
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

The Modularity of Attention from an Artificial
Intelligence perspective

PhD Program in Computer Science and Engineering

XXV Cycle

By

Nicola Catenacci Volpi

2013

http://www.imtlucca.it
mailto:nicola.catenacci@imtlucca.it

The dissertation of Nicola Catenacci Volpi is approved.

Program Coordinator: Prof. Rocco De Nicola, IMT Institute for Advanced
Studies, Lucca, Italy

Supervisor: Prof. Paolo Ciancarini, University of Bologna, Italy

Supervisor: Researcher Giovanni Pezzulo, ISTC/CNR, Rome, Italy - ILC/CNR,
Pisa, Italy

Tutor: Prof. Marzia Buscemi, IMT Institute for Advanced Studies, Lucca,
Italy

The dissertation of Nicola Catenacci Volpi has been reviewed by:

Prof. Antonio Chella, University of Palermo, Italy

,

IMT Institute for Advanced Studies, Lucca

2013

http://www.imtlucca.it

Contents

List of Figures ix

List of Tables xv

Acknowledgements xvi

Vita and Publications xvii

1 Introduction 1
1.1 Bounded Rationality and Metareasoning 1
1.2 Attention as Solution. 5
1.3 Modularity as Solution. 7

2 Multiple Model-based Architectures 11
2.1 AKIRA . 13
2.2 The Mixture of Experts model 19

3 First Proposal: The Attractor Agent Network 23
3.1 Preliminaries: Hopfield Networks 26
3.2 Energy and Activation . 33
3.3 The Attractor Agent Network 34
3.4 Agents’ Attractors . 36
3.5 Resource Bound . 37
3.6 Learning and Execution . 39

3.6.1 Offline Learning . 39
3.6.2 Query Algorithm and Online Learning 40

vi

3.7 Coordination measures and Frustration 45

3.8 Some Useful Tools . 49

3.9 First Application, Optimization: The Board Game experi-
ment . 53

3.10 Second Application, Classification: The Attractor Expert
Network . 57

3.10.1 The Experiment . 60

3.11 Third Application, Active Vision Categorization: The At-
tractor Predictor Network 65

3.11.1 Input features . 66

3.11.2 Predictors . 68

3.11.3 The Attractor Predictor Network 68

3.11.4 Learning . 70

3.11.5 The Categorization Algorithm 70

3.11.6 Simulation 1: Categorization Perfomance 74

3.11.7 Simulation 2: Predictors’ Influence on Saccades . . 75

3.11.8 Simulation 3: Categorization with Morphed Stimuli 78

3.11.9 Simulation 4: Probability of Categorization 83

4 The Human Experiment 85
4.1 Results: Accuracy Rate and Trajectories Analysis 87

4.2 Discussion . 89

5 Second Proposal: Neural Field-based architecture 91
5.1 The Computational Model 95

5.2 The Categorization Algorithm 96

5.3 Results . 98

5.3.1 Simulation 1: Performance Evaulation 98

5.3.2 Simulation 2: No Prediction 102

5.3.3 Simulation 3: No Top-down bias 103

5.3.4 Simulation 4: No Informativeness 104

6 Discussion and Comparisons 105

vii

7 Open Issues and Future Works 109
7.1 Future AAN Application, Distributed Automatic Reason-

ing: The Attractor Predictor Network 109
7.2 Context Aware AAN Learning Algorithm 113

8 Conclusions 117

Bibliography 120

viii

List of Figures

1 The hierarchy of metareasoning. Figure reproduced from
(Zil08). 3

2 In AKIRA the energetic network is used to allocate com-
putational resources within daemons. Figure taken from
(PC07). 14

3 Akira Energetic Dynamics. Figure taken from (PC07). . . . 16

4 In the mixture of experts model we have three components:
the expert networks, the gating network and a selector mod-
ule. In this figure we can see how these components interact
with each other. Figure taken from (JJNH91). 20

5 a) A multi-perceptron neural network. b) A Hopfield net-
work obtained closing the multi-perceptron on itself. Fig-
ures reproduced starting from (Ami89). 27

6 An example of frustrated Energetic Network. Up headed
arrows are active agents and down headed arrows are silent
agents. There is not an unique choice to make happy the
bottom right agent. Figure taken from (oE). 47

7 a) Points Table. b) Pieces ranges. c) Example turn. 54

8 Two turns won by the ANN architecture. 56

ix

9 In this figure we can see the attractor expert network’s com-
ponents and how they interact with each. We have the
expert networks, the input module used to indicate an ini-
tial network configuration and an aggregator module used
to combine the results of the experts in the experts’ attractor. 58

10 Piecewise target function of equation (3.30) used for the
classification task. 61

11 Histogram that represents the number of times expert 1 was
active according to the kind of input data. 62

12 Histogram that represents the number of times expert 2 was
active according to the kind of input data. 63

13 Histogram that represents the number of times expert 3
was active according to the kind of input data. Note the
similarity with expert 2. 64

14 Stick animals used as stimuli for the categorization task of
this section and sections 4 and 5. Figure taken from (SGS10a). 65

15 Here we can see a stick animal and three positions of the
fovea with the corresponding features. At each fixation
feature points are represented with crosses together with the
orientations represented with polar diagrams. Additionally
we reported the triple of predictor (F srci , Si, F

tgt
i) between

time t and t+ dt. Figure taken from (CVQP). 69
16 The Attractor Predictors Network. Once with offline learn-

ing we obtains the weights Jij , we can use the energetic
networks to activate predictors (red nodes). This happens
when the energy Ei of predictor Pi is greater than its run
energy Ri. When a predictor finds its source feature F srci

in the field of view, and its motor command (Sbest = Si)
is executed with the target feature F tgti in its end position,
a feedback is given to the energetic network through the
assignment Ai = +1. Note the possible states of predic-
tors with plain arrows indicating activation, feedback and
prediction success. The predictor P5 is the winner of the
election process. Figure taken from (CVQP). 71

x

17 In this figure we can see the overlaps of the predictors’ at-
tractors giraffe in magenta, cat in green, horse in red and
dog in blue. As we said source and target features of the pre-
dictor that owns the last saccade executed are represented
as well in cyan and beige respectively. The convergence
to the predictors’ attractor AHORSE (note an overlap close
to 1.0) arrived after eye movements that were necessary
to enrich enough the basin of attraction. As the leading
attractor is the most similar with the predictors’ activities
during the overall categorization we can consider this input
unambiguous. Figure taken from (CVQP). 76

18 In this figure we can see the dynamics of a categorization
with output ADOG. Note the ambiguity of the input, which
was already categorized by human as a cat. Here no overlap
leads the dynamics clearly until the convergence. Figure
taken from (CVQP). 77

19 We can see here the overlaps’ evolution when the system
categorizes the same stick animal of figure 18 using different
saccades. To prove that the categorization depends on the
order of the visited features, we can compare the recognition
of a cat chosen here with the recognition of a dog of figure
18. Figure taken from (CVQP). 78

20 In this figure we have the average overlaps of ten different
simulations performed over the represented animal. We can
compare the behavior of the biased network when Bi 6= 0
for a set of predictors, with the unbiased network which has
Bi = 0 for all predictors. In the first case boosted predictors
prime the verification of contingencies typical of a certain
category. Figure taken from (CVQP). 79

xi

21 In this figure we can see the linear regression between the
morphing parameter and number of times the APN selected
the reference category (morphing parameter 8). The line
within the plot has slope 0.158. Circles represent average
frequencies and error bars standard deviations over the
60 simulations. We reported also an example of morphed
animals with increasing morning parameter. Figure taken
from (CVQP). 81

22 In this figure we can see the linear regression between the
morphing parameter and the average number of active pre-
dictors belonging to the reference category (morphing pa-
rameter 8). The line within the plot has slope 0.055. Circles
represent average frequencies and error bars standard devi-
ations over the 60 simulations. Figure taken from (CVQP). 82

23 We can see here the probability that the APN choose a given
category as a function of the proportion of predictors of the
same category that contributed with their saccades. Such
probability was computed using data from 160 simulations
through the two following steps. First we computed the
frequencies, with the number of predictors of a category that
contributed in a scan path divided the length of the path.
Finally, to have the probabilities, we counted the number
of times that a scan path with a given frequency led to a
certain category. Note that when the frequency of these
predictors is greater that one third the probability increases.
Figure taken from (CVQP). 84

24 a) A stick cat. b) A stick giraffe. c) The cat morphed for the
25% with the giraffe. Figure taken from (QCVBP). 86

25 The set-up used within the experiment. Participants first
clicked on the start button and then on the responses but-
tons (cat and giraffe) according to the identified category.
Figure taken from (QCVBP). 87

xii

26 In this figure we can see the mean trajectories of the two
conditions, represented as the correct response button was
always in the right position. Figure taken from (QCVBP) . 89

27 Schematic view of the architecture. Where plain arrows
represent excitatory links and dashed arrows represent inhi-
bition among different categories. Note that if on one hand
eye movements are controlled by the leading predictor or
the reactive system, on the other hand the mouse move-
ments are computed weighting multiple vectors pointing
to the targets at the same time. Figure taken from (QCVBP). 95

28 In this figure we can see a sequence of fixations on the input
stimulus that starts from not informative features to infor-
mative ones. Indeed the first saccade does not contribute
to differentiate the two prototypes. On the contrary when
at time t a new saccade is performed, from the head to the
torso of the stick animal, considering the different lengths
of the necks of the prototypes, the system starts to favor
the left one. This new evidence is collected comparing a
target feature with the current field of view, it effects the
mouse movements as it is possible to see from the resultant
velocity vector (red arrow). Figure taken from (QCVBP). . 99

29 In this plot we can see the trials and participants’ mean of
the Area Under Curve (AUC) as depended variable and the
morphing parameter µ as independent variable. Note how
the function is more similar with a power law than with a
straight line, indicating a non linear dependence on the mor-
phing parameter, as we investigated in section 3.11.8. It is
however clear how much the difficulty to categorize a figure
increase with its ambiguity. Note that AUCs is expressed in
MouseTracker units u. Figure taken from (QCVBP). 100

xiii

30 Trajectories produced by the agent under several conditions.
At low speed (LS), 3 representative trajectories are provided
for a morphing factor in {0.1, 0.25, 0.5}, with increasing de-
viation from the straight trajectory. For high speed (HS)
and high ambiguity (morphing coefficient of 0.5), the late
change in decision during the reaching movement is ampli-
fied compared to the LS - 0.5 condition. Figure taken from
(QCVBP). 101

31 Heatmaps at the end of a trial, in three cases: a) with no
inhibition of return, b) complete model, c) with no top-down
modulation. a) Without the informativeness mechanism,
the architecture has higher probability to converge on limit
cycles of saccades where no clear decision can be made. c)
When saccades are reactively selected, the system focus less
on relevant features. Figure taken from (QCVBP). 102

xiv

List of Tables

1 Hopfield to AAN terminology 35

xv

Acknowledgements

I would like to express my acknowledgements to the co-authors
who contributed in writing the papers at the basis of this thesis:
Giovanni Pezzulo, Jean-Charles Quinton and Laura Barca.

xvi

Vita

April 10, 1983 Born, Rome, Italy

2006 Bachelor degree in Computer Science
Final mark: 103/110
University of Rome, La Sapienza, Italy

2009 Master degree in Computer Science
Final mark: 110/110
University of Rome, La Sapienza, Italy

xvii

Publications

1. D. Ognibene, N. C. Volpi and G. Pezzulo “Learning to grasp information
with your own hands,” in Procceeding of Towards Autonomous Robotics Systems
(TAROS2011, LNCS), 2011, Springer.

2. J. C. Quinton, N. C. Volpi, L. Barca and G. Pezzulo “The cat is on the mat. Or
is it a dog? Dynamic competition in perceptual decision making,” in IEEE
Transactions on Systems Man and Cybernetics: Systems (in press).

3. D. Ognibene, N. C. Volpi, G. Pezzulo and G. Baldassarre “Learning Epistemic
actions: a Model-Free, Memory-Free Reinforcement Learning approach,”
in Proceedings of the 2nd International Conference on Biomimetic and Biohybrid
Systems LIVING MACHINES 2013 (in press).

xviii

Abstract

The development of agents with bounded rationality is still an impor-
tant challenge of artificial intelligence. Indeed, when we are facing
problems with a large number of states, if we do not reason about the
computational resources of our agent, it is easy to encounter exponen-
tial complexities or state explosions.

One way to solve this problem is taking inspiration from the study of
attention in cognitive science. Attention can be considered as a filter
in information processing that focuses only on relevant information,
leaving out possibly all the useless computations. So to be focused
only on a relevant subsets of the state space of a problem can be the
solution to increase the quality of our algorithms. Accordingly it is
important to understand how to represent relevance and being able
to compute automatically what is relevant in a given situation.

In this thesis we link the study of attention with multi agent systems
(MAS). The introduced methodology starts finding a way to partition
an input problem. Then it specializes the agents of a MAS on the
partition’s subsets. Finally it finds a policy to switch the agents on
or off according to the current context. This will be done allocating
computational resources to the agents during the task execution.

Accordingly we will introduce two context aware methodologies
based on Hopfield networks and dynamical neural fields to learn,
store and recall online resource-allocation policies. This will lead to a
dynamical characterization of such policies (i.e., attractors).

Finally the systems will be evaluated in distributed constraint opti-

mization, classification and categorization tasks, underlining, when

was possible, the cognitive plausibility of our proposals. Indeed the

categorization task will be held in an active vision framework link-

ing, also experimentally, our proposals with the study of attention in

animal and human vision.

xix

Chapter 1

Introduction

1.1 Bounded Rationality and Metareasoning

In artificial intelligence decision making is usually related with the maxi-
mization of a measure of expected utility in a context of complete knowl-
edge and unlimited computational resources. The underlying formulation
comes from models of microeconomics, decision theory and game theory
(VNM47) (Hem65) (Ber95) (Put94) that consider an agent rational if, given
a complete belief/desire system, it always optimizes its choices.

To satisfy such perfection of appropriate decisions and inferential ma-
chinery is not feasible in realistic situations, where agents have limited
knowledge, limited computational power and interact with a complex
and dynamic environment that imposes uncertain outcomes and strict
real time constraints. Additionally we know that the notions of rationality
and logical omniscience is something that does not belong even to human
beings. In fact psychologists performed many experimental studies where
human behavior exhibits considerably low performances compared to
ideal agents (see (TK75) and (Mac87)). This departure from correctness
comes from the fact that, as for humans, our machines are finite entities
that have to use efficient but formally imperfect heuristic procedures. This
is necessary because typically to use formally correct and complete pro-
cedures implies exponential complexities also with small-size problem

1

instances and requires large time and memory resources.

An interesting question is to understand if rationality is all or nothing
or there is a reasonable mean. One of the first efforts in this direction were
done by Herbert Simon with his models of normative and empirical ratio-
nality (Sim57) (Sim82). Simon showed that optimal decision-making is not
feasible in complex domains since requires to execute intractable computa-
tions within a limited amount of time. The main idea to solve this problem
was to relax optimality requirements: instead of maximizing the agent
only ”satisfies” its expected utility, choosing the alternative that is good
enough according to its belief/desire sets. In other words decision makers
look for choices that are satisfactory in the sense of reaching a threshold of
utility. This set-up of seeking specific conditions rather than unbounded
optimizations can also be applied to problem solving, substituting expect
utility maximization with acting to satisfy sets of goals. In addition Good
introduced a distinction between ”Type 1” rationality, that is the ordinary
notion of rationality, and ”Type 2” rationality, where decision-making
takes into account the cost of deliberation (Goo52) (Goo71).

The Simon and Good distinctions had an important influence in ar-
tificial intelligence community, precisely in the areas of search, problem
solving and planning (Rus97) (Hor01). A broad class of computational
models that implement bounded rationality is constituted by approximate
reasoning methods, used to find approximate answers to a given problem.
For example in heuristic search the domain knowledge can be used to
guide the search process until a not optimal satisfactory solution is found.
Moreover, related with bounded rationality, there were studies on eco-
nomic decisions about reasoning (Hor88) (RW91), iteratively approximate
or anytime algorithms (Hor88) (DB88); studies on selective rationality
(Lei76) and bounded optimality (Hor88) (RS95) that consider optimization
over circumscribed sets of alternatives that abstracts the key elements
and removes the useless alternatives. Finally other approaches take into
account the computational cost of decision making (DB88) (Hor88) (RS95)
(WD90) (Zil95).

Another important topic related with bounded rationality concerns
uncertainty and informational requirements. When a decision-maker has

2

incomplete probabilities and preferences representations the lack of in-
formation can be a problem. One possibility to deal with this issue is to
consider the expected value of information (defined estimating the gain of
utility in acquiring some informations) and then act to obtain the informa-
tions with highest related utility or the informations that may decrease the
uncertainty (How66) (Got12) (OVP11) (OCVPB). According to this point
of view also a computation can be considered as a procedure to obtain
informations, with the execution time as utility. So given a model of the
consequences of computations and their cost the agent should be able to
decide what computations perform and when execute them on the basis
of their utilities.

Often such kind of methods are referred as meta-reasoning approaches
(Hor88) (RW89) (Zil08). As Dennett was saying: ”primates are the only
animals able to have beliefs and desires about beliefs and desires” (Den89).
The term meta-reasoning comes from the same line of ideas (see figure
1): the conceptual distinctions between object-level deliberation about
external entities (considering the possible moves in a game of chess) and
meta-level deliberation about internal entities as beliefs or resources (think-
ing that it is not convenient spending much time deliberating about a
certain move). Meta-reasoning makes possible to control the object-level
deliberations of the agent, when to stop them to act and to choose which of
them to take in consideration, all important issues for the computational
complexity of decision making.

Gorund
Level

Object
Level

Meta-
Level

Doing Reasoning Metareasoning

Action Selection Control

Perception Monitoring

Figure 1: The hierarchy of metareasoning. Figure reproduced from (Zil08).

3

In (Zil08) Zilberstein reported a list of key questions to answer with
respect to meta-reasoning. Below there are some of these questions that
are relevant for the scope of this thesis:

1. What object-level decision-making architecture is employed? What
tradeoffs it offers between computational resources and quality of
results?

2. How does the metareasoning component model the objects-level
reasoning process? What kind of prior knowledge is available about
the efficiency and correctness of the object-level component?

3. What run time information about the state of the object-level reason-
ing process is being monitored? What is known about the external
environment?

4. What control decisions are being made by the meta-level reasoning
process? How do these decisions affect the object-level component?

5. When and how does execution switches between the object-level
and the meta-level?

6. How much time is consumed by the meta-level reasoning process?
How much of the metareasoning strategy is precomputed offline or
computed online?

In addition metareasoning can be considered a domain independent
attitude, because the meta-level deliberation does not concern with the
specific object-level domain informations but with its structure that has to
be extracted (RW91) (GG91).

In cognitive science metareasoning is related with metacognitive reg-
ulations, which include processes of behavior as monitoring, resource
allocation, checking, planning, error detection and correction (BBFC83).
Metacognitive regulation can be considered ”monitoring” if the meta-level
receives information from the ongoing object-level cognition, or ”control”
if is the meta-level to influence cognition. Finally metacognitive regulation
is strongly related with meta-level knowledge: in fact to know that a task

4

is difficult can lead an agent to allocate for it more computational resources
and to monitor can lead to know which tasks are difficult and which are
easy.

1.2 Attention as Solution.

Research in computer science always looked with interest at the animal
brain as source of inspiration. For example the Von-Neumann architecture,
base of all the modern computer architectures, was designed according
to the basic structure of the information processing within the brain: the
idea of disk was taken from the long-term memory of cognitive systems
whereas the RAM from the working memory. If on one hand to have
machines capable to mimic the basic human attitudes contributes in un-
derstanding how our brain works, on the other hand it opens important
steps forward in computer science. This is possible because to see how
humans or animals solve problems help us to understand how to improve
our algorithms to solve the same problems.

In one of his famous paper ”elephant don’t play chess” (Bro90) R.
Brooks stresses on the idea of taking inspiration from perception and
motor control of natural living organisms to design intelligent machines.
Indeed animals achieve incredible performances in sensorimotor tasks
where robotic systems designed with a symbolic paradigm (hand-written
representations) are not able to perform well also in very simple cases. So
the idea of Brook was to take a step forward from the strong approach
of artificial intelligence (the logical paradigm, started from the work of
Turing on the basis of Fredge theories) to a bio-inspired paradigm.

In this thesis we will investigate how the study of attention can improve
the design of an artificial intelligence with bounded rationality. In fact
being able to focus on a suitable subset of a problem can be the solution
to reduce the time complexity to solve it. In other words attention is the
way how living organisms implement the same idea of many algorithms
of computer science that are going against the brute-force paradigm.

About attention there is a famous sentence of one of the pioneer of

5

psychology, William James, who in 1890 wrote: ”Every one knows what
attention is. It is taking possession by the mind, in clear and vivid form,
of one out of what seem several simultaneously possible objects or trains
of thoughts. [. . .] It implies withdrawal from something in order to
deal effectively with others” (Jam90). In cognitive science attention can
be considered as a filter in information processing that focuses only on
relevant information, leaving out possibly all the useless computations.
Indeed, considering the real-time nature on many natural task and the
bounded resources available to animal brains, it is impossible to process all
the stored (covert attention) and perceived (overt attention) informations
at the same time.

In a series of experiments started in the 50s on selective listening,
psychologists investigated the ability of participants of listening two si-
multaneous speech messages. The outcomes of the experiments showed
people’s limited capacity and effective selectivity: the participants were of-
ten unable to identify both messages at once and they could identify one
message ignoring the other. Although the presence of selective perception,
regarding the control of stimulus selection, experiments showed also the
joint influence of top-down (task-driven) and bottom-up (stimuls-driven)
processes (Wri68). However stimulus factors such as intensity (Bro58) or
sudden onset (JY88) always contribute to the choice of which stimulus is
processed, irrespective of the nature of the task.

Selective perception is implemented by an attentive dynamic process
added on top of the passive elements of selection provided by the architec-
ture of the perceptual system. In vision concurrent visual inputs compete
for representation in the network of visual areas and atttended stimuli are
strongly represented, while response to unwanted stimuli are suppressed
(DD95). Moreover although the retina encode a wide field of view, object
analysis is not uniform across the visual field but instead is concentrated
in a small zone called the field of focal attention or fovea (Nei67). This
is used to isolate and examine objects’ details also under conditions of
interference. The mixture of information from different objects is solved in
part because of the competitive, winner-take all nature of neural network
convergence and in part for attentive selection (MD85) (TM96). Capacity

6

limits of attention may vary depending upon the level of network conver-
gence that must be reached before a discriminative decision about the set
of observed objects can be achieved (MNM93).

If on one hand many computational models of attention were proposed in
cognitive science (SS07) (HH05), on the other hand in artificial intelligence
attention is studied mainly in the area of active vision (Bal91).

A well known proposal about bottom-up attention is the Itti model
(IKN98) based on saliency maps, a data-structure that represent the proba-
bility to perform a fixation on every figure’s point. The model starts iden-
tifying low level features maps (e.g. oriented edges) and then combines
them to obtain an unique saliency map used to guide the gaze. A possible
way to implement top-down modulation is to tune such saliency maps to
look for specific objects (using suitable features template) (NI05), objects
of a certain size (IK01) or within an environments with specific character-
istics (NI07). Models that are totally top-down driven were considered
in the context of reinforcement learning where objects discrimination can
be achieved through information gain (PP00). This model was integrated
with information theoretic saliency maps to produce efficient saccades
able to decrease uncertainty in cluttered environments (FSPB04) (PFS05).
Finally many proposals were done in the context of genetic algorithms
(MFN10) (dCPvdH06), or within the area of swarm intelligence (DBT99)
as (SC11).

1.3 Modularity as Solution.

Attention has been also referred as the allocation of processing resources
of a cognitive system (Wic02) (Wic08) (And09). One possible way to im-
plement this view of attention in our artificial systems is to partition our
computations into specialized modules that can be activated distributing
resources according to the current context. Such kind of modular represen-
tation was used in the two proposals of this thesis as in many cognitive
multiple-based architectures (we will review some of them is section 2).

In artificial intelligence modularity and resource allocation are relevant

7

issues in the area of multiagent systems (MAS) (see (CMM97) for an exam-
ple about resource allocation). A MAS is an organization of coordinated
agents that interact in order to achieve a common goal (KGM06). A typical
design problem for MAS is the definition of a coordinated behavior of
individual agents in order to achieve a system-level behavior or, more
specifically, to find an effective collective state of the system given by agent
interactions. A way of solving this problem consists in defining a suitable
architecture for the MAS. We simply recall that while an agent architec-
ture is a description of the internals of an agent, a multiagent architecture
describes the mechanisms for controlling the interactions of societies of
agents (Woo09).

