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Abstract

I think the grid computing stimulates the cooperation among
people, that agree to share resources and knowledge, to ad-
dress problems that are not reachable individually. The cen-
tral purpose of grid computing is to enable a community of
users to perform work on a pool of shared resources. Since the
number of jobs to be done in most cases outnumbers the num-
ber of available resources, somebody must decide how to allo-
cate resources to jobs. Historically, this has been known as the
Scheduling Problem. A large amount of research in scheduling
was motivated by the proliferation of massively parallel ma-
chines in the early 1990s, and the desire to use these very ex-
pensive resources as efficiently as possible. Nowadays, grid is
the emerging computing platform. Grid computing makes the
scheduling problem even more difficult since, due to its het-
erogeneous and highly distributed nature, it cannot be served
by a single centralized scheduling framework.

In this Thesis we propose the study conducted to design and
evaluate a hierarchical framework to dynamically schedule a
continuous stream of independent, batch jobs, on large-scale
grids. Our scheduler aims to schedule arriving jobs respect-
ing their computational requirements (hardware constraints,
software resources needed to be executed, deadlines), and op-
timizing the utilization of hardware and software resources.
We designed a lightweight Meta-Scheduler able to classify in-
coming jobs according to their relevance, and to schedule jobs
among underlying resources balancing the workload among
them. Furthermore, we designed different algorithms as Local-
Schedulers, which are able to carry out the job machine asso-
ciations using dynamic information about the environment.

xvi



Eventually, the Thesis presents two important related results
obtained by scientific collaborations. The former concerns to
the study of the self-optimizing system behavior. The latter
concerns to the comparison of one of our Local-Scheduler so-
lution with a Schedule-Based algorithm proposed by Dalibor
Klusáček and Hana Rudová of the University of Brno.
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Chapter 1

Introduction

1.1 Motivations

The research activity described in this Thesis was conducted as part of the
“Scheduling Under the Sun” project, that was born as a collaboration be-
tween the Sun MicrosystemsTM and the Italian National Research Coun-
cil. The goal of this research is to design and evaluate a scalable solution
to dynamically schedule a stream of batch jobs in large scale grids for util-
ity computing. The objective of our work was to develop a scheduler able
to manage the execution of a large number of jobs on a grid infrastructure
composed by thousands machines.

The Sun MicrosystemsTM challenge is to provide its customers with
a computational infrastructure able to run different kinds of high-
performance, compute-intensive applications (72). This without the need
for users to have their own infrastructure and, above all, their own sched-
ulers.

The decreasing cost of the hardware resources, and their easy inter-
connection, allows to develop large computing farms, but this is not
enough to provide computational services because, the increasing com-
plexity of the hardware infrastructures requires that the complexity of
the software infrastructures needed to manage those increases.

Some important questions that this scenario opens are: what machine
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can be assigned to a job? How long? Does this assignment allow to max-
imize the resource utilization? Does it allow to satisfy the Quality of Ser-
vice (QoS) required by applications?

In literature, a general form of this problem is known as the Schedul-
ing Problem. A more formal definition of such problem is given in (80):
a schedule of jobs is the assignment of jobs to specific time intervals of
resources, such that no two jobs are on any resource at the same time, or
such that the capacity of no resource is exceeded by jobs. The schedule of
jobs is optimal if it minimizes/maximizes a given optimality criteria (ob-
jective function). A scheduling problem is specified by a set of machines,
a set of jobs, one or more optimality criteria, environmental specifications, and
by other constraints. The scheduling problem solutions goal is to find an
optimal schedule in the environment that satisfies all constraints. The
scheduling problem has shown to be NP-complete in its general as well
as in some restricted forms (57).

The structure of a scheduler depends on the features and number of
resources managed, and the domain in which resources are located. We
can distinguish three different scheduling architectures: centralized, dis-
tributed, and hierarchical (18; 60).

The centralized can be used for managing single or multiple resources
located either in a single or in multiple domains. It can only support a
uniform policy and suits well for cluster management systems such as
Condor (70), LSF (6), and Condine (49). It is not suitable for grid resource
management systems as they are expected to respect (local) policies im-
posed by resource owners.

In the distributed model, schedulers interact among themselves in or-
der to decide which resources should be assigned to the jobs to be exe-
cuted. Condor-G (42) is an example of a distributed scheduler. It is an
extension of Condor able to manage different instances spread in differ-
ent domains using the Globus support (40). In this scheme, there is not a
central leader responsible for scheduling, hence the model is potentially
highly scalable and fault-tolerant. As resource owners can define the pol-
icy that schedulers can enforce. However, because the status of remote
jobs and resources are not available in a single location, the generation of
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highly optimal schedule is not guaranteed. The distributed scheme can
suit grid systems, but, in general, it is difficult because resource owners
do not always agree on a global policy for resource management.

The hierarchical model is suitable for grid environments. In litera-
ture there are several hierarchical schedulers, such as YML (31) (75), OAR
(23), KOALA (74). In the next Chapter a survey of such systems is given.
This model can be seen as a hybrid one, a combination of the central and
the distributed models. It allows remote resource owners to enforce their
own policy on external users at local level. Furthermore, it defines a high
level scheduler able to orchestrate the interactions among local scheduler
instances. The hierarchical model overcomes the most important limita-
tions of the distributed model, preserving a high level of scalability. The
scheduling framework investigated in this Ph.D study follows this model
(85).

1.2 Problem Description

Referring to the definition of the scheduling problem given in the previ-
ous section, we present the work done during our research activity as a
solution for a restricted instance of the general problem (80).

The aim of this Ph.D study is to investigate a solution to design
a scheduler able to manage a set of distributed and heterogeneous re-
sources, single-processor or SMP machines, organized as clusters located
in specific sites (a set of machines). The target computing grid is a ded-
icated one, able to notify configuration changes such as job submis-
sion/ending. The links among machines belonging to the same cluster
are high-bandwidth ones, while the clusters are connected by the internet
infrastructure.

In our study we consider a continuous stream of batch jobs (a set of
jobs). We suppose that a job is sequential or multi-threaded, that it is
executed only on a single machine, that jobs are allocated to a machine
according to the space sharing policy, and that jobs are independent, i.e.
the execution of a job does not depend on the execution of other jobs. We
also assume that some jobs are preemptable.
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The jobs are managed according to the on-line paradigm. In (87), Sgall
classifies the on-line algorithms according to which part of them is given
on-line:

• Scheduling jobs one by one. This means that jobs arrive one at a
time. As soon as the job arrives, the scheduler knows all its charac-
teristics, including its running time. Each job has to be scheduled
before the next job arrives. The scheduler cannot change the previ-
ous assignments.

• Unknown running times. At any time all currently available jobs
are at the disposal of the scheduler. Any of them can be started
suddenly or delayed further. The running time of a job is unknown
until the job finishes. The scheduler only knows whether a job is
still running or not. Furthermore, if preemption or restart are al-
lowed, the scheduler can decide to preempt or stop any job which
is currently running.

• Jobs arrive over time. In this paradigm, the algorithm has the same
freedom as in the previous case: jobs are at the disposal of the sched-
uler and, they can be started suddenly or delayed further. In addi-
tion the running time of each job is also known when a job is avail-
able. The scheduler does not know the length of the job stream.

• Interval scheduling. Interval scheduling assumes that each job has
to be executed in a precisely given time interval. If this is impossi-
ble, it may be rejected.

In our studies, the Meta-Scheduler dispatches jobs according to the
“Jobs arrive over time” classification. We assume that users can submit
their jobs at any time without any predefined policies. This implies that
the scheduler doesn’t know the length of the stream. For each submitted
job its running time is specified, and jobs can be scheduled or delayed
according to the scheduler’s decisions. Moreover, the Meta-Scheduler
cannot change its scheduling decision. This means that when a job is
assigned to a Local-Scheduler, it cannot be migrated to another Local-
Scheduler.
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The scheduler aims to maximize the hardware/software resource us-
age, to schedule jobs among clusters balancing the workload, and to guar-
antee the QoS request by submitted jobs, e.g. job deadlines, software li-
cences requirements, SLA of the submitting user (one or more optimality
criteria).

During our studies we investigated a multi-level scheduler, and we
specified what kind of information concerning resources are available at
each level of the hierarchy (environmental specifications).

Eventually, we considered some constraints both about jobs, machines
and software resources (constraints). Submitted jobs and machines are
annotated with information describing computational requirements and
hardware/software features, respectively. Each job is described by an
identifier, its deadline, this means that jobs can specify a time at which
their execution has to be finished, an estimation of job execution time, a
benchmark score, which represents the architecture used to estimate its
execution time, the number of processors and licences requested. Ma-
chines are described by a benchmark score, which specifies their compu-
tational power, the number of CPUs, and the types of different software
licence that they are able to run. Concerning software licences, let L be
the set of different software licences, each one with a specific number of
maximum activable copies. Each job can require a subset Lc ⊆ L of li-
cences to be executed. At any time, the number of active licences must
not be greater than their availability.

1.3 Contributions of the Thesis

Our aim was to design and to evaluate a scalable job scheduling frame-
work (85). The main features of the proposed scheduler concern with the
ability to schedule jobs among distributed resources, taking care of a set
of different, and sometimes in contrast, constraints. In particular, we de-
fine a job scheduler able to manage software resources needed to execute
jobs, such as licences, and to address the job deadline requirement.

The first step was to choose the most profitable architecture for the
scheduler we were designing. We adopted a hierarchical model with in
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mind to design a lightweight Meta-Scheduler, that works as single access
point to the infrastructure (Section 3.1), and to design a Local-Scheduler
able to carry out the job machine associations using dynamic information
about the environment (Section 3.2).

Another important aspect was to define a validation model for our
framework. In a real grid environment, it is hard, and perhaps even im-
possible, to perform scheduler performance evaluation in a repeatable
and controllable manner for different scenarios. The availability of re-
sources and their load continuously varies with time, and it is hard to
control the activities of users in different administrative domains. There
are two common ways to evaluate a system design (33): using real traced
workload, or creating a model from the trace and use the model for either
analysis or simulation. The advantage of using a trace directly is that it
is the most “real” test of the system; the workload reflects a real work-
load precisely, with all its complexities, even if they are not known to the
person performing the analysis. The drawback is that the trace reflects a
specific workload, and there is always the question of whether the results
generalize to other systems. In particular, there are cases where the work-
load depends on the system configuration, and therefore a given work-
load is not necessarily representative of workloads on systems with other
configurations. This makes the comparison of different configurations
problematic. In addition, traces are often misleading if we have incom-
plete information about the circumstances when they were collected. For
example, workload traces often contain intervals when the machine was
down or part of it was dedicated to a specific project, but this information
may not be available.

We studied the real workload traces proposed by Feitelson in (36),
and the data provided by the Italian Interuniversity Consortium (25). In
both cases real workload traces missing requirements fundamental in the
scheduling framework we propose, i.e. deadlines and software require-
ments. Furthermore, the systems from which the traces come from are
different and incompatible with our target computing platform.

We choose to evaluate our system by simulations, using different
streams of jobs synthetically generated with different inter-arrival times
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between jobs. To slacken the job estimation execution time problem, we
assume for each job the estimated execution time is accurate, and that any
job cannot run longer than its estimation. Most of the common schedul-
ing algorithms and frameworks, included those proposed in this Thesis,
take their scheduling decisions assuming that the job running time pre-
diction is enough precise. They exploit the job estimation execution time
to build scheduling plans, and to achieve their goals. In literature many
methods have been proposed to estimate the job execution time (46; 88).
Usually, they are based on system historical data analysis, e.g. they op-
erates on the principle that applications with similar characteristics have
similar execution times (64; 92). The main problem of these approaches is
the definition of similarity: different criteria can be adopted to define two
applications similar.

We developed an ad-hoc simulator for our evaluation (43). We sim-
ulated a computing farm, with varying number of jobs, machines and
licences. Each machine in the simulator was randomly generated. A sim-
ulation step includes: (1) selection of new jobs, (2) update of the status
(e.g. the job execution progress) of the executing jobs, (3) check for job
terminations.

In Chapter 4, we show that in the conducted evaluations, the schedul-
ing framework we propose is able to balance the workload among clus-
ters, and to maximize the number of jobs executed respecting their QoS
requirements.

The Meta-Scheduler level

The Meta-Scheduler we proposed has a twofold goal:

• to assign each job to the underlying schedulers in such a way that
the workload is balanced among clusters, and that the higher prior-
ity jobs could be executed before than the lower ones.

• to assign to each job a priority value, with respect to its QoS require-
ments, needed to define a job execution order.
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In literature, we can find different approaches that exploit a hierarchi-
cal architecture for job schedulers, which prioritizes incoming jobs, and
that have as goal to balance the resources workload (5; 23; 31; 74; 75; 91).
These approaches have a light and static jobs classification, not extensible
to new jobs QoS requirements or administrators‘ policies. In most cases,
these classifications are based only on priority queues mechanisms. Our
approach allows to define an extensible set of classification heuristics,
each one managing a specific constraint. The most of the analyzed sched-
ulers (Chapter 2) use negotiation mechanisms to plan the job schedule.
This introduces an overhead due to communication among scheduler
levels. Our Meta-Scheduler takes the scheduling decisions analyzing
only the Local-Scheduler queues. This means that Local-Schedulers need
to communicate to the high level only the termination of assigned the
jobs (Section 3.1). As shown in the experiments (Chapter 4), this choice
allows to achieve a good workload balancing among clusters reducing
the communication costs between levels.

The Meta-Scheduler is characterized by two phases: the first one is
the job classification, in which each job is characterized by a priority
value, the second one is the veritable job scheduling among the Local-
Schedulers.

The job classification phase is based on a set of heuristics, each one
able to manage a specific problem constraint. In particular we identify
three different job parameters interesting for the classification: deadline,
requested licences and user peculiarities. Each heuristics considers a spe-
cific job parameter to compute a value that contributes to fix the job pri-
ority. When all the contributions are carried out, they are combined to
obtain the job priority. What we want to remark as new, it is that each
heuristics works without any knowledge of the resources status, accord-
ing to the on-line paradigm, and that the heuristics set can be extended
to consider other new QoS requirements. Experiments (Chapter 4) show
that the classification phase allows to improve the number of jobs that
are executed respecting their QoS requirements. Furthermore, the con-
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ducted tests show that the results carried out by this phase are compara-
ble with the results carried out by more complex classification strategies,
with smaller computational cost.

Moreover, we studied how to apply autonomic features to our
classification mechanism in such a way that it adapts its behavior to
the operating environment (Section 5.1). In literature there are not
many efforts following this direction. In (81), Pendarakis et al. apply
autonomic concept to overcome the inability of schedulers to manage
networks to reach the desired resource utilization. They present an
autonomic bandwidth control system that adaptively adjusts incoming
and outgoing traffic rates to achieve system management goals. Respect
to the autonomic bandwidth control system, we follow another direction
to exploit autonomic features in our scheduler. Our effort is to apply
the design pattern for autonomic classifiers (30) to the Meta-Scheduler
classification phase. Here, the objective is to design our classifier in such
a way it is able to classify incoming jobs according to a given priority
distribution policy, and to adapt its behavior to respect the given policy
instead of system changes (Section 5.1).

Once a job is labeled with a priority in the classification phase, it
is elaborated by the scheduling phase of our Meta-Scheduler. In this
phase the priority values is used to schedule jobs balancing the workload
among the underlying level. To implement the scheduling phase, we
investigated two scheduling functions: Load and Ordering. Load aims
to balance the workload among clusters by assigning a job to the less
loaded cluster. Ordering aims to balance the number of jobs with equal
priority in each cluster queue. We designed this phase in such a way it
makes easy to extend the set of scheduling functions in order to provide
for new policies (e.g. changing the optimality criterion in minimizing the
waiting time of the queued jobs). As shown in the experiments (Chapter
4), the results obtained using these functions point out that the workload
assigned to each cluster is proportional to its estimated computational
power.

9



The Local-Scheduler level

We investigated different solutions at Local-Scheduler level: a Flexible
Backfilling algorithm able to manage our specific constraints (35), a new
solution based on the Convergent Scheduling technique (43).

As the Meta-Scheduler, the solution based on the Flexible Backfilling
algorithm at Local-Scheduler level is composed by the classification and
scheduling phases (Section 3.2.1). The classification phase assigns to
each job a priority value computing a set of heuristics. Each heuristics
manages a specific problem constraint, but, unlike the Meta-Scheduler,
it exploits resource information, machines status and licences avail-
ability, and it knows features about running and queued jobs. This
allows the Local-Scheduler to compute more accurate priorities than
those computed of Meta-Scheduler level, but this also implies that the
complexity of the Local-Scheduler classifier is greater than that of the
Meta-Scheduler. The heuristics set designed and implemented for this
phase constitutes an innovative step cornering the job classification,
when the objectives are to respect the job deadlines, and to maximize the
hardware and software resource usage.

The proposed Convergent Scheduling technique (43) permits us to
carry out a job-scheduling plan on the basis of the current status of the
system (i.e. resource availability, executing jobs), and information related
to jobs waiting for execution (Section 3.2.2). In order to take decisions, the
scheduler assigns priorities to all the jobs in the cluster, and job priorities
are computed at each scheduling event. Job priorities measure the degree
of preference of a job for a cluster machine, i.e. how the machine suits
the job execution. Jobs are labeled with a priority value using a set of
heuristics. Each heuristics increases/decreases the degree of the match-
ing between a job and a machine. Heuristics can be run in any order,
and each heuristics manages a specific problem constraint. The sched-
uler aims to schedule a subset of queued jobs that maximize the degree
of preference for the available resources, and that can be simultaneously
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executed without violating the constraints on licence usage.

1.4 Thesis Organization

This Thesis is structured as follows. In Chapter 2 is presented a survey of
the current state of the art in the field of job scheduling algorithms and
frameworks. Chapter 3 is devoted to the explanation of the novel solu-
tion we proposed. We will describe the multi-level architecture we de-
signed and implement, and we will point out the main aspects of the pro-
posed Meta-Scheduler, and of the proposed algorithms used at the local
Scheduler level. In Chapter 4, we present some results carried out by the
experimental phases. We will show the results obtained by the Flexible
Backfilling and the Convergent Scheduling algorithms. Furthermore, we
will point out the results of the interaction between the Meta-Scheduler
and the two algorithms used at Local-Schedulers level. In Chapter 5
we describe some related results obtained during our research activity,
and by the collaboration with the university of Brno. We will present a
design pattern for autonomic Stream-Classification-Systems we defined,
and how we applied the pattern to the implementation of the autonomic
classifier used at the Meta-Scheduler level. Moreover, we present the
scheduler proposed by Klusáček and Rudová, and the comparison with
our Flexible Backfilling. In the last Chapter, we present the conclusive
considerations of our work and we describe the future works concerning
both levels of the hierarchical architecture we proposed.
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Chapter 2

State of Art

Grids are geographically distributed platforms composed of heteroge-
neous resources that users can access via a single interface, provid-
ing common resource-access technology and operational services across
widely distributed and dynamic virtual organizations, i.e. institutions
or individuals that share resources. Resources are generally meant as
reusable entities employable to execute applications, and comprise pro-
cessing units, secondary storage, network links, software, data, special-
purpose devices, etc. Grid computing differs from conventional dis-
tributed computing as it focuses on large-scale coordinated resource shar-
ing by independent providers in different administrative domains. Grids
are conceived to support innovative applications in many fields, and they
are today mainly used as effective infrastructures for distributed high-
performance computing and data processing. However, their applica-
tion areas are shifting from scientific computing towards industry and
business-related applications. Grid resource management and schedul-
ing components are important for building grids. They are responsible
for the selection and allocation of grid resources to current and future ap-
plications. Thus, they are the building blocks for making grids available
to user communities (14; 50; 61).

A grid can be seen as a seamless, integrated computational and col-
laborative environment. One of the user‘s access points to a grid can be a
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Grid Resource Broker (GRB). Users interact with it to submit and execute
jobs. The GRB performs resource discovery, scheduling, and the man-
aging of application jobs on distributed grid resources. Grid computing
makes the scheduling problem even more difficult since, due to its het-
erogeneous and highly distributed nature, a single centralized scheduler
algorithm is not suitable for grid resource management systems.

The overall aim of a GRB is to efficiently and effectively schedule ap-
plications that need to utilize the available resources. From the user point
of view, resource management should be transparent. A Grid Resource
Management System (RMS) consists of many vital components (22; 37).
The RMS, and in particular the scheduler, plays a major role when is-
sues like acceptance, usability, or performance of a machine are consid-
ered. The objective of the scheduler is twofold: to maximize the overall
resource utilization guarantying the required applications performance.

In this chapter we survey the main scheduling algorithms and frame-
works, which can be found in literature. Different classification can be
made when schedulers are analyzed (24; 39): according to their architec-
ture (e.g. centralized, distributed, and hierarchical), according to their
behavior (e.g. static and dynamic), according to the way they elaborate
the incoming jobs (e.g. online and off-line), according to the resulting
schedule (e.g. queue-based and schedule-based). In this Thesis, we pro-
pose a scheduler that can be classified as hierarchical, and it processes the
incoming jobs according to the online paradigm. Moreover, our sched-
uler can be classified as static, this means that jobs are assigned to the
appropriate resources before their execution begins. Once started, they
run on the same resources without interruption. Opposed to static, dy-
namic algorithms allow the reevaluation of already determined assign-
ment decisions during job execution. Dynamic schedulers can trigger job
migration or interruption based on dynamic information about both the
status of the system, and the application workload. Concerning the re-
sulting schedules, we design a queue-based scheduling framework, this
means that the scheduler, both at Meta as at Local level, takes as input jobs
stored in a queue, and it tries to assign them to the available resource. In
Chapter 5, we compare our solution to a schedule-based algorithm that
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compute a scheduling plan in which it is know when each job in the sys-
tem will start/end its execution.

In the past many job-scheduling algorithms and frameworks have
been proposed (13; 24; 38; 45; 63; 69), some schedule jobs storing them
in different queues (4), which are served using different policies, but they
don’t characterize jobs with a priority value. Furthermore, any of the an-
alyzed frameworks consider software resources that can be required by
jobs to be executed, and only Nimrod-G allows users to specify a dead-
line for their jobs (8).

In the first part of this chapter, we will describe some scheduling al-
gorithms that are exploited in different schedulers. In particular, we will
focus on the Backfilling algorithm (35) because it is employed in the most
common scheduling frameworks, and we also exploit it in our solution.
Backfilling can be described as centralized scheduler, but it is employed
in many scheduling frameworks either they have a different architecture.
This because if we see only to the a restricted set of resources, which need
to be handled in an autonomous way, we can employ a specific schedul-
ing algorithm (i.e. the local scheduler in our solution), in this way the
Backfilling can co-exit in a distributed and/or hierarchical schedulers.

In the second part of the Chapter, we will describe some scheduling
frameworks, pointing out the main difference of each of them with our
approach. All of the analyzed schedulers works according to the queue-
based approach and according to the on-line paradigm, we will specify
when dynamic mechanisms are available.

