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Abstract

When algorithmic skeletons were first introduced by Cole in
late 1980 (50) the idea had an almost immediate success. The
skeletal approach has been proved to be effective when ap-
plication algorithms can be expressed in terms of skeletons
composition. However, despite both their effectiveness and
the progress made in skeletal systems design and implemen-
tation, algorithmic skeletons remain absent from mainstream
practice. Cole and other researchers, respectively in (51) and
(19), focused the problem. They recognized the issues affect-
ing skeletal systems and stated a set of principles that have
to be tackled in order to make them more effective and to
take skeletal programming into the parallel mainstream. In
this thesis we propose tools and models for addressing some
among the skeletal programming environments issues. We
describe three novel approaches aimed at enhancing skeletons
based systems from different angles. First, we present a model
we conceived that allows algorithmic skeletons customization
exploiting the macro data-flow abstraction. Then we present
two results about the exploitation of metaprogramming tech-
niques for the run-time generation and optimization of macro
data-flow graphs. In particular, we show how to generate and
how to optimize macro data-flow graphs accordingly both to
programmers provided non-functional requirements and to
execution platform features. The last result we present are
the Behavioural Skeletons, an approach aimed at addressing
the limitations of skeletal programming environments when
used for the development of component-based Grid applica-
tions. We validated all the approaches conducting several test,
performed exploiting a set of tools we developed.
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Chapter 1

Introduction

Computers are becoming tools of vital importance. They are used almost
everywhere, they are used for work, for study, for fun and actually for
solve problem. Unfortunately, many problems require a huge amount of
computational power to solve (as an example: genome mapping, portfo-
lio risk-analysis, protein folding). Such a power cannot be obtained using
a single processor. The only suitable solution is to distribute the applica-
tion workload across many different computational resources. Resources
those contemporaneously (“in parallel”) execute parts of the whole ap-
plication. Programming applications that make use of several computa-
tional resources at the same time introduces some difficulties, as an ex-
ample the communication and synchronization among the resources, or
the application code and data decomposition and distribution. In order
to ease this burden, since the early steps of computer science, researchers
conceived and designed programming models and tools aiming at sup-
porting the development of parallel applications. Throughout the ages, a
lot of models and tools have been proposed, presented in several differ-
ent (sometime exotic) forms. Nevertheless, the main goal is always the
same: find a good trade-off between simplicity and efficiency. Indeed,
a very abstract model simplifies the programming activity but can lead
to a very inefficient exploitation of computing resources. Instead, a low-
level model allows programmers to efficiently exploit the computational
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resources but requires to programmers a tremendous effort when the
number of resources grows. Since the nineties, several research groups
have proposed the structured parallel programming environments (SPPE).
Since the structured parallel programming model was conceived, sev-
eral works have been done about it. Programming environments rely-
ing on this paradigm ask programmers to explicitly deal with the qualita-
tive aspects of parallelism exploitation, namely the application structure
and problem decomposition strategies. All the low-level parallelism ex-
ploitation related aspects like communication, synchronization, mapping
and scheduling are managed by compiler tools and run-time support. In
these environments parallelism is exploited by composing “skeletons”,
i.e. parallelism exploitation patterns. From language viewpoint, a skele-
ton is a higher-order function that behaves as a pure function (no side-
effects). Several real world, complex applications have been developed
using these environments. The skeletal approach has been proved to be
quite effective, when application algorithms can be somehow expressed
in terms of skeleton composition. Notwithstanding, skeletal program-
ming has still to make a substantial impact on mainstream practice in
parallel applications programming.

1.1 Contribution of the thesis

This thesis originates from the wish to address the issues that have limited
the diffusion of structured parallel programming environments. These
issues are well-known by the structured parallel programming models
scientific community. They have been organically reported in two key
papers (19; 51) where the authors describe both the issues and the fea-
tures that the next generation of structured parallel programming envi-
ronments have to support in order to address them. The features “check-
list” includes, as an example, the ease of use, the integration of structured
and unstructured form of parallelization, the support for code reuse, the
heterogeneity and dynamicity handling. Drawing a parallel with web
programming model we can refer as “Skeletons 2.0” the next genera-
tion of structured parallel programming environments that address the
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issues that prevent the skeleton environment to became part of the main-
stream practice in parallel applications programming. Some groups of re-
searchers involved in structured parallel programming developed skele-
ton systems that have partially addressed the “Skeletons 2.0” principles
to different degrees in different combinations. Nevertheless, the research
for addressing the presented issues has just started. Indeed, up to now,
tools and models that are generally recognized as the best solutions for
addressing the issues still do not exist.

The main goal of this thesis is to present an organic set of tools and
models conceived, designed and developed to address most of these is-
sues, therefore form the base of a next generation skeleton system. The
scientific contribution of the thesis is organized in three main parts. They
reports four results we obtained in the last three years. These research
results as has been already presented in published papers. Some results
have been achieved with actual experiments conducted using software
tools and packages designed and developed to the purpose. Some of
them are simple, proof-of-concept tools, like JJPF (59) or PAL (61). Some
others are custom version of existing framework, like muskel with the
support for developing unstructured form of parallelism (21) or muskel

with an aspect oriented programming support (60). Others are part of
complex international research project focused on Grid computing, like
the Behavioural Skeletons (17).

Our first contribution copes with the lack of models supporting the in-
tegration of unstructured form of parallelization in skeleton systems. In
fact, if on the one hand structured parallel programming environments
raise the level of abstraction perceived by programmers and guarantee
good performance, on the other hand they restrict the freedom of pro-
grammers to implement arbitrary parallelism exploitation patterns. In or-
der to address this issue we propose a macro data-flow based approach that
can be used to implement mixed parallel programming environments
providing the programmer with both structured and unstructured ways
of expressing parallelism. Structured parallel exploitation patterns are
implemented translating them into data-flow graphs executed by a dis-
tributed macro data-flow interpreter. Unstructured parallelism exploita-

3



tion can be achieved by explicitly programming data-flow (sub)graphs.
To validate the approach, we modified a skeleton system that in its orig-
inal form does not deal with unstructured parallelism: muskel. We ex-
tended muskel, in collaboration with the research staff that developed
it. Our customized muskel is implemented exploiting (macro) data-flow
technology, rather than more usual skeleton technology relying on the us-
age of implementation templates. Using data-flow, the extended muskel

supports the development of both classical, predefined skeletons, and
programmer-defined parallelism exploitation patters. Our extended ver-
sion provides two mechanisms to the muskel programmers for unstruc-
tured parallelism exploitation. First, we provide primitives that allow
to access the fundamental features of the data-flow graph generated out
of the compilation of a skeleton program. Namely, methods to deliver
data to and retrieve data from data-flow graph. We provide to program-
mers the ability to instantiate a new graph in the task pool by providing
the input task token and to redirect the output token of the graph to an
arbitrary data-flow instruction in the pool. Second, we provide the pro-
grammer with direct access to the definition of data-flow graphs, in such
a way he can describe his particular parallelism exploitation patterns that
cannot be efficiently implemented with the available skeletons. The two
mechanisms can be jointly used to program all those parts of the appli-
cation that cannot be easily and efficiently implementing using the tradi-
tional skeletons subsystem. Unfortunately, this approach is not free from
shortcomings. In fact, exploiting unstructured parallelism interacting di-
rectly with data-flow graph requires to programmers to reason in terms
of program-blocks instead of a monolithic program.

In order to ease the generation of macro data-flow blocks and in gen-
eral to provide mechanism easing the use of structured parallel program-
ming environment, we exploited some metaprogramming techniques. Ex-
ploiting these techniques the programmers are no longer requested to
deal with complex application structuring but simply to give hints to
the metaprogramming support using high-level directives. The directives
drive the automatic application transformation. In this thesis we present
two results we obtained regarding the exploitation of metaprogramming
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techniques for parallel programming. The first result is “Parallel Abstrac-
tion Layer” (PAL). A java annotation based metaprogramming frame-
work that restructures applications at bytecode-level at run-time in order
to make them parallel. The parallelization is obtained asynchronously
executing the annotated methods. Each method call is transformed in a
macro data-flow block that can be dispatched and executed on the avail-
able computing resources. PAL transformations depend on both on the
resources available at run-time and the hints provided by programmers.
The other result concerns the integration of the Aspect Oriented Program-
ming mechanisms with our modified muskel skeleton framework. We
make this integration in two distinct phases, in the first phase we inte-
grated the AOP mechanisms in order to achieve very simple code trans-
formation. In the second phase we implemented a more complex integra-
tion to obtain a support enabling the development of workflows which
structure and processing are optimized at run-time depending on the
available computational resources.

In this thesis we present also a model to address two other issues: the
lack of support for code reuse, and the lack of support for handling of dy-
namicity. The muskel framework, addresses this last point through the
definition of the Application Manager, namely an entity able to observe,
at run-time, the behavior of the parallel application and in case of faults
or application non-functional requirement violations it reacts aiming to
fix the problem. The dynamicity handling is a very important feature for
next generation parallel programming systems, especially for the ones
designed for computational Grids. Indeed, Grid are often composed by
heterogeneous computer and managed by different administration poli-
cies. To address these additional difficulties most of the models and tools
conceived and developed for parallel programming have to be re-thought
and adapted. Actually, the muskel framework, at least in its original
form, is designed to be exploited in cluster and network of workstations
rather than in Grids. Indeed, some of the implementation choices done
when it was developed limit its exploitation on Grids, in particular the
ones related with communication protocol and with the mechanisms for
recruiting computational resource. On the other hand, several studies
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recognized that component technology could be leveraged to ease the de-
velopment of Grid Application (25; 72). Indeed, a few component based
model have been proposed by parallel computing scientific community
for programming Grids, as CCA (5), CCM (67) and GCM (52). The GCM
represents one of the main European scientific community efforts for de-
signing and developing (3) a grid component model. We contributed to
the design of GCM and its reference implementation together with the
research group that developed muskel and with several European re-
search groups. In particular, we focused our contribution on the GCM
autonomic features. We referred to the muskel Application Manager ap-
proach, generalizing it and extending the approach to make it suitable for
components based models. Indeed, each GCM component with a com-
plete support of autonomic features has an Autonomic Manager that ob-
serves the component behavior. In case the behavior turns out to be dif-
ferent from the expected one the manager trigger a component reconfig-
uration. In other words, GCM autonomic features provide programmers
with a configurable and straightforward way to implement autonomic
grid applications. Hence, they ease the development of application for the
Grids. Nevertheless, they rely fully on the application programmer’s ex-
pertise for the setup of the management code, which can be quite difficult
to write since it may involve the management of black-box components,
and, notably, is tailored for the particular component or assembly of them.
As a result, the introduction of dynamic adaptivity and self-management
might enable the management of grid dynamism, and uncertainty aspects
but, at the same time, decreases the component reuse potential since it fur-
ther specializes components with application specific management code.
In order to address this problem, we propose the Behavioural Skeletons as
a novel way to describe autonomic components in the GCM framework.
Behavioural Skeletons aim to describe recurring patterns of component
assemblies that can be equipped with correct and effective management
strategies with respect to a given management goal. Behavioural Skele-
tons help the application designer to i) design component assemblies that
can be effectively reused, and ii) cope with management complexity. The
Behavioural Skeletons model is an effective solution for handling dynam-
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icity, supporting reuse both of functional and non-functional code. We
want to point out that we have not the “sole rights” concerning the Be-
havioural Skeletons model. Indeed, it has been developed in conjunction
with the other authors of the two papers about Behavioural Skeletons we
published (16; 17).

This thesis is not our first attempt of design programming model for
parallel programming. In a previous work we developed JJPF, a Java and
Jini based Parallel Framework, and investigated the possibilities offered
by structured parallel programming. In (59) we described the architec-
ture of JJPF. JJPF was specifically designed to efficiently exploit afford-
able parallel architectures, such as a network of workstations. Its reactive
fault-tolerance support and its dynamic support for task distribution as
well as for resources recruiting were designed to enable an efficient ex-
ploitation of resources in highly dynamic environment. In particular, JJPF
exploits the Jini technologies to dynamically find and recruit the available
computational resources. JJPF provide to programmers an API enabling
the development of task-parallel application following the master-slave
paradigm. It also provides an high-level support for data sharing among
slaves. JJPF ease the parallel programming task hiding most of low-level
error prone issues to programmers. As we stated above, JJPF is imple-
mented in Java. It simplifies the code portability among heterogeneous
architectures. For the communications among master and slaves JJPF ex-
ploits the JERI. It is a variant of RMI allowing the protocol customization
and as a consequence an optimization of its performance in several situ-
ations. For the performance purpose JJPF also provides an alternative to
the java distributed class-loader that reduces the class-loading latency in
some situations. Some problems encountered during the design of JJPF
still remain open. Moreover, during the realization of JJPF we faced di-
rectly with the development complexity of this kind of software so we
think that some kind of software engineering is needed to facilitate reuse
and maintenance of source code.
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1.2 Thesis Outline

As we already stated, in this thesis we report our contribution to address
the issues that are typical of traditional structured parallel programming
environments. The contribution is organized in three main parts. Each
part is presented in a dedicated chapter. Moreover, there are three more
chapters: an Introduction chapter (this one, actually), a Conclusion chap-
ter and another one that introduces the problems we face in this thesis
and outlines the state-of-the-art of existing solutions. In the remain of
this section we describe the content of each chapter.

Chapter 2 In this chapter we take into account the problems related to
programming parallel applications, the existing solutions and their main
limitations. In particular, after a general introduction to the different par-
allel programming models, the topic is focused on the limitations that
prevent the structured parallel programming models from spreading and
to become part of the mainstream practice. Section 2.1 gives a bird’s-eye
view both on the parallel architectures and on the fields in which paral-
lelism has traditionally been employed. Section 2.2 reports a selection of
the main parallel programming models distinguishing between the im-
plicit (Section 2.2.1) and explicit (Section 2.2.2) approaches. The explicit
approaches are further discussed subdividing them, with respect to the
abstraction presented to programmers, in high-level (Section 2.2.3) and
low-level (Section 2.2.4) ones. For each of them are presented the Pros and
Cons. The chapter reports also some other notable approaches (Section
2.2.5). Then the Chapter present the structured approach, an approach
conceived in order to overcome the limitations of traditional approaches
(Section 2.2.6). Some tools based on the structured parallel programming
models are presented (Section 2.2.6) and others are reported as well as
references to the literature. The models are presented highlighting their
features and main limitations. Section 2.3 reports the issues that next gen-
eration skeleton system should own to address the existing limitations.
Finally, the chapter introduces (Section 2.4) our contributions to the field
placing them in the proper context, showing how such contributions can
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be exploited for addressing the issues related to structured parallel pro-
gramming environments.

Chapter 3 In this Chapter we discuss a methodology that can be ex-
ploited in order to provide to programmers the possibility to mix struc-
tured and unstructured ways of expressing parallelism while preserving
most of the benefits typical of structured parallel programming mod-
els. The methodology is based on the data-flow model. Unstructured
parallelism exploitation is achieved by explicitly programming data-flow
graphs. Section 3.1 briefly recalls the structured programming models
outlining their main advantages and limitations. In particular, the section
focuses on the skeleton customization issue. Namely the lack of flexibil-
ity of skeletal systems in expressing parallel form different from the ones
that are “bundled” with the skeleton framework and their compositions.
Then the section introduces the macro data-flow based approach we con-
ceived in order to address of this limitation and reports the related work:
alternative approaches addressing the structured parallel programming
limitations. Section 3.2 introduces both the classical template-based im-
plementation of skeleton systems and the more recent data-flow technolo-
gies based one used in muskel. Section 3.3.1 describes the details of our
contribution, i.e. how we exploited the methodology presented to extend
the muskel framework. Finally, Section 3.4 reports the experimental re-
sults we obtained conducting some test using our customized muskel

framework.

Chapter 4 In this Chapter we introduce some novel metaprogramming
techniques for the generation and optimization of macro data-flow blocks.
This Chapter presents our efforts aimed at providing metaprogramming
tools and models for optimizing at run-time the execution of structured
parallel applications. The approaches are based on the run-time gener-
ation of macro data-flow blocks from the application code. The Chap-
ter discusses how we exploited these techniques both in our modified
muskel framework as well as in other frameworks we developed. Sec-
tion 4.1 presents the motivations behind our contributions. Section 4.2
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presents PAL, our first result in the field. The core of PAL framework
is its metaprogramming engine that transforms at run-time an annotated
sequential java code in a parallel program exploiting both programmer
hints and information about executing platforms. Section 4.2.1 describes
the details of our PAL prototype implementation. Section 4.2.2 reports
the experimental results we obtained testing PAL framework. Section
4.2.3 discusses the motivations that convinced us to integrate the PAL
approach to our modified muskel framework. Section (4.3 describes
the preliminary attempts we made integrating metaprogramming tech-
niques in muskel showing how Aspect Oriented Programming can be
exploited to do some simple code transformations. Section 4.4 describes
how we further enhanced muskel making it able to exploit metapro-
gramming for run-time code optimizations. In particular, how it can be
exploited to optimize the parallel execution of computations expressed as
workflows. Section 4.4.2 describes the implementation details of work-
flows transformations and Section 4.4.3 presents the results of some ex-
periments we conducted. Finally Section 4.5 presents a comparison of the
two approaches.

Chapter 5 In this Chapter we present some results about the customiza-
tion of skeletons applied to the Grid Component Model. In this chapter
we present the Behavioural Skeletons model, an approach, we contribute
to conceive and validate, aimed at provide programmers with the ability
to implement autonomic grid component-based applications completely
taking care of the parallelism exploitation details by simply instantiating
existing skeletons and by providing suitable, functional parameters. The
model has been specifically conceived to enable code reuse and dynam-
icity handling. Section 5.1 describes how component-based applications
can ease the task of developing grid applications. Section 5.2 outlines the
grid component model focusing on its autonomic features. After, Section
5.4 presents the Behavioural Skeletons model, Section 5.5 reports a set
of noteworthy Behavioural Skeletons and Section 5.6 describe their GCM
implementation. Section 5.7 describes a set of experiment we conducted
to validate the Behavioural Skeletons model.
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Chapter 6 This Chapter summarizes the materials contained in the pre-
vious chapters and discusses the conclusions of the thesis. Finally, the
future work related to the thesis is introduced.
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Chapter 2

High-Level Parallel
Programming

As we already stated in the Introduction, using several processors (or
computational resources) at the same time (in parallel), however, intro-
duces some difficulties. The conceptual barrier encountered by the pro-
grammers in efficiently coordinating many concurrent activities towards
a single goal is an example of such barriers. To address these difficulties
software developers need high-level programming models for sensibly
raising the abstraction of computational resources. This is a fundamental
requirement to avoid programmers having to deal with low-level coor-
dination mechanisms. In fact, low-level parallel programming is an er-
ror prone approach that distracts programmers from qualitative aspects
of parallelization. Throughout the ages, researchers conceived and de-
veloped several models for high-level parallel programming. However,
most of current implementations of very high-level programming mod-
els often suffer from low performance. This because of the abstraction
penalty, which actually has historically limited the usage of high-level
programming techniques in high performance computing. For this rea-
son, nowadays most of parallel programs are developed exploiting lower-
level language, even if a higher-level language would make the coding
easier. Structured parallel programming models were conceived to be an al-
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ternative both to very high-level models and to low-level models. Struc-
tured parallel programming models ask programmers to explicitly deal
with the qualitative aspects of parallelism exploitation, namely the appli-
cation structure and problem decomposition strategies. Compilers and
run-time supports manage all the low-level parallelism exploitation re-
lated aspects like communication, synchronization, scheduling and map-
ping. The Structured Way is driven by those two observations: there are
some things programmers do better than compilers, and there are some
things that compilers do better than programmers. Nevertheless, also the
structured models are not perfect and free from limitations. In fact, for
some years researchers very expert in structured parallel programming
models have outlined the features that the next generation of structured
models have to provide in order to address these limitations (19; 51). In
next three chapters of this thesis we present some results we obtained as
an attempt of address some of these limitations.

Chapter road-map The chapter starts with a bird’s-eye view both on the par-
allel architectures and on the fields in which parallelism has traditionally been
employed (Section 2.1). Then, it reports the main parallel programming mod-
els (Section 2.2) distinguishing between the implicit (Section 2.2.1) and explicit
(Section 2.2.2) approaches. The explicit approaches are further subdivided in
high-level (Section 2.2.3), and low-level (Section 2.2.4) ones. The chapter reports
also some other notable approaches (Section 2.2.5). Then the Chapter present the
structured approach, an approach conceived in order to overcome the limitations
of traditional approaches (Section 2.2.6). Some tools based on the structured par-
allel programming models are presented (Section 2.2.6) highlighting their fea-
tures and main limitations. Then Section 2.3 reports the issues that next gen-
eration skeleton system should own to address the existing limitations. Finally,
the chapter introduces (Section 2.4) our contributions to the field placing them
in the proper context, showing how they can be exploited for addressing some of
the issues related to structured parallel programming environments.
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2.1 From sequential to parallel architectures

The Von Neumann architecture is a very common and well-known com-
puter design model. It has a very simple formulation and can be de-
scribed as a sequential process running in a linear address space. It con-
sists in a processing unit and a single separate storage structure to hold
both instructions and data. The Von Neumann model “implements” a
universal Turing machine. It represents the common “referential model”
of specifying sequential architectures, in contrast with parallel architectures.
In a parallel architecture many instructions are carried out simultane-
ously. Parallel computers operate on the principle that large problems
can almost always be divided into smaller ones, which may be carried
out at the same time. Parallel architectures exist in several forms and lev-
els. They range from superscalar processors to computational Grids.In
this section we briefly mention some of the most common forms of paral-
lelism, without claiming to be exhaustive but only to give an idea of the
variety of the existing forms of parallelism.

Bit-level parallelism is a form of parallelization based on increasing
processor word size. It leads to a reduction of the number of instructions
the processor must execute in order to perform an operation on variables
whose sizes are greater than the length of the word. (For instance, con-
sider a case where a 16-bit processor must add two 32-bit numbers. The
processor must first add the 16 lower-order bits from each number, and
then add the 16 higher-order bits, and the carry from the previous add
requiring two instructions to complete a single operation. A 32-bit pro-
cessor would be able to complete the operation using a single instruc-
tion). Historically, 4-bit microprocessors were replaced with 8-bit, then
16-bit, then 32-bit microprocessors. This trend generally came to an end
with the introduction of 32-bit processors, which has been a standard in
general purpose computing for two decades. Only recently, with the pro-
liferation of processors based both on the IBM PowerPC G5 processor and
on the x86-64 architectures, the 64-bit processors have become common-
place.
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Instruction-level parallelism is a form of parallelization based on the
simultaneous execution of instructions part of a computer program. Even
if ordinary programs are typically written according to a sequential exe-
cution model where instructions execute one after the other and in the
order specified by the programmer, in some significant cases there is no
need to follow this order. ILP allows the compiler and the processor to
overlap the execution of multiple instructions or even to change the or-
der in which instructions are executed. Due to its nature, ILP requires an
hardware support; micro-architectural techniques that are used to exploit
ILP include (for a better description see (104)):

• Instruction pipelining, where the execution of multiple instructions
can be partially overlapped.

• Superscalar execution, in which multiple execution units are used
to execute multiple instructions in parallel. In typical superscalar
processors, the instructions executing simultaneously are adjacent
in the original program order.

• Out-of-order execution, where instructions execute in any order that
does not violate data dependencies. Note that this technique is or-
thogonal w.r.t. both pipelining and superscalar.

• Register renaming, which refers to a technique used to avoid unnec-
essary serialization of program operations imposed by the reuse of
registers by those operations, used to enable out-of-order execution.

• Speculative execution, which allows the execution of complete in-
structions or parts of instructions before being certain whether this
execution should take place or not. A commonly used form of spec-
ulative execution is control flow speculation where instructions fol-
lowing a control flow instruction (e.g., a branch) are executed be-
fore the target of the control flow instruction is determined. Several
other forms of speculative execution have been proposed and are
in use including speculative execution driven by value prediction,
memory dependence prediction and cache latency prediction.
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• Branch prediction, which is used to avoid stalling for control depen-
dencies to be resolved. Branch prediction is used with speculative
execution.

Data parallelism is a form of parallelization of computer code across
multiple processors in parallel computing environments. This paradigm
is useful for taking advantage of the large amounts of data parallelism
that is available in many scientific/numeric applications. The data paral-
lelism is exploited by performing the same operation on a large amount
of data, distributed across the processors of the machine. From the pro-
grammer viewpoint, languages based on data-parallel paradigm (such as
HPF, sketched in Section 2.2.5) are pretty similar to sequential languages.
The main difference is that certain data types are defined to be parallel.
Parallel data values consist of a collection of standard, scalar data values.

The data-parallel paradigm has some main virtues that have led to its
success. Parallel data types are typically static in size (e.g. arrays); their
distribution across the machine is usually done at compile-time. Any
synchronization or communication that is needed to perform an opera-
tion on a parallel value is automatically added by the compiler/run-time
system. The processors collectively compute operations on parallel data
values; computation load usually distributed directly linking data val-
ues and computations through the owner computes rule. As data values,
computation load is statically distributed across the processors of the sys-
tem. The data parallelism approach typically offers very good scalability.
Because operations may be applied identically to many data items in par-
allel, the amount of parallelism is dictated by the problem size. Higher
amounts of parallelism may be exploited by simply solving larger prob-
lems with greater amounts of computation. Data parallelism is also sim-
ple and easy to exploit. Because data parallelism is highly uniform, it
can usually be automatically detected by an advanced compiler, without
forcing the programmer to manage explicitly processes, communication,
or synchronization. Many scientific applications may be naturally spec-
ified in a data-parallel manner. In these settings, programs data layout
is often fixed; the most used data structures are large arrays. Operations
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on whole data structures, such as adding two arrays or taking the inner
product of two vectors, are common, as are grid-based methods for solv-
ing partial differential equations (PDEs). In spite of this, data parallelism
has a significant drawback: the limited range of applications for which
data-parallel is well suited. Applications with data parallelism tend to
be static in nature; the control flow of a data-parallel program is mostly
data independent. Many applications are more dynamic in nature and
do not have these characteristics. To run in parallel, these dynamic appli-
cations need to perform independent operations at the same time. These
applications, which may be as simple as recursively computing Fibonacci
numbers or as complex as computer chess and n-body simulations, are
nearly impossible parallelize using data parallelism.

Task parallelism is a form of parallelization of computer code across
multiple processors in parallel computing environments. Task parallelism
focuses on distributing execution processes across different parallel com-
puting nodes. In the task-parallel paradigm the program consists of a
set of (potentially distinct) parallel tasks that interact through explicit
communication and synchronization. Task parallelism may be both syn-
chronous and asynchronous. A major advantage of task parallelism is its
flexibility. Many scientific applications contain task parallelism. For ex-
ample, in a climate model application the atmospheric and ocean circula-
tion may be computed in parallel. A task-parallel language can express
this relationship easily, even if different methods are used for the two cir-
culation models. Another natural application of task-parallel languages
is reactive systems in which tasks must produce output in response to
changing inputs, in a time-dependent manner. Another common struc-
tured paradigm exploits parallelism on different data items through task
replication. For example, the elaboration of a video stream may involve
the filtering on each single frame. In a task-parallel language the filter
may be farmed out by spreading different frames on different worker
processes, each of them computing the same function. In the task par-
allelism approach the interactions between tasks are explicit, thus the
programmer can write programs that exploit parallelism not detectable
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automatically by compiler techniques. In general, task parallelism is less
dependent on advanced compiler technology than the data parallelism;
in many cases, all that is strictly necessary is the translation of task inter-
actions into appropriate low-level primitives on the target architecture. A
disadvantage of the task-parallel programming model is that it requires
extra effort from the programmer to create explicit parallel tasks and man-
age their communication and synchronization. Because communication
and synchronization are explicit, changing the manner a program is par-
allelized may require extensive modifications to the program text.