Three important properties of a MAS are listed by Wooldridge in
(Woo09): partial autonomy of agents; decentralization of the system’s
control, which is not managed by any particular agent; locality, that means
each agent has a local view of the problem to solve and can interact
only locally with other agents. Many issues are related with the study of
MAS as negotiation, communication, multi-agent learning, organization,
agent-oriented software engineering and so forth. Here we will be more
interested in cooperation and coordination issues related with distributed
artificial intelligence and distributed problem solving as problem subdivi-
sion, sub-problem distribution, optimization of problem solver coherence
and coordination and results synthesis.

As we said in MAS we are interested in the coordinated behavior of
a system of individual agents to provide a system-level behavior. Sycara
(Syc98) lists six important challenges about this issue:

1. How to decompose problems and allocate tasks to individual agents.

2. How to coordinate agent control and communications.

3. How to make multiple agents act in a coherent manner.

4. How to make agents reason about other agents and the state of
coordination.

5. How to reconcile conflicting goals between coordinating agents.

8

6. How to engineer practical MAS.

MAS methodologies can help us to accomplish these challenges. Sev-
eral architectures were proposed (IGCGal99), which can extend theories
coming from object oriented programming (BGPP03) (DeL99), knowledge
engineering or organizational methodologies (FG98) (KGM06). Finally
several applications of MAS were proposed in many fields: computer
network, logistics, cognitive science, transportation, computer games,
business process management, distributed sensing, information retrieval,
electronic commerce, human-computer interfaces, social simulation and
many others.

In the following pages we will introduce two modular architectures with
bounded rationality that address covert and overt attention. The structure
of the thesis is organized as follows.

Before introducing our proposals, in section 2 we will review some
multiple model-based architectures that we think to be relevant for this
thesis, with particular emphasis of the AKIRA framework (section 2.1)
and the mixture of experts model (section 2.2). Then, in section 3, we will
introduce our MAS architecture based on the submitted paper (CVQP). It
is called attractor agent network and uses a Hopfield network to activate
and coordinate agents. The AAN architecture was tested on three different
applications: a distributed constraint optimizations task (section 3.9), a
classification task of machine learning (section 3.10) and a categorization
task of computer vision (section 3.11). Additionally, in section 4, we
reported an experiment that we performed to collect behavioral data from
human participants, facing the same visual categorization task, in order
to investigate the cognitive plausibility of our proposals. Then in section
5 we presented the second computational proposal of the thesis that,
together with the aforementioned experiment, is based on the published
paper (QCVBP). The proposal concerns a dynamical neural field based
architecture still used to solve the same categorization task of the previous
human and computational experiments. In section 6 we will discuss about
the obtained results and compare the common and different characteristics
of the two proposals. Finally in section 7 we will report some of the

9

future developments of the thesis and in section 8 we will conduct our
conclusions.

10

Chapter 2

Multiple Model-based
Architectures

Within the artificial intelligence and cognitive robotics communities many
multiple-model based architectures were proposed. All these architectures
have in common a modular representation and some kind of policy used
to arbitrate the modules’ deliberation.

In the two papers (SBR05) and (RB10) Ballard et al. proposed a com-
putational model of human visually guided control in a reinforcement
learning framework. They designed a control architecture that allocates re-
sources to modules (called micro-behaviors) in response of task demands.
Although many microbehaviors are available to address the goals of the
agent, at any one time, only a small subset of those are actively engaged.
Their proposal was tested on a virtual navigation task, enriched by the
goals of avoiding obstacles and collecting litter. The aim of the architecture
was to manage the extraction of information from visual input that is in
turn mapped onto motor commands. Their computational hierarchy is
defined as follow: with the behavior level the microbehaviors execute
generating control signals and computing state information necessary for
meeting behavioral goals (through Kalman filters); since microbehaviors
share perceptual and motor resources, at the arbitration level the competi-
tion between them is solved through gaze allocations that are selected to

11

minimize the risk of loosing reward in the set of running behaviors; finally
the context level maintains an appropriate set of active microbehaviors
according to current goals and environmental conditions. Other modular
proposals were done in the context of Markov decisions processes (Ber95)
(Put94) (SJBH11), as HORDE (SMD+11) or the hidden-mode Markov deci-
sion process (CYZ01).

Another famous multiple model-based architecture is MOSAIC (mod-
ular selection and identification for control) (WK98) (Kaw99) (HWK01)
(SHDK12) (SMHK12). This is an architecture for motor learning and con-
trol based on multiple pairs of forward (predictor) and inverse (controller)
models. The architecture simultaneously learns the multiple inverse mod-
els necessary for control as well as how to select the set of inverse models
appropriate for a given task. It combines both feedforward and feedback
sensorimotor information so that the controllers can be selected both prior
to movement and subsequently during movement. Among many avail-
able at any given time the system select only one inverse model (control
module) according to the accuracy of prediction of its paired forward
model. Indeed within a module, the forward and inverse models are tight
coupled during both their acquisition and use. The forward models learn
to divide up the contexts experienced so that for any given context, a set of
forward models can predict the consequences of a given motor command.
The predictions errors of each forward model are then used to gate the
learning of its paired inverse model. This ensures that within a module,
the inverse model learns the appropriate control for the context in which
its paired forward model makes accurate predictions. So the selection of
the inverse model is derived from the combination of the forward model’s
perdition errors and the sensory contextual cues, which enable MOSAIC to
select controllers prior to movement. Note that to learn how to specialize
pairs, and how to select them, both gradient-based learning and hidden
Markov models were proposed.

Similar architectures are PASAR (model of prediction, anticipation,
sensation, attention and response for artificial sensorimotor systems)
(MBiBV11) and HAMMER (hierarchical attentive multiple models for
execution and recognition of actions) (DK06). This was proposed on the

12

basis of mental simulation theories. It was used for the recognition and
execution of actions utilizing hierarchical and attentive multiple models.
Also in this case we have pairs of inverse and forward models but arranged
this time in a hierarchical and parallel manner with a top-down control
of attention. This hierarchical structure induces primitive inverse mod-
els to be combined to form higher more complex motor sequences, with
the eventual goal of achieving increasingly more abstract inverse models.
Moreover bounded rationality is implemented through the utilization of
limited computational and sensory resources.

In the following sections we will review with more details other two
multiple model-based architectures: AKIRA and the mixture of experts
model.

2.1 AKIRA

AKIRA is a cognitive architecture that benefits of several properties typical
of cognitive systems. AKIRA takes inspiration from some properties of
complex systems and biological organism as self-organization, adaptivity,
learning and robustness.

Let us review shortly the components of AKIRA. First we have a server
process called Pandemonium that execute and monitor many instances of
computational modules called daemons. Daemons have both a symbolic
component (i.e., their operations) and connectionist component as an acti-
vation variable, called energy, that represents the computational resources
owned by a daemon. The global activation owned by the whole system is
limited so that its utilization can be optimized. This global activation is
stored is a tank called energy pool that contains a finite amount of energy
available to every daemon. Finally inside the AKIRA architecture we
find a global database called blackboard used by daemons to exchange
messages in order to achieve coordination and communication.

AKIRA Energetic Model Daemons have a priority that is propor-
tional to their energy (see figure 2). Moreover the energy is distributed
by a weighted activation network that connects daemons called energetic

13

network. The definition of an energetic network was introduced first in
the DUAL architecture (Kok94).

Figure 2: In AKIRA the energetic network is used to allocate computational
resources within daemons. Figure taken from (PC07).

Daemons have a hybrid nature: they can be considered both as a
computational unit and as a node of a connectionist network. Nodes in
neural network typically identify values (so representations are totally
distributed). In AKIRA nodes identify modules that execute their oper-
ations in a parallel and asynchronous manner (so both representations
and functions are distributed). Moreover the connectionist component
concerns the energy activation, the exchange of energy between daemons
and finally the organization of daemons in spontaneous assemblies called
coalitions. Coalitions are able to solve composite problems that single
daemon can not solve alone.

On the other hand the procedural component concerns the set of oper-
ations that daemons can perform. Indeed every daemon is a specialized
computational unit that can contain procedures of arbitrary complexity.

14

More daemons own energy and more their computational power is
large. So every daemon has a certain amount of computational resources
that are proportional to their activation level. Energy can represent the
absolute relevance of a daemon and its contextual relevance in a given
situation. More daemons gain energy and more they have priority to
execute their operations and operations regarding the energetic network.
This architecture based on the concept of energy offers promising solution
to the problem of context in cognitive science and artificial intelligence be-
cause it produces contextual pressures that are able to guide the collective
behavior of the system.

Inside the AKIRA energetic model we find a central tank of resources,
the energy pool, that represent a global bound to the resources that dae-
mons can access. If a daemon own an amount of energy these resources
are not available to other daemons until they will be released again to the
energy pool. So daemons compete for the access to the energy contained
in the energy pool. Note that also if the energetic network has not negative
links the architecture implements inhibition between daemons through
this limited global amount of resources.

Energy is also exchanged between daemons through the energetic
network. When this happens resources are effectively transferred from the
original owner to the new one. This means that one daemon is gaining new
computational resources that another daemon is loosing. For this reason
such spread of activation is different from the one usually implemented in
neural networks because there, regarding the total activation, the network
is neither homeostatic nor conservative.

In AKIRA among daemons there is both a short range excitation given
by positive links of the energetic network and a long range inhibition given
by the energy pool. They correspond respectively to positive and negative
feedbacks that taken together produces among daemons self-regulating
and self-sustaining patterns of activity. So after a sufficiently long time the
energy dynamics will be dominated by patterns of activity that represent
the coordination between daemons necessary for the problem to solve.

The execution of daemons’ operations has a cost in term of energy. So
daemons have to obtain such energy from the energy pool before their

15

Figure 3: Akira Energetic Dynamics. Figure taken from (PC07).

execution and give it back once they have finished.

Considering that in AKIRA the total amount of resources are limited
and that daemons consume resources to execute their operations only a
limited number of daemons can be active at the same time. This introduces
efficiency in the system because to daemons is not allowed to take con-
trol all together. This mechanism implies competition between daemons:
active daemons inhibit the others because they consume the energy that
everybody need.

Let us say something more about daemons. If on one hand the overall
architectures is considered defined a priori on the other hand the definition
of daemons’ operations is left to the user. The daemons’ implementation
represents the only effort that the user needs to do in order to specify the
architecture behavior according to the problem to solve.

The priority of the thread executing the code of a daemon is propor-
tional with its level of energy. The possible sources of energy of a daemon

16

are the following: first an amount defined by the user, available for every
cycle, that is independent from the energy pool (we call this energy base
energy); then there is the shared energy that a daemon can take from the
energy pool. Both the latter and the base energy represent the absolute
relevance of a daemon and is the same for each cycle. Finally we have
the energy that is possible to take from the other daemons through the
connections of the energetic network, which represents the contextual
relevance of the daemon and is time dependent (this energy can change
according the current situation and is called linked energy).

During one cycle of execution a daemon does the following steps: first
it tries to take an amount of energy from the energy pool (note that it
could be not available). Then, if it has the necessary energy, the daemon
execute its operations. The quality of the daemon’s operations result is
evaluated by a test function (defined by the user) that can output a success
or a failure. The success of a daemon can influence both its activation
and the energetic network topology. After the execution, if the daemon
succeeded, the energy used has to be given back to the energy pool, so
that it will be available again to other daemons. Moreover new incoming
links are established between the daemon and its neighbors (this is the
way coalitions are formed) or alternatively existing links are strengthen.

On the contrary if a daemon failed it spreads its energy to more per-
tinent daemons through the connections of the energetic network. Fur-
thermore the incoming links are weaken. In addition the successes and
failures are notified through the blackboard to other daemons to notify the
quality of their behavior.

The combination of these steps constitutes the way that AKIRA uses
to activate the right set of daemons. Indeed using their feedback with
the environment daemons learn to synchronize each other modifying the
topology of the energetic network, so that the energy is transferred from
failing daemons to successful ones.

Typically in trying to solve a problem we have to choose among several
possible interpretations in front of different situations that need different
capabilities. In AKIRA this means to select among the different candidate

17

daemons, to find the best ones in the current situation. The energetic dy-
namics assigns more computational resources to more relevant daemons
in decentralized way, so that only a small number of daemons are active
in a given context. This selection problem is not solved immediately but
more concurrent hypothesis (active daemons) can go on together until one
will dominate the others. In AKIRA dominant daemons take control of the
system (they have more resources) but also less active daemons have still
the possibility to become the new dominant, if the old ones start to fail too
often in the current situation. In this case when a daemon stops to have
success its level of activation should starts to decrease as the weights of
its incoming links. On the other hand daemons that are becoming more
relevant start to gain new resources.

18

2.2 The Mixture of Experts model

The mixture of experts model (JJNH91) was introduced to overcome the
limits of the back propagation algorithm (RHW86) used to learn a large
class of neural networks. This algorithm, due to the interference among
the memorized patterns, often achieve poor generalizing capabilities and
slow learning complexity.

The idea of the mixture of experts model is to build a modular system
composed of a set of neural networks, called experts, each one specialized
on different portion of the input space. This specialization is obtained
through an additional neural network, called gating network, that focuses
the experts’ learning according to different input classes. Moreover the
gating network is used to choose the most adequate experts in front a
certain input data set.

Once the gating network spreads the input to all the experts, on the
basis of their errors, only those that are considered more pertinent have
their weights modified locally as the weights of the gating network. Doing
like that we will have experts behaving locally for two reasons: first the
weights of one expert will be not correlated with the weights of other
experts; then to each expert is assigned only a little region of the input
vector.

In the classical mixture of experts model every expert is a feed forward
neural network that receives the same input and has the same number of
output units. Also the gating network is a feed forward neural network
too that receives the same input as the experts networks. On the other
hand the gating network has a normalized output

pj = ε(xj) =
exj∑xi
i

(2.1)

where xj is the weighted input that arrives to the j-th output unit of
the gating network. Once the networks processed their outputs a special
unit called selector choose the output of expert j with probability pj . See
figure 4 to understand hot the different mixture of experts components
interact with each other.

19

Figure 4: In the mixture of experts model we have three components: the
expert networks, the gating network and a selector module. In this figure we
can see how these components interact with each other. Figure taken from
(JJNH91).

20

So a mixture of experts chooses stochastically the best expert according
to the current input vector. In equation (2.2) we have the error function
that has to be used: the expected value of the difference between the
desired output and the actual one.

Ec = 〈‖dc − oci‖2〉 =
∑
i

pci‖dc − oci‖2 (2.2)

In equation (2.2) oci is the output vector of expert i on training data c
and dc is the desired output vector on training data c. Note that using this
error function for learning we have that to modify the weights of an expert
on a certain input is not directly affected by the weights of other experts.

If both the experts and the gating network are trained with a gradient
descent algorithm, using Ec as error function the mixture of experts will
assign to each class of input a single expert. Indeed when an expert
produces an error that is smaller than the weighted average of the errors
of the other experts (using the gating network’s output to weight the error
of each expert) its responsibility about that input class will be increased.
On the contrary if its error is larger its responsibility will be decreased.

For numerical reason Jacobs and Jordan suggest to consider the follow-
ing error function of equation (2.3).

Ec = −log(
∑
i

pcie
− 1

2‖d
c−oci‖

2
) (2.3)

Once we have defined the error function, to train the experts we com-
pute its derivative respect to the expert’s weights to use it in the back
propagation algorithm (to descend the gradient). The same computation
has to be done for the gating network.

Let us start with the derivative on the output units’ weights. About
the hidden units the derivative is the same as the one used in the classical
back propagation algorithm. We represent with wij the weight of the link
that connects the hidden unit i with the output unit j and with xij the
i-th input of the j-th unit. The derivative is ∂Ec

∂wij
= ∂Ec

∂xj

∂xj
∂wij

= ∂Ec

∂xj
xij .

According to the equivalence ∂Ec

∂xj
= ∂Ec

∂oj

∂oj
∂xj

and taking the sigmoid func-
tion as threshold function of the output units we compute the two partial

21

derivatives to obtain the following equation for the expert j

∂Ec

∂wij
= −oj(1− oj)

pcje
− 1

2‖d
c−ocj‖

2∑
i p
c
ie
− 1

2‖dc−ocj‖2
(dc − ocj)xij (2.4)

Note that in the right term of equation 2.4 there is a weight factor that
represents the quality of the expert i compared with the others. This factor
can be used as a measure of the relevance of the expert i on the input class
c.

The same kind of computations can be done to obtain the derivative of
the error function respect to the weights of the gating network’s output
units links.

∂Ec

∂wij
= − e−

1
2‖d

c−ocj‖
2∑

i p
c
ie
− 1

2‖dc−ocj‖2
exj
∑
k e

xk − e2xj
(
∑
k e

xk)2
(2.5)

Using these error derivatives we can implement the back propagation
algorithm for the mixture of expert models. It will be useful is section
3.10 where we will use it for one of our proposal. Note that the mixture of
experts model was applied to extend hierarchically the model (PHC00) or
to other machine learning approaches as recurrent continuous time neural
networks (TNNI08) and reinforcement learning (DSKK02).

22

Chapter 3

First Proposal: The Attractor
Agent Network

In Multiagent Systems (MAS) to decide a suitable scheduling order of
agents and to determine how they coordinate are key issues (see section
1.3 to have more details about MAS). We want that the right subset of
agents are active in the right span of time to cooperate to fulfill some
specific goal. When the designer is not able to decide these scheduling
and coordination issues, due to the complexity of the system, a machine
learning approach can be used (B+06) (Mur12). In this section we present
a MAS architecture called Attractor Agent Network (AAN), which uses a
Hopfield network (Hop82) (Ami89) to activate and coordinate agents (in
section 3.1 we will review the main properties of Hopfield networks) .

AAN has an architectural nature: it uses a fixed machine learning
methodology to achieve coordination among any kind of agents. So AAN’s
users have not to deal with the collective behavior of the MAS, which is
already defined in the AAN and does not need to be changed. They have
only to implement the particular semantics of individual agents and a
function that represents their ability to achieve their goals. Once this is
done AAN will automatically bring the system to an effective collective
state. As we will see in the AAN the collective behavior can be defined by
the designer or can be automatically learned.

23

The AAN approach follows the Pandemonium metaphor (Jac87) and
is related to Blackboard systems (HR85). The Pandemonium involves
an object that owns a set of demons. Each demon tests for a particular
combination of conditions in the data that it can see. If a demon sees what
it is looking for, the demon shrieks. Closer is the match and louder is
the shriek. If the demon shrieks loudly enough to attract the attention of
its owner, the owner may choose to act in relation to what the demon is
shrieking about.

On the other hand Blackboard systems are systems with a shared
knowledge base called blackboard that is iteratively updated by a diverse
group of specialist knowledge sources. These specialists work together to
solve the input problem. The blackboard starts with a problem specifica-
tion and ends with a solution. A Blackboard system is composed by three
components: the specialists, the blackboard and the control shell. Exam-
ples of Blackboard systems are Hearsay II (EHRLR80), Copycat (Hof95)
and the Learning Classifier System (Hol89).

Moreover the AAN follows the Akira Energetic Model (AEM) (PC05)
(PC07) that we have described in section 2.1. So agents are connected
with each other through an activation network (the energetic network)
that distributes a bounded amount of computational resources (called
energy) among agents. Together with the constraint of a limited amount of
computational resources the AEM introduces competition among agents,
in order to automatically select the best subset of agents to be active at the
same time.

A suitable scheduling and resource distribution are key points to
achieve coordination and cohesion among agents. So, to accomplish these
objectives, the main idea behind the AAN is to manage the computational
resource allocation among agents using a Hopfield network. Indeed in
the AAN architecture a Hopfield network is used as energetic network in
order to benefit from the well defined properties coming from its definition
in statistical physics. The usage of Hopfield network makes available to
MAS a sophisticated mathematical language, composed of formal con-
cepts as probability distribution of activation, attractors, energy function,
correlation function and other macroscopic variables that summarize the

24

collective behavior of agents. These can be used to analyze, predict or tune
the MAS behavior. For example using the energy function of Hopfield
networks we will see in section 3.7 how to measure the state of the coordi-
nation of agents. Other two very interesting ANN’s features coming from
the usage of a Hopfield network regard its capability to perform well also
in presence of noise and when the number of agents is high.

In effect the choice of using Hopfield networks was done because with
statistical physics we can formally characterize the dynamical evolution
and the collective behavior of a system that consists of a high number of
components. Indeed a MAS with a high number of agents belongs to the
class of systems that statistical physics can successfully model1. Examples
present in literature (such as in immunology, economy (dMM06), sociology
and linguistics (CFL09)) are the Voter model (Lig99), the Naming Game
(BFC+05), the Minority Game (dMM06), the Brownian agents (Sch03) and
many others.

We think that the AAN can be used as optimization’s metaheuristic
too (Luk09). Note that the AEM was already applied to the edge color-
ing problem (Pez09). In section 3.9 we will use the AAN architecture to
solve an optimization task. Hopfield networks were successfully used for
optimization problems too, for example the Traveling Salesman Problem
(HT85). Additionally examples of famous metaheuristic algorithms are
Ant Colony Optimization (Dor92), Genetic Algorithms (Hol75) and Simu-
lated Annealing (KGV83).

To prove its ubiquity the AAN architecture has to be tested on differ-
ent kind of applications, to show its ability to perform well in different
contexts. We intend to perform three different kinds of experiments in the
following sections. The first one, in section 3.9, concerns an optimization
task related with a board game; the second experiment, in section 3.10,
implements a classification task of machine learning; finally in the third
one, in section 3.11, the AAN performs a distributed categorization task of
computer vision.

1 Note that a self organizing MAS with an high number of agents can be defined as a
Swarm Intelligence (DBT99).

25

3.1 Preliminaries: Hopfield Networks

Hopfield networks are recurrent neural networks introduced by J. J. Hop-
field in his famous paper ”neural networks and physical systems with
emergent selective computational abilities” of 1982 (Hop82). In this paper
the author defines a model of associative memory based on a set of formal
neurons (MP43; Ros62) that represents the first real mathematical model
of hebbian learning. In hebbian learning weights between learning nodes
are adjusted so that each weight better represents the relationship between
the nodes. Nodes that tend to be positive or negative at the same time will
have strong positive weights while those which tend to be opposite will
have strong negative weights. Nodes which are uncorrelated will have
weights near zero.

In a series of experiments made on the cerebral cortex of monkeys the
biological plausibility of Hopfield networks was confirmed (YM88). There
are other methodological approaches different from the experimental one
used to confirm the model: several instances of the model were built using
hardware and software implementations and in both cases the resulting
dynamics showed the same behaviors predicted by the model (see below).

One of the main advantage that Hopfield networks offer compared
with other neural networks models (e.g., feed forward neural networks)
is that they give the possibility to read their internal dynamics with a
well defined mathematical language. This is possible because Hopfield
established a formal equivalence between his model and the Ising model of
statistical physics (Isi25), used by statistical physicist to represent magnetic
systems. According to this equivalence the magnetization in the Ising
model corresponds to the activation in Hopfield networks.

A Hopfield network can be built closing a multi-perceptron neural
network (WH+60) on itself (i.e., connecting its output units with its input
units, see figure 5). So we obtain a feedback mechanism. Starting from
the definition of a Hopfield network taken from (Ami89), let us define
the neural state S of a Hopfield network composed by N neurons as any
possible combination of spiking and not spiking neurons, so S ∈ {−1,1}N.
We can then describe a Hopfield network as a dynamical system that

26

a)

b)

Jij

Figure 5: a) A multi-perceptron neural network. b) A Hopfield network
obtained closing the multi-perceptron on itself. Figures reproduced starting
from (Ami89).

27

evolves from one neural state to another.
The cumulated Post Synaptic Potential (PSP) at time t + 1, Ui(t + 1),

cumulated on neuron Si (which has values +1/-1) of a Hopfield network
of N neurons with links Jij is defined as in equation (3.1).

Ui(t+ 1) =
1
2

N∑
j=0,j 6=i

Jij(Sj(t) + 1) (3.1)

Where in equation (3.1) Jij is an element of the synaptic matrix, which
can have both positive and negative value, corresponding to an exciting
or inhibitory effect. In a dynamics without noise the relation between the
neuron i with threshold Ti and its PSP it is defined as in equation (3.2).