2.1 Scheduling Algorithms

2.1.1 List scheduling

The list scheduling (LS) algorithm was originally proposed by Graham
(1969) (67) for scheduling sequential jobs that demand for only one pro-
cessor. A list schedule is based on an initial ordering of the jobs L, called
a priority list. Initially, at time zero, the scheduler instantaneously scans
the list L from the beginning, searching for jobs that are ready to be ex-
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ecuted, i.e., which have no predecessors jobs still waiting in L. The first
ready jobs in L is removed from the list, and sent to an idle processor for
processing. Such a search is repeated until there is no ready job, or there
is no more processors available. In general, whenever a processor com-
pletes a job, the scheduler immediately scans L, looking for the first ready
job to be executed. If such a ready job is not found, the processor becomes
idle, and waits for the next finished job.

As running jobs complete, more precedence constraints are removed,
and more jobs will be ready. For a given computation C, the length of a
list schedule certainly depends on the priority list L. However, the per-
formance of an LS schedule is quite robust. Graham proved that the list
schedule length is no more than twice the optimal schedule length for
sequential jobs.

The excellent performance of the list scheduling algorithm motivates
researchers to apply the strategy to scheduling parallel jobs on multipro-
cessors. The extension of the method to parallel jobs is straightforward.
When the scheduler finds a ready job t that need p processors to be exe-
cuted; the scheduler checks whether there are at least p idle processors. If
so, the job t is allocated on p processors and executed non-preemptively
on these processors. Otherwise, the ready job t still needs to wait in L
until other running jobs complete. Therefore, in addition to precedence
constraints; there are also processor constraints; which make the problem
more complicated than the one solved by Graham.

In the presented list scheduling algorithm it is assumed a noncontigu-
ous processor allocation scheme, i.e., if there are at least p idle processors,
then any p processors can be allocated to the job t. This assumption sim-
plifies the scheduling problem. In general, it is not true that all processors
can execute all jobs in L. In particular, given a priority list L, an LS sched-
ule is not unique, and different processor allocation strategies result in
different schedule lengths. Finding an optimal LS schedule for a given
list L such that the resulting schedule is minimized is a nontrivial prob-
lem.
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2.1.2 First Come First Served

In this section, we present First-Come-First-Served (FCFS) scheduling al-
gorithm, a simple job scheduling method that is a specialization of the
above list scheduling (86). The FCFS algorithm schedules jobs with re-
spect to their submission order. If not enough resources are available to
schedule the first queued job, FCFS waits until the required resources be-
come free, and the job can be scheduled.

2.1.3 Backfilling

Backfilling is an optimization of the First-Come-First-Served algorithm
(FCFS) (86). Backfilling tries to balance the goals of resource utilization,
maintaining the FCFS jobs order (35). As matter of fact, FCFS guarantees
that jobs are started in the order of their arrivals, the same property does
not necessarily hold for the completion of the jobs due to differences in
job execution times. This implies that FCFS is fair in the formal sense of
fairness, but it is unfair in the sense that long jobs make short jobs wait
and unimportant jobs make important jobs wait. Backfilling introduces
an optimization to the FCFS algorithm in such a way that the completion
time of any job does not depend on any other job submitted after it.

Backfilling requires that each job specifies its estimated execution
time. While the job at the head of the queue is waiting, it is possible
for other, smaller jobs, to be scheduled, especially if they would not delay
the start of the job on the head of the queue. Processors get to be used
that would otherwise remain idle. By letting some jobs execute out of or-
der, other jobs may get delayed. Backfilling will never completely violate
the FCFS order where some jobs are never run (a phenomenon known
as starvation). In particular, jobs that need to wait are typically given a
reservation for some future time.

Backfilling, in which small jobs move forward to utilize the idle re-
sources, was introduced by Lifka (69). This was done in the context of
EASY, the Extensible Argonne Scheduling sYstem, which was developed
for the first large IBM SP1 installation at Argonne National Lab.

While the concept of backfilling is quite simple, it nevertheless has
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several variants with subtle differences. It is possible to generalize the be-
havior of backfilling by parameterizing several constants. Judicial choice
of parameter values lead to improved performance. One parameter is the
number of reservations. In the original EASY backfilling algorithm, only
the first queued job received a reservation. Jobs may be scheduled out
of order only if they do not delay the job at the head of the queue. The
scheduler estimates when a sufficient number of processors will be avail-
able for that job and reserves them for this job. Other backfilled jobs may
not violate this reservation, they must either terminate before the time of
the reservation, or use only processors that are not required by the first
job .

Backfilling may cause delays in the execution of other waiting jobs
(which are not the first, and therefore do not get a reservation). The obvi-
ous alternative is to make reservations for all queued jobs. This approach
has been named Conservative Backfilling. Simulation results indicate, how-
ever, that delaying other jobs is rarely a problem, and that conservative
backfilling tends to achieve reduced performance in comparison with the
more aggressive EASY backfilling (35).

A recent suggestion is adaptive reservations depending on the extent
different jobs have been delayed by previous backfilling decisions. If a
job is delayed by too much, a reservation is made for this job. This is
essentially equivalent to the earlier conservative backfilling, in which all
queued jobs have reservations, but, in this case, it is allowed to violate
these reservations up to a certain slack. Setting the slack to the thresh-
old used by adaptive reservations is equivalent to only making a reserva-
tion if the delay exceeds this threshold. Another parameter is the order of
queued jobs. The original EASY scheduler, and many other systems and
designs, use a FCFS order. A general alternative is to prioritize jobs in
some way, and select jobs for scheduling (including candidates for back-
filling) according to this priority order. Flexible backfilling combines three
types of priorities: an administrative priority set to favor certain users or
projects, a user priority used to differentiate among the jobs of the same
user, and a scheduler priority used to guarantee that no job is starved.

In general, job priorities are computed as a function of the job charac-
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teristics. In particular, Chiang et al. have proposed a whole set of crite-
ria based on resource consumption, that are generalizations of the well-
known Shortest Job First (SJF) scheduling algorithm (35). These have been
shown to improve performance metrics, especially those that are partic-
ularly sensitive to the performance of short jobs, such as slowdown. An-
other parameter is the amount of lookahead into the queue. All previous
backfilling algorithms consider the queued jobs one at a time, and try to
schedule them. But, the order in which jobs are scheduled may lead to
loss of resources due to fragmentation. The alternative is to consider the
whole queue at once, and try to find the set of jobs that together maxi-
mize the desired performance metrics. This can be done using dynamic
programming, leading to optimal packing and improved performance.

In our study, we developed a flexible backfilling algorithm, which job
queue is ordered exploiting a priority value computed by a set of heuris-
tics for each incoming job (35). We used our flexible backfilling at the
Local level of the hierarchical framework we proposed (85). Furthermore,
we exploited our backfilling strategy to evaluate the feasibility of the Con-
vergent Scheduler technique (43).

2.1.4 Gang Scheduling

In Gang Scheduling jobs can be preempted and re-scheduled as a unit,
across all involved resources. The notion was introduced by Ousterhout
(76), using the analogy of a working set of memory pages to argue that
a working set of processes should be co-scheduled for the application to
make efficient progress.

Gang Scheduling provides an environment similar to a dedicated ma-
chine, in which all the jobs progress together, and, at the same time, al-
lows resources to be shared. In particular, preemption is used to improve
performance in face of unknown runtime. This prevents short jobs from
being starved in the queue waiting for long ones, and improves fairness.
One problem with Gang Scheduling is that the requirement that all the
jobs always run together causes too much fragmentation. This has led
to several proposals for more flexible variants (53; 58). In conventional
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Gang Scheduling, resources running tasks that perform I/O remain idle
for the duration of the I/O operation. In paired Gang Scheduling (90) jobs
with complementary characteristics are paired together, so that when a
job performs I/O, the other can exec. Given a good job set, this can lead
to improved resource utilization at little penalty to individual jobs.

A more general approach is to monitor the communication behavior
of all applications, and try to determine whether they really benefit for
Gang Scheduling. Gang Scheduling is then used for those that need it.
Resources belonging to other jobs are used as filler to reduce the fragmen-
tation cause by the scheduled jobs. Dealing with memory pressure, eval-
uations of Gang Scheduling assumed that all arriving jobs can be started
immediately. Under high loads this could lead to situations where dozens
of jobs share each resources. This is unrealistic as all these jobs would
need to be memory resident or else suffer from paging, which would in-
terfere with the synchronization among the jobs. A simple approach for
avoiding this problem is to use admission controls, and only allows ad-
ditional jobs to start if enough memory is available. While this avoids
the need to estimate how much memory a new job will need, it is more
vulnerable to situations in which memory becomes overcommitted caus-
ing excessive paging. When admission controls are used, and jobs wait in
the queue, the question of queue order presents itself. The simplest op-
tion is to use a FCFS order. Improved performance is obtained by using
backfilling, and allowing small jobs to move ahead in the queue. Us-
ing backfilling fully compensates for the loss of performance due to the
limited number of jobs that are actually run concurrently. All the above
schemes may suffer from situations in which long jobs are allocated re-
sources, while short jobs remain in the queue waiting for execution. The
solution is to use a preemptive long-range scheduling scheme. With this
construction, the long term scheduler allocates memory to waiting jobs,
and then the short term scheduler decides which jobs will actually run
out of those that are memory resident. The long term scheduler may de-
cide to swap out a job that has been in memory for a long time, to make
room for a queued job that has been waiting for a long time.
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2.1.5 Shop Scheduling

The Open job shop scheduling problem is a generalization of the bipartite
graph edge coloring problem (66). A graph consist of a set of vertices V and
a set of edges E. A graph as said to be bipartite when the set of vertices
can be partitioned into two sets, A and B, such that every edge is incident
to a vertex in the set A, and to a vertex in the set B. The bipartite graph
edge coloring problem consists of assigning a color to each edge in the
graph, in such a way that no two edges incident upon the same vertex are
assigned the same color, and the total number of different colors utilized
is the least as possible.

The open job shop scheduling problem consists of m machines, de-
noted by M1,M2, ...,Mm, which perform different tasks. There are n jobs
(J1, J2, ..., Jn), each of which consists of m tasks. The jth task, of the job
Ji, is denoted by the Ti,j , and it must be processed by the machine Mj for
pi,j ≥ 0 time units. The total processing time for the job Ji is pi =

∑
j pi,j ,

the processing requirement for the machine Mj is mj =
∑

i pi,j , and h =
max{pi,mj} is defined as the finish time of every open shop schedule at
least. The scheduling restrictions in an open shop problem are as follows:

1. Each machine can process at most one task at time.

2. Each job may be processed by at most one machine at time.

3. Each task Ti,j must be processed for pi,j time units by machine Mj .

The open shop problem in which all the pi,j values are 0 or 1 is called
the unit-processing time open shop problem. This open shop problem with
the objective function of minimizing the makespan (i.e. the completion
time of the last job of a given jobs set) corresponds to bipartite graph
edge coloring problem. This results mapping the set of vertices A to the
set of jobs, and the set of vertices B to the set of machines. An edge from a
vertex in set A to a vertex in set B represents a task with unit processing
time. Each color represents a time unit. The coloring rules guarantee
that an edge coloring for the graph corresponds to the unit-processing
time open shop problem. The makespan corresponds to the number of
different colors used to color the bipartite graph.
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A generalization of the open shop scheduling problem is the course
timetable problem, in which professors can be viewed as machines, jobs
can be viewed as classes, and the objective is to find times at which profes-
sors can instruct their classes, without any professor teaching more than
one class at a time, and any class meeting with more than one professor
at a time. In addition, the classical course timetable problem includes
constraints where professors or classes cannot meet during certain time
periods.

There are some important variants of the open shop scheduling prob-
lem. One of them is the flow shop scheduling problem (16; 68) that is defined
as follow: a number of jobs are to be processed on a number of machines.
Each job must go through all the machines in exactly the same order, and
the job order is the same on every machine. Each machine can process
at most one job at any time, and each job may be processed on at most
one machine at any time. The objective is to find a schedule that mini-
mizes the completion time of the last job. The main difference between
the flow shop and the open job shop is that in the former problem the
tasks for each job need to be processed in order, i.e., one may not begin
processing task Ti,j until Ti,j−1 has been completed for 1 < j ≤ m. In
the open job shop problem the order in which tasks are processed is not
important. In the open job shop problem jobs may have any number of
tasks, rather than just m. Each task of each job is assigned to one of the
machines rather than assigning the jth task to machine Mj as in the flow
shop problem. But, the order in which tasks must be processed in the
open job shop problem is sequential as in the flow shop problem.

Another important variant of the open shop problem is the job shop
problem. While in open job shop problem the different tasks of a job may
be scheduled in any order, and in flow shop the order of the tasks is fixed
and it is the same for all jobs, in the job shop problem the order of the
tasks is fixed but it could be different for each job (87).

The last variant of the open job shop that we analyze is called cycle
shop. The cycle shop can be defined as the special case of a job shop and
the extension of a flow shop where all jobs have the same sequence of op-
erations on the machines, but in contrast to a flow shop, some operations
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can be repeated on some machines a number of times, and this number
can differ from one machine to another (66).

2.1.6 Genetic Algorithms

Genetic Algorithms (GA) is a searching strategy in which an initial num-
ber of “guesses” is made to get an optimal solution (i.e. the initial popu-
lation). Each guess is evaluated and assigned a “goodness” value (i.e. the
fitness function). Those guesses with good values are selected, and new
guesses are made by combining the existing guesses in a particular fash-
ion (i.e. crossover). The guesses are evolved to the next generation on a
survival of the fittest basis (i.e. selecting), thereby the “good” guesses are
forwarded to the next generation, and the “bad” guesses are not. Ran-
dom mutation is done to prevent the GA from getting struck in a local
maximum. The general procedure of GA search is defined as follows:

1. Population generation: A population is a set of chromosomes each
representing a possible solution, which is a mapping sequence be-
tween jobs and machines. The initial population can be generated
randomly, or by using heuristics algorithms.

2. Chromosome evaluation: Each chromosome is associated with a fit-
ness value, which is the makespan of the jobs-machine mapping
this chromosome represents. The goal of GA search is to find the
chromosome with optimal fitness value.

3. Crossover and Mutation operation: Crossover operation selects a
random pair of chromosomes, and chooses a random point in the
first chromosome. For the sections of both chromosomes, from that
point to the end of each chromosome, crossover exchanges machine
assignments between corresponding jobs. Mutation randomly se-
lects a chromosome, then randomly selects a job within the chro-
mosome, and randomly reassigns it to a new machine.

4. Finally, the chromosomes from this modified population are evalu-
ated again. This completes one iteration of the GA. The GA stops
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when a predefined number of evolutions is reached or all chromo-
somes converge to the same mapping.

GAs have been used in static scheduling (52; 54), where the schedule
is generated before run-time, and dynamic scheduling (77; 94; 95), where
the schedule is generated at run-time based on the run-time characteris-
tics which are not possibly known beforehand.

Current Dynamic GA schedulers show near optimum solutions in
simulations (77; 94; 95). In general, Dynamic GA schedulers are imple-
mented in sequential algorithms, which take a long time to converge (65),
but parallel versions of GA have been proposed to improve the algorithm
performances (77).

2.1.7 Simulated Annealing

Simulated Annealing (SA) is a search technique based on the physical
process of annealing, which is the thermal process of obtaining low-
energy crystalline states of a solid (32). At the beginning, the temperature
is increased to melt the solid. If the temperature is slowly decreased, par-
ticles of the melted solid arrange themselves locally, in a stable “ground”
state of a solid. SA theory states that if temperature is lowered suffi-
ciently slowly, the solid will reach thermal equilibrium, which is an opti-
mal state. By analogy, the thermal equilibrium is an optimal job-machine
association, the temperature is the total completion time of a schedule,
and the change of temperature is the process of schedule change. If the
next temperature is higher, which means a worse schedule, the next state
is probability accepted. This because of the acceptance of some “worse”
states provides a way to avoid local optimality, which occurs often in local
search (32).

A SA algorithm is presented in (17). The initial system temperature
is the makespan of the initial schedule (randomly generated). The first
schedule is generated from a uniform random distribution. The sched-
ule is mutated in the same way as for genetic algorithms, and the new
makespan is evaluated. If the new makespan is better, the new schedule
replaces the old one. If the new makespan is worse, a uniform random
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number z ∈ [0, 1) is generated. Then, z is compared with:

y =
1

1 + e(
oldmakespan−newmakespan

temperature )

If z > y, the new (poorer) schedule is accepted; otherwise it is rejected,
and the old schedule is kept. So, as the system temperature “cools”, it
is more difficult for poorer solutions to be accepted. This is reasonable
because when the temperature is lower, there is less possibility to find a
better solution starting from another poorer one. After each mutation, the
system temperature is reduced. This completes one iteration of SA. The
heuristic stops when there is no change in the makespan for a number of
iterations, or when the system temperature approaches zero.

2.2 Scheduling Frameworks

2.2.1 Multi-Site Scheduling Model

Multi-site computing is the execution of a job in parallel at different sites.
This results in a larger number of totally available resources for a single
job. In (34), Ernemann et al. address the potential benefit of sharing jobs
between independent sites in a grid computing environment, and the as-
pect of parallel multi-site job execution on different sites. To this end,
they propose various scheduling algorithms for several machine config-
urations.

The model proposed in (34) assumes a computing grid consisting of
independent computing sites with their local workloads. This means that
each site has its own computing resources as well as local users that sub-
mit jobs to the local job scheduling system.

In a typical single site scenario, all jobs are only executed on local re-
sources. The sites may combine their resources and share incoming job
submissions in a grid computing environment. Here, jobs can be executed
on local and remote machines. The computing resources are expected to
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be completely committed to grid usage. That is job submissions of all
sites are redirected and distributed by a grid scheduler. This scheduler
exclusively controls all grid resources.

In this scenario, the task of scheduling is delegated to a grid scheduler.
The local scheduler is only responsible for starting the jobs after allocation
by the grid scheduler. Three scenarios have been examined by Ernemann:

• Local Job Processing. This scenario refers to the common situation
where the local computing resources at a site are dedicated only
to its local users. A local workload is generated at each site. This
workload is not shared with other sites.

• Job Sharing. In this scenario all jobs submitted at any site are dele-
gated to the grid scheduler. The scheduling algorithms in grid com-
puting consist of two steps: in the first step the machine is selected,
the machine on which the job leaves the least number of free re-
sources if started, and in the second step the allocation in time for
this machine takes place using the Backfilling algorithm.

• Multi-Site Computing. This scenario is similar to job sharing: a grid
scheduler receives all submitted jobs. Additionally, jobs can now
be executed crossing site boundaries (see Figure 1). The adopted
strategy for multi-site scheduling is based on a scheduler which first
tries to find a site that has enough free resources for starting the job.
If such a machine is not available, the scheduler tries to allocate
the jobs on resources from different sites. To this end, the sites are
sorted in descending order of free resources and allocating the free
resources in this order for a multi-site job. In this case the number
of combined sites is minimized. If there are not enough resources
free for a job, it is queued and normal backfilling is applied.

Spawning job parts over different sites usually produces an addi-
tional overhead. This overhead is due to the communication over slow
networks (e.g. a WAN). Consequently, the overall execution time of the
job will increase depending on the communication pattern. For jobs
with limited communication demand there is only a small impact. Note,
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Figure 1: Support for multi-site execution of jobs.

without any penalty for multi-site execution, the grid would behave
like a single large computer. In (34), they examine also the effect of
multi-site processing on the schedule quality under the influence of a
communication overhead.

The multi-site model designs a hierarchical architecture in which a
high level scheduler assigns jobs to the lower level resources. In this mo-
del the local schedulers have to handle the job execution without per-
forming any job scheduling decisions. The main difference between our
approach and the multi-site model is due to the possibility of the high
level scheduler, in multi-site model, to allocate a parallel job on resources
belonging to different sites. This implies that the grid scheduler has a
deep knowledge about the grid environment it operates. Whereas, one
of our goals is to design a lightweight Meta-Scheduler exploitable in grid
systems in which different providers share resources defining their own
use policies. To this end, the local scheduler we propose is able to make
scheduling decision and to influence the job execution at local level ac-
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cording to the system administrator policies.

2.2.2 YML Framework

YML is a framework providing tools to parallelize applications which has
been developed at CNRS/PRiSM in collaboration with InriaFuturs/LIFL
(31; 75). It focuses on two major aspects: the development of parallel
applications and their execution in a grid environment.

YML makes application development independent of the grid middle-
ware used underneath and hides differences between them. On the YML
point of view, an application is divided into different computing sections,
each of them containing some tasks executed sequentially or concurrently.
A task, called a component, is a piece of work that can be mapped to one
node in a parallel environment. It has some input and output parameters
and is generally reusable in different parts of the application as well as in
different applications. YML provides a special type of components, called
graph component, which consists of the description of sub graphs. YML
divides the development of a parallel application in three major steps:

• A definition of new components. This definition consists in an Ab-
stract and Implementation component description.

• A description of the parallel application. This description is inde-
pendent of any underlying middleware and makes use of the com-
ponents as functional units. It specifies parallel and sequential parts
of the application using the YvetteML graph description language
and provides notifications to synchronize the execution of depen-
dent components. This description is directly deduced from the
graph representation of the application.

• The compilation of the application. This step analyzes and trans-
forms the application graph into a list of parallel tasks with respect
of the precedence constraints.

The three steps are all middleware independent and ensure that no
grid relevant knowledge is needed to develop parallel applications.
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After the compilation of the application, the execution can be started
using the Workflow Scheduler which will interact with the underlying
middleware and submit tasks through the dedicated backend. Each task
is launched by a YML worker which will contact the Data Repository
Server to obtain the component binary and input parameters to start the
computation. The use of Data Repository Servers hides the data migra-
tions to the developer and ensures that the necessary data is always avail-
able to all components of the application.

Figure 2: YML Workflow Scheduler interaction with the middleware.

The Workflow Scheduler (Figure 2) is currently adapted to propose
multilevel scheduling features by integrating a new model based on an
economic approach of resources. This model defines different entities,
which will interact in the grid infrastructure. An entity can be a resource
provider or consumer or both. Consumers require resources of the grid
which are owned by providers. When a provider receives a request from
a consumer, he will answer by proposing a set of suitable schedules and
associated cost for parts of the application regarding access policy of the
consumer and availability of local resources. He can possibly subcontract
parts or the whole application to other resource providers without men-
tioning anything to the consumer. This model can be used in different
scenarios: either cooperation or competition between sites in the grid in-
frastructure. Moreover, a hierarchy with different layers of scheduling
instances can be built with this model. A new joining instance in the grid
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infrastructure has to negotiate access policies with one or more resource
providers. Each access policy will provide a set of static and dynamic
parameters which will determine the usage conditions of the provided
resources. These parameters will be used when an application is sub-
mitted, to obtain the list of suitable resources: static parameters repre-
sent permanent access conditions and do not require any interaction with
other scheduling instances. In opposition, dynamic parameters will need
to request each resource providers in order to filter the set of suitable re-
sources. As presented in Figure 3, the main idea is to provide a YML
server to each Local Resource Manager (LRM). This YML server has 3
main objectives: - to communicate with other YML servers and therefore,
to connect the different clusters in a common grid; - to interact with the
underlying LRM using a specialized backend; - to provide needed fea-
tures missing in the LRM (as cluster (b) in Figure 3).

