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Abstract

Compensation-based long-running transactions (LRTs) are the
main error recovery mechanism in business process modelling
languages. Correctly implementing LRTs is difficult, espe-
cially in a concurrent setting. To ease this task we are devel-
oping a full-fledged formal approach to the description, de-
sign, analysis and verification of long-running transactions.

The existing calculi Sagas and compensating CSP rely on dif-
ferent compensation policies regarding concurrent processes.
Unfortunately they either require synchronization before com-
pensating or they include unrealistic traces. We therefore pro-
pose a new policy that improves existing ones using realistic
distributed compensations.

In this thesis we formalize the behaviour of the new policy
using three semantics: i) a denotational semantics to compare
it with previous policies, ii) an operational semantic based on
an encoding into Petri nets as a foundation for richer semantic
domains that record causal dependencies between events, iii)
an easily extendable small-step SOS semantics, that facilitates
model checking.

We prove the correspondence between the different seman-
tics showing their observational equivalence. Moreover we
develop a tool for each of the semantics in Maude to improve
and validate our theory.

Finally, we introduce a logical framework to model and anal-
yse LRTs based on dynamic logic. We use it to derive suffi-
cient conditions under which a compensable program is guar-
anteed to restore a correct state after a fault.

xvii





Chapter 1

Introduction

1.1 Motivation

In the early days of the Internet, web sites used to be static and their
implementation rather simple. With the huge increase of users as well
as more and more additional requirements to web applications, new
concepts and techniques for scalability as well as partitioning had to
be found. While previously a few hundred people had access to web
pages, now several billion people use the internet every day. Moreover
emerging paradigms like cloud computing or Web 2.0 with large online
communities and user generated content call for a more dynamic and
interactive approach.

One of the most prominent solutions, that has been put in place, are
web services, an instance of service-oriented computing. Service-oriented
computing comprises different techniques and concepts to create mod-
ular software solutions. A service provides a defined functionality and
is publicly available, as well as its semantic description. Services are
designed and implemented independently and can be combined to com-
pose larger applications.

Services are loosely coupled, i.e., there is no strong connection be-
tween components. Moreover in such an open environment like the In-
ternet, communication may be unreliable. This may lead to application
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Atomicity A transaction’s changes to the state are atomic: either all hap-
pen or none happen.

Consistency A transaction is a correct transformation of the state. The
actions taken as a group do not violate any of the integrity con-
straints associated with the state.

Isolation Even though transactions execute concurrently, it appears to
each transaction, T , that others executed either before T or after T ,
but not both.

Durability Once a transaction completes successfully (commits), its
changes to the state survive failures.

Figure 1: ACID properties for transactions taken from [GR92]

faults that are hard to debug. Therefore we need different fault han-
dling mechanisms to guarantee a correct execution of complex work-
flows. One such mechanism are long-running transactions (henceforth
abbreviated with LRTs) that, as the name says, are transactions that take a
long amount of time. While classic database transactions use locking and
rollback for error recovery, such mechanisms are not feasible for LRTs
due to the fact that the usage of common resources is long lasting. For
these reasons it is difficult to guarantee the usual ACID properties (see
Figure 1) for this kind of transactions. The concept of compensation has
been introduced to provide a flexible solution to this problem. The idea is
that LRTs are divided into smaller subtransactions, each associated with
a compensation. The compensation is installed once the subtransaction
commits and used to undo the action in case of a later abort of the LRT.
Compensations are executed in the reverse order of installation. Note
that, in many cases they cannot recover the original state, e.g. undoing
a message send operation is not possible, but it can be compensated by
sending, e.g., a new message. Thus reaching a state similar to the starting
one is usually sufficient. Compensation-based LRTs are today’s de facto
standard for business process modelling languages.

We are interested in developing a full-fledged formal approach to the de-

2



Expressiveness,
Flexibility Implementation

Verification

Modularity,
Reusability

Figure 2: Requirements for the right level of abstraction

scription, design, analysis and verification of long-running transactions. There
exists a variety of approaches trying to model LRTs with compensations,
however (so far) there is no universally accepted approach to represent
LRT core primitives. To contribute towards a widely agreed theory for
LRTs is the general aim of this thesis.

1.2 Objectives

There exists a variety of approaches modelling LRTs. There are calculi
based on different languages, some have an implementation, others offer
a type system, or define a notion of equivalence or correctness. However,
as we want to point out again, none of them is still widely agreed to be
the best option to model LRTs.

The general aim of this thesis is to define a suitable process algebraic
abstraction for LRTs that possibly improves or extends existing proposals. But
what do we mean with improving? Some requirements are given in Fig-
ure 2. As we can see there are four aspects:

Expressiveness More expressiveness allows us to represent more com-
plex problems, but can also introduce e.g. nondeterminism or in-
finite behaviour. We consider computational and representational
expressiveness. Computational expressiveness regards how much
a calculus can express from a mathematical point of view, while
representational expressiveness considers how natural the calcu-
lus can model common problems. A calculus with a high com-

3



putational expressiveness can encode different kinds of features,
but then it is difficult to reason about such features. Moreover a
large representational distance may lead to the necessity to encode
a property for verification. But then the source of a problem may
actually be the encoding, instead of a problem in the system. On
the other hand a model where the analysis can be conducted effi-
ciently can be not expressive enough.

A mutual encoding can demonstrate that two calculi are equally
expressive or that one is strictly more expressive than the other by
giving a counter example. However such an encoding has to be
semantics preserving. Thus one can transfer or rule out properties
of other calculi.

Modularity A higher level of modularity allows us to easily extend the
calculus or exchange small parts. That way we can reuse parts of
the calculus. Moreover by partitioning the calculus the formal anal-
ysis can be more efficient by considering smaller parts. Following
this approach we may define a calculus that is correct by construc-
tion.

Implementation An implementation of the calculus provides an envi-
ronment to assess the validity of a theory. It can be used to check
the correctness of the system and improve the theory, especially
if problems become more complex leading to a combinatorial ex-
plosion, that cannot be handled without tool support. It provides
a platform to verify properties, find counter examples and imple-
ment case studies.

Verification There exist different verification methods, among them log-
ics, equivalences or types. But in each case the aim is to show that
the calculus can adhere to some rules, fulfil a few guarantees or
satisfy a certain property or correctness criteria.

While it may be easy to achieve one or two properties, the difficulty
is to keep a balance between all four different ones. More expressive-
ness usually leads to more complexity which makes verification more

4



Centralized Distributed

No interruption 1
⊆ //

⊆
��

2

⊆
��

Naive Sagas

544⊆ ⊆
**Interruption 3 ⊆
//

Original cCSP
4
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Figure 3: Compensation policies (arrows stand for trace inclusion)

difficult. On the other hand well defined verification methods may com-
plicate an implementation or reduce the level of modularity. Another
aspect is to provide an abstraction that can be used by the stakeholders.
For example LRTs are largely used in business processes, where work-
flow like notations are preferred to process algebraic ones.

1.3 Results

In this section we summarize the results accomplished towards our gen-
eral aim of developing a formal approach towards the description, de-
sign, analysis and verification of long-running transactions. Our research
focuses on the semantics of two workflow based calculi, namely Sagas [BMM05]
and compensating CSP [BHF04] (cCSP). They model LRTs on a level high
enough to be independent of specific interaction mechanisms. Thus they
are closer to both the Business Process Modelling Notation (BPMN) and
the Business Process Execution Language (BPEL), the standard for im-
plementing web services.

The core fragment of Sagas has been sufficient to characterise differ-
ent compensation policies for parallel processes. A thorough analysis is
presented in [BBF+05] by comparing the Sagas calculus with cCSP along
two axes of classification: i) interruption of siblings in case of an abort
(interruption versus no interruption) and ii) whether compensations are
started at the same time or siblings can start their compensation on their
own (centralised versus distributed). Combing the two dimensions led

5



to four different policies as displayed in Figure 3.

As it turns out, none of the four originally defined semantics is en-
tirely satisfactory. Policies one to three are too restrictive: they miss
the possibility to stop a sibling branch and to activate compensations
as soon as possible, because typically activities and compensations have
a cost. Policies missing interruption (cases one and two) can have sibling
branches that finish their execution anyway, even though they will have
to compensate. In case three, branches might have to wait until they are
allowed to continue together with their siblings. The second and fourth
policies on the other hand are unrealistic: they include an oracle mecha-
nism where a branch may start its compensation even though the error
has not occurred yet. An optimal, realistic semantics should be more
“permissive” (i.e., allowing more traces) than policy three but less than
four.

The first part of this thesis is concerned with the conceptual mod-
elling of transactions, where some general abstract properties can be
proven that are independent from the actual nature of the activities in-
volved in the workflow. In this first part of the thesis, we introduce a new
policy for parallel Sagas with interruption. The new policy is “optimal”
in the following sense. It guarantees that distributed compensations may
only be started after an error actually occurred, but compensations can
start as soon as possible.

Furthermore we present a denotational and two operational seman-
tics modelling the new policy. The denotational semantics extends the
existing trace semantics of cCSP. This allows us to formally compare our
policy to the previously defined ones.

The first operational semantics is based on an encoding into Petri
nets. This provides a graphical presentation based on a well-known
model of concurrency, thus paving the way to the straightforward deriva-
tion of richer semantic domains than traces. Such domains allow to
record causal dependencies between events. This has practical conse-
quences in the tracking of the faults that triggered a compensation. Thus
it is more informative than the denotational semantics, because it ac-
counts for the branching of processes arising from the propagation of

6



interrupts.
The second operational semantics is a small-step semantics based

on labelled transition systems. It is easier to parse than the Petri net
model due to the sophisticated mechanism needed for handling inter-
rupts. While in the denotational and the Petri net semantics we focused
on other aspects the small-step semantics can be extended with more
complex operators for processes including choice or iteration adding more
expressiveness.

We were able to prove the correspondence between the different se-
mantics showing their observational equivalence. Moreover we devel-
oped a tool for each of the semantics to improve and validate our theory.

The second and last part of the thesis is concerned with an actual
programming instance of the previously studied framework. While we
focused in the first chapters mostly on modularity and implementation
of our calculus this second part of the thesis is concerned with verifica-
tion. We introduce a logical framework based on dynamic logic to show
properties regarding programs including compensations and LRTs. Such
compensable programs cannot only be composed in sequence and in par-
allel, but we allow as well choice and iteration. We replace the abstract
activities used in the rest of the thesis with concrete assignments over
shared memory variables. The main result establishes some sufficient
conditions under which a compensable program is guaranteed to always
restore a correct state after a fault.

1.4 Structure

In Chapter 2 we present related work regarding calculi for LRTs. We give
an in-depth description of the workflow based calculi Sagas and cCSP.
Starting with a shared syntax for both we present their two semantics.

In Chapter 3 we first summarize the comparison of Sagas versus cCSP
from Bruni et al. [BBF+05]. From this relation we are able to deduce a new
policy for handling compensations in concurrent programs that improves
existing ones by allowing the activation of compensations autonomously,
but only after an actual error occured. We define its denotational se-

7



mantics and show its formal relation to the previously defined policies.
Moreover we present tool support for the denotational semantics.

Chapter 4 introduces an operational semantics for the newly defined
policy based on an encoding into Petri nets. After giving some back-
ground on Petri nets we present the encoding of Sagas processes and
show its correspondence to the denotational semantics. We prove that the
encoding satisfies some high-level properties and extend it to represent
other policies. The last section shows an implementation of the encoding.

In Chapter 5 we present a small-step operational semantics based on
labelled transition systems. We show its observational equivalence to the
previously defined semantics using a weak bisimulation. The chapter
includes as well possible presentations of other policies, syntactic exten-
sions and tool support.

Chapter 6 presents a dynamic logic for long-running transactions. We
first recall some background on dynamic logic and then introduce our
own logic adding concurrency and compensations. We define serializ-
ability for programs, i.e., a concurrent execution of a program is equiva-
lent to some serial execution in the sense that the first and the last state
are equivalent. Using serializability we are able to prove properties for
the logic, among them a sufficient condition under which a compensable
program is guaranteed to have a correct compensation. The chapter describes
tool support for the logic as well as how interruption can be added.

Running Example In the following chapters we will use a running ex-
ample to give a better understanding of how LRTs and compensations
work in the presented models. Figure 4 shows a simple graphical pre-
sentation of the respective workflow modelling the booking of trip. The
outer box refers to the transaction scope. Each of the smaller boxes corre-
sponds to a subtransaction where the forward action is above the dashed
line and its compensation below. The control flow is represented by con-
necting arrows with the direction giving the order of the forward execu-
tion.

In this example a trip is booked to visit an event like a concert or a
football match in another city. First the transaction reserves the ticket for

8
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the event. Then there is a parallel composition where in one branch a
flight and a hotel are booked and in the other branch the credit card is
checked. After the concurrent execution the ticket is purchased. Each ac-
tion has a compensating activity. For the ticket purchase the ticket will be
returned. For both the booking of the hotel and the flight the respective
booking is cancelled. Equally for the ticket reservation the reservation is
cancelled. For the credit card check the compensation is empty.

1.5 Origin

Though parts of this thesis are original to this work some have already
been published by the author. We summarize here the contents of pub-
lished articles:

• [BKLS10] presents the deduction of the new policy, its denotational
semantics as well as its encoding into Petri nets and shows the cor-
respondence of the two semantics.

• [BK12] presents the small-step semantics with the proof of corre-
spondence. It shows representations of other policies as well as
possible extensions.

• [BFK12] introduces the dynamic logic for compensable programs
and shows the conditions under which a compensable program has
a correct compensation.

10



Chapter 2

Background

In this chapter we describe previous work in the formal modelling of
long-running transactions (henceforth LRTs). We give a brief overview
of the literature and then focus on the process calculi Sagas [BMM05] and
compensating CSP (cCSP) [BHF04].

We define a syntax derived from both Sagas and cCSP, that we also
use in the following chapters. Next we present the different semantics,
the big-step operational one for Sagas and the denotational semantics for
cCSP.

The last section presents the language Maude with its underlying the-
ory called rewriting logic. We will use Maude to implement the models
presented in this thesis.

2.1 Existing calculi modelling long-running trans-
actions

For a formal specification and analysis we need a model of concurrency.
A natural choice is to use process calculi as their theory is well studied,
including semantics, behavioural equivalences, type systems and logics
to verify properties. Another advantage is the algebraic structure of pro-
cesses, that favours compositional specifications and their illustration to
non-experts. Indeed most of the existing formal approaches to LRTs use
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process calculi. A few of them extend the π-calculus [Mil99], while oth-
ers are inspired by process calculi like CSP [Hoa85] or CCS [Mil89]. We
give here a short summary of existing approaches to model LRTs using
process calculi and how they relate together.

LRTs were first mentioned in the context of database theory. In [GMS87]
the authors introduce the problem of transactions, that take a long amount
of time. They call such transactions sagas. A saga runs over a long pe-
riod of time, therefore it cannot lock its database accesses as it usually
would imply blocking other transactions for too long. The classical lock-
ing and rollback mechanisms for error recovery are not suitable. Instead
a saga consists of several atomic and isolated subtransactions. Each of
these subtransactions is paired with a compensation which can be exe-
cuted in case of a later fault. The compensation will in a way undo (i.e.,
compensate) the corresponding forward action, leading the system back
to a consistent state.

The choice to transfer these ideas to service-oriented computing seems
natural. Services are combined in a transactional manner to ensure the
consistency of the system. However, the heterogeneity as well as the
inherent loose coupling of services cannot guarantee the classical ACID
properties of transactions (Atomicity, Consistency, Isolation, Durability).
In this setting the use of LRTs and compensations for error recovery is a
simple and straightforward solution.

The first attempts to combine the concepts of atomicity of actions and
process calculi were [Gla90] and [GMM88, GMM90] that extend CCS
with atomic actions.

There are two main approaches for modelling LRTs in service-oriented
computing. The first one abstracts away from the actual implemention
of services and focuses more on the control flow between components.
One of the first languages to take this approach is StAC [BF00, CGV+02,
BF04]. Its novel building block is a compensation pair consisting of two
processes. As the computation progresses compensations are piled in a
stack such that in case of an error they can be executed in reverse order.
Note that in a parallel composition each branch has its own stack. The
language provides special primitives for the commit and abort of a trans-
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action. If the transaction commits the compensations are discarded. If it
aborts compensations are activated. Its operational semantics is given
in a richer intermediate language called StACi. However the syntax in-
cluded a too large set of primitives and its semantics became soon very
complex, having to deal with spurious aspects.

Two refinements of StAC were developed in parallel. One called com-
pensating CSP (cCSP) [BHF04] extends the standard CSP calculus [Hoa85]
with a transaction scope and compensations. While StAC has a rich syn-
tax and a rather intricate operational semantics, cCSP comes with a sim-
pler syntax and a denotational semantics. Moreover it adds a formal cor-
rectness criteria using a cancellation semantics. The other one, the pro-
cess calculus Sagas [BMM05] is also inspired by StAC, moreover it trans-
fers the ideas of a saga in databases from [GMS87] to service-oriented
computing. It provides a big-step operational semantics. In this chapter
we will give a detailed description of both Sagas and cCSP as a starting
point for the work presented in this thesis.

There are several articles extending Sagas or cCSP. In [LZ09] an en-
coding of Sagas in SOCK [GLG+06] is given together with a new seman-
tics that is closer to the usage of compensations in practice. In [Lan10] dy-
namic compensations are added to the basic Sagas calculus. A small-step
semantics for cCSP is introduced in [BR05], while [RB09] implements this
semantics in PVS. In [CLW12] an extension of cCSP including recursion
is presented, this is handled in a failure-divergence semantics. The pa-
per [FM07] defines a calculus very similar to Sagas and cCSP with set
consistency as a notion of correctness. As we explain later, Sagas has
also been applied to the formalization of web-service standards [ES08].

A different approach compared to these workflow based calculi are
languages modelling the communication between components. Such ap-
proaches are often based on a notion of name mobility and hence they
extend the π-calculus [Mil99]. The first ones to extend it with transac-
tions were Berger and Honda [BH00]. In order to model the two-phase
commit protocol they introduce primitives for message loss, timers, pro-
cess failure and persistance. The calculus webπ [LZ05] extends the asyn-
chronous π-calculus with timed transaction and static compensations. It
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does not support nesting of transactions. A fragment of webπ called
webπ∞ [ML06] discards the constriction regarding time.

Another language focusing on the interaction between services is Com-
mitted Join (cJoin) [BMM04b, BMM04a, BMM11] that extends the Join
calculus [FG96]. Compensations are staticly defined, the nesting of trans-
actions is allowed. Furthermore different transactions may be joined in
order to communicate between different partners in a negotiation.

The calculus committed ccpi [BM07a] combines the ideas of cJoin
with ccpi [BM07b]. The latter adds primitives from concurrent constraint
programming to the π-calculus in order to model service level agree-
ments.

In [VFR08] the authors present the calculus dcπ. It introduces dy-
namic recovery upon input. Each input operation is associated with a
compensating process. If the input is executed (i.e. the process received
an output on the respective channel) the new compensation is installed in
parallel to the existing one. Transactions have a scope with a special ac-
tion. If the action is executed (within the transaction or from the outside)
the transaction is aborted and the gathered compensations are activated.
Compensations may also be predefined inside a transaction before any
execution. The paper also defines a type system for dcπ.

Though dcπ relaxes the static installation of compensations by putting
them in parallel, in [LVF10] the idea of dynamic recovery is fully accom-
plished. Compensations are updated with the help of λ-calculus like
functions. Encodings for both static and parallel in dynamic recovery are
given. This shows that dynamic recovery is strictly more powerful. The
authors also define should-testing equivalence and weak bisimulation.
Another similar calculus is introduced in [VF09] together with a correct-
ness criteria. In [LZ13] the termination of a simple extension of the π-
calculus regarding static, parallel or dynamic compensation is analysed.
A similar line of research was already taken in [BZ09] where the termina-
tion of an extension of CCS regarding failure operators and replication or
recursion is analysed. Not that there are a few works on exceptions for
session types where models similar to the ones for compensations are
proposed (e.g. [CHY08, Car09]).
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The calculus TransCCS [dVKH10a, dVKH10b] extends CCS with trans-
actions. It provides instead of compensations for each single action an
overall compensation for a transaction. It is thus able to model automatic
error recovery.

Furthermore there are several calculi that try to formalize the Web
Services Business Process Execution Language (WS-BPEL). WS-BPEL is
nowadays the standard for specifying interactions between web services.
It was developed from IBM’s WSFL (Web Services Flow Language) and
Microsoft’s XLANG by putting their concepts together. The full specifi-
cation of WS-BPEL can be found under [BPE13]. Among the most known
BPEL engines there are ActiveBPEL [Act13], Apache ODE [Apa13] and
the Oracle BPEL Process Manager [Ora13].

In [PZQ+06] the authors introduce BPEL0, a subset of WS-BPEL in-
cluding LRTs and compensations. It provides a notion of equivalence
based on bisimulation. The article [LPT08] presents Blite, it allows part-
ner links, process termination, message correlation and LRTs with com-
pensation handlers. Using their specification they do experiments with
three existing WS-BPEL engines showing that they differ among each
other as well as from the official WS-BPEL specification. The BPELfct cal-
culus [ES08] formalizes fault, compensation and termination handling in
WS-BPEL. An encoding of Sagas into BPELfct is also presented.

Moreover there are so-called service oriented calculi, that try to model
service-oriented computing directly. They provide low-level primitives
to handle faults of various kinds, including compensations. We already
mentioned SOCK [GLG+06, GLMZ09]. The language Jolie [Jol13] is an
implementation based on it. COWS [LPT07] introduces a kill primitive,
that terminates transactions of a given name, and the protection block,
protecting processes from being terminated from the outside. The Con-
versation Calculus [VCS08] does not provide compensation handling di-
rectly, instead it uses a try-catch operator to handle errors. In [CFV08] it
is shown that this is enough to model cCSP.

An overview of different calculi under the aspect of error and com-
pensation handling is given in [FLR+11]. A good survey regarding LRTs
and related topics is [CP13]. A table summarizing the different approaches
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mentioned in this section is given in Figure 5.
Another approach worth mentioning regards instead of compensa-

tions the actual reversibility of processes. It was first modelled for CCS
called RCCS in [DK04, DK05] and later extended in [DKS07]. [PU07]
presents a more general approach. The authors include reversibility in
languages with SOS-semantics (Structural Operational Semantics) and
use CCS as an example. More recently the idea has been applied to the
higher order π-calculus as ρπ in [LMS10, LMSS11, LMS12]. In the above
presented calculi this can be realized with a perfect undo as compensa-
tion.

In the line of reversibility we also consider [ABDZ07] that investigates
software transactional memory. It adds classic transactions to CCS that
are executed in an optimistic fashion. In case of a concurrent update on
the shared memory the transaction is rolled back to its initial state.

2.2 Syntax

This section presents the core syntax that we use in the following chap-
ters. It combines the main operators of Sagas and cCSP.

Definition 1. The set of all parallel sagas is defined by the grammar:

(ACT) A,B ::= a
∣∣ skip

∣∣ throw

(STEP) X ::= A÷B
(PROCESS) P,Q ::= X

∣∣ P ;Q
∣∣ P |Q

(SAGA) S, T ::= A
∣∣ S;T

∣∣ S|T ∣∣ {[P ]}

Atomic actions A include generic activities a ∈ A, where A is an in-
finite set of activities, the vacuous activity skip and the always faulty
activity throw . In a compensation pair A÷B, the activity B compensates
A. We write skipp for skip ÷ skip and throww for throw ÷ skip. A (com-
pensable) process is a compensation pair or the sequential or parallel
composition of processes. We use {[P ]} to enclose a compensable process
within a transaction. A transaction or saga can be composed sequentially
and in parallel.
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We sometimes refer to sequential Sagas when we consider this syntax
without parallel composition. Moreover in the following chapters we
include additional elements like choice or iteration in advanced stages.

Example 1. We use the syntax of Definition 1 to represent the transaction of
Figure 4. Abbreviating actions using initials, the saga in the example can be
written as:

{[rT÷ cR ; ((bF÷ cF ; bH÷ cH) | cC÷ skip) ; pT÷ retT]}

2.3 Semantics for Sequential Sagas

The following sections present the operational semantics of Sagas taken
from [BMM05]. We start with the sequential part of Sagas.

A saga consists of (several) atomic actions. Each of these actions is
associated with a compensation. If an action fails, then the previously
installed compensations are activated. Note that if a subtransaction fails,
nothing is executed, thus no compensation is necessary. Likewise a LRT
is executed in an all-or-nothing fashion, i.e., either everything is executed
leading to success or nothing is done and a failure is returned. However
in this setting also compensations may fail, which leads to an inconsis-
tent state where the transaction was only partially executed. We say that
the saga terminates abnormally or less formally it crashes. The system
needs the information of success, failure or crash for any continuation
or concurrent execution. Likewise the semantics has to keep track of
this status, to start compensations, stop the execution or inform parallel
branches. Therefore we introduce some additional notation. We define
a set R = {�,�,�} for the three possible result states of a compensable
program. The symbol � stands for a commit or successful execution, �
for abort and � for a crash, � ranges overR.

Moreover single actions may either succeed or fail, an information we
provide with a context Γ.

Definition 2 (Context). We call a function Γ : A → {�,�} a context that
assigns to each activity its result, where � stands for success and � for failure.
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Note that a single action (or subtransaction as we recall from [GMS87])
cannot terminate abnormally. Either it will be executed completely with
success or nothing is done and the system returns a failure. Without loss
of generality we assume that each activity is named differently. Thus a
context has the form Γ = a1 7→ �1, . . . , an 7→ �n, where ai 6= aj for all
i 6= j and ’,’ stands for the disjoint union.

We use the following equivalences as a notational convention to re-
duce the number of rules:

A÷ skip ≡ A (Null compensation)

skip;P ≡ P ; skip ≡ P (Null process)

(P ;Q);R ≡ P ; (Q;R) (Associativity of Sequential Composition)

We say that the activity skip as a compensation is equivalent to having no
compensation. Thus basic activities can be very easily integrated in com-
pensable programs. Moreover the action skip can be written as the left
and right identity for sequential composition. The last equation defines
the associativity of the sequential composition.

We define the semantics of sequential Sagas modulo structural con-
gruence as the relation Γ ` S α−→ � given by the inference rules in Fig-
ure 6. The symbol Γ denotes a context, S a saga and � its result after
complete execution under the context Γ. The label α denotes a process
without compensations. It represents the order of execution when exe-
cuting S under Γ.

Furthermore we define an auxiliary relation Γ ` 〈P, β〉 α−→ 〈�, β′〉
that describes the semantics of a compensable process P under a cer-
tain context Γ. The labels β and β′ denote the installed compensations
before and after the execution of P , i.e. they are both processes that do
not contain compensations themselves. In the following we describe the
different rules of Figure 6.

Rule (SKIP) describes the simple case of the vacuous activity skip. It
always succeeds without changing the compensations.

For a compensation pair A÷B we consider three cases. The first dif-
ferentiation depends on the execution of A according to the context Γ. In
the first case, rule (S-ACT), activityA commits and installs the compensa-
tion B in front of the existing compensation process β. Thus in case of a
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(SKIP)

Γ ` 〈skip, β〉 skip−→ 〈�, β〉
(S-ACT)

A 7→ �,Γ ` 〈A÷B, β〉 A−→ 〈�, B;β〉
(S-CMP)

Γ ` 〈β, skip〉 α−→ 〈�, skip〉

A 7→ �,Γ ` 〈A÷B, β〉 α−→ 〈�, skip〉
(F-CMP)

Γ ` 〈β, skip〉 α−→ 〈�, skip〉

A 7→ �,Γ ` 〈A÷B, β〉 α−→ 〈�, skip〉
(S-STEP)

Γ ` 〈P, β〉 α−→ 〈�, β′′〉 Γ ` 〈Q, β′′〉 α′−→ 〈�, β′〉

Γ ` 〈P ;Q, β〉 α;α
′

−→ 〈�, β′〉
(A-STEP)

Γ ` 〈P, β〉 α−→ 〈�, skip〉

Γ ` 〈P ;Q, β〉 α−→ 〈�, skip〉
� ∈ {�,�}

Figure 6: Semantics of sequential Sagas.

(SAGA)

Γ ` 〈P, skip〉 α−→ 〈�1, β〉

Γ ` {[P ]} α−→ �2

�2 =
{ � if �1 = �
� if �1 = � ∨�1 = �

(SAGA-S-ACT)

A 7→ �,Γ ` A A−→ �
(SAGA-A-ACT)

A 7→ �,Γ ` A skip−→ �
(SAGA-S-STEP)

Γ ` S α−→ � Γ ` T α′−→ �

Γ ` S;T
α;α′−→ �

(SAGA-A-STEP)

Γ ` S α−→ �

Γ ` S;T
α−→ �

Figure 7: Rules for sagas
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later abort the last added compensation is always executed first. In other
words, compensations are executed backwards, in the reverse order of
installation.

In the other two cases the activity A fails according to Γ. Remember
as A is not executed the compensating activity B is discarded. However
as there was a failure the previously installed compensation β must be
executed. We differentiate the two cases where either β is successful or β
fails. In the first case (S-CMP) the whole process aborts, while in the latter
case (F-CMP) the process terminates abnormally. Note that by definition
compensations do not contain compensations themselves. As a result in
the final state there is only the empty compensation skip left.

The next two rules describe the execution of the sequential compo-
sition P ;Q depending on whether P succeeds or fails. In the first case
(S-STEP) P is executed with the previously installed compensation β and
commits with a changed compensation β′′ (adding P ’s compensation).
The changed compensation β′′ is passed on to the continuation Q. The
result of Q’s execution with the compensation β′ is also the final result
of the execution of the sequential process. The observable control flow is
the sequential composition of the control flow α of P and α′ of Q. Note
that if Q fails it executes its own compensation as well as P ’s and the
previously installed β.

The second rule (A-STEP) stands for the case where P fails in a se-
quential composition P ;Q. In this case the compensation β will be acti-
vated (see (S-CMP) and (F-CMP)). The continuation Q is discarded.

The rule (SAGA) states that a compensable process within a saga is ex-
ecuted starting with the trivial compensation skip. The final result of the
execution of the compensable process is returned ignoring the compen-
sation β. If the saga aborted and successfully compensated the result� is
turned into a commit�. In (SAGA-S-STEP) and (SAGA-A-STEP) sequential
composition of processes is defined as expected.

This concludes the sequential part of the semantics.
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2.4 Semantics for Parallel Sagas

In this section the semantics is extended in order to handle parallel com-
position. We say as a notational convention that parallel composition is
commutative and associative with skip being the identity. We present
first a naive semantics for Sagas which is then modified to include inter-
rupts.

2.4.1 Naive Semantics for Sagas

The naive semantics extends the semantics for sequential Sagas with the
inference rules given in Figure 8. The new set of rules regards the pos-
sible execution of a parallel composition P |Q. In every rule each branch
is executed starting with an empty compensation. The differences arise
with the possible result states for each branch.

In the first rule, (S-PAR), both branches commit. The observable con-
trol flow, the label α|α′, denotes all possible interleavings of α and α′.
The resulting compensations of the two branches are put in parallel in
front of the existing compensation β. Thus in case of a future abort the
compensations for P and Q will be executed in parallel and when both
finish successfully β will be activated.

The remaining rules describe what happens if at least one branch
aborts.

In the rule (F-PAR-NAIVE-1) both branches abort and are successfully
compensated. This activates the compensation β and depending on its
result the whole process either aborts or crashes. The observable control
flow is the interleaving of the runs for P and Q (including compensa-
tions) followed by β’s execution.

For the rules (F-PAR-NAIVE-2) and (F-PAR-NAIVE-3) one branch crashes,
i.e., after aborting its compensation fails. In rule (F-PAR-NAIVE-2) the
other branch commits and its compensation will be activated. In the
other rule (F-PAR-NAIVE-3) the second branch aborts as well. Note that in
any case the whole process will reach an inconsistent state, i.e., a �, and
thus the previously installed compensation β will never be activated.
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(S-PAR)

Γ ` 〈P, skip〉 α−→ 〈�, β′〉 Γ ` 〈Q, skip〉 α′−→ 〈�, β′′〉

Γ ` 〈P |Q, β〉 α|α
′

−→ 〈�, (β′|β′′);β〉
(F-PAR-NAIVE-1)

Γ ` 〈P, skip〉 α−→ 〈�, skip〉 Γ ` 〈Q, skip〉 α′−→ 〈�, skip〉
Γ ` 〈β, skip〉 α′′−→ 〈�1, skip〉

Γ ` 〈P |Q, β〉 (α|α′);α′′−→ 〈�2, skip〉

�2 =
{ � if �1 = �
� otherwise

(F-PAR-NAIVE-2)

Γ ` 〈P, skip〉 α−→ 〈�, skip〉 Γ ` 〈Q, skip〉 α′−→ 〈�, β′〉
Γ ` 〈β′, skip〉 α′′−→ 〈�, skip〉

Γ ` 〈P |Q, β〉 α|(α
′;α′′)−→ 〈�, skip〉

(F-PAR-NAIVE-3)

Γ ` 〈P, skip〉 α−→ 〈�, skip〉 Γ ` 〈Q, skip〉 α′−→ 〈�, skip〉

Γ ` 〈P |Q, β〉 (α|α′)−→ 〈�, skip〉

� ∈ {�,�}

(F-PAR-NAIVE-4A)

Γ ` 〈P, skip〉 α−→ 〈�, β′〉 Γ ` 〈Q, skip〉 α′−→ 〈�, skip〉
Γ ` 〈β′, skip〉 α′′−→ 〈�, skip〉

Γ ` 〈P |Q, β〉 (α;α′′)|α′−→ 〈�, skip〉
(F-PAR-NAIVE-4B)

Γ ` 〈P, skip〉 α−→ 〈�, β′〉 Γ ` 〈Q, skip〉 α′−→ 〈�, skip〉
Γ ` 〈β′, skip〉 α′′−→ 〈�, skip〉 Γ ` 〈β, skip〉 α

′′′

−→ 〈�1, skip〉

Γ ` 〈P |Q, β〉 ((α;α′′)|α′);α′′′−→ 〈�2, skip〉

�2 =
{ � if �1 = �
� otherwise

Figure 8: Naive semantics of parallel Sagas.
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(SAGA-PAR)

Γ ` S α1−→ �1 Γ ` T α2−→ �2

Γ ` S|T α1|α2−→ �

� =
{ � if �1 = � ∧�2 = �
� otherwise

Figure 9: Semantics of parallel sagas

In the last two rules, (F-PAR-NAIVE-4A) and (F-PAR-NAIVE-4B), one
branch fails and successfully compensates. The other one commits and
due to the failure its compensation will be activated. In rule (F-PAR-
NAIVE-4A) this compensation fails leading the system to an inconsistent
state. In rule (F-PAR-NAIVE-4B) the compensation is successfully exe-
cuted and the previously installed compensation is activated.

The handling of the parallel composition of sagas is displayed in Fig-
ure 9 with (SAGA-PAR). Both sagas execute indepently. The resulting
state is a � if both branches committed, otherwise it is �.

Example 2. Consider the transaction of Example 1 again. Figure 10 shows a
derivation of this saga using the naive semantics. We assume that the booking of
the hotel fails while the other actions succeed. Thus the context Γ maps the ac-
tion bH to� and the others to �. We omit the context Γ in the derivation of Fig-
ure 10, moreover the label of the final observed workflow is rT; (bF; cF|cC; skip); cR,
i.e., we first reserve the ticket, then the flight is booked and cancelled again and
the credit card is checked (with no real compensation), finally the reservation for
the ticket is cancelled again. Note that in the naive semantics the displayed proof
tree is the only possible derivation under Γ, i.e., the execution is deterministic.

2.4.2 Revised Semantics for Sagas

We present the revised semantics for Sagas as introduced in [BMM05].
It extends the naive semantics with the possibility to interrupt sibling
branches. In the naive semantics branches of a parallel composition are
always fully executed, even if a failure is already inevitable. However
each action (including compensations) may involve a cost that we would
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like to avoid if possible. With an abort the naive semantics not only exe-
cutes superfluous actions, it also has to compensate these actions. In the
revised semantics failing branches are allowed to interrupt siblings. This
reduces the arising cost of evitable actions.

To distinguish a state where a branch was interrupted and thus forced
to abort from a state with a normal failure we enrich the result set R.
We add two new symbols R = R ∪ {�,�} with � for a forced abort
with a successful compensation and � for a forced abort with a failing
compensation. Thus we can deal with the partial execution of a process.
Note that the result of a saga still may only be in R, that is a whole saga
cannot be ”forced to abort”.

We introduce a binary operator ∧ on R to simplify the rules for the
different cases of handling parallel composition. Let ∧ be associative and
commutative. Its composition is defined in the following table:

∧ � � � � �
� � − − − −
� − � � � �
� − � � � �
� − � � � �
� − � � � �

A parallel composition can only commit if both branches commit as can
be seen in the first entry. Note that there is no other possibility to combine
� as with an evident failure the branch will be interrupted. In the rest of
the table a crash always subsumes a normal abort while normal failure
or crash subsumes a forced one.

The revised semantics reuses the inference rules for sequential Sagas
given in Figure 6. The rule (A-STEP) is changed allowing for � also the
interrupted alternatives � or �. The new rules for the revised semantics
are shown in Figure 11.

The main novelty is introduced with the rule (FORCED-ABORT). It
gives the possibility to force the execution of the compensation before
the forward process is finished. If the compensation succeeds the result
of the overall process is a forced abort �, if the compensation fails the
result is a forced crash �.
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(FORCED-ABT)

Γ ` 〈β, skip〉 α−→ 〈�1, skip〉

Γ ` 〈P, β〉 α−→ 〈�2, skip〉
�2 =

{ � if �1 = �
� otherwise

(S-PAR)

Γ ` 〈P, skip〉 α−→ 〈�, β′〉 Γ ` 〈Q, skip〉 α′−→ 〈�, β′′〉

Γ ` 〈P |Q, β〉 α|α
′

−→ 〈�, (β′|β′′);β〉
(F-PAR)

Γ ` 〈P, skip〉 α−→ 〈�1, skip〉 Γ ` 〈Q, skip〉 α−→ 〈�2, skip〉

Γ ` 〈P |Q, β〉 α|α
′

−→ 〈�1 ∧�2, skip〉
�1 ∈ {�,�} ∧�2 ∈ {�,�,�,�}

(C-PAR)

Γ ` 〈P, skip〉 α−→ 〈�1, skip〉 Γ ` 〈Q, skip〉 α′−→ 〈�2, skip〉
Γ ` 〈β, skip〉 γ−→ 〈�3, skip〉

Γ ` 〈P |Q, β〉 (α|α′);γ−→ 〈�1 ∧�2 ∧�4, skip〉

�1,�2 ∈ {�,�} and �4 =
{ � if �3 = �
� otherwise

Figure 11: Revised semantics of parallel Sagas

The other rules handle the concurrent part of Sagas. Rule (S-PAR) is
the same as in the naive semantics, i.e., it stands for the case where both
branches commit.