Si(t+ 1) = sign(Ui(t+ 1)− Ti) (3.2)

It is useful here to remember the physical meaning of this expression.
The argument of the sign function can be divided in external magnetic
field hei , which does not depend on the value of the other neurons, and
the local magnetic field hi, which is determined by its connection with the
other neurons:

Si = sign(hi + hei) (3.3)

They are defined as in equation (3.4).

hi =
N∑

j=0,j 6=i

1
2
Jij(Sj) hei =

N∑
j=0,j 6=i

1
2
Jij − Ti (3.4)

As every dissipative dynamical system Hopfield networks have a set
of attractors. In the case of Hopfield networks they are a set of neural
states that repeat them selves indefinitely. So Hopfield networks divide
input neural states in equivalence classes represented by attractors, the
same attractors where the input neural states will flow soon or later.

Cognitive events are identified by the arrival to attractors of the Hop-
field network. The rapid arrival to one attractor is considered as the recall
of a pattern from the memory. This pattern is retrieved on the basis of the
similarity with the input neural state.

28

To be sure that a Hopfield network has only stable fixed point attractors
some assumptions are necessary (Roj95). First neurons have to be without
memory, that means they have to respect the Markov property (i.e., the
value of Ui(t + 1) depends only on the value of neurons at time step t).
Moreover we have to do some additional assumptions about the synaptic
matrix: first we want that each neuron is connected with every other
neurons (complete graph topology); then the matrix has to be symmetric
(Jij = Jji); finally the absence of self-interactions has to be assured (Jii =
0).

Hopfield networks are associative memories. In this context memory
represents the capacity to reproduce as an attractor an activation pattern
that already passed through the network before.

So consider the set of not correlated attractors (memories) of equation
(3.5) that we want to insert within the network.

ξµ = {ξµ1 , ξ
µ
2 , . . . , ξ

µ
N} (3.5)

Where in equation equation (3.5) µ is an index over memories.
We want to investigate the relation between the synaptic matrix of the

network and its set of attractors ξµ. First let us list two simple asymptotic
properties that we would like to have for the network’s dynamics: a
dynamics that is not sensible to the initial conditions (i.e., not chaotic);
then we want that the type of memorized attractors depends only on the
values of the synaptic matrix.

Given these desirable properties, is it possible to build a synaptic matrix
that guarantees that a prescribed neural states will be the attractors of the
network’s dynamics? Moreover, is it possible to guarantee that these will
be the only attractors of the network? Indeed given a neural state exists
a synaptic matrix that makes it an attractor of the network’s dynamics in
absence of noise. At the same time with the presence of noise (under a
certain threshold, see (Ami89) for more details) with the same synaptic
matrix it is assured an attractors’ distribution where neural states near
the memorized one have a probability different from zero to be visited.
The following Hebb rule of equation (3.6) makes possible to obtain this
synaptic matrix starting from the neural state that we want to memorize.

29

The Hebb rule is generally used to memorize a set of arbitrary patterns
in a Hopfield network, and works as follow: for each known attractor
ξµ ∈ {+1,−1}N , with µ ∈ [1, . . . , p], the synaptic matrix entries, initialized
to zero, are modified adding the term ∆Jµij = ξµi ξ

µ
j . Integrating over all

attractors, the final weight’s are given by:

Jij =

{
0 if i = j
1
N

∑p
µ=1 ξ

µ
i ξ

µ
j otherwise

(3.6)

It is possible to show that the Hebb rule modifies the weights of a
Hopfield network in a way able to descent the gradient of the network’s
energy function (see below) until a minimum is defined for each inserted
pattern, which for this reason will become attractors of the network’s
dynamics.

Memorizing patters means that neural states as in equation (3.7), for
every patterns µ = 1, . . . , p, are fixed point attractors of the network’s
dynamics.

Si = ξµi i = 1, . . . , N (3.7)

An interesting property of Hopfield networks concerns the possibility
to assign a Lyapunov function to its dynamics. We call this function H(S)
and in physical terms it is an energy function (hamiltonian, equation (3.8)).

H(S) = −1
2

N∑
i,j i6=j

JijSiSj (3.8)

As Lyapunov function H(S) decreases as the dynamics of a Hopfield
network evolve and it has the attractors neural states as its minima. So
studying the H(S) landscape we can find the network’s attractors, as
characterize them or estimate their basin of attraction.

When the dynamics of a Hopfield networks is perturbed by a gaus-
sian noise, after a time sufficiently long, the network will relax toward a
Maxwell-Boltzmann distribution (equation (3.9)).

P (S) =
e−

H(S)
T

Z
(3.9)

30

Where in equation (3.9) T is the temperature of the network that is
related with the variance δ of the gaussian noise added to the Post Synaptic
Potential Ui, for every neuron i = 1, . . . , N , as T = 2

√
2δ. Z is the partition

function used to normalize the distribution.

Z =
∑
S

e−
H(S)
T (3.10)

Another important result about Hopfield networks it is related with
their capacity α, that is the number of patterns that can be memorized.
There is a known limit from Hopfield Network theory about how many
patterns we can memorize properly if we use the Hebb rule: if we have
N agents this limit is α = 0.138N . Note that this equation is is valid only
when the memorized attractors are uncorrelated, but it can be considered
as an upper bound for correlated patterns.

As we said Hopfield networks were used to model neurophysiological
data taken from experiments made on animals, but this is not the only kind
of application Hopfield networks were utilized. Hopfield networks were
applied successfully for error correction, image processing, optimization
and so forth. Mainly Hopfield networks can be used for memorization
and recognition tasks. The idea is to store a series of patterns that the
network can reconstruct once corrupted versions are presented as input
neural states.

In this context applications concern the ability to reconstruct a signal
transmitted through a noisy channel or speech and image recognition.
For example about images we can assign to each black and white pixel
a neuron of the network. Then, during the learning phase, we can store
a set of images as patterns of the network. Once a distorted version of a
memorized pattern is presented to the network as input neural state the
dynamics will bring the network to the attractor (the original image) that
is the most similar with the input .

Hopfield networks were used also to solve successfully combinatorial
optimization problems (HT85) as the matching problem or the traveling
salesman problem. Typically to solve such kind of problems we have to

31

use neurons to represent the variables of the problem. The synaptic matrix
has to represent the parameters to optimize and their constraints in such
way that the solution of the problem will be the minima of the energy
function and so the attractor of the network dynamics.

From a technological point of view Hopfield networks can have an
hardware implementation too (VJ89). Neurons can be built using ampli-
fier with capacity and synapses using resistances. This can be done to
obtain faster computations. For example in image recognition a traditional
method should compare all the images memorized on the disk to find
the one that we want to recognize. This procedure is very slow, so neural
chips based on associative memory were introduced to reduce as much as
possible the disk access.

In the following sections we will present a new class of applications for
which Hopfield networks can be used. Indeed to apply Hopfield networks
to manage the computational resources of agents, in order to achieve
coordination and selection of a MAS, is a novel idea.

32

3.2 Energy and Activation

Consider a Multi-Agent System where to each agent is assigned a quantity
called energy. Agents have a priority and a computational power that are
proportional to their energy, which therefore represents the access to the
computational resources of the system. Let Ei(t) be the energy of agent
i at time t. The execution of the code of an agent has a cost in term of
energy which is called run energyRi. It represents the the amount of energy
necessary for the agent i to become active and perform its computations.

The cost of an operation should be assigned according to its complex-
ity and urgency, relatively to the application considered. If the agent’s
operations have a low cost this means that it can be easily activated. So
we can consider this cost as the inverse of the operations’ urgency. If on
one hand urgent operations should have a low cost, on the other hand
complex operations can be considered slower and so they should need
more energy.

We can then define the activation variable Ai ∈ {−1,+1} as follows:

Ai =

{
+1 if Ei ≥ Ri (active)
−1 otherwise (idle)

(3.11)

So each agent in the AAN architecture has its own code of execution
which it will execute every time it is activated. Agents can obtain sufficient
energy to switch from idle to active from two possible sources. The first
one, called base energy orBi, is defined by the user to represent the absolute
relevance of the agent, independent of time and immediate context. It
might for instance bias the selection of active agents due to external con-
straints (as in section 3.11.7) or reflect habituation or learning dynamics.
The other source, called linked energy or Li, is the energy received from
other agents, and represents the contextual relevance of the agent. The
sum of base energy and linked energy defines the total energy Ei received
by agent i .

33

3.3 The Attractor Agent Network

The Attractor Agents Network (AAN) consists in a Hopfield network
(Hop82) that connects agents and distributes energy between them, so that
their activity can be well coordinated. The presence of a limited amount
of energy guarantees only a small subset of agents will be active at the
same time, by putting them into competition, thus only allowing mutually
congruent agents to remain active in the end. Additionally, learning leads
the system to select the most suitable agents depending on the context and
problem to solve. See also (Kok94) (PC07) for related models managing
the distribution of energy among components through networks that are
called energetic network. The following paragraphs describe the functioning
of such a network.

We start from the mathematical definition of a Hopfield network taken
from (Ami89), where terms are translated in the AAN terminology. Table 1
makes it possible to easily transfer known results in Hopfield networks to
energetic networks, and thus to AANs. In turn, equation 3.13 transposes
into energy the computation of the postsynaptic potential within neuron i
from the excitatory and inhibitory activities of connected neurons. Synap-
tic weights between neurons are encoded in matrix J , with positive values
corresponding to excitatory links. The original Hopfield equation exactly
corresponds to the computation of the linked energy, and is only altered to
include the base energy, thus enabling the possibility to boost the energy
associated to agent i when Bi > 0.

Ai(t) = sign(Ei(t)−Ri) (3.12)

Ei(t+ 1) = Bi + Li(t+ 1) = Bi +
1
2

N∑
j=0,j 6=i

Jij(Aj(t) + 1) (3.13)

Where in equation (3.13) Jij are the links of the energetic network,
which connect the agents with each other. A simple algebraic computation
is now shown to divide the argument of the sign function in equation
(3.12) into a time dependent component EIi and a not time dependent

34

Table 1: Hopfield to AAN terminology

Hopfield network (as in (Ami89)) AAN

Neurons Agents

Symbol Description Symbol Description

Ui Post-synaptic potential Ei Energy

Ti Activation threshold Ri Run energy

Si Spike Ai Activation

Jij Synaptic matrix Jij Link matrix

component Eei . They correspond respectively to the internal magnetic
field hi and external magnetic field hei defined in equation (3.4).

Ei(t+ 1)−Ri = Bi + Li(t+ 1)−Ri

= Bi +
1
2

N∑
j=0,j 6=i

Jij(Aj(t) + 1)−Ri

=
1
2

N∑
j=0,j 6=i

JijAj(t) +
N∑

j=0,j 6=i

Jij +Bi −Ri

= EIi (t+ 1) + Eei

(3.14)

EIi (t+ 1) =
1
2

N∑
j=0,j 6=i

JijAj(t) (3.15)

Eei =
N∑

j=0,j 6=i

Jij +Bi −Ri (3.16)

35

3.4 Agents’ Attractors

An Hopfield network is used to memorize patterns which are represented
by the attractors of the dynamical system that it defines. Whatever the
configuration of an Hopfield network, it will sooner of later converge to
one of its attractors. The set of initial configurations leading to the same
attractor belongs to its basin of attraction.

The same attractors are found at the core of an AAN and are called
agents’ attractors. Each attractor Aµ = (Aµ1 , A

µ
2 , . . . , A

µ
N) ∈ {−1, 1}N is a

configuration of active agents (that will execute their operational code)
and non-active agents (that will remain silent). Each Aµi here represents
the asymptotic activity of agent i, i.e. its activity after an indefinitely long
number of energetic network updates (see equation 3.13). So agents are
divided in different group of execution.

Another interesting feature of an AAN concerns its ability to perform
well also in presence of noise or when the number of agents is high. Ro-
bustness to noise means that the retrieval of a agents’ attractor can be done
even if the network is under the influence of noise. Moreover, noise can be
considered as the temperature of the system and determines the trade off
between exploration and exploitation. It is thus required to escape from
local minima and to destabilize spurious attractors, which are a mixture of
memorized attractors (see (Ami89) to have more details).

Artificial gaussian noise is added to the agents both to prove robustness
and to enable the use of the Montecarlo method to obtain faster conver-
gence (see section 3.7). As a result, the probability of having the energy
associated with agent i equals to E is:

Pr(Ei = E) =
1√

2πδ2
exp[− (E − Ēi)2

2δ2
] (3.17)

where Ēi is the statistical mean of the random variable Ei. The distri-
bution variance δ and the temperature T are related as T = 2

√
2δ.

36

3.5 Resource Bound

In this section we bound the amount of computational resources available
to the agents (see section 1.1 for related approaches). This is useful to
optimize the management of agents’ memory and their access to processors
(and consequently access to communication bandwidth, representation
space, sensors, effectors and so forth). We want that when an agent is
active the amount of computational resources used can not be available
to other agents until it will end its activities. With an energy bound like
this and the cost of agents’ execution taken together, we can have an
efficient system with only few active agents at the same time. There is
also another interesting consequence: together with the local excitation
and local inhibition given by the energetic network’s links this resources
bound introduces global inhibition too. Together they can play the role
of positive feedback and negative feedback that produce self regulating
and self sustaining activation patterns, which in the AAN architecture are
identified by agents’ attractor 2.

Storing only biased patterns (Ami89) we can force the energetic net-
work to have a bounded number of active agents. With biased patterns
we can represent agents’ attractors with only a fixed average number of
variables for which Ai = 1 (active agents). We can call this kind of agents’
attractor biased agents’ attractor. Let us define the bias probability as in
equations (3.18) and (3.19).

P (Ai = +1) =
1
2

(1 + a) (3.18)

P (Ai = −1) = 1− P (Ai = +1) (3.19)

Where we set a ∈ [−1, 1], called bias parameter, according to the average
number of agents that we want to be active.

2These patterns sometimes are called auto-catalytic set (Kau93).

37

Then we have to constraint the energetic network’s dynamics on a
subspace of its 2N possible configurations. This is the subset of states with
an average agents’ activation given by the bias parameter a. The idea is to
add the constraint of equation (3.20) to the dynamics of the visited states.

1
N

N∑
i=1

Ai = a (3.20)

We can fix the average amount of agents’ activation and implement the
constraint introduced above in equation (3.21), adding a special term Ee0
to the time independent energy component Eei defined in equation (3.16).
As in (Ami89), the value of Ee0 can be found from the relation tanh Ee0

T = a.

Eei =
N∑

j=0,j 6=i

Jij +Bi −Ri + Ee0 (3.21)

38

3.6 Learning and Execution

Once we have defined the concept of agent’s attractor one important
question is to understand how the energetic network can learn the right
ones. We know that, as in Hopfield networks, the set of agent’s attractors
of the AAN are determined by the weights of the energetic network.
Moreover, not only to a certain set of weights corresponds a set of agents’
attractors, but also the dynamics within the energetic network used to
spread energy among the agents during their execution. So one question
that we will investigate in this section is how to assign the right values to
the AAN links matrix.

To learn the values of the weights of the energetic network, that is to
determine the set of agents’ attractors of the system, we have two possible
choices: to learn automatically a suitable set of agents’ attractors online
or to insert manually a set of agent’s attractors that we already know to
behave well. This choice is made according to our knowledge about the
problem that we want to solve and according to the amount of adaptability
needed when the solutions are changing online.

In addition an alternative online algorithm that focuses more on context
awareness will be shown in section 7.2 as a future development of the
work presented in this thesis.

Finally we will show how the AAN can recall the right agents’ attractor
online according to current context.

3.6.1 Offline Learning

If we already know the set of agents attractors that have to be stored we
can use the Hopfield network s Hebb rule that we already saw in equation
(3.6) of section 3.1. As we said the Hebb rule is generally used to memorize
a set of arbitrary patterns in a Hopfield network.

Let us repeat how it works in the context of the AAN architecture: for
each known agents’ attractor Aµ ∈ {+1,−1}N , with µ ∈ [1, . . . , p] here,
the energetic network’s weights, initialized to zero, are modified adding
the term ∆Jµij = Aµi A

µ
j . Integrating over all agents’ attractors, the final

weight’s are given by:

39

Jij =

{
0 if i = j
1
N

∑p
µ=1A

µ
i A

µ
j otherwise

(3.22)

So we can choose the agents’ attractors and then directly modify the
weights of the energetic network using the Hebb rule. What we have to
care about is to not store more agents’ attractors than the number allowed
by the networks capacity, as we showed in section 3.1.

In order to memorize p biased agents’ attractors (section 3.5) we have
to modify the Hebb rule of equation (3.22) as in equation (3.23).

Jij =

{
0 if i = j
1
N

∑p
µ=1(Aµi − a)(Aµj − a) otherwise

(3.23)

This offline approach will be tested in the experiment of section 3.11.

3.6.2 Query Algorithm and Online Learning

Once the agents’ attractors are memorized (inserted manually or online,
as we will see below) we still need a method to recall them during the
execution of the task. In this section we will show the query algorithm
(see algorithm 1) where the agents build an initial configuration trying
to make the network arrive to the best agents’ attractor. Starting from
that initial configuration the energetic network will converge to an agents’
attractor where active agents execute their operations. These two phases
are called respectively adequacy step and execution step.

The energetic network is an associative memory, so the idea is to let
the agents to decide locally if activate by themselves, reading their portion
of the input space and using a test function that will determine if it is the
right moment to be active. These local and autonomously tests will decide
an initial configuration of agents, which propose themselves as active still
without executing. The decision of this proposal ends the adequacy step
that has the aim to produce an initial configuration that should belong to
the best agents’ attractor’s basin of attraction. Finally when the energetic
network arrives to an agents’ attractor the execution step starts running

40

all active agents.

The energetic network’s weights can also be modified online by a
learning algorithm that optimizes the collective behavior of the agents
facing different inputs in different moments. This algorithm constitutes
the learning step of the query algorithm, it is shown in algorithm 2 and
works as follow.

According to the problem that the architecture is attempting to solve,
the particular semantics of this learning process is defined by the user
who has to implement the test functions of the adequacy step. As we said
this function evaluates locally the quality of agents’ operations and it has
binary output: success or failure. When the learning algorithm is running,
the success and the failure of agents determine the links’ weights so that
the computational resources (energy) of the system are distributed among
agents. This energy distribution is developed to achieve coordination
among agents: the idea is to have in the same agents’ attractor a set of
agents that to have success need to be synchronized. In this way they can
be active and execute together in order to benefit of their operations.

The idea behind this learning algorithm is simple: we want that agents
that have succeeded at the same time belong to the same agents’ attractor;
on the contrary when an agent has succeeded and another has failed they
should belong to different agents’ attractor. To implement this idea we
proposed algorithm 2, which is a subroutine of algorithm 1, that uses
a learning update developed taking inspiration from the Hebb rule of
equation (3.22). Note that in algorithm 2 the N in the denominators
of the learning updates is taken directly from the Hebb rule. Moreover
the learning rate c has to depend on the number of agents N . This is true
because observing the Hebb rule we find that the Jij have minimum value
− p
N and maximum value p

N , where p = 0.138N if the agents’ attractors
are totally uncorrelated.

It is possible to prove (Roj95) that imposing to the energetic network the
absence of self interactions, links with symmetric weights and a complete
graph topology, it is assured its convergence to stable agents’ attractors.
As we can see the resulting energetic network topology produced by the

41

Algorithm 1 Query Algorithm

Input: N number of agents
activity[1 . . . N] agents’ activation variables, initially all set to -1
success[1 . . . N] result of the success/failure test of agents
J[1 . . . N][1 . . . N] zero-valued energetic network’ links
NumIterations number of learning cycles
T temperature
average activity average number of active agents (Computational Re-
source Bound)
num active current number of active agents
num successes current number of active agents that had success

ADEQUACY STEP(parameter i) measures the adequacy of agent i and
returns the result of its success/failure test
EXECUTE STEP(parameter i) operations executed by agent i
LEARNING STEP(parameters N, activity, J, c, a) updates (and returns)
with learning rate c the links J of an energetic network of N agents with
activity activity and bias parameter a

Output: J[][] new links of the energetic network

a← 2.0 ∗ average activity − 1.0
Choose average activity random agents to be active
for k := 1→ NumIterations do

for all active agents n do
success[n]← ADEQUACY STEP (n)

end for
if num successes < num active or k = 0 then
J ← LEARNING STEP (N, activity, J, c, a)

end if
for all active agents l do

if not success[l] then
activity[l] = −1

end if
end for
repeat

energetic network’s update (equation (3.12)) through Montecarlo
method

until energetic network reached an agents’ attractor
for all active agents m do
EXECUTION STEP (m)

end for
end for 42

Algorithm 2 LEARNING STEP

Input: N number of agents
activity[1 . . . N] agents’ activation variables
J[1 . . . N][1 . . . N] Energetic Network’ links
success[1 . . . N] result of the success/failure test of agents
c learning rate
a bias parameter (section 3.5)

Output: J[][] new links of the Energetic Network

for all active agents i do
for all active agents j do

if success[i] and success[j] then
J [i][j]← J [j][i]← J [i][j] + c−a

N
else if not success[i] and not success[j] then
J [i][j]← J [j][i]← J [i][j] + c−a

N
else if success[i] and not success[j] then
J [i][j]← J [j][i]← J [i][j]− c−a

N
else if not success[i] and success[j] then
J [i][j]← J [j][i]← J [i][j]− c−a

N
end if

end for
end for

43

proposed learning algorithm fulfills these constraints. So it is sure that
after the learning step a set of stable agents’ attractors have been learnt.

According to this procedure we will have positive links between agents
that have succeeded at the same time and negative links between agents
that have succeeded in different times. Let us try to understand why this
is sufficient to make agents synchronize properly, that means to have the
right set of agents in the same agents’ attractor. A first possible explanation
is that when two agents are connected with a positive link, when one is
active the other receives energy through this link. Or when two agents
are connected with a negative link when one is active the other will have
less energy. But this kind of reasoning is not telling anything about the
asymptotic behavior of the energetic network. To obtain this kind of in-
formation in the following section 3.7 we will focus more on the physical
interpretation of the energetic network’s dynamics. In addition this online
approach will be tested in the experiments of sections 3.9 and 3.10.

44

3.7 Coordination measures and Frustration

To show that algorithm 2 learns agents’ attractors with a coordinated set
of agents, in this section we give a physical interpretation of the dynamics
of the energetic network. We recall that Hopfield networks are recurrent
neural networks based on ideas common to those used in spin glasses
(PVM87). In statistical physics the spin glass is a substance in which the
atomic spins are oriented in random but fixed directions. A spin glass is a
disordered material exhibiting high magnetic frustration. Here frustration
refers to the inability of the system to remain in a single lowest energy
state (the ground state). Indeed spin glasses have many ground states,
that in Hopfield networks correspond to many memorized patterns. To
not confuse the energy as computational resources in the AAN architec-
ture with the energy function of physical systems we will call the latter
”hamiltonian”.

In absence of noise we can find the agents’ attractors as the configura-
tions with minimum energetic network’s hamiltonian H(A). The corre-
sponding hamiltonian of equation (3.8) for Hopfield networks in the AAN
context is the following equation (3.24).

H(A) = −1
2

N∑
i,j,j 6=i

JijAiAj (3.24)

H(A) is the Lyapunov function of the energetic network dynamics.
In the presence of noise we have to consider another Lyapunov function:
the free energy. The general definition of free energy for a configuration
A = {+1,−1}N of active agents and silent agents is f(A) = H(

−→
A)− TS

where S is the entropy of the Energetic Network.

Now consider a set of people that we have to divide in two groups: the
group labeled as +1 and the group labeled as -1. About these people we
also know that they can be connected with each other with friendship
relationships or enemy relationships. We want to divide the people in a
way that makes people happy as much as possible: that is to put as many
friends as possible in the same group and as many enemies as possible in

45

different groups. This problem is equivalent with the problem of finding
the minimum configuration of free energy of a spin glass (PVM87). Ac-
cording to this interpretation to find this configuration means to maximize
the happiness. Since a spin glass and a Hopfield Network are very similar
in our context , what does this consideration means according to the AAN
architecture?

The two groups +1 and -1 correspond to active and silent agents, re-
spectively, whereas the friendship and enemy relationships correspond to
positive or negative links among agents. As we said before, following its
dynamics the energetic network minimizes its free energy until it arrives
to a minimum where we find an agents’ attractor. According to the previ-
ous interpretation this means to maximize the number of ”friend” agents
(agents connected with each other by a positive link) to be active and silent
at the same time. That is to maximize the number of friend agents that
belong to the same agents’ attractor. At the same time minimizing the free
energy means to maximize the number of agents that are active when their
enemy are silent and vice-versa. That is to maximize the number of enemy
agents that belong to different agents’ attractors. 5

One interesting property is that when the system is frustrated it has not
a unique state of minimum free energy, but several minimum states called
metastable states. All these states have an equal amount of free energy,
which is greater than the value of the not frustrated case.

