study the rate of convergence an important role is played
by the Chernoff information.
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Figure 1: Slow rates of convergence do not guarantee security.

Definition 2.5.2 (Chernoff information) Given two distributions p(·) and
q(·), their Chernoff Information is defined as:

C(p, q) , − min
0≤λ≤1

log
∑
o∈O

pλ(o)q1−λ(o), (2.7)

with the convention that C(p, q) =∞ if supp(p) ∩ supp(q) = ∅.

As we will see later on, in Section 3.2.2 (Proposition 3.1.6, Theorem
3.1.7), if we consider the attacker’s error probability and we analyse its
asymptotic behaviour, a lower bound of it is given by the least Chernoff
information between any two conditional probabilities over the set of
observations.
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Chapter 3

Passive attackers

In this chapter, we propose two models aiming to analyse different at-
tack scenarios. In both of them we consider one-try attacks and system
re-execution and we deal with passive attackers, not able to interact with
the system, collecting a single observation for each execution of the sy-
stem. The differences between these scenarios are the following ones: in
the first case the attacker directly targets the states of the system; in the
second one, instead, he targets properties related to the states. For both
these scenarios, we describe the asymptotic behaviour of error probabi-
lity and information leakage as the number n of collected observations
goes to infinity. We show that the asymptotic values of these quanti-
ties can be determined in a simple way from the channel matrix. More-
over, we provide simple and tight bounds on error probability and on the
leakage as functions of n, showing that the convergence is exponential.
We also discuss feasible methods to compute the rate of convergence.
More generally, we give bounds on the rate at which a chosen probabi-
lity threshold can be reached.1.

3.1 Passive attackers targeting states

We start with the simple scenario of a single passive eavesdropper, aim-
ing to recover the secret from the collected observations.

1It may well be the case that, even if the asymptotic rate to the limit value is extremely
slow, convergence to the chosen threshold is very fast, leading to consider the system inse-
cure.
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3.1.1 A basic model: Information Hiding Systems

We will consider a generic information hiding system2 (IHS), that is a
program, protocol or device carrying out computations that depend pro-
babilistically on a secret piece of information, such as a password, the
identity of a user or a private key, whose aim is obfuscating the possible
relations between the secret and the observations detected by a poten-
tial attacker. As shown in Figure 2, we can view an IHS as a channel,
that takes as input a secret and gives as outputs an observation. The use
of this model in the field of QIF was promoted by Chatzikokolakis et al.
in (CPP08a). Usually, we talk about noisy channels, since for each input
there are (several) different outputs, each of which can be obtained with
a certain probability, as shown in Figure 3.

Definition 3.1.1 (Information Hiding System) An information hiding
system is a quadruple

H , 〈S,O, p(·), p(·|·)〉 ,

where: S = {s1, . . . , sm} is the finite set of states, representing the secret infor-
mation, O = {o1, . . . , ol} is a finite set of observables, containing all possible
observations that can be collected by the attacker, p(·) is an a priori probability
distribution on S and p(·|·) ∈ [0, 1]S×O is a conditional probability matrix,
where each row sums up to 1.

The matrix p(·|·) is also called channel matrix. The entry of row s and
column o will be written as p(o|s), and represents the probability of ob-
serving o, given that s is the (secret) input of the system. For each s, the
row of the matrix corresponding to s is identified with the probability
distribution o 7→ p(o|s) on O, denoted by ps(·).

The probability distribution p(·) on S and the conditional probability
matrix p(o|s) together induce a probability distribution q(·) on S × O
defined as q(s, o) , p(s)·p(o|s), hence a pair of random variables (S,O) ∼
q(·), with S taking values in S and O taking values in O. Note that S ∼
p(·) and, for each s and o such that p(s) > 0, Pr(O = o|S = s) = p(o|s).

Before proceeding with the description of the attack model, let us con-
sider four systems and explain how we can view them as IHS’s. We will
use them as simple running examples throughout this chapter.

2The term information hiding system here has no connection with the literature on water-
marking. It simply denotes a randomisation mechanism.

27



p(o|s)S O

Figure 2: An information theoretic-channel.
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Figure 3: An information hiding system as a noisy channel.

Example 9 (Crowds) The Crowds protocol (RR98) is designed for protecting
the identity of the senders of messages in a network where some of the nodes may
be corrupted, that is, under the control of an attacker. Omitting a few details,
the functioning of the protocol can be described quite simply: the sender first for-
wards the message to a node of the network chosen at random; at any time, any
node holding the message can decide whether to (a) forward in turn the message
to another node chosen at random, or (b) submit it to the final destination. The
choice between (a) and (b) is made randomly, with alternative (a) being assigned
probability pf (forwarding probability) and alternative (b) probability 1 − pf .
An instance of Crowds execution is shown in Figure 4. The rationale here is
that, even if a corrupted node C receives the message from a node N (in the
Crowds terminology, C detects N), C, hence the attacker, cannot decide whether
N is the original sender or just a forwarder. In fact, given that N is detected,
the probability of N being the true sender is only slightly higher than that of
any other node being the true sender. So the attacker is left with a good deal of
uncertainty as to the senders identity.

We can view Crowds (RR98) as an IHS where the secret is the sender’s iden-
tity, while observations are the identities of users that forward the message to a
corrupted node, thus being detected. We have: S = O is the set of honest users
(i.e. possible senders), p(s) is the prior probability of s being the real sender and
p(o|s) is the conditional probability of detecting o when the real sender is s.
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Figure 4: An instance of the Crowds protocol.

Example 10 (Modular exponentiation algorithm) A typical implementa-
tion of modular exponentiation works as follows. The bits of the secret expo-
nent are scanned from right to left, or vice-versa. When the ith bit is considered
(0 ≤ i < N ), either only a squaring or a squaring and a multiplication are
performed, depending on whether the i-th bit is 0 or 1. Hence, the lower the time
needed to execute the exponentiation, the higher will be the amount of bits equal
to 0 contained into the exponent (the secret key).

We can view it as an IHS where: S = K = {0, 1}N is the set of private keys,
i.e. the possible secret exponents, over which we assume a uniform distribution;
O = {t1, t2, . . .} is the set of possible execution times; p(t|k) is the probability
that, depending on the deciphered message, the execution of the algorithm takes
time t, given that the private key is k. To be more specific concerning the last
point, we assume an underlying set of messagesM, with a known prior distri-
bution pM (m), and a function3 time :M×S → O that yields the duration of
the execution of the algorithm when its argument is a given pair (m, k). Then
the entries of the probability matrix p(t|k) can be defined thus

p(t|k) ,
∑

m∈M:time(m,k)=t

pM (m).

Example 11 (Hamming weight attacks against S-boxes) S-boxes, or
substitution boxes, are a fundamental component in most symmetric key block
ciphers (e.g. DES), aiming to obscure the connection between plaintext and
ciphertext. In the case of DES, an S-box, as illustrated in Figure 5, can be

3A more realistic modeling would make time(m, k) a joint probability distribution. This
modification would not substantially affect the final result.
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described as a function that takes as an input a pair of a message and a key and
yields as an output a block of ciphertext, SB : K×M→ C, where: K = {0, 1}6
is the set of keys, M = {0, 1}6 is the set of messages and C = {0, 1}4 is the
set of ciphertexts. Let us assume a uniform prior distribution on K and some
known prior distribution onM, say pM (·).

Similarly to (KSWH00), we assume the attacker can create a side-channel
delivering him the Hamming weight of the target S-box output. This is a plausi-
ble scenario, since, in an unprotected implementation, either the execution time
or the power consumption relative to a S-box computation might be more or less
closely related to the Hamming weight of the result. Based on this assumption,
(KSWH00) carries out a statistical attack against the last round 4 sub-key of
DES. Similar assumptions are also at the basis of the chosen-message model,
more recently proposed in (SMY09).

To the S-box thus described there corresponds an IHS where: S = K, O =
{0, 1, 2, 3, 4} is the set of observables, i.e. the set of possible Hamming weights,
and p(o|k) is defined as

p(o|k) ,
∑

m∈M:W (SB(m,k))=o

pM (m)

where W (·) is the Hamming weight function.
In a more realistic scenario, the attacker could not directly measure the Ham-

ming weight of the target S-box, but rather the global weight of the eight S-boxes
composing the round function of DES. This scenario can be modeled as a noisy
version of the previous one. The Hamming weight of the target S-box, O, is now
disturbed by the noise N , given by the sum of the Hamming weights of the re-
maining seven S-boxes, say W2, . . . ,W8, as shown in Figure 5. Assuming that
the variables Wi are independent from each other and from O and identically
distributed – this is not strictly true, but seems a reasonable approximation –
the central limit theorem would tell us that their sum N =

∑8
i=2Wi has ap-

proximately a normal distribution. Here, for simplicity we modelN as a discrete
random variable having binomial distribution B(n, p) with n = 28 and p = 1

2 .
What is observed by the attacker now is O′ , O + N . Hence the new set of
observables is O′ = {0, . . . , 32}. Explicitly, for each i ∈ O′ and k ∈ K, the
entries of the new conditional probability matrix p′(·|·) are given by

p′(i|k) , Pr(O +N = i |K = k) =

min{i,4}∑
j=0

p(j|k) ·
(

28

i− j

)
· 2−28 .

4The last round is crucial since the message part of the S-box input is known to the
attacker.
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Figure 5: Functioning of DES S-boxes and noisy version of the Hamming
weight attack.

Example 12 (Unlinkability in Threshold Mixnets) Statistical attacks a-
gainst anonymity protocols may take advantage of sender-receiver relationships
that remain fixed through repeated rounds of the protocol. Let us consider the
case of a mix network, a concept due to Chaum (Cha81). In a mix-network,
messages are relayed through a sequence of trusted intermediary nodes, called
mixes, in order to hide sender-receiver relationships (unlinkability). In the
scenario we consider, a single mix is used by a number of senders and receivers.
The threshold of the mix is b + 1: at each round, the mix waits for b + 1 mes-
sages from the senders and then distributes the messages to the corresponding
receivers. We consider the situation where one of the senders is always Alice,
with her receiver being always a node Bob, initially unknown to the attacker.
The recipients of the remaining b messages are assumed to be chosen at random
in a set of nodes R1, . . . , RN . A similar scenario is at the basis of the statistical
disclosure attack by Danezis (Dan03). We analyse the situation of a local eaves-
dropper that observes one fixed receiver, say Rj , and after each round is able
to tell whether at least one message has reached Rj . More sophisticated forms
of eavesdropping could be easily accommodated (e.g. attacker observing all the
nodes), but would not change significantly the outcome of the analysis. The task
of the attacker is to discover which node is Bob.

We can model the scenario described above by an IHS H where: the set of
states is given by all possible nodes (potential receivers of Alice’s messages), that
is S = {R1, . . . , RN}, with pS(Ri) = 1

N for each i = 1, . . . , N ; the set of
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observations is O = {0, 1}, where O = 1 if and only if Rj has received at least
one message at the end of the round. The conditional probability matrix p(·|·) is
given by the following equalities:

p(0|Rj) = 0 p(1|Rj) = 1

p(0|Ri) = (1− 1
N )

b
p(1|Ri) = 1− (1− 1

N )
b for each i 6= j.

Here, the first row means that if Bob=Rj then the attacker will observe at least
one message with certainty. The second row means that, in case Bob is any
node different from Rj , then the attacker will observe 0 messages only if all the
b messages – that is, all messages of the batch, other than the one sent to Bob –
are not sent to Rj (Alice surely does not send to Rj). In other words, except for
a permutation of the rows, we have the matrix below, where the last row refers
to the observed node Rj .

(1− 1
N )

b
1− (1− 1

N )
b

...
...

(1− 1
N )

b
1− (1− 1

N )
b

0 1

 .

3.1.2 An attack model with repeated observations

Let us discuss now the attack scenario we will analyse. Given any n ≥ 0,
we assume the adversary is a passive eavesdropper that gets to know
the observations corresponding to n independent executions of the sy-
stem, on = (o1, . . . , on) ∈ On, throughout which the secret state s is kept
fixed. Formally, the adversary knows a random vector of observations
On = (O1, . . . , On) such that, for each i = 1, . . . , n, Oi is distributed like
O and the individual Oi are conditionally independent given S, that is, the
following equality holds true for each on ∈ On and s ∈ S such that
p(s) > 0

Pr
(
On = (o1, . . . , on) |S = s

)
= Πn

i=1Pr(Oi = oi|S = s). (3.1)

Note that the right-hand side of the above equality can be equivalently
written as Πn

i=1p(oi|s), often abbreviated as p(on|s).
Concerning the security metrics, we will use here the min-entropy

definition, discussed in Section 2.3, with X = S and Y = On. We
make the definition explicit below for the reader’s convenience. For any
fixed length n of observations, the attacker’s strategy is modeled by a so
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called guessing (or decision) function, chosen by the adversary to deduce
the value of s by the observations. Let g : On → S be this function, repre-
senting the single guess the attacker is allowed to make about the secret
s, after observing on.

Definition 3.1.2 (Error Probability) Let g : On → S be a guessing function.
The error probability after n observations (relative to g) is given by

P (g)
e (n) , 1− P (g)

succ(n) where P (g)
succ(n) = Pr(g(On) = S).

It is well-known (see e.g. (CT06)) that the optimal strategy for the adver-
sary, that is the one that minimises the error probability, is the Maximum
A Posteriori (MAP) rule, defined below.

Definition 3.1.3 (Maximum A Posteriori rule, MAP) A function g : On
→ S satisfies the Maximum A Posteriori (MAP) criterion if for each on and s

g(on) = s implies p(on|s)p(s) ≥ p(on|s′)p(s′) for each s′.

In the above definition, for n = 0 one has on = ε, and it is convenient
to stipulate that p(ε|s) = 1: that is, with no observations at all, g selects
some s maximising the prior distribution. With this choice, P (g)

e (0) de-
notes 1 −maxs p(s). The error probability associated with this function,
also called Bayes Risk, can be explicitly computed as follows:

P (g)
e (n) = 1−

∑
on∈On

p(on) max
s∈S

Pr(S = s|(O1, . . . , On) = on) (3.2)

= 1−
∑

on∈On
max
s∈S

Pr((O1, . . . , On) = on|S = s)p(s), (3.3)

where p(on) , Pr((O1, . . . , On) = on). It can be proved that if g is MAP,
for each guessing function g′ : On → S , P (g′)

e ≤ P
(g)
e (see (CPP08a,

Proposition 10) for details).
It worthwhile to note that, once n and p(·) are fixed, the MAP guessing

function is not in general unique. It is readily checked, though, that Pe(n)
does not depend on the specific MAP function g that is chosen. Hence,
throughout this section we assume without loss of generality a fixed MAP
guessing function g for each given n and probability distribution p(·). We
shall omit the superscript (g), except where this might cause confusion.

Another widely used criterion for the choice of g is Maximum Like-
lihood (ML), which given on selects a state s maximising the likelihood
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p(on|s) among all the states. ML coincides with MAP if the uniform distri-
bution on the states is assumed. ML is practically important because it
requires no knowledge of the prior distribution, which is often unknown
in security applications. Our main results will also apply to the ML rule
(see Remark 3.1.10 in the next subsection).

We now come to information leakage: this is a measure of the in-
formation leaked by the system, obtained by comparing the prior and
the posterior (to the observations) success probabilities. Indeed, two
flavours of this concept naturally arise, depending on how the compar-
ison between the two probabilities is expressed. If one uses subtraction,
one gets the additive form of (BCP09), while if one uses the ratio between
them and then takes the logarithm (or, equivalently, consider the differ-
ence of the log’s), one gets the multiplicative form, obtaining the min-
entropy based definition considered by Smith (Smi09)5. In the latter case,
one could equivalently consider the simple ratio, without logarithm, ob-
taining the multiplicative leakage of (BCP09). The logarithm allows to
directly measure the result in bits.

Definition 3.1.4 (Additive and min-entropy leakage (BCP09; Smi09))
The additive and min-entropy leakage after n observations are defined
respectively as

L+(n) , Psucc(n)−max
s
p(s) and L×(n) , log

Psucc(n)

maxs p(s)
.

It allows us to compute the leaked information as a function of the
number n of observations collected by the attacker. In the next sections,
we will mainly use the min-entropy form. Therefore, for the sake of no-
tation, we shall omit the subscript ×, denoting L× as L, except where this
might cause confusion.

What we are interested in is the asymptotic behaviour of the leakage,
that is, studying what happens if n goes to infinity, in order to have an
upper bound of the maximum amount of information that can be leaked
by the system. As we can already see from Definition 3.1.4, the asymp-
totic behaviour of information leakage completely depends on the suc-

5Smith (Smi09) defines the leakage as log
Vpost
Vpr

, where, using our notation, Vpr ,

maxs p(s) is the prior vulnerability and Vpost ,
∑

on Pr(On = on) ·maxs Pr(S = s|On =
on) is the posterior vulnerability (after n observations; Smith only defines the case n = 1).
To see that Vpost = Psucc(n), just note that Psucc(n) =

∑
on Pr(On = on) · Pr(g(on) =

S|On = on) =
∑

on Pr(On = on) · maxs Pr(S = s|On = on), where the last equality
follows because g is MAP.

34



cess probability Psucc(n), or on its complement Pe(n). It is for this rea-
son that from now on the results we will present mainly concern the
error probability. In particular, as we will see later on, the asymptotic
behaviour of the leakage strictly depends on an equivalence relation de-
fined over the set of states S, that associates in the same class states that
induce the same probability distribution over the observables, thus be-
ing indistinguishable from the attacker’s point of view. This equivalence
relation, called indistinguishability relation, plays an important role in de-
termining the fundamental security parameters of the system. The for-
mal definition is as follows.

Definition 3.1.5 (Indistinguishability) Given s, s′ ∈ S,

s ≡ s′ if and only if ps = ps′ .

Concretely, two states are indistinguishable if and only if the correspond-
ing rows in the conditional probability matrix are the same. This intu-
itively says that there is no way for the adversary to tell them apart, no
matter how many observations he performs. We stress that this defi-
nition does not depend on the prior distribution on states, nor on the
number n of observations. Note that, in the case when the channel ma-
trix actually defines a deterministic function f , the equivalence classes of
≡ are precisely the counter-images of f in S, that is, the sets f−1(o) for
o ∈ O.

Example 13 Let us consider again the modular exponentiation algorithm and
the corresponding IHS, seen in Example 10. It would appear reasonable to as-
sume that, for each message m, the execution time only depends on the number
of ′1′ digits in k. In other words, we assume that whenever k and k′ have the
same Hamming weight, time(m, k) = time(m, k′), for any m. From this as-
sumption and the definition of p(t|k), it follows that whenever k and k′ have the
same Hamming weight then p(·|k) = p(·|k′). Thus, in the system there are at
most as many ≡-classes as Hamming weights, that is N + 1.

Example 14 Consider the small imperative procedure c() described below.
There, h and l are two-bits integer global variables, while rnd() is a proce-
dure returning a random real value in the interval [0, 1]. Boolean values true
and false are identified with integers 1 and 0, respectively.

proc c();
{
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l=rnd();
if not(h mod 2) then l=(l >= .5)
else l=1+(l >= (.5 + (h div 2)*10ˆ-5) );
return l

}

Now, assume h is a sensitive variable, whose initial value is chosen in the
range 0..3 and then never modified. We assume that c() can be invoked several
times. One is interested in analysing the asymptotic information leakage relative
to h caused by c(). We can model the procedure c() as an information hiding
system, as follows.

Let S = {0, 1, 2, 3} be the set of possible values of h, and O = {0, 1, 2} the
set of possible values returned by c(). The prior probability distribution on S is
non-uniform and given by: p(0) = p(1) = 1

2 − 10−9 and p(2) = p(3) = 10−9.
The behaviour of p() can be described by the conditional probability matrix
displayed below.

o1 o2 o3

s1
1
2 0 1

2

s2
1
2 0 1

2

s3 0 1
2

1
2

s4 0 1
2 − 10−5 1

2 + 10−5

In this case, s1 ≡ s2 since they generate with the same probability all possible
observations (the corresponding rows in the channel matrix coincide) and S/ ≡
= {{s1, s2}, {s3}, {s4}}.

Example 15 In Example 12, from the channel matrix we can immediately see
that here there are only two classes of indistinguishability: S/≡ is {C1, C2},
with C1 = {Rj} and C2 = S \ {Rj}.

3.1.3 Bounds and asymptotic behaviour

Let us introduce some notation that will be used throughout the section.
Let S/ ≡ be {C1, . . . , CK}, the set of equivalence classes of ≡. For each
i = 1, . . . ,K, let

s∗i , argmaxs∈Cip(s), p∗i , p(s∗i ) and pi(·) , p(·|s∗i ). (3.4)
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We assume without loss of generality that p∗i > 0 for each i = 1, . . . ,K
(otherwise all the states in classCi can be just discarded from the system).
For each i, j ∈ {1, . . . ,K} let

cij , C(pi, pj), (3.5)

where C(·, ·) is the Chernoff Information (see Definition 2.5.2). As men-
tioned in Section 2.5, Chernoff Information is very important when we
study the rate of convergence. Indeed, by adapting the proof for the case
|S| = 2, given in (CT06; LJ97), it is not difficult to prove the following
result, that gives the exact rate of convergence of Pe(n), ρ(Pe), in the case
where the distributions p1(·), . . . , pK(·) all have the same support.6.

Proposition 3.1.6 Suppose that supp(p1) = · · · = supp(pK). Then ρ(Pe) =
mini 6=j cij .

The next theorem provides tight bounds on the error probability and
its rate in the general case, although in general not the exact rate. The
interpretation is the following: the attacker focuses on the set of repre-
sentative states, {s∗i |i = 1, . . . ,K}, and tries to identify one of them as
the value of S. This strategy can fail for two reasons: either S is not in
the target set (first term in the error upper bound), or it is, but the at-
tacker, mistakes one state in the set for another (second term in the error
upper bound). The latter probability decreases exponentially fast with n,
at a rate that is at least as big as the minimum “distance” ρ between the
distributions pi(·), for i = 1, . . . ,K. We stipulate that 2−∞ = 0.

Theorem 3.1.7 Let ρ , mini,j=1,...,K,
i6=j

cij . Let p∗max = maxi p
∗
i . Then, for all

n ≥ 1

(1−
K∑
i=1

p∗i ) ≤ Pe(n) ≤ (1−
K∑
i=1

p∗i ) +
K2

2
p∗max2−nρ. (3.6)

As a consequence, Pe(n) reaches 1−
∑K
i=1 p

∗
i at a rate of ρ(Pe) ≥ ρ.

The theorem has a simple interpretation in terms of the attacker’s
strategy: after infinitely many observations, he can determine the indis-
tinguishability class of the secret, say Ci, and then guess the most likely
state in that class, s∗i .

6In the case where the distributions have different supports, the argument of (CT06)
does not apply. The ultimate reason is that D(p||q) is not continuous in the first argument
if q(·) has not full support; see also (BV08) for a discussion on this issue.
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PROOF Fix n ≥ 1. Let R = {s∗i |i = 1, . . . ,K} and g : On → R be a
MAP function satisfying:

g(on) = s∗i implies p(on|s∗i )p∗i ≥ p(on|s∗j )p∗j for each j = 1, . . . ,K.