The other two rules consider the failure of the parallel composition,
either naturally or by force. Rule (F-PAR) corresponds to the rules (F-
PAR-NAIVE-2) and (F-PAR-NAIVE-3). One branch aborts or is forced to
abort and its compensation fails as well, i.e., its result is either � or �.
Remember that if a branch fails the other one cannot commit, thus the
other branch has to abort as well, if necessary by force. As at least one
branch terminated abnormally the previously installed compensation β

will not be executed. Note that the result of this process is built using the
operator ∧.
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The last rule (C-PAR) handles the case where both branches abort (ei-
ther forced or not) and successfully compensate (comparable to rule (F-
PAR-NAIVE-1)). As each branch was successfully compensated the pre-
viously installed compensation β is activated. The overall result is built
from the results of both branches as well as a forced abort or crash for
the result of β using the operator ∧. Note that if both branches were
forced to abort, the overall result will be a forced abort as well, but if one
failed naturrally the overall result will be normal abort. If the previously
installed compensation fails this will turn into a crash.

Example 3. In Figure 12 we present a possible derivation in the revised seman-
tics that is not possible in the naive one. From Example 2 we reuse the process
and context Γ, which we omit in the proof tree. Note that we can interrupt the
credit card check now, thus the final observed flow is rT; (bF; cF|skip); cR. Note
that there is also a derivation similar to the naive semantics resulting in the same
observed flow.

2.5 Compensating CSP and a Denotational Se-
mantics

This section presents the denotational semantics of cCSP. The interpre-
tation was first given in [BHF04]. We will reuse the syntax from Defini-
tion 1.

We start with some notation. A saga or process is interpreted by a
set of traces, compensable programs by sets of pairs of traces, where the
first element is the forward trace and the second element the backward or
compensation trace. Each trace is a string s〈ω〉 consisting of a sequence of
actions s ∈ A∗ called the observable flow. We say that ω is the final event,
defined such that ω ∈ Ω = {X, !, ?}. The symbols X, ! and ? stand for
success, failure and yield to an interrupt. Note that a transaction cannot
be interrupted, thus the final symbol for a saga is either a commit X or
a failure !. Slightly abusing the notation, we let p, q, ... range over traces
and also observable flows, pp, qq, ... range over pairs of traces, ε denotes
the empty observable flow.

Figure 13 presents the definitions for trace composition. There are
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COMPOSITION OF STANDARD TRACES

Sequential
{
p〈X〉; q , pq
p〈ω〉; q , p〈ω〉 when ω 6= X

Parallel p〈ω〉||q〈ω′〉 , {r〈ω&ω′〉 | r ∈ (p|||q)},

where
ω ! ! ! ? ? X
ω′ ! ? X ? X X

ω&ω′ ! ! ! ? ? X

and

{
p|||ε , ε|||p , {p}

Ap|||Bq , {Ar | r ∈ (p|||Bq)} ∪ {Br | r ∈ (Ap|||q)}

COMPOSITION OF COMPENSABLE TRACES

Sequential
{

(p〈X〉, p′); (q, q′) , (pq, q′; p′)

(p〈ω〉, p′); (q, q′) , (p〈ω〉, p′) when ω 6= X
Parallel (p, p′)||(q, q′) , {(r, r′) | r ∈ (p||q) ∧ r′ ∈ (p′||q′)}

Figure 13: Trace composition in the denotational semantics

two parts, one for the composition of standard traces, the other part for
the composition of compensable traces, i.e. pairs of traces. Both can be
combined in sequence and parallel. For standard traces the sequential
composition continues if the first part succeeds and otherwise stops. Par-
allel composition returns the set given by interleaving the two observable
flows followed by a combination of the two final symbols using the op-
erator &.

For compensable traces the definition of sequential composition is
given first. There is a case differentiation depending on the final sym-
bol of the forward trace. If the forward flow of the first trace commits,
the continuation is appended and the compensation is installed in re-
verse order. If the forward flow does not commit the continuation is
discarded. The parallel composition returns the set of all pairs such that
the first element is in the parallel composition of the two forward traces
and the second element in the parallel composition of the two backward
traces.
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TRACES OF SAGAS

a , {a〈X〉} skip , {〈X〉} throw , {〈!〉}
S;T , {p; q | p ∈ S ∧ q ∈ T}
S|T , {r | r ∈ (p||q) ∧ p ∈ S ∧ q ∈ T}
{[P ]} , {p〈X〉 | (p〈X〉, q) ∈ P} ∪ {pq | (p〈!〉, q) ∈ P}

TRACES OF COMPENSABLE PROCESSES

A÷B , {(A〈X〉, B〈X〉), (〈?〉, 〈X〉)}
skipp , {(〈X〉, 〈X〉), (〈?〉, 〈X〉)}
throww , {(〈!〉, 〈X〉), (〈?〉, 〈X〉)}
P ;Q , {pp; qq | pp ∈ P ∧ qq ∈ Q}
P |Q , {rr | rr ∈ (pp||qq) ∧ pp ∈ P ∧ qq ∈ Q}

Figure 14: Denotational semantics of cCSP

In Figure 14 the denotational semantics of cCSP is given. The first
part defines the traces for sagas. Starting with traces for basic actions
each action a ∈ A is interpreted by the trace containing the action a fol-
lowed by the commit symbol X. Note that we assume that every action
is successful. There is only one failing action throw . Its interpretation is
defined next, as well as the vacuous and always successful activity skip.
The sequential and parallel composition of sagas is defined using the se-
quential and parallel composition of traces. The last item, the transaction
scope, is the most interesting. It takes the interpretation of a compensable
program, i.e., a pair of traces. If the forward trace is successful the com-
pensation is discarded. In case of a failure the forward trace is followed
by the compensation. Note that any yielding traces are ignored.

The part for compensable programs starts with the interpretation of
compensation pairs. Either the forward activity succeeds and the com-
pensation is installed or it yields before any execution. The interpreta-
tions of skipp and throww are unwrapped accordingly. Finally sequential
and parallel composition are defined similarly to their saga counterparts
depending on the definition of traces of compensable programs.

Example 4. We consider the transaction from Example 1 where we replace the
booking of the hotel with throww . To build the set of traces for this transaction
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we present the traces of its subterms. Consider the left branch of the parallel
composition including throww first. Its trace set is

bF÷ cF ; throww , {(〈?〉, 〈X〉), (bF 〈?〉, cF 〈X〉), (bF 〈!〉, cF 〈X〉)}

From this set and the interpretation of the compensation pair cC÷skip we build
the traces for the parallel composition:

(bF÷ cF ; throww) | cC÷ skip , {
(〈?〉, 〈X〉), (bF 〈?〉, cF 〈X〉), (bF 〈!〉, cF 〈X〉)
(bF cC 〈?〉, skip cF 〈X〉), (bF cC 〈?〉, cF skip 〈X〉),
(cC bF 〈?〉, skip cF 〈X〉), (cC bF 〈?〉, cF skip 〈X〉),
(bF cC 〈!〉, skip cF 〈X〉), (bF cC 〈!〉, cF skip 〈X〉),
(cC bF 〈!〉, skip cF 〈X〉), (cC bF 〈!〉, cF skip 〈X〉)}

We see that a compensable process is interpreted by several yielding traces. These
will be ignored in the final result set. It is defined as follows:

{[rT÷ cR ; ((bF÷ cF ; throww) | cC÷ skip) ; pT÷ retT]}
, { rT bF cC skip cF cR 〈X〉

rT bF cC cF skip cR 〈X〉
rT cC bF skip cF cR 〈X〉
rT cC bF cF skip cR 〈X〉
rT bF cF cR 〈X〉 }

The result set includes four traces regarding the possible interleaving of forward
and backward flow seperately where each branch is fully executed. In the last
trace the credit card check is interrupted, i.e., it is not executed.

2.6 Maude

In the following chapters we will present supporting tools for each model
we describe. We use these implementations to experiment with the newly
proposed calculi and to check the correctness of the system and improve
the theory. In this section we present the programming language Maude
[CDE+07, Mau13a] that we use for this purpose.

Maude is based on rewriting logic that was first introduced by Meseguer
in [Mes92]. It is a logic of concurrent change, that deals naturally with

32



highly nondeterministic concurrent computations. It can be used as a se-
mantic framework representing distributed systems, but also as a logical
framework to represent a logic.

Rewriting logic has a static part that represents the states of a sys-
tem or the formulas of a logic. For this an underlying equational logic
on terms is used, in the case of Maude this is membership equational
logic [BM03, BM06]. It supports subsorting and equational axioms with
conditions. In this functional part of rewriting logic an algebraic specifi-
cation is defined. Such an algebra Ω = (Σ, E) is given by a set of sorts and
an equational signature Σ consisting of the syntax of terms and axioms
E to simplify more complex terms.

On top of this algebraic specification conditional rewrite rules are de-
fined. This is the dynamic part of rewriting logic that describes transi-
tions between states or inference rules for a logic.

We note that implementing a model in Maude has several advan-
tages. Its ability to capture both static as well as dynamic behaviour
makes it a very well suited tool to implement a process calculus. More-
over we say that rewriting logic has an “ε representational distance” [Mes12].
That means that the represented system and its representation in rewrit-
ing logic are isomorphic, i.e., there is a direct representation as a rewrite
theory.

Figure 15 presents the Maude specification for the algebra of natural
numbers (example taken from the Maude manual [Mau13b]). The un-
derlying sort in this algebra called Nat is introduced using the keyword
sort. A Maude specification can be many-sorted. Using the keyword
subsort we can impose an order on the different sorts. In the example
the sort of nonzero natural numbers NzNat is a subsort of Nat.

After the definition of sorts we specify the operations of the signature
using the keyword op. Note that it is possible to use mixfix notation and
not only prefix notation where we use underscores as placeholders. In
square brackets we can specify attributes for operations. In the exam-
ple the constant 0 and the operator s are defined as constructors using
ctor. The derived operation + is associative and commutative using the
attributes assoc and comm. Moreover for + we specify equations us-
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fmod NAT is
sorts Nat NzNat .
subsort NzNat < Nat .

op 0 : -> Nat [ctor] .
op s : Nat -> NzNat [ctor] .
op _+_ : Nat Nat -> Nat [assoc comm] .

vars N M : Nat .

eq 0 + N = N .
eq s(N) + M = s (N + M) .

endfm

Maude> reduce in NAT : s(0) + s(s(0)) .
rewrites: 2 in 0ms cpu (0ms real) (˜ rewrites/second)
result NzNat: s(s(s(0)))

Figure 15: Functional Maude module for the natural numbers

ing the keyword eq. We can also define conditional equations with ceq,
memberships with mb and conditional memberships with cmb.

Using the Maude interpreter we can reduce well-defined terms to
reach a normal form as shown in Figure 15 where we compute 1 + 2.

An implementation is structured in modules. We distinguish between
functional modules with sort and operator definitions, equations and
memberships, and rewrite system modules, that include also rewrite
rules. There are several predefined modules, for example for booleans,
natural numbers or integers, as well as parametric modules like lists or
sets. These can be imported using the keyword inc.

An example for a Maude specification using rewrite rules can be found
in Figure 16 (example taken from the Maude manual [Mau13b]). It de-
fines a Petri Net for a vending machine selling cakes for a dollar and
apples for three quarters. You can only buy something with a dollar,
but the machine changes four quarters to a dollar. Rules are specified
with the keyword rl and crl for a conditional rule. The module defines
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mod PETRI-NET is
sorts Place Marking .
subsort Place < Marking .
var M : Marking .
op __ : Marking Marking -> Marking [assoc comm] .
ops $ q a c : -> Place .

rl [buy-c] : $ => c .
rl [buy-a] : $ => a q .
rl [change] : q q q q => $ .

endm

Maude> rewrite in PETRI-NET : $ $ q q q q q .
rewrites: 4 in 0ms cpu (0ms real) (˜ rewrites/second)
result Marking: q q a c c

Maude> search in PETRI-NET : $ $ q q q q q =>! a M .

Solution 1 (state 13)
states: 16 rewrites: 24 in 0ms cpu (0ms real)

(˜ rewrites/second)
M --> q q c c

Solution 2 (state 14)
states: 16 rewrites: 24 in 0ms cpu (0ms real)

(˜ rewrites/second)
M --> q q q a c

Solution 3 (state 17)
states: 19 rewrites: 27 in 0ms cpu (0ms real)

(˜ rewrites/second)
M --> a a c

Solution 4 (state 18)
states: 19 rewrites: 27 in 0ms cpu (0ms real)

(˜ rewrites/second)
M --> q a a a

No more solutions.
states: 19 rewrites: 27 in 0ms cpu (0ms real)

(˜ rewrites/second)

Figure 16: Maude module for a Petri Net
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three rules, one for buying a cake, one for buying an apple and one for
changing four quarters. The figure shows as well how we can rewrite
terms and search the state space using the Maude interpreter. With the
command rewrite Maude returns the first final (non-reduceable and
non-rewritable) result. With search we can get several results match-
ing a certain pattern.

There is a large number of applications for Maude. Our main inter-
est lies in its ability to represent semantics of process calculi and pro-
gramming languages. In the functional part a denotational semantics
(inductively defined on the syntax) can be translated straightforwardly
into equational modules. Moreover [VMO06] defines standard ways to
encode SOS specifications in rewrite theories using Maude. The authors
demonstrate their approach implementing languages like CCS or LO-
TOS. A broad overview regarding semantics represented in rewrite the-
ories and Maude can be found in [MR11] including a formal model of
C [ER12]. Thus Maude provides an easily manageable and sufficient
platform to implement process calculi.

Maude has been used as a logical framework for instance to model
rewriting logic itself in [CDE+99] or to represent higher order logic [NSM01].
Other recent applications of Maude consider for example real-time sys-
tems [ÖM02, ÖBM10, BMÖ12], probabilistic systems [KSMA03] or cloud
computing [WEMM12]. An extensive analysis of rewriting logic, Maude,
and applications can be found in [Mes12].

Various tools were developed for Maude, for example an inductive
theorem prover [Hen08], a debugger [RVMOC12], but also a built-in LTL
model checker [EMS03]. It can also be used to specify case studies con-
necting our ideas to practice. There are built-in search facilities, i.e., it
is possible to explore the reachable configurations starting from an ini-
tial one searching for states that satisfy (user-definable) logic predicates.
Moreover new strategies can be defined to explore the state space based
on the current application.

We use Maude’s functional part to implement the denotational se-
mantics in Section 3.4. In Section 4.6 we implement the encoding of Sagas
processes into Petri nets in Maude and use a rewrite theory to compute
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the execution inside an encoded Petri net. Using the ideas of [VMO06] in
Section 5.6 we describe the implementation of the small-step semantics
for Sagas. While in those sections we use Maude as a semantic frame-
work, in Section 6.4 we use it as a logical one to represent inferences in
the dynamic logic for long-running transactions.
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Chapter 3

Developing a new Policy

In the previous chapter we presented the semantics of the process calculi
Sagas [BMM05] and compensating CSP [BHF04]. In this chapter we con-
tinue with some more background presenting their comparison [BBF+05].
It shows that while their sequential part is largely equivalent the han-
dling of compensations in a concurrent setting differs in the two lan-
guages. This leads to four different policies. Starting from these differ-
ences we deduce a new policy to describe the semantics of long-running
transactions (LRTs). This new policy is in a sense optimal that branches
may compensate independently but only once an error actually occurred.
We present the denotational semantics of this new policy and show its
relation to the previously defined policies. The last section introduces a
prototypical engine based on the rewriting logic Maude [CDE+07].

The first section summarizes [BBF+05]. The remaining content of this
chapter was developed in collaboration with Giorgio Spagnolo and first
published in [Spa10]. Compared to [Spa10] we introduce here addition-
ally the policy of Section 3.2.1 along with its formal relation shown in
Theorems 3 and 4. Moreover Section 3.4 describes tool support that was
originally presented in [Spa10] and is shown here in an improved ver-
sion. The content was later extended in [BKLS10].
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3.1 Sagas versus cCSP

In the previous chapter we presented the two process calculi Sagas and
cCSP. While we can use the same syntax the two calculi provide two dif-
ferent semantics. The interpretation of Sagas is a big-step operational
semantics while cCSP uses traces in a denotational semantics. Both lan-
guages model LRTs in a similar manner, the obvious question is how
similar they are. In this section we compare the two calculi pointing out
similarities and differences. The section follows closely [BBF+05], a joint
work by the authors of both Sagas and cCSP.

To compare the two semantics we compare the set of traces from
the denotational semantics with the labels for the operational seman-
tics. We first focus on the sequential part. The main problem for this
part is that while in cCSP actions are always successful and only throw

fails, Sagas uses a context to determine the success or failure of an ac-
tion. To solve this problem the authors define an encoding to map the set
of traces from cCSP to the labels in the operational semantics and vice
versa. From Sagas to cCSP failing actions are mapped to throw while
successful actions remain the same. We can show that for every trans-
action {[P ]} α−→ � the label α in the operational semantics is equivalent
to a trace of the encoded transaction. From passing from cCSP to Sagas
a special context is created that maps every action to success and every
throw to failure. Also in this case it can be shown that for any trace of a
transaction there is an equivalent label in the operational semantics using
the context from the encoding.

Next we consider concurrency. Here we distinguish how compensa-
tions are activated in case of a failure along two dimensions. Consider
Sagas first that has already two different interpretations. In the naive se-
mantics each branch in a parallel composition is fully executed and in
case of an error afterwards compensated. The revised semantics on the
other hand allows interruption of parallel branches reducing the amount
of executed actions. Interruption will be our first differentiation.

Now consider cCSP. It includes interruption as well. However while
for Sagas each branch can start its compensation on its own, in cCSP
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there is a synchronisation point. That way, each branch executes forward
activities and once every branch finishes, compensations are activated.
We say that compensations in Sagas are distributed while in cCSP they
are centralized.

Regarding these two aspects we can state four different policies of
how to use compensations in a concurrent setting:

1. No interruption and centralized compensation.

Siblings cannot be interrupted and once each concurrent process is
finished, compensations are activated.

2. No interruption and distributed compensation.

Siblings cannot be interrupted, each single concurrent process may
start its compensation on its own.

3. Centralized interruption.

Concurrent branches may be interrupted, compensations are only
activated once each branch finished its execution.

4. Distributed interruption.

Concurrent branches may be interrupted and compensations may
start independently.

Policy #3 corresponds to the semantics of cCSP while the #2 and #4 cor-
respond to the naive and revised semantics of Sagas.

Due to the different policies the encoding from the sequential part
cannot simply be lifted to include concurrency. In [BBF+05] the authors
present for each policy a version of the operational and denotational se-
mantics. In each case they extend the encoding to show the equivalence
of the two semantics. Moreover they prove a relation between the four
different policies using the denotational semantics. We will present here
the four policies using the denotational semantics. Remember that cCSP
originally modelled policy #3. The Figures 17 and 18 show the original
semantics. We use subscripts to indicate the definition specific to a policy.
We are going to introduce the other policies by difference.
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COMPOSITION OF STANDARD TRACES

Sequential
{ p〈X〉; q , pq
p〈ω〉; q , p〈ω〉 when ω 6= X

Parallel p〈ω〉||q〈ω′〉 , {r〈ω&ω′〉 | r ∈ (p|||q)},

where
ω ! ! ! ? ? X
ω′ ! ? X ? X X

ω&ω′ ! ! ! ? ? X

and

{
p|||ε , ε|||p , {p}

Ap|||Bq , {Ar | r ∈ (p|||Bq)} ∪ {Br | r ∈ (Ap|||q)}

COMPOSITION OF COMPENSABLE TRACES

Sequential
{ (p〈X〉, p′); (q, q′) , (pq, q′; p′)

(p〈ω〉, p′); (q, q′) , (p〈ω〉, p′) when ω 6= X
Parallel (p, p′)||(q, q′) , 1,3{(r, r′) | r ∈ (p||q) ∧ r′ ∈ (p′||q′)}

Figure 17: Composition of traces in the denotational semantics in policy #3

TRACES OF SAGAS

a , {a〈X〉} skip , {〈X〉} throw , {〈!〉}
S;T , {p; q | p ∈ S ∧ q ∈ T}
S|T , {r | r ∈ (p||q) ∧ p ∈ S ∧ q ∈ T}
{[P ]} , {p〈X〉 | (p〈X〉, q) ∈ P} ∪ {pq | (p〈!〉, q) ∈ P}

TRACES OF COMPENSABLE PROCESSES

A÷B , 3,4 {(A〈X〉, B〈X〉), (〈?〉, 〈X〉)}
skipp , {(〈X〉, 〈X〉), (〈?〉, 〈X〉)}
throww , {(〈!〉, 〈X〉), (〈?〉, 〈X〉)}
P ;Q , {pp; qq | pp ∈ P ∧ qq ∈ Q}
P |Q , {rr | rr ∈ (pp||qq) ∧ pp ∈ P ∧ qq ∈ Q}

Figure 18: Denotational semantics of policy #3
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Compared to cCSP and its semantics the first policy removes inter-
ruption. We redefine the traces for compensation pairs

A÷B ,1,2 {(A〈X〉, B〈X〉)}

removing the yielding trace. Similarly for skipp and throww the yielding
trace is removed.

Policy #2 does not allow interruption as well, thus it also uses the
redefined traces for compensation pairs from the previous case. More-
over compensations are distributed in parallel compositions. We have to
change the definition for the interleaving of pairs of traces:

(p〈X〉, p′)||(q〈X〉, q′) ,2,4 {(r〈X〉, r′〈X〉)|r ∈ (p|||q) ∧ r′〈X〉 ∈ (p′||q′)}
∪{(r〈?〉, 〈X〉)|r〈X〉 ∈ (pp′||qq′)}

(p〈ω〉, p′)||(q〈ω′〉, q′) ,2,4 {(r〈ω&ω′〉, 〈X〉)|r〈X〉 ∈ (pp′||qq′)}
if ω&ω′ ∈ {!, ?}

In the successful case a yielding trace is added. Moreover if the resulting
final symbol is a fail or a yield the resulting forward trace is the interleav-
ing of the forward and backward traces combined, while the compensa-
tion is empty. Due to the additional yielding trace we have to change
sequential composition as well such that it does not allow a ? in the first
component.

Policy #4 reuses the original definition of compensation pairs includ-
ing the interrupted trace. Moreover compared to the original semantics
the distributed interleaving of compensable traces is used as in policy #2.

Using this representation of the four different policies for the concur-
rent semantics the authors show a subset relation.

Theorem 1. [BBF+05] Let P be a concurrent compensable process, and let
{[P ]}i denote the set of traces of {[P ]} when considering the policy i = 1, ..., 4.
Then, the four trace semantics satisfy the following diagram:

{[P ]}1
⊆ //

⊆
��

{[P ]}2
⊆
��

Naive Sagas

{[P ]}3
⊆ //Original cCSP {[P ]}4 Revised Sagas
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The proof is done by induction on the structure of compensable P for
each inclusion. The following corollary reduces the result to sequential
processes.

Corollary 1. Let P be a sequential compensable process (i.e., it contains no
parallel composition operator), then {[P ]}1 = {[P ]}4.

3.2 Coordinated Compensation

We start this section with an example to clarify the differences between
the above policies and eventually point out their shortcomings. Our aim
is to deduce a new policy that will overcome these shortcomings. We
present the different sets of traces obtained for the saga {[(A ÷ A′;B ÷
B′)|(C ÷ C ′; throww)]}, that may stand for example for a workflow for
booking a trip. Activity A stands for booking a flight, B for booking a
hotel, while C is the credit card check. Compensations are the cancelling
of the respective bookings and the sending of a failure message by email
for the credit card check. A fault is issued after the credit card check.
Note that in general we do not observe a failure, but from the definition
of the transaction we know that it has to happen sometime after C is
executed but before its compensation C ′.

For each policy we present the different sets of traces. The example
shows that all semantic inclusions in Theorem 1 are strict for the partic-
ular process under consideration. We omit the final symbol X, denoting
success, for the sake of readability.

For case one, centralized compensation without interruption, the re-
sulting set of traces is S1 ≡ (AB|||C); (B′A′|||C ′). Roughly, all branches
are fully executed forward and only then (indicated by ;) their (inter-
leaved) compensation is started. In this case the failure must happen
before any compensation is executed.

For case two, distributed compensation without interruption, the set
of traces is S2 ≡ ABB′A′|||CC ′, where each branch separately starts its
compensation. Thus activity C may be compensated after the failure
without waiting for the completion of the first branch, like in the trace
CC ′ABB′A′. This trace is not allowed in the first policy. Moreover, the
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interleaving of ABB′A′ and CC ′ includes traces like ABB′A′CC ′ where
compensation B′ is observed before the throww is issued (i.e., before the
execution of C), a property we will discuss further for policy #4.

For case three we have S3 ≡ S1 ∪ (A|||C); (A′|||C ′) ∪ CC ′. While the
first part corresponds to the set S1 of policy #1 the rest of the set results
from allowing the branch for the activities A and B to be interrupted. In
these cases either only activity A or neither A nor B are executed. As
in the first policy compensations are activated only when each branch
is ready, i.e., all forward activities precede all compensating activities.
Thus the failure must happen sometime before any compensation is ex-
ecuted. Note that both S2 and S3 include the set S1 from the first policy.
However policy #2 and #3 are not comparable. Both include traces that
are not present in the other policy. For example S2 includes the trace
CC ′ABB′A′ where the compensation C ′ is executed before the forward
activities A and B. On the other hand S3 includes the trace CC ′ where
the first branch is interrupted.

Policy #4, distributed interruption, is the most liberal. It allows the
set of traces S4 ≡ CC ′ ∪ AA′|||CC ′ ∪ ABB′A′|||CC ′. Branches can be
interrupted and activate their compensation themselves. The set S4 in-
cludes both S2 and S3. Note that, like in case two, compensationA′ orB′

may be executed before C, i.e., before the error occurred like in the trace
AA′CC ′.

We already indicated that none of the four originally defined seman-
tics is entirely satisfactory. A main issue is that typically activities and
compensations have a cost. Without interruption (cases one and two)
sibling branches finish their forward execution, even though a failure is
already imminent and they will have to compensate. Thus they execute
futile actions that could have been avoided. In case three, branches might
have to wait until they are allowed to continue together with their sib-
lings, costing the system time and thus reducing its performance. We
conclude that policies one to three are too restrictive: it is important to
have the possibility to stop a sibling branch and to activate compen-
sations as soon as possible reducing any additional cost. That leaves
policy #4, but, as policy #2, it is unrealistic: it allows a guessing mech-
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(p〈X〉, p′)||(q〈X〉, q′) ,5 {(r〈X〉, r′) | r ∈ (p|||q) ∧ r′ ∈ (p′||q′)}

(p〈ω〉, p′)||(q〈ω′〉, q′) ,5 itp((p〈ω〉, p′), (q〈ω′〉, q′)) ∪
itp((q〈ω′〉, q′), (p〈ω〉, p′))

when ω, ω′ 6= X

(p〈ω〉, p′)||(q〈ω′〉, q′) ,5 ∅ otherwise

itp((p〈ω〉, p′), (q〈ω′〉, q′)) ,5 {((p|||q1)〈ω〉, (p′||q2q
′)) | q = q1q2}

Figure 19: Parallel composition of compensable traces in the denotational
semantics for policy #5

TRACES OF COMPENSABLE PROCESSES

A÷B ,5 {(A〈X〉, B〈X〉), (〈?〉, 〈X〉), (A〈?〉, B〈X〉)}
skipp , {(〈X〉, 〈X〉), (〈?〉, 〈X〉)}
throww , {(〈!〉, 〈X〉), (〈?〉, 〈X〉)}
P ;Q , {pp; qq | pp ∈ P ∧ qq ∈ Q}
P |Q , {rr | rr ∈ (pp||qq) ∧ pp ∈ P ∧ qq ∈ Q}

Figure 20: Denotational semantics of policy #5 with pp||qq as in Figure 19

anism where a branch may start its compensation by predicting that
an error will occur in a sibling. A realistic semantics should be more
“permissive” (i.e., allowing more traces) than policy three but less than
four. In this new semantics, the traces of the above example would be
S ≡ S3 ∪ (CC ′AA′) ∪ (AB|||CC ′);B′A′. Note that S3 ⊂ S ⊂ S4.

We call this new fifth policy coordinated compensation. It is ”optimal”,
in the sense that it guarantees that distributed compensations may only
be started after an error actually occurred, but compensations can start
as soon as possible.

The new policy differs from the original cCSP (policy #3) by slightly
changing the semantics of compensation pairs, to allow a successfully
completed activity to yield, and the semantics of parallel composition, to
allow distributed compensation without any guessing mechanism.

The new definition of the interleaving of compensable traces is dis-
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played in Figure 19. The definition for successful traces is equivalent to
the previous definition. For failing or interrupted traces we use a special
function itp. Let pp = (p〈ω〉, p′) and qq = (q〈ω′〉, q′) with ω, ω′ 6= X. The
function itp(pp, qq) returns the set of all compensable traces obtained by
interleaving the activities of p with that of any prefix q1 of q = q1q2 as
forward activities, together with the interleaving of p′ with the residual
q2q
′ of qq (after removing the prefix q1). Several cases are possible. If ω =!

and ω′ =?, then it means that qq will be interrupted by the fault raised
from pp, which is ok, because qq will yield after all activities in p have
been observed. The resulting forward traces have ! as final event. If ω =?

and ω′ =!, then it means that pp is yielding to a sibling different from
qq, and therefore pp can legitimately start compensating without waiting
for qq to raise the fault. In this case the resulting forward traces have ?

as final event. If ω = ω′ =? then it means that pp receives the interrupt
before qq. If ω = ω′ =! then it just means that pp is the first to raise the
fault.

In Figure 20 the traces for compensable processes in policy #5 are
given. Compared to the original cCSP semantics we include interruption
for compensation pairs before and after execution. The rest of the seman-
tics remains the same, though using the new definition of interleaving of
parallel composition.

3.2.1 Notification and distributed compensation

Note that also for policy #5 we have a similar version without interrupt
that we present in this section. We call this policy Notification and dis-
tributed compensation (policy #6) to emphasize the fact that siblings are
notified about the fault, not really interrupted. Since compensations are
distributed and the fault is not observable, it can happen that a notified
thread starts compensating even before the sibling that actually aborted.
However, contrary to policy #2, a thread cannot guess the presence of
faulty siblings, so it is not possible to observe a forward activity of the
only faulty thread after a compensation activity of a notified thread. Thus
policy #6 defines a sound variant of policy #2 where unrealistic traces are
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(p〈X〉, p′)||(q〈X〉, q′) ,6 {(r〈X〉, r′) | r ∈ (p|||q) ∧ r′ ∈ (p′||q′)} ∪
itp((p〈?〉, p′), (q〈?〉, q′)) ∪
itp((q〈?〉, q′), (p〈?〉, p′))

(p〈ω〉, p′)||(q〈ω′〉, q′) ,6 itp((p〈ω〉, p′), (q〈ω′〉, q′)) ∪
itp((q〈ω′〉, q′), (p〈ω〉, p′))

when ω, ω′ 6= X

(p〈X〉, p′)||(q〈ω′〉, q′) ,6 itp((p〈?〉, p′), (q〈ω′〉, q′)) ∪
itp((q〈ω′〉, q′), (p〈?〉, p′))

when ω′ 6= X

(p〈ω〉, p′)||(q〈X〉, q′) ,6 itp((p〈ω〉, p′), (q〈?〉, q′)) ∪
itp((q〈?〉, q′), (p〈ω〉, p′))

when ω 6= X

Figure 21: Parallel composition of compensable traces in the denotational
semantics for policy #6

discarded. In this way policy #6 relates to policies #1 and #2 as policy #5
relates to policies #3 and #4.

Regarding the running example from the beginning of this section the
set of traces allowed in policy #6 is S6 ≡ S1 ∪ (AB|||CC ′);B′A′. We can
easily see that S6 ⊂ S. Compared to policies #1 and #2 it includes traces
like CC ′ABB′A′ that are not allowed in policy #1 as compensation C ′ is
executed before the complete forward flow finished. On the other hand it
does not include unrealistic traces likeABB′A′CC ′ where compensation
B′ is observed before C is executed and the actual error occurred.

As in policies #1 and #2 we remove the yielding traces from com-
pensation pairs as well as from skipp and throww . Thus the definition
of parallel composition of compensable traces has to be adapted. Fig-
ure 21 shows the new definition where we add for successful traces also
a respective yielding one. This additional trace implies the change of se-
quential composition as in policy #2 where we do not allow ? in the first
component.
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3.3 Formal Relation

This section presents how the new semantics of policy #5 is related to
previous policies. Our first result establishes a formal relation with poli-
cies #1–4.

Theorem 2. Let P be a compensable process, and let {[P ]}i denote the denota-
tional semantics of saga {[P ]} (i.e., its set of traces) according to policy #i. Then
we have: {[P ]}3 ⊆ {[P ]}5 ⊆ {[P ]}4.

Proof. The inclusion {[P ]}3 ⊆ {[P ]}5 follows by proving by structural in-
duction on P the following implications for any p, p′ and any ω ∈ {?, !}:

(p〈X〉, p′) ∈3 P ⇒ (p〈X〉, p′) ∈5 P ∧ (p〈?〉, p′) ∈5 P
(p〈ω〉, p′) ∈3 P ⇒ (p〈ω〉, p′) ∈5 P

where ∈i denotes membership according to policy #i. For both impli-
cations the base cases regarding compensation pairs, skipp and throww
hold trivially. For a sequential composition P = P1;P2 the implication
is shown by applying the induction hypothesis to both P1 and P2. The
most interesting case is parallel composition. Consider the first implica-
tion and assume that P = P1|P2. The successful case holds quite trivially.
We want to show that if (p〈X〉, p′) ∈3 P then (p〈?〉, p′) ∈5 P . By the defi-
nition of parallel composition there exist p1, p

′
1, p2, p

′
2 such that

(p1〈X〉, p′1) ∈3 P1

(p2〈X〉, p′2) ∈3 P2

p ∈ p1|||p2 p′ ∈ p′1||p′2
By the induction hypothesis we know that (p1〈?〉, p′1) ∈5 P1 and (p2〈?〉, p′2) ∈5

P2. Using the definition of parallel composition in policy #5 we can prove
that (p〈?〉, p′) ∈5 P by taking (p〈?〉, p′) ∈ itp((p1〈?〉, p′1), (p2〈?〉, p′2)) where
we set the parameters q1, q2 as q1 = p2 and q2 = ε. The other implication
can be shown similarly.

The inclusion {[P ]}5 ⊆ {[P ]}4 follows by proving that for any p, p′:

(p〈X〉, p′) ∈5 P ⇒ (p〈X〉, p′) ∈4 P
(p〈!〉, p′) ∈5 P ⇒ ∃q, q′ (pq〈!〉, q′) ∈4 P with p′ = qq′

(p〈?〉, p′) ∈5 P ⇒ ∃q, q′, ω (pq〈ω〉, q′) ∈4 P with p′ = qq′

and ω ∈ {X, ?, !}

We show this by structural induction on P . For all cases the first impli-
cation is trivial from the definition of policies #4 and #5. For the second
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implication the base case only regards throww where the implication fol-
lows trivially. In the third implication there are several base cases regard-
ing compensation pairs, throww and skipp. In each case we let q = ε and
q′ = p′.

For the induction step we first consider sequential composition. For
the second implication let P = P1;P2 with (p〈!〉, p′) ∈5 P . If P1 fails the
implication follows from the induction hypothesis by taking q = ε and
q′ = p′. If P1 succeeds, P2 has to fail. Then by the definition of sequential
composition there exist p1, p

′
1, p2, p

′
2 such that

(p1〈X〉, p′1) ∈5 P1

(p2〈!〉, p′2) ∈5 P2

p = p1p2 p′ = p′2p
′
1

We apply the induction hypothesis to P1 and P2 (with p′2 = r r′):

(p1〈X〉, p′1) ∈4 P1 (p2r〈!〉, r′) ∈4 P2

Using the definition of sequential composition yields

(p1p2r〈!〉, r′p′1) = (pr〈!〉, r′p′1) ∈4 P

Together with p′ = p′2p
′
1 = r r′p′1 this proves the implication. The third

implication for sequential composition follows the same reasoning.
Next we consider parallel composition. For the second implication

this leads to several cases. Let P = P1|P2 with the trace pair (p〈!〉, p′) ∈5

P . We consider the case where P1 fails and P2 is interrupted. By the
definition of parallel composition there exist traces p1, p

′
1, p2, p

′
2 with p2 =

qq′ such that
(p1〈!〉, p′1) ∈5 P1

(p2〈?〉, p′2) ∈5 P2

p ∈ p1|||q p′ ∈ p′1||q′p′2
We apply the induction hypothesis to P1 and P2:

∃r, r′.(p1r〈!〉, r′) ∈4 P1 ∧ p′1 = r r′

∃s, s′, ω.(p2s〈ω〉, s′) ∈4 P2 ∧ p′2 = s s′ ∧ ω ∈ {?, !}

We build the parallel composition as defined for policy #4. We get the
set of traces (t〈!〉, 〈X〉) ∈4 P where t ∈ p1 r r

′||p2 s s
′ = p1 p

′
1||p2 p

′
2. Our

aim is to show that (pp′〈!〉, 〈X〉) ∈4 P , thus we have to build t = p p′ ∈
p1|||q; p′1||q′p′2 ⊆ p1 p

′
1||q q′ p′2 = p1 p

′
1||p2 p

′
2. This proves the implication.

The other cases where either only P2 or both fail can be shown similarly.
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The case of parallel composition for the last implication follows the
same reasoning.

The process {[(A ÷ A′;B ÷ B′)|(C ÷ C ′; throww)]} from the previous
section witnesses that all semantic inclusions between the different poli-
cies can be strict.