So we can say that the energetic network’s free energy is a suitable
quantitative measure of global coordination among agents: the lower is
its value in the stationary state and more the agents are coordinated. On
the contrary the higher is its value in the stationary state and more the
agents are frustrated. So, typically, to find an efficient collective state a
trade-off between frustration and synchronization among the agents has
to be found.

Another possibility is to measure the synchronization among two agents
locally. To do this we can use the correlation function that measures how
much two microscopic variables are correlated in different positions 3. For

3In statistical physics critical phenomena, as phase transitions, are studied using the

46

Figure 6: An example of frustrated Energetic Network. Up headed arrows
are active agents and down headed arrows are silent agents. There is not an
unique choice to make happy the bottom right agent. Figure taken from (oE).

47

the AAN these microscopic variables are the agents’ activities Ai for i =
1, . . . , N .

The correlation function among two agents i and j is given by equation
(3.25).

Cij = 〈AiAj〉 − 〈Ai〉〈Aj〉 (3.25)

where the angle bracket defines a mean on the distribution given by
the temperature.

Hence, after an AAN has learned how to distribute its computational
resources among agents for a given problem, we can use the free energy
and the correlation function to analyze the agents’ coordination globally
and locally respectively.

correlation function which describes how the dependence among microscopic components
of a system produces the necessary synchronization to transit in a new macroscopic state.
Indeed during a phase transition typically the correlation function diverges as the system size
is infinite. Indeed we have an high level of cohesion when we find a long range correlation;
or in other words when the correlation function scales with the system size (scale free
correlation). Here cohesion means that the information is moving really fast among agents
and that the system is robust to perturbations.

48

3.8 Some Useful Tools

In this section we will briefly review some tools taken from Hopfield net-
work theory that can be used to analyze the energetic network’s dynamics
and understand the nature of the learnt agents’ attractors.

When we are using an online learning algorithm (as algorithm 2) we
can not know a priori the identity and the number of the learnt agents’
attractors. So to know which agents’ attractors have been learnt we can
study the free energy because, as we said, they are located in the minima
of this function. Also if the free energy of a Hopfield Network has a known
analytic expression the only way to compute these minima is numerically.
This problem is known to be computationally hard because it belongs to
the NP complexity class. To find an approximate solution we can use the
Branch & Bound algorithm, a variant of the Simplex algorithm, that was
already successfully used to find the free energy minima of a spin glass, as
in (KH78) (HDK84) (SDJ+95). So it can be easily extended to be used for
the energetic network of an AAN.

Furthermore we can measure how much the agents’ attractors interfere
with each other using the signal to noise analysis (Ami89). Indeed this is
an important point because, if we want to use efficiently the capacity of
the energetic network’s memory, that is to let it to memorize as many
agents’ attractors as possible, the correlations among them should be
minimum. This become even more important when we are using the
Hebb rule of equation (3.22) because in this case we can check before if
the memorization of the agents’ attractors is feasible. As we said, if the
attractors of a Hopfield Network are correlated its theoretical capacity
of 0.138N decreases, because these correlations produce an interference
between attractors that can disturb their stability. The signal to noise
analysis can help us to control this phenomena. Note that if we have an
high number of agents, compared with the number of the memorized
agents’ attractors, these can be also correlated with each other.

Another interesting measure about agents’ attractors concerns their
basin of attraction. It measures how many initial configurations will flow

49

in a certain agents’ attractor and it can estimated numerically as follow
(Tir95): initially we can assume that the energetic network is in an initial
configuration Ai(0) for i = 1, . . . , N , which is a perturbation of some
learnt agents’ attractor A1 ∈ {−1,+1}N as represented in equation (3.26).

Ai(0) = A1
i ξi (3.26)

where ξi is a random variable which takes values +1 and −1 with the
probability shown in equation (3.27).

P (ξi = 1) = 1− q P (ξi = −1) = q (3.27)

An estimate of the basin of attraction can be obtained computing the
maximum value of q such that we find the convergence to the agents’
attractor A1.

In statistical physics many macroscopic properties of a system that has
reached the equilibrium can be expressed as an expectation of the canoni-
cal distribution of equation (3.9). In the AAN architecture the equilibrium
is reached when the energetic network has reached an agents’ attractor.
More the system is big and more this expectation corresponds with the
real macroscopic observations. The mean 〈M〉 over the canonical distribu-
tion of a certain observable M related with the agents at temperature T is
represented by equation (3.28).

〈M〉 =
∑
A

M(A)P (A) (3.28)

An example of the expectation over the noise introduced in equation
(3.17) was given to define the correlation function Cij of equation (3.25).

In such kind of averages the sum is computed over the 2N configu-
rations representing all the possible N combinations of agents’ activities.
Indeed 2N is the cardinality of the set {+1,−1}N . This means that if we
want to compute this sum with a deterministic method it would be nec-
essary an exponential number of steps. Moreover, when the number of
agents is large, also to simulate the energetic network’s dynamics can be

50

computationally expensive: we need O(N2) operations for each time step
from the initial configuration until an agents’ attractor is reached (this time
is called mixing time). Such kind of computations can be not tractable also
for a very powerful computer if the number of agents is large.

A more tractable approach consists in utilizing the Montecarlo method.
The Montecarlo method is an importance sampling strategy: it can im-
prove the performance of a numerical estimate visiting only the most
important system’s configurations, avoiding those configurations that
contribute less to what we want to estimate. It was successfully used for
Hopfield networks (Tir95) and so it can be used for the energetic network
of the AAN architecture as well. Indeed the Montecarlo method is re-
ported in algorithm 1 and it was implemented for the experiments of the
following sections.

If the system is frustrated we have to deal with a high number of
metastable agents’ attractors, divided each other through high barriers in
the free energy landscape, which makes difficult to go from one minimum
to another. Indeed the energetic network’s free energy is a very complex
function with many minima and maxima that can bring the Montecarlo
method to be blocked in a local minimum that is not an agents’ attractor.
To solve this problem we can use transitions which augment the free
energy instead to diminish it, because they give a possibility to exit from a
local minimum. This is a good strategy because local minimums which
are not agents’ attractors have a higher free energy and a smaller basin
of attraction. The solution is to use an amount of temperature which is
high enough to bring the energetic network out from a spurious basin
of attraction and at the same time to bring it to an agents’ attractor with
lower free energy. Indeed observing the distribution of equation (3.9),
with zero temperature T → 0 the canonical distribution in concentrated
on the agents’ attractors. On the other hand if we consider a very high
temperature, let us say T → ∞, every configurations will have equal
probability.

The optimal strategy is to start the Montecarlo method with a high
temperature (T = 1) and then diminish the temperature continuously
as we are getting near to the absolute minimum. This method is called

51

Simulated Annealing (KGV83) which was already applied successfully on
Hopfield network to improve the convergence process to a memorized
attractor.

With this method we have to choose for every possible value of the
temperature, from higher values to lower ones, the number of cycles P
which the energetic network has to wait before to decrease the temperature
again. The Geman and Geman theorem (GG84) guarantees the wished
result with probability 1. Indeed let n the number of steps which are used
to update all the agents. If we varies the temperature according to the law

T (n) =
C

1 + log n
(3.29)

then we will reach the free energy minimum of the energetic network.
The C constant can be determined doing several tests. In practical ap-
plications a exponential decay law for the temperature is used until a
temperature T0 is reached; then a logarithmic decay law is used.

52

3.9 First Application, Optimization: The Board
Game experiment

In this section we give a simple application to explain how the introduced
architecture works in practice: a simulation of the AAN architecture play-
ing with a board game. Although simple, this example start to illustrate
what is the nature of the concepts introduced above.

This board game constitutes a distributed constraint optimization prob-
lem (SLB08). As we said in section 3.3, the AKIRA energetic model was
already applied to solve problems of combinatorial optimization, as the
edge coloring problem (Pez09).

Hopfield networks were successfully used for optimization problems
too, for example the traveling salesman problem or the matching problem
(HT85). As we said in section 3.1 adopting this approach means using neu-
rons to represent the variables of the problem and defining a hamiltonian
(as in equation (3.8) of section 3.1) that has the solution of the problem
as its minimum configuration. As the Hopfield network continues to up-
date its state the hamiltonian decreases until the dynamics arrives to a
minimum where the solution is represented.

Although this is a powerful approach, no explicit method exists to
write such hamiltonians, which every time have to be hand-written ac-
cording to the specific problem under investigation. In addition when our
optimization problem is enough complex, as in the case of the board game
that we are going to describe, no such hamiltonian can be found. Hence,
using the AAN architecture, in this section we will see an alternative ap-
proach to solve optimization problems with Hopfield networks when we
are not able to find a hamiltonian. Instead of defining the hamiltonian
offline, that corresponds to defining the synaptic matrix, we will use the
AAN online learning algorithm (algorithm 2 of section 3.6.2) to learn this
matrix according to the success of certain values of the variables evaluated
locally during the execution.

Let us consider a board with two rows with 10 cells each. The first row
belongs to the Attacker player and the second to the Defender player

53

(which is the role played by the AAN architecture). For each turn first the
Attacker chooses five pieces to deploy in the first row on the board; he
can choose among 4 possible kind of pieces: foot soldier, pikeman, knight
and archer. Then the defender has to answer deploying his five pieces
in the second row on the board with the aim to get more points than the
opponent. The amount of points which each player can obtain depends
both of the positions of the pieces and their type. The rules are shown in
Figure 7.

Figure 7: a) Points Table. b) Pieces ranges. c) Example turn.

In box (a) of Figure 7 we see how many points pieces can obtain fighting
against other pieces according to their roles; in (b) is shown the pieces’
range of attack; finally in (c) we represented a sample turn with the amount
of points taken by each player. When an Attacker’s piece is in front of a

54

Defender’s piece in the same column they are obliged to fight. Instead, if
there is no opponent in front of a piece it can fight diagonally according to
its range, gaining an additional point. Among all possible opponents that
a piece can find in its different diagonal positions the one which maximize
points is always chosen.

In order to let the AAN architecture to play the Defender role in this
game we used agents to represent the idea ”put a piece in a certain posi-
tion”. So we distribute the problem among 40 agents, where the activity of
the first dozen represents the ten possible positions of archers, the activity
of the second dozen represents the ten possible positions of knights, and so
forth (the configurations with more than one piece in the same position are
excluded from the dynamics). So for example if the agent 17 is active the
AAN architecture is considering the possibility to put a knight in position
7.

What we want is to find and memorize winning defense configurations
as agents’ attractors. Each of them will be composed by five active agents
placed in winning positions according to a certain attack configuration.
In order to constraint the dynamics over five active agents I used the
resource bound introduced in section 3.5. To find and memorize these
agents’ attractor I used the AAN online learning algorithm.

At the beginning of a match the architecture considers to deploy five
random pieces on five random positions. Then inside the adequacy step
of the algorithm these agents compare locally their positions and their
roles with the attack configuration of the opponent. Agents that with their
position make the architecture gain more points, and at the same time
loose less points, are chosen to be active in the initial configuration. Then
the energetic network is updated until it reaches an agents’ attractor. If the
energetic network already experienced a similar attack configuration then
the initial configuration produced by the adequacy step is used to recall a
memorized agents’ attractor successful with that similar attack configura-
tion. In the execution step of the algorithm, if this agents’ attractor adds
the right remaining pieces, the complete defense configuration is deployed.
Otherwise if this attack configuration is unknown a new agents’ attractor
is learned: the topology of the energetic network is updated in order to

55

transfer the energy from agents that represent pieces that are losing to
agents that represent pieces which are gaining more points. At the end
only five successful agents are active in the new learned agents’ attractor
which is deployed as defense configuration. In the next turn, with a new
attack configuration of the opponent, the execution of a new adequacy
step and a new execution step brings the energetic network to replace the
current agents’ attractor with another one able to win in this new situation.

The fact that agents cannot be in the same position at the same time
or the fact that an agent can engage the potential enemy of other agents
represent simple coordination issues. This implementation was tested
successfully on several matches, showing always the ability of the AAN
architecture in playing this game. In figure 8 we show a couple of defense
configurations memorized as agents’ attractors and deployed by the AAN
architecture (red color). As we can see in the first turn the AAN architecture
gets 12 points versus the 8 points of the Attacker player; in the second turn
the AAN architecture gets 13 points versus the 6 points of the Attacker.

Figure 8: Two turns won by the ANN architecture.

56

3.10 Second Application, Classification: The At-
tractor Expert Network

In this section we implement and extend the ideas of the mixture of experts
model (JJNH91) using the attractor agent network architecture. We have
described the mixture of experts in section 2.2.

Let us consider an AAN having as agents a set of feed forward neural
networks that we call experts. We will use this implementation of the AAN
architecture, that we call attractor expert network (AEN), to solve a clas-
sical classification problem with a mixture of experts approach: we want
to know if a point belongs to the upper or lower half plane of a complex
function. The developed AAN learning algorithm exploits cooperation
issues and makes similar experts belong to the same experts’ attractor.

Thinking that in a Hopfield network there are not input neurons, as
in a feed forward neural network for example, the input has to be codi-
fied in the whole initial neural state. In the AAN architecture until now
we used the query algorithm (algorithm 1 of section 3.6.2) to build such
initial activities’ configurations. This approach makes the agents decide
autonomously and locally when being part of the initial configuration,
on the basis of their adequacy investigated online. Here we present an
alternative approach to solve this problem that manages the input outside
the energetic network using the gating network of the mixture of experts
model. This is used both as a mapping function from the input data to the
initial activities’ configuration and as a procedure to specialize the experts.
Thanks to this implementation of the AAN architecture we can obtain an
input module that could be used in other further applications. Moreover
this implementation offers a method to specialize our agents that until
now we considered somehow already specialized.

As we can see from figure 9, what the attractor expert network adds
to the mixture of expert model is a set of connections between the experts
(in the figure represented in blue). The experts are connected through the
energetic network that stores their contextual relations. These relations are
stored using the AAN online learning algorithm (algorithm 2 of section

57

3.6.2).

Expert 1

Expert 2

Expert 3

Input
Module

Aggregator

Output

Input

I/O Links

Activation Links

Energetic Network
Links

Active Expert

Figure 9: In this figure we can see the attractor expert network’s components
and how they interact with each. We have the expert networks, the input
module used to indicate an initial network configuration and an aggregator
module used to combine the results of the experts in the experts’ attractor.

This makes the architecture able to exploit cooperation issues among
the experts and not only competitive ones as in the MOE model. Indeed in
the classical MOE we are usually interested in finding one leading expert
(the selector choose the output of only one expert with the probability of
equation (2.1) of section 2.2). On the contrary in the AEN we want to
select a set of experts, related by some contextual relations, to be active at
the same time. These experts should cooperate to solve a complex problem

58

in order to benefit of the operations of the others. This set of experts is
selected by the experts’ attractor of the energetic network that is more
similar with the initial configuration chosen by the input module. In fact
as we know an experts’ attractor identifies as set of active experts and a
set of idle experts. The output of the attractor experts’ network is obtained
after the arrival to one of its attractors, combining the output of the active
experts through an aggregator module that computes a compositional func-
tion with these outputs as arguments (in the following experiment we will
use the average function).

Moreover in the MOE model all the experts receive the input and
compute their outputs. Only later these outputs are filtered by the gating
network to select the most appropriate expert. On the contrary in the
AEN only active experts receive the input and compute their output. So in
the AEN the filtering process of the gating network is moved from a post
processing of all experts outputs to the preprocessing of which experts has
to be active in initial configuration, with an evident gain of efficiency.

Once the experts are specialized, for each data of the training set, after
the input module has identified the initial activities configuration, we
spread the input to the active experts’ input units. Then, to store the
experts’ attractors, we train the energetic network for each data point
through the AAN online learning algorithm, which considers the success
and the failure of every active experts. This will make the experts that
are specialized on related input classes (necessary to each other or simply
similar) belong to the same experts’ attractors. In the AEN the success of an
expert (the adequacy step of algorithm 2) is defined through the difference
between the output units vector and the desired output vector (known in
supervised learning for data points of the training set; not known for data
points of the test set used in the evaluation phase described below). Note
that in this implementation of algorithm 2 we do not modify the weights
of the failing experts’ links.

Once the learning phase ends we can start to classify data points of the
test set spreading the input to the input module. This module will try to
build the most adequate initial activities configuration. Then the energetic
network dynamics will bring the system to the closer experts’ attractor,

59

where the active experts will perform their classifications (the execution
step in algorithm 2) and their output will be composed in the aggregator
module to obtain an unique final output.

3.10.1 The Experiment

Here we test the attractor experts network on a simple experiment: the
classification of a point according to its belonging to one of the two half
planes defined by a complex function. I chose a piecewise linear function
to verify if the system is able to learn and recall the same experts’ attractor
for similar intervals.

The experts’ architecture and the target function have to be chosen in
order to not let an expert being able to classify points belonging to all the
intervals. This can happen if the piecewise function is so simple that it can
be easily learnt by a single expert. Another possible reason corresponds to
having experts with an architecture enough complex to classify points of
every interval.

According to these desired properties I implemented experts able to do
at most a linear classification. They have an architecture with enough input
neurons that together can codify the two number necessary to represent
an input point (x, y) with x, y ∈ [0, 65000]. So these two numbers can be
represented with 32 bits, 16 for the x and 16 for the y. Then I chose to give
to the experts’ architecture one hidden neuron and one output neuron.
Values of the output neuron close to 1.0 represent the upper half plane and
values close to 0.0 represent the lower one.

The chosen piecewise linear function can be found in the following eq.
3.30 and is represented in figure 10.

y =


5x if x 6 15000
−0.3x+ 20000 if x < 15000 6 32000
−0.7x+ 10000 if x < 32000 6 47000
−0.7x+ 50000 if x > 47000

(3.30)

60

Figure 10: Piecewise target function of equation (3.30) used for the classifica-
tion task.

61

The facts that this function is composed by four different rects and that
a single expert can at most achieve linear classification should bring the
system to specialize the experts.

To solve this classification problem we consider an energetic network
composed of ten experts at zero temperature. The architecture chosen for
the input module is composed of 32 input neurons, 6 hidden neurons and
10 output neurons.

To start showing the behavior of the attractor expert network in the
described task, in the following histograms (figures 11-13) we represent the
number of times that the experts were active according to the kind of input
data. This will let us to evaluate the input module ability to specialize the
experts and activate them for the initial activities configuration. Let us
label the four domain’s intervals, where the four rects are defined, with
the four nominal integers 1, 2, 3 and 4.

During almost 4000 training cycles of the input module only three
experts specialize their behavior, showing that only these were enough for
the classification task. For this reason we will show only the histograms
related to these experts.

Figure 11: Histogram that represents the number of times expert 1 was active
according to the kind of input data.

62

Figure 12: Histogram that represents the number of times expert 2 was active
according to the kind of input data.

During its execution the AAN online learning algorithm stored two
experts’ attractors: in the first one only expert 2 is active, in the second one
are active the experts 1 and 3.

If we compare these experts’ attractors with the histograms showed
below we can find an interesting result: the system specializes the two
experts’ attractors according to the sign of the rects’ angular coefficients. So
in the first experts’ attractor is active one expert specialized in classifying
on half planes defined by rects with positive angular coefficient. In the
second experts’ attractor are active two experts that cooperate in classifying
on half planes defined by rects with negative angular coefficient. As
is shown in figure 9 the two experts cooperate averaging their output
neurons’ values.

To evaluate the described system we used a test set composed of 1000
data points sampled uniformly from the whole function domain. The
overall system performance consists of the 90% data points well classified.
Usually the selected experts were the most adequate according to the input
data.

In addition, to underline the advantages of the attractor expert network
over the classical mixture of experts model, we compared the performance

63

Figure 13: Histogram that represents the number of times expert 3 was active
according to the kind of input data. Note the similarity with expert 2.

of the experts belonging to the second agents’ attractors taken alone with
the results of their coordinated behavior. Considering only the portion of
the domain where these experts are specialized, the experts taken alone
had performance of respectively 82% and 86% of well classified data points.
On the other hand the average of their output neurons obtained a 91% of
well classified data points in the restricted domain.

These results proved that the AEN is able to store similar experts in the
same experts’ attractor. Moreover it exploits the cooperation among the
experts, which can be more convenient than selecting only one expert at
the same time.

64

3.11 Third Application, Active Vision Categoriza-
tion: The Attractor Predictor Network

In this section we will use the AAN architecture to solve a categorization
task of computer vision (Pin06) (LC05). The task consists in determining
whether the input image represents a giraffe, a horse, a cat or a dog. In
figure 14 we have several examples of the sketched animals (cats, dogs,
horses, giraffes) that have to be categorized. Note that in this data set
little variations lead to different categories, making this categorization task
quite challenging.

Figure 14: Stick animals used as stimuli for the categorization task of this
section and sections 4 and 5. Figure taken from (SGS10a).

We will show how to build an AAN to simulate an artificial eye that can
be moved to scan different areas of the input image. The choice to consider
a limited filed of view was taken to investigate overt attention in an active
vision framework (Bal91). To deal with situatedness and embodiment
(Bar08) we want to implement an action oriented construction of categories
so, accordingly, we chose to commit to an active vision approach.

65

In this implementation of the AAN architecture, that we call Attractor
Predictors’ Network (APN), the energetic network connects several sen-
sorimotor features predictors. Each predictor is an agent specialized on a
specific sensorimotor strategy involving two geometrical features and a
motor command (see below). The APN merges the asynchronous received
commands by different predictors to obtain the next fixation point. Then,
to perform a categorization, it accumulates evidence on predictors’ success
during the visual exploration. Predictors that recognize their features in
the filed of view, and predict correctly the relation between them through
the execution of a motor command, are consider successful and so gain
energy and are kept active.

We assume that a category is characterized by the combination of
such sensrimotor strategies, so that the activation of a predictors’ subset
(i.e., predictors’ attractors) can well identify a category. This boils down
here to the control of eye movements during categorization tasks, with
overt attention emerging from the intertwined activity of saliency based
(bottom-up) and anticipatory (top-down) processes.

3.11.1 Input features

The APN implementation of our architecture includes a small foveated
area that can be freely moved around the stimulus to be categorized, and
that will be used as the only sensory input of the system. Due to of the
reduced size of this visual area, the system has only partial knowledge
of the environment and needs to explore it through saccades to obtain
information and disambiguate stimuli. Actions thus consist in saccades (S)
that instantaneously move the foveated area from one position to another.

We preprocessed the visual input in order to be focused on categoriza-
tion and decision-making processes, instead of being focused on technical
details of signal processing and computer vision, which are out of the
scope of this thesis. Moreover this preprocessing keeps the system com-
plexity low enough to be simulated in real-time on standard computer
architectures.

Considering the specific class of stimuli that has to be categorized

66

(black and white, stick-like shape and structure), we chose to equip the
system with the most informative features representation. Starting from
the computation of neuro-inspired saliency map over the input images
(IKN98) we found the strongest saliency around the joints of the stick
animals. Moreover we found that oriented Gabor filters on a single scale
constitute the most sensitive feature descriptor for stick’s orientations. For
each eye’s position only the stick animals’ joints belonging to the field of
view are taken as feature points (Fi), lowering the dimensionality of the
input.

The complete feature descriptor is defined as follow: first we have the
coordinate (u, v) of the joint point’s position in the field of view; then for
the sticks’ orientations we have a vector representing the responses of M
Gabor filters away from the joints (oj)j∈[1,M] (in the following we chose
M = 16). In other words, to obtain a fixed number of values representing
the presence of an arbitrary set of orientation in the field of view we used
Gaussian tuning curves with wide selectivity profiles along orientations
(see equation (3.31) and figure 15).

Note that, although all the informations given by the feature descriptor,
the task remain still quite challenging for the high ambiguity between
categories. For example there is no way to discriminate between back and
front legs without moving the field of view (saccading) from one area to
another.

oj = max
l

exp−
(
M(θj − ρl)

2π

)2

(3.31)

where ρl is the set of angles formed by the sticks coming out from the
considered joint and θj = −π + jπ/M .

The full feature descriptor is given by the vector Fi = (u, v, o1, . . . , oM).
In addition we can compare two features using the similarity measure
(F1, F2) defined in equation (3.32).

σ(F1, F2) = 1− e−
‖F2−F1‖

2

σ2 (3.32)

where ‖.‖ is a norm in RM+2.

67

3.11.2 Predictors

Predictors are agent specialized in verifying particular sensorimotor con-
tingencies through the exploration of the visual input. To be more specific
a predictor (Pi) is defined by a triple (F srci , Si, F

tgt
i) where F srci is the

source feature of predictor i, F tgti is its expected target feature and Si is
its motor command that moves the eye (with Si = (∆xi,∆yi)). When a
predictor observes its source feature F srci in the field of view proposes its
motor command S to move it to a new area where it expects to find its
target feature F tgti (see figure 15).