For each i = 1, . . . ,K, let Ai = g−1(s∗i ) be the acceptance region for s∗i .
Concerning the lower bound, we have (the sums below run over s’s such
that pS(s) > 0):

Pe(n) =
∑
s∈S

Pr(g(On) 6= s|S = s)pS(s)

=
∑
s6∈R

Pr(g(On) 6= s|S = s)pS(s) +

K∑
i=1

Pr(g(On) 6= s∗i |S = s∗i )p
∗
i

= (1−
K∑
i=1

p∗i ) +

K∑
i=1

pi(A
c
i )p
∗
i (3.7)

which, since the second term is never negative, implies the lower bound
in the statement. Concerning the upper bound, instead, we can apply the
following inequality to Equation (3.7), obtaining:

Pe(n) ≤ (1−
K∑
i=1

p∗i ) +

K∑
i=1

K∑
j=1,
j 6=i

pi(Aj)p
∗
i

= (1−
K∑
i=1

p∗i ) +

K∑
i=1

K∑
j=1,
j>i

(pi(Aj)p
∗
i + pj(Ai)p

∗
j ) (3.8)

where the inequality follows from Aci = ∪j∈{1,...,K}\{i}Aj and a simple
union bound, while the last equality is simply a rearrangement of sum-
mands. Now, we evaluate pi(Aj)p∗i + pj(Ai)p

∗
j for each i, j = 1, . . . ,K

and i 6= j.
Essentially by the same derivation given in (CT06, eqn.(11.239)–

(11.251)), one finds that pi(Aj)p∗i + pj(Ai)p
∗
j ≤ p∗i

λp∗j
1−λ2−ncij , for a suit-

able λ ∈ [0, 1]. Since p∗i
λp∗j

1−λ ≤ p∗
λ

maxp
∗1−λ
max = p∗max and cij ≥ ρ, we

obtain

pi(Aj)p
∗
i + pj(Ai)p

∗
j ≤ p∗max2−nρ (3.9)
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Now, if we plug the bound (3.9) into (3.8), and then factor out p∗max2−nρ

and reorder the summands, we get

Pe(n) ≤ (1−
K∑
i=1

p∗i ) +
( K∑
i=1

K∑
j=1,
j>i

1
)
p∗max2−nρ .

Now, use the fact that
(∑K

i=1

∑K
j=1,
j>i

1
)

= K(K−1)
2 ≤ K2

2 , which completes

the proof. �

Remark 3.1.8 • In the practically important case where the prior pS on S
is uniform, the term K2

2 p∗max2−nρ is bounded above by K
2 2−nρ.

• Computation of the Chernoff Information (2.7) is an optimization problem
that may be difficult to solve exactly. In practice, setting λ = 1

2 in the
argument of the min often yields a good lower bound of C(p, q), known as
Bhattacharyya distance. Another lower bound that can be found useful
in the case of distributions with sparse support is obtained by taking the
min limited to the cases λ = 0 and λ = 1. Letting σ = supp(p) ∩
supp(q), this quantity amounts to −min{log p(σ) , log q(σ)}.

The following result shows that, asymptotically, the security of a sy-
stem is tightly connected to the number of indistinguishability classes -
and in the case of uniform distribution only depends on this number.

Corollary 3.1.9 If the a priori distribution on S is uniform, then Pe(n) con-
verges exponentially fast to 1− K

|S| .

If all the states are distinguishable, that is the partition induced by
this relation is formed by all singleton classes, then K = |S|. So, the
limit value of the error probability in this case is 0, that is, asymptotically
the whole information will be disclosed. The lower the number K of
classes, the lower the limit value obtained, and so the more resistant the
system. The minimum value is reached when the prior is the uniform
distribution and the partition coincides with S (K = 1), that is all states
are indistinguishable for the attacker.

Remark 3.1.10 (on the ML rule) Braun et al. in (BCP09) show that the pro-
bability of error under the ML rule, averaged on all distributions, coincides
with the probability of error under the MAP rule and the uniform distribution.
From Corollary 3.1.9 we therefore deduce that the average ML error converges
exponentially fast to the value 1− K

|S| as n→∞.
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We discuss now some consequences of the above results on informa-
tion leakage. Assume without loss of generality that p∗1 = maxs p(s).
In what follows, we denote by pmax(·) the probability distribution on S
defined by: pmax(s) = 1

K if s ∈ {s∗1, . . . , s∗K} and pmax(s) = 0 otherwise.

Corollary 3.1.11 1. L+(n) converges exponentially fast to
∑K
i=2 p

∗
i . This

value is maximised by the prior distribution pmax(·), which yields the
limit value 1− 1

K .

2. L×(n) converges exponentially fast to log
∑K
i=1 p

∗
i

p∗1
. This value is max-

imised when the prior distribution is either uniform or pmax(·), both of
which yield the limit value logK.

PROOF

1. The value of the limit follows directly from the definition of L+(n)
and Theorem 3.1.7. Concerning the second part, for any fixed p(·),
it is easily checked that

∑K
i=2 p

∗
i ≤ 1− 1

K (this is done by separately
considering the cases maxs p(s) ≥ 1

K and maxs p(s) < 1
K ). But

the value 1 − 1
K is obtained asymptotically with the distribution

pmax(·).

2. Again, the value of the limit follows directly from the definition
of L×(n) and Theorem 3.1.7. Concerning the second part, for any
fixed p(·), of course we have

∑K
i=1

p∗i
p∗1
≤
∑K
i=1 1 = K. But the

value K is obtained asymptotically when the prior is either uni-
form or the distribution pmax(·). Applying now the logarithm to
the inequality above and taking into account the fact that it is an
increasing function, we obtain the thesis.

�

Remark 3.1.12 A consequence of Corollary 3.1.11(2) is that, in the case of uni-
form distribution on states, the min-entropy leakage as n goes to infinity coin-
cides with the logarithm of the number of equivalence classesK. If one considers
deterministic systems, that is systems where the channel matrix defines a func-
tion f : S → O, then the leakage does not depend on the number of observations:
L×(n) = logK for n ≥ 1. Moreover K equals the number of distinct counter-
images of f , that is the number of elements in the range of f ; in particular
K ≤ |O|. This way we re-obtain a result of (Smi09) for deterministic systems.
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In (BCP09) additive leakage is contrasted with multiplicative (or min-
entropy) leakage in the case of a single observation (n = 1). It turns
out that, when comparing two systems, the two forms of leakage are
in agreement, in the sense that they individuate the same maximum-
leaking system with respect to a fixed prior distribution on inputs. How-
ever, (BCP09) also shows that the two forms disagree as to the distri-
bution on inputs that maximises leakage with respect to a fixed system.
This is shown to be the uniform distribution in the case of multiplicative
leakage, and a function that uniformly distributes the probability on the
set of “corner points” in the case of additive leakage (see (BCP09) for de-
tails). Here, we have shown that, despite this difference, additive and
multiplicative leakage do agree asymptotically at least on one maximis-
ing distribution, pmax(·).

Remark 3.1.13 In (KS10), Köpf and Smith observe that, in the case of uniform
distribution on S, min-entropy leakage is upper-bounded by the logarithm of the
number of types of n-sequences of O:

L×(n) ≤ log |Pn| . (3.10)

It is interesting to compare this upper-bound, which depends on n, with our
upper-bound, the value logK given by Corollary 3.1.11(2). It is clear that, since
as n→∞ one has |Pn| → ∞ as well, (3.10) ceases to be useful for large values
of n. According to Theorem 2.4.5, |Pn| ≤ (n+ 1)|O|. Using some algebra, one
sees that (3.10) is sharper than our upper-bound logK at least as long as

n ≤ K
1
|O| − 1 .

So it appears that the upper-bound (3.10) is useful only when the number of
rows of the matrix is very large compared to the number of observables.

The above results prompt the following question. Suppose the at-
tacker somehow ignores the rows of the channel matrix that are close
together with each other, and only considers those that are far from each
other. That is, suppose that he focuses on a subset of the representative
states {s∗i |i ∈ I}, for a certain I ⊆ {1, . . . ,K}. The next result shows
that it is possible to achieve an higher rate of convergence ρI > ρ, al-
though ignoring some rows might lead to a possibly higher asymptotic
error probability. In this way, we cover the case where there exist some
other values, slightly higher than the limit value obtained above, but that
can be reached much faster.
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Theorem 3.1.14 Let I be a nonempty subset of {1, . . . ,K}. Let ρI ,
mini,j∈I,

i 6=j
cij . Let p∗max = maxi∈I p

∗
i . Then, for all n ≥ 1

Pe(n) ≤ (1−
∑
i∈I

p∗i ) +
|I|2

2
p∗max2−nρI . (3.11)

As a consequence, Pe(n) reaches 1−
∑
i∈I p

∗
i at a rate of ρI .

PROOF For any n ≥ 0 and s ∈ S , let A(n)
s be the acceptance regions

determined by any MAP guessing function. Choose any i∗ ∈ I . For any
i = 1, . . . ,K, define the new acceptance regionsB(n)

i as follows: B(n)
i = ∅

if i 6∈ I , otherwise B(n)
i = A

(n)
s∗i

. For each n, the regions B(n)
i determine

a new guessing function, say g′, which will in general not be MAP. Now,
repeating the computation in the proof of Theorem 3.1.7, varying i, j in I
instead of {1, . . . ,K} and with the regionsB(n)

i instead ofA(n)
s , one finds

P (g′)
e (n) ≤ (1−

∑
i∈I

p∗i ) +
|I|2

2
p∗max2−nρI .

The wanted result follows from the optimality of the MAP rule, which
implies Pe(n) ≤ P (g′)

e (n). �

Consider again Example 14 and apply to it this result.

Example 16 Applying Theorem 3.1.7, we find that

1− E ≤ Pe(n) ≤ 1− E +
|I|2

2
(1− 10−9)2−nρI ,

where E = 1 − 10−9. Now, the number of indistinguishable classes here is 3.
If we consider I = {0, 1, 3}, we obtain that Pe(n) −→n→∞ 1 − E = 10−9

at a rate ρ = 1 − log (1− 10−5) ' 1.443 × 10−5, very slow. One wonders
if there is some value 1 − E′ that is only slightly higher than 1 − E, but that
can be reached much faster. This is indeed the case. Observe that rows 1 and 3
are very close with each other in norm-1 distance: ‖p1 − p3‖1 = 2× 10−5. We
can discard row 3, which has a very small probability, and then apply Theorem
3.1.14 with I = {0, 1} to get

Pe(n) ≤ 1− E′ + |I|
2

2
(1− 10−9)2−nρI
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d1 d2 · · · d20
s1 0.468 0.028 · · · 0.028
s2 0.028 0.468 · · · 0.028
...

...
s20 0.028 0.028 · · · 0.468

Figure 6: The conditional probability matrix of Crowds for 20 honest nodes,
5 corrupted nodes and pf = 0.7.

whereE′ = 1
2−10−9 + 1

2−10−9 = 1−2×10−9 and ρI = 1. This implies that
the value 1 − E′ is approached much faster as n grows. For instance, already
after n = 37 invocations we get that (1− E′)/Pe(n) > 0.99.

3.1.4 Some applications

Let us consider now more in detail the four applications mentioned in
Section 3.1.

Protocol re-execution in Crowds (BPP11a; BPPar) Consider a system
with m = 20 users. An example of such a system, borrowed from
(CPP08b), is given in the table in Figure 6. The interesting case for us is
that of re-execution, in which the protocol is executed several times, ei-
ther forced by the attacker himself (e.g. if corrupted nodes suppress mes-
sages) or by some external factor, and the sender is kept fixed through the
various executions. This implies the attacker collects a sequence of ob-
servations on = (o1, . . . , on) ∈ On, for some n. The repeated executions
are assumed to be independent, hence we are precisely in the setting
considered before. This case is also considered in (CPP08b), which gives
lower bounds for the error probability holding for any n. Our results
in Section 3.2.2 generalise those in (CPP08b) by providing both lower-
and upper- bounds converging exponentially fast to the asymptotic er-
ror probability. As an example, for the system in the table above, we
have Pe(n) → 0, independently of the prior distribution on the senders.
An achievable convergence rate, estimated with the method of Theorem
3.1.7, is ρ ≈ 0.4482. This implies that already after observing n = 30
re-executions the probability of error is < 0.001.

It is worth to stress that protocol re-execution is normally prevented
in Crowds for the very reason that it decreases anonymity, although it
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may be necessary in some cases. See the discussion on static vs. dynamic
paths in (RR98).

Modular exponentiation algorithm Consider again Example 10. From
each of the N + 1 indistinguishability classes, let us choose a represen-
tative s∗i of probability p∗i = 1

2N
. Applying Theorem 3.1.7, we find that

Pe(n) → 1− N+1
2N

, which for realistic values of N , e.g. N = 1024, is very
close to 1. Accordingly, applying Corollary 3.1.11, we get that additive
and min-entropy leakage satisfy, asymptotically,

L+ ≤
N

2N
and L× ≤ log (N + 1).

For any practical size of the key, say N = 1024, these upper bounds yield
negligible values: L+ ≈ 0 and L× ≤ 1025. The latter case tells us that
just log(1025) = 10.001 bits of min-entropy are leaked, out of 1024. In
conclusion, the modular exponentiation algorithm appears to provide
satisfactory guarantees of security against one-try attacks.

Hamming weight attacks against S-boxes (BPP11a; BPPar) We report
here on our results concerning the first of the eight S-boxes of DES. Anal-
ysis of other S-boxes leads to similar conclusions. The distribution of the
plaintext, pM (·), plays a crucial role here: the lower the redundancy, the
less information is expected to be extracted from the side-channel. For
example, if pM (·) is the uniform distribution (0% redundancy), then it
is easy to see that all the rows of the matrix p(o|k) are the same, hence
Pe(n) = 1 − 1/64 for each n: the adversary cannot do any better than
random guessing. For our analysis, we have chosen a plaintext with a
redundancy of about 27% (H(pM ) = 4.39 bits), obtained by sampling
ASCII text from some web pages. In the resulting matrix, p(o|k), all the
rows are different, which implies that Pe(n)→ 0. Concerning the rate of
convergence, Theorem 3.1.7 yields ρ ≈ 1.6× 10−3. This means that with
n ≥ 7.2 × 103 observations the error probability is < 0.011. Discarding
the keys corresponding to the 23 shortest norm-1 distances, one would
get ρ ≈ 2× 10−3. Applying Theorem 3.1.14, one gets an error probability
≤ 0.011 already with n ≥ 5.4× 103 observations.

Concerning the more realistic scenario, instead, Theorem 3.1.7 ap-
plied to the matrix p′(·|·) yields a rate of ρ ≈ 5.963 × 10−6. It implies
that this time Pe(n) < 0.011 for n ≥ 1.9295 × 106. As expected, the con-
vergence rate is lower than in the noiseless case. However, the effort
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needed to break the system is certainly in the reach of a well determined
attacker.

Our simple analysis confirms that unprotected implementations of
DES S-boxes are quite vulnerable to attacks based on Hamming weights.
Software simulations have reinforced this conclusion, showing that, in
practice, a good success probability for the adversary is achieved with a
relatively small n. For instance, in the noiseless case, already with n =
103, we have obtained an experimental success rate of 98%.

Unlinkability in Threshold Mix-Nets (BPP11b) Let H be the IHS cor-
responding to this application described in Example 12. Applying Theo-
rem 3.1.14 toH, we can compute the error probability in case the attacker
wishes to know exactly who is Bob. We can set I = {i, j}, for any i 6= j,
and get the following bound:

Pe(n) ≤
(

1− 2

N

)
+

2

N

(
1−

(
1− 1

N

)b)n
≤
(

1− 2

N

)
+

2

N
e−ne

− b
N ,

where the last inequality follows from the double application of the in-
equality 1 − x ≤ e−x for x < 1. As expected, the limit value 1 − 2

N is
> 0, and the security of the system increases as N increases. The corre-
sponding asymptotic min-entropy leakage is log(N · 2

N ) = 1, that is, the
attacker gains 1 bit of min-entropy on the limit about the identity of Bob.

3.2 Passive attackers targeting state predicates

In the previous section we have taken into account passive attackers that
directly target the secret, trying to recover it from the collected observa-
tions. Here, instead, we analyse a scenario where the adversary is still
passive, but is only interested in understanding if a certain predicate of
the secret does hold, or not.

This approach allows us to analyse not only the quantitative aspect of
the analysis (how much information is leaked), but also the qualitative as-
pect (what is leaked). In the previous section we have shown that, when
a uniform distribution on the secrets is assumed, the asymptotic min-
entropy leakage of a system corresponds to the logarithm of the number
of indistinguishability classes in the system. For instance, an anonymity
protocol in which users are grouped into a small number of classes is con-
sidered as globally secure. However, it might well be the case that, while
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the vast majority of users belong to large classes, few individual users be-
long to singleton classes, hence being totally exposed to eavesdropping.
To make another, extreme example, consider the two small imperative
procedures P1 and P2 below. Each of them receives as an argument a
confidential variable h that can take on a value in the set S = {0, . . . , 15},
perhaps corresponding to user identifiers or other sensitive information.
Part of the information about h is then disclosed through the public vari-
able l.

P1(h): l=-1; if (h==0) then l=0;
P2(h): l=h mod 4;

In the case of P1, there are two possible observables, -1 and 0, hence
S is partitioned into two indistinguishability classes: thus, assuming h
is uniformly distributed, P1 leaks 1 bit of information about h. In the
case of P2 there are four classes, hence P2 leaks two bits. From a global
point of view, P1 is therefore more secure than P2. However, suppose
the attacker is only interested in understanding if h is equal to 0 or not.
In this case, P2 is preferable over P1, because relatively to the single
case h=0, it leaks less information: indeed, while P1 in this particular
case completely reveals the secret to the attacker, P2 leaks only its least
two significant bits. In order to cope with such problems, one would
like to conduct the analysis both at a quantitative and at a qualitative
level, revealing not only how much is leaked, but also what. This is
particularly relevant in relation to the privacy of individuals or groups.

In the next sections, we propose a framework to deal with this issue
by extending the IHS’s considered in the Section 3.1 and elsewhere with
views.

3.2.1 An extended model: views

A view is, in short, a partition of the states, representing perhaps a sub-
division in ”buckets” of a large population (in fact, we are more general
and also admit probabilistic partitions). In the example above, the view
of interest for the case h=0 (coinciding with the attacker’s target) is the
partition of S into ({0},S \ {0}). Given a view W , one is interested in
the adversary’s probability of wrongly predicting the class of W the se-
cret belongs to, after observing n independent executions of the system,
throughout which the secret state is kept fixed.

More formally, a view can be defined as follows.
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Definition 3.2.1 (views) Let H = 〈S,O, p(·), p(·|·)〉 be a IHS. A view of H
is a pair (W, q(·|·)), where W is a finite alphabet and q(·|·) ∈ [0, 1]S×W is a
matrix where all rows sum to one.

Informally, q(w|s) is the probability that the predicate w holds when
in state s. The probability distribution p(·) on S and the conditional
probability matrices p(·|·) ∈ [0, 1]S×O and q(·|·) ∈ [0, 1]S×W induce
a probability distribution r(·) on W × S × O, defined as r(w, s, o) ,
p(s) · p(o|s) · q(w|s). This distribution induce a triple of discrete ran-
dom variables (W,S,O) ∼ r(·), taking values in W × S × O. We shall
denote the marginal probability distributions of this triple for S, W and
O by pS(·), pW (·) and pO(·), respectively. Of course, pS(·) coincides with
the prior p(·) given in the IHS, while the marginal distributions pW (·)
and pO(·) can be computed from the given data, p(·), p(·|·) and q(·|·).
Indeed, pO(o) =

∑
s∈S p(o|s)p(s) and pW (w) =

∑
s∈S q(w|s)p(s). Con-

cerning the conditional distributions, we have pO|S(o|s) = p(o|s) and
pW |S(w|s) = q(w|s), whenever p(s) > 0. Concerning pO|W (·|·), this can
be computed as pO|W (o|w) =

∑
s∈S r(w, s, o) · p

−1
W (w) (with the conven-

tion that this denotes an arbitrary value, e.g. 0, if pW (w) = 0). It is
worthwhile to stress that these marginalisation operations may be costly
if the state-space S is very large, but fortunately it will not be necessary
to carry out them explicitly to apply our results.

Let us now discuss the observation scenario. Given any n ≥ 0, we
assume the adversary is a passive eavesdropper that gets to know the
observations corresponding to n independent executions of the system,
on = (o1, . . . , on) ∈ On, throughout which both the secret state s and
the corresponding view w are kept fixed. Formally, the adversary knows
a random vector of observations On = (O1, . . . , On) such that, for each
i = 1, . . . , n, Oi is distributed like O. Moreover, the individual Oi and
the view W are conditionally independent given S. This means that the
following equality holds true for each on ∈ On, w ∈ W and s ∈ S such
that p(s) > 0

Pr
(
On = (o1, . . . , on), W = w |S = s

)
= Πn

i=1Pr(Oi = oi|S = s) Pr(W = w|S = s). (3.12)

Note that the right-hand side of the above equality can be equivalently
written as Πn

i=1p(oi|s)q(w|s). Concerning the notation, we shall drop the
subscripts from the above defined (conditional) probability distributions
when no ambiguity can arise. We will often abbreviate Πn

i=1p(oi|s) as
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p(on|s). Moreover, by slightly abusing notation, we will freely identify a
view (W, q(·|·)) ofH with the induced random variable W .

The attacker’s strategy this time corresponds to a W-guessing function,
g : On → W . The corresponding error probability (after n observations,
relative to g) is

P g,We (n) , Pr
(
g(On) 6= W

)
. (3.13)

A function g minimises this quantity if it is W -MAP, that is if satisfies
the following condition. For each on ∈ On and w ∈ W

g(on) = w implies p(on|w)p(w) ≥ p(on|w′)p(w′) for each w′ ∈ W .

Unless otherwise stated, given a view ofH, we shall assume an underly-
ing guessing function that is W -MAP. Consequently, we shall normally
omit the indication of g from P g,We (n).

In many systems, the practically important views are those that par-
tition the state-space into equivalence classes. A view W is called a par-
tition of H if W is a function of S, that is W = f(S) for some function
f : S → W . Equivalently, the matrix q(·|·) has a single entry ’1’ for each
row. Let W = {w1, . . . , wL}, and let Ei , f−1(wi) for 1 ≤ i ≤ L. Of
course E1, . . . , EL form a partition of S, in the set-theoretic sense.

Concerning the information leakage, we extend the definition as fol-
lows (here we have considered only the min-entropy leakage).

Definition 3.2.2 (Information leakage with views) The information leak-
age after n observations relative to a view W is defined as

LW (n) , log
( PWsucc(n)

maxw pW (w)

)
.

Example 17 Consider again the two programs P1 and P2 seen in the intro-
ductive part of this section. Since they are deterministic, a single observation is
all the attacker needs. One easily finds that the error probability equals 0 in the
case of P1, and 1

16 in the case of P2, while the information leakage, related to
the partition ({0},S \ {0}), equals 4 in the case of P1, and 2 in the case of P2.
Thus, for any n ≥ 1, LW (n) = 4 for P1 and LW (n) = 2 for P2.

In the general case of probabilistic systems, computation of these
limit values is not as obvious. Nevertheless, in the next section we will
offer results that allow one to easily characterise its behaviour from the
channel matrices. In particular, we will show how to determine the limit
value and its rate.
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3.2.2 Bounds and asymptotic behaviour

Concerning the analysis of the asymptotic behaviour of PWe , it would
be tempting to proceed as follows: build a new IHS, say HW , where the
set of states is W and the channel matrix is pO|W (·|·). The error proba-
bility function for HW would then coincide with PWe (n). It would then
be enough to apply Theorem 3.1.14 to HW . This approach however is
doomed to failure. In fact, the assumption that the observations Oi’s are
conditionally independent given W is in general false:

p(o1 · · · on|w) 6= p(o1|w) · · · p(on|w) .

As a consequence, the IHSHW is meaningless for what concerns our pur-
poses. However, conditional independence of the Oi’s given W is guar-
anteed, and the approach outlined above does work, in the special case
where W is a partition finer than ≡. This intuition leads us to develop
the method illustrated below for PWe in the general case.

Before describing the model, let us introduce some more notation. For
sake of simplicity, we assumeW is a set of integers {1, . . . , |W|}. Let q(·|·)
be the matrix defining the view W . We denote by ∼W the equivalence
relation on S induced by q(·|·).

Definition 3.2.3 (Indistinguishability relation with views) Given
s, s′ ∈ S

s ∼W s′ if and only if for each o ∈ O : q(o|s) = q(o|s′) . (3.14)

In other words, two states are ∼W -equivalent if the corresponding rows
of q(·|·) are equal. Let S/∼W be {E1, . . . , EL}, the set of equivalence
classes of∼W . The intersection≡ ∩ ∼W is still an equivalence relation on
S, that is finer than both ≡ and ∼W . Recall that S/≡ is {C1, . . . , CK} and
that s∗1, . . . , s∗K denote the representative elements of these equivalence
classes. For 1 ≤ i ≤ K and 1 ≤ j ≤ L, we let the equivalence classes of
≡ ∩ ∼W be denoted as

Fij , Ci ∩ Ej (3.15)

and furthermore

F ∗i , max
j
pS(Fij) and q∗j , max

w
q(w|s), for an arbitrary s ∈ Ej .

