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Abstract

In recent years, we have witnessed an increasing use of trust
and reputation systems in different areas of ICT. The idea at
the base of trust and reputation systems is of letting users to
rate the provided services after each interaction. Other users
may use aggregate ratings to compute reputation scores for
a given party. The computed reputation scores are a collec-
tive measure of parties trustworthiness and are used to drive
parties interactions.

Due to the widespread use of reputation systems, research
work on them is intensifying and several models have been
proposed. This calls for a methodology for the analysis and
the evaluation of trust and reputation systems that can help
researcher and developers in studying, designing and imple-
menting such systems. In this thesis we propose different
kinds of theoretical results and software tools that could be
useful means for researchers and developers in area of trust
and reputation systems.

Our work addresses the three main stages of trust and repu-
tation systems development, namely study, design and im-
plementation. We provide: 1) a general framework based
on Bayesian decision theory for the assessment of trust and
reputation models, 2) an analysis methodology for reputation
systems based on a coordination language, 3) a software tool
for network-aware evaluation of reputation systems and their
rapid prototyping.
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Chapter 1

Introduction

The concept of trust is an integrative component of human society. In
our daily activities we establish trust-based interactions with others in
several contexts. As an example of these interactions we take here the
sale of goods. Both in the case of real or virtual markets, in sales we have
two parties, the seller and the buyer, each one with different goals. The
seller has to trust the buyer, which means that the buyer will pay, that
the payment method will be valid, etc. The buyer has to trust the seller,
which means that the seller will send the goods by the time stated, that
the quality of the goods will be the one stated, etc. Living in a social
world, becoming smaller due to networking technologies, interactions
are unavoidable, in everyday lives we are constantly interacting with
something or someone. In such interactions we always deal with the
issue of how to evaluate others’ trustworthiness.

In this thesis our aim is more specific, we are interested in trust
interactions taking place among parties in distributed systems. Such
parties can be human beings using devices or just devices communi-
cating and executing code. In computer science, there are many def-
initions and models for trust management (see, e.g., those reported
in [BFIK99; ZM00; JIB07; SS05]). Such issue is usually tackled in the field
of computer security and, on the basis of the mechanism used for trust
management, we talk of hard or soft security mechanisms [RJ96].
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Trust and reputation systems are a specific approach to trust man-
agement. Such systems are used as decision support tools for different
applications in several contexts. In recent years, we have seen an increas-
ing use of them in different areas of ICT, from e-commerce to different
forms of open computer networking. This phenomenon is likely to con-
tinue, due to the success of networked applications (like social networks
or other Web 2.0 technologies) and to the need, in such environments, of
instruments to build up relationships of trust among interacting parties.

Probably, the best known applications making use of trust and repu-
tation systems are those related to e-commerce: well-known examples in
this context are the auction site eBay, the online shop Amazon, and soft-
ware application stores, like Google Play and Apple App Store. How-
ever, trust management systems are used in many other contexts and
applications, where huge amount of data related to reputations of peers
are usually available, such as ad-hoc networks [NCL07], P2P networks
[XL04; WV03] and sensor networks [BXEK07]. Parties, which are will-
ing to interact in these environments, are likely to be disconnected from
their preferred security infrastructures and/or have no trusted informa-
tion about their partners. Thus, they have to rely on other techniques to
build up relationships of trust among each other.

The idea at the base of trust and reputation systems is to let their
users, the raters, rate the services providers, the ratees, after each interac-
tion. For instance, rating values could refer to the quality of a service, or
to the success of the interaction. Figure 1 graphically depicts such generic
scenario where a trust and reputation system is in use: parties active in
the system freely interact (Figure 1 (a)) and rate each other after each in-
teraction (Figure 1 (b)). Then, other users or the parties themselves may
use aggregate ratings to compute reputation scores for a given party. The
computed reputation scores are a collective measure of parties’ trustwor-
thiness and are used to drive parties’ interactions, i.e. a party selects the
party to interact with on the basis of its reputation score. This approach
to trust management is referred to as computational trust. In computa-
tional trust parties’ trustworthiness is evaluated on the basis of parties’
past behaviour, whereas credential-based approaches [EFL+99; NT94] rely
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(a) Interactions between parties

ratee

rater

rater

ratee

rater

ratee
ratee

rater

(b) Rating release

Figure 1: A generic scenario in which a reputation system is in use

on access control policies and/or use of certificates for evaluating parties’
trustworthiness.

In the following we briefly present the two categories of trust man-
agement approaches, namely credential-based and computational trust.

1.1 Credential-based Trust

Credential-based approaches are based mainly on two concepts: authen-
tication and authorization. In such approaches the aim is to authenticate
parties and then check if parties are allowed to perform the actions they
are trying to carry out. Indeed, we can say that parties’ trustworthiness
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is evaluated on the basis of parties’ credentials. The assumptions are
that all parties interacting in the systems can be authenticated and that,
for each of them, there exists a policy stating which actions it is autho-
rized to perform. Two issues immediately arise, first all parties have to
be known in advance in order to be authenticated. Second, a policy rule
for each of them should be set.

In distributed systems the first issue, about parties authentication, is
usually addressed through public key cryptography. In public key cryp-
tography each party in the system is assumed to own a key pair <public
key, private key>. The private key is known only by the owner of the
pair, while the public key is known by everyone. Below, we present the
general idea at the base of public key authentication protocols. If party
A wants to authenticate party B, assuming A knows B’s public key, the
basic protocol run by the two parties works as follows: let < eB , dB >

the key pair of B and r a random number chosen by A. Party A sends r
encrypted with B’s public key eB to B. Party B proves it knows dB , that
is its identity, by decrypting the message and sending back r to A. In a
system with thousand of parties the question is how to securely manage
thousand of public keys. Such issue is usually addressed trough the use
of a public key infrastructure (PKI) [KPS02; TW10]. The basic compo-
nents of a PKI are: certificates, a repository for retrieving certificates, a
method of revoking certificates, and a method of evaluating a chain of
certificates.

For the second issue, concerning policy rules stating which actions
parties can perform, there exist several access control models enabling to
control access to data, resources and systems [NIST09]. The oldest and
most basic form of access control are the Access Control Lists (ACLs).
An ACL states for each resource in the system which are the parties that
can access it and which actions they can perform on it. In addition to
ACLs there are several others models, such as Role-based Access Con-
trol (RBAC), Attribute Based Access Control (ABAC) and Policy-Based
Access Control (PBAC). All these models try to address shortfalls of the
others and are tailored for specific environments, thus the choice of the
access control model should be made on the basis of systems’ features.
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Below, as reference standards in traditional trust, we briefly remind
Kerberos, X.509, PGP, SSL/TLS and XACML.

Kerberos. Kerberos is a secret key based service for providing authen-
tication in a network, where the access to remote resources is granted
to users after authentication. In Kerberos, user’s workstation performs
the authentication protocol on user’s behalf and the network itself is as-
sumed to be insecure. Two servers are used to manage authentication
and resource access, the Authentication Sever and the Ticket-Granting
Server. We refer the reader to [KPS02; TW10; NT94] for an extensive
discussion of Kerberos.

X.509 and PGP. The X.509 and PGP standards are two well-known cer-
tificate systems, they mainly differ for the way public keys are certified
and how certificate chains are verified. The standard X.509 assumes ex-
istence of entities called certification authorities, which release certifi-
cates and sign them. Instead, with PGP, each user generates its pair of
keys and decides which keys to trust. New trusted keys are got directly
from new users or introduced by trusted users. We refer the reader to
[KPS02; TW10] for an extensive discussion of X.509 and PGP.

SSL/TLS. The SSL/TLS standard is used to establish secure network
connections. It is broadly used in web applications, mainly for e-
commerce transactions. Indeed, the use of HTTP over SSL, called
HTTPS, is the most common application of the SSL/TLS protocol. We
refer the reader to [KPS02; TW10] for an extensive discussion of the SS-
L/TLS protocol.

XACML. The eXtensible Access Control Markup Language (XACML)
is a general-purpose access control policy language implemented in
XML. XACML was developed to specify access control policy in a
machine-readable format. With XACML it is possible to implement
ABAC systems or RBAC systems as a specialization of ABAC systems.
XACML is also used in PBAC systems, in such systems policies creation
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can be complicated and XACML is a useful means for creating, specify-
ing, and enforcing effective access control policies. We refer the reader
to [XACML; NIST09] for an extensive discussion of XACML and access
control models.

However, credential-based approaches are not well suited for open
environments, where the sets of parties and resources dynamically
change in time.

1.2 Computational Trust

In computational trust approaches, parties’ trustworthiness is evaluated
on the basis of the parties’ past behaviour. The assumption at the base
of such approaches is to have a distributed system where several parties
freely interact. After each interaction, raters rate the services providers,
then the rater itself, or other parties, may use such ratings to compute
reputation scores for a given party. Party’s reputation is the synthetic pa-
rameter estimating the party’s behaviour and is used to evaluate parties
trustworthiness.

Depending on the computational trust model in use, the ratings re-
leased by parties can assume values in different domains. There are
models in which each interaction can be evaluated using just two values,
representing the success and the failure of the interaction [JI02; DA04].
Another possibility is using rating values in an interval of n values,
with each rating representing the quality of the service provided [JH07;
DA04]. There are also models where instead of numerical values, at-
tributes are used to rate parties, e.g. in [ARH00] the following attributes
are used: very trustworthy, trustworthy, untrustworthy, very untrust-
worthy.

Trust and reputation are often used as synonyms in the literature. In
our work we comply with the distinction made in [JIB07]. According to
[JIB07], trust is a subjective perception of reliability of a party, mainly
derived from private knowledge and/or belief (e.g., direct interactions
with the party). Instead, reputation is an objective measure of partys
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trustworthiness derived from referrals or ratings provided by other par-
ties. Parties can trust other parties despite their reputation values, this is
due to the subjectivity property of trust. Indeed reputation systems are
used as decision support tools where reputation values are used to drive
parties interactions.

More specifically, in our work we focus on probabilistic trust [SKN07;
KNS08; MMH02; TPJL06; JI02], which represents a specific approach to
computational trust. The basic postulate of probabilistic trust is that the
behaviour of each party can be modeled as a probability distribution,
drawn from a given family, over a certain set of interaction outcomes
(success/failure being the simplest case). In this approach the task of
computing reputation scores reduces to inferring the true distribution’s
parameters for a given party. The information about party’s past be-
haviour is used for such inference, i.e. rating values are treated as statis-
tical data in the inference process.

1.3 Contribution

Due to the widespread use of reputation systems, research work on them
is intensifying and several models have been proposed [JIB07; LLYY09;
SS05; MGM06]. Thus, once a reputation system has to be designed sev-
eral choices have to be made at different levels of the development pro-
cess, before its deployment in a network environment. This calls for a
methodology for the analysis and the evaluation of trust and reputation
systems that can help researchers and developers in studying, designing
and implementing such systems. We address this challenge by propos-
ing different kinds of theoretical and software frameworks and tools that,
in our opinion, can support the development of trust and reputation sys-
tems.

The main contributions of our work can be summarized as follows:

1. Theoretical Framework: a general framework based on Bayesian
decision theory for the theoretical assessment of trust and reputa-
tion models.
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2. Analysis Methodology: a methodology for analysing reputation
systems based on a coordination language.

3. Software Tool: a software environment for network-aware evalua-
tion of reputation systems and their rapid prototyping.

Theoretical Framework. Whenever existing or new reputation models
have to be analysed, a theoretical framework for the assessment of such
models is needed. In this phase it is interesting to study the models on
the basis of a small set of simple parameters, such as quantity of available
information and decision strategies, while abstracting from implementa-
tion and deployment details. To this aim, we propose a general frame-
work based on Bayesian decision theory for the assessment of trust and
reputation systems. Within our theoretical framework we study how to
quantify the confidence in the decisions calculated by the system. We anal-
yse how this confidence is related to parameters as decision strategy and
number of available ratings. We analyse if there are optimal strategies
that maximize confidence when additional information becomes avail-
able.

In our analysis, we study the behaviour of trust and reputation sys-
tems by relying on the concept of loss function; a loss function evaluates
the consequences of possible decisions taken by the system associating a
loss to each decision. We quantify the confidence in the decisions calcu-
lated by trust and reputation systems in terms of risk quantities based on
expected (also known as bayes) and worst-case loss. We study the behaviour
of these quantities with respect to the available information, that is the
number of available rating values and the decision strategy, in the case
of independent and identically distributed observations. We show that
there are optimal strategies that maximize confidence as more and more
information becomes available. Finally, we study an extention of our
framework to a class of rating mechanisms where each rater is charac-
terised by a (unobservable, possibly malicious) bias. This can lead the
rater to under- or over-evaluate its interactions with the ratees.
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Analysis Methodology. Concerning the integration of reputation sys-
tems with end-user applications, a methodology for tuning trust and rep-
utation models in order to fit to the characteristics of the given network
environment is needed. In particular, it is interesting to study whether
in the phase of models tuning, the features of the original models are
kept. We address such issues by proposing a verification methodology
based on the use of the coordination language KLAIM [BBD+03; DFP98]
and related analysis tools [DKL+07; Lor10]. Such approach enables ver-
ification of reputation system specifications. Specifically, it is possible to
check whether trust and reputation models meet the expected behaviour,
how parties’ initials reputations affect the models and how parties’ be-
haviours affect their reputations. In our study, we first define a paramet-
ric KLAIM specification of a reputation system that can be instantiated
with different reputation models. Then, we consider a stochastic spec-
ification obtained by considering actions with random (exponentially
distributed) duration. The resulting specification allows us to perform
quantitative analysis of estimation properties of the considered system.

Software Tool. The last issue we address is related to implementation,
i.e. to the phase when reputation systems have to be deployed and tested
in real network environments. At this stage, real-word implementation
details of trust and reputation systems and of the network environment
where they have to be deployed have to be taken into account in the eval-
uation. We have developed a software tool (NEVER) for network-aware
evaluation of reputation systems and for their rapid prototyping through
experiments performed according to user-specified parameters. On the
one hand, NEVER provides a framework for rapidly developing Java-
based implementations of reputation system models and for easily con-
figuring different networked execution environments on top of which
the reputation systems will run. On the other hand, NEVER can be used
for automatically performing experiments on the reputation system im-
plementations according to user-specified parameters; this enables the
study of their behaviour while executing on given network infrastruc-
tures.
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Overall our contribution addresses issues related to the study, the de-
sign and the implementation of trust and reputation systems. Indeed, we
provide theoretical and software tools for the analysis and evaluation of
trust and reputation systems, at different stages of their development.

1.4 Structure of the thesis

The rest of the thesis is organized as follows. In Chapter 2 we briefly in-
troduce the technical concepts used throughout the thesis. We first recall
some basic notions of Probability Theory, Information Theory and dis-
cuss some relationships between Information Theory and Statistics. We
describe the basic concepts of Bayesian Decision Theory and, introduce
the coordination language KLAIM and related analysis tools. Then, we
give an overview of probabilistic trust approaches by describing some of
the models proposed in the literature. Finally, we show some cases of
reputation systems that are successfully used in real applications.

In Chapter 3 we present our general framework, based on Bayesian
decision theory, for the assessment of trust and reputation models. We
introduce the framework and discuss our results on the analysis of such
systems. We close the chapter by presenting an extention of the frame-
work for different data models, with rating values given in different
ways.

In Chapter 4 we introduce a verification approach for reputation sys-
tems that is based on the use of the coordination language KLAIM and
related analysis tools. We define a parametric KLAIM specification of
a reputation system that can be instantiated with different reputation
models. Then, we consider stochastic specifications enabling quantita-
tive analysis of properties of the considered system. Finally, we present
verification results on some reputation systems.

In Chapter 5 we present NEVER, a software tool for network-aware
evaluation of reputation systems and their rapid prototyping. The
NEVER evaluation of reputation systems is carried out through exper-
iments performed according to user-specified parameters. In such ex-
periments the networked execution environment is explicitly taken into
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account. We close the chapter by presenting some evaluation results ob-
tained with our tool.

In Chapter 6 we comment on the research results presented in the the-
sis by also comparing them with more closely related work. We summa-
rize the main contributions and propose possible directions for further
research.
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Chapter 2

Preliminaries

In this chapter we briefly introduce the technical concepts used in the
rest of the thesis. In Section 2.1 we recall some basic notions of Probabil-
ity Theory. In Section 2.2 we introduce Information Theory and Statistics
and show their relationship. In Section 2.3 we describe the basic concepts
of Bayesian Decision Theory and in Section 2.4 we introduce the coordi-
nation language KLAIM and related analysis tools. Finally, in Section 2.5
we give an overview of probabilistic trust approaches and in Section 2.6
we describe the operation of some reputation systems used in real appli-
cations.

2.1 Probability Theory

Probability theory is technically a branch of measure theory, it reasons
about chance, uncertainty, likelihood of phenomena. In this section, we
first introduce few notions of measure theory then we recall some basic
notions of probability theory. We refer the reader to [Wil91; Sti99; GS01;
Kal02] for an extensive presentation of these topics.

Below we provide the definitions of σ-field, measure space, measur-
able set and measure to then introduce some basic notions of probability
theory.

Definition 2.1.1 Let Ω be a set, a σ-field (or σ-algebra) on Ω is a collection
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F of subsets of Ω satisfying the following conditions:

(a) ∅ ∈ F ,

(b) A ∈ F ⇒ Ac ∈ F , where Ac denotes the complement set,

(c) A1, A2, ..., An ∈ F with n ∈ N ⇒
⋃
nAn ∈ F

The smallest σ-field associated with Ω is the collection F = {∅,Ω}
and the largest one is the power set of Ω, written 2Ω. A measurable set is a
pair (Ω,F), where Ω is a set and F is a σ-field on Ω.

Definition 2.1.2 Let (Ω,F) a measurable set, a measure on (Ω,F) is a func-
tion µ : F → [0,∞) such that:

(a) µ(∅) = 0,

(b) µ(A) =
∑
n µ(An), where An(n ∈ N) is a sequence of pairwise dis-

joint sets in F with union A =
⋃
nAn.

The triple (Ω,F , µ) is then called a measure space.
A probability measure P on (Ω,F) is a measure such that P(Ω) = 1.

The triple (Ω,F ,P) is called probability space and the set Ω is called sample
space. A point ω of Ω is called a sample point or outcome. The collection F
is called family of events and an event is an element of F . If A and B are
two events and P(B) > 0, then the conditional probability that A occurs
given that B occurs is defined as

P(A|B) =
P(A ∩B)

P(B)
(2.1)

We denote with P(A|B) the conditional probability and we read “the
probability of A given (or conditioned on) B”. It is not always the
case that the occurrence of an event B changes the probability that an-
other event A occurs. If the conditional probability P(A|B) remains un-
changed, i.e. P(A|B) = P(A), then we say that A and B are independent.
More formally, events A and B are called independent if

P(A ∩B) = P(A)P(B). (2.2)
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Experimental outcomes are not always numerical, but it is often bet-
ter to work with numbers than with outcomes in the original sample
space. We can assign a number to any outcome ω ∈ Ω using random vari-
ables. A random variable is a real-valued function X : Ω → R such that
{ω ∈ Ω : X(ω) ≤ x} ∈ F for each x ∈ R. We can think of a random
variable just as a function mapping Ω in R. We denote random variables
with upper-case letters, such as X,Y, Z and their possible numerical val-
ues with lower-case letters, such as x, y, z. A distribution function is as-
sociated with every random variable. A distribution function of a random
variable X is a function F : R→ [0, 1] such that F (x) = P(X ≤ x), where
{X ≤ x} denotes the event {ω ∈ Ω : X(ω) ≤ x}. We denote with FX the
distribution function of the random variable X .

A random variable X is called discrete if it takes values only in some
countable subset X of R. We denote with calligraphic letters X ,Y,Z pos-
sible subsets of R. The probability mass function of X is p : R→ [0, 1] such
that p(x) = P(X = x). A random variableX is called continuous if it takes
values in some uncountable subset X of R and if its distribution function
can be expressed as F (x) =

∫ x
−∞ p(u)du, for some integrable function

p(x) called the probability density function of X .
Let X be a discrete random variable, its expected value, denoted by

E[X], is defined as

E[X] =
∑
x

xP(X = x) (2.3)

Notation: Let X be a random variable taking values in X , we say that
X is distributed according to a probability distribution p(·) if for each
x ∈ X , P(X = x) = p(x), and we write X ∼ p(·). We will use the
term probability distribution both denoting probability mass function
and probability density function, the use will be clear by the context.
The support of p(·) is defined as supp(p) = {x ∈ X : p(x) > 0}. We let
pn(·) denote the n-th extension of p(·), defined as pn(xn) =

∏n
i=1 p(xi),

where xn = (x1, x2, ..., xn); this is in turn a probability distribution on
the set Xn. For any A ⊆ X we let p(A) denote

∑
x∈A p(x). When A ⊆ Xn

and n is clear from the context, we shall abbreviate pn(A) as just p(A).
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2.2 Information Theory and Statistics

Information theory reasons about quantification of information. The fun-
damental measure of information is called entropy, which quantifies the
self-information of a random variable, i.e. the uncertainty involved in
predicting its value. We refer the reader to [CT06] for an extensive pre-
sentation of the topic.