The number of predictors {Pi}i∈[1,N] needed to cover the representa-
tion space of all possible stick animals can be very large. Moreover the
execution of a predictor takes time and has a cost in term of energy (for
features recognition and motor commands). So to verify the adequacy of
all the predictors for a given stick animal can be a too consuming task if the
total amount of resources is limited. Luckily, to consider all the predictors
is not necessary to achieve good categorization performances. Indeed, as
we will show in the following, the APN is able to select the most suitable
predictors, also when the input is ambiguous.

This kind of predictive representation has proponents in computational
(Dre91), experimental (ON01) and theoretical (Bic01) (Pez11) communities.

3.11.3 The Attractor Predictor Network

As we said previously the success of predictors influences the accumu-
lation of evidence in favor of one category instead of another. This is
implemented by active predictors that update their activation variables
according to their success: that is to predict their target feature at time t+dt
after moving the eye from an area with their source feature at time t. To
integrate such idea within the standard energetic dynamics we introduced
a new variable Ai defined in equation (3.33).

Ai =

{
+1 if Ai = 1 and F srci ∈ fovea(t) and F tgti ∈ fovea(t+ dt)
−1 otherwise

(3.33)

68

0

1

saccade (Si)

source

feature

(F
 src

)

target

feature

(F
 tgt

)

fovea(t=0)

fovea(t+dt)

i

i

j

l

2
oj fovea(t)

Figure 15: Here we can see a stick animal and three positions of the fovea with
the corresponding features. At each fixation feature points are represented
with crosses together with the orientations represented with polar diagrams.
Additionally we reported the triple of predictor (F src

i , Si, F
tgt
i) between time

t and t+ dt. Figure taken from (CVQP).

Compared with the agents considered until now predictors have an
active nature. Indeed their activations are not only defined by the energetic
network dynamics but influence it through the feedback provided by the
interactions with the environment. Substituting the variable Ai with the
variable Ai in the energy update equation (equation (3.13) of section 3.3)
integrates the active role of predictors in the energetic network dynamics.

Ei(t+ 1) = Bi + Li(t+ 1) = Bi +
1
2

N∑
j=0,j 6=i

Jij(Aj(t) + 1) (3.34)

We know that predictors are specialized in relating spatially two fea-
tures through a saccade. So, if we characterize a category by a set of spatial
relations among features, a predictors’ attractor can well identify a cate-
gory. We will see that when the regularities of the input are confirmed

69

by a set of coordinated predictors a predictors’ attractor arises. But as
single predictors, predictors’ attractors do not constitute only a set of fea-
tures, they have active capabilities too. In fact in this context predictors’
attractors are used for representation, categorization and motor control.

3.11.4 Learning

In this section we will see how to store predictors’ attractors within the
APN. Differently from the experiments of the previous sections, here we
will use the offline learning method described in section 3.6.1. In fact in this
case we are able to build four predictors’ attractors, one for each possible
category (horse, cat, dog and giraffe), that can be used to categorize the
stick figures.

To build such predictors’ attractors we started from a data set that con-
tains several stick animals categorized by humans (see figure 14), which
were originally developed by (OK04). In another experiment other authors
utilized one thousand of such figures on the basis of nine parameters (e.g.
torso angle, tail length), in this experiment these figures were categorized
by eight human participants (SGS10b) . The prototypes considered here
are averages computed over such collected responses.

Starting from the joints of each stick figure of the data set, we computed
the set of all possible predictors that confirm their predictions in a given
category. These are all the triples made of an existing starting feature,
saccade and target feature that are confirmed for an animal that humans
say to belong to that category.

Let us define four predictors’ attractors {ACAT , ADOG, AGIRAFFE ,
AHORSE}where the predictors that are generated by image belonging to
the corresponding category are the only active predictors. Using equation
(3.23) of section 3.6.1 we can store these predictors’ attractors within the
APN. It will be implemented in the algorithm of the following section.

3.11.5 The Categorization Algorithm

In this section we will describe a modified version of the AAN query
algorithm (algorithm 1 of section 3.6.2) used here to categorize a particular

70

 Energetic Network

Ta
sk

 c
o

n
st

ra
in

ts

Learning (Hebb rule)

Environment

Fe
at

u
re

 e
xt

ra
ct

io
n

 (
G

a
b

o
r)

Bi, Ri, T

Action selection (WTA based on votes)

Predictors

Jij

Ri
Ei

0

Energy of a predictor

P1

P2

P5

P6

P8

E8

E6

E5
E7 E4

E3

E2

E1

A5=+1 A5=+1

A

ct
iv

e

R
el

ev
an

t

Se
le

ct
e

d

Su
cc

es
sf

u
l

P1

P2  

P5    

P6   

P8 
Sbest

Fi , Fi

S5 = S6

A6=-1 A6=+1

src tgt

Ai Ai

Si

(A
i=

1
)

(F
i



)

(S
i=

S b
es

t)

(F
i



)

sr
c

tg
t

Bi

Figure 16: The Attractor Predictors Network. Once with offline learning
we obtains the weights Jij , we can use the energetic networks to activate
predictors (red nodes). This happens when the energy Ei of predictor Pi is
greater than its run energy Ri. When a predictor finds its source feature
F src

i in the field of view, and its motor command (Sbest = Si) is executed
with the target feature F tgt

i in its end position, a feedback is given to the
energetic network through the assignment Ai = +1. Note the possible states
of predictors with plain arrows indicating activation, feedback and prediction
success. The predictor P5 is the winner of the election process. Figure taken
from (CVQP).

stick figure through the recall of a proper predictors’ attractor. Note that in
this case we have also to control the eye movements within the algorithm.
Algorithm 3 shows the procedure used to schedule the predictors, test their
predictions and accordingly plan the saccades. After the energetic network
has been updated the algorithm converges to a predictors’ attractor that
identify the category of the input figure. In figure 16 we have a schematic
representation of the different APN components and their interactions.

Let us assume for now that all predictors have zero base energy, Bi = 0,
and zero run energy, Ri = 0 (i.e., each predictor needs the same resources).

71

Consider at the beginning the eye positioned in a random position with
the energetic network composed of few randomly chosen active predictors
(Na, see section 3.5). To belong to the basin of attraction of the agents’
attractor that will arrive predictors are evaluated during each iteration in
three different steps:

1. In the first step we check the presence of the source features F srci

within the actual field of view. Predictors that not see a match with
their sources features are set idle, the others will be considered for
the next step.

2. In this step we select a new fixation according to the majority of
saccades Si that belong to the predictors considered perceptual rele-
vant in the previous step. The most common saccade proposed by
predictors, selected through a winner-take-all strategy, determines
the new fixation point.

3. Once we moved the eye, according to the saccade chosen by the
majority of predictors, we check if their target features F tgti match
within the field of view. If this happens these predictors will be active
in the next iteration in order to be part of the basin of attraction of
the future predictors’ attractor.

Predictors that see these three conditions verified give the new eye
position and are kept active for the following iteration in order to enrich
the basin of attraction. In addition other predictors can be activated by
the spreads of energy of the energetic network update, which is perturbed
by a gaussian noise (i.e., the temperature) that can activate other pre-
dictors. Note that predictors generated by figures of the same category
were connected by strong positive links during supervised learning, so
the activation of one of them can make participate predictors of the same
category. The energetic network will continue to be updated, moving
the eye’s fixation at each iteration, until the convergence to a predictors’
attractor.

72

Algorithm 3 APN Categorization Algorithm

// Randomly position the fovea and activate Na predictors
foveapos ← random position
{Ai} ← random vector in {−1,+1}N where card(Ai = 1) = Na
repeat
RP ← ∅ // Relevant predictors
for all Pi do

// Only consider active predictors with adequate context
if Ai = +1 and F srci ∈ foveaview then
RP ← RP ∪ Pi

end if
end for
// Try saccades until at least one prediction is confirmed
{Ai} ← {Ai}
SP ← ∅ // Successful predictors
repeat

// Perform the saccade with the maximum number of votes
Sbest ← argmaxS{card(Sk = S|Pk ∈ RP))}
foveapos ← foveapos + Sbest
// Test all relevant predictors
for all Pj ∈ RP do

// Confirm those where action and prediction both match
if Sj = Sbest then

if F tgtj ∈ foveaview then
SP ← SP ∪ Pj

else
Aj ← −1

end if
RP ← RP\Pj // No more selection of this predictor

end if
end for
// Revert the saccade if no predictor was successful
if SP = ∅ then
foveapos ← foveapos − Swta

end if
until SP 6= ∅ or RP = ∅
Update the network with Montecarlo method at temperature T
{Ai} ← application of Eq. 3.12, 3.13 & 3.17

until A ∈ {Aµ} // Predictor’s attractor reached
return µ // Return the associated category

73

3.11.6 Simulation 1: Categorization Perfomance

Starting from a training set of 32 categorized stick figures we used the
Hebb rule (equation (3.23) of section 3.6.1) to store the four predictors’
attractors. These are formed as follow: a total of 1176 predictors were
extracted, each corresponding to a triple (starting feature, saccade, target
feature) that matched within the figures. Note that this number is relative
to the resolution used to discriminate predictors with different features
and saccades. We had 319 active predictors that matched with stick figures
categorized as dog in the attractor ADOG , 314 that matched with figures
categorized as horse inAHORSE , 319 that matched with figures categorized
as giraffe in AGIRAFFE and 224 that matched with figures categorized as
cat in ACAT . The number of predictors generated from figures categorized
as cat are fewer because the stick cats are smaller compared with the other
animals and so less predictors are needed to cover their representation
space.

After the learning phase, within the test phase the APN categorized
new 32 input figures of a test set using algorithm 3. Considering a temper-
ature of T = 0.2 and the possible starting eye positions each stick figure
was processed five times as input. At the beginning of each categorization
the initial configuration is composed of 30 (Na = 30) active predictors
chosen randomly. At the end we have the convergence to a predictors’
attractor, convergence that was accelerated using the Montecarlo method.

Comparing the results of the APN, in 160 categorizations, with the
judgments of humans on the same test set of the experiments presented
in (SGS10b), we got 72% (116) of correct answers. Other computational
methods where tested on the same data set with the following results: the
Decision Trees had a performance of 68%, Linear Discriminant Analysis
87%.

To show the evolution of the APN categorization in the following
figures 17-19 we represent the dynamics of the energetic network. As simi-
larity measure between the predictors attractors and the current energetic
network configuration we use the overlap, defined in equation (3.35).

74

mµ(t) =
1
N

N∑
i=1

Aµi Ai(t) µ ∈ {CAT,DOG,GIRAFFE,HORSE}

(3.35)
Where mµ(t) ∈ [−1.0, 1.0] ⊆ R, with maximum value 1.0 when the

predictors’ attractor µ and the energetic network configuration are the
same. On the contrary we have minimum value −1.0 when the only idle
predictors are those active in the predictors’ attractor µ.

The overlap evolution of the predictors’ attractors {ACAT , ADOG,
AGIRAFFE , AHORSE} with the predictors’ activities is represented in fig-
ures 17 and 18. Every two steps we reported the source and target features
of the predictor that owns the last saccade executed, in order to show how
decision making can be influenced by the actual field of view and its move-
ments. This will be underlined in the following, when we will see that two
different sequences of saccades made on the same animal can indeed lead
to different categories, or simply differentiate the corresponding dynamics.

.
You can look at figure 17 to see that certain times the energetic network

visits the neighborhood of a predictors’ attractor since the early steps.
In figure 18 we can see a different case, which can be considered more

ambiguous, where no unique predictors’ attractor leads the competition
until the end where ADOG wins.

3.11.7 Simulation 2: Predictors’ Influence on Saccades

In this section we will see that a categorization strictly depends on the
saccades made on a stick figure. Indeed also with the same figure two
different sequences of fixations can bring the system to recognize diverse
categories. This can be noted comparing figure 18 with figure 19, where
the categorizations were performed on the same stick animal but with
different results.

This is a known phenomenon in cognitive science, as shown by the
experiments performed in (KGK11). We illustrate now an additional ex-
ample to investigate this issue with the APN. In figure 20 we can see an

75

Figure 17: In this figure we can see the overlaps of the predictors’ attractors
giraffe in magenta, cat in green, horse in red and dog in blue. As we said
source and target features of the predictor that owns the last saccade executed
are represented as well in cyan and beige respectively. The convergence to the
predictors’ attractor AHORSE (note an overlap close to 1.0) arrived after eye
movements that were necessary to enrich enough the basin of attraction. As
the leading attractor is the most similar with the predictors’ activities during
the overall categorization we can consider this input unambiguous. Figure
taken from (CVQP).

ambiguous stick figure that was categorized by the APN both as a dog and
as a cat. We augmented the base energies Bi of predictors extracted from
figures of the same category to break this symmetry (note that until now
we assumed zero base energy for all predictors). Considering the gaussian
noise that we introduced with the temperature, doing this increases the
probability that predictors pertaining to that category will be activated.
This will confirm that according to our implementation the category of a
figure is not absolute but depends on the order of visited features.

Figure 20 shows that if we increase the base energy Bi of predictors
generated by figures of the category cat the system categorizes the input
animal as cat. On the contrary, if we increase the base energy Bi of predic-
tors generated by figures of the category dog the system categorizes the

76

Figure 18: In this figure we can see the dynamics of a categorization with
output ADOG. Note the ambiguity of the input, which was already catego-
rized by human as a cat. Here no overlap leads the dynamics clearly until the
convergence. Figure taken from (CVQP).

input animal as dog. So boosted predictors can change the outcomes of
the categorization.

We computed the average overlaps with the predictors’ attractors dog
and cat over ten simulations (each performed with different sequences of
saccades). As it is possible to see in figure 20, when we set Bi = 0 ∀i ∈
[1, N] (circle data points, green for cat and blue for dog) the behavior of
the system in uncertain in deciding for one category or for the other. On
the other hand, if we set | i ∈ [1, N] s.t. ADOGi = 1 and Bi = b |> c, where
b = 0.23 and c = |saccades|

4
4, the system chose always for the dog category

(square data points of figure 20). The same result was found for the cat
category and for many other ambiguous stick figures that we decided to
not report here.

4Note that | saccades | stands for the number of fixations before convergence. Moreover
the factor 1

4
inside the c definition and the value 0.23 for b were hand tuned.

77

Figure 19: We can see here the overlaps’ evolution when the system catego-
rizes the same stick animal of figure 18 using different saccades. To prove
that the categorization depends on the order of the visited features, we can
compare the recognition of a cat chosen here with the recognition of a dog of
figure 18. Figure taken from (CVQP).

3.11.8 Simulation 3: Categorization with Morphed Stim-
uli

In this section we want to underline the cognitive plausibility of our
architecture. We start from a paper of Akrami et al. (ALTJ09) that describes
an experiment concerning two primates. The authors produced nine
morphed intermediate figures between each pair of images of their data set.
Then the two macaques performed a 2-alternative-forced-choice delayed-
match-to-sample (2AFC-DMS) task to categorize the morphed figures: the
task of the macaques was to consider first a morphed figure, and then to
indicate among two new figures the most similar with the previous one,
where these two are the original images used to produce the first. Akrami
et al. found that the number of times the macaques selected one of the
original images, taken as reference category, is linearly proportional with
the value of the morphing parameter used to generate the inputs (without
considering the extreme values).

78

Figure 20: In this figure we have the average overlaps of ten different simula-
tions performed over the represented animal. We can compare the behavior
of the biased network when Bi 6= 0 for a set of predictors, with the unbiased
network which has Bi = 0 for all predictors. In the first case boosted pre-
dictors prime the verification of contingencies typical of a certain category.
Figure taken from (CVQP).

As Akrami, with our data set we generated 7 morphed stick animals
for each of the 12 pairs considered. Each ambiguous figure were produced
starting from two random stick animals of different categories (e.g. dog
and giraffe) using a morphing function. This function has as arguments
the nine parameters of the two stick animals and was used to produce 7
levels of ambiguity for each pair.

The APN was used to categorize these morphed animals to show its
robustness under ambiguous condition and to see how the performance
depends on the morphing parameter. Considering the two original images

79

and their 7 variants we have a total of 9 images for each pair considered.
The original images have nominal integers 0 and 8, with the latter rep-
resenting the reference category. The rest of the integers from 1 to 7 are
assigned to the corresponding morphed figures, respecting an identity
between proximity and similarity (see figure 21). We used an APN with
two stored predictors’ attractors to categorize the 12 pairs of figures to-
gether with their morphed versions. For each figure we performed five
simulations, for a total of 60 simulations that were used to investigate how
the convergence to a category depends on the values of the morphing
parameters. In figure 21 we can see the results of linear regression that
confirm those found in (ALTJ09) , with a clear linear dependence between
the average number of times that the APN selected the reference category
and the values of the morphing parameter.

The paper of Akrami reported also the measurements, taken during
the task, of the activities of neurons with an effective response to the
reference category. They found, across several trials, that the average
neural population response is linearly proportional with the value of the
morphing parameter used to generate the inputs (without considering the
extreme values).

To investigate such phenomenon we move our attention from the
point of view of the categorizations performed by the whole APN, to the
point of view of single predictors’ activities just before the convergence
to a predictors’ attractor . We found that considering 60 simulations, the
average number of active predictors belonging to the reference category is
linearly proportional with the values of the morphing parameter (as we
can see in figure 22).

The task that the APN performed for certain aspects is different from
the one of the macaques. One of these aspects concerns the structure of the
task. The task is our case is to select the category of a morphed figure (i.e.,
if it belongs to the category of figure with label 0 or the category of figure
with label 8). In the case of Akrami the macaques chose between two
images the most similar with a previous one morphed (a 2AFC-DMS task).
Moreover the measurements of the neural activity were taken observing
the response to only one reference image (the ”Eff image” as they call

80

Figure 21: In this figure we can see the linear regression between the morph-
ing parameter and number of times the APN selected the reference category
(morphing parameter 8). The line within the plot has slope 0.158. Circles
represent average frequencies and error bars standard deviations over the 60
simulations. We reported also an example of morphed animals with increas-
ing morning parameter. Figure taken from (CVQP).

it in their article), making the roles played by the two original images
asymmetrical. In the case of the APN both the categories of the original
images were stored within the energetic network before the categorization,
making the role played by the categories symmetrical.

In (ALTJ09) is considered a Hopfield network to explain the behavior
and neurophysiological data of the macaques. Also the energetic network
of the APN is a Hopfield-like network, but adds prediction and control of

81

Figure 22: In this figure we can see the linear regression between the mor-
phing parameter and the average number of active predictors belonging to
the reference category (morphing parameter 8). The line within the plot has
slope 0.055. Circles represent average frequencies and error bars standard
deviations over the 60 simulations. Figure taken from (CVQP).

eye’s movements to the typical neural networks. Moreover the anticipatory
representations of predictors are used to prime the eye movements when
these are active in the recognition of a certain category. Finally if on one
hand the patterns memorized within the Hopfield network of Akrami
are totally uncorrelated, on the other hand our predictors’ attractors were
produced activating the predictors that saw their strategies confirmed for
the stick figures of one of the two categories.

82

3.11.9 Simulation 4: Probability of Categorization

In this section we will shortly characterize the probability to recognize a
certain category on the basis of the saccadic sequences executed. Indeed
the fixations on different features can have a diverse contribute in choosing
a category. For example triples (Fs, S, Ft) that are confirmed on stick
animals belonging to more than one category at the same time can be
considered less informative. Because they could activate predictors of
various category without promoting an unique basin of attraction. On the
other hand predictors that represent triples confirmed in figures of only
one category can be considered more informative, because their activation
will aways promote the basin of attraction of that predictors’ attractor. An
example of such kind of triples is represented by the necks of the giraffes,
a so long saccade, moving the eye from the torso to the head features,
can be confirmed only with giraffe stick animals. On the contrary, triples
codifying tails and legs of the stick animals are very similar to each other,
so their activation do not help the discrimination among categories.

To better understand the role played by predictors, we investigate
numerically how the probability to select a given category depends on the
predictors that influenced the eye movements. Figure 23 shows that in
the performed simulations the probability to choose a given category is
influenced by the number of predictors of the same category that executed
their saccades. Finally we found that when the proportion of these predic-
tors is greater that one third the probability increases suddenly to values
close to one, leaving this issue to further investigations.

83

Figure 23: We can see here the probability that the APN choose a given
category as a function of the proportion of predictors of the same category that
contributed with their saccades. Such probability was computed using data
from 160 simulations through the two following steps. First we computed the
frequencies, with the number of predictors of a category that contributed in a
scan path divided the length of the path. Finally, to have the probabilities, we
counted the number of times that a scan path with a given frequency led to a
certain category. Note that when the frequency of these predictors is greater
that one third the probability increases. Figure taken from (CVQP).

84

Chapter 4

The Human Experiment

In this section we will describe the experiment that we performed to
prove the cognitive plausibility of our proposals. Within the experiment
participated 18 people with normal vision and an age going from 25 to
63 years. In the experiment we used the same stick figures described in
section 3.11.4 (see figure 14), for a total of 96 stimuli. The figures were
divided in two groups of 48 ambiguous stimuli and 48 unambiguous. To
generate the 48 ambiguous figures we used the same procedure described
in section 3.11.8. In this case we produced figures that were belonging to
one category for the 25% and 75% to the other (e.g. an ambiguous dog
that is also for the 25% a giraffe). In figures 24(a,b) we reported examples
of unambiguous stimuli and in figure 24(c) there is an example of an
ambiguous one.

The experiment is composed by several trials, each one beginning with
the participant that clicks on the ”start” button situated at the bottom-
center of the PC screen (see figure 25 to have an idea). Once this happened
two response buttons appeared on the screen together with the stick figure
used as stimulus. The participant had 800 ms to identify the category of the
stimulus and then clicking with the mouse on the corresponding response
button. These buttons were labelled with the names of the categories
involved in the trial (e.g., ”horse”): we used the name of the category of
the stimulus and the name of a random category in an unambiguous trial;

85

Figure 24: a) A stick cat. b) A stick giraffe. c) The cat morphed for the 25%
with the giraffe. Figure taken from (QCVBP).

the names of the categories of the figures used to produce the morphed
stimulus in an ambiguous trial. We considered as correct answers the
category of the stimulus in the unambiguous case and the dominant cate-
gory (75%) in the ambiguous one. Left or right positions for the response
buttons, as the order of ambiguous and unambiguous trials, was chosen
randomly. When the participant clicked on the wrong response button a
red cross was visualized as feedback and when he/she took the decision
too late a message ”time-out” appeared.

In each trial we recorded the mouse trajectories and the responses given
by the participants utilizing the software MouseTracker. This is a software
that can be used to record, process, and analyze mouse commands (FA10).
One session of the experiment was composed by three blocks: the first one,
made of 10 trials, was used to take confidence with the overall set-up; then
the recording started with two blocks made of 48 trials each where the

86

Figure 25: The set-up used within the experiment. Participants first clicked on
the start button and then on the responses buttons (cat and giraffe) according
to the identified category. Figure taken from (QCVBP).

96 experimental stimuli were showed. Note that stimuli were distributed
among blocks randomly.

4.1 Results: Accuracy Rate and Trajectories Anal-
ysis

In this section we will describe how we analyzed the collected mouse
trajectories and error rates collected in the experiment. The data were
analyzed under the two ambiguous and unambiguous experimental con-
ditions, defined according to the presence of the morphed stimuli. We
found that the participants chose the wrong category in the 19% of trials
and in this case data were discarded. Note that a so large number of errors
can be explained considering the ambiguity of a part of the stimuli and
the time constraint imposed within the trials.

87

To analyze how the different conditions have an influence on the re-
sponse variables we used the Linear Mixed-Effects Model (LMM), used
to consider and accordingly amortize the variability among subjects and
stimuli (BDB08). The random-effects factors were the items and the sub-
jects, whereas the fixed-effect factor was the ambiguity of the figures (with
unambiguity taken as default condition). The analysis was done using the
lm4 package for R (BM09), processing the accuracy and the trajectories
independently. The p-values that we will present below were computed
with Markov chain Monte Carlo simulations (BDB08).

We averaged the accuracy rate across the trials and the subjects for
the two conditions separately. We found that the subjects made more
mistakes to individuate the category of ambiguous figures (mean =
0.25, standard deviation = 0.43) if compared with the unambiguous ones
(mean = 0.14, standard deviation = 0.35). With the mixed-effects model
we were able to prove the statistical significancy of the aforementioned
results, as it is possible to see with the positive contrast coefficient for the
ambiguous condition (β = 0.102, pMCMC < 0.008).