Corollary 2. IfP is a sequential process (i.e., it contains no parallel composition
operator), then {[P ]}5 = {[P ]}4.

Proposition 1. The policies #2 and #5 are not comparable by inclusion.

Proof. We show that there exists a process P such that neither {[P ]}2 ⊆
{[P ]}5 nor {[P ]}5 ⊆ {[P ]}2 hold. Take P = {[A ÷ A′ | (B ÷ B′; throww)]}.
Then the trace p = AA′BB′〈X〉 ∈ {[P ]}2, but p 6∈ {[P ]}5, because A′ is
observed before B (and therefore before the fault occurs). Moreover, the
trace q = BB′〈X〉 ∈ {[P ]}5, but q 6∈ {[P ]}2, because it involves the inter-
ruption of process A÷A′. This is not allowed in policy #2.

For policy #6 we can state similar to Theorem 2 the following:

Theorem 3. Let P be a compensable process, and let {[P ]}i denote the denota-
tional semantics of saga {[P ]} (i.e., its set of traces) according to policy #i. Then
we have: {[P ]}1 ⊆ {[P ]}6 ⊆ {[P ]}2.

Proof. The proof is similar to the one for Theorem 2. For the first inclu-
sion {[P ]}1 ⊆ {[P ]}6 we have to prove the following:

(p〈X〉, p′) ∈1 P ⇒ (p〈X〉, p′) ∈6 P
(p〈!〉, p′) ∈1 P ⇒ (p〈!〉, p′) ∈6 P

Note that policy #1 does not include any yielding traces.
The second inclusion {[P ]}6 ⊆ {[P ]}2 follows by proving that for any

p, p′:

(p〈X〉, p′) ∈6 P ⇒ (p〈X〉, p′) ∈2 P
(p〈!〉, p′) ∈6 P ⇒ ∃q, q′ (pq〈!〉, q′) ∈2 P with p′ = qq′

(p〈?〉, p′) ∈6 P ⇒ ∃q, q′, ω (pq〈ω〉, q′) ∈2 P with p′ = qq′

and ω ∈ {?, !}

51



Theorem 4. Let P be a compensable process, and let {[P ]}i denote the denota-
tional semantics of saga {[P ]} (i.e., its set of traces) according to policy #i. Then
we have: {[P ]}6 ⊆ {[P ]}5.

Proof. We prove by structural induction the following implications for
any p, p′ and any ω ∈ {?, !}:

(p〈X〉, p′) ∈6 P ⇒ (p〈X〉, p′) ∈5 P ∧ (p〈?〉, p′) ∈5 P
(p〈ω〉, p′) ∈6 P ⇒ (p〈ω〉, p′) ∈5 P

The proof is similar to showing the first inclusion of Theorem 2.

3.4 Tool Support

This section presents an implementation of the denotational semantics. It
includes the original cCSP as well as the other four policies (along with
policy #5). The tool is implemented in Maude (see Section 2.6 for de-
tails). It was originally developed in collaboration with Giorgio Spag-
nolo [Spa10] and is here in a slightly improved version. The complete
code can be found at [Sou13].

The implementation is structured in six modules, one for each of the
five policies and one including the definitions shared by all of them.

One of the basic sorts is called trace used for a single trace. Its con-
structor is

op _<_> : names end -> trace [ctor] .

The sort names stands for a string of actions and end for the possible
final symbols. These can either be ok for a commit (symbol X), ! for a
failure or ? for an interrupt. For the sake of the presentation we take the
set of natural numbers as the set of actions.

The sort trace is a subsort of traceset, that stands for sets of
traces. The combination of traces for sagas as given in Figure 17 is de-
fined using the sort traceset. A process or saga is defined using the
sort sagaprocess that is a supersort of names. It allows sequential and
parallel composition. To compute the set of traces for a saga we use an
environment. The constant nilenv stands for an empty environment
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Maude> reduce in cCSP3 :
((1 ; 2) || (3 ; 4)) @ (3 - !) .

rewrites: 27 in 0ms cpu (0ms real) (˜ rewrites/second)
result traceset: 1 2 3 < ! > U 1 3 2 < ! > U

3 1 2 < ! >

Figure 22: Example of a saga

that maps every action to success. Otherwise the environment maps sin-
gle names to a respective end symbol (including ?) using

op _-_ : name end -> env .

The environment is applied to a sagaprocess using the operator @.
An example for a computation is given in Figure 22 where we derive

the set of traces for a parallel composition of two sagas. In the example
the environment states that the action 3 in the right branch fails. During
the computation first the environment is mapped down to single actions.
Next the environment is resolved giving a trace with the name of the
action and its final symbol determined by the environment. Then the
computation goes bottom up again building from the singleton traces
the result set. In the example it consists of three failing traces. Note that
the aborting action is included in the final trace.

The definition of the tool continues with the extension to compens-
able processes. The basic sort here is a single trace pair consisting of two
traces:

op _,_ : trace trace -> tracepair [ctor ] .

As for traces we define a sort tracepairset for sets of trace pairs.
Compensable Processes are defined using the sort cprocess that can
be compensation pairs or the sequential or parallel composition of com-
pensable processes. The system uses an environment as well to deter-
mine the resulting state of single actions. It is applied to cprocess using
the operator #.
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Maude> reduce in cCSP1 :
[(1 / 2 || (3 / 4 ; throww)) # nilenv] .

rewrites: 146 in 0ms cpu (5ms real)
(˜ rewrites/second)
result traceset:

1 3 2 4 < ok > U 1 3 4 2 < ok > U
3 1 2 4 < ok > U 3 1 4 2 < ok >

Maude> reduce in cCSP2 :
[(1 / 2 || (3 / 4 ; throww)) # nilenv] .

rewrites: 224 in 0ms cpu (0ms real)
(˜ rewrites/second)
result traceset:

1 2 3 4 < ok > U 3 4 1 2 < ok > U
1 3 2 4 < ok > U 1 3 4 2 < ok > U
3 1 2 4 < ok > U 3 1 4 2 < ok >

Maude> reduce in cCSP3 :
[(1 / 2 || (3 / 4 ; throww)) # nilenv] .

rewrites: 396 in 4ms cpu (1ms real)
(111000 rewrites/second)
result traceset:

3 4 < ok > U
1 3 2 4 < ok > U 1 3 4 2 < ok > U
3 1 2 4 < ok > U 3 1 4 2 < ok >

Maude> reduce in cCSP4 :
[(1 / 2 || (3 / 4 ; throww)) # nilenv] .

rewrites: 600 in 4ms cpu (1ms real)
(150000 rewrites/second)
result traceset:

3 4 < ok > U
1 2 3 4 < ok > U 3 4 1 2 < ok > U
1 3 2 4 < ok > U 1 3 4 2 < ok > U
3 1 2 4 < ok > U 3 1 4 2 < ok >

Figure 23: Example of a transaction regarding the first four policies
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Maude> reduce in cCSP5 :
[(1 / 2 || (3 / 4 ; throww)) # nilenv] .

rewrites: 1732 in 4ms cpu (4ms real)
(444500 rewrites/second)
result traceset:

3 4 < ok > U
3 4 1 2 < ok > U

1 3 2 4 < ok > U 1 3 4 2 < ok > U
3 1 2 4 < ok > U 3 1 4 2 < ok >

Maude> reduce in cCSP6 :
[(1 / 2 || (3 / 4 ; throww)) # nilenv] .

rewrites: 724 in 0ms cpu (1ms real)
(˜ rewrites/second)
result traceset:

3 4 1 2 < ok > U
1 3 2 4 < ok > U 1 3 4 2 < ok > U
3 1 2 4 < ok > U 3 1 4 2 < ok >

Figure 24: Example of a transaction regarding the new policies #5 and #6

The modules for the different policies define the parallel composition
of both traces and trace pairs as well as the definition of compensation
pairs.

In Figures 23 and 24 the different results for each of the six policies
are given for a simple example transaction. The transaction is a paral-
lel composition where the left branch is a compensation pair and the
right branch a compensation pair followed by a throww . The environ-
ment is empty, thus every basic activity is mapped to success. The exam-
ple shows the different inclusions from Theorem 1 and 2. In the module
cCSP1 representing the first policy the set of traces is the smallest. Each
of these traces first interleaves the forward actions followed by interleav-
ing of the compensating actions. This set is included in each of the other
policies and reported in the two bottom lines of each reduction. Policy
#2 in the module cCSP2 adds two traces to the set. These traces allow
the branches to run their compensation independently. The third policy
on the other hand in module cCSP3 adds one trace for interruption to
the first set. The set for policy #4 as the result of module cCSP4 includes
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Maude> reduce in cCSP5 : {3 4,ok} u {3 4 1 2,ok} in
[(1 / 2 || (3 / 4 ; throww)) # nilenv] .

rewrites: 1736 in 4ms cpu (4ms real)
(445500 rewrites/second)
result Bool: true

Maude> reduce in cCSP5 :
{1 2 3 4,ok} in [(1 / 2 || (3 / 4 ; throww)) # nilenv] .

rewrites: 1739 in 8ms cpu (4ms real)
(223125 rewrites/second)
result Bool: false

Figure 25: Example showing the use of the tool predicate in

both policy #2 and #3. Compared to policy #4 the fifth policy in module
cCSP5 removes the unrealistic trace where the left branch starts compen-
sating before the error occurred. Policy #6 in module cCSP6 on the other
hand removes the unrealistic trace compared to policy #2.

The tool defines some comparing predicates for trace sets. We can
show the inclusion of different trace sets as well as the equivalence, the
difference and the intersection. Figure 25 shows the use of the inclusion
predicate in the fifth policy. Regarding the previous example we show
here using the tool that both the distributed and the interrupted trace are
included in the result while the unrealistic trace where the left branch
compensates before the error occurred is not included.

3.5 Conclusion

In this chapter we formally defined a new policy for handling compen-
sations in a concurrent setting. It improves existing approaches by al-
lowing branches to independently activate compensations without any
synchronisation point (unlike policies #1 and #3) and discarding unreal-
istic traces (policies #2 and #4). We presented its denotational semantics
and showed its relation to previous policies. Finally we introduced tool
support for all five policies implementing their denotational semantics
in Maude.
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Chapter 4

A Graphical Presentation

In the previous chapter we deduced a new policy for handling compen-
sations in a concurrent setting and presented its denotational semantics.
We called this new policy coordinated compensation. It allows interrup-
tion of sibling branches and the autonomous activation of compensation
as soon as an error occurred. In this chapter we introduce an operational
characterization of the coordinated semantics, and we prove a correspon-
dence result between the operational semantics presented here and the
denotational semantics of the previous chapter.

We base our operational semantics on a mapping of sagas into Petri
nets [Rei85]. On one side, Petri nets are a well-known model of concur-
rency and allow us to give a simple account of the interactions between
the different activities in a saga. On the other side, this mapping allows
us to exploit the well-developed theory of Petri nets and the related tools.
The choice for Petri nets has been inspired by the interesting work by Acu
and Reisig [AR06] aiming to add compensations to a simpler class of nets
called workflow nets.

In the remaining part of the chapter we show that the semantics sat-
isfies some expected high-level properties. Furthermore we present en-
codings of the four other policies presented in Chapter 3 and a tool im-
plementing the encoding. The content of this chapter was first published
in [BKLS10].
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At1 t2B C

Figure 26: Example of a Petri net

4.1 Background on Petri nets

In this section we give a basic introduction to Petri nets. In a nutshell a
Petri net can be seen as a graph where nodes are called places and edges
are transitions. Such transitions can have multiple sources and multiple
targets. To add dynamics, places can be marked with tokens that using
transitions are moved, split , joined, generated or deleted. The token is
consumed if it is in the set of incoming places (preset) for an executing
transition. Such a transition when executed (or fired), consumes a token
from each of its incoming places and produces a token in each outgoing
one.

Example 5. In Figure 26 we present a Petri net with three places and two
transitions. Incoming arcs for transitions are blue, outgoing arcs are green.
Initially there is a token in A. The first transition t1 consumes the token in A
and produces a token inA again and one inB. Transition t2 consumes the token
in A and produces a token in C. Thus the net produces tokens in B until the
second transition fires and produces a token in C. Note that both transitions
compete for the same source.

Formally we define Petri nets as follows:

Definition 3 (Petri net). A Petri net graph is a triple (P, T, F ), where:

• P is a finite set of places,

• T is a finite set of transitions, disjoint from P and

• the flow relation F ⊆ (P × T ) ∪ (T × P ) is a set of edges.

Given a Petri net graph, a marking U for the net is a multiset of places such that
U : P → N. We call Petri net any net N equipped with an initial marking UN .

The preset of a transition t is the set of its input places: •t = {p | (p, t) ∈
F}; its postset is the set of its output places: t• = {p | (t, p) ∈ F}. Defini-
tions of pre- and postsets of places •p and p• are analogous. We denote
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U : P → N

U : U → U ∈ T (N)

t ∈ TN

t : •t→ t• ∈ T (N)

r : U → V, r′ : U ′ → V ′ ∈ T (N)

r + r′ : U + U ′ → V + V ′ ∈ T (N)

r : U → V, s : V →W ∈ T (N)

r; s : U →W ∈ T (N)

Figure 27: Inference rules for T (N).

the empty multiset by 0, multiset union by +, multiset difference by −,
multiset inclusion by ⊆ and write a ∈ U if U(a) > 0.

Definition 4 (Firing). Given a Petri net graph (P, T, F ) and a marking U a
transition t is enabled in U if •t ⊆ U . A transition t enabled in U can fire
leading to the marking V = U − •t+ t•.

A multiset of transitions can fire concurrently, if U contains enough
tokens to cover all their presets. After [MM90], we denote computations
over a Petri net as terms of the algebra T (N) freely generated by the
inference rules in Fig. 27 modulo the axioms below (whenever both sides
are well-defined):1

monoid: (p+ q) + r = p+ (q + r)
r + r′ = r′ + r
0 + r = r

category: (p; q); r = p; (q; r)
r;V = r = U ; r

functorial: (p; p′) + (q; q′) = (p+ q); (p′ + q′)

Each term r : U → V ∈ T (N) defines a concurrent computation over
N , from the marking U to the marking V . We write N ∗−→ V and say that

1For category-minded theorists, the computations form the arrows of a freely generated,
strictly symmetric, strict monoidal category whose objects are markings.
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(ACT) A,B ::= a
∣∣ skip

∣∣ throw

(STEP) X ::= A÷B
(PROCESS) P,Q ::= X

∣∣ P ;Q
∣∣ P |Q

(SAGA) S, T ::= A
∣∣ S;T

∣∣ S|T ∣∣ {[P ]}

Figure 28: Syntax for Sagas

V is reachable in N , if there exists a computation r : UN → V ∈ T (N)

where UN is the initial marking of the net N . A Petri net N is 1-safe if for
any place a and for any reachable marking V we have V (a) ≤ 1. We say
that r : UN → V ∈ T (N) is maximal if no transition is enabled in V . We
will use this notion in Theorem 5.

4.2 From Sagas to Petri nets

In this section we present an encoding of Sagas into Petri nets. We de-
fine the Petri net graph associated to a process by structural induction
on the syntax which was defined in Section 2.2 and is shown once more
in Figure 28 for the reader’s convenience. We distinguish between com-
pensable processes and sagas. A compensable process can be a compen-
sation pair with a forward action and its compensation, or the sequential
or parallel composition of compensable processes. The Petri net for a
compensable process should model the following behaviour: It should
imitate the forward flow as well as the backward flow and in case of a
fault it should be able to inform siblings. Moreover if it receives the in-
formation of a fault it should activate compensations.

At the high-level view, the Petri net for each compensable process is a
black box with six external places to be interfaced with the environment
(Fig. 29). Places F1 and F2 are used for propagating the forward flow
of execution: a token in F1 starts the execution and a token in F2 indi-
cates that the execution has ended successfully. Places R1 and R2 control
the reverse flow: a token in R1 starts the compensation, a token in R2

indicates that the compensation has ended successfully. The place I1 is
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F1

R1F2

R2

I1 I2

x1

x2

gc

Figure 29: A compensable process P

used to interrupt the process from the outside while a token in I2 is used
to inform the environment that an error has occurred. The figure high-
lights that three auxiliary transitions will be present in any process: two
of them (transitions x1 and x2) handle the catching of the interrupt and
reversal of the flow, the other one (transition gc) handles the disposal of
the interrupt in case the process already produced a fault. This garbage
collection consumes the interrupt tokens that have no further purpose.

Supposedly for compensable processes we expect to have the follow-
ing kinds of computations:

Successful (forward) computation: from markingF1 the net reaches mar-
king F2.

Compensating (backward) computation: from marking R1 the net rea-
ches marking R2.

Aborted computation: from markingF1 the net reaches markingR2+I2.

Interrupted computation: from marking F1+I1 the net reaches marking
R2.
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F1

R1F2

R2

I1 I2

x1

x2

gc

a b

Figure 30: Petri net for a compensation pair a÷ b

In Theorem 5 we will formalize this behaviour and prove that our model
behaves accordingly.

The nets for compensable processes are depicted in Figures 30 to 33.
When drawing transitions we use larger boxes for representing sagas
activities and thinner black-filled boxes for auxiliary transitions. As in
Figure 26 incoming arcs for transitions are blue, outgoing arcs are green.
For a compensation pair a ÷ b (Figure 30) there is a transition called a

that consumes a token in F1 and produces a token in F2 representing the
execution of the forward flow, as well as a transition b that consumes
a token in R1 and produces a token in R2 corresponding to the reverse
flow. The net for skipp, not shown here, replaces the transitions a and b

by the vacuous silent activity skip.
The net for the primitive throww is displayed in Figure 31. The tran-

sition k models the abort of the transaction. It consumes the token in F1

for the forward flow and produces a token in R2 for the continuation of
the reverse flow and in I2 to inform the environment of the abort.

In the net for the sequential composition for a compensable process
P ;Q (Figure 32) the token in F3 produced by P for the forward flow
is passed on to start the execution of the process Q. Equally the token
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F1

R1F2

R2

I1 I2

x1

x2

gc

k skip

Figure 31: Petri net for throww

in R3 for the reverse flow produced by Q is passed on to P to start its
compensation. In the encoding P and Q share the places for I1 and I2.

For the parallel composition P |Q (Figure 33) we use two subnets for
the two processes, with external places PF1, PF2, . . . and QF1, QF2, . . .

respectively. To start the execution of the forward flow there is a fork

transition producing tokens in PF1 and QF1 as well as an additional
token MEX working as a semaphore. Without an error or an interrupt
it is collected together with the tokens in PF2 and QF2 at the end of the
execution in the transition join producing a token in F2. If something
goes wrong the token in MEX is collected to prevent the completion of
the forward flow. A fork-and-join mechanism is used also for the reverse
flow, though no additional tokens are needed. If during the forward
computation an interrupt is received, i.e., there is a token in I1, it is split
using the transition iin into PI1 and QI1 which are processed by P and
Q. Here we need the semaphore MEX to guarantee that the interrupt
is only split during the execution of the parallel composition. If an error
occurs inside one of the processes P or Q, the places PI2 and QI2 are
used to inform the respective sibling and the environment: the transition
ip1 ( respectively ip2) consumes a token from PI2 (respectively QI2) and
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P

Q

F1 R2

R1F2

R3F3I1 I2

Figure 32: Petri net for a sequential composition P ;Q

produces a token in I2 and in QI1 (respectively in I2 and in PI1). The
semaphore MEX guarantees in this case that only one branch sends the
interrupt to the environment, and that no interrupt is sent if an external
interrupt has been already received. As usual we have the possibility to
interrupt the process in the beginning or end of the execution with the
transitions x1 and x2, and the garbage collecting transition.

A standard process or saga can be a transaction, a basic action or the
sequential or parallel composition of sagas. The Petri net for a saga has
just three places to interact with the environment: F1 starts its flow, F2

signals successful termination, and E raises a fault. There is no reverse
flow and we do not allow interruption of sagas, thus we can drop the
other places. Intuitively for standard processes a computation starting in
F1 will lead either to F2 or to E.

Figure 34 shows the Petri net for a transaction scope. It embeds the
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F1

F2

E

P

PF1

R1PF2

R2

I1 I2

init

sf

rf

Figure 34: Petri net for a transaction

structure of a compensable process with six external places into the struc-
ture of a saga with three places. The transaction is activated putting a
token in the place PF1 to start the forward flow of the compensable pro-
cess. We expect only two possible results: Either the transaction is suc-
cessful, then the token will end in PF2 and passed on to F2 (transition sf).
Or the transaction aborts and compensates, then we expect a token in R2

and I2. These are as well passed on to F2 (transition rf), thus F2 signals
that the transaction has reached a consistent state. Place E on the other
hand corresponds to an inconsistent state. So far it cannot be generated
by a transaction as we do not allow the failure of compensations.

The nets for a basic activity, throw , sequential and parallel composi-
tion of sagas are displayed in Figure 35.

Example 6. Figure 36 shows an example of an encoded transaction {[A ÷
B; throww ]} consisting of a sequential composition of a compensation pair and
a throww . Given a token in F1 the transition init fires first. Then activity A is
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F1

F2
E

a

(a) A basic activity

F1

F2
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k

(b) throw

S

T

F1
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(c) Sequential composition
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S T
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TF2

TE

fork

join

e1

e2

e3

(d) Parallel composition

Figure 35: Petri nets for sagas
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R3

skip
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rf

I1 I2

x1

x2

gc

x3

Figure 36: Example Petri net for the encoded saga {[A÷B; throww ]}
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executed followed by transition k that activates the compensation and sends an
interrupt via I2 to the environment. After the compensation B the transition rf
fires taking the transaction back to a consistent state.

We will now show that every (compensable) process satisfies some
basic behavioural properties, which match the intuition given on page 61
concerning the meaning of the different places and transitions.

Theorem 5. Given a compensable process P and the corresponding net NP
with external places F1, F2 for the forward flow, R1, R2 for the reverse flow and
I1, I2 for interrupts, we can state the following properties:

1. Every maximal execution of the net NP with initial marking F1 is either
of the form fP : F1 → F2 (successful computation), or of the form aP :
F1 → R2 + I2 (aborted computation);

2. Every maximal execution of the net NP with initial marking R1 is of the
form rP : R1 → R2 (backward computation);

3. Every maximal execution of the net NP with initial marking F1 + I1 is of
the form iP : F1 + I1 → R2 (interrupted computation).

Proof. The proof is by structural induction. The theorem holds trivially
for compensation pairs as well as for the primitives skipp and throww .
For the sequential composition the proof follows from the induction hy-
pothesis.

Consider a parallel composition P |Q of two compensable processes.
For the first case assume a token is in F1. Using fork we create a marking
PF1 +QF1 +MEX . Depending on the behaviour of the two subnets we
consider two cases. If both branches succeed, then by induction hypoth-
esis there are fP : PF1 → PF2 and fQ : QF1 → QF2. The join transition
consumes both PF2 and QF2 as well as MEX and creates a token in F2

as desired. Note that a transition like fP +fQ, due to the distributive law
given in [MM90], corresponds to all the possible interleaving of the two
transitions.

In the other case we assume that P aborts (the case where Q aborts
is symmetric). By induction hypothesis there is aP : PF1 → PR2 + PI2.
The transition ip1 creates a token in QI1, thus for Q we go to the case of
interrupted computation with iQ : QF1 + QI1 → QR2. The hypothesis
follows firing the transition rfork. Note that iQ may include computa-
tions where Q aborts as well. Then QI1 and QI2 are garbage collected by
transition gc.
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The case of backward computation is easy: Starting with a token in
R1 the transition rfork is fired producing PR1 and QR1. The induction
hypothesis then leads to tokens PR2 and QR2 triggering rjoin. This sat-
isfies the hypothesis.

Finally, consider the case of interrupted computation. If we fire the
transition x1 before fork the thesis holds trivially. Equally if after fork both
processes run successfully and the join is fired, then x2 is taken, produc-
ing a token in R1. As described in the previous case we reach R2. Now
assume instead that transition iin is taken during forward computation,
producing as marking PF1 +QF1 + PI1 +QI1. We can apply the induc-
tion hypothesis to reach a marking PR2 +QR2. Executing transition rjoin
this satisfies the hypothesis.

Note that we call interrupted any computation that consumes the to-
ken I1: It may as well happen that the net autonomously aborts (due to
some throww ), and the token I1 is consumed by the garbage collection
transition.

We can state similar to the theorem above some behavioural proper-
ties for sagas:

Corollary 3. Let S be a saga andNS its corresponding net with external places
F1, F2, E and initial marking F1. Then any maximal execution of NS leads
either to F2 or to E.

Proof. The proof is by structural induction on S. It is trivial except for
the case of a transaction scope. Here we apply the result of Theorem 5
to show that the Petri net for a compensable process with initial marking
F1 has only two possible final markings. Both lead with either transition
sf or rf to marking F2.

The next proposition states a different behavioural property:

Proposition 2. Let P be a compensable process and NP the corresponding net
with external places F1, F2, R1, R2, I1, I2. Then:

(i) NP with initial marking F1 + I1 is 1-safe, and

(ii) NP with initial marking R1 + I1 is 1-safe.

Moreover, let S be a saga and let NS be its corresponding net with external
places F1, F2, E and initial marking F1. Then, NS is 1-safe.
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Proof. The proof is by structural induction on P and S. Note that the only
way to generate multiple tokens in one place is when several branches
in a concurrent process abort and multiple interrupts are sent. Here
the semaphore MEX guarantees that still only one branch can actually
broadcast the interrupt while the others are collected by garbage collec-
tion.

As a consequence of the proposition we can state the following corol-
lary:

Corollary 4. Let P be a compensable process and NP the corresponding net
with external places F1, F2, R1, R2, I1, I2. Then:

(i) NP with initial marking F1 is 1-safe, and

(ii) NP with initial marking R1 is 1-safe.

4.3 Correspondence

In this section we prove that the presented operational semantics using
Petri nets models the policy coordinated compensation introduced in the
previous chapter. We therefore show its observational equivalence to the
denotational semantics (Figure 37).

In order to show the correspondence we need to introduce some kind
of observation for the operational semantics.

Definition 5. Let P be a compensable process and NP its corresponding net.
For any f ∈ T (NP ) we define the set label(f) of action sequences as follows:

label(a) = {a} for any basic activity a
label(k) = {k} for any throw transition k

label(f1; f2) = label(f1)label(f2)
label(f1 + f2) = label(f1)|||label(f2)

label(f) = ε otherwise

where juxtaposition and interleaving are defined element-wise.

It is immediate to check that the function label is well-defined, in the
sense that it is invariant with respect to the equivalence axioms on T (N).
To demonstrate the use of this function consider a compensation pair
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COMPOSITION OF STANDARD TRACES

Sequential
{ p〈X〉; q , pq
p〈ω〉; q , p〈ω〉 when ω 6= X

Parallel p〈ω〉||q〈ω′〉 , {r〈ω&ω′〉 | r ∈ (p|||q)},

where
ω ! ! ! ? ? X
ω′ ! ? X ? X X

ω&ω′ ! ! ! ? ? X

and

{
p|||ε , ε|||p , {p}

Ap|||Bq , {Ar | r ∈ (p|||Bq)} ∪ {Br | r ∈ (Ap|||q)}

COMPOSITION OF COMPENSABLE TRACES

Sequential
{ (p〈X〉, p′); (q, q′) , (pq, q′; p′)

(p〈ω〉, p′); (q, q′) , (p〈ω〉, p′) when ω 6= X

Parallel

(p〈X〉, p′)||(q〈X〉, q′) ,5 {(r〈X〉, r′) | r ∈ (p|||q) ∧ r′ ∈ (p′||q′)}
(p〈ω〉, p′)||(q〈ω′〉, q′) ,5 itp((p〈ω〉, p′), (q〈ω′〉, q′)) ∪

itp((q〈ω′〉, q′), (p〈ω〉, p′))
when ω, ω′ 6= X

(p〈ω〉, p′)||(q〈ω′〉, q′) ,5 ∅ otherwise

itp((p〈ω〉, p′), (q〈ω′〉, q′)) ,5 {((p|||q1)〈ω〉, (p′||q2q
′)) | q = q1q2}

TRACES OF SAGAS

a , {a〈X〉} skip , {〈X〉} throw , {〈!〉}
S;T , {p; q | p ∈ S ∧ q ∈ T}
S|T , {r | r ∈ (p||q) ∧ p ∈ S ∧ q ∈ T}
{[P ]} , {p〈X〉 | (p〈X〉, q) ∈ P} ∪ {pq | (p〈!〉, q) ∈ P}

TRACES OF COMPENSABLE PROCESSES

A÷B ,5 {(A〈X〉, B〈X〉), (〈?〉, 〈X〉), (A〈?〉, B〈X〉)}
skipp , {(〈X〉, 〈X〉), (〈?〉, 〈X〉)}
throww , {(〈!〉, 〈X〉), (〈?〉, 〈X〉)}
P ;Q , {pp; qq | pp ∈ P ∧ qq ∈ Q}
P |Q , {rr | rr ∈ (pp||qq) ∧ pp ∈ P ∧ qq ∈ Q}

Figure 37: Denotational semantics for Sagas according to policy #5

72



A ÷ B. With initial marking F1 + I1 a possible computation in the en-
coded Petri net is A x2 B. Applying the label function the result is A B.
Moreover we define a function filter(f) that removes every k from a la-
bel f . Using this definition we can now formulate the correspondence
theorem.

Theorem 6 (Correspondence). Let P be a compensable process and NP the
corresponding net with external places F1, F2 for the forward flow, R1, R2 for
the reverse flow and I1, I2 for interrupts. The correspondence of denotational
and (maximal computations of the) operational semantics is given as follows:

1. (p〈X〉, q〈X〉) ∈ P iff there is a computation f : F1 → F2 ∈ T (NP )
with p ∈ label(f) and a computation r : R1 → R2 ∈ T (NP ) with
q ∈ label(r).

2. (p〈!〉, q〈X〉) ∈ P iff there is a computation a : F1 → I2 + R2 ∈ T (NP )
with label pkq′ ∈ label(a) for some q′ such that q = filter(q′).

3. (p〈?〉, q〈X〉) ∈ P iff there is a markingU and two computations f : F1 →
U, i : U + I1 → R2 ∈ T (NP ) such that p ∈ label(f) and q = filter(q′)
for some q′ ∈ label(i).

Proof. The proof is by induction on the structure of the process (which
corresponds to an induction on the structure of the corresponding net),
with a case analysis similar to the one of Theorem 5.

The theorem holds trivially for compensation pairs, skipp and throww .
Let us consider sequential composition P ;Q. We have two kinds of

traces: the ones where P succeeds, and the ones where it does not. Let us
consider the first case. By induction hypothesis we have a computation
fP : F1 → F3 with label(fP ) = p. Then we have again a case analysis
according to the behaviour of Q. We consider just the case of success, the
other being similar. In this case, by the induction hypothesis we have a
computation fQ : F3 → F2 with label(fQ) = p′ and then computations
rQ : R1 → R3 with label(rQ) = q′ and rP : R3 → R2 with label(rP ) = q.
Thus the two computations fP ; fQ and rQ; rP satisfy the thesis. The case
where P does not succeed is trivial by induction hypothesis.

Let us consider now parallel composition P |Q. We have again two
possibilities: either both P andQ succeed, or not. Let us consider the first
case. Operationally, first transition fork is executed. Then the induction
hypothesis is applied to the two subnets for the forward flow. Finally
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transition join is executed. The analysis of the backward flow is similar.
It is easy to see that labels are the desired ones.

Let us consider the case where at least one branch aborts. First tran-
sition fork is executed. We have then a case analysis according to the
behaviour of the two subnets. Assume P aborts. By induction hypoth-
esis there is a computation aP : PF1 → PI2 + PR2. Assume that Q
is interrupted. Again by induction hypothesis, there are computations
fQ : QF1 → U and iQ : U +QI1 → QR2. The only constraint on the pos-
sible interleaving is that iQ may only start after PI2 has been produced.
This is the behaviour captured by function itp in the parallel composition
of compensable traces.

In the case of double abort the two subnets start compensating on
their own, thus there is no synchronization constraint to be satisfied (both
the sets defining function itp become not empty). The two notifications
are garbage collected.

The case of external interrupt is similar. The only difference is that
if the interrupt is processed after the two processes have finished their
computations successfully, then transition x2 is used. In the denotational
semantics there is no clause corresponding to this, but this produces the
same traces of two yielding computations (and we always have a yield-
ing computation for each successful one).

The correspondence can be extended to sagas as follows:

Corollary 5. Let S be a saga andNS its corresponding net with external places
F1, F2 and E. Then:

1. p〈X〉 ∈5 S iff there is a computation f : F1 → F2 ∈ T (NS) with
p ∈ label(f) and

2. p〈!〉 ∈5 S iff there is a computation a : F1 → E ∈ T (NS) with p ∈
label(a).

Proof. All the cases are trivial but the one for a transaction. This case fol-
lows from Theorem 6. The only possibilities for the internal compensable
process are to succeed, causing the success of the transaction, or to abort
and compensate, causing again the success of the transaction. Note that
there is no possibility of external interrupt. Instead notifications to the
outside are discarded.
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4.4 Logical Properties

In this section we show that a transaction {[P ]} satisfies some basic logical
properties following their intuitive behaviour. First, following [BMM05],
we define the concept of order of the activities in a transaction. To this
end we need activities with a unique name. Also, we consider throww as
a forward activity and use subscripts to distinguish between multiple oc-
currences of the same activity, like in {[throww1|A1÷B;A2÷C; throww2]}.

We let A(S) be the set of activities of a transaction including throwws.

Definition 6 (Order of a transaction). The strict order of a transaction S is
the least transitive relation ≺S such that:

1. if A÷A′ occurs in S then A ≺S A′;

2. if P ;Q occurs in S then A ≺S B for each forward activity A occurring
in P and any forward activity B in Q;

3. if A÷A′ and B ÷B′ occur in S and A ≺S B then B′ ≺S A′.

We let predS(A) , {B ∈ A(S) |B ≺S A} be the set of the predeces-
sors of the activity A w.r.t. the order ≺S . We say a sequence A1A2...An

respects the order ≺S if Ai ≺S Aj implies i < j for any 1 ≤ i < j ≤ n.

Theorem 7 (Completion). Let S = {[P ]} be a transaction. If P contains
no throww activities, then it will succeed. In this case there exists a unique
maximal computation f ∈ T (NP ) with initial marking F1 and it leads to F2.
Furthermore, label(f) is the set of possible interleavings of all forward activities
in A(S) that respect ≺S .

Proof. By induction on the structure of the process inside the transaction
S.

Theorem 8 (Successful compensation). Let S = {[P ]} be a transaction. If P
contains at least a throww activity, then it will abort and it will be compensated.
In this case all the maximal computations in the netNP with initial marking F1

end in R2 + I2. Then, for any such computation a : F1 → R2 + I2 ∈ T (NP )
we have that each possible label in filter(label(a)) satisfies the conditions below:

1. activities in the label respect the order ≺S ;
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2. any activity A such that A ≺S throww i for all throww i in A(S), occurs
in the label;

3. no forward activity A such that there exists a throww i in A(S) with
throww i ≺S A, occurs in the label;

4. if activity A′ is the compensation of activity A, then A occurs in the label
iff A′ occurs in the label;

5. there exists at least one throww i such that all activities in predS(throww i)
appear in the label and they precede each compensation activityA′ appear-
ing in the label.

Moreover, for any action sequence q satisfying conditions 1–5 above, there exists
a maximal computation a : F1 → R2 + I2 such that q ∈ filter(label(a)).

Proof. First we prove by structural induction using Theorem 5 that any
maximal computation starting from F1 ends in R2 + I2 with no token
ever appearing in F2 (needed for proving property 3, below).

Next, we take any a : F1 → R2 + I2 and q ∈ filter(label(a)) and show
that 1–5 hold for q.

Properties 1 and 4 are proved by structural induction on P .
For property 2, sinceA ≺S throww i for all throww i, there must exist P ′

and Q′ such that P = C[P ′;Q′] for some context C[·], where P ′ contains
A andQ′ contains all throww i. Then, we conclude by structural induction
on the shape of the context C[·], by applying Theorem 7 to P ′.

For property 3, let throww i be such that throww i ≺S A, therefore there
exist P ′ and Q′ such that P = C[P ′;Q′] for some context C[·], where P ′

contains throww i andQ′ containsA. Therefore by applying the first argu-
ment of this proof to P ′ we know that activities in Q′ are never enabled.

For property 5 we proceed by contradiction. Suppose that there exists
a compensation activity A′ such that for any activity throww i an activity
Bi ∈ predS(throww i) can be found such that A′ precedes Bi in q. With-
out loss of generality, let A′ be the leftmost such activity appearing in
q. Hence q = A1 · · ·AnA′q′ for some forward activities A1, . . . , An and
sequence q′ that contains all Bi’s. But then the firing of A1 · · ·An leads
to a marking where no throww i is enabled and therefore A′ cannot be
enabled, which is absurd.

For the last part, let q be any action sequence that satisfies condi-
tions 1–5 and let A1 · · ·An be the subsequence of q formed by forward
activities. By condition 4, their backward activities A′1, . . . , A′n are the
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only other activities that appear in q and we let A′i1 · · ·A
′
in

be the cor-
responding subsequence of q. By conditions 1–3 the sequence of tran-
sitions A1 · · ·An can be fired (possibly firing additional fork and join)
starting from F1. By condition 5 there is a throww i such that all activ-
ities in predS(throww i) are in A1, . . . , An and therefore the transition k
associated with throww i is enabled after the firing of A1 · · ·Am for some
m ≤ n, which is a prefix of q. Note that the propagation of interrupts
by transitions iin, ip1 and ip2 can be delayed until An is fired. There-
fore the sequence of transitions A1 · · ·AnA′i1 · · ·A

′
in

is fireable, which in-
duces a computation a : F1 → R2 + I2. It remains to show that q ∈
filter(label(a)), which can be done by induction on the number of ac-
tion switches needed to transform A1 · · ·AnA′i1 · · ·A

′
in

to q exploiting the
functorial axiom. Note that in fact one has to swap only some forward
actions Ai (for i > m) and some backward actions A′j (possibly with the
interrupt propagation transitions that enables A′j), such that Ai 6≺S A′j
(by condition 1).