Figure 3: YML server cooperation.

When a user wants to execute an application on the grid infrastruc-
ture, he contacts the local YML server which analyzes the application and
decides whether it can provide needed resources or not (eventually, it
may have no local resources like cluster ((a) in Figure 3). It may forward
the whole or parts of the request to other resource providers. This step
will ensure collaboration between sites and a distribution of the global
work in the whole infrastructure. Then, suitable schedules are sent back
in return of each request and the user local YML server finally gathers
the information and proposes different bids.
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The most important difference between our approach to the schedul-
ing problem and the YML approach, concerns with a central high level
scheduler not present in YML framework. The Meta-Scheduler we pro-
pose is able to orchestrate the low level job assignment maximizing a
given optimal criteria. The YML framework define different entities that
cooperate to execute jobs. Moreover, YML is based on an economic mo-
del that drives the interaction among entities. Instead, our framework is
based on a set of functions used to schedule jobs to low level scheduler,
which implements scheduling algorithms to handle the job execution on
specific resources. Another important difference between our approach
and YML is the ability to classify incoming jobs with respect to their rel-
evance. YML does not implement any mechanism to distinguish the im-
portance of submitted jobs.

2.2.3 OAR Batch Scheduler

OAR has been designed as an open platform for research and experiments
(23). The main contribution of OAR is its design, based on two high-level
components: a SQL database (a central relational database engine), and
the executive part.

The database is used to exchange information between modules, thus
ensuring a complete opening of the system. The database engine is used
to match resources (using SQL queries), and to store and exploit logging
and accounting information. Additionally, a general purpose database
can ensure friendly and powerful data analysis and extraction. The most
important benefit of this approach is that the SQL language can be used
for data analysis and extraction as well as for internal system manage-
ment. Another advantage of using a standard database engine is that the
scheduler should benefit of its robustness and efficiency. Although mak-
ing SQL queries might induce some overhead compared to a specific im-
plementation, the OAR engine has good behavior under high workload.
The database engine does not represent a bottleneck for system scalability
as it can handle efficiently thousands of queries simultaneously. Further-
more, robustness only depends on modules that have to let the system in
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a coherent state and might otherwise fail without much harm.

The executive part is implemented using Perl, which is suited for
system tasks. It is made of several modules, including one for launching
and controlling the execution of jobs, and another for scheduling jobs.
The monitoring tasks are handled by a separate tool that is invoked
from OAR, and interfaced with the database. One of the goals of OAR
is to make a research platform suited for scheduling experiments and
resulting analysis. To help developers modifying the system, they made
it modular and the implementation in a high-level language makes the
system rather small and extensible. The submission of jobs in OAR
works like in PBS (3): the interface is made of independent commands
for submission, cancelation, or the monitoring. These commands are
separated from the rest of the system, they send or retrieve information
using directly the database and they interact with OAR modules by
sending notifications to the central module. Job submission starts by a
connection to the database to get the appropriate admission rules. These
rules are used to set the value of job parameters that are not provided
by the user, and to check the validity of the job submission. Possible
parameters include a queue name, a limit on the job execution time, the
number of needed nodes by the job. The rules are stored in the database
and might be used to call an intermediate program so the admission can
be elaborate.

OAR implements different functionalities such as: priorities on jobs,
reservations, resources matching and backfilling scheduler.

The priorities are managed through submission queues. All the jobs
are submitted to a particular queue which has its own admission rules,
scheduling policy and priority. Reservations are a special case in which
the user asks for a specific time slot. In this case, as long as the job meets
the admission rules and the resources are available during the requested
time slot, the schedule date of the job is definitively set. In OAR, re-
sources required by jobs are matched with available ones as a user might
need nodes with special properties (like single switch interconnection, or
a mandatory quantity of RAM).

31



OAR uses backfilling and handles Best Effort jobs (jobs that can be
canceled before the end of their allowed time). The scheduling of all
the jobs in the system is computed by a module called metascheduler,
which manages reservations and schedules each queue using its own
scheduler. This module maintains an internal representation of the
available resources similar to a Gantt diagram, and updates this diagram
by removing time slots already reserved. Initially, the only occupied time
slots are the ones on which some job is executing, and the ones that have
been reserved. The whole algorithm schedules each queue in turn by
decreasing priority using its associated scheduler.

The main difference between our scheduling framework and OAR
concerns with the use of the framework. While our scheduler is designed
to be exploited in a real grid environment, OAR is used for research and
experiments. The use of a data repository, storing the information about
jobs and users, can be exploited in our framework as a future work. We
have not knowledge about executed jobs, or user peculiarities, except for
those expressed by the job parameters. Moreover, OAR has a classifica-
tion mechanism based on submission queues. Each queue has its own
scheduling policy, and the order among jobs, stored in the same queue,
is based on their arrival time. In the framework we propose, there is a
single submission queue, each user submit its job to the Meta-Scheduler,
which labels the jobs with a priority value computed exploiting a set of
heuristics. This allows to manage different job constraints (e.g. increasing
the number of heuristics), and to exploit reconfiguration mechanisms to
adapt the classifier behavior (30).

2.2.4 KOALA Grid Scheduler

The execution of parallel jobs in grids may require co-allocation, i.e. the
simultaneous allocation of resources such as processors and input files in
multiple clusters. While such jobs may have reduced runtimes, because
they have access to more resources, waiting for processors in multiple
clusters, and for the input files, to become available in the right loca-
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tions, may introduce inefficiencies. Moreover, as single jobs have to rely
on multiple resource managers, co-allocation introduces reliability prob-
lems. In this section, we describe the design and implementation of a
co-allocating grid scheduler named KOALA (74), which was developed
at Delft University of Technology as a two-level scheduling strategy in
grids, and which has been in operation in the Distributed ASCI Super-
computer (DAS) in the Netherlands since September 2005 (1).

KOALA defines jobs as a parallel application requiring files and pro-
cessors that can be split up into several job components, which can be
scheduled to execute on multiple execution sites simultaneously (co-
allocation) (11; 26; 73). This allows the execution of large parallel appli-
cations requiring more processors than available on a single site (73; 74).
Jobs that require co-allocation in grids may or may not specify the num-
ber and sizes of their components. Based on this, KOALA considers three
cases for the structure of the job requests:

• Fixed request: The job request specifies the numbers of processors
it needs in all the clusters from which processors must be allocated
for its components.

• Non-fixed request: The job request specifies the numbers of pro-
cessors it needs in the separate clusters, allowing the scheduler to
choose the execution sites. The scheduler can either place the job
components on the same or on different sites depending on the
availability of processors.

• Flexible request: The job request specifies the total number of pro-
cessors it requires. It is left to the scheduler to decide on the number
of components, the number of processors for each component, and
the execution sites for the components.

The KOALA scheduler consists of the following five components: the
Co-allocator (CO), the Information Service (IS), the Data Manager (DM),
the Processor Claimer (PC), and the Runners. The structure of KOALA is
depicted in Figure 4.
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CO is responsible for placing jobs, i.e. for finding the execution sites
with enough idle processors for their components. CO chooses jobs to
place, based on their priorities from one of the KOALA placement queues.
If the components require input files, CO also selects the file sites for the
components such that the estimated file transfer times to the execution
sites are minimal. To decide on the execution sites, and file sites for the
job components, CO uses one of the defined placement policies. Finding
execution sites for the job components is done for non-fixed job requests.

IS is comprised of the Globus Toolkits Metacomputing Directory Ser-
vice (MDS) (2; 41), and Replica Location Service (RLS), and Iperf, a tool
to measure network bandwidth. A repository containing the bandwidths
measured with Iperf is maintained and updated periodically. The MDS
provides on request the information about the numbers of processors cur-
rently used, and the RLS provides the mapping information from the log-
ical names of files to their physical locations. Requests to the MDS, and
to the bandwidth repository, impose delays on placing jobs. Therefore,
IS caches information obtained from the MDS, and the bandwidth repos-
itory, with a fixed cache expiry time. Furthermore, IS can be configured
to do periodic cache updates from frequently used clusters before their
cache expiry time.

DM is used to manage file transfers, for which it uses both Globus
GridFTP (89) and Globus Global Access to Secondary Storage (GASS) (2).
DM is responsible for ensuring that input files arrive at their destinations
before the job starts to run.

After a job has been placed, it is the task of PC to ensure that proces-
sors will still be available when the job starts to run. If processor reserva-
tion is supported by local resource managers, PC can reserve processors
immediately after the placement of the components. Otherwise, PC uses
KOALAs claiming policy to postpone claiming of processors to a time
close to the estimated job start time.

Runners are used to submit job components to their respective exe-
cution sites. They allow to extend the support for different application
models in KOALA.

A job submitted to KOALA goes through four phases, which are plac-
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Figure 4: The interaction between the KOALA components.

ing its components, transferring its input files, claiming processors for its
components, and starting and monitoring its execution (Figure 5).

In the first phase, a new job request arrives at one of the Runners (ar-
row 1 in Figure 4) in the form of a Job Description File (JDF). JDFs are
specified using the Globus Resource Specification Language (RSL) (2; 41),
with the RSL “+,-” constructs to aggregate the components requests into
a single multi-request. After authenticating the user, the Runner submits
the JDF to the CO (arrow 2), which in turn will append the job to the tail
of one of the KOALA placement queues. CO then retrieves the job from
this queue and tries to place the job components based on information
obtained from IS (arrow 3). If the job placement fails, the job is returned
to its respective placement queue. The placement procedure will be tried
for the jobs in the placement queues at fixed intervals for a fixed number
of times.

Phase 2 starts by CO forwarding the successfully placed job to PC
(arrow 4). On receipt of the job, PC instructs DM (arrow 5.1) to initiate
the third-party file transfers from the file sites to the execution sites of the
job components (arrows 5.2).

In phase 3, PC estimates the job start time, and the appropriate time
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that the processors required by a job can be claimed. At this time, and if
processor reservation is not supported by the local resource managers, PC
uses a claiming policy to determine the components that can be started
based on the information from IS (arrow 6.1). It is possible at the job
claiming time for processors not to be available anymore, e.g. they can
then be in use by local jobs. If this occurs, the claiming procedure fails,
the job is put into the claiming queue, and the claiming is tried again at a
later time.

In phase 4, the Runner, used to submit the job for scheduling in phase
1, receives the list of components that can be started (arrow 6.2), and
forwards those components to their respective execution sites. At the
execution sites, the job components are received by the Globus Resource
Allocation Manager (GRAM), which is responsible for authenticating the
owner of the job, and sending the job to the local resource manager for
execution.

KOALA exploits a queue-based job classification mechanism: jobs are
stored in different queues according to their relevance, and each queue
has its own scheduling policy. Another important difference, between
KOALA and our scheduling framework, is that KOALA needs the Globus
middleware support to be used. Globus implements a lot of functionali-
ties used by KOALA to access, and to handle, the grid infrastructure. This
could be an advantage, because of Globus ensures the use of the sched-
uler in many different contexts both scientific and industrial, but could
also be a disadvantage, because of without Globus support KOALA can
not be exploited.

2.2.5 Moab and Maui scheduler

Maui determines when and where submitted jobs should be run (4). Jobs
are selected and started in such a way that is not only enforced a site’s
mission goals, but also improved the resource usage, and minimized the
average job turnaround time.

Mission goals are expressed via a combination of policies which con-
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Figure 5: The four phases of job scheduling in KOALA.

strain how jobs will be started. A number of base concepts require review
to set the groundwork for a detailed discussion of the algorithms. Maui
schedules on a iterative basis scheduling, followed by a period of sleeping
or processing external commands. Maui will start a new iteration when
one or more of the following conditions is met:

• a job or resource state-change event occurs (i.e. job termination,
node failure);

• a reservation boundary event occurs;

• the scheduler is instructed to resume scheduling via an external
command;

• a configurable timer expires.

Maui supports the concept of job class, also known as job queue. Each
class may have an associated set of constraints determining what types of
jobs can be submitted to it. Constraints can also be set on a per-class basis,
specifying which users, groups, etc., can submit to the class. Further, each
class can optionally be set up to only be allowed access to a particular
subset of nodes. Within Maui, all jobs are associated with a class.
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Maui also supports the concept of Quality of Service levels. These
QoS levels may be configured to allow many types of special privileges,
including adjusted job priorities, improved queue time and expansion
factor targets, access to additional resources, or exemptions from certain
policies.

Each batch job submitted to Maui is associated with a number of key
attributes or credentials describing job ownership. These credentials in-
clude the standard user and group ID of the submitting user. However,
they also include an optional account, or project, ID that can be used in
conjunction with allocation management systems.

Maui’s scheduling behavior can be constrained by way of throttling
policies, policies which limit the total quantity of resources available to a
given credential at any given moment. The resources constrained include
things such as processors, jobs, nodes, and memory.

The Moab Workload Manager is based on the Maui batch sched-
uler (93), with all its flexibility and added features: backfilling, ser-
vice factors, resource constraints and weights, fair-share options, di-
rect user/group/account prioritization, target wait times, etc. However,
based on the Maui Scheduler Administrators Guide its default behavior
out of the box is a simple FCFS batch scheduler, with a backfilling policy
that maintains a time reservation for the first job in the queue, i.e. the
EASY backfilling.

In (93), it was verified that, in the Maui scheduler, the priority of each
job is computed as a weighted sum of several factors, where the weights
are set by the system administrator. Each factor itself is a weighted
sum of sub-factors, whose weights, again, are governed by the system
administrator. The authors found that even though all the factor’s
weights are set to 1 (in an array called CWeight), all the weights of the
subfactors are set to 0, except for that of the job’s queue time which is
set to 1 (all the sub-factors weights are saved in the SWeight array). The
result is that the job’s queue time is the only factor that is not zero, and
even though the factor weights are set to 1, the queue time is the priority
functionresulting in a FCFS scheduler.
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As for the other analyzed frameworks, Maui exploits a job classifi-
cation based on different queue scheduling strategies. Users can submit
their jobs to specific queue (or class) with respect to some credentials. Fur-
thermore, Maui could exploit different, simple, scheduling algorithms,
but, due to its default configuration, Maui uses the FCFS algorithm since
the system administrator does not change the scheduling policy.

2.2.6 Nimrod-G

Nimrod-G is a computational economy-based grid resource manage-
ment and scheduling system, which supports deadline- and budget-
constrained algorithms for scheduling parameter sweep (task and data
parallel) applications on distributed resources (8; 19; 21). It provides a
simple parameter specification language for creating parameter-sweep
applications (i.e. application containing large number of independent
jobs operating on different data sets). The domain experts can create a
plan for parameter studies, and use the Nimrod-G broker to handle all
the issues related to the seamless management and execution, including
resource discovery, mapping jobs to appropriate resources, data and code
staging, and gathering results from multiple grid nodes back to the home
node (i.e. a node from which a job request originates). Depending on the
user‘s requirements, Nimrod-G dynamically leases grid services at run-
time based on their availability, capability, and cost.

Nimrod-G is able to address job‘s deadline constraints when it per-
forms the jobs scheduling. Such a guarantee of service is hard to pro-
vide in a grid environment as its resources are shared, heterogeneous,
distributed in nature, and owned by different organizations having their
own policies and charging mechanisms. In addition, scheduling algo-
rithms need to adapt to the changing load and resource availability con-
ditions in the grid, in order to achieve performance, and at the same time
meet cost constraints. In Nimrod-G application level resource broker
(also called an application level scheduler) for grid, they have incorpo-
rated three adaptive algorithms for scheduling:

• Cost Optimization, within time and budget constraints,
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• Time Optimization, within time and budget constraints,

• Conservative Time Optimization, within time and budget con-
straints.

The Time Optimization scheduling algorithm attempts to complete
the experiment as quickly as possible, within the budget available.
A description of the core of the algorithm is as follows: 1. for each
resource, calculate the next completion time for an assigned job, taking
into account previously assigned jobs and job consumption rate. 2. sort
resources by next completion time. 3. assign one job to the first resource
for which the cost per job is less than or equal to the remaining budget
per job. 4. repeat the above steps until all jobs are assigned.

The Cost Optimization scheduling algorithm attempts to complete
the experiment as economically as possible within the deadline. 1. sort
resources by increasing cost. 2. for each resource in order, assign as many
jobs as possible to the resource, without exceeding the deadline.

The Conservative Time Optimization scheduling algorithm attempts
to complete the experiment within the deadline and cost constraints,
minimizing the time when higher budget is available. It spends the
budget cautiously and ensures that a minimum of “the budget-per-job”
from the total budget is available for each unprocessed job. 1. split
resources by whether cost per job is less than or equal to the budget per
job. 2. for the cheaper resources, assign jobs in inverse proportion to the
job completion time (e.g. a resource with completion time = 5 gets twice
as many jobs as a resource with completion time = 10). 3. for the dearer
resources, repeat all steps (with a recalculated budget per job) until all
jobs are assigned.

Compared to all the other analyzed scheduling frameworks, Nimrod-
G is the only one that addresses the job deadline constraint. The Nimrod-
G perspective is different from our because it is based on an economic
model, and it combines the concept of job deadline to the concept of bud-
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get. This means that the scheduler has to assign jobs is such a way to
respect their deadlines, but at the same time, it has to respect also a cost
limit as another jobs constraint. Nimrod-G does not perform any job clas-
sification. It considers only the jobs QoS, expressed as deadline and bud-
get parameters, without establishing a relation among them. Eventually,
Nimrod-G dose not address the jobs software licence requirements.

2.2.7 AppLeS: Application Level Scheduling

Application Level Scheduling (AppLeS) (15) is a methodology for adap-
tive application scheduling on Grid systems. The goals of the AppLeS
project have been twofold. The first goal concerns to investigate adap-
tive scheduling for grid systems. The second goal aims to apply research
results to applications, for validating the efficacy of AppLeS‘s approach
and, ultimately, extracting grid performance for the end-user. AppLeS‘s
researchers have achieved these goals via an approach that incorporates
static and dynamic resource information, performance predictions, ap-
plication and user-specific information, and scheduling techniques that
adapt application execution “on-the-fly”. Based on the AppLeS method-
ology, they have developed template based grid software development,
and execution systems, for collections of structurally similar classes of
applications. Each application is fitted with a customized scheduling
agent that monitors available resource performance and generates, dy-
namically, a schedule for the application.

Figure 6: Steps in the AppLeS methodology.
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The individual steps followed by an AppLeS agent are depicted in
Figure 6, and are detailed below:

1. Resource Discovery. The AppLeS agent must discover the resources
that are potentially useful to the application. This can be accom-
plished using a list of the users logins or by using ambient grid re-
source discovery services (59).

2. Resource Selection. The agent identifies and selects viable resource
sets from the possible resource combinations. AppLeS agents typi-
cally use an application-specific resource selection model to develop
an ordered list of resource sets (29). Resource evaluation typically
employs performance predictions of dynamically changing system
variables (e.g. network bandwidth, CPU load), and/or values gath-
ered from previous application executions.

3. Schedule Generation. Given an ordered list of feasible resource sets,
the AppLeS agent applies a performance model to determine a set
of candidate schedules for the application on potential target re-
sources. In particular, for each set of feasible resources, the agent
uses a scheduling algorithm to determine the best schedule for the
application on just the target set (i.e. for any given set of resources,
many schedules may be possible).

4. Schedule Selection. Given a set of candidate schedules (and the tar-
get resource sets for which they have been developed), the agent
chooses the best overall schedule that matches the users perfor-
mance criteria (execution time, turnaround time, convergence, etc.).

5. Application Execution. The best schedule is deployed by the Ap-
pLeS agent on the target resources using whatever infrastructure
is available. For some AppLeS, ambient services can be used (e.g.,
Globus (2; 41)). For other AppLeS applications, deployment may
be performed on the bare resources by explicitly logging in, staging
data, and starting processes on the target resources (e.g., via ssh).
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6. Schedule Adaptation. The AppLeS agent can account for changes
in resource availability by looping back to Step 1. Indeed, many
grid resources exhibit dynamic performance characteristics, and re-
sources may even join or leave the grid during the applications life-
time. AppLeS targeting long-running applications can then itera-
tively compute and implement refined schedules.

AppLeS agents are integrated pieces of software in which the ap-
plication code and the agent are combined and not easily separated.
In particular, it is difficult to adapt an AppLeS application to create a
different AppLeS application. Moreover, application developers have to
enhance their own application supporting the AppLeS code. In order to
ease this programming burden, AppLeS templates have been developed.
These templates embody common features from various similar (but
not identical) AppLeS-enabled applications. An AppLeS template is a
software framework developed so that an application component can
be easily “inserted” in modular form into the template to form a new
self-scheduling application. Each AppLeS template is developed to host
a structurally similar class of applications.

The AppLeS approach is structured according to a decentralized ar-
chitecture: each AppLeS-enabled application is integrated with its own
agent, which provides scheduling and execution management mecha-
nisms. In this way, each application is able to select the most profitable
resource set to be executed, and it can choose the best schedule that re-
spects the users performance requirements. Even if, from the users point
of view, this approach can guarantee a good level of QoS requirements
respect, it needs a big effort in the application development phase: the
application has to integrate the AppLeS agent code. This is the main dif-
ference between AppLeS and our approach, our scheduling framework
does not impact on the programmers works.
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2.2.8 Portable Batch System

The Portable Batch System (PBS) comes in two flavors: OpenPBS (84),
which is intended for small clusters, and PBS-Pro (10), which is the full
fledged, industrial strength version (both are descendants of the system
described in (51)). Here, we will focus on PBS-Pro.

Schedulers included with the PBS-Pro are FCFS, Shortest Job First (SJF),
user/group priorities, and fair-share. Also, site specific schedulers can be
implemented natively in the C and TCL programming languages, or in a
special language called BaSL. Other features include checkpoint support,
re-pack and rerun support for failed or stopped jobs, and failed nodes re-
covery. The fair-share scheduler uses a hierarchical approach. The system
administrator can distribute a subset of resources among groups, whose
resources can be divided into subgroups. This creates a tree structure in
which each node is given resources, which are distributed by the system
administrator assigned ratios to its child nodes, all the way down to the
tree leaves. The leaves themselves can be either groups or specific users.

The system administrator can define work queues with various fea-
tures. Queues can have resource limits that are enforced on the jobs they
hold. A job can even be queued according to its specified resource re-
quirements the system administrator can define a queue for short jobs,
and the queuing mechanism can automatically direct a job with small
CPU requirements to the short jobs queue. The system administrator
can define a priority for each queue, setting the scheduling order among
queues, or can be selected for schedule in a round robin fashion. Queues
can also be set inactive for certain times.