Due to their nature data and task parallelism (unlike the bit level and
instruction level parallelism) cannot be fruitfully exploited using a sin-
gle CPU system but they are well-tailored for multi-processors or cluster
computers, typically referred as parallel computers.

For many years parallel computers has been mainly used in high per-
formance computing, but they have spread in recent years as convenient
and effective way to increase the computational power of personal com-
puters and workstations due to physical constraints preventing frequency
scaling of CPUs. Hence, parallel architectures are becoming the dominant
paradigm in computer architecture, mainly in the form of multicore pro-
cessors (28). Indeed, if a problem requires a huge computational capacity
to be rapidly solved and such a power cannot be obtained using a single
processing element (PE) the only suitable solution is to use many proces-
sors simultaneously. Traditionally, parallel architectures have been mo-
tivated by numerical simulations of complex systems and “Grand Chal-
lenge Problems” such as:

• weather and climate forecasting

• chemical and nuclear reactions simulations

• biological, human genome analysis

• geological, seismic activity analysis

• mechanical devices and electronic circuits’ behavior simulations
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Today, also commercial applications need the development of faster and
faster computers. These applications require to process large amounts of
data in sophisticated ways. Example applications include:

• parallel databases, data mining

• web search engines, web based business services

• computer-aided medical diagnosis

• management of national and multi-national corporations

• advanced graphics and virtual reality, particularly in the entertain-
ment industry

• networked video and multi-media technologies

• collaborative working environments

Unfortunately, as we already stated before, using several PEs at the same
time introduces some difficulties. Among the others: (i) code and data
have to be decomposed and distributed among the computational re-
sources, (ii) work and communications of resources have to be simultane-
ously coordinated and (iii) fault-tolerance has to be managed. Thus, the
design and implementation of software systems that can ease this bur-
den is very important. Indeed, since the early steps of computer science,
researchers conceived and designed programming models, systems and
tools aiming at supporting the development of parallel applications. Such
systems must find a good balance between the simplicity of the inter-
face presented to the programmers and their implementation efficiency.
Finding a good trade-off is a grand challenge. Indeed, a very abstract
model simplifies the programming activity but can lead to a very inef-
ficient exploitation of computing resources. Instead, a low-level model
allows programmers to use efficiently the computational resources but
requires tremendous efforts from the programmers when the number of
resources grows.
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2.2 Parallel programming models:
State-of-the-art

A good way to organize the state of art of parallel programming mod-
els for reporting purpose is to divide them with respect to their level of
abstraction. Therefore, in this section we report a selection of the main
parallel programming models, proposed by computer scientist over the
years, classifying them with respect to the level of abstraction provided
to programmers. With respect to this aspect, the parallel programming
models can be roughly partitioned in two main classes: the implicit par-
allel models and the explicit ones. The former completely cover up par-
allelism to programmers. Typically, they are exploited by functional and
logic languages. The latter ask programmers to deal directly with par-
allelism. These models can be further partitioned, w.r.t. the abstraction
perspective, in three categories: high, medium and low-level program-
ming models.

In the remaining of this section we describe for each category, by way
of examples, some programming models and tools belonging to it show-
ing the models Pros & Cons. In particular, Section 2.2.1 describes the
functional and logic models as an example of implicit models for parallel
programming, Section 2.2.3 shows the data-flow model as a representa-
tive of high-level explicit models. In Section 2.2.4 we outline the low-level
approaches describing the OpenMP and MPI frameworks. Then, in Sec-
tion 2.2.5 we report some other notable approaches. Finally, we describe
the structured approach in Section 2.2.6, it is one of the main medium-
level models. Here we describe also some our past contributions in the
field (Section 2.2.6).

2.2.1 Implicit approaches

These systems present to programmers a programming model entirely
devoid of parallelism and completely isolated from the underlying imple-
mentation mechanism. Such systems typically present functional or logi-
cal models of computation. They are often referred to as being “declara-
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tive” systems, since the programmer makes a series of declarations defin-
ing the properties of a solution to some problem, rather than specifying
a precise series of operations which will lead to the solution. Thus, lan-
guages of this type are neither parallel nor sequential, having no notion
at all of a flow of control.

Functional languages are based on the lambda calculus. It is a very
simple, but powerful language to define expressions and their transfor-
mation rules. The only objects present are identifiers, single argument
function definitions (“abstractions”) and applications of functions to ar-
guments. A “program” consists of a collection of such objects. The pro-
gram execution is performed applying a top-level function to an argu-
ment. This type of function application is the only operation present and
involves the replacement of a function-argument pair with a copy of the
function body (from its definition) in which occurrences of the “free” vari-
able have been replaced by copies of the actual argument. This simple
system can be shown to provide as much computational power as any
other fundamental computing mechanism (e.g. the Turing machine). A
particularly powerful aspect of the model is the ability to define “higher
order functions”, namely, functions taking functions as input parameter.
Other convenient features such as multiple argument functions, localized
definitions and data structures may all be defined as lambda expressions.

In the same way, a high-level functional program is simply a func-
tion definition that refers to other functions in its body. A “call” of the
program involves supplying arguments to this function and “execution”
consists of using the function definitions (conceptually using the appli-
cation by substitution technique from the lambda calculus) to obtain an
alternative, but equivalent representation of the function and arguments
pair, namely a more useful representation of the original program and the
“input”.

The key point of this approach is that execution may progress from the
initial to the final representation in any fashion that preserves the equiva-
lence. In particular, it will often be possible to execute many transforma-
tion steps concurrently since the conventional problems associated with
changes of state have been discarded along with the notions of state and
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store themselves. A quite common way to represent the program as it
evolves is as a graph, in which nodes represent function applications and
the children of a node are the (“input”) arguments of the corresponding
application. The process of expanding and contracting the graph is re-
ferred to as “graph reduction”.

Exploiting this approach, the parallelization via decomposition is sim-
ple. The abstract execution model allows candidate nodes to be expanded
at any time, while function applications may be evaluated as soon as ar-
guments are available.Thus, a potentially parallel process is generated
every time a node reaches one of these states.

It is important to realize that this approach does not imply that every
functional program is a highly parallel one. As a trivial, well-known,
example, consider defining a function to compute factorials.

The obvious definition will look something like this:

factorial 0 = 1

factorial n = n × factorial (n− 1)

Such a function would execute in a sequential way on a typical graph
reduction machine, irrespective of the number of available processors. A
more complex definition notes that

factorial 0 = 1

factorial n = product 1 n

product a a = a

product a b = (product a b a + b

2
c) × (product (b a + b

2
c + 1) b)

This definition produces significant potential parallelism. Although
declarative systems involve no explicit notion of execution sequence, it is
unfortunately clear that, in order to optimize the parallel execution pro-
grammers must be aware of the execution mechanisms.

An alternative approach recognizes the difficulty of automating dis-
tribution process and introduces program annotations that programmers
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exploit to drive the execution mechanism in order to improve its effi-
ciency. Such additions may be argued to move the model out of this cate-
gory, in that the programmer is now partially responsible (and aware) for
the task of parallel decomposition. Similarly, (81) discusses a language
which allows program partitioning and interconnection structure to be
described in a declarative style.

Another category of implicit systems consists in parallel logic lan-
guages. They are based on Horn clauses, a restricted form of first or-
der logic. The computational model focuses on the definition and in-
vestigation of relationships described as predicates, among data objects
described as input arguments to these predicates. As in functional pro-
gramming, the specification of a computation consists of a collection of
predicates and clauses. In the logic model the role of the outermost func-
tion application, is played by the outermost predicate together with its
arguments. The arguments interpretation is similar: “execution” consists
of deciding whether the predicate is true given the arguments and the as-
sociated definitions. Furthermore, it is possible to specify the outermost
predicate with unbound arguments to find bindings to the arguments that
allow the predicate to be satisfied, or to determine that no such bindings
exist.

At an abstract level, the process of evaluation may be seen as expand-
ing and searching a tree of possibilities presented by consideration of the
various dependencies between appropriate predicates and clauses. As
with graph reduction, the semantics of pure logic languages often allow
this process to proceed at many points in parallel. Four principal kinds of
(implicitly exploitable) parallelism can be identified in logic programs:

• Unification parallelism arises when arguments of a goal are unified
with those of a clause head with the same name and arity. The
different argument terms can be unified in parallel as can the dif-
ferent subterms in a term (34). Unification parallelism is very fine-
grained and has been exploited by building specialized processors
with multiple unification units.

• Or-parallelism arises when more than one rule defines some relation
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fib(0, 1).
fib(1, 1).
fib(M, N) :- [ M1 is M - 1, fib(M1, N1) ],

[ M2 is M - 2, fib(M2, N2) ],
N is N1 + N2.

Figure 1: Fibonacci program parallelizable with independent and-
parallelism

and a procedure call unifies with more than one rule head; the cor-
responding bodies can then be executed in parallel with each other.
Or-parallelism is a way of efficiently searching for solutions to the
query, by exploring alternative solutions in parallel.

• Independent and-parallelism arises when more than one goal is present
in the query or in the body of a procedure, and the run-time bind-
ings for the variables in these goals are such that two or more goals
are independent of one another, i.e., their resulting argument terms
after applying the bindings of the variables are either variable-free
or have non-intersecting sets of variables. Parallel execution of such
goals result in and-parallelism.

• Dependent and-parallelism arises when two or more goals in the body
of a procedure have a common variable and are executed in paral-
lel. Dependent and-parallelism can be exploited in two ways: (i)
the two goals can be executed independently until one of them ac-
cesses/binds the common variable. (ii) Once the common variable
is accessed by one of the goals, if it is bound to a structure, or stream
(the goal generating this binding is called the producer), and this
structure is read as an input argument of the other goal (called the
consumer) then parallelism can be further exploited by having the
consumer goal compute with one element of the stream while the
producer goal is computing the next element. Case (i) is very similar
to independent and-parallelism. Case (ii) is sometimes also referred
to as stream-parallelism and is useful for speeding up producer-
consumer interactions.

Figure 1 show a simple program for computing the Fibonacci number.
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The two lists of goals, each enclosed within square brackets above, have
no data-dependencies among themselves and hence can be executed in-
dependently in parallel with each other. However, the last subgoal N is
N1 + N2 depends on the outcomes of the two and-parallel subgoals, and
should start execution only after N1 and N2 get bound. Consider that,
as in case of functional languages, the programmers in order to exploit
the potential application parallelism should give a proper structure to the
program.

It should be pointed out that exist some extensions for logic program-
ming language with explicit constructs for concurrency. They can be
largely put into three categories:

• those that add explicit message passing primitives to Prolog, e.g.,
Delta Prolog (95) and CS-prolog (71). Multiple Prolog processes are
run in parallel that communicate with each other via messages.

• those that add blackboard primitives to Prolog, e.g., Shared Prolog
(46). These primitives are used by multiple Prolog processes run-
ning in parallel to communicate with each other via the blackboard.

• those based on guards, committed choice, and data-flow synchro-
nization, e.g., Parlog (48), GHC (112), and Concurrent Prolog (102).

As for the functional languages, the extensions of parallel logic languages
move the approach outside the category of implicit parallel programming
models.

Similarities between functional and logic styles are emphasized in (65).

Summarizing Pros and Cons Implicit parallel programming models pro-
vide programmers a very expressive programming metaphor: programmers can
implement parallel application without actually deal with parallelism. Unfortu-
nately, this ease is paid in terms of efficiency. In order to address such perfor-
mance issues researchers introduced some annotation mechanisms and commu-
nication primitives, through which programmers can drive the code paralleliza-
tion. Nevertheless, such additions place the model out of highly abstract systems
category because the programmer exploiting annotations is partly responsible
and aware for the task of decomposition.
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2.2.2 Explicit models

The inefficient exploitation of available parallelism caused by the absence
of parallel structure in implicit parallel programs is the main reason why
explicit parallel programming models exist. These models are based on
the assumption that programmers are often the best judges of how par-
allelism can be exploited for a particular application. Actually, in nearly
every case the use of explicit parallelism will obtain a better efficiency
than implicit parallelism models.

2.2.3 High-level explicit models: data-flow

The models belonging to this category still not require programmers to
deal with the several issues related with parallel programming. For in-
stance communications, fault-tolerance, heterogeneity, data decomposi-
tion and task granularity. Programmers are only required to write their
applications as a set of independent instructions that interact each other
through well-known interfaces, so that automatic tools can execute it in
parallel. The data-flow model of computation is the main representative
of this class of models.

In the data-flow model (for a deep description see (26; 80; 103; 115))
the computations are represented by a graph of “operator” or “instruc-
tion” nodes connected by edges along which data items flow. Each node
receives by its input edges the data “tokens”, it performs some simple,
stateless, calculation and distributes resultant data tokens on its output
edges. A node may only perform its operation once it has received all the
data tokens required, from all of its inputs. Thus, each node may compute
in parallel, subject only to the availability of data. The processes of asso-
ciating output tokens with appropriate operator nodes and of deciding
which are ready for execution is known as “matching” process.

Under this paradigm there is no current operation, and each operator
is free to execute when all its input tokens are available. The model is nat-
urally concurrent, and the concurrency grain depends on the operations
grain.

The data-flow model has the single-assignment property. Values are
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data tokens that are carried from their producing node to the node that
consumes them; there is no concept of a variable with a state that can be
arbitrarily updated later. In data-flow, identifiers may be used to name
these data tokens. Such identifiers are thus either undefined (not yet pro-
duced) or carry a single unique value; they cannot be updated. A node
with all input data available is called “fireable”. When a node is “fireable”
is ready to be run on a data-flow interpreter. Each data-flow interpreter
is called “actor”. The features of a data-flow model were listed by Acker-
man in its 1982 milestone paper (10). They are:

• side effects free;

• locality of effect;

• equivalence of instruction scheduling with data dependencies;

• single-assignment semantics;

• an unusual notation for iterations;

• lack of history sensitivity in procedures.

Synchronization is automatically provided by the token transport mecha-
nism. Parallelism is exploited in data-flow architectures by allowing any
actor to execute on any processor and by allowing as many enabled ac-
tors to fire as there are processors to execute them. When there are a
sufficiently large number of processors, only actors that do not have the
input data available are not enabled.

A key feature of the model is that the order of actor execution does not
affect the result. Thus, the data-flow model naturally achieves high de-
grees of parallelism. Nevertheless, traditional data-flow presents three
major problems when considered for large distributed (grid) environ-
ments.

• The granularity of traditional data-flow is too small for many dis-
tributed architectures, for instance related to distributed memory
access time (where latencies are measured in hundreds to thou-
sands of microseconds). The overhead of token transport and actor
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scheduling and instantiation requires that the granularity of com-
putation be at least hundreds of thousands, and perhaps million of
instructions.

• The programming abstraction provided to programmers is quite
different with respect to the traditional sequential one.

The main difference between this approach and those discussed above is
that whereas a graph reducer manipulates the graph by modifying both
data and the “instruction code” itself, a data-flow graph is statically de-
fined by the program and only data is manipulated.

Data-flow based languages may be dressed up to resemble sequential
imperative languages (27), particularly in case of “scientific” applications.
The compilation process from high-level language to the underlying data-
flow graph is quite similar to the process of expansion in graph reduction.
It is equivalent to the decomposition phase of parallel implementation.

All the problems of distribution, communication and synchronization
are associated with the data-flow graph and the interactions between its
node operators. Although the structure of the graph is static, it will only
be apparent during (or even after) execution that some sections of the
graph were more active than others. Thus, a good distribution scheme is
difficult to obtain without any additional information, for instance in the
form of programmer annotations.

Macro-Dataflow approaches

The macro data-flow model extends the traditional data-flow model ad-
dressing its main problems. There are two principal differences with
traditional data-flow. First, the granularity of the actors is considerably
larger (indeed in this case they are named “macro” actors). This allows
to achieve a good scalability when the degree of parallelism, namely the
number of recruited PEs, increases. Second, some actors (76) can maintain
state information between firings, providing an effective way to model
side-effects and non-determinism, these actors are called “persistent” ac-
tors. Some examples of existing and widely used macro-actors implement
high-level functions such as: matrix multiplication, Gaussian elimination
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or image convolution instead of individual machine instructions. Macro
actors can be described as follows.

Regular actors are similar to actors in the data-flow model. Specifically,
all regular actors of a given type are functionally equivalent. A regular
actor is enabled and may execute when all of its input tokens are avail-
able. It performs some computation, generating output tokens that de-
pend only on its input tokens. It may maintain internal state information
during the course of a single execution, but no state information is pre-
served from one execution to another; regular actors, therefore, represent
pure functions.

Persistent actors maintain state information that is preserved from one
execution to the next. Output tokens generated by a persistent actor dur-
ing different executions are not necessarily the same for the same input
tokens. The state corresponds to member variables (instance variables) in
the object-oriented paradigm. This correspondence implies that several
different actors may share the same state, (as an example with the en-
queue and dequeue operations on a queue). The model guarantees that
the actors that share state will be executed in mutual exclusion, that is, no
two actors that share the same state will ever be executing simultaneously.
(This can be modeled in stateless data-flow using a single “state” token
and a non-deterministic merge operator (9)). The introduction of state
means that the arcs of the program graph no longer model all dependen-
cies in the program; there are implicit dependencies via the shared state.
For example, consider the program graph fragment in Figure 2. Suppose
that actors A and B share state. If the execution of A occurs first, there
is a hidden dependency, based on the state, between A and B. Because
of this hidden dependency, the results of the A and B operations depend
not only on their arguments and the object history, but also on the order
of execution.

If on the one hand the persistent macro actors approach addresses the
one limitation of the traditional data-flow model, on the other hand it
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makes the programming model more complicated and requires to pro-
grammers to pay more attention when programming parallel applica-
tions. In particular, the introduction of state has one very important con-
sequence: some programs will be deterministic, and others not. Non-
determinism is not necessarily bad. There are in fact many “correct”
non-deterministic applications. Thus, it is the responsibility of the pro-
grammer to guarantee higher-level notions of correctness. Due to the
additional complexity they introduce, several existing macro data-flow
systems do not support persistent actors.

A notable MDF approach: the Mentat framework

Mentat is one of the most known and used macro data-flow system (75).
It is an object-oriented parallel processing system for MIMD architectures
developed at the University of Virginia. The computation model used
in Mentat is a data-driven macro data-flow computation model based
on the object-oriented paradigm. There are two primary components of
Mentat: the Mentat Programming Language (MPL) and the Mentat run-
time system. MPL is an object-oriented programming language based on
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C++. The computational grain of the macro data-flow block is the Men-
tat class instance, which consists of contained objects (local and mem-
ber variables), their procedures, and a thread of control. Programmers
are responsible for identifying those object classes that are of sufficient
computational complexity to allow efficient parallel execution. Instances
of Mentat classes are used just like ordinary C++ classes. The data and
control dependencies between Mentat class instances involved in invo-
cation, communication, and synchronization are automatically detected
and managed by the compiler and run-time system without programmer
intervention.

MPL is an extended C++ designed for developing parallel applications
by providing parallelism encapsulation. Parallelism encapsulation takes
two forms, intra-object encapsulation and inter-object encapsulation. In
intra-object encapsulation of parallelism, callers of a Mentat object mem-
ber function are unaware of whether the implementation of the mem-
ber function is sequential or parallel, i.e., whether its program graph is
a single node or a parallel graph. In inter-object encapsulation of par-
allelism, programmers of code fragments (e.g., a Mentat object member
function) need not concern themselves with the parallel execution op-
portunities between the different Mentat object member functions they
invoke. The basic idea in the MPL is to allow the programmer to spec-
ify those C++ classes that are of sufficient computational complexity to
warrant parallel execution. Programmers can select which classes should
be executed in parallel using a mentat keyword in the class definition.
Instances of Mentat classes are called Mentat objects. Mentat classes are
very similar to C++ class instance but with some minor differences (de-
scribed below). The compiler generates code to construct and execute
data dependency graphs in which the nodes are Mentat object member
function invocations, and the arcs are the data dependencies found in the
program. Thus, it transparently generates inter-object parallelism encap-
sulation. All the communications and synchronizations are managed by
the compiler. MPL is built around four main extensions to the C++ lan-
guage. The extensions are Mentat classes, Mentat object instantiation, the
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return-to-future mechanism, and guarded select/accept statements.

A key feature of Mentat is the transparent encapsulation of parallelism
within and between Mentat object member function invocations. The hid-
ing of whether a member function implementation is sequential or par-
allel is called intra-object parallelism encapsulation. Similarly, the inter-
object parallelism encapsulation consists in the exploitation of parallelism
opportunities between Mentat object member function invocations in a
transparent way to the programmer. Intra-object parallelism encapsula-
tion and inter-object parallelism encapsulation can be combined. Indeed,
inter-object parallelism encapsulation within a member function imple-
mentation is intra-object parallelism encapsulation as far as the caller of
that member function is concerned. Thus, multiple levels of parallelism
encapsulation are possible, each level hidden from the level above.

Not all class objects should be Mentat objects. In particular, objects
that do not have a sufficiently high communication ratio, i.e., whose ob-
ject operations are not sufficiently computationally complex, should not
be Mentat objects. The programmer defines a Mentat class by using the
keyword mentat in the class definition. The programmer may further
specify whether the class is persistent, sequential, or regular. Persistent
and sequential objects maintain state information between member func-
tion invocations, while regular objects do not. Thus, regular object mem-
ber functions are pure functions. Because they are pure functions, the
system is free to instantiate new instances of regular classes at will. Reg-
ular classes may have local variables much as procedures do, and may
maintain state information for the duration of a function invocation. The
programmer binds Mentat variables to persistent Mentat objects using
two reserved member functions for all Mentat class objects: create() and
bind(). The create() call tells the system to instantiate a new instance of the
appropriate class whereas the bind() function binds Mentat variables to
an already existing instance. The member function destroy() destroys the
named persistent Mentat object. The return-to-future function (rtf()) is the
Mentat analog to the return of C. Its purpose is to allow Mentat member
functions to return a value to the successor nodes in the macro data-flow
graph in which the member function appears. The select/accept state-
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ments of Mentat is a guarded statement that derives directly from the
ADA (1) one. Guarded statements permit the programmer to specify a
set of entry points to a monitor-like construct. The guards are boolean ex-
pressions based on local variables and constants. A guard is assigned to
each possible entry point. If the guard evaluates to true, its corresponding
entry point is a candidate for execution. The rules vary for determining
which of the candidates is chosen to execute. It is common to specify in
the language that it is chosen at random. This can result in some entry
points never being chosen. There are two types of guard-actions sup-
ported by Mentat: accepts, tests, and non-entries. Accept is similar to
the accept of ADA. Tests are used to test whether a particular member
function has any outstanding calls that satisfy the guard. When a test
guard-action is selected, no parameters are consumed. In Mentat there
is no “else” clause as in ADA. However, using the priority options, the
programmer can simulate one by specifying that the clause is a non-entry
statement and giving the guard- statement a lower priority than all other
guard-statements. Then, if none of the other guards evaluates to true, it
will be chosen. The priority of the guard-statement determines the order
of evaluation of the guards. It can be set either implicitly or explicitly.
The token priority determines which call within a single guard-statement
priority level will be accepted next. The token priority is the maximum of
the priorities of the incoming tokens. Within a single token priority level,
tokens are ordered by arrival time.

To give an idea of the programming model in Figure 3 we report a sim-
ple Mentat program. The program computes recursively the Fibonacci
number. It is composed by two classes, the first one recursively computes
the Fibonacci number exploiting the second one for computing the sum
of partial results. Clearly, in this case the efficiency is low because the
amount of computation done by the macro actors computing the mentat
object adder class is very small.

Unfortunately, there are a number of issues and limitation that MPL
programmers must be aware of that can lead to unpredictable program
behavior, related both to Mentat implementation and model. Among the
others:
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mentat class fibonacci_class {
public:

int fibonacci_class::fibonacci(int n) {
fibonacci_class fib;
adder_class adder;

// if the index is 0 or 1 it returns 1 to return-to-future function
if (n == 0 || n == 1)

rtf(1);
else { // otherwise it call the add method and itself recursively

rtf(adder.add(fib.fibonacci(n - 1), fib.fibonacci(n - 2)));
}
return(1);

}
};

mentat class adder_class {
public:

int adder_class::add(int arg1, int arg2) {
// rtf function pass the result to the successor in data-flow graph
rtf(arg1 + arg2);
return(arg1 + arg2);

}
};

Figure 3: Fibonacci computation with Mentat

• The use of static member variables for Mentat classes is not allowed.
Since static members are global to all instances of a class, they would
require some form of shared memory between the instances of the
object.

• Mentat classes cannot have any member variables in their public
definition. If data members were allowed in the public section,
users of that object would need to be able to access that data as if
it were local. If the programmer wants the effect of public member
variables, appropriate member functions can be defined.

• Programmers cannot assume that pointers to instances of Mentat
classes point to the member data for the instance.

• Mentat classes cannot have any friend classes or functions. This
restriction is necessary because of the independent address space of
Mentat classes.

• It must be possible to determine the length of all actual parame-
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ters of Mentat member functions, either at compile-time or at run-
time. This restriction follows from the need to know how many
bytes of the argument to send. Furthermore, each actual parameter
of a Mentat member function must occupy a contiguous region of
memory in order to facilitate the marshaling of arguments.

• Mentat object member function parameter passing is call-by-value.
All parameters are physically copied to the destination object. Sim-
ilarly, return values are by-value.

• if a Mentat member function returns a pointer, the programmer
must explicitly delete the reference when the function is finished
using the value.

• semantic equivalence to the sequential program is not guaranteed
when persistent objects are used. This is trivially true for programs
that have select/accept statements; there are no serial equivalents.

Summarizing Pros and Cons Data-flow model is inherently parallel, it rep-
resents each computation as a graph made by operators and instructions where
each node can be potentially executed in parallel. This model permit to program-
mers to express parallel applications in a very abstract way, indeed programmers
are not required to deal with low-level issues related to the running architecture.
The main problem of Data-flow model is the fine-granularity of instruction that
prevent its exploitation in most distributed architectures and in large grid envi-
ronments. This limitation led to the development of the macro data-flow model
(MDF). The MDF model allows programmers to define code fragment in place
of instruction as nodes in DF graph. Unfortunately, such additions impair the
high-level abstraction, like in case of the implicit models. Hence, programmers
have both to deal with data/application decomposition and to assure semantic
equivalence with respect to the sequential program, especially when exploiting
persistent actors.
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2.2.4 Low-level explicit models: MPI and OpenMP

The low-level approaches provide to the programmers a programming
metaphor where parallelism is represented by means of primitives in the
form of special-purpose directives or function calls. Most parallel primi-
tives are related to process synchronization, communication or task parti-
tioning. The total amount of computational cost for executing these prim-
itive is considered as parallelization overhead. The advantage of explicit
parallel programming is the absolute programmer control over the paral-
lel execution. A very skilled parallel programmer takes advantage of ex-
plicit parallelism to produce very efficient code. However, programming
with explicit parallelism is often difficult and error prone, because of the
extra work involved in planning the task division and synchronization
of concurrent processes. In this section we report two of the main ap-
proaches to low-level parallel computing: MPI and OpenMP. The former
is suitable for distributed architectures whereas the latter is appropriate
for multicore and multiprocessor architectures.