Conditions 1 to 4 correspond to the conditions already presented in
[BMM05] (translated into our notation) , while condition 5 does not hold
in [BMM05]: it characterizes the fact that our semantics allows only real-
istic traces, where compensations are not started before a fault is actually
executed. Since faults are removed from labels, we consider that a fault
can be executed when all the observable activities preceding it have been
executed, and thus enables the failing action.

Example 7. Consider the Saga S = {[C ÷C ′ | (A; throww1) | (B; throww2)]}.
Here we have predS(throww1) = {A} and predS(throww2) = {B}. Then the
trace CC ′AB can not be observed, since C ′ is preceded by neither A nor B.
However, this trace is valid according to the semantics of policy #4.

4.5 Dealing with other compensation policies

In this section we present how other compensation policies can be mod-
elled using Petri nets. Figure 38 presents an overview of the previously
introduced policies that are distinguished along two aspects. The first
differentiation regards interruption of siblings while the other aspect con-
cerns the centralized or distributed activation of compensations. We al-
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Figure 38: Compensation policies (arrows stand for trace inclusion)

ready presented the encoding of policy #5 and introduce here the other
encodings.

As a first item we consider the coordinated compensation without in-
terrupt (policy #6). It can be obtained from policy #5 by removing any
transitions x : F + I1 → R used to interrupt a process. We only allow in-
terrupting transitions xP : PF2 +PI1 → PR1 and xQ : QF2 +QI1 → QR1

for a parallel composition P |Q at the end of each branch. That way if
one branch aborts the other can receive the interrupt after finishing its
forward flow and start compensating. Moreover while in policy #5 for
a sequential composition P ;Q the place I1 is shared, in policy #6 we in-
troduce a new place PI1 while Q uses I1. This ensures if P is a parallel
composition and we receive an interrupt on I1 then Q will still be exe-
cuted.

Section 4.5.1 presents the encoding for policy #3 while in Section 4.5.2
we show the encoding of policy #4. Both sections give a correspondence
theorem to the respective denotational semantics. At the end of each
section we show how to obtain the encoding for the respective policy
without interruption (policies #1 and #2).
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Figure 39: Petri net for a compensation pair according to policy #3

4.5.1 Centralized Compensation

In the centralized case with interruption (policy #3), compensations of
concurrent processes are activated after a synchronization point that guar-
antees each branch has either aborted or was interrupted by another
(aborting) branch. The encoding works similar to the one for policy #5,
with some additions in order to guarantee that compensations are only
started once every branch is informed about the abort. We add the fol-
lowing places to the interface of every compensable process:

• the place W is used for branches that are waiting, they have been
interrupted or aborted and wait for the confirmation to start their
compensation,

• a place S that will start the execution of the compensation.
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Figure 40: Petri net for throww according to policy #3

Additionally to the specific transitions for the encoding of each compens-
able process we define the following transition that are part of every en-
coding. These transitions are:

x : F1 + I1 → R2 +W
gc : I1 + I2 → ∅

The first indicates that the forward flow was interrupted and is now wait-
ing to start compensating, the other one is used for garbage collection.
Note that we do not allow interruption at the end (transition x2 in Fig-
ure 29) due to the correspondence with the denotational semantics.

For a compensation pair A ÷ B (Figure 39) to the transitions given
above we add a : F1 → F2, executing the activity A, and b : R1 + S →
R2 + S for executing compensation B given a token in S. The token in
S is put back for any continuation. That way we can guarantee branches
compensate only if they have a token in S indicating that each branch
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finished its forward flow.

For the primitive throww (Figure 40) instead we add the transition
k : F1 → R2 + I2 +W indicating an abort and waiting for possible other
siblings to finish their forward flow. For the sequential composition we
define new intermediate places for the forward and reverse flow. The
places I1, I2 are shared as in policy #5, additionally S and W are shared
as well.

The encoding for the parallel composition (Figure 41) extends the one
from policy #5 with the handling of the waiting mechanism. Apart from
the encoding of the two branches with fresh names and the usual transi-
tions for standard processes, the following transitions are added:

fork : F1 → PF1 +QF1 +MEX+H
join : PF2 +QF2 +MEX+H → F2

rfork : R1 → PR1 +QR1+H
rjoin : PR2 +QR2+PS +QS → R2+S
sfork : S +H → PS +QS
wjoin : PW +QW → W

xP : PF2 + PI1 → PR1+PW
xQ : QF2 +QI1 → QR1+QW
x2 : F2 + I1 → R1+W
iin : I1 +MEX → PI1 +QI1
ip1 : PI2 +MEX → I2 +QI1
ip2 : QI2 +MEX → I2 + PI1

The first four are used for the fork and join of the forward and the reverse
flow. The token MEX is used as before for the handling of interrupts.
The place H ensures that we split the token S for compensating only in-
side the parallel composition, as can be seen in the transition sfork. The
next one, wjoin joins the waiting branches. The transitions xP and xQ

allow the interruption of a branch when it has finished, equally x2 inter-
rupts the computation at the end of the forward flow, while the last three
handle the propagation of interrupts similar to policy #5.

For a saga {[P ]} (Figure 42) with external places F1, F2 for the forward
flow and E for an error we introduce fresh names for the encoding of P .
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Figure 42: Petri net for a transaction according to policy #3

Then we add the following transitions:

init : F1 → PF1+Y
cp : Y +W → S
sf : PF2+Y → F2

rf : PR2 + PI2+S → F2

where the first one starts the transaction and puts a token in the new
place Y which indicates that this is the outermost process of the trans-
action. The second one takes this token in Y and one in W indicating
each concurrent computation is waiting and returns a token in S that
will activate compensations. The last two transitions are as in policy #5
taking a successful or a successfully compensated computation back to
the normal forward flow.

Compared to the denotational semantics for policy #3 (see Section 3.1)
we state the following correspondence for compensable processes, where
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we use ∈3 to indicate traces according to policy #3:

Theorem 9 (Correspondence policy #3). Let P be a compensable process and
NP the corresponding net according to policy #3 with external places F1, F2 for
the forward flow,R1, R2 for the reverse flow, I1, I2 for interrupts,W for waiting
and S for activating compensations. The correspondence of denotational and
(maximal computations of the) operational semantics is given as follows:

1. (p〈X〉, q〈X〉) ∈3 P iff there is a computation f : F1 → F2 ∈ T (NP )
with p ∈ label(f) and a computation r : R1 + S → R2 + S ∈ T (NP )
with q ∈ label(r).

2. (p〈!〉, q〈X〉) ∈3 P iff there is a marking U and a computation a : F1 →
U + I2 + W ∈ T (NP ) with p′ ∈ label(a) for some p′ such that p =
filter(p′) and a computation r : U + S → R2 + S ∈ T (NP ) with
q ∈ label(r).

3. (p〈?〉, q〈X〉) ∈3 P iff there is a marking U and a computation i : F1 +
I1 → U + W ∈ T (NP ) with p ∈ label(i) and r : U + S → R2 + S ∈
T (NP ) such that q ∈ label(r).

Proof. The proof is by structural induction similar to the proof for Theo-
rem 6. Note that we have a clear distinction between forward and back-
ward flow in both the denotational semantics, as the two elements of
the pair, and in the operational semantics due to the waiting mechanism
with places W and S.

The first policy, centralized compensation without interrupt, can be
easily modelled changing the encoding for policy #3 as follows. First
we remove the possibility for compensable processes to be interrupted
in the beginning, i.e. the transition x : F + I1 → R that is included in
the encoding of every process. The only possibility to interrupt a process
is at the end of a branch in a parallel composition P |Q where we leave
the transitions xP and xQ. That way if either P or Q aborts while the
other branch is successful we do not get a deadlock but instead can start
compensations. As in policy #6 for a sequential composition P ;Q we
introduce the new place PI1 while Q uses I1.
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Figure 43: Petri net for a compensation pair according to policy #4

4.5.2 Distributed Compensation

In the distributed case (policy #4) concurrent processes can start their
compensations on their own. This includes cases where a branch ac-
tivates its compensation before an actual error occurred. Nevertheless
the encoding has to distinguish those cases where a process aborted and
where a process started its compensation assuming a fault.

The encoding of compensable processes uses six places. As for policy
#5 there are two places for the forward flow F1 and F2, as well as two for
the reverse flow R1 and R2. We use the place I2 to keep the information
that a process has aborted on its own while in contrast to policy #5 we
use the place I1 in order to know that a process without an explicit abort
started executing its compensation.

Possible final configurations for an execution starting with a token in
F1 of compensable processes should be either a token in F2 for a success-
ful computation, a token in R2 and I2 for an aborted computation or a
token in R2 and I1 for an interrupted computation. Note that inside a
saga only the first two are correct computations.

For P a compensable process and NP the corresponding net with ex-
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Figure 44: Petri net for throww according to policy #4

ternal places F1, F2 for the forward flow, R1, R2 for the reverse flow and
I1, I2 for interrupts the net NP always includes the following transition:
x : F1 → R2 + I1, i.e., in every state of the computation the reverse flow
can be started. The encoding for a compensation pair A ÷ B (Figure 43)
adds the respective transitions for A and B, while for throww (Figure 44)
the transition k is added. The encoding of sequential composition re-
mains as in policy #5 (Figure 32).

For a parallel composition P |Q (Figure 45) both P and Q are encoded
with new names. Additionally we need the following transitions:

fork : F1 → PF1 +QF1

join : PF2 +QF2 → F2

rfork : R1 → PR1 +QR1

rjoin : PR2 +QR2 → R2

xP : PF2 → PR1 + PI1
xQ : QF2 → QR1 +QI1
x2 : F2 → R1 + I1

ijoin1 : PI1 +QI1 → I1
ijoin2 : PI2 +QI1 → I2
ijoin3 : PI1 +QI2 → I2
ijoin4 : PI2 +QI2 → I2
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Figure 45: Petri net for a parallel composition P |Q in policy #4
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Figure 46: Petri net for a transaction according to policy #4

The first transitions handle the fork and join for the forward and reverse
flow. The next ones start the reverse flow independently, while the last
four rules are different variants for joining the interrupt depending on
where an error occurred.

The encoding of a transaction (Figure 46) is the same as in policy #5
with an additional transition if. It takes a token in R2 and I1 each as the
final configuration and will lead to an error state.

Compared to the denotational semantics for policy #4 (see Section 3.1)
we state the following correspondence for compensable processes:

Theorem 10 (Correspondence policy #4). Let P be a compensable process
andNP the corresponding net according to policy #4 with external places F1, F2

for the forward flow, R1, R2 for the reverse flow and I1, I2 for interrupts. The
correspondence of denotational and (maximal computations of the) operational
semantics is given as follows:

1. (p〈X〉, q〈X〉) ∈4 P iff there is a computation f : F1 → F2 ∈ T (NP )
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with p ∈ label(f) and a computation r : R1 → R2 ∈ T (NP ) with
q ∈ label(r).

2. (p〈!〉, q〈X〉) ∈4 P iff there is a computation a : F1 → I2 +R2 ∈ T (NP )
with label p′q ∈ label(a) for some p′ such that p = filter(p′).

3. (p〈?〉, q〈X〉) ∈4 P iff there is a computation i : F1 → I1 +R2 ∈ T (NP )
such that pq ∈ label(i).

Proof. The proof is by structural induction similar to the proof of Theo-
rem 6.

To encode policy #2 we have to change the encoding of policy #4 as
follows: First we remove the transition x : F → R + I1 inherent in every
compensable process. We keep the remaining transitions including xP, xQ

and x2 for parallel composition. This guarantees that a branch in a par-
allel composition cannot be interrupted during computation. However
it may start its compensation independently after finishing successfully.
As for policies #1 and #6 we do not share the place I1 in a sequential
composition P ;Q, but instead introduce place PI1 for the encoding of P
while Q uses I1.

4.6 Tool Support

In this section we present a tool modelling the encoding of compensable
processes and sagas into Petri nets and the execution inside a Petri net.
We implemented policy #5 as well as the policies presented in the previ-
ous section. The tool is written in Maude (see Section 2.6 for details) and
can be found at [Sou13].

The implementation is structured in several modules. The first one
called PETRI implements Petri nets. We define a sort for places such
that op F : Nat -> Place and other constructors using instead of F
the operators R, I1 or I2. A Place is a subsort of Marking that can be
combined using the operator +. The sort Transition is defined by the
operator

op _ - _ > _ : Marking Names Marking -> Transition .
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rl [fire] : (M , ((M - A > M2), S) , N)
=> (M2 , ((M - A > M2), S) , (N A)) .

crl [fire] : ((M + M1) , ((M - A > M2), S) , N)
=> ((M2 + M1) , ((M - A > M2), S) , (N A))
if M1 =/= empty .

Figure 47: Rules for firing a transition in a Petri net where M, M1, M2 are
markings, N and A names and S a set of transitions

where a Marking (the preset of the transition) is mapped to another
Marking (the postset of the transition) observing the label Names. We
then use a configuration consisting of the current marking a set of tran-
sitions and the yet observed labels for the rewrite rule to fire transitions
(Figure 47).

The module SAGA defines the syntax for compensable processes (sort
Cprocess) and standard processes (sort Sagaprocess) as given in Fig-
ure 28. For simplicity we use natural numbers to represent actions.

The encoding is defined using the following two operators:

op enc : Sagaprocess -> TransitionSet .
op enc : Cprocess -> TransitionSet .

These are abbreviations used to initialize the actual encoding operator
encc that takes as arguments apart from the process also the external
places and a counter. The counter is needed to generate new places (as in
the encoding of parallel composition) while through the external places
the corresponding net can be addressed. The module SAGA defines this
encoding for standard processes while the encoding of compensable pro-
cesses differs in each policy and thus is defined in different modules, one
for each policy. Exemplary we present here the encoding of policy #5 in
module SAGA5.

The extended encoding function for compensable processes is de-
fined such that

op encc : Cprocess Place Place Place
Place Place Place Nat -> Encoding .
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where Encoding stands for a pair consisting of a natural number for the
counter and the resulting transition set. It is initialized by the equation

ceq enc(PP) = T
if
F1 := F(0) /\ F2 := F(1) /\
R1 := R(0) /\ R2 := R(1) /\
I1 := I1(0) /\ I2 := I2(0) /\
Ctr := 2 /\
Ctr2 . T := encc(PP, F1, F2, R1, R2, I1, I2, Ctr) .

As can be seen the six places for encc are F1, F2 for the forward flow,
R1, R2 for the backward flow and I1, I2 for interrupts.

The operator encc encodes processes according to the presented Petri
nets in Figures 30 to 35. For example, the encoding of a compensation
pair is defined such that

eq encc(A / B, F1, F2, R1, R2, I1, I2,Ctr) =
(Ctr . ((F1 - A > F2), (R1 - B > R2),
((F1 + I1) - nil > R2), ((F2 + I1) - nil > R1),
((I1 + I2) - nil > empty))) .

where the first two transitions represent the forward and backward flow
observing A or B respectively, and the other transitions are auxiliary
transitions x1 and x2 for interrupting the forward flow and gc for garbage
collection. Note that for auxiliary transitions the label is nil, thus the ob-
served flow of an encoded Petri net only contains basic activities.

Figure 48 shows an example for encoding a transaction consisting of a
parallel composition of a compensation pair and a throww . Note that the
operator enc always puts the place F(0) as the starting place for the for-
ward flow F1 and F(1) as the final place F2. In Figure 49 we use this fact
to compute the possible final configurations of the corresponding Petri
net starting with a token inF1 (abbreviating enc([1 / 2 || throww])

as constant T). We can see there are two possible results depending on
the observed flow. In the first solution the observed flow is empty cor-
responding to the case where the left branch is interrupted before any
execution. The other solution observes 1 2 where the left branch is in-
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Maude> reduce in SAGA5 : enc([1 / 2 || throww]) .
rewrites: 11 in 0ms cpu (0ms real) (˜ rewrites/second)
result TransitionSet:

(F(0) - nil > F(5) + F(7) + MEX(5)),
(F(3) - nil > F(1)),
(F(5) - 1 > F(6)),
(F(7) - nil > R(8) + I2(7)),
(R(3) - nil > R(5) + R(7)),
(R(5) - 2 > R(6)),
((F(0) + I1(3)) - nil > R(4)),
((F(3) + I1(3)) - nil > R(3)),
((F(5) + I1(5)) - nil > R(6)),
((F(6) + I1(5)) - nil > R(5)),
((F(7) + I1(7)) - nil > R(8)),
((F(8) + I1(7)) - nil > R(7)),
((R(4) + I2(3)) - nil > F(1)),
((R(6) + R(8)) - nil > R(4)),
((I1(3) + I2(3)) - nil > empty),
((I1(3) + MEX(5)) - nil > I1(5) + I1(7)),
((I1(5) + I2(5)) - nil > empty),
((I1(7) + I2(7)) - nil > empty),
((I2(5) + MEX(5)) - nil > I1(7) + I2(3)),
((I2(7) + MEX(5)) - nil > I1(5) + I2(3)),
(F(6) + F(8) + MEX(5)) - nil > F(3)

Figure 48: Example encoding in module SAGA5

terrupted after execution. In both cases the final marking corresponds to
F2.

Figure 50 shows the corresponding search graph for the example com-
putation. Going through the graph we can see the following transitions:

• From state 0 to state 1 transition fork is executed.

• From state 1 to state 2 transition 1 is executed.

• From state 1 to state 3 transition k is executed.

• From state 2 to state 4 transition k is executed.

• From state 3 to state 4 transition 1 is executed.
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Maude> search in SAGA5 :
F(0),enc([1 / 2 || throww]),nil =>! C:Configuration .

Solution 1 (state 11)
states: 13 rewrites: 39 in 0ms cpu (1ms real)

(˜ rewrites/second)
C:Configuration --> F(1),T,nil

Solution 2 (state 13)
states: 14 rewrites: 41 in 4ms cpu (1ms real)

(10250 rewrites/second)
C:Configuration --> F(1),T,1 2

No more solutions.
states: 14 rewrites: 41 in 4ms cpu (2ms real)

(10250 rewrites/second)

Figure 49: Computation of a transaction in the tool

• From state 3 to state 5 transition ip2 is executed.

• From state 4 to state 6 transition ip2 is executed.

• From state 5 to state 6 transition 1 is executed.

• From state 5 to state 7 transition xP1 is executed.

• From state 6 to state 8 transition xP2 is executed.

• From state 7 to state 9 transition rjoin is executed.

• From state 8 to state 10 transition 2 is executed.

• From state 9 to state 11 transition rf is executed.

• From state 10 to state 12 transition rjoin is executed.

• From state 12 to state 13 transition rf is executed.

As we explained in this example we can search for any maximal com-
putation of an encoded process. Moreover exploiting the search graph
we can show any reachable state from a given marking. We can also
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state 0, Configuration: F(0),T,nil
arc 0 ===> state 1 (rl M,S,... [label fire] .)

state 1, Configuration: (F(5) + F(7) + MEX(5)),T,nil
arc 0 ===> state 2 (crl (M + M1),S,... [label fire] .)
arc 1 ===> state 3 (crl (M + M1),S,... [label fire] .)

state 2, Configuration: (F(6) + F(7) + MEX(5)),T,1
arc 0 ===> state 4 (crl (M + M1),S,... [label fire] .)

state 3, Configuration: (F(5) + R(8) + I2(7) + MEX(5)),T,nil
arc 0 ===> state 4 (crl (M + M1),S,... [label fire] .)
arc 1 ===> state 5 (crl (M + M1),S,... [label fire] .)

state 4, Configuration: (F(6) + R(8) + I2(7) + MEX(5)),T,1
arc 0 ===> state 6 (crl (M + M1),S,... [label fire] .)

state 5, Configuration: (F(5) + R(8) + I1(5) + I2(3)),T,nil
arc 0 ===> state 6 (crl (M + M1),S,... [label fire] .)
arc 1 ===> state 7 (crl (M + M1),S,... [label fire] .)

state 6, Configuration: (F(6) + R(8) + I1(5) + I2(3)),T,1
arc 0 ===> state 8 (crl (M + M1),S,... [label fire] .)

state 7, Configuration: (R(6) + R(8) + I2(3)),T,nil
arc 0 ===> state 9 (crl (M + M1),S,... [label fire] .)

state 8, Configuration: (R(5) + R(8) + I2(3)),T,1
arc 0 ===> state 10 (crl (M + M1),S,... [label fire] .)

state 9, Configuration: (R(4) + I2(3)),T,nil
arc 0 ===> state 11 (rl M,S,... [label fire] .)

state 10, Configuration: (R(6) + R(8) + I2(3)),T,1 2
arc 0 ===> state 12 (crl (M + M1),S,... [label fire] .)

state 11, Configuration: F(1),T,nil

state 12, Configuration: (R(4) + I2(3)),T,1 2
arc 0 ===> state 13 (rl M,S,... [label fire] .)

state 13, Configuration: F(1),T,1 2

Figure 50: Search graph for the computation of Figure 49
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use the search command to match the result state to a given pattern, e.g.,
looking for reachable states that observed a particular action.

Using this feature of Maude we used the tool to improve our encod-
ing. For example we were able to search for final states that did not match
the behaviour formalized in Theorem 5.

Extending the tool we could use the LTL model checker of Maude
to prove properties for a given process. As an example we could prove
that a net for a particular encoded process is 1-safe as shown in Proposi-
tion 2. Another extension could show the correspondence of the opera-
tional and denotational semantics given a particular process.

4.7 Conclusion

In this chapter we presented an operational semantics for Sagas based
on an encoding into Petri nets and showed that computations are equiv-
alent to labels in the denotational semantics. Moreover we presented
behavioural and logical properties that hold for every encoded process.
We showed as well encodings for other compensation policies including
a correspondence with the respective denotational semantics and pre-
sented a tool implementing the encoding for each presented policy.
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Chapter 5

Small-step SOS semantics
for Sagas

In this chapter we introduce a small-step semantics for modelling long-
running transactions. In the previous chapters starting from Sagas and
cCSP we introduced a new policy for handling compensations in concur-
rent processes and presented first a denotational semantics and then an
operational one based on an encoding into Petri nets. The Petri net model
is more informative than the trace semantics, because it accounts for the
branching of processes arising from the propagation of interrupts. Un-
fortunately, the sophisticated mechanism needed for handling interrupts
introduces many auxiliary places and transitions that make the Petri net
model quite intricate to parse and difficult to extend.

Our aim is to provide an operational semantics for the new policy
whose main requirements are: i) it must follow the small-step style of op-
erational semantics, so to account for the branching caused by the propa-
gation of interrupts; ii) it must adhere to the Petri net semantics; iii) other
policies can be implemented without radical redesign; iv) it must be easy
to introduce other features, like choice, iteration, and faulty compensa-
tions (crashes).

In this chapter we propose a labelled transition system (LTS) seman-
tics that meets all the above requirements. The main result consists of
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the correspondence theorems with the existing semantics. We started by
considering the optimal policy #5 and were guided by the correspon-
dence with the Petri net semantics to correct many wrong design choices
in our first attempts. The main result is the proof that our LTS semantics
matches the Petri nets semantics in Chapter 4 up to weak bisimilarity.
This gives a way to read markings as (weak bisimilar) terms of a process
algebra that describes the run-time status of the process.

The contents of this chapter was first published in [BK12] and shows
here extended proofs as well as a presentation of tool support.

5.1 Labelled transition system for sequential Sagas

In this section we define a small-step LTS semantics for the sequential
part of the Sagas calculus. Note that we focus on policy #5 in the next
two sections, however for sequential processes the semantics is the same
in each policy. We use the syntax defined in Section 2.2, though ignoring
parallel composition for now. Later we extend our definitions to concur-
rency.

To be able to reason on intermediate states in the execution of a pro-
cess we introduce a runtime syntax. Initially a process is always con-
structed using the basic syntax, the runtime syntax is only present during
execution.

(COMP) C ::= A
∣∣ C;C

∣∣ nil

(PROCESS) P ::= A÷B
∣∣ P ;Q

∣∣ P$C
∣∣ [C]

(SAGA) S ::= A
∣∣ S;T

∣∣ nil

First we add a distinct type for compensations. They can either be ba-
sic activities A, the sequential composition of compensations C;C or nil.
With nil we denote completion of a compensation, in the sense that, e.g.,
the compensation nil;C can never execute activities in C. For compens-
able processes, P$C denotes a process P running with the already in-
stalled compensation C. Compensations of P will be installed on top of
C once P is finished. Notably, each process can be assigned a compensa-
tion, i.e., the operational semantics does not rely on a global stack of com-
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pensation. When parallel composition will be considered in Section 5.2,
this will make the order in which concurrent actions are interleaved be
inessential for the order of execution of their compensations, as in the
Petri net semantics (Chapter 4). The completion of forward activities is
denoted by [C] instead of nil, because we need to consider the installed
compensation C (informally, [C] can be read as nil$C). We also add nil

for marking the completion of a saga.
The small-step semantics is defined by three LTSs, one for each syntax

category. Let Ω = {�,�}. A context Γ is a function Γ : A → Ω that maps a
basic activity to � or� depending on whether it commits or aborts, with
Γ(skip) = � and Γ(throw) = �. We remind that it is tacitly assumed that
compensation activities cannot fail. Given the set of compensations C,
the set of compensable processes P and the set of sagas S, we let SC = C,
SP = Ω×P , SS = Ω×S denote sets of States. The component Ω in a state
describes whether the process can still commit (it can still move forward)
or must abort (a fault was issued that needs to be compensated). Note
that states of the LTS for compensations have clearly no Ω component.
Sagas initially start executing in a commit state.

The next definition formally introduces the labelled transition system
for processes in the small-step semantics:

Definition 7. The LTS semantics of (sequential) sagas is the least LTS (S, L, T )
generated by the rules in Figure 51–53, whose set of states is S = SC ∪SP ∪SS
and whose set of labels is L = A ∪ {τ}.

We will write transitions t ∈ T as t : Γ ` s λ−→ s′ for states s, s′, a label
λ ∈ L and a context Γ.

The semantics exploits some auxiliary notation. The predicate dnσ

checks the completion of (the forward execution of) a compensable pro-
cess. The subscript σ stands for � or � and means that the process is
either evaluated in a commit or an abort context. The predicate dnσ is
inductively defined as:

dnσ([C]) , tt dnσ(A÷B) , ff

dnσ(P$C) , dnσ(P ) dnσ(P ;Q) , dnσ(P )

Note that for sequential processes dn is independent of the subscript,
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(C-ACT)

Γ ` A A−→ nil
(C-SEQ1)

Γ ` C λ−→ C ′ ∧ ¬dn(C ′)

Γ ` C;D
λ−→ C ′;D

(C-SEQ2)

Γ ` C λ−→ C ′ ∧ dn(C ′)

Γ ` C;D
λ−→ D

Figure 51: LTS for sequential compensations

this will change when introducing parallel composition. Analogously,
we define a predicate dn on compensations,

dn(nil) , tt dn(A) , ff dn(C;C ′) , dn(C)

together with a function cmp(P ) that extracts the installed compensation
from a process P that is “done”:

cmp([C]) , C

cmp(P ;Q) , cmp(P )

cmp(P$C) ,

{
C if dn(cmp(P ))
cmp(P );C if ¬dn(cmp(P ))

When a compensable process P is done, we use the shorthand cm?(P ) ,

¬dn(cmp(P )) (i.e., cm?(P ) holds when there is some compensation to
run).

For sagas we define the predicate dn similar to compensations:

dn(nil) , tt dn(A) , ff dn({[P ]}) , ff dn(S;T ) , dn(S)

The rules in Figure 51 handle compensations. As we assume a com-
pensation is always successful, only rule C-ACT is needed for basic ac-
tivities. Rules C-SEQ1 and C-SEQ2 exploit the “done” predicate to avoid
reaching states such as nil;C.
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(S-ACT)

A 7→Γ �

Γ ` �, A÷B A−→ �, [B]
(F-ACT)

A 7→Γ �

Γ ` �, A÷B τ−→ �, [nil]
(SEQ)

Γ ` �, P λ−→ �, P ′ ∧ ¬dn�(P ′)

Γ ` �, P ;Q
λ−→ �, P ′;Q

(S-SEQ)

Γ ` �, P λ−→ �, P ′ ∧ dn�(P ′)

Γ ` �, P ;Q
λ−→ �, Q$cmp(P ′)

(A-SEQ)

Γ ` �, P λ−→ �, P ′

Γ ` �, P ;Q
λ−→ �, P ′

(STEP)

Γ ` σ, P λ−→ σ′, P ′ ∧ ¬dnσ′(P
′)

Γ ` σ, P$C
λ−→ σ′, P ′$C

(AS-STEP1)

Γ ` σ, P λ−→ σ′, P ′ ∧ dnσ′(P
′) ∧ cm?(P ′)

Γ ` σ, P$C
λ−→ σ′, [cmp(P ′);C]

(AS-STEP2)

Γ ` σ, P λ−→ σ′, P ′ ∧ dnσ′(P
′) ∧ ¬cm?(P ′)

Γ ` σ, P$C
λ−→ σ′, [C]

(COMP)

Γ ` C λ−→ C ′

Γ ` �, [C]
λ−→ �, [C ′]

Figure 52: LTS for sequential compensable processes
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For compensable processes a basic activity A of a compensation pair
A÷B can either commit or abort, depending on the context: ifA commits
then B is installed (S-ACT); if A fails, then there is nothing to be compen-
sated (F-ACT). A sequential composition P ;Q acts according to how P

acts (SEQ). If P finishes successfully (S-SEQ), then Q will run under the
installed compensation cmp(P ′). If P aborts (A-SEQ) the continuation
Q is discarded. The process P$C acts according to P (STEP). When P

finishes, its compensation is installed on top of C (AS-STEP1). The rule
AS-STEP2 ensures that a nil is not installed on top of a compensation.
Compensations are executed via rule COMP.

The rules A-SACT and F-SACT for basic activities A are as expected,
as well as SSEQ, S-SSEQ and A-SSEQ for sequential composition of sagas.
A transaction {[P ]} can be executed as long as either it is still running
forward (SAGA) or it has already aborted and compensates (SAGA and
A-SAGA1). If the transaction did not abort, i.e., it is in a commit state,
and it finishes, the compensation is discarded and the next state is �,nil
(S-SAGA). If the saga aborts but is able to compensate, then it reaches a
good state (A-SAGA2).

Note that the rules of our LTS exploit lookahead in the following
sense: In several rules (e.g. C-SEQ1, SEQ, STEP) we use the previously
defined predicates on the right-hand sides of the premises. We do how-
ever not consider this a drawback as respective rules complement each
other. For example rules SEQ and S-SEQ differ in the premises only in
whether the predicate dn�(P ′) is false or true.

The formal correspondence between the LTS semantics and the deno-
tational semantics of policies #1–5 is an immediate consequence of our
main result and will be deferred to Section 5.2 (see Corollary 6).

Example 8. Consider the booking of a trip from Example 1 ignoring the extra
step for purchasing a ticket and with serialized activities. Let

bT , rT÷ cR ; bF÷ cF ; bH÷ cH ; cC÷ skip

Assume that the booking of the hotel fails, e.g., there are no rooms available,
and let Γ map bH to � and the other actions to �. A possible derivation is
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(S-SACT)

A 7→Γ �

Γ ` �, A A−→ �,nil
(F-SACT)

A 7→Γ �

Γ ` �, A τ−→ �,nil
(SSEQ)

Γ ` σ, S λ−→ σ′, S′ ∧ ¬dn(S′)

Γ ` σ, S;T
λ−→ σ′, S′;T

(S-SSEQ)

Γ ` σ, S λ−→ �, S′ ∧ dn(S′)

Γ ` σ, S;T
λ−→ �, T

(A-SSEQ)

Γ ` σ, S λ−→ �, S′ ∧ dn(S′)

Γ ` σ, S;T
λ−→ �, S′

(SAGA)

Γ ` σ, P λ−→ σ′, P ′ ∧ ¬dnσ′(P
′)

Γ ` σ, {[P ]} λ−→ σ′, {[P ′]}
(S-SAGA)

Γ ` �, P λ−→ �, P ′ ∧ dn�(P ′)

Γ ` �, {[P ]} λ−→ �,nil
(A-SAGA1)

Γ ` σ, P λ−→ �, P ′ ∧ dn�(P ′) ∧ cm?(P ′)

Γ ` σ, {[P ]} λ−→ �, {[P ′]}
(A-SAGA2)

Γ ` σ, P λ−→ �, P ′ ∧ dn�(P ′) ∧ ¬cm?(P ′)

Γ ` σ, {[P ]} λ−→ �,nil

Figure 53: LTS for sequential sagas
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�, {[bT ]} rT−→ bF−→ τ−→ cF−→ cR−→ �,nil, because

�, bT
rT−→ �, (bF÷ cF ; bH÷ cH ; cC÷ skip)$cR S-SEQ,S-ACT
bF−→ �, ((bH÷ cH ; cC÷ skip)$cF)$cR STEP,S-SEQ,S-ACT
τ−→ �, [cF; cR] AS-STEP1, AS-STEP2, A-SEQ, F-ACT

cF−→ �, [cR] COMP,C-SEQ2,C-ACT
cR−→ �, [nil] COMP,C-ACT

Rule A-SAGA2 then returns the system to a consistent state again.

5.2 Extension to Concurrency

In this section we extend the LTS semantics to handle parallel Sagas un-
der policy #5. First, we extend the runtime syntax as follows:

(COMP) C ::= A | C;C | nil | C|C
(PROCESS) P ::= X | P ;P | P$C | [C] | Pσ|σ′P
(SAGA) S ::= A | S;S | {[P ]} | nil | Sσ|σ′S

We add parallel composition to compensations. Moreover we use sub-
scripts for the parallel composition of processes or sagas σ|σ′ such that
σ, σ′ ∈ Ω. If a thread is denoted with �, it can still move forward and
commit. A thread denoted with � either aborted or was interrupted, so
it can compensate. If a thread is denoted with a � then also every paral-
lel composition contained as a subprocess in this thread must have a �.
Similarly if the global state is a �, any parallel composition in this state
has subscripts �. We consider P�|�Q part of the normal syntax, not just
of the runtime syntax, and usually write just P |Q. We sometimes use ‖
instead of σ|σ′ if the values of σ, σ′ are irrelevant.

Definition 8. The LTS semantics of parallel sagas is the least LTS (S, L, T )
generated by the rules in Figure 51–53 together with the rules in Figure 54
(symmetric rules C-PAR-R, PAR-R, INT-L and SPAR-R are omitted).

The semantics exploits some auxiliary notation. First, the binary func-
tion u : Ω × Ω → Ω is defined such that σ u σ′ = � iff σ = σ′ = �. It is
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(C-PAR-L)

Γ ` C λ−→ C ′

Γ ` C|D λ−→ C ′|D
(PAR-L)

Γ ` σ1, P
λ−→ σ′1, P

′

Γ ` σ, Pσ1
|σ2
Q

λ−→ σ u σ′1, P ′σ′1 |σ2
Q

(INT-R)

Q Q′

Γ ` �, Pσ|�Q
τ−→ �, Pσ|�Q′

(SPAR-L)

Γ ` σ1, S
λ−→ σ′1, S

′

Γ ` σ, Sσ1 |σ2T
λ−→ σ′1 u σ2, S

′
σ′1
|σ2T

Figure 54: LTS rules for parallel Sagas (symmetric rules omitted for brevity)

easy to check that u is associative and commutative. Then, the predicates
dnσ , dn and the function cmp are extended to parallel composition:

dn(C|C ′) , dn(C) ∧ dn(C ′)

dnσ(Pσ1
|σ2
Q) , dnσ(P ) ∧ dnσ(Q) ∧ (σ = σ1 = σ2)

dn(Sσ1
|σ2
T ) , dn(S) ∧ dn(T )

cmp(P ‖ Q) , cmp(P )|cmp(Q)

Note that for concurrency we have to consider also the global state
for processes when defining the dn predicate. The compensable process
Pσ1 |σ2Q is done when both P and Q are done and both subscripts are
the same and coincide with the global state σ. If they are different, then
one of them has still to be interrupted such that it can start executing its
compensation.

In Figure 54 the additional rules needed for parallel Sagas are dis-
played. The rules C-PAR-L/C-PAR-R define just the ordinary interleaving
of compensations. The rules PAR-L/PAR-R are analogous, but the sub-
script determines the modality of execution. A thread can move forward
when it is in a commit state. If a thread aborts, the failure is annotated
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also in the global state by taking σ u σ′1. Note that a commit thread can
still move forward even if the global mode is abort.

The rules INT-L/INT-R use an “extract” predicate P  P ′ to inter-
rupt a commit thread if the global process is in abort mode. In P  P ′,
the process P ′ is a possible result of interrupting P (see Figure 55). In-
terruption is not necessarily the same as extracting the compensation.
For example interrupting a parallel composition means interrupting one
branch. As a special case, note the interrupt of a sequential composition:
we distinguish whether P is a parallel composition (predicate par(P ) is
true) or not. This is motivated by the intention to adhere to the Petri net
semantics, where (P |Q);R can be interrupted discarding R but without
necessarily interrupting P or Q. The predicate is deterministic except
for the last two cases: in P |Q we can decide which thread we want to
interrupt first.

For the parallel composition of sagas (SPAR-L/SPAR-R) we just remark
that in the case of fault of one thread we let the other threads execute as
much as possible and just record the global effect in the σ component of
the state.

Example 9. Consider the running example of a trip booking. Let bT ′ , rT ÷
cR ; ((bF÷ cF ; bH÷ cH) | cC÷ skip), and assume that the credit card check
fails while the other actions are successful. We have, e.g.

�, bT ′

rT−→ �, ((bF÷ cF ; bH÷ cH) | cC÷ skip)$cR S-SEQ,S-ACT
bF−→ �, ((bH÷ cH)$cF | cC÷ skip)$cR STEP,PAR-L, S-SEQ,S-ACT
τ−→ �, ((bH÷ cH)$cF �|� [nil])$cR STEP, PAR-R, F-ACT
τ−→ �, [(cF | nil); cR] AS-STEP1,INT-L,E-STEP3
cF−→ �, [cR] COMP,C-SEQ2,C-PAR-L,C-ACT
cR−→ �, [nil] COMP,C-ACT

5.3 Operational Correspondence

In this section we will show a weak bisimilarity between our novel LTS
semantics and the Petri net semantics for policy #5 of Chapter 4.
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(E-COMP)

[C] [C]

(E-PAIR)

A÷B  [nil]
(E-SEQ1)

P  P ′ ∧ ¬par(P )

P ;Q P ′

(E-SEQ2)

par(P )

P ;Q P
(E-STEP1)

P  P ′ ∧ ¬dn�(P ′)

P$C  P ′$C

(E-STEP2)

P  P ′ ∧ dn�(P ′) ∧ cm?(P ′)

P$C  [cmp(P ′);C]
(E-STEP3)

P  P ′ ∧ dn�(P ′) ∧ ¬cm?(P ′)

P$C  [C]
(E-PAR1)

P  P ′

P |Q P ′�|�Q

(E-PAR2)

Q Q′

P |Q P�|�Q′

Figure 55: Predicate P  P ′ for interrupting a process

In the previous chapter Sagas processes are encoded in safe Petri nets
by structural induction (see Figure 56). The net for a saga has just three
places to interact with the environment: F1 starts its flow, F2 signals suc-
cessful termination, and E raises a fault. Each compensable process has
six places to interact with the environment: a token in F1 triggers the for-
ward flow, to end in F2; a token in R1 starts the compensation, to end in
R2; a token in I1 indicates the arrival of an interrupt from the outside; a
token in I2 informs the environment that a fault occurred.

