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Abstract

Modern software systems have changed from isolated static
devices to highly interconnected machines that execute their
tasks in a cooperative and coordinated manner. Therefore, the
structure and the behavior of these systems are dynamic with
continuous changes. These systems are known as Global Com-
puting Systems (GCSs) and they use services as fundamental
elements for developing them. Software architectural models
are intended to describe the structure and behavior of a sys-
tem in terms of computational entities, their interactions and
its composition patterns, so to reason about systems at more
abstract level, disregarding implementation details. Since a
GCS may change at run-time, Software Architecture (SA) mod-
els for them should be able to describe the changes of each
system and to enact modifications during system execution.
Such models are generally referred to as Dynamic Software Ar-
chitectures (DSAs), to emphasize that the SA evolves during
run-time. Several recent research efforts have focused on the
dynamic aspects of software architectures providing suitable
models and techniques for handling the run-time modifica-
tion of the structure of a system. A large number of heteroge-
neous proposals for addressing dynamic architectures at many
different levels of abstractions have been provided, such as
programmable, ad-hoc, self-healing and self-repairing among
others. It is then important to have a clear picture of the rela-
tions among these proposals by formulating them into a uni-
form framework. When this work started there were many
questions that arise. How can we represent architectures? How
can we formalise architectural styles? How can we construct
style conformant architectures? How can we model software

xix



architecture reconfigurations? How can we ensure style con-
sistency? How can we express and verify structural and be-
havioral architectural properties? This thesis tries to answer
them. In particular it presents a formal-based process that will
be used to model and verify Software Architectures that are
dynamic. The principal aspects that we have considered in
this work are:

• formalisms used in the design of SA that are dynamic;

• mechanisms to express and verify structural and behav-
ioral properties that we expect to be satisfied by each SA
configuration;

• a complete tool-supported process able to integrate pre-
vious aspects.

These aspects are firstly illustrated over an explanatory ex-
ample and then applied and validated over a real-world case
study.

xx



Chapter 1

Introduction

1.1 Global Computing Systems

Modern software systems have changed from isolated static devices to
highly interconnected machines that execute their tasks in a cooperative
and coordinate manner. Therefore, the structure and the behavior of
these systems are dynamic with continuous changes. These systems are
known as Global Computing Systems (GCS), and have to deal with frequent
changes of the network environment. Computing is not limited to a single
”computer” but there are different types of devices (i.e., personal digital
assistants (PDAs), mobile phones, laptops, etc..). The principal character-
istics that these systems are summarized in the following:

• Autonomy: each GCS is composed of autonomous computational
entities where activities are not centrally controlled, either because
global control is impossible or impractical, or because the entities
are created or controlled by different owners (i.e., Global Services).

• Heterogeneity: GCSs are composed of heterogeneous devices (i.e.,
PDAs, laptops, mobile phones, etc..). that provide different config-
urations and functionalities.

• Mobility: some computational entities are mobile, due to the move-
ment of the physical platforms or by movement of entities from one

1



platform to another.

• User-Dependent: the end-user of a GCS can be the source of some
change and a GCS must be able to adapt itself to make the user’s
task easier.

• Fault-Tolerance: GCSs provide mechanisms to guarantee that faults
in the system do not interrupt a service delivery. Usually these
mechanisms are composed of two principal actions: ”error detec-
tion” and subsequent ”system recovery or adaptation”. The run-
time behavior of the system is monitored to determine whether a
change is needed. In such a case, a reconfiguration is automatically
performed without compromising current system execution.

• Scalability: GCSs are able to start small and then expand over time
in terms of size (i.e. more number of users, devices and connec-
tions) and functionalities (i.e., new service request) insuring system
availability.

The development of Global Computing Systems opens a great chal-
lenge: the range of devices, different infrastructures, context changes,
user requests, etc. all introduce great complexity that demand a com-
plete methodology to design and implement systems that are dynamic.
When I started working in this research my first goal was to develop a
methodology for these kind of systems. The result presented in this the-
sis is a SA-based process, which abstracts from any platform and has as
an objective to furnish to all software architects an instrument for design-
ing architectures that evolve by reacting to changes in requirements or
constraints during run-time.

1.2 Architecture-Centric Development of GCSs

Based now on more than a decade of research in the field of Software En-
gineering, Software Architecture (SA) (Gar01) has today become an im-
portant part of software development processes (BCK03; HNS98; TMD08).
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One of the most used definitions for software architectures is the follow-
ing: ”The software architecture of a program or computing system is the struc-
ture or structures of the system, which comprise software components, and re-
lationships among them” (Pre29). Researchers in industry and academia
have integrated the Software Architecture description in their software
development process. In current trends SA description is used for mul-
tiple purposes: while some companies use the SA description just as a
documentation artifact, others make also use of SA specifications for en-
hanced analysis purposes, and finally many others use the architectural
artifacts to (formally or informally) guide the design and coding process
(BKP05; MWN+04). However, putting SA in practice, software architects
have learned that the SA production and management is, in general, an
expensive task. Therefore the effort is justified if the SA artifacts are exten-
sively used for multiple purposes helping on assuring the desired levels
of dependability. Typical use of SA is as a high level design blueprint
of the system to be used during the system development and later on
for maintenance and reuse. At the same time, SA can be used by itself
in order to analyze and validate architectural choices, both behavioural
and quantitative. Thus, the problem of assuring as early as possible the
correctness of a software system, occupies an ever increasing portion of
the development cost and time budgets. Analysis techniques have been
introduced to understand if the SA satisfies certain expected properties,
therefore tools and architectural languages have been proposed in order
to make specification and analysis rigorous and to help software archi-
tects in their work (e.g., (BI03)).

1.3 Dynamic Software Architectures

As previously stated, software architectural models are intented to de-
scribe the structure of a system in terms of computational components,
their interactions, and its composition patterns (SG96), so to reason about
systems at a more abstract level, disregarding implementation details.
Since GCSs may change at run-time, software architecture models for
GCSs should be able to describe the changes of the system (structure and

3



behavior) and to enact the modifications during the system execution.
Such models are referred as Dynamic Software Architecture (DSA) (ADG98;
And00; L. 04; KJKD05; MT00), to emphasize that the system architecture
evolves during runtime. In the last years several research papers and
projects (CC03; CHG+04; HKMU06; KM07; EU ; DHP02; SG02b), have
had as main topics the dynamic system modelling and adaptation as well
as providing new paradigma that extend the classic Software Architec-
ture notations. For example Morrison et al in (MBO+07) define an Active
Architecture as: ”A software architecture that can evolve during execution by
creating, deleting, reconfiguring and moving components, connectors and their
configurations at runtime”. Chatley et al. in (CEK+04) define Plugin archi-
tectures where components (i.e., Plugins) can be added (or deleted) to an
existing system at runtime to extend (or reduce) its functionality, check-
ing the preservation of properties. Bradbury et al. in (BCDW04) define a
Self-managing architecture as: ”an architecture that not only implements the
change internally but also initiates, selects, and assesses the change itself with-
out the assistance of an external user”. Finally, Hirsch et al. in (HKMU06)
propose the notion of Mode as a new element of architectural descrip-
tions with the goal of providing flexible support for the description and
verification of complex adaptable service oriented systems. Moreover, a
variety of definitions of dynamicity for software architecture have been
proposed in literature. Below I list some of the most prominent defini-
tions to show the variability of connotations that the word dynamic ac-
quires.

• Programmed (End94): all admissible changes are defined prior to
runtime and are triggered by the system itself;

• Self-Reparing (GS02): changes are initiated and assessed internally,
i.e., the runtime behavior of the system is monitored to determine
whether a change is needed. In such case, a reconfiguration is auto-
matically performed;

• Self-adaptive (OGT+99): systems can adapt to their environments
by enacting runtime changes;
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• Ad-hoc (End94): changes are initiated by the user as part of a soft-
ware maintenance task, they are defined at run-time and are not
known at design-time;

• Constructible (And00): it is a kind of ad-hoc mechanism but all ar-
chitectural changes must be described in a given modification lan-
guage, whose primitives constrain the admissible changes.

1.4 Contribution

During my PhD I mainly carried out researches to find effective solutions
to specify and analyze DSAs. When I started to work on this research
topic there were many questions that arising. How can we represent these
architectures? How can we formalise architectural styles? How can we
construct style conformant architectures? How can we model software ar-
chitecture reconfigurations? How can we ensure style consistency? How
can we express and verify structural and behavioral architectural proper-
ties? This thesis tries to answer them. In particular it presents a formal-
based process that will be used to model and verify Software Architec-
tures that are dynamic.

The principal aspects that I have considered in this work are:

Uniform formal presentation of Dynamic SA Since that the different
proposals for DSA are bound to particular language and models, this
thesis is aimed at understanding the main notions relying behind such
proposals by abstracting away from particular languages and notations.
I give a uniform formal representation that is abstract enough to cover
most of these features. In this sense, this work is in the line of other previ-
ous research efforts (BCDW04; Wer98) and my representation of DSA as
graph grammars is borrowed from the Le Métayer approach (Le 98). In
particular I select graph grammars as a formal framework for mapping
the different notions of dynamicity because (i) they provide both a formal
basis and a graphical representation that is in line with the usual way ar-
chitectures are represented, (ii) they provide a natural way of describing
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styles and configurations, (iii) they have been largely used for specifying
architectures. The use of graph grammars is instrumental in comparing
different mechanisms and better understanding the kinds of properties
that can be naturally associated to such specifications.

Mechanisms to Express and verify structural and behavioral properties
of DSA In this thesis I consider mechanisms to express and verify the
properties that we expect to be satisfied by software architectures. In par-
ticular I consider

• Structural properties: that regard the topology of the architecture,
i.e., cardinality of architectural elements and the way components
are interconnected.

• Behavioural properties: that regard the behavior of each SA con-
figuration, i.e., deadlock, liveness, responsiveness, reliability, etc.

For the above class of properties I have considered three analysis tech-
niques:

• Model Finding. I consider the problem of analysing the state space
of all possible architectures. Such analysis can serve as a computer-
aided design process or as a debugging method to find out incon-
sistencies in the model or in its specification

• Model Checking. I consider the problem of verifying that a given
architecture satisfies some structural or behavioural property ex-
pressed in a suitable logic.

• Style Matching or Invariant Analysis. I consider the problem of
determining whether an architecture is conformant to a certain style
or whether a reconfiguration is style preserving.

Definition of a Tool-supported process from DSA design to code gen-
eration In this thesis, by combining different technologies and tools,
I propose a SA-based approach aiming at combining exhaustive analy-
sis techniques (Model-Finding and Model-Checking) and SA-based code

6



generation to produce highly-dependable systems in a model-based de-
velopment process. It is composed of three principal activities: (i) For-
mal Specification of DSAs, (ii) validation of each SA specification with
respect to functional properties through Model-Checking, and finally (iii)
architecture-based code generation.

The tool that I have used to implement the graph-based formal speci-
fication of a DSA is Alloy (Jac02; Jac06). Additionally, by using it, I show
how to ensure style-consistency, perform model-finding and validate ar-
chitectural structural properties after each SA reconfiguration. The tool
that supports the second activity is UMC (UMC), an on-the-fly model
checker for UCTL. It allows the efficient verification of UCTL formulae
over a set of communicating UML state machines. Finally when each SA
is validated with respect to the desired properties, Java code is automati-
cally generated from the SA specification using ARCHJAVA (Arc).

This process is firstly illustrated over an explanatory example and
then it is applied and validated over a real-world case study.

1.5 Structure of the Thesis

This thesis is composed of four principal Chapters. Chapter 2 presents
the State of the Art that covers aspects as Software Architecture Design,
Analysis of SAs and SA-based code generation. It gives an overview of
the solution proposed by other authors for problems similar or related to
those that I studied during my PhD. In Chapter 3, I present my principal
research results showing in detail the traffic light process. I have chosen
this name because it is composed of three principal phases, each one rep-
resented by one color : Red for the DSA formal design, Yellow for the
DSA formal analysis and Green for the Architectural-based code gener-
ation. It covers each aspect presented in Chapter 2 and gives details on
each phase of the SA-based systems development: from DSA specifica-
tion and validation to automatic code generation of each SA configura-
tion. To have a clear idea of the process I use a ”toy” running example
and I present each technical aspect of my research presenting also tools
used to support each step. In Chapter 4, in order to validate my results,

7



I apply the process introduced before, to an Automotive Case study bor-
rowed from the Sensoria Project (EU ). The thesis ends with Chapter 5 in
which I summarize the solutions proposed. A brief overview of possible
directions for further researches is also discussed.
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Chapter 2

State of the Art

2.1 Overview

Software applications for Global Computing Systems are composed of a
number of software entities (i.e., components or connectors), distributed
in the network, which cooperate in order to provide services to their
users. This complexity is related to the great geographical distribution
of the entities constituing the application, to the software heterogeneity
and the evolutionary interaction between them. Quality of these systems
has become a big issue, since failure can have economics consequences
and can also endanger human life, we can think about software applica-
tions for aerospace domain, transportation and healt-care. Model-based
specifications of component-based systems permit to explicitly model the
structure and behaviour of components and their integration. In particu-
lar Software Architectures (SA) has been advocated as an effective means
to produce quality systems. The architecture of a software system basi-
cally consists of the structure of components and of the way they are in-
terconnected (SG96). Components are high-level computational and data
entities that can range from a distributed application to a single thread,
from databases to a simple data container (Szy02). Typical use of SA is as
a high level design blueprint of the system to be used during the system
development and later on for maintenance and reuse. At the same time,
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SA can be used in order to analyze and validate architectural choices,
both structural that behavioural. More recently, architectural artifacts
have been used to implicitly or explicitly guide the design and coding
process (ACN02). In summary, SA specifications are nowadays used for
many purposes, like documenting, analysing, or to guide the design and
coding process. In this thesis, as we have introduced in Chapter 1, we
deal with software architectures that can change their structure during
system execution. Typical changes, which are called reconfigurations, in-
clude components joining and leaving the system or changing their con-
nections and are usually required for load balancing, fault-recovery and
ridimensioning software systems (BCDW04; KJKD05; MK96; MT00). In
this chapter and in the rest of the thesis we want to consider three main
aspects in the development of systems that are dynamic. The first as-
pect to consider is the model used to design them. The second aspect is
the set of mechanisms to express and verify structural and behavioural
properties that we expect to be satisfied by software architectures after
each reconfiguration. The third and last aspect is the code generation
techniques from architectural specifications. Over the past 10 years, var-
ious alternative have been introduced to specify and analyze Dynamic
Software Architectures, ranging from the more theoretical graph-based
approaches (BHTV06; Le 98; WF02; HIM00) to implementation-oriented
programming languages (APLs) such as ARCHJAVA(ACN02) or JAVA/A
(BHH+06; Hac04), passing through architectural description languages
(ADLs) (MT00; KJKD05) and UML1.
In this chapter we provide background informations on the state of the
art on each of the following aspects: Dynamic Software Architecture de-
sign (Section 2.2), architectural-level analysis of DSAs (Section 2.3), and
code generation from architectural design (Section 2.4) with the objective
to analyze them respect to a set of characteristics that each DSA should
provide. At the end of this chapter we analyze the state of the art pre-
sented here, in order to introduce better the main research results of the
thesis.

1www.uml.org/
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Figure 1: DSA Design Approaches

2.2 Dynamic Software Architecture Design

In this section, we report related works that address the design of DSAs.
Recently many contributions have tried to consider the dynamic aspect
of architectures by providing mechanisms for describing architectural re-
configurations. These can be categorized in a set as presented in Figure 1.
Our objective is to understand if each element in the set provide the fol-
lowing peculiarity that each modeling approach should have to design
DSAs. These characteristics are described in the following list:

• Architectural Structure: explicit specification mechanisms for ar-
chitectural elements (components, connectors, ports, roles, inter-
faces, etc.) and architectural styles that constraint the construction
of architectural configurations (pipeline, client-server, layered, mul-
titier, peer-to-peer, etc.) (SG96).

• Architectural Element Behavior: ability to describe the behavior of
each topology elements and of each Software Architecture configu-
ration;

• Architectural Reconfigurations: ability to model Software Archi-
tecture evolutions (add/remove components and connections);
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2.2.1 Architectural Description Languages (ADLs)

An ADL (MT00) is defined as a textual or graphical notation. It allows to
specify Software Architectures(SAs) and it is generally accompanied with
specific tools. Each ADL permits to define three essential concepts: Com-
ponent, Connector and Configuration. A component is a binary unit of indepen-
dent production, acquisition, and deployment that interact to form a functioning
system (Szy02). The interaction among the components is represented by
the notion of software ”connector”. Beyond the concepts of component
and connector there is also another basic element that characterizes SAs,
which is the system configuration. In other words, component and con-
nectors can be composed together to make up different system configu-
rations. Many ADLs have been proposed in the last fifteen years, with
different requirements and notations, and with the objective to support
components’ and connectors’ specification and their overall interconnec-
tion, composition, abstraction, reusability, configuration, heterogeneity,
and analysis mechanisms (MT00). In this section we describe a set of
ADLs that are able to design DSAs. Each ADLs is shortly introduced and
at the end Table 1 summarizes each aspect presented and evaluated re-
spect characteristics presented in the section above.
The Architecture Analysis and Design Language (AADL) (SAE) is based
on MetaH language (LCV00). It allows separate component type and
component implementation declarations. A component type declaration
lists interface features while a component implementation declaration
lists subcomponents, connections between subcomponents and behaviours
of the components. The specification of the functional behaviour of com-
ponents and subcomponents is made possible thanks to a new language
that describes textually Mealy automata (FBF+07). Another important
feature is the possibility to model multiple run-time configurations of the
system. Using Modes AADL is able to represent alternative operational
states of a system or component. Each distinct configuration of a system
is identified as a mode (state) within the modal state machine abstraction.
The configuration that defines each mode and the events that cause the
transitions in the behavior of the system must be specified. Finally AADL
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offers a variety of capabilities to support architectural styles.
ACME (GMW97) is a general purpose architecture description language.
Using Acme we can specify systems as graph of components and connec-
tors in which the ports of a component fill the roles of a set of connectors
to determine the interconnections topology. Each elements of this topol-
ogy has a certain type and with the definition of structural properties we
can specify as elements of those types may be legally composed. ACME
does not support directly the behavioral specification of architectural el-
ements, but since that is a general purpose ADL it can be used in syn-
chronization with a set of behavioral specification approaches (i.e., pro-
cess algebras, state machines, timed automata, etc.). In (BJC05), ACME
has been extended with four new constructs more important to permit
modeling of DSAs. The first is a conditional construct that allows the ADL
programmer to express runtime conditions under which programmed re-
configurations should take place, together with a specification of what
should change. The second extension is a pair of constructs that specify
the destruction of existing ACME elements. The third and final exten-
sion is intended to express runtime dependencies between architectural
elements.

ArchWare2 (MBO+07) is an ADL designed to model and verify active
software architectures that are dynamic in the structure (e.g., cardinality
of architectural elements, interconnection topology) and that can evolve
at run-time. It is based on the high-order typed π-calculus (Mil99) and
allows the verification of SAs using an analytical toolset based on theorem
proving and model checking techniques.

With ArchWare we can specify SAs based on the concepts of com-
ponents and connectors. Moreover, we can define architectural styles
that are families of architectures with common structure and satisfy the
same properties. With this language we can define three different kind of
change in the architecture. Dynamic change allows the topology of com-
ponents to be changed dynamically and the creation of new components
and their interactions during execution. Update change allows component
to be replaces. Finally, Evolutionary change allows the specification of the

2www.arch-ware.org
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components and interactions to be changed during execution.

Darwin (MDEK95; MK96) allows the specification of distributed sys-
tems as a hierarchic construction of components. It views components in
terms of both services they provide to allow other components to inter-
act with them and the services they require to interact with other com-
ponents. In general each component may provide and required many
services and may be specified, implemented and tested independently of
the rest of the system. Composite components and systems are specified
in Darwin by declaring instances of components and binding the service
required by one component to the services provided in another. Using
Darwin we are able to specify architectures which change at runtime us-
ing lazy and direct dynamic instantiation. In the first each component, pro-
viding a service, is not instantiated until a user of that service attempts
to access the service. In this way the SA structure can evolve according
to a fixed pattern. Direct dynamic instantiation, instead, permits the def-
inition of structures which can evolve in arbitrary way. Both static and
dynamic aspects of Darwin have a precise operational specification in the
π-calculus (MPW92).

Wright (ADG98) represents architectural structure as graph of compo-
nents and connectors. Components have interfaces, which in Wright are
called ports. Connectors also have interfaces, which are called roles. Each
port defines a logically point of interaction with its environment and each
role defines participant in the interaction also specifying the expected be-
havior of each participant in the interaction. Wright allows the user to
formally specify behavior using CSP formalism (End94). To permit SA
reconfigurations specification, Wright has been extended with two ele-
ments: (a) what events in the computation trigger a re-configuration, and
(b) how the system should be reconfigured in response to a trigger. First,
special ”control” events have been introduced into a component’s alpha-
bet, and allowed to occur in port descriptions. In this way, the interface of
a component can also describes when reconfigurations are permitted in
each protocol in which it participates. Second, this control events are used
in a separate view of the architecture, the configuration program, which
describes how these events triggers reconfigurations. The formal seman-

14



tics based on CSP allows to analyze SAs described in Wright respect to
consistency and completeness properties.

LEDA (CPT99) is an ADL for the specification and validation of DSAs.
The language is structured in two levels: components, representing system
modules, and roles, which describe the observable behaviour of compo-
nents. Roles are written in an extension of the π-calculus, thus allowing
the specification of dynamic architectures. With LEDA composite com-
ponents can be described and the relation among its subcomponents is
expressed by a set of attachments or connection among the roles of these
components. An other important aspect of LEDA is that it does not distin-
guish between components and connectors, nor between ports and roles
in fact connectors are described in LEDA as specific classes of compo-
nents, their behaviour being described by roles.

Olan (BBB+98) is an ADL designed for applications that involve mul-
tiple users in a distributed environment. In Olan the definition of an ar-
chitectural topology is basically made of the specification of the instan-
tiation of components and their interconnection, i.e. the dependencies
between required and provided services of their interfaces. The specifica-
tion of components interconnection is realized using the implementation
of a particular kind of components, the composite. A composite implemen-
tation contains the specification of a group of components in addition the
communication between sub-components is also specified. Interconnec-
tions between components or sub-components is specified using the data
flows, the execution flows, the communication protocol and the run-time
mechanism used to perform the communication. The connector element
is used to interconnect a set of components and Olan offers to the appli-
cation architect a set of predefined connectors each of which correspond-
ing to a communication pattern and an implementation on top of a mid-
dleware platform. Components and connectors do not allow to express
their dynamic behavior but the language has been augmented with OCL
(OMG03) enabling to describe operation changing the architecture. The
obtained language is based on a set of reconfiguration rules of the form
Event, Condition and Action. Moreover Olan does not offer the basis for
analysing component behaviours.
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xADL3 (DvdHT01) is a highly extensible XML-based ADL that sup-
ports run-time and design-time modeling, architecture configuration man-
agement, and model-based system instantiation. It is based on xArch4, a
core representation for basic architectural elements. In xADL, two schemas
accomplish the separation of run-time and design-time models.
The INSTANCES schema defines the core set of architectural constructs
common to most ADLs (e.g., components, connectors, interfaces, links
and sub-architectures). Constructs modeling design-time aspects of a sys-
tem are defined in the STRUCTURE and TYPES schema. In addition the
last schema provides also a type system for the architectural elements.

Aspects of elements like bahaviors and constraints on how elements
may be arranged are not specified directly in xADL but an extension has
been presented in (GMS05). Authors of this paper extend xADL with a
Schema able to describe the abstract behavior of components and connec-
tors. With this they are able to support performance and reliability mod-
eling and analysis of SAs. The three most important aspects of modeling
the dynamicity of architectures, in xADL, are defined in three different
schemas: Versions, Options and Variants. Versions record informa-
tion about the evoltion of architectures and elements (i.e., components,
connectors, and interfaces). Options indicate points of variation in an ar-
chitecture where the structure may vary by the inclusion or exclusion of
an element or group of elements. Finally, variants indicate points in an
architecture where one of several alternatives may be substituted for an
element or group of elements.

Some ADLs support the dynamic reconfiguration of SA taking ad-
vantage of Aspect-Oriented Software Development (AOSD) techniques
(FECA05). AspectLEDA (MPM07) is an extension of the ADL LEDA
(CPT99) with primitives for describing Aspect-Oriented (AO) concepts.
These aspect are usually used to describe SA reconfigurations. When we
want to describe a new SA in AspectLEDA the first step is describing, us-
ing LEDA, the base SA that includes neither reference to aspect nor spe-
cial primitives supporting aspects. Next, aspects are described in LEDA

3http://www.isr.uci.edu/projects/xarchuci/
4http://www.isr.uci.edu/projects/xarch/
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as regular components. They are defined as architectural components and
the interaction between the system element and the aspect is described in
the attachments section. PRISMA (PACR06) is another Aspect-Oriented
ADL. A PRISMA system is a component that includes a set of connec-
tors, components and other systems that are correctly attached. PRISMA
provides the evolution of aspect-oriented software architectures and their
dynamic reconfiguration. PRISMA Architectures are defined at two dif-
ferent levels of abstraction: the type definition level and the configuration
level. An architecture configuration is evolved by invoking an evolution
service that update the number of architectural elements, the communica-
tion among them, and the structure of the architecture. Moreover, the
original version of this language has been extended in (SAP+07) with
a configuration aspect that encapsulates every property and behavior re-
lated to SA dynamic reconfiguration. This aspect has a set of attributes
that contain the current configuration of the system and a set of services
that maintain and evolve this configuration. Any system that needs re-
configuration capabilities to evolve its SA imports this aspect. Regarding
behavioral modeling, PRISMA use π-calculus process algebra.
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2.2.2 UML-based Approaches

The Unified Modelling Language (UML)5 gives a set of elements to model
component based software architecture. With the innovation introduced
by UML 2.0 we are able to model composite structure diagrams with new
component notation, port, required interface and provided interface no-
tation. All these innovations focus on the modelling of static software as-
pects and for these reason UML remains inappropriate in modelling dy-
namic architectures. In fact, aspects like reconfiguration and architectural
evolution, are not specifically deal in UML. In order to cover these weak-
nesses a set of researchers are working on. Researches to represent DSAs
in UML (RKJ04; PMSA04; MRRR02) can be approached in two ways. The
first consists in using the existing UML notations (MRT99). The second
consists in the extension mechanisms in UML2.0 with profiles (MRRR02).
Below we try to give an idea on principal way to use UML to design
DSAs.