Let X be a discrete random variable taking value in set X and proba-
bility mass function p(x) = P(X = x), x ∈ X . The entropy H(X) of X is
defined as

H(X) = −
∑
x∈X

p(x) log p(x) (2.4)

The log is to the base 2 and entropy is expressed in bits. The entropy of a
random variable measures the average amount of information required
to describe the random variable.

Given two distributions p and q on the same set X , the relative en-
tropy is a measure of the distance between these two distributions. The
relative entropy, or Kullback-Leibler distanceD(p||q), between two probabil-
ity mass functions p(x) and q(x) is defined as

D(p ‖ q) =
∑
x∈X

p(x) log
p(x)

q(x)
(2.5)

with the convention that 0 log 0
0 = 0, 0 log 0

q = 0 and p log p
0 =∞. It can be

shown that the Kullback-Leibler distance (KL-dis) is always nonnegative
and is 0 if and only if p = q. D(p ‖ q) it is not a true distance since it is
not symmetric and does not satisfy the triangle inequality. The KL-dis
D(p ‖ q) is a measure of the inefficiency of assuming that a distribution
is q when the true distribution it is actually p.

We now introduce some concepts at the basis of the relationship be-
tween information theory and statistics. We then consider the problem
of hypothesis-testing and which is the best possible error exponents for
such tests. Let xn = x1, ..., xn a sequence of n elements from a set X , with
n > 0, and a ∈ X . We denote with N(a, xn) the number of occurrences
of a in xn. The type or empirical probability distribution of xn is denoted by

15



txn , and is the relative proportion of occurrences of each element

txn(a) =
N(a, xn)

n
for all a ∈ X . (2.6)

The type txn is a probability distribution on X . Let Pn denote the set of
types with denominator n, it is possible to show that the number of types
is at most polynomial in n. Since the number of sequences is exponential
in n, it follows that at least one type has exponentially many sequences
in its type class.

Let Θ be a set of parameters: we let {p(·|θ)}θ∈Θ denote a parametrized
family of probability distributions. When convenient, we shall denote a
member of this family, p(·|θ), as just pθ. Given a sequence xn that is a
realization of n independent and identically distributed (i.i.d.) random
variables Xn = X1, ..., Xn, with Xi ∼ p(·|θ), a standard problem is to de-
cide which of the distributions p(·|θ) generated the data. This is a general
hypothesis-testing problem, where the distributions p(·|θ), θ ∈ Θ, are the
hypotheses: the classical, binary formulation is given for |Θ| = 2. We rep-
resent the decision-making process by a guessing function g : Xn → Θ

and we define the error probability for an hypothesis θ as follows. For
n ≥ 1 and each θ, let A(n)

θ = g−1(θ) ⊆ Xn be the acceptance region for
hypothesis θ (relatively to g) and let A(n)

θ

c
the complement set of A(n)

θ .
Then the probability of error for θ is

P
(g)
θ (n) = p(A

(n)
θ

c
) . (2.7)

In a Bayesian framework, an a priori probability π(θ) is assigned to
each hypothesis, and the overall error probability is defined as the aver-
age, assuming Θ is discrete:

P (g)
e (n) =

∑
θ

π(θ)P
(g)
θ (n) . (2.8)

It is well-known (see, e.g., [CT06]) that optimal strategies, i.e. strate-
gies g minimizing the error probability P (g)

e (n), are obtained when g sat-
isfies the Maximum A Posteriori (MAP) criterion (see Section 3.1.4 for a
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formal definition of this criterion). In this case, provided p(·|θ) 6= p(·|θ′)
for θ 6= θ′, it holds that as n→ +∞, P (g)

e (n)→ 0. What is also important,
though, is to characterize how fast the probability of error approaches 0.
Intuitively, we want to be able to determine an exponent ρ ≥ 0 such that,
for large n, P (g)

e (n) ≈ 2−nρ.
To this purpose, we introduce the notion of rate for a generic non-

negative real-valued function f .

Definition 2.2.1 (Rate) Let f : N → R+ be a nonnegative function. Assume
γ = limn→∞ f(n) exists. Then, provided the following limit exists, we define
the following nonnegative quantity:

rate(f) = lim
n→∞

− 1

n
log |f(n)− γ|.

This is also written as |f(n)− γ| .= 2−nρ, where ρ = rate(f).

Intuitively, rate(f) = ρ means that, for large n, |f(n) − γ| ≈ 2−nρ. Note
that we do allow rate(f) = +∞, a case that arises for example when f(n)

is a constant function.
The rate of decrease of P (g)

e (n) is given by Chernoff Information. Given
two probability distributions p, q on X , we let their Chernoff Information
be

C(p, q) = − min
0≤λ≤1

log(
∑

x∈supp(p)∩supp(q)

pλ(x)q1−λ(x)) (2.9)

where we stipulate that C(p, q) = +∞ if supp(p) ∩ supp(q) = ∅. Here
C(p, q) can be thought of as a sort of distance between p and q: the more
p and q are far apart, the less observations are needed to discriminate
between them. Assume we are in the binary case, Θ = {θ1, θ2} and let
pi = p(·|θi) for i = 1, 2. Then a well-known result gives us the rate of
convergence for the probability of error, with the proviso that π(θ1) > 0

and π(θ2) > 0 (cf. [CT06]): P (g)
e (n)

.
= 2−nC(p1,p2) (here we stipulate

2−∞ = 0). Note that this rate does not depend on the prior distribution
π(·) on {θ1, θ2}, but only on the probability distributions p1 and p2. This
result extends to the case |Θ| < +∞, it is enough to replace C(p1, p2) by
minθ 6=θ′ C(p(·|θ), p(·|θ′)), thus (see [LJ97; BPP11]):

P (g)
e (n)

.
= 2−nminθ 6=θ′ C(p(·|θ),p(·|θ′)) (2.10)
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with the understanding that, in the min, π(θ) > 0 and π(θ′) > 0.

2.3 Bayesian Decision Theory

Statistical decision theory concerns with the process of making decisions
in presence of statistical knowledge. The general assumption is that the
uncertainties involved in the decision process can be expressed as un-
known numerical values, θ. Such values are called world states or param-
eters; we denote with Θ the set of all possible parameters. The statisti-
cal knowledge is used to obtain information about the parameters. In
a Bayesian setting an other type of information is particularly relevant,
the prior information. Such information comes from other source than the
statistical investigation.

The main components of bayesian decision theory are three:

1. an a prior distribution π(·) over the world states Θ. Such distribu-
tion π(·) represents a prior information about the world states, in
addition to sample information.

2. an observational model p(·|·), that represents how data are gen-
erated in the world. The value p(o|θ) denotes the probability of
observing o ∈ O when the world state is θ ∈ Θ.

3. a loss function L(·, ·) : Θ × D → R+, where D denote the decision
set. The loss function L(θ, d) gives the loss incurred when a deci-
sion d ∈ D is made and the state of the world turns out to be θ.

Determined the components of the model, the decision making process
consists of making a decision d on the basis of a sequence of observations
on = o1, ..., on, with n > 0 and on ∈ On. In bayesian decision theory the
decision making process is formalized via decision functions. For any n,
a decision function is a function g : On → D.

The choice of an optimal decision relay on the concept of loss, that
is computed through loss functions. Several standard types of loss can
be considered, we report below some example of them. In Chapter 3 we
use a Bayesian decision theory framework for our analysis of trust and
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reputation systems. For an extensive presentation of Bayesian decision
theory we refer the reader to [Ber85; Rob07].

2.3.1 Loss Functions

Loss functions evaluate the consequences of possible decisions, by asso-
ciating a loss to each of them. Often it is not straightforward how this
evaluation should be done, it depends on the system features. Below we
list a few standard definitions of loss functions.

Linear Loss The loss

L(θ, d) =

{
k0(θ − d) if (θ − d) ≥ 0,

k1(d− θ) if (θ − d) < 0

is called linear loss. The constants k0 and k1 are usually different, they re-
flect the importance of underestimation and overestimation, respectively.
When the two constants are equal the loss is equivalent to L(θ, d) =

|θ − d|, which is called absolute loss.

0-1 Loss The loss

L(θ, di) =

{
0 if θ ∈ Θi,

1 if θ ∈ Θj (j 6= i)

is called 0-1 loss. In this case two decisions are possible, i.e. D = {d0, d1},
and the loss associated to each decision can be only 0 or 1. It is 0 if a
correct decision is made and 1 otherwise, e.g. d0 is correct if θ ∈ Θ0 and
d1 is correct if θ ∈ Θ1. This loss is mainly used in the case of two-actions
decision problems, e.g. hypothesis testing.

Squared-Error Loss The loss function L(θ, d) = (θ − d)2 is called
squared-error loss. This loss function penalizes large errors. Anyway, this
penalization could be considered too severe in some systems.

19



2.4 The KLAIM Coordination Language and Re-
lated Tools

In this section we informally present KLAIM [BBD+03; DFP98], a coor-
dination language specifically designed for modelling mobile and dis-
tributed applications and their interactions, which run in a network en-
vironment. Then, we introduce the KLAIM’s stochastic extension STOK-
LAIM [DKL+06a; DLM05; DKL+07], the stochastic logic MOSL [DKL+07;
DKL+06b] and the analysis tool SAM [DKL+07; Lor10]. Finally, we in-
troduce KLAVA [BDP02], a Java library implementing the run-time sup-
port for KLAIM actions.

2.4.1 KLAIM

In our presentation of the KLAIM language we consider a version of
KLAIM enriched with standard control flow constructs (i.e., assignment,
if-then-else, sequence, etc.). Such constructs were not included in the
original presentation of the language [DFP98], however they can be eas-
ily rendered in KLAIM (by resorting, e.g., to choice, fresh names and re-
cursion in the usual way) and are directly supported by related tools.

The syntax we use is reported in Table 1, where s, s′,. . . range over
locality names (i.e., network addresses); self , l, l′,. . . range over locality
variables (i.e., aliases for addresses); `, `′,. . . range over locality names and
variables; x, y,. . . range over value variables; X , Y ,. . . range over process
variables; e, e′,. . . range over expressions1; A, B,. . . range over process identi-
fiers2. We assume that the set of variables (i.e., locality, value and process
variables), the set of values (locality names and basic values) and the set
of process identifiers are countable and pairwise disjoint.

KLAIM nets are finite plain collections of nodes where components, i.e.

1The precise syntax of expressions is not specified here. Suffice it to say that expressions
contain basic values (booleans, integers, strings, floats, etc.) and variables, and are formed
by using the standard operators on basic values, simple data structures (i.e., arrays and
lists) and the non-blocking retrieval actions inp and readp (explained in the sequel).

2We assume that each process identifier A with arity n has a unique definition, visible
from any locality of a net, of the form A(f1, . . . , fn) , P , where fi are pairwise distinct.
Notably, pi and fj denote actual and formal parameters, respectively.
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(Nets) N ::= 0
∣∣ s ::ρ C

∣∣ N1 ‖ N2

∣∣ (νs)N

(Components) C ::= 〈t〉
∣∣ P

∣∣ C1 | C2

(Processes) P ::= nil
∣∣ a

∣∣ P1 ;P2

∣∣ P1 | P2∣∣ if (e) then {P} else {Q}∣∣ for i = n tom { P }∣∣ while (e) {P}
∣∣ A(p1, . . . , pn)

(Actions) a ::= in(T )@`
∣∣ read(T )@`

∣∣ out(t)@`∣∣ eval(P )@`
∣∣ x := e

∣∣ inp(T )@`∣∣ readp(T )@`
∣∣ rpl(T )→ (t)@`∣∣ newloc(s)

(Tuples) t ::= e
∣∣ `

∣∣ P
∣∣ t1, t2

(Templates) T ::= e
∣∣ `

∣∣ P
∣∣ !x

∣∣ ! l
∣∣ !X∣∣ T1, T2

Table 1: KLAIM syntax
processes and data tuples, can be allocated. KLAIM specifications consist
of nets, namely finite plain collections of nodes where components, i.e.
processes and data tuples, can be allocated. Nodes are composed by
means of the parallel composition operator ‖ . At net level, it is possible
to restrict the visibility scope of a name s by using the operator (νs) : in
a net of the form N1 ‖ (νs)N2, the effect of the operator is to make s
invisible from within the subnet N1.

Nodes have the form s ::ρ C, where s is a unique locality name ρ is
an allocation environment, and C is a set of hosted components. An al-
location environment provides a name resolution mechanism by mapping
locality variables l, occurring in the processes hosted in the correspond-
ing node, into localities. The distinguished locality variable self is used
by processes to refer to the address of their current hosting node. In the
rest of this section, we will use ` to range over locality names and vari-
ables.

Processes are the KLAIM active computational units and may be ex-
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ecuted concurrently either at the same locality or at different localities.
They are built up from the process nil, which does nothing, and from
basic actions by means of sequential composition ; , parallel composi-
tion | , conditional choice if (e) then { } else { }, the iterative con-
structs for i = n to m { } and while (e) { }, and process definition
A(f1, . . . , fn), .

During their execution, processes perform some basic actions. Ac-
tions in(T )@` and read(T )@` are retrieval actions and permit to with-
draw/read data tuples (i.e. sequences of values) from the tuple space
hosted at the (possibly remote) locality `: if a matching tuple is found,
one is non-deterministically chosen, otherwise the process is blocked.
These actions exploit templates as patterns to select tuples in shared tu-
ple spaces. Templates are sequences of actual and formal fields, where the
latter are written !x, ! l or !X and are used to bind variables to values,
locality names or processes, respectively.

Actions inp(T )@` and readp(T )@` are non-blocking versions of the
retrieval actions: namely, during their execution processes are never
blocked. Indeed, if a matching tuple is found, inp and readp act sim-
ilarly to in and read, and additionally return the boolean value true; oth-
erwise, they return the value false and the executing process does not
block. Actions inp(T )@` and readp(T )@` can be used where either a
boolean expression or an action is expected (in the latter case, the re-
turned value is simply ignored).

Action out(t)@` adds the tuple resulting from the evaluation of tuple
t (which may contain expressions) to the tuple space of the target node
identified by `, while action eval(P )@` sends the process P for execution
to the (possibly remote) node identified by `. Actions out and eval are
both non-blocking.

Action rpl(T ) → (t)@` atomically replaces a non-deterministically
chosen tuple in ` matching the template T by the tuple t; if no tuple
in ` matches T , the action behaves as out(t)@`. Finally, action newloc

creates new network nodes, while action x := e assigns the value of e to
x. These latter two actions, differently from all the others, are not indexed
with an address because they always act locally.
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2.4.2 Stochastic Analysis of KLAIM Specification

In this section we introduce the related analysis tool of KLAIM, that en-
ables us to perform quantitative analysis of systems. In general, two
main kind of analysis can be performed over systems, quantitative or
qualitative analysis. In qualitative analysis we verify that a certain event
will or will not occur. In quantitative analysis instead, we verify what
is the probability that a certain event will or will not occur. In order to
perform such analysis of KLAIM specification, we have to enrich such
formalism by enabling the modelling of random phenomena. KLAIM

specifications can be enriched with stochastic aspects, using the KLAIM’s
stochastic extension STOKLAIM, while the desired properties of the con-
sidered system can be expressed by using the stochastic logic MOSL. The
properties of interest are then checked against the STOKLAIM specifica-
tions by means of the analysis tool SAM. In this section we provide an
overview of STOKLAIM, MOSL and SAM.

STOKLAIM

In STOKLAIM [DKL+06a; DLM05; DKL+07], KLAIM’s processes actions
are enriched with a rate. Such rate is the parameter of an exponentially
distributed random variable characterising the duration of the execution
of an action. In particular, such random variables are governed by a
negative exponential distribution. The negative exponential distribution
is related to the Poisson distribution. It describe the times between events
in a Poisson process, i.e. a process in which events occur continuously
at a constant average rate λ; independently of the time t. A real valued
random variable X has a negative exponential distribution with rate λ > 0

if and only if the probability that X ≤ t, with t > 0, i.e. the probability
that an event occurs within t time units, is 1− e−λ·t. The expected value
of X is λ−1, while its variance is λ−2.

The operational semantics of STOKLAIM permits associating to each
specification a Continuous Time Markov Chain (CTMC), one of the most
popular models for the evaluation of the performance and dependability
of information processing systems. Such CTMC is then used to perform
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quantitative analyses of the considered system. The use of the exponen-
tial distribution is motivated by the fact that it enjoys convenient prop-
erties enabling automated analyses that are not always allowed by other
distributions.

MOSL

The desired properties of a system under verification are formalised us-
ing the stochastic logic MOSL [DKL+07; DKL+06b]. MOSL formulae use
predicates on the tuples located in the considered STOKLAIM net to ex-
press the reachability of a certain system state, while passing through, or
avoiding, other specific intermediate states.

The Mobile Stochastic Logic (MOSL) is an extension of a widely used
temporal logic, CTL [EC82]. MOSL is inspired by (an action-based
version of) CSL [ASSB00; BKH99], a stochastic extension of CTL that,
together with qualitative properties, permits specifying time-bounded
probabilistic reachability properties. The logic is both action- and state-
based. MOSL incorporates some basic features of the Modal Logic for
Mobility (MOMO) [DL05], in order to be able to refer to the distributed
character of the specified systems. Specifically basic state formulae are
built using a variant of the MOMO consumption (→) and production
(←) operators. Intuitively, a consumption formula

A(p1, ..., pn)@`→ Φ

holds for a network whenever in the network there exists a process
A running at a node, of site `, and the remaining network, namely
A(p1, ..., pn)’s context, satisfies Φ. Notice that a process binder !X can
be used instead of process. Similarly formula

〈T 〉@`→ Φ

holds whenever a tuple t matching T is stored in a node of site `, and the
remaining network satisfies Φ. The substitution resulting from pattern-
matching is used to evaluate Φ.
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A production formula
〈t〉@`← Φ

holds if the network satisfies Φ whenever tuple t is stored in a node of
existing site `. In particular, the satisfaction of Φ is checked after the
insertion of the tuple t in the network.

We can summarise the grammar for basic state formulae as follows:

ℵ ::= A(p1, ..., pn)@`→ Φ | !X@`→ Φ | < T > @`→ Φ

| A(p1, ..., pn)@`← Φ | < t > @`← Φ

MOSL distinguishes between path and state formulae. The basic for-
mat of path formulae is the CTL until formula ΦU Ψ. In particular, the
logic use an action-based variant of the until operator, parameterised
with two action sets: a path satisfies Φ U∆ Ω Ψ whenever (eventually) a
state satisfying Ψ (a Ψ-state) is reached via a Φ-path (i.e., a path com-
posed only of Φ-states) and, in addition, while evolving between Φ-
states, the performed actions satisfy ∆, and the Ψ-state is entered via
an action satisfying Ω. Path formulae have also a time constraint. This
is done by adding time parameter t which is either a real number or∞.
With time constraint, it is now imposed that a Ψ-state should be reached
within t time units. Similarly, a path satisfies Φ U<t∆ Ψ if the initial state
satisfies Ψ (at time 0) or eventually a Ψ state will be reached in the path,
by time t via a Φ-path, and, in addition, while evolving between Φ-states,
actions are performed satisfying ∆. Accordingly, the syntax of path for-
mulae is:

ϕ ::= Φ U<t∆ Ω Ψ | Φ U<t∆ Ψ.

State formulae are divided in three categories. The first category in-
cludes formulae in propositional logic, where the atomic propositions
are tt and the basic state formulae ℵ introduced previously in this sec-
tion. The second category includes statements about the likelihood of
paths satisfying a property, P./p(ϕ). Finally the third category includes
formulae for the so-called long-run properties, S./p(ϕ). In general, a for-
mula can be composed of sub-formulae of different categories. To be a
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bit more precise about the probabilistic path properties. Let ϕ be a prop-
erty imposed on paths. State s satisfies the property P./p(ϕ) whenever
the total probability mass for all paths starting in s that satisfy ϕ meets
the bound ./ p. Here, ./ is a binary comparison operator from the set
{<,>,≤,≥}, and p a probability in [0, 1]. Long-run properties refer to
the system when it has reached equilibrium. A state s satisfies S./p(ϕ) if,
when starting from s, the probability of reaching a state which satisfies
Φ in the long run is ./ p.