In addition we averaged the trajectories coordinates across all the trials
and the subjects for the two conditions separately. As it is possible to see
in figure 26, in the ambiguous condition we found curves more attracted
toward the unselected response button (the 25% category, remember that
wrong answers were discarded); whereas in the unambiguous condition
we found curves that were following more the ideal straight line going
to the correct response button. This difference prove that the participants’
choice was still under construction during the evolution of the decision.

To measure quantitatively the spatial attraction toward the unselected
alternative we used the Area Under the Curve (AUC, expressed in Mouse-
Tracker units u. It is the geometrical area between the idealized straight line
trajectory, going from the ”start” button to the chosen response, and the
participants’ trajectories. Analyzing the data we found that the mean AUC
was larger in the ambiguous condition (mean = 0.92, standard deviation =
1.59) than in the unambiguous one(mean = 0.74, standard deviation =
1.44). As for the accuracy we used the Linear Mixed-Effects Model (LMM).
The random-effects factors were the items and the subjects, whereas the

88

Figure 26: In this figure we can see the mean trajectories of the two conditions,
represented as the correct response button was always in the right position.
Figure taken from (QCVBP)

fixed-effect factor was the ambiguity of the figures (still with unambi-
guity taken as default condition). Finally our analysis were statistically
significant also in this case (β = 0.17, pMCMC < 0.05).

4.2 Discussion

In the previous section we saw that, as expected, when participants were
categorizing ambiguous stimuli more trajectory curvatures and errors
were encountered. To find in the ambiguous condition, compared with
unambiguous one, mouse’s trajectories more attracted toward the unse-
lected response button is consistent with other categorization experiments
(DKS07). Analyzing the time evolution of mouse trajectories is a good
practice to instigate the dynamics of choice because we can use dynamical
systems theory to investigate the competitive processes underlying the
decision (Spi07). Indeed we can consider the position of the unselected
response button as an attractor of the mouse trajectories and choice, which
has a stronger effect when the stimulus is ambiguous. The curvature of

89

the trajectories shows that the participants’ decision is still not finished
when the action starts, on the contrary alternatives continue to compete
during the course of the action influencing the outcome of its execution.

Similar phenomena were found in many studies concerning for exam-
ple numerical decision, lexical decision and objects categorization (FDF11)
(BP12) (SN09). In addition dynamical models were proposed to represent
the competition of alternatives in perceptual decision making (SDKG10),
(AMT98), (McC01).

Such dynamical interpretation of decision making is at the core of our
computational and theoretical proposals. Indeed, as we saw in section 3.11
and we will see in the next section, our computational models can solve
the aforementioned task integrating dynamic competition to fully capture
the nature of perceptual ambiguities.

90

Chapter 5

Second Proposal: Neural
Field-based architecture

The embodied vision of cognition underlines the close relation between
cognition, the sensory and motor surfaces and the environment in which
these are immersed (Bar08). Dynamical systems theory can be the right
theoretical framework to formalize such embodied view of cognition.
Indeed models of embodied cognition should be process models that can
address the unfolding in time of cognition and the associated sensory and
motor processes. Within the context of dynamical systems we can see
behavior as something that emerges from underlying forces represented as
vector-fields. Behavior can emerge as a stable state (i.e., attractor) from the
neural network linking the sensory and motor surfaces, which together
with the environment establish a dynamical system.

Neural field theory takles these issues starting from the following basic
principles (Sch08):

1. Patterns of behavior are characterized by inner states, which deter-
mine the persistence over time and under changing conditions.

2. The evolution in time of these state variables is generated by neural
networks linked to sensory and motor surfaces that can be modeled
as dynamical systems.

91

3. Asymptotically stable states structure the solution of this dynamical
system. Over the long run, only attractor solutions are robust and
likely to be observed.

4. Only when states are released from stability behavioral flexibility
arises. Release from stability takes the form of instabilities (bifur-
cations) in which the restoring forces around an attractor become
too weak to resist change. New solutions may be reached or even
created from instabilities.

In addition neural fields defines activation fields using two dimensions
to represent metric information in terms of dynamical state variables.
One is the metric dimension along which information is specified. To
each position within the field corresponds a specific value in the metric
dimension. The second dimension is an activation level defined for each
such value of the metric dimension, which encodes a measure of the
amount of information about that value. For example, about sensory
representation, high levels of activation indicate field locations which
contribute more to the actual estimate of sensory information. Whereas
low levels of activation in a specific field position mark that the value of
the represented dimension, related with that location, is not a probable
estimate. About motor representations high levels of activation indicate
that the movement represented at that location is close to being initiated
and activation from that field site will be handed down to the motor
control system. Whereas low levels of activation at that field position mark
that the related movement is not likely to occur.

In neural field theory stable and localized peaks of activations (fixed
point attractors) are units of representation. The activation level of these
peaks is the strength of the representation. On the contrary a flat distri-
bution of activation represent the absence of specific information. The
activation level of a specific field position represent the system’s state
variable. Hence neural fields are infinite dimensional dynamical systems
with activation levels that evolve continuously in time.

The corresponding field dynamics is usually defined starting from an
equation similar to equation (5.1) (Sch08).

92

τ u̇(x, t) = −u(x, t) + resting level + input+ interaction (5.1)

Where u(x, t) is the activation field defined on the metric dimension
x and time t. The first three terms of the equation’s left side represent
the input driven regime, where attractor solutions follow the relation
u(x, t) = resting level + input. The interaction stabilizes localized peaks
of activation to contrast diffusion through global inhibitory interaction
and to contrast decay with local excitatory interaction. Finally coefficient
τ is used as rate of relaxation.

A first mathematical implementation of such ideas is the well known
Amari dynamical law reported in equation (5.2) (Ama77).

τ u̇(x, t) = −u(x, t) + h+ S(x, t) +
∫
dx′w(x− x′)σ(u(x′, t)) (5.2)

Where h is a negative constant representing the resting level; S(x, t) is
the input function defined on time and space; w(δx) is the interaction ker-
nel; and σ(u) is a nonlinear sigmoidal threshold function. The interaction
term combines input from all the field positions x′ where the activation is
enough large. About that the interaction kernel checks if inputs from those
positions are positive or negative and accordingly rises up (excitation)
or down (inhibition) the activation respectively. Noe that generally the
stability of localized peaks of activation is guaranteed by inhibitory inputs
from all field locations and excitatory inputs from only the nearby ones.

These localized peaks of activation, sometimes called ”bubbles”, have
strong attentional and competitive properties that are achieved though a
combination of global inhibition and local excitation. Neural fields were
used to have systems able to converge toward coherent stimuli in input
flow (Tay99) and tracks them also in presence noise and distractors (RV06).
But although these properties the classical Amari formulation remains
purely reactive and strongly dependent on the input signal.

In (QGL11) (QG+12) Quinton et al. introduced a new neuro-inspired
model based on neural fields that extends the classical formulation with

93

a combination of dynamic competition and normative prediction. This
model was applied to solve spatiotemporal tracking where prediction was
used to bias the dynamics of the field so as to constraint the selection and
tracking of a target object. Indeed when applied to tracking, neural fields
are typically not able to discriminate between the target and a distractor
on its trajectory. On the contrary using predictive neural fields we can
integrate the prediction of the trajectories within the dynamics and solve
such ambiguity. Then dynamic competition was used to filter the number
of goal-oriented anticipations that may be very large.

In this section we will introduce the second computational model of this
thesis that is grounded on predictive neural fields. We will use our pro-
posal to categorize the same stick figures of the computational and human
experiments of sections 3.11 and 4 respectively, still through the com-
petition of sensorimotor feature predictors (see section 3.11.2 to have a
definition of predictors and section 3.11.4 to see how they were gener-
ated). A schematic view of the overall architecture is shown in figure
27. Recalling the human experiment, we added the control of the mouse
movements, which was implemented following the same set-up of the
Mouse Tracker software used in the previous human experiment (apart the
fact that prototypical stick animals substituted words within the response
buttons). This was done to compare quantitatively the results of humans
with the results of the computational model on the same task.

We used the same preprocessing and features-based representation of
the visual input that we used in section 3.11.1. Whereas about the output
commands the architecture controls the eye movements and additionally
controls the mouse trajectories. The position of the eye within the figure is
represented in cartesian coordinates and its movement is immediate. As
we will see to move the eye the system combines excitation, inhibition and
proprioception through prediction. The mouse movements are represented
in cartesian coordinates within the screen frame of reference (note that the
eye and mouse are not embed in the same cartesian system). At each step
the architecture generates a vector v that represents the mouse velocity on
the basis of predictions’ confirmations and these velocities are integrated

94

Reactive Saccade System

R
et

in
al

 v
ie

w

p1

p2

...

pn

max 

c2

c1

saccade mouse movement

s1 s2 sn

sRSS

pred

pred a2

a1

v1 v2

v s

M
o

u
se

 p
o

in
te

r

features (fi) an
pred

Figure 27: Schematic view of the architecture. Where plain arrows represent
excitatory links and dashed arrows represent inhibition among different cate-
gories. Note that if on one hand eye movements are controlled by the leading
predictor or the reactive system, on the other hand the mouse movements are
computed weighting multiple vectors pointing to the targets at the same time.
Figure taken from (QCVBP).

using the Euler rule producing smooth trajectories.

5.1 The Computational Model

The system is composed of a set of the same predictors (Pi), already defined
is section 3.11.2 as triples (F srci , Si, F

tgt
i) of source features, saccades and

target features. As we know to each predictor is also assigned a category
c{1,2}, that is the category of the stick animal used to generate it. In
the current proposal this information is used to move the mouse in the
direction of the button associated to that category.

Moreover predictors here have a set of specific activities used to control
and ameliorate the behavior of the system as we will describe below.
During the execution of the task these activities are updated as shown in
equation (5.3) according to the outcome of the interactions.

95

ai = areaci − γ2 ∗ ainhibi + γ1 ∗ c{1,2}
areaci = maxj{σ(Fj , F srci)}
apredi = apropi × (maxi{σ(Fj , F

tgt
i)} − β)

apropi = areaci ∗ σ(si, s)
ainhibi = max((1− α)ainhibi , apropi)

(5.3)

Where areaci represents the actual perceptual relevance of the predictor,
used to consider actions of predictors that have their target features within
the current field of view. Then apredi is used to verify if the prediction of
a predictor become confirmed, that is if its target feature appears within
the field of view after the execution of its action (this is similar with the
variable Ai that we introduced in section 3.11.3). Another activity variable
is apropi that detects if the last action executed is equal with the action of
the predictor. The activity ainhibi is used to inhibit the return to the last
position. These two last activities were useful to avoid loopy behaviors
though proprioceptive feedback. All these activities are aggregated within
the equation of the variable ai, which represents the possibility that the
system will choose to execute the action of predictor i, where γ1 is a
coefficient used to tune the contribute of categories that already received
consensus from other predictors.

We assumed that for the artificial system prototypical stick animals can
stand for categories, as in the human experiments we assumed that the
words could play the same role. For the same reason we thought that was
possible to assign to a predictor a category when it was excreted from a
stick figure prototypical for that category. The prototypes were constructed
averaging the stick lengths and joints angles across stick figures of the
same category, following the same principles of prototype theories of
categorization and conceptual spaces (RMG+76) (Gar00).

5.2 The Categorization Algorithm

In this section we report algorithm 4 that illustrates the procedure used to
control the eye, move the mouse and perform the categorization.

In this system we also considered an external reactive saccade system

96

Algorithm 4 Neural Fields Algorithm

for all predictors (Pi) do
update ai, areaci , apredi , apropi , ainhibi (equation (5.3))

end for
choose the predictor with max ai
move the eye to a new position (x, y) (equation (5.4))
for all categories (cj) do

update cj with the best associated apredi (equation (5.5))
end for
let categories (cj) compete for control
compute the mouse control (equation (5.6))

that stops the eye from moving too far from the stick animal within the
figure. Indeed the eye can arrive to empty areas where no features are
detected if the input is unknown or its category is still under investigation.
As in the Brook’s subsumption architecture (Bro86), the reactive saccade
system can take the control of the eye if this happens inhibiting the contri-
bution of the predictors. To enable this system we implemented equation
(5.4), where aRSS is the constant activity of the reactive saccade system
and SRSS is its saccade.

S =

{
Sargmaxi{ai} if maxi{ai} > aRSS

SRSS otherwise
(5.4)

The activities (cj) represent the current evidence in favor of the cate-
gory j and, as we reported in equation (5.5), they are updated incorporat-
ing the predictors activities (apredi). This information is used to move the
mouse pointer towards the category response buttons.

ci = λci + maxk∈Qi{a
pred
k }

ci = ciP
i ci

(5.5)

In equation (5.5) Qi represents the set of predictors that belong to the
category ci, whereas λ is an inertia coefficient used to amortize the effects
of immediate change of context, with the effect of guarantee a certain level
of smoothness of the generated mouse trajectories. In the equation the vari-

97

able ci is normalized to implement a limited amount of activity within the
variable ci ∈ [0, 1] (see section 1.1 for related bounded approaches). This
introduces competition between the two categories showing the capacity
of neural fields model to implement robustness and attention. Similar
neuro-inspired architectures with predictive representations was already
introduced in (QGL11) (QG+12), others were applied to categorization
and sensory signals (JSS08).

To obtain the velocities of the mouse we linearly combined the vectors
v{1,2}, always pointing to the two response buttons, with the correspond-
ing categories activities c{1,2} as is represented in equation (5.6). This will
make the pointer arrives to the buttons according to the current evidence
on the categories as we can see from figure 28.

v =
∑
i

ci × vi (5.6)

5.3 Results

5.3.1 Simulation 1: Performance Evaulation

In this section we will describe the simulations performed to compare
our artificial system with the results of the human experiment. We de-
signed eighteen artificial participants that performed 96 simulated trials.
The resultant trajectories were analyzed using the same measures of the
human experiment. Note that synthetic trajectories were more equal
with each other compared with human trajectories and their variability
mainly depends on the initial eye position that strongly contributes in
the bifurcation dynamics. The output of the analysis was the follow-
ing: in the unambiguous condition we found mean = 0.46 AUC and
standard deviation = 0.27 whereas in the ambiguous condition we found
mean = 0.30 AUC and standard deviation = 0.10 (note that AUCs is
expressed in MouseTracker units u). As in the human experiment AUC is
larger for the ambiguous condition, a relation that is statistically signifi-
cant as was possible to see from the results of the paired T-test on the two
conditions (pT−test < 0.0001). Additional analysis were performed about

98

stimuli

t

START

t+1

c2 t-1

target 1

v2 v1

v

0 1 0

current mouse position

accumulation of

evidence for

category 1

scanpath
c1

target 2

1

Figure 28: In this figure we can see a sequence of fixations on the input
stimulus that starts from not informative features to informative ones. Indeed
the first saccade does not contribute to differentiate the two prototypes. On
the contrary when at time t a new saccade is performed, from the head to
the torso of the stick animal, considering the different lengths of the necks of
the prototypes, the system starts to favor the left one. This new evidence is
collected comparing a target feature with the current field of view, it effects
the mouse movements as it is possible to see from the resultant velocity vector
(red arrow). Figure taken from (QCVBP).

the reaction times (RT) of the simulated participants with the following
results expressed in seconds: in the unambiguous condition we found
mean = 0.93 and standard deviation = 0.027 whereas in the ambiguous
condition we found mean = 0.960 and standard deviation = 0.08.

As we have done in section 3.11.8 for the attractor predictor network
also in this case we investigated the behavior of the artificial system vary-
ing the value of the morphing parameter µ. As it is possible to see from
figure 29 the AUC, that can be considered a measure of the response accu-
racy, does not linearly depend on the morphing coefficient. Additionally
we found a symmetry around middle values of the morphing parameter

99

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5

AUC (in u²)

Morphing coefficient 

Figure 29: In this plot we can see the trials and participants’ mean of the
Area Under Curve (AUC) as depended variable and the morphing parameter
µ as independent variable. Note how the function is more similar with a
power law than with a straight line, indicating a non linear dependence on the
morphing parameter, as we investigated in section 3.11.8. It is however clear
how much the difficulty to categorize a figure increase with its ambiguity.
Note that AUCs is expressed in MouseTracker units u. Figure taken from
(QCVBP).

with the system behaving similarly for large and small values.

The results that we reported can be explained if we consider the sys-
tem’s non linear dynamics and the late changes in decisions that it is
possible to see from the trajectories that we represented in figure 30. The
reasons of this behavior can be found in the inertia of predictors and in
the evidence for both categories that is collected when the stimulus is
ambiguous enough.

The system dynamics is non linear because of the feedback that its
interactions with the environment produce. This feedback is related with
the current field of view and with the possible confirmations of predictors’
hypothesis. Predictors interact with each other through category links
weighted by the γ1 ∗ c{1,2} term in equation (5.3). Moreover the action
of a predictor, if executed, can favor the suitable context to make other

100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

LS - 0.1

LS - 0.25

LS - 0.5

HS - 0.5

ux

uy

Figure 30: Trajectories produced by the agent under several conditions. At
low speed (LS), 3 representative trajectories are provided for a morphing
factor in {0.1, 0.25, 0.5}, with increasing deviation from the straight trajectory.
For high speed (HS) and high ambiguity (morphing coefficient of 0.5), the
late change in decision during the reaching movement is amplified compared
to the LS - 0.5 condition. Figure taken from (QCVBP).

predictors of the same category to operate with their commands. So the
role of the prediction activity apredk is very important, because it contributes
to select saccades of the category that is collecting more evidence favoring
rapid bifurcations.

In other words predictors that are supporting the same category en-
hance each other and contribute at the same time in moving the pointer
toward their response button. Moreover predictors compete for controlling
the eye. At the category level, they discriminate among figures; individ-
ually, they discriminate among different parts of a stick animal. About
their source features (F src1 6= F src2) two predictors can be used to differen-
tiate two different animals or two different part of an animal (e.g., head
and leg). In addition if predictors differ from their saccadic commands
(S1 6= S2) only one of them will have the possibility to check its prediction;

101

 no bias c) b) a) no inhib full model

Figure 31: Heatmaps at the end of a trial, in three cases: a) with no inhibition
of return, b) complete model, c) with no top-down modulation. a) Without
the informativeness mechanism, the architecture has higher probability to
converge on limit cycles of saccades where no clear decision can be made.
c) When saccades are reactively selected, the system focus less on relevant
features. Figure taken from (QCVBP).

this situation can be useful to discriminate within animals of different
dimensions with very similar features (F src1 ' F src2 and F tgt1 ' F tgt2). If
the two predictors have equal starting features and saccades the execution
of the command is needed to identify if a target feature corresponds with
the feature within the field of view, revealing informations about figures
and categories.

5.3.2 Simulation 2: No Prediction

Now we want to underline the role of prediction comparing our architec-
ture with a reactive controller that does not implement predictors. Within
the reactive controller to compute areack features are matched one by one
with the prototypes, without the verification of target features and the
usage of apredk .

As with the human experiment and the computational one, the reactive
controller generates differences about the AUC values, which are: mean =
2.13, standard deviation = 0.08 for the ambiguous condition and mean =
1.99, standard deviation = 0.10 for the unambiguous condition (with
pT−test < 0.0001). Additionally for the RT the results were: mean = 9.39,
standard deviation = 5.03 for the ambiguous condition and mean =
5.19, standard deviation = 2.05 for the unambiguous condition (with

102

pT−test < 0.001). However the absence of prediction leads to a significant
increase in the mean values of the AUC and RT, reflecting the difficulty
and longer time required to reach a decision.

Although a large RT standard deviation, note that we already discarded
a set of outliers from the simulation data to perform a meaningful analysis
(when RT was larger than its mean for three times its standard deviation).
These trials were useful to understand what happen when there was no
clear discrimination: we observed that a system with no prediction can
only compare features of different figures without exploiting their spatial
relations. Moreover the features taken singularly can be very similar across
different animals so, to discriminate them, we should use saccades too.
Indeed predictors use saccades’ amplitude to encode the stick lengths
and this information is lost in this implementation without predictors.
These observations were verified with a simulation having two categories’
prototypes with the same features but different for the length of a single
stick. In this case, where we still used the inhibition of return mechanism,
the system without prediction was not able to discriminate the two stick
figures.

5.3.3 Simulation 3: No Top-down bias

Within the architecture we can find a combination of bottom-up and top-
down processes that make the system choose and move. The bottom-up
process is identified by the predictors and their tests whereas the top-down
influence is given by the category activities c{1,2}. To underline the role of
these activities we considered an experiment with γ1 = 0 and so with no
top-down feedback.

In this case we found a clear loss of performance that can be seen
comparing figure 31b and figure 31c, where we represented heat maps
showing the density of fixations on the figure. In fact to boost predictors
belonging to the category with more evidence diminishes the number of
fixations out of the stick figure and so increases the informativeness of
saccades and consequently the categorization’s efficiency.

103

5.3.4 Simulation 4: No Informativeness

The utility and efficiency of the inhibition of return can also understood
trying to remove it. This can be done in the model by annulling γ2, in
order to delete the effect of ainhibk on areack .

The effects can be seen on the heatmaps comparing figure 31a and fig-
ure 31b. With no inhibition of return, the system converges on limit cycles
of saccades from which it is difficult to escape by only using the top-down
modulation. In fact, predictors prime each other using the environment
and if they belong to the same prototype activate each other; without inhi-
bition of return, this mutual excitation cannot be counterbalanced. Using
the informativeness of the fixation points within the limit cycle attractor
we are not sure that the system will be able to take a decision.

104

Chapter 6

Discussion and
Comparisons

In this section we will compare our proposal with others within the ar-
tificial intelligence community. Moreover we will compare the AAN
architecture with the neural field-based architecture.

One first common property that can be found about the two architec-
tures is that both are based on a self-organizing approach (Kau93) (Min88).
According to it the functional adequacy of the system is found in its col-
lective behavior and it is designed among individual agents. The desired
function emerges from the local interactions of agents without any central-
ized control. Each agent follows its own task and at the same time adapts
its local interactions cooperating with other agent, in order to fulfill the gen-
eral purpose of the system. Moreover the two architectures have in com-
mon an approach that combines dynamical systems and neuro-inspired
models. If on one hand the simplicity and well defined formulation of
Hopfield networks makes their dynamical properties usable for learning
and memory representation, on the other hand the larger expressivity of
neural fields made available more complex behaviors (informativeness,
inhibition of return and so on). In addition if the two systems have in com-
mon the same kind of interaction feedback based on predictors’ outcomes,
the systems’ bounded rationality had different implementation among the

105

proposals. In fact the limit of computational resources is implement with
the normalization of the category activities in the neural filed architecture,
whereas in the AAN constraining the energetic network dynamics over a
limited average number of agents.

In section 1.1 we represented a list of key questions to answer with
respect to meta-reasoning that Zilberstein reported in (Zil08), where the
author also states that metareasoning is the right framework to deal with
bounded rationality. These questions can constitute a good starting point
to see the issues addressed by our proposals. The object-level architecture
in the AAN is constituted by the agents and is fully domain independent
as we showed in three different applications where agents were problem
instances, experts or predictors (automatic provers will be considered too
in section 7.1), fulfilling those requirements of dealing only with the struc-
tural information of object-level deliberation (RW91) (GG91). Although
the neural fields based architecture was implemented with only predictors
in this thesis, Quinton et al. already presented similar proposals concern-
ing tracking and pattern recognition (QGL11) (QG+12), so the same line
of domain independence could be easily achieved also in this case.

The meta-level architectures were constituted by a Hopfield network
and dynamical neural fields in the two cases, used to control the allocation
of the computational resources within modules of the object-level. These
allocation policies are computed online or precomputed using the AAN
offline learning algorithm. The correctness of the object-level components
is monitored run time by the perceptual relevance and prediction success
in the active vision task. In other tasks the correctness can be still moni-
tored run time by the AAN architecture’s adequacy step, which outputs
the agents’ success or failure. Moreover the prior knowledge about the
object-level component’s efficiency can be defined through the assignation
of the run energy variable Ri. Within our architectures there is no switches
between the object-level and the meta-level because the latter always inter-
act with the first with a computational complexity that can be estimated as
O(N2) at each step in the case of Hopfield networks connecting N agents.

About the list of important challenges in the context of MAS of section
1.3, which Sycara reported in (Syc98), the AAN architecture addresses at

106

least those labeled as 2, 3 and 5. Indeed the resource allocation imple-
mented by the energetic network was used to coordinate agent control.
Morevoer the reconciliation of conflicting goals between the agents are
solved by the adequacy tests and within the convergence of an agents’
attractor where agents act in coherent manner.