Kacem et al. in (MHKD06) propose a new UML2.0 profile for speci-
fying dynamic software architectures. It integrates graph transformation
and UML2.0 notations. The structural aspect of a SA is described us-
ing UML2.0 according to an architectural style while behavioral aspects
are expressed using a new notation, based on UML2.0 and architectural
rewriting rules (Le 98). The structural aspects of SA are graphically mod-
eled using the component diagram. The dynamic aspects are defined by
graph rewriting rules and finally a coordination protocol is defined as a
partial order among reconfiguration operations. The coordination aspect
models the dependency among the reconfiguration operations specified
in the dynamic part. It represents how these operations must be managed
in order to ensure the application evolution. This aspect is based on ac-
tivity diagram. All the architectural properties are expressed in the OCL
language (OMG03). In order to use this profile to model Patient Monitor-
ing Systems, authors have developed a FUJABA 6 plugin that implements
the proposed UML profile.

In (AB06) authors propose a UML profile to model context-aware ap-
5www.uml.org/
6http://wwwcs.uni-paderborn.de/cs/fujaba/
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plications independently from the platform. This profile allows designers
to specify the contexts that impact an application and the variability of
an application architecture structure as well as its behavior according to
this context. To define a new UML profile, authors distinguish three dif-
ferent types of adaptation: structural, behavioral and architectural. The
first consists in extending the object’s structure by for example adding or
deleting methods or attributes to the objects; the second adapts the behav-
ior of the applications’ objects, the third consists in adding and deleting
objects to an application according to the context. In order to model the
three types of adaptation, authors have defined elements of the UML pro-
file. UML class diagrams have been extended to support structural and
architectural adaptation while sequence diagrams to support behavioral
adaptation. To illustrate the approach an online shopping application is
introduced but no design tool is used. Another limit of this proposal is
that it does not introduce mechanisms to specify and verify architectural
properties before and after adaptations. Other UML profile have been
proposed for the modeling of a specific kind of dynamic architectures,
where the dynamism is caused by the mobility of physical devices.

Grassi et al. in (GMS04) use Sequence Diagrams to model the inter-
action logic among components, and a Collaboration Diagram to model
the interaction structure only. To model mobility, the collaboration di-
agram has been extended with the stereotype moveTo. Moreover, they
model also physical mobility by Deployment Diagram. Baumeister et al.
in (BKK+03) present an extension to UML class, sequence and activity
diagrams to model mobile systems. Class Diagrams are used to model
the structure of the system and in order to model concepts as locations
and mobile objects, they have been extended with a set of stereotypes.
Sequence Diagrams models mobile, nested and dynamically changing
structure by generalizing the concept of object lifeline. An alternative
way to model mobility has been presented in the same paper using a
variant of the activity diagrams. Merseguer et al. in (MCM00) propose
to use State Diagram to model the internal behavior od each component
of a software application, and Sequence Diagrams to model interaction
scenarios among components. The modeling of component mobility sim-
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ply consists in the addition at suitable points of its sequence diagram of
a state whose dispatched action (goto action) moves that component to
a different location. Balsamo and Marzolla in (BM03) propose to use Use
Case and Activity Diagrams. A Use Case is used to express the possi-
ble preference of different mobility behaviors. The Activity Diagrams are
used to represent both the effect of mobility on the system configuration
and the internal activities of each system component. Each node of the
activity diagram corresponds to a particular configuration and models
mobility activities that leads to a configuration change. Service-Oriented
Architecture (SOA) is one kind of dynamic software architecture. It is a
component model that inter-relates different functional units of an appli-
cation, called services, through well-defined interfaces and contracts be-
tween them (PG03). Baresi et al. in (BHTV06) propose an UML profile for
SOAs where structural and dynamic aspects are defined by an extended
component diagram. They use graph transformation rules to capture the
dynamic aspects of a SOA. Each rule is defined as a pair of two instance
graphs (i.e., using class diagrams) with the left-hand-side defining the
pre-conditions and the right-hand-side defining the postconditions of the
transformation. Both graphs represent a part of the configuration as an
instance of the architectural style.
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2.2.3 Graph-based Approaches

Several works have proposed graph grammars to design DSAs (CMR96;
CMR+97). In the following we present them showing in which way rep-
resent the same aspects used in the previous sections.

Baresi et al. (BHTV06) formalize architectural style as a typed graph
transformation system (CMR96). It consists of a type graph to define ar-
chitectural elements and their relationships, a set of constraints to further
restrict the valid models, and a set of graph transformation rules. Nodes of
the type graph define the architectural elements (i.e., components, con-
nectors, ports, interfaces, etc..). Edges define the possible relationships
among these elements. Moreover, a concrete architecture is an instance
graph of the type graph. Reconfiguration mechanisms are modeled us-
ing transformation rules that can be applied to change the SA configura-
tion. To do this authors apply a transformation rule to a host graph us-
ing the Double-Pushout semantics (CMR+97). Authors address also how
to ensure the consistency between architecture instances and the archi-
tectural style. They reformulate this problem as a reachability problem
which is automatically solved by graph transformation or model check-
ing tools. A future work of Baresi et al is to develop a integrated CASE
environment for the analysis and stepwise refinement of SA. They are
conducting experiments with existing graph transformation tools (i.e.,
AGG7, PROGRES (SWZ99), Fujaba, GTXL8, etc..) and model checkers
(i.e., CheckVML (SV03), GROOVE (Ren03), etc..) with the final objective
of a tool chain that seamlessly integrates the different components. The
approach of Baresi et al. has been extended in (Thö05) to include be-
haviour modelling by encoding an activity diagram-like specification of
local behaviour into the graph structure and providing rules interpreting
them.
Le Métayer (Le 98) describes architectures by graphs and the architectural
style by a context-free graph grammar. This notion of graphs is inspired
by works on the chemical reaction model (BFM00; BM93) and set-theoretic
graph rewriting (RV93). Nodes are used to represent computational en-

7tfs.cs.tu-berlin.de/agg/
8tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
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tities (i.e., client, server, etc..) while egdes correspond to the communi-
cation links between entities. The evolution of the architecture is defined
by a coordinator that is expressed by conditional graph rewriting rules.
Finally he uses static type checking to prove that the rewriting rules are
consistent with the respective style but without tool support.
In the same paper he presents a small language to describe the behaviour
of each entity. Its commands are very much in spirit of CSP (Hoa78) and
its semantic is presented as a labelled transition system.
Wermelinger and Fiadeiro (WF02) describe SAs by diagrams in a category
of programs using CommUnity (FM97), a parallel program design lan-
guage. Each component of the SA is written in CommUnity with the
usual notion of state and interacts with other components through syn-
chronization and memory sharing. Architectural reconfiguration are rep-
resented as a rewriting process over graphs with nodes that represent
program instances and edges that represent instance morphisms. A re-
configuration rule is a graph production, and a reconfiguration step is a
direct derivation using a double-pushout transformation approach. This
approach enforces that component state is only changed by computa-
tions and not by reconfiguration steps and proves that the graph obtained
through direct derivation is well-typed respect to the style. Authors do
not present some tool support.
Hirsch et al. in (HIM00) presents an approach for the specification of SAs
styles using hyperedges replacements systems and for their dynamic re-
configurations using constraint solving. They represent SAs as graphs
and Architectural Styles as graph grammars. Edges of each graph are
components while nodes are ports of communication. The construction
and dynamic evolution of the style are obtained as graph rewriting over
the productions. To model evolution they have used graph rewriting
combined with constraint solving in order to specify how components
will evolve and communicate. Constraint productions are used to coor-
dinate the dynamic evolution of the SA. Regarding verification aspects,
they do not introduce particularly verification aspects and as previous re-
lated work is not tool supported. Intention of the authors is to implement
the simulation of software architecture derivations and reconfigurations.
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Table 3: Graph-based approaches for DSA Design

Reference Structure Behavior Reconfiguration

(BHTV06) Typed Graph Activity Diagram DPO
(Thö05)

(Le 98) Graph CPS-like Coordinator

(WF02) CommUnity Program NO DPO
Graph Productions

(HIM00) Graph NO Graph Rewriting
Graph Grammar Constraint Solving

2.3 Analysis of Dynamic Software Architectures

While how to model SAs has been for a long time the main issue in the
SA community, how to select the right architecture has become one of the
most relevant challenges in recent days. Model Checking, deadlock de-
tection, testing, performance analysis, and security are, among others, the
most investigated analysis techniques at the architectural level. Among
the techniques that allow designers to perform exhaustive verification of
the systems (such as theorem provers, term rewriting systems and proof
checkers) model checking (E. 00) has as main advantage that it is com-
pletely automatic. The user provides a model of the system and a specifi-
cation of the property to be checked on the system and the model checker
provides either true, if the property is verified, or a counter example is
always generated, if the property is not valid. The counter example is
particularly important since is show a trace that leads the system to the
error condition. While presenting a comprehensive analysis of the state
of the art in architectural analysis is out of the scope of this section, it
will focus on architecture-level Model-Checking techniques. For further
reading on the topic, interested readers may refer to (BI03; DN02; Ros06).
Initial approaches for Model Checking at the architectural level have been
provided by the Wright architectural language (AG97) and the Tracta ap-
proach (MKG99). More recently, many other approaches have been pro-
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posed, as listed and classified in Figure 2. By focusing on the model-
based approaches, Bose (Bos99) presents a method which automatically
translates UML models of SA for verification and simulation using SPIN
(Hol03). A component is specified in terms of port behaviours and per-
forms the computation of provided services. A mediator component is
specified in terms of roles and coordination policies. Safety properties are
checked. Lfp (JB05) is a formal language dedicated to the description of
distributed embedded systems control structure. It has characteristics of
both ADL and coordination language. Its model checker engine is Maude
(CDE+07) based on rewriting logic semantics. Fujaba9 is an approach,
tool supported, for real-time Model Checking of component-based dia-
grams, the real-time behaviour is modelled by means of real-time state-
charts (an extension to UML state diagrams), properties are specified in
TCTL (Timed Computation Tree Logic) (ACD90) and the UPPAAL (UP-
Psala and AALborg University) (BLL+95) model checker is used as real-
time model checker engine. Arcade (BGH01) (Architecture Analysis Dy-
namic Environment) applies model checking to a DRA (Domain Refer-
ence Architecture) to provide analysts and developers with early feed-
back from safety and liveness evaluations during requirements manage-
ment. The properties are represented as LTL formulae and the model
checker engine is SPIN. AutoFOCUS (Aut) is a model-based tool for the
development of reliable embedded systems. In AutoFOCUS, static and
dynamic aspects of the system are modeled in four different views: struc-
tural view, interaction view, behavioral view, and data view. AutoFO-
CUS provides an integrated tool for modeling, simulation, and valida-
tion. CHARMY (Pel05; CHA; IMP05) is a proposal to model-check SA
compliance to desired functional temporal properties. In CHARMY SA
topology and behavior are described via UML based specifications and
automatically translated into a formal prototype. In particular, compo-
nents and state diagrams, are automatically interpreted to synthesize a
formal Promela prototype, which is the SPIN model checker modeling
language. Moreover CHARMY provides support for simulating the SA:
it uses the SPIN simulation engine and offers simulation features which

9www.cs.uni-paderborn.de/cs/fujaba/index.html
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Figure 2: DSA Verification Techniques

interpret SPIN results in terms of CHARMY state machines. Properties
whose validity need to be checked on the architectural model are mod-
eled through scenarios, by expressing desired and undesired behaviors.
Such scenarios are automatically translated into Büchi automata (B6̈0), an
operational representation for LTL formulae. SPIN is then used to check
the conformance of Promela prototype with respect to such behavioral
properties. CHARMY has been used to model and verify fault-tolerant
and Telecommunication systems (BMP06; BMP07). UMC (UML on the
fly Model Checker) (UMC) is the model-checker used in this thesis to ver-
ify the conformance of a SA design respect to desired properties. UMC
takes in input a set of statechart diagram descriptions (describing the dy-
namic behavior of the components of the SA) and verifies a set of correct-
ness properties formalized in the action- and state-based temporal logic
UCTL (tFGM08). The algorithm implemented in UMC is able to check
the validity of a formula without generating the global model of the sys-
tem bypassing the state explosion problem that makes verification tools
inapplicable. More details will be provided in Section 3.3 when we will
present the complete proposed process.

2.4 Architectural-based Code Generation

In this section we present an overview on the various techniques used
to generate code from a SA specification. We focus the attention on lan-
guages that can be used to generate code from a high-level description
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Table 4: Code Generation from ADLs

ADL Data Born Tool Support Output Code Reference

Darwin 1991 LTSA+SAA C++ (MDEK95; MK96)

Fujaba 1997 Fujaba Java (Fuj)

AADL 2001 Osate Ada, C, C++ (SAE)

Prisma 2002 PrismaCase C] (PACR06)

of the SA. They can be distinguished in Architecture Description Lan-
guages (ADLs), such as languages for describing SAs, and Architectural
Programming Languages (APLs), such as languages that integrate SA
concepts into programming languages. We conclude with a comparison
among APLs. It is important to note that code generated from ADLs not
necessarily contains architecture concepts. This can have impact on the
readability of the code and can reduce its modifiability and maintainabil-
ity. Furthermore, modifications on the generated code made by develop-
ers can invalidate architectural constraints. APLs have been introduced
to solve this problem. All these aspects will be detailed in the following.

2.4.1 ADLs-based code generation

Some ADLs support code generation from an architectural description of
the system. Table 4 lists the ADLs that support code generation: it shows
the ADL name, the tool support and the type of code that they produce as
output. The table presents ADLs that are currently used in an industrial
context and that are continuously updated showing the last release and
the references.

However, the implementation step is, at the best, only supported by
code generation facilities not capable of explicitly representing architec-
tural notions at the code level. Thus, the notion of SA components, con-
nectors and configurations is kept implicit and the implementation in-
evitably tends to loose its connection to the intended architectural struc-
ture during the maintenance steps. The result is ”architectural erosion”
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(PW92).

2.4.2 Architectural Programming Languages (APLs)

APLs overcome the problem of architectural erosion in implementation
by integrating SA concepts into programming languages. With APLs,
there is an inclusion of architectural notions, like components, ports with
provided and required interfaces as well as protocols and connectors, into
a programming language (typically Java). The basic idea of architectural
programming is to preserve the SA structure and properties throughout
the software development process so to guarantee that each component in
the implementation may only communicate directly with the components
to which it is connected in the architecture. This aspect is called Com-
munication Integrity between code and SA. In this section ARCHJAVA and
JAVA/A will be presented, which are the most advanced APLs (BHH+06),
in order to understand their main characteristics and to compare them
with respect to aspects that are important for an APL.

ArchJava

ARCHJAVA(ACN02) is an APL which extends the Java language with
component classes (which describe objects that are part of the architec-
ture), connections (which enable components communication), and ports
(which are the endpoints of connections). Components are organized into
a hierarchy using ownership domains, which can be shared along con-
nections, permitting the connected components to communicate through
shared data. A component in ARCHJAVA is a special kind of object whose
communication patterns are explicitly declared using architectural decla-
rations. Component code is defined in ARCHJAVA using component classes.
Components communicate through explicitly declared ports. A port is a
communication endpoint declared by a component. Each port declares
a set of required and provided methods. A provided method is imple-
mented by the component and is available to be called by other compo-
nents connected to this port. Conversely, each required method is pro-
vided by some other component connected to this port. Each provided

29



method must be implemented inside the component. ARCHJAVA requires
developers to declare connection patterns that are permitted at run-time.
Once connect patterns have been declared, concrete connections can be
made between components. All connected components must be part
of an ownership domain declared by the component making the con-
nection. Communication integrity is the key property enforced by ARCH-
JAVA ensuring that components can only communicate using connections
and ownership domains that are explicitly declared in the architecture.
ARCHJAVA guarantees communication integrity between an architecture
and its implementation, even in the presence of advanced architectural
features like run-time component creation and connection. A prototype
compiler for ARCHJAVA is publicly available for download at the ARCH-
JAVA web site10.

Example We illustrate ARCHJAVA through a simple example. Figure 3
shows a UML composite component diagram of a toy example11.

Figure 3: OutService Composite Component in ARCHJAVA.

public component class OutService {
protected owned AccidentAssistanceService aas = ...;
protected owned EmergencyService es = ...;

connect pattern AccidentAssistanceService.out, EmergencyService.in;

public OutService () {
connect (aas.out, es.in);

}
}

public component class EmergencyService {

10http://archjava.org
11Borrowed from Sensoria, Research supported by the EU within the FET-GC2 IST-2005-

16004 Integrated Project Sensoria (Software Engineering for Service-Oriented Overlay Com-
puters).
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public port in {
provides void AlertEmergencyService (int loc);
provides void EmergencyLevel (int level);
provides void AlertAccepted ();

}
public void AlertEmergencyService (int loc) {

...
}
public void EmergencyLevel (int level) {

...
}
public void AlertAccepted () {

...
}

}

public component class AccidentAssistanceService {
public port out {

requires void AlerEmergencyService (int loc);
requires void EmergencyLevel (int level);
requires void AlertAccepted ();

}
}

The OutService component is made up of two subcomponents: the Ac-
cidentAssistanceService (AAS) and the EmergencyService (ES). The first has
one out port and the second one in port through which the two compo-
nents are connected. A port is a communication endpoint declared by
a component. For each port the language provides constructs to define
requires and provides methods. ARCHJAVA requires developers to declare
in the architecture the connection patterns that are permitted at run-time.
Taking a look to the code for the specification in Figure 3, the declaration
”connect pattern” in the code permits the OutService component to make
connections between the out port of its AAS subcomponents instance to
the in port of the ES component instance. This connection binds the re-
quired methods (AlertAccepted, AlertEmergencyService, etc.) in the out port
of the AAS to a provided method with the same name and signature in
the in port of the ES component. Thus when AAS invokes AlertAccepted
on its out port, the corresponding implementation in ES will be invoked.

Java/A

The basic idea of JAVA/A (BHH+06; Hac04) (as in ARCHJAVA) is to inte-
grate architectural concepts, such as components, ports and connectors,
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as fundamental parts into Java. The underlying component model is com-
patible with the UML component model (Hac04). This compatibility and
the one-to-one mapping of these concepts allows software designers to
easily implement UML 2.0 component diagrams. They can express the
notions present in these diagrams using built-in language concepts con-
structs of Java. Furthermore, the visibility of architectural elements in
the JAVA/A source code prevents architectural erosion. The basic con-
cepts of the JAVA/A component model are components, ports, connectors
and configurations. Any communication between JAVA/A components is
performed by sending messages to ports. This message must be an ele-
ment of the required interface of the perspective port. The port will then
pass on the message to the attached connector, which itself will delegate
the message to the port at its other end. Each port may contain a proto-
col. These protocols describe the order of messages that are allowed to be
sent from and to the respective port. Any incoming and outgoing com-
munication must conform to the protocol. Protocols are realised by UML
state machines and ensure the soundness of a configuration at compile-
time. A Connector in JAVA/A links two components by connecting ports
they own. The JAVA/A compiler is not yet complete and available but
authors claim that it will transform JAVA/A components into pure Java
code which can be compiled to byte code using the Java compiler. It will
be possible to compile and deploy each component on its own, since the
component’s dependencies on the environment are encapsulated in ports.
The correctness of an assembly (i.e., deadlock-freedom) can be ensured
using the UML state machine model checker HUGO (HUG05). Another
important aspect that JAVA/A has is the dynamic reconfiguration. It sum-
marises changes to a component-based systems at run-time, concerning
creation and removing connections between ports. JAVA/Asupports each
of these reconfiguration variants. JAVA/Ahas a semantic model that uses
a states as algebras approach (BHH+06) for representing the internals of
components and assemblies, and the I/O-transition systems for describ-
ing the observable behavior.
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Example Figure 4 shows a composite component diagram of the same
system already introduced for ARCHJAVA (in Figure 3).

Figure 4: OutService Composite Component in Java/A.

The composite component contains an assembly of two components
Accident Assistance Service (AAS) and Emergency Service (ES) whose ports
are wired by a connector. The AAE port of the AAS component is de-
picted as stacked boxes since it is a dynamic port which can have an arbi-
trary number of port instances. In contrast, the static port EAA must have
a single instance at any time. Port protocols are specified with UML state
machines. A protocol describes the order and dependencies of messages
which are sent and received by a port. The code corresponding to this
specification is described below.

1. simple component AccidentAssistanceService {
2. dynamic port AAE {
3. provided {

void AlertAccepted();
void AlertNoAccepted();
void EmergencyAccepted();
void EmergencyNotAccepted();
}

4. required {
signal AlertEmergencyService (Location Loc);
signal EmergencyLevel(int Level);
void AlertAccepted();
}

5.
6. try {
7. Component aas = ComponentLookUp (this, "AccidentAssistanceService");
8. Port aae = aas.getPort ("AAE");
9. ConnectionRequest cr = (this, this, EAA, aas, aae, new Connector());

reconfigurationRequest(cr);
10. }
11. Catch (ReconfigurationException e) {...}
12. }

13. simple component EmergencyService {
14. port EAA {
15. provided {

signal AlertEmergencyService(Location Loc);
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signal EmergencyLevel(int Level);
void AlertAccepted();

}
16. required {

void AlertAccepted();
void AlertNoAccepted();
void EmergencyAccepted();
void EmergencyNotAccepted();

17. }
18. <! // protocol of EAA

states {
initial Initial;
simple Q1,Q2,Q3,Q4;

}
transitions {
Initial -> Q1;
Q1->Q2 {trigger AlertEmergencyService();}
Q2->Q1 {effect AlertNoAccepted();}
Q2->Q3 {effect AlertAccepted();}
Q3->Q4 {trigger EmergencyLevel();}
Q4->Q3 {effect EmergencyNotAccepted();}
Q4->Q1 {effect EmergencyAccepted();}
}

!>
19. }

20. composite component OutService
21. {
22. assembly {

component types {AccidentAssistenceService,EmergencyService}
23. connector types {

AccidentAssistenceService.AAE;
EmergencyService.EAA;
}

24. initial configuration {
AccidentAssistenceService AS =

new AccidentAssistenceService();
EmergencyService ambulance =

new EmergencyService();
EmergencyService police =

new EmergencyService();
Connector cn0 = new Connector();
cn0.connect(ambulance.EAA, AS.AAE);
Connector cn1 = new Connector();
cn1.connect = (police.EAA, AS.AAE);
}

}
}

25. }

In lines 1-12 and 13-19 the two simple components (Accident Assis-
tance Service (AAS) and Emergency Service (ES)) are declared while in
lines 20-25 a composite component ”OutService” is declared as an assem-
bly of the two previous one. In lines 2 and 14, the ports AAE and EAA are
defined. Each port declaration contains a set of provided operations (i.e.,
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lines 3 and 15) and a set of required operations (i.e., lines 4 and 16). Port
protocols are specified by UML state machines which are textually repre-
sented using the notation UTE (HUG05). For instance, lines 18-19 show
the UTE representation of the UML state machine for the port EAA. In
line 24 a possible configuration of the OutService composite component
is declared. It presents two instances of the ES component (ambulance
and police) that are attached at the AAS by the EAA and AAE ports. The
last interesting aspect the JAVA/A can models is the dynamic reconfigu-
ration that describes changes to a component-based system at run-time,
concerning creation and destruction of components and building up and
removing connections between ports. This is made with a code like to
lines 6-11 where a possible reconfiguration in the OutService composite
component (i.e., the connection and disconnection of ES) is presented.
An idle ES disconnects from the AAS and reconnects whenever there is
an accident and the AAS alerts the ES. When AAS alerts the ES executes
the code in the 6-11 lines which realized the (re)connection of an ES to the
AAS.

A Comparison

ARCHJAVAand JAVA/A employ similar approaches. Both augment Java
with the concepts of component and connector. ARCHJAVAcomponents
have ports with required and provided interfaces. However, ports in
ARCHJAVA do not have associated protocols. As a result the dynamic
behavior of ports is not capturated in ARCHJAVA. ARCHJAVAas well as
JAVA/A allows hierarchical component composition. In JAVA/A there
is no possibility of communicating with components other then sending
messages to their ports, whereas in ARCHJAVA outer components can in-
voke methods of inner components directly, which breaks the encapsu-
lation. While ARCHJAVA lacks a semantic model, JAVA/A provides a
complete one based on algebras and I/O-transitions systems. As far as
concern tool support, in (SG04) the authors have developed additional
Eclipse plug-ins that integrates AcmeStudio (Acm) and ARCHJAVA. With
this framework an architect can model an architecture using AcmeStudio,
and have access to AcmeStudio’s verification engines to check desired ar-
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Table 5: APLs Comparison 1

APL Components Ports Configurations Encapsulation

ARCHJAVA Yes Yes Implicit Partial

JAVA/A Yes Yes Explicit Yes

Table 6: APLs Comparison 2

APL Behavioral Modeling Tool Support
ARCHJAVA No Total

JAVA/A Yes Not yet

chitectural properties. The architect can then generate ARCHJAVA code
using the refinement plug-in. As developers complete the implementa-
tion to provide the functionality of the system, ARCHJAVA ’s checks help
ensuring that the implementation conforms to the architect’s design. Un-
fortunately the existing ARCHJAVA environment supports only the ver-
ification of architectural properties and it does not force the developers
to respect the component behavior described into the SA. For JAVA/A
the tool support is not yet complete and it is one of the future work. So
far, a JAVA/A compiler should transform JAVA/A components into pure
Java code which can be compiled to byte code using the Java compiler.
However, this compiler is not yet publicly available. Tables 5 and 6 syn-
thesize the above discussion and way of understanding the key features
and differences of ARCHJAVA and JAVA/A.