(3.16)
The next theorem has the following interpretation. The attacker focuses
on a subset of the representative states, {s∗i |i ∈ I}. He tries to identify
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first the class Ci of S, then guesses the class Fij – this is given by the j
that maximises pS(Fij). Finally he guesses the view w that is most likely
in Ej . This strategy can fail for two reasons: either w is wrong (first term
in the expression), or Fij is wrong (second + third term).

Theorem 3.2.4 Let I and ρI be chosen as in Theorem 3.1.14. Let W be a view
ofH. Let Fmax = maxi∈I F

∗
i . Then

PWe (n) ≤
L∑
j=1

(1− q∗j ) + (1−
∑
i∈I

F ∗i ) +
|I|2

2
Fmax2−nρI . (3.17)

PROOF Denote a pair of indices (i, j) ∈ {1, . . . ,K} × {1, . . . , L} as ij.
For each s ∈ S, define

ind(s) = ij if and only if s ∈ Fij .

Fix n ≥ 1 and any function g′ : On → {1, . . . ,K} × {1, . . . , L}, and let
Succ′ be the event (g′(On) = ind(S)). That is, Succ′ is the event that
g′ correctly classifies the index (of the equivalence class Fij) of S. Now
define a W-guessing function for H, g : On → W , as g(on) , w, where
g′(on) = ij and w = argmaxwq(w|s) for any s ∈ Ej (note that the in-
formation about i provided by g′ is ignored by g). Let Err be the event
(g(On) 6= W ). We have

PWe (n) = Pr(Err, Succ′) + Pr(Err|¬Succ′) Pr(¬Succ′)
≤ Pr(Err, Succ′) + Pr(¬Succ′) . (3.18)

Let us estimate Pr(Err, Succ′) and Pr(¬Succ′) separately. It is an easy
matter to prove that

Pr(Err, Succ′) =

L∑
j=1

(1− q∗j ) Pr(S ∈ Ej , Succ′)

≤
L∑
j=1

(1− q∗j ) . (3.19)

We now estimate Pr(¬Succ′). Consider the new IHS H′ , 〈{1, . . . ,K} ×
{1, . . . , L},O, p′(·), p′(·|·)〉, where p′(ij) , pS(Fij) and p′(o|ij) , pi(o).
Note that ij ≡ i′j′ if and only if i = i′. Hence we have K dis-
tinct classes in this system, whose representatives are elements s′1 =
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1j1, . . . , s
′
K = KjK such that ji = argmaxjpS(Fij), hence p′(s′i) = F ∗i ,

for i = 1, . . . ,K. The corresponding representative distributions (rows
of the matrix p′(·|·)) are p′1(·) = p1(·), . . . , p′K(·) = pK(·).

Now take the function g′ above to be a MAP guessing function forH′.
Call P ′e(n) the error probability of H′: clearly, Pr(¬Succ′) = P ′e(n). Take
I ⊆ {1, . . . ,K} and apply Theorem 3.1.14 toH′ and I to get

Pr(¬Succ′) ≤ 1−
∑
i∈I

F ∗i +
|I|2

2
Fmax2−nρI . (3.20)

When we plug the bounds (3.19) and (3.20) into (3.18), we get the wanted
result. �

Note that the determination of the upper-bound in (3.17) is compu-
tationally practical: the partitions induced by ≡ ∩ ∼W can be directly
computed by inspection of the matrices p(·|·) and q(·|·). Their intersec-
tion (3.15), and the probability mass of the corresponding classes pS(Fij),
are then straightforward to compute. Theorem 3.2.4 only provides an
(exponential) upper bound to PWe (n). The following theorem provides
the exact limit of PWe (n) in the special, but important case when W is a
partition.

We will make use of some concepts of the Method of Types from In-
formation Theory (see Section 2.4). Recall that, given a sequence on ∈ On
and o ∈ O, n(o, on) denotes the number of occurrences of o inside on and
ton(o) , n(o, on)/n, for each o ∈ O, is the type of on. The “balls” of center
pi(·) and radius ε > 0 inOn are defined as Uni (ε) , {on : D(ton‖pi) ≤ ε}.
It is a result from the Method of Types that, as n → +∞, pi(Uni (ε)) → 1,
while, for any p 6= pi there is ε > 0 small enough such that p(Uni (ε))→ 0
(Theorem 2.4.8). Moreover, the convergence is exponential in both cases.

Theorem 3.2.5 Let W be a partition of H. Then PWe (n) converges exponen-
tially fast to 1 −

∑K
i=1 F

∗
i . More precisely, with the same notation of Theorem

3.2.4, for each n ≥ 1,

(1−
K∑
i=1

F ∗i ) ≤ PWe (n) ≤ (1−
K∑
i=1

F ∗i ) +
K2

2
Fmax2−nρI ,

where I = {1, . . . ,K}.

PROOF First, note that for W a partition, the first term in (3.17) van-
ishes, as each q∗j equals 1. The upper bound is then a consequence of
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Theorem 3.2.4 with I = {1, . . . ,K}. We now seek for a lower bound
of PWe (n). We equivalently focus on an upper bound of PWsucc(n). As-
sume without loss of generality thatW = {1, . . . , L}. For any n ≥ 1, let
g : On → {1, . . . , L} be a W -MAP guessing function, and let Aj = g−1(j),
for j ∈ {1, . . . , L}, be the acceptance region in On for j. It is a routine
task to check that

PWsucc(n) =

K∑
i=1

L∑
j=1

pi(Aj)pS(Fij) . (3.21)

Now, fix any i ∈ {1, . . . ,K}, and let ji = argmaxj=1,...,LpS(Fij), that is
pS(Fiji) = F ∗i . We claim that pi(Aji) → 1 as n → +∞. In fact, fixed
ε > 0 small enough, for any n large enough Aji contains the “ball” Uni (ε)
of center pi(·) and radius ε in On. To see that this is true, note that a
sufficient condition for on ∈ Aji is that for each j 6= ji

pOn|W (on|ji)pW (ji) =

K∑
l=1

pl(o
n)pS(Flji) >

>

K∑
l=1

pl(o
n)pS(Flj) = pOn|W (on|j)pW (j) . (3.22)

Now from results of the method of types it follows that, for on ∈ Uni (ε),
we have that all the pl(on) with l 6= i go exponentially fast to 0 as n
grows. Thus the condition (3.22) reduces, for n large enough, to F ∗i =
pS(Fiji) > pS(Fij): this is satisfied by definition of ji7. Now Aji ⊇ Uni (ε)
implies that pi(Aji) goes to 1 exponentially fast as n grows; for the same
reason, pi(Aj) goes to 0 for each j 6= ji as n grows (recall that the Aj ’s
form a partition ofOn). This way, and taking (3.21) into account, we have
proved that

lim
n→∞

PWsucc(n) =

K∑
i=1

F ∗i .

Since PWsucc(n) is monotonically non-decreasing, we have proved that
PWsucc(n) ≤

∑K
i=1 F

∗
i holds true for each n ≥ 1. This implies in turn

the wanted statement. �
7If there is more than one index j maximising pi(Fij), then the choice of ji gets more

involved: among those j’s that maximise pS(Fij), one chooses the one that maximises
pS(Fi′j), where pi′ (·) is the distribution closest to pi(·) in terms of KL-distance, if this j is
unique; otherwise one must look at the second closest distribution pi′′ (·), and so on. We
omit the details here.
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3.2.3 Some applications

Modular exponentiation algorithm Concerning the modular exponen-
tiation algorithm, it can be interesting to prove that its small leakage is
not concentrated in few individual bits of the exponent, which would
make them potentially vulnerable. For instance, assume that the attacker
now no longer targets the whole exponent, but just its least two signifi-
cant bits. Let us examine the error probability in this case.

Let W be the partition of S such that s ∼W s′ if and only if s mod
4 = s′ mod 4. We apply Theorem 3.2.5 to PWe . We have four ∼W -classes
E0, . . . , E3, that intersect with theN+1 classesCi (computed in Example
13) to form 4(N + 1) classes Fij . Assume N even. For all i = 0, . . . , N−2

2 ,
the class Fij that has more elements, hence determines the probability
F ∗i , is Fi0; by symmetry, for i = N−2

2 + 1, . . . , N the class with more
elements is Fi3. For i = N

2 , instead, we can choose between Fi1 and Fi2.
According to Theorem 3.2.5 then

PWsucc(n) →
N∑
i=0

F ∗i ≈
1

2N
(N−2∑
i=0

(
N − 2

i

))
=

1

4
.

Thus, asymptotically the observations do not increase the prior probabi-
lity of success, which is already 1

4 . In terms of information leakage, one
gets LW (n) →≈ 0. One can generalise this reasoning to the case where
W represents the least m significant bits, and arrive at similar conclu-
sions.

Unlinkability in Threshold Mixnets Let us consider again the applica-
tion of Threshold Mixnets, discussed in Section 3.1, Examples 12,15. To
see qualitatively what the single bit gained by the attacker corresponds
to, we analyse the error probability with respect to the view W ∈ {0, 1}
given by:

W = 1 if and only if S = Rj .

That is, W yields 1 if and only if Bob is Rj . The partition induced
on S by W coincides with ≡, hence its classes are C1 = {Rj} and C2 =
S \ {Rj}. (see Example 15). Concerning the sets Fij , we note that: F11 =
{Rj}, F12 = F21 = ∅ and F22 = S \ {Rj}. Since the distribution on the
states is uniform, we have: F ∗1 = 1

N and F ∗2 = 1 − 1
N . Take I = {i, j}

as defined as above. According to Theorem 3.2.4, the limit of PWe (n)
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vanishes, moreover

PWe (n) ≤ 2

N

(
1−

(
1− 1

N

)b)n
≤ 2

N
e−ne

− b
N ,

where the last inequality follows from the double application of the in-
equality 1 − x ≤ e−x for x < 1. The attacker’s success probability of
guessing whether Rj =Bob or not approaches very fast 1. It is also in-

teresting to study the behaviour of the rate ρI = − log
(

1− (1− 1
N )

b
)

depending on b and N . It is easy to see that as b increases, ρI decreases;
on the contrary, asN increases and b is kept fixed, ρI increases. The shape
of PWe (n) is illustrated qualitatively by the plots in Figures 7,8: very few
rounds of the protocols (n < 10) are sufficient to achieve PWe ≈ 0.

As mentioned in Example 12, it is easy to repeat this kind of analysis
with more sophisticated observations on the part of the attacker. On the
other hand, note that just repeating this simple attack for each of the po-
tential Alice’s receivers (that is, setting Rj = R1, R2, . . . , RN−1 in turn),
would lead the attacker to discover the identity of Bob after a low num-
ber of rounds. This is sufficient to show that the single threshold mix
system is totally insecure.

3.3 Concluding remarks

We have characterised the asymptotic behaviour of error probability and
information leakage in terms of indistinguishability in a scenario of one-
try attacks after repeated independent, noisy observations. Assuming
that each execution gives rise to a single observation and that we are
faced with a passive attacker, we have first examined the case where
the adversary directly targets the secret and then extended our results
to the case where he targets some state predicates. We have analysed in
a uniform fashion a variety of statistical attacks, allowing for the assess-
ment of systems both at the global level and at the level of specific parti-
tions of the secrets. Our results generalise the lower bound presented in
(CPP08b, Proposition 7.4). In particular, we give precise bounds for the
probability of misclassification on the part of the attacker, characterising
both the limit value and the rate of convergence of the error probability
as a function of the number of independent observations.
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Our study on views relates, at least conceptually, to the notion of pro-
babilistic opacity, as studied by Bérard, Mullins and Sassolas in (BMS10).
Although they work with a different setting, finite-state machines, our
partition can be seen as a generalisation of the binary predicates they
consider.
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Chapter 4

Passive attackers and
sequential observations

The attack models discussed in the preceding chapter presupposes that
the computation involving the secret information takes place in a single
step. Or, more accurately, that the intermediate states of the computation
are not accessible to the adversary. In this chapter, we consider a more re-
fined scenario, where computations may take several steps to terminate,
or even not terminate at all. In any case, to each state of the computation
there corresponds one observation on the part of the attacker. Hence, to
each computation there corresponds a sequential trace of observations.
The attacker may collect multiple such traces, corresponding to multiple
independent executions of the system. Throughout these executions, the
secret information is kept fixed. This set up is well suited to describe sit-
uations where the attacker collects information from different sources at
different times, like a coalition of different local eavesdroppers. Discrete-
time Hidden Markov Models (Rab89) provide a convenient setting to
formally model such systems, which we may designate as sequential in-
formation hiding systems.

4.1 Hidden Markov Models

Let S and O be finite sets of states and observations, respectively.

Definition 4.1.1 (Hidden Markov Models) A (discrete-time, homoge-
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Figure 9: A graphical representation of a sequential IHS.

neous) Hidden Markov Model (HMM) with states in S and observations in
O is a a pair of random processes 〈(Si)i≥1 , (Oi)i≥1〉, such that, for each t ≥ 1

• St and Ot are random variables taking values in S and O, respectively;

• the following equalities hold true (whenever the involved conditional pro-
babilities are defined):

Pr(St+1 = st+1|St = st, Ot = ot, . . . , S1 = s1, O1 = o1) =

= Pr(St+1 = st+1|St = st) (4.1)
Pr(Ot = ot|St = st, St−1 = st−1, Ot−1 = ot−1, . . . , S1 = s1, O1 = o1) =

= Pr(Ot = ot|St = st). (4.2)

Moreover, the value of the above probabilities does not depend on the
index t, but only on st, st+1 and ot.

Equation (4.1) says that the state at time t+1 only depends on the state at
time t, that is (Si)i≥1 forms a Markov chain. Equation (4.2) says that the
observation at time t only depends on the state at time t. A consequence
of this equation is that the state at time t + 1 is independent from the
observation at time t, given the state at time t, that is

Pr(Ot = ot, St+1 = st+1|St = st) = Pr(Ot = ot|St = st)·Pr(St+1 = st+1|St = st) .
(4.3)

Graphically, a HMM can be represented by a diagram like the one in
Figure 9, where the nodes are random variables and the presence of a pair
of arrows X ← Y → Z or X → Y → Z means conditional independence
of X and Z given Y .

Assume now S = {s1, . . . , sm} and O = {o1, . . . , ol}. A finite-state
HMM on S andO is completely specified by, hence can be identified with,
a triple (π, F,G) such that:
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• π ∈ R1×m is a row-vector representing the prior distribution on S,
that is π(i) = Pr(S1 = si) for each 1 ≤ i ≤ m;

• F ∈ Rm×m is a matrix such that F (i, j) is the probability of transi-
tion from si to sj , for 1 ≤ i, j ≤ m;

• G ∈ Rm×l is a matrix such that G(i, j) is the probability of observ-
ing oj at state si, for 1 ≤ i ≤ m and 1 ≤ j ≤ l.

4.2 An extended model: sequential observa-
tions

Given an HMM
〈
(Si)i≥1 , (Oi)i≥1

〉
, with states in S and observations in

O, where (Si)i≥1 represents the sequence of (hidden) states crossed by
the system, while (Oi)i≥1 is the corresponding observation trace, assume
that the attacker targets the first state of the computation, that is the
value of S1 (lightly modifying the model we can also represent a situ-
ation where the adversary targets the whole sequence of states the sy-
stem passed through before terminating). We are interested in analysing
the attacker’s error probability after observing n traces of length t, cor-
responding to n conditionally independent executions of the system up
to and including time t, as both n and t go to +∞. Let σ denotes a se-
quence of observation (or trace) corresponding to an execution of the sy-
stem, ranging over the set of observation traces O∗. For any σ = o1 · · · ot
(t ≥ 0) and s ∈ S, define1

p(σ | s) , Pr(O1 = o1, O2 = o2, . . . , Ot = ot |S1 = s)

with the proviso that p(ε | s) , 1 . We note that for any fixed t ≥ 0 and
s ∈ S , p(σ|s) defines a probability distribution as σ ranges over Ot, the
set of traces of length t, or t-traces. In other words, for any fixed t, we have
an information hiding system in the sense of Section 3.1.1, with S as a
set of states, Ot as a set of observables, a conditional probability matrix
p(σ|s) (s ∈ S, σ ∈ Ot) and p∗ as a prior distribution on states. Call H(t)

this system. We have the following error probabilities of interest (t ≥ 0):

1Or, more formally, p(σ | s) , Pr(Oh = o1, Oh+1 = o2, . . . , Oh+t−1 = ot |Sh = s), for
any index h s.t. Pr(Sh = s) > 0. Note that this definition does not depend on the chosen
index h, given that the chain is homogeneous. Also, we are assuming w.l.o.g. here that for
each s there is an index h s.t. Pr(Sh = s) > 0.
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Definition 4.2.1 (Error probabilities and leakage for HMM)

P (t)
e (n) , error probability after n observations (of t-traces) inH(t)

P (t)
e , lim

n→∞
P (t)
e (n) (4.4)

Pe , lim
t→∞

P (t)
e (4.5)

The corresponding min-entropy leakage quantities (Psucc = 1− Pe) are:

L(t)(n) , log
P

(t)
succ(n)

maxs p∗(s)
L(t) , log

P
(t)
succ

maxs p∗(s)
L , log

Psucc
maxs p∗(s)

.

Additive leakages are defined similarly.

We will show in the next section that the limits (4.4) and (4.5) exist and
are easy to compute.

4.3 Bounds and asymptotic behaviour

The existence of limit (4.4) is an immediate consequence of Theorem 3.1.7
applied to H(t). Indeed, let us denote by ≡(t) the indistinguishability
relation on states forH(t), that is, explicitly

s ≡(t) s′ if and only if for each σ ∈ Ot : p(σ|s) = p(σ|s′) .

Let C(t)
1 , . . . , C

(t)
Kt

be the equivalence classes of ≡(t) and let p∗(t)i ,
max

s∈C(t)
i
p∗(s). Then we have by Theorem 3.1.7 that

P (t)
e = 1−

Kt∑
i=1

p
∗(t)
i (4.6)

Note that, for any fixed t, Corollary 3.1.11 carries over to H(t). We now
consider the case t → ∞. We introduce the following fundamental rela-
tion.

Definition 4.3.1 (Indistinguishability for HMM) The indistinguishabil-
ity relation on a HMM is defined as

≡ ,
⋂
t≥0

≡(t) .

Equivalently, s ≡ s′ if and only if for every σ ∈ O∗, p(σ|s) = p(σ|s′).
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It is immediate to check that ≡ is an equivalence relation on S. Let
C1, . . . , CK be its equivalence classes and let p∗i , maxs∈Ci p

∗(s), for i =
1, . . . ,K. Concerning the limit (4.5), we have the following result.

Proposition 4.3.2

Pe = 1−
K∑
i=1

p∗i .

PROOF First, we note that {≡(t)}t≥0 forms a monotonically non-
increasing chain of relations: ≡(0)⊇≡(1)⊇≡(2) · · · . To prove this fact,
note that, for each t, σ ∈ Ot and s ∈ S, p(σ|s) =

∑
o∈O p(σ · o|s). There-

fore, s ≡(t+1) s′ implies s ≡(t) s′.
The above fact implies that the sequence {P (t)

e }t≥0 is monotonically
non-increasing: indeed, the finer the equivalence classes of ≡(t), the
greater the value of the sum in (4.6). Therefore, the limit (4.5) exists. In
order to determine the value of this limit, we reason as follows. Since S
is finite and the chain of sets {≡(t)}t≥0 is monotonically non-increasing,
there must exist t0 such that

≡(t0) = ≡(t0+1) = · · · = ≡ .

According to (4.6) then, from t0 onward the sequence {P (t)
e }t≥0 stabilises

to the value Pe = 1−
∑K
i=1 p

∗
i . �

The actual computation of Pe, and of the corresponding information
leakage quantities, is therefore reduced to the computation of ≡. Below,
we show that this computation can be performed quite efficiently. We
do so by using some elementary linear algebra. Let us introduce some
additional notation. We define the transition matrices Mok ∈ Rm×m, for
any ok ∈ O, as follows2:

Mok(i, j) , Pr(St+1 = sj , Ot = ok|St = si)

= F (i, j) ·G(i, k)

where the last equality is justified by equation (4.3). Note that a row of
Mok does not necessarily sum to 1. For any σ = o1 · · · ot, let

Mσ ,Mo1 × · · · ×Mot .

2Again, due to homogeneity, in the definition we can choose any index t such that
Pr(St = si) > 0.
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Finally, we let ei ∈ R1×m denote the row vector with 1 in the i-th position
and 0 elsewhere and let e ,

∑m
i=1 ei denote the everywhere 1 vector.

The following lemma provides an alternative characterization of ≡; the
lemma is easily proven by induction on the length of σ.

Lemma 4.3.3 For each σ and si ∈ S, p(σ | si) = eiMσe
T . Hence

si ≡ sj if and only if for each σ ∈ O∗ eiMσe
T = ejMσe

T .

We say a row vector v is orthogonal to a set of column vectors U , writ-
ten v⊥U , if vu = 0 for each u ∈ U . Also, for any set of vectors U , U⊥

denotes the orthogonal complement of U given by U⊥ = {v | v⊥U}. It is
easily seen that U⊥ is a sub-space of the space of column vectors. More-
over, U ⊆ V implies V ⊥ ⊆ U⊥. Of course, the above definitions extend
as expected when exchanging the roles of “row” and “column”. We fi-
nally note that if U is a vector space, then (·)⊥ is an involution, that is
(U⊥)⊥ = U .

Theorem 4.3.4 Let B be a basis of the (finite-dimensional) sub-space of Rm×1

spanned by
⋃
σ∈O∗{Mσe

T }. For si, sj ∈ S,

si ≡ sj if and only if (ei − ej) ⊥ B.

PROOF The condition of Lemma 4.3.3 can be expressed as

for each σ ∈ O∗ : (ei − ej)Mσe
T = 0

if and only if

(ei − ej) ∈ ∩σ{Mσe
T }⊥ = (∪σ{Mσe

T })⊥

if and only if

(ei − ej) ⊥ B .

�

A basis B of span
( ⋃

σ{Mσe
T }
)

can be expressed as

B = {Mσe
T |σ ∈ F} (4.7)

for a suitable finite, prefix-closed F ⊆ O∗. More precisely, B can be
computed by a procedure that starts with the set B := {eT } and itera-
tively updates B by joining in the vectors Mo·σe

T = Mo · (Mσe
T ), with
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Mσe
T ∈ B and o ∈ O, that are linearly independent from the vectors al-

ready present inB, until no other vector can be joined in. This procedure
must terminate in a number of steps ≤ m. The set of strings F can be
computed alongside with B.

We now briefly discuss the rate of convergence toPe. We have already
seen that P (t0)

e = Pe. Therefore, there is no advantage, for an attacker
wanting to determine ≡, in considering traces of length greater than t0.
The convergence rate for the attacker is hence determined by the matrix
of the system H(t0). For this reason, it is of practical importance to be
able to compute t0. This is in fact quite an easy task, as stated by the
following proposition.

Proposition 4.3.5 Let B be a basis of the space spanned by ∪σ{Mσe
T } and F

the corresponding set of strings, as specified by (4.7). Assume B and F have
been obtained by the algorithm described above. Then t0 = max{|σ| : σ ∈ F}.

PROOF For any equivalence relation R over S, let the kernel of R be
the subspace of R1×m defined thus

ker(R) , span({ei − ej | siRsj}) .

Now, by a reasoning similar to that in the proof of Theorem 4.3.4, for any
t we have

ker(≡(t)) = (span(∪σ∈OtMσe
T ))⊥ (4.8)

while, by definition of B and F

ker(≡) = (span(∪σ∈FMσe
T ))⊥ . (4.9)

Let R, R′ be two equivalence relations of the form ≡ or ≡(t). The above
equations imply that siRsj if and only if ei − ej ∈ ker(R). Moreover,
R ⊆ R′ if and only if ker(R) ⊆ ker(R′). Thus, the equivalence relations of
interest are completely characterised by their kernels. By Lemma 4.3.3,
we deduce that for each t, ker(≡(t)) ⊇ ker(≡(t+1)). From this fact, and
using the fact that U ⊆ V implies V ⊥ ⊆ U⊥, and that (U⊥)⊥ = U , we
obtain that for each t, span(∪σ∈OtMσe

T ) ⊆ span(∪σ∈Ot+1Mσe
T ), hence

ker(≡(t))⊥ = span(∪σ∈OtMσe
T ) = span(∪0≤i≤t ∪σ∈Oi Mσe

T ) .