The PBS-Pro system support preemption between different priority
jobs. The system administrator can define a preemption order among
queues, by which jobs from higher priority queues can preempt jobs from
lower priority queues, if not enough resources are available. Inter-queue
preemption is enabled by default, but there is only one default queue.
The default scheduler in both PBS systems is SJF. To prevent starvation
(i.e. which is the main problem of SJF scheduling), PBS-Pro can declare a
job as starving after some time it has been queued (i.e. with the default
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time set to 24 hours). A starving job has a special status no job will
begin to run until it does. The result is that declaring a job as starving
causes the system to enter a draining mode, in which it lets running
jobs finish until enough resources are available to run the starving job.
The starvation prevention mechanism can be enabled only for specific
queues. Backfilling is supported, but only in context of scheduling jobs
around a starving job waiting to run, and only if users specify a wall time
CPU limit. Like the starvation prevention mechanism, backfilling can
also be enabled for specific queues.

In general, the Portable Batch System is used as a centralized sched-
uler, which support job characterization using queues with different
scheduling policies. PBS is not able to handle resources spread on differ-
ent administrative domains. This is the main difference with the sched-
uler we propose, in which each job has its own characterization, and our
Meta-Scheduler is able to schedule jobs on distributed resources managed
by their own scheduler.

2.3 Conclusions

In this Chapter we analyzed the most important scheduling algorithms
proposed in literature, and the most common scheduling frameworks.

We analyzed the most known scheduling algorithms, and we ex-
ploited the Backfilling strategy to propose a novel solution for the
scheduling problem described in section 1.2. We proposed a variant of
Flexible Backfilling, which is able to characterize incoming jobs according
to their relevance (with respect to job deadlines, software licence require-
ments, etc.), and to schedule them according to the order inferred by their
priorities. Moreover, we proposed a new scheduling algorithm: the Con-
vergent Scheduler. Compared with the exiting algorithms, the Conver-
gent Scheduler addresses the new aspects concerning the job deadlines,
and the software licence requirements. Convergent Scheduler is also able
to compute for each job a value that specifies the degree of preference for
each machine in the computing platform.

45



For each analyzed framework, we pointed out the main differences
with our approach, and we designed a path through the features not ad-
dressed by the exiting strategies, and covered by the scheduler we pro-
posed.

46



Chapter 3

A scalable and distributed
scheduling approach

In this chapter we present the core activities of our research. The Thesis
topic concerns with the definition of a scalable and dynamic scheduler for
batch jobs exploitable in grid environments. The objective of our work is
to develop a scheduler able to manage the execution of a large number of
jobs on a grid platform composed by thousands machines located in dif-
ferent sites. We suppose that a job is sequential or multi-threaded, that it
is executed only on a single machine, that jobs are allocated to a machine
according to the space sharing policy, and that jobs are independent (i.e.
the execution of a job does not depend on the execution, or results, of
previous jobs). Furthermore, our scheduler must be able to dispatch jobs
according to the “Jobs arrive over time” on-line paradigm (87). This be-
cause users can submit their jobs to the system at any time without any
predefined policy.

We design our scheduling framework according to the hierarchical
model (18). The scheduler at the top of the hierarchy is called Meta-
Scheduler (MS), and the one at the resource level it is called Local-Scheduler
(LS). Figure 7 shows the two-level grid scheduler architecture we are
working on. Our research focuses on two key points:

• to design a MS able to efficiently schedule incoming jobs balancing
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Figure 7: Two-levels scheduler architecture.

the workload among the underlying clusters,

• the study of a LS able to schedule jobs among the cluster’s machines
it manages, in order to maximize the hardware/software resource
usage, and to maximize the number of jobs that are executed re-
specting their requested QoS (e.g. deadlines, software licence re-
quirements).

Concerning the Meta-Scheduler (Section 3.1), our efforts are devoted
to define new jobs classification mechanism, in order to improve the qual-
ity of the MS scheduling decisions, and to study new scheduling poli-
cies able to balancing the workload among clusters exploiting the carried
out classification. The Meta-Scheduler is characterized by two phases as
shown in Figure 8: a job classification phase, in which each job is la-
beled with a priority value, and a scheduling phase, in which jobs are
dispatched among the Local-Schedulers.

The MS classifier exploits a set of heuristics each one managing a
specific job parameter. These heuristics are based on static information
describing the submitted jobs, without exploiting dynamic information
about the computational environment (e.g. LS’s job queues status, soft-
ware licences availability, machines status, and jobs approaching their
deadlines). In section 5.1, we studied how to apply autonomic features
to our classifier in such a way that it is able to change its own behavior
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Figure 8: Meta-Scheduler architecture.

and adapt itself to the operating environment.

The MS’s scheduling phase is based on two functions: Load and
Ordering. The former is used to schedule jobs among clusters balancing
the workload, the latter is used to balance the number of jobs with equal
priority in each cluster queue. When the clusters workload is balanced,
Ordering allows to spread jobs with the same priority to different clus-
ters, in such a way that the highest priority jobs can be executed before
lower priority ones.

Concerning the Local-Scheduler level (Section 3.2), we exploit two dif-
ferent solutions: a variant of the well known Flexible Backfilling algo-
rithm (9), and a new approach called Convergent Scheduling (43; 83).

Our Flexible Backfilling (FB) assigns a priority value to each job in the
submission queue considering both the optimization of resource usage,
and a set of job QoS requirements (e.g. job deadlines, software licence
requirements). Queued jobs are ordered according to their priority val-
ues: the job with the highest priority value is stored at the head of the
queue. Job priorities are computed at each scheduling event (i.e. at a job
submission and at a job ending), exploiting a set of heuristics, each one
managing a specific job constraint. Our FB assigns to the first job in queue
a resource reservation that is preserved until the job starts its execution.

The Convergent Scheduling (CS) technique is a novel scheduling al-
gorithm for batch jobs, which allows to make an effective job schedul-
ing plan considering at the same time: resources status, job QoS require-
ments, and administrator constraints. One of the innovative aspects of
the CS is the ability to compute a job priority related to each available
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machine. Priorities express the degree of preference among a (running or
queued) job and the cluster’s machines. Jobs are labeled with a priority
value using a set of heuristics: Deadline, Licences, Input, Wait minimization,
Minimal requirements, Overhead minimization and Aging. Each heuristics
manages a specific constraint, and it increases/decreases the matching
degree between a job and a machine. CS aims to schedule a subset of
queued jobs that maximize the degree of preference for the available re-
sources, and that can be simultaneously executed without violating the
constraints on the licence usage.

3.1 Meta-Scheduler

3.1.1 Classification Phase

In the classification phase each submitted job is labeled with a priority
value. We define a range for assignable priorities, i.e. each job priority
belongs to [1 − 10]. Priorities are computed by using a set of heuristics
each one analyzing a different job QoS requirement: job deadline, soft-
ware licence requirements, submitting user. At this level, we define the
priority as a value that “expresses and aggregates” the whole job QoS re-
quirements. In this way, we can use it to easy compare jobs with different
QoS requirements, and to infer a job execution order: high priority jobs
will be executed before lower ones.

Priorities are assigned when jobs are submitted to the system, and
are exploited in the scheduling phase to dispatch jobs among clusters
(Section 3.1.2). The job priority is function of only job’s parameters and
it does not consider information about computational resources such as:
number and type of cluster’s machines, software licences availability,
and machines workload. The goal of our classification phase is to exploit
job attributes and characteristics to enable a classification in an inde-
pendent way, with respect to the features of the computing platform used.

In our classifier, the job priority values are carried out by averaging
the weighted contributions, 4Di

, 4Li
, and 4Ui

, computed for each job i
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by three heuristics: Deadline, Licences, and User.

The Deadline heuristics is used to evaluate how much a job is “far”
from the time at which it has to be done its execution. The contribu-
tion of Deadline (4Di ) to the priority value of a job i is proportional to
the “proximity” of the time at which i must start its execution to meet
its deadline. The Deadline heuristics is introduced in order to improve
the number of jobs that execute respecting their deadline. Jobs closer to
their deadline get a boost in preference that gives them an advantage in
scheduling. The problem we have to solve to implement our heuristics is
to give a meaning to the word “proximity”: how can we estimate when a
job is “proximity” to its deadline?

Our classifier has not knowledge on resources, and it cannot estimate
if some available machines can perform the analyzed job within its dead-
line. The only information it can exploit are those describing the submit-
ted jobs. The solution we find to this problem is based on the Margin

value computed for each job.
Let Margini be the difference between the time at which i must start

its execution, in order to respect its deadline, and the i submission time
(Figure 9):

Margini = Deadlinei − Estimatedi − Submissioni

Where Deadlinei is the deadline of the job i, Estimatedi is its estimated
execution time, and Submissioni its the time at which i is submitted. To
compute the4Di , Deadline exploits the average margin valueE[Margin]
computed as:

E[Margin] =
∑|N |

i=1Margini

N
. (3.1)

Where N is the window size, which specifies the number of jobs that con-
tribute to compute E[Margin], and analyzed before i.

A job i is considered a “proximity” one if Margini < E[Margin], oth-
erwise it is considered to be a “faraway” one.
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Figure 9: Graphical representation of the job parameters: Submission, Esti-
mated, Margin and Deadline.

Figure 10: Graphical representation of the [0, E[margin] ∗ 2] interval subdi-
vision.

To compute 4Di , the heuristics considers the double value of
E[Margin], and a job classification policy according to an exponential
distribution, in which the number of jobs with priority P is exponentially
greater than the number of jobs with priority P − 1. In order to improve
the probability to meet the job deadline, we use the E[Margin] ∗ 2 that
permits to over-estimate the time interval in which a job is a “proximity”
one, while the exponential priority distribution permits to limit the num-
ber of jobs to which the highest priority is assigned. This way allows to
better satisfy the job QoS requirements, by exploiting a more fine granu-
larity in the job priority process assignment.

Expression (3.2) formalizes the priority distribution we used to config-
ure the Deadline heuristics. Let s and j be two integer representing two
different priority values, with s < j, let #jobj be the number of jobs with
priority value equal to j, then Deadline behaves at the best when:

#jobj =
#jobs
2j−s

. (3.2)

In order to assign the priority values to jobs using theirMargin value,
the interval [0, E[Margin] ∗ 2] is divided into subintervals as depicted in
Figure 10. The subintervals Interval are computed as:
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Interval(max−k) = [Sk, Sk+1] with k = 0, ...,max− 1

Where max is a value set by the system administrator, and representing
the highest priority value that a job can assume. Sk is computed as: S0 = 0

Sk = Sk−1 +MinUnity · 2k (3.3)

Where MinUnity is given by:

MinUnity =
2 ∗ E[Margin]∑max

k=1 2k
(3.4)

We fix 4Di equal to (max − k), i.e. equal to the index of Interval to
which the job Margin value belongs to. If a job has Margin greater than
E[Margin] ∗ 2, we consider the job a “faraway” one with good reason,
and we assign to it a 4Di equal to the lowest priority. In this way, all
incoming jobs can be classified using the Deadline heuristics.

Exploiting the described procedure, it can happen that jobs with both
large estimated execution time and large Margin obtain lower priorities
than jobs with small estimated execution time and small Margin. It can
lead to execute large jobs without respecting their deadline. To face this
aspect, we introduced the value Ri computed as:

Ri =
Margini

Estimatedi

Ri ≥ 1 means that the job i can be classified as a “faraway” one, and,
in this case,4Di

is updated as: 4Di = 4Di − bRic if (4Di − bRic) ≥ 0

4Di = 0 if (4Di − bRic) < 0

Ri < 1 means that the job i can be classified as a “proximity” one. So,
let consider the interval [0, 1] divided into subintervals Subw computed
as:
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Subw = [
1

2w+1
,

1
2w

] with w = 0, ...,max− 1

and the index w of Subw to which Ri belongs to,4Di
is updated as: 4Di

= 4Di
+ w if (∆Di

+ w) ≤ max

4Di = max if (4Di + w) > max

The Licence heuristics computes 4Li
to favor the execution of jobs

that improve the contention on the software licences usage, i.e. the jobs
that require a great number of different licences to be executed. 4Li

is
computed as a function of the number of different software licences re-
quired by a job, in such a way that jobs asking for a high number of li-
cences get a boost in preference that gives them an advantage in schedul-
ing. This pushes jobs using many licences to be scheduled first, this way,
releasing a number of licences.

Licence does not consider dynamic information about the number of
copies available for each type of licences at any time. In this way, Licence
is exploitable even if the underlying clusters have different sets of licences
with a different number of available copies for each of them. Our heuris-
tics takes into account only the different types of licences requested by
each job, without considering their availability. In this way, it is indepen-
dent from the dynamic status of the licence availability.

To compute 4Li
the heuristics considers the number |L| of different

types of licences. The interval [0, |L|] is divided inmax subintervals of the
same size |L|/max. So, each subinterval corresponds to a priority value
(e.g. at the first subinterval corresponds to the lowest priority value).
4Li is computed as a function of the number of licences request by a job,
and it is fixed equal to the related subinterval index. For instance, let the
number of different licences |L| = 20, max = 10 and a job i requesting
for 5 different types of licences to be executed. The 4Li

computed by
Licence is 3, because of the 5 licences requested by i belongs to the third
subinterval [4, 6) in [0, |L|] (Figure 11).
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Figure 11: Licence: example of interval subdivision.

The User heuristics computes 4Ui in order to execute jobs respecting
the user peculiarities. We defined three classes of users: Gold, Silver,
and Regular, to which are assigned decreasing priority values. Such
priority values can be function of several parameters, which are defined
by the agreement between each user and system provider, such as: user
importance, kind of requested resources/services, and kind of project.
We suppose that each user can label its jobs with a priority value called
owner priority in the range [0, 3]. In this way the user can specify an
importance for each of its job. We assign a predefined priority value to
each class of user, then we add the owner priority to this value to carry
out the4Ui .

3.1.2 Scheduling Phase

The scheduling phase aims to dispatch jobs balancing the workload
among the underlying clusters. We design the MS’s scheduling phase
following two objectives:

• the information exchanged with the underlying level have to be the
least as possible,

• MS has to be able to exploit the job priorities in order to improve
the quality of its scheduling decisions.

The first objective drives us when designing a lightweight Meta-
Scheduler easy to interface with different scheduling algorithms ex-
ploited at Local-Scheduler level. We study the scheduling phase in order
to bind the interaction between MS and LS to few types of messages: jobs
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to be executed are sent from MS to LS, and information about already
executed jobs are sent from LSs to MS.

We design the Meta-Scheduler in such a way that it is able to estimate
the cluster’s workload considering the jobs stored in each LS’s queue (i.e.
the workload due to past assignments to each LS). Using these informa-
tion, MS selects the cluster to send jobs balancing the workload. In this
way, we avoid the generation of high communication between levels.

What is relevant in this interaction protocol is that no dynamic
information about software/hardware resources are exchanged among
levels, but the interaction involves only the jobs that are sent from MS to
LSs, and information about executed jobs that are sent from LSs to MS. In
this way, our MS is able to interact with schedulers involved in different
domains, such that no local policies are violated or will be changed. This
choice permits to exploit our MS in grid environments, in which each sys-
tem administrator has its own resource management policies, and does
not agree to share information regarding its resources with other systems.

The second objective of the scheduling phase aims to improve the
quality of the schedule when MS identifies a subset of clusters with ap-
proximately the same workload. This because of MS uses an estimation
of each cluster workload to provide the balance among them. Also in this
case, MS is able to schedule jobs preserving the workload balance but,
randomly choosing a cluster in this subset, it can happen that a number
of jobs with the same priority could be assigned to only few clusters. This
could lead some jobs to be executed violating their QoS requirements.

To avoid this phenomenon, we enrich our MS with a scheduling
function that aims to distribute jobs with the same priority to different
LSs. This implies that jobs with critical QoS requirements (high priority)
are spread on different clusters, are executed before low priority ones
(i.e. jobs with weak QoS requirements), and do not conflict each other. In
this way the number of executed jobs respecting their QoS requirements
is improved.
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To reach the described objectives, we design the scheduling phase
according to a policy based on two functions: Load and Ordering. Load
aims to balance the workload among clusters by assigning a job to the
less loaded cluster (i.e. the first objective). The workload on a cluster is
estimated summing the load due to the jobs queued to it. Ordering aims
to balance the number of jobs with equal priority in each cluster queue
(i.e. the second objective).

According to Load, clusters are ranked, and a job is scheduled to the
cluster with the smallest rank. It works according to the following princi-
ple:

The best cluster to assign a job is the idle one or the one with the minimum load,
due to the jobs with priority equal to or greater than the priority of the job

currently analyzed.

To estimate the workload on each cluster, an array of max positions
(the number of possible priority values that MS can assign to submitted
jobs) is defined for each one. Each priority value corresponds to an array
position, which stores the amount of workload due to jobs with the cor-
responding priority value, plus the amount of the load due to jobs with
higher priority. Accordingly, the first array position (when the array ele-
ments are arranged in increasing order) stores the workload due to all the
jobs queued to a LS.

An example of the data structure used by the Load function is shown
in Figure 12. Here, the value in the fourth position indicates that the load
due to the jobs with priority 4, plus the load due to jobs with priorities
higher than 4 is 25. In particular, analyzing two consecutive array po-
sitions, for instance 4 and 5, we can infer that the load due to jobs with
priority 4 is 7, and the load due to jobs with priority higher than 4 is 18.
Moreover, there are not jobs with priority 1, 2, and 3, and the total work-
load due to the queued jobs is 25.

When a job is assignable to some eligible clusters, the problem is to
find the cluster that can run it as soon as possible, by improving the
number of jobs that are executed respecting their QoS requirements.
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1         2        3         4        5       6        7         8         9       10

25      25      25       25      18     18      18       18       12      12

Figure 12: Example of array storing the workload due to the jobs queued at
LS level.

Supposing to have a job i with priority P . The Load function uses
P to access the cluster arrays. The first found cluster with 0 in the
P -th array position is the chosen one for the job assignment. Indeed,
according to the defined principle, it is considered an idle cluster and
it is the one that potentially can quickly start the execution of the job.
This approach is also valid when there are some queued jobs that have
lower priority than the analyzed one. When the value stored in the
P -th position of each array is greater than 0, the job is queued to the
LS whose array stores in such position the lowest value. It will be
selected to be scheduled later, when the execution of higher priority
jobs, and jobs with the same priority, but early arrived, will be completed.

To balance the number of the jobs with equal priority in each cluster
queue, we introduce the Ordering function. It works according to the
following principle:

The best cluster to assign a job is the one with the minimum number of queued
jobs, with priority equal to the priority of the job currently analyzed.

Ordering exploits a technique analogous to that used by the Load
function. It uses an array of max positions for each cluster.

Each priority value corresponds to an array position, which stores the
number of queued jobs with the corresponding priority value, plus the
number of queued jobs with higher priority than the one specified by the
array position.

An example of the data structure used by the Ordering function is
shown in Figure 13. Here, the value 9 in the fourth position indicates that
there are 3 jobs with priority 4 and 6 with higher priority.
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1         2        3         4        5       6        7         8         9       10

9        9        9         9        6       6         6        4         4        4

Figure 13: Example of array storing the number of jobs queued at LS level.

When there are more clusters with the same number of jobs with equal
priority in the P -th position, the one to dispatch a job is randomly se-
lected.

3.2 Local-Scheduler

In this section we outline the algorithms we developed as Local-
Scheduler: a Flexible Backfilling algorithm able to manage our specific
constraints (Section 3.2.1), two different versions of a novel solution based
on the Convergent Scheduling technique (Sections 3.2.2). In a first phase
each algorithm is described, then we explain how they are integrated with
our Meta-Scheduler to manage a set of distributed and heterogeneous re-
sources organized as clusters located in a specific site.

The algorithms we propose to be used at LS level share a set of heuris-
tics exploited to classify the submitted jobs. The heuristics are designed
to manage specific problem constraints: job’s QoS requirements, machine
and licence usage. Each algorithm we developed exploits this set of
heuristics, but heuristics are adapted to work according to specific algo-
rithms needs, for instance: Flexible Backfilling does not exploit dynamic
information about machines to classify jobs, instead, Convergent Sched-
uler uses some of these information in its job classification phase. Fur-
thermore, the meaning of the heuristics results computed by the Flexible
Backfilling is different with respect to that computed by the Convergent
Scheduling technique.

The set of shared heuristics is composed by: Anti-Aging, Deadline,
Licences, and Wait Minimization. Here, we describe the main structure
of these heuristics, in the sections devoted to describe the proposed
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solutions, we will specialize each of them in order to point out the main
differences.

Anti-Aging. The goal of this heuristics is to avoid job starvation i.e.
that a job could remains, for a long time, waiting to start or progress its
execution. The heuristics computes a value ∆AA as a function of the “age”
that a job has reached in the system. ∆AA is function of the difference
between the wall clock time and the time at which the job i is submitted
to the LS. It is computed as:

∆AA = (wall clock − Submissioni) · age factor ∀i ∈ LS’s queue

where age factor is the heuristics weight, wall clock is the time at which
the heuristics is computed, and Submissioni is the time at which i is
submitted to the scheduler. Anti-Aging is exploited in the same way,
with the same meaning, in both Flexible Backfilling and Convergent
Scheduler proposed solutions.

Deadline. The main goal of the Deadline heuristics is to maximize
the number of jobs, which terminate their execution within their dead-
line. For each job i it requires an estimation of its execution time,
Estimatedi, in order to evaluate its completion time with respect to the
current wall clock. When the distance between the completion time and
the deadline is smaller than a threshold value, the score ∆D assigned to
the job is increased in inverse proportion with respect to such distance.
We define:

Ti = Deadlinei − k · Estimatedi (3.5)

where k is a constant value fixed by the system administrator. It permits
us to overestimate Estimatedi. With k = 1, i.e. without overestimation,
any event able to delay the execution of a job would lead to violate its
deadline.
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Figure 14: Graphical representation of the Deadline heuristics.

We define Extimei as the time at which LS estimates the termination
of the job i. This parameter is computed as function of Estimatedi in dif-
ferent ways according to the LS algorithm adopted, and it will be describe
specifically in the next sections.

The heuristics aims to assign a minimum value Min to any job whose
deadline is far from its estimated termination time. When the distance
between the completion time and the deadline is smaller than a threshold
value, Ti, the score assigned to the job is increased in inverse proportion
with respect to such distance. The contribution of Deadline increases until
Extimei reaches the job deadline, i.e. ∆D is increased at least of Max

score. When Extimei is greater than the job deadline, the contribution of
the heuristics is null, i.e. ∆D is set to 0 (Figure 14).

The Min and Max values are defined by system administrator.
They are the weights of the heuristics and determine the angular coef-
ficient a of the straight line passing through the points (Ti,Min), and
(Deadlinei,Max). ∆D is increased according to the function described
by the bold line in figure 14.

Licence. This heuristics favors the execution of jobs that increase the
critical degree of licences. A licence becomes critical when there is a num-
ber of requests greater than the available number of its copies that can be
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simultaneously activated. The ∆L values carried out by Licences are com-
puted as a function of the licence, critical and not critical, requested by a
job. The greater the number of critical licences is, the greater ∆L is. This
pushes jobs using many licences to be scheduled first, this way releas-
ing a number of licences, which can be assigned to other jobs waiting for
execution.