2.5 Conclusions and Research Proposal

In this Chapter we have presented related works with the objective to
evaluate the ability of current approaches to design, verify and realize
dynamic software architectures. For sure these not cover all works in
the literature but gives and idea on the different research directions and
proposals and has been our starting point of this work. For each de-
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sign approach we have analyzed the ability to define aspects as struc-
tural elements and constraints (components, connectors, ports, architec-
tural styles, etc.), behavior of each structural element and the possibility
to design systems in which its structure can evolve by inserting/deleting
topology elements. This chapter shows that area of dynamic software ar-
chitecture specification is well researched but exist a lot of different some-
times conflicting notations, concepts, and definitions. To model DSAs we
have presented different approaches, ADLs, UML and Graphs. ADLs are
informal or formal notations that do not present friendly mechanisms to
be used by software developers. Most of them address either structural
or behavioural properties, but not both and this makes difficult rigorous
analysis and verification of architectural properties. UML is a more user-
friendly notation, and it is today more used from both the industrial and
academic perspective. However, it does not specifically address the mod-
eling of DSAs and does not have native formal method supports. Graphs
expresses a natural way to specify dynamic software architectures using
graph rewriting rules but it lacks in the behavioral modeling and anal-
ysis. Another aspect that we have considered is the ability to generate
code directly from the Software Architecture design. We have presented
two principal way realize it, one based on ADL design and one based
on APL design. APLs respect to ADLs are more useful since that they
overcome the problem of architectural erosion in implementation by in-
tegrating SA concepts into programming languages. Using them we do
not loose architectural structural properties during each SA reconfigu-
ration. After the previous evaluation we can summarize the ability of
current approaches to represent and validate dynamic software architec-
tures. For each of them we have considered the ability to design, verify
and generate code. The outcome is summarized in Table 7.

Each approach in Table 7 not cover totally all aspects. Our research
objective is to propose an approach to design, verify and realize DSAs.
We want to propose a complete process able to:

(i) design structure, behaviour and reconfiguration aspect in a formal
way;
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Design Formal Code
Approach Structure Behaviour Verification Generation

ADLs + − ± ±
UML + + − ±
APLs + ± ± ±

Graph grammars + ± + −

Table 7: Summary of approaches to DSAs

(ii) formally verify structural and behavioral properties of each DSA;

(iii) generate code automatically from the architectural models.

Other two features of this process must be:

(iv) the generated code must respect both structural (i.e., each compo-
nent can only communicate using connectors and ownership do-
mains that are explicitly declared in the DSA) and behavioral con-
straints (i.e., methods provided by components can be invoked only
consistently to the behaviours defined for the components);

(v) the approach must be supported by automated tools, which allow
formal design and analysis and permits code generation from the
validated architecture.

In the next section we introduce an overview of our process while in
the next chapter we present the main results of the thesis in detail, relating
them to each step of the following process.

2.6 The Traffic Light Process

We have chosen the name traffic light for our process since that it is com-
posed of three principal phases, each one represented by one color : Red
for the DSA structural design and analysis, Yellow for the DSA behavioral
design and analysis and Green for the automatic code generation. In the
following we describe shortly the objectives of each of them.
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2.6.1 Red Phase: Structural Design and Analysis

The different proposals to design DSA are bound to particular language
and models. In the Red phase we select graph grammars as a formal
framework for mapping the different notions of dynamicity because (i)
they provide both a formal basis and a graphical representation that is in
line with the usual way architectures are represented, (ii) they allows for
a natural way of describing styles, configurations and reconfigurations,
(iii) they have been largely used for specifying architectures. In partic-
ular, we represent architectural styles by means of a type hypergraph and
a set of constraints. The type hypergraph describes the types of com-
ponents, connectors, ports and rules and their allowed connections. A
configuration (i.e., a SA) compliant to a type hypergraph T is described
by the notion of a T-typed hypergraph. Each SA is represented by a hyper-
graph where components (or connectors) are modeled using hyperedges
and their ports (or roles) by the outgoing tentacles. Moreover, compo-
nents and connectors are attached together connecting their respective
tentacles to the same node. We represent reconfiguration of a DSA using
rewriting rules among hypergraphs that state the possible ways in which
a new configuration can be generated.

Tool Support

The tool that supports the formal specification of a DSA is Alloy (Jac06;
Jac02). Alloy provides a description language to represent software mod-
els, based on signatures and relations, that we found very suitable to
model hypergraphs associated to DSAs.

Why Alloy? AGG12, PROGRES13, Fujaba(Fuj), CheckVML(SV03) and
GROOVE14 are existing tools for graph transformation-based modeling.
All of them allow to design typed and attributed graphs. Full support of
cardinality constraints, including automatic constraint checking, is only

12http://tfs.cs.tu-berlin.de/agg/
13www-i3.informatik.rwth-aachen.de/research/projects/progres/
14groove.sourceforge.net
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provided by AGG. Except for CheckVML, which is intended to translate
graph transformation models into the input language of model checkers,
all the tools allow the execution of graph transformation rules, even with
negative application conditions. Their limits are in the possibility of de-
signing Typed HyperGraphs. The unique one that support Typed Hyper-
Graph design is Graph eXchange Language (GXL) but it lacks in verifica-
tion aspects. We use Alloy to implement formal aspects of Typed Graph
Grammars (i.e., HyperGraphs, Partial and Total Morphisms, Matchings
and SPO-based Rewriting) (CMR+97; BCM05). Alloy also provides a
logic, based on an extension of first-order logic with relational opera-
tors, to represent properties or constraints of the models. The Alloy Ana-
lyzer translates the model and the logical predicates into a (usually large)
Boolean formula, uses efficient SAT solvers to decide satisfiability and
provides a counterexample in the negative case. We have used it to show
how to ensure style-consistency, perform model-finding and validate ar-
chitectural structural properties. Positive and negative characteristics of
Alloy are:

+ It is based on a simple notation with a simple relational semantics

+ It is easier to learn and use for developers without a strong formal
background

+ It offers a completely automated SAT based analysis mechanism (no
manual manipulations are necessary)

- It searches for a counterexample up to certain bound k in the num-
ber of elements of the model.

2.6.2 Yellow Phase: Behavioural Design and Analysis

Starting from the DSA designed in the previous phase, in the Yellow

phase we validate the DSAs conformance to certain functional proper-
ties using Model Checking techniques. For each SA configuration, we
associate to each component that compose it (i.e., each HyperEdge) a
communicating UML state machine that describes the behavior of each
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of them. The complete behavioral specification is composed of a set of
these UML state machines. After that we use the action- and state-based
temporal logic UCTL (tFGM08) to describe behavioral properties that we
want to check on our model. UCTL is composed of the action-based logic
ACTL (DV90) and the state-based logic CTL (CES86). This logic allows
to specify the basic properties (i.e., deadlock, liveness and safety) that a
run-time SA configuration should satisfy. Whenever the SA design is not
properly specified (not valid arrows in Figure 5), the DSA itself needs to
be revised. Thanks to the model checker we may correct the DSA speci-
fication. Whenever the DSA is validated (valid arrow in Figure 5) we can
proceed to the green phase.

Tool Support

The tool that supports this phase is UMC (UMC), an on-the-fly model
checker for UCTL. It allows the efficient verification of UCTL formulae
over a set of communicating UML state machines.

Why UMC? I have chosen to use UMC since that it is our in-house
model checker and it allows the efficient verification of functional correct-
ness properties formalized in the action-based and state-based branching-
time temporal logic UCTL (tFGM08) over a set of communicating UML
state machines (describing the SA components’ dynamic behaviour). UMC
uses an on-the-fly model-checking algorithm with a linear complexity,
which has as advantage that, depending on the formula, only a fragment
of the overall state space might need to be generated and analyzed in
order to produce the correct result.

2.6.3 Green Phase: Code Generation

After the DSA has been validated w.r.t. the desired properties (both struc-
tural and behavioural), Java code is automatically generated in the green
phase. This activity is performed through two main steps: starting from
a validated DSA design, ARCHJAVA code (ACN02) is automatically ob-
tained by means of a JET-based Code Generator (BBM03). Then, by ex-
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ploiting the existing ArchJava Compiler, executable Java Code is
generated.

Tool Support

The language used in this phase is ARCHJAVA an Architectural Program-
ming Language (APL) which extends the Java language with components
classes (which describe objects that are part of the architecture), connec-
tions (which enable components’ communication), and ports (which are
the endpoints of connections). Communication Integrity is the key prop-
erty enforced by ARCHJAVA ensuring that components can only com-
municate using connections and ownership domains that are explicitly
declared in the architecture. ARCHJAVA guarantees communication in-
tegrity between an architecture and its implementation, even in the pres-
ence of advanced architectural features like run-time component creation
and connection. A prototype compiler for ARCHJAVA is publicly avail-
able for download at the ARCHJAVA website15.

Why ArchJava? The most famous and advanced APLs are ARCHJAVA

and JAVA/A as described in Section 2.4. Both augment Java with the
concepts of component and connector and allow hierarchical component
composition. I use ARCHJAVA since that the tool support for JAVA/A is
not yet complete. So far, a JAVA/A compiler should transform JAVA/A
components into pure Java code which can be compiled to byte code us-
ing the Java compiler. However, this compiler is not yet publicly avail-
able.

15http://archjava.org
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Figure 5: The Traffic Light Process.
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Chapter 3

Formal Development of
DSAs

3.1 Running Example: Road Assistance Scenario

We use as running example a simple bike scenario (see (BLMT07)), an
ecological variant of the automotive case study of the Sensoria Project
(EU ).
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Figure 6: The road assistance scenario.

A road assistance service platform is supported by a wireless network
of ad hoc stations that are situated along a road. Bikes equipped with
electronic devices can access the service as they move along the road, e.g.
to request a taxi in case of breakdowns. The graph in Figure 6 depicts a
simple configuration of such a system. Each bike (®) is connected to the
service access point (◦) of a station (H) which is possibly shared with other
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bikes. A station and its accessing bikes form a cell. Stations, in addition to
the service access point, use two other communication points that we call
chaining point (•). Such points are used to link cells in larger cell-chains.
Bikes can move away from the range of the station of their current cell
and enter the range of another cell. A handover protocol supports the
migration of bikes to adjacent cells as in standard cellular networks. Sta-
tions can shut down, in which case their orphan bikes call for a repairing
reconfiguration. We shall consider two shutting down situations: one in
which the adjacent stations are able to bypass the connection and adopt
all orphan bikes and another in which the bypassing is not possible and
orphan bikes switch from their normal mode of operation to a cell mode
(E®E), in which they become standalone stations.

3.2 DSA Structural Design and Analysis

The approach described in this section follows what discussed in (BBGM08;
BG08) and it is based on modelling of dynamic software architectures
using typed graph grammars (TGG). Before to introduce in detail our
idea we introduce some definitions that we will use in the following.
These definitions come from Graph Grammars theory (CMR+97; BCM05;
Roz97).

3.2.1 Typed Graph Grammars

This section introduces some basics of the algebraic approaches to graph
rewriting considered in the paper. We concentrate on typed hypergraphs
rewriting systems and in the single-pushout (SPO) approach (EHK+97).
Typed rewriting is a variant of the classical approach where rewriting
takes place on so-called typed graphs, i.e., graphs labelled over a struc-
ture which is itself a graph (i.e., type graph). We present a set of definition
that we will use in our formalization.

Definition 1 (Hypergraph) A (hyper)graph is a triple H = (NH , EH , φH),
whereNH is the set of nodes, EH is the set of (hyper)edges, and φH : EH → N+

H

describes the connections of the graph, where N+
H stands for the set of non-empty
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strings of elements of NH . We call |φH(e)| the rank of e, with |φH(e)| > 0 for
any e ∈ EH .

The connection function φH associates each hyperedge e to the or-
dered, non empty sequence of nodes n is attached to.

Definition 2 (Graphs Morphism) Let G and H be two graphs. A pair of
functions < fN , fE > where fN : NG → NH and fE : EG → EH is a
graph morphism from G to H if fN and fE preserve the tentacle functions, i.e.
f∗N ◦ tG = tH ◦ fE
Definition 3 (Typed Hypergraph) Let T be a graph. A typed graph G over
T is a graph |G|, together with a graph morphism τ : |G| → T . A morphism
between T-typed graphs f : G1 → G2 is a graph morphism f : |G1| → |G2|
consistent with the typing, i.e. such that τG1 = τG2 ◦ f .

The graph transformations can be done in several way (Roz97), of
which the most important are the single-pushout (EHK+97) and double-
pushout (CMR+97) approaches. The basic idea of graph rewriting is to
consider a set of graph rewriting rules of of form p : L → R, where L is
the left-hand and R is the right-hand side of the rule, as schematic de-
scriptions of a possibly infinite set of direct derivations. G →p H denotes
the direct derivation, where the match m : L → G fixes an occurrence of
L in a graph G. Application of rule p yields a derived graph H from G by
replacing the occurrence of L in G by R. Each graph rewrite rule defines
a partial relation between the elements on its left- and right-hand sides,
determining which elements are preserved, deleted, or created by an ap-
plication of a rule. In this work, taken a graph G and a production p, a
rewriting of G using p is realised using a single-pushout graph transfor-
mation approach (EHK+97).

For each node or edge x in L there exists a corresponding node or
edge in G, namely m(x). We have another morphism named r that maps
all items from L to R, which are to remain in G during the rewriting ap-
plication. Elements that are considered in the match m and that have no
image under r are to be deleted. The other are preserved. Elements in
R which have no pre-image under r are added to G′. r′ is a partial mor-
phism, since that elements from G may be deleted and introduced to get
H . New nodes are not in the image of r′ but in the image of m′.
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Definition 4 (SPO direct derivation) Given a typed graph G, a production
p, and a match (i.e., a total graph morphism) g : L → G, we say that there is
a direct derivation r′ from G to H using p, written r′: G →p H , if, for suitable
morphisms r’ and m’, the following is a pushout square.

L
r //

m

��

R

m′

��

G
r′ // G′

Figure 7: SPO-based graph rewriting.

Finally, a T -typed graph grammar.

Definition 5 ((T -typed) graph grammar) A (T -typed) graph grammar G
is a tuple 〈T,Gin, P 〉, where Gin is the initial (T -typed) graph and P is a set
of productions.

3.2.2 Formalization of DSA

In this sections we describe our idea representing each aspect in two dif-
ferent ways: Informal and Formal. We start with an informal definition of
each architectural aspect and proceed with the Graph-based formaliza-
tion.

Software Architecture Configurations

Informal Definition Software architectures (SAs) (PW92; SG96) basi-
cally consist of the structure of components and the way they are in-
terconnected. Components are high-level computational and data enti-
ties that can range from a distributed application to a single thread, from
databases to a simple data container. Basic SA elements are (GS06):

• Components:”is a unit of composition with contractually specified inter-
faces and explicit context dependencies only. A software component can
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Figure 8: HyperGraph MetaModel and SA elements.

be deployed independently and is subject to composition by third parties”;
Each component has a set of ports, which model the run-time in-
terfaces of that component, through which it interacts with other
components.

• Connectors: model the communication between components. We
can have define different ways to do it, for example like client-server
and pipes communication links. Each connector has a set of roles,
which model the behavior required of the components that use a
given connector.

• SA Configuration: it is a graph of components and connectors that
are interconnected using ports and rules.

Formal Definition Each software architecture is represented by a hy-
pergraph where components (resp. connectors) are modelled using hy-
peredges and their ports (resp. roles) by the outgoing tentacles. Com-
ponents and connectors are attached together connecting their respective
tentacles to the same node. In Figure 8 we present the HyperGraph Meta-
Model and the respective Software Architecture elements, while in Ta-
ble 8 graphical symbols that we use to represent them within a graph are
depicted.

Through the thesis, we shall omit the prefix ’hyper’ for simplicity.
Ordinary directed graphs are a particular instance of hypergraph where
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HyperGraphElements ArchitecturalElements GraphicalSymbol
HyperEdge Component, Connector �, �

Tentacles Port, Role →
Node Binding ◦, •, etc..

Table 8: Graphical Symbols

each edge has two tentacles.

Architectural Style Definition

Informal Definition When designing an architecture, it is desirable to
consider the concept of an architectural style (SG96), i.e. some set of rules
or patterns indicating which components and connectors can be part of
the architecture an how they can be legally interconnected. An architec-
tural style can also be seen as a (possible infinite) set of valid architectures.
Typical architectural styles include client-server, pipelines, layered, mul-
titier, peer-to-peer, etc.

Formal Definition An Architectural style is just a type graph T that de-
scribes only types of ports, components, connectors plus a set of invari-
ant constraints indicating how these elements can be legally connected.
A configuration compliant to such style is then described by the notion of
a T-typed graph. Typed Graphs are defined as graphs equipped with
a typing morphism. Figure 9 depicts the type graph T of our running
example. It describes the types of components, ports and their allowed
connections. The typing morphism is defined using τG that maps each
element of the configuration in only one element of the type graph T .

®
access // ◦ H

left

��

right

CC
accessoo • E®E

left

]]

right

��

Figure 9: Type Graph T of the running example
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Software Architecture Reconfigurations

Informal Definition A Software Architecture is dynamic if it change dur-
ing run-time. Typical changes, which are called reconfigurations, include
component joining and leaving the system or changing their connections
and are usually required for load balancing, fault-recovery, and redimen-
sioning software systems. For instance, in our running example, the sys-
tem must deal with bikes and stations leaving and joining the system or
with bikes that migrate from one station to another. We also need recon-
figurations to deal with a station shutting down, by migrating the collec-
tion of bikes in adiacent stations (left- or right-side). An additional issue
that one would like to have in a reconfigurations mechanism is the ca-
pacity to give guarantees about the architectural style. We would like to
preserve it after each reconfiguration.

Formal Definition Since we represent architectures by graphs, its recon-
figurations are described by a set of rewriting productions that state the
possible ways in which a SA configuration may change. The graph trans-
formations can be done in several way (Roz97), of which the most im-
portant are the single-pushout (EHK+97) and double-pushout (CMR+97)
approaches. In this work we use the former and we leave the use of the
latter as our future work.

Dynamic Software Architetures: DSAs

Informal Definition Dynamic Software Architectures are SA which may
evolve during system execution. The evolution is generally expressed in
terms of reconfiguration operations which correspond to the addition/re-
moval of a component or a connection between components. In addition,
a reconfiguration can be induced by an internal (component) event or by
an external (user) event. Accordingly, many reconfigurations can not be
known in advance and many others may depend on the behaviour of
some components.
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Formal Definition A DSA is described by a T-Typed graph grammar
and in this section we characterize different forms of dynamisms that we
can have (And00; End94; GMK02; Ore96; OGT+99; SG02a). It is done us-
ing typed graph grammars. Additionally, we show that for verification
aspects it make sense to focus only on two forms of dynamicity: Pro-
grammed and Repairing.

Given a grammar G = 〈T,Gin, P 〉, we will use the following notions:

• The set R(G) of reachable configurations, i.e., all configurations to
which the initial configuration Gin can evolve. Formally, R(G) =
{G|Gin ⇒∗ G}.

• The set DP(G) of acceptable configurations of an architecture are de-
fined as the graphs that have type T and satisfies a auitable property
P. Formally, DP(G) = {G | G is a T−typed graph ∧ P holds in G}.

Programmed dynamism

Programmed dynamism assumes that all architectural changes are iden-
tified at design time and triggered by the program itself (End94). Many
proposals in the literature (L. 04; HIM00; Le 98) that use graph grammars
for specifying DSA present this kind of dynamism. A programmed DSA

A is associated with a grammar GA = 〈T,Gin, P 〉, where T stands for the
style of the architecture,Gin is the initial configuration, and the set of pro-
ductions P gives the evolution of the architecture. The grammar fixes the
types of all elements in the architecture, and their possible connections,
where the productions state the possible ways in which a configuration
may change.

Programmed dynamism enables for the formulation of several verifi-
cation questions. Consider the set of desirable configurationsDP(G), then
it should be possible (at least) to know whether:

• the specification is correct, in the sense that any reachable config-
uration is desirable. This reduces to prove that R(G) ⊆ DP(G), or
equivalently that ∀G ∈ R(G) : P holds in G.
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• the specification is complete, in the sense that any desirable config-
uration can be reached. This corresponds to prove DP(G) ⊆ R(G),
or equivalently that if P holds in G then G ∈ R(G).

Hence, programmed dynamism provides an implicit definition of de-
sirable configurations. That is, the sets of desirable and reachable config-
urations should coincide, i.e., Dp(G) = R(G).

Repairing (or healing) dynamism

Self repairing systems are equipped with a mechanism that monitors the
system behaviour to determine whether it behaves within prefixed pa-
rameters. If a deviation exists, then the system itself is in charge of adapt-
ing the configuration (GS02).

We can think about a repairing architecture as an ordinary graph gram-
mar GA = 〈T,Gin, P 〉 in which the set of productions is partitioned into
three different sets, i.e., P = Ppgm ∪ Penv ∪ Prpr. Rules in Ppgm describe
the normal, ideal behaviour of the architecture, i.e., G′A = 〈T,Gin, Ppgm〉
is a programmed DSA. Rules in Penv model the environment or, in other
words, the ways in which the behaviour of the architecture may deviate
from the expected one. Rules in Penv may state that the communication
among components may be lost or that a non authorised connector be-
come attached to a particular component. Rules Prpr indicate the way in
which an undesirable configuration can be repaired in order to become
a valid one. That is, the left-hand side of any rule in Prpr identifies a
composition pattern in the system that is undesirable. In this way a re-
pairing architecture implicitly defines the desirable configurations of the
system as those reachable configurationsG that do not exhibit an undesir-
able composition pattern (i.e., a left-hand-side match for a repairing rule).
Formally, the designer would expect that

G ∈ DP(GA) iff G ∈ R(GA) ∧
¬(∃q ∈ Prpr,∃G′ ∈ R(GA) : G⇒q G

′)

As for the case of programmable dynamism, repairing dynamism al-
lows for the formulation of the following two questions:
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Figure 10: A general graph of types of a software architecture

• the specification is complete. This reduces to prove thatG ∈ DP(GA)
implies G ∈ R(GA) ∧ ¬(∃q ∈ Prpr,∃G′ ∈ R(GA) : G⇒q G

′).

• the specification is correct. This corresponds to prove G ∈ R(GA) ∧
¬(∃q ∈ Prpr,∃G′ ∈ R(GA) : G⇒q G

′) implies G ∈ DP(GA).

In addition, this kind of dynamism naturally poses the question of
whether reparing rules are adequate, i.e., whether the set of reparing rules
assures that for any configuration that is reachable but not desirable there
exists a sequence of repairing rules that moves the configuration to a de-
sirable one. Formally,

• If G ∈ R(GA) ∧ (∃q ∈ Prpr,∃G′ ∈ R(GA) : G ⇒q G
′) then G ⇒q0

G1 ⇒q1 . . .⇒qn Gn with Gn ∈ DP(GA) and {q0, . . . , qn} ∈ Prpr.

Ad-hoc dynamism

Roughly ad-hoc dynamism allows the architecture to evolve freely by
adding and removing components and connectors without any restric-
tion. The typed grammar corresponding to ad-hoc DSA should there-
fore exploit a fully general type graph that contains an infinite number
of hyperarcs componenti and connectorj ( Figure 10), one for every natu-
ral i, j ∈ N. Any hyperarc componenti (connectorj) stands for the type of
all connectors that expose exactly i ports (respectively, j roles). For sim-
plicity, we define all nodes as having the same type (otherwise the type
graph should be extended, by adding an infinite number of nodes, to rep-
resent every possible types). Similarly, the set of production is infinite as
it must allow for adding/ removing any kind of components and connec-
tors. This leaves little space for verification issues, as the only guarantees
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given by ad-hoc dynamicity is that reached graphs are software configu-
rations.

Constructible dynamism

Constructible DSAs are similar to ad-hoc DSAs but here rewriting pro-
ductions are not the free combination of basic primitives: they are full-
fledged programs written in some specific language. The main difference
w.r.t. ad-hoc DSA is that a constructible dynamic architecture is mostly
characterised by the specific programming language allowed for defin-
ing the reconfiguration programs that can manage the evolution. Gen-
erally speaking, constructible dynamism provides a very weak notion of
desirable configurations, and hence verification aspects are almost mean-
ingless when assuming autonomous reconfiguration (likewise ad-hoc dy-
namism). However, the situation is slightly different when considering
reconfigurations controlled externally (see discussion in the next Section).

Unconstrained vs Constrained dynamism

Basically, constrained dynamism refers to the fact that a change may oc-
cur only after pre-defined constraints are satisfied. Such constraints may
be (i) the configuration topology, e.g., when components are not con-
nected in a specific, or (ii) the state of a component, e.g., when a compo-
nent enters into the quiescent state. Topological constraints are naturally
modelled by both positive and negative application conditions of graph
productions. Hence, topological constrained dynamism may be charac-
terised by a graph grammar whose productions have some contexts (ei-
ther positive or negative). Differently, constraints related to particular
states of components have not an immediate counterpart in our proposal
(since our framework does not describe component states). Nevertheless,
they can be encoded by thinking about different states of components as
different types of hyperedges. In this way, the change of a component
state s into s′ is represented as the rewrite that removes the hyperarc de-
noting the component in state s and adds a new hyperarc of type s′ with
attachments analogous to those of the removed arc. In this case, the fact
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that the grammar describes a dynamism constrained on the state of some
components is hidden by the encoding. Another possibility is to use of
attributed graph grammars (LKW93) for equipping components with at-
tributes describing their states.