For sagas, a computation starting in F1 will lead either to F2 or to E,
while for compensable processes we expect to have the following kinds
of computations:

Successful (forward) computation: from marking F1 the net reaches F2

Compensating (backward) computation: from R1 the net reaches R2.
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k skip

(b) Failing compensation pair
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R1F2
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MEX
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QF1

QR1QF2

QR2

QI1 QI2

x1

x2

gc

iin

ip2

ip1

fork rjoin

join rfork

(c) Parallel composition

Figure 56: Petri net encoding
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Aborted computation: from F1 the net reaches R2 + I2.

Interrupted computation: from F1 + I1 the net reaches R2.

For the reader’s convenience the nets for compensable processes are
depicted in Figure 56. The encoding introduces several auxiliary tran-
sitions, e.g. to fork and join the control flow, to catch an interrupt and
reverse the flow, or for the disposal of the interrupt in case the process
already produced a fault.

We introduce now the notion of weak bisimilarity for two LTS. In the

following, we write p τ̂⇒ q if (p, q) ∈ (
τ−→)∗ (the reflexive and transitive

closure of τ−→). Moreover, for µ 6= τ we write p
µ̂⇒ q if there exists p′, q′

such that p′
µ−→ q′ and (p, p′), (q, q′) ∈ (

τ−→)∗.

Definition 9. Let (S1, L, T1) and (S2, L, T2) be two LTSs over the same set
of labels L. A relation R ⊆ S1 × S2 is a weak bisimulation if whenever
(s1, s2) ∈ R, then:

1. if s1
µ−→1 s

′
1 then there exists s′2 such that s2

µ̂⇒2 s
′
2 and (s′1, s

′
2) ∈ R;

and

2. if s2
µ−→2 s

′
2 then there exists s′1 such that s1

µ̂⇒1 s
′
1 and (s′1, s

′
2) ∈ R.

The largest weak bisimulation is called weak bisimilarity and denoted by ≈.

We shall let the marking graph of the netNP play the role of (S1, L, T1)

and (the fragment of) the LTS reachable from process P play the role of
(S2, L, T2), so that ≈ relates markings of NP with processes P ′ reachable
from P . More precisely, we take the marking graph of the Petri nets as-
suming the only observable actions are those corresponding to activities
a ∈ A; all the other transitions are labelled with τ .

We have seen that the Petri net semantics associates to a compensable
process P a corresponding net NP that exchanges tokens with the con-
text via six places: two for the forward control flow (F1 and F2), two for
the backward compensation flow (R1 and R2) and two for interrupts (I1
and I2). The places F1, R1, I1 are used to receive tokens in input from
the environment, while the places F2, R2, I2 are used to output tokens
to the environment. Nets are usually considered up-to isomorphism,
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therefore the names of their places and transitions are not important,
as long as the same structure is maintained. However, to establish the
behavioural correspondence between our LTS for P and the marking
graph of the net NP we need to fix a particular naming of the elements
in NP . Moreover, the same activity can occur many times in a process
and every instance corresponds to a different element of the net. One
way to eliminate any ambiguity is to annotate processes with the names
of the places to be used for building the interface of the corresponding
net (before the translation takes place).1 This is formalised in the Ap-
pendix A, where the proof of the main theorem is also included. The
proof of the main theorem requires some ingenuity to fix the correspon-
dence between net markings and process terms. Here, we just mention
that we write P@〈F1, F2, R1, R2, I1, I2〉 meaning that process P (and all
its sub-processes) has been annotated in such a way that the names of
the places in the “public interface” of the net NP are F1, F2, R1, R2, I1, I2.
Consider as an example the encoded transaction of Example 6. We re-
place throww with a compensation pair T ÷ skip such that T is mapped
to � in the context. Then the tagged version of the compensable process
A÷B;T ÷ skip is

((A@〈PF1, F3〉 ÷B@〈R3, R2〉)@〈PF1, F3, R3, R2, I1, I2〉;
(T@〈F3, PF2〉 ÷ skip@〈R1, R3〉)@〈F3, PF2, R1, R3, I1, I2〉)
@〈PF1, PF2, R1, R2, I1, I2〉

Theorem 11. Let NP be the Petri net associated with the tagged compensable
process P@〈F1, F2, R1, R2, I1, I2〉. Then, F1 ≈ (�, P ).

As an immediate consequence of the theorem and the main result
of Chapter 4 the correspondence to the denotational semantics given in
Chapter 3 follows. We write JSK to denote the set of traces for a saga S
and use subscripts i to indicate the traces are according to policy #i.

Definition 10. For any sagas S we let LSM denote the set of (maximal) weak

1An equivalent tagging procedure is to first translate the process to a net and then an-
notate the process with the names of the places that have been used in the net.
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Centralized Coordinated Distributed
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**Interruption 3 ⊆
//

Original cCSP

4

Revised Sagas

Figure 57: Compensation policies (arrows stand for trace inclusion)

traces in our LTS semantics:

LSM , { a1...an〈X〉 | ∃S1, ..., Sn, σ1, ..., σn−1.

�, S â1⇒ σ1, S1
â2⇒ · · · ân⇒ �, Sn 6→ }

∪
{ a1...an〈!〉 | ∃S1, ..., Sn, σ1, ..., σn−1.

�, S â1⇒ σ1, S1
â2⇒ · · · ân⇒ �, Sn 6→ }

Actually, under the assumption that compensation cannot fail, only
successful traces are present in LSM (as well as in JSKi for any i ∈ [1, 5]).
This is not necessarily the case for the extension in Subsection 5.5.2.

Corollary 6. For any sagas S = {[P ]} we have JSK5 = LSM. Moreover, if P is
sequential then JSKi = LSM for i ∈ [1, 5].

5.4 Dealing with Different Policies

In this section we show that we can easily tune the LTS semantics for par-
allel sagas to match and improve other compensation policies discussed
in Chapter 3. In Figure 57 we show the relation between the different
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(E-COMP)

[C] [C]
(E-STEP1)

P  P ′ ∧ ¬dn�(P ′)

P$C  P ′$C

(E-STEP2)

P  P ′ ∧ dn�(P ′) ∧ cm?(P ′)

P$C  [cmp(P ′);C]
(E-STEP3)

P  P ′ ∧ dn�(P ′) ∧ ¬cm?(P ′)

P$C  [C]
(E-PAR1)

P  P ′

P |Q P ′�|�Q

(E-PAR2)

Q Q′

P |Q P�|�Q′

Figure 58: Remaining rules for predicate in policy #6

policies. We will present here policies #6 and #3 as different versions of
the already presented LTS semantics.

5.4.1 Notification and distributed compensation

To remove the possibility to interrupt a sibling process before it ends
its execution we just redefine the “extract” predicate by removing most
cases, so that the interrupt is possible only when the process is “done”.
The remaining rules are shown in Figure 58. We remove the rules for
compensation pairs (E-PAIR) and sequential composition (E-SEQ1 and E-
SEQ2).

Now, the rule INT is only applicable if the interrupted process con-
sists of an installed compensation [C]. Moreover, we only change the
subscripts, not the process: since any interrupted thread is “done” we
never inhibit sibling forward activities upon a fault.

Proposition 3. Let L·M6 denote the set of weak traces generated by policy #6
above. Then, for any sagas S = {[P ]} we have JSK1 ⊆ LSM6 ⊆ JSK2. Moreover,
for some processes P the inclusion is strict, while for all sequential processes
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JP K1 = LP M6 = JP K2.

Proof. Let S = {[P ]}.
The proof of the inclusion JSK1 ⊆ LSM6 is by induction on the structure

of P . Actually, we prove a stronger result, namely that for any compens-
able process P :

1. for any (p〈X〉, q) ∈ JP K1 then ∃P1, ..., Pn, P
′
1, ..., P

′
m.

• �, P â1⇒ �, P1
â2⇒ �, P2 · · ·

ân⇒ �, Pn 6→with p = a1a2...an;

• �, [cmp(Pn)]
b̂1⇒ �, P ′1

b̂2⇒ �, P ′2 · · ·
ˆbm⇒ �, P ′m 6→ with q =

b1...bm〈X〉.

2. for any (p〈!〉, q) ∈ JP K1 then ∃P1, ..., Pn, P
′
1, ..., P

′
m.

• �, P â1⇒ �, P1
â2⇒ �, P2 · · ·�, Pn−1

ân⇒ �, Pn with p = a1a2...an;

• �, Pn
b̂1⇒ �, P ′1

b̂2⇒ �, P ′2 · · ·
ˆbm⇒ �, P ′m 6→with q = b1...bm〈X〉.

(Remind that no trace in JP K1 can end with 〈?〉.)
The more interesting case is that of parallel composition, where we

just notice that we can postpone the application of rule INT as long as
possible, i.e., until each branch is done.

The proof of the inclusion LSM6 ⊆ JSK2 is analogous, but the stronger
inductive argument we use is the following. For any compensable pro-
cess P :

1. for any runs

• �, P â1⇒ �, P1
â2⇒ �, P2 · · ·

ân⇒ �, Pn 6→

• �, [cmp(Pn)]
b̂1⇒ �, P ′1

b̂2⇒ �, P ′2 · · ·
ˆbm⇒ �, P ′m 6→

we have (p〈X〉, q) ∈ JP K2 for p = a1a2...an and q = b1...bm〈X〉.

2. for any run �, P â1⇒ σ1, P1
â2⇒ σ2, P2 · · ·

ân⇒ σn, Pn 6→ with σn = �,
then there exists some k ≤ n such that we have (p〈!〉, q〈X〉) ∈ JP K2
for p = a1a2...ak and q = ak+1...an.

3. for any runs

• �, P â1⇒ �, P1
â2⇒ �, P2 · · ·

âh⇒ �, Ph
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• Ph  Q

• �, Q ˆah+1⇒ �, Ph+1
ˆah+2⇒ �, Ph+2 · · ·

ân⇒ �, Pn 6→

then there exists some k ≤ n such that we have (p〈!〉, q〈X〉) ∈ JP K2
for p = a1a2...ak and q = ak+1...an.

The more interesting case is proving the second assertion for the par-
allel composition. Let P = P ′|P ′′. Since σn = � and Pn 6→, it must
be the case that Pn = P ′n�|�P ′′n for some P ′n and P ′′n such that dn�(P ′n),
dn�(P ′′n ), ¬cm?(P ′n) and ¬cm?(P ′′n ). Let j be the unique index such that
σj = � and σj+1 = �. Then, either rule PAR-L or PAR-R must have
been applied to prove �, Pj

aj→ �, Pj+1. Without loss of generality, as-
sume PAR-L has been used, Pj = P ′j�|�P ′′j , Pj+1 = P ′j+1�|�P ′′j+1 with

�, P ′j
aj→ �, P ′j+1 and P ′′j+1 = P ′′j . Now let i be the unique index such that

Pi = P ′i�|�P ′′i and Pi+1 = P ′i+1�|�P ′′i+1 (with j ≤ i ≤ n). Either rule
PAR-R has been used, or rule INT-R to prove �, Pi

ai→ �, Pi+1.

• If PAR-R has been used, then it means that �, P ′′i
ai→ �, P ′′i+1. Then,

each step in the sequence must have been obtained by using ei-
ther PAR-L or PAR-R. Hence the sequence is just made by the in-
terleaving of two analogous subsequences, one from �, P ′ to �, P ′n
and one from �, P ′′ to �, P ′′n . Then, by inductive hypothesis we
have (p′〈!〉, q′〈X〉) ∈ JP ′K2 and (p′′〈!〉, q′′〈X〉) ∈ JP ′′K2 for suitable
p′, q′, p′′, q′′ and the set of possible interleavings of p′q′ with p′′q′′

certainly contains the sequence a1a2...an. Thus, we take k = n and
we are done.

• If INT-R has been used, then we distinguish three cases.

If P ′′i = [C], then dn�(P ′′i ) and the overall sequence is just made
by the interleaving of one sequence from �, P ′ to �, P ′n and one
obtained by concatenating a run�, P ′′ to�, P ′′i and one from�, [C]
to �, P ′′n and we conclude by inductive hypothesis similarly to the
case when PAR-R was used.

If P ′′i = Q′′i |R′′i or P ′′i = Q′′i $C the overall sequence is just made by
the interleaving of one sequence from �, P ′ to �, P ′n and one ob-
tained by concatenating a run �, P ′′ to �, P ′′i and one from �, P ′′i+1

to�, P ′′n and we conclude by inductive hypothesis similarly to pre-
vious cases.
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As a counterexample to the equality, we take the booking of a trip
bT ′ from Example 9 and assume the booking of the hotel fails: the (weak)
trace rT bFcF cCskip cR〈X〉 belongs to LSM6 but not to JSK1, while the trace
rT cCskip bFcF cR〈X〉 belongs to JSK2 but not to LSM6.

The fact that the semantics coincide on sequential processes is a trivial
consequence of the fact that JSK1 ⊆ LSM6 ⊆ JSK2 and JSK1 = JSK2 when S
is sequential.

Example 10. We show an example execution for the small-step semantics for
policy #6 using the process of Example 9. Assume this time that the booking of
the hotel fails. A possible computation is:

�, bT ′

rT−→ �, ((bF÷ cF ; bH÷ cH) | cC÷ skip)$cR S-SEQ,S-ACT
bF−→ �, ((bH÷ cH)$cF | cC÷ skip)$cR STEP,PAR-L, S-SEQ,S-ACT
τ−→ �, ([cF] �|� cC÷ skip)$cR STEP, PAR-L, F-ACT
cF−→ �, ([nil] �|� cC÷ skip)$cR STEP,PAR-L,COMP,C-ACT
cC−→ �, ([nil] �|� [skip])$cR STEP,PAR-R,S-ACT
τ−→ �, [(nil | skip) ; cR] AS-STEP1,INT-R,E-COMP

skip−−→ �, [cR] COMP,C-SEQ2,C-PAR-R,C-ACT
cR−→ �, [nil] COMP,C-ACT

Note that it is not possible to interrupt the right branch before executing the for-
ward action cC. However we can execute the left compensation cF even though
not every branch was interrupted yet.

5.4.2 Interruption and centralized compensation

To move from distributed to centralized execution we simply strengthen
the premise in PAR-L (and PAR-R):

(PAR-L)

(σ1 = � ∨ dn�(Pσ1
|σ2
Q) ∨ ¬dn�(P )) Γ ` σ1, P

λ−→ σ′1, P
′

Γ ` σ, Pσ1
|σ2
Q

λ−→ σ u σ′1, P ′σ′1 |σ2
Q

Thus a process can only be executed if it is either moving forward (σ1 =

�) or the complete parallel composition finished in a failing case
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(dn�(Pσ1 |σ2Q)) or the thread has not yet finished its execution in a fail-
ing case (¬dn�(P )).

Proposition 4. Let L·M3 denote the set of weak traces generated by policy #3
above. Then, for any sagas S = {[P ]} we have JSK3 = LSM3.

Proof. The proof of the two inclusions is similar to that of Proposition 3.
The inclusion JSK3 ⊆ LSM3 is shown by induction on the structure of

P . For each kind of trace we have to show a possible derivation in the
small-step semantics.

1. for any (p〈X〉, q) ∈ JP K3 then ∃P1, ..., Pn, P
′
1, ..., P

′
m.

• �, P â1⇒ �, P1
â2⇒ �, P2 · · ·

ân⇒ �, Pn 6→with p = a1a2...an;

• �, [cmp(Pn)]
b̂1⇒ �, P ′1

b̂2⇒ �, P ′2 · · ·
ˆbm⇒ �, P ′m 6→ with q =

b1...bm〈X〉.

2. for any (p〈!〉, q) ∈ JP K3 then ∃P1, ..., Pn, P
′
1, ..., P

′
m.

• �, P â1⇒ �, P1
â2⇒ �, P2 · · ·σ, Pn−1

ân⇒ �, Pn such that dn�(Pn)
and ¬dn�(Pi) for all i < n with p = a1a2...an;

• �, Pn
b̂1⇒ �, P ′1

b̂2⇒ �, P ′2 · · ·
ˆbm⇒ �, P ′m 6→with q = b1...bm〈X〉.

3. for any (p〈?〉, q) ∈ JP K3 then ∃P1, ..., Pn, P
′
1, ..., P

′
m.

• �, P â1⇒ �, P1
â2⇒ �, P2 · · ·�, Pn−1

ân⇒ �, Pn with p = a1a2...an;

• �, P ′n
b̂1⇒ �, P ′1

b̂2⇒ �, P ′2 · · ·
ˆbm⇒ �, P ′m 6→ with Pn  + P ′n such

that dn�(P ′n) and q = b1...bm〈X〉. (We postpone the inter-
rupt until any forward action has been executed, then possibly
multiple interrupts have to be issued.)

Now consider the inclusion LSM3 ⊆ JSK3, we have to show by induc-
tion:

1. for any runs

• �, P â1⇒ �, P1
â2⇒ �, P2 · · ·

ân⇒ �, Pn 6→

• �, [cmp(Pn)]
b̂1⇒ �, P ′1

b̂2⇒ �, P ′2 · · ·
ˆbm⇒ �, P ′m 6→

we have (p〈X〉, q) ∈ JP K3 for p = a1a2...an and q = b1...bm〈X〉.
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2. for any run �, P â1⇒ σ1, P1
â2⇒ σ2, P2 · · ·

ân⇒ σn, Pn 6→ with σn = �,
then there exists some k ≤ n such that we have (p〈!〉, q〈X〉) ∈ JP K3
for p = a1a2...ak and q = ak+1...an.

The more interesting case is proving the second assertion for the par-
allel composition. Let P = P ′|P ′′. Since σn = � and Pn 6→, it must
be the case that Pn = P ′n�|�P ′′n for some P ′n and P ′′n such that dn�(P ′n),
dn�(P ′′n ), ¬cm?(P ′n) and ¬cm?(P ′′n ). Let j be the unique index such that
σj = � and σj+1 = �. Then, either rule PAR-L or PAR-R must have
been applied to prove �, Pj

aj→ �, Pj+1. Without loss of generality, as-
sume PAR-L has been used, Pj = P ′j�|�P ′′j , Pj+1 = P ′j+1�|�P ′′j+1 with

�, P ′j
aj→ �, P ′j+1 and P ′′j+1 = P ′′j . Note that P ′j+1 can now only move if it

is not finished yet. We consider two cases:

dn�(P ′j+1) Then only P ′′j+1 can move. Let i be the unique index such
that ¬dn�(Pi) and dn�(Pi+1). Note that this implies ¬dn�(P ′′i ), so
P ′′ can still move forward until i+1. Thus until i+1 any observable
action was a forward action. We take k = i and are done.

¬dn�(P ′j+1) The case is similar though now also P ′j+1 can move. How-
ever in any case we reach an index i such that¬dn�(Pi) and dn�(Pi+1)
and take k = i.

Note that by combining the above changes in Section 5.4.1 and 5.4.2
we recover policy #1.

5.5 Possible extensions

In Section 5.4 we have shown how the rules of our LTS semantics can
be easily adjusted to cover other compensation policies. In this section
we sketch how to extend the LTS semantics (independently from the pre-
ferred policy) to take other aspects into account.

5.5.1 Choice and iteration

Our first extension adds choice and iteration operators to the basic syntax
for processes

P ::= . . . | P + P | P ∗
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dnσ(P +Q) , dnσ(P ) ∧ dnσ(Q) dnσ(P ∗) , dnσ(P )
(E-CHOICE)

P +Q [nil]

(E-ITER)

P ∗  [nil]

(CHOICE-L)

Γ ` �, P λ−→ σ, P ′

Γ ` �, P +Q
λ−→ σ, P ′

(CHOICE-R)

Γ ` �, Q λ−→ σ,Q′

Γ ` �, P +Q
λ−→ σ,Q′

(E-ITER)

Γ ` �, P ∗ τ−→ �, [nil]

(S-ITER)

Γ ` �, P λ−→ �, P ′ ∧ ¬dn(P ′)

Γ ` �, P ∗ λ−→ �, P ′;P ∗
(A-ITER)

Γ ` �, P λ−→ �, P ′

Γ ` �, P ∗ λ−→ �, P ′

(S-ITER2)

Γ ` �, P λ−→ �, P ′ ∧ dn(P ′)

Γ ` �, P ∗ λ−→ �, P ∗$cmp(P ′)

Figure 59: LTS for choice and iteration

The corresponding rules are in Figure 59. In a process P + Q one
option is nondeterministically executed while the alternative is dropped.
For iteration we exploit the fact that our LTS allows τ as a label. Thus
a process P ∗ either executes a τ and finishes or acts as the sequential
composition P ;P ∗. Note that, while it is easy to account for choice and
iteration in the denotational semantics, the extension is harder for the
Petri net semantics. For example, let us consider the sequential process
(A÷A′+B÷B′)∗; throww . At any iteration, eitherA orB is executed and
thus eitherA′ orB′ is installed. When the iteration is closed, the installed
compensation may be any arbitrary sequence of A′ or B′, an information
that cannot be recorded in the state of a finite (safe) Petri net.

Example 11. We consider the example of an eStore. First we accept the order,
then we either pack an item or, if it is not in Store, we abort. We repeat this
several times (until all items are packed or we aborted) and then book a courier.
We formalise this behaviour as follows:

eS , aO÷ cO; (pI÷ uI + niS÷ skip)∗; bC÷ cC

where niS fails and the other actions are successful. Then we can have the fol-
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(C-ACT)

A 7→Γ σ

Γ ` �, A A−→ σ,nil
(F-C-SEQ)

Γ ` �, C λ−→ �, C ′

Γ ` �, C;D
λ−→ �, C ′

(C-PAR-L)

Γ ` �, C λ−→ σ,C ′

Γ ` �, C|D λ−→ σ,C ′|D

Figure 60: Additional or changed rules for failing compensations

lowing computation:

�, eS
aO−→ �, ((pI÷ uI + niS÷ skip)∗; bC÷ cC)$cO S-SEQ, S-ACT
pI−→ �, ((pI÷ uI + niS÷ skip)∗; bC÷ cC)$uI$cO

STEP,S-ITER2,CHOICE-L, S-ACT
niS−−→ �, [uI; cO] AS-STEP1,AS-STEP2,F-ITER,CHOICE-R, F-ACT

In the computation after packing one item the next one is not in store. Thus the
process aborts and we have to compensate.

5.5.2 Failing compensations

One important contribution of [BMM05] was the ability to account for
the failure of compensations. Here we discuss the changes needed to
extend our LTS semantics accordingly.
Compensations. We extend the state in LTS for compensations with Ω =

{�,�}, modify the sources / targets from C to �, C in the rules we have
presented, change the rule C-ACT and finally add the rules F-C-SEQ, C-
PAR-L and C-PAR-R that record the execution of a faulty compensation in
the target of the transition. The new rules are shown in Figure 60
Compensable processes. We extend the state in LTS for processes to
Ω� = {�,�,�}, where the symbol � denotes the fault of a compen-
sation, i.e., a non recoverable crash. As a matter of notation for meta-
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(COMP-1)

Γ ` �, C λ−→ �, C ′

Γ ` δ, [C]
λ−→ δ, [C ′]

(COMP-2)

Γ ` �, C λ−→ �, C ′

Γ ` δ, [C]
λ−→ �, [C ′]

(C-STEP)

Γ ` �, P λ−→ �, P ′

Γ ` �, P$C
λ−→ �, P ′

Figure 61: New rules for Sagas with failing compensations

variables, we let σ, . . . ∈ Ω and δ ∈ {�,�}. When executing a compen-
sation [C], we must take into account the possibility of a crash (COMP-1
and COMP-2). Moreover, if we generate a crash, previously installed local
compensations will not be executed (C-STEP). The new rules are given in
Figure 61.

Note that in the premises of rules COMP-1 and COMP-2 we intention-
ally put � in the source of the transition, because the LTS for compensa-
tions has only such states as sources of transitions. The other rules for
sequential Sagas stay as before.

For parallel composition we redefine the predicate dn such that

dn�(P�|�Q) , dn�(P ) ∧ dn�(Q) dnδ(P δ1 |δ2Q) , dnδ(P ) ∧ dnδ(Q)

where δ, δ1, δ2 ∈ {�,�}. The rules PAR-L/PAR-R are as before however
for any meta-variable we allow also� as a possible value, i.e., σ, σ1, σ2, σ

′
1, σ
′
2 ∈

Ω�. Thus we have to extend the operation u such that � u σ = �. The
rules INT-L/INT-R are also applicable in a global � state.

The rules guarantee that in case of a crash parallel branches can ex-
ecute their compensations as far as possible, only previously installed
compensations (i.e., before the parallel composition,) are not reachable
anymore.

Example 12. Consider the computation of Example 9. We assume that also the
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cancelling of the flight fails, then te computation changes as follows:

�, bT ′
rT−→ bF−→ τ−→

τ−→ �, [(cF | nil); cR] AS-STEP1,INT-R
cF−→ �, [nil | nil] COMP-2,F-C-SEQ,C-PAR-L,C-ACT

The failing compensation causes a crash. Thus the remaining compensation cR
cannot be executed.

5.6 Tool support

In this section we present a tool support for the LTS semantics presented
in the Sections 5.1, 5.2 and 5.4. The tool is implemented in Maude (see
Section 2.6) and can be found at [Sou13].

The implementation is structured in three modules, a functional mod-
ule SMALLSTEP-SYNTAX and two system modules SMALLSTEP-SEM and
SMALLi for the respective policy #i.

The first module defines the syntax for the three basic sorts Sagaprocess,
Cprocess and Compensation. It uses the runtime syntax of Section 5.2.
We use the natural numbers to denote basic activities and add the spe-
cial action tau. The sort for actions is called Name or Names for lists of
actions. Final symbols can be ok for � and fail for�. The module then
defines auxiliary functions such as the predicate dn for both compensa-
tions and compensable processes as well as the function cmp extracting
a compensation from a process that is “done”.

The module SMALLSTEP-SEM defines the sort Environment as a set
of actions such that an action is successful if it is contained in the environ-
ment. The sort State can have three possible definitions, one for each
basic sort for processes, as well as a definition adding the environment
to the state:

op <_,_,_> : FinalSymbol Cprocess Names
-> State [frozen].

op <_,_,_> : FinalSymbol Sagaprocess Names
-> State [frozen].

op <_,_> : Compensation Names -> State [frozen].
op _|-_ : Environment State -> State [frozen] .
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The last item Names in any state contains the observed flow of actions
including tau. Note that as described in [VMO06] to model SOS seman-
tics in Maude we have to make sure that the state changes in every sin-
gle step. Otherwise the system continues rewriting for subprocesses ig-
noring possible nondeterminism. The observed names adds exactly one
observed name in each step thus guaranteeing that our system works
correctly.

On the states we define rewrite rules modelling the transitions of Fig-
ures 51–54. Exemplary take rules S-ACT and F-ACT for compensation
pairs. They are modelled as the following two conditional rewrite rules:

crl [s-act] : E |- < ok , A / B , L > =>
E |- < ok , [B] , L A > if A in E .

crl [f-act] : E |- < ok , A / B , L > =>
E |- < fail , [nil] , L tau > if not(A in E) .

Depending on the success of action A, i.e., whether A is included in the
environment E, the two rules result in two different states. If A is suc-
cessful then its compensation B is installed, the overall state remains ok
and A is added to the observed flow. If A aborts, the empty compensation
nil is installed, the overall state changes to fail and we observe a tau
for the failure.

Note that the rules for parallel composition are specific for the differ-
ent policies and thus defined in SAGAi for each policy #i. Moreover we
define the special operation extract that is used for the predicate  
defined in Figure 55. As the predicate is nondeterministic we use rewrite
rules for its implementation.

In Figure 62 we present an example computation in the small-step
semantics using the tool. The initial state is

(1,2) |- < ok,{1 / 2 ok || ok 3 / 4},nnil >

i.e., the environment includes the two activities 1 and 2, the overall state
is ok, then there is the transaction consisting of a parallel composition
of two compensation pairs, and the initially empty flow nnil for labels.
As action 3 aborts the saga fails. There are three possible results. In
the first solution we observe only two tau. In this case first the right
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Maude> search in SMALL5 :
(1,2) |- < ok,{1 / 2 ok || ok 3 / 4},nnil >

=>! S:State .

Solution 1 (state 4)
states: 7 rewrites: 577 in 8ms cpu (6ms real)

(72125 rewrites/second)
S:State --> (1,2) |- < ok,snil,tau tau >

Solution 2 (state 8)
states: 10 rewrites: 766 in 8ms cpu (8ms real)

(95750 rewrites/second)
S:State --> (1,2) |- < ok,snil,1 tau tau 2 >

Solution 3 (state 9)
states: 10 rewrites: 766 in 8ms cpu (8ms real)

(95750 rewrites/second)
S:State --> (1,2) |- < ok,snil,tau 1 tau 2 >

No more solutions.
states: 10 rewrites: 766 in 8ms cpu (9ms real)

(95750 rewrites/second)

Figure 62: Example of a computation using the tool for the small-step se-
mantics

branch aborts and then the left branch is immediately interrupted. In
the other two cases the left branch executes its forward action and thus
its compensation has to run. Note that before the compensation the two
tau have to be observed, first for the failure, then for the interrupt. In
each case the final result is again in a commit state due to the rule A-
SAGA2.

5.7 Conclusion

We presented an LTS semantics for the Sagas calculus. Using a weak
bisimulation we investigated the correspondence with previously de-
fined Petri net and denotational semantics. Moreover, with small changes
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we can deploy a different policy for the execution of concurrent com-
pensable processes. We have shown possible extensions for the seman-
tics enriching first the syntax and then the LTS itself.

Note that a small-step semantics for cCSP was defined in [BR05]. It
relies on the centralized compensation policy, but is otherwise similar to
our approach. Using a synchronizing step at the end of the forward flow
the success or failure of the transaction is published, in case of a failure
the compensations are executed as normal saga processes (outside the
transaction scope). On the other hand in our approach the information
about a failure is kept in the state and compensations are executed inside
the saga.
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Chapter 6

Dynamic logic for
long-running transactions

In this chapter we shift our focus to long-running transactions. On the
one hand we focus on verification and suggest a logic to define pro-
gram properties. We propose an extension of dynamic logic, a tem-
poral logic reasoning over complete programs instead of single steps.
The choice of extending dynamic logic is not incidental: we have been
inspired by the interesting literature using deontic logic for error han-
dling [BWM01, CM09]. On the other hand we move from an abstract
model closer to standard programming paradigms, where we study con-
current programs based on compensation pairs using assignments in-
stead of regular actions. Moreover we move from comparing different
policies for compensation handling to the verification of programs in one
particular policy The main result establishes some sufficient conditions
under which a compensable program is guaranteed to always restore a
correct state after a fault.

We start by giving some background on dynamic logic including re-
lated work regarding error handling in Section 6.1.3 and concurrency in
Section 6.1.4. In Section 6.2 we present how we can interpret concurrent
programs and define formulas over them. Section 6.3 extends this logic
with compensations and transactions. In Section 6.4 we introduce tool
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support and in Section 6.5 we extend the language to handle interrup-
tion of parallel branches.

The contents of this chapter was first published in [BFK12]. It is pre-
sented here with more examples, a new definition of (strong) serializabil-
ity (Definitions 28, 29, 35, 36), an extended discussion regarding valid
formulas (Propositions 6, 7) and including extended proofs. Sections 6.4
and 6.5 are original to this work.

6.1 Background on Dynamic Logic

In this section we give a summary of the basic concepts of first order
dynamic logic [Har79]. It was introduced to reason directly about pro-
grams, using classical first order predicate logic and modal logics com-
bined with the algebra of regular events. We start by introducing pro-
grams, then we switch to first-order dynamic logic. In the second part
of this section, we shall briefly overview related work on the two main
concepts for our extension of dynamic logic, namely deontic formalisms
for error handling and concurrency.

6.1.1 Programs

Let Σ = {f, g, . . . , p, q . . .} be a finite first-order vocabulary where f, g
range over Σ-function symbols and p, q over Σ-predicates. Each element
of Σ has a fixed arity, and we denote by Σn the subset of symbols with
arity n > 0. Moreover let V = {x0, x1, . . .} be a countable set of variables.
Let Trm(V ) = {t1, . . . , tn, . . .} be the set of terms over the signature Σ

with variables in V . We use the grammar

φ ::= p(t1, · · · , tn) | > | ⊥ | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ

to denote the set Pred(V ) where p ∈ Σn a predicate and t1, · · · tn ∈
Trm(V ).

Definition 11 (Activities). Let x1, · · · , xn ∈ V and t1, · · · , tn ∈ Trm(V ). A
basic activity a ∈ Act(V ) is a multiple assignment x1, · · · , xn := t1, · · · , tn.
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As special cases, we write a single assignment as x := t ∈ Act(V )

(with x ∈ V and t ∈ Trm(V )) and the empty assignment for the inaction
skip.

Example 13 (e-Store). Instead of using the running example in this chapter we
use several different one. We take an e-Store as our first example (see Figure 63
for the complete presentation). Activity acceptOrder ∈ Act(V ) is defined as
a multiple assignment to variables stock and card such that acceptOrder ,
stock , card := stock − 1, unknown . This activity decreases the items in stock
by one (the item being sold is no longer available), and resets the current state of
the credit card to unknown.

Basic activities can be combined in different ways. While it is pos-
sible to consider while programs (with sequential composition, condi-
tional statements and while loops), we rely on the more common ap-
proach based on the so-called regular programs.

Definition 12 (Programs). A program α is any term generated by the gram-
mar:

α, β ::= a | φ? | α ;β | α + β | α∗

A program is either: a basic activity a ∈ Act(V ); a test operator φ?

for φ ∈ Pred(V ); a sequential composition α ;β of programs α and β; a
nondeterministic choice α+ β between programs α and β; or an iteration
α∗.

To define the semantics of programs we introduce a computational
domain.

Definition 13 (Computational Domain). Let Σ be a first-order vocabulary.
A first-order structure D = (D, I) is called the domain of computation such
that: D is a non-empty set, called the carrier, and I is a mapping assigning:

• to every n-ary function symbol f ∈ Σ a function f I : Dn → D;

• to every n-ary predicate p ∈ Σ a predicate pI : Dn → Bool .

A state is a function s : V → D that assigns to each variable an el-
ement of D. The set of all states is denoted by State(V ). As usual, we
denote by s[x 7→ v] the state s′ such that s′(x) = v and s′(y) = s(y) for
y 6= x. Now we can extend the interpretation to terms in a given state.
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Definition 14 (Term Valuation). The valuation val of a term t ∈ Trm(V ) in
a state s ∈ State(V ) is defined by:

val(s, x) , s(x) if x ∈ V ;

val(s, f(t1, . . . , tn)) , f I(val(s, t1), . . . , val(s, tn)).

Basic activities (and thus programs) are interpreted as relations on
states. For basic activities this means evaluating the assignments in the
current state replacing the old values of the variables.

Definition 15 (Interpretation of Activities). Let the activity a ∈ Act(V )
be defined by a multiple assignment x1, · · · , xn := t1, · · · , tn. The valuation
ρ ∈ 2State(V )×State(V ) of activity a is defined by:

ρ(a) , {(s, s′) | s′ = s[x1 7→val(s, t1), · · · , xn 7→val(s, tn)]}

Definition 16 (Interpretation of Programs). We extend the interpretation ρ
of basic activities to programs in the following manner:

ρ(α ;β) , {(s, r) | (s, w) ∈ ρ(α) ∧ (w, r) ∈ ρ(β)}
ρ(α + β) , ρ(α) ∪ ρ(β)

ρ(φ?) , {(s, s) | s |= φ}
ρ(α∗) , {(s, s) | s ∈ State(V )}∪

{(s, r) | (s, w) ∈ ρ(α) ∧ (w, r) ∈ ρ(α)∗}

Sequential composition is defined using the composition of relations.
The union is used for nondeterministic choice. The iteration is defined
as the choice of executing a program zero or more times.

6.1.2 First-order dynamic logic

To reason about program correctness, first order dynamic logic relies on
the following syntax for logical formulas.

Definition 17 (Formulas). The set of formulas Fml(V ) is defined by the fol-
lowing grammar:

ϕ,ψ ::= p(t1, · · · , tn) | > | ¬ϕ | ϕ ∧ ψ | ∀x.ϕ | 〈α〉ϕ |
⊥ | ϕ ∨ ψ | ϕ→ ψ | ∃x.ϕ | [α]ϕ

for p ∈ Σn a predicate, t1, · · · tn ∈ Trm(V ), x ∈ V and α ∈ Prog(V ).

128



The second line reports formulas that can be derived using the op-
erators in the first line. The notion of satisfaction for logic formulas is
straightforward for first order operators. The program possibility 〈α〉ϕ
states that it is possible that after executing program α, ϕ is true. The neces-
sity operator is dual to the possibility. It is defined as [α]ϕ , ¬〈α〉¬ϕ
stating that it is necessary that after executing program α, ϕ is true.

Definition 18 (Formula Validity). The satisfiability of a formula ϕ in a state
s ∈ State(V ) of a computational domain D = (D, I) is defined by:

s |= p(t1, . . . , tn) iff pI(val(s, t1), . . . , val(s, tn))
s |= > for all s ∈ S
s |= ¬ϕ iff not s |= ϕ
s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ
s |= ∀x.ϕ iff s[x 7→ d] |= ϕ for all d ∈ D
s |= 〈α〉ϕ iff there is a state r such that (s, r) ∈ ρ(α)

and r |= ϕ

A formula is valid in a domainD if it is satisfiable in all states overD, it is valid
if it is valid in all domains.