In summary, state formulae are built according to the grammar:

Φ,Ψ ::= tt | ℵ | ¬Φ | Φ ∨Ψ | P./p(ϕ) | S./p(ϕ)

SAM

Verification of MOSL formulae against STOKLAIM specifications is as-
sisted by the analysis tool SAM [DKL+07; Lor10], which uses a statisti-
cal model checking algorithm [CL10] to estimate the probability of the
property satisfaction. In particular, the probability associated to a path
formula is determined after a set of independent observations. Indeed,
while in a numerical model checker the exact probability to satisfy a path
formula is computed up to a precision, in a statistical model-checker the
probability associated to a path formula is determined after a set of inde-
pendent observations. This algorithm is parameterised with respect to a
given tolerance ε and error probability p and guarantees that the differ-
ence between the computed values and the exact ones exceeds ε with a
probability that is less than p.

2.4.3 KLAVA

KLAVA [BDP02] is a Java library providing the run-time support for
KLAIM actions within Java code. This package relies on the IMC (Imple-
menting Mobile Calculi) framework [BDF+05], which provides recurrent
mechanisms for network applications and, hence, can be used as a mid-
dleware for the implementation of different formal languages. Specifi-
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cally, KLAVA provides classes to be instantiated to create a net, and nodes
that can be connected to the net in order to build the desired network en-
vironment. An abstract class is then provided to create processes to be
added to the nodes, by instantiating subclasses specialized through in-
heritance and method overriding.

Tuples management is rendered in KLAVA by the class Tuple. Such
class provides methods for creating a tuple, adding elements to a tuple,
getting an element from a tuple, etc. A tuple can be created (Listing 2.1)
by instantiating an empty tuple and then adding elements to it (using the
method add(Object o) ) or using one of the overloaded constructors.

Listing 2.1: Tuple Creation

1 //Empty tuple and adding elements
2 Tuple t1 = new Tuple();
3 t1.add(e1);
4 t1.add(e2);
5 t1.add(e3);
6

7 //Tuple creation by constructor
8 Tuple t2 = new Tuple(e1, e2, e3);

Nodes are implemented in KLAVA by the class KlavaNode and pro-
cesses are implemented by the class KlavaProcess. KLAIM communication
primitives are rendered in KLAVA by the following methods:

public void out( Tuple t, Locality l ) throws KlavaException

public void read( Tuple t, Locality l ) throws KlavaException

public void in( Tuple t, Locality l ) throws KlavaException

public boolean read nb( Tuple t, Locality l ) throws KlavaException

public boolean in nb( Tuple t, Locality l ) throws KlavaException

public boolean read t(Tuple t, Locality l, long TimeOut) throws KlavaException

public boolean in t(Tuple t, Locality l, long TimeOut) throws KlavaException

public void eval(KlavaProcess P, Locality l) throws KlavaException

These methods take as parameters a tuple and the (either logical or
physical) locality, i.e. the address, of the target node. If the action refers
to the current execution site (through the reserved logical locality self),
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it is simply redirected to the local tuple-space, otherwise a message will
be sent to the remote target node. As expected, the method calls in(t,l),
read(t,l) and out(t,l) are the implementation of the KLAIM actions in(T )@`,
read(T )@` and out(T )@`, respectively. Instead the method calls in nb(t,l)

and read nb(t,l) are the implementation of the KLAIM actions inp(T )@`

and readp(T )@`, respectively. Moreover in KLAVA we have two more
method calls, namely in t(t,l,time) and read t(t,l,time). Such calls permit
specifying upper bounds to the waiting time, i.e. a time-out, expressed in
milliseconds. This is useful to deal with high network latency or absence
of matching tuples.

To read all matching tuples only once in a loops, KLAVA provides spe-
cific built-in mechanisms that prevent matching twice the same tuple. In
particular, method setHandleRetrieved() allows a tuple template to skip
tuples already retrieved, while method resetOriginalTemplate() is used to
reinitialize to empty values the formal fields3 of a tuple template in or-
der to use this template to retrieve another tuple in the next read nb(t,l),
read(t,l) or read t(t,l,time) action.

Finally eval(P,l) spawns process P for execution at the remote site l.

In Chapters 4 and 5 we use KLAIM and its related tools for modeling,
analysing and evaluating trust and reputation systems.

2.5 Probabilistic Trust

Here we briefly introduce a theoretical formalization of probabilistic
trust and reputation systems, then we discuss some of the proposed
models. Parties in a trust and reputation system are free to interact and
rate each other. After each interaction, a rater assigns a score to a ratee.
We denote byR = {r1, ..., rm} a finite, non-empty set of rating values. In
probabilistic trust party’s behaviour is modelled by a probability distri-
bution on R. Let Θ = {θ1, θ2, ...} be the set of possible parameters for a
given distribution, we denote with F = {p(·|θ)}θ∈Θ the set of probability

3A formal field is an item of a tuple subjects to substitution in case the match is satisfied.
In KLAVA formal fields are distinguished from actual fields because they are created with
the default constructor (i.e., the constructor with no parameters).
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distributions on R indexed by parameters θ ∈ Θ. Let r ∈ R be a rating
value and p(·| θ) a distribution, the value p(r | θ) denotes the probabil-
ity of observing a rating value r after an interaction with a party whose
behaviour is (determined by) θ. The goal of a reputation system is to
predict parties’ behaviour in future interactions, given the rating values
of past interactions. Thus, a reputation system has to provide the rep-
utation of each party, i.e. an estimation θ̃ of party’s behaviour θ. The
information about parties’ past behaviour are denoted by a sequence of
rating values rn = r1, . . . , rn, that is assumed to be a realization of a se-
quence of independent, identically distributed (i.i.d.) random variables
Rn = R1, . . . , Rn. This assumption about i.i.d. random variables is com-
mon to all models we introduce below.

Beta Reputation System

Jøsang and Ismail [JI02] propose the Beta reputation system as a new sys-
tem to foster good behaviour and to encourage adherence to contracts in
e-commerce. The Beta reputation system is based on the Beta probability
density function to derive parties’ reputation values. The Beta distribu-
tion Beta(α, β), is defined over the interval [0, 1] and is parametrized by
two positive values, α > 0 and β > 0. In this model the set R of rating
values is the binary set {0, 1}, with values 0 and 1 denoting ‘unsatisfac-
tory’ and ‘satisfactory’ interactions, respectively. Random variables Ri
are assumed to be distributed according to a Bernoulli distribution with
success probability θ ∈ [0, 1]. It is thus assumed that when interacting
with a party, whose behaviour is θ, the probability that the next interac-
tion is ‘satisfactory’ is p(1 | θ) = θ, and ‘unsatisfactory’ is p(0 | θ) = 1− θ.

Given the information of party’s past interaction, the Beta reputation
system compute the a posterior distribution over the parameter set Θ

and set the party’s reputation as the expected value of such distribution.
Specifically, a Beta distribution Beta(α, β), where α = β = 1, is used as
a prior distribution over Θ. Thus the resulting a posterior distribution is
a Beta distribution itself and parties’ reputation is computed as follow:
let α be the number of satisfactory past interactions with a party A and
β the number of unsatisfactory interactions with A. The reputation of
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partyA is given by the expected value of a random variable ϑ distributed
according to the Beta distribution Beta(α+ 1, β + 1), defined as

E[ϑ] =
α+ 1

α+ β + 2
α ≥ 0 , β ≥ 0 (2.11)

Jøsang and Ismail discuss also how to combine rating values from
multiple sources and how to discriminate rating values from highly re-
puted parties giving more weight to them than rating values from parties
with low reputation values. Finally they discuss the relevance of old rat-
ing values. They propose a forgetting scheme and the use of a forgetting
factor in order to give less weight to old rating values than to more recent
ones. In particular, the forgetting factor is a value in the interval [0, 1]. The
aim of this parameter is to give a different weight to each rating based
on its age. Let rnord = r0, . . . , rn denote the ordered sequence (from the
newest to the oldest) of rating values and λ be the forgetting factor. The
weight associated to rating ri is defined as λi, i.e. older ratings will be
gradually forgotten. Thus, value λ = 1 is equivalent to absence of the for-
getting factor, while value λ = 0 results in taking into account only the
last rating (with the convention that 00 = 1). The other possible values
for λ approximate such extreme behaviours.

Dirichlet Reputation Systems

Jøsang and Haller in [JH07] propose an extension of the beta reputation
system to the case of k discrete rating levels. We talk about Dirichlet rep-
utation systems because for each value of k we have a different system.
The reputation systems proposed are based on the Dirichlet probability
distribution. The Dirichlet distributionDir(αk) is parametrized by a vec-
tor αk = α1, ..., αk where parameters αj , called concentration parameters,
are such that αj > 0.

In these systems the set R of rating values is {r1, ..., rk} and random
variables Ri are assumed to be distributed according to a multinomial
distribution of parameter ~θ = θ1, ..., θk, with the constraint

∑k
j=1 θj = 1.

Thus, when interacting with a party whose behaviour is ~θ the probability
that the next interactions is rated rj is p(rj |~θ) = θj . The reputation system
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computes party’s reputation through the a posteriori distribution of pa-
rameter ~θ, given the information about party’s past interactions. Party’s
reputation score is then given by the expected value of such distribution.
Specifically, the a prior distribution over the parameters set is a Dirichlet
distribution with concentration parameters αj = 2

k , thus the resulting a
posterior distribution is a Dirichlet distribution with concentration pa-
rameters αj = nj + 2

k , where nj denotes the number of past interactions
rated with rj . The reputation of party A is given by the expected value
of a random variable ~ϑ distributed according to the Dirichlet distribution
Dir(αk) with αj = nj + 2

k , defined as follow

E[ϑj ] =
αi∑k
j=1 αj

=
nj + 2/k

2 +
∑k
j=1 nj

(2.12)

The choice of the a priori distribution is motivated by the authors as
the necessarily choice in case of a uniform distribution for binary alterna-
tives. Thus when k > 2 the a prior distribution is not anymore uniform.
Another motivation is that, if a different distribution is chosen, in order
to have an a priori uniform distribution, new ratings have less influence
over the Dirichlet distribution, making the sensitivity to new evidence
arbitrary small (for arbitrary values of k).

As in the case of Beta reputation system the authors discuss how to
aggregate ratings and the aging of them through the use of a longevity
factor. The longevity factor plays the same role of the forgetting factor in
the Beta system, but it is defined differently.

ML Reputation Systems

We refer to [DA04] for the proposal of ML reputation systems, although
the authors actually do not give a name to the systems. We refer to such
systems as ML reputation systems because of the inference technique
used to compute parties’ reputation, namely the Maximum Likelihood
(ML) estimation. Such estimation method tries at find the distribution’s
parameter θ that more likely produced the observed sequence of out-
comes. In ML reputation systems, party’s reputation is given by the pa-

31



rameter θ maximizing the likelihood,

L(θ|Rn) = P(Rn | θ) =

n∏
i=1

P(Ri = ri | θ), (2.13)

where P denotes a probability function (see Section2.1).
It is often simpler to use the log likelihood L = logL, because of the

product in 2.13 (indeed, the product
∏n
i=1 becomes a summation, as re-

ported in 2.14). The party’s reputation then is written as

θ̃ = arg max
θ

L(θ|Rn) = arg max
θ

n∑
i=1

logP(Ri = ri | θ). (2.14)

In this reputation systems neither the set R of rating values nor the
distribution of random variables Ri are fixed a priori. We briefly discuss
here the case of Bernoulli distributions and categorical distributions.

Let the set R of rating values be the binary set {0, 1} and random
variables Ri be distributed according to a Bernoulli distribution. The
party’s reputation score θ̃ of party A, namely the value θ maximazing
L(θ|Rn), is as follows

θ̃ =
nsatisfactory
ntotal

(2.15)

where nsatisfactory denote the number of satisfactory interactions of A
and ntotal the total number of interactions of A.

In the case of categorical distributions the setR of rating values is the
set {r1, ..., rk} of cardinality k. Random variables Ri are distributed ac-
cording to a categorical distribution of parameter ~θ = θ1, ..., θk, with the
constraint

∑k
i=1 θi = 1. Thus the probability P(R = ri|~θ ) = θi denotes

the probability that the next interaction with a party whose behaviour
is ~θ is rated with a value ri. The party’s reputation score of party A is
computed as follows

θ̃i =
ni

ntotal
for 1 ≤ i ≤ k (2.16)

where ni denotes the number of interactions in whichA received a rating
value ri.
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2.6 Online Systems

In this section we show some cases of reputation systems that are suc-
cessfully used in real applications. We shortly describe the operation of
the reputation systems implemented by eBay, Amazon and TipAdvisor.

eBay

eBay4 is an online auction website in which users buy and sell a wide
variety of goods. In eBay each user has associated a reputation score,
representing the percentage of transactions in which the user has been
considered trustworthy. Such percentage is computed on the basis of the
transactions of the last twelve months. At the end of each transactions
both the buyer and the seller have the opportunity to release a rating for
the other party. When users release a rate they also write a short com-
ment motivating their evaluation. Such comments are available to other
users as complement of the reputation score. Each transaction can be
evaluated with one of the following values: positive, negative or neu-
tral. While positive and negative ratings are used for computing users’
reputation, neutral ratings are just shown in the user profile, they do not
influence the reputation, but it is possible to know their number for each
user. Thus, users’ reputation is computed as the percentage of positive
interactions with respect to the total of interactions rated as positive and
negative. For each auction in eBay it is possible to know the identity of
the user that is offering the goods and her reputation. Such reputation
system is used by eBay to encourage users, mainly sellers, to carry out
transactions honestly without defraud buyers.

Amazon

Amazon5 is an online retailer selling goods in several world countries.
Amazon started as an online bookstore, but today is possible to find a
large variaty of goods for sale. For each product sold in Amazon is asso-

4http://www.ebay.com/
5http://www.amazon.com/
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ciated a reputation score, such score is a rational number between 1 and
5. Scores are denoted by stars, so a product can have associated a score
between 1 and 5 stars. The ratings used for the computation of prod-
ucts’ reputation are released by buyers who bought the product. Once a
buyer have bought a product, she is encouraged to release a feedback for
it, such feedback is composed by an integer value between 1 to 5 stars
and a comment motivating the evaluation. All the ratings obtained by a
product are then aggregated and used to compute the product’s reputa-
tion, that is defined as the mean of all the rating values. Thus, for each
product for sale in Amazon is shown the reputation score, the number of
ratings used for the computation, and the comments released by buyers.

Amazon is not the only seller in its website, other sellers can sell their
products through the Amazon website. Each seller has a reputation score
that, as in the case of products’ reputation, is a rational number between
1 and 5 stars. The ratings used for the computation of such value are
released by buyers after a transaction with the seller. Sellers’ reputation,
as in the case of eBay, is computed on the basis of the transactions of the
last twelve months. Moreover, as in the case of eBay, Amazon distin-
guishes among positive, negative and neutral feedbacks. Such distinc-
tion is made by dividing in three intervals the values between 1 and 5
stars: a positive feedback is a value between 4 and 5 stars, a neutral feed-
back is a value of 3 stars and a negative feedback is a value between 1 and
2 stars. The percentage for each seller of positive, neutral and negative
feedback is reported in a table on the seller’s profile webpage, together
with the seller’s reputation. Notice that in Amazon, as in eBay, ratings
are released both by buyers and sellers, but unlike eBay the only visible
ratings are the one released by buyers.

TripAdvisor

TripAdvisor6 is a travel website that gather reviews from users about
travel-related content. Users can review structures that are in one of
the following categories: hotel, holiday rental, attraction, restaurant. For

6http://www.tripadvisor.com/
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each review users have to release a score between 1 to 5 denoting respec-
tively a terrible, poor, average, very good or excellent appreciation of the
structure. Together with the rate, a comment and other few information
about the trip and the structure are asked to users. The rating values
are used to compute structures’ reputation and are shown together with
the comments written by users on the structures’ profiles webpage. The
structure reputation is the mean of the rating values received by users.

In TripAdvisor each user has a profile. Users’ profiles contain per-
sonal information (whether the user uploaded her data) and a reference
to each review the user released in TripAdvisor. Users have a kind of
reputation score too, indeed for each user is reported the number of re-
views that have been found useful by others. The idea is that the higher
is such number the more trustworthy are the reviews of the user. One
of the main criticism toward TripAdvisor is about the trustworthiness
of users’ reviews, because users can remain anonymous and there is not
direct control on reviews’ reliability. Thus, it could happen that, users
review structures where they have not ever been or give high scores to
structures because they know the owners. Users’ reputation is used by
TripAdvisor as means to tackle such phenomenon.
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Chapter 3

A Theoretical Framework
for Probabilistic Trust
Systems

The potential usefulness and applicability of probabilistic trust is by now
demonstrated by a variety of tools that have been experimentally tested
in several contexts. There are very few analytical results on the behaviour
of such systems – with the notable exception of the works by Sassone
and collaborators [SKN07; KNS08]. Examples of questions that could
be addressed by an analytical approach are: How do we quantify the
confidence in the decisions calculated by the system? And how is this
confidence related to such parameters as decision strategy and number of
available ratings? Is there an optimal strategy that maximizes confidence
as more and more information becomes available?

In this chapter, we address the above questions proposing a frame-
work to analyze probabilistic trust systems based on bayesian decision the-
ory [Rob07; Ber85; LJHG11]. A prominent aspect of this approach is the
use of a priori probability distributions to model prior belief on the set
of possible parties’ behaviours. However, we also consider confidence
measures that dispense with such prior belief. We study the behaviour
of trust and reputation systems relying on the concept of loss function.
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We quantify confidence in the system in terms of risk quantities based on
expected (a.k.a. bayes) and worst-case loss. We study the behaviour of these
quantities with respect to the available information, that is number of
available rating values. Through the definition of reputation functions,
and considering the way in which ratings are released, our results allow
to characterize the asymptotic behaviour of probabilistic trust systems.
We finally consider the case where the raters misbehave, that is exhibit a
tendency to under- or over-estimate the quality of an interaction with a
party. We argue that a data-model with hidden variables is well-suited to
model this kind of scenario.

3.1 A Bayesian Framework for Trust and Repu-
tation

In the following sections we discuss the main features of trust and rep-
utation systems and we introduce our framework based on Bayesian
decision theory for modelling such systems. The formal framework is
composed by two main components: an observation framework, which de-
scribes how observations are probabilistically generated, and a decision
framework, which describes how decisions are taken. Two essential ingre-
dients of the latter are loss and decision functions. The following subsec-
tions are devoted to describing all of these elements.

3.1.1 Observation and Decision Framework

In trust and reputation system after each interaction, a rater assigns a
score to a ratee. We denote by O = {o1, ..., om} a finite, non-empty set of
rating values: in the rest of the chapter we use the terms outcomes, observ-
ables and rating values interchangeably. We focus on trust and reputation
systems where the behaviour/reputation of each party is modelled by a
probability distribution on O.

Definition 3.1.1 (Observation System) An observation system is a
quadruple S = (O,Θ,F , π(·)), composed by a finite non-empty set of obser-
vations O, a set of world states or parameters Θ, a set F = {p(·|θ)}θ∈Θ of
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probability distributions onO indexed by Θ, and an a priori probability measure
π(·) on Θ.

In a trust setting, the a priori measure π(·) expresses the user’s belief
over possible behaviours θ ∈ Θ of the observed system. The data-model
F represents how data are generated: the value p(o|θ) denotes the prob-
ability of observing a rating value o ∈ O in an interaction with a party
whose behaviour is θ ∈ Θ.

Remark. The set Θ can be in principle discrete or continuous. In the
following sections, unless otherwise stated, it is assumed that Θ is in fact
finite. Moreover, we shall always assume the following conditions that
simplify our treatment, with no significant loss of generality:

• for each θ, the distribution p(·|θ) has full support, that is p(o|θ) > 0

for each o. We shall sometimes denote the distribution p(·|θ) as pθ;

• for any pair of parameters θ 6= θ′, one has pθ 6= pθ′ .

Example 3.1.1 A very simple possibility, but one widely used in practice,
is to assume a set of binary outcomes representing success and failure, say
O = {o, ō}, which are generated according to a Bernoulli distribution:
p(o|θ) = θ and p(ō|θ) = 1− θ, where θ ∈ Θ ⊆ (0, 1).

Another possibility is to rate a service’s quality by an integer value in
a range of n+ 1 values, O = {0, 1, ..., n}. In this case, it is sometimes sen-
sible to model the parties’ behaviour by Binomial distribution Bin(n, θ),
with θ ∈ Θ ⊆ (0, 1) (somehow the discrete analog of a continuous Gaus-
sian distribution). That is, the probability of an outcome o ∈ O for an
interaction with a party with a behaviour θ is p(o|θ) =

(
n
o

)
θo(1 − θ)n−o.

In the following, we shall mostly concentrate on discretized sets of pa-
rameters. E.g. Θ = {0.1, 0.2, · · · , 0.9}.