Unconstrained dynamism refers to the fact that transformations can
be applied at any moment. The graph grammar counterpart is the fact
that productions have no associated constraints or application conditions,
being, in some sense, context free, because they either produce or con-
sume arcs but they do not read them.

Self dynamism

Usually, some kind of dynamisms (like programmed and repairing) are
also qualified as “self”, meaning that the changes are initiated by the sys-
tem itself and not by an external agent. We map the notion of self and ex-
ternal dynamism to particular features of the rewrite system. As a starting
point we discuss some alternative ways for choosing a particular recon-
figuration in a DSA, as proposed in (BCDW04).

• External: The reconfiguration rule is selected by an external source.
This option resembles the external choice of process calculi, in which
the branch of computation to be selected is indicated by the context
of process. In this sense, we can interpret a reduction of the form
G ⇒p G

′ as the fact that the environment selects the application of
the production p.

• Autonomous: The system selects one of all the applicable transfor-
mations in a non-deterministic way. This corresponds to the notion
of internal choices in process calculi. Accordingly, we may repre-
sent such reductions by hiding the actual name of the applied rule.
That is, a rewriting step G ⇒p G

′ in which p is autonomous can be
represented as G⇒τ G

′, where τ stands for a hidden change.

• Pre-defined: Pre-defined selection is a special case of autonomous
choice, in which the system selects in a pre-defined way the appro-
priate transformation to apply from the set of available ones. In
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this case, the choice is completely deterministic (like a conditional
choice if - then - else - of process calculi). This can be mapped into
graph grammars as the definition of priorities in the selection of
productions to be applied. As shown in (HHT96), application con-
ditions can be used as priorities for restricting the order in which
rules are applied.

Let G = 〈T,Gin, Pext ∪ Pself 〉 be a grammar, where Pext stands for the
set of all reconfigurations that are controlled by the environment, while
Pself contains all the autonomous productions. We say GA has (i) self
dynamism if Pext = ∅, (ii) external dynamism if Pself = ∅, or (iii) mixed
dynamism otherwise. Assuming that all rewriting steps G ⇒p G′ are
written G ⇒τ G

′ when p ∈ Pself , we define the following sets associated
to the grammar G = 〈T,Gin, Pext ∪ Pself 〉:

• The set S(G) of autonomous or self reconfigurations, i.e., the set of
all configurations reachable by applying autonomous changes is:
S(G) = {G | Gin ⇒τ∗ G}.

• The set Ec(G) of reconfigurations associated to an external sequence
c = p1 . . . pn of commands:

Ec(G) = {G | Gin ⇒c′ G ∧ c′ = τ∗, p1, τ
∗, . . . , τ∗, pn, τ

∗}.

Note Ec(G) contains all the configurations reachable from the initial
configuration by applying the sequence c of external chosen rules
interleaved with the application of zero or more autonomous re-
configurations.

Clearly, S(G) and Ec(G) are subsets ofR(G). Hence, we can proceed as
in Section 3.2.2, and formulate some verification problems. In particular,
we can specialise the problem R(G) ⊆ DP(G) to either S(G) ⊆ DP(G) or
Ec(G) ⊆ DP(G). The last relation is particular interesting when consider-
ing ad-hoc or constructible dynamism. In this case, it is possible to check
whether a particular reconfiguration program may produce acceptable
configurations.
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Table 9: Classification summary

Dynamicity References Correctness Completeness
Programmed (L. 04; End94)

(HIM00; Le 98) + +
(Wer98)

Repairing (ADG98; GS02)
(OGT+99; SG02a) + +

(GMK02)
Ad hoc (BISZ98; End94) - -

(YM92)
Constructible (And00; Ore96) ± ±

Final Remarks

In this section we have characterised different aspects of dynamic recon-
figuration as particular features of graph rewriting systems. By taking
advantage of this framework, we have distilled whether such kinds of
dynamisms allow for posing typical questions about the completeness
and correctness of the architectural specification. Figure 9 summarises
the conclusions for the different types of dynamisms.

As mentioned in Section 3.2.2, given a characterization of all desirable
configurations of a programmable architecture, e.g., by defining a prop-
erty P that should hold in every configuration, then it would be possible
to prove whether the architectural specification is correct (by showing
that P holds in every reachable configuration) and complete (by proving
any configuration satisfying P is reachable). Correctness and complete-
ness properties could also be associated to repairing dynamism. But, dif-
ferently from programmed dynamism, some reachable configurations of
a repairing architecture may be non desirable, and hence, these config-
urations should be transformed into a desirable one by using repairing
rules. The main idea is that undesirable configurations are characterized
as those reachable configurations in which some repairing rule is appli-
cable to obtain only desirable configurations. Such questions are mean-
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ingless for ad-hoc dynamicity, where every configuration is potentially
reachable. Analogously for constructible dynamism, even if some kind
of weak analysis could be performed in this case. For instance, to prove
that particular configurations are not reachable when the reconfiguration
language forbid some kind of programs.

Actually, the above characterization corresponds to the case in which
transformations are all autonomous, i.e., when we assume self dynamism.
When external dynamism is considered, also correctness and complete-
ness properties over ad hoc and constructible architectures can be formu-
lated. For instance, given a particular (set of) desirable configuration(s) it
can be proved whether a particular transformation or configuration pro-
gram selected by a programmer produces a desirable configuration. Even
more interesting is the case in which mixed dynamism is considered.
Assume an ad hoc architecture where some productions are considered
external and others autonomous or self. In this case, external transfor-
mations account for the reconfigurations activated by a user, while au-
tonomous transformations model the actual program that performs the
transformation (a kind of scripting). In this case, it would be possible to
check whether a particular script produces a correct configuration when
it is applied over a specific configuration. In this thesis we only consider
programmed dynamism. Other dynamisms will be part of our future
work.

3.2.3 TGGA: An Alloy Implementation of Typed Graph
Grammars

The implementation of each concepts introduced in the previous section
has been done using Alloy (Jac06; Jac02), a light-weight approach to the
modelling and analysis of software models. Since that we use Typed
Graph Grammars to represent DSAs, after an overview of basic Alloy
concepts we present TGGA, our implementation of Typed Graph Gram-
mars concepts that will be used to design and verify structural aspects of
DSAs.

The main aspects on which we focus are concerned with:

58



• Architectural Representation, i.e. convenient ways to design a DSA,
to build it, to browse it;

• Architectural Styles, i.e. convenient ways to constrain DSAs under
consideration to satisfy certain requirements;

• Structural Properties, i.e. convenient logical formalisms to express
relevant structural properties;

• Architectural Analysis, i.e. efficient techniques and tools for verifica-
tion.

We show how to tackle these aspects with our approach. The outcome
of our experience suggests that TGGA is well suited for an early phase of
the development, where the architectural constraints imposed by the style
are defined in an iterative process of refinement of the model and style,
assisted by model-finding techniques.

Alloy

Alloy (Jac02; Jac06) provides a description language to represent soft-
ware models, based on signatures and relations, which is suited for a
set-theoretic presentation of graphs. Alloy also provides a logic, based
on an extension of first-order logic with relational operators, to repre-
sent properties or constraints of models. We have used this logic to im-
plement concepts like architectural style, architectural configurations, ar-
chitectural reconfigurations and architectural properties. The Alloy An-
alyzer translates the model and the logical predicates into a Boolean for-
mula, uses efficient SAT solvers to decide satisfiability and provides a
counterexample in negative case. We will show how to use these capabil-
ities to ensure style-consistency, perform model-finding and validate ar-
chitectural properties. Before to introduce these aspects we present some
preliminary aspects of the Alloy languages summarized from (Jac06).

Signatures and Fields

A signature introduce a set of atoms. The declaration:
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sig Edge{}

introduces a set named Edge. A signature is more than just a set,
because it can include declarations of relations. A set can be introduced
as a subset of another set, thus

sig E1 extends Edge {}

introduces a set named E1 that is a subset of Edge. The signature
E1 is an extension or subsignature of Edge. A signature such as Edge
that is declared independently of any other is a top-level signature. The
extensions of a signature are mutually disjoint, as are top-level signatures.
So if we declare:

sig Edge {}
sig Node {}
sig E1 extends Edge {}
sig E2 extends Edge {}

we can say that Edge and Node are disjoint, and E1 and E2 are disjoint
(but not that Edge = E1 + E2). Moreover we can define an abstract signature
that has no elements except those belonging to its extensions. To define an
atom (i.e., basic element) of our system we define a signature marking it
with the keyword one, represents singleton sets - sets that contain a single
elements. In an instance, such a set will correspond to a single atom. A
signature defines a local namespace for its declarations, so we can use the
same field name in different signatures, and each occurrence will refer to
a different field. The only restriction is that if two signatures share a field
name, they must not overlap.

Relations

Relations are declared as fields of signatures. The signature Edge
defines a collection of edges, each of which shows some connections

that map each label to nodes. The keyword lone in the declaration in-
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sig Edge
{

conn: Label->lone Node
}

dicates multiplicity, in this case that each label is mapped to at most one
node.

Types and Type Checking

Alloy’s type system has two functions. First, it allows the analyzer to
catch errors before any serious analysis is performed. The essential idea
it that an expression is erroneous if it can be shown to be redundant, us-
ing types alone. This notion of error, although unconventional, accepts
and rejects expressions much as one would except. Second, the type sys-
tem is used to resolve overloading. When different signatures have fields
with the same name, the type of an expression is used to determine which
field of a given name is meant. Types are associated implicitly with sig-
natures. A basic type is introduced for each-top level signature and for
each extension signature. When signature E1 extends signature Edge,
the type associated with E1 is a subtype of the type associated with Edge.
There are two kinds of type error. First, since the Alloy’s logic assumes
that all relations have a fixed arity, it is illegal to form expressions that
would give relations of mixed arity. Second, an expression is illegal if it
can be shown, from the declarations alone, to be redundant, or to con-
tain a redundant subexpression. A common and simple case is when an
expression is redundant because it is equal to the empty relation.

Facts, Predicates, Functions, and Assertions

The constraints of a model are organized into paragraphs. Assumptions
are placed in fact paragraphs; implications to checked are placed in
assertions; constraints to be used in different contexts are packaged
as predicates; and reusable expressions are packaged as functions.
Constraints that are assumed always to hold are recored as facts. A
model can have any number of facts, each a paragraph of its own, labeled
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by the keyword fact, and consisting of a collection of constraints. The
order in which facts appear, and the order of constraints within a fact, is
not important. Many facts are constraints that apply to each element of a
signature’s set. These can be recorded more succinctly as signatures facts.
A constraint immediately following a signature is implicitly quantified
over its elements, and each field reference is implicitly deferences, just
like fields mentioned in field declarations. The following code describes
a fact in which two graphs must have different nodes.

fact GraphElements_Constraints
{

all g1,g2: Graph |g1!=g2 => #(g1.n & g2.n)=0
}

A function is a named expression, with zero or more declarations
for arguments, and a declaration expression for the result. When the
function is used, an expression must be provided for each argument; its
meaning is just the function’s expression, with each argument replaced
by its instantiating expression. The following code describes a function
defining the arity of an edge (i.e., number of tentacles).

fun arity[e: Edge]: Int
{

#(e.conn)
}

A predicate is a named constraint, with zero or more declarations
for arguments. When the predicate is used, an expression must be pro-
vided for each argument; its meaning is just the predicate’s constraint
with each argument replaced by its instantiating expression. A predicate
can be used to represent an operation, which describes a set of state tran-
sitions, by constraining the relationship between pre- and post-states. The
following code presents the ”rewriting step” predicate in which g and g’

denote the before and after graph respectively.

pred rwStep[g,g’: Graph, p: Production] {...}
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An assertion is a constraint that is intended to follow from the facts
of the model. The Alloy Analyzer checks assertions. If an assertion does
not follow from the facts, then either a design flaw has been exposed, or
a misformulation. Even assertions that do follow are useful to record,
both because they express properties in a different way, and because they
act like regression tests, so that if an error is introduced later, it may be
detected by checking assertions.

Command and Scope

To analyze a model in Alloy, we must write a command and instruct the
tool to execute it. A run command tells the tool to search for an instance
of a predicate. A check command tells it to search for a counterexam-
ple of an assertion. In addition to naming the predicate or assertion, we
may also give a scope that bounds the size of the instances or counterex-
amples that will be considered. If we omit the scope, the tool will use
the default scope in which each top-level signature is limited to three ele-
ments. For example the command check Edge for 5 places a bound
of 5 on all top-level objects.

Modules and Polymorphism

Alloy has a single module system that allows you to split a model among
several modules, and make use of predefined libraries. Modules corre-
spond one-to-one with files. Every analysis is applied to a single module;
any other modules containing relevant model fragments must be explic-
itly imported. Each module has a path name that must be match the path
of its corresponding file in the file system. Paths are interpreted with re-
spect to a collection of root directories, given as preferences in the tool.
The first line of every module is a module header of the form:

module modulePathName

Every module that is used must have an explicit import immediately
following the header as in the following code:
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open modulePathName

Analysis

Checking an assertion and running a predicate reduce to the same analy-
sis problem: finding some assignment of relations to variables that makes
a constraint true. Alloy’s relational logic is undecidable. This means that
it is impossible to build an automatic that can tell whether an assertion is
valid - that is, holds for every possible assignment. The analysis under-
lying Alloy, i.e. model finding, makes a different compromise. Rather than
attempting to construct a proof that an assertion holds, it looks for a refu-
tation, by checking the assertion against a huge set of test cases, each being
a possible assignment of relations to variables. If the assertion is found
not to hold for a particular case, that case is reported as a counterexample.
If no counterexample is found, it’s still possible that the assertion does
not hold, and has a counterexample that is larger that any of the test cases
considered. Instance finding is well suited to analyzing invalid assertion
because it generates counterexamples, which can usually be easily traced
back to the problem in the description. To make instance finding feasible,
a scope is defined that limits the size of instances considered. The anal-
ysis effectively examines every instance within the scope, and an invalid
assertion will only slip through unrefuted if its smallest counterexample
is outside the scope. The scope thus defines a multidimensional space
of test cases, each dimension corresponding to the bound on a particular
signature.

The Alloy Analyzer

Every analysis involves solving a constraint: either finding an instance
(for a run command) or finding a counterexample (for a check). The Al-
loy Analyzer is therefore a constraint solver for the Alloy logic. In its
implementation, however, it is more if a compiler, because, rather than
solving the constraint directly, it translates the constraint into a boolean
formula and solves it using an off-the-shelf SAT (Satisfiability) Solver. The
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Alloy Analyzer is bundled with several SAT solvers, the fastest of which
are Chaff (MMZ+01) and (GN02), and a preference setting lets we choose
which is used.

TGGA in detail

We use Alloy to implement graphs, graphs morphisms, graphs match-
ings, and graph transformations. Starting from this core implementation
we have extended it to represent concepts like architectural styles, ar-
chitecture configuration and reconfigurations, etc. The relation between
graph and architectural concepts have been already depicted in Figure 8.
In this section, for each aspect introduced in Section 3.2.2 we show the re-
spective Alloy implementation. At the end we show in which way, using
TGGA we can verify structural properties of a DSA.

Graphs The three basic concepts in the model of each graph are nodes,
tentacles and edges that are represented as three Alloy signatures as fol-
lows:

1 sig Node{}
2 sig Tentacles{}
3 sig Edge
4 {
5 tentacles: set Tentacles,
6 conn: tentacles->lone Node
7 }
8 sig Graph
9 {

10 he: set Edge,
11 n: set Node
12 }

According to the above definition, nodes and tentacles are atomic con-
cept, while edges has a field tentacles that describes the set of tentacles
and conn that maps each tentacle to nodes. The keyword lone in the
declaration indicates multiplicity, in this case that each label is mapped to
at most one node. The signature Graph (lines 8-12) is used to define as
a graph as structure composed of nodes and edges. In order to construct
correct graphs we have defined some constraints. In Alloy the constraints
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of a model are organized into paragraphs. Assumptions are placed in fact
paragraphs. Constraints that are assumed always to hold are recorded
as facts. A model can have any number of facts, labeled by the keyword
fact, and consisting of a collection of constraints. In the following code
we present some facts that we have defined to ensure that our graphs sat-
isfy some properties. Characters between // and the end of the line are
comments that describe each constraint.

1 // facts on Graphs and Graph elements (Nodes , Edges and Tentacles)
2 fact GraphElements_Constraints
3 {
4 // each element (Nodes, Edges and Tentacles) must be element
5 // of a single Graph
6 all edge: Edge | some g: Graph | edge in g.he
7 all node: Node | some g: Graph | node in g.n
8 all t1: Tentacles | some g: Graph | some e1:g.he | t1 in e1.tentacles
9

10 // nodes at which each Edge is connected must be nodes of the same Graph
11 all g:Graph| all e: g.he | univ.(e.conn) in g.n
12 }

In order to see an example of a graph, generated from the previous
code, we have defined a predicate (i.e., show) and a command to find an
instance of the predicate. Moreover a scope is defined that limits the size of
instances considered. In the following code we want to generate a graph
with two edges, one node and two tentacles.

1 one sig g1 extends Graph {}
2 one sig e1,e2 extends Edge {}
3 one sig n1 extends Node {}
4 one sig t1,t2 extends Tentacles {}
5 pred show[]
6 {
7 g1.he= e1 + e2
8 g1.n = n1
9 //t1 is a tentacle of e1

10 t1 in e1.tentacles
11 //t2 is a tentacle of e2
12 t2 in e2.tentacles
13 }
14 run show for 1 Graph, 2 Edge, 1 Node, 2 Tentacles

When we run the code above the Alloy Analyzer generates a unique
instance of a graph that is depicted in Figure 11.
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Figure 11: Graph Instance

Typed Graphs, Type Graph, Morphisms To generate Architectural con-
figurations that are conform to a style, we have defined in Alloy the signa-
ture TypedGraph that is a graph with a typing morphism. Additionally
we have defined a set of constraints that must be valid for each typed
graph. Listing 3.1 presents the implementation of the total morphism
among two graphs (lines 1-26) and the definition of Typed Graphs with
relative constraints (lines 28-48). It is important to note that the target
graph of the morphism in each Typed Graph is the Type Graph T.

An architectural style consists of a set of basic elements (components,
connectors, ports and roles) that can constitute an architectural config-
uration plus a set of constraints indicating how these elements can be
legally connected. We define in Alloy a module called STYLE that con-
tains all these elements. It is subdivided in two parts, the first to define
basic elements and the second to define constraints on them. Each basic
element is defined using a singleton extension of node, tentacle or edge
signatures. Each instance of the Bike component type must have only
one connection to the AccessPoint interface by an Access port (lines
18-22) . Each instance of the BikeStation component type must have
two connections, both to the ChainPoint interface but using two dif-
ferent ports, one of Left type and another of Right type (lines 23-27) .
Finally each instance of the Station component type must have three
connections type Left, Right and Access. The first two are connected
to ChainPoint interfaces while the third to the AccessPoint interface
(lines 13-17). In Listing 3.2 we can see the Alloy code that implements
these aspects.
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1 sig TotalMorphism
2 {
3 source: Graph,
4 target: Graph,
5 fE: Edge->Edge,
6 fN: Node->Node
7 }
8 {
9

10 // Domain of the relation f
11 fE.univ = source.he
12 fN.univ = source.n
13

14 // Range of the relation f
15 univ.fE in target.he
16 univ.fN in target.n
17

18 //uniqueness
19 all e1: source.he | one e2: target.he | fE[e1]=e2
20 all n1: source.n | one n2: target.n | fN[n1] = n2
21

22 // well-formedness
23 all e1: source.he | e1.tentacles = fE[e1].tentacles
24 all e1: source.he | all t1:e1.tentacles
25 | (fE[e1]).conn[t1] = fN[e1.conn[t1]]
26 }
27

28 sig TypedGraph
29 {
30 typingmorphism : TotalMorphism
31 }
32 {
33 typingmorphism.target=TypeGraph
34 }
35

36 fact onTypedGraph
37 {
38 all tg: TypedGraph |
39 one morph: tg.typingmorphism|
40 one g1: morph.source |
41 all e1,e2: g1.he |e1!=e2 and morph.fE[e1] =Station and
42 morph.fE[e2]= Station => #(e1.conn&e2.conn)=0
43 all tg: TypedGraph |
44 one morph: tg.typingmorphism|
45 one g1: morph.source |
46 all e1,e2: g1.he |e1!=e2 and morph.fE[e1] =BikeStation and
47 morph.fE[e2]= Station => #(e1.conn&e2.conn)=0
48 }

Listing 3.1: TypedGraph and Total Morphism
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1 module STYLE
2 open TGG
3 //-------------TYPEGRAPH DEFINITION--------------------
4 /* ---------------NOTATION---------------------------------
5 AP = Access_Point
6 CP = Chain_Point
7 -----------------------------------------------------------*/
8 //Architectural Bindings
9 one sig CP, AP extends Node {}

10 //Ports of Components
11 one sig Left, Right, Access extends Tentacles {}
12 //Architectural Components
13 one sig Station extends Edge{}
14 {
15 tentacles = Left+Right+Access
16 conn = Left->CP + Right->CP + Access->AP
17 }
18 one sig Bike extends Edge{}
19 {
20 tentacles = Access
21 conn = Access->AP
22 }
23 one sig BikeStation extends Edge{}
24 {
25 tentacles = Left+Right
26 conn = Left->CP + Right->CP
27 }
28 fact onTypeGraph
29 {
30 TypeGraph.n = CP+AP
31 TypeGraph.he = Station + Bike+BikeStation
32 }

Listing 3.2: Type Graph of the Running Example
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Figure 12: LEAVE1 Production

SPO Graph Rewriting We ha defined a set of productions (i.e., recon-
figuration rules) that state the possible ways in which a SA configuration
may change. Each rule is defined as partial morphisms p : L→ R (shown
in Listing 3.3), where L and R are typed graphs. Given an initial graph
G and a production p, a rewriting of G using p is implemented in Alloy
using the single-pushout graph transformation approach (EHK+97). To
implement it we have defined the predicate rwStep that executes one
single rewriting step and produces the target graph G′ (shown in Listing
3.5). Another important aspect that the SPO rewriting approach uses is
the exist of a match among two Typed Graphs. It is the precondition of
the rewriting step application. For this reason we have implemented the
Match and TypedMatch signature as presented in the Listing 3.4.

For our running example we have defined six rewriting rules. Here
we show only, JOIN1, LEAVE1 and MIGRATION, the other are presented
in the Appendix A. The rule JOIN1 is used for a bike to join a station.
Dually, the rule LEAVE1 is used for a bike to leave the station. Addition-
ally we consider the migration of bikes caused by their mobility. Clearly,
the problem can be tackled by a sequence of leave and join reconfigura-
tions. However, it would be better to perform it in a single step defining
the rule MIGRATION. Listing 3.6 shows the LEAVE1 production while Fig-
ures 12, 13 and 14 depict all of them. The complete code is presented in
the Appendix A at the end of the thesis.
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1 sig PartialMorphism
2 {
3 source: Graph,
4 target: Graph,
5 fE: Edge -> lone Edge,
6 fN : Node -> lone Node
7 }
8 {
9 // mapping functions description

10 fE.univ in source.he
11 fN.univ in source.n
12 univ.fE in target.he
13 univ.fN in target.n
14

15 // f maps a subgrapgh of the source graph
16 all e1: fE.univ |univ.(e1.conn) in fN.univ
17

18 // injectivity
19 all n1,n2: source.n | fN[n1] = fN[n2] => n1=n2
20 all e1,e2: source.he |fE[e1] = fE[e2] => e1=e2
21

22 // well-formedness of the partialmorphism
23 all e1: fE.univ | e1.tentacles = fE[e1].tentacles
24 all e1: fE.univ | all t1: e1.tentacles | fE[e1].conn[t1] = fN[e1.conn[t1]]
25 }
26

27 sig TypedPartialMorphism
28 {
29 // source and target TypedGraphs
30 s: TypedGraph,
31 t: TypedGraph,
32 PMorphism: PartialMorphism
33 }
34 {
35 PMorphism.source = s.typingmorphism.source
36 PMorphism.target = t.typingmorphism.source
37 all e1: PMorphism.fE.univ |
38 s.typingmorphism.fE[e1] = t.typingmorphism.fE[PMorphism.fE[e1]]
39 all n1: PMorphism.fN.univ |
40 s.typingmorphism.fN[n1] = t.typingmorphism.fN[PMorphism.fN[n1]]
41 }

Listing 3.3: PartialMorphism and Typed Partial Morphism

71



1 sig Matching
2 {
3 source: Graph,
4 target: Graph ,
5 fE: Edge -> lone Edge,
6 fN : Node -> lone Node
7 }
8 {
9

10 // mapping functions description
11 fE.univ = source.he
12 fN.univ = source.n
13 univ.fE in target.he
14 univ.fN in target.n
15

16 // f maps a subgrapgh of the source graph
17 all e1: fE.univ |univ.(e1.conn) in fN.univ
18

19 // injectivity
20 all n1,n2: source.n | fN[n1] = fN[n2] => n1=n2
21 all e1,e2: source.he |fE[e1] = fE[e2] => e1=e2
22

23 // well-formedness of the matching
24 all e1: fE.univ | e1.tentacles = fE[e1].tentacles
25 all e1: fE.univ | all t1: e1.tentacles |
26 fE[e1].conn[t1] = fN[e1.conn[t1]]
27 }
28 // Matching among two TypedGraphs
29 sig TypedMatching
30 {
31 s: TypedGraph,
32 t: TypedGraph,
33 match: Matching
34 }
35 {
36 match.source = s.typingmorphism.source
37 match.target = t.typingmorphism.source
38 }

Listing 3.4: Matching

Figure 13: JOIN1 Production
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1 pred rwStep [G,G’:TypedGraph, P: TypedPartialMorphism,
2 trace: TypedPartialMorphism]
3 {
4 one g: TypedMatching | {
5 g.s=P.s and g.t = G and
6

7 G’.typingmorphism.source.he = (G.typingmorphism.source.he)-
8 g.match.fE[(P.s.typingmorphism.source.he)] +
9 (P.t.typingmorphism.source.he)

10

11 and
12

13 G’.typingmorphism.source.n = (G.typingmorphism.source.n)-
14 g.match.fN[(P.s.typingmorphism.source.n)] +
15 (P.t.typingmorphism.source.n)
16 }
17

18 and
19 trace.s = G and trace.t=G’
20 and
21 all n1: G’.typingmorphism.source.n |
22 n1 in univ.(g.match.fN) and
23 (g.match.fN.n1) in (P.PMorphism.fN).univ
24 =>
25 n1 in (trace.PMorphism.fN).univ
26 }

Listing 3.5: SPO Rewriting Step Predicate

Figure 14: MIGRATION Production
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1 module PRODUCTIONS
2

3 open TGG
4 open STYLE
5 //-------------BASIC ELEMENTS-------------------
6 one sig s1,s2,b1,b2,b3 extends Edge{}
7 one sig cp1,cp2,cp3,ap1,ap2 extends Node{}
8 //------------GRAPHS----------------------------
9 one sig g1 extends Graph {}

10 {
11 he =s1+b1
12 n= cp1+cp2+ap1
13 s1.conn = Left->cp1 + Right->cp2 + Access->ap1
14 b1.conn = Access->ap1
15 }
16 one sig g2 extends Graph{}
17 {
18 he = s1
19 n = cp1+cp2+ap1
20 s1.conn = Left->cp1 + Right->cp2 + Access->ap1
21 }
22 //------TYPED GRAPHS------------------------------
23 one sig G1 extends TypedGraph{}
24 {
25 typingmorphism.source = g1
26 typingmorphism.fE = s1->Station + b1->Bike
27 typingmorphism.fN = cp1->CP + cp2->CP + ap1->AP
28 }
29 one sig G2 extends TypedGraph{}
30 {
31 typingmorphism.source = g2
32 typingmorphism.fE = s1->Station
33 typingmorphism.fN = cp1->CP + cp2->CP + ap1->AP
34 }
35 //-------------LEAVE1 PRODUCTION--------------------------
36 one sig p1 extends PartialMorphism{}
37 one sig LEAVE1 extends TypedPartialMorphism{}
38 {
39 s = G1
40 t= G2
41 PMorphism = p1
42 PMorphism.source = g1
43 PMorphism.target = g2
44 PMorphism.fE = s1->s1
45 PMorphism.fN = cp1->cp1 + cp2->cp2 + ap1->ap1
46 }

Listing 3.6: Running Example Productions
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ModelFinding

Model finding is the main analysis capability offered by Alloy. The Alloy
Analyzer basically explores (a bounded fragment) of the state space of
all possible models. For instance, we can easily use the Alloy Analyzer
to construct initial configurations: we need to ask for a graph instance
satisfying the style facts and having a certain number of bikes, stations
and bikestations. In order to test this Alloy potentiality we have created a
module called MODEL-FINDING in which only defining elements of our
initial configuration (i.e., edges, nodes and tentacles) we can generate the
set of possible software architectures composed of a precise number of
components, ports and attachments. To generate style-conformant SAs
configurations, in the Listing 3.7, we open the modules TGG and STYLE

(lines 3-4). When we execute the run command (line 22) the Alloy An-
alyzer firstly verifies each constraints defined in both modules and after
generates all possible configurations with 3 Bikes and 2 Stations. Figure
15 presents only two of them.