MPI

MPI is a message-passing library, proposed as a standard by a broadly
based committee of vendors, implementors, and programmers. MPI was
designed for high performance on both massively parallel machines and
on workstation clusters. The Message Passing Interface is meant to pro-
vide essential synchronization and communication functionality between
a set of processes, mapped into different computer instances, in a lan-
guage independent way, plus a few features that are language specific.
The programming metaphor of MPI is based on the “process” concept.
An MPI program consists of autonomous processes, executing their own
code, in a Multiple Instructions, Multiple Data stream (MIMD) style, i.e.
Multiple autonomous processors simultaneously executing different in-
structions on different data. Distributed systems are generally recognized
to be MIMD architectures. The processes communicate exploiting MPI
communication primitives. Typically, each process executes in its own ad-
dress space, although shared-memory implementations of MPI are possi-
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ble. MPI does not specify the execution model for each process. A pro-
cess can be sequential, or can be multi-threaded, with threads possibly
executing concurrently. The intended interaction of MPI with threads is
that concurrent threads be all allowed to execute MPI calls, and calls be
reentrant; a blocking MPI call blocks only the invoking thread, allowing
the scheduling of another thread. MPI does not provide mechanisms to
specify the initial allocation of processes to an MPI computation and their
binding to physical processors. MPI mapping of processes on PEs hap-
pens at run-time, through the agent that starts the MPI program, normally
called mpirun or mpiexec.

MPI primitives include, but are not limited to, point-to-point rendez-
vous type send/receive operations, combining partial results of compu-
tations (gathering and reduction operations), choosing between a Carte-
sian or graph-like logical process topology, exchanging data between pro-
cess pairs (send and receive operations), synchronizing nodes (barrier
operation) as well as obtaining network-related information such as the
number of processes in the computing session, current processor identity
that a process is mapped to, neighboring processes accessible in a logi-
cal topology, and so on. Point-to-point operations come in synchronous,
asynchronous, buffered, and ready forms in order to allow both rela-
tively stronger and weaker semantics for the synchronization aspects of
a rendezvous-send. Many outstanding operations are possible in asyn-
chronous mode, in most implementations. Figure 4 reports the main
classes of MPI primitives. There are two versions of the MPI standard
that are currently popular: version 1.2 (also called MPI-1), which empha-
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sizes message passing and has a static run-time environment, and MPI-
2.1 (MPI-2), which includes features such as parallel I/O, dynamic pro-
cess management and remote memory operations. Figure 5 show a sim-
ple Hello World MPI program. It defines two roles: master and slave. The
master ask slaves to process the “Hello word” string and then return it.
The master eventually print on screen the string received by slaves. The
roles are specified by means of the MPI process id. The process number 0
is the master whereas the others are slaves.

As shown in Figure 5 MPI Hello World programmer is in charge of:

• initialize MPI

• find the available resources and manage them

• implement by hands a way to differentiate the master and the slaves

• prepare the data the master sends

• send the data to slaves

• make the slaves receive the data

• implement the slave data processing

• prepare the data the slaves send

• make the master receive the data, collecting it and processing it

• finalize MPI

furthermore, he must allocate memory buffers, manage fault(s) and dis-
tribute data by hands. It is easy to understand that implement a complex
application with MPI is a very difficult and error prone task because MPI
programmers must manage all the aspects of the application paralleliza-
tion. On one hand, it guarantees maximum programming flexibility, but
on the other hand such a freedom is paid in terms of programming com-
plexity.
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#include <mpi.h>
#include <stdio.h>
#include <string.h>
#define BUFSIZE 128
#define TAG 0

int main(int argc, char *argv[])
{
char idstr[32], buff[BUFSIZE];
int numprocs, myid, i;
MPI_Status stat;

/* MPI programs start with MPI_Init; all ’N’ processes exist thereafter */
MPI_Init(&argc,&argv);

/* find out the number of available PEs */
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

/* and this processes’ rank is */
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

/* At this point, all the programs are running equivalently, the rank is
used to distinguish the roles of the programs in the SPMD model */

if(myid == 0)
{

/* rank 0 process sent a string to all the other processes */
for(i=1;i<numprocs;i++)
{

sprintf(buff, "Hello %d! ", i);
MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD);

}

/* rank 0 process sent a string to all the other processes */
for(i=1;i<numprocs;i++)
{

MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD, &stat);
printf("%d: %s\n", myid, buff);

}
}
else
{
/* receive from rank 0: */
MPI_Recv(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD, &stat);
sprintf(idstr, "Processor %d ", myid);
strcat(buff, idstr);
strcat(buff, "reporting for duty\n");

/* send to rank 0: */
MPI_Send(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD);

}

/* MPI Programs end with MPI Finalize */
MPI_Finalize();
return 0;

}

Figure 5: Hello Word example implemented using MPI
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Figure 6: OpenMP language extensions

OpenMP

Like MPI, OpenMP (Open Multi-Processing) is a specification defined by
a group of major computer hardware and software vendors for multi-
platform multiprocessing programming. It consists of a set of compiler
directives, library routines, and environment variables that influence run-
time behavior. Unlike MPI, it is mainly targeted to shared memory multi-
processing. Indeed, it is used in conjunction with MPI on distributed ar-
chitectures made of multicore/multiprocessor machines. OpenMP uses
multiple, parallel threads to accomplish parallelism. A thread is a single
sequential flow of control within a program. OpenMP uses a directive-
based method to tell explicitly to the compiler how to distribute programs
across parallel threads.

The core elements of OpenMP are the constructs for thread creation,
workload distribution (work sharing), data environment management,
thread synchronization, user level run-time routines and environment
variables. OpenMP programmers exploit such constructs to manage all
the aspects of application parallelization. Figure 6 shows the classes of
existing OpenMP language extensions.

Even if the OpenMP approach to parallel programming has to be con-
sidered as a low-level one, OpenMP code is more straightforward than
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MPI code. This is mainly due to the memory model indeed, relying on a
shared memory model. The OpenMP application does not need to deal
with message passing hence data are not directly split and divided among
PEs but handled through compiler directives.

An OpenMP program is a C++ or Fortran program with OpenMP
pragma statements/directives placed at appropriate points. The pragma
statement directs the compiler how to process the block of code that fol-
lows the pragma. An OpenMP-enabled compiler recognizes the pragma
directives and produces a parallelized executable suitable for running on
a shared-memory machine. In C/C++, an OpenMP directive has the gen-
eral form:

# pragma omp directive− name [clause, ...] newline

The #pragma omp directive tags a block for parallel or various types
of work sharing execution, variable scoping and synchronization consid-
erations. One or more clauses are optional and may be in any order. The
clauses are used to explicitly define the scoping of enclosed variables. In
OpenMP there are two main constructs:

• A parallel region is a block of code that will be executed by multiple
threads. This is the fundamental parallel construct.

• A work-sharing construct divides the execution of the enclosed code
region among the members of the team that encounter it. Work-
sharing constructs do not launch new threads. These constructs
are identified by DO/FOR, SECTIONS and WORKSHARE (Fortran
only) directives.

Since OpenMP is a shared memory programming model, most vari-
ables in OpenMP code are visible to all threads by default. However,
sometimes private variables are necessary to avoid a race condition and
there is a need to pass values between the sequential part and the paral-
lel region. Another important issue is the synchronization and schedul-
ing of the threads. These are managed through clauses appended to the
OpenMP directive. Thus, the different types of clauses are Data Scoping,
Synchronization and Scheduling clauses.
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int main (int argc, char *argv[]) {
int nthreads, tid, i, chunk;
float a[N], b[N], c[N];

/* Some initializations */
for (i=0; i < N; i++) a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,nthreads,chunk) private(i,tid)
{

tid = omp_get_thread_num();
if (tid == 0) {

nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
printf("Thread %d starting...\n",tid);
#pragma omp for schedule(dynamic,chunk)
for (i=0; i<N; i++) {

c[i] = a[i] + b[i];
printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);

}
} /* end of parallel section */

}

Figure 7: Factorial example in OpenMP

In Figure 7 we report an OpenMP example program. The example
uses two pragma directives. The outer #pragma omp parallel tags a block
for parallel execution. The shared() clause specifies common variables,
and private() specifies the variables restricted to exclusive use by a pro-
cess. The inner #pragma omp for schedule directive specifies distribution
across threads. The threads share the variables a, b, c and chunk; the
iteration variable i is private in each thread. The expression tells the com-
piler to perform parallel execution of the for-loop and to split the iteration
space into blocks of size chunk.

The current version of OpenMP presents some issues, some related
to the implementation and others related to the model. For instance a
reliable error handling, fine-grained mechanisms for controlling thread-
processor mapping or synchronization among a subset of threads. The
model related issues, clearly more difficult to overcome include inefficient
parallelism exploitation in distributed-memory platforms and a limited
scalability that actually depends by memory architecture.
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Summarizing Pros and Cons Low-level approaches allow programmers to
control all the aspects of parallel applications and their execution. Exploiting
low-level approaches skilled programmers can implement very efficient parallel
applications. The freedom and efficiency allowed by the model are paid in terms
of expressiveness and ease of use. Indeed, programmers have to manage “by
hand” all the issues related to data and program decomposition, fault tolerance,
load balancing and communications.

2.2.5 Other notable approaches

Other two noteworthy explicit parallel approaches are Cilk and High Per-
formance Fortran.

The first one is quite similar to OpenMP, indeed it consists in an en-
riched version of C language, it requires that the computing resources
share the main memory hence can be used for programming parallel ap-
plications running in multiprocessor machines but not in distributed ar-
chitecture like clusters. It enriches GNU C with a few Cilk-specific key-
words. Using them programmers expose the parallelism identifying ele-
ments that can safely be executed in parallel. Using such information the
run-time environment, in particular the scheduler, decides during execu-
tion how to distribute the work among processors. The first Cilk keyword
is cilk, which identifies a function written in Cilk. Since Cilk procedures
can call C procedures directly, but C procedures cannot directly call or
spawn Cilk procedures, this keyword is needed to distinguish Cilk code
from C code. Other keywords are: spawn, sync, inlet and abort. The first
two keywords are all Cilk programmers have to use to start using the
parallel features of Cilk: spawn indicates that the procedure call it mod-
ifies can safely operate in parallel with other executing code. Note that
from the point of view of the scheduler it is not mandatory to run this
procedure in parallel; the keyword only inform the scheduler that it can
run the procedure in parallel. sync indicates that execution of the current
procedure cannot proceed until all previously spawned procedures have
completed and returned their results to the parent frame. The two re-
maining Cilk keywords are slightly more advanced, and concern the use
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of inlets. Typically, when a Cilk procedure is spawned, it can only return
its results to the parent procedure by putting those results in a variable in
the parent’s frame, as we assigned the results of our spawned procedure
calls in the example to x and y. The alternative is to use an inlet. An in-
let is a function internal to a Cilk procedure that handles the results of a
spawned procedure call as they return. One major reason to use inlets is
that all the inlets of a procedure are guaranteed to operate atomically with
regards to each other and to the parent procedure, thus avoiding the bugs
that could occur if the multiple returning procedures tried to update the
same variables in the parent frame at the same time. The abort keyword
can only be used inside an inlet; it tells the scheduler that any other pro-
cedures that have been spawned off by the parent procedure can safely
be aborted.

High Performance Fortran is an extension of Fortran 90 defined by
the high performance fortran forum with constructs that support data-
parallel computations. It consists in a portable language for data-parallel
computations. HPF uses a data parallel model of computation to sup-
port spreading the work of a single array computation over multiple pro-
cessors. This allows efficient implementation on both SIMD and MIMD
style architectures. It provides a number of basic data parallel functions
as built-in array operators and intrinsic functions. It also provides con-
structs, such as the where and the forall, which assist in programming
more complex data parallel functions. The simplest data parallel opera-
tions are the elementwise operations. For any base operation on a data
type, programmers can extend that operation to an array operation. For
binary (and higher degree) operations, the arrays must have the same
shape. The result of the operation is another array of that shape, in which
the elements are defined by the elementwise extension of the base oper-
ation. A more advanced set of operations operate on an entire array to
produce a single answer, they implement a behavior generally known as
reduction. Reduction can be defined for any associative, binary opera-
tion that produces a result of the same element type by successively accu-
mulating the results of applying that operation to elements of the array.
Commonly used operations include arithmetic operators like addition,
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multiplication, maximum, and minimum and boolean operators. As an
example, HPF programmers can define reduction with addition, usually
called sum reduction, over any array whose element type can be added.

2.2.6 Structured approach

Highly abstract approaches and low-level approaches represent the two
extremes in parallel programming models. The formers completely auto-
mate the aspects of parallelization, namely do not ask programmers (at
least in their “pure” version) to give any information about application,
like data distribution and synchronization, communication mechanisms,
executing environment or code sequences to run in parallel. The latter,
opposite, approaches do not automate anything and ask programmers to
deal, almost entirely, with the application parallelization aspects.

As we outlined in previous sections, several researchers have tried to
address the limitation of these approaches enriching them with additional
features. Some other work was done trying to conceive alternative mod-
els. In particular, since the nineties, several research groups have pro-
posed the structured parallel programming environments(SPPE). Since the
structured parallel programming model was conceived, several works
have been done about it, also from a foundational point of view (20), (11),
(50). Programming environments relying on this paradigm (i.e. (101)) ask
programmers to explicitly deal with the qualitative aspects of parallelism
exploitation, namely the application structure and problem decomposi-
tion strategies. All the low-level parallelism exploitation related aspects
like communication, synchronization, mapping and scheduling are man-
aged by compiler tools and run-time support.

The structured way is driven by two observations: that there are some
things people do better than compilers, and that there are some things
that compilers do better than people. Rather than have either do the
complete job, it exploits the comparative advantages of each. Indeed the
management of tens to thousands of asynchronous tasks, where timing-
dependent errors are quite common, is beyond the capacity of most pro-
grammers whereas compilers are very good at ensuring that events hap-
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pen in the right order and can more readily and correctly manage com-
munication and synchronization than programmers. On the other hand,
data decomposition strategies and computational grain can be successful
managed by programmers but not efficiently by compilers.

The environments following this way are those based on the algorith-
mic skeleton concept. A skeleton, is a known and widely used pattern of
parallelism exploitation originally conceived by Cole (50) and later on by
different research groups to design high-performance structured parallel
programming environments.

Basically, structured parallel programming systems allow a parallel
application to be coded by properly composing a set of basic parallel
skeletons. These basic skeletons usually include skeletons modeling em-
barrassingly parallel computations (farms), computations structured in
stages (pipelines) as well as common data parallel computation patterns
(map/forall, reduce, scan). Each skeleton is parametric; in particular,
it accepts as a parameter the kind of computation to be performed ac-
cording to parallelism exploitation pattern it models. As an example, a
farm skeleton takes as a parameter the worker, i.e. the computation to be
performed on the single input task (data item). As a further example, a
pipeline takes as parameters the pipeline stages. Such parameters may be
either parameters modeling sequential portions of code (sequential skele-
tons) or even other skeletons, in turn. Therefore, a farm skeleton may take
as a worker a two stage pipeline. The composition of the two expresses
embarrassingly parallel computations where each input task (data item)
is processed by two stages. Parallelism is exploited both by using differ-
ent resources to compute independent input tasks and by using different
resources to compute the first and the second stage onto a single input
task.

A skeleton (in its original formulation) is formally an higher order
function taking one or more other skeletons or portions of sequential code
as parameters, and modeling a parallel computation out of them. Cole’s
skeletons represent parallelism exploitation patterns that can be used (in-
stanced) to model common parallel applications. Later, different authors
figure out that skeletons can be used as constructs of an explicitly paral-
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lel programming language, actually as the only way to express parallel
computations in these languages (30; 64). Recently, the skeleton concept
evolved, and became the coordination layer of structured parallel pro-
gramming environments ((29; 32; 113)). In any case, a skeleton can be
considered as an abstraction modeling a common, reusable parallelism
exploitation pattern. Skeletons can be provided to the programmer either
as language constructs (29; 30; 32) or as libraries (12; 55; 62; 88). Usually,
the set of skeletons includes both data-parallel and task parallel patterns.

Traditional skeleton approaches

From the nineties, several research groups proposed or currently propose
programming environments supporting parallel computations based on
the algorithmic skeleton concept. They are implemented as frameworks,
languages or libraries. Among the others, we mention Kuchen’s C++
MPI skeleton library (88), Serot’s SKiPPER environment, P 3L, Lithium,
a first version of muskel and JJPF. In particular, the last one, JJPF, rep-
resents our approach to traditional SPPE. In the rest of this section we
present a more detailed description about the programming model of
P 3L, muskel and JJPF to describe the “concept behind” SPPE models.
We developed this last one, whereas all the other skeleton environments
presented in this section have been developed by the Parallel and Dis-
tributed Architecture Group, part of the Department of Computer Science
at University of Pisa. This group has a deep background on skeleton en-
vironment, indeed the group began to work in this field from the very
beginning the skeleton model were conceived. We collaborated with sev-
eral researchers belonging to this group, also for the conception and the
design of the results presented in this thesis.

P 3L is a high-level structured explicitly parallel language developed in
the nineties (31). Using P 3L parallelism can be expressed only by means
of a restricted set of parallel constructs each corresponding to a specific
parallel form. Sequential parts are expressed by using an existing lan-
guage also called the host sequential language of P 3L. Being a SPPE
its constructs can be hierarchically composed to express more complex

48



parallel forms. This compositional property relies on the semantics asso-
ciated with the various P 3L constructs and their compositions. In fact,
each of them can be thought of as a data-flow module. In P 3L each mod-
ule computes in parallel or sequentially a function on a given stream of
input data and produces an output stream of results. The lengths of both
the streams are identical and the ordering is preserved, i.e.

[in1, ..., inn]→M → [out1, ..., outn]

where M is the data-flow module corresponding to a generic P 3L con-
struct [in1, ..., inn] is the input stream, [out1, ..., outn] is the output stream,
n is the length of both the streams and every output data item outi is ob-
tained by applying the function computed by M on the input data item
ini. The types of the input and the output interface of each P 3L construct
i.e. the types of every ini and every outi have to be declared statically. Ac-
tually the compiler performs type checking on these interfaces when the
P 3L constructs are to be composed. Another feature of P 3L is its inter-
face with the host sequential language. The interface has been designed to
make easier portability between different host languages. In fact, sequen-
tial parts are completely encapsulated into the constructs of P 3L. Param-
eter passing between P 3L constructs are handled by linguistic constructs
that are external to the specific host sequential language while the data
types that can be used to define the interface of the P 3L constructs are
a fixed subset of those usually available in the most common languages.
The first P 3L compiler adopted as host sequential language C and C++.
The constructs included since the first P 3L compiler were

• The farm construct which models processor farm parallelism. In
this form of parallelism a set of identical workers execute in parallel
the independent tasks that come from an input stream and produce
an output stream of results.

• The map construct which models data parallel computations. In
this form of parallelism each input data item from an input stream
is decomposed into a set of partitions and assigned to identical and
parallel workers. The workers do not need to exchange data to per-
form their data parallel computations. The results produced by the
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workers are recomposed to make up a new data item of an output
stream of results.

• The pipe construct which models pipeline parallelism. In this form
of parallelism a set of stages execute serially over a stream of input
data producing an output stream of results.

• The loop construct which models computations where for each in-
put data item a loop body has to be iteratively executed until a given
condition is reached and an output data item is produced.

• The sequential construct which corresponds to a sequential process
that for each data item coming from an input stream produces a new
data item of an output stream

The sequential constructs constitute the leaves of the hierarchical compo-
sition because the computations performed by them have to be expressed
in terms of the host sequential language.

muskel (58) is a full Java framework, providing programmers with
structured ways of expressing parallel programs. The muskel environ-
ment represents a sensible evolution of the Lithium one (12). It inherits
from Lithium the normal form (63) and macro data-flow (57; 101) imple-
mentation techniques as well as the general structure of the run-time sup-
port.

Normalization consists in transforming the original skeleton tree (or
composition) into a program that is basically a task farm with sequential
workers (18). Such optimization basically substitute skeleton subtrees by
skeleton subtrees providing a better performance and efficiency in the
target machine resource usage than the original skeleton tree. Previous
results demonstrated that full stream parallel skeleton subtrees can be col-
lapsed to a single farm skeleton with a (possibly huge) sequential worker
leading to a service time which is equal or even better that the service
time of the uncollapsed skeleton tree (50).

The muskel macro data-flow run-time support consists in deriving
a graph of macro data-flow blocks from skeleton trees and dispatching
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them to computational resources running macro-actors.

muskel adds to Lithium a limited form of resource discovery and
fault tolerance features as well as the whole Application Manager concept.

The Application Manager(AM) is an entity that takes care of assuring
that the application non-functional requirement were satisfied. The re-
quirements are specified by programmers in a performance contract. The
AM actively observes the application behavior and in case of faults or
performance contract violations it reacts aiming to fix the problem, as an
example, in case of a computational resource fault it recruits a new re-
source in the computation.

Using muskel a programmer can implement parallel programs that
match the task farm or the pipeline parallelism exploitation patterns as
well as arbitrary composition of the two. Despite the limited amount of
patterns supported, however, a large range of applications can be pro-
grammed, for instance all embarrassingly parallel applications, parame-
ter sweeping applications and multistage applications.

A task farm computation can be defined just using a Farm object. The
Farm constructor takes a parameter representing the computation per-
formed by the farm workers. This computation can be either a sequential
computation or another parallelism exploitation pattern (another Farm or
a Pipeline one). A pipeline computation can be defined using a Pipeline
object. The Pipeline constructor takes two parameters that can either be
sequential computation objects or in turn parallel exploitation patterns.
Pipelines with more stages can be obtained composing several Pipeline
objects. Then the programmer has to add an Application Manager to the
application code, and he must also specify the performance contract he
pretends to be respected on the target architecture. This is done instan-
tiating an application manager and specifying a performance contract.
muskel supports two different kinds of contracts. The first one requires
a constant parallelism degree, that is, it requires that a constant number
of processing elements are dedicated to the parallel execution of our par-
allel program. The second one requires that a given throughput is main-
tained in terms of task processed per unit time. Both of these kinds of
contracts can be specified before the computation of the parallel muskel
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program actually starts and can be changed during the program execu-
tion. The management of the parallel computation in such a way that
the contracts are satisfied is completely handled by an independent ex-
ecution flow. Therefore, the submission of a new performance contract
to the application manager immediately triggers all those (possibly addi-
tional) activities needed to satisfy the contract. The possibility to change
the performance contracts during the execution of the parallel applica-
tions allows the programmer to implement some kind of application de-
pendent dynamic execution strategy. Once the program has been spec-
ified along with its performance contract the programmer must supply
the list/stream of tasks to be computed. When all the elements belong-
ing to the list/stream have been processed, the parallel execution of the
program is terminated and the relative results can be fetched.

During the computation of the parallel program the muskel run-time
automatically discovers available processing elements. In case there are
no enough resources to satisfy the contract, an error is signaled to the
programmer.

As we stated before, in case of faults the Application Manager recruits
new resources among the available ones to substitute the faulty one. In
case the application manager recognizes that the performance contract
specified by the programmer cannot be satisfied, it raises an Exception.
Being any task to be computed a fireable macro data flow instruction, it is
completely independent of any other task needed to compute the parallel
application. Therefore, it can be scheduled on any one of the available
resources. However, the normal form concept implemented in muskel,
only generates fully independent macro data flow instructions. That is,
no result of an instruction is needed to compute another instruction. In
this case, most of the scheduling problems we just mentioned disappear.

JJPF is a parallel programming framework built on top of plain Java
that can run stream parallel applications on several parallel/distributed
architectures ranging from tightly coupled workstation clusters to generic
workstation networks and grids. In a sense, JJPF represents our approach
to old-fashioned structured parallel programming environments. It di-
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rectly inherits from the early versions of Lithium and muskel (12). Both
Lithium and muskel exploit plain RMI Java technology to distribute
computations across nodes, and rely on NFS (the network file system)
to distribute the application code to the remote processing elements. JJPF,
instead, is fully implemented on top of JINI and Java and relies on the Jini
Extensible Remote Invocation (JERI) mechanism to distribute code across
the remote processing nodes involved in stream parallel application com-
putation. JJPF exploits the stream parallel structure of the application in
such a way that several distinct goals can be achieved:

• load balancing is achieved across the computing elements participat-
ing in the computation

• processing elements available to participate to the computation of
stream parallel application are automatically discovered and recruited
exploiting standard Jini mechanisms

• faulty processing elements are automatically substituted by fresh ones (if
any) in a seamless and automatic way. Therefore, the stream parallel
applications computations resist to both node and network faults.
Programmers do not need to add a single line of code in his ap-
plication to deal with faulty nodes/network, nor it has to take any
other kind of action to get advantage of this feature.

JJPF has been tested using both synthetic and real applications, on both
production workstation networks and on clusters, with very nice and en-
couraging results. JJPF has been designed to provide programmers with
an environment supporting the execution of stream parallel applications
on a network of workstations, exploiting plain Java technology. Overall
JJPF provides a distributed server providing a stream parallel application
computation service. Programmers must write their applications in such
a way they just exploit an arbitrary composition of task farm and pipeline
patterns. Task farm only applications are directly executed by the dis-
tributed server, while applications exploiting composition of task farm
and pipeline patterns are first processed to get their normal form. A dis-
tributed environment that exploits task parallel computations, permits to

53



A s k r e g i s t e r e ds e r v i c e s
A n ys e r v i c e s ?f o r k o n e t h r e a dp e r s e r v i c ef o u n dw a i t e n d o fc o m p u t a t i o n

D i s c o v e r L o o k u p

t h r e a d p o o lN O n e w t h r e a d
t h r e a d e n d s

D i s c o v e rL o o k u p
R e g i s t e r

w a i t s e r v i c er e q u e s t
u n r e g i s t e r

i n u s e
l o o k u ps e r v i c eu s e rp r o g r a m

l o c k
u n l o c k

Figure 8: Simplified state diagram for the generic JJPF client (left) and service
(right)

implement different applications in really different applicative and hard-
ware contexts. JJPF is based on a master-worker architecture. JJPF de-
fines two entities: “client”, that is the application code (the master), and
“service”, that consists in distributed server instances (the workers) that
actually compute results out of input task data to execute client program.
Figure 8 sketches the structure of the two components. The client com-
ponent basically recruits available services and forks a control thread for
each one of them. The control thread, in turn, fetches uncomputed task
items from the task vector, delivers them to the remote service and re-
trieves the computed results, storing them to the result repository. Low-
level activities, like resource recruiting, program deployment and data
transfer are performed directly by the framework exploiting the JINI tech-
nology (4). The key concept in JJPF is that service discovery is automat-
ically performed in the client run time support. Not a single line of code
dealing with service discovery or recruiting is to be provided by appli-
cation programmers. JJPF achieves automatic load balancing among the
recruited services, due to the scheduling adopted in the control threads
managing the remote services. Furthermore, it handles faults in service
nodes automatically taking care of the tasks assigned to a service node in
such a way that in case the node does not respond any more they can be
rescheduled to other service nodes. This is only possible because of the
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kind of parallel applications that are supported in JJPF, that is stream
parallel computations. In this case, there are natural descheduling points
that can be chosen to restart the computation of one of the input tasks, in
case of failure of a service node. JJPF has demonstrated good scalability
both in embarrassingly parallel application and in more “problematic”
applications.

2.3 Open issues in structured approaches

Despite being around since long time and despite the progress made in
skeletal system design and implementation, the skeleton systems did not
take off as expected. Nowadays, the skeleton system usage is actually
restricted to small communities grown around the teams that develop the
skeleton systems. Cole focused very well the problem in his manifesto
(51). Here he stated four principles that have to be tackled in skeletal
systems to make them effective and successful:

I) Propagate the concept with minimal conceptual disruption It means
that skeletons must be provided within existing programming environ-
ments without actually requiring the programmers to learn entirely new
programming languages. In order to make them widely used by practi-
tioners they should not require further conceptual baggage.

II) Integrate ad-hoc parallelism Many parallel applications are not ob-
viously expressible as instances of skeletons. Some have phases that re-
quire the use of less structured interaction primitives. For example, Can-
non’s well-known matrix multiplication algorithm (90) invokes an initial
step in which matrices are skewed across processes in a manner which
is not efficiently expressible in many skeletal systems. It is unrealistic to
assume that skeletons can provide all the parallelism we need. We must
construct our systems to allow the integration of skeletal and ad-hoc par-
allelism in a well-defined way.
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III) Accommodate diversity All the existing skeleton systems have a
common core of simple skeletons and a variety of more exotic forms.
When described informally, the core operations are straightforward. In-
stead, precise specification reveals variations in semantics that reflect the
ways skeletons are applied in real algorithms. The result is that some
algorithms, which intuitively seem to represent an instance of a skeleton,
cannot be expressed in certain systems because of constraints imposed by
the specification. Hence, skeletal systems should provide mechanisms to
specialize skeletons, in all those cases where specialization does not rad-
ically change the nature of the skeleton, and consequently the nature of
the implementation.