3.1.2 Decision Framework

Reputation scores used to drive parties’ interactions are computed on
the basis of a party’s past behaviour, given as a sequence of observations
on = (o1, ..., on) (n ≥ 1). These may derive from direct interaction of
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the user, or be acquired by the user by different means (e.g. they may
be gathered and provided by an online evaluation support system). Ir-
respective of how on is acquired, the basic idea – which will be studied
analytically in Section 3.3 – is that the sequence on is a realization of a
random vector On = (O1, ...On), where the random variables Oi are i.i.d.
given θ ∈ Θ: Oi ∼ p(·|θ).

A decision d = g(on) ∈ D is taken on the basis of the past behaviour.
This decision may however incur in a loss L(θ, d), depending on the true
behaviour θ of the ratee and on the taken decision itself. These concepts
are formalized below.

Definition 3.1.2 (Decision Framework) A decision framework is a
quadruple DF = (S,D,L(·, ·), {g(n)}n≥1), composed by an observation sys-
tem S = (O,Θ,F , π(·)), a decision set D, a loss function L(·, ·) = Θ × D →
R+, and a family of decision functions {g(n)}n≥1, one for each n ≥ 1,
g(n) : On → D.

L(θ, d) is a (in general, user-defined) function that quantifies the loss
incurred when making a decision d ∈ D, given that the real behaviour of
the party is θ ∈ Θ. In the bayesian decision theory, the decision-making
process is formalized via decision functions. For any n, a decision func-
tion is a function g(n) : On → D (the superscript (n) will be normally
omitted when n is clear from the context). We refer to Subsection 3.1.4
for examples and discussion about decision functions.

There are two main types of decisions one may wish to make when
interacting with a party: evaluation of the party’s behaviour, hence rep-
utation; or the prediction of the outcome of the next interaction. In order
to distinguish between these two cases, we define two instances of the
above decision framework that differ by the definition of the decision
set. In a reputation framework, one has D = Θ, that is the decision is made
about the behaviour. In a prediction framework, one has D = O, that is
the decision is made about the outcome of the (next) interaction.
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3.1.3 Loss and Decision Functions

Loss functions (see Section 2.3) evaluate the consequences of possible
decisions associating a loss to each decision. The choice of such functions
depends on the application at hand and is, ultimately, responsibility of
the user of the reputation system. For example, there could be monetary
or economic losses connected to taking a given decision in a given state
of the world. Below, we shall limit ourselves to indicate a few concrete
examples of such loss functions.

For a reputation framework (D = Θ), one’s objective may be to min-
imize a sort of distance between the true behaviour θ and the inferred
reputation θ′. A common way to do so is to employ KL-divergence
(see Section 2.2 ) as a measure of distance between probability distri-
butions, and set: L(θ, θ′) = D(p(·|θ′)||p(·|θ)). This loss function takes
on a (proper) minimum value when θ = θ′, with L(θ, θ′) = 0. It
is also a legitimate choice to consider the two arguments exchanged:
L(θ, θ′) = D(p(·|θ)||p(·|θ′)), although the significance of this measure
is less clear to us. Other measures can be based on distance between
probability distributions seen as real valued vectors; one we shall con-
sider is norm-1 distance: L(θ, θ′) = ||p(·|θ) − p(·|θ′)||1. Finally, if Θ ⊆ R,
a sensible choice might be L(θ, θ′) = |θ − θ′|. For a prediction frame-
work (D = O), one generally considers loss functions that are minimized
when the probability of an outcome is maximum. One such loss func-
tion is L(θ, o) = − log p(o|θ), that is, the Shannon information content
of an outcome o: less probable the outcome o, more information/sur-
prise (and loss) it conveys. Such function takes its minimum value for
oθ = arg maxo∈O p(o|θ) with L(θ, oθ) = − log maxo∈O p(o|θ) = H∞(pθ).
Here,H∞ denotes min-entropy of a probability distribution/random vari-
able.

3.1.4 Decision Functions

As already discussed, in trust and reputation systems the decision-
making process consists of choosing a behaviour θ ∈ Θ or a rating value
o ∈ O. We model such a process via decision functions. In this sec-
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tion we discuss the definition of three specific decision functions. In the
next section, we will argue that two of these functions are, in a precise
sense, asymptotically optimal for all types of risks and of loss functions.
It is possible to formulate decision functions through classical statisti-
cal inference procedures such as Maximum Likelihood (ML) and Maximum
A Posteriori (MAP) estimation (see, e.g., [Hei]). Essentially, the ML rule
yields the θ maximizing the likelihood of the observed on - equivalently,
minimizing the KL distance between the empirical distribution of on and
pθ (see [Kul96]). The MAP rule yields the θ whose posterior probability
given on is maximum.

Definition 3.1.3 (ML and MAP decision function) Let on = (o1, ..., on) be
a sequence of observations. Then a ML decision function g(ML) : On → Θ
satisfies

g(ML)(on) = arg minθD(ton ||p(·|θ)).
A MAP decision function g(MAP) : On → Θ satisfies

g(MAP)(on) = θ implies p(θ|on) ≥ p(θ′|on) for each θ′ ∈ Θ.

Note that implementation of the MAP rule implies knowledge of the a
priori distribution π(·), which may be sometimes difficult or impossible
to estimate. Fortunately, MAP and ML are asymptotically equivalent (and
optimal). Despotovic and Aberer in [DA04] propose the use of reputa-
tion functions based on ML estimation; we use such functions in Section
3.3. Similarly, Jøsang and Ismail in [JI02] propose the use of a reputation
function based on the Beta probability density function Beta(α, β). The
reputation function is defined for a set of parameters Θ = [0, 1] and a
binary set of ratings value O = {o, ō}, representing satisfactory or unsat-
isfactory interactions.

Definition 3.1.4 (Beta decision function) Let on = (o1, ..., on) be a se-
quence of observations and let O = {o, ō} be the observable set. Then the Beta
decision function g(Beta) : On → Θ = (0, 1) is defined as

g(Beta)(on) =
α+ 1

α+ β + 2

where α is the number of occurrences of o in on and β is the number of occur-
rences of ō in on.
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3.2 Risk Analysis for Trust and Reputation Sys-
tems

In this section we introduce two measures for the evaluation of reputa-
tion functions, based on the expected and worst loss, respectively. We
also discuss the notion of rate of convergence. In what follows, we fix
a generic decision framework S; for each θ ∈ Θ, we assume a decision
dθ ∈ D exists that minimizes the loss given θ: dθ = arg mindL(θ, d). Let
us first consider the definition of frequentist risk. For a parameter θ ∈ Θ,
the frequentist risk associated to a decision function g after n observation
is just the expected loss computed over On, that is explicitly

Rn(θ, g) =
∑

on∈On
p(on|θ)L(θ, g(on)).

Relying on this definition we introduce first the bayes risk.

Definition 3.2.1 (Bayes risk) Let g : On → D be a decision function and
π(·) a prior probability distribution on the parameters set Θ. The bayes risk
associated to g after n observations is the expected loss with respect to θ

rn(π, g) = Eπ[Rn(θ, g)] =
∑
θ

π(θ)Rn(θ, g).

The minimum bayes risk is defined as r∗ =
∑

Θ π(θ)L(θ, dθ).

The bayes risk is the expected value of the risk Rn(θ, g), computed
with respect to the a priori distribution π(·), that represents the a priori
information over possible behaviours in the system. The second measure
we introduce is the worst risk.

Definition 3.2.2 (Worst risk) Let g : On → D be a decision function and Θ
the parameters set. The worst risk associated to g after n observations is given
by

wn(g) = max
θ∈Θ

Rn(θ, g).

The minimum worst risk is defined as w∗ = maxθ∈Θ L(θ, dθ).

The worst risk is thence the maximum risk Rn(θ, g) over possible pa-
rameters θ ∈ Θ.
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Example 3.2.2 We compute the values of both minimum bayes and worst
risks for two specific loss functions. We use the definitions of loss fun-
cions given in previous sections. The first definition is for a reputa-
tion framework, the second for a prediction framework. Let L(θ, θ′) =

D(p(·|θ′)||p(·|θ)) be the loss function for a reputation framework. Then
we have

r∗ =
∑
Θ

π(θ)D(p(·|θ)||p(·|θ)) = 0 , w∗ = max
θ∈Θ

D(p(·|θ)||p(·|θ)) = 0.

Let now L(θ, o) = − log p(o|θ) be the loss function for a prediction frame-
work. We have

r∗ =
∑
Θ

π(θ) log
1

p(oθ|θ)
=
∑
Θ

π(θ)H∞(pθ) ,

w∗ = max
θ∈Θ

log
1

p(oθ|θ)
= max

θ∈Θ
H∞(pθ).

3.3 Analysis Results

In this section we discuss some results about the convergence of risk
quantities rn = rn(π, g) and wn = wn(g) to minimum bayes risk and
worst risk, respectively, and their rates of convergence. We first examine
risks in a reputation and in a decision framework; then briefly discuss
exponential bounds on the probability of exceeding a given loss.

Given a decision framework, it is important to establish not only the
limit of the risk functions, rn and wn, as the number n of available ratings
grows, but also how fast this limit is approached. The rate of convergence
tells us how fast this limit is approached. The concept of rate is important
for two reasons. Firstly, it is desirable to distinguish between reputation
functions with different rates, as a reputation function with a high rate
may require considerably less observations in order to achieve an im-
provement of the risks value, compared to a reputation function with a
low rate. Secondly, knowledge of the rate will allow us to obtain quick
and accurate estimations of the risk functions rn and wn depending on
n.
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3.3.1 Reputation

In what follows, for the purposes of our analysis, we fix a generic repu-
tation framework RF = (S,Θ,L(·, ·), {g(n)}n≥1). In order to discuss our
results in the simplest possible form, we shall assume Θ is finite, and that
L(θ, θ′) > L(θ, θ) for each θ 6= θ′. We let

R = min
θ 6=θ′

C(pθ, pθ′)

be the least Chernoff Information between any pair of distinct distribu-
tions pθ and pθ′ in F = {p(·|θ) | θ ∈ Θ}. We shall often abbreviate rn(π, g)

as just rn, similarly for wn.
The following theorem states that the best achievable rate of conver-

gence to the minimum values of any decision function, for both bayes
and worst risks, is bounded above by R.

Theorem 3.3.1 Assume lim rn(π, g) exists. Then

1. limn→∞ rn(π, g) ≥ r∗;

2. if limn→∞ rn(π, g) = r∗ then rate(rn(π, g)) ≤ R, if defined.

Similarly for the worst risks wn and w∗.

Proof. We first consider the case of bayes risk rn and r∗. For each n ≥
1 and θ, let A(n)

θ = g(n)−1(θ) denote the acceptance region for θ. We
start by considering the frequentist risk and obtain the following chain
of (in)equalities:

Rn(θ, g) =
∑
On

p(on|θ)L(θ, g(on)) (3.1)

=
∑
θ′ 6=θ

p(A
(n)
θ′ |θ)L(θ, θ′) + p(A

(n)
θ |θ)L(θ, θ) (3.2)

=
∑
θ′ 6=θ

p(A
(n)
θ′ |θ)L(θ, θ′) + (1− p(A(n)

θ

c
|θ))L(θ, θ) (3.3)

=
∑
θ′ 6=θ

p(A
(n)
θ′ |θ)L(θ, θ′) + (1−

∑
θ′ 6=θ

p(A
(n)
θ′ |θ))L(θ, θ) (3.4)

= L(θ, θ) +
∑
θ′ 6=θ

p(A
(n)
θ′ |θ)(L(θ, θ′)− L(θ, θ)) (3.5)

≥ L(θ, θ) (3.6)
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where the last inequality stems from L(θ, θ′) > L(θ, θ). Averaging on all
θ’s we obtain the first part.

Concerning the second part, let m = minθ 6=θ′ L(θ, θ′)− L(θ, θ), where
m > 0. From (3.5), we get

Rn(θ, g) ≥ L(θ, θ) + p(A
(n)
θ

c
|θ) ·m

which, when averaged over all θ’s, and taking into account that
P

(g)
e (n) =

∑
θ π(θ)p(A

(n)
θ

c
|θ), yields

rn(π, g) ≥ r∗ + P (g)
e (n)m ≥ r∗ + Pe(n)m

where Pe(n) denotes the MAP probability of error and the last step stems
from the optimality of MAP. The above inequality implies − 1

n log(rn −
r∗) ≤ − 1

n log(Pe(n)m). Taking the limit on both sides (assuming it exists
on the left-hand side), from (2.10) we obtain that the rate of rn, if it exists,
is ≤ rate(Pe(n)) = R.

The case of the worst riskwn is similar, as the rate of rn =
∑
θ R

n(θ, g)

is determined by the slowest of the summands Rn(θ, g), that is the
one with the smallest rate, which also yields maxθ R

n(θ, g), for n large
enough.

The following theorem confirms that both MAP and ML are asymptot-
ically optimal decision functions. Such functions achieve minimum loss
value and maximum rate of convergence.

Theorem 3.3.2 Assume g is either a MAP or a ML decision function. Then
limn→∞ rn = r∗ and moreover rate(rn) = R. Similarly for wn.

Proof. We consider the case of bayes risk rn. Let g be a MAP function
first. Let M = maxθ 6=θ′ L(θ, θ′) − L(θ, θ) > 0. From (3.5), it is easy to
prove that

Rn(θ, g) ≤ L(θ, θ) +
∑
θ′ 6=θ

p(A
(g)
θ′ |θ) ·M (3.7)

= L(θ, θ) + p(A
(g)
θ

c
|θ) ·M . (3.8)
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Averaging over θ, this implies

rn ≤ r∗ + Pe(n) ·M (3.9)

where as usual Pe(n) denotes the MAP error probability. From Theo-
rem 3.3.1(1) we know that it must be rn ≥ r∗, hence limn r

n = r∗,
which proves the first part. Concerning the rate, (3.9) implies that
rate(rn) ≥ rate(Pe(n)) = R; the thesis for this part then follows from
Theorem 3.3.1(2).

The case of g ML is equivalent to the case of g MAP with a uniform
prior over Θ, which yields again the same results.

For the case of the worst risk wn, the same considerations discussed
in the proof of Theorem 3.3.1 apply.

In essence, the above results can be summarized by saying that, under
an optimal decision function, rn behaves as ≈ r∗ + 2−nR, and wn as
≈ w∗ + 2−nR.

3.3.2 Prediction

We fix a generic prediction framework PF = (S,O,L(·, ·), {h(n)}n≥1).
For a distribution p, let Argmax(p) denote the set of observables max-
imizing p(o). We assume Θ is finite, and that for each θ there is oθ ∈
Argmax(pθ) such that L(θ, o) > L(θ, oθ) for each o 6= oθ. Like in the pre-
ceding subsection, we let R denote the minimum Chernoff Information
between any pair of distinct distributions on O.

We shall limit our discussion to the following result of practical in-
terest, which describes the form of the (optimal) prediction function: as
expected, given on, one has to first identify the underlying distribution
pθ and then take the observable that maximizes this distribution. The
proof goes along the lines of the results in the preceding subsection and
is omitted.

Theorem 3.3.3 Let g = {g(n)}n≥1 be a family of ML decision functions. As-
sume h(n)(on) = oθ where θ = g(n)(on). Then limn→∞ rn = r∗ and
rate(rn) = R. Similarly for wn.
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3.3.3 More Exponential Bounds

We discuss here the probability that the loss deviates from its minimal
value above a given threshold. These results apply to the case g is the ML

or MAP decision functions. Such results do not depend on the parameter
θ but only on the number n of observations and the threshold value fixed
for the loss. The results also apply to the case when Θ is continuous. We
begin by considering the KL-loss function.

Theorem 3.3.4 Let g be the ML or MAP decision function. Let L(θ, θ′) =
D(p(·|θ′)||p(·|θ)) be the KL loss function. Fix any θ ∈ Θ and assume On is a
n-sequence of random variables i.i.d. given θ, that is Oi ∼ p(·|θ). Let ε > 0.
Then

Pr(L(θ, g(On)) > ε) ≤ (n+ 1)|O|2−nε .

Proof. Consider the set U (n)
θ (ε) = {on ∈ On|D(ton ||p(·|θ)) ≤ ε}. By

definition of g and L(θ, θ′) = D(p(·|θ′)||p(·|θ)) we have

Pr(L(θ, g(On)) > ε) = Pr(On /∈ U (n)
θ (ε))

= Pr(D(tOn ||p(·|θ)) > ε) ≤ (n+ 1)|O|2−nε

where the last inequality follows by Theorem 11.2.1 in [CT06].

The above result can be easily extended to the case of norm-1 loss
function.

Corollary 3.3.5 Let g be the ML or MAP decision function. Let L(θ, θ′) =
||p(·|θ′) − p(·|θ)||1, be the norm-1 distance loss function. Fix any θ ∈ Θ and
assume On is a n-sequence of random variables i.i.d. given θ, that is Oi ∼
p(·|θ). Let γ > 0 . Then

Pr(L(θ, g(On)) > γ ) ≤ (n+ 1)|O|2−n
γ2

2 ln 2 .

Proof. A consequence of the preceding theorem and of Pinsker’s in-
equality (Lemma 11.6.1 in [CT06]), which relates norm-1 distance to KL-
divergence: for any two distributions p and q on the same finite set O,
we have D(p||q) ≥ 1

2 ln 2 ||p− q||
2
1.
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Figure 2: Empirical and asymptotic bayes risk trend for γ = 0.1 and γ = 0.2

3.4 Examples of Systems Assessment

We simulate a system composed by a number of peers, for our study
we used the GNU Octave1 software. In our first experiment, the be-
haviour of each peer is modelled as a Bernoulli distribution B(θ) over
the setO = {0, 1}, representing successful and unsuccessful interactions,
with θ being the success probability. The parameter θ is drawn from a
fixed, finite set Θ ⊆ (0, 1): we assume Θ to be a discrete set of N points
0 < γ, 2γ, ..., Nγ < 1, for a fixed positive parameter γ. Moreover, we
assume a uniform a priori distribution π(·) over Θ. We consider the case
of reputation, and fix the loss function to be L(θ, θ′) = ||p(·|θ)− p(·|θ′)||1.
The purpose of this first experiment is twofold: (a) to study the rate of
convergence of the risk functions to their limit values depending on γ;

1http://www.gnu.org/software/octave/
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Figure 3: Empirical and asymptotic worst risk trend for γ = 0.1 and γ = 0.2

and (b) to compare the analytical approximations

rn ≈ r∗ + 2−nR and wn ≈ w∗ + 2−nR,

where R = minθ 6=θ′ C(pθ, pθ′), with the empirical values of rn and wn

obtained through the simulations.
For our analysis a ML reputation function g is used: we know by The-

orem 3.3.2 that the convergence to both minimum bayes and worst risks
is assured for this kind of functions. Varying the value of γ, we analyse
how the rate of convergence changes. We consider the following values:
γ = 0.2, γ = 0.1 and γ = 0.05, for which we get the values of the rate:
0.029447, 0.0073242 and 0.0018102, respectively. For smaller values of γ
an improvement on the risk values requires a larger amount of observa-
tions, compared to larger values of γ. Figures 2 and 3 graphically show
the trend of bayes and worst risks with respect to different values of γ.We
compare the asymptotic approximation of the bayes and worst risks with
their empirical values obtained through simulations, for different values
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Figure 4: Bayes and worst risks trend for different reputation functions

of γ. The value of γ affects the risk value because it determines the struc-
ture of the set Θ. Intuitively what happens is that: for large values of
γ, the incurred loss will be exactly zero in most cases. On the contrary,
for small values of γ, the incurred loss will be small but nonzero in most
cases. As we can observe in Figures 2 and 3 , the bayes and worst risks
converge to their limit values according to their rates of convergence.
Moreover, there is a good agreement between the asymptotic approxi-
mation and the empirical values.

In our second experiment, we analyse a system with respect to the
use of different reputation functions. Like in the previous example, each
peer exhibits a Bernoulli behavior, with the parameter θ ranging in Θ.
This time, though, the prior distribution π(·) on Θ is a binomial cen-
tered on the value θ = 0.5, Bin(|Θ|, 0.5). We compare the use of a ML

and a MAP reputation function, through the study of both bayes and
worst risks trend. For simplicity, we fix the value of γ to 0.2 and we
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use norm-1 distance as a loss function. Figure 4 shows the trend of both
bayes and worst risks for both reputation functions. As expected, MAP

performs significantly better than ML when a small number of observa-
tions is available. This difference is due to the the fact that MAP actually
takes advantage of the a priori knowledge represented by π(·), differ-
ently from ML. As the number of observations increases the effect of the
prior washes out and both functions converge to the same value – r∗ or
w∗, depending on the chosen risk model – as predicted by the theory.