1 module MODELFINDING
2

3 open TGG
4 open STYLE
5

6 one sig b1,b2,b3,s1,s2 extends Edge{}
7 one sig ap1,ap2, cp1,cp2,cp3 extends Node{}
8 one sig InitialGraph extends Graph{}
9 {

10 he= b1+b2+b3+s1+s2
11 n= ap1+ap2+cp1+cp2+cp3
12 }
13 one sig InitialConfiguration extends TypedGraph{}
14 {
15 typingmorphism.source = InitialGraph
16 typingmorphism.fE = b1->Bike + b2->Bike + b3->Bike +
17 s1->Station + s2->Station
18 typingmorphism.fN = ap1->AP + ap2->AP + cp1->CP + cp2->CP +
19 cp3->CP
20 }
21 pred showTypedGraph[]{}
22 run show for 8 but 1 TypedGraph

Listing 3.7: Model Finding Module
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Figure 15: Two possible Style-Conformant SA configuration

Structural Analysis

In order to validate, from the structural point of view, each DSA, in this
section we present a set of structural analysis that we can perform us-
ing Alloy. Before to introduce them, we show the signatures that we
have defined to represent Programmed DSA. In line with the idea al-
ready proposed in (BS06), we have specified the ProgrammedDSA sig-
nature where each configuration is a TypedGraph and each Transition
is a signature with three relations: startingState and arrivalState

identify the source and target TypedGraph, while trigger defines the
Production (i.e., rewriting rule) that triggers each reconfiguration. Each
ProgrammedDSA provides a next relation that assigns exactly one con-
figuration (i.e., TypedGraph) different from the final one. Since that we
are specifying DSA that are programmed, the trigger field of the Transition
set, will be one production of the predefined set of productions.

After these signatures, we have defined facts to constrain them in List-
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1 sig Transition {
2 startingState: TypedGraph,
3 arrivalState: TypedGraph,
4 trigger : TypedPartialMorphism
5 }
6 sig ProgrammedDSA
7 {
8 configurations: set TypedGraph,
9 transitions: set Transition,

10 first, last: configurations,
11 next: (configurations-last) one -> one (configurations-first)
12 }
13 {
14 // the first TypedGraph can not be an arrivalState
15 first not in transitions.arrivalState
16

17 // the last TypedGraph can not be a startingState
18 last not in transitions.startingState
19 next.univ in transitions.startingState
20 }

ing 3.8. The first two describe the determinism and the correctness of each
transition. The last is very important, it is the responsible for the Typed
Graph evolution.

Programmed DSA Example In the Listing 3.9 we present an example of
Programmed DSA (e.g.,pdsa1) where its initial Configuration is G3 and
the set of possible reconfigurations is composed of four productions.

In Figure 16 we can see the Alloy Analyzer output and the graph-
ical representation of the example. The start configuration of the pro-
grammedDSA is G3 while G7 is the final. The latter is generated after
four reconfiguration steps.

Reachability Alloy allow us to check the reachability of given configu-
rations through a finite sequences of rewriting steps. To do this we have
defined the predicate Reachability. When we check an assertion on G7
using this predicate, the Alloy Analyzer outptus it "No counterexample

found", it means that G7 is a reachable configuration of our running ex-
ample.

Figure 17 presents the set of Reachable Configurations of the Pro-
grammed DSA. This fact demonstrates that we can check easily if a par-
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1 fact determinism
2 {
3 all pdsa: ProgrammedDSA | no disj t1,t2: pdsa. transitions {
4 t1.startingState = t2.startingState
5 t1.trigger = t2.trigger}
6 }
7 fact CorrectTransition
8 {
9 all pdsa: ProgrammedDSA |

10 all t: pdsa.transitions |
11 t.startingState in pdsa.configurations and
12 t.arrivalState in pdsa.configurations
13 }
14 fact GenerationTransition
15 {
16 all pdsa: ProgrammedDSA|
17 all trans: pdsa.transitions |one tr: TypedPartialMorphism |
18 rwStep[trans.startingState, trans.arrivalState, trans.trigger, tr] and
19 trans.arrivalState = trans.startingState.(univ.next)
20 }

Listing 3.8: Programmed DSA Constraints

1 one sig pdsa1 extends ProgrammedDSA{}
2 {
3 first = G3
4 transitions.trigger = LEAVE1 + JOIN1 + STATIONConn + LEAVE2
5 }
6

7 pred show[]{}
8 run show for 8 but 1 ProgrammedDSA

Listing 3.9: Programmed DSA Example

1 pred Reachability [conf: TypedGraph]
2 {
3 all pdsa: ProgrammedDSA |
4 conf in pdsa.configurations
5 }
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Figure 16: Programmed DSA Example
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Figure 17: Reachable Configurations

ticular configuration is reachable. In order to have the system correct
and complete we must yet verify that each reachable configuration is de-
sirable. We demonstrate this using the Invariant Analysis of the running
example.

Invariant Analysis The second kind of analysis that we perform is called
Invariant Analysis; its objective is to check if a property P is invariant un-
der sequences of applications of reconfigurations. The objective of this
analysis is that: given a property P is invariant under sequences of appli-
cations of some operations. In our case this operation is the rewriting step
that from an initial configuration G and a Production P generates a new
configuration G’. A technique useful for stating the invariance of a prop-
erty P consists of specifying that P holds in the initial configuration, and
that for every non initial configuration and every rewriting operation, the
following holds: P(G) and rwStep(G,G′) → P (G′). To do this we have
defined the predicate InvariantAnalysis that will be used to verify
the invariants of a set of properties on our system.

1 pred InvariantAnalysis[]
2 {
3 all pdsa: ProgrammedDSA | all conf: pdsa.configurations | Property1[conf]
4 }

For this objective we have defined a set of properties that each DSA
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configuration, after a rewriting step must satisfy. In the following we
describe each of them with the Alloy code related.

1. Property 1: Each bike can be connected to only one access point
using one port of type Access

2. Property 2: The system can not have bikes disconnected and each
bike has at most one connection.

3. Property 3: If one bike is connected to an access point then must
exist a unique station that is connected to the same access point.

1

2 pred Property1[conf: TypedGraph]
3 {
4 all e: conf.typingmorphism.source.he |
5 conf.typingmorphism.fE[e] = Bike
6 =>
7 conf.typingmorphism.fN[univ.(e.conn)] =AP
8 and
9 e.tentacles=Access

10 }
11 pred Property2[conf: TypedGraph]
12 {
13 all e: conf.typingmorphism.source.he |
14 conf.typingmorphism.fE[e] = Bike
15 =>
16 #(e.conn)=1
17 }
18 pred Property3[conf: TypedGraph]
19 {
20 all e1: conf.typingmorphism.source.he |
21 conf.typingmorphism.fE[e1] = Bike
22 =>
23 one n: conf.typingmorphism.source.n |
24 one e2: conf.typingmorphism.source.he |
25 conf.typingmorphism.fN[n] = AP and
26 conf.typingmorphism.fE[e2] = Station and
27 n in univ.(e1.conn) and n in univ.(e2.conn)
28 }

Listing 3.10: Invariant Properties

If we check the Invariant Analysis predicate for each property in List-
ing 3.10 we have that each property is valid for each reachable configu-
ration of our running example. Considering the definition presented in
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Section 3.2.2 we can conclude that the specification of the running exam-
ple is correct and complete.

3.3 DSA Behavioural Design and Analysis

Starting from the SA configurations generated in the previous phase, in
this section we describe how we validate the SAs conformance to certain
behavioral properties using Model Checking techniques. We associate
to each component of each SA (i.e., each HyperEdge) a communicating
UML state machine that describes the behavior of each of them. The
complete SA behavioral specification is composed of a set of these UML
state machines. After that we use the action- and state-based temporal
logic UCTL (tFGM08) to describe behavioral properties that we want to
check on our SA model. Whenever the SA specification is not properly
specified (not valid arrows in Figure 5), the SA itself needs to be revised.
Thanks to the model checker we may correct the SA specification. When-
ever the SA is validated (valid arrow in Figure 5) we can proceed to the
code generation phase. The tool that supports this phase is UMC (UMC),
an on-the-fly model checker for UCTL. It allows the efficient verification
of UCTL formulae over a set of communicating UML state machines. We
proceed describing each concept that we use in this phase starting from
the principal aspects of UMC.

3.3.1 UMC Models

A complete UMC model description is given by providing by a set of
class definitions and a set of object instantiations. Class definitions repre-
sent a template for the set of active or non active objects of the system. In
the case of active objects a statechart diagram associated to class is used
to describe the dynamic behaviour of the corresponding objects. A state
machine (with its event queue) is associated to each active object of the
system. Non-active objects play the role of ”interfaces” towards the out-
side of the system, and can only be the target of signals. A system is con-
stituted by fixed static set of objects (no dynamic object creation), and a
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system is an ”input closed” system, i.e. the input source is modelled as an
active object interacting with the rest of the system. There is a predefined
non-active OUT class, and a predefined OUT object, which can be used to
model the sending of signals to the outside of the system, and there is
a predefined non-active ERR class, and a predefined ERR object, which
can be used to model the notification or error signals to the outside of the
system; further non-active classes and objects can be defined by defining
classes without statechart. At least one active object must be defined, and
the declaration of an object must appear after the declaration of the class
to which it belongs. In the following section we describe in more detail
the two syntactic model components, namely classes and objects, in the
subsequent one we describe and overview of their semantics.

Classes and Objects

The behavior of an object belonging to a class is defined by a statechart
diagram associated with the class itself. In particular, the definition of a
class statechart consists of the following elements:

• the class name

• the list of events which trigger the transitions of the object of the
class (signals or call operations)

• the list of attributes (variables) local to the objects of the class

• the structure of the states of the class (nodes of the statechart dia-
gram)

• the transitions of the objects of the class (edges of the statechart di-
agram)

In the case of non-active objects, the corresponding class declarations
can only define the list of accepted signals and operations. The events
handled by the class are distinguished between asynchronous signals and
synchronous call operations; the seconds can also have a return type which
can be ”void” or basic ”int”, ”bool” and ”obj” types or a Class name.
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The attributes (local variables) of a class, and the parameters of events
can explicitly typed, and the allowed types are just the ”int”, ”bool” and
”obj” types, or a Class name. Parameters can only have an implicit ”in”
mode. A statechart consists in a sequence of state definitions which starts
from the definition of the top level state. The definition of outer states
must precede the definition of the top level state. The top level state of a
statechart must be a composite sequential state.

A Composite sequential state is defined by a list of substates (which can
be composite sequential states, parallel states or simple states). The first
substate of a composite state is assumed to be its default initial substate.
The name ”initial” denotes the default initial pseudostate (and must ap-
pear as first substate), if no initial pseudostate is explicitly provided, the
first substate of the sequence is implicitly assumed as default initial sub-
state. For any simple state, in the definition of a composite sequential
state, it is not necessary to give any further explicit definition. A compos-
ite parallel state is defined as a parallel composition of several composite
sequential substates also called regions of a parallel state. A state defini-
tion can also define the set of events deferred while active. A Defers

clause defines the list of events (matching those already declared as Sig-
nals or Operations) to be referred. The definition of a transition contains a
set of source states, a trigger, an optional guard, an optional list of actions
and a set of target states. A transition with more than one source is called
a join transition. In the case of joins transitions, the first state in the
source list is required to be ”the most transitively nested source state”. In
this sense the first state univoquely determinates the priority of the tran-
sition. A transition with more than one target is called a fork transition.
The trigger of a transition can be an event declaration or an hypen sym-
bol (”-”) which means the absence of any explicit trigger (i.e., a completion
transition). If the trigger is an event declaration with formal parameters,
the name of the parameters can be used inside the actions part of the
transition. source->target is a shortcut for source-(-)->target.
The guard (if present) is a simple form of boolean expression involving
expression involving the object attributes. The actions part can be a se-
quence of simple actions. Each simple action can be an assignment of an
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expression to a local attribute, the sending of a signal to a target object,
the calling of a synchronous operation on a target object, or an assignment
of a synchronous function call to a local attribute. A signal is similar to
an event declaration, but its arguments are constituted by value expres-
sions instead that by formal parameters. A signal is preceded by a target
specification; the meaning is that the signal is sent to the events queue
of the specified destination object (the term ”self” can be used to denote
the same object; if no declaration is specified, then ”self” is implicitly as-
sumed). Once the needed classes are have their behavior defined by the
appropriate statechart, we can define the actual evolving system as a set
of object instances. Each object instance is declared by an object declara-
tion which introduces the object name, the name of its class, and possibly
any specific initial values for its attributes. This initial values can be liter-
als or names of other objects.

3.3.2 The Temporal Logic UCTL

The action- and state-based temporal logic, UCTL (tFGM08), is composed
of the branching-time action-based logic ACTL (DV90) and the branching-
time state-based logic CTL (CES86). With its syntax we are able to specify
properties that should be satisfied in a state and moreover we can com-
bine these basic predicates with temporal operators dealing with the ac-
tions performed.

φ ::= true | p | φ ∧ φ′ | ¬φ | Eπ | Aπ
π ::= Xχφ | φ χU φ′ | φ χUχ′ φ′ | φ χW φ′ | φ χWχ′ φ

′

Predicates are ranged over by p, state formulae are ranged over by φ, path
formulae are ranged over by π and actions are ranged over by χ. E and A

are the path quantifiers “exists” and “for all”, resp., while X , U and W are
the indexed “next”, “until” and “weak until” temporal operators, resp.

Starting from these basic UCTL operators, it is straightforward to de-
rive the standard logical operators ∨ and ⇒, the well-known temporal
logical operators EF (“possibly”), AF (“eventually”) and AG (“always”)
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and the diamond and box modalities <> (“possibly”) and [] (“necessar-
ily”), resp., of the Hennessy-Milner logic (HM85).

The semantic domain of UCTL is a doubly labelled transition system
(L2TS for short) (DV95). An L2TS is a labelled transition system whose
states are labelled by atomic propositions and whose transitions are la-
belled by sets of actions.

Definition 6 (Doubly Labelled Transition System) A Doubly Labelled Tran-
sition System (L2TS for short) is a quintuple (Q, q0, Act,R,AP, L), where:

• (Q, q0, Act,R) is an LTS;

• AP is a set of atomic propositions with p ranging over AP; p will typically
have the form of an expression like VAR = value;

• L : Q −→ 2AP is a labelling function that associates a subset of AP to each
state of the LTS.

3.3.3 The Model Checker UMC

UMC is an on-the-fly model checker for UCTL developed at ISTI (UMC),
which allows the efficient verification of UCTL formulas (i.e., specifying
action-and/or state-based properties) over a set of communicating UML
state machines. The possible system evolution are formally represented
ad an L2TS, whose transitions represent the possible evolutions of a sys-
tem configurations. More concretely, the states of this L2TS are labelled
with the observed structural properties of the system configurations (like
the active substates of objects, the values of object attributes, etc.), while
its transitions are labelled with the observed properties of the system evo-
lutions (like which is the evolving object, which are the executed actions,
etc.).

The big advantage of an on-the-fly approach to model checking is
that, depending on the formula, only a fragment of the overall state space
might need to be generated and analyzed in order to produce the correct
result. The basic idea underlying UMC is that, given a state of an L2TS,
the validity of a UCTL formula on that state can be evaluated by ana-
lyzing the transitions allowed in that state and the validity of a certain
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subformula in only some of the next reachable states, all this in a recur-
sive way. The current version of UMC uses an on-the-fly model-checking
algorithm which has a linear complexity.

Another interesting feature offered by UMC is the possibility to select
a desired subset of system events or object attributes, and to show the
minimized graph of all the possible system evolutions (traces) in which
only the relevant labels are shown. This allows one to obtain abstract
slices of the system behaviour, for which only certain kinds of interac-
tions are considered. These abstract slices are very useful for achieving
confidence in the overall correctness of the design. Since abstracted full-
trace minimization of an L2TS requires a full traversal of this L2TS, and
moreover has a high complexity, this functionality is, unfortunately, only
possible for finite and reasonably sized systems.

The current UMC prototype can be experimented via a web inter-
face (UMC).

3.3.4 UMC model of the running example

In the running example, described in section 3.1, we have bikes which
have certain attributes (e.g., startstation, etc.), and which move across the
stations trying to reach a given place, and we have stations which have its
accessing bikes. Each bike can interact with a station accordingly to their
respective state. A bike can migrate from one station to another station or
can be stop the trip when it has reached the destination place. Stations can
shut down, in which case their orphan bikes call for a repairing reconfigu-
ration. Several configurations of this kind of system have been produced,
and the version we are presenting here is a carefully simplified model.
The full code of the model classes is shown in Appendix B. In more de-
tail, we have two classes, corresponding to the two kinds of active objects
in the system: class Bike and class Station. A System is supposed to
be constituted by a set of Bike and Stations instantiations. A Station

object is characterized by a list of other stations to which it is connected
(i.e., left- and right-side) and by the presence (or not) of bikes connected.
At each moment, if some bike is present near to the station, the station
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activity starts with the communication to the bikes. If some stations shut
down then the bikes connected can perform the exit action from the sta-
tion and entering in the next station (i.e., migration). If a station does not
have bike connected, it is inactive, waiting for a bike to connect. The com-
plete dynamic behavior of the objects of classes Bike and Station is shown
below with also the UMC textual form. The statecharts for class Bike and
Station are shown in Figures 18 and 19.

1 Class Bike is
2 -- public interface
3 Signals:
4 stationFailure(theStation: Station)
5 connectionBikeOK(theStation: Station),
6 serviceOK
7

8 -- private part
9 Vars:

10 startStation: Station,
11 actStation: Station,
12

13 State Top= START, WAIT, STOP, WAIT4HELP
14

15 Transitions:
16 START -> WAIT
17 {- / actStation:=startStation; startStation.connectBike(self)}
18 WAIT -> WAIT4HELP
19 {connectionBikeOK(theStation) /actStation:=theStation;
20 actStation.serviceRequest(self)}
21 WAIT -> WAIT
22 {stationFailure(theStation) [theStation/=null ] /
23 actStation:= theStation; theStation.connectBike(self)}
24 WAIT ->STOP
25 {stationFailure(theStation)[theStation=null] / OUT.BIKESTOPPED}
26 WAIT4HELP -> STOP
27 {serviceOK / OUT.BIKEDISCONNECTED}
28 WAIT4HELP -> WAIT
29 {stationFailure(theStation)[theStation/=null] /
30 actStation:=theStation; theStation.connectBike(self)}
31 WAIT4HELP -> STOP
32 {stationFailure(theStation) [theStation=null] / OUT.PHONECALL}
33

34 end Bike;

Listing 3.11: UMC Model of Class ”Bike”
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1 Class Station is
2

3 Signals:
4 connectBike(theBike: Bike)
5 stopBike (theBike: Bike)
6 serviceRequest (theBike: Bike)
7

8 Vars:
9

10 myBike: Bike,
11 nextStation: Station;
12

13 State Top = EMPTY, READY, STOP
14

15 Transitions:
16 EMPTY -> EMPTY
17 {connectBike(theBike) / theBike.stationFailure(nextStation)}
18 EMPTY -> READY
19 {connectBike(theBike) / myBike:= theBike;
20 myBike.connectionBikeOK(self)}
21 READY -> STOP
22 {serviceRequest(theBike) / myBike:=theBike; myBike.serviceOK}
23 READY -> EMPTY
24 {serviceRequest(theBike) / myBike:= theBike;
25 myBike.stationFailure(nextStation)}
26

27 end Station;
28

29 Objects:
30 // static object instantiation
31 bike1: Bike (startStation -> station1, actStation -> station1)
32 station1: Station (nextStation-> station2)
33 station2: Station (nextStation->station3)
34 station3: Station

Listing 3.12: UMC Model of the Class ”Station”
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Figure 18: Statechart for ”Bike”

Figure 19: Statechart for ”Station”
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3.3.5 Validation with UMC

In this section we show how to validate our running example configura-
tions using UMC. We have used UMC v3.5 to verify a set of behavioral
properties specified using UCTL. In the following we firstly describe each
of them both in an informal an formal way, after that we show the valida-
tion results.

Station Responsiveness A Station is responsive if it guarantees a re-
sponse to each received request.
We want to prove that each time action connectBike takes place, even-
tually in the future the action connectionBikeOK or stationFailure
takes place. In detail, if a Bike requests to be connected to a certain
Station, then the Station will reply with a notification of either a suc-
cessful or a failed connection.

AG [bike1:connectionBike] AF
{bike1.connectionOK or bike1.stationFailure} true

We verified this formula with UMC and it is true.

serviceRequestCoordination It may never happen that action serviceOK
takes place if action serviceRequest has not taken place before. A
Bike cannot receive a notification that some service has been provided,
if it was not previously requested to the Station.

A [true {not serviceOK} W {serviceRequest} true].

We verified this formula with UMC and it is true.

connectionBikeReliability Each time action connectionBike takes
place, eventually in the future connectionBikeOK takes place. It means
that connection requests from Bike to Station are always followed by
a notification of success.

AG [bike1:connectionBike] AF {bike1.connectionOK } true
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We verified this formula with UMC and it is false. This is not surpris-
ing: each Station of the system might be temporarily unable to provide
the requested connection (they send stationFailure response).

serviceRequestUniqueness Each time action serviceRequest takes
place, then stationFailure or serviceOK takes place and afterward
it may not happen that eventually one of the latter two actions takes place
again. It means that after a service request from Bike to Station, it can-
not happen that the Bike receives more than one notification.