IV) Show the pay-back A new technology will only gain acceptance if
it can be demonstrated that adoption offers some improvement over the
status quo. The structural knowledge embedded in skeletons should al-
low optimization within and across uses that would not be realistically
achievable by hand, i.e. demonstrate that the effort required to adopt
a skeletal system is immediately rewarded by some kind of concrete re-
sults: shorter design and implementation time of applications, increased
efficiency, increased machine independence of the application code, etc.

The second and the third points are specifically technical whereas the
first and the last one are actually a kind of “advertising” ones, in a sense.
All these points, however, have impacts on both the way the skeleton
systems are designed and on the way they are implemented. The Cole’s
analysis is not the only one, (19) extends it adding some other features
a skeleton environment have to address to be suitable for the computa-
tional grids. In particular, the authors present three more requirements
for Skeletal systems:

V) Support code reuse that is allow programmers to reuse with mini-
mal effort existing sequential code;
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VI) Handle heterogeneity i.e. implement skeletons in such a way skele-
ton programs can be run on clusters/networks/grids hosting heteroge-
neous computing resources (different processors, different operating sys-
tems, different memory/disk configurations, etc.);

VII) Handle dynamicity i.e. implement in the skeleton support mech-
anisms and policies suitable to handle typical dynamic situations, such
as those arising when non-dedicated processing elements are used (e.g.
peaks of load that impair load balancing strategies) or from sudden un-
availability of processing elements (e.g. network faults, node reboot).

Summarizing, the next generation of Skeletal Systems, that drawing
a parallel with web programming model we can refer as “Skeletons 2.0”,
have to integrate ad-hoc parallelism and provide mechanisms to special-
ize skeletons in order to express customized form of parallel exploitation.
They have to support code reuse, handle heterogeneity and dynamicity
in order to be exploited in grid environments. Moreover, such features
must be provided with minimal conceptual disruption, hence without re-
quiring the programmers to learn entirely new programming languages
or environments but integrating “Skeletons 2.0” principles inside the ex-
isting programming tools, possibly without changing their programming
abstraction.

Some Skeletal systems have addressed the “Skeletons 2.0” principles
to different degrees in different combinations. Next section reports some
of the most notable among these systems.

2.3.1 Attempts to address issues

In its “manifesto” paper Murray Cole, together with the check-list of is-
sues that next generation of skeleton system should address, sketches the
eSkel library (51). eSkel consists in Cole’s attempt to address the issues
he present in his “manifesto” paper. More in detail, eSkel is a library of C
functions and type definitions that extends the standard C binding to MPI
with skeletal operations. Its underlying conceptual model is the SPMD
distributed memory model, inherited from MPI, and its operations must
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be invoked from within a program that has already initialized an MPI en-
vironment. eSkel provides programmers with some language primitives
performing complex operations that can be integrated with the traditional
MPI functions. eSkel implements skeletons as collective MPI operations.
In (35; 51) authors describe how the manifesto issues are addressed in eS-
kel. eSkel also provides some code reuse facilities (check-list point V) as
most C and C++ code can simply be adapted in eSkel programs. In eSkel
heterogeneous architectures are supported (VI) through the usage of MPI,
much in the sense heterogeneous architectures are supported through the
usage of Java in muskel. However, current implementation of eSkel does
not support custom, programmer defined, MPI data types in the commu-
nication primitives, that actually use MPI INT data buffers, and therefore
heterogeneous architectures can be targeted using proper MPI implemen-
tations just when all the nodes have the same type of processors. No sup-
port for dynamicity handling (VII) is provided in eSkel, however.

Some other groups involved in structured parallel programming re-
search, developed programming systems that partially address the issues
above presented. Schaeffer and his group at the University of Alberta that
implemented a system were programmers can insert new parallelism ex-
ploitation patterns in the system (38). Kuchen Muesli (89) is basically a
C++ library built on top of MPI providing stream parallel skeletons, data
parallel objects and data parallel operations as C++ template classes. The
programming interface is definitely very good, as the full power of object
oriented paradigm along with templates is exploited to provide Muesli
programmers with user-friendly skeletons, and consequently C++ pro-
grammers can develop parallel applications very rapidly. In particular,
Muesli does not require any MPI specific knowledge/action to write a
skeleton program. Therefore, point (I) is very well addressed here. Points
(II) and (III) are addressed providing the programmer with a full set of
(data parallel) operations that can be freely combined. The payback (IV)
is mainly related to the OO techniques exploited to provide skeletons.
Code reuse (V) is supported as it is supported in eSkel, as programmers
can use C++/C code to build their own skeletons as well as sequential
code to be used in the skeletons. Even in this case there is limited support
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to heterogeneity (VI): the MPI code in the Skeleton library directly uses
MPI BYTE buffers to implement Muesli communications, and therefore
MPI libraries supporting heterogeneous architectures may be used just
in case the nodes sport the same kind of processor and the same C/C++
compiler tool-set. Dynamicity handling (VII) is not supported at all in
Muesli.

Gorlatch’s and its research group presented a grid programming en-
vironment HOC (73), which provides suitable ways of developing com-
ponent based grid applications exploiting classical skeleton components.
The implementation exploits Web Services technology. Overall, the HOC
programming environment addressed principles (I) and (IV). Points (II)
and (III) rely on the possibility given to programmers to insert/create new
HOCs in the repository. Point (VI) is handled via Web Services. This tech-
nology is inherently multiplatform, and therefore heterogeneous target
architectures can be easily used to run HOC programs. Point (V) is guar-
anteed as sequential code can easily (modulus the fact some XML code is
needed, actually) be wrapped in Web Services. However, no support to
(VII) is included in the current HOC version.

2.4 Our efforts in designing “Skeletons 2.0”
systems

Even though Cole and other research groups, focused on skeleton system,
designed and developed skeleton systems that own some of the features
required to be a next generation skeleton system, the research for address-
ing the presented issues is just started. In fact, up to now tools and model
that are generally recognized as the best solutions for addressing the is-
sues presented in (51) and in (19) simply do not exist. In the Chapters
3, 4 and 5 we present some models and the concerning tools that we de-
signed and developed in order to contribute to research for next genera-
tion skeleton systems.

More in detail, in Chapter 3 we propose a macro data-flow based ap-
proach designed supporting the integration of unstructured form of par-
allelization in skeleton systems, hence addressing the issue number II. To
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validate the approach we modified a skeleton system that in its original
form does not deal with unstructured parallelism: muskel. We extended
muskel, in collaboration with the research staff that develop it, to inte-
grate it with a methodology that can be used to implement mixed parallel
programming environments providing the programmer with both struc-
tured and unstructured ways of expressing parallelism. The methodol-
ogy is based on data-flow. Structured parallel exploitation patterns are
implemented translating them into data-flow graphs executed by a dis-
tributed macro data-flow interpreter. Unstructured parallelism exploita-
tion can be achieved by explicitly programming data-flow (sub)graphs.
The modified muskel provides suitable ways to interact with the data-
flow graphs derived from structured pattern compilation in such a way
that mixed structured and unstructured parallelism exploitation patterns
can be used within the same application. Two mechanisms provided
to the muskel programmers for unstructured parallelism exploitation.
First, we provide primitives that allow accessing the fundamental fea-
tures of the data-flow graph generated out of the compilation of a skele-
ton program. Namely, methods to deliver data to and retrieve data from
data-flow graph. We provide to programmers the ability to instantiate a
new graph in the task pool by providing the input task token and to redi-
rect the output token of the graph to an arbitrary data-flow instruction
in the pool. Second, we provide the programmer with direct access to
the definition of data-flow graphs, in such a way he can describe his par-
ticular parallelism exploitation patterns that cannot be efficiently imple-
mented with the available skeletons. The two mechanisms can be jointly
used to program all those parts of the application that cannot be easily
and efficiently implementing using the skeletons subsystem. Unfortu-
nately, this approach is not free from shortcomings In fact exploiting un-
structured parallelism interacting directly with data-flow graph requires
to programmers to reason in terms of program-blocks instead of a mono-
lithic program. Hence, at a first sight this approach may look like the ones
present in the other early macro data-flow models. Nevertheless, we want
to point out that the effort required to customize an application made by
a composition of existing skeleton is not comparable with the complexity
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of developing it from scratch as a set of macro data-flow blocks.

In order to ease the generation of macro data-flow blocks, and there-
fore provide programmers with a easier way to express program-blocks,
we exploited some metaprogramming techniques that are successfully used
for code transformation in fields like web development and component
based programming (41; 79; 97). Exploiting these techniques the pro-
grammers are no longer requested to deal with complex application struc-
turing but simply give hints to the metaprogramming support using high-
level directives. The directives are used by the support to drive the ap-
plication transformation. Chapter 4 presents our efforts aimed at provid-
ing metaprogramming tools and models for ease the generation of macro
data-flow blocks and their run-time optimization. In particular, two re-
sults are presented. The first is “Parallel Abstraction Layer” (PAL). A
java annotation (8) based metaprogramming framework that restructures
applications at bytecode-level at run-time in order to make them paral-
lel. The parallelization is obtained asynchronously executing the anno-
tated methods. Each method call is transformed in a macro data-flow
block that can be dispatched and executed on the available computing
resources. PAL transformations depend on the resources available at run-
time, the programmers hints and the available adapters. An adapter is a
specialized entity that instructs the PAL transformation engine to drive
the code transformation depending on the available parallel tools and
frameworks. The other result presented in the chapter concerns the inte-
gration of the Aspect Oriented Programming (68; 85) mechanisms (more
in detail the AspectJ framework (6)) with our modified muskel skele-
ton framework. The first step in this direction was exploiting AspectJ
to implement aspect driven program normalization (see (18)) in muskel.
The second step consisted in testing the integration of muskel with As-
pectJ to in a more complex scenario. Hence, we exploited the aspect ori-
ented programming support integrated in muskel in order to develop
workflows which structure and processing are optimized at run-time de-
pending on the available computational resources. Let us point out that
we introduced metaprogramming techniques for easing the generation of
macro data-flow blocks (in particular to address the issue number I) but
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as a corollary we obtained the possibility to optimize the application and
adapt it at run-time with respect to the executing environment (address-
ing the issues number III and VI).

The other two main issues to address are the support for code reuse
(V) and the handling of dynamicity (VII). As we already discussed when
we introduced muskel, it addresses this last point through the definition
of the Application Manager. The dynamicity handling is a very important
feature for next generation parallel programming systems, especially for
the ones designed for computational Grids. Actually, muskel frame-
work, at least in its original form, is designed to be exploited in cluster
and network of workstations rather than in Grids. Indeed, some of its
features limit its exploitation on Grids, in particular:

• muskel communicates with the resources it recruits exploiting the
RMI protocol, that (at least in its original version) uses TCP ports
that are typically blocked by firewall;

• the computational resources are found by muskel exploiting mul-
ticast communications that are often blocked by firewall;

• the recruitment of a computational resource requires to muskel

programmers to run a proper application on the resource, hence to
have an account on it;

• the Application Manager is a centralized entity. This represents a
twofold limitation in Grid environment: it is a single point of failure
and a bottle-neck that curb the scalability of the approach.

We addressed most of these limitations exploiting ProActive Parallel Suite
(108) to implement the macro data-flow distributed interpreters (see the
experimental results presented in Chapter 3). ProActive provides mech-
anisms to tunnel RMI communications and ease the deployment of Grid
applications. Indeed, it has been successfully used for developing ap-
plications in the Grid5000 (2) platform. ProActive support for Grids has
became more complete since it began to support the component based
development, in particular the support for the CoreGrid Grid Compo-
nent Model (52). Indeed, several studies recognized that component tech-
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nology could be leveraged to ease the development of Grid Application
(25; 72) and a few component based model have been proposed by paral-
lel computing scientific community for programming Grids (5; 52; 67).
Component-based software development can be considered an evolu-
tionary step beyond object-oriented design. Object-oriented techniques
have been very successful in managing the complexity of modern soft-
ware, but they have not resulted in significant amounts of cross-project
code reuse. Furthermore, sharing object-oriented code is difficult be-
cause of language incompatibilities, the lack of standardization for inter-
object communication, and the need for compile-time coupling of inter-
faces. Component-based software development addresses issues of lan-
guage independence (seamlessly combining components written in dif-
ferent programming languages) and component frameworks define stan-
dards for communication among components. Finally, the composition
compatibility is evaluated providing a meta-language specification for
their interfaces. The GCM represents one of the main European scien-
tific community efforts for designing and developing (3) a grid compo-
nent model. We contributed to the design of GCM and its reference im-
plementation together with the research group that developed muskel

and with several European research groups. In particular, we focused
our contribution, in the context of the CoreGrid Programming model vir-
tual institute, on GCM autonomic features. Therefore, by designing the
autonomic features of GCM components, each component is able to re-
act dynamically to changes in the executing environment. We referred to
the muskel application manager approach, generalizing and extending
the approach to make it suitable for components based models. Indeed,
each GCM component with a complete support of autonomic features
has an Autonomic Manager that observes the component behavior. In case
the behavior turns out to be different from the one expected the manager
trigger a component reconfiguration. In other words, GCM autonomic
features provide programmers with a configurable and straightforward
way to implement autonomic grid applications. Hence, they ease the
development of application for the Grids. Nevertheless, they rely fully
on the application programmer’s expertise for the set-up of the manage-
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ment code, which can be quite difficult to write since it may involve the
management of black-box components, and, notably, is tailored for the
particular component or assembly of them. As a result, the introduction
of dynamic adaptivity and self-management might enable the manage-
ment of grid dynamism, and uncertainty aspects but, at the same time,
decreases the component reuse potential since it further specializes com-
ponents with application specific management code. In Chapter 5, we
propose Behavioural Skeletons as a novel way to describe autonomic com-
ponents in the GCM framework. Behavioural Skeletons aim to describe
recurring patterns of component assemblies that can be (either statically
or dynamically) equipped with correct and effective management strate-
gies with respect to a given management goal. Behavioural Skeletons
help the application designer to i) design component assemblies that can
be effectively reused, and ii) cope with management complexity by pro-
viding a component with an explicit context with respect to top-down
design (i.e. component nesting). We consider the Behavioural Skeletons,
coupled with the CoreGRID Grid Component, a good structured paral-
lel programming model for handling dynamicity (VII), supporting reuse
both of functional and non-functional code (V). The model defines char-
acters as the Skeleton designers and the Expert users that can design new
skeletons and customize the existing ones (II and III), whereas, standard
users can easily (I) exploit the existing ones.
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Chapter 3

Mixing Structured and
Macro-Dataflow approaches

Chapter road-map In this chapter we describe our contribution to skeleton
customization. We start with an introduction on structured programming model
outlining its main advantages and recalling its main limitations. In particular,
we focus on the skeleton customization issue. Namely the lack of flexibility of
skeletal systems in expressing parallel form different from the ones “bundled”
with the skeleton framework. Then we briefly introduce the data-flow approach
we conceived to address of this limitation and we report related work: alternative
approaches addressing the structured parallel programming limitations (Section
3.1).Besides, we introduce classical implementation template and more recent
data-flow technologies as used to design and implement skeleton systems (Sec-
tion 3.2). Then, we describe the details of our contribution, i.e. our extended
version of muskel framework, discussing how skeletons customization is sup-
ported exploiting data-flow implementation (Section 3.3.1). Finally, we report
the experimental results we obtained exploiting our customized muskel (Sec-
tion 3.4).
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3.1 Data-flow enables skeleton customization

We already introduced structured parallel programming models in the
previous chapter, where we described their Pros and Cons. Let us to
briefly recall here their main features and limitations.

Structured parallel programming models provide the programmers
with native high-level parallelism exploitation patterns that can be in-
stantiated, possibly in a nested way, to implement a wide range of appli-
cations (12; 32; 51; 87; 88). In particular, those programming models hide
to programmers “assembly level” of parallel programming, i.e. by avoid-
ing a direct interaction with the distributed execution environment via
communication or shared memory access primitives and/or via explicit
scheduling and code mapping. Rather, the high-level native, paramet-
ric parallelism exploitation patterns provided encapsulate and abstract
from all these parallelism exploitation related details. In contrast, when
using a traditional parallel programming system, the programmers have
usually to explicitly program code for distributing and scheduling the
processes on the available resources and for moving input and output
data among the involved processing elements. The cost of this appeal-
ing high-level way of dealing with parallel programs is paid in terms of
programming freedom. The programmer (or skeleton system user) is nor-
mally not allowed to use arbitrary parallelism exploitation patterns, but
he must only use the ones provided by the system. They usually include
all those reusable patterns that have efficient distributed implementations
available. This is mainly aimed at avoiding the possibly for the program-
mers to write code that can potentially impairs the efficiency of the im-
plementation provided for the available, native parallel patterns. This is
a well-known problem (See chapter 2).

In this Chapter we discuss the methodology we conceived, designed
and used to modify the muskel parallel programming environment in
order to provide to programmers the possibility to mix structured and
unstructured ways of expressing parallelism while preserving most of the
benefits typical of structured parallel programming models. The method-
ology is based on the macro data-flow model. Structured parallel ex-
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ploitation patterns are implemented translating them into macro data-
flow graphs executed by the distributed macro data-flow interpreters.
Unstructured, user-defined parallelism exploitation patterns are achieved
by explicitly programming data-flow graphs. These (macro) data-flow
graphs can be used in the skeleton systems in any place where predefined
skeletons can be used, thus providing the possibility to seamlessly inte-
grate both kind of parallelism exploitation within the same program. The
mechanisms enabling data-flow graphs customization provide program-
mers the possibility to program new parallelism exploitation patterns.

The methodology has been developed together with the other authors
of (21), we all contributed in a substantially equal way to the conception,
design and implementation of the approach.

Macro data-flow implementation for algorithmical skeleton program-
ming environment was introduced in late ’90 (56) and then has been used
in other contexts related to skeleton programming environments (101).

Cole eSkel, we already presented in the previous chapter, addresses
these problems by allowing programmers to program their own peculiar
MPI code within each process in the skeleton tree. Programmers can ask
to have a stage of a pipeline or a worker in a farm running on k pro-
cessors. Then, the programmer may use the k processes communicator
returned by the library for the stage/worker to implement its own par-
allel pipeline stage/worker process. As far as we know, this is the only
attempt to integrate ad hoc, unstructured parallelism exploitation in a
structured parallel programming environment. The implementation of
eSkel, however, is based on process templates, rather than on data flow.

Other skeleton libraries, such as Muesli (87; 88; 89), provide program-
mers with a quite large flexibility in skeleton programming following a
different approach. They provide a number of data parallel data struc-
tures along with elementary, collective data parallel operations that can
be arbitrary nested to get more and more complex data parallel skele-
tons. However, this flexibility is restricted to the data parallel part, and it
is anyway limited by the available collective operations.

CO2P3S (92) is a design pattern based parallel programming envi-
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ronment written in Java and targeting symmetric multiprocessors. In
CO2P3S, programmers are allowed to program their own parallel design
patterns (skeletons) by interacting with the intermediate implementation
level (38). Again, this environment does not use data flow technology but
implements design patterns using proper process network templates.

JaSkel (69) provides a skeleton library implementing the same skele-
ton set than muskel. In JaSkel, however, skeletons look much more im-
plementation templates, according to the terminology used in Section 3.2.
However, it looks like the programmer can exploit the full OO program-
ming methodology to specialize the skeletons to his own needs. As the
programmer is involved in the management of support code too (e.g. he
has to specify the master process/thread of a task farm skeletons) JaSkel
can be classified as a kind of “low-level, extensible” skeleton system, al-
though it is not clear from the paper whether entirely new skeletons can
be easily added to the system (actually, it looks like it is not possible at
all).

3.2 Template based vs. data-flow based skeleton
systems

A skeleton based parallel programming environment provides program-
mers with a set of predefined and parametric parallelism exploitation
patterns. The patterns are parametric in the kind of basic computation
executed in parallel and, possibly, in the execution parallelism degree or
in some other execution related parameters. As an example, a pipeline
skeleton takes as parameters the computations to be computed at the
pipeline stages. In some skeleton systems these computations can be ei-
ther sequential computations or parallel ones (i.e. other skeletons) while
in other systems (mainly the ones developed at the very beginning of
the skeleton related research activity) these computations may only be
sequential ones.

The first attempts to implement skeleton programming environments
all relied on the implementation template technology. As discussed in
(94), in a implementation template based skeleton system each skeletons
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is implemented using a parametric process network picked up among
the ones available for that particular skeleton and for the kind of tar-
get architecture at hand in a template library (see (96), discussing several
implementation templates, already appeared in bibliography, all suitable
to implement task farms, that is embarrassingly parallel computations
implemented according to a master-worker paradigm). The template li-
brary is designed once and for all by the skeleton system designer and
summarizes his knowledge concerning implementation of the parallelism
exploitation patterns modeled by skeletons. Therefore, the compilation
process of a skeleton program, according to the implementation template
model, can be summarized as follows:

1. the skeleton program is parsed, a skeleton tree is derived, hosting
the precise skeleton structure of the application. The skeleton tree
has nodes marked with one of the available skeleton, and leaves
marked with sequential code (sequential skeletons).

2. the skeleton tree is traversed, in some order, and templates from the
library are assigned to each one of the skeleton nodes, but the se-
quential ones, that always correspond to the execution of a sequen-
tial process on the target machine. During this phase, parameters
of the templates (e.g. the parallelism degree or the kind of com-
munication mechanisms used) are fixed, possibly exploiting proper
heuristics associated to the library entries

3. the enriched skeleton tree is used to generate the actual parallel
code. Depending on the system that may involve a traditional com-
pilation step (e.g. in P3L when using the Anacleto compiler (47) or
in ASSIST when using the astcc compiler tools (14; 15)) or exploiting
proper parallel libraries (e.g. in Muesli (89) and eSkel (49) exploiting
MPI within a proper skeleton library hosting templates

4. the parallel code is eventually run on the target architecture, possi-
bly exploiting some kind of loader/deploy tool.

Figure 9 summarizes the process leading from a skeleton source code to
the running code exploiting template technology.

70



M

W

W W

W
W

M

W

Parse

Compile

Instantiation of 
graph with 
input tasks

Pipeline main  (...) 
  stage1(...) 
  stage2(...) 
  stage3(...) 
end pipeline 

seq stage1(...) 
{ ... } 

farm stage2(...) 
   seq2(...) 
end farm 

farm stage3(...) 
  seq3(...) 
end farm 

Source code

Deploy

Skeleton tree

Data flow instruction pool

Distributed data flow interpreter (e.g. Masters-Workers) Target architecture

Data flow graph

Figure 10: Skeleton program execution according to the data-flow approach.

71



More recently, an implementation methodology based on data-flow
has been proposed (56). In this case the skeleton source code is used to
compile a data-flow graph and the data-flow graph is then executed on
the target architecture exploiting a suitable distributed data-flow inter-
preter engine. The approach has been used both in the implementation of
Lithium (12; 109) and in Serot’s SKIPPER skeleton environment (100). In
both cases, the data-flow approach was used to support fixed skeleton set
programming environments. We adopted the very same implementation
approach to develop our version of the muskel framework, modifying
it in collaboration with the original developers, enriching it with a data-
flow implementation to support extensible skeleton sets.

When data-flow technology is exploited to implement skeletons, the
compilation process of a skeleton program can be summarized as follows:

1. the skeleton program is parsed, a data-flow graph is derived. The
data-flow graph represents the pure data-flow behavior of the skele-
ton tree in the program

2. for each one of the input tasks, a copy of the data-flow graph is
instantiated, with the task appearing as an input token to the graph.
The new graph is delivered to the distributed data-flow interpreter
“instruction pool”

3. the distributed macro data-flow interpreter fetches fireable instruc-
tions from the instruction pool and the instructions are executed
exploiting the nodes in the target architecture. Possibly, optimiza-
tions are taken into account (based on proper heuristics) that try to
avoid unnecessary communications (e.g. caching tokens that will
eventually be reused) or to adapt the computation grain of the pro-
gram to the target architecture features (e.g. delivering more than a
single fireable instruction to remote nodes to decrease the impact of
communication set up latency, or multiprocessing the remote nodes
to achieve communication and computation overlap).

Figure 10 summarizes the process leading from skeleton source code to
the running code exploiting this data-flow approach.
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The two approaches just outlined appear very different, but they have
been successfully used to implement different skeleton systems. Let us to
point out a quite subtle difference in the two approaches.

On the one side, when using implementation templates, the process
network eventually run on the target architecture is very close to the one
the programmer has in mind when instantiating skeletons in the source
code. In some systems the “optimization” phase of Figure 9 is actually
empty and the program eventually run on the target architecture is build
out of plain juxtaposition of the process networks making up the tem-
plates of the skeletons using in the program. Even in case the optimiza-
tion phase do actually modify the process network structure (in Figure
9 the master/slave service process of the two consecutive farms are op-
timized/collapsed, for instance), the overall structure of the process net-
work does not change too much.

On the other side, when a data-flow approach is used the process net-
work run on the target architecture is completely different from the skele-
ton tree exposed by programmer in the source code. Rather, the skeleton
tree is used to implement the parallel computation in a correct and effi-
cient way, exploiting a set of techniques and mechanisms that are much
more close to the techniques and mechanisms used in operating systems
rather than to those used in the execution of parallel programs, both struc-
tured and unstructured. Under a slightly different perspective, this can
be interpreted as follows:

• skeletons in the program “annotate” sequential code by providing
the meta information required to efficiently implement the program
in parallel;

• the support tools of the skeleton programming environment (the
macro data-flow graph compiler and the distributed macro data-
flow interpreter, in this case) “interpret” the meta information to
accurately and efficiently implement the skeleton program, exploit-
ing (possibly at run-time, when the target architecture features are
known) the whole set of known mechanisms supporting implemen-
tation optimization (e.g. caches, pre-fetching, node multiprocess-
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ing, etc.).

Under this perspective, the macro data-flow implementation for parallel
skeleton programs opens new perspectives in the design of parallel pro-
gramming systems where parallelism is dealt with as a “non-functional”
feature, specified by programmers and handled by the compiling/run-
time support tools in the more convenient and efficient way w.r.t. to
the target architecture at hand. In the following Chapters of this thesis
will be presented some techniques we exploited to provide programmers
methodologies aiming the expression of non-functional requirements and
their run-time enforcement.

3.3 muskel

We already introduced muskel and its programming model in the Chap-
ter 2. There we also outlined how we modified muskel, collaborating
with its original developers, in order to provide programmers with mech-
anisms enabling skeleton customizations. In this section we give a more
detailed explanation both of the original muskel and of the enhanced
version we proposed.

muskel is skeleton programming environment derived from Lithium
(12), it provides the stream parallel skeletons of Lithium, namely stateless
task farm and pipeline. These skeletons can be arbitrary nested, to pro-
gram pipelines with farm stages, as an example, and they process a single
stream of input tasks to produce a single stream of output tasks. muskel

implements skeletons exploiting data-flow technology and Java RMI fa-
cilities. muskel programmers can express parallel computations simply
using the provided Pipeline and Farm classes. For instance, to express a
parallel computation structured as a two-stage pipeline where each stage
is a farm, muskel programmers should write a code such as the one of
Figure 11. The two classes f and g implement the Skeleton interface, i.e.
supplying a compute method with the signature

Object compute(Object t)
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  ...
  Skeleton main   = 
       new Pipeline(new Farm(f), 
                              new Farm(g));
  Manager manager = new Manager();
  manager.setProgram(main);
  manager.setContract(new ParDegree(10));
  manager.setInputManager(inputManager);
  manager.setOutputManager(outputManager);
  manager.eval();
  ...