To determine the critical licences, we introduce the ρl parameter de-
fined as:

ρl =
∑|N |

i=1 si,l

al
with si,l ∈ {0, 1} ∧ si,l = 1 iff i ∈ N ∧ i asks for l ∈ L (3.6)

where L is the set of all the available licences, the numerator specifies
the “request”, i.e. how many jobs are requesting a licence, and the de-
nominator specifies the “offer”, i.e. how many copies of a licence can be
simultaneously activated on the system machines. A licence l is consid-
ered critical if ρl > 1. We divide licences according to their ρ value in two
subsets:

Lc = {l ∈ L | ρl > 1} (3.7)

Lc̄ = L \ Lc (3.8)

Lc is the subset including critical licences, and Lc̄ is the subset
including not critical licences. Each algorithm adopted as LS exploits
these subsets to compute ∆L.

Wait Minimization. This heuristics favors jobs with the shortest esti-
mated execution time. The rationale is that shorter jobs are executed as
soon as possible in order to release the resources they need, and to im-
prove the average waiting time of the jobs in the scheduling queue. Let
priority boost value be the heuristics weight defined by the system ad-
ministrator according to system management policies, and min ex t =
min{Estimatedi : i ∈ queue}, the value ∆WM is computed by the heuris-
tics as follows:
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∆WM+ = priority boost value · min ex t

Estimatedi

3.2.1 Flexible Backfilling Algorithm

In this section we present the Flexible Backfilling algorithm (FB) we em-
ployed as Local-Scheduler (9). Our FB is a variant of the EASY Backfilling
algorithm (35; 86). In general, we can recognize the structure of FB as the
same as of our Meta-Scheduler (Section 3.1): it is characterized by a clas-
sification phase, in which jobs are labeled with a priority value, and by a
scheduling phase, in which jobs are assigned to the available machines.

We developed FB in such a way it is able to classify incoming jobs in
order to handle the jobs QoS requirements. Unlike MS, it uses dynamic
information about both licences and jobs to carry out the job classification.
Furthermore, it exploits dynamic information about jobs, licences, and
machines to compute the scheduling plans. For instance, FB increases the
job priorities according to the time they spent waiting for execution (i.e.
according to the heuristics introduced previously).

The FB’s classification phase is applied to each queued job at each
scheduling event, which is job submission or job ending. In this way,
the classification better represents the job QoS requirements with respect
to the resource status, which could change over the time: job could be
close to its deadline (or it could be not executed whiting its deadline), or
a requested licence can become critical (or not critical). The main goal of
the classification phase is to fulfill a set of users and system administrator
QoS requirements.

FB exploits the set of previous described heuristics to assign a priority
P (i) to each job i: Anti-Aging, Deadline, Licence, and Wait Minimization.
Anti-Aging and Wait Minimization are the general heuristics already pre-
sented, Deadline and Licence have been modified to be adapted to the
specific scenario. The values computed by each heuristics are composed
as a weighted sum, in which weights are set by system administrator for
each heuristics:
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P (i) = ∆AA + ∆D + ∆L + ∆WM

Deadline. This heuristics comes from that previously described. In
particular, Deadline computes the Extimei value, i.e. the time at which
FB estimates the termination of the job i, as follows:

Extimei = wall clock + Estimatedi

where Estimatedi is the estimated job execution time. ∆D is computed
by Deadline according to the following formula:

∆D =


Min if Extimei ≤ Ti

a(Extimei − Ti) +Min if Ti < Extimei ≤ Deadlinei

0 if Extimei > Deadlinei

The ∆D is set to a minimum value (Min) until the Extimei is smaller
than Ti, it increases closing the job deadline, and it is set to 0 if the job
termination is estimated after its deadline (Figure 14).

Licence. This heuristics assigns a higher score to jobs requiring a
larger amount of critical licences. ∆L is increased according to this for-
mula:

∆L = W · (
∑
l∈lc̄

ρ(l) + d ·
∑
l∈lc

ρ(l))

where W is the heuristics weight, and d = max{| ∪∀i lc̄(i)|, 1} is the
number of critical licences the job requires. This way we give more
importance to critical licences computing the ∆L value.

The scheduling phase is carry out applying the Backfilling strategy,
which makes a resource reservation for the analyzed job if it cannot be
scheduled at once, to a queue in which jobs are ordered according their

64



priority, i.e. the highest priority job is stored at the head of the queue.
FB carries out a new scheduling plan at both job is submission and job
ending time.

FB orders the machines it manages according to their computational
power in order to exploit the most powerful first. In this way, even if
Backfilling algorithms do not look for the best matching among jobs and
machines (i.e. they assign a selected job to the first available machine
able to run it), this strategy allows our FB to improve the response time
of the jobs assigned to it. We also developed a procedure, called Minimal
Requirements, that is able to selects a set of machines that has the computa-
tional requirements suitable to perform a job. In our study, we considered
only the following requirements: number of processors and software li-
cences activable on a machine. We apply the Backfilling strategy to this
subset of the cluster’s machines.

According to the problem description we gave in Section 1.2, we sup-
pose that a set of software licences may be activated on the cluster’s ma-
chines managed by FB. Each licence can be activated on a subset of the
available machines, for instance, because the licence requires a specific
operating system or a specific CPU. Moreover, the number of software li-
cences of a specific type is generally smaller than the number of machines
on which they can be activated. These are floating licences, because they
can be activated dynamically on the proper machines according to the
job requests. On the other hand, we define non-floating licences, which
are permanently bounded on a specific machine, and that can be consid-
ered like any other attributes characterizing a machine. Each job requires
a set of software licences for its execution and may be executed only on
the subset of machines where all the required licences can be activated.

We designed two different variants of Flexible Backfilling:
BF UNMOD and BF MOD. The first one keeps the reservation for
the first queued job and it is preserved until the job is scheduled. The
second one recomputes resource reservation when a new job reaches the
first position in the waiting queue (i.e. it has the highest priority):

• BF UNMOD implements a Flexible Backfilling strategy applied to
a queue in which jobs are ordered according to their priorities. The
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first queued job receives a resource reservation if it cannot be sched-
uled at once. It preserves the reservation (e.g. the highest priority)
until its execution starts, while the others queued jobs are reordered
according their priorities at each scheduling event. Like Easy Back-
filling, BF UNMOD adopts an “aggressive” strategy by enabling
reservations for the first queued job only.

• BF MOD differs from BF UNMOD because it removes the reserva-
tion for the first queued job if a job with a higher priority is submit-
ted. In this case, this new job receives the resource reservation if it
cannot be scheduled at once. When a job i reaches the first position
within the queue, it is allowed to reserve the resources it needs. Fur-
ther, jobs are ordered according to their priorities and they can be
used for backfilling. At the next scheduling event, the reservation
made by i is preserved if and only if i still has the highest priority.
Otherwise, the job with the highest priority is allowed to reserve re-
sources. Suppose, for instance, that a job with a forthcoming dead-
line is submitted. BF MOD schedules this job as soon as possible
by canceling the resource reservation made for the first job in the
queue at the next scheduling event. On the other hand, the predic-
tion of the starting execution time of a job is difficult, and the risk
is the job starvation. A simple way to reduce this phenomenon is to
increase the weight computed by the Anti-Aging heuristics in the
classification phase.

3.2.2 Convergent Scheduling Technique

The proposed Convergent Scheduling (CS) permits us to carry out a job-
scheduling plan on the basis of the current status of the system (i.e. re-
source availability, executing jobs), and information related to jobs wait-
ing for execution. In order to make decisions, the scheduler assigns prior-
ities to all the jobs in the cluster (i.e. queued and running), and jobs pri-
orities are computed at each scheduling event. The job priority measures
the degree of preference of a job for each cluster’s machine, i.e. how each
machine suits well for the job execution. The scheduler aims to schedule
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a subset of queued jobs that maximize the degree of preference for the
available resources.

In order to exploit the CS technique, we define a matrix P |N |×|M |,
called Job-Machine matrix, where N is the set of jobs (it changes dynam-
ically) and M is the set of the cluster’s machines. The matrix entries
store a priority value specifying the degree of preference of a job for each
cluster’s machines. Our scheduling framework is structured according to
three consecutive phases: Heuristics, Clustering and Pre-Matching, and
Matching.

The Heuristics phase is computed to assign a priority to each job in
the system. The Job-Machine matrix constitutes the common interface to
each heuristics we defined: Minimal requirements, Deadline, Licences,
Input, Overhead minimization, Wait minimization and Anti-Aging. Each
heuristics changes Job-Machine entries to increase/decrease the degree
of matching between a job and a machine. The priority values are com-
puted at each scheduling event. Moreover, the priority value stored in
each matrix’s entry is the weighted sum of the values computed by each
heuristics. Heuristics can be run several times and in any order, moreover,
each heuristics manages a specific problem constraint and the heuristics
set is easy to extend.

The Clustering & Pre-Matching phase takes as input the Job-Machine
matrix and it aims at removing conflicts on the licence usage: the number
of activated copies of each licence must not be greater than the number of
its available copies. The first step of this phase is to cluster jobs according
to their requests for licences. Then, the Multidimensional 0− 1 Knapsack
Problem algorithm (MKP) (71) is applied to find the subset of jobs that
can be simultaneously executed without violating the constraints on the
licence usage. Jobs discarded by this phase are then reconsidered to build
the new scheduling plan, at the next scheduling event.

Matching elaborates the matrix resulting from the previous phase to
carry out the job-machine associations, i.e. the new scheduling plan. The
aim of the Matching phase is to compute the job-machine associations to
which correspond a larger preference degree, according to the problem
constraints.
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Heuristics Collection

Seven heuristics have been designed to build our Convergent Schedul-
ing framework: Anti-Aging is the general heuristics presented at the
beginning of section 3.2, Deadline, Licences and Wait Minimization
comes from the ones described previously, and Minimal requirements,
Overhead minimization and Input have been designed specifically for
the Convergent Scheduler. The order of magnitude of the heuristics
complexity is equal to (|N | · |M |).

Minimal requirements. This heuristics fixes the associations
job-machines. It selects the subset of machines MAffi

that has the
computational requirements suitable to perform a job i. In our tests, we
considered only two requirements: number of processors and floating
licences (i.e. number and type).

Deadline. The aim of the Deadline heuristics is to compute the job-
machine update value ∆D in order to execute jobs respecting their dead-
line. This heuristics differs from that employed in our Flexible Backfilling
because of the job deadline is evaluated with respect to all the machines
in MAffi . This means that the priority of a job-machine association (i.e.
an entry in the Job-Machine matrix) is improved if that machine is able to
perform the job respecting its deadline. For each job i ∈ N the ∆D values
are computed with respect to the machines m ∈MAffi . We define:

f1 =


Min if Extimei,m ≤ Ti,m

a(Extimei,m − Ti,m) +Min if Ti,m < Extimei,m ≤ deadlinei

Min if Extimei,m > deadlinei

Min and Max, in Figure 15, have the same meaning of the general
Deadline heuristics. Ti,m is the time from which the job must be evaluated
to meet its deadline if it is performed by the machine m (i.e. Ti in the
general expression (3.5)). The Nxtimei,m is used to compute Ti,m and
Extimei,m as follows:
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Ti,m = Deadlinei − k ·Nxtimei,m

Extimei,m = wall clock +Nxtimei,m

Nxtimei,m = (estimatedi × (1− progressi)) ·
BMm̄

BMm
(3.9)

Nxtimei,m estimates the execution time of the job i with respect to
the estimated execution time specified by i (estimatedi), the machine
on which i is performed, and the percentage of i already executed
(progressi). In the expression (3.9), BMm is the power of the machine
m where i is executing, and BMm̄ is the power of the machine m utilized
to estimate the execution time of i. This time can be evaluated statistically
by analyzing historical data or by benchmarking.

The values ∆D to update the Job-Machines matrix entries are com-
puted according to the following expressions:

∆D = (
|MAffi |∑

k=1

f1(Extimei,k)) · f̄1(Extimei,m)
di

(3.10)

f̄1(Extimei,m) = Max− f1(Extimei,m)

di =
|MAffi |∑

m=1

f̄1(Extimei,m)

The first term of (3.10) establishes the job “urgency” to be executed
respecting its deadline. A higher value of f1(Extimei,m) for a job
means that it is a candidate (i.e Extimei,m is very close to Deadlinei) to
complete its execution missing its deadline when executed on m. High
values of the first term mean that the related job could be in “late” on
all or almost all the available machines. Therefore, the priority of such
job has to be increased more than those of jobs that have obtained lower
values. The second term of (3.10) distributes on the available machines
the values computed by the first term, proportionally to machine power.
For each job f̄1(Extimei,m) establishes a ordering of the machines w.r.t.
their power, on which it can be performed. The higher the f̄1(Extimei,m)
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value associated to a machine, the higher the probability that such ma-
chine will perform the associated job respecting its deadline (Figure 15).

Figure 15: Graphical representation of the CS Deadline heuristics.

Licences. This heuristics favors the execution of jobs that increase the
critical degree of licences. The ∆L values to update the Job-Machine ma-
trix entries are computed as a function of the licences, critical and not
critical, requested by a job. The greater the number of critical licences is,
the greater ∆L is. Referring to the licences subsets defined by expressions
(3.7) and (3.8), we define w(i) for the job i as follow:

w(i) =
|Lc|∑
l=1

si,l · ρl · |L|+
|Lc̄|∑
l=1

si,l · ρl

where |L| is used as a multiplicative constant to give more weight to
critical licences, ρl and si,l is computed according to the expression (3.6).
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We order jobs according to w(i). Let a, b ∈ N two jobs, and

w1(i) =
|Lc|∑
l=1

si,l · ρl

w2(i) =
|lc̄|∑
l=1

si,l · ρl

a < b iff

{
w1(a) < w1(b) with w1(a) 6= w1(b)

w2(a) < w2(b) otherwise

∆L is computed as:

∆L = LI ·
(

w(i)
max(w(i))

)
∀i ∈ N

where LI is a value used to fix the weight of the heuristics.

Input. The goal of this heuristics is to update the matrix entries ac-
cording to the cost due to the transfer of the job input data on the ma-
chines candidate to run it. Such data can be the original job input data,
also distributed across more machines, or partial results carried out by
the job itself before an interruption. Since we cannot do any assumption
about how jobs use the input data, a reasonable criteria is to try to execute
a job on the machine to which correspond to the minimum data transfer
time. The input data transfer time for a job i is computed as:

Transfi(m) =
∑

∀m∈MAffi
∧m̄6=m

inputi,m̄
bm̄,m

with i ∈ N

where m is the machine candidate to run i, m̄ is the machine on which
the input is stored, inputi,m̄ is the data size, and b is the bandwidth of the
link connecting m̄ and m.

The updated value is computed as an inverse proportion of the data
transfer time:

∆I = IN ·

(
1− Transfi(m)∑

∀m∈MAffi
∧m̄ 6=m Transfi(m)

)
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where IN is heuristics weight fixed by the installation.

Wait Minimization. The aim of this heuristics is to minimize the av-
erage time that jobs spend waiting to complete their execution. It tries to
minimize this time by advancing the jobs that have a shorter estimated
time to end their execution. ∆WM is computed as a function of the time
remaining to end the execution of a job i on each machine m ∈ MAffi

.
The smaller this time is, the greater the value to update the Job-Machine
matrix is, and it is computed as:

∆WM = W ·
(

1− Nxtimei,m

supNxtime

)
where max is the heuristics weight fixed by the installation, Nxtimei,m

is computed according to the expression 3.9, and supNxtime is set equal
to the maximum value of Nxtimei,m for each m ∈MAffi

.

Overhead Minimization. The heuristic aims to contain the overhead
due to the interruption of a job execution on a machine and its resuming
on another one, or on the same one at a different time. This heuristic
checks the current job-machine matching and tries to minimize the job
migrations by preserving the scheduling made in the previous step.

Clustering and pre-matching

This phase is executed after the Job-Machine matrix has been updated
by all the heuristics. All jobs requesting critical sw licences (i.e. ρl > 1)
are clustered by putting in the same cluster the jobs asking for the same
licence/s, and with each job belonging to only one cluster.

A new event (job submission or ending) can change the licence usage.
When a licence becomes critical, two or more clusters could be merged.
When a licence becomes not critical, a cluster could be partitioned into
two or more new clusters. It is implemented by modeling the requests of
sw licences as a hypergraph where the nodes represent the licences and
the arcs the jobs.
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The MKP (Multidimensional 0-1 Knapsack Problem) optimization
method (71) is applied to each cluster to find the subset of jobs that could
be simultaneously executed, without violating the constraint on the li-
cences usage. The remaining subset will be discarded, i.e. their entries
are deleted from the job-machine matrix. The resulting Job-Machine ma-
trix will be passed to the Matching phase to carry out the job-machine
associations, i.e. the new job scheduling plan. In our case, the knapsack’s
capacities are the number of licences of each specific type simultaneously
usable, and the objects are the jobs that require such licences.

Defining the costs ci and the weights ai of a job i as follows, the solu-
tion proposed by Eilon (? ) can be exploited to formulate the MKP as a
KP.

c̄i =
∑M

m=1 pi,m

|{pi,m ∈ P : pi,m > 0}|
, āi =

|Lc|∑
l=1

ai,l

bl

where Lc is the set of critical licences, bl is the availability of the l-th
critical licence, and ai,l is equal to 1 iff the job i uses the licence l.

To solve the resulting KP we choice a greedy algorithm with polyno-
mial complexity, which adopts the decreasing unitary costs method (3.11)
as the ordering heuristic to select the objects.

c̄1
ā1
≥ c̄2
ā2
≥ ..... ≥ c̄n

ān
(3.11)

According to the decreasing unitary costs ordering, jobs can be dis-
carded. By discarding a job some licences could become not critical. To
avoid the exclusion of jobs that can be executed by exploiting these li-
cences, the job weights are recomputed after each job discarding. The
greedy algorithm was validated by comparing its results with those ob-
tained by a branch&bound algorithm.

Matching

The aim of this phase is to carry out the best job-machine associations,
i.e. the new job scheduling plan. Starting from the Job-Machine matrix
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P , resulting from the previous phases, it looks for a matching MTC ⊂
N ×M which corresponds to the largest preference degree, according to
the constraint that each machine must perform one job at time, and that
a job can be scheduled only on one machine. The best MTC is the one
that maximizes both the cardinality of the job-machine associations, i.e.
|MTC|, and the sum of the selected associations, i.e.

∑
pi,m ∈MTC. The

maximum system usage is obtained when |M | = |MTC|. Formally, we
need to find a MTC that maximize:

max
∑

0≤i<|N |

∑
0≤m<|M |

pi,m · xi,m

where pi,m ∈ P , and with the following constraints: ∀m
∑N

i=1 xi,m ≤ 1 maximum a job for machine
∀i

∑M
m=1 xi,m ≤ 1 maximum a machine for a job

∀i,∀m xi,m ∈ {0, 1}

where xi,m = 1 if m is chosen to run i, otherwise xi,m = 0.
Different methods could be used to solve this problem according to

a trade-off between accuracy and running time. In this work we in-
vestigated three different methods: Maximum Iterative Search (MIS),
Maximum Flow Search (MFS), and Incremental Maximum Flow Search
(IMFS). The complexity of the corresponding algorithms was computed
fixing the size of P equal to |N | × |N | (i.e. |M | = |N |).

MIS was implemented by adopting a greedy algorithm with complex-
ity O(|N |2 log |N |2), which carries out the job-machine associations by se-
lecting at each iteration the one with maximum cost. MIS does not ensure
to find a maximum matching cardinality, i.e. it does not assure the maxi-
mum system usage.

MFS represents the matrix P as a bipartite graph G = (O ∪ D,A)
where O = {1, . . . |N |} is the set of nodes representing jobs, D = {N +
1, . . . N+ |M |} is the set of nodes representing the machines, andA ⊆ O×
D, with |A| = |M |, is the set of arcs. The arcs represent the job-machine
associations, and have an associated cost ci,m. For each element pi,m of

74



the Job-Machine matrix, an arc is created between the node i representing
a job and a node j representing a machine, according to the following
expression:

∀i,∀m
(
pi,m > 0⇒ ∃(i,m) ∈ A ∧ ci,m = pi,m

)
When an association job-machine is not eligible, i.e. at least a constraint is
violated, the related matrix entry is set equal to zero. In other words, we
look at the Job-Machine matrix as a bipartite graph, with arcs weighted
proportionally to the matrix entries, and we try to find the association set
that maximizes the cost (sum of the arc weights). This way we match jobs
and machines with the highest preference.

MFS incrementally builds the final matching passing through partial
matching built exploiting the Longest Path Tree (LPT), which is com-
puted starting from all the nodes that are not associated (i.e. nodes do
not present in the current partial matching). As a result we obtain a tree
where nodes represent a job or a machine, and where each leaf has a value
representing the cost (i.e. the sum of the weights associated to the arcs
pass through) to reach it. On this tree the largest cost path is selected. The
new matching is found by visiting bottom up the selected path and by
reversing the direction of the crossed arcs. We have two kinds of associa-
tions. Associations corresponding to reverse arcs with negative cost and
associations corresponding to forward arcs, with positive cost. The first
ones are deleted from the previous matching, while the second ones are
inserted into the new matching plan.

The MFS solution we propose permits us to carry out a job-machine
association set with max cardinality and max cost, and with a complexity
equal to O(N4). This is feasible if the algorithm is fast enough to provide
fresh data for the scheduling. In our case, the set of jobs is dynamic, so
the MFS costly algorithm was developed into IMSF in order to reduce the
complexity of this phase.

IMSF is able to carry out a new scheduling plan exploiting partial re-
sults coming from the previous one. Instead of rebuilding the bipartite
graph from scratch, it starts from a partial bipartite graph built exploiting
the job-machine associations inherited by the previous matching phase.
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IMFS builds a new bipartite graph changing the way and the sign of
the weight, of the arcs, related to the inherited job-machine associations.
Then, on the graph, the LPT is computed. On this tree we can distinguish
two kinds of paths: even and odd, w.r.t. the number of arcs passed through.
The first ones must end in a node representing a job, while the odd ones
must end with a machine not yet associated to a job. When possible, odd
paths are preferred to even paths because they lead to an improvement of
the matching cardinality. Then, the path with the largest cost is selected,
i.e. the one that leads to the largest increase of the matching size. The
IMSF complexity is equal to O(N3), it is an approximation of MFS.
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Chapter 4

Experiments

In this Chapter we present the experiments we performed to evaluate our
solutions. The Multi-Level scheduling framework, i.e. Meta-Scheduler
(MS) and Local-Scheduler (LS), the Flexible Backfilling, and the Conver-
gent Scheduler were evaluated by simulation to verify their feasibility.

In our study we consider a continuous stream of independent batch
jobs, which arrive to the system and are stored into a single job queue.
We suppose that a job is sequential or multi-threaded and that a job is
executed only on a machine. For each experimental phase we point out if
the space sharing allocating policy is adopted, and if job preemption is al-
lowed. We also assume that mechanisms to notify configuration changes,
such as job submission/ending, are available in the computing platform.