A valid formula for Example 13 is stock > 0 → [acceptOrder ]stock ≥ 0

(assuming that the computational domain are the natural numbers).
The following equivalences are taken from [Har79] as properties for

dynamic logic. We will revisit them at the end of the next chapter and
regard their validity considering our extension of the logic.

Proposition 5 (cf. [Har79]). The following are valid formulas of first order
dynamic logic.

〈α〉(ϕ ∨ ψ) ↔ 〈α〉ϕ ∨ 〈α〉ψ [α](ϕ ∧ ψ) ↔ [α]ϕ ∧ [α]ψ

〈α〉ϕ ∧ [α]ψ → 〈α〉(ϕ ∧ ψ) [α](ϕ→ ψ) → ([α]ϕ→ [α]ψ)

〈α〉(ϕ ∧ ψ) → 〈α〉ϕ ∧ 〈α〉ψ [α]ϕ ∨ [α]ψ → [α](ϕ ∨ ψ)

〈α + β〉ϕ ↔ 〈α〉ϕ ∨ 〈β〉ϕ [α + β]ϕ ↔ [α]ϕ ∧ [β]ϕ

〈α ;β〉ϕ ↔ 〈α〉〈β〉ϕ [α ;β]ϕ ↔ [α][β]ϕ

〈α∗〉ϕ ↔ ϕ ∨ 〈α ;α∗〉ϕ [α∗]ϕ ↔ ϕ ∧ [α ;α∗]ϕ

〈φ?〉ψ ↔ φ ∧ ψ [φ?]ψ ↔ φ→ ψ
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Below we show how in previous approaches dynamic logic is either
extended with deontic formalisms or concurrency. Most of these ap-
proaches use propositional dynamic logic [HKT00]. It is more abstract
than first order dynamic logic. The interpretation of basic activities is an
abstract relation on states, often Kripke frames are used. Thus there is
no need for the valuation of terms and the computational domain. How-
ever for our purpose we consider the use of variables more suitable and
realistic.

6.1.3 Deontic Formalisms for Error Handling

In this section we overview previous approaches that combine dynamic
logic with deontic logic [VW51] by introducing operators for permission,
obligation and prohibition. While the original deontic logic reasons on
predicates, in combination with dynamic logic these operators are ap-
plied to actions.

Meyer [Mey88] proposed the use of a violation condition V that de-
scribes an undesirable situation, so that the violation condition corre-
sponds to validity of proposition V . The prohibition operator is defined
such that s |= Fα iff s |= [α]V , i.e., it is forbidden to do α in s iff all
executions of α terminate in a violation. Obligation and permission are
defined based on prohibition. The main problem with Meyer’s work is
that dependency between permission and prohibition raises paradoxes.
Paradoxes of deontic logics are valid logical formulas that go against
common sense, e.g., Ross’ paradox states if a letter ought to be sent, then
a letter ought to be sent or burnt.

While Meyer focused on permission of states, Meyden [vdM96] de-
fined permission on the possible executions of an action. He extended
models for dynamic logic with a relation P on states. An execution of
an action α is permitted if every (internal) state transition of α is in P .
This implies that if an execution of an action is permitted also each of
its subactions must be permitted. This avoids, for example, Ross’ para-
dox. Meyden’s definition of violation is however not very different from
Meyer’s. As shown in [Bro03] there is a correspondence between the two
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definitions.
In [BWM01] Broersen et al. define permission of an action as a propo-

sition over states and actions. Each model contains a valuation function
that maps permission propositions over atomic actions to sets of states.
Contrary to the previous approaches permission is in fact based on the
action itself. For compound actions permission is defined in terms of pos-
sible traces and its subactions. Broersen extends this approach in [Bro03]
including also concurrency.

Castro and Maibaum [CM09] refine Broersen’s approach. Their defi-
nition of violation is very similar, however actions can be combined dif-
ferently. While previous approaches focused on free choice and sequence
for the combination of atomic actions, the authors define the domain
of actions as an atomic boolean algebra. Actions can be combined us-
ing choice, intersection (i.e. concurrency) and a locally restricted form of
complement. This allows them to show not only that their logic is sound
and complete, but moreover it is decidable and compact.

6.1.4 Concurrency

There are only a few approaches adding concurrency to dynamic logic.
The first, concurrent dynamic logic [Pel87], interprets programs as a col-
lection of reachability pairs, such that for each initial state it assigns a
set of final states. In case of parallel composition the sets of final states
are joined, while for choice the reachability pairs are joined. In this ap-
proach the formula 〈α〉ϕ holds in states s such that a reachability pair
(s, U) for the interpretation of α exists and each state s′ ∈ U satisfies ϕ.
In particular, the axiom 〈α ∩ β〉ϕ ↔ 〈α〉ϕ ∧ 〈β〉ϕ is valid, i.e., actions are
independent of each other.

For Broersen [Bro03] this is an undesirable property. He considers
only true concurrency, i.e. executing actions in parallel has a different
effect than interleaving them. The interpretation uses the intersection for
concurrency. Moreover he considers an open concurrency interpretation,
which is not applicable to first order dynamic logic (that follows a closed
action interpretation).
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In [BS08] the authors define a dynamic logic for CCS where the in-
terpretation of concurrency is based on the labelled transition system of
CCS. Thus concurrency is either interpreted as interleaving or the so-
called handshake of CCS. This is to our knowledge the first article apply-
ing dynamic logic to a process calculus.

As we have seen, concurrency in dynamic logic is often interpreted as
a simultaneous execution. This interpretation is not suited for the kind of
systems we want to model, where concurrent programs describe activi-
ties that can be executed concurrently, or even in parallel, but do not have
to happen simultaneously. A possible approach would be to only allow
parallel composition of independent processes, i.e., processes that do not
interfere with each other. This requirement is quite strong and excludes
most long running transactional systems. In the area of transactional
concurrency control, extensive work has been done on the correctness
criterion for the execution of parallel transactions. Proposed criteria in-
clude, linearizability [HW90], serializability [Pap79], etc. These criteria
are more realistic, since they allow some interference between concur-
rent transactions. Therefore, for our interpretation of concurrency we
use a notion of serializability (less restrictive than linearizability), stating
that: the only acceptable interleaved executions of activities from differ-
ent transactions are those that are equivalent to some sequential execu-
tion. Serializability is presented formally in Definitions 28 and 35.

6.2 Concurrent programs

We will consider an extension of first-order dynamic logic. We keep the
definitions for the term algebra and variables from Section 6.1. Our def-
inition of basic activities is extended to take into account a validity for-
mula.

Definition 19 (Basic Activities). A basic activity a ∈ Act(V ) is a multiple as-
signment together with a quantifier and program-free formula E(a) ∈ Fml(V )
that specifies the conditions under which activity a leads to an error state.

Formula E(a) can be seen as expressing some precondition on activ-
ity a: if formula E(a) holds on state s, executing awill cause an error. We
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exploitE(a) to classify state transitions as failed or successful, depending
on whether the error condition holds or not on a given state. We could
use instead for each activity a an explicit set of error transitions or error
states, but those sets (either of error transitions or states) can be derived
from formula E(a). Another point worth discussing is the evaluation of
E(a) as before or after the execution of the activity a. Evaluating E(a)

in advance ensures erroneous state transitions do not occur, leaving the
system in a correct state (the last correct state before the error). Whereas
moving the evaluation of E(a) after the execution of a would cause the
state transition to occur in order to determine if E(a) holds. Note that
the empty assignment skip is always successful.

Consider once more activity acceptOrder from Example 13. A possi-
ble error condition could be E(acceptOrder) , stock ≤ 0, that checks if
there is any item available in stock.

The definition of concurrent programs uses standard dynamic oper-
ators, including parallel composition and a test operator (over program-
and quantifier-free formulas).

Definition 20 (Concurrent Programs). The set Prog(V ) of programs is de-
fined by the following grammar:

α, β ::= a | φ? | α ;β | α + β | α ‖ β | α∗

Let the computational domain be as in Definition 13, as well as the
valuation of terms as in Definition 14. The interpretation of basic activi-
ties (and thus programs) differs from the usual interpretation of dynamic
logic. First we distinguish between activities that succeed or fail. Second
we use traces instead of the relation on states. This is due to the combina-
tion of possible failing executions and nondeterminism. We will explain
this further when introducing the interpretation of concurrent programs.

Definition 21 (Steps). Let ` ∈ {a,−a, φ?}, for a ∈ Act(V ) a multiple assign-
ment x1, · · · , xn := t1, · · · , tn and φ ∈ Pred(V ) a program- and quantifier-
free formula. We call a step [[`]] ⊆ State(V )×(Act(V )∪Pred(V ))×State(V )
the set of triples defined by:
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[[a]] , {s a s′ | s |= ¬E(a)∧
s′ = s[x1 7→val(s, t1), · · · , xn 7→val(s, tn)]}

[[−a]] , {s a s | s |= E(a)}
[[φ?]] , {s φ? s | s |= φ}.

We say that in [[a]] the a stands for a good or successful behaviour of
the activity while −a in [[−a]] represents failure of the activity.

Example 14 (e-Store). Consider activity acceptOrder from Example 13 and
its error formula E(acceptOrder). In this setting, we have that

[[acceptOrder ]] , {s acceptOrder s′ |
s′ = s[stock 7→s(stock)−1, card 7→unknown]
∧ s |= stock>0}

[[−acceptOrder ]] , {s acceptOrder s | s |= stock ≤ 0}

Definition 22 (Traces). A trace τ is defined as a sequence of sets of triples [[`]].

We will use [[]] for the singleton containing the empty (but defined)
trace; when combined with another trace it acts like the identity. More-
over we use the notation [[`.τ ]] = [[`]][[τ ]] for traces with length ≥ 1. Note
that if [[`]] = ∅ the trace is not defined. When composing traces there is
no restriction whether adjoining states have to match or not. The system
is in general considered to be open, i.e., even within one trace between
two actions there might be something happening in parallel changing the
state. When we build the closure of the system traces that do not match
are discarded.

A closed trace is a trace where adjoining states match. We define a
predicate closed on traces such that closed(s ` s′) = > and closed(s ` s′.τ) =

closed(τ) ∧ (s′ = first(τ)). For closed traces we can define functions first

and last that return the first and the last state of the trace. Note that one
open trace usually corresponds to a set of closed traces, but with a fixed
starting state the execution is deterministic.

Example 15. Consider a small example with two basic actions a , x := x− 1
and b , y := y − 1 where E(a) , x < 1 and E(b) , y < 1. The open
trace [[a.b]] stands for a multitude of traces including those where the final state

134



of [[a]] and the first of [[b]] do not match. Take for example a triple s a s′ ∈ [[a]]
with y = 0 in both s and s′ (as a does not change y). Then there is no triple
in [[b]] that matches s′ as it satisfies b’s error formula. The closure will rule out
such traces. If we take now a fixed initial state s where x = 2 and y = 5, the
computation is deterministic and we reach a state s′ where x = 1 and y = 4.

Definition 23 (Interpretation of Basic Activities). The valuation ρ of an
activity a ∈ Act(V ) is defined by:

ρ(a) , [[a]] ∪ [[−a]]

With this semantic model an activity amay have ”good” (committed)
or ”bad” (failed) traces, depending on whether the initial state does not
satisfy E(a) or it does. As it is clear from the interpretation of basic ac-
tivities, if the error condition holds, then it forbids the execution of an
activity. Therefore failed transitions do not cause a state change.

As we mentioned for basic activities, we use traces instead of a state
relation for the interpretation of programs. To motivate this decision,
consider the behaviour of a compensable program. If it is successful, the
complete program will be executed. If it fails, the program is aborted
and the installed compensations will be executed. Thus we need to dis-
tinguish between successful and failing executions. Hence we need to
extend the error formula E. But extending E to programs does not suf-
fice as programs introduce nondeterminism, i.e., a program with choice
may both succeed and fail in the same state. UsingE for programs would
however only tell us that the program might fail, not which execution ac-
tually does fail. For a trace we can state whether this execution fails or
not.

Definition 24 (Error Formulas of Traces). We lift error formulas from activ-
ities to traces τ by letting E(τ) be inductively defined as:

E([[]]) , ⊥ E([[a]]τ) , E(τ)

E([[−a]]τ) , > E([[φ?]]τ) , E(τ)

Take the two actions a and b from Example 15. We have thatE([[a.b]]) =

E([[b]]) is false while E([[a.− b]]) = E([[−b]]) is true.
We exploit error formulas for defining the sequential composition

τα ◦ τβ of two traces. If the first trace raises an error (E(τα) is true), the
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execution is aborted and thus not combined with the second trace. If the
first trace succeeds (E(τα) is false) sequential composition is defined as
usual, i.e. we append the second trace to the first trace.

τα ◦ τβ ,

{
τα if E(τα)

τα τβ if ¬E(τα)

Abusing the notation we use the same symbol ◦ to compose sets of traces.
Consider once more the two activities a and b from Example 15. The
sequential composition [[a]] ◦ [[b]] is defined as [[a]][[b]] = [[a.b]]. On the other
hand the sequential composition [[−a]] ◦ [[b]] is defined as [[−a]].

Next, to build the trace for parallel composition of two basic pro-
grams we would consider the interleaving of any combination of traces:

[[]] ‖ τ2 , {τ2} [[`1]]τ1 ‖ [[`2]]τ2 , {[[`1]]τ | τ ∈ (τ1 ‖ [[`2]]τ2)}
τ1 ‖ [[]] , {τ1} ∪ {[[`2]]τ | τ ∈ ([[`1]]τ1 ‖ τ2)}

We use once more activities a and b from Example 15. Then [[a]] ‖ [[b]] is
defined as both [[a.b]] and [[b.a]]. Note that we ignore whether an action is
successful or not. Thus [[−a]] ‖ [[b]] is defined as [[−a.b]] and [[b.− a]].

Now we can define the interpretation of concurrent programs:

Definition 25 (Interpretation of Concurrent Programs). We extend the in-
terpretation ρ from basic activities to concurrent programs in the following man-
ner:

ρ(φ?) , [[φ?]]

ρ(α ;β) , {τα ◦ τβ | τα ∈ ρ(α) ∧ τβ ∈ ρ(β)}
ρ(α + β) , ρ(α) ∪ ρ(β)

ρ(α ‖ β) , {τ | τα ∈ ρ(α) ∧ τβ ∈ ρ(β) ∧ τ ∈ τα ‖ τβ}
ρ(α∗) , [[]] ∪ ρ(α) ◦ ρ(α∗)

Test φ? is interpreted as the identity trace for the states that satisfy
formula φ. The interpretation of sequential programs is the sequential
composition of traces. Failed transitions are preserved in the resulting
set as executions of α that have reached an erroneous state and cannot
evolve. Choice is interpreted as the union of trace sets of programs α and
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β. The interpretation of parallel composition is the set of any possible in-
terleaving of the traces for both branches. Iteration is defined recursively
(by taking the least fixpoint of the equation).

When defining the notion of (strong) serializability (see Definitions 28
and 29) we will rely on the associativity and commutativity of parallel
composition, which is stated by the following lemma.

Lemma 1. For any programs α1, α2 and α3 we have:

1. ρ(α1 ; (α2 ;α3)) = ρ((α1 ;α2) ;α3);

2. ρ(α1 + (α2 +α3)) = ρ((α1 +α2) +α3) and ρ(α1 +α2) = ρ(α2 +α1);

3. ρ(α1 ‖ (α2 ‖ α3)) = ρ((α1 ‖ α2) ‖ α3) and ρ(α1 ‖ α2) = ρ(α2 ‖ α1).

Proof. For each equation over the sets of traces, the proof goes by show-
ing separately the double inclusion of one set into the other. In all cases—
sequential, choice and parallel composition—given any trace of one set
(e.g., τ ∈ ρ(α1 + α2)), it is shown that the same trace belong to the other
set (e.g., that τ ∈ ρ(α2 + α1)) by relying on the properties of the corre-
sponding operator at the level of traces (e.g., set union).

To build the closure of the system, i.e., a program α, we define the set
of all closed traces for α such that closure(α) , {τ | τ ∈ ρ(α)∧closed(τ)}.

Next we show in an example the application of Definition 25.

Example 16 (e-Store). Take program eStore defined as in Figure 63. To keep
the notation compact, we abbreviate activities using initials, e.g., we write aO for
acceptOrder , aC for acceptCard , etc. This program describes a simple online
shop and it starts with an activity that removes from the stock the ordered items.
Since for most orders the credit cards are not rejected, and to decrease the deliv-
ery time, the client’s card processing and courier booking can be done in parallel.
In this example, the activities running in parallel may interfere with each other
as bookCourier will fail once the card is rejected. As the order of the execution
for the parallel composition is not fixed after rejecting the credit card we issue a
throw (defined as the empty assignment that always fails). In the interpretation
of program eStore we can first distinguish the traces where acceptOrder suc-
ceeds and where it fails. In the latter case no other action is executable. In the
successful case the parallel composition is executed where both branches may
succeed or fail and we include any possible interleaving. Note that the traces
[[−aC]], [[−rC]] and [[throw ]] are not defined, as their condition is not satisfied by
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eStore , acceptOrder ;
((acceptCard + rejectCard ; throw) ‖ bookCourier)

aO , stock , card := E(aO) , stock ≤ 0
stock − 1, unkown

aC , card := accepted E(aC) , false

rC , card := rejected E(rC) , false

bC , courier := booked E(bC) , card = rejected

throw , skip E(throw) , true

ρ(aO ; ((aC + rC ; throw) ‖ bC)) =
[[aO.aC.bC]] ∪ [[aO.bC.aC]] ∪
[[aO.aC.− bC]] ∪ [[aO.− bC.aC]] ∪
[[aO.rC.− throw .bC]] ∪ [[aO.bC.rC.− throw ]] ∪
[[aO.rC.bC.− throw ]] ∪ [[aO.rC.− throw .− bC]] ∪
[[aO.− bC.rC.− throw ]] ∪ [[aO.rC.− bC.− throw ]] ∪
[[−aO]]

Figure 63: eStore example.

any possible state. Building the closure for these traces we can rule out some
possibilities, namely [[aO.aC. − bC]], [[aO. − bC.aC]], [[aO. − bC.rC. − throw ]],
[[aO.rC.− throw .bC]] and [[aO.rC.bC.− throw ]] would be excluded. In the first
three cases the error formula of action bC is not fulfilled, thus it should not fail.
In the other two cases the card was rejected before the booking of the courier, thus
E(bC) is fulfilled and the action should fail. A possible closed trace is:

closed( s aO s′ . s′aC s′′ . s′′bC s′′′ |
s′ = s[stock 7→ s(stock)− 1, card 7→ unkown] ∧
s′′ = s′[card 7→ accepted ] ∧
s′′′ = s′′[courier 7→ booked ] ∧
s |= stock > 0 ∧ s′′ |= ¬card = rejected )

For formulas we include two modal operators related to program suc-
cess, where success of a program is interpreted as not reaching an erro-
neous state. The modal operator success S(α) states that every way of exe-
cuting α is successful, so program α must never reach an erroneous state.
The modal operator weak success SW(α) states that some way of execut-
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ing α is successful. The failure modal operator F(α) is a derived operator,
F(α) , ¬SW(α), and states that every way of executing α fails. Note that
both weak success and program possibility ensure program termination,
while success and program necessity do not.

Definition 26 (Formulas). The set of formulas Fml(V ) is defined by the gram-
mar:

ϕ,ψ ::= p(t1, · · · , tn) | > | ¬ϕ | ϕ ∧ ψ | ∀x.ϕ | 〈α〉ϕ |
S(α) | SW(α) |
⊥ | ϕ ∨ ψ | ϕ→ ψ | ∃x.ϕ | [α]ϕ |

F(α)

for p ∈ Σn a predicate, t1, · · · tn ∈ Trm(V ), x ∈ V and α ∈ Prog(V ).

Definition 27 (Formula Validity). The validity of a formula ϕ in a state
s ∈ State(V ) of a computational domain D = (D, I) is defined by:

s |= p(t1, . . . , tn) iff pI(val(s, t1), . . . , val(s, tn))
s |= > for all s ∈ S
s |= ¬ϕ iff not s |= ϕ
s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ
s |= ∀x.ϕ iff s[x 7→ d] |= ϕ for all d ∈ D
s |= 〈α〉ϕ iff ∃ τ ∈ closure(α) such that first(τ) = s

and last(τ) |= ϕ
s |= S(α) iff for all τ ∈ closure(α),

first(τ) = s implies ¬E(τ)
s |= SW(α) iff ∃ τ ∈ closure(α) such that

first(τ) = s and ¬E(τ)
s |= F(α) iff s |= ¬SW(α)

The new modal operators for success and failure are defined accord-
ing to the description given above.

Example 17 (e-Store). Considering the example of Figure 63 a possible formula
would be F(acceptOrder), that is only satisfiable in some states. However, the
following are valid formulas for any state:

stock ≤ 0→ F(acceptOrder)

stock > 0→ SW(acceptOrder)

[acceptOrder ]card = accepted → courier = booked
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The first formula states that if stock ≤ 0, program acceptOrder always fails.
While the second formula says that if stock > 0, there are some successful
executions of acceptOrder . The last formula describes a condition that is always
true after the execution of program acceptOrder .

As discussed in Section 6.1, we want an interpretation of concurrency
where concurrent activities do not have to happen simultaneously. For
example, packing the items in a client’s order and booking a courier to
deliver that same order are independent activities that can be run in par-
allel. If, contrary to the example just mentioned, parallel activities are
not independent, then concurrency becomes more complex: as activities
may interfere with each other, this may lead to unexpected results. In
this work parallel composition is not restricted to independent programs
(such that the set of variables updated and read by those programs is dis-
joint). However, without any restriction the logic is too liberal to prove
any good properties. To address this issue, we use a notion of serializ-
ability (see Definition 28) to determine the correctness of concurrent pro-
grams. Every trace of serializable concurrent composition of programs
can be matched to a trace of a serial execution of those same programs,
such that both traces have the same initial and final state.

Notice, that because programs α and β may both fail we cannot re-
quire that concurrent traces are equivalent to some sequential execution
of α and β. Therefore, in our setting, for each concurrent trace of a serial-
izable program α ‖ β there are traces of α and β, such that the composi-
tion of those traces is closed and matches the initial and final state of the
concurrent trace.

We will use the abbreviation τ ./ τ ′ for traces τ and τ ′ denoting

τ ./ τ ′ , closed(τ) ∧ closed(τ ′) ∧ first(τ) = first(τ ′) ∧ last(τ) = last(τ ′)

Definition 28 (Serializable Concurrent Programs). A set of n concurrent
programs α1, ..., αn forms a serializable set if for any trace τ ∈ closure(α1 ‖
· · · ‖ αn) there exist ν1 ∈ ρ(α1), ..., νn ∈ ρ(αn) and a permutation ι : [1, n]→
[1, n] such that τ ./ (νι(1) · · · νι(n)).

A concurrent program α is serializable if all of its subterms of the form
α1 ‖ · · · ‖ αn we have that α1, ..., αn form a serializable set.
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In transactional concurrency control serializability implicitly imposes
that the order of execution of activities within a transaction must be pre-
served. The above serializability definition does not impose any relation
on the order of activities for the parallel and serial execution. To take this
ordering into consideration we define a stronger notion of serializability
where concurrent execution must maintain the order of the serial execu-
tion. For that we use a projection function prα(τ) that extracts from trace
τ the sequence of activities that belong to program α. This function is
used to ensure that each trace of the concurrent process α ‖ β follows an
order of execution of some individual process.

Definition 29 (Strong Serializable Concurrent Programs). A set of n con-
current programs α1, ..., αn forms a strong serializable set if for every trace
τ ∈ closure(α1 ‖ · · · ‖ αn) there exist ν1 ∈ ρ(α1), ..., νn ∈ ρ(αn) and a
permutation ι : [1, n] → [1, n] such that prαi

(τ) = νi for all i ∈ [1, n], and
τ ./ (νι(1) · · · νι(n)).

A concurrent program α is strong serializable if all of its subterms of the
form α1 ‖ · · · ‖ αn we have that α1, ..., αn form a strong serializable set.

Note that both serializability notions are defined as implications, be-
cause logical equivalence cannot be ensured in the general case: the fact
that activities may be executed independently does not ensure, in the
presence of interference, that those activities may be executed concur-
rently.

We revisit the formulas for first order dynamic logic presented in
Proposition 5. Most are still valid, but, as the interpretation for programs
has changed, some are not. In fact, the following modal formulas over
sequential programs are not valid in our interpretation of programs:

〈α ;β〉ϕ ↔ 〈α〉〈β〉ϕ [α ;β]ϕ ↔ [α][β]ϕ

The reason is that sequential composition will abort in the occurrence of
a failure. Therefore, it is no longer possible to reason compositionally
about these formulas for sequential programs. Note that we cannot state
any properties regarding the new operators and sequential composition.
A program αmay change the success or failure of any following program
β regardless of its success before the execution of α. Consider for instance
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activity a from Example 15 and a state s where x = 1. Then it holds that
s |= S(a), but not s |= S(a ; a).

We show some useful logical equivalences involving the novel modal
operators. We are particularly considering their interplay with parallel
composition.

Proposition 6. Let α, β be two serializable programs. The following are valid
formulas in the presented dynamic logic:

〈α ‖ β〉ϕ ↔ 〈α〉〈β〉ϕ ∨ 〈β〉〈α〉ϕ
[α ‖ β]ϕ ↔ [α][β]ϕ ∧ [β][α]ϕ

S(α + β) ↔ S(α) ∧ S(β)
S(α∗) ↔ true ∧ S(α;α∗)
S(α ‖ β) → S(α ;β) ∧ S(β ;α)

SW(α + β) ↔ SW(α) ∨ SW(β)
SW(α∗) ↔ true ∨ SW(α;α∗)
SW(α ‖ β) → SW(α ;β) ∨ SW(β ;α)
SW(α ‖ β) → SW(α) ∧ SW(β)

F(α + β) ↔ F(α) ∧ F(β)
F(α∗) ↔ false ∧ F(α ;α∗)
F(α ‖ β) → F(α ;β) ∧ F(β ;α)
F(α ‖ β) → F(α) ∨ F(β)

Proof. See B.2.

Proposition 7. Let α, β be two strong serializable programs. The following are
valid formulas in the presented dynamic logic:

S(α ‖ β) ↔ S(α) ∧ S(β) F(α ‖ β) ↔ F(α) ∨ F(β)

Proof. See B.2.

The above formulas show that, by imposing a strong serializability
correctness criteria on concurrent programs, it is possible to reason about
these kind of programs in a compositional manner.

We prove in B.2 the remaining formulas for first order dynamic logic
presented in Proposition 5 as well as Proposition 6 and give counterex-
amples for sequential composition used in program possibility and ne-
cessity.
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BuyFlight , initVars ; ({[Reservation1]} ‖ · · · ‖ {[Reservationn]})

Reservationi , reserveFlight i÷cancelReservationi ;
payReservationi÷skip

iV , flight := ⊥ E(iV) , false

rFi , seatsi, statusi := seatsi − 1, reserved E(rFi) , seatsi ≤ 0

cRi , seatsi, statusi := seatsi + 1, cancelled E(cRi) , false

pRi , statusi,flight := payed , i E(pRi) , ¬flight = ⊥

Figure 64: BuyFlight example.

6.3 Compensable programs

This section defines compensable programs. While the basic building
blocks of concurrent programs are basic activities, in the case of com-
pensable programs the basic building blocks are compensation pairs. A
compensation pair a ÷ a is composed by two activities, such that if the
execution of the first activity is successful, compensation a is installed.
Otherwise, if activity a fails, no compensation is stored. Compensation
pairs can then be composed using similar operators as for concurrent
programs. The transaction operator {[·]} converts a compensable pro-
gram into an ordinary one by discarding stored compensations for suc-
cessful executions and running compensations for failed executions.

Definition 30 (Compensable Programs). The set Cmp(V ) of compensable
programs is defined by the following grammar (for a, a ∈ Act(V )):

α ::= . . . | {[δ]}
δ, γ ::= a÷ a | δ ; γ | δ + γ | δ ‖ γ | δ∗

Example 18 (Flight Reservation: Speculative Execution). An example of
a compensable program is shown in Figure 64. This example specifies a flight
reservation system that launches n concurrent reservation processes. However,
only one of those flight reservations will be purchased. This strategy of executing
in parallel several processes that fulfil a similar task is called speculative exe-
cution [USH95]. Each parallel process can be seen as an attempt to complete a
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task. When one attempt succeeds, the other attempts may be abandoned. Then,
compensations can be used to cancel the effect of the abandoned attempts. In our
example, when one of the processes successfully pays the flight reservation, the
remaining processes will cancel the reservations already made.

Next, we describe process BuyFlight in more detail. The first activity called
initVars initializes the shared variable flight . This variable stores the identifica-
tion of the flight purchased, so initially is undefined (flight = ⊥). After initial-
ization, n copies of transaction {[Reservationi]} are executed in parallel. Each
copy represents an attempt to book a flight with a different travel agency. Process
Reservationi starts by decreasing the number of seats available by one and set-
ting the status of the reservation to reserved . Next, activity payReservationi
will try to buy flight i. If no other flight was already bought, a payment is made
thus completing the reservation. Otherwise, activity payReservationi fails and
the compensation is executed, cancelling the reservation already made.

In order to ensure the overall correctness of a compensable program,
the backward program of a compensation pair a ÷ a must satisfy a con-
dition: a must successfully revert all forward actions of activity a. In
the following we do not require that a exactly undoes all assignments
of a and thus reverts the state to the exact initial state of a. Instead, we
require that it performs some compensation actions that lead to a ”suf-
ficiently” similar state to the initial one, where a was performed. The
way to determine if two states are similar depends on the system under
modelling, so we do not enforce any rigid definition. Still, we propose
a concrete notion that may characterize a widely applicable criterion of
correctness (but other proposals may be valid as well).

The notion we give is parametric w.r.t. a set of (integer) variables
whose content we wish to monitor.

Definition 31 (Difference over X). Let X be a set of integer variables. We
call s\Xs′ the difference over X between two states, i.e., the set of changes oc-
curred over the variables in X , when moving from s to s′. Formally, we define
(s\Xs′)(x) = s′(x)− s(x) for any x ∈ X (and let (s\Xs′)(x) = 0 otherwise).

The criterion for evaluating the correctness of a trace in the presence
of faults is then to focus on the difference between the initial state and
the final one. For example, the difference s\Xs is null, the same holds for
any empty trace.
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Definition 32 (Correct Compensation Pair). Let X be a set of integer vari-
ables. Activity a ∈ Act(V ) is a correct compensation overX of a iff for all traces
s a s′ ∈ ρ(a) with s |= ¬E(a), then for all t′ a t ∈ ρ(a) we have t′ |= ¬E(a)
and s\Xs′ = t\Xt′.

Example 19 (Hotel Booking). The cancellation of a hotel booking may require
the payment of a cancellation fee. This can be modelled by a compensation pair
bookHotel ÷ cancelHotel , where forward activity bookHotel books a room and
sets the amount to be paid, while the compensation cancelHotel cancels the
reservation and charges the cancellation fee.

bookHotel , rooms, price, fee := rooms − 1, 140$, 20$

cancelHotel , rooms, price, fee := rooms + 1, fee, 0$

In this example cancelHotel does not completely revert all of bookHotel actions,
and in fact it is likely that room cancellation imposes some fees. However, if we
are only interested in the consistency of the overall number of available rooms,
we can take X = {rooms} and take the difference over X as a measure of
correctness. The idea is that a correct compensation should make available all
the rooms that were booked but later cancelled.

In Definition 33 below each compensable program is interpreted as a
set of pairs of traces (τ, τ), where τ is a trace of the forward program and
τ is a trace that compensates the actions of the forward program. Ide-
ally, τ defines one trace of the compensable program in absence of faults,
while τ “followed” by τ defines one trace of the compensable program
when a fault occurs in τ . However, as we are going to see, there are some
subtleties to be taken into account.

Definition 33 (Interpretation of Compensable Programs). We define the
interpretation ρc of compensable programs in the following manner:
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ρc(a÷ a) , {(τ, τ) | τ ∈ ρ(a) ∧ τ ∈ ρ(a) ∧ ¬E(τ)} ∪
{(τ, [[]]) | τ ∈ ρ(a) ∧ E(τ)}

ρc(δ + γ) , ρc(δ) ∪ ρc(γ)

ρc(δ ; γ) , {(τ ◦ ν, ν ◦ τ) | (τ, τ) ∈ ρc(δ) ∧ (ν, ν) ∈ ρc(γ) ∧ ¬E(τ)} ∪
{(τ, τ) | (τ, τ) ∈ ρc(δ) ∧ E(τ)}

ρc(δ ‖ γ) , {(τ, τ) | (ν, ν) ∈ ρc(δ) ∧ (µ, µ) ∈ ρc(γ) ∧
τ ∈ ν ‖ µ ∧ τ ∈ ν ‖ µ}

ρc(δ
∗) , {([[]], [[]])} ∪ ρc(δ ; δ∗)

ρ({[δ]}) , {τ | (τ, τ) ∈ ρc(δ) ∧ ¬E(τ)} ∪
{cl(τ) ◦ τ | (τ, τ) ∈ ρc(δ) ∧ E(τ)}

Compensation pairs are interpreted as the union of two sets. The first
set represents the successful traces of forward activity a, paired with the
traces of compensation activity a. The second set represents the failed
traces, paired with the empty trace as its compensation. Sequential com-
position of compensable programs δ ; γ is interpreted by two sets, one
where the successful termination of δ allows the execution of γ, the other
where δ fails and therefore γ cannot be executed. As for the compensa-
tions of a sequential program, their traces are composed in the reverse
order of their forward programs. Parallel composition interleaves the
forward and compensation traces, separately.

The interpretation of a transaction {[δ]} includes two sets: the first set
discards compensable traces for all successful traces; while the second
set deals with failed traces by composing each failed trace with the cor-
respondent compensation trace. Notice that for this trace composition to
be defined, it is necessary to clear any faulty activities in the failed for-
ward trace. Therefore, in defining the interpretation of a transaction {[δ]},
we exploit a function cl that clears failing activities from a run:

cl([[]]) , [[]] cl([[`]]τ) ,

{
[[E(a)?]] cl(τ) if ` = −a
[[`]] cl(τ) otherwise

where E(a)? is the test for the error formula of activity a. It is always
defined in s as activity a only aborts if s |= E(a), thus it is in general like
a skip. In fact, if τ is faulty but successfully compensated by τ , then we
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ρc(Reservationi) = ρc(rFi÷cRi ; pRi÷skip)
= ([[rFi.pRi]], [[skip.cRi]]) ∪

([[rFi.− pRi]], [[cRi]]) ∪
([[−rFi]], [[]])

ρ({[Reservationi]}) = [[rFi.pRi]] ∪
[[rFi.E(pRi)?.cRi]] ∪
[[E(rFi)?]]

ρ(BuyFlight) = ρ(iV ; {[Reservation1]} ‖ {[Reservation2]}) (for n = 2)

= [[iV]].(
[[rF1.pR1]] ‖ [[rF2.E(pR2)?.cR2]] ∪ (flight 1 purchased)
[[rF1.pR1]] ‖ [[E(rF2)?]] ∪
[[rF1.E(pR1)?.cR1]] ‖ [[rF2.pR2)]] ∪ (flight 2 purchased)
[[E(rF1)?]] ‖ [[rF2.pR2]] ∪
[[E(rF1)?]] ‖ [[E(rF2)?]] (no flight available)

)

Figure 65: Interpretation of the BuyFlight process.

want to exhibit an overall non faulty run, so that we cannot just take τ ◦τ
(ifE(τ) then obviouslyE(τ ◦τ)). The following lemma states that cl does
not alter the first nor the last state of a trace:

Lemma 2. For any trace τ : If ¬E(cl(τ)), then first(τ) = first(cl(τ)) and
last(τ) = last(cl(τ)).

Example 20 (Flight Reservation). Figure 65 shows step by step the interpre-
tation of the BuyFlight process from Example 18. First, it presents the inter-
pretation of compensable process Reservationi where each forward run is paired
with a compensation trace that reverts all its successfully terminated activities.
Next, the interpretation of transaction {[Reservationi ]} can be built and it con-
siders three possible outcomes. In the first case, flight i is purchased, so the
compensation for that reservation can be discarded. In the second case, another
reservation was previously purchased, so reservation i has to be compensated
for. In the third case, reservation i cannot be made because there are no seats
available. Lastly, Figure 65 shows a speculative execution of two Reservation
transactions. The set of all possible interleaving is quite large, even after dis-
carding traces that are not satisfied by any possible state. An example of a
trace to be discarded is [[iV.rF2.E(pR2)?.cR2.rF1.pR1]], because the execution
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HotelBooking , bookHotel÷cancelHotel ;
(acceptBooking÷skip + cancelBooking÷skip ;

throw÷skip))

bH , rooms, status, price, fee := E(bH) , rooms ≤ 0
rooms − 1, booked , 140, 20

cH , rooms, price, fee := rooms + 1, fee, 0 E(cH) , false

aB , status := confirmed E(aB) , false

cB , status := cancelled E(cB) , false

ρc(bH÷cH ; (aB÷skip + cB÷skip ; throw÷skip)) = ([[bH.aB]], [[skip.cH]])∪
([[bH.cB.− throw ]], [[skip.cH]])∪
([[−bH]], [[]])

Figure 66: HotelBooking example.

of iV sets the variable flight to ⊥. Therefore, E(pR2) could not be true (as no
other reservation has been purchased at this point in time). An acceptable inter-
leaving would be [[iV.rF2.rF1.pR1.E(pR2)?.cR2]] where process Reservation2

manages to make the flight reservation before process Reservation1 , but is over-
taken by Reservation1 in the flight payment. Notice that these set of traces are
equivalent (same initial and final state) to the sequential execution of processes
Reservation1 and Reservation2 . We can conclude that BuyFlight is serializ-
able, because any given interleaved trace is equivalent to a sequential trace that
starts by executing the process that succeeds in paying the reservation.