3.5 A refined rating mechanism

In this section we discuss a refinement of the observation and rating
mechanism that takes into account possible raters’ misbehaviour. In cer-
tain environments, it might be the case that not all the parties in the sys-
tem will rate faithfully others parties: some raters may have a (possi-
bly malicious) tendency to under- or over-evaluate the outcomes of in-
teractions they are involved in. To take into account such form of mis-
behaviour, we have to consider a refined data generation model, where
the probability of observing a given rating value does not depend solely
on the behaviour of the ratee, but also on some unobservable bias charac-
terizing the rater’s behaviour.

3.5.1 Partial Observation Model

In this refined model, we assume an additional nonempty setH of raters
behaviours, over which an a priori probability measure ρ(·) is given. In
general, the behaviour of the system is characterized by a joint probabil-
ity measure p(o, h, θ). However, as a simplifying assumption, we postu-
late that the rater’s behaviour h is independent of the ratee’s behaviour
θ. In other words, we postulate the following factorization:

p(o, h|θ) = p(o|h, θ)ρ(h) (3.10)

for each o and θ (in case the variables h and θ were not independent, in
the expression above one should replace ρ(h) = p(h) by p(h|θ)). This
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means that the data generation model is completely specified by a table
p(o|h, θ) plus the priors π and ρ, as stated in the following definition.

Definition 3.5.1 (Partial Observation System) A partial observation
system is a tuple S = (H,O,Θ,F , π(·), ρ(·)), where π(·) and ρ(·) are
probability measures on Θ andH, respectively, and F = {p(·|h, θ)}h∈H,θ∈Θ is
a parametric family of probability distributions on O.

We discuss below some examples of partial observation systems.

Example 3.5.3 Consider a system with two types of raters, honest and
dishonest, two types of ratings, satisfactory and unsatisfactory and
where the behaviour of each ratee is modelled by a Bernoulli distribu-
tion. More precisely, we let H = {0, 1} be the set of raters behaviours,
where h = 0 denotes an honest rater and h = 1 a dishonest one. We let
O = {0, 1} be the set of rating values, where o = 0 and o = 1 denote un-
satisfactory and satisfactory interactions, respectively. We assume a set
Θ ⊆ (0, 1) of ratees’ parameters. Assuming that dishonest raters give a
rating value stating the opposite of the actual interaction outcome, while
honest raters do not modify it, we model the rating mechanism p(o|h, θ)
as follows: p(·|h = 0, θ) = B(θ) and p(·|h = 1, θ) = B(1− θ).

Example 3.5.4 Consider a system where each rating values are integers
in O = {0, 1, ...,m}. We assume that the behaviour of each ratee is mod-
elled by a certain binomial distributions Bin(m, θ), with θ ∈ Θ ⊆ (0, 1).
Assume now that raters are partitioned into three types: pessimistic, op-
timistic and neutral raters. Specifically, we consider a set of raters’ be-
haviour H ⊆ (−1, 1), where h < 0 denotes a pessimistic rater, h > 0 an
optimistic one and h = 0 a neutral rater. In such a setting, we model
the rating mechanism p(o|h, θ) as follows: p(·|h, θ) = Bin(m, θ(1 + h)) if
h < 0, p(·|h, θ) = Bin(m, θ) if h = 0, and p(·|h, θ) = Bin(m, [θ+ (1− θ)h])

if h > 0.

Example 3.5.5 Consider a system with two types of ratings, satisfactory
and unsatisfactory and where the behaviour of each ratee is modelled
by a Bernoulli distribution. Thus O = {0, 1}. We assume that raters
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are grouped into three types, exhibiting different bias about the ratees’s
behaviour.

Informally, raters of the first type tend, at varying degrees, to am-
plify their perception of the ratees’ behaviour. Thus, a ratee that behaves
mostly satisfactorily will have, with this type of raters, higher probabil-
ity of receiving positive evaluations, compared to her actual behaviour.
Similarly, a ratee that behaves mostly unsatisfactorily will have, with this
type of raters, higher probability of receiving negative evaluations, com-
pared to her actual behaviour. Raters of the second type are patholog-
ical liars that tend, at varying degrees, to amplify at the opposite their
perception of the ratees’ behaviour: ratees acting positively will have a
greater probability of receiving negative evaluations, and vice-versa. Fi-
nally, neutral raters are objective evaluators, that do not exhibit neither
types of bias.

Formally, we consider the set of raters’ behaviourH = R, where h > 0

denotes a rater of the first type, h < 0 a rater of the second type and h = 0

is an objective rater. We model the rating mechanism p(o|h, θ) by a form
of exponential distribution (specifically, a Gibb’s distribution):

p(o = 1|h, θ) = θehθ

Z p(o = 0|h, θ) = (1−θ)eh(1−θ)
Z

where Z = θehθ + (1− θ)eh(1−θ) .

Note that, as h → +∞, for θ > 0.5, we have p(o = 1|h, θ) → 1 while for
θ < 0.5 we have p(o = 1|h, θ)→ 0. The situation for h→ −∞ is specular.
If the behaviour of the ratee is the Bernoulli distribution of parameter
θ = 0.5, i.e. the values are equiprobable, the raters’ behaviour does not
have any effect on the evaluation.

3.5.2 Computing Decision Functions

We briefly discuss the computation of the decision functions when the
rating mechanism introduced in the previous section is assumed. First,
we make the data-generation model precise in the case of multiple ob-
servations. We assume that the observations on = o1, ..., on and the
corresponding hidden raters’ values hn = h1, ..., hn are generated i.i.d.
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given the parameter θ ∈ Θ. In other words, we assume a sequence of
pairs of random variables (O1, H1), (O2, H2), ... that are i.i.d. and such
that (Oi, Hi) ∼ p(o, h|θ), for θ ∈ Θ. In our model, the rater’s parameter
h is however never observed: according to the statistical terminology, h
is missing completely at random. Under this assumption, we can use the
marginal likelihood of the observable parameters, p(on|θ), to estimate
the parameter θ (see, e.g., [Bar12]). In other words, both ML and MAP,
seen as functions of the visible parameter on, are still valid decision func-
tions, and the results shown in Section 3.3 carry over immediately to the
present setting.

Now, let us discuss how a ML decision function could be efficiently
implemented – the discussion for MAP is conceptually similar and omit-
ted. Implementing ML is equivalent to maximizing p(on|θ) w.r.t. to θ,
given on. In principle, taking (3.10) into account, for any given θ one
can compute p(on|θ) from the data available in the model by ordinary
marginalization, as follows (below, p(on|hn, θ) = Πip(oi|hi, θ); the exten-
sion of measure ρ to Hn is still denoted by ρ; integrals are to be replaced
by ordinary summations in caseH is discrete):

p(on|θ) =

∫
Hn

p(on, hn|θ) dρ(hn) =

∫
Hn

p(on|hn, θ)ρ(hn) dρ(hn) .

(3.11)
In practice, the rightmost term in (3.11) can be difficult to compute, let
alone maximize: in particular, the hidden variables hn introduce a de-
pendency between p(on|hn, θ) and ρ(hn). Fortunately, there is a well
known approach for the practical computation of the Maximum Like-
lihood in the presence of hidden variables, the Expectation-Maximization
(EM) algorithm [Bar12]. The EM algorithm is an iterative procedure used
in the cases where the equations for the maximization of the likelihood
cannot be solved directly. Such an approach can be used for efficiently
implementing the decision functions we have considered in the previ-
ous sections2. We refer to the relevant literature for further details, e.g.
[Bar12].

2To take effectively advantage of EM, one may have to impose restrictions on the form
of Θ (typically assumed to be continuous) and H (typically assumed to be discrete).
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Chapter 4

Analysis of Reputation
Systems Specifications

Once a reputation system has to be deployed in a network environment
and set up for such environment, questions like the following may arise:
Which reputation model is more suitable for the given environment?
Does the model meet the expected behaviour? How does parties’ be-
haviour affect their reputations? How do their initial reputation scores
affect the model?

In this chapter, we propose using a coordination language equipped
with a formal semantics to deal with the above issues. On the one hand,
in the last two decades coordination languages have been used for mod-
eling and programming a variety of different systems that are operat-
ing in open and non-deterministic environments [OV11]. In particular,
tuple-based languages (see, e.g., [RCD01] for a survey) have been effec-
tively used to implement coordination mechanisms in a distributed set-
ting. On the other hand, formal methods are perfectly suitable means
to precisely describe the relevant aspects of distributed systems, to state
and prove their properties, and to direct attention towards issues that
might otherwise be overlooked. For our analysis we focus on the coor-
dination language KLAIM [DFP98], because it provides powerful coor-
dination mechanisms based on the tuple-based communication model
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Figure 5: Networked Trust Infrastructure

and, moreover, it is equipped with formal tools supporting verification
and, most importantly, it has been specifically designed for network-
aware modelling of distributed applications. Thus, KLAIM appears to be
well suited for specifying trust and reputation systems and for reasoning
about them.

A networked trust infrastructure allows parties of a reputation system
to exchange ratings and interact. For our analysis we consider a gen-
eral infrastructure, graphically depicted in Figure 5, where a rating server
collects all ratings from system’s parties and makes them publicly avail-
able. Every party can play the role of a client, of a provider, or both, and
may offer different kinds of resources (e.g., CPU time, disk space, files,
services). Therefore, whenever a party needs a resource, it queries the
rating server to determine the reputation of all parties providing the re-
source. Then, it selects one of the providers with the highest reputation
score and, after the interaction, rates it according to the quality of the pro-
vided resource. Notably, we consider a centralised rating server, because
it is a widely used setting for networked trust infrastructures and how
ratings are stored in the network is not a parameter of interest at this

56



level of analysis. On top of the general infrastructure described so far,
different kinds of reputation system can be layered, which mainly differ
for the model they use to aggregate ratings when computing reputation
scores.

In our analysis we proceed in three steps as follows:

1. We model the considered reputation system with KLAIM. Specifi-
cally, we provide a ‘schema’ specification that is parametric w.r.t.
the reputation model used to determine the parties’ reputation
(and w.r.t. other parameters of the system). The specification of
the given system is obtained by appropriately instantiating the pa-
rameters of the generic specification.

2. We enrich the specification with stochastic aspects, using the
KLAIM’s stochastic extension STOKLAIM [DKL+07], and for-
mally express the desired properties using the stochastic logic
MOSL [DKL+07].

3. We check the properties of interest against the STOKLAIM specifi-
cation by means of the analysis tool SAM [DKL+07; Lor10].

We remind the reader that KLAIM and related analysis tools are de-
scribed in Section 2.4. We also remind that, in our work, we focus on
reputation models that use a probabilistic approach for computing rep-
utation scores. The verification methodology proposed in this chapter
is aimed at giving a contribution to the design and integration issues of
reputation systems. Specifically our proposal is meant to be used in the
design phase, i.e. when developers have to choose which reputation sys-
tem is more suitable for the given environment and have to tune system
parameters.

4.1 Formal Specification of Reputation Systems

In this section, we present the relevant aspects of the KLAIM specification
of a reputation system deployed in the general infrastructure previously
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described and graphically depicted in Figure 5. For the sake of readabil-
ity, the specification code reported in this section is sometimes accompa-
nied by comments (strings preceded by // indicates that the rest of the
line is a comment).

The overall system can be rendered in KLAIM as follows:

srating :: 〈“ratingList”, sparty 1,m1〉
| 〈“rating”, 1, sparty 1, srater, vrating〉
| . . . | 〈“rating”,m1, sparty 1, s

′
rater, v

′
rating〉

. . .

| 〈“ratingList”, sparty n,mn〉
| 〈“rating”, 1, sparty n, s

′′
rater, v

′′
rating〉

| . . . | 〈“rating”,mn, sparty n, s
′′′
rater, v

′′′
rating〉

‖
sparty 1 :: Aparty(b1) | CproviderList 1

‖
. . .

‖
sparty n :: Aparty(bn) | CproviderList n

Each system party i is rendered as a KLAIM node whose locality name
is sparty i and, similarly, the rating server is rendered as a node, with lo-
cality name srating, as well. The rating server provides the list of ratings
concerning each party in the system. Such list is rendered in KLAIM as a
set of tuples of the form 〈“rating”, i, sparty j , srater, vrating〉 denoting that
sparty j received the rating value vrating from srater, such rating value
is the i-th element of the list concerning sparty j . A tuple of the form
〈“ratingList”, sparty j ,mj〉, denoting that the list for sparty j has length
mj , is used to read the whole list. Such tuple is used also for coordinat-
ing read and write operations on the list: actions in, out and read act on
this tuple by implementing a readers-writers lock mechanism. Finally,
each party node sparty j contains a process Aparty(bh), specifying the op-
erations carried out by the party, and a list CproviderList j of providers
known by the party.
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The list CproviderList j is rendered in KLAIM as follows:

CproviderList j , 〈“providerList”, n〉 | 〈“provider”, 1, sparty 1〉

| . . . | 〈“provider”, n, sparty n〉

The tuple 〈“providerList”, n〉 denotes that there are n providers in the list,
whereas the tuples of the form 〈“provider”, i, sparty i〉 denote that sparty i
is the i-th provider in the list.

Depending on the processes running on parties node, each party
sparty j can play different roles: it can provide resources, require re-
sources, or both. We consider here the more complete case, where
Aparty(b) is defined as follows:

Aparty(b) , Aprovider(b) | Aclient

The parameter b denotes the party’s behaviour, i.e. the value b is the
distribution parameter θ determining party’s behaviour as discussed in
Section 2.5. In the rest of the section we discuss the specification of the
processes Aprovider(b) and Aclient. We also explain which parts of the
system specification have to be customized for the analysis of different
reputation systems.

The process for the provider role is defined as follows:

Aprovider(b) ,

// wait for a new resource request
in(“request”, !lapplicant)@self ;

// provide the resource and restart
(AprovideResource(b, lapplicant) | Aprovider(b) )

A provider waits for requests from clients and when a new request
arrives it provides the resource to the client. The processing of a re-
source request is based on the definition of the process AprovideResource,
which provides to the applicant a resource whose quality depends on
provider’s behaviour. The definition of such process may vary from a
reputation system to another. In fact, this is a parameter that must be
specified when considering a specific reputation system.
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The process for the client role, instead, is defined as follows:

Aclient ,

// initialise the tuple containing the most trusted party
out(“mostTrusted”, self ,NO ONE)@self ;

// read the list of known providers
read(“providerList”, !m)@self ;

for j = 1 tom {
read(“provider”, j, !lprovider)@self ;

// compute the reputation of the j-th provider
AevaluateReputation(lprovider);

// retrieve the computed reputation value
in(“reputation”, !rep)@self ;

// update the most trusted party
in(“mostTrusted”, !ltrusted, !repMT )@self ;

if (repMT < rep) then{
out(“mostTrusted”, lprovider, rep)@self

} else {
out(“mostTrusted”, ltrusted, repMT )@self

};
};
// get the most trusted provider and then check its reputation
in(“mostTrusted”, !ltrusted, !repMT )@self ;

if (MIN REPUTATION 6 repMT ) then{
// send the resource request to the provider
out(“request”, self)@ltrusted;

// receive the resource
in(“resource”, !quality)@self ;

// check resource’s quality and rate the provider
Arate(b, quality, ltrusted)

};
Aclient(b)

A client cyclically determines the most trustworthy provider and re-
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quests a resource to it. To this aim, the client first initializes the tuple
containing the most trustworthy provider using the constant NO ONE

that denotes that there exists no provider for a requested resource. Then,
the client computes the reputation of each known provider through the
process AevaluateReputation, whose skeleton definition is as follows:

AevaluateReputation(l) ,

. . .possible variables initialisation . . .
// read the rating values of the provider l
read(“ratingList”, l, !m)@srating;

for j = 1 tom {
// get an element of the list
read(“rating”, j, l, !lrater, !rating)@srating;

. . .use rating to compute the reputation of l . . .
};
. . . compute reputation . . .
out(“reputation”, rep)@self

The above process differs from a reputation system to another and is,
indeed, a parameter that must be specified to consider a given rep-
utation system. Once the client has selected the provider, it checks
if the provider’s reputation is above a given threshold. The constant
MIN REPUTATION is the system’s parameter that specifies the mini-
mum reputation required by the client for an interaction with a provider.
If the provider’s reputation score is above the MIN REPUTATION

value, the client sends a resource request to the provider and waits for
the resource. Finally, once the client has received the resource, the pro-
cess Arate evaluates the quality of the obtained resource and rates the
provider accordingly. As in the case of process AevaluateReputation, the
definition of the process Arate may differ from a reputation system to
another.
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4.1.1 Beta and ML Reputation Systems Specification

For our analyses we consider the Beta and the ML models (already intro-
duced in Section 2.5) in the case of binary ratings (i.e., an interaction is
either ‘satisfactory’ or ‘unsatisfactory’). We report here the KLAIM pro-
cesses defining such reputation models. Since both reputation models
rely on binary ratings and we use a common notion of quality (i.e., a re-
source is either ‘good’ or ‘bad’), the following processes are the same for
both models:

AprovideResource(b, lapplicant) ,

random value := random(1);

if (random value > b) then{
// provide a bad quality resource
out(“resource”, “bad”)@lapplicant

} else {
// provide a good quality resource
out(“resource”, “good”)@lapplicant

}

Arate(quality, l) ,

// get the number of ratings concerning l
in(“ratingList”, l, !m)@srating;

// check the quality of the resource obtained and send
// the rating for the provider to the rating server
if (quality == “good”) then{

out(“rating”,m+ 1, l, self , 1)@srating

} else {
out(“rating”,m+ 1, l, self , 0)@srating

};
out(“ratingList”, l,m+ 1)@srating

The processAprovideResource(b, lapplicant) implements the probabilistic be-
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haviour of the providers, indeed resource quality is determined proba-
bilistically using the distribution determined by the parameter b. The
process Arate(quality, l), as already said, is used by clients to rate
providers accordingly to resource quality. By the specification of such
process it is possible to notice how clients interact (in writing mode) with
a provider’s rating list in mutual exclusion, since the ratingList tuple
acts as lock that must be acquired to add a new rating and released at the
end of this operation.

The process for the computation of the reputation by means of the
Beta model is defined as follows:

AevaluateReputation(l) ,

rep := 0;

positive := 0;

// read the rating values of the provider l
read(“ratingList”, l, !m)@self ;

if (m > 0) then{
for j = 1 tom {

// get an element of the list
read(“rating”, j, l, !lrater, !rating)@self ;

// count the number of positive ratings
if (rating == 1) then{

positive := positive+ 1;

}
rep := (positive+ 1) / (m+ 2);

}
} else {

rep := NO RATINGS;

}
// compute and return the reputation
out(“reputation”, rep)@self

Notably, in case of a provider with no rating value assigned, a de-
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fault value NO RATINGS is used to determine the provider’s reputation
score. Such value is a system’s parameter that must be specified and that
can be tuned in the reputation system under verification.

Instead, the process for the ML model is defined as follows:

AevaluateReputation(l) ,

rep := 0;

positive := 0;

// read the rating values of the provider l
read(“ratingList”, l, !m)@self ;

if (m > 0) then{
for j = 1 tom {

// get an element of the list
read(“rating”, j, l, !lrater, !rating)@self ;

// count the number of positive ratings
if (rating == 1) then{

positive := positive+ 1;

}
rep := positive /m;

}
} else {

rep := NO RATINGS;

}
// compute and return the reputation
out(“reputation”, rep)@self

4.2 Stochastic specification and analysis

In this section, we demonstrate how the KLAIM specification presented
in the previous section can support the analysis of trust and reputation
systems. Our approach relies on formal tools, such as stochastic sim-
ulation, modal logics and model checking, that permit expressing and
evaluating performance measures in terms of logical formulae.
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We enrich the KLAIM specification introduced in the previous section
with stochastic aspects. As an excerpt of the STOKLAIM specification, we
report below the stochastic definition of process AevaluateReputation :

AevaluateReputation(l) ,

. . .

read(“ratingList”, l, !m)@srating : λ1 ;

for j = 1 tom {
read(“rating”, j, l, !lrater, !rating)@srating : λ1 ;

. . .

};
. . . ;

out(“reputation”, rep)@self : λ2

The actions highlighted by a gray background are those annotated with
rates, where λ1 = 37.0 and λ2 = 1400.0. These rates assume that an
ADSL connection (1.5 Mbit/s downstream and 0.5 Mbit/s upstream) is
used and that the operation of reading a rating costs as the transfer of
5KB of data. For the local writing of a reputation value, we assume that
the operation is executed on a local hard drive.