To evaluate the Multi-Level Scheduler, we simulate a dedicated com-
puting grid, composed of independent clusters of heterogeneous, single-
processor or SMP machines, linked by a low-latency and high-bandwidth
network. Each cluster includes machines located in a specific site. To eval-
uate the Flexible Backfilling and the Convergent Scheduler we simulate
only a cluster of heterogeneous machines.

The schedulers aim to schedule arriving jobs respecting their QoS re-
quirements (i.e. job deadlines, licence requirements, and user peculiari-
ties), and optimizing the software licence and machine usage.

Submitted jobs and machines are annotated with information de-
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scribing computational requirements and hardware/software features,
respectively. Each job is described by an identifier, its deadline
(Deadline), an estimation of its duration (Estimated), a benchmark score
(Benchmark), which represents the architecture used to estimate its exe-
cution time, and the number of processors (CPU ) and software licences
requested (Licence needs) to run it. Machines are described by a bench-
mark score, which specifies their computational power, and the number
of available CPUs. For each test we specified how these parameters are
generated.

For our evaluation, we developed an event-based simulator, where
events are job arrival and termination. We simulated a computing farm,
with varying number of jobs, machines and licences availability. For each
simulation, we randomly generated a list of jobs and machines. We ex-
ploited streams of jobs synthetically generated because real workload
traces with deadlines and software requirements are not easy to find.
We studied the real workload traces proposed by Feitelson in (36), and
the data provided by the Italian Interuniversity Consortium (25). In both
cases any requirement about deadlines and licences are provided for jobs.

A simulation step includes: (1) selection of new jobs, (2) update of the
status (e.g. the job execution progress) of the executing jobs, (3) check for
job terminations. The time of job submission is driven by the wall clock.
When the wall clock reaches the job submission time, the job enters in the
simulation.

4.1 Flexible Backfilling

In this section we present the evaluation conducted to investigate the ef-
fectiveness of the scheduling solutions carried out by our Flexible Back-
filling scheduler (Section 3.2.1). The evaluation was conducted by simu-
lations using different streams of jobs which inter-arrival times are gen-
erated according to a negative exponential distribution with a different
parameter. For each simulation, we randomly generated a list of jobs and
machines whose parameters are generated according to a uniform distri-
bution in the ranges described in Table 1, where Licence needs specifies
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Table 1: Flexible Backfilling: range of values used to generate streams of
jobs, machines and sw licences.

Parameters Jobs Machines Sw Licences
Estimated [500 - 3000]

Benchmark [100 - 500] [100 - 500]
Margin [30 - 250]

CPU [1 - 8] [1 - 8]
Licence needs [30%]
Licence ratio [50% - 70%]

Licence Suitability [90%]

the probability that a job needs a licence, the Licence suitability specifies
the probability that a licence can be used on a machine, and Licence ratio
specifies the maximum number of copies of a licence concurrently usable
with respect to the Licence suitability.

Tests were conducted by simulating a cluster of 100 machines, 20 dif-
ferent types of software licences, 1000 not preemptable, independent jobs,
and using 5 job streams generated with average jobs inter-arrival time
fixed equal to 4, 6, 12, 24 and 48 simulator time units. Each stream leads to
a different system workload (computed as the sum of the number of jobs
ready to be executed, and the number of the jobs in execution) through
a simulation run. The closer job inter-arrival time is, the higher the con-
tention in the system is. The space sharing job allocating policy is not
used in these experiments. To obtain stable values each simulation was
repeated 20 times with different job attributes values. The classification
heuristics are computed at each scheduling event1.

To evaluate the schedules carried out by the two different variants of
Flexible Backfilling we developed (Section 3.2.1), we have considered the
following metrics:

• System Usage. This measures the efficiency of the system, and it is

1Heuristics weights: Deadline (MAX = 20.0, MIN = 0.1, k = 1.4), Anti-aging
(age factor = 0.01), Licences (W = 1), Wait minimization (priority boost value = 2.0).
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defined as follows:

System Usage =
]CPU in use

min(]total CPUs, ]jobs in system)

where ]CPU in use is the number of CPUs executing a job,
]total CPUs is the available total number of CPUs, and
]jobs in system sums the number of waiting jobs and those in exe-
cution.

• Out Deadline. This measures the number of jobs executed without
respecting their deadline. This does not include jobs which must
not be executed within a given deadline.

• Slowdown. This measures the ratio between the response time of a
job, i.e. the time elapsed between its submission and its termination,
and its execution time.

We have compared BF MOD and BF UNMOD with FCFS and with
BF FCFS, which is an implementation of EASY backfilling. The imple-
mentation of our extend versions of Backfilling differ with respect to the
classical algorithm because of the target architecture which is an heteroge-
neous architecture rather than a homogeneous multiprocessor machine.
As a consequence, jobs considered by our algorithms may require dif-
ferent software/hardware resources. The original Backfilling algorithms
have been modified to consider all these resources when they carry out a
scheduling plan.

In Figure 16 and Figure 17 the results obtained for the different strate-
gies with respect to the metrics previously defined are compared. Figure
16 shows the percentage of the jobs executed missing their deadline. It
can be seen that BF MOD and BF UNMOD obtain better results in each
test. When the available computational power is able to maintain low the
system contention (i.e. for 24, 48 average job inter-arrival times), the use
of Backfilling technique leads to a higher system usage, which permits
to improve the percentage of the jobs that are executed respecting their
deadline. On the other hand, when the system contention is higher (i.e.
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Figure 16: Percentage of the jobs executed that miss their deadline.

Figure 17: (Percentage of used system hardware resources.

for 4, 6, 12 average job inter-arrival times) the exploitation of the job pri-
ority leads to better results. Figure 17 shows the percentage of system
usage. It can be seen that Backfilling technique leads to a better system
usage, in particular when the system contention is higher.

Figure 18 shows the slowdown trend through simulation runs. It can
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Figure 18: Slowdown trend.

Table 2: Percentage of used licences.

Licence Ratio % Licence Usage
FCFS BF FCFS BF UNMOD BF MOD

30% - 50% 55,7 78,5 80,5 79,7
40% - 60% 52,1 76,1 75,5 76,3
50% - 70% 49,5 74,8 72,2 72,4

be seen that the Backfilling technique is able to drastically reduce the av-
erage job waiting time.

Table 2 and Table 3 show the percentage of both the software licence
usage and the number of jobs executed out of their deadline by changing
the Licence Ratio parameter.

Table 2 shows that to assign higher priorities to jobs requiring a higher
number of critical software licences leads to an improvement only when
the software licences contention is high. When the software licences con-
tention decreases the proposed schedulers lead to worse results. This be-
cause jobs requiring a fewer number of critical licences, but with a closer
deadline, receives higher priorities delaying the execution of jobs requir-
ing a higher number of software licences but with a far deadline.
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Table 3: Percentage of jobs executed that miss their deadline.

Licence Ratio % of jobs out of deadline
FCFS BF FCFS BF UNMOD BF MOD

30% - 50% 95,6 78,9 74,5 73,5
40% - 60% 95,5 74,8 69,4 69,0
50% - 70% 95,5 74,6 66,2 66,2

Table 3 shows that, when the contention on software licence increases,
the scheduler changing the reservation for the first queued job at each job
scheduling event permits us to obtain a higher number of jobs executed
respecting their deadlines.

The experimental results show the applicability of the proposed strat-
egy. Both BF UNMOD and BF MOD outperforms FCFS and BF FCFS in
term of system usage and in the number of jobs that are scheduled re-
specting the proposed deadline. The differences are strong at any load
level (i.e. job inter-arrival time). With higher inter-arrival times, i.e. when
the scheduling is less critical, BF FCFS shows a performance similar to
our two strategies.

BF UNMOD and BF MOD do not greatly improve the slowdown over
BF FCFS, which already does a very good scheduling job with respect
to standard FCFS. We were not able to measure any difference between
BF UNMOD and BF MOD. This means that the simpler approach fol-
lowed by BF UNMOD is sufficient for the task at end.

4.2 Convergent Scheduler

In this section, we present the results of two different evaluation phases.
The first one was conducted to evaluate the quality of the solutions car-
ried out by the MKP algorithm. The second one has verified the feasibility
of Convergent Scheduling (CS). We evaluated four different versions of
CS, called CS i p, CS i np, CS ni p, CS ni np. CS i p uses the incremental
approach and preemption for all jobs. CS i np uses the incremental ap-
proach, but not preemption. CS ni p uses the non incremental approach,
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Table 4: Convergent Scheduler: range of values used to generate streams of
jobs, machines and sw licences.

Parameters Jobs Machines Sw Licences
Estimated [500 - 3000]

Benchmark [200 - 600] [200 - 600]
Margin [25 - 150]

CPU [1 - 8] [1 - 8]
Input [100 - 800]

Licence needs [20%]
Licence ratio [55% - 65%]

Licence Suitability [90%]

and preemption for all jobs. CS ni np uses the non incremental approach,
and not preemption.

In this work, all CS versions have used the same set of heuristics, the
parameters of which were hand-tuned to give more importance to the
job deadline requirement and the licence usage constraint2. We simulate
job that are non preemptable by increasing the priority of the jobs being
executed of a value higher than that used to increase the priority of the
other jobs. In such a way, previous scheduling choices are preserved, and
a scheduling plan is changed when a job ends.

The evaluation was conducted by simulations using different streams
of jobs generated according to a negative exponential distribution with
different inter-arrival times between jobs.

For each simulation, we randomly generated a list of jobs and ma-
chines whose parameters are generated according to a uniform distribu-
tion in the ranges described in Table 4.

To each licence we associate the parameter Licence ratio that specifies
its maximum number of copies concurrently usable with respect to the
Licence suitability, which specifies the probability that a licence is usable
on a machine. Licence needs specifies the probability that a job needs a

2Heuristics constant values used in our tests: Deadline (MAX = 10.0, MIN =
0.1, k = 1.3), Input (IN = 3.0), Overhead Minimization (∆ = 8.0 for CS version us-
ing job preemption, and ∆ = 800.0 for CS version not using job preemption), Anti-aging
(age factor = 0.02), Licences (LI = 2.5), Wait minimization (W = 4.0).
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licence. In Table 4, Input is the range identifying the size of input data
requested by jobs.

For each simulation, 30% of jobs were generated without deadline. In
order to simulate the job scheduling and execution, the simulator imple-
ments the heuristics seen before, and a new scheduling plan is computed
at the termination or submission of a job. The simulation ends when all
jobs are elaborated.

To evaluated the CS schedulers, tests were conducted by simulating
a cluster of 150 machines, 20 different types of licence, and 1500 jobs.
To evaluate the MKP algorithm, in order to save simulation time, 100
machines, 40 licences, and 1000 independent jobs were used.

In order to obtain stable values, each simulation was repeated 20 times
with different job attributes values.

To evaluate the solutions carried out by the MKP algorithm we com-
pared them with those computed by a branch& bound algorithm.

To evaluate the quality of schedules computed by CS we exploited
different criteria: the percentage of jobs that miss the deadline constraint,
the percentage of machine usage, the percentage of licence usage, and
scheduling computational time. The evaluation was conducted by com-
paring our solution with EASY Backfilling (BF-easy), Flexible Backfilling
algorithms, and Earliest Deadline First(EDF). The Flexible Backfilling al-
gorithms we adopted are those described in the section 3.2.1, and evalu-
ated in the previous section. The job priority values are computed at the
computation of a new scheduling plan using the CS heuristics. Comput-
ing the priority value at each new scheduling event permits us to better
meet the scheduler goals.

To implement EDF, jobs were ordered in decreasing order with
respect to their deadline, and machines were ordered in decreasing
order with respect to the value of the Benchmark attribute. Each
job was scheduled to the best available machine, respecting the con-
straints on both the number of CPUs and of licences. If an eligible
machine is not found the job is queued and re-scheduled at the next
step of the simulation process. CS exploits the job preemptive feature to
free resources to execute first new submitted job with an earliest deadline.
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Table 5: Results obtained by running the algorithms branch&bound and
MKP on the same job streams instances.

Licence ratio branch&bound
Time (ms) Sml (%) Avg (%) Bst (%)

[40− 45] 496.53 0.57 0.87 1.00
[45− 50] 353.51 0.62 0.88 1.00
[50− 55] 331.28 0.64 0.89 1.00
[55− 60] 556.96 0.64 0.88 1.00

Licence ratio MKP
Time (ms) Sml (%) Avg (%) Bst (%)

[40− 45] 11.23 0.54 0.82 1.00
[45− 50] 10.40 0.59 0.84 1.00
[50− 55] 10.42 0.62 0.87 1.00
[55− 60] 11.90 0.63 0.87 1.00

To evaluate the quality of the solutions carried out by the MKP al-
gorithm, tests were conducted generating instances of job streams vary-
ing the value of the Licence ratio parameter in the ranges [40% − 45%],
[45% − 50%], [50% − 55%], [55% − 60%], and fixing the job inter-arrival
times at 10 simulator time unit. Table 5 shows the results obtained by
running the branch&bound and MKP algorithms on the same job streams
instances. For each instance and algorithm, the Table reports: the small-
est (Sml), the best (Bst) and the average (Avg) percentage value of licence
usage, and the average algorithm execution time (Time).

As expected, the smaller the contentions are (i.e. for higher
Licence ratio value), the greater the probability that MKP carries out
solutions closer to the optimal one is. MKP is able to find solutions
that are on average 3% distant from those found by the branch&bound
algorithm, by saving 97% of CPU time.

To evaluate the schedules carried out by the CS schedulers, we gen-
erated seven streams of jobs with jobs inter-arrival times (Ta in Figure
19) fixed equal to 4, 6, 8, 10, 12, 16 and 20 simulator time unit (4 ÷ 20 in
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Figure 19: System workload through simulations.

Figures 20, 21, 22, 23). As shown in Figure 19, each stream leads to a dif-
ferent system workload through a simulation run. The system workload
was estimated as the sum of the number of jobs ready to be executed plus
the number of jobs in execution. The shorter the job inter-arrival time is,
the higher the contention in the system is. As it can be seen, when the
jobs inter-arrival time is equal or greater than 12 simulator-time units the
system contention remains almost constant through the simulation: this
is because the cluster computational power is enough to prevent the job
queue from increasing.

We first measured the percentage of jobs executed that do not respect
their deadline. Figure 20 shows this value for the seven job stream distri-
butions. As expected, the smaller the job inter-arrival time is, the greater
the job competition in the system is, and consequently the number of late
jobs improves. Satisfactory results are obtained when the available clus-
ter computational power is able to maintain almost constant the system
contention. The three backfilling algorithms and EDF obtain worse re-
sults than those obtained by all the CS schedulers. Moreover, CS i p and
CS ni p obtain equal or very close results demonstrating that the CS in-
cremental version can be used without loss of results quality.

Figure 21 shows the slowdown parameter evaluated for jobs without
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Figure 20: Percentage of jobs executed missing their deadline.

the deadline. This parameter gives us as the system load delays the ex-
ecution of such jobs. As it can be seen, for job streams generated with a
inter-arrival time equal or greater than 10 simulator time unit, jobs sched-
uled by using a CS scheduler obtained a Slowdown equal or very close to
1.
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Figure 21: Slowdown of jobs submitted without deadline.

In Figure 22, the percentage of machine usage is shown. Since the
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Figure 22: Percentage of machine usage.

considered algorithms do not support the processor space sharing allo-
cation policy, this measure permits us to roughly figure out the system
utilization. It is obtained averaging out the value:

# of active machines

min(# of available machines,# of jobs in the system)

computed at each instant of a simulation. A machine can remain idle
when it does not support all the hardware/software requirements re-
quired by a queued job. We can see the CS algorithms schedule jobs in
a way that permits to maintain all the system machines always busy.

In Figure 23, we show the average scheduling times spent by the
schedulers for conducting the tests on the simulated computational en-
vironment. As expected, the CS versions which support the preemption
feature require more execution time. CS i p and CS i np obtain a lower
execution time than CS ni p and CS ni np, respectively.

In Figure 24 we show the scalability for the CS and EDF algorithms.
The CS scheduler scalability was evaluated for the versions using the in-
cremental approach (CS-incr) and non using the incremental approach
(CS-noincr) both using the job preemption feature. It was evaluated mea-
suring the time needed to carry out a new scheduling plan increasing the
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Figure 23: Average scheduling times.
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Figure 24: Algorithm scalability.

number of jobs. It can be seen that the CS-incr versions obtained very
good scalability results.
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4.3 Multi-Level Framework

In this section we present the evaluation of the scheduling solution car-
ried out by the proposed two-level scheduler. To evaluate the proposed
solutions we exploited four metrics:

• Percentage of workload elaborated by each cluster. It shows in
which way the MS scheduling policies work.

• Percentage of jobs that miss their deadline. It shows the ability of
our multi-level scheduling framework to schedule jobs in such a
way it maximizes the number of jobs that respect their QoS require-
ments.

• Percentage of system and software licence usage. It shows as the
job classification and scheduling solutions adopted both at MS and
LS level allow a fruitful exploitation of the available processors and
software licences.

• Average Slowdown of jobs without deadline. It shows how the sys-
tem load delays the execution of such jobs. It is computed as:

Slowdown(i) = Twi+Tei

Tei

AverageSlowdown =
∑

i Slowdown(i)

# of processed jobs

Where Twi and Tei are the waiting and the execution time of the job
i, respectively. AverageSlowdown closes to 1, it means the scheduler
is able to exploit the available computational power avoiding the LS
job queues increasing.

In our evaluation we combine the MS with the Flexible Backfilling we
developed, and with a variant of the Convergent Scheduler we present in
section 3.2.2. In the next sections we will describe the conducted experi-
ments. To evaluate the interaction of MS with the Flexible Backfilling we
employ the simulator defined in (43), to evaluate the interaction of MS
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with the CS we employ the GridSim simulator (20). In both cases we syn-
thetically generate the streams of jobs we used, this because of the most
real streams of jobs we found in literature do not allow the job request of
licences and the job deadline time specification (25; 36). Furthermore, the
real streams of jobs we analyzed concern with the execution of jobs on a
homogeneous cluster, instead, we design our platform in such a way it
is composed of different machines, where each one can be a cluster, or a
workstation, or a multicore machine, spread on different sites.

4.3.1 Meta-Scheduler - Flexible Backfilling Interaction

The objectives of this experimental phase is to evaluate the feasibility of
the Meta-Scheduler scheduling policies, and of the job classification we
proposed (Section 3.1). Three different cases were evaluated:

1. MS Heuristics: in which, at LS level scheduling decision are made
by means of a Flexible Backfilling algorithm, which exploits job pri-
orities computed by MS. Any job classification is performed at LS
level. Higher the job priority is, higher the position of the job in
LSs’ queues is.

2. LS Heuristics: in which, at LS level we employed the Flexible Back-
filling presented in section 3.2.1. The incoming jobs are classified by
exploiting the heuristics defined for our FB3, and jobs are scheduled
on the cluster machines by using a Flexible Backfilling algorithm.
Job priorities are recomputed at each new scheduling event (sub-
mission/ending of a job). This introduce a computational cost not
present in the previous case.

3. NO Heuristics: in which jobs are scheduled at both MS and LS level
according to the FCFS order without computing priorities. At LS an
EASY Backfilling algorithm is used.

3Heuristics constant values used in our tests: Deadline (MAX = 20.0, MIN =
0.1, k = 2), Anti-aging (age factor = 0.01), Licences (W = 1), Wait minimization
(priority boost value = 2.0).
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Table 6: Meta-Scheduler - Flexible Backfilling Interaction: Range of values
used to generate streams of jobs, machines and software licences.

Parameters Jobs Machines Sw Licences
Estimated 8000-10000

Benchmark 100-500 100-500
Margin 1500-5500

CPU 1-8 4-32
Licence needs 30%
Licence ratio 50%-70%

Licence Suitability [100%]

The evaluation of the interaction between MS and the Flexible Back-
filling we propose was conducted by using the described event-based
simulator (43), exploiting four streams of jobs with jobs inter-arrival times
(Ta in Figure 25) fixed equal to 0, 5, 10, and 15 simulator time unit.

The job submission time is driven by the wall clock. When the
wall clock reaches the job submission time, the job enters in the simula-
tion. The simulation ends when all jobs are elaborated. We use the space
sharing policy to allocate jobs on machines.

The evaluation was conducted by using a stream of 5000 not preempt-
able, independent jobs, 20 different types of software licence, and a grid
composed by 225 machines, distributed on four different clusters, each
one including 120, 60, 30, and 15, respectively.

For each simulation, we randomly generated streams of jobs, whose
parameters are generated according to a uniform distribution in the
ranges of values showed in Table 6. Both job, machine, and licence pa-
rameters are generated according to the range values showed in Table 6.

In order to obtain stable values, each simulation was repeated 20 times
with different job attributes values.

For each simulation, 30% of jobs were generated without deadline,
and the deadlines of the job i is generated according to the following ex-
pression:

deadlinei = Submissioni + Estimatedi +Margini
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Figure 25: Average clusters load.

Figure 25 shows the average percentage of workload assigned to each
cluster through simulations. Such percentage is computed as the ratio
between the workload due to the jobs assigned to a cluster, and the work-
load due to all the jobs in a simulation.

The workload distributions carried out by the proposed policy are
functions of the job stream to be scheduled, the job inter-arrival times,
and the clusters computational power. Since at LS level a Backfilling al-
gorithm is used, the exploitation of cluster machines is function of the
number and kind of jobs queued to a cluster. Greater the number of jobs
of different kind is, greater the capacity of Backfilling to efficiently exploit
the underlying computational resources is. A more efficient exploitation
of the machines of a cluster, leads to quickly “unload” its LS queue. This
way improves the probability that such cluster will receive more work-
load than the less efficiently used ones.

The optimal cluster workload distribution (Optimal in Figure 25) is
computed as the ratio between the number of machines belonging to a
cluster and the number of available machines. Ta = 0 simulates the case
in which all jobs are submitted at the same time, and are dispatched be-
fore to start their execution. Since MS dispatchs jobs according to the
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workload due to LS queued jobs, all clusters obtain the same amount of
workload.

The percentage of workload elaborated by each cluster changes ac-
cording to Ta, and the clusters computational power. Increasing Ta, it
could happen that some clusters are enough powerful to maintains empty
or “unloaded” their LS queue, with respect to other cluster queues. Con-
sequently, MS dispatches a larger number of jobs to such clusters. This
is shown moving from Ta = 5 to Ta = 15. Ta = 5 obtains a workload
distribution that better approximates the optimal one. It is because of the
amount of workload due to the LS queued jobs, properly represents the
clusters computational power. It means that the proposed policy is able
to dispatch jobs among underlying clusters, distributing the workload
proportionally to the actual cluster computational power. To figure out
the quality of the MSs job classification, we show the results obtained by
using Ta = 5 concerning the other studied metrics.

Figure 26 shows the average Slowdown evaluated for each cluster
considering jobs without deadline. It improves in inverse proportion to
the cluster computational power. This because of MS scheduling behav-
ior. MS dispatches jobs among clusters with respect to their queued jobs,
and its objective is to maintain the same workload in each cluster queue.
Consequently, the average jobs slowdown grows to the decreasing com-
putational power of each cluster.