Take now t = max{|σ| : σ ∈ F} in the equation above: we obtain

ker(≡(t))⊥ = span(∪0≤i≤t∪σ∈OiMσe
T ) ⊇ span(∪σ∈FMσe

T ) = ker(≡)⊥
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hence ker(≡(t)) ⊆ ker(≡), which implies ker(≡(t)) = ker(≡), that is
≡(t) = ≡.

On the other hand, take any t < max{|σ| : σ ∈ F}. Assume
by contradiction that ≡(t) = ≡, that is ker(≡(t)) = ker(≡). By (4.8)
and (4.9), and using (U⊥)⊥ = U , we obtain that span(∪σ∈OtMσe

T ) =
span(∪σ∈FMσe

T ). This implies that there is a string of maximal length
in F , say σ0, s.t. Mσ0

eT can be obtained as a linear combination of vec-
tors Mσe

T , for σ of length t < |σ0|. But, by construction of B and F , this
cannot be the case. �

The practical computation of the rate relative to Pe can be carried out
applying Theorem 3.1.7 to the system H(t0), which requires one has at
hand the conditional probability matrix of the system. The entries of this
matrix are of the form p(σ|s) with σ ∈ Ot0 . The computation of individ-
ual entries p(σ|s) can be performed quite efficiently, running the so-called
Forward-Backward algorithm on the underlying HMM (see (Rab89)). Unfor-
tunately, the number of columns in the matrix, i.e. of traces of length t0,
is exponential in t0. Most likely, this makes the exact computation of the
rate impractical for significant systems (say, systems with thousands of
states). Forms of approximations are conceivable to tackle this problem,
such as “lumping” the matrix by aggregating sets of columns: this leads
to tractable dimensions, but also to underestimating the rate. We will not
discuss this issue further.

Remark 4.3.6 Model checking of Markov chains is based on viewing proper-
ties to analyse as sets of infinite sequences of states. One could adopt a similar
perspective when analysing HMM’s from the point of view of information leak-
age, and stipulate that an observable is a set of infinite sequences P ⊆ Oω ,
taken from a cylinder-generated sigma-algebra (see e.g. (BK08)). However, this
approach would not lead to substantially different results. Indeed, the proba-
bility measures defined on the sigma-algebra entirely depend on the probability
assigned to cylinders, which is in turn determined by the probability of the fi-
nite prefixes σ ∈ O∗ that define the cylinders. Therefore, even in this seemingly
richer setting of observations, one would end up having that ≡ coincides with
≡(t0).
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4.4 An application: analysing routing informa-
tion

We discuss now a scenario where messages are routed from a sender
to a receiver in a network with a fixed topology, as can be found for
instance in a structured peer-to-peer overlay. Anonymity protocols such
as onion routing (GRS96) are designed to protect the identity of the sender
and/or of the receiver in the presence of corrupted nodes. Initially, the
routing path from the sender to the receiver is established randomly. In
each exchanged message, nested layers of encryptions ensure that any
intermediate node on the path node only gets to know the preceding
and the next node in the path, but not the identity of the original sender
and of the final receiver.

We present and analyse a model of this protocol below. We should
warn the reader that, for the sake of presentation, we have chosen to anal-
yse an over-simplified version of the protocol. For example, we assume
that, upon receiving a message, a corrupted node can tell whether the
message pertains to the target sender-receiver conversation, but cannot
identify the predecessor node in the path followed by the message. More
powerful forms of eavesdropping can be easily accommodated. Again,
we are interested in the case of re-execution, where, for some reason,
the initiator is forced to establish new paths with the responder several
times. We will concentrate on the asymptotic error probability and leak-
age, ignoring issues related to the rate of convergence.

We assume the topology of the network is specified by a nonempty
graph G = (V,E). For each node v ∈ V , we let N(v) denote the set
of neighbours of v, that is the set of nodes u for which an arc {v, u} in
E exists; N(v) is always assumed nonempty. Let C ⊆ V represent the
subset of corrupted nodes. We let S , V × V be the set of states of
the system; in (v, r) ∈ S, v represents the node currently holding the
message, while r represent the final receiver. We let O , C ∪ {∗} be
the set of observables; here c ∈ C means that the message is presently
held by the corrupted node c, while ∗ means no observation other than
the elapse of a discrete time interval. What the attacker can observe are
therefore traces like σ in the picture in Figure 10.

We assume the sender and the receiver are chosen at random inde-
pendently from each other, and that the sender is always a honest node,
as there is no point for the attacker in eavesdropping on corrupted nodes.
This formally means that the first state of the Markov chain is a random
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s

r

c2

c1 c3

σ = ∗ ∗ c1 c2 ∗ ∗ ∗ ∗ c3 ∗ ∗

Figure 10: A random route from s to r in a network with three corrupted
nodes, and the corresponding observation σ.

vector S1 = (S,R), where S and R are independent random variables
taking values uniformly in V \ C and V , respectively. The transitions
and the observations of the hidden Markov model are defined by the fol-
lowing equations, where u, v, r ∈ V , c ∈ C and s ∈ V \ C. The first two
lines define the entries of matrix F , while the others are the entries of G:

p
(

(u, r) | (v, r)
)
,


1

|N(v)| if u ∈ N(v) and v 6= r

0 if u /∈ N(v) and v 6= r

p
(

(r, r) | (r, r)
)
, 1

p
(
c | (c, r)

)
, 1

p
(
∗ | (s, r)

)
, 1 .

The above equations define a hidden Markov model, sayM. For any
specific topology G, it is easy to compute the corresponding probability
Pe defined by (4.5), as indicated by Proposition 4.3.2. Recall that Pe is the
probability that, after observing n independent executions of the system
up to time t, for n, t → ∞, the attacker fails to correctly guess the pair
(s, r) of the true sender and receiver.

In fact, in order to assess the degree of anonymity provided by the
system, it is more convenient to have at hand the error probabilities for
the sender and for the receiver separately. To see how these probabilities
are defined and computed, we examine in detail the case of the sender;
the receiver case is basically the same. Formally, for each σ ∈ Ot and
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sender s ∈ V \ C, let

psend(σ|s) , Pr(Ot = σ|S = s) . (4.10)

Note that psend(σ|s) can be actually computed as an average∑
r∈V p(σ|(s, r))pR(r). The quantities p(σ|(s, r)) can be computed as de-

scribed by Lemma 4.3.3. For any fixed t ≥ 1, (4.10) defines a conditional
probability matrix; using this matrix, we can form an information hiding
system where the states are the senders and the observables are t-traces:
〈V \ C,Ot, pS(·), psend(·|·)〉. Let us denote by P

(t)
e,send the corresponding

asymptotic error probability. The probability we are after is obtained by
letting t go to∞:

Pe,send , lim
t→∞

P
(t)
e,send .

Reasoning as we did for Proposition 4.3.2, one checks that Pe,send can
be computed from the limit indistinguishability relation as t → ∞, say
≡send. Explicitly, this relation can be defined as

s ≡send s′ if and only if for each σ ∈ O∗ psend(σ|s) = psend(σ|s′).

The next lemma says how ≡send can be computed starting from the hid-
den Markov model M defined above, by a suitable aggregation of the
rows of the basis matrix B. The proof consists of easy manipulations of
the transition matrices Mσ and is omitted. Recall that the states of M
are pairs (u, v), thus e(u,v) denotes the row vector in R1×|V |2 whose entry
corresponding to the element (u, v) is 1, while the others are 0. For each
s, we let fs denote the row vector

∑
(s,v)∈S e(s,v).

Lemma 4.4.1 Let B be a basis like in the hypotheses of Theorem 4.3.4 for the
hidden Markov modelM defined above. For any two senders s and s′,

s ≡send s′ if and only if (fs − fs′)⊥B.

We have applied this setting to a few instances of a grid network, like
the one in Figure 10, relative to different sizes d of the grid and different
sets C of corrupted nodes. Table 1 summarises the outcomes of these
experiments. The nodes in the grid are numbered from 1 to d2, start-
ing from the top left corner and proceeding row-wise from left to right.
To avoid end effects, we make the grid wrap up, i.e. the top and bot-
tom rows are connected together, as well as the rightmost and leftmost
columns. The sets C are chosen so as to give rise to configurations where
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d C
Ksend

= L×,send

Krec

= L×,rec
Pe,send Pe,rec L+,send L+,rec

3 {1} 2 4 0.75 0.56 0.12 0.33
3 {1, 5} 4 9 0.43 0 0.43 0.89
3 {2, 4, 6, 8} 5 9 0 0 0.8 0.89
4 {1} 4 9 0.73 0.44 0.2 0.5
4 {1, 6} 7 12 0.5 0.25 0.43 0.69
4 {2, 5, 7, 10} 12 16 0 0 0.92 0.94
5 {1} 5 15 0.79 0.4 0.17 0.56
5 {1, 7} 13 25 0.43 0 0.52 0.96
5 {2, 6, 8, 12} 21 25 0 0 0.95 0.96
6 {1} 10 10 0.71 0.72 0.26 0.25
6 {1, 8} 19 36 0.44 0 0.53 0.97
6 {2, 7, 9, 14} 32 36 0 0 0.97 0.97

Table 1: Sender and receiver anonymity for several instances of a grid net-
work.

no two corrupted nodes are directly connected: we have checked exper-
imentally that these are the most advantageous for the attacker; other-
wise, the relative distance of the corrupted nodes seems unimportant.
Ksend and Krec denote the number of classes of ≡send and of ≡rec, re-
spectively. Moreover, from Corollary 3.1.11(2) in Section 3.2.2, we know
that the asymptotic min-entropy leakage coincides with the logarithm of
the number of classes in the case of uniform distribution. The probability
Pe,send is computed as 1− Ksend

|V |−|C| , while Pe,rec is computed as 1−Krec
|V | . Fi-

nally, additive leakages are computed as indicated by Corollary 3.1.11(2).
Although a systematic study of anonymous routing protocols is out-

side the scope of this thesis, some qualitative considerations can be
drawn from these data. If one keeps d fixed and lets |C| grow, the data
are simple to interpret: the error probability goes to 0 and the leakage
gets larger. On the other hand, if one keeps |C| fixed and compares con-
figurations of different size d, the interpretation becomes less obvious.
The leakage tends to increase when moving from smaller to larger val-
ues of d, which is particularly evident from the columns of min-entropy
leakage. This increase occurs barely because, as the number of nodes
grows, the number of indistinguishability classes tends to grow as well:
all this means is that a large system tends to leak more information than
a small one. Concerning error probability, which is supposed to measure
the “absolute” resistance of a system against passive eavesdropping, the
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data seem to partially contradict the intuition that the more nodes in a
network, the stronger the guarantee of anonymity. Indeed, it may hap-
pen that the error probability decreases when moving from smaller to
larger values of d. Also, the receiver seems more vulnerable than the
sender from the point of view of anonymity.

At the moment we have no exact explanation to offer for these phe-
nomena. Heuristically, the first phenomenon (decrease of error probabi-
lity) seems to be connected with the fact that, as d grows, the number of
indistinguishability classes may grow faster than the number of nodes,
because a great deal of new observables (traces) becomes available. The
second phenomenon (receiver’s vulnerability) is connected with the fact
that, given enough time, the message will reach its destination and, if
this is a corrupted node, the adversary will know that for sure. A more
systematic study of anonymous routing protocols is called for to quanti-
tatively assess their security .

4.5 Concluding remarks

We have extended the previous results to a more sophisticated attack
scenario, where the computation of the system may take several steps
to terminate, or even not terminate at all, and where each state crossed
during an execution induces one observation. We formalise this scenario
in terms of discrete-time Hidden Markov Models (Rab89). This set up al-
lowed us to describe situations where the attacker collects information
from different sources at different times, like in a coalition of different lo-
cal eavesdroppers. The HMM model we consider is similar in spirit to the
fully probabilistic automata considered by Andrés et al. in (APvRS10).
Their purpose is different, though, as they aim at feasible methods for
computing the channel matrix associated with the automaton, whereas
we focus on the asymptotic behaviour of leakage and error probability.
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Chapter 5

Active attackers: a non
adaptive scenario

The models described in the previous chapter, as most of the models of
QIF so far proposed, concern with the case where the attacker is a passive
eavesdropper. Only very recently, quantification of threats posed by ac-
tive attackers, able to directly interact with the system, has been consid-
ered. In particular, (CS10) provides a definition of quantitative integrity,
by measuring information flowing from untrusted inputs to public out-
puts, (BS11) tracks the knowledge an attacker can obtain in several runs
of the program, each one with a new attacker-controlled input, while
(KB07) considers a scenario of adaptive chosen-message attacks. How-
ever, all of them are limited to deterministic programs. In this and the
next chapter we extend previous results to the probabilistic case.

In this chapter we focus on the non-adaptive case, studying the
threats posed to confidentiality and integrity of probabilistic systems by
a class of active adversaries. As in (BS11), we assume that part of the
input is under the control of an active attacker, hence untrusted, and con-
sider re-execution attacks. In this scenario, the attacker can take advan-
tage of multiple runs in two ways: (1) like in (BS11), at each run the
attacker can alter the untrusted input and observe the result of this mod-
ification; (2) since the system is probabilistic, the attacker can accumulate
statistical evidence about the behaviour of the program and hence the
secret, assuming the runs are independent and the secret remains fixed
throughout the runs. As we will show, the interplay between these two
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capabilities is non-trivial.
We define a notion of quantitative multi-run leakage, based on min-

entropy (Smi09), and give a simple characterization of its asymptotic be-
haviour, depending on the number n of independent runs of the pro-
gram. In particular, we determine the exponential growth rate of the
leakage, which allows us to give tight numerical estimates depending
on n.

Focussing on the qualitative setting, given a declassification policy
we provide a multi-run quantitative measure of policy violation, in terms
of conditional min-entropy. Again, the asymptotic behaviour of this mea-
sure is characterized in simple terms. This allows to combine analysis
of what and how much information is leaked. In a multi-run setting, we
formulate, in terms of statistical hypothesis testing, the problem of decid-
ing whether an attack against a system is occurring. Given an integrity
policy, specified as a class of “suspect” behaviours, we characterise an
optimal decision strategy and quantify the inherent risks (error probabil-
ities) involved in taking a decision.

5.1 An extended model: trusted and untrusted
inputs

Let S, U and O be nonempty sets. We consider probabilistic programs
c(s, u) depending on two inputs: a trusted and confidential input s ∈ S
and an untrusted one u ∈ U ; the latter is under the control of the attacker,
who can read and/or modify it at will. The program c outputs a result,
or more generally an observation1, o ∈ O. If we view untrusted inputs as
actions chosen by the adversary, we can formally represent the program
c as an action-based randomisation mechanism, defined as follows.

Definition 5.1.1 (Action-based randomisation mechanism) An action-
based randomisation mechanism is a 4-tuple

S = 〈S,O,U , {pu : u ∈ U}〉

where (all sets finite and nonempty): S,O and U are respectively the sets of
secrets, observations and actions (or untrusted inputs) and for each u ∈ U , pu
is a stochastic matrix of dimensions |S| × |O|.

1For simplicity, we assume the program always terminates, or that non-termination can
be detected by e.g. timing considerations, thus becoming an observable value. See e.g.
(BS11).
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c
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u
O

Figure 11: Noisy channel with an untrusted input.

For each fixed untrusted input u ∈ U , the behaviour of c is defined
by the matrix pu(·|·) ∈ [0, 1]S×O. For any s, the row of this matrix is
a probability distribution on O, denoted by pu(·|s): here, pu(o|s) is the
probability of observing o, given that the secret input to the program is
s and the untrusted input is u. A system is deterministic if each entry of
each pu(·|·) is either 0 or 1. Note that to any deterministic system there
corresponds a function f : S × U → O defined by f(s, u) = o, where
pu(o|s) = 1.

Assume a prior distribution p(·) on S is given and known to the at-
tacker, and let S ∼ p(·) be the random variable representing the confi-
dential input. From the attacker’s perspective, c is a noisy channel with
two inputs: the random variable S and a value u ∈ U chosen by the at-
tacker himself. The channel output is a random variable O taking values
inO and such that S and O are jointly distributed according to the distri-
bution qu(s, o) , p(s) · pu(o|s), depending on the chosen value u. This
is pictorially represented in Figure 11; we stress that u is not a random
variable, but an actual value chosen by the attacker.

We are interested in a scenario of multi-run security, where the at-
tacker is granted the possibility of observing several independent exe-
cutions of the program c, with a fixed, unknown input S and different
values of u, chosen by himself. The ability of tweaking the system by
trying different values of U , thus influencing the output, clearly gives the
adversary extra strength. Suppose that the attacker can perform enough
experiments, with the input s remaining fixed, in order to try all possible
values of u. If U = {u1, . . . , ul}, we shall assume that the attacker can
try, in some order, all l values for u. Let u = [u1, . . . , ul] be the sequence
containing all values for u. We can see u as a strategy where all possible
actions are played in a fixed order. Note that this order is fixed in ad-
vance: the attacker is not allowed to play actions adaptively, that is, by
taking into consideration intermediate observations. The adaptive sce-
nario will be examined in Chapter 6 (see Definition 6.1.2, which in fact
generalises the present setting).
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Figure 12: Two different ways to view a multi-run IHS

For each i = 1, . . . , l, the attacker observes Oi, the random variable
corresponding to the output of the channel with input (S, ui). Once u has
been defined, we will find convenient to view the set of all l observations
as a output of a ’big’ channel, as explained below.

Definition 5.1.2 (multi-run IHS) Let c be a probabilistic program defined, for
each u ∈ U , by a stochastic matrix pu(·|·) ∈ [0, 1](S×O) as detailed above. A
multi-run IHS for c is

Hu , 〈S,Ol, p(·), pu(·|·)〉 .

where p(·) is a prior distribution on S and

pu(o|s) , pu1
(o1|s) · · · · · pol(ol|s) (5.1)

for any o = [o1, . . . , ol] ∈ Ol.

Since for each of these l experiments the value of the secret s and
the channel c are the same, it is as if we were executing l parallel pro-
grams (identical and equal to c), each of which takes S and one of the
values ui as input, giving as result the corresponding Oi ∼ pui(o|s). This
is the same as considering a ‘big’ channel c̃ with two inputs, the random
variable S and the vector u , [u1, . . . , ul], and as an output the random
vector O , [O1, . . . , Ol]. The situation is pictorially represented in Figure
12. Note that the Oi’s are independent given S.

The main difference from the previous model is that here a part of the
input, u, is known to the attacker and so he can condition the distribu-
tions on the secrets with the knowledge of it. Secondly, the observations
here correspond to l-tuples of elements of O.
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Let us fix a specific notation for multi-run IHS’s. A boldface letter
o (respectively O) will denote a generic element of (respectively random
variable taking values in)Ol. The notations, definitions and results intro-
duced in Chapter 3 for general IHS’s do of course specialise to multi-run
ones, taking this notation into account. For example, On = (O1, . . . ,On)
denotes a generic sequence of random variable i.i.d. given S, thus ac-
cording to (3.1):

Pr(On = (o1, . . . ,on) | S = s) =

n∏
i=1

pu(oi|s) =

n∏
i=1

l∏
j=1

puj (oij |s)

where we let oij ∈ O denote the jth component of the tuple oi ∈ Ol. Note
that On corresponds to observing the system n× l times, n times for each
uj , 1 ≤ j ≤ l. We will use index u to remind ourselves that we are deal-
ing with a multi-run IHS, and the corresponding set of untrusted inputs.
Thus for example, the error probability and the information leakage can
be expressed as follows.

Definition 5.1.3 (Error probability and leakage for multi-run IHS’s)
Given a multi-run IHS Hu and a guessing function g, the error probability is

P (g),u
e (n) , Pr(g(On) 6= S) where P (g),u

succ = 1− P (g),u
e (n).

As consequence, the information leakage becomes

Lu(n) , log
P

(g),u
succ (n)

maxs p(s)
.

Note that the guessing function g, which will be assumed MAP unless
otherwise stated, here has type g : Ol×n → S.

Example 18 Let S = {0, . . . , 1016 − 1}, possibly representing credit card
numbers, U = {1, . . . , 16}, representing positions of digits in (the decimal
expansion to sixteen digits of) a credit card number, and O = {∗, 0, . . . , 9},
representing the set of decimal digits plus a default value. Consider a pro-
gram c(s, u) that flips a fair coin to decide whether output the u-th digit
of the decimal expansion of s or output ∗. The conditional probability ma-
trix defining the program is pu(o|s) = 1

2δo,s[u], where s[u] denotes the u-th
decimal digit of s, and δi,j is Kronecker’s symbol with the convention that
δ∗,j = 1 for each j. Take the uniform prior distribution p(·) on S. Accord-
ing to Definition 5.1.2, a multi-run IHS can be formed with this program and
pu(o|s) =

∏16
i=1 p(oi|s, ui) =

∏16
i=1

1
2δoi,s[ui].
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5.2 Bounds and asymptotic behaviour

Let us now study the asymptotic behaviour of Lu(n), depending on the
number n of independent observations. Throughout the section,Hu will
denote a generic multi-run IHS for a program pu(o|s), as in Definition
5.1.2.

The indistinguishability relation instantiated to Hu is defined as fol-
lows.

Definition 5.2.1 (Indistinguishability for multi-run IHS) For each s, s′ ∈
S

s ≡u s
′ if and only if for each o ∈ Ol pu(o|s) = pu(o|s′).

Let S/≡u = {C1, . . . , Ck} be the set of equivalence classes of ≡u . For
each i = 1, . . . , k let s∗i , argmaxs∈Cip(s) and p∗i , p(s∗i ). We assume
without loss of generality that p∗i > 0 for each i = 1, . . . , k (otherwise
all the secrets in class Ci can be just discarded from the system) and that
p∗1 = maxs∈S p(s). Applying to Hu Corollary 3.1.11(2), Remark 3.1.12
and Theorem 3.1.7, we immediately get the following result.

Proposition 5.2.2 The information leaked by the multi-run IHS Hu after an
infinite number of experiments is:

lim
n→∞

Lu(n) = log

∑k
i=1 p

∗
i

p∗1
.

If the distribution on secrets is uniform:

lim
n→∞

Lu(n) = log |S/≡u|.

In any case, the rate of convergence of Pu
succ(n) is given by:

ρu , min
i,j∈{1,...,k}

i 6=j

C
(
pu(·|s∗i ), pu(·|s∗j )

)
.

Applying Proposition 5.2.2 may be difficult. Indeed, the matrix pu(·|·)
has a size exponential in l, |S| × |O|l, which can be very large in practice.
This can make direct calculations of both the indistinguishability relation
≡u and the rate ρu very costly. In the rest of the section, we offer results
to cope with both problems.

75



For each i = 1, . . . , l, consider the equivalence relation ≡i on S, de-
fined by setting u = ui in the system, that is:

s ≡i s′ if and only if for each o ∈ O pui(o|s) = pui(o|s′).

Each of these relations is much easier to compute than ≡u, as it only
involves a ‘small’ matrix of size |S|×|O|. On the other hand, computation
of ≡u is reduced to computing the set-theoretic intersection of the ≡i’s,
as stated by the following lemma.

Lemma 5.2.3
≡u =

⋂
i=1,...,l

≡i.

PROOF We have to prove that for each s, s′ ∈ S:

s ≡u s
′ if and only if s ≡i s′ for each i = 1, . . . , l.

The⇐-direction is obvious. Concerning the⇒-direction, we consider for
notational simplicity just the case i = 1. Note that for each o ∈ O

pu1
(o|s) =

∑
ol−1∈Ol−1

pu1
(o|s)pu2

(o1|s) · · · pul(ol−1|s)

=
∑

ol−1∈Ol−1

pu((o, ol−1)|s)

=
∑

ol−1∈Ol−1

pu((o, ol−1)|s′) = pu1(o|s′) (5.2)

where the third equality stems from pu((o, ol−1)|s) = pu((o, ol−1)|s′) for
each ol−1, by definition of ≡u. This shows that s ≡1 s

′. �

We now come to the computation of the rate ρu. In fact, it is not obvious
if, and how, this quantity can be computed without first building the
‘big’ matrix pu(·|·). What we shall do is to propose a sub-optimal (non-
MAP) but reasonably efficient guessing strategy g for Hu; the rate ρ? of
the corresponding success probability, P (g),u

succ (n), can be easily computed.
This way, we will get the lower-bound ρu ≥ ρ?.