AG[bike1:serviceRequest]
not EF <bike1.serviceOK or bike1.stationFailure>
EF <bike1.serviceOK or bike1.stationFailure> true

We verified this formula with UMC and it is true.
With UMC, after this verification we can also generate the abstract

traces of the system obtained by observing the interactions among one
Bike (bike1) and three Stations (s1,s2,s3) of the running example SA con-
figuration. Such graph gives a precise and complete view of the system
execution behavior. It is depicted in Figure 20

3.4 Architectural-based Code Generation

Whenever the SA is validated with respect to the desired properties, Java
code can be automatically generated from the SA specification. Accord-
ing to Figure 21, this activity is performed through two main steps: start-
ing from a validated UMC specification, ARCHJAVA code is automatically
obtained by means of a JET-based Code Generator. Then, by exploiting the
existing ARCHJAVA Compiler, executable Java code is generated. Here we
focus on the first step of the translation in Figure 21 which is based on the
following directives:

1. Each UMC class becomes an ARCHJAVA component. For instance,
the component Bike in Figure 22(a) induces the following ARCH-
JAVA specification:
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Figure 20: Abstract behavioural slice
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Figure 21: JET/ArchJava Code Generation

1 public component class Bike{
2 ...
3 }

Figure 22: Sample UMC specification
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2. Each UMC component’s (i.e., classes) sent and received message
is used to synthesize the component ports. We recall that ARCH-
JAVA has both ports for provided services and ports for required
services. An ARCHJAVA port only connects a pair of components.
This means that if a component needs to communicate with more
than one component, it needs additional ports. Thus, the provided
component services are partitioned into sets of services provided
to different components. The same is done for required services.
Accordingly, the suitable number of required and provided ports is
declared into the ARCHJAVA specification of the component (con-
taining the declaration of required and provided services, respec-
tively). For instance, the sample SA in Figure 22 gives place to the
following ARCHJAVA code fragments concerning the Bike compo-
nent implementation:

1 public port Bike_TO_Station {
2 requires void m1();
3 }
4 public port Station_TO_Bike {
5 provides void m2();
6 }

3. For each UMC component an ARCHJAVA specification is generated
to encode the associated state diagram. ARCHJAVA does not offer
a direct support for that and we propose guidelines to extend the
ARCHJAVA specifications so that a state diagram associated to a soft-
ware component is implemented as an adjacency list. In particular:

• for each method invoked by a given component the correspond-
ing state diagram changes state accordingly so having trace of
what methods can be invoked or not. States and transitions
of the considered state diagram are declared as Java constants
and are used to univocally refer to these elements (see lines 3-9
in the code below).

• each state machine contains a fixed definition of transitions as
an internal Java class (see line 15-37 in the code below). The
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state diagram is defined as a LinkedList. The constructor of the
state diagram class contains the definition of the state machine
adding to the LinkedList of the state diagram an element for
each state containing all existing transitions (for each existing
transition a new object of the internal class transition is added)
(see lines 40-50).

• each state diagram class contains also a method that simulates
the transition fire, i.e., this method gets as input the transition
(according to the runtime behaviour of the system) and checks
if it is possible, in the actual computation state, to perform the
transition fire (see lines 52-63). If the behaviour is allowed then
the actual state is updated to the transition target state, other-
wise an exception is raised. In case a method cannot be in-
voked in a certain time, an exception is raised. The exception
is defined as an additional ARCHJAVA specification, i.e., a java
class extending the java.lang.Exception class.

4. A main ARCHJAVA specification is also generated to define the bind-
ing among components ports and the instantiation of the involved
state machines.

These directives ensure the communication integrity, i.e., components
can only communicate using connections and ownership domains that
are explicitly declared in the SA. The rest of the section outlines the ap-
proach supporting the automatic generation of code that implements such
directives. This automation is required since manual coding could di-
verge or not completely adhere to them. As previously said, the code
generator implementing the four directives above has been developed in
JET(BBM03). JSP-like templates define explicitly the target ARCHJAVA

code structure and get the data they need from the UMC models. In par-
ticular, the code generator consists of four templates: main.jet is a default
template that gets data as input and applies the other templates. Being
more precise, it applies the componentMain.jet template, that implements
the directive 4 previously described, producing the target MAIN.archj file
(see line 2 in Figure 24). Then, for each component in the source UMC
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1 public class SM_Bike {
2 /** State encoding*/
3 public final int S_start= 0;
4 public final int S_WAIT= 1;
5 public final int S_WAIT4REQUEST= 2;
6 public final int S_STOP= 3;
7

8 /** Transition encoding */
9 public final int T_startStation.connectBike=0;

10 public final int T_stationFailiure=1;
11 public final int T_theStation.connectBike=2;
12 public final int T_connectionBikeOK=3;
13 public final int T_stationFailure=4;
14 public final int T_actStation.serviceRequest=5;
15 public final int T_serviceOK=6;
16 public final int T_OUT.BIKEDISCONNECTED=7;
17 public final int T_OUT.BIKESTOPPED=8;
18 public final int T_OUT.PHONECALL=9;
19

20 private int currentState=S_start;
21 private LinkedList states = new LinkedList();
22

23 private class transition{
24 private int state;
25 private int transition;
26 private int send_receive;
27

28 public transition(int transition, int state, int send_receive){
29 this.transition=transition;
30 this.state=state;
31 this.send_receive=send_receive;
32 }
33 public int getTransition(){
34 return transition;
35 }
36 public int getState(){
37 return state;
38 }
39 public int getSendReceive(){
40 return send_receive;
41 }
42 }
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1 /** State Machine constructor*/
2 public SM_Bike(){
3 System.out.println("SM_Bike.constr");
4

5 LinkedList start = new LinkedList();
6 start.add(new transition(T_startStation.connectBike, S_WAIT ,0));
7 states.add(start);
8

9 LinkedList WAIT = new LinkedList();
10 WAIT.add(new transition(T_stationFailiure, S_WAIT ,1));
11 WAIT.add(new transition(T_theStation.connectBike, S_WAIT ,0));
12 WAIT.add(new transition(T_connectionBikeOK, S_WAIT4REQUEST ,1));
13 WAIT.add(new transition(T_theStation.connectBike, S_WAIT ,0));
14 WAIT.add(new transition(T_stationFailure, S_STOP ,1));
15 states.add(WAIT);
16

17 LinkedList WAIT4REQUEST = new LinkedList();
18 WAIT4REQUEST.add(new transition(T_stationFailure, S_WAIT ,0));
19 WAIT4REQUEST.add(new transition(T_actStation.serviceRequest,
20 S_WAIT4REQUEST ,0));
21 WAIT4REQUEST.add(new transition(T_serviceOK, S_STOP ,1));
22 WAIT4REQUEST.add(new transition(T_stationFailure, S_STOP ,1));
23 states.add(WAIT4REQUEST);
24

25 LinkedList STOP = new LinkedList();
26 STOP.add(new transition(T_OUT.BIKEDISCONNECTED, S_STOP ,0));
27 STOP.add(new transition(T_OUT.BIKESTOPPED, S_STOP ,0));
28 STOP.add(new transition(T_OUT.PHONECALL, S_STOP ,0));
29 states.add(STOP);
30 }
31

32 public void transFire(int trans) throws SMException {
33 LinkedList transitions=(LinkedList)states.get(currentState);
34 for(int i=0;i<transitions.size();i++){
35 if(((transition)transitions.get(i)).getTransition()==trans){
36 currentState=((transition)transitions.get(i)).getState();
37 System.out.println("Bike.transallowed: " + trans
38 + ", state : " + currentState);
39 return;
40 }
41 }
42 System.out.println("trans not allowed: " + trans);
43 throw new SMException();
44 }
45 }

98



Figure 23: JET-based Code Generator templates

Figure 24: Fragment of the main.jet template

specification, the component.jet template is applied in order to generate
the component implementation according to points 1 and 2 above (see
line 4-6 in Figure 24). Finally, for each source component the correspond-
ing state machine encoding is generated by applying the smComponent.jet
template that implements point 4 (see line 8-10).

Due to space limitation, the templates are not reported here. However,
interested readers can refer to (CHA) for downloading the full implemen-
tation of the proposed JET-based code generator. The Application of the
JET-based Code Generator on the UMC specification of the Running Exam-
ple has produced a number of ARCHJAVA files listed on the left-hand side
of the screenshot in Figure 25. In particular, for each component (i.e., Bike
and Station), the corresponding encoding is generated (e.g., Bike.archj,
Station.archj). The state machine specifications are also synthesized (i.e.,
SM Bike.archj, SM Station.archj) together with a MAIN.archj file (listed on
the right-hand side of Figure 25) that enables the execution of the ob-
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tained system with respect to the modelled software architecture. Being
more precise, in that main file all the components, the corresponding state
machines and port connections are instantiated giving place to an encod-
ing of the SA properties that constraint the execution of the hand-written
code that will be filled in prearranged points (e.g., see the try statement
in the code of Figure 25.

The complete code of the running example is listed in Appendix C.
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Figure 25: Generated Code Overview of the Running Example.
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Chapter 4

Automotive Case Study

Much of the cost of research and development in vehicle production are
associated to automotive software. Today vehicles are equipped with a
multitude of sensors and actuators that provide different services, like
ABS and vehicle stabilization systems, that assist people to drive safer.
Thanks to current mobile technology, vehicles have the possibility to con-
nect to the telephone and internet infrastructures. This has given birth to
a variety of new services into the automotive domain. Communication
in automotive software systems can takes place inside a vehicle (intra-
vehicle), connection to vehicles in the vicinity (inter-vehicle) or interaction
with the environment, for example through an Internet gateway (vehicle-
environment). The case study presented in this Chapter, and at which
we apply the traffic light process, is expired to a lot of documents within
to the Sensoria project (BK07; Koc07; EU ) and some published papers
(BFGL07; HKMU06; tGKM08).

4.1 Route Planning System

4.1.1 Introduction

Route Planning System (RPS) is responsible for providing guiding indi-
cations to the driver. In particular it must be able to provide following
functionalities:
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• Route Planning: each vehicle plans the trip autonomously by using
the information provided by a GPS system in the vehicle or internal
information already present. Based on the driver’s preferences that
were given at the beginning of the trip, the RPS searches a sight see-
ing database for appropriate sights and displays them on the in-car
map of the vehicles’ navigation system. The driver clicks on sights
he would like to visit which results in the display of more detailed
information about this specific sight (e.g. opening times, guidance
to parking, etc.). Figure 26 depicts activities of this scenario.

• Low Oil Scenario: During a drive, the vehicles oil lamp reports low
oil levels. This triggers the in-vehicle diagnostic system to perform
an analysis of the sensor values. The diagnostic system reports a
problem with the pressure in one cylinder head, and that the car is
no longer drivable, and sends a message with the diagnostic data
as well as the vehicle’s GPS data to the Service Discovery System
that finds a best solution (i.e., Towing Service, Repair Shop or Rent a
Car). If the car can not be moved the tow truck will be called , other-
wise the repair shop (or RentACar Shop) coordinates are sent to the
vehicle guiding system to direct it to the shop. The driver’s user in-
terface, from this point, is reconfigured to receive instructions from
an external system (i.e., Repair or RentACar Shop). Figure 26 de-
picts activities of this scenario.

• Reconfigurable Route Planning: Steven and John are on their way
to Italy in separate cars. Both want to spend their holidays together.
John has entered the destination into his navigation system which
is calculating and providing the best route during the travel. To
make sure both cars take the same route, Steven’s navigation sys-
tem just receives route planning information from John’s instead of
performing route planning itself.

• AirBag Scenario A driver subscribed to the accident assistance ser-
vice available for all vehicles of the car manufacturer. Due to a head
on collision, the vehicles airbag is deployed which triggers an auto-
mated message to the Road Assistance Service (RASS) that contains
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Figure 26: Activities of the Route Planning and Low Oil Scenarios
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the vehicle’s GPS data, the vehicle identification number and a col-
lection of sensor data like for example the number of seatbelts in
use and impact sensors for critical vehicle parts. The RASS places
a call to the driver’s mobile phone. Due to his injures, the driver
is unable to answer the call. Based on the sensor data available to
the RASS, the severity of the accident is assessed and emergency
services (police, ambulance) are alerted and provided with the ve-
hicles location. Accident information is successively passed on the
next approaching vehicles.

4.1.2 Use Case Model

We use uses cases to represent functional requirements. Figure 27 shows
the UML2.0 use case diagram. The Driver, a GPS and Road Assistance
Service (RASS) are actors of the RPS. RASS provides the three on road ser-
vices needed in the case the car cannot be driven, i.e. car repair, tow truck-
ing, car renting, driver and emergency service calling. Moreover it sends
instructions directly to the driver redirecting the vehicle to avoid traffic
( or accident) problems. Each driver can plan the trip autonomously by
using the information provided by a GPS system in the vehicle or internal
information already presented in the RPS. Finally each driver can advices
another vehicle behind of him providing, for example, route planning in-
formations.
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4.2 RPS Structural Design and Analysis

In this section we execute the first step of the traffic light process intro-
duced in section 2.6. We define components and style of the RPS system
using the Typed Graph Grammar (TGG) approach and after we imple-
ment all aspects using Alloy. The architecture of the system is composed
of six components as shown in Figure 28. A detailed description of each
component with the respective behavior will be described in Section 4.3

◦ V CG

VO

��

VGPS

@@

VV

__

VS

��
• • ORCH

OVoo OLD // •

RASS
RAV // ◦ LD

LDO // • GP S
GPSV // •

EV
VV // ◦ BANK

BV // ◦

Figure 28: Basic Components of RPS

In order to understand each name assigned to each port and connec-
tions, Tables 10 and 11 describe them.

Connection Abbreviation Graphical Symbol
Environment Access EA ◦

Internal Access IA •

Table 10: Connections Description

4.2.1 RPS Style

After the identification of each component that compose the system, we
have defined the Automotive Style at which each SA configuration should
be conformed. To do this this we have defined an Alloy module that im-
plements the TypeGraph of Figure 29. The Alloy code of the RPS Type
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Abbreviation Description
VV Vehicle - Vehicle
VS Vehicle - Service
VO Vehicle - Orchestrator

VGPS Vehicle - GPS
OLD Orchestrator - Local Discovery
OV Orchestrator - Vehicle
BV Bank - Vehicle

RAV Road Assistance - Vehicle
LDO Local Discovery - Orchestrator
GPSV GPS - Vehicle

Table 11: Ports Description

Graph is listed in Listing 4.1.
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VV
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OO

Figure 29: Type Graph of RPS

During the style specification we realised that constraints defined in
it were not sufficient. The Alloy Analyzer was able to generate config-
urations with wrong connections. For this reason we have modified it
adding more constraints on connections among components, connections
multiplicities etc. In the code 4.2 we present only a sub-set of these. The
complete code is listed in the Appendix A.
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1 module AutomotiveStyle
2

3 open TGG
4 open SOFTWARE
5

6 //-------------TYPEGRAPH DEFINITION------------------
7 //Bike-Style basic elements
8 one sig EA, IA extends Node {}
9 one sig BV, RAV, VS,VV, VO, VGPS,

10 OLD, OV, GPSV, LDO extends Tentacles {}
11 one sig BANK extends Edge{}
12 {
13 tentacles = BV
14 conn = BV->EA
15 }
16 one sig RASS extends Edge{}
17 {
18 tentacles = RAV
19 conn = RAV->EA
20 }
21 one sig VCG extends Edge{}
22 {
23 tentacles = VS + VV + VO + VGPS
24 conn = VS ->EA + VV->EA + VO->IA + VGPS->IA
25 }
26 one sig GPS extends Edge{}
27 {
28 tentacles = GPSV
29 conn = GPSV->IA
30 }
31 one sig LD extends Edge{}
32 {
33 tentacles = LDO
34 conn = LDO->IA
35 }
36 one sig ORCH extends Edge{}
37 {
38 tentacles = OLD+OV
39 conn = OLD->IA + OV->IA
40 }
41 fact onTypeGraph
42 {
43 TypeGraph.n = EA+IA
44 TypeGraph.he = BANK + RASS + VCG + GPS + LD + ORCH
45 }

Listing 4.1: RPS Type Graph in Alloy
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1

2 // Bank-VCG connections
3 all tg: TypedGraph |
4 one morph: tg.typingmorphism |
5 one g1: morph.source |
6 all e1,e2: g1.he | #(univ.(e1.conn)& univ.(e1.conn)) =1 and
7 morph.fE[e1] = BANK and morph.fE[e2] = VCG
8 => VS in univ.conn.(univ.(e1.conn))
9

10 // RASS-VCG connections
11 all tg: TypedGraph |
12 one morph: tg.typingmorphism |
13 one g1: morph.source |
14 all e1,e2: g1.he | #(univ.(e1.conn) & univ.(e1.conn)) =1 and
15 morph.fE[e1] = RASS and morph.fE[e2] = VCG
16 => VS in univ.conn.(univ.(e1.conn))
17

18 // EA connections
19 all tg: TypedGraph |
20 one morph: tg.typingmorphism |
21 one g1: morph.source |
22 all n: g1.n | morph.fN[n] = EA => #(conn.n) <=2
23

24 // ORCH-LD connections
25 all tg: TypedGraph |
26 one morph: tg.typingmorphism |
27 one g1: morph.source |
28 all e1,e2: g1.he | #(univ.(e1.conn) & univ.(e2.conn)) =1 and
29 morph.fE[e1] = LD and morph.fE[e2] = ORCH
30 => OLD in univ.conn.(univ.(e1.conn))

Listing 4.2: RPS Style Constraints
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RPS Model Finding

To generate style-conformant SAs configurations, in the Listing 4.3, we
open the modules TGG and AutomotiveStyle (lines 4-5). When we ex-
ecute the run command (line 29) the Alloy Analyzer firstly verifies each
constraints defined in both modules and after generates all possible con-
figurations. Figure 30 presents only three of them.

1 module MODELFINDING
2

3 open TGG
4 open SOFTWARE
5 open AutomotiveStyle
6

7 one sig orch1 extends Edge{}
8 one sig ld1 extends Edge{}
9 one sig vcg1 extends Edge{}

10 one sig bank1 extends Edge{}
11 one sig ev1 extends Edge{}
12

13

14 one sig ia1,ia2,ia3,ea1,ea2 extends Node{}
15 one sig InitialGraph extends Graph{}
16 {
17 he= orch1+vcg1+bank1+ev1+ld1
18 n= ia1+ia2+ia3+ea1+ea2
19 }
20 one sig InitialConfiguration extends TypedGraph{}
21 {
22 typingmorphism.source = InitialGraph
23 typingmorphism.fE = orch1->ORCH + vcg1->VCG +
24 bank1->BANK + ev1->EV + ld1->LD
25 typingmorphism.fN = ia1->IA + ia2->IA + ia3->IA +
26 ea1->EA + ea2->EA
27 }
28 pred AutomotiveConfiguration[]{}
29 run AutomotiveConfiguration for 3

Listing 4.3: RPS Model Finding

RPS Reconfigurations

Figure 31 and 32 showS different graph transformation rules that we can
use to reconfigure a particular SA configuration in a programmed DSA.
LOCAL REQUEST describes the driver internal service request. In a cer-
tain time the driver could ask informations about cinema or restaurant
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Figure 30: Three possible Style-Conformant SA configuration of the RPS Sys-
tem

112



that are near its GPS location. RPS searches, through the Local Discov-
ery component (ld1 in the rule), a set of appropriate data and displays
them to the driver. BANK REQUEST describes a request from the driver
to him/her personal Bank (bank1 in the rule). For example each Driver
can recharge personal mobile phone credit only communicating the num-
ber of the personal credit card. GPS REQUEST describes a request from
the driver to the GPS System. CALL FRIEND is executed when a vehicle
sends route planning information to another vehicle that is in the same
route with the objective to arrive in the same place. REQUEST ASSISTANCE

is executed when an accident happen. A driver subscribed to the Road
Assistance Service (rass1 in the rule) can call it when there is some prob-
lem in the car or after some collision. Based, for example, on the severity
of the accident, RASS can call different emergency services (police, am-
bulance) or can fix an appointment to the nearest garage, etc.

RPS Structural Analysis

Programmed DSA In the Listing 4.4 we present an example of Pro-
grammed DSA (e.g.,pdsa1) of the RPS system, where its initial Configu-
ration is G1 and the set of possible reconfigurations is composed of three
productions.

1 one sig pdsa1 extends ProgrammedDSA{}
2 {
3 first = G1
4 transitions.trigger = $GPS_REQUEST + CALL_FRIEND + REQUEST_ASSISTANCE$
5 }
6 pred show[]{}
7 run show for 4 but 1 ProgrammedDSA

Listing 4.4: RPS Programmed DSA Example

In Figure 33 we can see the Alloy Analyzer output and the graph-
ical representation of the example. The start configuration of the pro-
grammed DSA is G1 while G4 is the final. The latter is generated after
three reconfiguration steps.
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Figure 31: RPS PRODUCTIONS - I
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Figure 32: RPS PRODUCTIONS - II
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Figure 33: Programmed DSA Example
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Figure 34: Reachable Configurations of the RPS System

Reachability We have used the Reachability predicate defined for the
running example in order to check if some configuration is reachable. We
have executed it for the G3 configuration. The Alloy Analyzer outputs
is "No counterexample found", it means that G3 is a reachable con-
figuration in the RPS system. Figure 34 presents the set of Reachable Con-
figurations of the Programmed DSA pdsa1. This fact demonstrates that
we can check easily if a particular configuration is reachable. In order to
have a correct and complete RPS system we must verify that each reach-
able configuration is desirable. We demonstrate this using the Invariant
Analysis of the RPS system.

Invariant Analysis For this kind of analysis we have defined a set of
properties that each DSA configuration, of the RPS system, after a rewrit-
ing step must satisfy. In the following we describe each of them with the
Alloy code related

1. Property 1: each VCG component can not be connected to a compo-
nent LD;

2. Property 2: When a component LD exist then must exist also a com-
ponet ORCH and both must be connected;

3. Property 3: the component ORCH has exactly two connections;
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4. Property 4: a VCG component can not have more than one compo-
nent attached to each port;

1 pred Property1[conf: TypedGraph]
2 {
3 all e1,e2: conf.typingmorphism.source.he |
4 conf.typingmorphism.fE[e1] =VCG and
5 conf.typingmorphism.fE[e2] =LD
6 =>
7 #((e1.conn)&(e2.conn))=0
8 }
9 pred Property2 [conf:TypedGraph]

10 {
11 all e1: conf.typingmorphism.source.he |
12 conf.typingmorphism.fE[e1] =LD
13 =>
14 one e2: conf.typingmorphism.source.he |
15 conf.typingmorphism.fE[e2] =ORCH and
16 #((e1.conn)&(e2.conn)) =1
17 }
18 pred Property3 [conf: TypedGraph]
19 {
20 all e1: conf.typingmorphism.source.he |
21 conf.typingmorphism.fE[e1] =ORCH
22 =>
23 #(e1.conn) = 2
24 }
25 pred Property4[conf:TypedGraph]
26 {
27 all e1: conf.typingmorphism.source.he |
28 conf.typingmorphism.fE[e1] =VCG
29 =>
30 all n: univ.(e1.conn) | #(conn.n)<=2
31 }

Listing 4.5: Invariant Properties

If we check the Invariant Analysis predicate for each property in List-
ing 4.5 we have that each property is valid for each reachable configu-
ration of our running example. Considering the definition presented in
Section 3.2.2 we can conclude that the specification of the running exam-
ple is correct and complete.

4.3 RPS Behavioural Design and Analysis

The first thing that we have done, in this phase of the process, is to specify
the behaviour of each component that compose the RPS system. In the
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Figure 35: Bank State Machine

following we present them with a shortly definition accompanied with a
graphical State Machine description.

Bank Component

The Bank represents an institution that provides financial services. The
bank operations that are relevant for the RPS application are the charge
of a credit card and the revoke of a charge. Figure 35 depicts the Bank
state machine describing the behaviour.

GPS Component

The GPS is provider of data from the Global Positioning System. The ser-
vice relevant for the RPS application is the request of location, i.e. the cur-
rent position of the vehicle. Figure 36 shows the state machine describing
its behavior.

Local Discovery Component (LD

The Local Discovery component look fo appropriate services in the local
repository. The state machine describing the behaviour is shown in Figure
37
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Figure 36: GPS State Machine

Figure 37: Local Discovery State Machine
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Road Assistance Component (RASS)

The Road Assistance component provides all required services for car re-
pairing (Garage Service, Tow Truck Service and Rental Service). Its state
machine is composed of three differet sub-machines, each one for each
service that a drivere can request. The overall state machine is depicted
in Figure 38.

Vehicle Communication Gateway (VCG)

The Vehicle Communication Gateway models sending messages to ex-
ternal components. These components can be other cars or the Banks, the
Road Assistance that will be in charge of finding appropriate services, the
selected TowTruck, Garage and RentACar service providers. The state
machine describing the behavior of this component is composed of three
different sub-machines, each one for each kind of communication among
the vehicle and the environment, in Figure 39 we present only the sub-
machine that describes the communication with the Garage Service.

Orchestator (ORCH)

The Orchestrator is a component that is in charge to achieve a goal by
composition of service. Each time that a request arrive from a driver
it performs a dynamic binding with internal and external components
such as Road Assistance, Bank , GPS, etc.. These components are accessi-
ble through the Vehicle Communication Gateway. The behaviour of this
component is represented by a composite state machine. In Figure 40 we
present only the part related to the Card Charge Action. The complete
UMC code is listed in Appendix B.

4.3.1 RPS Validation with UMC

In this section we show how to validate the RPS system using UMC. We
have used UMC v3.5 to verify a set of behavioral properties specified us-
ing UCTL. In the following we firstly describe each of them both in an
informal an formal way, after that we show the validation results.
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Figure 38: Road Assistance State Machine

122



Figure 39: Vehicle Communication Gateway State Machine

Figure 40: Orchestrator State Machine
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Bank Responsiveness A Banks is responsive if it guarantees a response
to each received request. We want to prove that each time action
requestCardCharge takes place, eventually in the future the action
chargeResponseOK or chargeResponseFail takes place. In detail,
if a Driver requests to recharge a credit card to a certain Banks, then
the Bank will reply with a notification of either a successful or a failed
recharge.

AG [car1:requestCardCharge] AF
{car1.chargeResponseOK or car1.chargeResponseFail}
true

We verified this formula with UMC and it is true.

serviceRequest Coordination It may never happen that action
chargeResponseOK takes place if action requestCardCharge has not
taken place before. The Car cannot receive a notification of the fact that
the credit card has been charged, if it did not previously request the Bank
to do so.

A [true{not chargeResponseOK}W{requesCardCharge}true].

We verified this formula with UMC and it is true.

requestGarage Reliability Each time action requestGarage takes
place, eventually in the future garageResponseOK takes place. It means
that garage requests from Car to RASS are always followed by a notifica-
tion of success.