4.2.1 Simulations

The results of some simulation runs of the STOKLAIM specification, per-
formed by using SAM, are reported in Figures 6, 7, 8 and 9 (see Ap-
pendix A for further results). The results are averaged across 1500 sim-
ulation runs1. The charts present the trend of the reputation of a given
party in the system and the error committed by the reputation model in
the computation of reputation scores. In the charts an horizontal line de-
notes the true paty’s behaviour. The x-axis reports the numbers of rating
values used to compute reputation scores. The y-axis reports both the
reputation scores and the error committed. As measure of the error we

1On an Apple MacBook Pro computer (2.4 GHz Intel Core 2 Duo and 4 GB of memory)
simulation of a single run needs an average time of 0.04 seconds.
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Figure 6: Reputation and error trends for parties with behaviour θ = 0 and
no initial ratings assigned

used the norm-1 distance between probability distributions (we already
used it in Chapter 3 as a possible definition for loss functions). In our
analysis we compare the Beta model and the ML model in case of binary
ratings by studying:

• the trend of the reputation score computed by the models, reported
in the charts as ’BETA’ and ’ML’ lines, respectively;

• the trend of the error committed by the models, reported in the
charts as ’Norm-1 BETA’ and ’Norm-1 ML’ lines, respectively.

We compare the two models both in presence and in absence of initials
ratings. Such initials ratings are used to determine the initials reputation
scores for parties, before any interaction in the system.

From simulation data we observe that the ML model performs better
than the Beta model if we consider the computed reputation score. In-
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Figure 7: Reputation and error trends for parties with behaviour θ = 0.20
and no initial ratings assigned

deed the reputation score computed by the ML model is always closer
to the true party’s behaviour than the reputation score computed by the
Beta model. Such evaluation does not give us a complete information
about models performances. Indeed looking at the error committed by
the models, we observe that the ML model does not perform always bet-
ter than the Beta model. Roughly speaking, for behaviour values lower
than θ = 0.9 and higher than θ = 0.1 the error committed by the Beta
model is always lower than the one committed by the ML model. It hap-
pens the opposite for behaviour values lower than θ = 0.1 and higher
than θ = 0.9. Finally, we observe that the Beta model tend to over- or
under- estimate party’s behaviour. Specifically, the Beta model underes-
timates behaviours higher than θ = 0.5, and overestimates behaviours
lower than θ = 0.5. We believe that this is an unwanted behaviour for
trust and reputation models. Indeed the Beta model gives an advantage
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Figure 8: Reputation and error trends for parties with behaviour θ = 0.10
and 4 initial ratings fixing initial reputation score to 0.5

to parties with a bad behavior, computing for them a reputation score (in
average) higher than their true behaviour.

Figures 8 and 9 report some simulation results in the case of initial
rating values. The charts report analysis results in presence of four ini-
tial rating values for each party that fix parties’ initial reputation to 0.5.
We observe that also in this case the ML model performs better than the
Beta model in computing reputation scores. Moreover, we notice that the
ML model benefits from initial ratings if compered with the Beta model.
Specifically, we observe that for behaviour values lower than θ = 0.3

and higher than θ = 0.7 the error committed by the ML model is always
lower than the one committed by the Beta model. The Beta model ben-
efits from initial ratings only for behaviour values lower than θ = 0.6

and higher than θ = 0.4. That happens because the true behaviour of the
party is close to the initial reputation score, i.e. party’s behaviour is close
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Figure 9: Reputation and error trends for parties with behaviour θ = 0.20
and 4 initial ratings fixing initial reputation score to 0.5

to θ = 0.5. Indeed, the Beta model has a bias towards reputation values
close to 0.5.

To sum up the results of our analysis allow us to argue that initial
ratings can improve the models’ performances, but the number and the
value of such ratings has to be choosen carefully in order to get the de-
sired result. Notice that initial ratings play a different role for different
behaviours, i.e. behaviours close2 to the initial reputation value are in-
ferred with a lower error than in the case of no initial ratings. It happens
the opposite for others behaviours, for that the error committed by the
models is higher compared to a system with no initial ratings. Initial rat-
ings could be used as an incentive for good behaviour, i.e. fixing a low
initial reputation score should push parties to behave well if they want

2The term close denoting the distance between probability distributions may not have a
clear meaning. Anyway, in this case, where Bernoulli distributions are used and a single
parameter identifies a distribution, we believe that this term makes sense.
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“the reputation of sparty i converges to its actual behaviour θi within time t”
Initials Ratings Beta Model ML Model

0 1 1
2 0.804444828548 1
4 0.00745483834375 0.802581118962

Table 2: Satisfaction probability for party’s behaviour θ = 1 and time t = 50

to achieve an high reputation score.

4.2.2 Model Checking

We analyse some properties of reputation systems by formalising them
as MOSL formulae that we have verified over the STOKLAIM specifica-
tion by means of the SAM tool. The first property we analyse is “the
reputation of sparty i is currently within [θi+δ, θi−δ]”, with θi denoting the
behaviour of sparty i and δ denoting the error interval. It is expressed in
MOSL by the following formula φconv :

φconv = 〈“reputation”, sparty i, !rep〉@srating
→ (θi + δ ≥ rep ∧ rep ≥ θi − δ)

This formula relies on the consumption operator 〈T 〉@s → φ, which is
satisfied whenever a tuple matching template T is located at s and the
remaining part of the system satisfies φ. Hence, formula φconv is satisfied
if and only if a tuple 〈“reputation”, sparty i, vrep〉 is stored in the node
srating and the reputation value vrep is equal to the party’s behaviour θi
up to a given error δ. Notice that the KLAIM model of the reputation
system has been slightly modified to enable this analysis. In particular,
the client process updates tuples of the form 〈“reputation”, sparty i, vrep〉
in the rating server every time it computes a provider’s reputation score.
Thus, exploiting the previous formula, we check the property “the repu-
tation of sparty i converges to its actual behaviour within time t” that is de-
fined as true U≤tφconv , where the until formula φ1U

≤tφ2 is satisfied by
all the runs that reach within t time units a state satisfying φ2 while only
traversing states that satisfy φ1. The model checking analysis has been
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“the reputation of sparty i converges to its actual behaviour θi within time t”
Initials Ratings Beta Model ML Model

0 0.696688528852 0.651790070646
2 0.404763836437 0.692622253392
4 0.200094638272 0.402222414274

Table 3: Satisfaction probability for party’s behaviour θ = 0.9 and time
t = 50

then performed by estimating the total probability of the set of runs sat-
isfying such formula, the maximal time t has been set to 50 seconds and
the error δ to 0.05. The average amount of ratings available for the com-
putation after 50 seconds is 45. The parameters ε and p of the model
checking algorithm used by SAM (see Section 2.4.2) have been both set
to 0.05.

In Tables 2 and 3 some analysis results are reported. In Table 2 we
consider a party with behaviour θ = 1 and the presence of 0, 2 or 4 initial
ratings that fix parties’ initial reputation to 0.5 (as in the previous analy-
sis). We observe that the ML model always performs better than the Beta
model, as expected. In particular for 4 initial ratings the Beta model is
(almost) never able to compute a reputation score in the fixed interval.
Instead the ML model is still able to compute a good approximation of
party’s behaviour. In Table 3 we consider party with behaviour θ = 0.9

and the presence of 0, 2 or 4 initial ratings in the system. In this case
we know from the simulation results that the ML model performs better
than Beta model both in computing reputation scores and for the error
committed in the estimation. However, we observe that in presence of
no ratings value at the start of the system, the Beta model achieves better
results. Indeed, the satisfaction probabilty of the formula for the Beta is
higher than that for the ML model. This means that, even though the
error committed by the ML model is lower in average, the Beta model
is slightly more accurate in the estimation. We also notice that the ML
model achieves better results in presence of 2 initial ratings than with no
initial ratings. In this case the probability is almost the same that for the
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“the reputation of sparty i goes below a given threshold within time t”
Initials Ratings Beta Model ML Model

0 0.999117766207 0.999626050639
2 0.995051490746 0.999287194351
4 0.993018353016 0.996068059612
6 0.985224658384 0.991493499719
8 0.977092107464 0.986241227249

Table 4: Satisfaction probability for party’s behaviour θ = 0.1, threshold
0.35 and time t = 20

“the reputation of sparty i goes below a given threshold within time t”
Initials Ratings Beta Model ML Model

0 0.948967035531 0.967265275102
2 0.885939765897 0.95015303254
4 0.822065355543 0.883567771879
6 0.742095271491 0.826470487291
8 0.66941059764 0.742942412212

Table 5: Satisfaction probability for party’s behaviour θ = 0.25, threshold
0.35 and time t = 20

Beta model without initial ratings. Concluding, the results of the mo-
del checking confirm the simulation outcomes, pointing out that the ML
model is less stable than the Beta model when few ratings are available.

The second property we checked is “the reputation of sparty i goes below
a given threshold within time t” that is formalised in MOSL as

true U≤t
(
〈“reputation”, sparty i, !rep〉@srating → threshold ≥ rep

)
The threshold may represent, e.g., the minimum reputation that a
provider must have in order to be considered trustworthy for an inter-
action or the minimum reputation required to interact in the system. In
Tables 4 and 5 some analysis results are reported . For this analysis we
set t to 20 seconds, the average amount of ratings available for the com-
putation after 20 seconds is 21. Also in this case, the parameters ε and
p of the model checking algorithm used by SAM have been both set to
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0.05. In Table 4 we consider a party with behaviour θ = 0.1, a threshold
value of 0.35 and the presence of 0, 2, 4, 6 or 8 initial ratings in the sys-
tem. We observe that the satisfaction probabilities are very close for the
two models, but the ML model always achieves better results than the
Beta model. In Table 5 we consider a party with behaviour θ = 0.25, a
threshold value of 0.35 and the presence of 0, 2, 4, 6 or 8 initial ratings in
the system. In this case we observe that the ML model performs better
than the Beta model and the satisfaction probabilities are not so close,
between the two models, as in the previous case. We noticed, from simu-
lation results, that the Beta model performs better for behaviours higher
then θ = 0.1 for what concern error estimation, but from this analysis we
obtain a further information. Even though the error committed by the
ML model is higher, such model is faster than the Beta model in conver-
gence. Thus it achieves better results in this analysis and it is preferable
when bad behaivours must be detected.

We conclude the section, by noticing that the combined use of model
checking and simulation techniques permits to analyse systems’ details
that a single approach would not be able to detect.
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Chapter 5

A Network-aware
Evaluation Environment for
Reputation Systems

Once a reputation system has to be deployed in a network environment,
several details has to be taken into account. This calls for an engineer-
ing approach for describing, implementing and evaluating reputation
systems while taking into account real-word implementation details of
such systems and of the network environment where they have to be
deployed.

In this chapter, we address this issue by proposing a software tool
for network-aware evaluation of reputation systems. More specifically,
on the one hand, we provide a framework for rapidly developing Java-
based implementations of reputation system models and for easily con-
figuring different networked execution environments on top of which
the systems will run. On the other hand, we offer a software tool that au-
tomatically performs experiments on the reputation system implemen-
tations according to user-specified parameters; this enables the study
of their behaviour while executing on given network infrastructures.
The main novelty of our approach, with respect to other proposals in
the literature with a similar aim, is that we allow the evaluation of im-
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plemented reputation systems through experiments on real networks,
rather than performing simulation of models of reputation systems that
abstract from many details. In this way, given a specific network envi-
ronment, we can study the system behaviour to find the configuration
that better meets the system requirements by tuning its parameters (rep-
utation model, response timeouts, resource quality evaluation, ratings
aging, etc.). Moreover, since we consider reputation systems at imple-
mentation level, the analysed systems could be then directly used in the
corresponding end-user applications.

The rest of the chapter is organized as follows. Section 5.1 describes
the general overlay network for reputation systems set up by our tool.
Section 5.2 describes the architecture and functional principles of our
tool. Section 5.3 provides a brief overview of the tool component dealing
with networking aspects. Section 5.4 presents the implementation as-
pects of the reputation models currently considered in this work. Finally,
Section 5.5 reports on the analysis of a few reputation systems.

5.1 A general infrastructure for reputation sys-
tems

We consider in this chapter a centralised architecture graphically de-
picted in Figure 10, where parties can interact and exchange ratings.
Such architecture is widely used for networked trust infrastructures and
it is slightly different from the one introduced in Chapter 4. In this gen-
eral infrastructure, a rating server collects ratings from system’s parties
and makes them publicly available, while a search server allows parties
to find resource providers in the system. Every party can play the role
of a client, of a provider, or both, and may offer different kinds of re-
sources (services, computational and storage resources, etc.). Whenever
a party needs a resource, first it queries the search server to get the list of
parties providing it, and then retrieves from the rating server the ratings
of each provider in the list. As usual, to choose a provider, it computes
the reputation scores of each of them and selects the one with the high-
est reputation score. Finally, after the interaction, it rates the provider
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Figure 10: General infrastructure of a reputation system

according to the quality of the provided resource.
On top of the general infrastructure just described, different kinds of

reputation system can be layered, which mainly differ for the model they
use to aggregate ratings when computing reputation scores.

5.2 The NEVER tool

In this section, we present the architecture and the workflow of
NEVER (Network-aware EValuation Environment for Reputation sys-
tems), graphically depicted in Figure 11. The NEVER tool consists of
three main components: (1) the experiment manager, (2) the network in-
frastructuring (3) the reputation models library.

The experiment manager is the component playing the main role, be-
cause it is in charge of managing the execution of each experiment. An
experiment consists of a user-specified number of runs, each run per-
formed with the same configuration. The number of runs and their du-
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Figure 11: NEVER architecture and workflow

ration, together with other experiments characteristics, are defined by
users through configuration parameters.

The network infrastructuring support provides the libraries (i.e., classes
and interfaces) required to create and set up a KLAVA net (see Section
2.4.3 for further details on KLAVA) implementing the general infrastruc-
ture graphically depicted in Figure 10. Each element of the infrastruc-
ture is a node hosted by a (possibly remote and/or virtual) machine.
The NEVER tool takes as input the addresses of the hosting machines
and automatically activates the nodes setting up the wanted network in-
frastructure. We refer to Section 5.3 for further details on the network
infrastructure library supporting our experiments.

The reputation models library acts as a framework allowing the user
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to define the trust and reputation models under evaluation. The library
is a Java package containing a number of abstract classes and interfaces
necessary to implement the models. In this way, the NEVER tool is cus-
tomizable and extendible by the user. More specifically, a reputation mo-
del is defined by a class implementing the ReputationModel interface and,
possibly, a class extending the abstract class Rating. The former class de-
fines how reputation scores are computed, which rating values are used
by the system and how parties in the system evaluate the interactions.
The latter class defines the kind of rating values and how to manage
them. Thus, the addition of new reputation models to NEVER can be
achieved by implementing ReputationModel and, if necessary, by extend-
ing Rating. We refer to Section 5.4 for further details on the reputation
models library and on the models already available in NEVER.

We describe now the NEVER workflow, by lingering on the main
features of the experiment manager component. The tool takes as input
a set of configuration parameters, written in a .properties file as pairs of the
form key = value. Such parameters are used by the experiment manager
to instantiate and carry out an experiment. First, the manager creates the
network on top of which will be run the experiment. Afterwards, a node
is created for each of the two servers and for each party in the system.
Once the network is set up, the reputation system (configured according
to user’s parameters) is deployed on the network and the experiment
starts, i.e. network components are enabled and system parties interact
and rate each other. During the activity of the network, data about in-
teractions are stored in appropriate files for a later analysis. Experiment
runs are repeated in order to reach the desired precision; thus, the man-
ager starts and stops runs till the last run is accomplished. Afterwards,
data are analysed and provided as output, both in form of textual files
and charts1. We refer to Section 5.5 for a discussion about different ex-
periments carried out with our tool.

We conclude this section by commenting on the relevant configura-
tion parameters. Through such parameters it is possible to specify the

1The tool automatically generates charts by exploiting the Java library JFreeChart (freely
available at http://www.jfree.org/jfreechart/).
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number of parties in the system and the addresses of the machines where
parties have to run. For each party, a new KLAVA node is automatically
created and deployed in the associated hosting machine. The tool also
supports a ‘local only’ modality, where all KLAVA nodes are deployed in
the same machine running the tool. Such modality can be useful to com-
pare reputation systems in presence or absence of networking aspects
affecting the evaluation.

A specific configuration parameter is used to set the main reputation
model, which is used during the experiment to drive the interactions
among parties. In fact, when a party is looking for a provider of a spe-
cific resource, it computes the providers’ reputations and selects for the
interaction the most trusted one, i.e. the party (or one of the parties) with
the highest reputation value. Besides the main model, it is possible to
give a list of trust and reputation models to be compared during the ex-
periment: each party’s reputation is computed according to all models
specified in such list. Values of party’s reputation are returned for each
run and, at the end of the experiment, as a mean value over all runs.
Moreover, the user can require to randomly select the providers, by thus
ignoring the choice of the providers based on the main reputation model.
Such modality is indeed often used in our experiments, because it gives
the opportunity of evaluating models performances by comparing party
reputations on the basis of approximately the same amount of ratings for
each party.

A group of configuration parameters regulates the parties’ behaviour.
The user specifies a set of possible party behaviours and the percentage
of parties with each given behaviour. By means of such information,
the experiment manager assigns a behaviour to each party. Moreover, it
is possible to set the initial reputation of parties by specifying the val-
ues and the number of their initial ratings. Such ratings determine the
initial parties reputation computed by the system. In the default case,
parties’ behaviour are assumed to be fixed, but a changeable behaviour
can be configured. In such a case, the user sets when the variation has
to happen and the magnitude of the variation. Currently, the variation
implemented is negative, i.e. party’s behaviour gets worse after the vari-
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ation. The idea is that once a party achieves a high reputation score, it
could then exploit such value for behaving badly in the next interactions.
Several studies (see, e.g., [JI02; SS01; ZM00]) use similar approaches for
the evaluation of reputation models.

Finally, the configuration parameters allow the user to set two thresh-
old values: the maximum delay and the maximum waiting time. The
first parameter sets the maximum delay after which a resource is consid-
ered unsatisfactory, i.e. once the party receives the resource it checks if
the arrival time exceeds the maximum delay and, in such a case, a nega-
tive rating is given to the provider no matter the quality of the resource.
The second parameter sets the maximum time that a party will wait for
a resource; expired this time a new provider is selected by the party and
no rating value is given. In this way, a party will not wait indefinitely for
a resource.

The NEVER tool is developed in Java, by exploiting freely available
third-party libraries. Source and binary files of NEVER can be found at
http://sysma.lab.imtlucca.it/tools/never/.

5.3 Network infrastructuring support

The network infrastructuring support of NEVER provides an API that
allows the experiment manager to create different networks underlying
the reputation systems to be evaluated. To this aim, this tool element ex-
ploits the KLAVA library (see Section 2.4.3) and is implemented as a Java
package. In this section, we present the functionalities of each compo-
nent of the package and we describe its implementation in KLAVA. We
illustrate how network components interact by showing pieces of code.

The network infrastructuring package specifies three different kinds
of nodes that take part in the KLAVA net: a rating server node, a search
server node and a user node. Each of these nodes implements a compo-
nent of the infrastructure graphically depicted in Figure 10.

The rating server node serves as public database for collecting parties’
ratings and executes the process RatingServerProcess. This process is in
charge of collecting data produced by each experiment run.
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The search server node assists parties while seeking a resource
provider and executes the process SearchServerProcess (Listing 5.1). Such
process waits for search requests sent by parties (line 5). Specifically, par-
ties send requests, i.e. tuples tagged by the search request string, stating
the type of the resource they want from the provider. Afterwords, the
SearchServerProcess looks in the local tuple space for available providers
offering such resource (lines 11 and 21): for each provider matching the
request, the process sends its address to the requesting party (line 17).
The set of tuples sent by the SearchServerProcess to the party forms a
list of provider addresses. When all providers have been checked2, the
SearchServerProcess closes the list by sending its length to the requesting
party (line 25).

Listing 5.1: SearchServerProcess

1 // Wait for a new search request
2 KInteger n providers = new KInteger( 0 ) ;
3 Locality loc requester = new PhysicalLocality();
4 KString res type = new KString() ;
5 in( new Tuple(new KString(”search request”),loc requester,res type), self);
6

7 // Scan the list of parties providing resources of type ’res type’
8 Locality loc provider = new PhysicalLocality();
9 Tuple templRead nb = new Tuple(res type, loc provider);

10 templRead nb.setHandleRetrieved(true);
11 KBoolean forallExpressionArgument =
12 new KBoolean( read nb(templRead nb, self ) ) ;
13 while ( forallExpressionArgument.booleanValue() ) {
14 // Increase the counter of providers
15 n providers = new KInteger( n providers.intValue() + 1 );
16 // Send the provider’s address
17 out(new Tuple(new KString( ”list” ),n providers,loc provider),
18 loc requester);
19 templRead nb.resetOriginalTemplate();
20 forallExpressionArgument =
21 new KBoolean( read nb(templRead nb, self) );
22 }

2The method setHandleRetrieved() allows the tuple templRead nb to store all the
tuples that it has matched (line 10), while method resetOriginalTemplate() is used to
reinitialize to empty values the formal fields of templRead nb (line 17) in order to use
this template to retrieve another tuple in the next read nb action (line 18).
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23

24 // Send the length of the list of providers
25 out(new Tuple(new KString( ”list length” ), n providers), loc requester) ;

The user node implements a generic party; nodes of this kind interact
to ask and provide resources and, after any interaction, rate each other.
Two processes run on the user node3: the ProviderProcess (Listing 5.2)
and the ClientProcess (Listing 5.3). The former process implements the
functionalities of a provider: when a new resource request coming from
a client is received (line 4), the resource is selected (line 7) and sent to the
client (line 10). The resource selection consists of determining its quality
according to the provider’s behaviour; in fact, the actual provision of the
resource is not relevant for our studies.