The idea behind the strategy g is as follows. Upon collecting a n-
sequence of observations generated from Hu, say on = (o1, . . . ,on),
the attacker analyses separately the l subsequences obtained by setting
u = ui for i = 1, . . . , l: call them on1 , . . . , o

n
l . Explicitly, oni ∈ On denotes

76



the sequence (o1i, . . . , oni), corresponding to the untrusted input ui. For
each i = 1, . . . , l, the attacker chooses the equivalence class of ≡i that
is most likely, given the sequence oni . Next he builds the intersection of
all these classes and then chooses the most likely secret s that lies in this
intersection.

To state concisely the next result, we introduce a few abbreviations.
For each i = 1, . . . , l, let

S/ ≡i = {Di1, . . . , Diki}

be the equivalence classes of ≡i; let

pi(o|Dij) ,
∑
s∈Dij

pui(o|s)p(s)
p(Dij)

be the probability of observing o given that the untrusted input is set to
ui and the secret belongs to class Dij ; note that pi(·|Dij) = pui(·|s), for
any s ∈ Dij . We define

ρi , min
j 6=h

C(pi(·|Dij), pi(·|Dih)) and q∗i , max
1≤j≤ki

p(Dij).

Note that the computation of each ρi can be carried out starting from the
‘small’ |S| × |O| matrix pui(·|·), obtained by setting u = ui. Then, it is
possible to prove the following result.

Theorem 5.2.4 The rate of convergence of Pu
e is at least

ρu ≥ ρ∗ , min
i=1,...,l

ρi.

More precisely, for γ∗ ,
∑l
i=1

k2
i

2 q
∗
i :

(1−
k∑
i=1

p∗i ) ≤ Pu
e (n) ≤ (1−

k∑
i=1

p∗i ) + γ∗2−nρ
∗
. (5.3)

PROOF The LHS inequality comes from Theorem 3.1.7 applied toHu.
Consider now the RHS. For any n ≥ 1, we define a guessing function
g : Ol×n → S forHu as follows. For each i = 1, . . . , l, consider the ‘small’
IHS having as secrets S/≡i and defined thus

Hi , 〈S/ ≡i,O, pi(·), pi(·|·)〉 (5.4)
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where pi(·) is the prior probability on S/≡i defined as pi(Dij) , p(Dij)
for j = 1, . . . , ki, and pi(·|·) is as defined immediately above the state-
ment of Theorem 5.2.4. Let gi : On → S/≡i be a MAP guessing function
forHi. We set, for any on = (o1, . . . ,on) ∈ Ol×n,

g(o1, . . . ,on) , argmaxs∈
⋂l
i=1 gi(o

n
i )p(s)

with the convention that the RHS denotes the probability of a default
secret, e.g. s1, if the intersection

⋂l
i=1 gi(o

n
i ) is empty. We shall now give

an upper-bound for P (g),u
e (n).

Informally, the function g can be wrong in two ways: either the wrong
≡u-class of the secret is selected, or the correct class is guessed, but the se-
lected secret within this class is wrong. Formally, let On = (O1, . . . ,On)
be a sequence of observations i.i.d. given S. Let Err be the event
(g(On) 6= S) and let Succ′ be the event that the class is correctly cho-
sen by g, that is

(
[g(On)]≡u = [S]≡u

)
. By Lemma 5.2.3, the latter event

can be equivalently expressed as (g1(On1 ) = [S]≡1
∧ . . . ∧ gl(Onl ) = [S]≡l),

where Oni = (Oi1, . . . , Oin) for i = 1, . . . , l. The probability of error
P

(g),u
e (n) = Pr(Err) can be decomposed as

P (g),u
e (n) = Pr(Err, Succ′) + Pr(¬Succ′) (5.5)

where in the second summand we have taken into account the fact that
Pr(Err|¬Succ′) = 1. Now, we bound separately the two summands
in (5.5). P (Err, Succ′) is the probability that the secret belongs to the
chosen class, but does not coincide with the element chosen by g. Below,
we denote the event

(
[S]≡u = Ci

)
by just Ci, and recall that k = |S/≡u|.

We have:
Pr(Err, Succ′)

=
∑k
i=1 Pr(Err, Succ′, Ci)

=
∑k
i=1 Pr(Err|Succ′, Ci) Pr(Succ′, Ci)

≤
∑k
i=1 Pr(Err|Succ′, Ci)p(Ci)

=
∑k
i=1

(
1− p∗i

p(Ci)

)
p(Ci)

= 1−
∑k
i=1 p

∗
i .

(5.6)

Concerning the second summand in (5.5), a simple union bound yields

P (¬Succ′) ≤
l∑
i=1

Pr(gi(O
n
i ) 6= [S]≡i).
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Each summand Pr(gi(O
n
i ) 6= [S]≡i) is just the n-error probability of

the IHS Hi defined in (5.4). Now, we note that the indistinguishabil-
ity relation on Hi is trivial: by definition of pi(·|·), if Dij 6= Dij′ then
pi(·|Dij) 6= pi(·|Dij′). Hence, applying Theorem 3.1.7 to eachHi, we get

Pr(¬Succ′) ≤
l∑
i=1

k2
i

2
q∗i 2−nρi ≤

( l∑
i=1

k2
i

2
q∗i
)
2−nρ

∗
= γ∗2−nρ

∗
. (5.7)

Combining (5.5), (5.6) and (5.7) and recalling that Pu
e (n) ≤ P

(g),u
e (n) by

the optimality of MAP, we get the wanted result. �

Example 19 Reconsider Example 18 and estimate how many observations are
needed by an attacker to half the initial min-entropy of the secret. Let us first
determine the parameters

∑
i p
∗
i , ρ∗ and γ∗ necessary to apply Theorem 5.2.4.

Fix i = 1, . . . , 16. Then ≡i partitions S into ki = 10 classes, Di0, . . . , Di9.
Here Dij contains all the numbers having the digit j at position i. Now
pi(·|Dij) is a vector that is everywhere 0, except in columns ∗ and j, where
it contains 1/2. It is easy to compute the least Chernoff Information between
any two rows pi(·|Dij) 6= pi(·|Dij′): ρi = − log 1

2 = 1, which in turn implies
ρ∗ = mini ρi = 1; moreover, q∗i = 1

10 . Finally, applying Lemma 5.2.3, we see
that≡u is the identity, that is it has singleton classes, hence

∑k
i=1 p

∗
i = 1. With

these data, we can apply Theorem 5.2.4 and obtain:

0 ≤ Pu
e (n) ≤

16∑
i=1

102

2

1

10
2−n = 10 · 23−n

and
log (1016(1− 10 · 23−n)) ≤ Lu(n)→ 16 log 10.

This implies that with n = 7 observations of Hu, the initial min-entropy gets
halved: Lu(n) ≥ 8 log 10. Note that each observation inHu is a tuple o ∈ O16:
this means that the attacker will in fact collect 7× 16 = 112 individual o ∈ O.

Example 20 (Hamming weight attacks against DES S-boxes) Reconsider
the noisy scenario of Hamming weight attacks against S-boxes, described in
Example 11. Suppose now that the attacker is able to control the message
inserted in one of the S-boxes, e.g. S1, besides measuring the Hamming weight
of the output of all eight S-boxes. Assuming a uniform prior distribution on K,
a multi-run IHS Hu for this system can be defined as prescribed by Definition
5.1.2. Note that observations in this multi-run IHS are tuples of the form
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o = [o0, . . . , o63], with oi produced by setting the message m to the binary
expansion of i on six bits.

Let us estimate the asymptotic behaviour of information leakage for this
IHS. In what follows, we target the S-box S1 of DES. We compute the pa-
rameters

∑
i πi, q

∗
i and ρ∗ necessary to apply Theorem 5.2.4. First, by in-

spection of the S-box, it is readily computed that ≡u= ∩63
i=0 ≡i is just the

identity: hence
∑
i πi = 1. For each i = 0, . . . , 63, it is easy to see that

k ≡i k′ ⇔ W (SB(k,mi)) = W (SB(k′,mi)), therefore each ≡i partitions
S into ki = 5 classes. Moreover, for each i and for each j = 0, . . . , 4, the distri-
bution pi(·|Dij) coincides with the distribution of the random variable N + j.
It is easy to see that ρi = minj 6=j′ C(N + j,N + j′) = C(N,N + 1) ≈ 0.027.
Therefore, ρ∗ ≈ 0.027. Concerning the computation of the q∗i ’s, we reason as
follows. Fix a message mi. We have to compute how many keys are in class Dij ,
for j = 0, . . . , 4. By construction of the DES S-boxes, for each z ∈ {0, . . . , 15}
(seen as a 4-bits block) there exist exactly 4 keys such that SB(k,mi) = z.
Thus, for each j = 0, . . . , 4, there are exactly 4 ×

(
4
j

)
keys that give an output

with Hamming weight j, hence are in class Dij . The largest such class is then
obtained for j = 2, and |Di2| = 6. This yields q∗i = 24

64 = 3
8 , independently of

i. Applying now Theorem 5.2.4 to compute Pu
succ(n):

log
1− 300 · 2−n·0.027

64
≤ Lu(n)→ 6 .

That means that already n = 310 observations o ∈ O64 of Hu are sufficient to
determine 5.9 bits out of the total 6 of the key; this means that the attacker will
collect a total of 64× 310 individual observables o ∈ O.

5.3 Declassification policies

Now that we have seen how much information can be leaked by the
system, we wish to express a policy which sets limits on this leak-
age. In many contexts, the release of partial information concerning a
secret is unavoidable or even desirable. A declassification policy – see
(BS11; MSZ04; SM03) and references therein – states in a precise way
what information can be safely disclosed. For example, one may state
that the four least significant digits of a credit card number can be safely
disclosed. A policy can be expressed as a partition of the input domain
into equivalence classes: each class contains values that should remain
indistinguishable for the attacker. A program is compliant with a policy
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if all information it may disclose is already implied by the knowledge of
the equivalence class of the secret.

In this section we will study declassification policies in a probabi-
listic, multi-run setting. Throughout the section we fix a generic IHS
H = 〈S,O, p(·), p(·|·)〉. The result we will obtain do of course apply also
to the special case of a multi-run IHS Hu – we will say more on this at the
end of the section.

Definition 5.3.1 (Policy) A policy ∼π for the input domain S is an equiva-
lence relation on S.

The knowledge of the partition induced by the policy is the informa-
tion that we grant to the adversary. In other words, the attacker may
identify the class of the secret according to the policy, but nothing more.

A policy ∼π induces a partition, S/ ∼π = {π1, . . . , πt}, in addition
to the one induced by the indistinguishability relation, S/ ≡. Knowing
both of them, the attacker can study the finer relation, given by their
intersection, and possibly learn new information. A policy expresses a
form of qualitative information disclosure, e.g. which data can be safely
disclosed. Here, we want to enrich policies with a quantitative analysis,
by computing how much extra information is leaked, given the policy.
That is, we want to quantify how serious is a policy violation, if there
is any. The following definition is a natural extension to a probabilistic
setting of the notion of declassification policy known for deterministic
programs (BS11; MSZ04; SM03).

Definition 5.3.2 (Policy compliance) Let c be a (probabilistic) program that
takes as input a secret s and a policy ∼π for c. Then, c is policy compliant
with respect to ∼π if and only if

for each s ∈ S [s]∼π ⊆ [s]≡.

In other words, if and only if the relation ∼π is finer, or at most equal,
than ≡ . Note that in the special case where the matrix p(·|·) of H is
deterministic2, that is when p(·|·) defines an input/output function f :
S → O, the above definition specialises to the standard definition of
policy compliance for deterministic programs: s ∼π s′ implies f(s) =
f(s′).

2For each s there is exactly one o s.t. p(o|s) = 1.
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Example 21 Let S = {0, . . . , 9}16 represent credit card numbers. Consider the
declassification policy stating that it is safe to disclose the four least significant
digits of any number: for any s, s′ ∈ S

s ∼π s′ if and only if s = s′ mod 104.

Consider now two probabilistic programs, c1(s) and c2(s), taking as confidential
input a value s ∈ S . As shown below, c1 tosses a fair coin and, depending on
the outcome, outputs either the least three significant digits of s or a default
value −1. c2 tosses a fair coin and, depending on the outcome, outputs either
the fourth or the fifth least significant digit of s.

c1: r=rnd(0..1);
if r then l=-1 else l=h mod 10ˆ3;

c2: r=rnd(0..1);
if r then l=(h div 10ˆ4) mod 10
else l=(h div 10ˆ5) mod 10;

Assuming a uniform prior on S, we can view c1 and c2 as two IHS’sH1 and
H2, respectively. Denoting by s{4, 5} the set of the fourth and fifth least decimal
digit of s, the indistinguishability relations of these IHS’s can be characterised as
follows:

• s ≡1 s
′ if and only if s = s′ mod 103;

• s ≡2 s
′ if and only if s{4, 5} = s′{4, 5}.

For c1 two states generate all possible observations with the same probability
if they have in common the three least significant digits. For c2, after several
observations it reveals both the fourth and the fifth digit of the card, although
without revealing which is which. In order that two states are indistinguishable
according to c2, either their fourth and fifth digit coincide or they are swapped.
Considering the intersection relation, we note that, in the first case, it coincides
with ∼π , while in the second one it is a finer relation that associates in the same
class numbers formed by the same least five significant digits. It means thatH1

is policy compliant with respect to ∼π , while H2 is not. Indeed, all numbers
equivalent according to ∼π are equivalent also according to ≡1. Hence, in this
case no more information is revealed then that obtainable by knowing the policy.
In the second case, instead, all pairs of numbers that have the least significant
four digits in common, but where the fifth digits differ, are equivalent according
to ∼π but not according to ≡2. Therefore, it is not true that for each s ∈ S
[s]∼π ⊆ [s]≡2 . Intuitively, indeed, the knowledge of≡2 reveals new information
about the secret, i.e. the fifth digit.

82



The above example shows that, in the presence of declassification
policies, beside how much it is important to understand what informa-
tion is released by a program. More generally, one could be interested in
quantifying how serious is a violation of the policy, if any.

In the rest of the section, we let∼π be a generic policy on S. We denote
by Π the random variable representing the class of the secret according
to the policy ∼π , that is

Π , [S]∼π .

Thus, Π takes values in S/ ∼π = {π1, . . . , πt}. The attacker strategy is
modeled by a guessing function that takes as arguments both a sequence
of observables on and an equivalence class πi, since the latter is assumed
to be known to the attacker. Formally, for each n ≥ 0, we consider guess-
ing functions of type g : On × (S/ ∼π) → S. Moreover, we assume that
g follows the MAP rule. That is, for each n ≥ 0, for all on ∈ On and
i = 1, . . . , t:

g(on, πi) = s implies p(s|on, πi) ≥ p(s′|on, πi) for each s′ ∈ S. (5.8)

Let us stress that when n = 0, g takes just a class πi as an argument and
chooses the secret that maximises p(s|πi), that is the secret that is most
likely in class πi.

Definition 5.3.3 (Error probability given a policy) The error probability
after n ≥ 0 observations, conditioned on the knowledge of the policy class Π
of the secret, is defined thus

Pe(n|Π) , Pr(g(On,Π) 6= S).

Definition 5.3.4 (Leakage given a policy) Given an IHSH and a policy∼π ,
the information leakage ofH after n observations conditioned by the pol-
icy ∼π is:

LΠ(n) , log
Psucc(n|Π)

Psucc(0|Π)
.

Remark 5.3.5 In the language of min-entropy, the above definition can be
equivalently expressed in terms of conditional mutual information:

LΠ(n) = I∞(S;On|Π).

LΠ(n) expresses how much information about the secret a potential
attacker would infer, after collecting the observations On, assuming that
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he already knows the information disclosed according to the policy ∼π .
Of course, if the program is policy compliant respect to ∼π, the leak-
age must be equal to 0, that is the attacker does not infer anything more
than what he has already obtained by the knowledge of the policy. Intu-
itively, the greater the number n of observations the attacker can collect,
the more the information about the secret the system leaks.

We introduce some abbreviations to state the results in the rest of the
section. Fix a policy ∼π . We have two partitions of the set S: S/ ≡ =
{C1, . . . , Ck} and S/ ∼π = {π1, . . . , πt}. We will also consider a third
partition, induced by the intersection equivalence relation ≡ ∩ ∼π , and
let m , |S/(≡ ∩ ∼π)| denote the number of classes of the intersection
relation. For each 1 ≤ i ≤ k and 1 ≤ j ≤ t, let Bij , Ci ∩ πj denote
a generic (possibly empty) intersection class. For each j = 1, . . . , t, let
Ij , {i|Bij 6= ∅}. In the rest of the section, unless otherwise stated,
we will let j range over 1, . . . , t and i over Ij . Note that S/(≡ ∩ ∼π) =
{Bij | j = 1, . . . , t, i ∈ Ij}. For i ∈ Ij , we let

s?ij , argmaxs∈Bijp(s), p?ij , p(s
?
ij) and p?j , max

i∈Ij
p?ij ,

where the latter is the maximum probability of a secret in class πj . Fi-
nally, we let

ρj , min
r,h∈Ij ,r 6=h

C(p(·|s?rj), p(·|s?hj))

be the least Chernoff Information between any two distinct rows in class
πj and

ρΠ , min
j
ρj .

Proposition 5.3.6 As n→∞,

Pe(n|Π)→ 1−
∑
j,i

p?ij .

Moreover this limit is reached at rate at least ρΠ. More precisely, for pmax ,
maxj(p(πj) · p?j ) and γΠ , m2

2 pmax, we have

(1−
∑
j,i

p?ij) ≤ Pe(n|Π) ≤ (1−
∑
j,i

p?ij) + γΠ · 2−nρΠ . (5.9)

PROOF For each j, consider the IHS obtained fromH by conditioning
the probability on the class πj :

Hj , 〈πj ,O, pj(·), pj(·|·)〉,
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where for each s ∈ πj ,

pj(s) ,
p(s)

p(πj)

and for each o,
pj(o|s) , p(o|s).

Fix n ≥ 0. We equivalently concentrate ourselves on the success proba-
bility Psucc = 1 − Pe. Let gj : On → πj be a MAP function for Hj and
Pj,succ(n) , Pr(gj(O

n) = S) be the corresponding success probability. It
is an easy matter to check that, for each j

Pr(g(On, πj) = S|Π = πj) = Pj,succ(n). (5.10)

Using (5.10), we can decompose the success probability given Π thus:

Psucc(n|Π) =
∑
j

Pj,succ(n)p(πj) . (5.11)

We consider now separately the probabilities Pj,succ(n). Applying Theo-
rem 3.1.7 to the IHS Hj , we obtain∑

i

p?ij
p(πj)

− |Ij |
2

2
p?j · 2−nρj ≤ Pj,succ(n) ≤

∑
i

p?ij
p(πj)

. (5.12)

Plugging inequality (5.12) into (5.11), we obtain:∑
j,i

p?ij −
∑
j

|Ij |2

2
p?j · 2−nρjp(πj) ≤ Psucc(n|Π) ≤

∑
j,i

p?ij . (5.13)

Now, since
∑
j |Ij | = m, we have

∑
j

|Ij |2

2
p?j · 2−nρjp(πj) ≤

m2

2
pmax · 2−nρΠ ,

which concludes the proof. �

Concerning leakage, we have the following result, which also identi-
fies the situation of 0-leakage as policy compliance.

Theorem 5.3.7

lim
n→∞

LΠ(n) = log

∑
j,i p

?
ij∑

j p
?
j

. (5.14)

Moreover, LΠ(n) = 0 for each n ≥ 0 if and only ifH is policy compliant.
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PROOF It is immediate to check that Psucc(0|Π) =
∑
j p

?
j ; then the first

part follows from Proposition 5.3.6. Concerning the second part, assume

first that LΠ(n) = 0 for each n. Then, limn→∞ LΠ(n) = log
∑
j,i p

?
ij∑

j p
?
j

= 0.
This implies that

∑
j,i p

?
ij =

∑
j p

?
j : the only possibility for this to be the

case is that for each j, |Ij | = 1 (recall that pj is the maximum probability
of a secret in policy class πj). That is, each class πj is contained in exactly
one class Ci of ≡: ∼π⊆≡. On the other hand, if ∼π⊆≡, then for each
j we have |Ij | = 1, and again

∑
j,i p

?
ij =

∑
j p

?
j . Hence log

∑
j,i p

?
ij∑

j p
?
j

= 0.

Since LΠ(n) ≥ 0 and LΠ(n) is a monotonically non-decreasing function
of n, it follows LΠ(n) = 0 for each n. �

When specialised to the uniform prior distribution, the previous re-
sult takes a particularly simple form. Recall that t = |S/ ∼π | and
m = |S/(≡ ∩ ∼π)|.

Corollary 5.3.8 If the a priori distribution on S is uniform then

lim
n→∞

LΠ(n) = log
m

t
.

PROOF Under the uniform distribution, for each i = 1, . . . ,m p?ij =
1
|S| and so the numerator of (5.14) becomes m

|S| , while the denominator
t
|S| . �

Example 22 Let us consider again Example 21 and estimate the leakage of pro-
grams c1 and c2, both in the absence and in the presence of the policy∼π . Recall
that S = {0, . . . , 9}16, O1 = {0, . . . , 9}3 ∪ {−1} and O2 = {0, . . . , 9}. More-
over, a uniform distribution on the secrets is assumed. Let us first compute
leakage when the policy is ignored. Then clearly program c1 is less secure than
program c2. Indeed, applying Corollary 3.1.11(2), on the limit we have

lim
n→∞

L1(n) = log 103 > log
((10

2

)
+ 10

)
= log 55 = lim

n→∞
L2(n) (5.15)

where Li denotes leakage caused by program ci, for i = 1, 2.
We now compute leakage given the policy ∼π . Recall that the number of

policy classes is t = 104. It is easy to compute the number of intersection
classes, mi , S/(≡i ∩ ∼π), for i = 1, 2. We have: m1 = 104 for c1 (indeed,
(≡1 ∩ ∼π) = ∼π) and m2 = 105 for c2 (indeed, s(≡2 ∩ ∼π)s′ requires the
five least significant digits of s, s′ be the same). Applying Corollary 5.3.8, we
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therefore obtain:

lim
n→∞

LΠ
1 (n) = log

104

104
= 0 < 3.321 ≈ log 10 = log

105

104
= lim
n→∞

LΠ
2 (n) .

(5.16)
That is, c1 leaks nothing more than that implied by the policy (in fact, L1(n) is
constantly 0, and c1 policy-compliant), while c2 leaks, on the limit, one decimal
digit, the fifth. To get precise estimates for c2, we can apply Proposition 5.3.6,
where, as easily seen, ρΠ = 1 and ΓΠ = 1

2 · 10−10. E.g., we see that n = 5
observations are sufficient to gain the attacker 3 bits out of the ≈ 3.321 that are
available on the limit: LΠ

2 (5) ≥ 3.

To conclude the section, we note that the previous results can of
course be specialised to the case when H is a multi-run IHS Hu. In par-
ticular, ≡u ∩ ∼π is, more explicitly, ≡1 ∩ . . .∩ ≡l ∩ ∼π .

5.4 Risk level of integrity policies

So far we have studied the confidentiality guaranteed by a system, by
analysing and quantifying information that flows from secret inputs to
(public) outputs, viewing the security of a system as the level of secrecy
it can guarantee. When we analyse scenarios where the adversary can
directly interfere with the system, however, we cannot confine ourselves
to study the level of confidentiality. Another important issue is integrity,
that concerns the accuracy and completeness of the results returned by
systems against intentional, unauthorised or accidental changes. The
aim of this section is to study risks connected to integrity. We analyse
here the situation from the perspective of a user who wants to detect
if an active adversary is exercising any undue influence on a deployed
system, e.g. by suppressing or substituting part of the legitimate input.