Figure 27 shows the percentage of jobs executed and not respecting
their deadlines. It can be seen that the solution based on the LS and MS
heuristics are able to improve the number of jobs executed within their
deadline, compared to the EASY Backfilling solution. Furthermore, it can
be seen that using only MS job classification carries out results compara-
ble to those obtained by LS, with a smaller computational cost. Further-
more, we have to consider the job distribution performed by MS. This
implies that the number of jobs executed without respecting their dead-
line in the case of the cluster 1 it means hundred of jobs, instead in case
of the cluster 4 means only few jobs.

Figures 28 and 29 show the percentage of system and software licence
usage, respectively. These values are computed according to the follow-
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Figure 26: Average Slowdown of jobs without deadline.

Figure 27: Percentage of jobs executed missing their deadline.

ing expression:

# of active res

min(# of available res,# of res requested by jobs)

where res means “processors” or “software licences” when system or
software licence usage is computed, respectively.
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Figure 28: Average percentage of processor usage.

Figure 29: Average percentage of sw licence usage.

All solutions obtain similar results. Smaller is the number of the ma-
chines within a cluster, greater are both the processor fragmentation and
the contention on software licences, and it leads to a smaller system and
software licence usage.
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4.3.2 Meta-Scheduler - Convergent Scheduler Interaction

The interaction of MS with the Convergent Scheduler was conducted ex-
ploiting the GridSim simulator (20).

The GridSim toolkit provides a facility for simulation of different
classes of heterogeneous resources, users, applications, resource brokers,
and schedulers. It can be used to simulate application schedulers for
single or multiple administrative domain distributed computing systems
such as clusters and Grids. Application schedulers in the Grid environ-
ment, called resource brokers, perform resource discovery, selection, and
aggregation of a diverse set of distributed resources for an individual
user. This means that each user has his or her own private resource
broker and hence it can be targeted to optimize for the requirements
and objectives of its owner. In contrast, schedulers, managing resources
such as clusters in a single administrative domain, have complete control
over the policy used for allocation of resources. This means that all
users need to submit their jobs to the central scheduler, which can be
targeted to perform global optimization such as higher system utilization
and overall user satisfaction depending on resource allocation policy or
optimize for high priority users. We extend the GridSim simulator in
order to exploit it with our scheduling infrastructure.

We combined MS with an extend version of our Convergent Sched-
uler (43), which support the Space Sharing policy. The evaluation was
conducted comparing the results obtained by the Convergent Scheduler
with: the FCFS, the EASY Backfilling, and the Flexible Backfilling we pro-
posed. The priority computed by MS are used only by the MS’s Order-
ing scheduling function, at LS level job priorities are computed at each
scheduling event only by the CS4, and Flexible Backfilling exploiting the
described heuristics5 (Section 3.2).

4Heuristics constant values used in our tests: Deadline (MAX = 10.0, MIN = 0.1, k =
1.3), Input (IN = 3.0), Overhead Minimization (∆ = 800.0), Anti-aging (age factor =
0.02), Licences (LI = 2.5), Wait minimization (W = 4.0).

5Heuristics constant values used in our tests: Deadline (MAX = 20.0, MIN =
0.1, k = 2), Anti-aging (age factor = 1.1), Licences (W = 1), Wait minimization
(priority boost value = 2.0).
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Table 7: Meta-Scheduler - Convergent Scheduler Interaction: Range of val-
ues used to generate streams of jobs, machines and software licences.

Parameters Jobs Machines Sw Licences
Estimated 8000-10000

Benchmark 100-500 100-500
Margin 1500-5500

CPU 1-8 4-32
Licence needs 30%
Licence ratio 50%-70%

Licence Suitability [100%]

We used a stream of 5000 not preemptable, independent jobs, 20 dif-
ferent types of software licence, and a grid composed by 225 machines,
distributed on four different clusters, each one including 120, 60, 30, and
15, respectively. We employed four streams of jobs with jobs inter-arrival
times fixed equal to 0, 5, 10, and 15 simulator time unit. Both job and
machine parameters are generated according to the range values showed
in Table 7.

Figure 30 shows the average percentage of workload assigned to each
cluster through simulations. Such percentage is computed as the ratio
between the workload due to the jobs assigned to a cluster, and the work-
load due to all the jobs in a simulation. The optimal cluster workload
distribution (Optimal in Figure 30) is computed in the same way as for
the MS - Flexible Backfilling interaction: the ratio between the number of
machines belonging to a cluster and the number of available machines.

In Figure 30, Ta = 0 simulates the case in which all jobs are submitted
at the same time, and are dispatched before to start their execution. As de-
scribed in the previous section, the goal of MS is to balance the workload
among LS using information about jobs stored in each LS queue. This
means that, if no jobs are executed at LS level, MS assign to each cluster
the same amount of workload.

Increasing Ta some clusters are enough powerful to maintains empty
or “unloaded” their LS queue with respect to other cluster queues. In
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Figure 30: Average clusters load.

this case, MS is able to estimate the computational power of each cluster,
and it assigns jobs according to both the stream inter-arrival time feature,
and the cluster computational power. Moving from Ta = 5 to Ta = 15
it can be seen that Ta = 10 obtains a workload distribution that better
approximates the optimal one. It is because of the job stream features
allow MS to fruitful exploit the underlying computational platform. To
figure out the quality of the LS scheduling, we show the results obtained
by using Ta = 5 concerning the other studied metrics. Ta = 5 shows that
the jobs wait for execution for a long time. This implies that MS assigns a
percentage lower than the optimal one to the most powerful cluster and
a percentage higher than the optimal one to the less powerful cluster. In
this way, the jobs assigned to the less powerful cluster are disadvantaged
respect to the others. Ta = 15 shows a scenario in which the job stream
is not sufficient to exploit all the computational power of the simulated
platform. The inter-arrival time is too large, and the most powerful
cluster is able and sufficient to execute the almost the 70% of the jobs. In
this case, the percentage of jobs assigned to the smallest cluster is close to
0.
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Figure 31: Percentage of jobs executed missing their deadline.

In figure 31 it is shown the percentage of jobs executed without
respecting their deadline using different algorithms as Local-Scheduler.
The aim of the Convergent Scheduler is to maximize the number of job
executed whiting their deadline, and figure 31 shows that CS outper-
forms the other exploited algorithms, scheduling jobs in such a way that
almost the 97% execute whiting their deadline. The percentage of jobs ex-
ecuting out of their deadline increases exploiting the Flexible Backfilling,
because, even if it addresses the deadline constraint, it does not exploit
dynamic resource information to make scheduling decisions (Section
3.2.1), the EASY Backfilling and the FCFS, because these algorithms don’t
address explicitly the deadline constraint.

In figure 32 it is shown the average Slowdown for the jobs without
deadline. In this case the performance of the Convergent Scheduler is
worse than the other algorithms because it delays the execution of such
jobs to favor the execution of the jobs with deadline.
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Figure 32: Average Slowdown of jobs without deadline.
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Chapter 5

Related Results

In this chapter we present two research lines we follow during the Thesis
study, which are not part of the main topic of the Thesis.

The first ones concerns to the application of autonomic aspect to the
Meta-Scheduler classifier. We focus our research on the self-optimizing
aspect (Section 5.1). We propose a formal definition of a self-optimizing
classification system, and a design pattern exploitable to implement such
kind of systems (30). Eventually, we show the feasibility of our method-
ology, and we present some preliminary experiments.

The second research line concerns to the comparison of our Flexible
Backfilling with a schedule-based system proposed by Dalibor Klusáček
and Hana Rudová of the University of Brno (62). These kind of schedulers
make resource planning for the present and the future, which results in
an assignment of start times to all jobs on a specific machine. This results
in a different approach to the scheduling problem from that presented in
the Chapter 3, which is a queue-based scheduler. We present the solution
developed by Klusáček based on Earliest Gap-Earliest Deadline First, and
Tabu Search techniques. Eventually, we show the results carried out by the
comparison of our Flexible Backfilling and the proposed schedule-based
system.
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5.1 Autonomic Aspects

The classification mechanism we presented in the Chapter 3 exploited by
the Meta-Scheduler is statically defined. This means that it exploits a set
of heuristics applying them to classify incoming jobs without consider-
ing any dynamic changes of the job characteristics. In such a way, it can
happens that the carried out classification does not “expresses and aggre-
gates” the job QoS requirements, and two distinct jobs, with different QoS
requirements, could be labeled with the same priority value. To overcome
this limitation we studied the features of autonomic systems, and how to
apply them to our classifier (12; 78; 79).

The Autonomic Computing is an initiative started by IBM in 2001 (aka
ACI (55)), with the presentation of its manifesto (56). Its aim is to cre-
ate self-managing computer systems to overcome their rapidly growing
complexity and to enable their further growth. The manifesto states that
a system, to be autonomic, must have the following properties:

• self-configuring, which is the ability of systems to handle reconfig-
uration inside thyself,

• self-healing, which is the ability of systems to provide their services
in spite of failures,

• self-optimizing, which is the ability of systems to adapt their con-
figuration and structure in order to achieve the best/required per-
formance.

• self-protecting, which is the ability of systems to predict, prevent,
detect and identify attacks, and to protect itself against them

In this section we describe which are the fundamental elements
needed to make self-optimizing a strategy-based job classification sys-
tem. The aim is to provide to the Meta-Scheduler mechanisms to recog-
nize mismatches between actual and expected classifier behavior (with
respect to a target behavior), and to provide to it the capability to adapt
itself.
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Our approach is not intended to be either too abstract or too formal.
We describe with a high-level notation the elements that a designer needs
to care about when designing a self-optimizing classifier. The challenge
is to provide technique that enables software systems to evolve in order
to remain useful (5), but to do so in a way that does not incur downtime
as traditional maintenance processes do (91).

5.1.1 Formalization of Priority Classification Systems

A priority classification system S can be formally described with the fol-
lowing higher-order function:

fS : I × Fstrategy −→ O. (5.1)

Where I is the set of all possible item that need to be classified,
Fstrategy is the set of all the possible strategy-functions, and O ⊂ N is
a finite set of output values. A strategy-function fstrategy ∈ Fstrategy is
defined as:

fstrategy : I → O

The system S applies fstrategy to each input i ∈ I in order to obtain a
priority value p ∈ O.

A priority classifier system can be defined self-optimizing when it is
able to adapt itself in order to maintain good classification performance
whatever an input comes into the system. From our perspective, a pri-
ority classifier offers a good performance when it is able to satisfy two
requirements:

• the priority value assigned to each input item is well-proportioned
to the item relevance (i.e. very important item must have a very
high priority)

• the priorities assigned by the system must be coherent with a spec-
ified target policy
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There are two different approaches to design a classifier able to
achieve good performance, hence address the reported requirements. The
first one consists in using a fstrategy designed with a deep knowledge
about the items that the classifier has to classify: a strategy-function
strictly tailored to the item that will be classified, able to manage every
possible input stream. The other approach is to design a self-optimizing
classifier able to change the strategy-function taking care of the priorities
assigned to a finite portion of the past classified items. This partial infor-
mation is used by the self-optimizing classifier to analyze the trend of the
distribution of the priorities. Such information drives the tuning of the
strategy-function behavior.

To model the self-optimization nature of the classifier we need to en-
rich the definition previously introduced for the strategy-function based
classification system. Namely, we need to define how the strategy function
can be modified to enhance its performance. This requires a reconfigu-
ration mechanism able to modify the strategy function and an evaluation
mechanism able to evaluate the historical data and to drive, through the
reconfiguration mechanism, the changes in the strategy-function. As we
will show in section 5.1.3, we employ this key concepts to define a design
pattern for autonomic stream-classification-systems.

Formally, the reconfiguration and evaluation mechanisms can be
modeled using the two following functions:

Feval : H × C −→ C (5.2)

Freconf : C −→ Fstrategy (5.3)

WhereH is the set of all possible historical data. C is the configuration
used by Freconf to select an appropriated strategy-function among the
available.

Every time the system completes the computation of a new item, Feval

evaluates the priority distribution dcurrent obtained analyzing the current
historical data hcurrent ∈ H . If the result of this evaluation highlight an
incoherence between the dcurrent distribution and the target policy dtarget,
Feval generates a new configuration c ∈ C. If Feval does not recognize any
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incongruence, it simply returns as new configuration the current one.

When a new configuration is available, Freconf uses this configuration
in order to select a novel and more appropriate fstrategy in the Fstrategy

set.

5.1.2 Polytope

In the formalization proposed, the self-optimizing classification system
can access to an unlimited set of historical data, and it generates a new
strategy function if Feval recognized any difference between the dcurrent

and dtarget. However, more realistic systems can only access to a finite
set of historical data, and their reconfiguration mechanisms do not gen-
erate a new strategy function every time that the classifier does not work
as expected. Indeed, in a real scenario, the evaluation mechanism should
trigger strategy function changes only when the current behavior of clas-
sifier is quite different to the expected one.

In order to formalize these concepts, we introduced the concept of
polytope. Consider the output of Feval as a point in a geometric space.
The value range in which it is free to move, without implying a reconfig-
uration of the strategy-function, is a polytope.

We can define the polytope P of a strategy-function S the set of Feval

outputs c that don’t trigger the strategy-function reconfiguration. For-
mally:

P = {Sc | AcceptanceS(Sc)}

where AcceptanceS is a boolean function that returns true if the strategy-
function behavior is acceptable.

From a formal point of view, in order to consider the polytope, the
Feval function must be changed. Indeed, it has to generate a new fstrategy

configuration only if dcurrent does not belong to P :

Feval : H × C × P −→ C
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5.1.3 Self-Optimizing Design Pattern
for Priority Classification Systems

In this section, we present our self-optimizing behavioral design pattern
derived from the formalization of a strategy-driven classification system.
The aim is to provide a general repeatable solution easing the design of
self-optimizing classification systems.

According to our formalization, a classification system is character-
ized by three components: an InputStream, a Classifier and an Output-
Stream. They can be represented in the following way:

• INPUTSTREAM: a stream (or set) of independent elements I among
which there are not functional dependencies.

• CLASSIFIER: a classification function (f ) applied to each element of
I .

• OUTPUTSTREAM: a stream (or set) of elements O such that each
element is e′i = f(ei) with ei ∈ I and e′i ∈ O.

The CLASSIFIER retrieves each input element from the INPUTSTREAM,
then it classifies the element eventually sent to the OUTPUTSTREAM. Typ-
ically, the classification is driven by a policy specified by the classifier ad-
ministrator.

Conceiving our self-optimizing pattern for classification systems we
have taken inspiration from the GoF strategy pattern (44). The main en-
tity of our pattern is called STRATEGY. It is able to classify the items,
to evaluate itself, and to change its behavior accordingly to some rules.
To perform these tasks STRATEGY uses three entities: DATAREPOSITORY,
EVALUATOR and RECONFIGURATOR. Their behavior can be described as
follows:

• DATAREPOSITORY: it is an entity that holds up to a (finite) num-
ber of past input elements coupled with the respective computed
outputs.

• EVALUATOR: it is an entity able to suggest a STRATEGY reconfigu-
ration. It takes as input the current configuration of the STRATEGY

108



and using the knowledge stored in the DATAREPOSITORY, EVALU-
ATOR suggests a change in the STRATEGY behavior.

• RECONFIGURATOR: it is an entity that, taking as input the STRAT-
EGY and the output of EVALUATOR, it is able to reconfigure the
STRATEGY, acting onto its specific tuning parameters, in order to
optimize its performance.

The CLASSIFIER forwards the items retrieved from the INPUTSTREAM

directly to the STRATEGY. Before classifying the items, The STRATEGY

evaluates its own configuration by invoking the EVALUATOR. The EVAL-
UATOR reads the past input/output from the DATAREPOSITORY and then
it evaluates the adherence of the classifier behavior with respect to the
given classification policy. If the behavior is different from the expected
one, the EVALUATOR suggests a change in the STRATEGY configuration.

If a reconfiguration is needed, STRATEGY invokes RECONFIGURATOR

passing it, as input parameters, itself and the reconfiguration suggested
by the EVALUATOR. The RECONFIGURATOR retrieves the tuning param-
eters of the STRATEGY through which it changes the configuration and,
in consequence, the behavior of STRATEGY. After the reconfiguration
step the STRATEGY computes the output values accordingly to its new
configuration and stores both the input and the computed output into
DATAREPOSITORY. Finally, the STRATEGY sends the computed output
back to the CLASSIFIER that in turn send it to the OUTPUTSTREAM.

A UML schema of the packages and classes that implements our self-
optimizing design pattern is depicted in Figure 33. The higher part of
the figure represents the classification system, made up of the CLASSI-
FIER entity, the INPUTSTREAM entity and the OUTPUTSTREAM entity. In
the lower part of the figure, it is represented our self-optimizing pattern
belonging to a package. The pattern package is made up of four entities:
the EVALUATOR, the STRATEGY, the DATAREPOSITORY and the RECON-
FIGURATOR.

In Table 8 we point out how the formal model of we defined for a
classifier can be mapped into the proposed design pattern.
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Figure 33: UML schema of the proposed autonomic strategy pattern.

Abstract Model Functions Design Pattern Components
I InputStream
fstrategy Strategy
Feval Evaluator
Freconf Reconfigurator
H DataRepository
O OutputStream

Table 8: Abstract Model - Design Pattern mapping

5.1.4 Case study

In this section we describe how to exploit the proposed model applying
the design pattern we defined to a real scenario. We developed a classifier
derived from that used by the Meta-Scheduler. In particular, we design
a self-optimizing classifier based on the Deadline heuristics defined in
section 3.1.1. This choice was driven by our will to implement a simple
case of study, in which operates only one heuristics. In this way, it is
simple to recognize bad heuristics behaviors, and, it also makes easier
to understand how the self-optimizing classifier can change its behavior.
In section 5.1.5, we present some preliminary results, and we show the
feasibility of our design pattern.
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To make the Deadline heuristics self-optimizing, and to enable it to
compute a profitable priority distribution in any situation, we need to
point out the cause of unprofitable priority distributions: the large differ-
ences of the Margin value among jobs (Section 3.1.1).

For instance, suppose that the job stream could be divided in two sub-
streams: in the first one the job are characterized by high values of the
Margin parameter, in the second one by low values.

In the boundary regions between the two consecutive job sub-streams,
Deadline produces a classification in which jobs priorities are concen-
trated in extremely low (or high) values. Nevertheless, the Deadline
heuristics continues to perform properly if each job sub-stream length
is sizable. This is because of after a transient state the average Margin

used by the heuristics changes approaching to the average Margin of
the current job sub-stream. It permits to the Deadline heuristics to work
properly, i.e. to compute job priorities with a distribution faithful to the
exponential one that we refer as the optimal.

To avoid this situation, we should be able to change the way in which
Deadline assigns priorities, and to maintain a proper priority distribution
when the average Margin changes rapidly.

In our implementation of a self-optimizing classifier, we follow the de-
sign pattern previously described. We can map our classifier in a general
classification systems defined by (5.1), where I is the input job stream, the
Deadline heuristics is our strategy function fstrategy ∈ Fstrategy, and O is
the outgoing jobs labeled with a priority value.

The abstract model defines a set of values for the classifier parameters,
in such a way that is possible to modify the classifier behavior changing
those values. In our implementation, we enrich Deadline with a param-
eter base, in such a way it is able to change its behavior. We modify the
expression (3.4) in:

MinUnity =
2 ∗ E[Margin]∑max

k=1 base
k
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In this way the interval subdivision showed in figure 10 can be changed
dynamically changing the base parameter.

We designed the Eval and Reconf components, which implement
the Feval (5.2), Freconf (5.3) functions respectively. The historical data (i.e.
Data component) and the configuration setting taken as input by Eval
are the priority values of the past analyzed jobs, and the current base
value respectively. The output of the Eval component is a new value of
the base parameter. Reconf produces a new fstartegy in which the base
parameter is changed according to the Eval output.

In Table 9 we point out how the design pattern components can be
mapped into our classifier implementation.

Classifier components Design Pattern Components
job input stream InputStream
Deadline Strategy
Eval Evaluator
Reconf Reconfigurator
Data DataRepository
prioritized jobs OutputStream

Table 9: Classifier Components - Design Pattern mapping

In our implementation, the polytope is a threshold value δ used to
accept, or not, the reconfiguration carried out by the RECONFIGURATOR.

In order to point out how polytope is used, we introduce the vector
space D with dimension P , where P is the number of possible priority
values, which is a way to represent priority distribution of historical data.
In particular, each priority distribution, obtained from h ∈ H , is repre-
sented with a vector d = (d1, ..dk, .., dP ).

In this context, each component dk of d is a value grater than or equal
to zero and smaller than or equal to one (0 ≤ dk ≤ 1 ∀k=1,..,P ). It repre-
sents the percentage of jobs belongings to historical data h to which the
system has assigned the priority k ∈ P . Since each component dk is a
percentage grater than zero and smaller than one, the sum of all dk must
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be equal to one (
∑P

k=1 dk = 1). We enforce this last constraints by using
the Norm (‖.‖1).

The polytope is defined as:

P = {d : ‖d− dtarget‖1 ≤ δ}

It characterizes the permissible working region as the set of all priority
distributions that are “far” from the target distribution of a quantity less
than or equal to a certain radius δ. In this context the measure of the
distance is performed using the Euclidean Norm (‖.‖2).

In other words, if dcurrent belongs to the polytope P it means that the
distance between dcurrent and dtarget is smaller than the fixed radius δ,
hence fstrategy does not need to be reconfigured, otherwise a new recon-
figuration is performed.

5.1.5 Experiments

To evaluate the goodness of the self-Optimizing DeadLine Heuristics (ADH)
solution, we conducted simulations applying the classification algorithm
to a stream of jobs characterized by a high variability of the Margin pa-
rameter.

To conduct the evaluation, we developed an ad-hoc event-driven sim-
ulator. For each simulation, we randomly generated a job-stream whose
Margin parameter was generated according to different distributions
and described in each test. A simulation step includes: (1) selection and
classification of new job, (2) update of the system and heuristics state,
(3) verify the correct behavior of the system, and eventually, perform the
system adaptation. The time of job submission is driven by the wall clock.
When the wall clock reaches the job submission time, the job enters in the
simulation.

The aim of the experimentation phase was to carry out a job priority
distribution according to an administrative policy constituting the input
of the proposed heuristics: system administrators can define a relation
among the number and the kind of jobs in the system.
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Figure 34: Deadline and ADH evaluation in the case of a uniform distribu-
tion of the Margin parameter

In our tests, the relation on the number of jobs for each priority is
characterized as relation 3.2. We have five classes of priority in our simu-
lations, afterwards the possible priority values that a job can assume are
in [0, 4].

In our experiments we compare the ADH and the DeadLine heuristics
(Section 3.1.1). The performance metric used is the faithful of the classifi-
cation given by these two heuristics, with the classification given by the
exponential distribution described in 3.2, which we consider the optimal
one in our case study.

Figure 34 shows the behavior of the DeadLine heuristics, and of its
self-optimizing version (ADH), compared to the optimal solution, when
the Margin of each job is uniformly generated. In this case ADH is never
invoked because the DeadLine heuristics is good enough to model this
situation and there is not need to operate to modify its behavior.