From a real time systems point of view the general AAN aim is to schedule
several processes (or agents) on several processors. Where we can choose
the number of allowed processors with the bias parameter a introduced in
section 3.5. Indeed, distributing energy between agents in different span
of time, the AAN architecture is effectively implementing the scheduling
of the processes. We know that this energy distribution is implemented
by the energetic network, which in the case of the AAN architecture is a
Hopfield network. As a matter of fact Hopfield networks have already
been used to solve real-time scheduling problems (SCM97) (Mar99). But
if in the case of classical scheduling problems the deadlines and release
times of the tasks to be scheduled are known, whereas with the AAN archi-
tecture we solve an implicit and adaptive kind of scheduling. Indeed with
the AAN we want to schedule tasks with unknown deadlines and release
times, this because in our architecture they can be implicitly defined by
the success or failure of the processes, which are determined online.

An adaptive methodology based on machine learning can be useful
when the processes that we have to schedule are so complex that we
are not able to establish their timing constraints. Or when these timing
constraints are changing in so complicated manner that is not feasible
to schedule them with a classical approach (due to a dynamic, noisy
and not predictable environment or due to other agents behavior). Note
that also if the time constraints are not known, the AAN can learn to
assign the right agents to available processors in the right time, making
its behavior very similar with the behavior of a scheduler. Moreover it
is not difficult to extract the explicit timing constraints introduced by
agents’ successes and failures: when an agent has succeeded it should
be active, when an agent has failed it should be not active. Also if we
already proved that the AAN architecture is able to make active successful

107

agents, it can be useful to leave for further investigation a performance
evaluation with the same kind of analysis used in real time systems: as
runtime overhead, schedulability analysis, robustness during transient
and permanent overloads, resource sharing and aperiodic task handling.

MultiAgent Resource Allocation (MARA) is the study of how to dis-
tribute a number of resources amongst a number of agents (CDE+05)
(Cea06). Task allocation can be considered as a MARA problem where task
are resources with negative utility (cost). To compare our energy to other
kind of resources we can say that the energy is a continuous indivisible
resource which determines the number of active agents, it is sharable and
not static. What makes the AAN model different from the other MARA
approaches is its preference representation. Indeed the AAN’s preference
structure is computed by the agents locally with their success/failure tests.
Moreover externalities about others’ resources are coded in the weights’
matrix of the energetic network with an associative representation (rather
than only cardinal or ordinal).

Among the several multiple models-based architectures the AKIRA
framework (PC07) is the most related with the AAN architecture (see
section 2.1). The main differences with the approach presented here are
related with the language based on dynamical systems that we introduced
using a Hopfield network as energetic network (e.g. agents’ attractors).
Moreover the energetic network considered here has a different topology,
because the AAN’s energetic network is a recurrent full graph that imple-
ments also links with negative weights (i.e., local inhibition). Additionally
in AKIRA only failing agents spread their energy through the energetic
network, where in the AAN architecture this happens also for the success-
ful ones. Note also the different implementation of the resources bound,
which in the AAN architecture is obtained constraining the energetic net-
work dynamics and in AKIRA through an external tank that contains the
not utilized resources (the energy pool). Finally we showed that the AAN
dynamics can be also perturbed without effecting its capacity to retrieve
agents’ attractors, making the architecture robust to noise.

108

Chapter 7

Open Issues and Future
Works

7.1 Future AAN Application, Distributed Auto-
matic Reasoning: The Attractor Predictor Net-
work

An implementation of AAN architecture in automatic reasoning has not
been tested yet. We could call it attractor provers’ network. According to
it each agent of the AAN should be an automatic theorem prover so that
the reasoning process can be distributed among several agents.

In automatic reasoning a theorem prover tries the soundness of a logic
formula if it can be inferred from another set of true logic formulae. We
call this set Knowledge Base (KB). Typically these problems are computa-
tionally hard, indeed a classical prover is not efficient if the set of formulae
is too large. Although the complexity of this problem, to query efficiently
from very large ontologies is still an important challenge today. For exam-
ple it is necessary in semantic web technologies.

Usually classical provers are not able to use contextual and semantic
informations, which are necessary to prove efficiently. This means they are
not able to select automatically the most suitable set of formulae for the

109

current context. On the contrary if we apply AAN to automatic reasoning
we could store this kind of informations in the agents attractors of the
energetic network and therefore obtain a robust and efficient prover. In
fact the AAN could be used to select only a subset of provers contextually
relevant reducing the overall proof’s computational cost.

The idea to use an associative memory to retrieve a set of semantically
related formulae (known also as Knowledge Pattern (CTP03)) is something
different from search or data base strategies, because it deals with analogi-
cal reasoning. The AAN could be considered an abstract data type to store
knowledge patterns, to retrieve them and to achieve an efficient bottom
up recognition of the knowledge pattern of a particular formula.

To apply the AAN architecture to distributed automatic reasoning we
have to consider all the agents as classical theorem provers, which are
different each other because each of them can access only to a small subset
of the KB. Therefore, if only few agents will be active, the proof will not
search on the entire KB but on a its significative subset. So, to make the
proof successful, only the agents that contain the necessary formulae to
prove the input formula should be activated.

The idea to select an appropriate subset of formulae from the KB was
already proposed in automatic reasoning (WCR65), where this set is usu-
ally called set of support. What we propose here is a dynamical version of
the set of support, which can adapt online according to the current context.
Indeed to a subset of active agents corresponds a subset of active logic
formulae, and as we have seen agents’ activities can adapt according to
the context.

One of the first problems to solve here are: to decide how to distribute
the KB across the agents; to decide how to define the topology, which
determines the provers’ attractors.

About the first issue, a possible solution is to make each prover have
access only to formulae that involve the same concept (e.g. the same logical
predicate or constant) and connect provers that are semantically related.
So in this case the energetic network will be both a weighted semantic
network, connecting constant and predicates, and an activation network

110

with its own dynamics. The arrival to a provers’ attractor can represent
the activation of a particular semantic field, which is a good representation
of the context that is necessary to not search on the entire KB.

About the second issue, following the introduced AAN methodology,
provers’ attractors can be inserted manually or learned automatically. On
one hand, following the first approach, we can use a knowledge engineer-
ing approach, that is using our domain expertise to select which formulae
should belong to the same provers’ attractor. Once these are defined we
can use the Hebb rule (equation (3.22) of section 3.6.1) to memorize these
provers’ attractors within the energetic network.

On the other hand we can let the AAN architecture to find automati-
cally the right set of provers’ attractors using the introduced online learn-
ing algorithm (algorithm 2 of section 3.6.2). Using this method provers
are evaluated online according their ability to infer fruitful formulae with
the success and failure tests. These tests can be based upon the same cost
function used in an A* search algorithm, which could be implemented in
each prover to solve its local proof: in other words a prover has success
if it infers a formula with low A* cost (given by the cost to arrive to the
current proof tree’s node and by the inferred formula’s size); otherwise
it fails. In this way energy will be transferred to agents that are proving
well, to let them to take the control. Then with the resource bound of the
AAN architecture only few provers can be active at the same time, so the
computational cost could be always limited.

Another alternative approach that could be used to learn the provers’ at-
tractors is related with the Latent Semantic Analysis (LSA) method (DDF+90).
Typically this method is known for its applications in natural language
processing, but we could use similar algorithms to execute on ontologies
instead of texts. According to it we can start from known ontologies, or
completed proof, to compute their occurrences of each logical predicate
or logical constant. The output of this process is a vectorial space, called
concept space, where each logical predicate or logical constant have a
coordinate according to its semantic meaning found from the occurrences
analysis. In other words more two predicates or constants are semantically

111

related more they will be close in the concept space.

The main idea of this approach is to embed the concept space within
the energetic network. This can be done converting the distance between
different constants and predicates into weight of energetic links among
agents which are dealing with the same constants and predicates. In other
words a link between two predicates will have a normalized weight pro-
portional to the distance between these two predicates in the concept space.
This embedding process produces a full connected and symmetric ener-
getic network, properties that are enough to assure the presence of stable
agents’ attractor. Using this strategy we should have a remarkable set of
provers’ attractors, with semantic relations among formulae represented
inside.

In order to cooperate provers should exchange messages through a
blackboard to share the new inferred formulae. It is important to assume
that the number of formulae within the blackboard will be always smaller
than the number of KB’s formulae, otherwise the advantages of this ap-
proach will be lost. Inside a blackboard the local results of provers could
be listed to be available and used by other provers. They could add these
formulae in their own local KB in order to care about the unique global
proof state. This communication can be peer to peer according to semantic
relations, to maintain bounded the search space, or it can be broadcast.
Another utility of such kind of communications is to warn about some
dead portion of the proof tree where a backtracking operation was already
executed.

In addition the AAN’s temperature is another useful tool that could
be used to introduce non determinism in agents’ activation and so across
chained formulae. This can be used to avoid loopy behavior where the
system can stuck during the execution of a proof. As a matter of fact
simulated annealing was already applied to automatic reasoning and as
we have seen AAN gives a good framework to use this method.

Once provers’ attractors have been memorized we could use the AAN’s
query algorithm (algorithm 1 of section 3.6.2) to implement a distributed
proof. Starting from the input formula, communicated to every agent

112

through a blackboard broadcast message, each agent can locally propose
itself as active in the initial configuration. This will happen according to
an adequacy test that establish if its formulae are related with the input
formula (e.g. they contain same predicates). To make recent reasonings
meaningful, also formulae inferred during a chosen number of initial steps
could play the role of new input formulae. The adequacy step go on until
a sufficiently rich initial configuration is determined. Then the energetic
network will be updated, with the energy going from active provers that
are directly related with the input formula (e.g. Cat(bob)), to provers that
have semantically related formulae (e.g. Animal(x)).

Finally the execution step will start with the arrival to a provers’ at-
tractor, with its corresponding subset of active provers that will start to
execute. The new inferred formulae will be used as next input for the
following iterations until the proof is completed.

This example illustrates how the AAN architecture can be used for dif-
ferent applications maintaining the same fixed methodology. What is still
missing about the attractor provers network is a series of experiments to
show that the proposal is at least competitive with other classical provers,
as Otter for example (Mcc92).

A possible idea to measure our results is to start from a large collec-
tion of ontologies (as the TPTP Problem Library for Automated Theorem
Proving) and an automatic prover. The attractor provers network will
connect more instances of the same prover. Finally we can compare the
performance of the single prover with the performance of the attractor
provers network on the same set of formulae.

7.2 Context Aware AAN Learning Algorithm

In section 2.1 we saw that a key issue addressed by the AKIRA energetic
model is context awareness, that is the ability to select the most suitable
set of agents at current time. This topic was exploited during the previous
definition of the AAN architecture. But the previous AAN learning algo-
rithms were dealing mainly with coordination issues: to establish strong
energetic links among agents which had success at the same time, so that

113

they will be active at the same time.

In this section we consider context awareness the ability to transfer
energy online from agents which had failed to agents which had succeed,
without any centralized control. So that successful agents will have more
resources to be active and failing agents will start to be idle, leaving their
amount of energy available to other agents. Indeed less active agents
should have always a possibility to substitute dominant agents if they are
starting to have a bad behavior. This approach produces a selection of the
most appropriate agents in the current situation using an more adaptive
resource allocation strategy. According to it the energetic network should
assign less or more energy to agents according to their current relevance.
Here the role of an adaptive resource allocation strategy is to produce
contextual pressures that optimize the computational cost of an execution.

So a new AAN learning algorithm should be developed addressing
more context awareness. As in the AKIRA energetic model the general
idea is on one hand to increase the weights of the incoming links of success-
ful agents. On the other hand, if the agent is not successful, the weights of
the outgoing links are increased. Like that the energy is transferred from
less suitable agents to most suitable ones.

The learning rule just described needs an energetic network with asym-
metric links: link from agent i to agent j has a weight different from link
from agent j to agent i. Indeed to transfer activation from failing agents to
successfulones this asymmetry has to be introduced, because otherwise we
could transfer energy from successful agents to failing too. For symmetric
Hopfield network is easier to ensure the presence of stable memorized
pattern, but also asymmetric Hopfield networks can have stable memo-
rized patterns, also if the recipe is more complex (BP97) (XHK96). It is
interesting to note that in (Par86) the asymmetry of links was already
considered essential to achieve online learning with Hopfield networks.

With these ideas in mind we developed Algorithm 5, reported below,
that has still to be tested.

Note that the constant λi within the algorithm is used to maintain the
constraint of equation (7.1), used to let the algorithm converge without the

114

Algorithm 5 Context Aware AAN Learning Algorithm

Input: N number of agents
activity[1 . . . N] activation variable of agents
success result of the success/failure test of an agent
Window number of steps during successes and failures of agents are
counted
successes[1 . . . N] number of successes of agents in a number of steps
Window
failures[1 . . . N] number of failures of agents in a number of steps Window
NumIteration number of learning cycles
J[][] links of the Energetic Network
λi constant used to keep the links’ weight exiting from agent i bounded
EXECUTE(paramater i) operations executed by agent i, returns the result
of the success/failure test

Output: J[][] new links of the Energetic Network

for k = 1→ N do
activity[k]← RANDOM{−1,+1}

end for
for n = 1→ NumIteration do

repeat
Energetic Network’s update through Equation (5)

until Energetic Network have reached an Agents’ Attractor
repeat
m← RANDOM{1, . . . , N}
if activity[m] = +1 then
success← EXECUTE(m)
if success = true then
successes[m]← successes[m] + 1

else
failures[m]← failures[m] + 1

end if
end if

until All agents are chosen once.
for i = 1→ N do

for j = 1→ N do
J [i][j] = J [i][j] + ((successes[j] − failures[j]) − (successes[i] −
failures[i]) + λi)

end for
if NumIteration mod Window = 0 then
successes[i]← failures[i]← 0

end if
end for

end for

115

divergence of the weights.

N∑
k

J2
ik = 1 (7.1)

What it should be proved is the statement of equation (7.2) about
the proportionality between agent activation and success index in the
stationary state of the learning update rule of equation (7.3).

hi = C(successes(i)− failures(i)) (7.2)

˙Jik = Jik + ∆Jik = 0 (7.3)

Indeed this will establish the correctness of this new AAN learning
algorithm: in fact equation (7.2) states that more an agent has successes
and more energy it will gain. On the contrary more an agent has fail-
ures and less energy it will gain (exactly what we wanted to implement
about context awareness). To have this proportionality when equation
(7.3) holds means to achieve it when the learning algorithm has reached
its convergence, that happens when the links’ weight are not changing
anymore.

116

Chapter 8

Conclusions

In this thesis we presented two modular architectures that exploit atten-
tive processes to deal with bounded rationality. Both architectures follow
an approach based on dynamical systems, self-organization and neural
networks. Indeed Hopfield networks and dynamical neural fields consti-
tute the meta-levels of the architectures used to deliberate on modules’
resource allocation. In this way we tackled the close link between bounded
rationality, resource management and covert attention.

The first proposal concerns a MAS architecture called Attractor Agent
Network (AAN). The main aim of this architecture is to achieve coordi-
nation and context awareness among agents on the basis of a machine
learning approach. In the AAN a Hopfield network dynamically dis-
tributes the computational resources of the system in order to select the
most suitable set of agents in a given situation, on the basis of coordina-
tion and context awareness issues. These agents’ sets are called agents’
attractors and are defined as minimums of the energy function that the
network descends during its dynamics.

Three learning algorithms were presented to automatically find or store
these agents’ attractors. In addition to achieve efficiency a bias parameter
was introduced to fix the average number of active agents, in order to
bound the amount of computational resources used by the system. The

117

AAN is well suited when we have to find an efficient collective state of a
MAS composed by a high number of agents, because it uses Montecarlo
and simulated annealing methods to reduce the computational cost of
agents’s selection. Also adaptivity is a property of the architecture, which
is not only obtained through its learning algorithms but also due to its
robustness to noise.

Finally we tested the AAN architecture in three different applications.
All these different kind of applications were useful to prove the architec-
tural nature of the AAN. In the first one we investigated the possibility to
use the AAN as a metaheuristic for distributed constraint optimization
problems, a board game in our case. In the second application the archi-
tecture was used to classy points, according to the half planes defined
by a piecewise linear function. This was done extending the mixture of
experts approach with additional links between the experts. In the third
application the AAN faced a categorization task of computer vision. We
used the AAN to control an artificial eye with agents specialized in antici-
pating the outcome of sensorimotor strategies. We showed that a category
can be characterized by a set of active agents, so that agents’ attractors
were representing categories. The computational performance of the AAN
architecture was evaluated in all the three applications with particular em-
phasis in the categorization task where the performance were compared
with other computational approaches with competitive results. In the
future we think that it will be possible to use the AAN architecture also as
a distributed automated theorem prover. In this case the AAN could let us
to select only a subset of local provers contextually relevant, reducing the
overall proof’s computational cost.

The second proposal is based on dynamical field theory and its extension
that integrates predictive processes. Although its weaker learning capabil-
ities and memory representation this proposal adds interesting features
compared with the AAN in the context of active vision and perceptual deci-
sion making. The architecture implements an additional motor command
used to indicate the response through the movements of a mouse. In addi-
tion, about the eye control, the system avoid loopy behaviors (repetition

118

of the same saccades) and implement a simple form of informativeness
preventing the eye to saccade out of the figure. Moreover the architecture
showed the importance of bounded rationality in introducing competi-
tion within task alternatives and the consequent emergence of top-down
processes able to spread the current evidence within the system.

To underline the cognitive plausibility of our proposals we compared
the performance of our artificial systems with the results of behavioral
experiments of perceptual decision-making. Moreover we conducted an
experiment with human participants categorizing the same set of stimuli
used for the task of our architectures. Both the human and the artificial ac-
curacies and mouse trajectories were analyzed measuring the uncertainty
given by ambiguous stimuli and establishing a quantitative correspon-
dence between the results in the two cases.

119

Bibliography

[ALTJ09] Athena Akrami, Yan Liu, Alessandro Treves, and Bharathi
Jagadeesh. Converging neuronal activity in inferior tempo-
ral cortex during the classification of morphed stimuli. Cereb
Cortex, 19(4):760–776, apr 2009. 78, 80, 81

[Ama77] Shun-ichi Amari. Dynamics of pattern formation in lateral-
inhibition type neural fields. Biological cybernetics, 27(2):77–
87, 1977. 93

[Ami89] D. J. Amit. Modeling Brain Function, The world of Attractor
Neural Network. Cambridge University Press, 1989. ix, 23,
26, 27, 29, 34, 35, 36, 37, 38, 49

[AMT98] P. D. Allopenna, J. S. Magnuson, and M. K. Tanenhaus. Track-
ing the time course of spoken word recognition using eye
movements: Evidence for continuous mapping models. Jour-
nal of Memory and Language, 38:419–439, 1998. 90

[And09] John R Anderson. Cognitive psychology and its implications.
Worth publishers, 2009. 7

[B+06] Christopher M Bishop et al. Pattern recognition and machine
learning, volume 1. springer New York, 2006. 23

[Bal91] Dana H Ballard. Animate vision. Artificial intelligence,
48(1):57–86, 1991. 7, 65

120

[Bar08] Lawrence W Barsalou. Grounded cognition. Annu. Rev.
Psychol., 59:617–645, 2008. 65, 91

[BBFC83] Ann L Brown, John D Bransford, Roberta A Ferrara, and
Joseph C Campione. Learning, remembering, and under-
standing. In In P. Mussen (Ed.), Handbook of Child Psychology.
Citeseer, 1983. 4

[BDB08] R.H. Baayen, D.J. Davidson, and M.D. Bates. Mixed-effects
modeling with crossed random effects for subjects and items.
Journal of Memory and Language, 59, 2008. 88

[Ber95] Dimitri P Bertsekas. Dynamic programming and optimal control,
volume 1. Athena Scientific Belmont, MA, 1995. 1, 12

[BFC+05] A. Baronchelli, M. Felici, E. Caglioti, V. Loreto, and L. Steels.
Self-organizing communication in language games. In Pro-
ceedings of the First European Conference on Complex Systems
ECCS’05, 2005. 25

[BGPP03] C. Bernon, M. P. Gleizes, S. Peyruqueou, and G. Picard.
ADELFE, a Methodology for Adaptive Multi-Agent Sys-
tems Engineering. Engineering Societies in the Agents World 3,
2577:70–81, 2003. 9

[Bic01] Mark H Bickhard. Function, anticipation and representa-
tion. In D M Dubois, editor, Computing Anticipatory Systems.
CASYS 2000 - Fourth International Conference, pages 459–469,
Melville, NY, 2001. American Institute of Physics. 68

[BM09] D. Bates and M. Maechler. lme4: Linear mixed-
eects models using s4 classes, 2009. http://CRAN.R-
project.org/package=lme4. 88

[BP97] U. Bastolla and G. Parisi. Attractors in fully asymmetric neu-
ral networks. Journal of Physics A: Mathematical and General,
30:5613–5631, 1997. 114

121

[BP12] Laura Barca and Giovanni Pezzulo. Unfolding visual lexical
decision in time. PLoS ONE, 7(4):e35932, 2012. 90

[Bro58] Donald Eric Broadbent. Perception and communication, vol-
ume 2. Pergamon press London, 1958. 6

[Bro86] Rodney A Brooks. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automation, 2:14–
23, 1986. 97

[Bro90] Rodney A Brooks. Elephants don’t play chess. Robotics and
autonomous systems, 6(1):3–15, 1990. 5

[CDE+05] Yann Chevaleyre, Paul E Dunne, Ulle Endriss, Jérôme Lang,
Michel Lemaitre, Nicolas Maudet, Julian Padget, Steve
Phelps, Juan A Rodriguez-Aguilar, and Paulo Sousa. Issues
in multiagent resource allocation. 2005. 108

[Cea06] Y. Chevaleyre and et al. Issues in multiagent resource alloca-
tion. Informatica, 30:3–31, 2006. 108

[CFL09] Claudio Castellano, Santo Fortunato, and Vittorio Loreto.
Statistical physics of social dynamics. Rev. Mod. Phys.,
81(2):591–646, may 2009. 25

[CMM97] Anthony Chavez, Alexandros Moukas, and Pattie Maes.
Challenger: A multi-agent system for distributed resource
allocation. In Proceedings of the first international conference on
Autonomous agents, pages 323–331. ACM, 1997. 8

[CTP03] P. Clark, J. Thompson, and B. Porter. Knowledge Patterns.
Handbook of Ontologies, pages 191–207, 2003. 110

[CVQP] Nicola Catenacci Volpi, Jean-Charles Quinton, and Giovanni
Pezzulo. How active perception and attractor dynamics
shape perceptual categorization: a computational model.
Neural Networks (submitted). x, xi, xii, 9, 69, 71, 76, 77, 78, 79,
81, 82, 84

122

[CYZ01] Samuel Choi, Dit-Yan Yeung, and Nevin Zhang. Hidden-
mode markov decision processes for nonstationary sequen-
tial decision making. Sequence Learning, pages 264–287, 2001.
12

[DB88] Thomas Dean and Mark Boddy. An analysis of time-
dependent planning. In Proceedings of the seventh national
conference on artificial intelligence, pages 49–54, 1988. 2

[DBT99] M. Dorigo, E. Bonabeu, and G. Theraulaz. Swarm Intelligence:
From Natural to Artificial Systems. Santa Fe Institute Studies
in the Sciences of Complexity. Oxford University Press, New
York, 1999. 7, 25

[dCPvdH06] G de Croon, EO Postma, and HJ van den Herik. A situ-
ated model for sensory–motor coordination in gaze control.
Pattern recognition letters, 27(11):1181–1190, 2006. 7

[DD95] Robert Desimone and John Duncan. Neural mechanisms
of selective visual attention. Annual review of neuroscience,
18(1):193–222, 1995. 6

[DDF+90] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman. Indexing by Latent Semantic Analy-
sis. Journal of the American Society for Information Science,
41(6):391–407, 1990. 111

[DeL99] S. A. DeLoach. Multiagent Systems Engineering: A method-
ology and Language Designing Agent Systems. In Proc. Int.
Bi-Conf. Workshop Agent-Oriented Information Systems, pages
45–57, may 1999. 9

[Den89] Daniel C Dennett. The intentional stance. MIT press, 1989. 3

[DK06] Yiannis Demiris and Bassam Khadhouri. Hierarchical at-
tentive multiple models for execution and recognition of
actions. Robotics and autonomous systems, 54(5):361–369, 2006.
12

123

[DKS07] Rick Dale, Caitlin Kehoe, and Michael J. Spivey. Graded
motor responses in the time course of categorizing atypical
exemplars. Mem Cognit, 35(1):15–28, Jan 2007. 89

[dMM06] A. de Martino and M. Marsili. Statistical mechanics of
socio-economic systems with heterogenous agents. Jour-
nal of Physics A: Mathematical and General, 39(43):R465, 2006.
25

[Dor92] M. Dorigo. Optimization, Learning and Natural Algorithms.
PhD thesis, Politecnico di Milano, 1992. 25