Figure 11: Sample muskel code: sketch of all (but the sequential portions
of code) the coded needed to set up and execute a two-stage pipeline with
parallel stages (farms).

computing f and g respectively. The Skeleton interface represents the
“sequential” skeleton, that is the skeleton always executed sequentially
and only aimed at wrapping sequential code in such a way such code can
be used in other, non-sequential skeletons.

In order to execute the program, a muskel programmer first sets up a
Manager object. Then, using proper methods, he specifies the program to
execute, the performance contract required (in this case, the parallelism
degree required for the execution), the input data source (the input stream
manager, which is basically an iterator providing the classical boolean
hasNext() and Object next() methods) and who is in charge of process-
ing the output data (the output stream manager, just providing a void
deliver(Object) method processing a single result of the program). Even-
tually he can ask parallel program execution simply issuing an eval call
to the manager. When the call terminates, an output file is produced.

Actually, the eval method execution happens in steps. First, the man-
ager looks for available processing elements using a simplified, multicast
based peer-to-peer discovery protocol, and recruits the required remote
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processing elements. Each remote processing element runs a data-flow
interpreter. Then the skeleton program (the main of the example depicted
in Figure 11) is compiled into a macro data-flow graph (actually capital-
izing on normal form results shown in (12; 18)) and a thread is forked
for each one of the remote processing elements recruited. Then the input
stream is read. For each task item, an instance of the macro data-flow
graph is created and the task item token is stored in the proper place (ini-
tial data-flow instruction(s)). The graph is placed in the task pool, the
repository for data-flow instructions to be executed. Each thread looks
for a fireable instruction in the task pool and delivers it for execution to
the associated remote data-flow interpreter. The remote interpreter in-
stance associated to the thread is initialized by being sent the serialized
code of the data-flow instructions, once and for all before the computa-
tion actually starts. Once the remote interpreter terminates the execution
of the data-flow instruction, the thread either stores the result token in
the proper “next” data-flow instruction(s) in the task pool, or it directly
writes the result to the output stream, invoking the deliver method of the
output stream manager. If a remote node “fails” (e.g. due to a network
failure, or to the node failure/shutdown), the manager looks for another
node and starts dispatching data flow instructions to the new node in-
stead (58). As the manager is a centralized entity, if it fails, the whole
computation fails. However, the manager is usually run on the machine
of the muskel user, which is assumed to be safer than the remote nodes
recruited as remote interpreter instances.

The policies implemented by the muskelmanagers are best effort. The
muskel framework tries to do its best to accomplish user requests. In
case it is not possible to completely satisfy the user requests, the frame-
work accomplishes to establish the closest configuration to the one im-
plicitly specified by the user with the performance contract. In the exam-
ple above, the framework tries to recruit 10 remote interpreters. In case
only n < 10 remote interpreters are found, the parallelism degree is set
exactly to n. In the worst case, that is if no remote interpreter is found, the
computation is performed sequentially, on the local processing element.

In the current version of muskel, the only performance contract actu-
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ally implemented is the ParDegree one, asking for the usage of a constant
number of remote interpreters in the execution of the program. We do not
enter in more detail in the implementation of the distributed data-flow
interpreter here. The interested reader can refer to (56; 58). Instead, we
will try to give a better insight into the compilation of skeleton code into
data-flow graphs.

A muskel parallel skeleton code is described by the grammar:

P ::= seq(className) | pipe(P,P) | farm(P)

where the classNames refer to classes implementing the Skeleton inter-
face, and a macro data-flow instruction is a tuple: 〈id , gid , opcode, In,Ok〉
where id is the instruction identifier, gid is the graph identifier (both are
either integers or the special NoId identifier), opcode is the name of the
Skeleton class providing the code to compute the instruction (i.e. com-
puting the output tokens out of the input ones) and I andO are the input
tokens and the output token destinations, respectively. An input token
is a pair 〈value, presenceBit〉 and an output token destination is a pair
〈destInstructionId, destTokenNumber〉. With these assumptions, a data-flow
instruction such as:

〈a, b,f, 〈〈123,true〉, 〈null,false〉〉, 〈〈i, j〉〉〉

is the instruction with identifier a belonging to the graph with identifier b.
It has two input tokens, one present (the integer 123) and one not present
yet. It is not fireable, as one token is missing. When the missing token
will be delivered to this instruction, coming either from the input stream
or from another instruction, the instruction becomes fireable. To be com-
puted, the two tokens must be given to the compute method of the f class.
The method computes a single result that will be delivered to the instruc-
tion with identifier i in the same graph, in the position corresponding to
input token number j. The process compiling the skeleton program into
the data-flow graph can therefore be more formally described as follows.
We define a pre-compile function PC[ ] as:

PC[seq (f)]gid = λi.{〈newId(), gid,f, 〈〈null,false〉〉, 〈〈i,NoId〉〉〉}
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PC[farm(P )]gid = C[P]gid

PC[pipe (P1,P2)]gid = λi.{C[P1]gid (getId(C[P2]gid )), C[P2]gid(i)}

where λx.T is the usual function representation ((λx.T )(y) = T |x=y) and
getID() is the function returning the id of the first instruction in its ar-
gument graph, that is, the one assuming to receive the input token from
outside the graph, and a compile function C[] such as:

C[P ] = PC[P ]newGid() (NoId)

where newId() and newGid() are stateful functions returning a fresh (i.e.
unused) instruction and graph identifier, respectively. The compile func-
tion returns therefore a graph, with a fresh graph identifier, hosting all the
data-flow instructions relative to the skeleton program. The result tokens
are identified as those whose destination is NoId. As an example, the
compilation of the main program pipe(farm(seq(f)), farm(seq(g))) pro-
duces the data flow graph:

{〈1, 1,f, 〈〈null,false〉〉, 〈〈2, 1〉〉〉 , 〈2, 1,g, 〈〈null,false〉〉, 〈〈NoId,NoId〉〉〉}

(assuming that identifiers and token positions start from 1).
When the application manager is told to actually compute the pro-

gram, via an eval() method call, the input file stream is read looking for
tasks to be computed. Each task found is used to replace the data field of
the lower id data-flow instruction in a new C[P ] graph. In the example
above, this results in the generation of a set of independent graphs such
as:

{〈1, i,f, 〈〈taski,true〉〉, 〈〈2, 1〉〉〉 , 〈2, i,g, 〈〈null,false〉〉, 〈〈NoId,NoId〉〉〉}

for all the tasks ranging from task1 to taskn.
All the resulting instructions are put in the task pool of the distributed

interpreter in such a way that the control threads taking care of “feeding”
the remote data-flow interpreter instances can start fetching the fireable
instructions. The output tokens generated by instructions with destina-
tion tag equal to NoId are directly delivered to the output file stream by
the threads receiving them from the remote interpreter instances. Those
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Skeleton inc1 = new Inc(); 
Dest d = new Dest(0, 2 ,Mdfi.NoGraphId); 
Dest[] dests = new Dest[1]; 
dests[0] = d; 
Mdfi i1 = new Mdfi(manager,1,inc1,1,1,dests); 
Skeleton sq1 = new Square(); 
Dest d1 = new Dest(0,Mdfi.NoInstrId, Mdfi.NoGraphId); 
Dest[] dests1 = new Dest[1]; 
dests1[0] = d1; 
Mdfi i2 = new Mdfi(manager,2,sq1,1,1,dests1); 
MdfGraph graph = new MdfGraph(); 
graph.addInstruction(i1); 
graph.addInstruction(i2); 
ParCompute userDefMDFg = new ParCompute(graph);

Figure 12: Custom/user-defined skeleton declaration.

with a non-NoId flag are delivered to the proper instructions in the task
pool that will eventually become fireable.

3.3.1 Programmer-defined skeletons

In order to introduce completely new parallelism exploitation patterns,
our version of the muskel framework provides programmers with mech-
anisms that can be used to design plain, arbitrary macro data-flow graphs.
A macro data-flow graph can be defined creating some Mdfi (macro data-
flow instruction) objects and connecting them in a MdfGraph object. As
an example, the code in Figure 12 is the code needed to program a data-
flow graph with two instructions. The first one computes the compute
method inc1 on its input token and delivers the result to the second in-
struction. The second one, computes the sq1 compute method on its
input token and delivers the result to a generic “next” instruction (this
is modeled giving the destination token tag a Mdfi.NoInstrId tag). The
Dest stuff in the code is meant to represent destination of output tokens
as triples hosting the graph identifier, the instruction identifier and the
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destination input token targeted in this instruction. Macro data-flow in-
structions are build stating the manager they refer to, their identifier, the
code executed (must be a Skeleton object) the number of input and out-
put tokens and a vector with a destination for each one of the output to-
kens. Take into account that the simple macro data-flow graph of Figure
12 is actually the very same macro data-flow graph derived compiling a
primitive muskel skeleton code such as:

Skeleton main = new Pipeline(new Inc(), new Sq()))

More complex, programmer-defined macro data-flow graph may com-
prehend instructions delivering tokens to an arbitrary number of other
instructions, as well as instructions gathering input tokens from several
distinct other instructions.

MdfGraph objects are used to create new ParCompute objects. The
ParCompute objects can be used in any place were a Skeleton object is
used. Therefore programmer-defined parallelism exploitation patterns
can be used as pipeline stages or as farm workers, for instance. The only
limitation on the graphs that can be used in a ParCompute object consists
in requiring that the graph has a unique input token and a unique output
token.

When executing programs with programmer-defined parallelism ex-
ploitation patterns the process of compiling skeleton code to macro data-
flow graphs is slightly modified. When an original muskel skeleton is
compiled, the process described above is applied. When a programmer-
defined skeleton is compiled, the associated macro data-flow graph is di-
rectly taken from the ParCompute instance variables where the graph
supplied by the programmer is maintained. Such graph is linked to the
rest of the graph according to the rules relative to the skeleton where the
programmer-defined skeleton appears. To show how the whole process
works, let us suppose we want to pre-process each input tasks in such a
way that for each task ti a new task

t′i = h1(f1(ti), g2(g1(f1(ti))))

is produced. This computation cannot be programmed using the stream
parallel skeletons currently provided by the original muskel. Then we
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1:gid:F:InTok{( _ , false)}:OutTok{(2,1)}

2:gid:G:Intok{( _ , false)}:OutTok{(NoId,_)}

3:gid:F1:Intok{( _ , false)}:OutTok{(4,1)(6,1)}

4:gid:G1:Intok{( _ , false)}:OutTok{(5,1)}

5:gid:G2:Intok{( _ , false)}:OutTok{(6,2)}

6:gid:H2:Intok{( _ , false)(_,false)}:OutTok{(1,1)}

Custom MDF graph

Compiled MDF graph (Pipeline(Farm,Farm))

.

Figure 13: Mixed sample MDF graph: the upper part comes from a
programmer-defined MDF graph (it cannot be derived using primitive
muskel skeletons) and the lower part is actually coming from a three stage
pipeline with two sequential stages (the second and the third one) and a par-
allel first stage (the programmer-defined one).

want to process the preprocessed tasks through a two-stage pipeline, in
order to produce the final result. In this case the programmer can set up
a new graph using a code similar to the one shown in Figure 11 and then
used that new ParCompute object as the first stage of a two-stage pipeline
whose second stage happens to be the postprocessing two-stage pipeline.
When compiling the whole program, the outer pipeline is compiled first.
As the first stage is a programmer-defined skeleton, its macro data-flow
graph is directly taken from the programmer-supplied one. The second
stage is compiled according to the (recursive) procedure previously de-
scribed and eventually the (unique) last instruction of the first graph is
modified in such a way it sends its only output token to the very first
instruction in the second stage graph. The resulting graph is outlined in
Figure 13.
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Making good usage of the mechanisms that allow to define new data-
flow graphs, the programmer can arrange to express computations with
arbitrary mixes of arbitrary data-flow graphs and graphs coming from
the compilation of structured, stream parallel skeleton computations. The
execution of the resulting data-flow graph is supported by the muskel

distributed data-flow interpreter as the execution of any other data-flow
graph derived from the compilation of a skeleton program. Therefore, the
customized skeletons are efficiently executed as the skeletons “bundled”
with muskel. Indeed, in data-flow based skeleton systems, as we al-
ready stated when we presented them, the optimizations do not directly
depends on the skeleton structure but on the data-flow engine capability
of executing the macro data-flow instruction in an efficient way.

In order to allow primitive muskel skeleton usage as code to be exe-
cuted in an instruction of a programmer-defined macro data-flow graph
it is sufficient to compile “on the fly” the primitive skeleton and include
the result (i.e. the macro data-flow graph) of this compilation in the
programmer-defined macro data-flow graph.

As a final example, consider the code of Figure 14. This code actually
shows how a new Map2 skeleton, performing in parallel the same com-
putation on all the portions of an input vector, can be defined and used.
It’s worth pointing out how programmer-defined skeletons, once prop-
erly debugged and fine-tuned, can simply be incorporated in the muskel

skeleton framework and used seamlessly, as the primitive muskel ones,
but for the fact (as show in the code) the constructor needs the manager
as a parameter. This is needed just to be able to link together the macro
data-flow graphs generated by the compiler and those supplied by the
programmer. This feature has been released by postponing the data-flow
graph creation to the moment the graph needs to be instantiated after
the arrival of a new task to compute, as at that time all the information
necessary to perform graph “conjunction” is available.
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public class Map2 extends ParCompute {

       public Map2(Skeleton f, Manager manager) {
                super(null);
                program = new MdfGraph(); // first build the empty graph
                Dest [] dds1 = new Dest[2];  // build the emitter instruction
                dds1[0]=new Dest(0,2); 
                dds1[1]=new Dest(0,3);
                Mdfi emitter = new Mdfi(manager, 1, new MapEmitter(2), 1, 2, dds1);
                program.addInstruction(emitter);  // add it to the graph
                Dest [] dds2 = new Dest[1]; // build first half map Skeleton node
                dds2[0] = new Dest(0,4);
                Mdfi if1 = new Mdfi(manager,2, f, 1, 1, dds2); 
                program.addInstruction(if1);  // add it to the graph
                Dest []dds3 = new Dest[1];  // build second half map Skeleton node
                dds3[0] = new Dest(1,4);
                Mdfi if2 = new Mdfi(manager,3, f, 1, 1, dds3); 
                program.addInstruction(if2);  // add it to the graph
                Dest[] ddslast = new Dest[1];
                ddslast[0] = new Dest(0,Mdfi.NoInstrId);
                Mdfi collector = new Mdfi(manager,4,new MapCollector(), 2, 1, ddslast);
                program.addInstruction(collector);
                return;
        }

}

public class SampleMap {
       public static void main(String[] args) {
                Manager manager = new Manager();
                Skeleton worker = new Fdouble();
                Skeleton main = new Map2(worker,manager);
                
                InputManager inManager = new DoubleVectIM(10,4);
                OutputManager outManager = new DoubleVectOM();
                
                ParDegree contract = new ParDegree(10);
                manager.setInputManager(inManager);
                manager.setOutputManager(outManager);
                manager.setContract(contract);
                manager.setProgram(main);
                
                manager.compute();
        }
}

Figure 14: Introducing a new, programmer-defined skeleton: a map working
on vectors and with a fixed, programmer-defined parallelism degree.
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3.4 Experimental results

To validate our approach we conducted some test with our modified ver-
sion of the muskel framework. The original muskel interpreter en-
gine has been left basically unchanged, whereas the part supporting par-
allelism exploitation pattern programming has been changed to support
linking of custom MDF graphs to the code produced by the compiler out
of plain muskel skeleton trees. We used our customized version for
implementing an application that can not be (at least not easily) imple-
mented using standard (i.e. without our proposed customization sup-
port) skeleton environments.

Figure 16 summarizes the typical performance results of our enhanced
interpreter. We ran several synthetic programs using the custom macro
data-flow graph features introduced in muskel. We designed the pro-
grams in such a way the macro data-flow instructions appearing in the
graph had a precise “average grain” (i.e. average ration between the time
spent by the remote interpreter to compute the macro data flow instruc-
tion sent to it, and the time spent in communicating data to the remote
interpreter plus the time to retrieve the computation results). For each
test-bed we passed as input parameters to the developed programs 1K
input tasks.

The results show that when the computational grain is small, muskel
does not scale well, even using a very small number of remote interpreter
instances. Indeed, Figure 16 clearly shows that when the computational
grain is 3 the efficiency rapidly decreases, going under 0.7 even when
only four computational resources are used. When the grain is 70 the effi-
ciency goes under 0.8 only when the number of recruited computational
resources is higher than 14. Finally, when the grain is high enough (about
200 times the time spent in communications actually spent in computa-
tion of MDF instructions) the efficiency is definitely close to the ideal one
even using 16 or more machines.

Despite the data shown refers to some synthetic computations, actual
computations (e.g. image processing ones) achieved very similar results.
This because the automatic load balancing mechanism implemented in
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Figure 15: Effect of middleware: scalability of the muskel prototype using
plain RMI vs. the one using ProActive active objects

the muskel distributed interpreter, obtained by mean of auto scheduling
techniques, perfectly optimized the execution of variable grain MDF in-
structions. All the experiments have been performed on a Linux (kernel
2.4.22) RLX Pentium III blade architecture, with Fast Ethernet intercon-
nection among the blades, equipped with Java 1.4.1 01 run-time.

Despite measuring scalability of our modified muskel framework,
we also have taken into account the possibility to use different mecha-
nisms to support distributed data-flow interpreter execution. In partic-
ular, we investigated the possibility of implementing the muskel ap-
proach for skeleton customization on top of the ProActive framework
(108) both to be able to target a different set of architectures and to demon-
strate the “portability” of our approach, i.e. that it is a feasible and effi-
cient solution not only when it exploits the muskel data-flow interpreter.

For this purpose, we conducted some experiments aimed at verifying
the overhead introduced by ProActive with respect to the plain Java RMI
muskel prototype, when using the secure shell (ssh) tunneling of the
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RMI protocol (feature natively provided by the ProActive framework).
In particular, we modified the “kernel” of the data-flow interpreter of
muskel in order to make it able to exploit the ProActive active objects in
place of plain RMI objects as remote data-flow interpreter instances. The
results we achieved are summarized in Figure 15. The figure plots the
completion times for the very same program run on a Linux workstation
cluster when using plain Java RMI and when using ProActive active ob-
jects to implement the remote data-flow interpreter instances. The macro
data-flow instructions, in this case, have a grain comparable to the “high
grain” of instructions of Figure 16. Experiments showed that ProActive
active objects are slightly less efficient but the difference is negligible. In
this case, the setup time of the remote data-flow interpreter instances was
not considered in the overall completion time, being paid once and forall
when the system is started up.
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Summarizing the Chapter

In this Chapter we discussed a methodology for extending algorithmic skeletons
based parallel programming frameworks aimed at providing programmers with
the possibility to freely customize the structure of their parallel applications. It
is based on mechanisms allowing programmers to modify the data-flow graph
derived from the compilation of skeleton based application. In particular, we dis-
cussed how we modified the muskel framework for parallel programming. The
version we developed (collaborating with the team that developed the original
muskel) supports extendability of the skeleton set, as advocated by Cole in his
“manifesto” paper (51). In particular, we discussed how our modified muskel
supports the introduction of new skeletons, modeling parallelism exploitation
patterns not originally covered by the primitive muskel skeletons. This possi-
bility is supported by allowing programmers to define new skeletons providing
the arbitrary data-flow graph executed in the skeleton and by letting muskel to
seamlessly integrate such new skeletons in the primitive ones. We also presented
experimental results validating our muskel approach to extend and customize
its skeleton set. As far as we know, this is the most significant effort in the
skeleton community to tackle problems deriving from a fixed skeleton set. Only
Schaeffer and his group at the University of Alberta implemented a system were
programmers can, in controlled ways, insert new parallelism exploitation pat-
terns in the system (38), although the approach followed here is a bit different, in
that programmers are encouraged to intervene directly in the run-time support
implementation, to introduce new skeletons, while in our muskel new skele-
tons may be introduced using the intermediate macro data-flow language as the
skeleton “assembly” language.
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Chapter 4

Metaprogramming
Run-time Optimizations

Chapter road-map This Chapter presents our efforts aimed at exploiting
metaprogramming techniques for optimizing at run-time the execution of struc-
tured parallel applications. The approaches are based on the run-time generation
of macro data-flow blocks from the application code. We start presenting the mo-
tivations (Section 4.1) of our contributions. Then we present PAL (Section 4.2),
our first result in the field. PAL is a metaprogramming engine that transforms
at run-time an annotated sequential java code in a parallel program, exploiting
both programmer hints and executing platform information. We describe our
PAL prototype implementation (Section 4.2.1) and the results of the tests we
made with it (Section 4.2.2). After we discuss the motivations that convinced us
to integrate the PAL approach with our version of the muskel framework (Sec-
tion 4.2.3). In the following section (4.3) we describe the preliminary attempts
we made integrating metaprogramming techniques in muskel. In Section 4.4
we present how we further enhanced muskel making it able to exploit metapro-
gramming for run-time code optimizations. In particular, how it can be exploited
to optimize the parallel execution of computations expressed as workflows. In
Section 4.4.2 we describe the implementation of workflows transformations and
in Section 4.4.3 we present the performance results obtained. Finally, we compare
the two approaches (Section 4.5) and we summarize the Chapter contributions.
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4.1 Our efforts in run-time optimization

In the previous chapter we described how the macro data-flow model can
be exploited in order to allow the customization of algorithmic skeletons.
We showed how we modified the muskel parallel framework in order
to provide programmers with mechanisms able to change skeletons struc-
ture. In this chapter we present the metaprogramming techniques we ex-
ploited both to ease the generation of the macro data-flow graph and to
optimize at run-time the parallel execution of the macro data-flow blocks.

4.1.1 Metaprogramming

Code-generating programs are sometimes called metaprograms; writing
such programs is called metaprogramming. Metaprograms do part of the
work during compile-time that is otherwise done at run-time. Compile-
time metaprogramming exploits information available at compile-time to
generate temporary source code, which is merged by the compiler with
the rest of the source code and then compiled. The goal of run-time
metaprogramming, instead, is to achieve real-time code optimizations
transforming or adapting the code whenever some information becomes
available.

Compile-time metaprogramming

The most common metaprogramming tool is a compiler, which allows a
programmer to write a relatively short program in a high-level language
and uses it to write an equivalent assembly language or machine lan-
guage program. Another still fairly common example of metaprogram-
ming might be found in the use of Template Metaprogramming. Tem-
plate metaprogramming is a metaprogramming technique in which tem-
plates are used by a compiler to generate temporary source code, which
is merged by the compiler with the rest of the source code and then com-
piled. The output of these templates includes compile-time constants,
data structures, and complete functions. The use of templates can be
thought of as compile-time execution. The technique is used by a number
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of languages, the most well-known being C++, but also D, Eiffel, Haskell,
ML and XL. The use of templates as a metaprogramming technique re-
quires two distinct operations: a template must be defined, and a de-
fined template must be instantiated. The template definition describes the
generic form of the generated source code, and the instantiation causes
a specific set of source code to be generated from the generic form in
the template. Template metaprogramming is generally Turing-complete,
meaning that any computation expressible by a computer program can
be computed, in some form, by a template metaprogram. Templates
are different from macros. A macro, which is also a compile-time lan-
guage feature, generates code in-line using text manipulation and sub-
stitution. Macro systems often have limited compile-time process flow
abilities and usually lack awareness of the semantics and type system
of their companion language (an exception should be made with Lisp’s
macros, which are written in Lisp itself, and is not a simple text manipu-
lation and substitution). Template metaprograms have no mutable vari-
ables that is, no variable can change value once it has been initialized,
therefore template metaprogramming can be seen as a form of functional
programming. In fact, many template implementations only implement
flow control through recursion. Some common reasons to use templates
is to implement generic programming (avoiding sections of code which
are similar except for some minor variations) and especially to perform
automatic compile-time optimization such as doing something once at
compile-time rather than every time the program is run, for instance hav-
ing the compiler unroll loops to eliminate jumps and loop count decre-
ments whenever the program is executed. The main problem of this ap-
proach is the inefficient exploitation of the executing environment. In-
deed to guarantee the code portability such optimizations are done in a
generic way, for instance without exploiting specific CPU extension like
SSE or 3DNow. To overwork it the application should be re-compiled
once all the running architecture details are known.
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Run-time metaprogramming

Run-time metaprogramming points at either the generation of programs
specialized with respect to the running architecture or the adaptation of
programs with respect to additional information provided by program-
mers, e.g. non-functional requirements. The metaprogramming related
information (metadata) is processed by the metaprogramming run-time
support. It exploits both such metadata and the environmental informa-
tion to transforms the original code into an optimized one. Nevertheless,
this solution presents a major problem: the re-compilation overhead. In-
deed, re-compile the whole application from scratch on each machine it
is moved for execution is computationally expansive. A viable solution
consists in writing the applications using bytecode based languages, like
Java and .NET. Indeed, their compilers do not translate the program into
target machine language but translate it into an intermediate language
(IL). The IL has greater expressiveness than the machine and the assem-
bly languages and can be transformed in a machine-level program paying
a small overhead. Furthermore, there are other advantages in implement-
ing application, especially the distributed ones, exploiting a virtual ma-
chine based language: e.g. the possibility to run programs across differ-
ent platforms at the only cost of porting the execution environment and
to achieve better security (the execution engine mediates all accesses to
resources made by programs verifying that the system can not be com-
promised by the running application).

In the past, other programming languages with the same architecture,
essentially p-code, have been proposed (see for instance the introduction
of (86)) but Java has been the first to have a huge impact on programming
mainstream. Java approach has been recognized as successful, indeed,
since the 2002 also Microsoft introduced their virtual-machine based pro-
gramming languages. They are based on the Common Language Infras-
tructure (CLI). The core of CLI is the virtual execution system also known
as Common Language Runtime(CLR). Both JVM (91) and CLR (7) im-
plement a multi-threaded stack-based virtual machine, that offers many
services such as dynamic loading, garbage collection, clearly the Just In
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Time (JIT) compilation and above all a noteworthy reflection support.
Features like garbage collection raise the programming abstraction level
whereas dynamic loading, JIT compilation and a native multi-thread sup-
port simplify the task of programming distributed and concurrent appli-
cations. Reflection support enables programs to read its own metadata. A
program reflecting on itself extract metadata (from its representation ex-
pressed in terms of intermediate language) and using that metadata can
modify its own behavior. Reflection support is useful to inspect the struc-
ture of types, to access fields and even to choose dynamically the methods
to invoke. Exploiting reflection support programs can change their struc-
ture and their (byte) code. The reflection support can be provided by the
run-time system at different levels of complexity (36):

• Introspection : the program can access to a representation of its own
internal state. This support may range from knowing the type of
values at run-time to having access to a representation of the whole
source program.

• Intercession : the representation of the state of the program can be
changed at run-time. This may include the set of types used, values
and the source code.

Both introspection and intercession require a mechanism, called reifica-
tion, to expose the execution state of a program as data. The reification
mechanism exposes an abstraction of some elements of the execution en-
vironment. These elements may include programming abstractions such
as types or source code; they may also include other elements, like the
evaluation stack (as in 3-LISP (105)), that are not modeled by the lan-
guage. For compiled languages it could be harder to reflect elements of
the source language: the object program runs on a machine that usually
is far from the abstract machine of the source language. Enabling RTTI
(Runtime Type Identification, a support that allows a program to have
exact information about type of objects at run-time) in C++, for instance,
requires that the run-time support contain additional code to keep track
of types at run-time. Besides, the programmer would expect abstractions
compatible with the structure of the programming language abstract ma-
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chine (unless he is interested in manipulating the state of the machine that
is target of the compilation).