Example 21 (Hotel Booking). Figure 66 shows another example of a compens-
able program, that specifies a hotel booking system. In this example the activity
bookHotel updates several variables: it decreases the number of available rooms,
sets the booking status to booked , while the price and cancellation fee are set
to predefined values. Next, there is a choice between confirming or cancelling
the booking. After cancelBooking the process is aborted by executing throw .
The interpretation of HotelBooking pairs each forward trace with a compensa-
tion trace. For example, the first pair of traces represents a successful execution,
where after booking a room the client accepts that reservation. In this case the
stored compensation reverts both the acceptance of the booking and the book-
ing itself. Likewise Example 19, the compensation activity cancelHotel does
not revert completely its main activity: it reverts the room booking, charges the
cancellation fee, and it leaves the booking status unchanged.
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HotelTransactions , {[HotelBooking1]} ‖ {[HotelBooking2]}

ρ({[HotelBooking ]}) = [[bH.aB]] ∪ [[bH.cB.E(throw)?.skip.cH]] ∪ [[E(bH)?]]

ρ(HotelTransactions) =
[[bH1.aB1]] ‖ [[bH2.aB2]] ∪
[[E(bH1)?]] ‖ [[E(bH2)?]] ∪
[[bH1.cB1.E(throw1)?.skip1.cH1]] ‖ [[bH2.cB2.E(throw2)?.skip2.cH2]] ∪
[[bH1.aB1]] ‖ [[bH2.cB2.E(throw2)?.skip2.cH2]] ∪
[[bH1.cB1.E(throw1)?.skip1.cH1]] ‖ [[bH2.aB2]] ∪
[[E(bH1)?]] ‖ [[bH2.cB2.E(throw2)?.skip2.cH2]] ∪
[[bH1.cB1.E(throw1)?.skip1.cH1]] ‖ [[E(bH2)?]] ∪
[[bH1.aB1]] ‖ [[E(bH2)?]] ∪
[[E(bH1)?]] ‖ [[bH2.aB2]]

Figure 67: HotelTransactions example.

Figure 67 shows the parallel composition of two HotelBooking transactions.
The program HotelTransactions shows how the interleaved execution of pro-
cesses may lead to interferences. Let θ1 = [[bH1.cB1.E(throw1)?.skip1.cH1]]
that describes traces where the booking succeeds and is later cancelled by the
client, and θ2 = [[E(bH2)?]] that describes traces where no rooms are avail-
able and therefore no activity can be executed. Take the interleaving of traces
of θ1 and θ2 on an initial state s such that s |= rooms = 1. In this set-
ting, θ1 has to be executed first and consequently activity bH1 books the last
room available. There is no serial execution of θ1 and θ2 (these sets of traces
cannot be sequentially composed), since after the execution of a trace of θ1

activity bH2 should succeed (the last room becomes available again after the
execution of cB1). However, the following interleaved execution is possible
[[bH1.E(bH2)?.cB1.E(throw1)?.skip1.cH1]], because when bH2 is executed there
are no rooms available. This shows that HotelTransactions is not serializable,
since some interleaved traces do not correspond to a serial execution.

The aim of compensable programs is that the overall recoverability of
a system can be achieved through the definition of local recovery actions.
As the system evolves, those local compensation actions are dynamically
composed into a program that reverts all actions performed until then.
Therefore, it is uttermost important that the dynamically built compen-
sation trace does indeed revert the current state to the initial state. Next,
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we define the notion of a correct compensable program, where any failed
forward trace can be compensated to a state equivalent to the initial state.

Definition 34 (Correct Compensable Program). Let X be a set of integer
variables. A compensable program δ has a correct compensation over X if for
all pairs of traces (τ, τ) ∈ ρc(δ), if closed(τ) and closed(τ) then it holds that
first(τ)\X last(τ) = last(τ)\Xfirst(τ).

Serializability is extended from basic programs to compensable pro-
grams:

Definition 35 (Serializable Compensable Programs). A set of n compens-
able programs δ1, ..., δn forms a serializable set if for all (τ, τ) ∈ ρc(δ1 ‖ · · · ‖
δn) with closed(τ) and closed(τ) there exist (ν1, ν1) ∈ ρc(δ1), ..., (νn, νn) ∈
ρc(δn) and a permutation ι : [1, n] → [1, n] such that τ ./ (νι(1) · · · νι(n)) and
τ ./ (νι(n) · · · νι(1)).

A compensable program δ is serializable if all of its subterms of the form
δ1 ‖ · · · ‖ δn we have that δ1, ..., δn form a serializable set.

Similarly to basic programs we can define strong serializability for
compensable programs:

Definition 36 (Strong Serializable Compensable Programs). A set of n
compensable programs δ1, ..., δn forms a strong serializable set if for all (τ, τ) ∈
ρc(δ1 ‖ · · · ‖ δn) with closed(τ) and closed(τ) there exist (ν1, ν1) ∈ ρc(δ1), ...,
(νn, νn) ∈ ρc(δn) and a permutation ι : [1, n] → [1, n] such that prδi(τ) = νi
for all i ∈ [1, n], prδi(τ) = νi for all i ∈ [1, n], τ ./ (νι(1) · · · νι(n)) and
τ ./ (νι(n) · · · νι(1)).

A compensable program δ is strong serializable if all of its subterms of the
form δ1 ‖ · · · ‖ δn we have that δ1, ..., δn form a strong serializable set.

The following theorem shows the soundness of our language, since
it proves that compensation correctness is ensured by construction: the
composition of correct compensable programs results in a correct com-
pensable program.

Theorem 12. Let X be a set of integer variables and δ a serializable compens-
able program where every compensation pair is correct over X , then δ is correct
over X .

Proof. See B.1.
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As in general serializability is hard to prove we suggest the simpler
definition of apartness. If the set of variables updated and consulted by
two programs are disjoint, those programs can be concurrently executed
since they do not interfere with each other (a similar approach was taken
in [CFV08]). Two compensable programs δ and γ are apart if they do
not update or read overlapping variables, then δ and γ can be executed
concurrently and their resulting traces can be merged. The final state of
a concurrent execution of apart programs can be understood as a join of
the resulting states of each program.

Formulas for basic programs can be easily extended to compensable
programs as they can be applied to the forward program and stored com-
pensations can be ignored.

Definition 37 (Formulas). The set of formulas Fml(V ) from Definition 26 is
extended as follows:

ϕ,ψ ::= . . . | 〈δ〉ϕ | [δ]ϕ | S(δ) | SW(δ) | F(δ) |
C(δ,X) | CW(δ,X).

The modal operator C(δ,X) states that every failure of δ is compens-
able regarding a set of variablesX . A weak compensable operator CW(δ,X)

states that some failures of δ are compensable for a set of variables X .

To define formula validity, we extend the notion of closed traces from
basic programs to compensable programs as shown below:

closure(δ) , {(τ, τ) | (τ, τ) ∈ ρc(δ) ∧ closed(τ) ∧ closed(τ)}.

Definition 38 (Formula Validity). We extend Definition 27 with the new
modal operators for compensable programs.
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s |= 〈δ〉ϕ iff ∃ (τ, τ) ∈ closure(δ) such that first(τ) = s
and last(τ) |= ϕ

s |= S(δ) iff for all traces (τ, τ) ∈ closure(δ) if first(τ) = s
then ¬E(τ)

s |= SW(δ) iff ∃(τ, τ) ∈ closure(δ) such that first(τ) = s
and ¬E(τ)

s |= F(δ) iff s |= ¬SW(δ)
s |= C(δ,X) iff for all traces (τ, τ) ∈ closure(δ) if first(τ) = s

then first(τ)\X last(τ) = last(τ)\Xfirst(τ)
s |= CW(δ,X) iff ∃(τ, τ) ∈ closure(δ) such that first(τ) = s

and first(τ)\X last(τ) = last(τ)\Xfirst(τ)

Considering the hotel booking program in Figure 66, the formula

〈HotelBooking〉status = confirmed

holds for any state where rooms > 0. Moreover C(HotelBooking , {rooms})
holds for any state. For the flight booking program in Figure 64 we can
require that, if there are seats available a flight is booked, which can be
written as the formula:

seats1 > 0 ∨ seats2 > 0 ∨ · · · ∨ seatsn > 0 → [BuyFlight ] ¬flight = ⊥

Next, we list some other valid formulas for program BuyFlight :

[BuyFlight ] statusi = payed ↔ flight = i

[BuyFlight ] statusi = cancelled → flight 6= i ∧ flight 6= ⊥
C(Reservationi, {seatsi})

6.4 Tool support

We present a tool for the dynamic logic of Section 6.3 and experiment
with examples from the previous sections.

For our tool we prefer to use a language that adequately represents
concurrent change and works as a semantic and logical framework, for
this reason we chose Maude (see Section 2.6).
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The implementation is structured in modules, the three main mod-
ules are SYNTAX, PROGRAMS and SEMANTICS. The complete definition of
the modules can be found at [Sou13]. We use predefined modules such
as NAT and INT for natural and integer numbers that are used for vari-
ables and terms. Moreover the parametric module SET is used for sets of
variables, traces or trace pairs. The module MAP standing for functions
or dictionaries defines a state in our setting as a partial function from
variables to integers. It enriches the codomain with a special element
called undefined that is returned if a value has no mapping. Note that
variables can only have integer values.

In the module SYNTAX we define the syntax for programs and com-
pensable programs. They are given as in Definitions 20 and 30 except of
iteration. Though in this case we could define an infinite set of traces we
cannot handle them in the semantics. Instead we define the n-th power
of a program as executing the program n times. Next the module defines
formulas of dynamic logic as in Definitions 26 and 37. We use a sub-
sort for base formulas without programs. Note that we do not include
quantifiers since we cannot handle them in the semantics. Terms can be
variables, integers or, for combining these, the addition of terms. Predi-
cates are equality of terms and the less-than predicate. An action is a list
of assignments of terms to variables and a base formula. The empty as-
signment is denoted skip. As a last item the module defines traces and
trace pairs.

In the module PROGRAMS the functions ρ and ρc are defined together
with any auxiliary functions needed like the sequential composition ◦ of
traces or the interleaving. Note that for the interpretation of programs we
would not need an exact definition of actions. This becomes necessary
once we build the closure of a trace. Figure 681 shows the interpretation
of the program from the eStore example in Figure 63. While the first lines
of the result correspond to our previous result, the tool also returns the
traces we omitted previously. These traces would be impossible in the
closure, e.g. the tool returns traces where throw is successful.

The last module SEMANTICS defines the interpretation of formulas.

1For the sake of readability we improved the layout of the result.
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Maude> red rho(aO ; ((aC O (rC ; throw)) | bC)) .
reduce in EXAMPLE : rho(aO ; bC | (aC O rC ; throw)) .
rewrites: 664 in 5503762061ms cpu (3ms real)
(0 rewrites/second)
result NeTraceSet: [- aO],
[aO] [aC] [bC], [aO] [bC] [aC],
[aO] [aC] [- bC], [aO] [- bC] [aC],
[aO] [rC] [- throw] [bC],
[aO] [bC] [rC] [- throw],
[aO] [rC] [bC] [- throw],
[aO] [rC] [- bC] [- throw],
[aO] [- bC] [rC] [- throw],
[aO] [rC] [- throw] [- bC],
[aO] [bC] [- aC], [aO] [- aC] [bC],
[aO] [- aC] [- bC], [aO] [- bC] [- aC],
[aO] [bC] [- rC], [aO] [- rC] [bC],
[aO] [- rC] [- bC], [aO] [- bC] [- rC],
[aO] [rC] [throw] [bC],
[aO] [rC] [bC] [throw],
[aO] [bC] [rC] [throw],
[aO] [rC] [throw] [- bC],
[aO] [rC] [- bC] [throw],
[aO] [- bC] [rC] [throw]

Figure 68: Interpretation of a program

We start by giving the valuation functions for terms and predicates in a
given state. The valuation of terms returns the kind Int instead of the
sort. The reason is that a variable that is not yet defined in the current
state cannot be reduced. For predicates if one of the terms is not reduce-
able the valuation function should return false. However, for the less
than predicate returning false does not imply that the terms are greater
or equal. Thus we omit this case for this predicate, but leave it for the
equality.

The valuation function is extended to assignments. We use it as well
to evaluate a trace from a given state. In the previous sections we used
the closure of traces to denote the actually valid executions of a program
in a state. For our tool this notion is too general as there might be an infi-
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nite set of possible executions. However given a state and a trace the val-
uation is deterministic, i.e., there is only one possible result. If the trace is
not valid we return the special item nostate. This different valuation of
the closure restricts the expressiveness of the operators C and CW. While
in the original semantics the first state of the compensation can be any
state this has to be fixed in the tool, the last state of the forward trace is
the obvious choice here.

The module uses auxiliary functions for the formulas including pro-
grams in order to sift through the complete set of possible traces. For
example for the strong success operator S(α) we build the set of traces
for α and have to check for every trace if it is valid then there is no error.
At the end the module defines the validity of formulas as in the Defini-
tions 27 and 38.

In Figure 69 we present the application of the tool to the example of
Figure 67. We show a formula in the state where only one room is avail-
able. After every execution of the program, i.e., after both transactions
have been completed, we want to show that not both can have booked
the room. The corresponding formula is [HotelTransactions]¬(status1 =

confirmed) ∧ ¬(status2 = confirmed). The formula shows that after the
execution of the program the status of the two transactions cannot be
confirmed for both. Note that variables can only be integers, thus the sta-
tus of the booking can have values 0 for booked , 1 for confirmed and -1

for cancelled . The tool first builds the complete set of traces for the pro-
gram, then checks the formula after each valid execution. The result as
expected is true.

As we have seen in the first example we can simulate computations
using the tool. Moreover given a defined state we can verify proper-
ties for finite programs. Among these properties we can prove are the
success of a program or whether it has a correct compensation. This in-
formation can be used to validate and improve systems including long-
running transactions and compensations.
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reduce in EXAMPLE : rooms |-> 1 |-
[ {

act( def(rooms, add(rooms, -1)) def(status, 0)
def(price, 140) def(fee, 20),
le(rooms, 0) + eq(rooms, 0))

% act(def(rooms, add(rooms, 1)) def(price, fee)
def(fee, 0) , ff) ;

(act(def(status, 1), ff) % act(skip, ff)
O
act(def(status, -1), ff) % act(skip, ff) ;
act(skip, tt) % act(skip, ff))

}
|

{
act(def(rooms, add(rooms, -1)) def(status2, 0)

def(price2, 140) def(fee2, 20),
le(rooms, 0) + eq(rooms, 0))

% act(def(rooms, add(rooms, 1)) def(price2, fee2)
def(fee2, 0), ff) ;

(act(def(status2, 1), ff) % act(skip, ff)
O
act(def(status2, -1), ff) % act(skip, ff) ;
act(skip, tt) % act(skip, ff))

}
] - (eq(status, 1) & eq(status2, 1)) .

rewrites: 873171 in 672072792ms cpu (6800ms real)
(1 rewrites/second)
result Bool: true

Figure 69: Interpretation of a formula
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6.5 Including Interruption

As we pointed out in Chapter 3 it is important to include interruption
in concurrent compensable programs. However in our current setting
a program may execute several futile actions in case of an error as each
sibling in a parallel composition always completes its forward execution
before compensating. While this largely simplifies our interpretation and
the technical treatment, it is not very likely that it can be enforced in ac-
tual applications. We will show in this section how to extend our ap-
proach to deal with interruption for compensable programs.

Our first idea was to change the interleaving operator to interrupt
traces in case of an error. However it soon became evident that this is
not sufficient. While we can interrupt the forward flow by construction
there is no link to the compensation. Then, how can we know what has to
be compensated? Thus we need to establish an immediate link between
forward and backward flow.

We solve this problem in a way that is close to the approach pro-
posed in [LZ09], where the order of the backward flow is exactly the
reverted forward flow. The idea is to rely on a unique repository for the
installed compensations, so that the total order of installation is recorded.
We achieve this by changing the interpretation of compensable programs
from pairs of traces to traces of pairs. Elements in a pair can either be the
empty trace [[]] or a singleton [[`]]. We use π to denote a trace of pairs, λ for
a single pair, ε for a trace of length zero and pr l and prr for the left and
right projection. We will use the projection functions as well for whole
traces of pairs π to extract the forward or backward flow respectively, i.e.,
we apply the projection to each pair and build again a “classical” trace
from the result. Furthermore the function rprr will return a projection of
the backward flow in the reverse order. The error formula for a pair λ
returns the error formula for the first element, i.e., E(pr l(λ)). This can be
lifted to the whole trace. We combine traces of pairs similarly to the com-
bination of normal traces. The sequential composition checks whether
the first trace contains an error and depending on the result either ap-
pends the second trace or not.

157



ε [ ‖ff π2 , {π2}
ε [ ‖tt π2 , Pre({π2})
λ1π1 tt ‖tt λ2π2 , Pre(λ1π1 ‖ λ2π2)

λ1π1 ff ‖ff λ2π2 , {λ1π | π ∈ (π1 ff ‖E(λ1) λ2π2)}
∪ {λ2π | π ∈ (λ1π1 E(λ2) ‖ff π2)}

λ1π1 tt ‖ff λ2π2 , {λ1π | π ∈ (π1 tt ‖E(λ1) λ2π2)}
∪ {λ2π | π ∈ (λ1π1 tt ‖ff π2)}

Figure 70: Definition of interleaving with interrupt

Next we define the interleaving of traces of pairs including interrup-
tion. We introduce boolean subscripts for both arguments of the parallel
composition operator, where ff is used for a normal or aborting execu-
tion and tt for a process that can be interrupted. The new definition is
displayed in Figure 70. Let T be a set of traces. We define the set of
prefixes of T as Pre(T ) , {t | t t′ ∈ T}. Moreover we use ‖ without sub-
scripts for the interleaving as defined on page 136. Note that interleaving
is commutative.

We have two base cases where one branch is ε. In the first case the
remaining process was not interrupted, then the definition is equivalent
to the classical interleaving returning the trace itself. In the other case
the process received an interrupt, then we return the set of all prefixes
for the remaining trace. Next both processes were interrupted, i.e., both
subscripts are tt, but none finished executing yet. In this case we build
the set of traces using the classical interleaving ‖ without subscripts and
then build the closure over prefixes. That way we include the full trace as
well as any partial one. In the last two cases at least one process was not
interrupted, i.e., one subscript is ff. The definition is similar to the classi-
cal interleaving, though if there is an abort the corresponding subscript
of the other process is updated. We use the error formula of the current
step to inform the sibling branch (replacing the original subscript). Note
that once a branch received an interrupt, i.e., its subscript is tt, it remains
that way.

Now we can give the new definition for the interpretation of com-
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pensable programs:

Definition 39 (Interpretation of Compensable Programs with Interrupt).
We define the interpretation ρi of compensable programs with interrupt in the
following manner:

ρi(a÷ a) , {〈τ, τ〉 | τ ∈ ρ(a) ∧ τ ∈ ρ(a) ∧ ¬E(τ)} ∪
{〈τ, [[]]〉 | τ ∈ ρ(a) ∧ E(τ)}

ρi(δ + γ) , ρi(δ) ∪ ρi(γ)

ρi(δ ; γ) , {π1 ◦ π2 | π1 ∈ ρi(δ) ∧ π2 ∈ ρi(γ)}
ρi(δ ‖ γ) , {π | π1 ∈ ρi(δ) ∧ π2 ∈ ρi(γ) ∧ π ∈ π1 ff ‖ff π2}
ρi(δ

∗) , {〈[[]], [[]]〉} ∪ ρi(δ ; δ∗)

ρ({[δ]}) , {pr l(π) | π ∈ ρi(δ) ∧ ¬E(π)} ∪
{cl(pr l(π)) ◦ rprr(π) | π ∈ ρi(δ) ∧ E(π)}

As expected, the interpretation is very similar to Definition 33. Note
that for the parallel composition we start with the subscripts for both
siblings being false. For a transaction in case of an error we first build the
forward trace, clear the errors and then append the reverted backward
trace.

Example 22 (Travel Agency). In Figure 71 we present an extension of Ex-
ample 21 using the compensable program HotelBooking from Figure 66. Addi-
tionally to the booking of a hotel room the program now also books a flight at the
same time. We first show the interpretation ρi for each single process. In each
case there is one successful trace and two failing traces where either the book-
ing is cancelled or there are not enough resources (rooms or seats). Note that
this program is an example of apartness for a parallel composition. Figure 72
shows a subset of the interpretation of the concurrent program. The first part
shows any possible interleaving where both booking processes are successful. In
the next part the hotel booking fails while the flight booking succeeds. As the
interpretation shows the right sibling does not have to be fully executed but can
be interrupted at any time.

Now we can transfer some of the previous definitions to compensable
programs with interrupts. We introduce the set of closed traces for a
compensable program δ similarly to the definition without interrupt.

closure(δ) , {(τ, τ) | π ∈ ρi(δ) ∧ τ = pr l(π)∧
τ = rprr(π) ∧ closed(τ) ∧ closed(τ)}.
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Booking , HotelBooking ‖ FlightBooking

FlightBooking , bookFlight÷cancelFlight ;
(acceptBFlight÷skip +
cancelBFlight÷skip ; throw÷skip))

bF , seats, statusF , priceF , feeF := E(bF) , seats ≤ 0
seats − 1, booked , 210, 50

cF , seats, priceF , feeF := seats + 1, feeF , 0 E(cF) , false

aBF , statusF := confirmed E(aBF) , false

cBF , statusF := cancelled E(cBF) , false

ρi(bH÷cH ; (aB÷skip + cB÷skip ; throw÷skip)) =
(〈[[bH]], [[cH]]〉.〈[[aB]], [[skip]]〉)

∪ (〈[[bH]], [[cH]]〉.〈[[cB]], [[skip]]〉.〈[[−throw ]], [[]]〉)
∪ (〈[[−bH]], [[]]〉)

ρi(bF÷cF ; (aBF÷skip + cBF÷skip ; throw÷skip)) =
(〈[[bF]], [[cF]]〉.〈[[aBF]], [[skip]]〉)

∪ (〈[[bF]], [[cF]]〉.〈[[cBF]], [[skip]]〉.〈[[−throw ]], [[]]〉)
∪ (〈[[−bF]], [[]]〉)

Figure 71: Extended Booking example.

Definition 40 (Correct Compensable Program with Interrupt). Let X be
a set of integer variables. A compensable program δ has a correct compensation
over X if for all traces of pairs π ∈ ρi(δ), if τ = pr l(π) with closed(τ) and
τ = rprr(π) with closed(τ) then first(τ)\X last(τ) = last(τ)\Xfirst(τ).

By transferring the definition for correctness we can state as well a
new version of Theorem 12. Note that due to the different semantics
for compensable programs serializability is not needed to ensure correct-
ness.

Theorem 13. Let X be a set of integer variables and δ a compensable program
with interrupt where every compensation pair is correct overX , then δ is correct
over X .

Proof. See B.3.

Definition 38 for formula validity can be reused for compensable pro-
grams with interrupt due to the similar definition of the closure operator.
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ρi(bH÷cH ; (aB÷skip + cB÷skip ; throw÷skip)
‖
bF÷cF ; (aBF÷skip + cBF÷skip ; throw÷skip))

= (〈[[bH]], [[cH]]〉.〈[[aB]], [[skip]]〉.〈[[bF]], [[cF]]〉.〈[[aBF]], [[skip]]〉)
∪ (〈[[bH]], [[cH]]〉.〈[[bF]], [[cF]]〉.〈[[aB]], [[skip]]〉.〈[[aBF]], [[skip]]〉)
∪ (〈[[bH]], [[cH]]〉.〈[[bF]], [[cF]]〉.〈[[aBF]], [[skip]]〉).〈[[aB]], [[skip]]〉
∪ (〈[[bF]], [[cF]]〉.〈[[bH]], [[cH]]〉.〈[[aB]], [[skip]]〉.〈[[aBF]], [[skip]]〉)
∪ (〈[[bF]], [[cF]]〉.〈[[aBF]], [[skip]]〉.〈[[bH]], [[cH]]〉.〈[[aB]], [[skip]]〉)
∪ (〈[[bF]], [[cF]]〉.〈[[bH]], [[cH]]〉.〈[[aBF]], [[skip]]〉.〈[[aB]], [[skip]]〉)

∪ (〈[[bH]], [[cH]]〉.〈[[cB]], [[skip]]〉.〈[[−throw ]], [[]]〉.〈[[bF]], [[cF]]〉.〈[[aBF]], [[skip]]〉)
∪ (〈[[bH]], [[cH]]〉.〈[[cB]], [[skip]]〉.〈[[−throw ]], [[]]〉.〈[[bF]], [[cF]]〉)
∪ (〈[[bH]], [[cH]]〉.〈[[cB]], [[skip]]〉.〈[[−throw ]], [[]]〉)
∪ (〈[[bH]], [[cH]]〉.〈[[cB]], [[skip]]〉.〈[[bF]], [[cF]]〉.〈[[−throw ]], [[]]〉.〈[[aBF]], [[skip]]〉)
∪ (〈[[bH]], [[cH]]〉.〈[[cB]], [[skip]]〉.〈[[bF]], [[cF]]〉.〈[[aBF]], [[skip]]〉.〈[[−throw ]], [[]]〉)
∪ (〈[[bH]], [[cH]]〉.〈[[cB]], [[skip]]〉.〈[[bF]], [[cF]]〉.〈[[−throw ]], [[]]〉)
∪ (〈[[bH]], [[cH]]〉.〈[[bF]], [[cF]]〉.〈[[cB]], [[skip]]〉.〈[[−throw ]], [[]]〉.〈[[aBF]], [[skip]]〉)
∪ (〈[[bH]], [[cH]]〉.〈[[bF]], [[cF]]〉.〈[[cB]], [[skip]]〉.〈[[aBF]], [[skip]]〉.〈[[−throw ]], [[]]〉)
∪ (〈[[bH]], [[cH]]〉.〈[[bF]], [[cF]]〉.〈[[aBF]], [[skip]]〉.〈[[cB]], [[skip]]〉.〈[[−throw ]], [[]]〉)
∪ (〈[[bH]], [[cH]]〉.〈[[bF]], [[cF]]〉.〈[[cB]], [[skip]]〉.〈[[−throw ]], [[]]〉)
∪ (〈[[bF]], [[cF]]〉.〈[[bH]], [[cH]]〉.〈[[cB]], [[skip]]〉.〈[[−throw ]], [[]]〉.〈[[aBF]], [[skip]]〉)
∪ (〈[[bF]], [[cF]]〉.〈[[bH]], [[cH]]〉.〈[[cB]], [[skip]]〉.〈[[aBF]], [[skip]]〉.〈[[−throw ]], [[]]〉)
∪ (〈[[bF]], [[cF]]〉.〈[[bH]], [[cH]]〉.〈[[aBF]], [[skip]]〉.〈[[cB]], [[skip]]〉.〈[[−throw ]], [[]]〉)
∪ (〈[[bF]], [[cF]]〉.〈[[aBF]], [[skip]]〉.〈[[bH]], [[cH]]〉.〈[[cB]], [[skip]]〉.〈[[−throw ]], [[]]〉)
∪ (〈[[bF]], [[cF]]〉.〈[[bH]], [[cH]]〉.〈[[cB]], [[skip]]〉.〈[[−throw ]], [[]]〉)

∪ (〈[[−bH]], [[]]〉.〈[[bF]], [[cF]]〉.〈[[aBF]], [[skip]]〉)
∪ (〈[[−bH]], [[]]〉.〈[[bF]], [[cF]]〉)
∪ (〈[[−bH]], [[]]〉)
∪ (〈[[bF]], [[cF]]〉.〈[[−bH]], [[]]〉.〈[[aBF]], [[skip]]〉)
∪ (〈[[bF]], [[cF]]〉.〈[[−bH]], [[]]〉)
∪ (〈[[bF]], [[cF]]〉.〈[[aBF]], [[skip]]〉.〈[[−bH]], [[]]〉)
∪ . . .

Figure 72: Interpretation of Booking example
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Consider the compensable program Booking from Example 22, we want
to ensure that a hotel is only booked if also a flight was booked and vice
versa. This property can be defined with the following formula:

[{[Booking ]}]statusH = confirmed ↔ statusF = confirmed

Other valid formulas are:

C(Booking , {rooms, seats})
〈{[Booking ]}〉statusH = cancelled → priceF < 50

The first one states that the program Booking has a correct compensa-
tion regarding the variables rooms and seats . The second formula states
a property that can only be valid for compensable programs with inter-
rupt. It says that when the hotel was cancelled there are traces where we
do not have to pay the fee for cancelling the flight. That can only happen
if either there are no available seats or the execution of the flight booking
was interrupted.

6.6 Conclusion

In this chapter we presented a concurrent language including compen-
sations and long-running transactions and formalised its behaviour. We
introduced a dynamic logic for this language to reason about program
correctness regarding the special requirements of compensations. It al-
lows us to specify properties for verification. Moreover we state in the
main theorem under which conditions a compensable program always
restores a correct state.
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Chapter 7

Conclusion

In this thesis we presented new approaches to the formal specification
and analysis of long-running transactions. We centered our research
around four directions: Expressiveness, modularity, implementation and
verification. In the first part we focused on the first three items by look-
ing at workflow based calculi. In [BBF+05] four existing policies for han-
dling compensations in concurrent programs are described. As we ex-
plained in the thesis none of them is entirely satisfactory. We deduced
a new policy that improves existing ones by allowing the activation of
compensations autonomously from siblings but only after an actual error
occured. We introduced this policy both with and without interruption
and described it formally using three different but coherent semantics.

First we presented a denotational semantics that allowed us to com-
pare the new policy to existing ones. Figure 73 shows the relationship
between the different policies where we use double lines to mark those
proven in this thesis. The numbers along the arrows refer to the theorems
proving the inclusion.

Moreover we introduced two operational semantics. The first one
is based on an encoding into Petri nets that allows us to exploit their
well-developed theory. The other operational semantics is a small-step
semantics based on labelled transition systems. It can easily be extended
to include additional syntax and modified to represent other policies.
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Figure 73: Compensation policies (arrows stand for trace inclusion)

Policies 1 2 3 4 5 6

big-step X Naive Sagas X Revised Sagas

denotational X X cCSP X X X

Petri nets X X X X X X

small-step X X X X

Figure 74: Overview semantics and policies

An overview regarding the different policies and semantics is shown
in Figure 74. We mark with an X or the name of the existing calculus
which policy is represented in which semantics. The existing seman-
tics described in [BBF+05] are colored in black where the dashed frames
represent the correspondence of the respective two calculi. The remain-
ing marks show the achievements presented in the thesis. Note that the
frame around the semantics for the fifth policy reflects the correspon-
dence proven between the different semantics.

In the second part of the thesis we focused on verification, but with-
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out dismissing the other directions. We introduced a logical framework
to reason on long-running transactions. It is based on an extension of
dynamic logic to include concurrency and compensations. Within this
logic we are able to define a notion of correctness of a compensable pro-
gram given sufficient conditions. It is to our knowledge the first logic for
long-running transactions.

Throughout this thesis we used Maude to implement different tools.
They helped us in testing and improving the theory by solving larger
and more complex problems.

7.1 Novel research directions

The research carried out in this thesis provides a basis for new research
directions:

• We showed possible extensions of the core language of our calculus
for the small-step semantics. While it may be easy to include them
in the denotational semantics this seems more difficult in the Petri
net encoding. Because of the intricate mechanism to broadcast in-
terrupts it is rather complicated to extend the Petri nets. While it
is possible to include choice and failing compensations with sev-
eral additions, iteration requires a more sophisticated type of Petri
nets like Dynamic nets [AB09]. When unfolding the iteration we
have to keep track of the sequence of actions in order to activate
compensations in the right order. A possible solution could be to
dynamically add parts to the net.

• From the operational semantics using the Petri net encoding we
can derive an event structure semantics [NPW79]. We distinguish
the causality of events e � e′, i.e., one event e has to happen before
another event e′, and the conflict of events e 6= e′, i.e., an event e
cannot happen if already another event e′ happened. This can be
used together with partial order verification methods to address
the scalability of the analysis.
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• We presented different tools for each of the semantics. They pro-
vide a sort of library for implementing larger examples and case
studies. Moreover exploiting the LTL model checker of Maude can
contribute to a new link to verification

• Regarding the logic an interesting aspect would be the adaptation
of the interpretation of the underlying language to be closer to ac-
tual programming paradigms. That implies a better inclusion of
interruption, but also distribution. A possibility might be to to link
the logic to the denotational semantics. Regarding the discussion
in Section 6.3 it would be interesting to learn if anything can be
adopted from the areas of research regarding speculative execution
of (simple) multi-threaded programs and optimistic parallel simu-
lation. As another item, by developing suitable equivalences over
states it would be possible to reduce the complexity of the analysis,
and facilitate the development of automatic reasoning tools.
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Appendix A

Proof of Bisimilarity
Theorem 11

We state with a lemma a sort of well typed states in the labelled transition
system:

Lemma 3. Starting from a state �, P where P is built from the basic syntax
for processes (without runtime syntax) the following states are not reachable in
the smallstep-semantics (for any A,B, P1, P2):

�, A÷B
�, P1;P2

Moreover for any subterm of a reachable state of the following form

P1;P2 P1$C [C1;C2]

it holds that ¬dn(P1) and ¬dn(C1).

The lemma is shown by rule induction.
The above lemma implies the following:

Corollary 7. For any subterm P ′ of a reachable state σ, P it holds that dn(P ′)
implies P ′ ≡ [C] ∧ cmp(P ′) = C or P ′ ≡ [C1]σ|σ . . . σ|σ[Cn] ∧ cmp(P ′) =∏

0≤i≤n Ci.

Thus a process that is done is either equivalent to a compensation or
a parallel composition of compensations.
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nil@〈R,R〉 ∈WTC

disj (R1, R2)

A@〈R1, R2〉 ∈WTC

CT = C@〈R1, R3〉 ∈WTC DT = D@〈R3, R2〉 ∈WTC
tags(CT ) ∩ tags(DT ) = {R3}
(CT ;DT )@〈R1, R2〉 ∈WTC

CT ∈WTC DT ∈WTC disj (tags(CT ), tags(DT ),K)

(CT |DT )@K ∈WTC

Figure 75: Set of well-tagged compensations WTC

We state an additional theorem for compensations, the proof is simi-
lar to the one for Theorem 11 but much simpler and is thus omitted:

Theorem 14. Given the Petri Net NC generated by a compensation C with
external places R1, R2 the following holds:

R1 ≈ C@〈R1, R2〉

The proof is similar to the one for Theorem 11.
We remind that our intention is to prove that any computation in the

Petri net associated with a compensable process P from its initial mar-
king is weakly bisimilar to the state �, P in the LTS semantics. The
proof will be carried on by coinduction. First we need to fix some no-
tation. Without loss of generality we assume that all activities are dis-
tinct (we disregard throww); if necessary we introduce subscripts in or-
der to distinguish two otherwise identical actions. Remember that a Petri
Net is a triple (P, T, F ) with P a set of places, T a set of transitions, and
F ⊆ (P × T ) ∪ (T × P ) the flow relation. We will use •t for the preset of
transition t and t• for the postset.

We tag processes with a list of names. Basic activities and compensa-
tions are tagged with two names, while processes are tagged with six.
This list of names will correspond to the outer interface of the corre-
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disj (F1, F2, R1, R2, I1, I2)

(A@〈F1, F2〉 ÷B@〈R1, R2〉)@〈F1, F2, R1, R2, I1, I2〉 ∈WTP

PT = P@〈F1, F3, R3, R2, I1, I2〉 ∈WTP
QT = Q@〈F3, F2, R1, R3, I1, I2〉 ∈WTP
tags(PT ) ∩ tags(QT ) = {F3, R3, I1, I2}

(PT ;QT )@〈F1, F2, R1, R2, I1, I2〉 ∈WTP

PT ∈WTP QT ∈WTP disj (tags(PT ), tags(QT ), I)

(PT ‖ QT )@I ∈WTP

CT = C@〈R1, R2〉 ∈WTC tags(CT ) ∩ {F1, F2, I1, I2} = ∅

[CT ]@〈F1, F2, R1, R2, I1, I2〉 ∈WTP

PT = P@〈F1, F2, R1, R3, I1, I2〉 ∈WTP
CT = C@〈R3, R2〉 ∈WTC
tags(PT ) ∩ tags(CT ) = R3

(PT $CT )@〈F1, F2, R1, R2, I1, I2〉 ∈WTP

Figure 76: Set of well-tagged processes WTP

sponding Petri net. For basic activities and compensations the names
are in- and outgoing place. For a process there are two names for the for-
ward process, two for the reverse and two for handling and propagating
interrupts. We use variables I for tags for processes denoted P@I and
K for tags of length two. Abusing the notation, we write K and I for
denoting both the tag (i.e. a list) and the set of underlying names. The
set of tags for a tagged process is inductively defined as follows:

tags((A@K1 ÷B@K2)@I) = K1 ∪ K2 ∪ I
tags((PT ;QT )@I) = I ∪ tags(PT ) ∪ tags(QT )
tags((PT ‖ QT )@I) = I ∪ tags(PT ) ∪ tags(QT )
tags([CT ]@I) = I ∪ tags(CT )
tags((PT $CT )@I) = I ∪ tags(PT ) ∪ tags(CT )

Moreover we use a predicate disj defined on lists of names that is true if
all names are pairwise disjoint. With this we can define the sets of well-
tagged compensations (Figure 75) and processes (Figure 76). Note that
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(C-ACT-TAG)

Γ ` A@〈R1, R2〉
A−→ nil@〈R2, R2〉

(C-PAR-L-TAG)

Γ ` CT
λ−→ C ′T

Γ ` (CT |DT )@K λ−→ (C ′T |DT )@K
(C-SEQ1-TAG)

Γ ` CT
λ−→ C ′T ∧ ¬dn(C ′T ) ∧ (C ′T ;DT )@I ′ ∈WTC

Γ ` (CT ;DT )@I λ−→ (C ′T ;DT )@I ′
(C-SEQ2-TAG)

Γ ` CT
λ−→ C ′T ∧ dn(C ′T )

Γ ` (CT ;DT )@I λ−→ DT

Figure 77: Semantics for tagged compensations

for a compensation [C] in the corresponding outermost tag the first two
names might be equivalent.

In Figure 77 – 79 the rules of the semantics given in Sections 5.1
and 5.2 are extended to tagged processes. In general for a process PT =

P@〈F1, F2, R1, R2, I1, I2〉 that is moving forward the first element of the
tag changes, while moving backward the third changes. For parallel
composition this applies to the branches. In case of a fault the complete
tag may change though the names are a subset of the previous ones. We
can state the following two lemmas:

Lemma 4. For every transition Γ ` σ, PT
λ−→ σ′, QT it holds that if PT ∈

WTP then also QT ∈WTP.