Table 10 shows the range values used to generate the Margin in the
uniform case. The first column of the table shows sub-streams of jobs that
have the same range of Margin, the second column shows the range for
the specific job sub-stream. Obviously, in the uniform case all the jobs
belong to the same range.
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#Jobs Margin Range
2000 0-200

Table 10: Range values for the Margin parameter in the case of uniform
distribution

Figure 35 shows the trend of the Margin parameter in a non-
uniformly distributed jobs generation, compared with the behavior of
the base value (b in figure), that is the base to compute the division of
the range in QoS buckets. We can note that the average Margin quickly
changes in a not predictable way. Moreover, base of the ADH frequently
changes in order to control the generated jobs priority distribution. Table
11 shows the four job sub-streams in which we divided the job-stream,
and the range of Margin values used in these tests.

#Jobs Margin Range
400 2000-4000
550 0-200
350 2000-4000
700 100-200

Table 11: Range values for the Margin parameter in the case of a not-
uniform distribution.

Figure 36 depicts the priority distribution carried out using ADH and
the DeadLine heuristics, compared with the optimal solution when the job
deadline is generated according to the Table 11. The results point out that
the autonomic heuristics lacks of accuracy for the low priority jobs, but
it is close to the optimal solution for the jobs with high priority. Further-
more, ADH trend respects the optimal solution. The DeadLine heuristics,
by itself, is not able to handle changes in the Margin distribution: this
because the Margin parameter falls down too fast with respect to its av-
erage value.

The two last figures show the behavior of the system when the
Margin parameter is stable for some elements of the job-stream, namely
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Figure 35: Deadline and ADH evaluation in the case of a not-uniform distri-
bution of the Margin parameter

Figure 36: Deadline and ADH evaluation in the case of a not-uniform distri-
bution of the Margin parameter

the intervals [1000-1100] and [1300-1500]. Figure 37 shows that base does
not change when the slope of theMargin average curve is not steep. This
implies that the DeadLine heuristics assignments are profitable. In the
other cases, when the curve sheers or falls down, the ADH intervenes to
adapt heuristics behavior.

Table 12 shows the job-stream subdivision and the range of Margin
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Figure 37: Margin average and base trend

values defined for each job sub-stream.

#Jobs Margin Range
500 3000-4000
500 100-200
500 500-700
500 100-200

Table 12: Range values for the Margin parameter in the case of a not-
uniform distribution.

Finally, Figure 38 shows the behavior of the system according to a job
deadline generation described in Table 12. The DeadLine heuristics is not
able to recognize hot spots in the QoS buckets. In fact, when a lot of jobs
with the same Margin are submitted to the system, they receive the same
priority. Instead, ADH is able to change the base value to compute a better
division of the interval and it is able to satisfy the administrator policy.
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Figure 38: Deadline and ADH evaluation in the case of a not-uniform distri-
bution of the Margin parameter

5.2 Schedule-Based Algorithm

The scheduling framework proposed in Chapter 3 can be classified as a
queue-based system. A queuing system aims to assign free resources to
waiting jobs (60). The highest prioritized job is usually the queue head. If
not enough resources are available to schedule any of the queued jobs, the
scheduler waits until enough resources become available. As we showed,
strategies to improve the quality of the scheduling cab be applied, and a
lot of research efforts have been successfully devoted to this purpose.

In this section we present a different approach that was investigated
by Klusáček and was compared with our Flexible Backfilling described in
section 3.2.1: a schedule-based approach (62). This approach allows precise
mapping of jobs onto machines in time. This permits to use advanced
scheduling algorithms (82), such as local search methods (48), to optimize
the computed schedules.

Schedule-based systems make resource planning for the present and
the future, which results in an assignment of start times to all jobs on
a specific machine. Job execution estimates are mandatory in this ap-
proach. With this knowledge, advanced reservations are easily possible.
In these systems every incoming jobs are immediately analyzed and they
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are planned in the schedule (60). Due to their computational cost, these
approaches were mostly applied to static problems assuming that all jobs
and resources are known in advance. This allows to create schedule for
all jobs at once.

In this section we describe a novel schedule-based solution to sched-
ule dynamically arriving batch jobs on the machines of a computational
grid. This approach exploits dispatching rule, which is used to create an
initial schedule, and local search, which optimizes the initial solution ac-
cording to the objective function, in an incremental fashion (27). This
means that current computed schedule can be used as the starting point
to build new schedules after each job arrival. This leads to a reasonable
computational cost since the schedule is not rebuilt from scratch. A multi-
criteria approach is proposed, it is based on providing nontrivial QoS
to end users, while satisfying the system administrators requirements as
well. Moreover, efficient method is developed to detect and fill existing
gaps in the schedule with suitable jobs. It allows to increase both the QoS
and machine usage by limiting fragmentation of the processor time.

5.2.1 Earliest Gap-Earliest Deadline First Rule

The Earliest Gap-Earliest Deadline First (EG-EDF) dispatching rule places a
new submitted job into the existing schedule to built the schedule incre-
mentally. In this way, the scheduler can compute new scheduling plans
saving running time for scheduling, since a new plan is not re-computed
from scratch. To do this, the scheduler has to insert new jobs in the
scheduling plan avoiding gaps, otherwise, resource utilization may drop
quickly. We define a gap as a period in which there are idle CPUs. A
new gap appears in the schedule every time some available CPUs can not
be assigned to any job because of the number of available processors is
lower than the number of requested by each job. In such situation, job
has to be placed in the schedule to a time in which a sufficient number of
CPUs is available. This introduce a gap in the schedule, and the job must
be delayed until there are enough resources needed to perform it. Gaps
generally lead to processor fragmentation which results in a bad system
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utilization.
In order to reduce the processor fragmentation, a method able to op-

timize the scheduling plan by placing the jobs into existing gaps is devel-
oped. This is a key part of our EG-EDF rule. Suppose a new job i arrives
into the system, exploiting the existing schedule, the Earliest Gap (EG)
suitable to perform the job i is identified for each machine. Let S denotes
the number of found EGs suitable to perform i (S ≤ # of Machines)
Three different cases are considered: S ≥ 2, S = 1, and S = 0.

S ≥ 2 means there are more than one EG suitable for the job assign-
ment. We compute a weight for each schedule carried out supposing to
assign the job i to different EG (i.e. to different machines). The sched-
ule with the highest weight is chosen, and i is assigned to the resulting
machine EG (i.e. machine). We define the weight function, computed for
each assignment of i to the each EG, as follows:

weight = weight(makespan) + weight(deadline)

weight(makespan) =
makespan(old) −makespan(new)

makespan(old)

weight(deadline) =
nondelayed(new) − nondelayed(old)

nondelayed(old)

Here the makespan(old) is the expected makespan (e.g. the completion
time of the last job in the schedule) of the current scheduling plan (i.e.
without considering the job i), makespan(new) is the makespan of the
new schedule, in which the job i is assigned to one of the found EGs.
nondelayed(old) and nondelayed(new) are the number of jobs executed
within their deadline before and after the job assignment, respectively.

S = 1 simply means there is just one machine with a EG suitable for i,
and this is used for the job assignment.

S = 0 means that there are no suitable gaps to which assign the job
i. In this case, the scheduler computes the weight function supposing to
assign i to each machine in the system following the Earliest Deadline
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First (EDF) strategy. Each of these assignments is evaluated separately,
and the one with the highest weight is accepted.

5.2.2 Tabu Search

EG-EDF allows to include incoming jobs in the scheduling plan optimiz-
ing the resource usage and increasing the number of jobs executing whit-
ing their deadlines. EG-EDF does not consider the jobs that are part of
the scheduling plan, but it manipulates only with the newly arrived jobs.
In such case many gaps in the schedule may remain. To reduce this ef-
fect, the Tabu Search (47) optimization algorithm is proposed. It consid-
ers only the jobs included in the current scheduling plan and waiting for
execution. Tabu Search can be used also considering the running jobs if
preemption is allowed.

Tabu Search selects the job foreseen the last to be executed in the
scheduling plan of the machine with the highest number of delayed jobs.
Such job is added to the Tabu List if it is not jet present, otherwise it is
discarded to avoid cycling. The Tabu List is built incrementally at each
iteration, and it has a limited size. Jobs are added to the Tabu List in such
a way that the oldest inserted is removed when the list becomes full.

Tabu Search analyzes the selected job to find the EG suitable to per-
form it in the current scheduling plan of the machine with the highest
number of delayed jobs. If a suitable EG is found, Tabu Search computes
the weight function supposing to move the job in this EG scheduling po-
sition.

If weight > 0 it means that moving the job improves the quality of the
current scheduling plan. So, Tabu Search accepts the new scheduling plan
(i.e. it moves the job), the makespan(new) and nondelayed(new) values are
computed, and Tabu Search can perform a new iteration.

Otherwise, if weight = 0 it means that the quality of the current
scheduling plan is not improved. In this case, Tabu Search does not
move the job, and it searches a new EG suitable to perform the job in the
scheduling plan. If none of the remaining machines has a suitable gap
in its schedule, a new iteration is started by selecting a different job not
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present in the Tabu List. It can happen that the machine with the highest
number of delayed jobs contains only jobs present in the Tabu List. Then
the machine with the second highest number of delayed jobs is analyzed
to select jobs to which will be applied the Tabu Search procedure. The
process continues until there are no delayed non-tabu jobs, or the upper
bound of iterations is reached.

5.2.3 Experiments

In order to evaluate the feasibility of the EG-EDF and Tabu Search solu-
tions, some experiments have been conducted. The evaluation was per-
formed by comparing this solution with FCFS, EASY backfilling (Easy
BF), and our Flexible backfilling presented in section 3.2.1 (Flex. BF).

Concerning the Flex. BF, job priorities are updated at each job sub-
mission or ending event, and the reservation for the first queued job is
maintained through events.

We employ the Alea Simulator, which is an extended version of the
GridSim toolkit (20; 28). The evaluation was conducted by simulations
using five different streams of jobs synthetically generated. The jobs sub-
mission time is generated according to a negative exponential distribu-
tion with different inter-arrival times between jobs.

According to the job inter-arrival times a different workload is gener-
ated through a simulation. Smaller this time is, greater the system work-
load is. Fixing the jobs Inter-arrival time equal to 5 time units allows to
avoid the job queue increasing exponentially with respect to the available
computational power (i.e. the simulated platform). Moreover, each job
and machine parameter was randomly generated according to a uniform
distribution in the range showed in table 13, where machine speed rep-
resents the architecture used both for the job execution time parameter
generation, and the considered machine computational power.

The experiments were conducted by simulate a grid platform made
up of 150 machines with different CPU number and speed, and a stream
of 3000 jobs (which parameters are generated according to the range in
Table 13). Job scheduling plans were carried out by exploiting the Space
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Parameters Range of values

job execution time [500− 3000]

jobs with deadlines 70%

number of CPUs required by job [1− 8]

number of CPU per machine [1− 16]

machine speed [200− 600]

Table 13: Range values for the job and machine parameters.

Sharing processor allocation policy, and both parallel and sequential jobs
were simulated. In order to obtain stable results, each simulation was
repeated 20 times with different job streams.

To evaluate the quality of schedules computed by EG-EDF rule and
Tabu Search, we exploited different criteria: the percentage of jobs exe-
cuted missing their deadline, the percentage of system usage, the average
job slowdown, and the time due to the computation of the scheduling
plans.

The system usage was computed at each simulation time by using the
following expression:

System usage =
# of active CPUs

min(# of available CPUs, # of CPUs requested by jobs)

It allows to not consider situations when there are not enough jobs in
the system to use all the available machines. It happens at the beginning
and at the end of the simulation.

The slowdown is computed as (Tw + Te)/Te, with Tw the time that
a job spends in queue waiting to start its execution, and Te the job execu-
tion time. The slowdown shows how the system load delays the execu-
tion of jobs.

In Figure 39 (left) the percentage of jobs executed not respecting their
deadline is shown. As expected, when the job inter-arrival time increases,
the number of late jobs decreases. Moreover, it can be seen that both EG-
EDF rule and Tabu Search produced much better solutions than Flexible
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Backfilling, Easy Backfilling, and FCFS. Tabu Search outperforms all the
other algorithms. In particular, it obtains the same results of EG-EDF rule
when the system contention is low (job inter-arrival time equal to 5). In
Figure 39 (right), the percentage of system usage is shown. Schedule-
based algorithms are, in general, able to better exploit the system com-
putational resources. However, when there is not contention in the sys-
tem the solutions we propose obtained worse results than the other ones.
When the available computational power is able to avoid the job queue
increasing, the Tabu Search and EG-EDF solutions do not improve, or
improve very little, the previous schedule. In this situation, the schedule-
based approach is less effective concerning the resource utilization. In
such situation the schedule is almost empty so a newly arrived job is of-
ten immediately executed on an available machine, therefore the Tabu
Search has a very limited space for optimization moves.

Figure 39: Average percentage of delayed jobs (left) and system usage
(right).

Figure 40 (left) shows the average scheduling times spent by the
scheduler for conducting the tests on the simulated computational en-
vironment. It is computed by measuring the scheduling time at each
scheduling event. The runtime of FCFS is very low w.r.t. to Easy and Flex-
ible Backfilling for which it grows quickly as a function of the job queue
length. Although the Flexible Backfilling has to re-compute job priorities
at each scheduling event, and then has to sort the queue accordingly, it
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Figure 40: Average algorithm runtime (left) and the average job slowdown
(right).

causes minimal growth of its run time compared to the Easy Backfilling.
This is due to the application of an efficient sort algorithm.

Local search based algorithms are often considered to be very time
consuming. Our implementation, which exploits an incremental ap-
proach based on the previously computed schedule, is able to guarantee
a shorter and stable execution time w.r.t. the other algorithms. In partic-
ular, EG-EDF rule is fast and it always generates acceptable schedule, so
we can stop Tabu Search optimization at any time if prompt decisions are
required.

Figure 40 (right) shows the average job slowdown. This shows us how
the system load delays the job execution. As expected, greater the system
contention is, greater the job slowdown is. In this case the better results
are obtained by Tabu Search, which are enough close to those obtained by
the Flexible Backfilling algorithm.
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Chapter 6

Conclusion and Future
Works

Grids enable the sharing, selection, and aggregation of a wide variety of
different resources (e.g supercomputers, storage systems, data sources,
and specialized devices), for solving large-scale computational and data
intensive problems in science, engineering, and commerce. The resources
in grids are heterogeneous and geographically distributed, and are lo-
cated in different administrative domains. This lead to create virtual or-
ganizations, as a temporary alliance of enterprises and/or organizations,
which common aim is to share resources, skills, and competencies, in or-
der to better respond to business opportunities, or to scientific and engi-
neering challenges.

To build a grid infrastructure, it is required that a number of services
are developed and deployed. From the grid administrators‘ point of view,
this includes security and information services, accounting mechanisms,
resource aggregation and allocation. From the users‘ point of view, ser-
vices for application development, scheduling, and execution manage-
ment are needed.

In a grid environment the scheduler plays an important role when
issues like acceptance, usability, or performance of applications and
resources are considered. Grid schedulers assign jobs to specific time
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intervals of resources, such that no two jobs are on any resource at the
same time, or such that the capacity of the resource is not exceeded by the
jobs. The computed job schedule is optimal if it minimizes/maximizes a
given optimality criteria.

In this Ph.D Thesis we studied the grid scheduling problem in one
of its restricted form. We designed a hierarchical grid scheduler able
to manage a set of distributed and heterogeneous resources, organized
as clusters located in specific sites. The target computing grid is a
dedicated one, able to notify configuration changes such as jobs sub-
mission/ending. In our study, we considered a continuous stream of
batch, independent jobs, i.e. jobs that don’t need users interaction to be
executed, and don’t depend on the execution of other jobs. Moreover, we
designed our scheduler in such a way it is able to manage the software
licences, requested by the jobs to execute, as resources to be allocated.
Eventually, we allowed users to specify a deadline for their jobs, this
means that jobs can specify a time at which their execution has to be
finished.

The Thesis work consists of two main research lines:

• the study of a high level scheduler, the Meta-Scheduler, exploited
at the top of the hierarchy to dispatch jobs among the underlying
clusters,

• the study of a low level scheduler, the Local-Scheduler, for which
we investigated two solutions: one based on the Backfilling al-
gorithm, and the other one based on the Convergent Scheduling
technique.

The Thesis presents two important related results obtained by sci-
entific collaborations. The former concerns to the application of the
self-optimizing behavior to one job classification heuristics exploited
at Meta-Scheduler level. The latter concerns to the comparison of our
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Backfilling solution with a Schedule-Based solution proposed by Dalibor
Klusáček and Hana Rudová of the University of Brno.

Concerning the study conducted for the scheduler at the top of the hi-
erarchy, we proposed a Meta-Scheduler which aims to schedule arriving
jobs balancing the workload among the underlying clusters, respecting
the job running requirements and deadlines, and optimizing the utiliza-
tion of hardware as well as software resources.

The proposed solution exploits a set of heuristics to classify incoming
jobs, giving them a priority proportional to their relevance. Each heuris-
tics manages a specific problem constraint (e.g. deadline and software
licence requirements, submitting user peculiarities), and the computed
job priority is used by the Meta-Scheduler in order to make scheduling
decisions. Each heuristics works without any knowledge of the resources
status, according to the on-line paradigm. The heuristics set is designed
in order to be easy extensible. Future versions of the Meta-Scheduler clas-
sifier can be enriched with other heuristics in order to consider other QoS
requirements.

The scheduling phase performed by our Meta-Scheduler is based on
two functions: Load and Ordering. Load aims to balance the workload
among clusters by assigning a job to the less loaded cluster. Ordering
aims to balance the number of jobs with equal priority in each cluster
queue.

One of our objectives was to design a lightweight Meta-Scheduler
easy to interface with different scheduling algorithms exploited at
Local-Scheduler level. This allows us to design future versions of our
Meta-Scheduler able to support the cooperation with common grid
schedulers such as: LSF (6), or PBS (7), or others. Moreover, as future
work, we would like to extend the high level scheduling function set
with a function which aim is to dispatch jobs to the underlying level in
order to consider the size of each job. This because making scheduling
decision for a set of small-size jobs is easier than for a set of big-size jobs.
Our Meta-Scheduler is not able to prevent situation in which a set of big-
or small-size jobs is assigned to a single Local-Scheduler. This may lead
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to increase the number of jobs executing without respecting their QoS
requirements. Otherwise, scheduling jobs also according to their size can
improve the quality of the scheduling decisions.

At Local-Scheduler level we studied two different solutions: a Flexible
Backfilling algorithm able to manage our specific constraints, and a new
solution based on the Convergent Scheduling technique.

The proposed solutions were evaluated independently, by simu-
lations, using different streams of jobs synthetically generated with
different inter-arrival times between jobs. We haven’t provided results
with real data, because of the analyzed job streams strongly depends on
the system configuration used to execute them, that is not representative
for our system configurations. Therefore, real workload traces with
deadlines and software requirements are not easy to find.

The proposed Flexible Backfilling (FB) strategy extends the EASY
Backfilling algorithm, by exploiting a variety of heuristics to assign priori-
ties to the queued jobs at each scheduling event (job submission/ending).
FB is characterized by a classification phase, in which jobs are labeled
with a priority value, and by a scheduling phase, in which jobs are as-
signed to the available machines. The job classification heuristics cover
deadline requirements, license usage, aging (to prevent job starvation),
and it favors the small-size jobs execution. We developed FB in order
to classify incoming jobs exploiting dynamic information about both li-
cences availability, and the jobs in the system. Concerning the scheduling
phase, FB exploits dynamic information about jobs, licence availability,
and machine status, to compute the scheduling plans.

We employed the FB algorithm at Local-Scheduler level, and we com-
pare it with well know algorithms, such as FCFS, and an implementation
of the EASY backfilling algorithm. Eventually, the Thesis presents results
obtained comparing our FB with a Schedule-Based approach.

Besides the scientific results carried out using our Flexible Backfilling,
it was a good opportunity to share research ideas, and to start a collab-
oration with other scientists. This collaboration improved my relational
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capacities, and my scientific forming.

The Convergent Scheduling technique we proposed (CS) aims to
schedule arriving jobs respecting their deadline requirements, and op-
timizing the exploitation of hardware and software resources.

The proposed scheduler exploits a set of heuristics, each one manag-
ing a specific problem constraint, which leads the scheduler in making
decisions. To this end, the heuristics assign priorities to all the jobs in
the system. The job priority measures the degree of preference of a job
for each cluster’s machine, i.e. how each machine suits well for the job
execution. The scheduler aims to schedule a subset of queued jobs that
maximize the degree of preference for the available resources. The jobs
priorities are re-computed at each scheduling event. A new scheduling
plan is carried out on the basis of the current status of the system, and
information related both to jobs waiting for execution and running jobs.
The modular structure of the proposed scheduler makes simple to define
a set of customized heuristics in order to meet the administrator goals.
The CS scheduler was evaluated comparing it with the Earliest Deadline
First (EDF), and the Backfilling algorithms.

In future, we plan study the behavior of the Convergent Scheduling
technique in real grid environments, and to enrich it with functionalities
needed to address job migration, when different Local-Schedulers in the
computing platform exploit our Convergent Scheduling algorithm.

The evaluation of the Multi-Level scheduling framework we proposed
was carried out combining our Meta-Scheduler with the Flexible Backfill-
ing we developed, and with our Convergent Scheduler.

To evaluate the interaction of Meta-Scheduler with the Flexible
Backfilling we employed an ad hoc simulator we implemented. While, to
evaluate the interaction of Meta-Scheduler with the CS, we employed the
GridSim simulator. In both cases we synthetically generate the streams
of jobs we used, this because of the most real streams of jobs we found
in literature do not allow the job request of licences, and the job deadline
time specification. As future work, we plan to study mechanisms, to
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estimate the job execution time, exploiting a set of historical data de-
scribing the jobs features, and their running time. Experiments showed
that our scheduler is able to dispatch jobs balancing the workload among
clusters. Moreover, exploiting the Convergent Scheduling technique, our
multi-level scheduling framework is able to execute a greater number of
job respecting their QoS requirements, than using common algorithms
such as EASY Backfilling, FCFS, or our Flexible Backfilling. Eventually,
we plan to enrich our framework with mechanisms that enable the
system to continue operating properly, even in the event of failure.

The Thesis also proposed a new design pattern to implement self-
optimizing classifiers. We presented the components, and their inter-
action, that programmers have to implement when designing a self-
optimizing classifier. Furthermore, we exploited our design pattern to
implement a classifier, based on the Meta-Scheduler Deadline heuristics,
as a case study. We showed the way our classifier adapts itself to different
situations, and we compare its resulting classification with a not adapting
classifier.

As future works, we plan to re-design our Meta-Scheduler classifier
according to the self-optimizing design pattern we proposed. To meet
this goal, we need to define a mechanism for the composition of self-
optimizing heuristics, and this also implies the extension of the design
pattern we proposed.
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