Our scenario is characterised by the following, informally stated as-
sumptions. (a) The user can observe/experiment on the system several
times; (b) the outcomes of these observations are i.i.d.; (c) a ‘black-box’
specification of the correct system behaviour is available to the user; (d)
an attack will result in a behaviour that is different from the specified
one. Assumption (b) is somewhat strong, but is practically appropriate
in many situations3. Without assumptions (c,d), there would be no way

3E.g., when the user may re-start the system; or when the system exhibits a cyclic be-
haviour and the observations are performed at random time intervals.
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to detect an attack. The task of the user is to devise an integrity policy that
would allow him to conclude, depending on the outcomes of his exper-
iments, if the system is under attack or not. The general strategy will be
to first define a set of “uncorrect” or “suspect” (probabilistic) behaviours.
These are the behaviours that exhibit an appreciable deviation from the
specification. For example, one may deem as suspect a behaviour where,
upon repeated inspections, more than 10% of the times the system is
found probing a remote host for open TCP ports, thus pointing to an in-
fection. We stress that it is not possible to assess the risk of false negatives
without postulating the existence of such a set of behaviours.

The user’s task reduces then to decide whether the observed be-
haviour of a system is suspect or not. Due to the probabilistic nature of
both the specification and the observed system, there are inherent risks
in taking such a decision. A natural requirement is that, once the policy
– the set of suspect behaviours – is given, the decision rule should be de-
signed so as to minimise these risks, in the following sense. While a small
risk of false positives (report a non-existent attack) can be tolerated, the
decision rule should make the risk of false negatives (miss an attack) as
close to zero as possible. It should come as no surprise that this task, and
the resulting risk levels, can be analysed in terms of hypothesis testing
(CT06; CS04), as we argue below.

Formally, we let O be a nonempty, finite set of observables. We pose
no restrictions to the nature of this set: it might contain values, security-
relevant event traces, etc. Let D be the set of all probability distributions
on O. We let the specification of the correct behaviour of the system be
a p(·) ∈ D, and an integrity policy be a subset ∅ 6= Γ ⊆ D. Intuitively, Γ
represents the set of “suspect” behaviours.

A user’s decision strategy is defined by a family {An}, with An ⊆
On (n ≥ 1), of acceptance regions for p(·). The meaning of this is that,
upon observing a n-sequence on, produced i.i.d. by the system under
consideration, if on ∈ An the user accepts p(·) as the real behaviour of
the system (no attack); if on ∈ Acn, he accepts that some q(·) ∈ Γ is the
real behaviour of the system (attack). This decision can be affected by
one of two types of errors:

• false positive: the real distribution is p(·), but on falls outside An, so
the user believes that the system is under attack while instead it is
secure. This happens with probability αn , p(Acn);

• false negative: the real distribution is q(·) ∈ Γ, but on falls in
An, so the user believes that the system is secure, while instead
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it has been attacked. This happens with worst-case probability
βn , supq(·)∈Γ q(An).

In order to measure the risk level, we can consider their sum. More
precisely:

Definition 5.4.1 (Integrity policy and risk level) An integrity policy is a
pair (p(·),Γ) with Γ 6= ∅. Given a family {An} of acceptance regions, the risk
level after n observations of the policy under {An} is, for αn and βn as defined
above:

rn , αn + βn.

Let 0 ≤ ε < 1. The family {An} is

• ε-sound if βn → 0 and for any n large enough αn ≤ ε;

• sound if it is ε-sound for some ε;

• (asymptotically) optimal if it is sound and for any sound family {Bn}
with error probabilities (α′n, β

′
n), one has: lim infn→∞− 1

n log βn ≥
lim supn→∞− 1

n log β′n.

In essence, an optimal acceptance strategy achieves small probability
of false positive, and probability of false negative approaching 0 faster
than any other sound strategy. The resulting risk rn is thus the “inherent
risk” connected to the policy (p(·),Γ). It remains to show that optimal
policies exist: we do so below. We also show that rn → 0 and charac-
terise the optimal rate at which βn vanishes, which again only depends
on (p(·),Γ).

For Γ ⊆ D, we let

D(p‖Γ) , inf
q(·)∈Γ

D(p‖q),

where D(·‖·) is the Kullback-Leibler distance (see Definition 2.4.1). Let
n ≥ 1. Given on ∈ On, recall that ton(·) denotes the type of on (see
Definition 2.4.3). We now define an optimal family of acceptance regions
for (p(·),Γ). For each n ≥ 1, let

δn ,
|O| log n

n
and A∗n , {on ∈ On |D(ton‖p) < δn}.

Intuitively, we put in A∗n only those sequences whose empirical distribu-
tion is “very close” to p(·), so as to guarantee that βn vanishes quite fast.
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At the same time,A∗n is large enough to guarantee that αn too approaches
0, although possibly not as fast as βn.

Below, we use the fact that D inherits its topology from R|O|. The
assumption p /∈ Γ means that p is not “too close” to the class of suspect
behaviours. The proof of the following result goes along the lines of
similar results in (CS04, Sec.2).

Theorem 5.4.2 (optimal strategy) Assume p /∈ Γ. Then {A∗n} is an optimal
family of acceptance regions for the policy (p(·),Γ). Moreover, rn → 0 and
limn→∞ (− 1

n log βn) = D(p‖Γ).

Before discussing this result, recall two (variations of) Theorems 2.4.5
and 2.4.7 that will be used in the proof. Remember that Pn is the set of
n-types and for each q(·) ∈ Pn, T nq , {on ∈ On|ton(·) = q(·)} is the type
class of q(·).

Lemma 5.4.3 For each n ≥ 1, |Pn| ≤ (n+ 1)
|O|−1

.

Lemma 5.4.4 For any distribution p(·) on O and any q(·) ∈ Pn, for any n
large enough:

2−nD(q‖p)

(n+ 1)|O|−1
≤ p(T nq ) ≤ 2−nD(q‖p).

Theorem 5.4.5 Assume p /∈ Γ. Let {An} be a sound family of acceptance
regions and αn, βn be the corresponding error probabilities. Then

lim sup
n→∞

(− 1

n
log βn) ≤ D(p‖Γ).

PROOF According to Theorem 2.2 of (CS04), for any two distinct distri-
butions onO, say p1(·) and p2(·), such that there exists ε < 1 : p1(Acn) ≤ ε
for any n large enough, we have that:

lim sup
n→∞

(− 1

n
log (p2(An))) ≤ D(p1‖p2). (5.17)

Now, take p1(·) = p(·) and take any distribution p2(·) ∈ Γ. By definition
of βn, we have − 1

n log βn ≤ − 1
n log (p2(An)), and this inequality is pre-

served by lim sup. Now, by (5.17) we have that lim supn→∞ (− 1
n log βn) ≤

D(p‖p2). This inequality holds for any distribution p2(·) ∈ Γ: this implies
that it still holds when we replace the RHS with infp2(·)∈ΓD(p‖p2). �
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Theorem 5.4.6 Assume p(·) /∈ Γ. Let αn, βn be the error probabilities of {A∗n}.
Then:

1. limn→∞ αn = 0;

2. limn→∞ βn = 0; and

3. lim infn→∞ (− 1
n log βn) ≥ D(p‖Γ).

PROOF The proof of part 1) can be found in (CS04, Theorem 2.3). Con-
cerning parts 2) and 3), we can write βn = q∗n(An), where4

q∗n(·) , argmaxq(·)∈Γq(A
∗
n).

Now

βn = q∗n(A∗n) =
∑

q(·)∈Pn:D(q‖p)<δn

q∗n(T nq )

≤
∑

q(·)∈Pn:D(q‖p)<δn

2−nξn (Lemma 5.4.4)

≤ (n+ 1)
|O|−1

2−nξn (Lemma 5.4.3) (5.18)

with
ξn , min

q(·)∈Pn:
D(q‖p)<δn

D(q‖q∗n) = D(sn‖q∗n),

for some sn(·) such that D(sn‖p) < δn → 0. Therefore sn(·)→ p(·), since
convergence in D(·‖·) implies convergence in ‖ · ‖1. Let us take now a
convergent subsequence5 of {q∗n(·)}, say {q∗in(·)} and let q∗∗(·) ∈ Γ be its
limit. Due to the lower semi-continuity of D(·‖·) (CS04), we have

lim inf
n→∞

ξn ≥ D(p‖q∗∗) ≥ D(p‖Γ). (5.19)

Now, using the inequalities (5.18) and (5.19) and the fact that p(·) 6∈ Γ
implies D(p‖Γ) > 0, we obtain both the thesis 2) and 3). �

The proof of Theorem 5.4.2 simply reduces as follows.

PROOF [Theorem 5.4.2]
The thesis follows applying both Theorem 5.4.5 and Theorem 5.4.6. �

4This q∗n(·) exists since the function q(·) 7→ q(A∗n) is continuous over the set Γ, closed
and bounded.

5The existence of this subsequence is guaranteed by Bolzano-Weierstrass.
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Example 23 Assume O = {0, 1}, with 0/1 representing absence/presence of a
given security-relevant event, e.g. port-probing. Through simulations on a non-
infected system, it has been established that the correct behaviour is p(1) = 0.01.
Consider now the integrity policy given by Γ = {q(·) ∈ D|q(1) > 0.1}. Now
D(p‖Γ) ≈ 0.103: according to Theorem 5.4.2, βn ≈ 2−0.103·n. In order to
guarantee βn ≈ 10−9, it is sufficient to collect about n ≈ 290 observations.
Moreover, it can be seen that αn ≈ 1/n. Finally, note the more restrictive policy
(larger Γ), the lower the rate D(p‖Γ).

5.5 Concluding remarks

We have proposed models to analyse security threats against probabi-
listic systems posed by a class of active adversaries that control part of
the system input, in a multi-run scenario. We have quantified the degree
of violation of a declassification policy, thus combining quantitative and
qualitative facets in the study of Information Flow. We have finally cast
the problem of deciding whether a given system is under attack in terms
of hypothesis testing, characterising the asymptotically optimal decision
strategy.
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Chapter 6

Active attackers: adaptive
scenario

In this chapter, we tackle the adaptive case, presenting an information-
theoretic model and deriving several general results on the limits of
adaptive adversaries. We assume that, based on a secret piece of in-
formation, the mechanism responds to a sequence of queries/actions,
adaptively submitted by an adversary, thus producing a sequence of an-
swers/observations. Responses to individual queries are in general pro-
babilistic, either because of the presence of noise or by design. Moreover,
the mechanism is stateless, thus answers are independent from one an-
other. The adversary is assumed to know the distribution according to
which the secret has been generated (the prior) and the input-output be-
haviour of the mechanism. An adaptive adversary can choose the next
query based on past observations, according to a predefined strategy.
Once a strategy and a prior are fixed, they together induce a probability
space over sequences of observations. Observing a particular sequence
gives the adversary some information that modifies his belief about the
secret, possibly reducing his uncertainty. We measure information leak-
age as the average reduction in uncertainty. An important aspect of our
approach is that we work with a generic measure of uncertainty, U(·).
Formally, U(·) is a a real-valued function over the set of probability dis-
tributions on the secret, which represents possible beliefs of the adver-
sary. Just two properties are assumed of U(·): concavity and continuity.
Note that leakage functions commonly employed in QIF, such as Shan-
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non entropy, guessing entropy and error probability (the additive version
of min-entropy), do fall in this category.

A central theme of our study is the comparison of adaptive with
the simpler non-adaptive strategies. All in all, our results indicate that,
for reasonably powerful adversaries, there is no dramatic difference be-
tween the two, in terms of difficulty of analysis. A more precise account
of our contributions follows.

1. We put forward a general model of adaptive QIF; we identify mild
general conditions on the leakage function under which it is possi-
ble to derive general and significant results on adaptive QIF in this
model.

2. We compare the difficulty of analysing mechanisms under adap-
tive and non-adaptive adversaries. We first note that, for the class
of mechanisms admitting a “concise” syntactic description - e.g.
devices specified by a boolean circuit - the analysis problem is in-
tractable (NP-hard), even if limited to very simple instances of the
non-adaptive case. This essentially depends on the fact that such
mechanisms can feature exponentially many actions in the syn-
tactic size. In the general case, we show that non-adaptive finite
strategies are as efficient as adaptive ones, up to an expansion factor
in their length bounded by the number of distinct actions avail-
able. Practically, this indicates that, for mechanisms described in
explicit form (e.g. by tables, like a DB) hence featuring an “afford-
able” number of actions available to the adversary, it may be suf-
ficient to assess resistance of the mechanism against non-adaptive
strategies. This is important, because simple analytical results are
available for such strategies (BP12a).

3. We show that the maximum leakage is the same for both adaptive
and non-adaptive adversaries, and only depends on an indistin-
guishability equivalence relation over the set of secrets.

4. We show that maximum information leakage over a finite horizon
can be expressed in terms of a Bellman equation. This equation
can be used to compute optimal finite strategies recursively. As an
example, we show how to do that using Markov Decision Processes
(MDP’s) and backward induction.

94



6.1 An extended model: attack trees

So far we have tackled attack scenarios where the adversary can re-
execute multiple times the system, collecting several observations, all re-
lated to the same secret, but, once given it, independent from each other.
In this section we analyse the adaptive case, where instead, after each
collected observation, the adversary can update his belief about the se-
cret and, depending on it, choose the next value for the untrusted input,
aiming to maximise the gained information.

Let us assume that, based on a secret piece of information X ∈ X , the
system responds to a sequence of queries/actions a1, a2, . . . (ai ∈ Act),
adaptively submitted by an adversary, thus producing a sequence of an-
swers/observations Y ∈ Y∗. Responses to individual queries are proba-
bilistic, either because of the presence of noise or by design. Suppose that
the system is stateless; thus answers are independent from one another.
As before, the adversary is assumed to know the distribution p(·) ac-
cording to which X has been generated (the prior) and the input-output
behaviour of the system, given by the matrix p(·|·, ·) ∈ [0, 1]

(S×Act)×O.
Differently from previous scenarios, an adaptive adversary can choose
the next query based on past observations, according to a predefined
strategy. Once a strategy and a prior are fixed, they together induce a
probability space over sequences of observations. Observing a particular
sequence gives the adversary some information that modifies his belief
about X , possibly reducing his uncertainty.

Before describing more in detail the model, let us give the basic defi-
nitions that will be useful in the following.

6.1.1 Basic definitions

Let S = 〈X ,Y, Act, {Ma : a ∈ Act}〉 be an action-based randomisation
mechanism, as defined in Definition 5.1.1, where X ,Y and Act are re-
spectively the sets of secrets, observations and actions (or queries) and, for
each a ∈ Act, Ma is a stochastic matrix of dimensions |X | × |Y|.

We measure information leakage as the average reduction in uncer-
tainty. A central point of our framework is that we work with a generic
measure of uncertainty, U(·). Formally, U(·) is a a real-valued function
over the set of probability distributions on X , which represents possible
beliefs of the adversary. Just two properties are assumed of U(·): concav-
ity and continuity.
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Definition 6.1.1 (Uncertainty) Let P(X ) be the set of all probability distri-
butions on X . A function U : P(X ) → R is an uncertainty measure if it is
concave and continuous over P(X ) ⊆ R|X |.

The role of concavity can be intuitively explained as follows. Sup-
pose the secret is generated according to either a distribution p(·) or to
another distribution q(·), the choice depending from a coin toss, with
probability λ of getting head. The coin toss introduces extra randomness
in the generation process. Therefore, the overall uncertainty of the ad-
versary about the secret, U

(
λ · p+ (1− λ) · q

)
, should be no less than the

average uncertainty of the two original generation processes considered
separately, that is λU

(
p
)

+ (1 − λ)U
(
q
)
. As a matter of fact, most uncer-

tainty measures in QIF do satisfy this concavity. Continuity is a technical
requirement that comes into play only in Theorem 6.3.5.

Example 24 The following entropy functions, and variations thereof, often
considered in the quantitative security literature as measures of the difficulty
or effort necessary to a passive adversary to identify a secret X , where X is a
random variable over X distributed according to some p(·), are easily proven to
be uncertainty measures in our sense:

• Shannon entropy: H(p) , −
∑
x∈X p(x) log p(x), with 0 log 0 = 0;

• Error probability entropy: E(p) , 1−maxx∈X p(x);

• Guessing entropy: G(p) ,
∑n
i=1 i · p(xi) with p(x1) ≥ p(x2) ≥ . . . ≥

p(xn).

As we have already mentioned, the adversary here can rely on the past
observations in order to choose the next query, aiming to minimise his
uncertainty. In order to make this choice, he follows a certain strategy,
that can be seen as a function that associates each sequence of observa-
tions with a certain query.

Definition 6.1.2 (Strategy) A strategy is a partial function σ : Y∗ → Act
such that dom(σ) is non-empty and prefix-closed. A strategy is finite if dom(σ)
is finite. The length of a finite strategy is defined as max {l ≥ 0 : yl ∈
dom(σ)}+ 1.

For each integer n ≥ 0 we let yn, wn, zn, . . . range over sequences in
Yn; given yn = (y1, . . . , yn) and 0 ≤ j ≤ n, we let yj denote the first j
components of yn, (y1, . . . , yj).
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Figure 13: Two strategy trees.

Definition 6.1.3 (Truncation) Given a strategy σ and an integer n ≥ 0, the
truncation of σ at level n, denoted as σ\n, is the finite strategy σ|∪0≤i≤nYi .

A finite strategy of length l is complete if dom(σ) = ∪0≤i≤l−1Yi. A strat-
egy σ is non-adaptive if whenever yn and wn are two sequences of the
same length then σ(yn) = σ(wn). That is, the decision of which action to
play next only depends on the number of past actions.

Remark 6.1.4 Finite non-adaptive strategies are necessarily complete.

We note that strategies can be described as trees, with nodes labelled
by actions and arcs labelled by observations, in the obvious way. Any
non-adaptive strategy also enjoys a simpler representation as a finite or
infinite list of actions: we write σ = [a1, . . . , ai, . . .] if σ(yi−1) = ai, for
i = 1, 2, . . ..

Example 25 Strategies σ = [ε 7→ a, y 7→ b] and σ′ = [ε 7→ a, y 7→ b, y′ 7→
c, yy′ 7→ d] can be represented as in Figure 13. Note that the height of the tree
is one less than the length of the strategy.

6.1.2 Adaptive quantitative information flow

Informally, we consider an adversary who repeatedly queries a system,
according to a predefined finite strategy. At some point, the strategy will
terminate, and the adversary will have collected a sequence of observa-
tions yn = (y1, . . . , yn). Note that both the length n and the probability
of the individual observations yi, hence of the whole yn, will in gen-
eral depend both on X and on the strategy played by the adversary. In
other words, the distribution p(·) of X and the strategy σ together induce
a probability distribution on a subset of all observation sequences: the
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ones that may arise as a result of a complete interaction with the system,
according to the played strategy.

Formally, let p(·) be any given probability distribution over X , which
we will often refer to as the prior. For each finite strategy σ, we define
a joint probability distribution pσ(·) on X × Y∗, depending on σ and on
p(·), as follows.

Definition 6.1.5 (Joint probability) For each finite strategy σ, let
pσ(x, ε) , 0 and, for each j ≥ 0:

pσ(x, y1, . . . , yj , yj+1) ,


p(x) · pa1(y1|x) · · · · · paj (yj |x)paj+1(yj+1|x)

if yj ∈ dom(σ), yjyj+1 /∈ dom(σ)

0 otherwise

where ai = σ(yi−1) for i = 1, . . . , j + 1.

In case σ = [a], a single action strategy, we will often abbreviate p[a](·)
as pa(·). Note that the support of pσ(·) is finite, in particular supp(pσ) ⊆
X×{yjy : j ≥ 0, yj ∈ dom(σ), yjy /∈ dom(σ)}. This definition applies also
to the non adaptive model described in the previous chapter. In the non
adaptive case, indeed, untrusted inputs can be viewed as actions taken
by the adversary and the sequence u, containing all possible values for
the untrusted input, coincides with the strategy that plays all actions in
U once. For each s ∈ S such that p(s) > 0, the probability pu(o|s) defined
in Definition 5.1.2 corresponds to the ratio pu(s,o)

p(s) , where the numerator
is the joint probability defined above.

Let (X,Y ) be a pair of random variables with outcomes in X × Y∗,
jointly distributed according to pσ(·): here X represents the secret and
Y represents the sequence of observations obtained upon termination of
the strategy. As before, we shall often use such shortened notations as:
pσ(x|yn) for Pr(X = x|Y = yn), pσ(yn) for Pr(Y = yn), and so on. Ex-
plicit formulas for computing these quantities can be easily derived from
the definition of pσ(·) and using Bayes rule. We will normally keep the
dependence of (X,Y ) from p(·) and σ implicit. When different strategies
are being considered at the same time and we want to stress that we are
considering Y according to the distribution induced by a specific σ, we
will write it as Yσ .

Consider a prior p(·) and a finite strategy σ, and the corresponding
pair of random variables (X,Y ).
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Definition 6.1.6 (Average and conditional uncertainty and information
gain) The following quantities respectively express average uncertainty, con-
ditional uncertainty and information gain about X , that may result from
interaction according to strategy σ (by convention, we let here yn range over
sequences with pσ(yn) > 0):

U(X) , U
(
p
)

U(X|Y ) ,
∑
yn

pσ(yn)U
(
pσ(·|yn)

)
(6.1)

I(X;Y ) , U(X)− U(X|Y ).

Note that, in the case of Shannon entropy, I(X;Y ) coincides with the fa-
miliar mutual information (see Definition 2.1.8), traditionally measured
in bits. In the case of error entropy, I(X;Y ) is the additive leakage (see
Definition 3.1.4), also called advantage in the cryptographic literature, see
e.g. (DS05) and references therein.

In the rest of the section, unless otherwise stated, we let U(·) be an
arbitrary uncertainty function. The following fact about I(X;Y ) follows
from the concavity of U(·) and Jensen’s inequality, plus routine calcula-
tions on probability distributions.

Lemma 6.1.7 I(X;Y ) ≥ 0. Moreover I(X;Y ) = 0 if X and Y are indepen-
dent.

Given the above definitions, the concept of adaptive QIF can now be
defined quite simply.

Definition 6.1.8 (QIF under adaptive adversaries) Let S be a system and
p(·) be a prior over X .

1. For a finite strategy σ, let Iσ(S, p) , I(X;Y ).

2. For an infinite strategy σ, let Iσ(S, p) , liml→∞ Iσ\l(S, p).

3. (Maximum IF under p(·)) I?(S, p) , supσ Iσ(S, p).

Note that l′ ≥ l implies Iσ\l′(S, p) ≥ Iσ\l(S, p), hence the limit in
(2) always exists. Taking the distribution that achieves the maximum
leakage, we can define an analog of capacity (see Definition 2.1.10).

Definition 6.1.9 (Adaptive secrecy capacity)

C(S) , sup
p(·)∈P(X )

I?(S, p).
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6.1.3 Attack trees

It is sometimes useful to work with a pictorial representation of the ad-
versary’s attack steps, under a given strategy and prior. This can take the
form of a tree, where each node represents an adversary’s belief about
the secret, that is, a probability distribution over X . The tree describes
the possible evolutions of the belief, depending on the strategy and on
the observations. We formally introduce such a representation below: it
will be extensively used in the examples in Section 6.1.4. Note that attack
trees are different from strategy trees

Definition 6.1.10 (History and updated probability) A history is a se-
quence h ∈ (Act×Y)∗. Let h = (a1, y1, . . . , an, yn) be such a history. Given a
prior p(·), we define the update of p(·) after h, denoted by ph(·), as the distri-
bution on X defined by

ph(x) , pσh(x|yn) (6.2)

where σh = [a1, . . . , an], provided pσh(yn) > 0; otherwise ph(·) is undefined.

Definition 6.1.11 (Attack trees) The attack tree induced by a strategy σ and
a prior p(·) is a tree with nodes labeled by probability distributions over X and
arcs labeled with pairs (y, λ) of an observation and a probability.