AG[car1:requestGarage]AF{car1.garageResponseOK}true

We verified this formula with UMC and it is false. This is not surpris-
ing: each Garage might be temporarily unable to provide the request
(they send garageResponseFail).
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serviceRequestUniqueness Each time action requestGarage takes
place, then garageResponseFail or garageResponseOK takes place
and afterward it may not happen that eventually one of the latter two ac-
tions takes place again. It means that after a garage request from Car to
RASS, it cannot happen that the Car receives more than one notification.

AG[car1:requestGarage]
not EF<car1.garageResponseOK or car1.garageResponseFail>
EF<car1.garageResponseOK or car1.garageResponseOK>true

We verified this formula with UMC and it is true.

4.4 RPS Code Generation

The Application of the JET-based Code Generator (outlined in Section 3.4)
on the UMC specification of the RPS system produces a number of ARCH-
JAVA files listed on the left-hand side of the screenshot in Figure 41. In
particular, for each component (i.e., BANK, GPS, ORCH, VCG, RASS,
LD etc. ), the corresponding encoding is generated (e.g., BANK.archj,
GPS.archj, etc.). The state machine specifications are also synthesized
(i.e., SM BANK.archj, SM GPS.archj, etc.) together with a MAIN.archj file
(listed on the right-hand side of Figure 41) that enables the execution
of the obtained system with respect to the modelled software architec-
ture. Being more precise, in that main file all the components, the cor-
responding state machines and port connections are instantiated giving
place to an encoding of the SA properties that constraint the execution of
the hand-written code that will be filled in prearranged points (e.g., see
the try statement in the code of Figure 25.

In the following we list only the ARCHJAVA code of BANK component
with its state machine specification generated using the JET-based Code
Generator. The complete code of the RPS system is listed in Appendix C.
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Figure 41: Generated Code Overview of the RPS.
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1 /** BANK.archj*/
2

3 package generatedArchJava;
4 import java.io.*;
5

6 public component class BANK {
7 /*Declaration of the state machine variables*/
8 private SM_VCG behaviour_VCG;
9 private SM_BANK behaviour_BANK;

10 private SM_RASS behaviour_RASS;
11 private SM_ORCH behaviour_ORCH;
12 private SM_GPS behaviour_GPS;
13 private SM_LD behaviour_LD;
14

15 /** setBehaviours() */
16 public void setBehaviours(SM_VCG behaviour_VCG, SM_BANK behaviour_BANK,
17 SM_RASS behaviour_RASS, SM_ORCH behaviour_ORCH, SM_GPS behaviour_GPS,
18 SM_LD behaviour_LD ){
19 System.out.println("BANK.setBehaviours");
20 this.behaviour_VCG = behaviour_VCG;
21 this.behaviour_BANK = behaviour_BANK;
22 this.behaviour_RASS = behaviour_RASS;
23 this.behaviour_ORCH = behaviour_ORCH;
24 this.behaviour_GPS = behaviour_GPS;
25 this.behaviour_LD = behaviour_LD;
26 }
27 /**VCG_TO_BANK Port definition */
28 public port VCG_TO_BANK {
29 }
30 /**BANK_TO_VCG Port definition*/
31 public port BANK_TO_VCG {
32 }
33

34 /**
35 * Implementation of the methods
36 * provided by the port VCG_TO_BANK*/
37 }

Listing 4.6: BANK.archj automatically generated code.
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1 /**SM_BANK.archj*/
2 package generatedArchJava;
3 import java.util.LinkedList;
4 import generatedArchJava.SMException;
5

6 /** BANK State Machine encoding*/
7 public class SM_BANK {
8 public final int S_S1= 0;
9

10 /** Transition encoding*/
11 public final int T_revokeCardCharge=0;
12 public final int T_cust.bankrevokeOK=1;
13 public final int T_requestCardCharge=2;
14 public final int T_cust.chargeResponseOK=3;
15 public final int T_cust.chargeResponseFail=4;
16 private int currentState=S_S1;
17 private LinkedList states = new LinkedList();
18 ...
19 }
20

21 /** State Machine constructor*/
22 public SM_BANK(){
23 System.out.println("SM_BANK.constr");
24 LinkedList S1 = new LinkedList();
25 S1.add(new transition(T_revokeCardCharge, S_S1 ,1));
26 S1.add(new transition(T_cust.bankrevokeOK, S_S1 ,0));
27 S1.add(new transition(T_requestCardCharge, S_S1 ,1));
28 S1.add(new transition(T_cust.chargeResponseOK, S_S1 ,0));
29 S1.add(new transition(T_cust.chargeResponseFail, S_S1 ,0));
30 states.add(S1);
31 }
32 ...
33 }

Listing 4.7: ArchJava Code of the BANK state machine.
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Chapter 5

Conclusions and Future
Work

The objective of this chapter is to summarize the main results that I have
obtained in this research and possible future directions that I can consider
for my research work. I present the main results and open issues subdi-
vided in two categories. The first regards the use of formal methods to
specify and validate Dynamic Software Architectures, the second one re-
gards the use of SA-based development process to generate and maintain
code of global computing systems.

5.1 Formal Design and Validation

The approach proposed in this thesis to design dynamic software archi-
tectures uses typed graph grammars as a formal base and the Alloy logic
to implement concepts like architectural styles, graph transformation rules
and architectural structural properties. Moreover the Alloy Analyzer is
used to ensure style-consistency, perform model-finding and validate struc-
tural properties of each SA configuration. Typed Graph Grammar (TGG)
uses explicit structural constraints by means of logical predicates. This
approach is well suited to a reactive modeling process: the software ar-
chitect builds a model and the system reacts reporting style inconsisten-
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cies. TGG defines dynamism by local rewriting rules on flat graphs and it
has mechanisms to keep trace of reconfigured items by the notion of trace
morphism. In order to verify structural properties TGG express them by
means of the same formalism used to define architectural styles, i.e. the
Alloy logic.

Model Finding is the main analysis capability offered by Alloy. The
Alloy Analyzer basically explores (a bounded fragment) of the state space
of all possible models and is able to show example instances satisfying or
violating the desired properties. For instance, we can easily use the Alloy
Analyzer to construct initial architectures: we need to ask for an instance
graph satisfying the style characteristics and having a certain number of
components. Model finding can also serve to the purpose of analysis. For
instance, to validate if the style predicates really define what the software
architect means. The use of bounds is justified by Alloy’s small scope
hypothesis that states that ”most bugs have small counterexamples” (Jac06).
This means that examining small architectures is often enough to detect
possible major flaws. Table 12 can help readers to understand which el-
ements of a Dynamic Software Architecture we have considered and in
which way we have approached it.

Aspects Approach Used
Architectures Flat Typed Graphs

Structural properties Alloy Logic
Behavioural properties UCTL Formulae

Style Matching Alloy Analyzer
Style Preservation Alloy Analyzer

Model Finding Alloy Analyzer
Invariant Analysis Alloy Analyzer

Reachability Analysis Alloy Analyzer
Model Checking UMC + UCTL
Code Generation ARCHJAVA + JET

Communication Integrity ARCHJAVA

Table 12: Main aspects of the Thesis.
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5.1.1 Open Issues

As kind of architectural dynamism, we have only considered the pro-
grammed dynamicity in which all admissible changes (e.g., adding and
removing of components, connectors and connections) are defined prior
to run-time and are triggered by the system itself. The immediate future
research is to study how to extend the TGG approach for repairing and
ad-hoc dynamism, proving properties associated to each of them. Re-
lated to this there is the necessity to use graph grammars with negative
application conditions (HHT96) in order to model productions that are
equipped with a constraint about the context in which they can be ap-
plied. For instance, such conditions can state that the production is ap-
plicable only when certain nodes, edges, or subgraphs are not present in
the graph. Another future research is to extend our modeling approach
to model and analyze Hierarchical SAs that have as basic elements more
complex and structured components. We are thinking to use Hierarchi-
cal Hypergraphs (DHP02) where each hyperedge can represent relations
among components.

5.2 SA-based Development

SA-based development is based on the idea that code can be generated
from the SA specificaton of a system. This thesis has provided a contri-
bution in this direction, by showing how an architectural model defined
in a model-based fashion can be used for code generation. An important
aspect during this process consists in ensuring that the selected architec-
ture provides the required qualities. We have shown how this is feasible
in a specific context, where coordination properties are modelled and ver-
ified against each architectural model. As soon as the architectural model
is proved to be good enough, we demonstrated that it can be used for
generating code, constraining the system execution according to the ar-
chitectural decisions.
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5.2.1 Open Issues

In this thesis we presented an approach to automatically generate code
starting from verified software architecture descriptions. The best of the
state of the art, as presented in Section 2.4, is represented by ARCHJAVA

that ensures the communication integrity, and by JAVA/A that constraints
also the code to behave as defined in the port’s protocols. These ap-
proaches (as they are today) can be used only in a context in which the
system is completely implemented in-house, while neglecting the possi-
bility of integrating external components. This is because acquired com-
ponents are not necessarily implemented following one of these approaches
and thus it is not possible at runtime allow the only admitted operations.
Thus, an interesting future research direction consists of the ability of
integrating in-house components code with automatically generated as-
sembly code for acquired components, forcing the composed system to
exhibit the properties specified at the architectural level. This integra-
tion would open the possibility to really manage dynamic system during
the execution (i.e., systems in which some components have to change at
runtime) where a regenerated ”correct” assembly code assures that the
composed system is forced to exhibit only the properties specified at the
architectural level. To realize these aspects we should develop a middle-
ware able to support dynamic software architecture adaptations. Figure
42 shows a possible realization of it already presented by Geihs et al. in
(GKRS06) and used in the IST MADAM Project 1. The Context Manager
monitors and processes the context information (i.e., context sensors).
The Adaptation Manager chooses an adaptation activity based on con-
text information received. Finally the Configuration Manager starts the
appropriate configuration choosing the precise set of components (stored
in a precise repository) that will constitute the new SA configuration.

Additionally, feedback generated by the runtime analysis of the gen-
erated code (provided by the Context Manager through monitoring and
testing techniques) could be automatically tracked back to the architec-
tural model, so that whenever a change applies over the code, it is auto-

1http://www.intermedia.uio.no/display/madam/Home
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Figure 42: Middleware for Dynamic Software Architectures.

matically reflected on the architectural modele and vice-versa. Another
future research direction consists in investigating how to assure that the
generated code respects non functional properties and quality aspects
which have been proved to be valid at the architectural level. Finally
we would like to introduce aspects like reconfiguration rules in the Java
Code, as modelled by the graph grammar production rules. This is im-
portant to have a strong relation between programmed dynamic recon-
figuration and the code.
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Appendix A

Alloy Code

This appendix presents the Alloy code introduced in this thesis. First of
all I present the general Alloy Modules that must be defined each time
that we model a new system. They are depicted in Figure 43. After I list
the complete Alloy Code of the Running Example introduced in Chapter
3 and finally the Alloy Code of the Automotive Case Study described in
the Chapter 4.
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Figure 43: Alloy Modules

1 module TGG
2

3 //Graph Elements
4 sig Node{}
5 sig Tentacles{}
6 sig Edge
7 {
8 tentacles: set Tentacles,
9 conn: tentacles-> lone Node

10 }
11 sig Graph
12 {
13 he: set Edge,
14 n: set Node
15 }
16 // facts on Graphs and Graph elements (Nodes , Edges and Tentacles)
17 fact GraphElements_Constraints
18 {
19 // each element (Node and Edge) must be element of a single Graph
20 all edge: Edge | some g: Graph | edge in g.he
21 all node: Node | some g: Graph | node in g.n
22 all t1: Tentacles | some g: Graph | some e1:g.he | t1 in e1.tentacles
23 // nodes at which each Edge is connected must be nodes of the same Graph
24 all g:Graph| all e: g.he | univ.(e.conn) in g.n
25 }

Listing A.1: Typed HyperGraphs
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1 // PartialMorphism among two Graphs
2 sig PartialMorphism
3 {
4 source: Graph,
5 target: Graph,
6 fE: Edge -> lone Edge,
7 fN : Node -> lone Node
8 }
9 {

10 // mapping functions description
11 fE.univ in source.he
12 fN.univ in source.n
13 univ.fE in target.he
14 univ.fN in target.n
15

16 // f maps a subgrapgh of the source graph
17 all e1: fE.univ |univ.(e1.conn) in fN.univ
18 // injectivity
19 all n1,n2: source.n | fN[n1] = fN[n2] => n1=n2
20 all e1,e2: source.he |fE[e1] = fE[e2] => e1=e2
21 // well-formedness of the partialmorphism --
22 all e1: fE.univ | e1.tentacles = fE[e1].tentacles
23 //all e1: fE.univ | all t1: e1.tentacles | fE[e1].conn[t1] = fN[e1.conn[t1]]
24 }

Listing A.2: Partial Morphism

1 sig Matching
2 {
3 source: Graph,
4 target: Graph ,
5 fE: Edge -> lone Edge,
6 fN : Node -> lone Node
7 }
8 {
9 // mapping functions description

10 fE.univ = source.he
11 fN.univ = source.n
12 univ.fE in target.he
13 univ.fN in target.n
14

15 // f maps a subgrapgh of the source graph
16 all e1: fE.univ |univ.(e1.conn) in fN.univ
17

18 // injectivity
19 all n1,n2: source.n | fN[n1] = fN[n2] => n1=n2
20 all e1,e2: source.he |fE[e1] = fE[e2] => e1=e2
21

22 // well-formedness of the partialmorphism
23 all e1: fE.univ | e1.tentacles = fE[e1].tentacles
24 all e1: fE.univ | all t1: e1.tentacles |
25 fE[e1].conn[t1] = fN[e1.conn[t1]]
26 }

Listing A.3: Matching
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1 // It describes Partial Morphism among two TypedGraphs
2 sig TypedPartialMorphism
3 {
4 s: TypedGraph,
5 t: TypedGraph,
6 PMorphism: PartialMorphism
7 }
8 {
9 PMorphism.source = s.typingmorphism.source

10 PMorphism.target = t.typingmorphism.source
11 all e1: PMorphism.fE.univ |
12 s.typingmorphism.fE[e1] = t.typingmorphism.fE[PMorphism.fE[e1]]
13 all n1: PMorphism.fN.univ |
14 s.typingmorphism.fN[n1] = t.typingmorphism.fN[PMorphism.fN[n1]]
15 }
16 // Matching among two TypedGraphs
17 sig TypedMatching
18 {
19 s: TypedGraph,
20 t: TypedGraph,
21 match: Matching
22 }
23 {
24 match.source = s.typingmorphism.source
25 match.target = t.typingmorphism.source
26 }

Listing A.4: Typed Partial Morphism and Typed Matching
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1 sig TotalMorphism
2 {
3 source: Graph,
4 target: Graph,
5 fE: Edge->Edge,
6 fN: Node->Node
7 }
8 {
9 univ.fE in target.he

10 univ.fN in target.n
11 fE.univ = source.he
12 fN.univ = source.n
13 //unicity
14 all e1: source.he | one e2: target.he | fE[e1]=e2
15 all n1: source.n | one n2: target.n | fN[n1] = n2
16 // well-formedness
17 all e1: source.he | e1.tentacles = fE[e1].tentacles
18 all e1: source.he | all t1:e1.tentacles | (fE[e1]).conn[t1] = fN[e1.conn[t1]]
19 }
20 sig TypedTotalMorphism
21 {
22 s: TypedGraph,
23 t: TypedGraph,
24 TMorphism: TotalMorphism
25 }
26 {
27 TMorphism.source = s.typingmorphism.source
28 TMorphism.target = t.typingmorphism.source
29 all e1: TMorphism.fE.univ |
30 s.typingmorphism.fE[e1] = t.typingmorphism.fE[TMorphism.fE[e1]]
31 all n1: TMorphism.fN.univ |
32 s.typingmorphism.fN[n1] = t.typingmorphism.fN[TMorphism.fN[n1]]
33 }

Listing A.5: Total Morphism and Typed Total Morphism

1 // TypeGraph Definition
2 // it is described in detail in the STYLE Module of each new model
3 one sig TypeGraph extends Graph{}
4

5 // To avoid reuse of identities of items of the type graph
6 fact NoClashWithTypeNames{
7 all g1: Graph | g1!=TypeGraph => #(g1.n & TypeGraph.n) = 0
8 all g1: Graph | g1!=TypeGraph => # (g1.he & TypeGraph.he) = 0
9 }

10 // TypedGraph Definition
11 sig TypedGraph
12 {
13 typingmorphism : TotalMorphism,
14 }
15 {
16 typingmorphism.target=TypeGraph
17 }

Listing A.6: Type Graph and Typed Graph
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1 pred rwStep [G,G’:TypedGraph, P: TypedPartialMorphism,
2 trace: TypedPartialMorphism]
3 {
4 one g: TypedMatching | {
5 g.s=P.s and g.t = G and
6

7 G’.typingmorphism.source.he =
8 (G.typingmorphism.source.he)-
9 g.match.fE[(P.s.typingmorphism.source.he)] +

10 (P.t.typingmorphism.source.he)
11 and
12 G’.typingmorphism.source.n =
13 (G.typingmorphism.source.n)-g.match.fN[(P.s.typingmorphism.source.n)] +
14 (P.t.typingmorphism.source.n)
15 }
16 and
17 trace.s = G and trace.t=G’ and
18 all n1: G’.typingmorphism.source.n |
19 n1 in univ.(g.match.fN) &&
20 (g.match.fN.n1) in (P.PMorphism.fN).univ
21 =>
22 n1 in (trace.PMorphism.fN).univ
23 }

Listing A.7: Rewriting Step

1 //--------------Description of Programmed DSA----------------
2 sig Transition {
3 startingState: TypedGraph,
4 arrivalState: TypedGraph,
5 trigger : TypedPartialMorphism
6 }
7 {
8 startingState != arrivalState
9 }

10 sig ProgrammedDSA
11 {
12 configurations: set TypedGraph,
13 transitions: set Transition,
14 first, last: configurations,
15 next: (configurations-last) one -> one (configurations-first)
16 }
17 {
18 // first !=last
19 // the first TypedGraph can not be an arrivalState
20 first not in transitions.arrivalState
21 // the last TypedGraph can not be a startingState
22 last not in transitions.startingState
23 next.univ in transitions.startingState
24 }

Listing A.8: Programmed DSA
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1 fact GenerationTransition
2 {
3 all pdsa: ProgrammedDSA|
4 all trans: pdsa.transitions |one tr: TypedPartialMorphism |
5 rwStep[trans.startingState, trans.arrivalState, trans.trigger, tr] &&
6 trans.arrivalState = trans.startingState.(univ.next)
7 }

Listing A.9: constraints on Programmed DSA

1 module RunningEXStyle
2 open TGG
3 open SOFTWARE
4 //-------------TYPEGRAPH DEFINITION--------------------
5 /* ---------------NOTATION---------------------------------
6 AP = Access_Point
7 CP = Chain_Point
8 -----------------------------------------------------------*/
9 //Bike-Style basic elements

10 one sig CP, AP extends Node {}
11 one sig Left, Right, Access extends Tentacles {}
12 one sig Station extends Edge{}
13 {
14 tentacles = Left+Right+Access
15 conn = Left->CP + Right->CP + Access->AP
16 }
17 one sig Bike extends Edge{}
18 {
19 tentacles = Access
20 conn = Access->AP
21 }
22 one sig BikeStation extends Edge{}
23 {
24 tentacles = Left+Right
25 conn = Left->CP + Right->CP
26 }
27 fact onTypeGraph
28 {
29 TypeGraph.n = CP+AP
30 TypeGraph.he = Station + Bike+BikeStation
31 }

Listing A.10: Style of the Running Example
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1 one sig s1,s2,b1,b2,b3 extends Edge{}
2 one sig cp1,cp2,cp3,ap1,ap2 extends Node{}
3 one sig g1 extends Graph {}
4 {
5 he =s1+b1
6 n= cp1+cp2+ap1
7 s1.conn = Left->cp1 + Right->cp2 + Access->ap1
8 b1.conn = Access->ap1
9 }

10 one sig g2 extends Graph{}
11 {
12 he = s1
13 n = cp1+cp2+ap1
14 s1.conn = Left->cp1 + Right->cp2 + Access->ap1
15 }
16 one sig g3 extends Graph{}
17 {
18 he = s1 + b2
19 n = cp1+cp2+ap1
20 s1.conn = Left->cp1 + Right->cp2 + Access->ap1
21 b2.conn = Access->ap1
22 }
23 one sig g4 extends Graph{}
24 {
25 he = s1+s2 + b1
26 n = cp1+cp2+cp3+ap1+ap2
27 s1.conn = Left->cp1 + Right->cp2 + Access->ap1
28 s2.conn = Left->cp2 + Right->cp3 + Access->ap2
29 b1.conn = Access->ap1
30 }
31 one sig g5 extends Graph{}
32 {
33 he = s1+s2 +b3
34 n = cp1+cp2+cp3+ap1+ap2
35 s1.conn = Left->cp1 + Right->cp2 + Access->ap1
36 s2.conn = Left->cp2 + Right->cp3 + Access->ap2
37 b3.conn = Access->ap2
38 }
39 one sig g6 extends Graph{}
40 {
41 he = s1+b1+b2
42 n = cp1+cp2+ap1
43 s1.conn = Left->cp1 + Right->cp2 + Access->ap1
44 b1.conn = Access->ap1
45 b2.conn = Access->ap1
46 }
47 one sig g7 extends Graph{}
48 {
49 he = s1+s2
50 n = cp1 + cp2 + cp3 + ap1 + ap2
51 s1.conn = Left->cp1 + Right->cp2 + Access->ap1
52 s2.conn = Left->cp2 + Right->cp3 +Access->ap2
53 }

Listing A.11: Graphs of the Productions
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1 one sig G1 extends TypedGraph{}
2 {
3 typingmorphism.source = g1
4 typingmorphism.fE = s1->Station + b1->Bike
5 typingmorphism.fN = cp1->CP + cp2->CP + ap1->AP
6 }
7 one sig G2 extends TypedGraph{}
8 {
9 typingmorphism.source = g2

10 typingmorphism.fE = s1->Station
11 typingmorphism.fN = cp1->CP + cp2->CP + ap1->AP
12 }
13 one sig G3 extends TypedGraph{}
14 {
15 typingmorphism.source = g3
16 typingmorphism.fE = s1->Station + b2->Bike
17 typingmorphism.fN = cp1->CP + cp2->CP + ap1->AP
18 }
19 one sig G4 extends TypedGraph{}
20 {
21 typingmorphism.source = g4
22 typingmorphism.fE = s1->Station + b1->Bike + s2->Station
23 typingmorphism.fN = cp1->CP + cp2->CP + ap1->AP + cp3->CP + ap2->AP
24 }
25 one sig G5 extends TypedGraph{}
26 {
27 typingmorphism.source = g5
28 typingmorphism.fE = s1->Station + b3->Bike + s2->Station
29 typingmorphism.fN = cp1->CP + cp2->CP + ap1->AP + cp3->CP + ap2->AP
30 }
31 one sig G6 extends TypedGraph{}
32 {
33 typingmorphism.source = g6
34 typingmorphism.fE = s1->Station + b1->Bike + b2->Bike
35 typingmorphism.fN = cp1->CP + cp2->CP + ap1->AP
36 }
37 one sig G7 extends TypedGraph{}
38 {
39 typingmorphism.source = g7
40 typingmorphism.fE = s1->Station + s2->Station
41 typingmorphism.fN = cp1->CP + cp2->CP + ap1->AP +ap2->AP + cp3->CP
42 }

Listing A.12: Typed Graphs of the Productions
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1 //----------------------------LEAVE1------------------------------
2 one sig p1 extends PartialMorphism{}
3 one sig LEAVE1 extends TypedPartialMorphism{}
4 {
5 s = G1
6 t= G2
7 PMorphism = p1
8 PMorphism.source = g1
9 PMorphism.target = g2

10 PMorphism.fE = s1->s1
11 PMorphism.fN = cp1->cp1 + cp2->cp2 + ap1->ap1
12 }
13 //----------------------------LEAVE2------------------------
14 one sig p2 extends PartialMorphism{}
15 one sig LEAVE2 extends TypedPartialMorphism{}
16 {
17 s = G3
18 t= G2
19 PMorphism = p2
20 PMorphism.source = g3
21 PMorphism.target = g2
22 PMorphism.fE = s1->s1
23 PMorphism.fN = cp1->cp1 + cp2->cp2 + ap1->ap1
24 }
25 //----------------------------JOIN1---------------------------
26 one sig p3 extends PartialMorphism{}
27 one sig JOIN1 extends TypedPartialMorphism{}
28 {
29 s = G2
30 t= G1
31 PMorphism = p3
32 PMorphism.source = g2
33 PMorphism.target = g1
34 PMorphism.fE = s1->s1
35 PMorphism.fN = cp1->cp1 + cp2->cp2 + ap1->ap1
36 }
37 //----------------------------MIGRATION-----------------------
38 one sig p5 extends PartialMorphism{}
39 one sig MIGRATION extends TypedPartialMorphism{}
40 {
41 s = G4
42 t= G5
43 PMorphism = p5
44 PMorphism.source = g4
45 PMorphism.target = g5
46 PMorphism.fE = s1->s1 + s2->s2 + b1->b3
47 PMorphism.fN = cp1->cp1 + cp2->cp2 + ap1->ap1+ ap2->ap2+
48 cp3->cp3
49

50 }

Listing A.13: Running Example Productions
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1 //----------------------------STATION CONNECTION--------------
2 one sig p6 extends PartialMorphism{}
3 one sig STATIONConn extends TypedPartialMorphism{}
4 {
5 s = G2
6 t= G7
7 PMorphism = p6
8 PMorphism.source = g2
9 PMorphism.target = g7

10 PMorphism.fE = s1->s1
11 PMorphism.fN = cp1->cp1 + cp2->cp2 + ap1->ap1
12 }
13 //----------------------------LEAVE3------------------
14 one sig p7 extends PartialMorphism{}
15 one sig LEAVE3 extends TypedPartialMorphism{}
16 {
17 s = G5
18 t= G7
19 PMorphism = p7
20 PMorphism.source = g5
21 PMorphism.target = g7
22 PMorphism.fE = s1->s1 + s2->s2
23 PMorphism.fN = cp1->cp1 + cp2->cp2 + ap1->ap1 + cp3->cp3
24 + ap2->ap2
25 }