Listing 5.2: ProviderProcess

1 // Wait for a resource request
2 Locality requesterLoc = new PhysicalLocality();
3 KString res type = new KString();
4 in(new Tuple(new KString(”resource request”), requesterLoc, res type), self);
5

6 // Get resource quality according to provider’s behaviour
7 KDouble res quality = model.getResourceQuality(new behaviour,rand);
8

9 // Send the resource
10 out(new Tuple(new KString(”resource”), res type, res quality), requesterLoc);

The ClientProcess seeks providers for the resource it is looking for, and
selects the most trusted one for the next interaction. It first sets the vari-
able most trusted user to NO ONE (lines 2-3) denoting that no provider has
been selected. Then, it determines the resource type it wants to request
(lines 6-7). The ClientProcess asks the search server to find a provider
for a given resource type (line 10) and selects, among the providers re-
turned by the search server, the most trusted one, i.e. the provider (or
one of the providers) with the highest reputation score (line 16). Then,
it checks if the reputation of such provider is higher than the minimum
reputation value defined in the configuration file (line 20). If this check

3Depending on the processes running in its node, a party can play the role of a client, of
a provider, or both. We consider here the latter case, which is the most general.
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is positive, the process sends a request for the resource to the selected
provider (lines 23-24), otherwise it starts again the procedure from the
beginning. The waiting time of a requested resource is bounded by a
time-out, request time out, specified in the configuration file (lines 30-31).
When the resource is received the process computes a rating value for the
provider (line 35) and sends it to the rating server (lines 41-44). The rat-
ing value is given on the basis of the resource quality and response time.
The parameter max waiting time specified in the configuration file sets the
maximum delay after which a resource is considered unsatisfactory.

Listing 5.3: ClientProcess

1 // Initialize the ”most trusted user” tuple
2 out(new Tuple(new KString(”most trusted user”), getPhysical(self),
3 new KDouble(NO ONE), new KInteger(0)), self);
4

5 // Resource type is randomly selected
6 int res num = (int) ((rand.Fran2() ∗ (number of resource types−1))+1);
7 KString res type = new KString(”type ”+res num);
8

9 // Send the request to the search server and determine the most trusted user
10 searchProvider(res type);
11

12 // Get the data of the most trusted user
13 Locality trusted loc = new PhysicalLocality();
14 KDouble reputation most trusted = new KDouble();
15 KInteger number of ratings = new KInteger();
16 in(new Tuple(new KString(”most trusted user”), trusted loc,
17 reputation most trusted, number of ratings), self);
18

19 // Check if provider’s reputation is higher than the minimal reputation
20 if (min reputation <= reputation most trusted.doubleValue()) {
21

22 // Send a resource request to the provider
23 out(new Tuple(new KString(”resource request”), getPhysical(self),
24 res type), trusted loc);
25

26 // Wait the resource
27 long time of request=System.currentTimeMillis();
28 KDouble quality = new KDouble();
29 Rating provider rating = model.createNonInitializedRate();
30 if ( in t(new Tuple(new KString(”resource”), res type, quality),
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31 self, request time out)) {
32 long time of service = System.currentTimeMillis();
33 long response time = time of service−time of request;
34 // Check the quality of the obtained resource and rate the provider
35 try { provider rating = model.rateProvider(quality,response time); }
36 catch (MalformedRateValueException e) {
37 e.printStackTrace();
38 System.exit(1);
39 }
40 long ratingTime = System.currentTimeMillis();
41 out(new Tuple(getPhysical(self), trusted loc, provider rating.getValue(),
42 new KString(Long.toString(ratingTime)) ),
43 UserNode.rating serverLogLoc);
44 }
45 }

5.4 Trust and reputation system models imple-
mentation

In this section, we provide some details about trust and reputation mod-
els already implemented in NEVER; this would also serve as a guide for
using the framework to implement new models to be evaluated.

As we have shortly discussed in Section 5.2, it is possible to imple-
ment trust and reputation models in NEVER (as the ones introduced in
Section 2.5) through the reputation models library. The first step is to
create a class implementing the ReputationModel interface, whose main
methods are the following:

• public void setWindow(int size);

• public void setForgettingFactor(double value);

• public KDouble evaluateReputation(Vector<Rating> ratings,

Vector<Locality> raters);

• public KDouble getResourceQuality(int behaviour, Ran2 rand);

The method setWindow takes as input an integer that fixies the number of
ratings, among the available ones, to use for the computation of party’s
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reputation score. The most recent ratings are used for the computation.
The method setForgettingFactor set the value of the parameter called for-
getting factor (see Section 2.5), it take as input a value in the interval [0, 1].
The method evaluateReputation is the basis of any reputation model. It
takes as input a list of rating values (Vector<Rating> ratings) and the cor-
responding list of raters (Vector<Locality> raters), and returns as output
the reputation score of the ratee. Ratings in the vector are sorted from the
newest to the oldest; such organization is useful for models that discrimi-
nate ratings depending on their age. Finally, method getResourceQuality is
used to determine the quality of the resource to be provided to the client.
This value corresponds to the outcome of the interaction, and depends
on the model implemented and on the set of rating values in use.

Now, we show how the Beta and ML models outlined in Section 2.5
are implemented in NEVER, by focussing on the code of the method
evaluateReputation that specifies how rating values are used to compute
party’s reputation in the models. We start from the implementation of
the ML model (Listing 5.4). The method evaluateReputation first checks
the number of available ratings (line 3): if there are no ratings the com-
putation does not take place and the default reputation value is used by
the system, i.e. an empty KDouble() object is returned and the system
uses as party’s reputation the value set in the configuration file (parame-
ter no rating reputation). A second check (line 6) is done on the window’s
size: if the number of rating values is bigger than the window’s size, only
the newer ratings are used. The last part of the code (lines 9-15) computes
the party’s reputation. In case of binary ratings, in the ML model this
means to simply divide the number of satisfactory interactions by the to-
tal number of interactions (see equation (2.15) in Section 2.5). Finally, the
computed reputation value is returned as a result by the method (line
16).

Listing 5.4: evaluateReputation (MLModel.java)
1 double num of ratings = ratings.size();
2 double num positive ratings = 0;
3 if ( num of ratings == 0){
4 return new KDouble();
5 }
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6 if ( (WINDOW != 0) && (num of ratings > WINDOW)){
7 num of ratings = WINDOW;
8 }
9 for (int i = 0; i < num of ratings; i++) {

10 KInteger rating value = (KInteger) ratings.get(i).getValue();
11 if ( rating value.intValue() == POSITIVE RATE VALUE ){
12 num positive ratings++;
13 }
14 }
15 double ml reputation = num positive ratings/num of ratings ;
16 return new KDouble(ml reputation);

We now examine the code implementing the Beta model (Listing 5.5).
In the Beta model, party’s reputation is computed as the expected value
of Beta distribution (see equation (2.11) in Section 2.5). We show only
the last two lines of the method evaluateReputation, since the first part of
the code, where it is checked the number of available ratings and the
window’s size, is common among all considered models.

Listing 5.5: evaluateReputation (BetaModel.java)
1 double beta reputation = (num positive ratings+1)/(num of ratings+2) ;
2 return new KDouble(beta reputation);

The last kind of models we implemented makes use of the forget-
ting factor. The code shown in Listing 5.6 is the final part of the method
evaluateReputation implemented by the class BetaModelForgetting; the im-
plementation of the same method within class MLModelForgetting is simi-
lar. Each rating value here is weighted according to its age (lines 4 and 6).
The weight of each rating is given by the value λi, where λ (i.e. LAMBDA,
in the code) is the forgetting factor and i denotes rating’s age.

Listing 5.6: evaluateReputation (BetaModelForgetting.java)
1 for (int i = 0; i < num of ratings; i++) {
2 KInteger rating value = (KInteger) ratings.get(i).getValue();
3 if ( rating value.intValue() == POSITIVE RATE VALUE ){
4 num positive ratings = num positive ratings + Math.pow(LAMBDA, (i));
5 } else {
6 num negative ratings = num negative ratings + Math.pow(LAMBDA, (i));
7 }
8 }
9 double beta rep =
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10 (num positive ratings+1)/(num negative ratings+num positive ratings+2) ;
11 return new KDouble(beta rep);

To implement a reputation model, it is also needed to provide the im-
plementation of rating values. The models currently available in NEVER
use binary ratings, i.e. each interaction can be rated either ‘unsatisfactory’
or ‘satisfactory’. In order to define another kind of rating, a new class
must be created as a subclass of the abstract class Rating (Listing 5.7).

Listing 5.7: Rating.java
1 public abstract class Rating implements Comparable<Rating>{
2 protected TupleItem value;
3 protected long timestamp;
4

5 public abstract void setValue (TupleItem value)
6 throws MalformedRateValueException;
7

8 public TupleItem getValue(){
9 return this.value;

10 }
11 public void setTime(KString time){
12 this.timestamp = Long.parseLong(time.toString());
13 }
14 public long getTime(){
15 return timestamp;
16 }
17 ...
18 }

This class defines four methods. Methods setTime and getTime are
used to set and retrieve ratings’ timestamps. Such values are used
for sorting the vector containing rating values. Methods getValue and
setValue return and set the value of the rating respectively. In particular,
a new rating class has to implement the method setValue that is declared
abstract; its implementation should check the format of the rating value.

5.5 NEVER at work

In this section we show which data NEVER returns as output and in
which formats the output is provided. For illustration purpose, we run
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an experiment with the following parameters: ten4 parties are active in
the system, data are averaged over fifty runs, each run lasts thirty five
minutes. Five possible behaviours are defined in the system, all mod-
elled as Bernoulli distributions of parameter θ. The possibles values of θ
are: 0.05, 0.3, 0.5, 0.7, 0.95. The twenty percent of the parties assumes one
of the possible behaviours, that is for each possible θ there are two parties
with such behaviour. Parties’ behaviours are set to change after fifteen
interactions, specifically each party updates its behaviour to θ = θ − 0.4,
that is parties assume a worst behaviour than the initial one. If parties’
initial behaviour θ is less than 0.4 the new behaviour is set to θ = 0.

No initial reputation is set for parties: when a party is found to have
no ratings is assumed to have a reputation score of 0.5. We recall to the
reader that the parameter no rating reputations is used to set such value.
Moreover, no minimum reputation values is set for interacting with a
party (parameter min reputation), that is to interact with a party no thresh-
old is fixed about its reputation score.

The main reputation model is defined to be a ML model without for-
getting factor and window. Instead the list of models to compare con-
tains six models:

• ML model without window and forgetting factor;

• ML model with window=25 and without forgetting factor;

• ML model without window and with forgetting factor=0.9;

• Beta model without window and forgetting factor;

• Beta model with window=25 and without forgetting factor;

• Beta model without window and with forgetting factor=0.9.

At the end of the experiment, NEVER returns as output both a graphical
representation of data and a textual list of data. Textual output is pro-
vided in order to permit data manipulation without re-executing exper-
iments, so that different graphical representations can be used for data

4Given a limited number of physical machines at our disposal, to perform experiments
with this number of parties, we have deployed KLAVA nodes on virtual machines running
on the cloud IaaS platform Zimory Enterprise Cloud [Gmb12].
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Figure 12: Trend of parties’ reputation

analysis. Below we describe some of the graphs returned as output by
NEVER ( see Appendix B for further results).

The graph in Figure 12 shows the reputation trends of the ten parties
calculated using the main model. The preset behaviour of each party is
denoted by an horizontal line. The vertical dashed line denotes the time
when parties change their behaviour. The horizontal dashed lines denote
new parties’ behaviours after the change. The trend of party’s reputation
is denoted by a polygonal line and each party is identified by its ip ad-
dress and port number. Dashed lines are present only if a changeable
scenario is set in the configuration file (parameter changeable behaviour).
Through this graph it is possible to analyse the evolution of parties’ rep-
utation in relation with the number of available ratings. The reputation
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values shown are computed for the main trust model and are averaged
over all runs. When changeable behaviour is set, it is also possible to
analyse the reaction of the model when party’s behaviour change in
time. From Figure 12 we see that the ML model quite rapidly detects
party’s behaviour, with no significant error in reputation score assigna-
tion. Such model slowly adapts to party’s new behaviour, that is when
parties change their behaviour the ML model needs time to detect the
new behaviour. According to other experiments, ML model adaptation
to new party’s behaviour is even worst when the change happens after a
bigger number of interactions. Indeed, ratings about past interactions in-
fluence more the estimation of the actual behaviour. To reduce the effect
of such estimation problem, the window and forgetting factor parame-
ters should be used and tuned carefully.

Besides the main reputation model, parties’s reputation is computed
for each party with respect to all models specified in the model list within
the configuration file. Figure 13 considers the case of a party with be-
haviour θ = 0.95. Vertical and horizontal lines have the same meaning
as in the previous figure. For each trust model is drawn a polygonal line
denoting party’s reputation. Through this graph it is possible to analyse
how different trust models evaluate party’s reputation and how they re-
act in case of changeable behaviour. From this comparison it is possible
to determine which is the best strategy for a given scenario. We can imag-
ine scenarios where some kind of parties’ behaviours are more probable
than others, e.g. the majority of parties behave badly or goodly. Scenarios
where the user is interested in preventing specific behaviours, e.g. par-
ties try to reach a good reputation and then they start to behave badly.
In Figure 13 it is possible to see how the six models react when party’s
behaviour changes from a behaviour θ = 0.95 to a behaviour θ = 0.55.
From this graph we notice that the models using window parameter or
forgetting factor are able to detect more rapidly new party’s behaviour.
Specifically, the models using the forgetting factor parameter adapt more
rapidly than the ones using the window parameter. We notice also that
ML models are more accurate in estimation than Beta models, the rep-
utation values assigned in the average by ML models are closer to true
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Figure 13: Trend of single party’s reputation respect to the reputation mod-
els configured

party’s behaviour than those assigned by Beta models. After the change,
when a new behaviour is assumed by the party, it happens the opposite,
Beta models estimate better than ML models. We recall that such results
are reported for illustration purpose, indeed for an accurate analysis of
the models we need more cases and more interactions outcomes.

When a system with several parties is set up, it becomes hard to read
the graph reported in Figure 12. In order to manage systems with several
parties, NEVER returns as output four different graphs where data is ag-
gregated and parties are grouped depending on their behaviour. Parties
are divide as follows:

• Group 1: parties whose behaviour θ is such that 0 ≤ θ < 0.25;

91



Figure 14: Trend of aggregated parties’ reputation, Group 3

• Group 2: parties whose behaviour θ is such that 0.25 ≤ θ < 0.5;

• Group 3: parties whose behaviour θ is such that 0.5 ≤ θ < 0.75;

• Group 4: parties whose behaviour θ is such that 0.75 ≤ θ ≤ 1.

Figure 14 shows one of these graphs, where data about parties with
a behaviour between θ = 0.5 and θ < 0.75 is aggregated. The hori-
zontal line denotes the true behaviour of the group; such value is ob-
tained through a weighted mean among parties’ behaviour belonging
to the group, i.e. the weight of each behaviour in the group is given by
the number of parties having such behaviour. The same computation
is done for the group’s new behaviour after the change and the group’s
reputation. Such values are denoted by an horizontal dashed line and
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Figure 15: Risk trend for a single reputation model

a polygonal line (for each model) respectively. Notice that this kind of
graphs, reporting aggregate data, are given as output with the aim of
helping in graphically visualizing the trend of parties’ reputation in the
system. The groups’ configuration is fixed and arbitrarily chosen, they
have not a clear meaning for systems evaluation.

Finally, Figure 15 shows a graph where are reported the empirical val-
ues of the two risk functions presented in Section 3.2, namely bayes and
worst risks. This graph is returned as output for each model specified
in the configuration file. The two risks can be interpreted as follows: the
bayes risk can be seen as the average risk in the system, where risk means
the possibility of inferring party’s behaviour wrongly; the worst risk is
instead the risk incurred in the worst case, i.e. the maximum risk for a
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given behaviour. We use these two risks for evaluating the goodness of
the decision taken by reputation systems. They are a measure of the er-
ror committed by a system in estimating parties’ reputation. We choose
to use this two risk functions instead of more common error measures
(e.g., absolute error), because we think they are more appropriate for the
assessment of reputation systems, as discussed in Chapter 3.
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Chapter 6

Concluding Remarks

In this chapter we propose a brief discussion on the main contributions
of our work. Moreover we discuss some of the research literature related
to the theoretical and software frameworks and tools proposed in the
thesis. Finally, we present our main future research directions.

6.1 Discussion and Related Work

In this thesis, we addressed the issues related to the study, design and
implementation of trust and reputation systems by proposing a method-
ology for their analysis and evaluation. Our proposal aims at providing
theoretical and software frameworks and tools useful for the develop-
ment and deployment of such systems. Three are the main contributions
presented in the thesis: 1) a general framework for the assessment of
trust and reputation models, 2) an analysis methodology for the design
of such systems and 3) a tool for their evaluation in real networking in-
frastructure.

A Framework for the Assessment of Trust and Reputation Models

In Chapter 3 we have proposed a framework to analyze probabilistic
trust systems based on bayesian decison theory. We have focused on
probabilistic trust and reputation models, examining the behaviour of
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two risk quantities: bayes and worst risks. Such quantities rely on the
concept of loss function. Our results allow us to characterize the asymp-
totic behaviour of probabilistic trust systems. In particular, we have
shown how to determine the limit value of both bayes and worst risks,
and their exact exponential rates of convergence, in the case of inde-
pendent and identically distributed observations. Specifically, we have
shown that decision functions based on maximum likelihood and maxi-
mum a posteriori decision functions are asymptotically optimal. We have
complemented these theoretical results with a set of numerical simula-
tions. We have also considered the case where the raters may misbehave,
arguing that a data-model with hidden variables is well-suited to mo-
del this kind of scenario; this naturally prompts the use of Expectation-
Minimization algorithms to practically perform parameter estimation in
this context.

Several studies seek to evaluate and compare trust and reputation
systems. Despotovic and Aberer [DA04] propose a probabilistic ap-
proach, based on maximum likelihood estimation, for the assessment of
peers’ trustworthiness in P2P networks. They use simulations techniques
for evaluating the quality of their proposal, by considering two settings
relevant for P2P communities. In [XL04] Xiong and Liu present PeeTrust,
a reputation-based trust supporting framework for P2P electronic com-
munities. The feasibility, effectiveness, and benefits of their approach
is demonstrated by results of simulation-based experiments. Boukerch
et al. [BXEK07] present a trust and reputation management scheme for
wireless sensor networks, that can protect the security of transacting en-
tities. Trough experimental results they state that, due to the minimal
overhead provided by their scheme, their approach can be adequately
adopted for wireless sensor networks.

To the best of our knowledge, only a few studies follow an approach
similar to the one we propose for investigating trust and reputation sys-
tems. Among these, Sassone et al. in [SKN07] propose a formal frame-
work for the comparison of probabilistic trust models based on KL-
divergence (see Section 2.2). In their work KL-divergence is used as
a measure of the quality of reputation functions. In particular, in our
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framework we use the KL-divergence as a possible loss functions defini-
tion. ElSalamouny et al., in [ESN10], introduce the foundations for the
hidden Markov model based (HMM-based) trust model, analysing the
case of ratees exhibiting dynamic behaviours. They perform an experi-
mental comparison between HMM-based trust algorithm and the Beta-
based trust algorithm with an exponential decay scheme. Our analysis
allow us to characterize the asymptotic behaviour of probabilistic trust
systems, an issue that is ignored both in [SKN07] and in [ESN10].

Analysis Methodology for the Design of Reputation Systems

In Chapter 4 we propose a verification methodology for trust and reputa-
tion models by means of a coordination language. By relying on KLAIM,
we show how coordination languages and formal methods can be benefi-
cial to the field of reputation systems. More specifically, we illustrate how
such systems can be specified with KLAIM and analysed with KLAIM-
based stochastic logic and model checker.