Custom metadata management

The metadata readable through the advanced reflection supports are both
the information about types (class, method, field names an hierarchies)
and about additional, non-functional attributes. A straightforward ex-
ample is the Java serialization architecture: the programmer can declare
the instances of a serializable class simply by implementing the Serializ-
able interface, which in fact is an empty interface. Thus, two types that
differ only for the implementation of the Serializable interface are indis-
tinguishable from the execution (functional) standpoint. Besides, the seri-
alization of the instances of non-serializable types will not be allowed by
the serialization support. Clearly, this “interface-based” mechanism for
the metadata specification is not flexible and can not be expressed at more
fine level, for instance at method-level. This limitation leads to the devel-
opment of Java annotations (8). A Java annotation is a special syntax that
adds metadata to Java source code. Annotations can be added to program
elements such as classes, methods, fields, parameters, local variables, and
packages. Unlike Javadoc tags, Java annotations are reflective in that they
may be retained by the Java VM and made retrievable at run-time. The
possibility to retain and retrieve this information at run-time makes the
“real” difference between the Java annotations and the earlier annotation
based approach. For instance, the OpenMP pragma based approach or
the HPF annotation or consisting in simple directives to compiler driving
the data decomposition optimization, approaches that are not designed
to work with non-shared memory architectures.

The exploitation of Java annotations as a way to embed non-functional
information is at the base of Attribute Oriented Programming (98; 114).
Attribute Oriented Programmers use Java annotations to mark program
elements (e.g. classes and methods) to indicate that they maintain the
application-specific or domain-specific semantics. As an example, some
programmers may define a “logging” attribute and associate it with a
method to indicate the method should implement a logging function,
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while other programmers may define a “web service” attribute and asso-
ciate it with a class to indicate the class should be implemented as a web
service. Attributes aim the separation of concerns: application’s core logic
(or business logic) are clearly distinguished from application-specific or
domain-specific semantics (e.g. logging and web service functions). By
hiding the implementation details of those semantics from program code,
attributes increase the level of programming abstraction and reduce pro-
gramming complexity. The program elements associated with attributes
are transformed in order to fit the programmers’ requirements.

The effectiveness of the approach is demonstrated by its rapidly dif-
fusion, indeed some very popular and widely used programming frame-
works (70; 79) adopted the Attribute Oriented Programming approach as
a way to embed programmers’ hints and requirements. There are also
some scientific works exploiting annotations information to drive the ap-
plication run-time transformation, for instance in (45) authors propose a
way to transform an annotated application in a multithreaded one and
(97) describes a way to transform a POJO in a Fractal component simply
transforming the code according to the programmer annotations.

In Section 4.2 we describe how we exploited the Attribute Oriented
Programming approach in our Parallel Abstraction Layer (PAL). PAL is
a metaprogramming engine able to dynamically restructure parallel ap-
plications depending both on the information gathered at run-time about
the running platform and on the hints specified inside the source code by
programmers.

A slightly different approach that aims to a clear separation between
the application business code and application management information
is the Aspect Oriented Programming (AOP) model. Whereas the At-
tribute Oriented Programming model separates the management code
from the business one exploiting a language support, Aspect Oriented
Programming model requires programmers provide additional files con-
taining a set of rules which describe the actions to perform when the
application execution flow reach certain points. The main actions per-
formed consist in code injection and code substitution. Some scientific
works exploit AOP for code transformations. Sobral et al. discussed the
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usage of AOP to support modular computing (53; 106; 107). They use
AOP techniques to separately solve partition, concurrency and distribu-
tion problems and eventually show how the related aspects can be used
to provide a (kernel for a) general purpose, modular parallel computing
framework. Other authors (33) demonstrated that AOP can be efficiently
exploited in conjunction with components and patterns to derive parallel
applications for distributed memory systems. It highly relies on the abil-
ity of the programmer to find out the right places to exploit aspects. In
(78) another approach exploiting aspects to parallelize Java applications
from the Java Grande forum using AspectJ is presented. Good results are
shown in the paper, but the procedure used to exploit aspects requires
entering the program details to find out possibilities for parallelization.

In the Sections 4.3 and 4.4 we describe how we integrated the AOP
approach in our next generation muskel. In particular, how we exploited
the AspectJ (6) tool to manage the generation of macro data-flow blocks,
aimed at the parallelization of workflow computations.

Both the PAL and the AspectJ integration with muskel approaches
have been published, respectively in (61) and (60). In both the cases the
authors collectively contributed to the paper.

4.2 The PAL experience

The Parallel Abstraction Layer is a general-purpose approach for imple-
menting simple parallel applications that does not require complex ap-
plication structuring by programmers. Programmers are only required to
insert, in the source code, some hints, eventually exploited by the PAL
run-time support to transform the application code. The transformation
is aimed at in enforcing an efficient parallel (even distributed) execution
of the application. The general idea is outlined in Figure 17. Program-
mers’ hints consist in non-functional requirements, namely, requirements
which specify criteria that can be used to judge the operation of a system,
rather than specific behaviors. Examples of non-functional requirements
includes: Efficiency, Price, Hardware Reliability, Software and tools avail-
ability and Parallelism degree. In PAL implementation they are speci-
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Figure 17: PAL approach overview

fied through the annotation mechanisms provided by Java (8). The PAL
run-time support exploits the information conveyed in the annotations to
transform the original program in a parallel one. The transformed pro-
gram is optimized with respect to the target parallel/distributed archi-
tecture.

Programmers are required to give some kind of “parallel structure” to
the code directly at the source code level, as it happens in the algorithmic
skeleton case. In our PAL implementation it can be done exploiting the
java annotation mechanism. For instance, the farm semantics is obtained
indicating which “parts” of code should be replicated and executed in
parallel. A “part” is intended to be a piece of side-effect free code which
input and output data are well-defined. Programmers are in charge of
ensuring the “parts” satisfy these requirements. Each java code “part” is
transformed by the PAL in a macro data-flow block that can be dispatched
for execution.

PAL has a multi-level software architecture. It is depicted in Figure
19. On top, there is PAL frontend, namely the annotations provided by
PAL and the host language, Java in our PAL implementation. In the bot-
tom layer, there are the adapters and the information system: the formers
foster PAL during code transformation instructing it about how to struc-
ture the application code to make it parallel and compliant with a specific
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public class Mandelbrot{
    public void paint(GraphicsContext gcont) {
        // computing image size
        ...

Vector<PFFuture<Vector<Vector<Integer>>>> man = 
new Vector<PFFuture<Vector<Vector<Integer>>>>(numOfLines);

for(int i=0;i<numOfLines;i++)
man.add(createLines(...);

        ...
  }
  
  @Parallel(parDegree=16)
  public PFFuture<Vector<Vector<Integer>>> createLines (params ...){

  
  Vector<Vector<Integer>> v = new Vector<Vector<Integer>>();
  

          // compute points ...
  for (int i = 0; i<cls; i++) { 

  ...
          v.add(point);

  }
  return new PFFuture<Vector<Vector<Integer>>>(v);

  }
}

public class Main {
...
public static void main(String[] args) {

Class [] toBeTransformed = new Class[2];
                toBeTransformed[0] = Main.class;

toBeTransformed[1] = Mandelbrot.class;
PAL.transform(toBeTransformed,args);
Mandelbrot mBrot = new Mandelbrot(); 

                 BufferedImage bi = new BufferedImage(2400,1600,TYPE_INT_BGR);
mBrot.paint(GraphicsEnvironment.getLocalGraphicsEnvironment().createGraphics(bi));

}
}

Figure 18: Sample code using PAL

parallel framework. The latter is a set of tools aimed at run-time informa-
tion gathering. Finally, the middle layer is the real metaprogramming en-
gine that uses the information gathered in order to decide which adapter
exploit among the available to enforce the non-functional requirements
expressed by the programmers through annotations.

Compared with traditional skeletal environments, PAL presents three
additional advantages.
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Figure 19: PAL architecture

• First, annotations can be ignored and the semantics of the original
sequential code is preserved. This means that the programmers’
application code can be run through a classical sequential compiler
(or interpreter) suite and debugged using normal debugging tools.

• Second, annotations are processed at run-time, typically exploiting
reflection properties of the hosting language. As a consequence,
while handling annotations, a bunch of knowledge can be exploited
which is not available at compile-time (kind of machines at hand,
kind of interconnection network, etc.) and this can lead to more
efficient parallel implementations of the user application.

• Third, the knowledge concerning the kind of target architecture can
be exploited leading to radically diverse implementation of the very
same user code. As an example, if the run-time can figure out that
the target architecture where the program is running happens to
be a grid, it can transform the code in such a way possibly coarser
grain parallelism is exploited. On the other hand, in case the run-
time figures out that user asked to execute the code on a SMP target,
a more efficient, possibly finer grain, multithreaded version of the
code can be produced as the result of the annotation handling.
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PAL enforces code optimizations via automatic application restruc-
turing in order to exploit all the available application parallelism with
respect to programmer’s annotations (non-functional application require-
ments). The transformation process is done at run-time, which is at the
time we have the information we need to optimize the restructuring pro-
cess with respect to the available parallel tools and underlying resources.
The code is transformed at bytecode level thus, it does not need to re-
compile the application source code on the target architecture. Hence, the
transformation introduces only a small overhead for the code transforma-
tions.

The generative (54) metaprogramming engine of PAL gathers at run-
time information on available parallel tools and computational resources.
Then, it analyzes the bytecode looking for programmer annotations (non-
functional requirements) and transforms the annotated original code to
an optimized, parallel one. The structure of the transformed bytecode
depends on the selected parallel framework (clearly subjected to adapters
availability) and on the presence and/or value of some non-functional
requirements.

PAL exploits the available parallelism by asynchronously executing
parts of the original code. The parts to be executed asynchronously are
individuated by the annotations specified by programmers. In particular,
in Java the most natural choice consists in individuating methods calls
as the parts to be asynchronously executed. Asynchronous execution of
method code is based on the concept of future (43; 44). When a method
is called asynchronously it immediately returns a future, that is a stub
“empty” object. The caller can then continue its own computations and
access to the future object content (e.g. calling its methods) just when
needed. If in the meanwhile the return value has already been computed,
the call to reify the future succeeds immediately, otherwise it blocks until
the actual return value is computed and then returns it.

In our PAL implementation, to indicate a method as “parallelizable”
PAL programmers have simply to put a proper @Parallel annotation en-
riched with non-functional requirements, such as the required parallelism
degree, on the line right before method declaration. Exploiting the an-
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notation mechanism allows to keep the PAL applications very similar to
normal sequential applications, actually. Hence, Programmers may sim-
ply run the application through standard Java tools to verify it is function-
ally correct. PAL autonomically performs at run-time activities aimed at
achieving the asynchronous and parallel execution of the PAL-annotated
methods and at managing any consistency related problems, without any
further programmer intervention. The PAL approach also avoids the pro-
liferation of source files and classes, that is a quite common situation in
framework based programming, as it works transforming bytecode. Un-
fortunately, it raises several problems related to data sharing manage-
ment. As an example, methods annotated with a @Parallel should not
access class fields: they may only access their own parameters and the
local method variables. This is due to the impossibility to intercept all the
accesses to non-private class fields. This limitation prevent the usage of
static class fields as a way for sharing data among different instances of
annotated method calls, making more complex the development of ap-
plication in which the computational resources running the different an-
notated method calls need to exchange data during the method compu-
tation. It is worth to note that this is not a limitation of the approach but
depends by the Java language. Indeed having a proper language support
for detecting public field changes it would not be difficult to provide a
proper annotation for managing the remote accesses to fields.

4.2.1 PAL: implementation details

We implemented a PAL prototype in Java 1.5, as Java provides a manage-
able intermediate language (Java bytecode (110)) and natively supports
code annotations, since version 1.5. Furthermore, it owns all the prop-
erties needed by our approach (e.g. type safety and security). For this
implementation we developed two distinct adapters. One for transform-
ing the bytecode in a multithreaded one and another to transform the
bytecode making it compliant with JJPF. In order to do this our PAL im-
plementation makes better usage of ASM (40): a Java bytecode manipu-
lation framework.
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The current PAL prototype accepts only one kind of non-functional at-
tribute that can be specified with the @Parallel annotation: parDegree. It
denotes the number of processing elements to be used for the method ex-
ecution. PAL uses such information to make a choice between the multi-
threaded and JJPF adapter. This choice is driven by the number of proces-
sors/cores available on the host machine: if the machine owns a sufficient
number of processors the annotated bytecode directly compiled from user
code is transformed in a semantically equivalent multithreaded version.
Otherwise, PAL chooses to transform the compiled bytecode in a seman-
tically equivalent JJPF version that uses several networked machines to
execute the program. PAL basically transforms code in such a way the
annotated methods can be computed asynchronously. The original code
is “adapted” using an adapter in order to be compliant with the parallel
framework associated with the adapter. In our implementation, where
the only available adapter for distributed computations is the JJPF one,
the methods are adapted to be run on the remote JJPF servers displaced
onto the processing elements. Conversely, the main code invoking the
@Parallel methods is used to implement the “client” code, i.e. the appli-
cation the user runs on its own local machine. This application eventu-
ally will interact with the remote JJPF servers according to proper JJPF
mechanisms and protocols. Method call parameters, the input data for
the code to be executed asynchronously, are packaged in a “task”. When
a server receives a task to be computed, it removes its server-descriptor
from the processing elements available for JJPF. When the task compu-
tation is completed the server re-inserts its descriptor from the available
ones. In other words, when a annotated method is called an empty future
is immediately returned, a “task” is generated and it is inserted into the
JJPF queue; eventually it is sent to one among the available processing ele-
ment, which remove itself from the available resources, computes the task
and returns the result that JJPF finally put inside the proper future. This
implementation schema looks like very close to a classical master/slave
implementation.

We could have developed an adapter for other parallel programming
frameworks as targets. As an example, we could have used the Globus
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toolkit. However, JJPF is very compact and required a slightly more com-
pact amount of code to be targeted, with respect to the Globus or other
grid middleware frameworks. As the principles driving the generation of
the parallel code are the same both using JJPF and other grid middleware
frameworks, we preferred JJPF to be able to implement a proof-of-concept
adapter prototype in a very short time.

As we already stated before, our current PAL prototype has some lim-
itations, in particular, the only parameter passing semantics available for
annotated methods is the deep-copy one, and the program sequential se-
mantics is not guaranteed if the class fields are accessed from inside the
PAL-annotated methods.

Figure 18 shows an example of PAL prototype usage, namely a pro-
gram computing the Mandelbrot set. The Mandelbrot class uses a @Par-
allel annotation to state that all the createLines calls should be computed
in parallel, with a parallelism degree equal to 16. Observe that, due to
some Java limitations (see below), the programmer must specify PFFu-
ture as return type, and consequently return an object of this type. PFFu-
ture is a template defined by the PAL framework. It represents a container
needed to enable the future mechanism. The type specified as argument
is the original method return type. Initially, we tried to have to a more
transparent mechanism for the future implementation, without any ex-
plicit Future declaration. It consisted in the run-time substitution of the
return type with a PAL-type inheriting from the original one. In our idea,
the PAL-type would have filtered any original type dereferentiation fol-
lowing the wait-by-necessity (42) semantics. Unfortunately, we had to face
two Java limitations that limit the current prototype to the current solu-
tion. These limitations regard the impossibility to extend some widely
used Java BCL classes (String, Integer,...) because they are declared final,
and the impossibility to intercept all non-private class field accesses.

In the Main class, the programmer just asks to transform the Main
class and the Mandelbrot ones with PAL, that is, to process the relevant
PAL annotations and to produce an executable IL which exploits paral-
lelism according to the features (hardware and software) of the target ar-
chitecture where the Main itself is being run.
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4.2.2 Experimental results

To validate the PAL approach we ran some experiments with the cur-
rent prototype we developed. In particular, the conducted experiments
were aimed at evaluating the effectiveness of PAL approach. It has been
evaluated measuring the overhead caused by raising the programming
abstraction by means of PAL.

We ran tests for each adapter developed, i.e. both for the multithread
adapter and for the JJPF one. In other words, the tests were covering
parallel transformations suiting both multiprocessor and cluster architec-
tures. In the former case, we used, as computing resource for the test-
bed, a hyper-threading bi-processors workstation (Dual Intel Xeon 2Ghz,
Linux kernel 2.6). In the latter case, instead, we ran the transformed ap-
plication on a blade cluster (24 machines single PentiumIII-800Mhz pro-
cessor with multiple Fast Ethernet network, Linux kernel 2.4). In both
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Figure 20: Mandelbrot computation: efficiency comparison with differ-
ent image resolution, processing element number and task computational
weight.

cases, our test application was a fractal image generator, which computes

104



sections of the Mandelbrot set. The Mandelbrot set is a set of points in
the complex plane, the boundary of which forms a fractal. Mathemati-
cally, the Mandelbrot set can be defined as the set of complex c-values for
which the orbit of 0 under iteration of the complex quadratic polynomial
xn+1 = xn2 +c remains bounded. A complex number, c, is in the Mandel-
brot set if, when starting with x0 = 0 and applying the iteration repeat-
edly, the absolute value of xn never exceeds a certain number (that num-
ber depends on c) however large n gets. When computed and graphed on
the complex plane, the Mandelbrot Set has an elaborate boundary, which
does not simplify at any given magnification. This qualifies the boundary
as a fractal. We picked up Mandelbrot because it is a very popular bench-
mark for embarrassingly parallel computation. PAL addresses exactly
these kinds of computations, as it only allows executing remotely meth-
ods not accessing shared (static) variables nor having any kind of side
effects. On the one hand, this obviously represents a limitation, as PAL
cannot compete, as an example, with other approaches supporting plain
loop parallelization. On the other hand, huge amounts of embarrassingly
parallel applications are executed on clusters, workstation networks and
grids. Most of times, the implementation of these applications requires a
significant programming effort, despite being “easy” embarrassingly par-
allel, far more consistent than the effort required to execute the same kind
of application exploiting PAL.

To study in more detail the behavior of the transformed, parallel, ver-
sion of the Mandelbrot application in several contexts, we ran the fractal
generator setting different resolutions (600x400, 1200x800 and 2400x1600)
and task computational weights, starting from 1 up to 40 lines at time.
For each test-bed the total number of lines were fixed, hence when the
task size (number of lines to compute) increases, the total number of tasks
decreases.

The Mandelbrot application, when transformed exploiting the multi-
thread adapter, has been executed only with parDegree parameter set to
1 or 2 (we used a bi-processor machine for the test-bed). Nevertheless, the
multithreaded experiments achieved promising results, as the registered
efficiency with parallel degree 2 is very close to the ideal one, for all the
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setting combinations (resolution and compute lines). Since in a multicore
solution we have a lower communication impact than in a COW or grid
solution, we can point out that this performance should be easily main-
tained with symmetric multiprocessors even with larger (with four, eight
or more cores) processing elements.

After the test with the multithread adapter, we tested also the JJPF one
for distributed architectures. We used the very same Mandelbrot source
code. PAL transformed it exploiting the JJPF adapter in order to make
it able to be executed on distributed workstation network. In this case,
we achieved performances definitely close to the ones we achieved with
hand written JJPF code (see Figure 20). The Figure shows the result of
the experiments with an image resolution of 2400x1600 (other results ob-
tained using different image resolutions gave comparable results) when
a different number of processing elements are used (i.e. different values
specified to the @Parallel(parDegree=...) annotation).

These results demonstrate that PAL performance strictly depends on
the parallel tool targeted by the PAL IL transformation techniques. Actu-
ally, the overhead introduced by PAL is negligible.

4.2.3 Learning from PAL experience

Designing, developing and then testing PAL we are taught a lesson by
exploiting generative metaprogramming techniques coupled with pro-
grammers high-level hints specified at source code level, it is possible
to transform a java program that own some properties, enriched with
some proper annotations, in a parallel program. The parallelization is
obtained through the asynchronous and parallel execution of annotated
methods. Annotated method code is transformed in a macro data-flow
block that can be dispatched to be executed on the available computa-
tional resources. This process executed at run-time directly at intermedi-
ate language level, allows to exploit the information available to paral-
lelize the applications with respect both to the parallel tools available on
the target execution environment and to the programmer supplied non-
functional requirements. A run-time transformation allows to hide most
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of parallelization issues. The results we obtained are very encouraging
and show that the overhead introduced by PAL is negligible. Neverthe-
less, the PAL prototype we developed has some limitations. The non-
functional requirements are limited to the possibility to indicate the paral-
lelism degree, the parameter passing semantic to PAL-annotated method
is limited to deep-copy and the class fields are not accessible from PAL-
annotated methods. Furthermore, the programmer has to include an ex-
plicit dereferentiation of objects returned by PAL-annotated methods. Fi-
nally, current PAL prototype allows only very simple forms of paralleliza-
tion.

In a sense, PAL has been a proof of concept demonstrating the effec-
tiveness of the approach. With this awareness in mind, we decided to
exploit the gained experience to integrate some elements of the PAL ap-
proach in our modified muskel framework. The goal is to obtain a frame-
work allowing programmers to develop customizable parallel structured
applications which “parts” can be transformed in macro data-flow blocks
optimized at run-time according to programmers directives and available
hardware and software resources.

4.3 Metaprogramming muskel

PAL proved that, given the existence of a proper metaprogramming run-
time support, annotations are a handy way both to indicate which parts
of a program must run in parallel and to express non-functional require-
ments directly in the source code. Such information given as input to
PAL metaprogramming engine can be actually exploited to optimize the
original annotated code with respect to the running platform and the pro-
grammers’ non-functional specifications. Therefore, we decided to apply
the main features of PAL approach to our modified muskel implemen-
tation. Actually, adapting them to muskel we changed a little bit the
approach. Such a change is due to a few motivations. First of all because
muskel provides per se a distributed macro data-flow executor whereas
PAL exploits external tools for distributed program execution. Moreover,
we would like to have a more flexible mechanism for macro data-flow

107



block generation and management. Finally, we would like to exploit a
standard tool for run-time code transformation instead of using ad-hoc
tools. As a consequence we decided to use integrate in muskel the AOP
model and in particular the AspectJ framework.

The first step in this direction was exploiting AspectJ to implement
aspect driven program normalization in muskel. We already introduced
normal form and code normalization in Section 2.2.6. Let us to recall
it briefly. Normalization consists in transforming an arbitrary muskel

program, whose structure is a generic skeleton tree, into a new, equiva-
lent one, whose parallel structure is a farm with a worker made up of the
sequential composition of the sequential skeletons appearing in the orig-
inal skeleton tree taken left to right. This second program is the skeleton
program normal form and happens to perform better (with respect to the
service time) than the original one in the general case and in the same
way in the worst case.

As an example, the code reported in the previous chapter in Figure 11
can be transformed into the equivalent normal form code:

Skeleton main = new Farm(new Seq(f,g));

where Seq is basically a pipeline whose stages are executed sequentially
on a single processor.

Code normalization can be obtained explicitly inserting statements in
the source code. This means that programmers must change the source
code to use the normal form in place of the non-normal form version of
the same program. Exploiting AspectJ we defined a proper aspect dealing
with normal form transformation by defining a pointcut on the execution
of the setProgram Manager method and associating to the pointcut the
action performing normal form transformation on the source code in the
aspect, such as the one of Figure 22. As a consequence, the programmers
can decide whether to use the original or the normal form version of the
program just picking up the standard Java compiler or the AspectJ one.
The fact the program is left unchanged means the programmer may de-
bug the original bug and have the normal form one debugged too as a
consequence, provided the AOP code in the normal form aspect is cor-
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public aspect Normalize {

public boolean ContractSpecified = false;
public boolean normalized = false;
// contract is an integer, to simplify ... 
public int contract = 0;

pointcut calledContract(int i): call(public void Manager.setContract(int)) && args(i);

void around(int i): calledContract(i){
ContractSpecified = true;
contract = i;
proceed(i);

}

pointcut callSetProgram(Skeleton c): call(public void Manager.setProgram(Skeleton)) && args(c);

void around(Skeleton c):
        callSetProgram(c) {

normalized = true;
proceed(new NormalForm(c));

}
        
pointcut callEval(Manager m) : call(public void Manager.eval()) && target(m);

before(Manager m):callEval(m){
if(ContractSpecified)

if(normalized) 
m.setContract(Manager.NormalizeContract(contract));

else 
m.setContract(Manager.DefaultNormalizedContract);

}
}

}

Figure 21: AspectJ code handling performance contracts in muskel.

rect. Moreover, exploiting aspects as discussed above, we handled also
related features by means of proper aspects. In fact, in case the program-
mer provided a performance contract (a parallelism degree, in the simpler
case) and then used the AspectJ compiler to ask normal form execution
of the program, it turns out to be quite natural imagine a further aspect
handling the performance contract consequently. Figure 21 shows the
AspectJ aspect handling this aspect. In this case, contracts are stored as
soon as they have been issued by the programmer, with the first pointcut,
then, in when normalization has been required (second pointcut) and pro-
gram parallel evaluation is required, the contract is handled consequently
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public aspect Normalize {

pointcut callSetProgram(Skeleton c):
call(public void Manager.setProgram(Skeleton)) && args(c);

    

    void around(Skeleton c)
        : callSetProgram(c) {

    proceed(new NormalForm(c));
    }
    

}

Figure 22: AspectJ code modeling normal form in muskel.

(third pointcut), that is, it is either left unchanged or a new contract is de-
rived from the original one according to some normal form related pro-
cedure.

The second step consisted in testing the integration of muskel with
AspectJ to in a more complex scenario. Hence, we exploited the aspect
oriented programming support integrated in muskel in order to develop
workflows which structure and processing are optimized at run-time.

4.4 Workflows with muskel

Workflows represents a popular programming model for grid applica-
tions (74). In a workflow, programmers express the data dependencies
that incurs among a set of blocks, possibly using a DAG. Each block pro-
cesses input data to produce output data. Workflow schedulers arrange
the computations for grid execution in such a way

• all the parallelism implicitly defined through the (absence of) de-
pendencies in the DAG is exploited, and

• available grid resources (processing elements) are efficiently used.

In a sense, a programming model that eases the development of efficient
workflow applications can be successfully exploited for the development
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of many grid applications. For this reason, we conceived an approach
aimed at the implementation of workflows on top of the muskel dis-
tributed macro data-flow interpreter. We took into account the execution
of workflows on a set of input data items. The set of input data items rep-
resents the program input stream. Each item on that stream will be sub-
mitted to a full workflow computation. The results of that computation
will appear as a data items onto the program output stream. Usually the
workflows considered in grids are made of nodes that are computation-
ally complex. Possibly parallel applications processing data contained in
one or more input files to produce data in one or more output files (74).
We considered a very simple class of workflows: those whose DAG nodes
are Java “functions” processing a generic Object input parameters to pro-
duce an Object output results.

4.4.1 Aspects to implement workflows

As already stated, we considered workflows processing stream of input
data to produce stream of output data. Actually, these are not classical
workflows. As discussed in the following, however, classical workflows
can be efficiently addressed as well as a side effect of the efficient im-
plementation of stream parallel workflows. This allows to express both
parallelism implicit in the workflow definition (and therefore exploited
within the computation of a single instance of the workflow) and stream
parallelism (parallelism among distinct instances of workflow computa-
tion, relative to independent input data items). In order to obtain a macro
data-flow graph from the workflow abstract code, we exploited the As-
pectJ AOP framework (84):

• Programmers express workflows as plain Java code, with the con-
straint the nodes of the workflow must be expressed using Com-
pute object calls.

• Programmers declare a Manager object passing it an Iterator pro-
viding the input tasks. The Manager object completely and trans-
parently takes care of implementing stream parallelism using the
muskel distributed macro data-flow interpreter.
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• AOP pointcuts and advices are used to intercept the calls to the
compute methods and to transform such calls into proper fireable
macro data-flow instructions submitted to the muskel distributed
data-flow interpreter.

Sample code used to model workflows is shown in Figure 23. The
right part of the Figure lists the Java code modeling the workflow graph-
ically depicted in the left part of the Figure. Multiple results are modeled
returning Vector objects and multiple input parameters are modeled with
a “vararg” compute method1.