This tree is obtained from the strategy tree of σ as follows. First, note
that, in a strategy tree, each node is identified by a unique history. Given
the strategy tree for σ: (a) for each y ∈ Y and each node missing an out-
going y-labelled arc, attach a new y-labelled arc leading to a new node;
(b) label each node of the resulting tree by ph(·), where h is the history
identifying the node, if ph(·) is defined, otherwise remove the node and
its descendants, as well as the incoming arc; (c) label each arc from a
node h to a child hay in the resulting tree with λ = pha(y) - to be parsed as
(ph)[a](y). This is the probability of observing y under a prior ph(·) when
submitting action a.

The concept of attack tree is demonstrated by a few examples in the
next section. Here, we just note the following easy to check facts.

Remark 6.1.12 For each leaf h of the attack tree:

• the label of the leaf is ph(·) = pσ(·|yn), where yn is the sequence of obser-
vations in h;
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• if we let πh be the product of the probabilities on the edges from the root to
the leaf, then πh = pσ(yn);

• each yn such that pσ(yn) > 0 is found in the tree.

As a consequence, for a finite strategy, taking (6.1) into account, the uncertainty
of X given Y can be computed from the attack tree as:

U(X |Y ) =
∑

h a leaf

πhU(ph) . (6.3)

6.1.4 Examples

We present here a few instances of the framework introduced in the pre-
vious section. We emphasise that these examples are quite simple and
only serve to illustrate our main definitions. In the rest of the section, we
shall use the following notation: we let u{x1, . . . , xk} denote the uniform
distribution on {x1, . . . , xk}.

Example 26 An attacker gets hold of the table shown in Figure 14, which rep-
resents a fragment of a hospital database. Each row of the table contains: a
numerical id followed by the ZIP code, age, discharge date and disease of an
individual that has been recently hospitalised. The table does not contain per-
sonal identifiable information. The attacker gets to know that a certain target
individual, John Doe (JD), has been recently hospitalised. However, the attacker
is ignorant of the corresponding id in the table and any information about JD,
apart from his name. The attacker’s task is to identify JD, i.e. to find JD’s id
in the table, thus learning his/her disease. The attacker is in a position to ask a
source, perhaps the hospital DB, queries concerning non sensitive information
(ZIP code, age and discharge date) of any individual, including JD, and compare
the answers with the table entries.1

This situation can be modeled quite simply as an action-based mechanism
S, as follows. We pose: Act = {ZIP,Age,Date}; X = {1, . . . , 10}, the set of
possible id’s, and Y = YZIP∪YAge∪YDate, where YZIP = {z1, z2, z3}, YAge =
{30, 31, 65, 66, 67, 68} and YDate = {d1, d2, d3}. The conditional probability
matrices reflect the behaviour of the source when queried about ZIP code, age
and discharge date of an individual. We assume that the source is truthful,
hence answers will match the entries of the table. For example, pAge(y|1) = 1
if y = 65 and 0 otherwise; pZIP(y|2) = 1 if y = z1, 0 otherwise; and so on.

1That this is unsafe is of course well-known from database security: the present example
only serves the purpose of illustration.
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id ZIP Age Date Disease

1 z1 65 d2 Hearth disease

2 z1 65 d2 Flu

3 z1 67 d2 Short breath

4 z1 68 d1 Obesity

5 z1 68 d1 Hearth disease

6 z3 66 d2 Hearth disease

7 z3 67 d2 Obesity

8 z3 31 d2 Short breath

9 z2 30 d3 Hearth disease

10 z2 31 d3 Obesity

ZIP

Date

z1

Date

z2

Age

z3

Figure 14: Medical Database and strategy tree of Example 26.
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Figure 15: The attack tree of Example 26.

Note that this defines a deterministic mechanism. Finally, since the attacker
has no clues about JD’s id, we set the prior to be the uniform distribution on X ,
p(·) = u{1, . . . , 10}.

Assume now that, for some reason - maybe for the sake of privacy - the
number of queries to the source about an individual is limited to two. Fi-
gure 14 displays a possible attacker’s strategy σ, of length 2. Figure 15 dis-
plays the corresponding attack tree, under the given prior. Note that the
given strategy is not in any sense optimal. Assume we set U(·) = H(·),
Shannon entropy, as a measure of uncertainty. Using (6.3), we can compute
Iσ(S, p) = H(X) − H(X|Y ) = log 10 − 3

10 log 3 − 2
5 ≈ 2.45 bits. With

U(·) = E(·), the error entropy, we have Iσ(S, p) = E(X) − E(X|Y ) = 0.5
bits.

Example 27 (noisy version) Consider a version of the previous mechanism
where the public source queried by the attacker is not entirely truthful. In par-
ticular, for security reasons, whenever queried about age of an individual, the
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Figure 16: The attack tree of Example 27. Leaves with the same label and
their incoming arcs have been coalesced.

source adds a random offset r ∈ {−1, 0,+1} to the real answer. The only
difference from the previous example is that the conditional probability matrix
pAge(·|·) is not deterministic anymore. For example, for x = 1, we have

pAge(y|1) =

{
1
3 if y ∈ {64, 65, 66}
0 otherwise

(also note that we have to insert 29, 32, 64 and 69 as possible observations into
YAge). Figure 16 shows the attack tree induced by the strategy σ of Figure 14
and the uniform prior in this case. IfU(·) = H(·) we obtain Iσ(S, p) = log 10−
3
10 log 3− 8

15 ≈ 2.31 bits; if U(·) = E(·), instead, Iσ(S, p) = 13
30 ≈ 0.43 bits.

Example 28 (cryptographic devices) As we have seen in previous sections,
a cryptographic device can be abstractly modeled as a function f taking pairs
of a key and a message into observations, thus, f : K ×M → Y . Assume the
attacker can choose the messagem ∈M fed to the device, while the key k is fixed
and unknown to him. This clearly yields an action-based mechanism S where
X = K, Act = M and Y are the observations. If we assume the observations
noiseless, then the conditional probability matrices are defined by

pm(y|k) = 1 if and only if f(k,m) = y .

We obtain therefore a deterministic mechanism. This is the way, for example,
modular exponentiation is modeled (see Examples 10,13). More realistically,
the observations will be noisy, due e.g. to the presence of “algorithmic noise”.
For example, assume Y ⊆ N is the set of possible Hamming weights of the
ciphertexts (this is related to power analysis attacks, see e.g. (KSWH00)). Then
we may set

pm(y|k) = Pr(f(k,m) +N = y)
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whereN is a random variable modelling noise. For example, in the model of DES
S-Boxes considered in Example 20, K =M = {0, 1}6, while Y = {0, 1, 2, . . .}
is the set of observations: the (noisy) Hamming weight of the outputs of the
target S-Box. In this case, N is taken to be the cumulative weight of the seven
S-Boxes other than the target one.

6.2 Comparing adaptive and non-adaptive
strategies

Conceptually, we can classify systems into two categories, depending on
the size of the set Act. Informally, the first category consists of systems
with a huge - exponential, in the size of any reasonable syntactic descrip-
tion - number of actions. The second category consists of systems with
an “affordable” number of actions. In the first category, we find, for in-
stance, complex cryptographic hardware, possibly described via boolean
circuits or other “succinct” notations (cf. the public key exponentiation
algorithms considered in (KB07)). In the second category, we find sys-
tems explicitly described by tables, such as databases (Examples 26 and
27) and S-Boxes (Example 28).

6.2.1 Systems in succinct form

We argue that the analysis of such systems is in general an intractable
problem, even if restricted to simple special instances of the non-adaptive
case. We consider the problem of deciding if there is a finite strategy over
a given time horizon yielding an information flow exceeding a given
threshold. This decision problem is of course simpler than the problem
of finding an optimal strategy over a finite time horizon: indeed, any al-
gorithm for finding the optimal strategy can also be used to answer the
first problem. We give some definitions.

Definition 6.2.1 (systems in boolean forms) Let t, u, v be nonnegative in-
tegers. We say a mechanism S = 〈X ,Y, Act, {Ma : a ∈ Act}〉 is in (t, u, v)-
boolean form if X = {0, 1}t, Act = {0, 1}u, Y = {0, 1}v and there is a
boolean function f : {0, 1}t+u → {0, 1}v such that for each x ∈ X , y ∈ Y and
a ∈ Act, pa(y|x) = 1 if and only if f(x, a) = y. The size of S is defined as the
syntactic size of the smallest boolean formula for f .

It is not difficult to see that the class of boolean forms coincides, up to
suitable encodings, with that of deterministic systems.
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Definition 6.2.2 (Adaptive Bounding Problem in succinct form, ABPS)
Given a mechanism S in a (t, u, v)-boolean form, a prior distribution p(·), l ≥ 1
and T ≥ 0, decide if there is a strategy σ of length ≤ l such that Iσ(S; p) > T .

In the next theorem, we shall assume, for simplicity, the follow-
ing reasonable properties of U(·): if p(·) concentrates all the probabi-
lity mass on a single element, and q(·) is the uniform distribution, then
0 = U(p) < U(q). A slight modification of the argument also works
without this assumption. The theorem says that even length 1 (hence
non-adaptive) strategies are difficult to assess.

Theorem 6.2.3 AssumeU(·) satisfies the above stated property. Then the ABPS
is NP-hard, even if fixing t = v = l = 1, and T = 0.

PROOF We reduce from the satisfiability problem for boolean formu-
lae. Let φ(z1, . . . , zu) = φ(z̃) be an arbitrary boolean formula with u
free boolean variables z1, . . . , zu. We show how to build in polynomial
time out of φ(z̃) a mechanism S in (1, u, 1)-boolean form, and a prior
p(·), with the following property: there is a length 1 strategy σ such that
Iσ(S, p) > 0 if and only if φ(z̃) is satisfiable. Take X = Y = {0, 1} and
Act = {0, 1}u. Let S be the mechanism defined by the boolean function
f(x, z1, . . . , zu) = x ∧ φ(z̃). Let p(·) be the uniform prior on X = {0, 1}.
Now, if there is an action b̃ = (b1, . . . , bu) ∈ Act such that φ(b̃) = 1 (φ(z̃) is
satisfiable) then clearly we will have that Y = X ∧φ(b̃) is logically equiv-
alent to X , hence U(X|Y ) = 0. Consequently, setting σ = [ε 7→ b̃], we
will have that Iσ(S, p) = U(X)−U(X|Y ) > 0. On the other hand, if φ(z̃)
is not satisfiable, then for any b̃ ∈ Act we will have that Y = X ∧ φ(b̃) is
logically equivalent to 0, hence U(X|Y ) = U(X). Consequently, for any
σ = [ε 7→ b̃], we will have Iσ(S, p) = U(X)− U(X|Y ) = 0. �

6.2.2 General systems

The following results, which apply in general, are particularly interest-
ing for systems with a moderate number of actions. The following the-
orem essentially says that, up to an expansion factor bounded by |Act|,
non-adaptive strategies are as efficient as adaptive ones. Note that, for a
strategy σ, the number of distinct actions that appear in σ is |range(σ)|.

Theorem 6.2.4 For each finite strategy σ of length l it is possible to build a
non-adaptive finite strategy σ′ of length |range(σ)| × l, such that

Iσ′(S, p) ≥ Iσ(S, p).
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PROOF Let range(σ) = {a1, . . . , ah} and let σ′ be any non-adaptive strat-
egy that plays each of a1, . . . , ah for l times, for example, σ′ = [a1, . . . , ah,
. . . , a1, . . . , ah] (l times); note that the length of σ′ is h × l, as required.
For any yj (j ≤ l), we shall denote by σ′ − yj the non-adaptive strategy
of length h× l − j obtained by removing from σ′, seen as a list, j actions
b1, . . . , bj , where b1 = σ(ε), . . . , bj = σ(yj−1).

Denote by Yσ and Yσ′ the random variables on Y∗ corresponding to
σ and σ′, respectively. We will show that U(X|Yσ) ≥ U(X|Yσ′). Take
any x ∈ X such that p(x) > 0 and yj ∈ dom(pσ). We note that, for any
sequence yhl−j , and for an appropriate interleaving of the two sequences
yhl−j and yj , that here we denote by just yhl−j , yj , we have that

pσ′−yj (y
hl−j |x)pσ(yj |x) = pσ′(y

hl−j , yj |x) . (6.4)

From (6.4), it follows that

pσ(yj |x) =
∑
yhl−j

pσ′−yj (y
hl−j |x)pσ(yj |x)

=
∑
yhl−j

pσ′(y
hl−j , yj |x) . (6.5)

Now, for any x and yj such that p(x) > 0 and pσ(yj) > 0, we have the
following.

pσ(x|yj) =
pσ(yj |x)p(x)

pσ(yj)

=
∑
yhl−j

pσ′(y
hl−j , yj |x)

p(x)

pσ(yj)
(6.6)

=
∑
yhl−j

pσ′(x|yhl−j , yj)pσ′(yhl−j , yj)
p(x)

p(x)

pσ(yj)

=
∑
yhl−j

pσ′(x|yhl−j , yj)
pσ′(y

hl−j , yj)

pσ(yj)
(6.7)

where in (6.6) we have applied (6.5). It is an easy matter to show that∑
yhl−j

pσ′ (y
hl−j ,yj)

pσ(yj) = 1 (this is basically a consequence of (6.4); we leave
the details to the interested reader). Thus (6.7) shows that pσ(·|yj) can be
expressed as a convex combination of the distributions pσ′(·|yhl−j , yj),
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for yhl−j ∈ Yhl−j . Using this fact, the concavity of U(·) and Jensen’s
inequality, we arrive at the following.

U(pσ(·|yj)) ≥
∑
yhl−j

U(pσ′(·|yhl−j , yj))
pσ′(y

hl−j , yj)

pσ(yj)
. (6.8)

We finally can compute the following lower-bound for U(X|Yσ).

U(X|Yσ) =
∑
yj

pσ(yj)U(pσ(·|yj))

≥
∑
yj

pσ(yj)
∑
yhl−j

pσ′(y
hl−j , yj)

pσ(yj)
U(pσ′(·|yhl−j , yj)) (6.9)

=
∑
yj

∑
yhl−j

pσ′(y
hl−j , yj)U(pσ′(·|yhl−j , yj))

=
∑
yhl

pσ′(y
hl)U(pσ′(·|yhl)) = U(X|Yσ′)

where the inequality (6.9) follows from (6.8). �

We can give a better upper bound for deterministic systems.

Proposition 6.2.5 If the mechanism S is deterministic, then the upper-bound
in the previous theorem can be simplified to |range(σ)|.

PROOF Let σ be any finite non-adaptive strategy for S. Suppose there
is an action a that occurs at least twice in σ, seen as a tuple of actions, and
let σ− be the non-adaptive strategy obtained by removing the first occur-
rence of a from σ, seen as a list. Assume the two a’s occur at position
i and j, i < j, of σ. Since S is deterministic, it is easily seen that, for
each yn = (y1, . . . , yn), if yi 6= yj then pσ(yn) = 0. On the other hand,
whenever yi = yj , then pσ(yn) = pσ−(yn−1) and pσ(x|yn) = pσ−(x|yn−1),
where by yn−1 we denote here the sequence obtained by removing yi
from yn. This shows that U(X|Yσ) = U(X|Yσ−). Repeating this elim-
ination step, we can eventually get rid of all the duplicates in σ, while
preserving the value of Iσ(S, p). Applying this fact to the strategy σ′ de-
fined in the proof of Theorem 6.2.4, we can come up with a strategy σ′′

of length |range(σ)| such that Iσ′′(S, p) = Iσ−(S, p). �

Example 29 We reconsider Example 26. For the adaptive strategy σ defined
in Figure 14, we have already shown that, for U(·) = H(·), Iσ(S, p) ≈ 2.45.
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Consider now the non-adaptive strategy σ′ = [ZIP,Date,Age], which is just
one action longer than σ. The corresponding attack tree is reported in Figure 17:
the final partition obtained with σ′ is finer than the one obtained with σ. In fact,
Iσ′(S, p) = log 10− 2

5 ≈ 2.92 > Iσ(S, p) ≈ 2.45.

The results discussed above are important from the point of view of
the analysis. They entail that, for systems with a moderate number of ac-
tions, analysing adaptive strategies is essentially equivalent to analysing
non-adaptive ones. The latter task can be much easier to accomplish. Re-
sults on asymptotic rate of convergence of non-adaptive strategies have
already been discussed in Chapter 5. They permit to analytically assess
the resistance of a mechanism as the length of the considered strategies
grows. The following result, which covers the case of error entropy, is
adapted from Theorem 5.2.4. Assume Act = {a1, . . . , ak}, and for each
ci ∈ X/ ≡, let πi , maxx∈ci p(x).

Proposition 6.2.6 For each n ≥ 1, consider the non-adaptive strategy σn =
[a1, . . . , ak, . . . , a1, . . . , ak] (n times) and let (X,Y n) ∼ pσn(·). Then, there
are positive constants γ and ρ, only depending on the matrices pa(·|·), such that

(1−
∑
i

πi) ≤ E(X|Y n) ≤ (1−
∑
i

πi) + γ2−nρ.

6.3 Maximum leakage

In this section we show that the class of adaptive and non adaptive strate-
gies induce the same maximum leakage. For truly probabilistic mecha-
nisms, strategies achieving maximum leakage are in general infinite. A
key notion is that of indistinguishability, x and x′ are indistinguishable
if, no matter what strategy the adversary will play, he cannot tell them
apart.

Definition 6.3.1 (Indistinguishability in the adaptive model) Two
states x, x′ ∈ X are indistinguishable if they satisfy the following equalities:

x ≡ x′ if and only if for each finite σ : pσ(·|x) = pσ(·|x′).

Despite being based on a universal quantification over all finite strate-
gies, indistinguishability is in fact quite easy to characterise, also compu-
tationally. For each a ∈ Act, consider the equivalence relation defined
by

x ≡a x′ if and only if pa(·|x) = pa(·|x′).
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Lemma 6.3.2 x ≡ x′ if and only if for each a ∈ Act, pa(·|x) = pa(·|x′). In
other words,

≡ =
⋂

a∈Act
≡a .

Now, consider X/ ≡, the set of equivalence classes of ≡, and let c
ranges over this set. Let [X] be the random variable whose outcome is
the equivalence class of X according to ≡. Note that p(c) , Pr([X] =
c) =

∑
x∈c p(x). We consistently extend our I-notation by defining

U(X | [X]) ,
∑
c

p(c)U(p(·| [X] = c))

and
I(X ; [X]) , U(X)− U(X | [X]) .

More explicitly, p(·|[X] = c) denotes the distribution over X that yields
p(x)/p(c) for x ∈ c and 0 elsewhere; we will often abbreviate p(·|[X] = c)
just as p(·|c). Note that I(X ; [X]) expresses the information gain about
X when the attacker gets to know the indistinguishability class of the
secret. As expected, this is an upper-bound to the information that can
be gained playing any strategy.

Theorem 6.3.3 I?(S, p) ≤ I(X ; [X]).

PROOF Fix any finite strategy σ and prior p(·). It is sufficient to prove
that U(X|Y ) ≥ U(X | [X]). The proof exploits the concavity of U . First,
we note that, for each x and yj of nonzero probability, we have (c below
ranges over X/ ≡):

pσ(x|yj) =
∑
c

pσ(x, yj , c)

pσ(yj)
=
∑
c

pσ(c|yj)pσ(x|yj , c) . (6.10)

By (6.10), concavity of U(·) and Jensen’s inequality

U(p(·|yj)) ≥
∑
c

pσ(c|yj)U(pσ(·|yj , c)) . (6.11)

Now, we can compute as follows (as usual, yj below runs over sequences
of nonzero probability):

U(X|Y ) =
∑
yj

pσ(yj)U(pσ(·|yj))

≥
∑
yj ,c

pσ(yj)pσ(c|yj)U(pσ(·|yj , c)) (6.12)
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=
∑
yj ,c

pσ(yj)pσ(c|yj)U(p(·|c)) (6.13)

=
∑
c

(∑
yj

pσ(yj , c)
)
U(p(·|c))

=
∑
c

p(c)U(p(·|c)) = U(X | [X])

where: (6.12) is justified by (6.11); and (6.13) follows from the fact that,
for each x, pσ(x|yj , c) = p(x|c) (once the equivalence class of the secret
is known, the observation yj provides no further information about the
secret). �

6.3.1 Deterministic case

As to the maximal achievable information, we start our discussion from
deterministic mechanism.

Proposition 6.3.4 Let S be deterministic. Let σ = [a1, . . . , ak] be a non-
adaptive strategy that plays all actions in Act once. Then

I?(S, p) = Iσ(S, p).

PROOF Let (X,Y ) ∼ pσ(·). We prove thatU(X |Y ) = U(X | [X]). We first
note that for each c ∈ X/ ≡ there is exactly one sequence ykc such that
pσ(ykc |c) = 1: this follows from S being deterministic. Moreover, if c 6= c′

then ykc 6= ykc′ : otherwise, it would follow that pai(y|c) = pai(y|c′) for
each ai ∈ Act and y ∈ Y , contrary to Lemma 6.3.2 (note that p(·|c) is the
same as p(·|x), for any x ∈ c). These facts can be used to show, through
easy manipulations, that p(x|ykc ) = p(x|c) for each x. As a consequence,
one can compute as follows.

U(X|Y ) =
∑
yk

pσ(yk)U(pσ(·|yk))

=
∑
c

p(c)
∑
yk

pσ(yk|c)U(pσ(·|yk))

=
∑
c

p(c)U(pσ(·|ykc ))

=
∑
c

p(c)U(pσ(·|c))

= U(X | [X]) . �
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Figure 17: The attack tree corresponding to the the non-adaptive strategy
[ZIP,Date,Age] for Example 26.

Hence, in the deterministic case, the maximal gain in information is
obtained by a trivial brute-force strategy where all actions are played in
any fixed order. It is instructive to observe such a strategy at work, under
the form of an attack tree. The supports of the distributions that are at
the same level constitute a partition of X : more precisely, the partition
at level i (1 ≤ i ≤ k) is given by the equivalence classes of the rela-
tion ∩ij=1 ≡aj . An example of this fact is illustrated by the attack tree
in Figure 17, relative to the non-adaptive strategy [ZIP,Date,Age] for the
mechanism in Example 26. This fact had been already observed in (KB07)
for the restricted model considered there. Indeed, one would obtain the
model of (KB07) by stripping the probabilities off the tree in Figure 17.

6.3.2 Probabilistic case

The general probabilistic case is slightly more complicated. Essentially,
any non-adaptive strategy where each action is played infinitely often
achieves the maximum information gain. The next theorem considers
one such strategy.

Theorem 6.3.5 There is a total, non-adaptive strategy σ such that Iσ(S, p) =
I(X; [X]). Consequently, I?(S, p) = I(X ; [X]).

In order to prove Theorem 6.3.5, we introduce some terminology and
concepts from the information-theoretic Method of Types, introduced in
Section 2.4. Given n ≥ 1 and a sequence yn ∈ Yn, recall that tyn(·) de-
note the type of yn (see Definition 2.4.3). We will often abbreviate H(tyn)
as H(yn), and D(tyn‖q) as D(yn‖q), where D(·‖·) is the Kullback-Leibler
distance (see Definition 2.4.1), thus denoting the type by a corresponding
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sequence, when no confusion arises. Given ε > 0 and a probability distri-
bution q(·) on Y , the “ball” of n-sequences whose type is within distance
ε of q(·) is defined thus:

B(n)(q, ε) , {yn : D(yn||q) ≤ ε} .

We shall also make use of the following new terminology about se-
quences. Assume |Act| = k. Given a sequence yn = (y1, y2, . . . , yn)
and an integer j = 1, . . . , k, we shall denote by yn(j) the subse-
quence (yj , yk+j , y2k+j , . . .), obtained by taking the symbols of yn at po-
sition j, k + j, 2k + j, . . .. In the rest of the section, unless otherwise
stated, we let σ be the infinite non-adaptive strategy that plays actions
a1, . . . , ak, a1, a2, . . ., in a lock-step fashion: σ(yj) , a(j mod k)+1. For any
n ≥ 1, we let σn be the truncation at level n of σ: σn , σ\n. For a prior
p(·), let pσn(·) be the resulting joint probability distribution on X × Yn:
note that, for each x, the support of pσn(·|x) is included inYn. Let (X,Y n)
be jointly distributed according to pσn(·): here we have introduced the
superscript n to remember explicitly the dependence of Y from n. Let us
define the set of sequences yn where the type of each sub-sequence yn(i)
is within ε distance of the distribution pai(·|x), thus:

B̂(n)(x, ε) , {yn : D
(
yn(i)||pai(·|x)

)
≤ ε for i = 1, . . . , k} .(6.14)

Furthermore, we define the following quantities depending on a given
sequence yn and x ∈ X :

Ĥ(yn) ,
k∑
i=1

H(yn(i)) (6.15)

D̂(yn||pσn(·|x)) ,
k∑
i=1

D(yn(i)||pai(·|x)) . (6.16)

Finally, for each sequence ym ∈ Ym and for each action a ∈ Act, we let

pma (ym|x) =

m∏
i=1

pa(yi|x) (6.17)

(this is the probability of generating ym with i.i.d. extractions obeying
distribution pa(·|x)).