[Dre91] G L Drescher. Made-Up Minds: A Constructivist Approach to
Artificial Intelligence. MIT Press, Cambridge, MA, 1991. 68

[DSKK02] Kenji Doya, Kazuyuki Samejima, Ken-ichi Katagiri, and Mit-
suo Kawato. Multiple model-based reinforcement learning.
Neural computation, 14(6):1347–1369, 2002. 22

[EHRLR80] Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, and
D. Raj Reddy. The Hearsay-II Speech-Understanding Sys-
tem: Integrating Knowledge to Resolve Uncertainty. ACM
Comput. Surv., 12:213–253, jun 1980. 24

[FA10] Jonathan B Freeman and Nalini Ambady. MouseTracker:
software for studying real-time mental processing using
a computer mouse-tracking method. Behav Res Methods,
42(1):226–241, feb 2010. 86

[FDF11] Jonathan B Freeman, Rick Dale, and Thomas A Farmer.
Hand in motion reveals mind in motion. Front Psychol, 2:59,
2011. 90

[FG98] J. Ferber and O. Gutknecht. A meta-model for the analysis
and design of organizations in multi-agent systems. In Multi
Agent Systems, 1998. Proceedings. International Conference on,
pages 128–135, jul 1998. 9

124

[FSPB04] Gerald Fritz, Christin Seifert, Lucas Paletta, and Horst
Bischof. Rapid object recognition from discriminative re-
gions of interest. In Proceedings of the national conference in
Artificial Intelligence, pages 444–449. Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999, 2004.
7

[Gar00] Peter Gardenfors. Conceptual Spaces: The Geometry of Thought.
MIT Press, Cambridge, MA, USA, 2000. 96

[GG84] Stuart Geman and Donald Geman. Stochastic Relaxation,
Gibbs Distributions, and the Bayesian Restoration of Images.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
6(6):721–741, nov 1984. 52

[GG91] Matthew L Ginsberg and Donald F Geddis. Is there any need
for domain-dependent control information. In Proceedings of
the Ninth National Conference on Artificial Intelligence, pages
452–457. Citeseer, 1991. 4, 106

[Goo52] Irving John Good. Rational decisions. Journal of the Royal
Statistical Society. Series B (Methodological), pages 107–114,
1952. 2

[Goo71] IJ Good. The probabilistic explication of information, evi-
dence, surprise, causality, explanation, and utility. Founda-
tions of statistical inference, pages 108–141, 1971. 2

[Got12] Jacqueline Gottlieb. Attention, learning, and the value of
information. Neuron, 76(2):281–295, 2012. 3

[HDK84] A Hartwig, F Daske, and S Kobe. A recursive branch-and-
bound algorithm for the exact ground state of Ising spin-
glass models. Computer Physics Communications, 32(2):133–
138, 1984. 49

[Hem65] Carl Gustav Hempel. Aspects of scientific explanation: and
other essays in the philosophy of science. Free Press, 1965. 1

125

[HH05] Dietmar Heinke and Glyn W Humphreys. Computational
models of visual selective attention: A review. Connectionist
models in cognitive psychology, 1(4):273–312, 2005. 7

[Hof95] D. R. Hofstadter. Fluid Concepts and Creative Analogies. Basic
Books, 1995. 24

[Hol75] J. H. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, 1975. 25

[Hol89] J. H. Holland. Using Classifier Systems to Study Adaptive
Nonlinear Networks. Lectures in the Sciences of Complexity,
pages 463–499, 1989. 24

[Hop82] J.J. Hopfield. Neural Networks and physical systems with
emergent selective computation abilities. Proceedings of the
National Academy of Sciences of the United States of America,
79(8):2554–2558, 1982. 23, 26, 34

[Hor88] Eric Horvitz. Reasoning about beliefs and actions under
computational resource constraints. Int. J. Approx. Reasoning,
2(3):337–338, 1988. 2, 3

[Hor01] Eric Horvitz. Principles and applications of continual com-
putation. Artificial Intelligence, 126(1):159–196, 2001. 2

[How66] Ronald A Howard. Information value theory. Systems Science
and Cybernetics, IEEE Transactions on, 2(1):22–26, 1966. 3

[HR85] Barbara Hayes-Roth. A blackboard architecture for control.
Artificial Intelligence, 26:251–321, aug 1985. 24

[HT85] John J Hopfield and David W Tank. neural computation
of decisions in optimization problems. Biological cybernetics,
52(3):141–152, 1985. 25, 31, 53

[HWK01] Masahiko Haruno, Daniel M Wolpert, and Mitsuo Kawato.
Mosaic model for sensorimotor learning and control. Neural
computation, 13(10):2201–2220, 2001. 12

126

[IGCGal99] Carlos Argel Iglesias, Mercedes Garijo, and José Centeno-
Gonz a lez. A Survey of Agent-Oriented Methodologies.
In Proceedings of the 5th International Workshop on Intelligent
Agents V, Agent Theories, Architectures, and Languages, pages
317–330, London, UK, 1999. Springer-Verlag. 9

[IK01] Laurent Itti and Christof Koch. Computational modelling
of visual attention. Nature reviews neuroscience, 2(3):194–203,
2001. 7

[IKN98] L Itti, C Koch, and E Niebur. A Model of Saliency-Based
Visual Attention for Rapid Scene Analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(11):1254–1259,
nov 1998. 7, 67

[Isi25] Ernst Ising. Beitrag zur theorie des ferromagnetismus.
Zeitschrift für Physik A Hadrons and Nuclei, 31(1):253–258,
1925. 26

[Jac87] John V. Jackson. Idea for a mind. SIGART Bull., pages 23–26,
jul 1987. 24

[Jam90] William James. The principles of psychology, 1890. 6

[JJNH91] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton.
Adaptive Mixtures of Local Experts. Neural Computation,
3(1):79–87, 1991. ix, 19, 20, 57

[JSS08] J.S. Johnson, J.P. Spencer, and G. Schoner. Moving to higher
ground: The dynamic field theory and the dynamics of vi-
sual cognition. New Ideas in Psychology, 26:227–251, 2008.
98

[JY88] John Jonides and Steven Yantis. Uniqueness of abrupt vi-
sual onset in capturing attention. Perception & Psychophysics,
43(4):346–354, 1988. 6

127

[Kau93] S. A. Kauffman. The origin of order: Self-organization and
selection in evolution. Oxford University Press, New York,
1993. 37, 105

[Kaw99] Mitsuo Kawato. Internal models for motor control and trajec-
tory planning. Current opinion in neurobiology, 9(6):718–727,
1999. 12

[KGK11] Tim C. Kietzmann, Stephan Geuter, and Peter Koenig. Overt
visual attention as a causal factor of perceptual awareness.
PLoS One, 6(7):e22614, 2011. 75

[KGM06] Manuel Kolp, Paolo Giorgini, and John Mylopoulos. Multi-
Agent Architectures as Organizational Structures. Au-
tonomous Agents and Multi-Agent Systems, 13:3–25, 2006. 8,
9

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by Simulated Annealing. Science, 220(4598):671–680, 1983.
25, 52

[KH78] S Kobe and A Hartwig. Exact ground state of finite amor-
phous Ising systems. Computer Physics Communications,
16(1):1–4, 1978. 49

[Kok94] Boicho Nikolov Kokinov. The Context-Sensitive Cognitive
Architecture DUAL. In Proceedings of the Sixteenth Annual
Conference of the Cognitive Science Society, pages 502–507, Cite-
seer, 1994. Citeseer. 14, 34

[LC05] Claire Lefebvre and Henri Cohen, editors. Handbook of Cate-
gorization. Elsevier, dec 2005. 65

[Lei76] Harvey Leibenstein. Beyond economic man: A new foundation
for microeconomics. Harvard university press Cambridge,
MA, 1976. 2

[Lig99] T. M. Liggett. Stochastic Interacting Systems: Contact, Voter
and Exclusion Processes. Springer, 1999. 25

128

[Luk09] Sean Luke. Essentials of metaheuristics. Lecture notes,
George Mason University. Free access: http://cs. gmu. edu/˜
sean/book/metaheuristics/, 2009. 25

[Mac87] Mark J Machina. Choice under uncertainty. Encyclopedia of
Cognitive Science, 1987. 1

[Mar99] Jerzy Martyna. Neural network approach to design of dis-
tributed hard real-time systems. Computational Intelligence,
pages 118–131, 1999. 107

[MBiBV11] Zenon Mathews, Sergi Bermúdez i Badia, and Paul FMJ
Verschure. Pasar: An integrated model of prediction, an-
ticipation, sensation, attention and response for artificial
sensorimotor systems. Information Sciences, 2011. 12

[Mcc92] W.W. Mccune. Automated discovery of new axiomatizations
of the left group and right group calculi. Journal of Automated
Reasoning, 9(1):1–24, 1992. 113

[McC01] James L McClelland. The time course of perceptual choice:
The leaky, competing accumulator model. Psychological re-
view, 108(3):550–592, 2001. 90

[MD85] Jeffrey Moran and Robert Desimone. Selective attention
gates visual processing in the extrastriate cortex. Science,
229(4715):782–784, 1985. 6

[MFN10] Marco Mirolli, Tomassino Ferrauto, and Stefano Nolfi. Cat-
egorisation through evidence accumulation in an active vi-
sion system. Connection Science, 22(4):331–354, 2010. 7

[Min88] Marvin Minsky. Society of mind. Simon & Schuster, 1988. 105

[MNM93] William H Merigan, Tara A Nealey, and JH Maunsell. Visual
effects of lesions of cortical area v2 in macaques. The Journal
of neuroscience, 13(7):3180–3191, 1993. 7

129

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of
the ideas immanent in nervous activity. Bulletin of mathemat-
ical biology, 5(4):115–133, 1943. 26

[Mur12] Kevin P Murphy. Machine learning: a probabilistic perspective.
The MIT Press, 2012. 23

[Nei67] Ulric Neisser. Cognitive psychology, volume 4. Appleton-
Century-Crofts New York, 1967. 6

[NI05] Vidhya Navalpakkam and Laurent Itti. Modeling the influ-
ence of task on attention. Vision research, 45(2):205–231, 2005.
7

[NI07] Vidhya Navalpakkam and Laurent Itti. Search goal tunes
visual features optimally. Neuron, 53(4):605–617, 2007. 7

[OCVPB] Dimitri Ognibene, Nicola Catenacci Volpi, Giovanni Pez-
zulo, and Giancluca Baldassarre. Learning Epistemic ac-
tions: a Model-Free, Memory-Free Reinforcement Learning
approach. In Proceedings of the 2nd International Conference on
Biomimetic and Biohybrid Systems LIVING MACHINES 2013
(in press). 3

[oE] University of Emory. Research on Spin Glasses.
www.physics.emory.edu/faculty/boettcher/Research/spinglasses.htm.
ix, 47

[OK04] Cheryl Olman and Daniel Kersten. Classification objects,
ideal observers and generative models. Cognitive Science,
28(2):227–239, 2004. 70

[ON01] J K O’Regan and A Noe. A sensorimotor account of vi-
sion and visual consciousness. Behavioral and Brain Sciences,
24(5):883–917, 2001. 68

[OVP11] Dimitri Ognibene, Nicola Catenacci Volpi, and Giovanni
Pezzulo. Learning to grasp information with your own

130

hands. In Towards Autonomous Robotic Systems, pages 398–
399. Springer, 2011. 3

[Par86] G. Parisi. Asymmetric neural networks and the process
of learning. Journal of Physics A: Mathematical and General,
19:L675, 1986. 114

[PC05] G. Pezzulo and G. Calvi. Designing and Implementing
MABS in AKIRA. Multi-Agent and Multi-Agent-Based Simula-
tion, pages 49–64, 2005. 24

[PC07] G. Pezzulo and G. Calvi. Designing modular architectures
in the framework Akira. Multiagent and Grid Systems, 3(1):65–
86, 2007. ix, 14, 16, 24, 34, 108

[Pez09] G. Pezzulo. Exploiting MAS Self-organization for Dis-
tributed Constraint Satisfaction Problems. Interantional Trans-
actions on Systems Science and Applications, 5(3):285–295, 2009.
25, 53

[Pez11] Giovanni Pezzulo. Grounding Procedural and Declarative
Knowledge in Sensorimotor Anticipation. Mind and Lan-
guage, 26(1):78–114, 2011. 68

[PFS05] Lucas Paletta, Gerald Fritz, and Christin Seifert. Q-learning
of sequential attention for visual object recognition from
informative local descriptors. In Proceedings of the 22nd inter-
national conference on Machine learning, pages 649–656. ACM,
2005. 7

[PHC00] V Paraskevopoulos, MI Heywood, and CR Chatwin. Con-
tinuous optimal controllers using hierarchical mixtures of
experts. In Neural Networks, 2000. IJCNN 2000, Proceedings
of the IEEE-INNS-ENNS International Joint Conference on, vol-
ume 4, pages 331–336. IEEE, 2000. 22

[Pin06] Axel Pinz. Object Categorization. Foundations and Trends in
Computer Graphics and Vision, 1(4):255–353, 2006. 65

131

[PP00] Lucas Paletta and Axel Pinz. Active object recognition by
view integration and reinforcement learning. Robotics and
Autonomous Systems, 31(1):71–86, 2000. 7

[Put94] Martin L Puterman. Markov decision processes: Discrete stochas-
tic dynamic programming. John Wiley & Sons, Inc., 1994. 1,
12

[PVM87] G. Parisi, M. Virasoro, and M. Mezard. Spin Glass Theory and
beyond. Lecture Notes in Physics. World Scientific, 1987. 45,
46

[QCVBP] Jean-Charles Quinton, Nicola Catenacci Volpi, Laura Barca,
and Giovanni Pezzulo. The cat is on the mat. Or is it a dog?
Dynamic competition in perceptual decision making. IEEE
Transactions on Systems Man and Cybernetics: Systems (in press).
xii, xiii, xiv, 9, 86, 87, 89, 95, 99, 100, 101, 102

[QG+12] Jean-Charles Quinton, Bernard Girau, et al. Spatiotempo-
ral pattern discrimination using predictive dynamic neural
fields. BMC Neuroscience, 13(Suppl 1):O16, 2012. 93, 98, 106

[QGL11] Jean-Charles Quinton, Bernard Girau, and Mathieu Lefort.
Competition in high dimensional spaces using a sparse ap-
proximation of neural fields. In From Brains to Systems: Brain
Inspired Cognitive Systems 2010. Springer-New York, 2011. 93,
98, 106

[RB10] Constantin A Rothkopf and Dana H Ballard. Credit as-
signment in multiple goal embodied visuomotor behavior.
frontiers in Psychology, 1, 2010. 11

[RHW86] David E Rumelhart, Geoffrey E Hintont, and Ronald J
Williams. Learning representations by back-propagating
errors. Nature, 323(6088):533–536, 1986. 19

[RMG+76] Eleanor Rosch, Carolyn Mervis, Wayne Gray, David Johnson,
and Penny Boyes-Braem. Basic Objects in Natural Categories.
Cognitive Psychology, 8, 1976. 96

132

[Roj95] R. Rojas. Neural Network: A Schematic Introduction. Springer-
Verlag, 1995. 29, 41

[Ros62] Frank Rosenblatt. Principles of neurodynamics. 1962. 26

[RS95] Stuart J Russell and Devika Subramanian. Provably
bounded-optimal agents. Journal of Artificial Intelligence Re-
search, 2:575–609, 1995. 2

[Rus97] Stuart J Russell. Rationality and intelligence. Artificial intelli-
gence, 94(1):57–77, 1997. 2

[RV06] Nicolas P Rougier and Julien Vitay. Emergence of attention
within a neural population. Neural Networks, 19(5):573–581,
2006. 93

[RW89] Stuart Russell and Eric Wefald. On optimal game-tree search
using rational meta-reasoning. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence, vol-
ume 4, pages 334–340. Morgan Kaufmann, 1989. 3

[RW91] Stuart Jonathan Russell and Eric H Wefald. Do the right thing:
studies in limited rationality. The MIT Press, 1991. 2, 4, 106

[SBR05] Nathan Sprague, Dana Ballard, and Al Robinson. Modeling
attention with embodied visual behaviors. ACM Transactions
on Action and Perception, 2005. 11

[SC11] Pedro Santana and Luı́s Correia. Swarm cognition on off-
road autonomous robots. Swarm Intelligence, 5(1):45–72, 2011.
7

[Sch03] F. Schweitzer. Brownian Agents and Active Particles: Collective
Dynamics in the Natural and Social Sciences. Springer, 2003. 25

[Sch08] G Schöner. Dynamical systems approaches to cognition,
2008. 91, 92

133

[SCM97] P. M. Silva, C. Carderiea, and Z. Mammeri. Solving real-time
scheduling problems with hopfiled-type neural networks.
Proceedings of the 23rd EUROMICRO Conference, pages 671–
678, 1997. 107

[SDJ+95] C. Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and
G. Rinaldi. Exact ground states of Ising spin glasses: New ex-
perimental results with a branch-and-cut algorithm. Journal
of Statistical Physics, 80(1-2):487–496, 1995. 49

[SDKG10] Michael J. Spivey, Rick Dale, Guenther Knoblich, and Marc
Grosjean. Do curved reaching movements emerge from
competing perceptions? a reply to van der wel et al. (2009). J
Exp Psychol Hum Percept Perform, 36(1):251–254, Feb 2010. 90

[SGS10a] Adam N Sanborn, Thomas L Griffiths, and Richard M
Shiffrin. Uncovering mental representations with Markov
chain Monte Carlo. Cognitive Psychology, 60(2):63–106, 2010.
x, 65

[SGS10b] Adam N Sanborn, Thomas L Griffiths, and Richard M
Shiffrin. Uncovering mental representations with Markov
chain Monte Carlo. Cogn Psychol, 60(2):63–106, mar 2010. 70,
74

[SHDK12] Norikazu Sugimoto, Masahiko Haruno, Kenji Doya, and
Mitsuo Kawato. Mosaic for multiple-reward environments.
Neural computation, 24(3):577–606, 2012. 12

[Sim57] H. A. Simonm. Models of man - social and rational. John Wiley
and Sons, 1957. 2

[Sim82] Herbert Alexander Simon. Models of bounded rationality: Em-
pirically grounded economic reason, volume 3. MIT Press (MA),
1982. 2

[SJBH11] BT Sullivan, LM Johnson, DH Ballard, and MM Hayhoe. A
modular reinforcement learning model for human visumoto

134

behavior in a driving task. In Proceedings of the AISB 2011
Symposium, pages 33–40, 2011. 12

[SLB08] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems:
Algorithmic, game-theoretic, and logical foundations. Cambridge
University Press, 2008. 53

[SMD+11] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas
Degris, Patrick M Pilarski, Adam White, and Doina Pre-
cup. Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction. In
Proceedings of the 10th International Conference on Autonomous
Agents and Multiagent Systems, pages 761–768, 2011. 12

[SMHK12] Norikazu Sugimoto, Jun Morimoto, Sang-Ho Hyon, and
Mitsuo Kawato. The emosaic model for humanoid robot
control. Neural Networks, 29:8–19, 2012. 12

[SN09] Joo-Hyun Song and Ken Nakayama. Hidden cognitive states
revealed in choice reaching tasks. Trends Cogn Sci, 13(8):360–
366, Aug 2009. 90

[Spi07] M. Spivey. The continuity of mind. Oxford University Press,
USA, 2007. 89

[SS07] Frederick Shic and Brian Scassellati. A behavioral analysis
of computational models of visual attention. International
Journal of Computer Vision, 73(2):159–177, 2007. 7

[Syc98] K. P. Sycara. Multiagent Systems. AI Magazine, 19(2):79–92,
1998. 8, 106

[Tay99] JG Taylor. Neural bubbledynamics in two dimensions: foun-
dations. Biological Cybernetics, 80(6):393–409, 1999. 93

[Tir95] B. Tirozzi. Modelli matematici di Reti Neurali. CEDAM, 1995.
50, 51

135

[TK75] Amos Tversky and Daniel Kahneman. Judgment under uncer-
tainty: Heuristics and biases. Springer, 1975. 1

[TM96] Stefan Treue and John HR Maunsell. Attentional modulation
of visual motion processing in cortical areas mt and mst.
1996. 6

[TNNI08] Jun Tani, Ryunosuke Nishimoto, Jun Namikawa, and
Masato Ito. Codevelopmental learning between human and
humanoid robot using a dynamic neural-network model.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Trans-
actions on, 38(1):43–59, 2008. 22

[VJ89] Michel Verleysen and Paul GA Jespers. An analog vlsi im-
plementation of hopfield’s neural network. Micro, IEEE,
9(6):46–55, 1989. 32

[VNM47] John Von Neumann and Oskar Morgenstern. The theory of
games and economic behavior. 1947. 1

[WCR65] L. Wos, D. Carson, and G. Robinson. Efficient and com-
pleteness of the set-of-support strategy in theorem proving.
Journal of the Association for Computing Machinery, (14):698–
704, 1965. 110

[WD90] Michael P Wellman and Mark Derthick. Formulation of trade-
offs in planning under uncertainty. Pitman London, 1990. 2

[WH+60] Bernard Widrow, Marcian E Hoff, et al. Adaptive switching
circuits. 1960. 26

[Wic02] Christopher D Wickens. Multiple resources and perfor-
mance prediction. Theoretical issues in ergonomics science,
3(2):159–177, 2002. 7

[Wic08] Christopher D Wickens. Multiple resources and mental
workload. Human Factors: The Journal of the Human Factors
and Ergonomics Society, 50(3):449–455, 2008. 7

136

[WK98] Daniel M Wolpert and Mitsuo Kawato. Multiple paired for-
ward and inverse models for motor control. Neural Networks,
11(7):1317–1329, 1998. 12

[Woo09] Michael Wooldridge. An Introduction to MultiAgent Systems.
John Wiley and Sons, 2009. 8

[Wri68] JM von Wright. Selection in visual immediate memory. The
Quarterly journal of experimental psychology, 20(1):62–68, 1968.
6

[XHK96] Z. B. Xu, G. Q. Hu, and C. P. Kwon. Asymmetric Hopfield-
type Networks: Theory and Applications. Neural Networks,
9(3):483–501, 1996. 114

[YM88] H. Chang Y. Miyashita. Neuronal correlate of pictorial short-
term memory in the primate temporal cortex. Nature, 331(68),
1988. 26

[Zil95] Shlomo Zilberstein. Operational rationality through com-
pilation of anytime algorithms. AI Magazine, 16(2):79, 1995.
2

[Zil08] Shlomo Zilberstein. Metareasoning and bounded rationality.
Metareasoning: Thinking about Thinking, MIT Press, 2008. ix, 3,
4, 106

137

	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	1 Introduction
	1.1 Bounded Rationality and Metareasoning
	1.2 Attention as Solution.
	1.3 Modularity as Solution.

	2 Multiple Model-based Architectures
	2.1 AKIRA
	2.2 The Mixture of Experts model

	3 First Proposal: The Attractor Agent Network
	3.1 Preliminaries: Hopfield Networks
	3.2 Energy and Activation
	3.3 The Attractor Agent Network
	3.4 Agents' Attractors
	3.5 Resource Bound
	3.6 Learning and Execution
	3.6.1 Offline Learning
	3.6.2 Query Algorithm and Online Learning

	3.7 Coordination measures and Frustration
	3.8 Some Useful Tools
	3.9 First Application, Optimization: The Board Game experiment
	3.10 Second Application, Classification: The Attractor Expert Network
	3.10.1 The Experiment

	3.11 Third Application, Active Vision Categorization: The Attractor Predictor Network
	3.11.1 Input features
	3.11.2 Predictors
	3.11.3 The Attractor Predictor Network
	3.11.4 Learning
	3.11.5 The Categorization Algorithm
	3.11.6 Simulation 1: Categorization Perfomance
	3.11.7 Simulation 2: Predictors' Influence on Saccades
	3.11.8 Simulation 3: Categorization with Morphed Stimuli
	3.11.9 Simulation 4: Probability of Categorization

	4 The Human Experiment
	4.1 Results: Accuracy Rate and Trajectories Analysis
	4.2 Discussion

	5 Second Proposal: Neural Field-based architecture
	5.1 The Computational Model
	5.2 The Categorization Algorithm
	5.3 Results
	5.3.1 Simulation 1: Performance Evaulation
	5.3.2 Simulation 2: No Prediction
	5.3.3 Simulation 3: No Top-down bias
	5.3.4 Simulation 4: No Informativeness

	6 Discussion and Comparisons
	7 Open Issues and Future Works
	7.1 Future AAN Application, Distributed Automatic Reasoning: The Attractor Predictor Network
	7.2 Context Aware AAN Learning Algorithm

	8 Conclusions
	Bibliography