To the best of our knowledge, our contribution is the first study based
on the use of a formal coordination language. Some related works make
use of computational software programs or software for multi-agent
modelling, for simulating their reputation models. Wang and Vassileva
[WV03] propose a Bayesian network-based trust model, for building rep-
utation based on recommendations in peer-to-peer networks. For evalu-
ating their approach, they develop a simulation of a file sharing system
in a peer-to-peer network. In [SVB04], Schlosser et al. present a formal
model for describing metrics in reputation systems. By means of this
model they evaluate the effectiveness of reputation systems on the basis
of simulations. The authors use the RePast simulator [REP] to conduct
various studies on reputation systems in a multi-agent context. Xiong
and Liu [XL03] present a first attempt of an adaptive reputation-based
trust model for P2P electronic communities. They evaluate the effective-
ness and benefits of their trust model by experimental results obtained
through simulations.

Such studies mainly differ from ours because we rely on formal meth-
ods’ tools, such as coordination languages, stochastic modal logics, sim-
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ulation and model checking, that permit expressing and evaluating per-
formance measures in terms of logical formulae. This is a strong con-
ceptual framework that provides abstraction primitives for conveniently
specifying reputation systems and their properties. Stochastic modelling
and verification tools permit considering the typical uncertainty of real
systems. In this way, the analysis can cover more relevant situations of
the considered system, when compared to an analysis based only on sim-
ulations.

NEVER

In Chapter 5 we presented NEVER, a network-aware tool for evaluat-
ing trust and reputation systems. The design of NEVER is based on the
KLAIM formal specification of trust and reputation system presented in
Chapter 4. We have used the Java library KLAVA for implementing the
reputation models specified in KLAIM. NEVER allows users to rapid
prototype and test reputation system models in a real network environ-
ment, thus realizing a generic testbed for evaluating trust and reputation
systems. We have discussed the architecture of NEVER showing the
logical structure and short part of its implementation. We have shown
how NEVER works by means of experimental data obtained through
the evaluation of some implemented models.

Among the many works in the literature, to the best of our knowl-
edge, our contribution is the first effective tool allowing the evaluation
of reputation systems in a real networked execution environment. Sev-
eral works provide a testbed for the evaluation of trust and reputation
systems, using simulation techniques. For example in [FKM+05], a sim-
ulator implemented in Java is proposed as testbed (the ART testbed) en-
abling a competition forum for evaluating trust systems. In this case, no
networking or other real world aspects are taken into account. Other ex-
amples of testbed are TREET [KC10] and the one proposed in [IJZ12].
The latter testbed is used for the evaluation of robustness of reputa-
tion systems. Specifically, this proposal focuses on robustness against
unfair ratings, i.e. against parties that release scores that intentionally
under-estimate interaction outcomes. The TREET testbed is proposed as

98



an alternative to ART, which is considered not well-suited for general-
purpose experimentation of reputation systems (it has, indeed, agents
evaluation as its main purpose).

All these proposals are simulators or just architecture designs of
testbeds that focus on marketplace applications. Our proposal, instead,
does not fix a specific environment in which parties interact, but uses
interactions as an abstraction of any parties relation. Moreover, we ex-
plicitly focus on probabilistic trust and reputation systems and on how
they are evaluated. Our work aims at filling the gap between simula-
tion and implementation of reputation systems, where networking as-
pects may play an important role when choosing and tuning reputation
systems. Indeed such aspects must be considered when implementing
these systems. Specifically, problems such as how to rate parties when
interactions are affected by network delays, or how to rate parties that
are sporadically connected, have to be addressed. For this reason, rep-
utation systems in NEVER are specified so that such problems can be
taken into account by users when evaluating the systems. Indeed, they
can be tuned on the basis of the features of the underlying network in-
frastructure exploited by NEVER for the execution.

6.2 Further Research Directions

We intend to extend the framework presented in Chapter 3 to different
data models, with rating values released in different ways. In particular,
we would like to deepen our analysis of misbehaving raters. Another is-
sue is how to evaluate the fitness of the model to the data actually avail-
able and, in general, how to assess the trade-off between tractability and
accuracy of the model.

The verification approach presented in Chapter 4 can be extended to
other reputation models proposed in the literature (e.g., those surveyed
in [SS05; JIB07]). It would be also interesting to consider attacks to rep-
utation systems, e.g. by cheating raters or through purchase of reviews.
This would require the extension of our approach raising the issue of
how to model these behaviours within our proposal.
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Finally, concerning our tool NEVER presented in Chapter 5, we in-
tend to extend our investigation to reputation systems over network ar-
chitectures that rely on distributed rating servers, rather than on a single,
centralised, one. Indeed, many authors have proposed adaptations of
trust models for decentralised architectures. A reputation model adapted
to ad-hoc networks for enhancing collaborations is proposed in [NCL07].
For evaluating the relationships among devices in pervasive comput-
ing environments, a trust management scheme is introduced in [DS08],
while [AD01] presents data structures and algorithms for assessing trust
in a peer-to-peer environment. We intend to study how different under-
lying network architectures affects the performances of a given reputa-
tion model.

It is our intention to extend NEVER to process real data from appli-
cations. The tool would be embedded in real applications and used to
evaluate reputations systems in such environments. Applications could
use reputation models in two different modalities: active or passive. In
the active case, parties would compute reputation scores and use them to
drive their interactions. In this modality the behaviour of an application
would be modified by the deployed reputation system. In the passive
case, the tool would collect rating values, compute reputation scores and
just store them, without using such data to drive parties’ interactions.
The computed information would thus be used only for evaluating rep-
utation systems. The passive modality would be useful in case of appli-
cations already deployed and in production. In this case it is important to
understand how the application’s behaviour would change before alter-
ing it. The passive modality could be also used for monitoring applica-
tions relying on existing reputation systems and contrast their reputation
models with respect to the reputation models implemented in our tool.
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Appendix A

Simulation Results

This appendix contains further simulation results of the STOKLAIM spec-
ification, introduced in Chapter 4. Figures’ captions and charts’ legends
show the relevant parameters of the experiment. A comment of the data
can be found in Section 4.2.1.

The appendix is organized as follows: Section A.1 reports the charts
relative to parties with no initials ratings; Section A.2 reports the charts
relative to parties with four initials ratings, which fix parties’ initial rep-
utations to 0.5.
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A.1 No initials ratings

All charts in this section are relative to the case of systems where
parties have not initial ratings. Each chart reports the parties’ reputation
trends respect to the Beta model and ML model, and the estimation
error committed by the models. The error is measured as the norm-1
distance (see Section 3.1.3) between probability distributions. The two
distributions are the one determined by party’s behaviour and the one
determined by party’s reputation. The charts in this section concern
parties whose behaviour θ takes value in the set {0.1, 0.25, 0.3, 0.4, 0.5,
0.6, 0.7, 0.75, 0.8, 0.9, 1}.

Figure 16: Reputation and error trends for parties with behaviour θ = 0.10
and no initial ratings assigned
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Figure 17: Reputation and error trends for parties with behaviour θ = 0.25
and no initial ratings assigned

Figure 18: Reputation and error trends for parties with behaviour θ = 0.30
and no initial ratings assigned
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Figure 19: Reputation and error trends for parties with behaviour θ = 0.40
and no initial ratings assigned

Figure 20: Reputation and error trends for parties with behaviour θ = 0.50
and no initial ratings assigned
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Figure 21: Reputation and error trends for parties with behaviour θ = 0.60
and no initial ratings assigned

Figure 22: Reputation and error trends for parties with behaviour θ = 0.70
and no initial ratings assigned
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Figure 23: Reputation and error trends for parties with behaviour θ = 0.75
and no initial ratings assigned

Figure 24: Reputation and error trends for parties with behaviour θ = 0.80
and no initial ratings assigned
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Figure 25: Reputation and error trends for parties with behaviour θ = 0.90
and no initial ratings assigned

Figure 26: Reputation and error trends for parties with behaviour θ = 1 and
no initial ratings assigned
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A.2 Four initials ratings

All charts in this section are relative to systems where parties have four
initial ratings, which fix parties’ initial reputation to 0.5. Each chart
reports parties’ reputation trends, with respect to the Beta model and ML
model, and the estimation error committed by the models. The error is
measured as the norm-1 distance (see Section 3.1.3) between probability
distributions. One distribution is determined by party’s behaviour, the
other by party’s reputation. The charts in this section concern parties
whose behaviour θ takes value in the set {0, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7,
0.75, 0.8, 0.9, 1}.

Figure 27: Reputation and error trends for parties with behaviour θ = 0 and
4 initial ratings, which fix parties’ initial reputation score to 0.5
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Figure 28: Reputation and error trends for parties with behaviour θ = 0.25
and 4 initial ratings, which fix parties’ initial reputation score to 0.5

Figure 29: Reputation and error trends for parties with behaviour θ = 0.30
and 4 initial ratings, which fix parties’ initial reputation score to 0.5
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Figure 30: Reputation and error trends for parties with behaviour θ = 0.40
and 4 initial ratings, which fix parties’ initial reputation score to 0.5

Figure 31: Reputation and error trends for parties with behaviour θ = 0.50
and 4 initial ratings, which fix parties’ initial reputation score to 0.5
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Figure 32: Reputation and error trends for parties with behaviour θ = 0.60
and 4 initial ratings, which fix parties’ initial reputation score to 0.5

Figure 33: Reputation and error trends for parties with behaviour θ = 0.70
and 4 initial ratings, which fix parties’ initial reputation score to 0.5
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Figure 34: Reputation and error trends for parties with behaviour θ = 0.75
and 4 initial ratings, which fix parties’ initial reputation score to 0.5

Figure 35: Reputation and error trends for parties with behaviour θ = 0.80
and 4 initial ratings, which fix parties’ initial reputation score to 0.5
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Figure 36: Reputation and error trends for parties with behaviour θ = 0.90
and 4 initial ratings, which fix parties’ initial reputation score to 0.5

Figure 37: Reputation and error trends for parties with behaviour θ = 1 and
4 initial ratings, which fix parties’ initial reputation score to 0.5
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Appendix B

NEVER Results

This appendix shows charts relative to the NEVER illustrative exper-
iment, introduced in Chapter 5. Figures’ captions and charts’ legends
report the relevant parameters of the experiment. A comment of the data
can be found in Section 5.5.

The appendix is organized as follows: Section B.1 reports charts con-
cerning the trend of groups’ reputation score, presented in Section 5.5;
Section B.2 reports charts concerning the reputation trend of the single
parties active in the system, with respect to the models defined through
the configuration file, the different models are reported in the charts’ leg-
ends; Section B.3 reports the charts concerning the empirical values of
the bayes and worst risks for each model configured.
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B.1 Group Charts

All the charts in this section concern the trend of aggregate reputations
of the group presented in Section 5.5. Parties are divided in group as
follow:

• Group 1: parties whose behaviour θ is such that 0 ≤ θ < 0.25;

• Group 2: parties whose behaviour θ is such that 0.25 ≤ θ < 0.5;

• Group 3: parties whose behaviour θ is such that 0.5 ≤ θ < 0.75;

• Group 4: parties whose behaviour θ is such that 0.75 ≤ θ ≤ 1.

Figure 38: Trend of aggregated parties’ reputation, Group 1
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Figure 39: Trend of aggregated parties’ reputation, Group 2

Figure 40: Trend of aggregated parties’ reputation, Group 4
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B.2 User Charts

All the charts in this section show the reputation trend of a single party
active in the system, with respect to the model set in the configuration
file. Each chart reports the trends of all models configured. Party’s
behaviour θ takes value in the set {0.05, 0.3, 0.5, 0.7, 0.95}

Figure 41: Trend of a single party’s reputation, whose behaviour is θ = 0.95,
with respect to the reputation models configured
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Figure 42: Trend of a single party’s reputation, whose behaviour is θ = 0.7,
with respect to the reputation models configured

Figure 43: Trend of a single party’s reputation, whose behaviour is θ = 0.5,
with respect to the reputation models configured
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Figure 44: Trend of a single party’s reputation, whose behaviour is θ = 0.05,
with respect to the reputation models configured

Figure 45: Trend of a single party’s reputation, whose behaviour is θ = 0.3,
with respect to the reputation models configured
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B.3 Charts of the Models

For each configured model, the charts in this section show the trend of
the bayes and worst risks empirical values. The models set in our exper-
iment were the following:

• ML model without window and forgetting factor;

• ML model with window=25 and without forgetting factor;

• ML model without window and with forgetting factor=0.9;

• Beta model without window and forgetting factor;

• Beta model with window=25 and without forgetting factor;

• Beta model without window and with forgetting factor=0.9.

Figure 46: Risk trend for a single reputation model
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Figure 47: Risk trend for a single reputation model

Figure 48: Risk trend for a single reputation model
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Figure 49: Risk trend for a single reputation model

Figure 50: Risk trend for a single reputation model

122



References

[AD01] Karl Aberer and Zoran Despotovic. Managing trust in a peer-2-peer
information system. In the tenth international conference on Information
and knowledge management, pages 310–317. ACM, 2001.

[ARH00] Alfarez Abdul-Rahman and Stephen Hailes. Supporting trust in vir-
tual communities. In the 33rd Annual Hawaii International Conference
on System Sciences, 2000., pages 9–pp. IEEE, 2000.

[ASSB00] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton.
Model-checking continuous-time markov chains. ACM Transactions
on Computational Logic (TOCL), 1(1):162–170, 2000.

[Bar12] David Barber. Bayesian Reasoning and Machine Learning. Cambridge
University Press, 2012.

[BBD+03] Lorenzo Bettini, Viviana Bono, Rocco De Nicola, Gianluigi Ferrari,
Daniele Gorla, Michele Loreti, Eugenio Moggi, Rosario Pugliese,
Emilio Tuosto, and Betti Venneri. The klaim project: Theory and
practice. Global Computing. Programming Environments, Languages,
Security, and Analysis of Systems, pages 88–150, 2003.

[BC13] Michele Boreale and Alessandro Celestini. Asymptotic risk analysis
for trust and reputation systems. In SOFSEM 2013: Theory and Prac-
tice of Computer Science, volume 7741 of Lecture Notes in Computer
Science, pages 169–181. Springer Berlin Heidelberg, 2013.

[BDF+05] Lorenzo Bettini, Rocco De Nicola, Daniele Falassi, Marc Lacoste, and
Michele Loreti. A flexible and modular framework for implement-
ing infrastructures for global computing. In Distributed Applications
and Interoperable Systems, pages 1097–1119. Springer, 2005.

[BDP02] Lorenzo Bettini, Rocco De Nicola, and Rosario Pugliese. Klava: a
java package for distributed and mobile applications. Software: Prac-
tice and Experience, 32(14):1365–1394, 2002.

123



[Ber85] James O. Berger. Statistical Decision Theory and Bayesian Analysis.
Springer, second edition edition, 1985.

[BFIK99] Matt Blaze, Joan Feigenbaum, John Ioannidis, and AngelosD.
Keromytis. The role of trust management in distributed systems
security. In Secure Internet Programming, volume 1603 of Lecture
Notes in Computer Science, pages 185–210. Springer Berlin Heidel-
berg, 1999.

[BKH99] Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. Approxi-
mative symbolic model checking of continuous-time markov chains.
In CONCUR99 Concurrency Theory, pages 146–161. Springer, 1999.

[BPP11] Michele Boreale, Francesca Pampaloni, and Michela Paolini. Quan-
titative information flow, with a view. In 16th European conference on
Research in computer security, ESORICS’11, pages 588–606, 2011.

[BXEK07] Azzadine Boukerche, Li Xu, and Khalil El-Khatib. Trust-based secu-
rity for wireless ad hoc and sensor networks. Computer Communica-
tions, 30(11):2413–2427, 2007.

[CDT13a] Alessandro Celestini, Rocco De Nicola, and Francesco Tiezzi.
Network-aware evaluation environment for reputation systems. In
Trust Management VII – 7th IFIP WG 11.11 International Conference,
IFIPTM (to appear), 2013.

[CDT13b] Alessandro Celestini, Rocco De Nicola, and Francesco Tiezzi. Spec-
ifying and analysing reputation systems with a coordination lan-
guage. In the 28th Annual ACM Symposium on Applied Computing
(SAC’13). ACM, 2013.

[CL10] Francesco Calzolai and Michele Loreti. Simulation and analysis of
distributed systems in klaim. In Coordination Models and Languages,
pages 122–136. Springer, 2010.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
John Wiley & Sons, second edition edition, 2006.

[DA04] Zoran Despotovic and Karl Aberer. A probabilistic approach to
predict peers performance in p2p networks. Cooperative Information
Agents VIII, pages 62–76, 2004.

[DFP98] Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese. Klaim:
A kernel language for agents interaction and mobility. Transaction on
Software Engineering, 24(5):315–330, 1998.

124



[DKL+06a] Rocco De Nicola, Joost-Pieter Katoen, Diego Latella, Michele Loreti,
and Mieke Massink. Klaim and its stochastic semantics. Technical
report, 2006.

[DKL+06b] Rocco De Nicola, Joost-Pieter Katoen, Diego Latella, Michele Loreti,
and Mieke Massink. MoSL: A Stochastic Logic for StoKlaim. Tech-
nical Report ISTI-06-35, 2006.

[DKL+07] Rocco De Nicola, Joost-Pieter Katoen, Diego Latella, Michele Loreti,
and Mieke Massink. Model checking mobile stochastic logic. Theo-
retical Computer Science, 382(1):42–70, 2007.

[DL05] Rocco De Nicola and Michele Loreti. Momo: A modal logic for rea-
soning about mobility. In Formal Methods for Components and Objects,
pages 95–119. Springer, 2005.

[DLM05] Rocco De Nicola, Diego Latella, and Mieke Massink. Formal model-
ing and quantitative analysis of klaim-based mobile systems. In the
20th Annual ACM Symposium on Applied Computing, pages 428–435.
ACM, 2005.

[DS08] Mieso K Deno and Tao Sun. Probabilistic trust management in per-
vasive computing. In IEEE/IFIP International Conference on Embedded
and Ubiquitous Computing, 2008. EUC’08., volume 2, pages 610–615.
IEEE, 2008.

[EC82] E Allen Emerson and Edmund M Clarke. Using branching time tem-
poral logic to synthesize synchronization skeletons. Science of Com-
puter programming, 2(3):241–266, 1982.

[EFL+99] C Ellison, B Frantz, B Lampson, R Rivest, B Thomas, and T Ylonen.
Spki certificate theory, rfc2693. IETF SPKI Working Group, 1999.

[EKS09] Ehab ElSalamouny, Karl Tikjøb Krukow, and Vladimiro Sassone.
An analysis of the exponential decay principle in probabilistic trust
models. Theoretical Computer Science, 410(41):4067–4084, 2009.

[ESN10] Ehab ElSalamouny, Vladimiro Sassone, and Mogens Nielsen. Hmm-
based trust model. In Formal Aspects in Security and Trust, volume
5983, pages 21–35. Springer, 2010.

[FKM+05] Karen K Fullam, Tomas B Klos, Guillaume Muller, Jordi Sabater, An-
dreas Schlosser, Zvi Topol, K Suzanne Barber, Jeffrey S Rosenschein,
Laurent Vercouter, and Marco Voss. A specification of the agent
reputation and trust (art) testbed: experimentation and competition
for trust in agent societies. In the fourth international joint conference

125



on Autonomous agents and multiagent systems, pages 512–518. ACM,
2005.

[Gmb12] Zimory GmbH. Zimory Enterprise Cloud, 2012. Web site: http:
//www.zimory.de.

[GS01] Geoffrey R. Grimmett and David R. Stirzaker. Probability and Random
Processes. Oxford University Press, third edition edition, 2001.

[Hei] Gregor Heinrich. Parameter estimation for text analysis.

[IJZ12] Athirai Aravazhi Irissappane, Siwei Jiang, and Jie Zhang. Towards a
comprehensive testbed to evaluate the robustness of reputation sys-
tems against unfair rating attacks. In UMAP Workshops, volume 12,
2012.

[JH07] Audun Jøsang and Jochen Haller. Dirichlet reputation systems. In
The Second International Conference on Availability, Reliability and Secu-
rity, 2007. ARES 2007., pages 112–119. IEEE, 2007.

[JI02] Audun Jøsang and Roslan Ismail. The beta reputation system. In the
15th bled electronic commerce conference, pages 41–55, 2002.

[JIB07] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust
and reputation systems for online service provision. Decision Support
Systems, 43(2):618 – 644, 2007.

[Kal02] Olav Kallenberg. Foundations of Modern Probability. Springer, 2002.

[KC10] Reid Kerr and Robin Cohen. Treet: the trust and reputation ex-
perimentation and evaluation testbed. Electronic Commerce Research,
10(3-4):271–290, 2010.

[KNS08] Karl Krukow, Mogens Nielsen, and Vladimiro Sassone. Trust
models in ubiquitous computing. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences,
366(1881):3781–3793, 2008.

[KPS02] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network se-
curity: private communication in a public world. Prentice Hall Press,
2002.
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