Lemma 6.3.6 Let n be a multiple of k and x ∈ X . Then

pσn(yn|x) = 2−
n
k [Ĥ(yn)+D̂(yn||pσn (·|x))] .
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PROOF

pσn(yn|x) =

k∏
j=1

p
n
k
aj (y

n(j)|x) (6.18)

=

k∏
j=1

2−
n
k (H(yn(j))+D(yn(j)‖paj (·|x))) (6.19)

= 2−
n
k

∑k
j=1 (H(yn(j))+D(yn(j)‖paj (·|x)))

= 2−
n
k (Ĥ(yn)+D̂(yn‖pσn (·|x))) (6.20)

where: (6.18) follows from re-arranging factors and the definition of
p
n
k
aj (·); (6.19) follows from Theorem 2.4.6; in (6.20) we have applied Defi-

nitions (6.15) and (6.16). �

Below, for a set A and a distribution q(·), we let q(A) denote∑
a∈A q(a).

Lemma 6.3.7 Let n be a multiple of k, x ∈ X and ε > 0. Then

pσn(B̂(n)(x, ε)|x) ≥ 1− 2−
n
k εC

(n
k

+ 1
)k|Y|

for some constant C not depending on n.

PROOF Let m = n/k. We give a lower bound on the probability of
B̂(n)(x, ε) as follows.

pσn(B̂(n)(x, ε)|x) =
∑

yn∈B̂(n)(x,ε)

pσn(yn|x)

=
∑

yn∈B̂(n)(x,ε)

k∏
i=1

pmai(y
n(i)|x)

=

k∏
i=1

∑
ym∈B(m)(pmai

(·|x),ε)

pai(y
m|x) (6.21)

=

k∏
i=1

pmai
(
B(m)(pai(·|x), ε) |x

)
≥

k∏
i=1

(
1− 2−mε(m+ 1)|Y|

)
(6.22)
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=
(
1− 2−mε(m+ 1)|Y|

)k
= 1 +

k∑
i=1

(
k

i

)
(−1)i2−miε(m+ 1)|Y|i

≥ 1− 2−mεC(m+ 1)k|Y| (6.23)

where: the equality (6.21) follows from the definition of B̂(n)(x, ε) (Equa-
tion 6.14); the inequality (6.22) follows from Theorem 2.4.8 (Equation 2.5);
in (6.23), C = k ·maxi

(
k
i

)
(note that

(
k
i

)
is maximum when i = dk/2e). �

Lemma 6.3.8 Let x, x′ ∈ X , with x 6≡ x′. Let n ≥ 1. Then there is ε > 0 such
that B̂(n)(x, 2ε) ∩ B̂(n)(x′, 2ε) = ∅.

PROOF It is well-known that given any two distinct distributions p(·) and
q(·), there is ε > 0 such that B(n)(p, 2ε) ∩ B(n)(q, 2ε) = ∅ (this is a con-
sequence of Pinsker’s inequality, (CT06, Lemma 11.6.1)). Thus, choose
ε > 0 such that, for some j, B(n)

(
paj (·|x), 2ε

)
∩ B(n)

(
paj (·|x′), 2ε

)
= ∅:

the wanted statement follows from the definition of B̂(n)(x, 2ε) and
B̂(n)(x′, 2ε). �

We are now set to prove Theorem 6.3.5.

PROOF [Theorem 6.3.5] Using the notation previously introduced, we
shall prove that, as n→∞

U(X|Y n) −→ L for some L ≤ U(X|[X]) . (6.24)

This will imply the thesis, as then Iσ(S, p) ≥ I(X; [X]), which, by virtue
of Theorem 6.3.3, implies Iσ(S, p) = I(X; [X]).

Let the equivalence classes of ≡ be c1, . . . , cK . For each i = 1, . . . ,K,
choose a representative xi ∈ ci of nonzero probability (if it exists; other-
wise class ci is just discarded). We can compute as follows.

U(X|Y n) =
∑
yn,x

p(x)pσn(yn|x)U(pσn(·|yn))

=
∑
x

p(x)
∑
yn

pσn(yn|x)U(pσn(·|yn))

≤
∑
x

p(x)U(
∑
yn

pσn(yn|x)pσn(·|yn)) (6.25)

=
∑
ci

∑
x∈ci

p(x)U(
∑
yn

pσn(yn|xi)pσn(·|yn))
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=
∑
ci

p(ci)U(
∑
yn

pσn(yn|xi)pσn(·|yn)︸ ︷︷ ︸
,qni (·)

)

=
∑
ci

p(ci)U(qni ) (6.26)

where the inequality in (6.25) stems from the concavity of U and Jensen’s
inequality. We will show that there is a sub-sequence of indices {nj} such
that for each i = 1, . . . ,K,

q
nj
i (·) −→ p(·|ci) (6.27)

(according to any chosen metrics in P(X )). This will imply (6.24): in
fact, by virtue of the continuity of U , we will have, on the chosen sub-
sequence,

∑
ci
p(ci)U(q

nj
i ) →

∑
ci
p(ci)U(p(·|ci)) = U(X|[X]). Hence,

by virtue of (6.26), on the chosen sub-sequence and hence on every se-
quence, we will have U(X|Y n)→ L ≤ U(X|[X]), which is (6.24).

In order to prove (6.27), take any n ≥ 1 that is a multiple of k, and
choose any ε > 0 such that B̂(n)(x, 2ε)∩B̂(n)(x′, 2ε) = ∅whenever x 6≡ x′
(the existence of such an ε is guaranteed by Lemma 6.3.8). Consider a
generic x ∈ ci such that p(x) > 0. We have the following lower bound
for qni (x).

qni (x) =

=
∑
yn

pσn(yn|xi)pσn(yn|xi)p(x)∑
x′ pσn(yn|x′)p(x′)

(6.28)

=
∑
yn

pσn(yn|xi)
p(ci)
p(x) +

∑
x′ 6≡xi

pσn (yn|x′)p(x′)
pσn (yn|xi)p(xi)

≥
∑

yn∈B̂(n)(x,ε)

pσn(yn|xi)
p(ci)
p(x) +

∑
x′ 6≡xi 2−

n
k [D̂(yn||pσn (·|x′))−D̂(yn||pσn (·|x))] p(x′)

p(x)

(6.29)

≥
∑

yn∈B̂(n)(x,ε)

pσn(yn|xi)
p(ci)
p(x) +

∑
x′ 6≡xi 2−nε p(x

′)
p(x)

(6.30)

= pσn
(
B̂(n)(xi, ε) |xi

) 1
p(ci)
p(x) + 2−nεC ′

(6.31)

≥
1− 2−

n
k εC(nk + 1)k|Y|

p(ci)
p(x) + 2−nεC ′

(6.32)
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where: (6.28) follows from the definition of qni (x) and an application
of Bayes rule, and from the fact that pσn(yn|x) = pσn(yn|xi); (6.29)
follows from a simple union bound and from Lemma 6.3.6; (6.30) fol-
lows from the fact that, by assumption, B̂(n)(x, 2ε) ∩ B̂(n)(x′, 2ε) = ∅
(also note that B̂(n)(x, 2ε) = B̂(n)(xi, 2ε)); (6.31) follows by definition of
B̂(n)(x, ε) = B̂(n)(xi, ε); here C ′ is a suitable constant, not depending on
n; (6.32) follows from Lemma 6.3.7.

Now, let {nj} be a sequence of indices such that, for each x and i,
q
nj
i (x) converges to a limit, say Li(x) (such a sub-sequence must exist,

by Bolzano-Weierstrass). The inequality

qni (x) ≥
1− 2−

n
k εC(nk + 1)k|Y|

p(ci)
p(x) + 2−nεC ′

which holds for each n that is a multiple of k, implies that these limits
satisfy Li(x) ≥ p(x)

p(ci)
. Since point-wise convergence for each x implies

convergence of qnji (·) to a probability distribution, we have that, for each
i and x, actually equality must hold: Li(x) = p(x)

p(ci)
. Thus, for each i =

1, . . . ,K, qnji (·)→ p(·|c), which proves (6.27). �

Theorem 6.3.9 The following formulae holds, where K = |X/ ≡ |.

• For U = H (Shannon entropy), C(S) = logK.

• For U = E (Error entropy), C(S) = 1− 1
K .

PROOF Let xi be any representative of class ci, for i = 1, . . . ,K.

• U = H . By the symmetry of mutual information in the case of
Shannon entropy, we have

I(X; [X]) = H([X])−H([X]|X)︸ ︷︷ ︸
=0

= H([X])

= −
∑
ci

p(ci) log p(ci) ≤ logK

where the last inequality follows from the property of Shannon en-
tropy that H(q) ≤ log |supp(q)|, for any distribution q. On the other
hand, if we take the distribution p(·) defined as p(xi) = 1

K , and
p(x) = 0 elsewhere, we can easily compute that I(X; [X]) = logK.
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• U = E. Let p(·) be any prior and assume without loss of generality
that p(xi) = maxx∈ci p(x) for each i, and furthermore that p(x1) =
maxx p(x). By easy manipulations, we have:

I(X; [X]) = E(X)− E(X|[X])

= (1− p(x1))− (1−
∑
ci

p(ci)
p(xi)

p(ci)
)

=

K∑
i=1

p(xi)− p(x1) =

K∑
i=2

p(xi) .

Now it is easily checked that the last term in this chain is ≤ 1− 1
K :

this is done by separately considering the two cases maxx p(x) =
p(x1) ≤ 1

K and maxx p(x) = p(x1) > 1
K . On the other hand, if

we take, as above, the distribution p(·) defined as p(xi) = 1
K , and

p(x) = 0 elsewhere, we can easily compute that I(X; [X]) = 1− 1
K .

�

Example 30 Consider the mechanism defined in Example 26. One has the fol-
lowing capacities: for U(·) = H(·), C(S) = log 8 = 3, while for U(·) = E(·),
C(S) = 7

8 = 0.875.

6.4 Computing finite strategies

We show that Iσ(S, p) can be expressed recursively, in terms of a
Bellman-type equation. This allows for calculation of optimal finite
strategies based on standard algorithms, such as backward induction.

6.4.1 A Bellman equation

Let us introduce some terminology.

Definition 6.4.1 (y-derivative) For each y, the y-derivative of σ, denoted
σy , is the function defined thus, for each yj ∈ Y∗:

σy(yj) , σ(yyj).

Remark 6.4.2 Note that if σ has length l > 1, then σy is a strategy of height
≤ l − 1. For l = 1, σy is the empty function.
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Recall that according to (6.2), for h = ay, we have2

pay(x) = pa(x|y)

By convention, we let Iσ(· · · ) denote 0 when σ is empty. Moreover, we
write I[a](· · · ) as Ia(· · · ).

Lemma 6.4.3 Let p(·) be any prior on X . Let σ be a strategy with σ(ε) = a.
Then

Iσ(S; p) = Ia(S; p) +
∑
y

pa(y)Iσy (S; pay).

We introduce some additional notation to be used in the proof of
Lemma 6.4.3. Let l denote the length of a strategy σ, and let (X,Y ) be
distributed according to pσ(·). We can decompose Y as the concatena-
tion of the first observation and whatever sequence of observations is
left, thus: Y = Y1 · Ys. Here, Y1 takes values on Y , while Ys takes values
on a subset of ∪0≤j≤lYj - in particular, if l = 1, Ys takes on the value ε
with probability 1. In what follows, we denote the marginal distribution
of Y1 under σ just as pσ(y), and that of Ys as pσ(yj), for generic y and yj .

PROOF [Lemma 6.4.3] It is an easy matter to prove the following equa-
tions. For each prior p(·), finite strategy σ with σ(ε) = a, sequence yj ,
observation y, one has (below, y and yj run over elements of nonzero
probability; moreover, for any prior p(·), history h and strategy σ, the
term phσ is to be parsed as (ph)σ):

pσ(y) = pa(y) (6.33)
pσ(x|y) = pa(x|y) = pay(x) (6.34)

pσ(x|yyj) = payσy (x|yj) (6.35)

pσ(yj |y) = payσy (yj) . (6.36)

By applying equalities (6.33), (6.34), (6.35) and (6.36) above as appropri-
ate, we have:

Iσ(S, p) = I(X;Y ) =

=
[
U(X)− U(X|Y1)

]
+
[
U(X|Y1)− U(X|Y )

]
2In terms of a given prior p(·) and of the matrices of S, this can be also expressed as:

pay(x) =
pa(y|x)p(x)∑
x′ pa(y|x′)p(x′)

.

118



=
[
U(p)−

∑
y

pσ(y)U(pσ(·|y))
]

+

+
[∑

y

pσ(y)U(pσ(·|y))− pσ(y, yj)U(pσ(·|yyj))
]

=
[
U(p)−

∑
y

pσ(y)U(pσ(·|y))
]

+

+
[∑

y

pσ(y)U(pσ(·|y))− pσ(y)pσ(yj |y)U(pσ(·|yyj))
]

=
[
U(p)−

∑
y

pσ(y)U(pσ(·|y))
]

+

+
∑
y

pσ(y)
[
U(pσ(·|y))−

∑
yj

pσ(yj |y)U(pσ(·|yyj))
]

=
[
U(p)−

∑
y

pa(y)U(pa(·|y))
]

+

+
∑
y

pa(y)
[
U(pay)−

∑
yj

payσy (yj)U(payσy (·|yj))
]

= Ia(S; p) +
∑
y

pa(y)Iσy (S; pay).

�

Let us say that a strategy σ of length l is optimal for S, p(·) and l if it
maximises Iσ(S, p) among all strategies of length l.

Corollary 6.4.4 (Bellman-type equation for optimal strategies) There is
an optimal strategy σ? of length l for S and p(·) that satisfies the following
equation

Iσ?(S; p) = max
a

{
Ia(S; p) +

∑
y: pa(y)>0

pa(y)Iσ?a,y (S; pay)
}

(6.37)

where σ?a,y is an optimal strategy of length l − 1 for S and pay(·).

Corollary 6.4.4 allows one to employ dynamic programming or back-
ward induction to compute optimal finite strategies. We discuss this
briefly in the next subsection.
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a b

(y , pa(y)) (y′, pa(y′))

pay pay
′

(y′, pb(y′))(y , pb(y))

pby pby
′

a b a b baba

y y′ y y′ y y′ y y′ y′yy′yy′yy′y

Figure 18: The first few levels of a MDP induced by a prior p(·) and a mech-
anism with Act = {a, b} and Y = {y, y′}. Round nodes are decision nodes
and square nodes are probabilistic nodes. For the sake of space, labels of the
last level of arcs and nodes are only partially shown.

6.4.2 Markov Decision Processes and backward induc-
tion

A mechanism S and a prior p(·) induce a Markov Decision Process (MDP),
where all possible attack trees are represented at once. Backward induc-
tion amounts to recursively computing the most efficient attack tree out
of this MDP, limited to a given length. More precisely, the MDP M in-
duced by S and a prior p(·) is an (in general, infinite) tree consisting of
decision nodes and probabilistic nodes. Levels of decision nodes alternate
with levels of probabilistic nodes, starting from the root which is a de-
cision node. Decision nodes are labeled with probability distributions
over X , edges outgoing decision nodes with actions, and edges outgoing
probabilistic nodes with pairs (y, λ) of an observation and a real, in such
a way that (again, we identify nodes with the corresponding history):

• a decision node corresponding to history h is labeled with ph(·),
if this is defined, otherwise the node and its descendants are re-
moved, as well as the incoming edge;

• for any pair of consecutive edges leading from a decision node h
to another decision node hay, for any a ∈ Act and y ∈ Y , the edge
outgoing the probabilistic node is labeled with (y, pha(y)).

Figure 18 shows the first few levels of such a MDP.
In order to compute an optimal strategy of length l ≥ 1 by backward

induction, one initially prunes the tree at l-th decision level (the root is at
level 0) and then assigns rewards to all leaves of the resulting tree. More-
over, each probabilistic node is assigned an immediate gain. Rewards are
then gradually propagated from the leaves up to the root, as follows:
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Age

ZIP

29, 3
1, 6

5, 6
6

Date

30, 32, 64, 67, 68, 69

Figure 19: A Shannon entropy optimal strategy for Example 27. Leaves with
the same label and their incoming arcs have been coalesced.

• each probabilistic node is assigned as a reward the sum of its imme-
diate gain and the average reward of its children, average computed
using the probabilities on the outgoing arcs;

• each decision node is assigned the maximal reward of its children;
the arc leading to the maximising child is marked or otherwise
recorded.

Eventually, the root will be assigned the maximal achievable reward.
Moreover, the paths of marked arcs starting from the root will define an
optimal strategy of length l. We can apply this strategy to our problem,
starting with assigning rewards 0 to each leaf node h, and immediate
gain Ia(S, ph) to each a-child of any decision node h. The correctness of
the resulting procedure is obvious in the light of Corollary 6.4.4.

In a crude implementation of the above outlined procedure, the num-
ber of decision nodes in the MDP will be bounded by (|Y| × |Act|)l+1 − 1
(probabilistic nodes can be dispensed with, at the cost of moving incom-
ing action labels to outgoing arcs). Assuming that each distribution is
stored in spaceO(|X |), the MDP can be built and stored in time and space
O(|X |×(|Y|×|Act|)l+1). This is also the running time of the backward in-
duction outlined above, assuming U(·) can be computed in time O(|X |)
(some straightforward optimisations are possible here, but we will not
dwell on this). By comparison, the running time of the exhaustive pro-
cedure outlined in (KB07, Theorem 1), for deterministic systems, runs
in time O(l × |Act|rl × |X | × log |X |), where r is the maximal number
of classes in any relation ≡a; since r can be as large as |Y|, this gives a
worst-case running time of O(l × |Act||Y|l × |X | × log |X |).

Example 31 Applying backward induction to the mechanism of Example 27
with U(·) = H(·) and l = 2, one gets the optimal strategy σ shown in Figure
19; this yields Iσ(S, p) ≈ 2.4 bits.
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In the general case, unfortunately, backward induction is quite
memory-inefficient, even for a moderate number of observations or ac-
tions.

6.5 Concluding remarks

We have proposed a general information-theoretic model for the analysis
of confidentiality under adaptive attackers. Within this model, we have
proven several results on the limits of such attackers, on the relations
between adaptive and non-adaptive strategies, and on the problem of
searching for optimal finite strategies.

Adaptive attacks like chosen plaintext or ciphertext attacks are often
considered in the literature on block ciphers, see (Gol04) and references
therein. While such attacks can be easily modeled within our framework,
further investigation is in order to understand the exact relationship be-
tween our security notions and those considered in that context, such as
indistinguishability under chosen plaintext attack (IND-CPA) and varia-
tions thereof. A well-known difficulty is that, in an information-theoretic
setting like ours, one cannot easily reason about the adversary’s comput-
ing power.
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Chapter 7

Conclusion

In this thesis we presented models to analyse a variety of statistical at-
tacks in a uniform fashion. This permits the assessment of systems se-
curity against various kinds of attackers both at the global level and at
the level of specific partitions of the secrets and in presence of both pas-
sive and active adversaries. In particular, we give precise bounds for the
probability of misclassification on the part of the attacker, characterising
both the limit value and the rate of convergence of the error probability
as a function of the number of independent observations. In all analysed
scenarios, we considered probabilistic systems and re-execution one-try
attacks, defining suitable security metrics for their safety, studying their
asymptotic behaviour (so to have an upper bound) and their rate of con-
vergence to predefined error thresholds.

In Chapter 3, we analysed the case of a single passive eavesdropper.
We considered two possible scenarios: the adversary tackled in Section
3.1 directly targets the value of the secret, while the one considered in
Section 3.2 is only interested to check whether a certain property related
to the secret holds true. In both cases, we showed that the asymptotic be-
haviour of the security metrics can be determined in a simple way from
the channel matrix, we provided simple and tight bounds on them, as
function of the number of observations, and we discussed feasible meth-
ods to evaluate the rate of convergence. The second scenario allowed
us to focus also on the qualitative aspect of the analysis of information
flow, differently from most of the previous works, that only consider the
quantitative one, ignoring what is leaked.

In Chapter 4, we extended these results to a more sophisticated eaves-
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dropping scenario, where the attacker is still passive, but this time can
perform a (noisy) observation at each state of the computation, so collect-
ing a sequence of observations for each execution of the system. In this
case, we modeled systems as Hidden Markov Models, where the hidden
sequence is given by the states traversed by the system, while the vis-
ible one is given by the corresponding observations. In particular, we
proposed an algorithm to compute in an easy way the limit value of the
security metric. This model allowed us to represent more faithfully sce-
narios where the attacker can collect observations from multiple sources
at different times, such as when he has a number of local collaborators.

Turning to more complex attack scenarios, in Chapters 5 and 6, we
analysed what happens when we are faced with active adversaries. In
Chapter 5, we tackled the non-adaptive case, where the attacker can in-
teract with the system, meaning that, for example, he can control part of
the input, but the choice of the latter does not depend on previous obser-
vations. We extended the previous model even to this case. In particular,
due to the computational difficulty of directly computing bounds and
rate of security metrics, we proposed a sub-optimal, but reasonable effi-
cient, strategy, that gives a lower bound on the real rate of convergence.
We also made the first step about the integrity issue, proposing a method
to detect if an adversary is exercising any undue influence on a deployed
system, depending on the outcomes we obtain. Moreover, we analysed
the problem of declassification policies from a quantitative point of view,
quantifying how serious is a violation of the policy, if there is any. Finally,
in Chapter 6, we addressed the adaptive case, where the attacker at each
stage of computation can query the system and, from the obtained an-
swer, update his/her knowledge about the secret and choose the query
for the next stage. Besides extending the model also to this scenario,
we provided several results on the limits of such attackers, comparing
adaptive and non-adaptive strategies, and on the problem of searching
optimal finite strategies.

There are several directions worth being pursued, starting from the
present work. First of all, experiments and simulations with realistic
protocols and programs may be useful to asses at a practical level the
theoretical results of our study. For example, we believe that HMMs are
relevant to security in peer-to-peer overlays. Consider, for instance, Tor,
the most widely deployed technology for providing anonymity for users
communicating over the internet. We could analyse Timing Attacks on
it, applying our model with HMM’s, where sequential observations are
given by the local times that a message needs to go from one node to
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another. We should lightly modify our model, because here we are no
longer able to separate single observations (we have only the total time
spent by the message to reach the receiver) and, then, even single obser-
vations have a variable length.

The application both of the view model and the adaptive one to
sparse datasets prompts a connection to database privacy issues that
deserves further attention. Concerning the adaptive case, it would be
interesting to monitor a possible attack on a database, measuring the
amount of information the attacker collects after each query, updating
his belief. It would also be interesting to test the analytical model and
decision strategy described in Section 5.4 against real-world, deployed
systems.

Concerning the adaptive scenario, we would like to implement and
experiment with the search algorithm described in Section 6.4. Adap-
tive querying of dataset, possibly specified via some query description
language, might represent an ideal ground for evaluation of such algo-
rithms. Then, we would like to investigate worst-case variations of the
framework described in Chapter 6: an interesting possibility is to devise
an adaptive version of Differential Privacy (BPSW06; DMNS06), a pop-
ular framework to define and enforce privacy for statistics on sensitive
data, or one of its variants (BP12b). Relations with entropic security (DS05)
and other notions related to block cipher cryptography, as outlined in
Section 1.2, deserve further investigation.

Finally, in order to make easier the application of our models, it
would be interesting to explore the field of Formal Verification, providing
a symbolic definition of metrics like the information leakage or the error
probability, and developing a type system to statically and automatically
measure them.
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