F

G1 G2

H

  ...
  Vector resF = 
    (Vector) F.compute(in.elementAt(0));
  Object resG1 = 
    G1.compute(resF.elementAt(0));
  Object resG2 = 
    G2.compute(resF.elementAt(1),
               in.elementsAt(1));
  Object resH = 
    H.compute(resG1, resG2);
  ... 

Figure 23: Sample workflow (left) and relative Java code (right)

More in detail, the calls to compute methods are transformed into the
submission of a proper (already fireable) macro data-flow instruction to
the muskel distributed macro data-flow interpreter modified in such a
way a Future for the result is immediately returned. If one of the in-
put arguments of the compute call is a Future, the advice intercepting
the compute method call takes care of waiting for its actual value to be
computed before submitting the macro data-flow instruction to the inter-
preter.

As input Future actual values are only required by the advice right
before the workflow node is started, parallelism implicit in the workflow

1varargs have been introduced in Java 1.5 and allow to pass a variable number of argu-
ments (of the same type) to a method; the arguments are referred to in the method body as
array elements
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is correctly delegated to the underlying muskel interpreter. As an ex-
ample, consider the workflow of Figure 23. The functions G1 and G2
are evaluated (their evaluation is requested by the advice to muskel in-
terpreter) sequentially. However, as the first one immediately returns a
Future, the second one (also returning a Future) will eventually run in
parallel on a distinct remote processing element as outlined in Figure 24.
When the evaluation of the H node is requested, the advice intercept-
ing the request will realize two futures are passed as input parameters
and therefore it will wait before submitting the node evaluation request
to the muskel interpreter up to the moment the two actual values of
the “input” Futures are available. Overall, advices transforming calls to
compute methods into fireable macro data-flow instructions act as the
data-flow matching unit, according to classical data-flow jargon.

The approach suggested here to implement workflows on top of the
muskel macro data-flow interpreter presents at least two significant ad-
vantages:

• the whole, already existing, efficient and assessed muskel macro
data-flow interpreter structure is fully exploited. The muskel in-
terpreter takes completely care of ensuring load balancing, fault tol-
erance (w.r.t. remote resource faults) and security;

• programmers are only asked to express workflows with elementary
Java code, possibly spending some time wrapping workflow node
code in Compute objects and declaring a Manager object which is
used to supply input data, retrieve output data, control non func-
tional features (e.g. parallelism degree in the execution of the work-
flow) and to ask the evaluation of the workflow code.

• As in PAL, transformation can be easily disabled. This means that
the programmers’ application code can be run through a classical
sequential compiler/interpreter suite and debugged using normal
debugging tools.
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Figure 24: Transition diagram relative to the execution of part of the work-
flow of Figure 23.

4.4.2 Aspects with muskel: implementation details

In order to be able to express workflows, the programmer must write
one class per workflow node. The class has to implement the Compute
interface, which is a very simple interface such as:

public interface Compute extends Serializable{
public Object compute(Object... params);

}

The compute method is assumed to compute the workflow node re-
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sults (the returned Object) out of the input parameters params. Then the
workflow can be described in a class implementing the Workflow inter-
face, which is defined as follows:

public interface Workflow {
public Object doWorkflow(Object param);

}

As an example, a workflow can be described by the class:

public class WorkFlow1 implements Workflow {
public Object doWorkflow(Object task) {
Vector resF = (Vector) F.compute(((Vector)task).elementAt(0));
Object resG1 = G1.compute(resF.elementAt(0));
Object resG2 = G2.compute( resF.elementAt(1),

((Vector)task).elementAt(1) );
Object resH = H.compute(resG1, resG2);

return resH;
}

}

The code style here is quite close to the style used when programming
plain Java applications.

We capture the execution of the Compute calls in the workflow ex-
ploiting aspects. The pointcut is defined on the calls of the compute
method of any object implementing Compute:

pointcut computeRemotely(Object param[], itfs.Compute code) :
call(Object itfs.Compute.compute(Object ... )) &&
!within(execEngine.Engine) &&
args(param) && target(code) ;

The advice invoked on the pointcut is an around advice such as:

execEngine.Engine eng = new execEngine.Engine();

Future around(Object param[], itfs.Compute code)
:computeRemotely(param, code) {
for(int i=0; i<param.length; i++) {

// reifing each parameter right before call
if(param[i] instanceof Future) {

param[i] = ((Future) param[i]).getValue();
}

}
// deliver fireable instruction
Object future = eng.exec(codice, param);

// and return the corresponding Future object
return future;

}
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It arranges to collect the Compute class name and the input parame-
ters and creates a macro data-flow instruction, which is submitted to the
distributed muskel macro data-flow interpreter via the predefined exe-
cEngine object instance declared in the aspect class. Input tokens to the
macro data-flow instruction that are Future instances rather than plain
reified objects, are eventually reified on the fly within the advice. Eventu-
ally, a Future object is returned. It can be eventually used to retrieve the
actual data computed by the distributed interpreter during the compute
call. In particular, Future interface provides two methods: a getValue()
method to get the actual value of the Future, possibly waiting for the
completion of the corresponding computation, and a boolean isReady()
method to test whether the computation producing the actual value of
the Future is already terminated

As a whole, the procedure just described models an asynchronous ex-
ecution of the macro data-flow instructions implementing the workflow
nodes. It allows to fully exploit the parallelism intrinsic to the workflow,
by properly using Futures.

As already stated, we are interested not only in the exploitation of par-
allelism within the evaluation of a single workflow instance, but also in
exploiting the parallelism among different instances of workflows run on
distinct input data sets. In order to support stream parallelism, we pro-
vide the programmer with a StreamIterator manager. This manager takes
as parameters an Iterator (providing the input data sets to be processed
by the Workflow) and a Workflow. It provides a method to compute the
whole bunch of inputs, as well as a method to get an Iterator that can be
used to retrieve workflow results. Using the StreamIterator manager, the
main code relative to our example can therefore be expressed as follows:

public static void main(String[] args) {
// workflow to be used (userdef)
Workflow wf = new WorkFlow1();

// provide the input tasks via an iterator (userdef)
InTaskIterator intIt =

new InTaskIterator();

// declare the manager
Manager mgr = new StreamIterator(wf,intIt);

// start parallel computation
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mgr.go();

// get access to result iterator
Iterator resIt = mgr.getResultIterator();

// while there are more results ...
while(resIt.hasNext()) {

// get one and
Object result = resIt.next();

// process it (userdef)
...

}
}

The main task of the StreamIterator manager is to invoke execution of
the parameter Workflow instances on all the input data sets provided by
the Iterator. This is achieved exploiting a proper Thread pool and activat-
ing one thread in the pool for each independent workflow computation.
Then, the AOP procedure illustrated above intercepts the calls to com-
pute methods and arrange to run them in parallel through the muskel

distributed macro data-flow interpreter.

4.4.3 Experiments

In order to prove the effectiveness of the approach, we tested it making
some experiments on a distributed computing architecture (a network of
workstations, actually). We directly used Java (version 1.5) accessible via
plain secure shell (ssh/scp) rather than with other more sophisticated grid
middleware. It is worth to point out that the tests have not been con-
ducted to evaluate the scalability of plain muskel, that has actually al-
ready been demonstrated, as discussed in (58). Rather, the tests have been
performed in order to give an estimation of the overhead introduced by
aspectj transformations.

In fact, the only difference between plain muskel and the system pro-
posed here, able to execute workflows on top of muskel, lies in the way
the fireable instructions are provided to the distributed data-flow inter-
preter of muskel. Actually, in plain muskel, fireable instructions are
retrieved from a compiled representation of a data-flow graph. In par-
ticular, each time a new token arrives to a macro data-flow instruction in
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Figure 25: Efficiency of the muskel/aspect workflow prototype

the graph (either from the input stream or as the result of the distributed
computation of another macro data-flow instruction) the target data-flow
instruction is checked for “fireability” and, possibly, delivered to the dis-
tributed macro data-flow interpreter. The time spent is in the sub-micro
second range (only considering net time, not taking into account time
spent to copy parameters in memory during the interpreter call). When
executing workflows according to the approach discussed here, instead,
fireable instructions are generated by means of the aspectj tool. In partic-
ular, they come from the “advice” invoked on the “pointcut” intercepting
the compute calls. In order to estimate the overhead introduced by using
these Aspect Oriented Techniques we measured the time spent to inter-
cept the compute calls and to transform them in macro data-flow blocks.
The measurement results are shown in the following table (times are in
milliseconds):
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Average 23.09 Minimum 19
Standard deviation 3.01 Maximum 27

These values are relative to an Intel dual-core machine (2 GHz Core 2
Duo machine), running Mac OS/X 10.4, Java 1.5.0 07, AspectJ 1.5.4 with
AspectJ tools 1.4.2 and Eclipse 3.2.2. On the same machine, delivering a
fireable instruction to the macro data-flow interpreter with plain muskel

requires a time average of 0.004 milliseconds. The difference in the times
is not surprising: in the former case, we go through pure meta program-
ming tools and we “interpret” each call, while in the latter we use plain
(compiled) Java to handle each one of the calls.

Therefore, we can conclude the average 23 milliseconds represent the
pure overhead spent each time a new fireable instruction has to be com-
puted (i.e. each time one of the workflow Compute nodes is computed).
The time spent in Future reification (i.e. filling the object placeholder with
the computed value, once available), instead, is negligible (this not tak-
ing into account the time spent to wait for actual production of Future
values, of course). This allows us to conclude that the parallel execution
of workflows on top of muskel slightly increases the grain required to
achieve almost ideal scalability.

In fact, Figure 25 shows how with suitable grain of the workflow
nodes (i.e. of the Compute functions) efficiency close to the ideal one
is achieved.

4.5 Differences between the two approaches

As we already stated before, both PAL and AspectJ enriched muskel

(AEM) were conceived, designed and implemented to provide a proof-
of-concept of our metaprogramming approach to structured parallel pro-
gramming. Actually, they enforce code parallelization via a hints-driven
code transformation. Hints are provided by programmers in the form of
java annotations (PAL) and AspectJ rules AEM. Even if the two frame-
works attain the same idea, they are slightly different. The main differ-
ences between the two frameworks are:
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• In AEM there is a sharp-cut distinction between the “control” and
“business” code, actually contained in separate files, whereas with
PAL programmers write business code and annotations (that be-
haves as control code) inside the same file.

• PAL was conceived to exploit method-level parallelism: through
a simple program enrichment process, programmers choose which
Java methods-call should be transformed in asynchronous ones, i.e.
PAL allows to add parallelism to legacy java code with a minimal in-
tervention. Instead, in AEM programmers have to implement their
application as a workflow.

• PAL provides a fixed number of annotations (hence a very limited
number of action can be performed) that an adapter-based archi-
tecture exploits to transform bytecode at run-time. The transfor-
mation process depends, in a way, on the adapter used. In AEM
the code transformation policies implementation is based on As-
pectJ, the most widely diffused tool for aspect oriented program-
ming, which offers a rich set of mechanisms for customizing the
“aspectization” process. As a consequence, the programmers can
customize/optimize/change the transformation process by simply
modifying the aspects (without a direct code update).
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Summarizing the Chapter

In this Chapter we presented two results, about the exploitation of metapro-
gramming techniques in structured parallel programming environment. We ex-
ploited those techniques in order to generate and optimize at run-time macro
data-flow blocks without directly dealing with their low-level management. First
we presented a new technique for high-level parallel programming based on the
introduction of a Parallel Abstraction Layer (PAL). PAL does not introduce a
new parallel programming model, but actually exploits the programmer knowl-
edge provided through annotations to restructure at run-time the application,
hiding most of parallelization issues, once it notice the information about the run-
ning platform. This process is executed directly at intermediate language level.
This allows to have a portable code transformation mechanism without paying a
complete code recompilation for each change in the code. In order to have a proof-
of-concept of the approach we developed a PAL Java prototype and we used it to
perform some experiments. The results are very encouraging and show that the
overhead introduced by PAL is negligible, while keeping the programmer effort
to parallelize the code negligible. Then we presented the other result we obtained
integrating the AspectJ framework with our modified muskel. We described
how AOP techniques can be seamlessly used to transform a very basic kind of
workflows in such a way they can be executed on distributed target architectures
through the muskel macro data-flow interpreter. How AOP techniques al-
low to completely separate the concerns relative to parallelism exploitation and
application functional core. In particular, the same application code used to per-
form functional debugging on a single, sequential machine may be turned into
parallel code by adding aspects, compiling it through AspectJ and then running
it on the muskel run-time support. The way used to write workflow code is
quite basic Java programming. Workflow components must implement a simple
interface, and programmers are explicitly required to provide them as side effect
free sequential components. The experiments conducted show that the approach
is perfectly feasible and that actual speedups can be achieved provided that the
workflow nodes are medium to coarse grain.
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Chapter 5

Behavioural Skeletons

Chapter road-map In this chapter we present Behavioural Skeletons, an ap-
proach, we contribute to conceive and validate, aimed at providing programmers
with the ability to implement autonomic grid component-based applications that
completely take care of the parallelism exploitation details by simply instanti-
ating existing skeletons and by providing suitable, functional parameters. The
model has been specifically conceived to enable code reuse and dynamicity han-
dling. We start describing (Section 5.1) how component-based application can
ease the task of developing grid applications. Then we outline the Grid Compo-
nent Model (Section 5.2) with respect to its autonomic features. After we present
the Behavioural Skeletons model (Section 5.4), a set of noteworthy Behavioural
Skeletons (Section 5.5) and their implementation (Section 5.6). At the end of
chapter we describe a set of experiment we conducted to validate the Behavioural
Skeletons model (Section 5.7).

5.1 Components to simplify Grid programming

Developing grid applications is even more difficult than programming
traditional parallel applications. This is due to several factors as, the
heterogeneity of resources, their worldwide distribution, their dynamic
recruiting and releasing. Indeed, when programming Grid applications
neither the target platforms nor their status are fixed (82).
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As a consequence, grid applications need to dynamically adapt to the
features of the underlying architecture in order to be efficient and/or high
performance (19). In recent years, several research initiatives exploit-
ing component technology (52) have investigated the area of component
adaptation, i.e. the process of changing the component for use in different
contexts. This process can be either static or dynamic.

The basic use of static adaptation covers straightforward but popular
methodologies, such as copy-paste, and OO inheritance. A more advanced
usage covers the case in which adaptation happens at run-time. These
systems enable dynamically defined adaptation by allowing adaptations,
in the form of code, scripts or rules, to be added, removed or modified
at run-time (37). Among them is worth to distinguish the systems where
all possible adaptation cases have been specified at compile-time, but the
conditions determining the actual adaptation at any point in time can be
dynamically changed (23). Dynamically adaptable systems rely on a clear
separation of concerns between adaptation and application logic. This
approach has recently gained increased impetus in the grid community,
especially via its formalization in terms of the Autonomic Computing (AC)
paradigm (22; 24; 77). The AC term is emblematic of a vast hierarchy of
self-governing systems, many of which consist of many interacting, self-
governing components that in turn comprise a number of interacting,
self-governing components at the next level down (83). An autonomic
component will typically consist of one or more managed components
coupled with a single autonomic manager that controls them. To pursue
its goal, the manager may trigger an adaptation of the managed compo-
nents to react to a run-time change of application QoS requirements or to
the platform status.

In this regard, an assembly of self-managed components implements,
via their managers, a distributed algorithm that manages the entire appli-
cation. Several existing programming frameworks aim to ease this task
by providing a set of mechanisms to dynamically install reactive rules
within autonomic managers. These rules are typically specified as a col-
lection of when-event-if- cond-then-act clauses, where event is raised
by the monitoring of component internal or external activity (e.g. the
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component server interface received a request, and the platform running
a component exceeded a threshold load, respectively); cond is an expres-
sion over component internal attributes (e.g. component life-cycle status);
act represents an adaptation action (e.g. create, destroy a component,
wire, unwire components, notify events to another component’s man-
ager). Several programming frameworks implement variants of this gen-
eral idea, including ASSIST (19; 113), AutoMate (93), SAFRAN (66), and
finally the forthcoming CoreGrid Component Model (GCM) (52). The lat-
ter two are derived from a common ancestor, i.e. the Fractal hierarchical
component model (39). All the named frameworks, except SAFRAN, are
targeted to distributed applications on grids.

Though such programming frameworks considerably ease the devel-
opment of an autonomic application for the grid (to various degrees), they
rely fully on the application programmer’s expertise for the set-up of the
management code, which can be quite difficult to write since it may in-
volve the management of black-box components, and, notably, is tailored
for the particular component or assembly of them. As a result, the in-
troduction of dynamic adaptivity and self-management might enable the
management of grid dynamism, and uncertainty aspects but, at the same
time, decreases the component reuse potential since it further specializes
components with application specific management code.

From the point of view of issues to address for designing and devel-
oping next generation structured parallel programming systems, this is
a big problem. Indeed, if on the one hand making components adap-
tive addresses the issue of handling dynamicity (issue number VII), on
the other hand it impairs the code reuse (issue number V). In this chap-
ter we cope with this problem proposing Behavioural Skeletons as a novel
way to describe autonomic components in the GCM framework. We con-
tributed significantly to their conception, design and implementation to-
gether with other researchers, co-authored of the papers (16; 17) in which
we presented this model. My personal contribution has mainly concerned
the definition of the task farm Behavioural Skeleton as well as the imple-
mentation of that skeleton within GridCOMP.

Behavioural Skeletons aim to describe recurring patterns of compo-
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nent assemblies that can be (either statically or dynamically) equipped
with correct and effective management strategies with respect to a given
management goal. Behavioural Skeletons help the application designer
to i) design component assemblies that can be effectively reused, and ii)
cope with management complexity by providing a component with an
explicit context with respect to top-down design (i.e. component nest-
ing).

5.2 GCM: the Grid Component Model

GCM is a hierarchical component model explicitly designed to support
component-based autonomic applications in highly dynamic and hetero-
geneous distributed platforms, such as grids. It is currently under devel-
opment by the partners of the EU CoreGRID Network of Excellence1. A
companion EU STREP project, GridCOMP 2 is going to complete the de-
velopment of an open source implementation of GCM (preliminary ver-
sions are already available for download as embedded modules in the
ProActive middleware suite)3. GCM builds on the Fractal component
model (39) and exhibits three prominent features: hierarchical composi-
tion, collective interactions and autonomic management. We participate
to both the projects (CoreGrid & GridComp) and collaborate for the de-
sign and development of GCM, in particular in the context of autonomic
management. The full specification of GCM can be found in (52).

Hierarchical composition As in fractal, a GCM component is composed
of two main parts: the membrane and the content. The membrane is an
abstract entity that embodies the control behavior associated with a com-
ponent, including the mediation of incoming and outgoing invocations
of content entities. The content may include either the code directly im-
plementing functional component behavior (primitive) or other compo-
nents (composite). In the latter case, the included components are referred

1http://www.coregrid.net
2http://gridcomp.ercim.org
3http://www-sop.inria.fr/oasis/ProActive
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as the inner components. GCM components, as Fractal ones, can be hier-
archically nested to any level. Component nesting represents the imple-
mented by relationship. Composite components are first class citizens in
GCM and, once designed and implemented, they cannot be distinguished
from primitive, non-composite ones.

Collective interactions The Grid Component Model allows component
interactions to take place with several distinct mechanisms. In addition to
classical “RPC-like” use/provide ports (or client/server interfaces), GCM
allows data, stream and event ports to be used in component interaction.
Both static and dynamic wiring between dual interfaces is supported.
Each interface may expose several operations of different types. Further-
more, collective interaction patterns (communication mechanisms) are
also supported. In particular, composite components may benefit from
customizable one-to-many and many-to-one functional interfaces to dis-
tribute requests arriving to one component’s port to many inner compo-
nents and gather requests from many inner components to a single out-
going port.

Autonomic management Autonomic management aims to attack the
complexity which entangles the management of complex systems (as ap-
plications for Grids are) by equipping their parts with self-management
facilities (83). GCM is therefore assumed to provide several levels of au-
tonomic managers in components, that take care of the non-functional
features of the component programs. GCM components thus have two
kinds of interfaces: functional and non-functional ones. The functional
interfaces host all those ports concerned with implementation of the func-
tional features of the component. The non-functional interfaces host all
those ports needed to support the component management activity in
the implementation of the non-functional features, i.e. all those features
contributing to the efficiency of the component in obtaining the expected
(functional) results but not directly involved in result computation. Each
GCM component therefore contains an Autonomic Manager (AM), inter-
acting with other managers in other components via the component non-
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functional interfaces. The AM implements the autonomic cycle via a sim-
ple program based on the reactive rules described above. In this, the AM
leverages on component controllers for the event monitoring and the ex-
ecution of reconfiguration actions. In GCM, the latter controller is called
the Autonomic Behaviour Controller (ABC). This controller exposes server-
only non-functional interfaces, which can be accessed either from the AM
or an external component that logically surrogates the AM strategy. From
the point of view of autonomic features, the GCM components exhibiting
just the ABC are called passive, whereas the GCM components exhibiting
both the ABC and the AM are called active.

5.3 Describing Adaptive Applications

The architecture of a component-based application is usually described
via an ADL (Architecture Description Language) text, which enumerates
the components and describes their relationships via the used-by relation-
ship. In a hierarchical component model, such as the GCM, the ADL
describes also the implemented-by relationship, which represents the com-
ponent nesting.

However, the ADL supplies a static vision of an application, which
is not fully satisfactory for an application exhibiting autonomic behavior
since it may autonomously change behavior during its execution. Such
change may be of several types:

• Component lifecycle. Components can be started or stopped.

• Component relationships. The used-by and/or implemented-by rela-
tionships among components are changed. This may involve com-
ponent creation/destruction, and component wiring alteration.

• Component attributes. A refinement of the behavior of some compo-
nents (which does not involve structural changes) is required, usu-
ally over a pre-determined parametric functionality.

In the most general case, an autonomic application may evolve along
adaption steps that involve one or more changes belonging to these three
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classes. In this regard, the ADL just represents a snapshot of the launch
time configuration.

The evolution of a component is driven by its AM, which may request
management action with the AM at the next level up in order to deal
with management issues it cannot solve locally. Overall, it is a part of a
distributed system that cooperatively manages the entire application.

In the general case, the management code executing in the AM of a
component depends both on the component’s functional behavior and
on the goal of the management. The AM should also be able to cooper-
ate with other AMs, which are unknown at design time due to the nature
of component-based design. Currently, programming frameworks sup-
porting the AC paradigm (such as the ones mentioned in Section 5.1) just
provide mechanisms to implement management code. This approach has
several disadvantages, especially when applied to a hierarchical compo-
nent model:

• The management code is difficult to develop and to test since the
context in which it should work may be unknown.

• The management code is tailored to the particular instance of the
management elements (inner components), further restricting the
component reusability possible.

5.4 Behavioural Skeletons

Behavioural Skeletons aim to abstract parametric paradigms of the GCM
components assembly, each of them specialized to solve one or more man-
agement goals belonging to the classical AC classes, i.e. configuration,
optimization, healing and protection.

They represent a specialization of the algorithmic skeleton concept for
component management. Behavioural Skeletons, as algorithmic skele-
tons, represent patterns of parallel computations (which are expressed in
GCM as graphs of components), but in addition they exploit skeletons’
inherent semantics to design sound self-management schemes of parallel
components.
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As a byproduct, Behavioural Skeletons allow categorization of GCM
designers and programmers into three classes. They are, in increasing
degree of expertise and decreasing cardinality:

1. GCM users: they use Behavioural Skeletons together with their pre-
defined AM strategy. In many cases they should just instantiate
a skeleton with inner components, and get as result a composite
component exhibiting one or more self-management behaviors.

2. GCM expert users: they use Behavioural Skeletons overriding the
AM management strategy. However, the specialization does not in-
volve the ABC and thus does not require specific knowledge about
the GCM membrane implementation.

3. GCM skeleton designers: they introduce new Behavioural Skeletons
or classes of them. To this end, the design and development of a
brand new ABC might be required. This may involve the definition
of new interfaces for the ABC, the implementation of the ABC itself,
together with its wiring with other controllers, and the design and
wiring of new interceptors. Obviously, this requires quite a deep
knowledge of the particular GCM implementation.

Due to the hierarchical nature of GCM, Behavioural Skeletons can be
identified with a composite component with no loss of generality (identi-
fying skeletons as particular higher-order components (73)).

Since skeletons are fully-fledged GCM components, they can be wired
and nested via standard GCM mechanisms. From the implementation
viewpoint, a Behavioural Skeleton is a partially defined composite com-
ponent, i.e. a component with placeholders, which may be used to in-
stantiate the skeleton. As sketched in Figure 26, there are three classes of
placeholders:

1. The functional interfaces S and C that are GCM membrane con-
trollers (thus objects).

2. The AM that is a particular inner component. It includes the man-
agement plan, its goal, and exported non-functional interfaces.
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3. Inner component W, implementing the functional behavior.

The orchestration of the inner components is implicitly defined by the
skeleton type. In order to instantiate the skeleton, placeholders should be
filled with suitable entities. Observe that just entities in the former two
classes are skeleton specific. Indeed, the placeholders of the third class,
representing the inner components implementing the functional behav-
ior, are filled with user-defined components. The entities part of the first
two classes characterize the composite component as a higher order one
orchestrating the entities of the third class; like traditional skeletons are
higher order functions taking as parameter user specified functions.

Behavioural Skeletons usage helps designers in two main ways. First,
the application designer benefits from a library of skeletons, each of them
carrying several pre-defined, efficient self-management strategies. Then,
the component/application designer is provided with a framework that
helps both the design of new skeletons and their implementation.

In both cases two features of Behavioural Skeletons are exploited: on
the one hand, the skeletons exhibit an explicit higher-order functional se-
mantics that delimits the skeleton usage and definition domain. On the
other hand, the skeletons describe parametric interaction patterns and
can be designed in such a way that parameters affect non-functional be-
havior but are invariant for functional behavior.

5.5 A Basic Set of Behavioural Skeletons

Here we present a basic set of Behavioural Skeletons. Despite their sim-
plicity, they cover a significant set of parallel computations of common
usage.

The presented Behavioural Skeletons springs from the idea of func-
tional replication. Let us assume these skeletons have two functional in-
terfaces: a one-to-many stream server S, and a many-to-one client stream
interface C (see Figure 26). The skeleton accepts requests on the server
interface; and dispatches them to a number of instances of an inner com-
ponent W, which may propagate results outside the skeleton via C inter-
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face. Assume that replicas of W can safely lose the internal state between
different calls. For example, the component has just a transient internal
state and/or stores persistent data via an external database component.

Farm A task farm processes a stream of tasks {x0, . . . , xm} producing a
stream of results {f(x0), . . . , f(xm)}. The computation of f(xi) is inde-
pendent of the computation of f(xj) for any i 6= j (the task farm parallel
pattern is often referred to as the “embarrassingly parallel” pattern). The
items of the input stream are available at different times, in general: item
xi is available t ≥ 0 time units after item xi−1 was available. Also, in
the general case, it is not required that the output stream keeps the same
ordering as the input stream, i.e. item f(xi) may be placed in the output
stream in position j 6= i. In this case, in our farm Behavioural Skeleton,
a stream of tasks is absorbed by a unicast S. Then each task is computed
by one instance of W and the result is sent to C, which collects results
according to a from-any policy. This skeleton can be equipped with a self-
optimizing policy as the number of W can be dynamically changed in a
sound way since they are stateless. The typical QoS goal is to keep a given
limit (possibly dynamically changing) of served requests in a time frame.
Therefore, the AM just checks the average time tasks need to traverse the
skeleton, and possibly reacts by creating/destroying instances of W, and
wiring/unwiring them to/from the interfaces.