Listing A.14: Station Connection and Leave3 Productions
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1 module RPSStyle
2 open TGG
3 open SOFTWARE
4 //-------------TYPEGRAPH DEFINITION--------------------
5 one sig EA, IA extends Node {}
6 one sig BV, RAV, VS,VV, VO, VGPS, OLD, OV, GPSV, LDO extends Tentacles {}
7 one sig BANK extends Edge{}
8 {
9 tentacles = BV

10 conn = BV->EA
11 }
12 one sig RASS extends Edge{}
13 {
14 tentacles = RAV
15 conn = RAV->EA
16 }
17 one sig VCG extends Edge{}
18 {
19 tentacles = VS + VV + VO + VGPS
20 conn = VS ->EA + VV->EA + VO->IA + VGPS->IA
21 }
22 one sig GPS extends Edge{}
23 {
24 tentacles = GPSV
25 conn = GPSV->IA
26 }
27 one sig LD extends Edge{}
28 {
29 tentacles = LDO
30 conn = LDO->IA
31 }
32 one sig ORCH extends Edge{}
33 {
34 tentacles = OLD+OV
35 conn = OLD->IA + OV->IA
36 }
37 one sig EV extends Edge {}
38 {
39 tentacles = VV
40 conn = VV-> EA
41 }
42 fact onTypeGraph
43 {
44 TypeGraph.n = EA+IA
45 TypeGraph.he = BANK + RASS + VCG + GPS + LD + ORCH + EV
46 }

Listing A.15: RPS Style
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1 //----------Constraints------------------------------------------------
2 fact onTypedGraph
3 {
4 all tg: TypedGraph |
5 one morph: tg.typingmorphism|
6 one g1: morph.source |
7 all e1,e2: g1.he |e1!=e2 and morph.fE[e1] =VCG
8 and morph.fE[e2]= VCG
9 =>#(e1.conn&e2.conn)=0

10

11 all tg: TypedGraph |
12 one morph: tg.typingmorphism |
13 one g1: morph.source |
14 all e1,e2: g1.he | #(univ.(e1.conn) & univ.(e2.conn)) =1
15 and morph.fE[e1] = BANK
16 and morph.fE[e2] = VCG =>
17 VS in univ.conn.(univ.(e1.conn))
18

19

20 all tg: TypedGraph |
21 one morph: tg.typingmorphism |
22 one g1: morph.source |
23 all e1,e2: g1.he | #(univ.(e1.conn) & univ.(e2.conn)) =1
24 and morph.fE[e1] = GPS
25 and morph.fE[e2] = VCG =>
26 VGPS in univ.conn.(univ.(e1.conn))
27

28

29 all tg: TypedGraph |
30 one morph: tg.typingmorphism |
31 one g1: morph.source |
32 all e1,e2: g1.he | #(univ.(e1.conn) & univ.(e2.conn)) =1
33 and morph.fE[e1] = ORCH
34 and morph.fE[e2] = VCG =>
35 OV in univ.conn.(univ.(e1.conn))
36

37

38 all tg: TypedGraph |
39 one morph: tg.typingmorphism |
40 one g1: morph.source |
41 all e1,e2: g1.he | #(univ.(e1.conn) & univ.(e2.conn)) =1
42 and morph.fE[e1] = RASS
43 and morph.fE[e2] = VCG =>
44 VS in univ.conn.(univ.(e1.conn))

Listing A.16: RPS Style Constraints - I
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1 all tg: TypedGraph |
2 one morph: tg.typingmorphism |
3 one g1: morph.source |
4 all e1,e2: g1.he | #(univ.(e1.conn) & univ.(e2.conn)) =1
5 and morph.fE[e1] = LD
6 and morph.fE[e2] = ORCH =>
7 OLD in univ.conn.(univ.(e1.conn))
8

9 // ORCH and GPS can not be connected
10 all tg: TypedGraph |
11 one morph: tg.typingmorphism |
12 one g1: morph.source |
13 all e1,e2: g1.he | morph.fE[e1] = GPS
14 and morph.fE[e2] = ORCH =>
15 #(univ.(e1.conn)&univ.(e2.conn))=0
16

17 //LD and GPS can not be connected
18 all tg: TypedGraph |
19 one morph: tg.typingmorphism |
20 one g1: morph.source |
21 all e1,e2: g1.he | morph.fE[e1] = LD
22 and morph.fE[e2] = GPS =>
23 #(univ.(e1.conn)&univ.(e2.conn))=0
24

25 all tg: TypedGraph |
26 one morph: tg.typingmorphism |
27 one g1: morph.source |
28 all n: g1.n | morph.fN[n] = EA => #(conn.n) <=2
29

30 all tg: TypedGraph |
31 one morph: tg.typingmorphism |
32 one g1: morph.source |
33 all n: g1.n | morph.fN[n] = IA => #(conn.n) <=2
34 }

Listing A.17: RPS Style Constraints - II
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Appendix B

UMC Code
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1 Class Bike is
2 -- public interface
3 Signals:
4 stationFailure(theStation: Station)
5 connectionBikeOK(theStation: Station),
6 serviceOK
7

8 -- private part
9 Vars:

10 startStation: Station,
11 actStation: Station,
12

13 State Top= START, WAIT, STOP, WAIT4HELP
14

15 Transitions:
16 START -> WAIT
17 {- / actStation:=startStation; startStation.connectBike(self)}
18 WAIT -> WAIT4HELP
19 {connectionBikeOK(theStation) /actStation:=theStation;
20 actStation.serviceRequest(self)}
21 WAIT -> WAIT
22 {stationFailure(theStation) [theStation/=null ] /
23 actStation:= theStation; theStation.connectBike(self)}
24 WAIT ->STOP
25 {stationFailure(theStation)[theStation=null] / OUT.BIKESTOPPED}
26 WAIT4HELP -> STOP
27 {serviceOK / OUT.BIKEDISCONNECTED}
28 WAIT4HELP -> WAIT
29 {stationFailure(theStation)[theStation/=null] /
30 actStation:=theStation; theStation.connectBike(self)}
31 WAIT4HELP -> STOP
32 {stationFailure(theStation) [theStation=null] / OUT.PHONECALL}
33

34 end Bike;

Listing B.1: UMC Model of Class ”Bike”
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1 Class Station is
2

3 Signals:
4 connectBike(theBike: Bike)
5 stopBike (theBike: Bike)
6 serviceRequest (theBike: Bike)
7

8 Vars:
9

10 myBike: Bike,
11 nextStation: Station;
12

13 State Top = EMPTY, READY, STOP
14

15 Transitions:
16 EMPTY -> EMPTY
17 {connectBike(theBike) / theBike.stationFailure(nextStation)}
18 EMPTY -> READY
19 {connectBike(theBike) / myBike:= theBike;
20 myBike.connectionBikeOK(self)}
21 READY -> STOP
22 {serviceRequest(theBike) / myBike:=theBike; myBike.serviceOK}
23 READY -> EMPTY
24 {serviceRequest(theBike) / myBike:= theBike;
25 myBike.stationFailure(nextStation)}
26

27 end Station;
28

29 Objects:
30 // static object instantiation
31 bike1: Bike (startStation -> station1, actStation -> station1)
32 station1: Station (nextStation-> station2)
33 station2: Station (nextStation->station3)
34 station3: Station

Listing B.2: UMC Model of the Class ”Station”
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1 Class Bank is
2 Signals:
3 requestCardCharge(cust:Car, cc:Token, amount:Token);
4 -- replies: cust.chargeResponseOK(chargeID)
5 -- cust.chargeResponseFail
6 --
7 revokeCardCharge(cust:Car, chargeID:Token);
8 -- replies: revokeOK
9 State Top = s1

10

11 Transitions:
12 s1 -> s1 { requestCardCharge(cust,cc,amount) /
13 cust.chargeResponseOK(bankopID) }
14 s1 -> s1 { requestCardCharge(cust,cc,amount) /
15 cust.chargeResponseFail }
16 s1 -> s1 { revokeCardCharge(cust,chargeID) /
17 cust.revokeOK }
18 end Bank

Listing B.3: UMC - RPS System: BANK Component
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1 Class RoadAssistance is
2 Signals:
3 ------- GARAGE SERVICES -------
4 requestGarage(cust:Car,loc:Token);
5 -- replies: garageResponseOK(garageData) to car
6 -- garageResponseFail to car
7 --
8 revokeGarage(cust:Car,garageData:Token);
9 -- replies: revokeOK

10

11 -------- TOWTRUCK SERVICES -------
12 requestTowTruck(cust:Car,loc:Token);
13 -- replies: towResponseOK(towData) to car
14 -- towResponseFail to car
15 --
16 revokeTowTruck(cust:Car, towData:Token)
17 -- replies: cust.revokeOK
18

19 ------- RENTAL SERVICES -------
20 requestRentCar(cust:Car,loc:Token);
21 -- replies: rentResponseOK(rentData) to car
22 -- rentResponseFail to car
23 --
24 revokeRentCar(cust:Car, rentData:Token)
25 -- replies: cust.revokeOK
26 --
27

28 State Top = Services
29 State Services = GarageService / TowTruckService / RentalCarService
30 State GarageService = g1
31 State TowTruckService = t1
32 State RentalCarService = r1
33

34 Transitions:
35

36 -- garage services
37 g1 -> g1 { requestGarage(cust,loc)
38 / cust.garageResponseOK(garageData1) }
39 g1 -> g1 { requestGarage(cust,loc)
40 / cust.garageResponseFail }
41 g1 -> g1 { revokeGarage(cust,garageData)
42 / cust.revokeOK }
43

44 -- tow truck
45 t1 -> t1 { requestTowTruck(cust,loc)
46 / cust.towResponseOK(towData1) }
47 t1 -> t1 { requestTowTruck(cust,loc)
48 / cust.towResponseFail }
49 t1 -> t1 { revokeTowTruck(cust,towData)
50 / cust.revokeOK }
51

52 -- rental
53 r1 -> r1 { requestRentCar(cust,loc)
54 / cust.rentResponseOK(rentData1) }
55 r1 -> r1 { requestRentCar(cust,loc)
56 / cust.rentResponseFail }
57 r1 -> r1 { revokeRentCar(cust,rentData)
58 / cust.revokeOK }
59

60 end RoadAssistance

Listing B.4: UMC - RPS System: RASS Component152
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1 * Bike.archj
2 * @generated
3 */
4

5 package generatedArchJava;
6 import java.io.*;
7

8 public component class Bike {
9

10 /**
11 * Declaration of the state machine variables
12 *@generated
13 */
14 private SM_Bike behaviour_Bike;
15 private SM_Station behaviour_Station;
16

17 /**
18 * setBehaviours()
19 *@generated
20 */
21 public void setBehaviours(SM_Bike behaviour_Bike,
22 SM_Station behaviour_Station ){
23 System.out.println("Bike.setBehaviours");
24 this.behaviour_Bike = behaviour_Bike;
25 this.behaviour_Station = behaviour_Station;
26 }
27

28

29 /**
30 * Bike_TO_Station Port definition
31 *@generated
32 */
33 public port Bike_TO_Station {
34 }
35

36 /**
37 * Implementation of the methods
38 * provided by the port Station_TO_Bike
39 *@generated
40 */
41 /**
42 * Station_TO_Bike Port definition
43 *@generated
44 */
45 public port Station_TO_Bike {
46 }
47

48 }

Listing C.1: Bike.archj
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1 * Station.archj
2 * @generated
3 */
4

5 package generatedArchJava;
6 import java.io.*;
7

8 public component class Station {
9

10 /**
11 * Declaration of the state machine variables
12 *@generated
13 */
14 private SM_Bike behaviour_Bike;
15 private SM_Station behaviour_Station;
16

17 /**
18 * setBehaviours()
19 *@generated
20 */
21 public void setBehaviours(SM_Bike behaviour_Bike,
22 SM_Station behaviour_Station ){
23 System.out.println("Station.setBehaviours");
24 this.behaviour_Bike = behaviour_Bike;
25 this.behaviour_Station = behaviour_Station;
26 }
27

28

29 /**
30 * Bike_TO_Station Port definition
31 *@generated
32 */
33 public port Bike_TO_Station {
34 }
35 /**
36 * Station_TO_Bike Port definition
37 *@generated
38 */
39 public port Station_TO_Bike {
40 }
41

42 /**
43 * Implementation of the methods
44 * provided by the port Bike_TO_Station
45 *@generated
46 */
47 }

Listing C.2: Station.archj
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1

2 * SM_Bike.archj
3 * @generated
4 */
5

6 package generatedArchJava;
7

8 import java.util.LinkedList;
9 import generatedArchJava.SMException;

10

11 /** Bike State Machine encoding
12 * @generated
13 */
14 public class SM_Bike {
15 /** State encoding
16 * @generated
17 */
18 public final int S_start= 0;
19 public final int S_WAIT= 1;
20 public final int S_WAIT4REQUEST= 2;
21 public final int S_STOP= 3;
22

23 /** Transition encoding
24 * @generated
25 */
26 public final int T_startStation.connectBike=0;
27 public final int T_stationFailiure=1;
28 public final int T_theStation.connectBike=2;
29 public final int T_connectionBikeOK=3;
30 public final int T_stationFailure=4;
31 public final int T_actStation.serviceRequest=5;
32 public final int T_serviceOK=6;
33 public final int T_OUT.BIKEDISCONNECTED=7;
34 public final int T_OUT.BIKESTOPPED=8;
35 public final int T_OUT.PHONECALL=9;
36

37

38 private int currentState=S_start;
39

40 private LinkedList states = new LinkedList();
41

42 private class transition{
43 private int state;
44 private int transition;
45 private int send_receive;
46

47 public transition(int transition, int state, int send_receive){
48 this.transition=transition;
49 this.state=state;
50 this.send_receive=send_receive;
51 }
52

53 public int getTransition(){
54 return transition;
55 }
56

57 public int getState(){
58 return state;
59 }
60

61 public int getSendReceive(){
62 return send_receive;
63 }
64 }

Listing C.3: Bike Component State Machine - I
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1 /** State Machine constructor
2 * @generated
3 */
4 public SM_Bike(){
5 System.out.println("SM_Bike.constr");
6

7

8 LinkedList start = new LinkedList();
9 start.add(new transition(T_startStation.connectBike, S_WAIT ,0));

10 states.add(start);
11

12 LinkedList WAIT = new LinkedList();
13 WAIT.add(new transition(T_stationFailiure, S_WAIT ,1));
14 WAIT.add(new transition(T_theStation.connectBike, S_WAIT ,0));
15 WAIT.add(new transition(T_connectionBikeOK, S_WAIT4REQUEST ,1));
16 WAIT.add(new transition(T_theStation.connectBike, S_WAIT ,0));
17 WAIT.add(new transition(T_stationFailure, S_STOP ,1));
18 states.add(WAIT);
19

20 LinkedList WAIT4REQUEST = new LinkedList();
21 WAIT4REQUEST.add(new transition(T_stationFailure, S_WAIT ,0));
22 WAIT4REQUEST.add(new transition(T_actStation.serviceRequest,
23 S_WAIT4REQUEST ,0));
24 WAIT4REQUEST.add(new transition(T_serviceOK, S_STOP ,1));
25 WAIT4REQUEST.add(new transition(T_stationFailure, S_STOP ,1));
26 states.add(WAIT4REQUEST);
27

28 LinkedList STOP = new LinkedList();
29 STOP.add(new transition(T_OUT.BIKEDISCONNECTED, S_STOP ,0));
30 STOP.add(new transition(T_OUT.BIKESTOPPED, S_STOP ,0));
31 STOP.add(new transition(T_OUT.PHONECALL, S_STOP ,0));
32 states.add(STOP);
33

34 }
35

36 public void transFire(int trans) throws SMException {
37 ...
38 }
39 }

Listing C.4: Bike Component State Machine - II
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1 * SM_Station.archj
2 * @generated
3 */
4

5 package generatedArchJava;
6

7 import java.util.LinkedList;
8 import generatedArchJava.SMException;
9

10 /** Station State Machine encoding
11 * @generated
12 */
13 public class SM_Station {
14 /** State encoding
15 * @generated
16 */
17 public final int S_EMPTY= 0;
18 public final int S_READY= 1;
19 public final int S_STOP= 2;
20

21 /** Transition encoding
22 * @generated
23 */
24 public final int T_connectBike=0;
25 public final int T_theBike.stationFailure=1;
26 public final int T_myBike.connectBikeOK=2;
27 public final int T_serviceRequest=3;
28 public final int T_myBike.serviceOK=4;
29 public final int T_myBike.stationFailure=5;
30

31

32 private int currentState=S_EMPTY;
33

34 private LinkedList states = new LinkedList();
35

36 private class transition{
37 private int state;
38 private int transition;
39 private int send_receive;
40

41 public transition(int transition, int state, int send_receive){
42 this.transition=transition;
43 this.state=state;
44 this.send_receive=send_receive;
45 }
46

47 public int getTransition(){
48 return transition;
49 }
50

51 public int getState(){
52 return state;
53 }
54

55 public int getSendReceive(){
56 return send_receive;
57 }
58 }

Listing C.5: Station Component State Machine - I
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1 /** State Machine constructor
2 * @generated
3 */
4 public SM_Station(){
5 System.out.println("SM_Station.constr");
6

7

8 LinkedList EMPTY = new LinkedList();
9 EMPTY.add(new transition(T_connectBike, S_EMPTY ,1));

10 EMPTY.add(new transition(T_theBike.stationFailure, S_EMPTY ,0));
11 EMPTY.add(new transition(T_connectBike, S_READY ,1));
12 EMPTY.add(new transition(T_myBike.stationFailure, S_EMPTY ,0));
13 states.add(EMPTY);
14

15 LinkedList READY = new LinkedList();
16 READY.add(new transition(T_myBike.connectBikeOK, S_READY ,0));
17 READY.add(new transition(T_serviceRequest, S_STOP ,1));
18 READY.add(new transition(T_serviceRequest, S_EMPTY ,1));
19 states.add(READY);
20

21 LinkedList STOP = new LinkedList();
22 STOP.add(new transition(T_myBike.serviceOK, S_STOP ,0));
23 states.add(STOP);
24

25 }
26

27 public void transFire(int trans) throws SMException {
28 ...
29 }
30 }

Listing C.6: Station Component State Machine - II
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1 * BANK.archj
2 * @generated
3 */
4 package generatedArchJava;
5 import java.io.*;
6

7 public component class BANK {
8

9 /**
10 * Declaration of the state machine variables
11 *@generated
12 */
13 private SM_VCG behaviour_VCG;
14 private SM_BANK behaviour_BANK;
15 private SM_RASS behaviour_RASS;
16 private SM_ORCH behaviour_ORCH;
17 private SM_GPS behaviour_GPS;
18 private SM_LD behaviour_LD;
19

20 /**
21 * setBehaviours()
22 *@generated
23 */
24 public void setBehaviours(SM_VCG behaviour_VCG,
25 SM_BANK behaviour_BANK, SM_RASS behaviour_RASS, SM_ORCH behaviour_ORCH,
26 SM_GPS behaviour_GPS, SM_LD behaviour_LD ){
27 System.out.println("BANK.setBehaviours");
28 this.behaviour_VCG = behaviour_VCG;
29 this.behaviour_BANK = behaviour_BANK;
30 this.behaviour_RASS = behaviour_RASS;
31 this.behaviour_ORCH = behaviour_ORCH;
32 this.behaviour_GPS = behaviour_GPS;
33 this.behaviour_LD = behaviour_LD;
34 }
35

36 /**
37 * VCG_TO_BANK Port definition
38 *@generated
39 */
40 public port VCG_TO_BANK {
41 }
42 /**
43 * BANK_TO_VCG Port definition
44 *@generated
45 */
46 public port BANK_TO_VCG {
47 }
48

49 /**
50 * Implementation of the methods
51 * provided by the port VCG_TO_BANK
52 *@generated
53 */

Listing C.7: Bank.archj
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1 * SM_BANK.archj
2 * @generated
3 */
4

5 package generatedArchJava;
6

7 import java.util.LinkedList;
8 import generatedArchJava.SMException;
9

10 /** BANK State Machine encoding
11 * @generated
12 */
13 public class SM_BANK {
14 /** State encoding
15 * @generated
16 */
17 public final int S_S1= 0;
18

19 /** Transition encoding
20 * @generated
21 */
22 public final int T_revokeCardCharge=0;
23 public final int T_cust.bankrevokeOK=1;
24 public final int T_requestCardCharge=2;
25 public final int T_cust.chargeResponseOK=3;
26 public final int T_cust.chargeResponseFail=4;
27

28

29 private int currentState=S_S1;
30

31 private LinkedList states = new LinkedList();
32

33 private class transition{
34 private int state;
35 private int transition;
36 private int send_receive;
37

38 public transition(int transition, int state, int send_receive){
39 this.transition=transition;
40 this.state=state;
41 this.send_receive=send_receive;
42 }
43

44 public int getTransition(){
45 return transition;
46 }
47

48 public int getState(){
49 return state;
50 }
51

52 public int getSendReceive(){
53 return send_receive;
54 }
55 }

Listing C.8: Bank Component State Machine - I
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1 /** State Machine constructor
2 * @generated
3 */
4 public SM_BANK(){
5 System.out.println("SM_BANK.constr");
6

7

8 LinkedList S1 = new LinkedList();
9 S1.add(new transition(T_revokeCardCharge, S_S1 ,1));

10 S1.add(new transition(T_cust.bankrevokeOK, S_S1 ,0));
11 S1.add(new transition(T_requestCardCharge, S_S1 ,1));
12 S1.add(new transition(T_cust.chargeResponseOK, S_S1 ,0));
13 S1.add(new transition(T_cust.chargeResponseFail, S_S1 ,0));
14 states.add(S1);
15

16 }
17

18 public void transFire(int trans) throws SMException {
19 ...
20 }
21 }

Listing C.9: Bank Component State Machine - II
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1 package generatedArchJava;
2

3 public class BANK extends archjava.runtime.Component
4 implements archjava.runtime.HasPorts, archjava.runtime.IComponent {
5

6 public BANK (archjava.runtime.Parent $parentArg$) {
7 super ($parentArg$);
8

9 }public BANK () {
10 super ((archjava.runtime.Parent)null);
11

12 }
13

14 private generatedArchJava.SM_VCG behaviour_VCG;
15 private generatedArchJava.SM_BANK behaviour_BANK;
16 private generatedArchJava.SM_RAS behaviour_RAS;
17 private generatedArchJava.SM_ORCH behaviour_ORCH;
18 private generatedArchJava.SM_GPS behaviour_GPS;
19 private generatedArchJava.SM_LD behaviour_LD;
20 public void setBehaviours (
21 generatedArchJava.SM_VCG behaviour_VCG,
22 generatedArchJava.SM_BANK behaviour_BANK,
23 generatedArchJava.SM_RAS behaviour_RAS,
24 generatedArchJava.SM_ORCH behaviour_ORCH,
25 generatedArchJava.SM_GPS behaviour_GPS,
26 generatedArchJava.SM_LD behaviour_LD
27 )
28 {
29 java.lang.System.out.println("BANK.setBehaviours");
30 this.behaviour_VCG = behaviour_VCG;
31 this.behaviour_BANK = behaviour_BANK;
32 this.behaviour_RAS = behaviour_RAS;
33 this.behaviour_ORCH = behaviour_ORCH;
34 this.behaviour_GPS = behaviour_GPS;
35 this.behaviour_LD = behaviour_LD;
36 }
37

38 public generatedArchJava.BANK$port$VCG_TO_BANK VCG_TO_BANK$port$;
39 public generatedArchJava.BANK$port$BANK_TO_VCG BANK_TO_VCG$port$;
40 public archjava.reflect.Port[] get$ports() {
41 return new archjava.reflect.Port[] {
42 new BANK$port$VCG_TO_BANK.Impl(this).port,
43 new BANK$port$BANK_TO_VCG.Impl(this).port };
44 }
45 protected void $initSubs() {
46 }
47 }

Listing C.10: Java Code of the Bank Component
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1 package generatedArchJava;
2

3 public class SM_BANK {
4

5 public SM_BANK () {
6 super ();
7

8 java.lang.System.out.println("SM_BANK.constr");
9 java.util.LinkedList S1 = new java.util.LinkedList();

10 S1.add(this.new transition(this.T_revokeCardCharge, this.S_S1, 1));
11 S1.add(this.new transition(this.T_bankrevokeOK, this.S_S1, 0));
12 S1.add(this.new transition(this.T_requestCardCharge, this.S_S1, 1));
13 S1.add(this.new transition(this.T_chargeResponseOK, this.S_S1, 0));
14 S1.add(this.new transition(this.T_chargeResponseFail, this.S_S1, 0));
15 this.states.add(S1);
16 }
17

18 public final int S_S1 = 0;
19 public final int T_revokeCardCharge = 0;
20 public final int T_bankrevokeOK = 1;
21 public final int T_requestCardCharge = 2;
22 public final int T_chargeResponseOK = 3;
23 public final int T_chargeResponseFail = 4;
24 private int currentState = this.S_S1;
25 private java.util.LinkedList states = new java.util.LinkedList();
26 public void transFire (int trans) throws generatedArchJava.SMException{
27 .....
28 }
29 private class transition {
30 public transition (int transition, int state, int send_receive) {
31 super ();
32 this.transition = transition;
33 this.state = state;
34 this.send_receive = send_receive;
35 }
36

37 private int state;
38 private int transition;
39 private int send_receive;
40 public int getTransition () {
41 return this.transition;
42 }
43

44 public int getState () {
45 return this.state;
46 }
47

48 public int getSendReceive () {
49 return this.send_receive;
50 }
51

52 }
53 }

Listing C.11: Java Code of the Bank Component State Machine
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