The proof is by rule induction.

Lemma 5. For every transition Γ ` σ, PT
λ−→ σ′, QT it holds that tags(QT ) ⊆

tags(PT ).

The proof is by rule induction.
Note that the predicate dn can be easily extended to tagged processes,

however for cmp and the extract predicate names have to be adjusted,
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(S-ACT-TAG)

A 7→Γ �

Γ `
�, (AT ÷BT )@〈F1, F2, R1, R2, I1, I2〉

A−→
�, [BT ]@〈F2, F2, R1, R2, I1, I2〉

(F-ACT-TAG)

A 7→Γ �

Γ `
�, (AT ÷BT )@〈F1, F2, R1, R2, I1, I2〉

τ−→
�, [nil]@〈F1, F1, R2, R2, I1, I2〉

(SEQ-TAG)

Γ ` �, PT
λ−→ �, P ′T ∧ ¬dn(P ′T ) ∧ (P ′T ;QT )@I ′ ∈WTP

Γ ` �, (PT ;QT )@I λ−→ �, (P ′T ;QT )@I ′
(S-SEQ-TAG)

Γ ` �, PT
λ−→ �, P ′T ∧ dn(P ′T ) ∧ (QT $cmp(P ′T ))@I ′ ∈WTP

Γ ` �, (PT ;QT )@I λ−→ �, (QT $cmp(P ′T ))@I ′
(A-SEQ-TAG)

Γ ` �, PT
λ−→ �, P ′T

Γ ` �, (PT ;QT )@I λ−→ �, P ′T
(STEP-TAG)

Γ ` σ, PT
λ−→ σ2, P

′
T ∧ ¬dn(P ′T ) ∧ (P ′T $CT )@I ′ ∈WTP

Γ ` σ, (PT $CT )@I λ−→ σ2, (P
′
T $CT )@I ′

(AS-STEP1-TAG)

Γ ` σ, PT
λ−→ σ2, P

′
T ∧ dn(P ′T ) ∧ cm?(P ′T )∧

(cmp(P ′T );CT )@K ∈WTC ∧ (P ′T $CT )@I ′ ∈WTP

Γ ` σ, (PT $CT )@I λ−→ σ2, [(cmp(P ′T );CT )@K]@I ′
(AS-STEP2-TAG)

Γ ` σ, PT
λ−→ σ2, P

′
T ∧ dn(P ′T ) ∧ ¬cm?(P ′T )∧

(P ′T $CT )@I ′ ∈WTP

Γ ` σ, (PT $CT )@I λ−→ σ2, [CT ]@I ′

Figure 78: Semantics for tagged Sagas
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(COMP-TAG)

Γ ` CT
λ−→ C ′@〈R′1, R′2〉

Γ `
�, [CT ]@〈F1, F2, R1, R2, I1, I2〉

λ−→
�, [C ′@〈R′1, R′2〉]@〈F1, F2, R

′
1, R

′
2, I1, I2〉

(PAR-L-TAG)

Γ ` σ1, PT
λ−→ σ′1, P

′
T

Γ ` σ, PT σ1
|σ2
QT@I λ−→ σ u σ′1, P ′T σ′1 |σ2

QT@I
(INT-R-TAG)

QT  Q′T

Γ ` �, (PT σ|�QT )@I τ−→ �, (PT σ|�Q′T )@I
Figure 79: Semantics for tagged Sagas, continued

such that they are still well-defined. Exemplary we give the adaptation
for the extract predicate in Figure 80 (where I = 〈F1, F2, R1, R2, I1, I2〉
and I ′ = 〈F ′1, F ′2, R′1, R′2, I ′1, I ′2〉).

For every process PT ∈ WTP we can inductively define the corre-
sponding net. For a compensation pair (AT ÷ BT )@I this corresponds
to the net displayed in Figure 30 with 〈F1, F2, R1, R2, I1, I2〉 = I. Oth-
ers can be equally defined. For new names for places and transitions in
the generated net we use the subscript I of the tagged process (which is
unique for PT = P@I ∈WTP). Take a parallel composition (PT |QT )@I
with the corresponding net as in Figure 33. As for compensation pairs I
defines the interface F1, F2, R1, R2, I1, I2 of the net. The new place is de-
fined as MEXI and new transitions are defined like forkI , joinI . Note
that the names PF1, PF2, . . . are defined inductively by PT = P@I ′ and
QT = Q@I ′′.
Theorem 11. Let NP be the Petri net associated with the tagged com-
pensable process P@〈F1, F2, R1, R2, I1, I2〉. Then, F1 ≈ (�, P ).

Proof. The proof is by coinduction.
Certain transitions in the net for processes do not infer any actual

change in its executions w.r.t. weak bisimulation. In a way they could be
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(AT ÷BT )@I  [nil]@〈F2, F2, R2, R2, I1, I2〉 [CT ]@I  [CT ]@I
PT  P ′T ∧ ¬par(PT )

(PT ;QT )@I  P ′T

par(PT )

(PT ;QT )@I  PT

PT  P ′T ∧ ¬dn�(P ′T ) ∧ (P ′T $CT )@I ′ ∈WTP

(PT $CT )@I  (P ′T $CT )@I ′

PT  P ′@I ′ ∧ dn�(P ′@I ′) ∧ cm?(P ′@I ′)

(PT $C@〈R′2, R2〉)@I  ([cmp(P ′@I ′);C@〈R′2, R2〉])@〈F ′1, F ′2, R′1, R2, I
′
1, I
′
2〉

PT  P ′@I ′ ∧ dn�(P ′@I ′) ∧ ¬cm?(P ′@I ′)

(PT $C@〈R′2, R2〉)@I  [C@〈R′2, R2〉]@〈F ′1, F ′2, R′1, R2, I
′
1, I
′
2〉

PT  P ′T

PT |QT@I  P ′T�|�QT@I

QT  Q′T

PT |QT@I  PT�|�Q′T@I

Figure 80: Predicate P  P ′ for interrupting a tagged process

considered silent actions. These transitions are

Aux = {forkI , joinI , rforkI , rjoinI , ip1I , ip2I , gcI}

for any I. We will use a function that maps a marking to the set of
(weakly) equivalent markings:

M ↓ = {M ′ |M t−→M ′ ∧ t ∈ Aux}
∪ {M ′ |M ′ t−→M ∧ t ∈ {forkI , joinI , rforkI , rjoinI}}

We use a function MP to map a tagged process to a possible marking
in its defined net. The function depends on the current state, i.e., whether
the process can still commit or has already failed. Figures 81 – 83 show
how MP is defined.

We define a relation ≈NP
for any well-tagged process PT where NP

is the net generated by PT such that

≈NP
= {�, QT , MP�(QT )}
∪ {�, QT , MP�(QT )⊕ I2}
∪ {�, Q′T , MP�(Q′T )}
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MP(nil@〈R,R〉) = R
MP(A@〈R1, R2〉) = R1

MP((CT ;DT )@K) = MP(CT )
MP((CT |DT )@K) = MP(CT )⊕MP(DT )

Figure 81: Function MP for compensations

MP�((AT ÷BT )@〈F1, F2, R1, R2, I1, I2〉) = F1

MP�([CT ]@〈F1, F2, R1, R2, I1, I2〉) = F2

MP�((PT ;QT )@I) = MP�(PT )
MP�((PT $CT )@I) = MP�(PT )
MP�((PT |QT )@I) = MP�(PT )⊕MP�(QT )⊕MEX I

Figure 82: Function MP for compensable processes in a successful state

where �, QT and�, QT are any states reachable from �, PT andQ′T such
that �, QT reachable from �, PT and QT  Q′T . We have to show that
for a well-tagged process PT ∈WTP and NP the net generated from PT
the relation ≈NP

is a weak bisimulation.

1. �, (AT ÷BT )@〈F1, F2, R1, R2, I1, I2〉 ≈NP
F1

We consider two cases depending on whether AT succeeds or fails.
In the first case we can only apply rule S-ACT-TAG leading to the
state �, [BT ]@〈F2, F2, R1, R2, I1, I2〉 with label A. The net can also
do only one transition, according to its definition in Figure 30. Per-
forming transition A leads to F2. It is trivial to see that these are
again in the relation ≈NP

.

For the case where AT aborts in the smallstep semantics we can
only apply rule F-ACT-TAG. We reach�, [nil]@〈F1, F1, R2, R2, I1, I2〉.
The corresponding net is the one shown in Figure 31. Also here
there is only one possible transition namely from F1 to R2 ⊕ I2,
which is exactly the marking related to the final state. Note that
the transition K in the Petri Net is not observable, i.e., a τ as in the
smallstep-semantics.

2. �, (PT ;QT )@I ≈NP ;Q
MP�(PT )

Depending on the behaviour of PT there are three different cases.
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MP�([CT ]@〈F1, F2, R1, R2, I1, I2〉) = MP(CT )
MP�((PT $CT )@I) = MP�(PT )
MP�((PT�|�QT )@I) = MP�(PT )⊕MP�(QT )
MP�((PT�|�QT )@I) = MP�(PT )⊕MP�(QT )⊕ PI1
MP�((PT�|�QT )@I) = MP�(PT )⊕MP�(QT )⊕QI1
MP�((PT�|�QT )@I) = MP�(PT )⊕ PI1 ⊕MP�(QT )⊕QI1

if PT = P@I ′ ∧QT = Q@I ′′

Figure 83: Function MP for compensable processes in a failing state

SEQ-TAG By induction hypothesis �, PT ≈NP
MP�(PT ). Since

�, PT
λ−→ �, P ′T it must be the case that MP�(PT )

λ̂−→ M ′

and �, P ′T ≈NP
M ′ and therefore M ′ = MP�(P ′T ). Since

MP�(PT )
λ̂−→ MP�(P ′T ) we have that MP�(PT ;QT@I) =

MP�(PT )
λ̂−→ MP�(P ′T ) = MP�(P ′T ;QT@I ′) and

�, (P ′T ;QT )@I ′ ≈NP ;Q
MP�(P ′T ;QT@I ′)

A-SEQ-TAG By induction hypothesis �, PT ≈NP
MP�(PT ). Since

�, PT
λ−→ �, P ′T it must be the case that MP�(PT )

λ̂−→ M ′ and
�, P ′T ≈NP

M ′ and therefore M ′ = MP�(P ′T ) ⊕ I2. Since

MP�(PT )
λ̂−→MP�(P ′T )⊕I2 we have that MP�(PT ;QT@I) =

MP�(PT )
λ̂−→MP�(P ′T )⊕I2 and�, P ′T ≈NP ;Q

MP�(P ′T )⊕I2.

The most interesting one is PT finishing successfully. In the small-
step semantics this means applying S-SEQ-TAG. Applying the hy-

pothesis to P we know that �, PT ≈NP
MP�(PT ). Since �, PT

λ−→

�, P ′T it must be the case that MP�(PT )
λ̂−→M ′ and �, P ′T ≈NP

M ′

and therefore M ′ = MP�(P ′T ). Moreover by Corollary 7 we can
conclude that either P ′T ≡ [CT ]@I and cmp(P ′T ) = C or P ′ ≡
[C1T ]σ|σ . . . σ|σ[CnT ]@I and cmp(P ′) =

∏
0≤i≤n CiT (including the

tags). Then for MP�(PT ;QT@I) = MP�(PT )
λ̂−→ MP�(P ′T )

τ∗−→
MP�(QT ) = MP�((QT $(cmp(P ′T )))@I ′) and
�, (QT $(cmp(P ′T )))@I ′ ≈NP ;Q

MP�((QT $(cmp(P ′T )))@I ′).

Note that for sequential composition P ;Q (as well as for compen-
sation pairs) a state �, P ;Q is not considered as such a state cannot
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be reached according to Lemma 3.

3. �, (PT $CT )@I ≈NP$C
MP�(PT ) (this means σ = � with reference

to rules STEP, AS-STEP1, AS-STEP2)

STEP-TAG like SEQ-TAG for σ2 = � and like A-SEQ-TAG for σ2 = �

AS-STEP1-TAG From Corollary 7 it follows that dn(P ′T ) → P ′T ≡
[C ′T ]@I ∨ P ′ ≡ [C1T ]σ|σ . . . σ|σ[CnT ]@I
For σ2 = �: Since K and I ′ are determined by P ′T , we can

conclude MP�(PT $CT@I) = MP�(PT )
λ̂−→ MP�(P ′T ) =

MP�([(cmp(P ′T );CT )@K]@I ′) and

�, [(cmp(P ′T );CT )@K]@I ′ ≈NP$C

MP�([(cmp(P ′T );CT )@K]@I ′)

. In the case where P ′T is a parallel composition additional τ
steps are necessary for transition join.
For σ2 = � similar, In the case where P ′T is a parallel compo-
sition additional τ steps are necessary for transition gc. Note
that done(P ′T ) implies that any branch was either interrupted
or aborted. (In fact this should not be possible, only if σ = �.)

AS-STEP2-TAG for σ2 = � like AS-STEP1-TAG

For σ2 = � the predicate dn(cmp(P ′T )) implies cmp(P ′T ) =
nil@〈R,R〉 or some parallel composition of this.

4. �, (PT $CT )@I ≈NP$C
MP�(PT ) (this means σ = σ2 = � with ref-

erence to rules STEP, AS-STEP1, AS-STEP2) Cases similar to commit
case.

5. �, [CT ]@〈F1, F2, R1, R2, I1, I2〉 ≈N[C]
MP(CT )⊕ I2

As a consequence of Theorem 14.

In the commit case both net and smallstep semantics cannot move.

6. �, (PT�|�QT )@I ≈NP |Q MP�(PT )⊕MP�(QT )⊕MEXI

Considering PAR-L-TAG the assumption implies that σ1 = σ2 = �.
By induction hypothesis �, PT ≈NP

MP�(PT ). In the first case

�, PT
λ−→ �, P ′T , then it must be the case that MP�(PT )

λ̂−→M ′ and

�, P ′T ≈NP
M ′ and therefore M ′ = MP�(P ′T ). Since MP�(PT )

λ̂−→
MP�(P ′T ) we have MP�(PT�|�QT@I) = MP�(PT )⊕MP�(QT )⊕
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MEXI
λ̂−→MP�(P ′T )⊕MP�(QT )⊕MEXI = MP�(P ′T�|�QT@I)

and �, (P ′T�|�QT )@I ≈NP |Q MP�(P ′T�|�QT@I)

In the second case �, PT
λ−→ �, P ′T , then it must be the case that

MP�(PT )
λ̂−→M ′ and�, P ′T ≈NP

M ′ and thereforeM ′ = MP�(P ′T )⊕

PI2. Since MP�(PT )
λ̂−→MP�(P ′T )⊕ PI2 we have that

MP�(PT�|�QT@I) = MP�(PT )⊕MP�(QT )⊕MEXI
λ̂−→MP�(P ′T )⊕ PI2 ⊕MP�(QT )⊕MEXI
τ−→MP�(P ′T )⊕MP�(QT )⊕QI1 ⊕ I2
= MP�(P ′T�|�QT@I)⊕ I2

and
�, (P ′T�|�QT )@I ≈NP |Q MP�(P ′T�|�QT@I)⊕ I2
The symmetric case where Q moves (PAR-R-TAG) is analogous.

7. �, (PT�|�QT )@I ≈NP |Q MP�(PT )⊕MP�(QT )⊕ I2
Considering PAR-L-TAG the assumption implies that σ1 = σ2 = �.

By induction hypothesis �, PT
λ−→ �, P ′T , then it must be the case

that MP�(PT ) ⊕ PI2
λ̂−→ M ′ and �, P ′T ≈NP

M ′ and therefore

M ′ = MP�(P ′T ) ⊕ PI2. Since MP�(PT )
λ̂−→ MP�(P ′T ) we have

that

MP�(PT�|�QT@I) = MP�(PT )⊕MP�(QT )⊕ I2
λ̂−→MP�(P ′T )⊕MP�(QT )⊕ I2
= MP�(P ′T�|�QT@I)⊕ I2

and
�, (P ′T�|�QT )@I ≈NP |Q MP�(P ′T�|�QT@I)⊕ I2

8. �, (PT�|�QT )@I ≈NP |Q MP�(PT )⊕MP�(QT )⊕QI1 ⊕ I2
For PAR-L-TAG similar to previous case, PAR-R-TAG similar to case
6.

INT-TAG: By the induction hypothesis �, QT ≈NQ
MP�(QT ) and

�, Q′T ≈NQ
MP�(Q′T ) for any QT  Q′T . We have to show by in-

duction overQT that MP�(QT )⊕QI1
τ∗−→MP�(Q′T ), considering

the different cases for the ”extract” predicate. Most cases can be
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solved quite trivially by either taking transitions x1 or x2 included
in every net or by applying the induction hypothesis. The most in-
teresting case is where QT = Q1T ;Q2T and Q1T = PPT |QQT is a
parallel composition. Note that asQT is in a commit state also each
branch in Q1T is in a commit state. Thus

MP�(QT )⊕QI1 = MP�(PPT )⊕MP�(QQT )⊕MEX I ⊕QI1
iin−→MP�(PPT )⊕MP�(QQT )⊕ PPI1 ⊕QQI1
= MP�(PPT�|�QQT ) = MP�(Q1T )

taking the transition iin in the net. In the case where QT is a parallel
composition the net first fires transition iin and then we can apply
the induction hypothesis.

Now since MP�(QT )⊕QI1
τ∗−→MP�(Q′T ) then

�, (PT�|�QT )@I ≈NP |Q MP�(PT )⊕MP�(QT )⊕QI1 ⊕ I2
τ∗−→MP�(PT )⊕MP�(Q′T )⊕ I2
= MP�(PT�|�Q′T )⊕ I2 ≈NP |Q �, (PT�|�Q′T )@I

9. �, (PT�|�QT )@I ≈NP |Q MP�((PT�|�QT )@I)

For PAR-R-TAG/PAR-L-TAG similar to case 6, for INT-R-TAG/INT-L-
TAG proceed as in the previous case.
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Appendix B

Proofs for Chapter 6

B.1 Proof of Theorem 12

In the following we let null denote the null distance (over any X), i.e.,
null(x) , 0 for any x ∈ X . We will use the operation ⊕ to denote the
union of two distances between states (over the same X), formally de-
fined as:

(d1 ⊕ d2)(x) , d1(x) + d2(x)

Then we can state the following lemma

Lemma 6. Let s, s′, s′′ ∈ State(V ). The following equality holds:

s\Xs′ ⊕ s′\Xs′′ = s\Xs′′

Proof. Trivially, for any x ∈ X :

(s\Xs′ ⊕ s′\Xs′′)(x) = (s\Xs′)(x) + (s′\Xs′′)(x)

= s′(x)− s(x) + s′′(x)− s′(x)

= s′′(x)− s(x) = (s\Xs′′)(x)

Theorem 15 (from page 150). Let X be a set of integer variables and δ a
serializable compensable program where every compensation pair is correct over
X , then δ is correct over X .
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Proof. We proceed by induction on the structure of δ.

1. δ = a÷ a.
For any (τ, τ) ∈ ρc(a÷ a) with ¬E(τ) we conclude by applying the
hypothesis that the compensation pair a ÷ a is correct over X . For
any failed trace (τ, τ) ∈ ρc(a÷ a) with E(τ), we have that τ = s a s
for some state s such that s |= E(a). Furthermore, the compensa-
tion trace for a failed basic activity is empty. It is easy to see that
first(τ)\X last(τ) = null , which concludes the proof for this case.

2. δ = δ1 + δ2.
Follows trivially by applying the induction hypothesis on δ1 and
δ2.

3. δ = δ1 ; δ2.
We need to distinguish two cases, according to the definition of
ρc(δ1 ; δ2).

• For any pair (τ ◦ ν, ν ◦ τ) ∈ ρc(δ1 ; δ2) such that (τ, τ) ∈ ρc(δ1),
(ν, ν) ∈ ρc(δ2), and¬E(τ), then we want to prove that if closed(τ◦
ν) and closed(ν ◦ τ) then first(τ ◦ ν)\X last(τ ◦ ν) = last(ν ◦
τ)\Xfirst(ν ◦ τ).
As we consider closed traces we can conclude that also closed(τ)
and closed(ν) hold with last(τ) = first(ν) and the same holds
for the compensation. Thus we can apply the induction hy-
pothesis getting first(τ)\X last(τ) = last(τ)\Xfirst(τ) and
first(ν)\X last(ν) = last(ν)\Xfirst(ν). We build the union of
these two sets, i.e.,
first(τ)\X last(τ)⊕first(ν)\X last(ν) = last(ν)\Xfirst(ν)⊕last(τ)\Xfirst(τ).

As last(τ) = first(ν) and last(ν) = first(τ) we can conclude
by Lemma 6 that first(τ)\X last(ν) = last(τ)\Xfirst(ν) which
is equivalent to first(τ ◦ν)\X last(τ ◦ν) = last(ν ◦ τ)\Xfirst(ν ◦
τ).

• For any (τ, τ) ∈ ρc(δ1 ; δ2) such that (τ, τ) ∈ ρ(δ1) and E(τ),
then the result follows immediately from the induction hy-
pothesis on δ1.

4. δ = δ1 ‖ δ2 (with δ1, δ2 serializable)1

For any (τ, τ) ∈ ρc(δ1 ‖ δ2) with (ν, ν) ∈ ρc(δ1), (µ, µ) ∈ ρc(δ2)

1Note that for simplicity we give the proof for the binary parallel composition, but the
more general case of n-ary parallel composition of a serializable set of processes is along
the same line.
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τ ∈ ν ‖ µ, τ ∈ ν ‖ µ, we need to show that if closed(τ) and closed(τ)
then first(τ)\X last(τ) = last(τ)\Xfirst(τ).

Note that in general neither closed(ν) and closed(ν) nor closed(µ)
and closed(µ) hold, because the interleavings ν and ν are defined
independently of this.

According to serializability there exist traces (ν′, ν′) ∈ ρc(δ1) and
(µ′, µ′) ∈ ρc(δ2) with several different possibilities for a sequential
representation (though at least one holds). Without loss of general-
ity we assume that τ ./ (ν′µ′) and τ ./ (µ′ ν′). (The other represen-
tations can be treated similarly.)

From closed(ν′ µ′) we know that closed(ν′), closed(µ′) and last(ν′) =
first(µ′). The same holds for closed(µ′ ν′). Thus we can apply the
induction hypothesis. We obtain first(ν′)\X last(ν′) = last(ν′)\Xfirst(ν′)
and first(µ′)\X last(µ′) = last(µ′)\Xfirst(µ′). As for the sequen-
tial case we build the union of the two sets first(ν′)\X last(ν′) ⊕
first(µ′)\X last(µ′) = last(µ′)\Xfirst(µ′)⊕ last(ν′)\Xfirst(ν′). From
the previous equivalences and Lemma 6 we obtain first(ν′)\X last(µ′) =
last(µ′)\Xfirst(ν′) which is equivalent to first(ν′ µ′)\X last(ν′ µ′) =
last(µ′ ν′)\Xfirst(µ′ ν′). From the equivalences for serializability
we can conclude first(τ)\X last(τ) = last(τ)\Xfirst(τ).

5. δ = δ∗1
By the induction hypothesis we know that the theorem holds for
δ1, we have to show that it holds also for any (τ, τ) ∈ ρc(δ) in the
iteration. We do this by induction on the depth of recursion.

In the base case for ([[]], [[]]) ∈ ρc(δ) obviously the theorem holds.

In the induction step we must show first(τ)\X last(τ) = last(τ)\Xfirst(τ)
for (τ, τ) ∈ ρc(δ1; δ∗1). We can apply the induction hypothesis of the
theorem to δ1 and the induction hypothesis over the number of it-
erations to δ∗1 . Then the proof is similar to the case of sequential
composition.
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B.2 Proof of Propositions 5 and 6

Proposition 5 (from page 129). The following are valid formulas of first order
dynamic logic (see also [Har79]).

〈α〉(ϕ ∨ ψ) ↔ 〈α〉ϕ ∨ 〈α〉ψ [α](ϕ ∧ ψ) ↔ [α]ϕ ∧ [α]ψ

〈α〉ϕ ∧ 〈α〉ψ → 〈α〉(ϕ ∧ ψ) [α](ϕ→ ψ) → ([α]ϕ→ [α]ψ)

〈α〉(ϕ ∧ ψ) → 〈α〉ϕ ∧ 〈α〉ψ [α]ϕ ∨ [α]ψ → [α](ϕ ∨ ψ)

〈α + β〉ϕ ↔ 〈α〉ϕ ∨ 〈β〉ϕ [α + β]ϕ ↔ [α]ϕ ∧ [β]ϕ

〈α∗〉ϕ ↔ ϕ ∨ 〈α ;α∗〉ϕ [α∗]ϕ ↔ ϕ ∧ [α ;α∗]ϕ

〈ϕ?〉ψ ↔ ϕ ∧ ψ [ϕ?]ψ ↔ ϕ→ ψ

〈α ;β〉ϕ 6� 〈α〉〈β〉ϕ [α ;β]ϕ 6� [α][β]ϕ

Proof. The formulas for program possibility and necessity involving choice,
iteration and test operators are valid, since the interpretation of these op-
erators follows closely the standard interpretation of first order dynamic
logic.

In the following we present counter examples for the formulas for
sequential composition that do not hold with the new interpretation.

1. 〈α ;β〉ϕ 6→ 〈α〉〈β〉ϕ
Take programs:

• α such that for every state s we have s |= F (α) and s |= 〈α〉ϕ,

• β such that for every state s′we have s′ 6|= 〈β〉ϕ and last(ρ(α)) ⊆
first(ρ(β)).

Because every trace of α fails, we have that ρ(α ;β) = ρ(α). Take
a state s. Since s |= 〈α〉ϕ we can conclude that s |= 〈α ;β〉ϕ. From
construction of program β we have that every trace of α can be
composed with a trace of β. Since for every state s′ we have that
s′ 6|= 〈β〉ϕ, we can conclude that s 6|= 〈α〉〈β〉ϕ.

2. 〈α〉〈β〉ϕ 6→ 〈α ;β〉ϕ
Take a program:

• α such that for every state s we have s |= F (α) and s 6|= 〈α〉ϕ,

• β such that for every state s′we have s′ |= 〈β〉ϕ and last(ρ(α)) ⊆
first(ρ(β)).
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Take a state s. We know that s |= 〈α〉〈β〉ϕ. Because α always fails,
we know that ρ(α ;β) = ρ(α). Since s 6|= 〈α〉ϕ, we can conclude
that s 6|= 〈α ;β〉ϕ.

3. [α ;β]ϕ 6→ [α][β]ϕ

Take programs:

• α such that for every state s we have s |= F (α) and s |= [α]ϕ,

• β such that for every state s′we have s′ |= [β]¬ϕ and last(ρ(α)) ⊆
first(ρ(β)).

Because every trace of α fails, we have that ρ(α ;β) = ρ(α). Take
a state s. Since s |= [α]ϕ we can conclude that s |= [α ;β]ϕ. From
construction of program β we have that every trace of α can be
composed with a trace of β. Since s′ |= [β]¬ϕ for all s′, we can
conclude that s |= [α][β]¬ϕ.

4. [α][β]ϕ 6→ [α ;β]ϕ.

A counter example can be defined as in the previous cases.

Proposition 6 (from page 142). Let α, β be two serializable programs. The
following are valid formulas in the presented dynamic logic:

〈α ‖ β〉ϕ ↔ 〈α〉〈β〉ϕ ∨ 〈β〉〈α〉ϕ [α ‖ β]ϕ ↔ [α][β]ϕ ∧ [β][α]ϕ

S(α + β) ↔ S(α) ∧ S(β) S(α∗) ↔ true ∧ S(α;α∗)
S(α ‖ β) → S(α ;β) ∧ S(β ;α)

SW(α + β) ↔ SW(α) ∨ SW(β) SW(α∗) ↔ true ∨ SW(α;α∗)
SW(α ‖ β) → SW(α ;β) ∨ SW(β ;α) SW(α ‖ β) → SW(α) ∧ SW(β)

Proof.

1. (a) 〈α ‖ β〉ϕ → 〈α〉〈β〉ϕ ∨ 〈β〉〈α〉ϕ
From the hypothesis we know that it exists a trace τ ∈ closure(α ‖
β) such that last(τ) |= ϕ. Because α and β are serializable pro-
grams, there exists traces ν ∈ ρ(α) and µ ∈ ρ(β) such that
τ ./ νµ or τ ./ µν. Assuming that τ ./ νµ, then last(νµ) |= ϕ.
So, it can be concluded that 〈α〉〈β〉ϕ.
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(b) 〈α〉〈β〉ϕ ∨ 〈β〉〈α〉ϕ → 〈α ‖ β〉ϕ
Follows immediately from the hypothesis and interpretation
of parallel composition.

2. (a) [α ‖ β]ϕ → [α][β]ϕ ∧ [β][α]ϕ

Similar to the proof of the case 1a.

(b) [α][β]ϕ ∧ [β][α]ϕ → [α ‖ β]ϕ

We want to prove that for every trace τ ∈ closure(α ‖ β)
is such that last(τ) |= ϕ. Because α and β are serializable
programs, there exists traces ν ∈ ρ(α) and µ ∈ ρ(β) such
that τ ./ νµ or τ ./ µν. From the hypothesis we know that
last(νµ) |= ϕ or last(µν) |= ϕ. Therefore, we can conclude
that last(τ) |= ϕ.

3. S(α + β) ↔ S(α) ∧ S(β)
Follows immediately from the interpretation of choice.

4. S(α∗) ↔ true ∧ S(α;α∗)

5. S(α ‖ β) → S(α ;β) ∧ S(β ;α)

Follows immediately from the hypothesis and interpretation of par-
allel composition.

6. SW(α + β) ↔ SW(α) ∨ SW(β)

Follows immediately from the interpretation of choice.

7. SW(α∗) ↔ true ∨ SW(α;α∗)

8. SW(α ‖ β) → SW(α ;β) ∨ SW(β ;α)

From the hypotheses we have that it exists a trace τ ∈ closure(α ‖
β) such that ¬E(τ). Because α and β are serializable, there must
exist traces ν ∈ ρ(α) and µ ∈ ρ(β) such that either τ ./ νµ or
τ ./ µν. Therefore, ¬E(νµ) or ¬E(µν). So we can conclude that
SW(α ;β) or SW(β ;α).

9. SW(α ‖ β) → SW(α) ∧ SW(β)

It follows immediately from formulas SW(α ‖ β) → SW(α ;β) ∧
SW(β ;α) and SW(α ;β) → SW(α) ∧ SW(β).
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Proposition 7. Let α, β be two strong serializable programs. The following are
valid formulas in the presented dynamic logic:

S(α ‖ β) ↔ S(α) ∧ S(β) F(α ‖ β) ↔ F(α) ∨ F(β)

Proof. For α, β strong serializable programs we need to prove that S(α)∧
S(β) → S(α ‖ β). The implication on the other direction follows from
the interpretation of parallel composition.

Lets assume that S(α) and S(β), and it exists a trace τ ∈ closure(α ‖ β)
such that E(τ). Because α and β are serializable, there must exist traces
ν ∈ ρ(α) and µ ∈ ρ(β) such that either τ ./ νµ or τ ./ µν. Then we can
conclude that either E(νµ) or E(µν). Therefore, an error was raised in ν,
µ, or both. either E(ν) or E(µ). Which contradicts our hypothesis that
S(α) and S(β).

B.3 Proof of Theorem 13

We start by giving a stronger version of correctness and prove the the-
orem with strong correctness. We then state a lemma that implies the
original Theorem 13.

Definition 41 (Strong Correctness). Let X be a set of integer variables. A
compensable program δ has a strong correct compensation overX if for all traces
of pairs π ∈ ρi(δ) with π = λ1λ2 . . . λn then then for all λi = 〈τi, τi〉, i ∈
{1, . . . , n} it holds that first(τi)\X last(τi) = last(τi)\Xfirst(τi).

The new definition states that every pair in a trace has to be correct,
then the program has a strong correct compensation. Note that we do
not require closure. Now we restate the theorem.

Theorem 16. Let X be a set of integer variables and δ a compensable program
with interrupt where every compensation pair is correct overX , then δ is strong
correct over X .

Proof. By structural induction over compensable program δ.

1. δ = a÷ a
This part of the proof is equivalent to the one of Theorem 12 (as
compensation pairs are interpreted by single pairs).
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2. δ = δ1 + δ2

Follows trivially by applying the induction hypothesis to δ1 and δ2.

3. δ = δ1 ; δ2

We show that for any trace π1 ◦ π2 ∈ δ with π1 ∈ δ1 and π2 ∈ δ2 the
theorem holds. The composition operator ◦ is defined depending
on E(π1). If the error formula is false the two traces are combined.
By applying the induction hypothesis we know that π1 and π2 con-
sist only of correct pairs, thus their combination also consists of
only correct pairs. If the error formula is true only π1 is returned.
Using the induction hypothesis this case is trivially true.

4. δ = δ1 ‖ δ2
Let π1 ∈ ρi(δ1) and π2 ∈ ρi(δ2). We want to show for every case
of the interleaving of the two traces that the resulting trace consists
only of correct pairs using the induction hypothesis for both π1 and
π2.

Note that for any case of the interleaving only pairs of π1 and π2

are reused, no new pairs are introduced. As π1 and π2 contain only
correct pairs also any combination consists only of correct pairs (in-
cluding prefixes). This inference will lead to the theorem.

5. δ = δ∗1

By the induction hypothesis we know that the theorem holds for δ1,
we have to show that it holds also for any π ∈ ρi(δ) in the iteration.
We do this by induction on the depth of recursion.

In the base case for 〈[[]], [[]]〉 ∈ ρi(δ) obviously the theorem holds.

In the induction step we have to show that each pair is correct in
the trace of pairs π ∈ ρi(δ1; δ∗1). We can apply the induction hy-
pothesis of the theorem to δ1 and the induction hypothesis over the
number of iterations to δ∗1 . Then the proof is similar to sequential
composition.

Now we state a lemma that will lead to our final result:
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Lemma 7. Let π = λ1 . . . λn be a trace of pairs. If for each λi = 〈τi, τi〉,
i ∈ {1, . . . , n}, it holds that first(τi)\X last(τi) = last(τi)\Xfirst(τi) then for
µ = prl(π) with closed(µ) and ν = rprr (π) with closed(ν) it holds that

first(µ)\X last(µ) = last(ν)\Xfirst(ν).

Proof. By induction on the length of π. In the base case, the empty trace,
the lemma is trivially true.

For the induction step let π = π′λ with λ = 〈τ, τ〉 such that

first(τ)\X last(τ) = last(τ)\Xfirst(τ).

Moreover from the induction hypothesis we know that there are µ =
prl(π

′) with closed(µ) and ν = rprr (π′) with closed(ν) such that
first(µ)\X last(µ) = last(ν)\Xfirst(ν).

We build the union of the two distances for the forward and back-
ward flow, i.e., we compute separately the two distance first(τ)\X last(τ)⊕
first(µ)\X last(µ) and last(ν)\Xfirst(ν) ⊕ last(τ)\Xfirst(τ). From the as-
sumption that closed(µτ) and closed(τν) as prl(π) = µτ and rprr (π) = τν
we know that last(µ) = first(τ) and last(τ) = first(ν). Using Lemma 6
we can conclude that first(τ)\X last(µ) = last(ν)\Xfirst(τ). This proves
the lemma.

Theorem 17 (from page 160). Let X be a set of integer variables and δ a
compensable program with interrupt where every compensation pair is correct
over X , then δ is correct over X .

Proof. From Theorem 16 we know that a compensable program δ is strong
correct over X if every compensation pair is correct over X . Thus ev-
ery trace in ρi(δ) is of the form π = λ1 . . . λn where for all λi = 〈τi, τi〉,
i ∈ {1, . . . , n} it holds that first(τi)\X last(τi) = last(τi)\Xfirst(τi). Ap-
plying Lemma7 we get that for µ = prl(π) with closed(µ) and ν = rprr (π)
with closed(ν) it holds that first(µ)\X last(µ) = last(ν)\Xfirst(ν) which
proves the theorem.
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[Mes12] José Meseguer. Twenty years of rewriting logic. The Journal of Logic
and Algebraic Programming, 81(7-8):721–781, 2012.

[Mey88] John-Jules Ch. Meyer. A different approach to deontic logic: Deon-
tic logic viewed as a variant of dynamic logic. Notre Dame Journal of
Formal Logic, 29(1):109–136, 1988.

194

http://maude.cs.uiuc.edu/
http://maude.cs.uiuc.edu/maude1/manual/
http://maude.cs.uiuc.edu/maude1/manual/


[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil99] Robin Milner. Communicating and mobile systems: the π-calculus.
Cambridge University Press, 1999.

[ML06] Manuel Mazzara and Ivan Lanese. Towards a Unifying Theory for
Web Services Composition. In WS-FM, pages 257–272, 2006.
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[USH95] Augustus K. Uht, Vijay Sindagi, and Kelley Hall. Disjoint eager
execution: An optimal form of speculative execution. In Proceedings
of the 28th annual international symposium on Microarchitecture, pages
313–325, 1995.

[VCS08] Hugo Torres Vieira, Luı́s Caires, and João Costa Seco. The Con-
versation Calculus: A Model of Service-Oriented Computation. In
ESOP, pages 269–283, 2008.

[vdM96] Ron van der Meyden. The Dynamic Logic of Permission. Journal of
Logic and Computation, 6(3):465–479, 1996.

[VF09] Cátia Vaz and Carla Ferreira. Towards Compensation Correctness
in Interactive Systems. In WS-FM, pages 161–177, 2009.

[VF12] Cátia Vaz and Carla Ferreira. On the analysis of compensation cor-
rectness. The Journal of Logic and Algebraic Programming, 81(5):585–
605, 2012.

[VFR08] Cátia Vaz, Carla Ferreira, and António Ravara. Dynamic Recover-
ing of Long Running Transactions. In TGC, pages 201–215, 2008.

[VMO06] Alberto Verdejo and Narciso Martı́-Oliet. Executable structural op-
erational semantics in Maude. The Journal of Logic and Algebraic Pro-
gramming, 67(1-2):226–293, 2006.

[VW51] Georg Henrik Von Wright. Deontic logic. Mind, 60(237):1–15, 1951.

[WEMM12] Martin Wirsing, Jonas Eckhardt, Tobias Mühlbauer, and José
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