Data-Parallel the task farm Behavioural Skeleton can be conveniently
and easily adapted to cover other common patterns of parallel computa-
tion. For example, data parallel computations can be captured by sim-
ply modifying the behavior associated with the S and C interfaces. In
a data parallel computation a stream of tasks is absorbed by a scatter S.
Each of the tasks appearing is split into (possibly overlapping) partitions,
which are distributed to replicas of W to be computed. The results com-
puted by the W are gathered and assembled by C in a single item, which is
eventually delivered onto the output stream. As in the previous case, the
number of W can be dynamically changed (between different requests)
in a sound way since they are stateless. In addition to the previous case,
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the skeleton can be equipped with a self-configuration goal, e.g. resource
balancing and tuning (e.g. disk space, load, memory usage), that can be
achieved by changing the partition-worker mapping in S (and C, accord-
ingly).

The task farm (and data parallel) Behavioural Skeleton just outlined
can be easily modified to the case in which the S is an RPC interface. In
this case, the C interface can be either an RPC interface or missing. Also,
the stateless functional replication idea can be extended to the stateful
case by requiring inner components W to expose suitable methods to se-
rialize, read and write the internal state. A suitable manipulation of the
serialized state enables the reconfiguration of workers (also in the data-
parallel scenario (19)).

Anyway, in order to achieve self-healing goals some additional re-
quirements on the GCM implementation level should be enforced. They
are related to the implementation of GCM mechanisms, such as compo-
nent membranes and their parts (e.g. interfaces) and messaging system.
At the level of interest, they are primitive mechanisms, in which correct-
ness and robustness should be enforced ex-ante, at least to achieve some
of the described management policies.

The process of identification of other skeletons may benefit from the
work done within the software engineering community, which identified
some common adaptation paradigms, such as proxies (99), which may be
interposed between interacting components to change their interaction
relationships; and dynamic wrappers (111). Both of these can be used for
self-protection purposes. As an example, a couple of encrypting proxies
can be used to secure a communication between components. Wrapping
can be used to hide one or more interfaces whether a component is de-
ployed into an untrusted platform.
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5.6 Autonomic Components:
design and implementation

The two main characteristics of autonomic components are the ability
to self-manage and to cooperate with other autonomic components to
achieve a common goal, such as guaranteeing a given behavior of an en-
tire component-based application. In the light of this, viewing the man-
agement of a single component as an atomic feature enables design of
its management (to a certain extent) in isolation. The management of
a single component is therefore considered a logically centralized activity.
Components will be able to interact with other components according
to well-defined protocols described by management interaction patterns,
which are established by the component model.

5.6.1 The management of a GCM component

The management of a single component is characterized by its ability to
make non-trivial decisions. Thus GCM components are differentiated as
being passive or active, with the following meanings:

Passive A component exposes non-functional operations enabling intro-
spection (state and sensors) and dynamic reconfiguration. These
operations exhibit a parametric but deterministic behavior. The op-
eration semantics is not underpinned by a decision making process
(i.e. does not implement any optimization strategy), but can only be
constrained by specific pre-conditions that, when not satisfied, may
nullify an operation request. All components should implement at
least a reflection mechanism that may be queried about the list and
the type of exposed operations.

Active A component exhibits self-managing behavior, that is a further
set of autonomic capabilities built on top of passive level function-
ality. The process incarnates the autonomic management process:
monitor, analyze, plan, execute. The monitoring phase is supported
by introspective operations, while the executing phase is supported
by re-configuring operations described above.
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In the architecture of GCM components, these two features are im-
plemented within the Autonomic Behaviour Controller (ABC) and Auto-
nomic Manager (AM), respectively. Since the management is a logically
centralized activity, a single copy of each of them can appear in a com-
ponent. Notice that, this does not prevent a parallel implementation of
them for different reasons, such as fault-tolerance or performance. A pas-
sive component implements just the ABC, whereas an active component
implements both the ABC and the AM. The following relationship holds

Comp <: PassiveComp <: ActiveComp

where <: is a subtyping relation. This is described in the GCM specifica-
tion by increasing values of conformance levels (52).

GCM Passive Autonomic Components The ABC and the AM represent
two successive levels of abstraction of component management. As men-
tioned above, the ABC implements operations for component reconfigu-
ration and monitoring. The design of these operations is strictly related
to membrane structure and implementation, and therefore the choice of
implementing the ABC as a controller in the membrane was the more
obvious and natural. Within the membrane, the ABC can access all the
services exposed by sub-component controllers, such as that related to
life cycle and binding, in order to implement correct reconfiguration pro-
tocols. In general, these protocols depend on component structure and
behavior. However, in the case of Behavioural Skeletons they depend al-
most solely on the skeleton family and not on the particular skeleton. In
this regard, the ABC effectively abstracts out management operations for
Behavioural Skeletons.

As we presented Behavioural Skeletons based on the idea of func-
tional replication, we show the details of these skeletons. In this case, the
reconfiguration operations require the addition/removal of workers as
well as the tuning of distribution/collection strategies used to distribute
and collect tasks and results to and from the workers. The worker ad-
dition and/or removal operations can be used to change the parallelism
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Figure 26: GCM: membrane and content (CC is the content controller, LC
the lifecycle controller and BC is the binding controller).

degree of the component as well to remap workers on different process-
ing elements and/or platforms. The distribution/collection tuning op-
erations can be used to throttle and balance the resource usage of work-
ers, such as CPU, memory and IO. The introspection operations involve
querying component status with respect to one or more pre-defined QoS
metrics. The component status is generally obtained as a harmonized
measure involving component status and inner component status.

In the following we describe in some detail the implementation of a
reconfiguration and an introspection operation.

add worker(k) Semantics: Add k workers to a skeleton based on the
functional replication.

1. Stop. The ABC requires the Lifecycle Controller (LC) to stop all the
components. To this end, the LC retrieves from the Content Con-
troller (CC) the list of inner components W1 · · · Wn, and then issues
a stop on them.

2. Type Inspection. All the W1 · · · Wn have the same type. The ABC
retrieves from the CC the list of inner components W1 · · · Wn, then
retrieves TypeOf(W1).
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3. New. One or more new inner components of type TypeOf(W1) are
created.

4. Bind. The component server interface S is wired to newly created
Wn+1 · · · Wn+k inner components via the Binding Controller (BC).
Wn+1 · · · Wn+k, in turn, wire their client interfaces to the compo-
nent collective client interface C. The process requires the inspection
of the types of the interfaces of W1 that is used again as a template
for all Wi.

5. Restart. The ABC requires the LC to re-start all the components.

6. Return. Return a failure code if some of the previous operations
failed (e.g. inner components do not implement stop/start opera-
tions); return success otherwise.

get measure(m) Semantics: Query the component about the current
status of the measure m, which may depend on the status of the inner
components (possibly involving other measures) and the membrane sta-
tus.
Examples: Transactions per unit time, load balancing, number of up-and-
running workers, etc.

1. Collect Workers’ Measures. The ABC retrieves from the CC the list of
inner components W1 · · · Wn, then issues a get measure(m) on
each.

2. Collect Membrane Measures. The ABC queries membrane sensors re-
lating to the particular metric m.

3. Harmonize Measures. Measures acquired from workers and from the
membrane are harmonized by using a m-dependent function (e.g.
average, maximum, etc.).

4. Return. Return a failure code if some of the previous operations
failed (e.g. sensor not implemented in inner components); return
monitor information otherwise.
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GCM Active Autonomic components The operations implemented in
the ABC can be arbitrarily complex; however, they do not involve any
decision making process. In general, each of them implements a protocol
that is a simple list of actions. On the contrary, the AM is expected to
enforce a contractually specified QoS. To this end the AM should decide
if a reconfiguration is needed, and if so, which reconfiguration plan can
re-establish contract validity (13). Furthermore, as we shall see in Section
5.6.2, the AM should also determine if the contract violation is due to the
managed component or is the byproduct of other components’ malfunc-
tion. The architecture of an active GCM component is shown in Figure
27.

Non-Functional
client & server ports

membrane

ABC
LC
CC
BC

AM

S C

W

W

content

AM
make

decisions

ABC
sense /

reconfigure

issue
action execution

receive
monitor

read inner
passive 

component's 
sensors

reconfigure
inner 

passive 
component

receive new QoS
contract from outer 

components

raise exceptions
toward outer
components

enforce new
 QoS contracts 
to inner active 
components

catch exceptions
from inner
active

components

Figure 27: Left) GCM active component architecture. Right) ABC and AM
interaction.

The AM accepts a QoS contract4, which is currently defined as pair
〈V,E〉, where V is a set of variables representing the measures the AM
can evaluate (via the ABC), andE is a mathematical expression over these
variables that might include the min and max operator over a finite do-
main. The set of V determines the minimum set of measures the AM
should be able to monitor to accept the contract. The E encodes the con-

4the notion of QoS contract is still the subject of further investigations and possible refine-
ments. The one discussed here is the bare minimum necessary to discuss AM behavior and
implementation.
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straints and goal the AM is required to pursue. This encoding can be
realized in many different ways provided E can be evaluated in finite
time and possibly quite efficiently.

Having accepted a QoS contract, the AM iteratively checks its validity,
and in the case that it appears broken, evaluates a number of pre-defined
reconfiguration plans. Each reconfiguration plan consists of a sequence
of actions (to be executed via the ABC), and a QoS forecast formula. This
formula allows the value of a subset of V after the reconfiguration to be
forecast. The AM instantiates in turn all reconfiguration plans obtaining,
for each plan, a set of forecast values. A plan is marked as valid if the set
of V updated with forecast values satisfies the QoS contract. Among the
valid plans, the AM heuristically chooses the reconfiguration plan to be
executed. If no reconfiguration plan is valid, an exception is raised.

As is clear, the main difficulty in the AM definition is the specification
of a reconfiguration plan. In the general case, the reconfiguration plans,
and especially their forecast formula, are strictly related to the behavior of
a particular component. As discussed in Section 5.3, Behavioural Skele-
tons enable the definition of reusable reconfiguration plans by categoriz-
ing and restricting component behavior in families and skeletons.

5.6.2 Cooperative management

The ultimate goal of QoS management is to guarantee programmer inten-
tions despite software and environmental instabilities and malfunctions.
To this end, the management of a whole system should be coordinated
to achieve a common goal. In general, we envisage a component-based
system as a graph, whose nodes are components, and edges are relations
among them, such as data dependency, management, geographic locality,
etc. Different relations can be kept distinct by a proper labeling of edges.
Here we restrict the focus to two relations which are of particular inter-
est for GCM: used by and the implemented by (see Section 5.3). Since the
GCM is a hierarchical model, the nesting relation naturally defines the
implemented by relationship. In particular, the application structure along
the nesting relation describes a tree whose nodes represent components
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(leaves are primitive components) and edges represent their nesting. In
this case, the management of a composite component C is cooperatively
performed by the AMC of the component itself and the AMCi

of the child
components Ci, i = 1..n. In the case where inner components are passive,
the cooperation is really one of control by the outer component: services
exposed by the ABCCi

are called by the ABCC .
Conceptually, non-functional properties modeling run-time behavior

of the whole hierarchy can be synthesized in a bottom-up fashion: the
behavior of a composite component depends on the behavior of its nested
components. Management actions and QoS contracts should be projected
along the tree in a top-down fashion: the users usually would like to
declare a global goal they expect from an application. This matches the
idea of submitting a contract at the root of tree. A fully autonomic system
should automatically split the global goal into sub-goals that should then
be forced on inner components.

On the whole, each GCM component enforces local decisions. When
a contract violation is detected, its AM tries autonomously to re-establish
the contract to a valid status by re-configuring its membrane or inner
components. In the event that it cannot (no valid plan), it raises an event
to its father component, thus increasing the extent of the reconfiguration.
The overall behavior enforces the maximum locality of reconfigurations,
which is a highly desirable property in a distributed system, since it eases
the mapping of components onto the network of platforms that usually
exhibit a hierarchical nature in terms of uniformity of resources and la-
tency/bandwidth of networks (cluster of clusters).

Observe that cooperation between components is unavoidable even
in very simplistic applications. Let us consider an example:

Producer-filter-consumer Let us assume that the application sketched
in Figure 28 has the final goal to generate, render, and display a video
with a given minimum number of frames/sec (FPS > k). The contract is
split into three identical contracts since the property should be enforced
on all stages in order to hold globally. The rendering (filter) has been par-
allelized since it is the most CPU-demanding stage. Two common prob-
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Figure 28: Producer-filter-consumer with parallel filter (farm skeleton).

lems of such applications are a transient overload of platform where W1

· · · Wn are running, or an increased complexity of scene to be rendered.
These events may lead to a violation of QoS contract at the AMF . In
this case, it may increase the number of workers (mapped on fresh ma-
chines) to deal with the insufficient aggregate power of already running
resources. In many cases this will locally solve the problem. However, a
slightly more sophisticated contract should consider also the input and
output channels. In particular the filter stage might be not rendering
enough frames because it does not receive enough scenes to render. In
this case the AMF can detect the local violation, but cannot locally solve
the problem. As a matter of fact, no plan involving a change of paral-
lelism degree can solve this problem. AMF can just signal the problem to
a higher level AMA, which can try to remap the input channel to a faster
link, or simply signal to the end user that the contract is not satisfied.

5.7 Experiments

In order to validate the Behavioural Skeletons approach, we conducted
some experiments with the current prototype of the GCM. It is under de-
velopment in the GridCOMP STREP project (3). The prototype, which is
being developed on top of ProActive middleware (108), includes almost
all of the features described in this chapter. All the experimental data
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are measured on the application shown in Figure 28 that we already pre-
sented in the previous section. It basically is a three-stages pipeline in
which the second stage consists in a farm of workers processing the im-
ages coming from the first stage, and delivering them to the third stage.
The experiments mainly aim to assess the overhead due to management
and reconfiguration of GCM components. For the sake of reproducibility,
the experiments have been run on a cluster instead of a more heteroge-
neous grid. The cluster includes 31 nodes (1 Intel P3@800MHz core per
node) wired with a fast Ethernet. Workers are allocated in the cluster in
a round robin fashion with up to 3 workers per node (for a total of 93
workers). Note however, the very same experimental code can run on
any distributed platform supported by the ProActive middleware.

Figures 29, 30, and 31 respectively show the time spent on the farm
Behavioural Skeleton (filter) for the stop, new and restart Autonomic Be-
havioural Controller (ABC) services described in Section 5.6.1. This time
consists in application overhead, since in current implementation none
of the workers can accept new tasks during the process. In the figures, a
point k in the X-axis describes the overhead due to stop/new/restart in the
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adaptation of the running program from a k to k + 1 worker configura-
tion. As highlighted by the curves in Figure 29 and 31 the overhead of stop
and restart is linear with respect to the number of workers involved in the
operations. This is mainly due to a linear time barrier within the Life cycle
Controller (LCC), which is an inherent part of the underlying ProActive
middleware. Indeed, in the current implementation the LCC sequentially
stops all the workers. Note that adaptation process does not strictly re-
quire such a barrier. Both stopping all the workers and linear time syn-
chronization are peculiarities of the current GCM implementation on top
of the ProActive middleware, and not of the farm Behavioural Skeleton,
which can be implemented avoiding both problems. In addition, the cre-
ation of a new worker can be executed, at least in principle, outside the
critical path by using a speculative creation.

Figure 30 shows the time spent for the new Autonomic Behavioural
Controller (ABC) operation (see Section 5.6.1). Again, in this case, the
time is overhead. The experiment measures the time required for the cre-
ation of a single worker, and thus the times measured are almost inde-
pendent of the number of workers pre-existing the new one.

As highlighted by the Figure 30 and 31 the overhead of the new and
restart operations is much higher in the case where a fresh platform is in-
volved (number of workers less than 32). The difference is mainly due to
the additional time for Java remote class loading. In fact, when a worker
is created, if the classes it needs are not present (in the machine that is
running it), they are copied locally then loaded in the cluster node main
memory and compiled. Clearly, performing such operations require time,
hundreds of milliseconds. Rather, if the classes are already present, al-
ready loaded in main memory or even already compiled in machine tar-
get code by the Java JIT, performing these reconfiguration operations is
noticeably cheaper.

The results of the last experiment are presented in Figure 32. It de-
scribes the behavior of the application over quite a long run (two hours,
approximately) that includes several self-triggered reconfigurations. In
this case the application is provided with a Quality of Service (QoS) con-
tract that enforces the production of a minimum of 1.5 results per second
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Figure 32: Self-optimization experiment.

(tasks/s). During the run, an increasing number of platforms are exter-
nally overloaded with an artificial load (we started the compilation of
some complex software written in C++). The top half of the figure reports
the measured average throughput of the filter stage (the second, actually),
and the QoS contract. The bottom half of the figure reports the number
of overloaded machines along the run, and the corresponding increase of
workers of the filter stage. Initially the throughput of the filter stage is
abundantly higher than requested (∼ 3.5 tasks/s); but it decreases when
more machines are overloaded. As soon as the contract is violated, the
Autonomic Manager reacts by adding more workers.
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Summarizing the Chapter

The challenge of autonomicity in the context of component-based develop-
ment of grid software is substantial. Building into components autonomic ca-
pability typically impairs their reusability. In this Chapter we proposed Be-
havioural Skeletons as a compromise: being skeletons they support reuse, while
their parameterization allows the controlled adaptivity needed to achieve dy-
namic adjustment of QoS while preserving functionality. We also presented a
significant set of skeletons and we discussed how Behavioural Skeletons can be
implemented in the framework of the GCM component model. Behavioural Skele-
tons provide the programmer with the ability to implement autonomic managers
completely taking care of the parallelism exploitation details by simply instantiat-
ing existing skeletons and by providing suitable, functional parameters. Finally,
we discussed the experimental results achieved when running an application ex-
ploiting instances of our Behavioural Skeletons and we showed how the skeletons
used may take decisions at the appropriate time to maintain the application be-
havior within the limits stated by the user with a specific performance contract.
The whole experiments have been performed using GCM components and Be-
havioural Skeletons, as being designed and implemented in the framework of the
CoreGRID and GridCOMP projects. To our knowledge, no other similar results
are available yet.
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Chapter 6

Conclusions

Over the years, a lot of models and tools for parallel programming have
been proposed. This great deal of efforts is mainly due to the difficul-
ties in coordinating several, possibly hundreds or thousands, activities
in an easy way but allowing an efficient exploitation of computational
resources. In fact, to date does not exist a universal approach working
better than others in every situation. Actually, there are several good
approaches based on different perspectives and abstraction levels. Nev-
ertheless, starting from the second half of nineties, with the advent of
computational Grids, parallel programming difficulties became greater
and greater and also the most promising approaches trail along. Indeed,
programming the Grids is even more difficult than traditional parallel
programming. This is because the computers belonging to a Grid can be
heterogeneous, separated by firewalls, unsafe and managed by different
administration policies. To address these additional difficulties most of
the models and tools conceived and developed for parallel programming
have to be re-thought and adapted. In particular, Structured Parallel Pro-
gramming models, and the derived environment have been proved to be
very effective approach for programming parallel applications, but some
well-known issues prevent them from achieving significant popularity in
the wider parallel and grid programming community.

In this thesis we presented an organic set of tools and models con-
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ceived, designed and developed or properly modified to address most of
these issues.

We started discussing how we modified the muskel framework for
supporting the issue related to the lack of extendability of the skeleton
systems. We discussed how our customized muskel supports the intro-
duction of new skeletons, modeling parallelism exploitation patterns not
originally covered by the primitive muskel skeletons. This possibility is
supported by allowing muskel users (the programmers) to define new
skeletons providing the arbitrary data flow graph executed in the skele-
ton and by letting our muskel version to seamlessly integrate such new
skeletons with the primitive ones. We also presented experimental results
validating our muskel approach to extend and customize its skeleton
set. We ran several test programs using the custom features introduced in
muskel. When grain is small, muskel does not scale well, even using
a very small number of remote interpreter instances. When the compu-
tational grain is high enough the efficiency is definitely close to the ideal
one. Despite the data shown in this thesis refer to synthetic computa-
tions, the tests we conducted using actual computations achieved very
similar results. This because the automatic load balancing mechanism im-
plemented in the muskel distributed interpreter through auto schedul-
ing perfectly optimized the execution of variable grain macro data-flow
instructions. As far as we know, this is the most significant effort in the
skeleton community to tackle problems deriving from a fixed skeleton set.
Only Schaeffer and his group at the University of Alberta implemented
a system were programmers can, in controlled ways, insert new paral-
lelism exploitation patterns in the system (38), although the approach
followed here is a bit different, in that programmers are encouraged to
intervene directly in the run-time support implementation, to introduce
new skeletons, while in muskel new skeletons may be introduced us-
ing the intermediate macro data flow language as the skeleton “assem-
bly” language. Unfortunately, programmers using this approach, in or-
der to program unstructured parallel application, have to interact directly
with data-flow graph. It requires to programmers to reason in terms of
program-blocks instead of a monolithic program. In order to ease the
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generation of macro data-flow blocks and in general to provide mecha-
nism easing the use of structured parallel programming environment, we
exploited some metaprogramming techniques.

We exploited some metaprogramming techniques based both on As-
pect Oriented Programming (AOP) and on Attribute Oriented Program-
ming (@OP). We showed how these techniques can be seamlessly ex-
ploited to transform sequential applications into parallel ones. In par-
ticular, we showed how annotations and aspect can be exploited to drive
the sequential application transformation into a macro data-flow graph
that can be executed on distributed architectures. The exploitation of
@OP and AOP techniques allows to completely separate the concerns
relative to parallelism exploitation and application functional code. In
particular, the same application code used to perform functional debug-
ging on a single, sequential machine may be easily turned into parallel
code. To validate the @OP approach we implemented PAL, a java anno-
tation based metaprogramming framework that restructures applications
at bytecode-level at run-time in order to make them parallel. PAL trans-
formations depend on: i) the resources available at run-time, ii) the hints
provided by programmers and iii) the available adapters. An adapter is a
specialized entity that instructs the PAL transformation engine to drive
the code transformation depending on the available parallel tools and
frameworks. Experimental results show that the PAL is an effective and
efficient approach for handling resource heterogeneity and dynamicity.
Actually, run-time code transformation brings to a very good exploita-
tion of computational resources. For this implementation we developed
two distinct adapters. The first adapter we developed foster the byte-
code transformation making the original code a multithreaded one. The
other adapter supports the bytecode transformation that makes the orig-
inal code compliant with JJPF, a structured parallel programming frame-
work we developed some years ago. PAL demonstrated that, given the
existence of a proper metaprogramming run-time support, annotations
are a handy way both to indicate which parts of a program must run in
parallel and to express non-functional requirements directly in the source
code. Therefore, we decided to apply the main features of PAL approach
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to our modified muskel implementation. Actually, adapting them to
muskel we changed a little bit the approach. Such a change is due to
a few motivations. First of all because muskel provides per se a dis-
tributed macro data-flow executor whereas PAL exploits external tools
for distributed program execution. Moreover, we would like to have a
more flexible mechanism for macro data-flow block generation and man-
agement. Finally, we would like to exploit a standard tool for run-time
code transformation instead of using ad-hoc tools, like the one we devel-
oped for PAL. As a consequence we decided to use integrate in muskel

the AOP model and in particular the AspectJ framework. The integra-
tion has been performed in two steps, in the first step we integrated the
AOP mechanisms in order to achieve very simple code transformation.
The second step consisted in testing the integration of muskel with As-
pectJ to in a more complex scenario. Hence, we exploited the aspect ori-
ented programming support we integrated in muskel in order to de-
velop workflows which structure and processing are optimized at run-
time. In order to prove the effectiveness of the approach in muskel, we
conducted some experiments on a network of workstations. The only dif-
ference between plain muskel and the system proposed here to execute
workflows lies in the way fireable instructions are provided to the dis-
tributed data-flow interpreter of muskel. Indeed, in plain muskel, fire-
able instructions are taken from a compiled representation of a data-flow
graph. Each time a new token arrives to a macro data-flow instruction
in the graph the target data-flow instruction is checked for “fireability”
and, possibly, delivered to the distributed macro data-flow interpreter.
The time spent is in the sub-micro second range (net time, not taking into
account time spent to copy parameters in memory during the interpreter
call). When executing workflows according to the approach discussed
here, instead, fireable instructions is generated at run-time by the AOP
engine. We measured the overhead when exploiting the AOP approach,
it is approximately 23 milliseconds per workflow node.

These two results presented are feasible approaches for programming
cluster or networks of workstation but are not suitable for computational
Grids, where component models are preferable. This is due to several
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motivations we described in deep in this thesis. Provide parallel pro-
gramming models for Grids are important because they are becoming the
dominant type of parallel architectures. Moreover, due to their hetero-
geneous and distributed nature, they represent a very good test-bed for
testing parallel programming models dealing with dynamicity handling.
The muskel framework, handle dynamicity exploiting the Application
Manager: an entity that observes the behavior of the parallel application
and in case of problems reacts aiming to fix them. This approach has
proved to be effective. Nevertheless, some of the implementation choices
done when muskelwas developed limit its exploitation on Grids. There-
fore, we decided to generalize and extend the muskel Application Man-
ager approach to make it suitable for components models, in order to be
able to port the approach in existing component models. We ported the
muskel approach in the Grid Component Model. Actually, the Applica-
tion Manager approach form the base of the autonomic features of GCM:
each self-optimizing GCM component contains an Application Manager
that in GCM is called Autonomic Manager. Nevertheless, Autonomic Man-
ager rely fully on the application programmer’s expertise for the setup of
the management code, which can be quite difficult to write since it is tai-
lored for the particular component or assembly of them. As a result, the
introduction of dynamic adaptivity might enable the management of grid
dynamism but, at the same time, decreases the component reuse potential
since it further specializes components with application specific manage-
ment code. In order to address this problem, we proposed the Behavioural
Skeletons as a novel way to describe autonomic components in the GCM
framework. Behavioural Skeletons aim to describe recurring patterns of
component assemblies that can be equipped with correct and effective
management strategies with respect to a given management goal. The
Behavioural Skeletons model provides a way for handling dynamicity,
supporting reuse both of functional and non-functional code. We pre-
sented a significant set of skeletons and we discussed how behavioural
skeletons can be implemented in the framework of the GCM component
model. Behavioural skeletons provide the programmer with the ability
to implement autonomic managers completely taking care of the paral-
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lelism exploitation details by simply instantiating existing skeletons and
by providing suitable, functional parameters. To validate our Behavioural
Skeletons we conducted some experiments with the current prototype of
the GCM that is currently under development in the GridCOMP STREP
project (3). We discussed the experimental results achieved when running
an application exploiting instances of our Behavioural Skeletons and we
showed how the skeletons used may take decisions at the appropriate
time to maintain the application behaviour within the limits stated by the
user with a specific performance contract.

Future Works

New efforts for future work can be invested in different directions, as
suggested by the results offered by this thesis.

Concerning the macro data-flow based skeleton customizations, new
mechanisms for modifying the macro data-flow graph can be conceived,
possibly simpler than the existing one. Just as a note, currently we are
developing a graphic tool that allows programmers ( muskel users) to
design their macro data-flow graphs and then compile them directly to
Java code as required by muskel.

Several other annotations and aspects can be designed and imple-
mented for easing the run-time generation of macro data-flow blocks.
Possibly supporting several types of non-functional requirements. Re-
garding PAL, many adapters, even more complex than existing one can be
developed. In particular, adapters for widely-used frameworks for Grid
programming, like Globus or ProActive. Another interesting possibility
can be the porting of the adapters model in our customized muskel,
perhaps making possible the transformation, at run-time, of the macro
data-flow blocks generated by muskel in GCM components.

In this thesis we presented a reduced set of Behavioural Skeletons,
other skeletons can be conceived, designed and implemented. As an
example, a Behavioural Skeleton supporting the non-functional replica-
tion management for easing the development of fault-tolerant compo-
nent applications. Furthermore, a lot of research can be conducted on the
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distributed (cooperative) self-management of component applications, in
particular regarding to the methodologies for splitting the user specified
QoS contracts.
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